Sample records for allocation problem optimizing

  1. Stochastic Optimization For Water Resources Allocation

    NASA Astrophysics Data System (ADS)

    Yamout, G.; Hatfield, K.

    2003-12-01

    For more than 40 years, water resources allocation problems have been addressed using deterministic mathematical optimization. When data uncertainties exist, these methods could lead to solutions that are sub-optimal or even infeasible. While optimization models have been proposed for water resources decision-making under uncertainty, no attempts have been made to address the uncertainties in water allocation problems in an integrated approach. This paper presents an Integrated Dynamic, Multi-stage, Feedback-controlled, Linear, Stochastic, and Distributed parameter optimization approach to solve a problem of water resources allocation. It attempts to capture (1) the conflict caused by competing objectives, (2) environmental degradation produced by resource consumption, and finally (3) the uncertainty and risk generated by the inherently random nature of state and decision parameters involved in such a problem. A theoretical system is defined throughout its different elements. These elements consisting mainly of water resource components and end-users are described in terms of quantity, quality, and present and future associated risks and uncertainties. Models are identified, modified, and interfaced together to constitute an integrated water allocation optimization framework. This effort is a novel approach to confront the water allocation optimization problem while accounting for uncertainties associated with all its elements; thus resulting in a solution that correctly reflects the physical problem in hand.

  2. A group-based tasks allocation algorithm for the optimization of long leave opportunities in academic departments

    NASA Astrophysics Data System (ADS)

    Eyono Obono, S. D.; Basak, Sujit Kumar

    2011-12-01

    The general formulation of the assignment problem consists in the optimal allocation of a given set of tasks to a workforce. This problem is covered by existing literature for different domains such as distributed databases, distributed systems, transportation, packets radio networks, IT outsourcing, and teaching allocation. This paper presents a new version of the assignment problem for the allocation of academic tasks to staff members in departments with long leave opportunities. It presents the description of a workload allocation scheme and its algorithm, for the allocation of an equitable number of tasks in academic departments where long leaves are necessary.

  3. Models of resource allocation optimization when solving the control problems in organizational systems

    NASA Astrophysics Data System (ADS)

    Menshikh, V.; Samorokovskiy, A.; Avsentev, O.

    2018-03-01

    The mathematical model of optimizing the allocation of resources to reduce the time for management decisions and algorithms to solve the general problem of resource allocation. The optimization problem of choice of resources in organizational systems in order to reduce the total execution time of a job is solved. This problem is a complex three-level combinatorial problem, for the solving of which it is necessary to implement the solution to several specific problems: to estimate the duration of performing each action, depending on the number of performers within the group that performs this action; to estimate the total execution time of all actions depending on the quantitative composition of groups of performers; to find such a distribution of the existing resource of performers in groups to minimize the total execution time of all actions. In addition, algorithms to solve the general problem of resource allocation are proposed.

  4. Analog Processor To Solve Optimization Problems

    NASA Technical Reports Server (NTRS)

    Duong, Tuan A.; Eberhardt, Silvio P.; Thakoor, Anil P.

    1993-01-01

    Proposed analog processor solves "traveling-salesman" problem, considered paradigm of global-optimization problems involving routing or allocation of resources. Includes electronic neural network and auxiliary circuitry based partly on concepts described in "Neural-Network Processor Would Allocate Resources" (NPO-17781) and "Neural Network Solves 'Traveling-Salesman' Problem" (NPO-17807). Processor based on highly parallel computing solves problem in significantly less time.

  5. Analysis and Research on the Optimal Allocation of Regional Water Resources

    NASA Astrophysics Data System (ADS)

    rui-chao, Xi; yu-jie, Gu

    2018-06-01

    Starting from the basic concept of optimal allocation of water resources, taking the allocation of water resources in Tianjin as an example, the present situation of water resources in Tianjin is analyzed, and the multi-objective optimal allocation model of water resources is used to optimize the allocation of water resources. We use LINGO to solve the model, get the optimal allocation plan that meets the economic and social benefits, and put forward relevant policies and regulations, so as to provide theoretical which is basis for alleviating and solving the problem of water shortage.

  6. Rate Adaptive Based Resource Allocation with Proportional Fairness Constraints in OFDMA Systems

    PubMed Central

    Yin, Zhendong; Zhuang, Shufeng; Wu, Zhilu; Ma, Bo

    2015-01-01

    Orthogonal frequency division multiple access (OFDMA), which is widely used in the wireless sensor networks, allows different users to obtain different subcarriers according to their subchannel gains. Therefore, how to assign subcarriers and power to different users to achieve a high system sum rate is an important research area in OFDMA systems. In this paper, the focus of study is on the rate adaptive (RA) based resource allocation with proportional fairness constraints. Since the resource allocation is a NP-hard and non-convex optimization problem, a new efficient resource allocation algorithm ACO-SPA is proposed, which combines ant colony optimization (ACO) and suboptimal power allocation (SPA). To reduce the computational complexity, the optimization problem of resource allocation in OFDMA systems is separated into two steps. For the first one, the ant colony optimization algorithm is performed to solve the subcarrier allocation. Then, the suboptimal power allocation algorithm is developed with strict proportional fairness, and the algorithm is based on the principle that the sums of power and the reciprocal of channel-to-noise ratio for each user in different subchannels are equal. To support it, plenty of simulation results are presented. In contrast with root-finding and linear methods, the proposed method provides better performance in solving the proportional resource allocation problem in OFDMA systems. PMID:26426016

  7. Development a heuristic method to locate and allocate the medical centers to minimize the earthquake relief operation time.

    PubMed

    Aghamohammadi, Hossein; Saadi Mesgari, Mohammad; Molaei, Damoon; Aghamohammadi, Hasan

    2013-01-01

    Location-allocation is a combinatorial optimization problem, and is defined as Non deterministic Polynomial Hard (NP) hard optimization. Therefore, solution of such a problem should be shifted from exact to heuristic or Meta heuristic due to the complexity of the problem. Locating medical centers and allocating injuries of an earthquake to them has high importance in earthquake disaster management so that developing a proper method will reduce the time of relief operation and will consequently decrease the number of fatalities. This paper presents the development of a heuristic method based on two nested genetic algorithms to optimize this location allocation problem by using the abilities of Geographic Information System (GIS). In the proposed method, outer genetic algorithm is applied to the location part of the problem and inner genetic algorithm is used to optimize the resource allocation. The final outcome of implemented method includes the spatial location of new required medical centers. The method also calculates that how many of the injuries at each demanding point should be taken to any of the existing and new medical centers as well. The results of proposed method showed high performance of designed structure to solve a capacitated location-allocation problem that may arise in a disaster situation when injured people has to be taken to medical centers in a reasonable time.

  8. Optimal allocation model of construction land based on two-level system optimization theory

    NASA Astrophysics Data System (ADS)

    Liu, Min; Liu, Yanfang; Xia, Yuping; Lei, Qihong

    2007-06-01

    The allocation of construction land is an important task in land-use planning. Whether implementation of planning decisions is a success or not, usually depends on a reasonable and scientific distribution method. Considering the constitution of land-use planning system and planning process in China, multiple levels and multiple objective decision problems is its essence. Also, planning quantity decomposition is a two-level system optimization problem and an optimal resource allocation decision problem between a decision-maker in the topper and a number of parallel decision-makers in the lower. According the characteristics of the decision-making process of two-level decision-making system, this paper develops an optimal allocation model of construction land based on two-level linear planning. In order to verify the rationality and the validity of our model, Baoan district of Shenzhen City has been taken as a test case. Under the assistance of the allocation model, construction land is allocated to ten townships of Baoan district. The result obtained from our model is compared to that of traditional method, and results show that our model is reasonable and usable. In the end, the paper points out the shortcomings of the model and further research directions.

  9. A Framework for Optimal Control Allocation with Structural Load Constraints

    NASA Technical Reports Server (NTRS)

    Frost, Susan A.; Taylor, Brian R.; Jutte, Christine V.; Burken, John J.; Trinh, Khanh V.; Bodson, Marc

    2010-01-01

    Conventional aircraft generally employ mixing algorithms or lookup tables to determine control surface deflections needed to achieve moments commanded by the flight control system. Control allocation is the problem of converting desired moments into control effector commands. Next generation aircraft may have many multipurpose, redundant control surfaces, adding considerable complexity to the control allocation problem. These issues can be addressed with optimal control allocation. Most optimal control allocation algorithms have control surface position and rate constraints. However, these constraints are insufficient to ensure that the aircraft's structural load limits will not be exceeded by commanded surface deflections. In this paper, a framework is proposed to enable a flight control system with optimal control allocation to incorporate real-time structural load feedback and structural load constraints. A proof of concept simulation that demonstrates the framework in a simulation of a generic transport aircraft is presented.

  10. Minimizing the Total Service Time of Discrete Dynamic Berth Allocation Problem by an Iterated Greedy Heuristic

    PubMed Central

    2014-01-01

    Berth allocation is the forefront operation performed when ships arrive at a port and is a critical task in container port optimization. Minimizing the time ships spend at berths constitutes an important objective of berth allocation problems. This study focuses on the discrete dynamic berth allocation problem (discrete DBAP), which aims to minimize total service time, and proposes an iterated greedy (IG) algorithm to solve it. The proposed IG algorithm is tested on three benchmark problem sets. Experimental results show that the proposed IG algorithm can obtain optimal solutions for all test instances of the first and second problem sets and outperforms the best-known solutions for 35 out of 90 test instances of the third problem set. PMID:25295295

  11. Distortion outage minimization in Nakagami fading using limited feedback

    NASA Astrophysics Data System (ADS)

    Wang, Chih-Hong; Dey, Subhrakanti

    2011-12-01

    We focus on a decentralized estimation problem via a clustered wireless sensor network measuring a random Gaussian source where the clusterheads amplify and forward their received signals (from the intra-cluster sensors) over orthogonal independent stationary Nakagami fading channels to a remote fusion center that reconstructs an estimate of the original source. The objective of this paper is to design clusterhead transmit power allocation policies to minimize the distortion outage probability at the fusion center, subject to an expected sum transmit power constraint. In the case when full channel state information (CSI) is available at the clusterhead transmitters, the optimization problem can be shown to be convex and is solved exactly. When only rate-limited channel feedback is available, we design a number of computationally efficient sub-optimal power allocation algorithms to solve the associated non-convex optimization problem. We also derive an approximation for the diversity order of the distortion outage probability in the limit when the average transmission power goes to infinity. Numerical results illustrate that the sub-optimal power allocation algorithms perform very well and can close the outage probability gap between the constant power allocation (no CSI) and full CSI-based optimal power allocation with only 3-4 bits of channel feedback.

  12. Cross-layer Joint Relay Selection and Power Allocation Scheme for Cooperative Relaying System

    NASA Astrophysics Data System (ADS)

    Zhi, Hui; He, Mengmeng; Wang, Feiyue; Huang, Ziju

    2018-03-01

    A novel cross-layer joint relay selection and power allocation (CL-JRSPA) scheme over physical layer and data-link layer is proposed for cooperative relaying system in this paper. Our goal is finding the optimal relay selection and power allocation scheme to maximize system achievable rate when satisfying total transmit power constraint in physical layer and statistical delay quality-of-service (QoS) demand in data-link layer. Using the concept of effective capacity (EC), our goal can be formulated into an optimal joint relay selection and power allocation (JRSPA) problem to maximize the EC when satisfying total transmit power limitation. We first solving optimal power allocation (PA) problem with Lagrange multiplier approach, and then solving optimal relay selection (RS) problem. Simulation results demonstrate that CL-JRSPA scheme gets larger EC than other schemes when satisfying delay QoS demand. In addition, the proposed CL-JRSPA scheme achieves the maximal EC when relay located approximately halfway between source and destination, and EC becomes smaller when the QoS exponent becomes larger.

  13. Multi-Robot Coalitions Formation with Deadlines: Complexity Analysis and Solutions

    PubMed Central

    2017-01-01

    Multi-robot task allocation is one of the main problems to address in order to design a multi-robot system, very especially when robots form coalitions that must carry out tasks before a deadline. A lot of factors affect the performance of these systems and among them, this paper is focused on the physical interference effect, produced when two or more robots want to access the same point simultaneously. To our best knowledge, this paper presents the first formal description of multi-robot task allocation that includes a model of interference. Thanks to this description, the complexity of the allocation problem is analyzed. Moreover, the main contribution of this paper is to provide the conditions under which the optimal solution of the aforementioned allocation problem can be obtained solving an integer linear problem. The optimal results are compared to previous allocation algorithms already proposed by the first two authors of this paper and with a new method proposed in this paper. The results obtained show how the new task allocation algorithms reach up more than an 80% of the median of the optimal solution, outperforming previous auction algorithms with a huge reduction of the execution time. PMID:28118384

  14. Multi-Robot Coalitions Formation with Deadlines: Complexity Analysis and Solutions.

    PubMed

    Guerrero, Jose; Oliver, Gabriel; Valero, Oscar

    2017-01-01

    Multi-robot task allocation is one of the main problems to address in order to design a multi-robot system, very especially when robots form coalitions that must carry out tasks before a deadline. A lot of factors affect the performance of these systems and among them, this paper is focused on the physical interference effect, produced when two or more robots want to access the same point simultaneously. To our best knowledge, this paper presents the first formal description of multi-robot task allocation that includes a model of interference. Thanks to this description, the complexity of the allocation problem is analyzed. Moreover, the main contribution of this paper is to provide the conditions under which the optimal solution of the aforementioned allocation problem can be obtained solving an integer linear problem. The optimal results are compared to previous allocation algorithms already proposed by the first two authors of this paper and with a new method proposed in this paper. The results obtained show how the new task allocation algorithms reach up more than an 80% of the median of the optimal solution, outperforming previous auction algorithms with a huge reduction of the execution time.

  15. Optimal Computing Budget Allocation for Particle Swarm Optimization in Stochastic Optimization.

    PubMed

    Zhang, Si; Xu, Jie; Lee, Loo Hay; Chew, Ek Peng; Wong, Wai Peng; Chen, Chun-Hung

    2017-04-01

    Particle Swarm Optimization (PSO) is a popular metaheuristic for deterministic optimization. Originated in the interpretations of the movement of individuals in a bird flock or fish school, PSO introduces the concept of personal best and global best to simulate the pattern of searching for food by flocking and successfully translate the natural phenomena to the optimization of complex functions. Many real-life applications of PSO cope with stochastic problems. To solve a stochastic problem using PSO, a straightforward approach is to equally allocate computational effort among all particles and obtain the same number of samples of fitness values. This is not an efficient use of computational budget and leaves considerable room for improvement. This paper proposes a seamless integration of the concept of optimal computing budget allocation (OCBA) into PSO to improve the computational efficiency of PSO for stochastic optimization problems. We derive an asymptotically optimal allocation rule to intelligently determine the number of samples for all particles such that the PSO algorithm can efficiently select the personal best and global best when there is stochastic estimation noise in fitness values. We also propose an easy-to-implement sequential procedure. Numerical tests show that our new approach can obtain much better results using the same amount of computational effort.

  16. Optimal Computing Budget Allocation for Particle Swarm Optimization in Stochastic Optimization

    PubMed Central

    Zhang, Si; Xu, Jie; Lee, Loo Hay; Chew, Ek Peng; Chen, Chun-Hung

    2017-01-01

    Particle Swarm Optimization (PSO) is a popular metaheuristic for deterministic optimization. Originated in the interpretations of the movement of individuals in a bird flock or fish school, PSO introduces the concept of personal best and global best to simulate the pattern of searching for food by flocking and successfully translate the natural phenomena to the optimization of complex functions. Many real-life applications of PSO cope with stochastic problems. To solve a stochastic problem using PSO, a straightforward approach is to equally allocate computational effort among all particles and obtain the same number of samples of fitness values. This is not an efficient use of computational budget and leaves considerable room for improvement. This paper proposes a seamless integration of the concept of optimal computing budget allocation (OCBA) into PSO to improve the computational efficiency of PSO for stochastic optimization problems. We derive an asymptotically optimal allocation rule to intelligently determine the number of samples for all particles such that the PSO algorithm can efficiently select the personal best and global best when there is stochastic estimation noise in fitness values. We also propose an easy-to-implement sequential procedure. Numerical tests show that our new approach can obtain much better results using the same amount of computational effort. PMID:29170617

  17. Learning automata-based solutions to the nonlinear fractional knapsack problem with applications to optimal resource allocation.

    PubMed

    Granmo, Ole-Christoffer; Oommen, B John; Myrer, Svein Arild; Olsen, Morten Goodwin

    2007-02-01

    This paper considers the nonlinear fractional knapsack problem and demonstrates how its solution can be effectively applied to two resource allocation problems dealing with the World Wide Web. The novel solution involves a "team" of deterministic learning automata (LA). The first real-life problem relates to resource allocation in web monitoring so as to "optimize" information discovery when the polling capacity is constrained. The disadvantages of the currently reported solutions are explained in this paper. The second problem concerns allocating limited sampling resources in a "real-time" manner with the purpose of estimating multiple binomial proportions. This is the scenario encountered when the user has to evaluate multiple web sites by accessing a limited number of web pages, and the proportions of interest are the fraction of each web site that is successfully validated by an HTML validator. Using the general LA paradigm to tackle both of the real-life problems, the proposed scheme improves a current solution in an online manner through a series of informed guesses that move toward the optimal solution. At the heart of the scheme, a team of deterministic LA performs a controlled random walk on a discretized solution space. Comprehensive experimental results demonstrate that the discretization resolution determines the precision of the scheme, and that for a given precision, the current solution (to both problems) is consistently improved until a nearly optimal solution is found--even for switching environments. Thus, the scheme, while being novel to the entire field of LA, also efficiently handles a class of resource allocation problems previously not addressed in the literature.

  18. Vehicle routing problem and capacitated vehicle routing problem frameworks in fund allocation problem

    NASA Astrophysics Data System (ADS)

    Mamat, Nur Jumaadzan Zaleha; Jaaman, Saiful Hafizah; Ahmad, Rokiah@Rozita

    2016-11-01

    Two new methods adopted from methods commonly used in the field of transportation and logistics are proposed to solve a specific issue of investment allocation problem. Vehicle routing problem and capacitated vehicle routing methods are applied to optimize the fund allocation of a portfolio of investment assets. This is done by determining the sequence of the assets. As a result, total investment risk is minimized by this sequence.

  19. Artificial Intelligence Techniques for the Berth Allocation and Container Stacking Problems in Container Terminals

    NASA Astrophysics Data System (ADS)

    Salido, Miguel A.; Rodriguez-Molins, Mario; Barber, Federico

    The Container Stacking Problem and the Berth Allocation Problem are two important problems in maritime container terminal's management which are clearly related. Terminal operators normally demand all containers to be loaded into an incoming vessel should be ready and easily accessible in the terminal before vessel's arrival. Similarly, customers (i.e., vessel owners) expect prompt berthing of their vessels upon arrival. In this paper, we present an artificial intelligence based-integrated system to relate these problems. Firstly, we develop a metaheuristic algorithm for berth allocation which generates an optimized order of vessel to be served according to existing berth constraints. Secondly, we develop a domain-oriented heuristic planner for calculating the number of reshuffles needed to allocate containers in the appropriate place for a given berth ordering of vessels. By combining these optimized solutions, terminal operators can be assisted to decide the most appropriated solution in each particular case.

  20. A Novel Sensor Selection and Power Allocation Algorithm for Multiple-Target Tracking in an LPI Radar Network

    PubMed Central

    She, Ji; Wang, Fei; Zhou, Jianjiang

    2016-01-01

    Radar networks are proven to have numerous advantages over traditional monostatic and bistatic radar. With recent developments, radar networks have become an attractive platform due to their low probability of intercept (LPI) performance for target tracking. In this paper, a joint sensor selection and power allocation algorithm for multiple-target tracking in a radar network based on LPI is proposed. It is found that this algorithm can minimize the total transmitted power of a radar network on the basis of a predetermined mutual information (MI) threshold between the target impulse response and the reflected signal. The MI is required by the radar network system to estimate target parameters, and it can be calculated predictively with the estimation of target state. The optimization problem of sensor selection and power allocation, which contains two variables, is non-convex and it can be solved by separating power allocation problem from sensor selection problem. To be specific, the optimization problem of power allocation can be solved by using the bisection method for each sensor selection scheme. Also, the optimization problem of sensor selection can be solved by a lower complexity algorithm based on the allocated powers. According to the simulation results, it can be found that the proposed algorithm can effectively reduce the total transmitted power of a radar network, which can be conducive to improving LPI performance. PMID:28009819

  1. Antenna Allocation in MIMO Radar with Widely Separated Antennas for Multi-Target Detection

    PubMed Central

    Gao, Hao; Wang, Jian; Jiang, Chunxiao; Zhang, Xudong

    2014-01-01

    In this paper, we explore a new resource called multi-target diversity to optimize the performance of multiple input multiple output (MIMO) radar with widely separated antennas for detecting multiple targets. In particular, we allocate antennas of the MIMO radar to probe different targets simultaneously in a flexible manner based on the performance metric of relative entropy. Two antenna allocation schemes are proposed. In the first scheme, each antenna is allocated to illuminate a proper target over the entire illumination time, so that the detection performance of each target is guaranteed. The problem is formulated as a minimum makespan scheduling problem in the combinatorial optimization framework. Antenna allocation is implemented through a branch-and-bound algorithm and an enhanced factor 2 algorithm. In the second scheme, called antenna-time allocation, each antenna is allocated to illuminate different targets with different illumination time. Both antenna allocation and time allocation are optimized based on illumination probabilities. Over a large range of transmitted power, target fluctuations and target numbers, both of the proposed antenna allocation schemes outperform the scheme without antenna allocation. Moreover, the antenna-time allocation scheme achieves a more robust detection performance than branch-and-bound algorithm and the enhanced factor 2 algorithm when the target number changes. PMID:25350505

  2. Antenna allocation in MIMO radar with widely separated antennas for multi-target detection.

    PubMed

    Gao, Hao; Wang, Jian; Jiang, Chunxiao; Zhang, Xudong

    2014-10-27

    In this paper, we explore a new resource called multi-target diversity to optimize the performance of multiple input multiple output (MIMO) radar with widely separated antennas for detecting multiple targets. In particular, we allocate antennas of the MIMO radar to probe different targets simultaneously in a flexible manner based on the performance metric of relative entropy. Two antenna allocation schemes are proposed. In the first scheme, each antenna is allocated to illuminate a proper target over the entire illumination time, so that the detection performance of each target is guaranteed. The problem is formulated as a minimum makespan scheduling problem in the combinatorial optimization framework. Antenna allocation is implemented through a branch-and-bound algorithm and an enhanced factor 2 algorithm. In the second scheme, called antenna-time allocation, each antenna is allocated to illuminate different targets with different illumination time. Both antenna allocation and time allocation are optimized based on illumination probabilities. Over a large range of transmitted power, target fluctuations and target numbers, both of the proposed antenna allocation schemes outperform the scheme without antenna allocation. Moreover, the antenna-time allocation scheme achieves a more robust detection performance than branch-and-bound algorithm and the enhanced factor 2 algorithm when the target number changes.

  3. Optimal resource allocation for defense of targets based on differing measures of attractiveness.

    PubMed

    Bier, Vicki M; Haphuriwat, Naraphorn; Menoyo, Jaime; Zimmerman, Rae; Culpen, Alison M

    2008-06-01

    This article describes the results of applying a rigorous computational model to the problem of the optimal defensive resource allocation among potential terrorist targets. In particular, our study explores how the optimal budget allocation depends on the cost effectiveness of security investments, the defender's valuations of the various targets, and the extent of the defender's uncertainty about the attacker's target valuations. We use expected property damage, expected fatalities, and two metrics of critical infrastructure (airports and bridges) as our measures of target attractiveness. Our results show that the cost effectiveness of security investment has a large impact on the optimal budget allocation. Also, different measures of target attractiveness yield different optimal budget allocations, emphasizing the importance of developing more realistic terrorist objective functions for use in budget allocation decisions for homeland security.

  4. Efficient Simulation Budget Allocation for Selecting an Optimal Subset

    NASA Technical Reports Server (NTRS)

    Chen, Chun-Hung; He, Donghai; Fu, Michael; Lee, Loo Hay

    2008-01-01

    We consider a class of the subset selection problem in ranking and selection. The objective is to identify the top m out of k designs based on simulated output. Traditional procedures are conservative and inefficient. Using the optimal computing budget allocation framework, we formulate the problem as that of maximizing the probability of correc tly selecting all of the top-m designs subject to a constraint on the total number of samples available. For an approximation of this corre ct selection probability, we derive an asymptotically optimal allocat ion and propose an easy-to-implement heuristic sequential allocation procedure. Numerical experiments indicate that the resulting allocatio ns are superior to other methods in the literature that we tested, and the relative efficiency increases for larger problems. In addition, preliminary numerical results indicate that the proposed new procedur e has the potential to enhance computational efficiency for simulation optimization.

  5. Location-allocation models and new solution methodologies in telecommunication networks

    NASA Astrophysics Data System (ADS)

    Dinu, S.; Ciucur, V.

    2016-08-01

    When designing a telecommunications network topology, three types of interdependent decisions are combined: location, allocation and routing, which are expressed by the following design considerations: how many interconnection devices - consolidation points/concentrators should be used and where should they be located; how to allocate terminal nodes to concentrators; how should the voice, video or data traffic be routed and what transmission links (capacitated or not) should be built into the network. Including these three components of the decision into a single model generates a problem whose complexity makes it difficult to solve. A first method to address the overall problem is the sequential one, whereby the first step deals with the location-allocation problem and based on this solution the subsequent sub-problem (routing the network traffic) shall be solved. The issue of location and allocation in a telecommunications network, called "The capacitated concentrator location- allocation - CCLA problem" is based on one of the general location models on a network in which clients/demand nodes are the terminals and facilities are the concentrators. Like in a location model, each client node has a demand traffic, which must be served, and the facilities can serve these demands within their capacity limit. In this study, the CCLA problem is modeled as a single-source capacitated location-allocation model whose optimization objective is to determine the minimum network cost consisting of fixed costs for establishing the locations of concentrators, costs for operating concentrators and costs for allocating terminals to concentrators. The problem is known as a difficult combinatorial optimization problem for which powerful algorithms are required. Our approach proposes a Fuzzy Genetic Algorithm combined with a local search procedure to calculate the optimal values of the location and allocation variables. To confirm the efficiency of the proposed algorithm with respect to the quality of solutions, significant size test problems were considered: up to 100 terminal nodes and 50 concentrators on a 100 × 100 square grid. The performance of this hybrid intelligent algorithm was evaluated by measuring the quality of its solutions with respect to the following statistics: the standard deviation and the ratio of the best solution obtained.

  6. Decomposition method for zonal resource allocation problems in telecommunication networks

    NASA Astrophysics Data System (ADS)

    Konnov, I. V.; Kashuba, A. Yu

    2016-11-01

    We consider problems of optimal resource allocation in telecommunication networks. We first give an optimization formulation for the case where the network manager aims to distribute some homogeneous resource (bandwidth) among users of one region with quadratic charge and fee functions and present simple and efficient solution methods. Next, we consider a more general problem for a provider of a wireless communication network divided into zones (clusters) with common capacity constraints. We obtain a convex quadratic optimization problem involving capacity and balance constraints. By using the dual Lagrangian method with respect to the capacity constraint, we suggest to reduce the initial problem to a single-dimensional optimization problem, but calculation of the cost function value leads to independent solution of zonal problems, which coincide with the above single region problem. Some results of computational experiments confirm the applicability of the new methods.

  7. Multi-Objective Optimization for Trustworthy Tactical Networks: A Survey and Insights

    DTIC Science & Technology

    2013-06-01

    existing data sources, gathering and maintaining the data needed , and completing and reviewing the collection of information. Send comments regarding...problems: using repeated cooperative games [12], hedonic games [25], and nontransferable utility cooperative games [27]. It should be noted that trust...examined an optimal task allocation problem in a distributed computing system where program modules need to be allocated to different processors to

  8. A note on resource allocation scheduling with group technology and learning effects on a single machine

    NASA Astrophysics Data System (ADS)

    Lu, Yuan-Yuan; Wang, Ji-Bo; Ji, Ping; He, Hongyu

    2017-09-01

    In this article, single-machine group scheduling with learning effects and convex resource allocation is studied. The goal is to find the optimal job schedule, the optimal group schedule, and resource allocations of jobs and groups. For the problem of minimizing the makespan subject to limited resource availability, it is proved that the problem can be solved in polynomial time under the condition that the setup times of groups are independent. For the general setup times of groups, a heuristic algorithm and a branch-and-bound algorithm are proposed, respectively. Computational experiments show that the performance of the heuristic algorithm is fairly accurate in obtaining near-optimal solutions.

  9. Optimal Power Allocation for Downstream xDSL With Per-Modem Total Power Constraints: Broadcast Channel Optimal Spectrum Balancing (BC-OSB)

    NASA Astrophysics Data System (ADS)

    Le Nir, Vincent; Moonen, Marc; Verlinden, Jan; Guenach, Mamoun

    2009-02-01

    Recently, the duality between Multiple Input Multiple Output (MIMO) Multiple Access Channels (MAC) and MIMO Broadcast Channels (BC) has been established under a total power constraint. The same set of rates for MAC can be achieved in BC exploiting the MAC-BC duality formulas while preserving the total power constraint. In this paper, we describe the BC optimal power allo- cation applying this duality in a downstream x-Digital Subscriber Lines (xDSL) context under a total power constraint for all modems over all tones. Then, a new algorithm called BC-Optimal Spectrum Balancing (BC-OSB) is devised for a more realistic power allocation under per-modem total power constraints. The capacity region of the primal BC problem under per-modem total power constraints is found by the dual optimization problem for the BC under per-modem total power constraints which can be rewritten as a dual optimization problem in the MAC by means of a precoder matrix based on the Lagrange multipliers. We show that the duality gap between the two problems is zero. The multi-user power allocation problem has been solved for interference channels and MAC using the OSB algorithm. In this paper we solve the problem of multi-user power allocation for the BC case using the OSB algorithm as well and we derive a computational efficient algorithm that will be referred to as BC-OSB. Simulation results are provided for two VDSL2 scenarios: the first one with Differential-Mode (DM) transmission only and the second one with both DM and Phantom- Mode (PM) transmissions.

  10. Self-Coexistence among IEEE 802.22 Networks: Distributed Allocation of Power and Channel

    PubMed Central

    Sakin, Sayef Azad; Alamri, Atif; Tran, Nguyen H.

    2017-01-01

    Ensuring self-coexistence among IEEE 802.22 networks is a challenging problem owing to opportunistic access of incumbent-free radio resources by users in co-located networks. In this study, we propose a fully-distributed non-cooperative approach to ensure self-coexistence in downlink channels of IEEE 802.22 networks. We formulate the self-coexistence problem as a mixed-integer non-linear optimization problem for maximizing the network data rate, which is an NP-hard one. This work explores a sub-optimal solution by dividing the optimization problem into downlink channel allocation and power assignment sub-problems. Considering fairness, quality of service and minimum interference for customer-premises-equipment, we also develop a greedy algorithm for channel allocation and a non-cooperative game-theoretic framework for near-optimal power allocation. The base stations of networks are treated as players in a game, where they try to increase spectrum utilization by controlling power and reaching a Nash equilibrium point. We further develop a utility function for the game to increase the data rate by minimizing the transmission power and, subsequently, the interference from neighboring networks. A theoretical proof of the uniqueness and existence of the Nash equilibrium has been presented. Performance improvements in terms of data-rate with a degree of fairness compared to a cooperative branch-and-bound-based algorithm and a non-cooperative greedy approach have been shown through simulation studies. PMID:29215591

  11. Self-Coexistence among IEEE 802.22 Networks: Distributed Allocation of Power and Channel.

    PubMed

    Sakin, Sayef Azad; Razzaque, Md Abdur; Hassan, Mohammad Mehedi; Alamri, Atif; Tran, Nguyen H; Fortino, Giancarlo

    2017-12-07

    Ensuring self-coexistence among IEEE 802.22 networks is a challenging problem owing to opportunistic access of incumbent-free radio resources by users in co-located networks. In this study, we propose a fully-distributed non-cooperative approach to ensure self-coexistence in downlink channels of IEEE 802.22 networks. We formulate the self-coexistence problem as a mixed-integer non-linear optimization problem for maximizing the network data rate, which is an NP-hard one. This work explores a sub-optimal solution by dividing the optimization problem into downlink channel allocation and power assignment sub-problems. Considering fairness, quality of service and minimum interference for customer-premises-equipment, we also develop a greedy algorithm for channel allocation and a non-cooperative game-theoretic framework for near-optimal power allocation. The base stations of networks are treated as players in a game, where they try to increase spectrum utilization by controlling power and reaching a Nash equilibrium point. We further develop a utility function for the game to increase the data rate by minimizing the transmission power and, subsequently, the interference from neighboring networks. A theoretical proof of the uniqueness and existence of the Nash equilibrium has been presented. Performance improvements in terms of data-rate with a degree of fairness compared to a cooperative branch-and-bound-based algorithm and a non-cooperative greedy approach have been shown through simulation studies.

  12. Nash Social Welfare in Multiagent Resource Allocation

    NASA Astrophysics Data System (ADS)

    Ramezani, Sara; Endriss, Ulle

    We study different aspects of the multiagent resource allocation problem when the objective is to find an allocation that maximizes Nash social welfare, the product of the utilities of the individual agents. The Nash solution is an important welfare criterion that combines efficiency and fairness considerations. We show that the problem of finding an optimal outcome is NP-hard for a number of different languages for representing agent preferences; we establish new results regarding convergence to Nash-optimal outcomes in a distributed negotiation framework; and we design and test algorithms similar to those applied in combinatorial auctions for computing such an outcome directly.

  13. Solving the optimal attention allocation problem in manual control

    NASA Technical Reports Server (NTRS)

    Kleinman, D. L.

    1976-01-01

    Within the context of the optimal control model of human response, analytic expressions for the gradients of closed-loop performance metrics with respect to human operator attention allocation are derived. These derivatives serve as the basis for a gradient algorithm that determines the optimal attention that a human should allocate among several display indicators in a steady-state manual control task. Application of the human modeling techniques are made to study the hover control task for a CH-46 VTOL flight tested by NASA.

  14. A generalized fuzzy credibility-constrained linear fractional programming approach for optimal irrigation water allocation under uncertainty

    NASA Astrophysics Data System (ADS)

    Zhang, Chenglong; Guo, Ping

    2017-10-01

    The vague and fuzzy parametric information is a challenging issue in irrigation water management problems. In response to this problem, a generalized fuzzy credibility-constrained linear fractional programming (GFCCFP) model is developed for optimal irrigation water allocation under uncertainty. The model can be derived from integrating generalized fuzzy credibility-constrained programming (GFCCP) into a linear fractional programming (LFP) optimization framework. Therefore, it can solve ratio optimization problems associated with fuzzy parameters, and examine the variation of results under different credibility levels and weight coefficients of possibility and necessary. It has advantages in: (1) balancing the economic and resources objectives directly; (2) analyzing system efficiency; (3) generating more flexible decision solutions by giving different credibility levels and weight coefficients of possibility and (4) supporting in-depth analysis of the interrelationships among system efficiency, credibility level and weight coefficient. The model is applied to a case study of irrigation water allocation in the middle reaches of Heihe River Basin, northwest China. Therefore, optimal irrigation water allocation solutions from the GFCCFP model can be obtained. Moreover, factorial analysis on the two parameters (i.e. λ and γ) indicates that the weight coefficient is a main factor compared with credibility level for system efficiency. These results can be effective for support reasonable irrigation water resources management and agricultural production.

  15. Distributed Optimal Consensus Over Resource Allocation Network and Its Application to Dynamical Economic Dispatch.

    PubMed

    Li, Chaojie; Yu, Xinghuo; Huang, Tingwen; He, Xing; Chaojie Li; Xinghuo Yu; Tingwen Huang; Xing He; Li, Chaojie; Huang, Tingwen; He, Xing; Yu, Xinghuo

    2018-06-01

    The resource allocation problem is studied and reformulated by a distributed interior point method via a -logarithmic barrier. By the facilitation of the graph Laplacian, a fully distributed continuous-time multiagent system is developed for solving the problem. Specifically, to avoid high singularity of the -logarithmic barrier at boundary, an adaptive parameter switching strategy is introduced into this dynamical multiagent system. The convergence rate of the distributed algorithm is obtained. Moreover, a novel distributed primal-dual dynamical multiagent system is designed in a smart grid scenario to seek the saddle point of dynamical economic dispatch, which coincides with the optimal solution. The dual decomposition technique is applied to transform the optimization problem into easily solvable resource allocation subproblems with local inequality constraints. The good performance of the new dynamical systems is, respectively, verified by a numerical example and the IEEE six-bus test system-based simulations.

  16. Optimality versus stability in water resource allocation.

    PubMed

    Read, Laura; Madani, Kaveh; Inanloo, Bahareh

    2014-01-15

    Water allocation is a growing concern in a developing world where limited resources like fresh water are in greater demand by more parties. Negotiations over allocations often involve multiple groups with disparate social, economic, and political status and needs, who are seeking a management solution for a wide range of demands. Optimization techniques for identifying the Pareto-optimal (social planner solution) to multi-criteria multi-participant problems are commonly implemented, although often reaching agreement for this solution is difficult. In negotiations with multiple-decision makers, parties who base decisions on individual rationality may find the social planner solution to be unfair, thus creating a need to evaluate the willingness to cooperate and practicality of a cooperative allocation solution, i.e., the solution's stability. This paper suggests seeking solutions for multi-participant resource allocation problems through an economics-based power index allocation method. This method can inform on allocation schemes that quantify a party's willingness to participate in a negotiation rather than opt for no agreement. Through comparison of the suggested method with a range of distance-based multi-criteria decision making rules, namely, least squares, MAXIMIN, MINIMAX, and compromise programming, this paper shows that optimality and stability can produce different allocation solutions. The mismatch between the socially-optimal alternative and the most stable alternative can potentially result in parties leaving the negotiation as they may be too dissatisfied with their resource share. This finding has important policy implications as it justifies why stakeholders may not accept the socially optimal solution in practice, and underlies the necessity of considering stability where it may be more appropriate to give up an unstable Pareto-optimal solution for an inferior stable one. Authors suggest assessing the stability of an allocation solution as an additional component to an analysis that seeks to distribute water in a negotiated process. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Energy-Efficient Cognitive Radio Sensor Networks: Parametric and Convex Transformations

    PubMed Central

    Naeem, Muhammad; Illanko, Kandasamy; Karmokar, Ashok; Anpalagan, Alagan; Jaseemuddin, Muhammad

    2013-01-01

    Designing energy-efficient cognitive radio sensor networks is important to intelligently use battery energy and to maximize the sensor network life. In this paper, the problem of determining the power allocation that maximizes the energy-efficiency of cognitive radio-based wireless sensor networks is formed as a constrained optimization problem, where the objective function is the ratio of network throughput and the network power. The proposed constrained optimization problem belongs to a class of nonlinear fractional programming problems. Charnes-Cooper Transformation is used to transform the nonlinear fractional problem into an equivalent concave optimization problem. The structure of the power allocation policy for the transformed concave problem is found to be of a water-filling type. The problem is also transformed into a parametric form for which a ε-optimal iterative solution exists. The convergence of the iterative algorithms is proven, and numerical solutions are presented. The iterative solutions are compared with the optimal solution obtained from the transformed concave problem, and the effects of different system parameters (interference threshold level, the number of primary users and secondary sensor nodes) on the performance of the proposed algorithms are investigated. PMID:23966194

  18. Risk-Based Sampling: I Don't Want to Weight in Vain.

    PubMed

    Powell, Mark R

    2015-12-01

    Recently, there has been considerable interest in developing risk-based sampling for food safety and animal and plant health for efficient allocation of inspection and surveillance resources. The problem of risk-based sampling allocation presents a challenge similar to financial portfolio analysis. Markowitz (1952) laid the foundation for modern portfolio theory based on mean-variance optimization. However, a persistent challenge in implementing portfolio optimization is the problem of estimation error, leading to false "optimal" portfolios and unstable asset weights. In some cases, portfolio diversification based on simple heuristics (e.g., equal allocation) has better out-of-sample performance than complex portfolio optimization methods due to estimation uncertainty. Even for portfolios with a modest number of assets, the estimation window required for true optimization may imply an implausibly long stationary period. The implications for risk-based sampling are illustrated by a simple simulation model of lot inspection for a small, heterogeneous group of producers. © 2015 Society for Risk Analysis.

  19. A game-theoretical pricing mechanism for multiuser rate allocation for video over WiMAX

    NASA Astrophysics Data System (ADS)

    Chen, Chao-An; Lo, Chi-Wen; Lin, Chia-Wen; Chen, Yung-Chang

    2010-07-01

    In multiuser rate allocation in a wireless network, strategic users can bias the rate allocation by misrepresenting their bandwidth demands to a base station, leading to an unfair allocation. Game-theoretical approaches have been proposed to address the unfair allocation problems caused by the strategic users. However, existing approaches rely on a timeconsuming iterative negotiation process. Besides, they cannot completely prevent unfair allocations caused by inconsistent strategic behaviors. To address these problems, we propose a Search Based Pricing Mechanism to reduce the communication time and to capture a user's strategic behavior. Our simulation results show that the proposed method significantly reduce the communication time as well as converges stably to an optimal allocation.

  20. Interactive Land-Use Optimization Using Laguerre Voronoi Diagram with Dynamic Generating Point Allocation

    NASA Astrophysics Data System (ADS)

    Chaidee, S.; Pakawanwong, P.; Suppakitpaisarn, V.; Teerasawat, P.

    2017-09-01

    In this work, we devise an efficient method for the land-use optimization problem based on Laguerre Voronoi diagram. Previous Voronoi diagram-based methods are more efficient and more suitable for interactive design than discrete optimization-based method, but, in many cases, their outputs do not satisfy area constraints. To cope with the problem, we propose a force-directed graph drawing algorithm, which automatically allocates generating points of Voronoi diagram to appropriate positions. Then, we construct a Laguerre Voronoi diagram based on these generating points, use linear programs to adjust each cell, and reconstruct the diagram based on the adjustment. We adopt the proposed method to the practical case study of Chiang Mai University's allocated land for a mixed-use complex. For this case study, compared to other Voronoi diagram-based method, we decrease the land allocation error by 62.557 %. Although our computation time is larger than the previous Voronoi-diagram-based method, it is still suitable for interactive design.

  1. Optimal assignment of workers to supporting services in a hospital

    NASA Astrophysics Data System (ADS)

    Sawik, Bartosz; Mikulik, Jerzy

    2008-01-01

    Supporting services play an important role in health care institutions such as hospitals. This paper presents an application of operations research model for optimal allocation of workers among supporting services in a public hospital. The services include logistics, inventory management, financial management, operations management, medical analysis, etc. The optimality criterion of the problem is to minimize operations costs of supporting services subject to some specific constraints. The constraints represent specific conditions for resource allocation in a hospital. The overall problem is formulated as an integer program in the literature known as the assignment problem, where the decision variables represent the assignment of people to various jobs. The results of some computational experiments modeled on a real data from a selected Polish hospital are reported.

  2. Datasets for supplier selection and order allocation with green criteria, all-unit quantity discounts and varying number of suppliers.

    PubMed

    Hamdan, Sadeque; Cheaitou, Ali

    2017-08-01

    This data article provides detailed optimization input and output datasets and optimization code for the published research work titled "Dynamic green supplier selection and order allocation with quantity discounts and varying supplier availability" (Hamdan and Cheaitou, 2017, In press) [1]. Researchers may use these datasets as a baseline for future comparison and extensive analysis of the green supplier selection and order allocation problem with all-unit quantity discount and varying number of suppliers. More particularly, the datasets presented in this article allow researchers to generate the exact optimization outputs obtained by the authors of Hamdan and Cheaitou (2017, In press) [1] using the provided optimization code and then to use them for comparison with the outputs of other techniques or methodologies such as heuristic approaches. Moreover, this article includes the randomly generated optimization input data and the related outputs that are used as input data for the statistical analysis presented in Hamdan and Cheaitou (2017 In press) [1] in which two different approaches for ranking potential suppliers are compared. This article also provides the time analysis data used in (Hamdan and Cheaitou (2017, In press) [1] to study the effect of the problem size on the computation time as well as an additional time analysis dataset. The input data for the time study are generated randomly, in which the problem size is changed, and then are used by the optimization problem to obtain the corresponding optimal outputs as well as the corresponding computation time.

  3. Optimal allocation of resources for suppressing epidemic spreading on networks

    NASA Astrophysics Data System (ADS)

    Chen, Hanshuang; Li, Guofeng; Zhang, Haifeng; Hou, Zhonghuai

    2017-07-01

    Efficient allocation of limited medical resources is crucial for controlling epidemic spreading on networks. Based on the susceptible-infected-susceptible model, we solve the optimization problem of how best to allocate the limited resources so as to minimize prevalence, providing that the curing rate of each node is positively correlated to its medical resource. By quenched mean-field theory and heterogeneous mean-field (HMF) theory, we prove that an epidemic outbreak will be suppressed to the greatest extent if the curing rate of each node is directly proportional to its degree, under which the effective infection rate λ has a maximal threshold λcopt=1 / , where is the average degree of the underlying network. For a weak infection region (λ ≳λcopt ), we combine perturbation theory with the Lagrange multiplier method (LMM) to derive the analytical expression of optimal allocation of the curing rates and the corresponding minimized prevalence. For a general infection region (λ >λcopt ), the high-dimensional optimization problem is converted into numerically solving low-dimensional nonlinear equations by the HMF theory and LMM. Counterintuitively, in the strong infection region the low-degree nodes should be allocated more medical resources than the high-degree nodes to minimize prevalence. Finally, we use simulated annealing to validate the theoretical results.

  4. A trust-based sensor allocation algorithm in cooperative space search problems

    NASA Astrophysics Data System (ADS)

    Shen, Dan; Chen, Genshe; Pham, Khanh; Blasch, Erik

    2011-06-01

    Sensor allocation is an important and challenging problem within the field of multi-agent systems. The sensor allocation problem involves deciding how to assign a number of targets or cells to a set of agents according to some allocation protocol. Generally, in order to make efficient allocations, we need to design mechanisms that consider both the task performers' costs for the service and the associated probability of success (POS). In our problem, the costs are the used sensor resource, and the POS is the target tracking performance. Usually, POS may be perceived differently by different agents because they typically have different standards or means of evaluating the performance of their counterparts (other sensors in the search and tracking problem). Given this, we turn to the notion of trust to capture such subjective perceptions. In our approach, we develop a trust model to construct a novel mechanism that motivates sensor agents to limit their greediness or selfishness. Then we model the sensor allocation optimization problem with trust-in-loop negotiation game and solve it using a sub-game perfect equilibrium. Numerical simulations are performed to demonstrate the trust-based sensor allocation algorithm in cooperative space situation awareness (SSA) search problems.

  5. Optimal Sensor Allocation for Fault Detection and Isolation

    NASA Technical Reports Server (NTRS)

    Azam, Mohammad; Pattipati, Krishna; Patterson-Hine, Ann

    2004-01-01

    Automatic fault diagnostic schemes rely on various types of sensors (e.g., temperature, pressure, vibration, etc) to measure the system parameters. Efficacy of a diagnostic scheme is largely dependent on the amount and quality of information available from these sensors. The reliability of sensors, as well as the weight, volume, power, and cost constraints, often makes it impractical to monitor a large number of system parameters. An optimized sensor allocation that maximizes the fault diagnosibility, subject to specified weight, volume, power, and cost constraints is required. Use of optimal sensor allocation strategies during the design phase can ensure better diagnostics at a reduced cost for a system incorporating a high degree of built-in testing. In this paper, we propose an approach that employs multiple fault diagnosis (MFD) and optimization techniques for optimal sensor placement for fault detection and isolation (FDI) in complex systems. Keywords: sensor allocation, multiple fault diagnosis, Lagrangian relaxation, approximate belief revision, multidimensional knapsack problem.

  6. Joint optimization of regional water-power systems

    NASA Astrophysics Data System (ADS)

    Pereira-Cardenal, Silvio J.; Mo, Birger; Gjelsvik, Anders; Riegels, Niels D.; Arnbjerg-Nielsen, Karsten; Bauer-Gottwein, Peter

    2016-06-01

    Energy and water resources systems are tightly coupled; energy is needed to deliver water and water is needed to extract or produce energy. Growing pressure on these resources has raised concerns about their long-term management and highlights the need to develop integrated solutions. A method for joint optimization of water and electric power systems was developed in order to identify methodologies to assess the broader interactions between water and energy systems. The proposed method is to include water users and power producers into an economic optimization problem that minimizes the cost of power production and maximizes the benefits of water allocation, subject to constraints from the power and hydrological systems. The method was tested on the Iberian Peninsula using simplified models of the seven major river basins and the power market. The optimization problem was successfully solved using stochastic dual dynamic programming. The results showed that current water allocation to hydropower producers in basins with high irrigation productivity, and to irrigation users in basins with high hydropower productivity was sub-optimal. Optimal allocation was achieved by managing reservoirs in very distinct ways, according to the local inflow, storage capacity, hydropower productivity, and irrigation demand and productivity. This highlights the importance of appropriately representing the water users' spatial distribution and marginal benefits and costs when allocating water resources optimally. The method can handle further spatial disaggregation and can be extended to include other aspects of the water-energy nexus.

  7. Land use allocation model considering climate change impact

    NASA Astrophysics Data System (ADS)

    Lee, D. K.; Yoon, E. J.; Song, Y. I.

    2017-12-01

    In Korea, climate change adaptation plans are being developed for each administrative district based on impact assessments constructed in various fields. This climate change impact assessments are superimposed on the actual space, which causes problems in land use allocation because the spatial distribution of individual impacts may be different each other. This implies that trade-offs between climate change impacts can occur depending on the composition of land use. Moreover, the actual space is complexly intertwined with various factors such as required area, legal regulations, and socioeconomic values, so land use allocation in consideration of climate change can be very difficult problem to solve (Liu et al. 2012; Porta et al. 2013).Optimization techniques can generate a sufficiently good alternatives for land use allocation at the strategic level if only the fitness function of relationship between impact and land use composition are derived. It has also been noted that land use optimization model is more effective than the scenario-based prediction model in achieving the objectives for problem solving (Zhang et al. 2014). Therefore in this study, we developed a quantitative tool, MOGA (Multi Objective Genetic Algorithm), which can generate a comprehensive land use allocations considering various climate change impacts, and apply it to the Gangwon-do in Korea. Genetic Algorithms (GAs) are the most popular optimization technique to address multi-objective in land use allocation. Also, it allows for immediate feedback to stake holders because it can run a number of experiments with different parameter values. And it is expected that land use decision makers and planners can formulate a detailed spatial plan or perform additional analysis based on the result of optimization model. Acknowledgments: This work was supported by the Korea Ministry of Environment (MOE) as "Climate Change Correspondence Program (Project number: 2014001310006)"

  8. Playing Games with Optimal Competitive Scheduling

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy; Crawford, James; Khatib, Lina; Brafman, Ronen

    2005-01-01

    This paper is concerned with the problem of allocating a unit capacity resource to multiple users within a pre-defined time period. The resource is indivisible, so that at most one user can use it at each time instance. However, different users may use it at different times. The users have independent, selfish preferences for when and for how long they are allocated this resource. Thus, they value different resource access durations differently, and they value different time slots differently. We seek an optimal allocation schedule for this resource.

  9. Application of a COTS Resource Optimization Framework to the SSN Sensor Tasking Domain - Part I: Problem Definition

    NASA Astrophysics Data System (ADS)

    Tran, T.

    With the onset of the SmallSat era, the RSO catalog is expected to see continuing growth in the near future. This presents a significant challenge to the current sensor tasking of the SSN. The Air Force is in need of a sensor tasking system that is robust, efficient, scalable, and able to respond in real-time to interruptive events that can change the tracking requirements of the RSOs. Furthermore, the system must be capable of using processed data from heterogeneous sensors to improve tasking efficiency. The SSN sensor tasking can be regarded as an economic problem of supply and demand: the amount of tracking data needed by each RSO represents the demand side while the SSN sensor tasking represents the supply side. As the number of RSOs to be tracked grows, demand exceeds supply. The decision-maker is faced with the problem of how to allocate resources in the most efficient manner. Braxton recently developed a framework called Multi-Objective Resource Optimization using Genetic Algorithm (MOROUGA) as one of its modern COTS software products. This optimization framework took advantage of the maturing technology of evolutionary computation in the last 15 years. This framework was applied successfully to address the resource allocation of an AFSCN-like problem. In any resource allocation problem, there are five key elements: (1) the resource pool, (2) the tasks using the resources, (3) a set of constraints on the tasks and the resources, (4) the objective functions to be optimized, and (5) the demand levied on the resources. In this paper we explain in detail how the design features of this optimization framework are directly applicable to address the SSN sensor tasking domain. We also discuss our validation effort as well as present the result of the AFSCN resource allocation domain using a prototype based on this optimization framework.

  10. Resource allocation in shared spectrum access communications for operators with diverse service requirements

    NASA Astrophysics Data System (ADS)

    Kibria, Mirza Golam; Villardi, Gabriel Porto; Ishizu, Kentaro; Kojima, Fumihide; Yano, Hiroyuki

    2016-12-01

    In this paper, we study inter-operator spectrum sharing and intra-operator resource allocation in shared spectrum access communication systems and propose efficient dynamic solutions to address both inter-operator and intra-operator resource allocation optimization problems. For inter-operator spectrum sharing, we present two competent approaches, namely the subcarrier gain-based sharing and fragmentation-based sharing, which carry out fair and flexible allocation of the available shareable spectrum among the operators subject to certain well-defined sharing rules, traffic demands, and channel propagation characteristics. The subcarrier gain-based spectrum sharing scheme has been found to be more efficient in terms of achieved throughput. However, the fragmentation-based sharing is more attractive in terms of computational complexity. For intra-operator resource allocation, we consider resource allocation problem with users' dissimilar service requirements, where the operator supports users with delay constraint and non-delay constraint service requirements, simultaneously. This optimization problem is a mixed-integer non-linear programming problem and non-convex, which is computationally very expensive, and the complexity grows exponentially with the number of integer variables. We propose less-complex and efficient suboptimal solution based on formulating exact linearization, linear approximation, and convexification techniques for the non-linear and/or non-convex objective functions and constraints. Extensive simulation performance analysis has been carried out that validates the efficiency of the proposed solution.

  11. Optimization of Land Use Suitability for Agriculture Using Integrated Geospatial Model and Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    Mansor, S. B.; Pormanafi, S.; Mahmud, A. R. B.; Pirasteh, S.

    2012-08-01

    In this study, a geospatial model for land use allocation was developed from the view of simulating the biological autonomous adaptability to environment and the infrastructural preference. The model was developed based on multi-agent genetic algorithm. The model was customized to accommodate the constraint set for the study area, namely the resource saving and environmental-friendly. The model was then applied to solve the practical multi-objective spatial optimization allocation problems of land use in the core region of Menderjan Basin in Iran. The first task was to study the dominant crops and economic suitability evaluation of land. Second task was to determine the fitness function for the genetic algorithms. The third objective was to optimize the land use map using economical benefits. The results has indicated that the proposed model has much better performance for solving complex multi-objective spatial optimization allocation problems and it is a promising method for generating land use alternatives for further consideration in spatial decision-making.

  12. Three-level global resource allocation model for hiv control: A hierarchical decision system approach.

    PubMed

    Kassa, Semu Mitiku

    2018-02-01

    Funds from various global organizations, such as, The Global Fund, The World Bank, etc. are not directly distributed to the targeted risk groups. Especially in the so-called third-world-countries, the major part of the fund in HIV prevention programs comes from these global funding organizations. The allocations of these funds usually pass through several levels of decision making bodies that have their own specific parameters to control and specific objectives to achieve. However, these decisions are made mostly in a heuristic manner and this may lead to a non-optimal allocation of the scarce resources. In this paper, a hierarchical mathematical optimization model is proposed to solve such a problem. Combining existing epidemiological models with the kind of interventions being on practice, a 3-level hierarchical decision making model in optimally allocating such resources has been developed and analyzed. When the impact of antiretroviral therapy (ART) is included in the model, it has been shown that the objective function of the lower level decision making structure is a non-convex minimization problem in the allocation variables even if all the production functions for the intervention programs are assumed to be linear.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, He; Sun, Yannan; Carroll, Thomas E.

    We propose a coordination algorithm for cooperative power allocation among a collection of commercial buildings within a campus. We introduced thermal and power models of a typical commercial building Heating, Ventilation, and Air Conditioning (HVAC) system, and utilize model predictive control to characterize their power flexibility. The power allocation problem is formulated as a cooperative game using the Nash Bargaining Solution (NBS) concept, in which buildings collectively maximize the product of their utilities subject to their local flexibility constraints and a total power limit set by the campus coordinator. To solve the optimal allocation problem, a distributed protocol is designedmore » using dual decomposition of the Nash bargaining problem. Numerical simulations are performed to demonstrate the efficacy of our proposed allocation method« less

  14. Optimal plant nitrogen use improves model representation of vegetation response to elevated CO2

    NASA Astrophysics Data System (ADS)

    Caldararu, Silvia; Kern, Melanie; Engel, Jan; Zaehle, Sönke

    2017-04-01

    Existing global vegetation models often cannot accurately represent observed ecosystem behaviour under transient conditions such as elevated atmospheric CO2, a problem that can be attributed to an inflexibility in model representation of plant responses. Plant optimality concepts have been proposed as a solution to this problem as they offer a way to represent plastic plant responses in complex models. Here we present a novel, next generation vegetation model which includes optimal nitrogen allocation to and within the canopy as well as optimal biomass allocation between above- and belowground components in response to nutrient and water availability. The underlying hypothesis is that plants adjust their use of nitrogen in response to environmental conditions and nutrient availability in order to maximise biomass growth. We show that for two FACE (Free Air CO2 enrichment) experiments, the Duke forest and Oak Ridge forest sites, the model can better predict vegetation responses over the duration of the experiment when optimal processes are included. Specifically, under elevated CO2 conditions, the model predicts a lower optimal leaf N concentration as well as increased biomass allocation to fine roots, which, combined with a redistribution of leaf N between the Rubisco and chlorophyll components, leads to a continued NPP response under high CO2, where models with a fixed canopy stoichiometry predict a quick onset of N limitation.Existing global vegetation models often cannot accurately represent observed ecosystem behaviour under transient conditions such as elevated atmospheric CO2, a problem that can be attributed to an inflexibility in model representation of plant responses. Plant optimality concepts have been proposed as a solution to this problem as they offer a way to represent plastic plant responses in complex models. Here we present a novel, next generation vegetation model which includes optimal nitrogen allocation to and within the canopy as well as optimal biomass allocation between above- and belowground components in response to nutrient and water availability. The underlying hypothesis is that plants adjust their use of nitrogen in response to environmental conditions and nutrient availability in order to maximise biomass growth. We show that for two FACE (Free Air CO2 enrichment) experiments, the Duke forest and Oak Ridge forest sites, the model can better predict vegetation responses over the duration of the experiment when optimal processes are included. Specifically, under elevated CO2 conditions, the model predicts a lower optimal leaf N concentration as well as increased biomass allocation to fine roots, which, combined with a redistribution of leaf N between the Rubisco and chlorophyll components, leads to a continued NPP response under high CO2, where models with a fixed canopy stoichiometry predict a quick onset of N limitation.

  15. Capacity improvement using simulation optimization approaches: A case study in the thermotechnology industry

    NASA Astrophysics Data System (ADS)

    Yelkenci Köse, Simge; Demir, Leyla; Tunalı, Semra; Türsel Eliiyi, Deniz

    2015-02-01

    In manufacturing systems, optimal buffer allocation has a considerable impact on capacity improvement. This study presents a simulation optimization procedure to solve the buffer allocation problem in a heat exchanger production plant so as to improve the capacity of the system. For optimization, three metaheuristic-based search algorithms, i.e. a binary-genetic algorithm (B-GA), a binary-simulated annealing algorithm (B-SA) and a binary-tabu search algorithm (B-TS), are proposed. These algorithms are integrated with the simulation model of the production line. The simulation model, which captures the stochastic and dynamic nature of the production line, is used as an evaluation function for the proposed metaheuristics. The experimental study with benchmark problem instances from the literature and the real-life problem show that the proposed B-TS algorithm outperforms B-GA and B-SA in terms of solution quality.

  16. Pricing Resources in LTE Networks through Multiobjective Optimization

    PubMed Central

    Lai, Yung-Liang; Jiang, Jehn-Ruey

    2014-01-01

    The LTE technology offers versatile mobile services that use different numbers of resources. This enables operators to provide subscribers or users with differential quality of service (QoS) to boost their satisfaction. On one hand, LTE operators need to price the resources high for maximizing their profits. On the other hand, pricing also needs to consider user satisfaction with allocated resources and prices to avoid “user churn,” which means subscribers will unsubscribe services due to dissatisfaction with allocated resources or prices. In this paper, we study the pricing resources with profits and satisfaction optimization (PRPSO) problem in the LTE networks, considering the operator profit and subscribers' satisfaction at the same time. The problem is modelled as nonlinear multiobjective optimization with two optimal objectives: (1) maximizing operator profit and (2) maximizing user satisfaction. We propose to solve the problem based on the framework of the NSGA-II. Simulations are conducted for evaluating the proposed solution. PMID:24526889

  17. Pricing resources in LTE networks through multiobjective optimization.

    PubMed

    Lai, Yung-Liang; Jiang, Jehn-Ruey

    2014-01-01

    The LTE technology offers versatile mobile services that use different numbers of resources. This enables operators to provide subscribers or users with differential quality of service (QoS) to boost their satisfaction. On one hand, LTE operators need to price the resources high for maximizing their profits. On the other hand, pricing also needs to consider user satisfaction with allocated resources and prices to avoid "user churn," which means subscribers will unsubscribe services due to dissatisfaction with allocated resources or prices. In this paper, we study the pricing resources with profits and satisfaction optimization (PRPSO) problem in the LTE networks, considering the operator profit and subscribers' satisfaction at the same time. The problem is modelled as nonlinear multiobjective optimization with two optimal objectives: (1) maximizing operator profit and (2) maximizing user satisfaction. We propose to solve the problem based on the framework of the NSGA-II. Simulations are conducted for evaluating the proposed solution.

  18. Optimal Resource Allocation for NOMA-TDMA Scheme with α-Fairness in Industrial Internet of Things.

    PubMed

    Sun, Yanjing; Guo, Yiyu; Li, Song; Wu, Dapeng; Wang, Bin

    2018-05-15

    In this paper, a joint non-orthogonal multiple access and time division multiple access (NOMA-TDMA) scheme is proposed in Industrial Internet of Things (IIoT), which allowed multiple sensors to transmit in the same time-frequency resource block using NOMA. The user scheduling, time slot allocation, and power control are jointly optimized in order to maximize the system α -fair utility under transmit power constraint and minimum rate constraint. The optimization problem is nonconvex because of the fractional objective function and the nonconvex constraints. To deal with the original problem, we firstly convert the objective function in the optimization problem into a difference of two convex functions (D.C.) form, and then propose a NOMA-TDMA-DC algorithm to exploit the global optimum. Numerical results show that the NOMA-TDMA scheme significantly outperforms the traditional orthogonal multiple access scheme in terms of both spectral efficiency and user fairness.

  19. A market-based optimization approach to sensor and resource management

    NASA Astrophysics Data System (ADS)

    Schrage, Dan; Farnham, Christopher; Gonsalves, Paul G.

    2006-05-01

    Dynamic resource allocation for sensor management is a problem that demands solutions beyond traditional approaches to optimization. Market-based optimization applies solutions from economic theory, particularly game theory, to the resource allocation problem by creating an artificial market for sensor information and computational resources. Intelligent agents are the buyers and sellers in this market, and they represent all the elements of the sensor network, from sensors to sensor platforms to computational resources. These agents interact based on a negotiation mechanism that determines their bidding strategies. This negotiation mechanism and the agents' bidding strategies are based on game theory, and they are designed so that the aggregate result of the multi-agent negotiation process is a market in competitive equilibrium, which guarantees an optimal allocation of resources throughout the sensor network. This paper makes two contributions to the field of market-based optimization: First, we develop a market protocol to handle heterogeneous goods in a dynamic setting. Second, we develop arbitrage agents to improve the efficiency in the market in light of its dynamic nature.

  20. Asynchronous Incremental Stochastic Dual Descent Algorithm for Network Resource Allocation

    NASA Astrophysics Data System (ADS)

    Bedi, Amrit Singh; Rajawat, Ketan

    2018-05-01

    Stochastic network optimization problems entail finding resource allocation policies that are optimum on an average but must be designed in an online fashion. Such problems are ubiquitous in communication networks, where resources such as energy and bandwidth are divided among nodes to satisfy certain long-term objectives. This paper proposes an asynchronous incremental dual decent resource allocation algorithm that utilizes delayed stochastic {gradients} for carrying out its updates. The proposed algorithm is well-suited to heterogeneous networks as it allows the computationally-challenged or energy-starved nodes to, at times, postpone the updates. The asymptotic analysis of the proposed algorithm is carried out, establishing dual convergence under both, constant and diminishing step sizes. It is also shown that with constant step size, the proposed resource allocation policy is asymptotically near-optimal. An application involving multi-cell coordinated beamforming is detailed, demonstrating the usefulness of the proposed algorithm.

  1. Decision-theoretic methodology for reliability and risk allocation in nuclear power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, N.Z.; Papazoglou, I.A.; Bari, R.A.

    1985-01-01

    This paper describes a methodology for allocating reliability and risk to various reactor systems, subsystems, components, operations, and structures in a consistent manner, based on a set of global safety criteria which are not rigid. The problem is formulated as a multiattribute decision analysis paradigm; the multiobjective optimization, which is performed on a PRA model and reliability cost functions, serves as the guiding principle for reliability and risk allocation. The concept of noninferiority is used in the multiobjective optimization problem. Finding the noninferior solution set is the main theme of the current approach. The assessment of the decision maker's preferencesmore » could then be performed more easily on the noninferior solution set. Some results of the methodology applications to a nontrivial risk model are provided and several outstanding issues such as generic allocation and preference assessment are discussed.« less

  2. Stochastic Averaging for Constrained Optimization With Application to Online Resource Allocation

    NASA Astrophysics Data System (ADS)

    Chen, Tianyi; Mokhtari, Aryan; Wang, Xin; Ribeiro, Alejandro; Giannakis, Georgios B.

    2017-06-01

    Existing approaches to resource allocation for nowadays stochastic networks are challenged to meet fast convergence and tolerable delay requirements. The present paper leverages online learning advances to facilitate stochastic resource allocation tasks. By recognizing the central role of Lagrange multipliers, the underlying constrained optimization problem is formulated as a machine learning task involving both training and operational modes, with the goal of learning the sought multipliers in a fast and efficient manner. To this end, an order-optimal offline learning approach is developed first for batch training, and it is then generalized to the online setting with a procedure termed learn-and-adapt. The novel resource allocation protocol permeates benefits of stochastic approximation and statistical learning to obtain low-complexity online updates with learning errors close to the statistical accuracy limits, while still preserving adaptation performance, which in the stochastic network optimization context guarantees queue stability. Analysis and simulated tests demonstrate that the proposed data-driven approach improves the delay and convergence performance of existing resource allocation schemes.

  3. Strategic planning for disaster recovery with stochastic last mile distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bent, Russell Whitford; Van Hentenryck, Pascal; Coffrin, Carleton

    2010-01-01

    This paper considers the single commodity allocation problem (SCAP) for disaster recovery, a fundamental problem faced by all populated areas. SCAPs are complex stochastic optimization problems that combine resource allocation, warehouse routing, and parallel fleet routing. Moreover, these problems must be solved under tight runtime constraints to be practical in real-world disaster situations. This paper formalizes the specification of SCAPs and introduces a novel multi-stage hybrid-optimization algorithm that utilizes the strengths of mixed integer programming, constraint programming, and large neighborhood search. The algorithm was validated on hurricane disaster scenarios generated by Los Alamos National Laboratory using state-of-the-art disaster simulation toolsmore » and is deployed to aid federal organizations in the US.« less

  4. Ant Colony Optimization Algorithm for Centralized Dynamic Channel Allocation in Multi-Cell OFDMA Systems

    NASA Astrophysics Data System (ADS)

    Kim, Hyo-Su; Kim, Dong-Hoi

    The dynamic channel allocation (DCA) scheme in multi-cell systems causes serious inter-cell interference (ICI) problem to some existing calls when channels for new calls are allocated. Such a problem can be addressed by advanced centralized DCA design that is able to minimize ICI. Thus, in this paper, a centralized DCA is developed for the downlink of multi-cell orthogonal frequency division multiple access (OFDMA) systems with full spectral reuse. However, in practice, as the search space of channel assignment for centralized DCA scheme in multi-cell systems grows exponentially with the increase of the number of required calls, channels, and cells, it becomes an NP-hard problem and is currently too complicated to find an optimum channel allocation. In this paper, we propose an ant colony optimization (ACO) based DCA scheme using a low-complexity ACO algorithm which is a kind of heuristic algorithm in order to solve the aforementioned problem. Simulation results demonstrate significant performance improvements compared to the existing schemes in terms of the grade of service (GoS) performance and the forced termination probability of existing calls without degrading the system performance of the average throughput.

  5. Resource allocation for error resilient video coding over AWGN using optimization approach.

    PubMed

    An, Cheolhong; Nguyen, Truong Q

    2008-12-01

    The number of slices for error resilient video coding is jointly optimized with 802.11a-like media access control and the physical layers with automatic repeat request and rate compatible punctured convolutional code over additive white gaussian noise channel as well as channel times allocation for time division multiple access. For error resilient video coding, the relation between the number of slices and coding efficiency is analyzed and formulated as a mathematical model. It is applied for the joint optimization problem, and the problem is solved by a convex optimization method such as the primal-dual decomposition method. We compare the performance of a video communication system which uses the optimal number of slices with one that codes a picture as one slice. From numerical examples, end-to-end distortion of utility functions can be significantly reduced with the optimal slices of a picture especially at low signal-to-noise ratio.

  6. Dynamic programming methods for concurrent design and dynamic allocation of vehicles embedded in a system-of-systems

    NASA Astrophysics Data System (ADS)

    Nusawardhana

    2007-12-01

    Recent developments indicate a changing perspective on how systems or vehicles should be designed. Such transition comes from the way decision makers in defense related agencies address complex problems. Complex problems are now often posed in terms of the capabilities desired, rather than in terms of requirements for a single systems. As a result, the way to provide a set of capabilities is through a collection of several individual, independent systems. This collection of individual independent systems is often referred to as a "System of Systems'' (SoS). Because of the independent nature of the constituent systems in an SoS, approaches to design an SoS, and more specifically, approaches to design a new system as a member of an SoS, will likely be different than the traditional design approaches for complex, monolithic (meaning the constituent parts have no ability for independent operation) systems. Because a system of system evolves over time, this simultaneous system design and resource allocation problem should be investigated in a dynamic context. Such dynamic optimization problems are similar to conventional control problems. However, this research considers problems which not only seek optimizing policies but also seek the proper system or vehicle to operate under these policies. This thesis presents a framework and a set of analytical tools to solve a class of SoS problems that involves the simultaneous design of a new system and allocation of the new system along with existing systems. Such a class of problems belongs to the problems of concurrent design and control of a new systems with solutions consisting of both optimal system design and optimal control strategy. Rigorous mathematical arguments show that the proposed framework solves the concurrent design and control problems. Many results exist for dynamic optimization problems of linear systems. In contrary, results on optimal nonlinear dynamic optimization problems are rare. The proposed framework is equipped with the set of analytical tools to solve several cases of nonlinear optimal control problems: continuous- and discrete-time nonlinear problems with applications on both optimal regulation and tracking. These tools are useful when mathematical descriptions of dynamic systems are available. In the absence of such a mathematical model, it is often necessary to derive a solution based on computer simulation. For this case, a set of parameterized decision may constitute a solution. This thesis presents a method to adjust these parameters based on the principle of stochastic approximation simultaneous perturbation using continuous measurements. The set of tools developed here mostly employs the methods of exact dynamic programming. However, due to the complexity of SoS problems, this research also develops suboptimal solution approaches, collectively recognized as approximate dynamic programming solutions, for large scale problems. The thesis presents, explores, and solves problems from an airline industry, in which a new aircraft is to be designed and allocated along with an existing fleet of aircraft. Because the life cycle of an aircraft is on the order of 10 to 20 years, this problem is to be addressed dynamically so that the new aircraft design is the best design for the fleet over a given time horizon.

  7. Artificial Intelligence Based Control Power Optimization on Tailless Aircraft. [ARMD Seedling Fund Phase I

    NASA Technical Reports Server (NTRS)

    Gern, Frank; Vicroy, Dan D.; Mulani, Sameer B.; Chhabra, Rupanshi; Kapania, Rakesh K.; Schetz, Joseph A.; Brown, Derrell; Princen, Norman H.

    2014-01-01

    Traditional methods of control allocation optimization have shown difficulties in exploiting the full potential of controlling large arrays of control devices on innovative air vehicles. Artificial neutral networks are inspired by biological nervous systems and neurocomputing has successfully been applied to a variety of complex optimization problems. This project investigates the potential of applying neurocomputing to the control allocation optimization problem of Hybrid Wing Body (HWB) aircraft concepts to minimize control power, hinge moments, and actuator forces, while keeping system weights within acceptable limits. The main objective of this project is to develop a proof-of-concept process suitable to demonstrate the potential of using neurocomputing for optimizing actuation power for aircraft featuring multiple independently actuated control surfaces. A Nastran aeroservoelastic finite element model is used to generate a learning database of hinge moment and actuation power characteristics for an array of flight conditions and control surface deflections. An artificial neural network incorporating a genetic algorithm then uses this training data to perform control allocation optimization for the investigated aircraft configuration. The phase I project showed that optimization results for the sum of required hinge moments are improved by more than 12% over the best Nastran solution by using the neural network optimization process.

  8. Investigation of Optimal Control Allocation for Gust Load Alleviation in Flight Control

    NASA Technical Reports Server (NTRS)

    Frost, Susan A.; Taylor, Brian R.; Bodson, Marc

    2012-01-01

    Advances in sensors and avionics computation power suggest real-time structural load measurements could be used in flight control systems for improved safety and performance. A conventional transport flight control system determines the moments necessary to meet the pilot's command, while rejecting disturbances and maintaining stability of the aircraft. Control allocation is the problem of converting these desired moments into control effector commands. In this paper, a framework is proposed to incorporate real-time structural load feedback and structural load constraints in the control allocator. Constrained optimal control allocation can be used to achieve desired moments without exceeding specified limits on monitored load points. Minimization of structural loads by the control allocator is used to alleviate gust loads. The framework to incorporate structural loads in the flight control system and an optimal control allocation algorithm will be described and then demonstrated on a nonlinear simulation of a generic transport aircraft with flight dynamics and static structural loads.

  9. Fund allocation using capacitated vehicle routing problem

    NASA Astrophysics Data System (ADS)

    Mamat, Nur Jumaadzan Zaleha; Jaaman, Saiful Hafizah; Ahmad, Rokiah Rozita; Darus, Maslina

    2014-09-01

    In investment fund allocation, it is unwise for an investor to distribute his fund into several assets simultaneously due to economic reasons. One solution is to allocate the fund into a particular asset at a time in a sequence that will either maximize returns or minimize risks depending on the investor's objective. The vehicle routing problem (VRP) provides an avenue to this issue. VRP answers the question on how to efficiently use the available fleet of vehicles to meet a given service demand, subjected to a set of operational requirements. This paper proposes an idea of using capacitated vehicle routing problem (CVRP) to optimize investment fund allocation by employing data of selected stocks in the FTSE Bursa Malaysia. Results suggest that CRVP can be applied to solve the issue of investment fund allocation and increase the investor's profit.

  10. Covariance versus correlation in capacitated vehicle routing problem-investment fund allocation problem

    NASA Astrophysics Data System (ADS)

    Mamat, Nur Jumaadzan Zaleha; Jaaman, Saiful Hafizah; Ahmad, Rokiah@Rozita

    2017-04-01

    Capacitated Vehicle Routing Problem-Investment Fund Allocation Problem (CVRP-IFAP) provides investors with a sequence of assets to allocate their funds into. To minimize total risks of investment in CVRP-IFAP covariance values measure the risks between two assets. Another measure of risks are correlation values between returns. The correlation values can be used to diversify the risk of investment loss in order to optimize expected return against a certain level of risk. This study compares the total risk obtained from CVRP-IFAP when using covariance values and correlation values. Results show that CVRP-IFAP with covariance values provides lesser total risks and a significantly better measure of risk.

  11. Performance impact of mutation operators of a subpopulation-based genetic algorithm for multi-robot task allocation problems.

    PubMed

    Liu, Chun; Kroll, Andreas

    2016-01-01

    Multi-robot task allocation determines the task sequence and distribution for a group of robots in multi-robot systems, which is one of constrained combinatorial optimization problems and more complex in case of cooperative tasks because they introduce additional spatial and temporal constraints. To solve multi-robot task allocation problems with cooperative tasks efficiently, a subpopulation-based genetic algorithm, a crossover-free genetic algorithm employing mutation operators and elitism selection in each subpopulation, is developed in this paper. Moreover, the impact of mutation operators (swap, insertion, inversion, displacement, and their various combinations) is analyzed when solving several industrial plant inspection problems. The experimental results show that: (1) the proposed genetic algorithm can obtain better solutions than the tested binary tournament genetic algorithm with partially mapped crossover; (2) inversion mutation performs better than other tested mutation operators when solving problems without cooperative tasks, and the swap-inversion combination performs better than other tested mutation operators/combinations when solving problems with cooperative tasks. As it is difficult to produce all desired effects with a single mutation operator, using multiple mutation operators (including both inversion and swap) is suggested when solving similar combinatorial optimization problems.

  12. Design for Warehouse with Product Flow Type Allocation using Linear Programming: A Case Study in a Textile Industry

    NASA Astrophysics Data System (ADS)

    Khannan, M. S. A.; Nafisah, L.; Palupi, D. L.

    2018-03-01

    Sari Warna Co. Ltd, a company engaged in the textile industry, is experiencing problems in the allocation and placement of goods in the warehouse. During this time the company has not implemented the product flow type allocation and product placement to the respective products resulting in a high total material handling cost. Therefore, this study aimed to determine the allocation and placement of goods in the warehouse corresponding to product flow type with minimal total material handling cost. This research is a quantitative research based on the theory of storage and warehouse that uses a mathematical model of optimization problem solving using mathematical optimization model approach belongs to Heragu (2005), aided by software LINGO 11.0 in the calculation of the optimization model. Results obtained from this study is the proportion of the distribution for each functional area is the area of cross-docking at 0.0734, the reserve area at 0.1894, and the forward area at 0.7372. The allocation of product flow type 1 is 5 products, the product flow type 2 is 9 products, the product flow type 3 is 2 products, and the product flow type 4 is 6 products. The optimal total material handling cost by using this mathematical model equal to Rp43.079.510 while it is equal to Rp 49.869.728 by using the company’s existing method. It saves Rp6.790.218 for the total material handling cost. Thus, all of the products can be allocated in accordance with the product flow type with minimal total material handling cost.

  13. Cellular trade-offs and optimal resource allocation during cyanobacterial diurnal growth

    PubMed Central

    Knoop, Henning; Bockmayr, Alexander; Steuer, Ralf

    2017-01-01

    Cyanobacteria are an integral part of Earth’s biogeochemical cycles and a promising resource for the synthesis of renewable bioproducts from atmospheric CO2. Growth and metabolism of cyanobacteria are inherently tied to the diurnal rhythm of light availability. As yet, however, insight into the stoichiometric and energetic constraints of cyanobacterial diurnal growth is limited. Here, we develop a computational framework to investigate the optimal allocation of cellular resources during diurnal phototrophic growth using a genome-scale metabolic reconstruction of the cyanobacterium Synechococcus elongatus PCC 7942. We formulate phototrophic growth as an autocatalytic process and solve the resulting time-dependent resource allocation problem using constraint-based analysis. Based on a narrow and well-defined set of parameters, our approach results in an ab initio prediction of growth properties over a full diurnal cycle. The computational model allows us to study the optimality of metabolite partitioning during diurnal growth. The cyclic pattern of glycogen accumulation, an emergent property of the model, has timing characteristics that are in qualitative agreement with experimental findings. The approach presented here provides insight into the time-dependent resource allocation problem of phototrophic diurnal growth and may serve as a general framework to assess the optimality of metabolic strategies that evolved in phototrophic organisms under diurnal conditions. PMID:28720699

  14. Optimizing conjunctive use of surface water and groundwater resources with stochastic dynamic programming

    NASA Astrophysics Data System (ADS)

    Davidsen, Claus; Liu, Suxia; Mo, Xingguo; Rosbjerg, Dan; Bauer-Gottwein, Peter

    2014-05-01

    Optimal management of conjunctive use of surface water and groundwater has been attempted with different algorithms in the literature. In this study, a hydro-economic modelling approach to optimize conjunctive use of scarce surface water and groundwater resources under uncertainty is presented. A stochastic dynamic programming (SDP) approach is used to minimize the basin-wide total costs arising from water allocations and water curtailments. Dynamic allocation problems with inclusion of groundwater resources proved to be more complex to solve with SDP than pure surface water allocation problems due to head-dependent pumping costs. These dynamic pumping costs strongly affect the total costs and can lead to non-convexity of the future cost function. The water user groups (agriculture, industry, domestic) are characterized by inelastic demands and fixed water allocation and water supply curtailment costs. As in traditional SDP approaches, one step-ahead sub-problems are solved to find the optimal management at any time knowing the inflow scenario and reservoir/aquifer storage levels. These non-linear sub-problems are solved using a genetic algorithm (GA) that minimizes the sum of the immediate and future costs for given surface water reservoir and groundwater aquifer end storages. The immediate cost is found by solving a simple linear allocation sub-problem, and the future costs are assessed by interpolation in the total cost matrix from the following time step. Total costs for all stages, reservoir states, and inflow scenarios are used as future costs to drive a forward moving simulation under uncertain water availability. The use of a GA to solve the sub-problems is computationally more costly than a traditional SDP approach with linearly interpolated future costs. However, in a two-reservoir system the future cost function would have to be represented by a set of planes, and strict convexity in both the surface water and groundwater dimension cannot be maintained. The optimization framework based on the GA is still computationally feasible and represents a clean and customizable method. The method has been applied to the Ziya River basin, China. The basin is located on the North China Plain and is subject to severe water scarcity, which includes surface water droughts and groundwater over-pumping. The head-dependent groundwater pumping costs will enable assessment of the long-term effects of increased electricity prices on the groundwater pumping. The coupled optimization framework is used to assess realistic alternative development scenarios for the basin. In particular the potential for using electricity pricing policies to reach sustainable groundwater pumping is investigated.

  15. Optimizing Medical Kits for Spaceflight

    NASA Technical Reports Server (NTRS)

    Keenan, A. B,; Foy, Millennia; Myers, G.

    2014-01-01

    The Integrated Medical Model (IMM) is a probabilistic model that estimates medical event occurrences and mission outcomes for different mission profiles. IMM simulation outcomes describing the impact of medical events on the mission may be used to optimize the allocation of resources in medical kits. Efficient allocation of medical resources, subject to certain mass and volume constraints, is crucial to ensuring the best outcomes of in-flight medical events. We implement a new approach to this medical kit optimization problem. METHODS We frame medical kit optimization as a modified knapsack problem and implement an algorithm utilizing a dynamic programming technique. Using this algorithm, optimized medical kits were generated for 3 different mission scenarios with the goal of minimizing the probability of evacuation and maximizing the Crew Health Index (CHI) for each mission subject to mass and volume constraints. Simulation outcomes using these kits were also compared to outcomes using kits optimized..RESULTS The optimized medical kits generated by the algorithm described here resulted in predicted mission outcomes more closely approached the unlimited-resource scenario for Crew Health Index (CHI) than the implementation in under all optimization priorities. Furthermore, the approach described here improves upon in reducing evacuation when the optimization priority is minimizing the probability of evacuation. CONCLUSIONS This algorithm provides an efficient, effective means to objectively allocate medical resources for spaceflight missions using the Integrated Medical Model.

  16. A hybrid Jaya algorithm for reliability-redundancy allocation problems

    NASA Astrophysics Data System (ADS)

    Ghavidel, Sahand; Azizivahed, Ali; Li, Li

    2018-04-01

    This article proposes an efficient improved hybrid Jaya algorithm based on time-varying acceleration coefficients (TVACs) and the learning phase introduced in teaching-learning-based optimization (TLBO), named the LJaya-TVAC algorithm, for solving various types of nonlinear mixed-integer reliability-redundancy allocation problems (RRAPs) and standard real-parameter test functions. RRAPs include series, series-parallel, complex (bridge) and overspeed protection systems. The search power of the proposed LJaya-TVAC algorithm for finding the optimal solutions is first tested on the standard real-parameter unimodal and multi-modal functions with dimensions of 30-100, and then tested on various types of nonlinear mixed-integer RRAPs. The results are compared with the original Jaya algorithm and the best results reported in the recent literature. The optimal results obtained with the proposed LJaya-TVAC algorithm provide evidence for its better and acceptable optimization performance compared to the original Jaya algorithm and other reported optimal results.

  17. Dealing with equality and benefit for water allocation in a lake watershed: A Gini-coefficient based stochastic optimization approach

    NASA Astrophysics Data System (ADS)

    Dai, C.; Qin, X. S.; Chen, Y.; Guo, H. C.

    2018-06-01

    A Gini-coefficient based stochastic optimization (GBSO) model was developed by integrating the hydrological model, water balance model, Gini coefficient and chance-constrained programming (CCP) into a general multi-objective optimization modeling framework for supporting water resources allocation at a watershed scale. The framework was advantageous in reflecting the conflicting equity and benefit objectives for water allocation, maintaining the water balance of watershed, and dealing with system uncertainties. GBSO was solved by the non-dominated sorting Genetic Algorithms-II (NSGA-II), after the parameter uncertainties of the hydrological model have been quantified into the probability distribution of runoff as the inputs of CCP model, and the chance constraints were converted to the corresponding deterministic versions. The proposed model was applied to identify the Pareto optimal water allocation schemes in the Lake Dianchi watershed, China. The optimal Pareto-front results reflected the tradeoff between system benefit (αSB) and Gini coefficient (αG) under different significance levels (i.e. q) and different drought scenarios, which reveals the conflicting nature of equity and efficiency in water allocation problems. A lower q generally implies a lower risk of violating the system constraints and a worse drought intensity scenario corresponds to less available water resources, both of which would lead to a decreased system benefit and a less equitable water allocation scheme. Thus, the proposed modeling framework could help obtain the Pareto optimal schemes under complexity and ensure that the proposed water allocation solutions are effective for coping with drought conditions, with a proper tradeoff between system benefit and water allocation equity.

  18. Methodologies for optimal resource allocation to the national space program and new space utilizations. Volume 1: Technical description

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The optimal allocation of resources to the national space program over an extended time period requires the solution of a large combinatorial problem in which the program elements are interdependent. The computer model uses an accelerated search technique to solve this problem. The model contains a large number of options selectable by the user to provide flexible input and a broad range of output for use in sensitivity analyses of all entering elements. Examples of these options are budget smoothing under varied appropriation levels, entry of inflation and discount effects, and probabilistic output which provides quantified degrees of certainty that program costs will remain within planned budget. Criteria and related analytic procedures were established for identifying potential new space program directions. Used in combination with the optimal resource allocation model, new space applications can be analyzed in realistic perspective, including the advantage gain from existing space program plant and on-going programs such as the space transportation system.

  19. Studies in integrated line-and packet-switched computer communication systems

    NASA Astrophysics Data System (ADS)

    Maglaris, B. S.

    1980-06-01

    The problem of efficiently allocating the bandwidth of a trunk to both types of traffic is handled for various system and traffic models. A performance analysis is carried out both for variable and fixed frame schemes. It is shown that variable frame schemes, adjusting the frame length according to the traffic variations, offer better trunk utilization at the cost of the additional hardware and software complexity needed because of the lack of synchronization. An optimization study on the fixed frame schemes follows. The problem of dynamically allocating the fixed frame to both types of traffic is formulated as a Markovian Decision process. It is shown that the movable boundary scheme, suggested for commercial implementations of integrated multiplexors, offers optimal or near optimal performance and simplicity of implementation. Finally, the behavior of the movable boundary integrated scheme is studied for tandem link connections. Under the assumptions made for the line-switched traffic, the forward allocation technique is found to offer the best alternative among different path set-up strategies.

  20. A supplier selection and order allocation problem with stochastic demands

    NASA Astrophysics Data System (ADS)

    Zhou, Yun; Zhao, Lei; Zhao, Xiaobo; Jiang, Jianhua

    2011-08-01

    We consider a system comprising a retailer and a set of candidate suppliers that operates within a finite planning horizon of multiple periods. The retailer replenishes its inventory from the suppliers and satisfies stochastic customer demands. At the beginning of each period, the retailer makes decisions on the replenishment quantity, supplier selection and order allocation among the selected suppliers. An optimisation problem is formulated to minimise the total expected system cost, which includes an outer level stochastic dynamic program for the optimal replenishment quantity and an inner level integer program for supplier selection and order allocation with a given replenishment quantity. For the inner level subproblem, we develop a polynomial algorithm to obtain optimal decisions. For the outer level subproblem, we propose an efficient heuristic for the system with integer-valued inventory, based on the structural properties of the system with real-valued inventory. We investigate the efficiency of the proposed solution approach, as well as the impact of parameters on the optimal replenishment decision with numerical experiments.

  1. Algorithm Optimally Allocates Actuation of a Spacecraft

    NASA Technical Reports Server (NTRS)

    Motaghedi, Shi

    2007-01-01

    A report presents an algorithm that solves the following problem: Allocate the force and/or torque to be exerted by each thruster and reaction-wheel assembly on a spacecraft for best performance, defined as minimizing the error between (1) the total force and torque commanded by the spacecraft control system and (2) the total of forces and torques actually exerted by all the thrusters and reaction wheels. The algorithm incorporates the matrix vector relationship between (1) the total applied force and torque and (2) the individual actuator force and torque values. It takes account of such constraints as lower and upper limits on the force or torque that can be applied by a given actuator. The algorithm divides the aforementioned problem into two optimization problems that it solves sequentially. These problems are of a type, known in the art as semi-definite programming problems, that involve linear matrix inequalities. The algorithm incorporates, as sub-algorithms, prior algorithms that solve such optimization problems very efficiently. The algorithm affords the additional advantage that the solution requires the minimum rate of consumption of fuel for the given best performance.

  2. Optimal dynamic water allocation: Irrigation extractions and environmental tradeoffs in the Murray River, Australia

    NASA Astrophysics Data System (ADS)

    Grafton, R. Quentin; Chu, Hoang Long; Stewardson, Michael; Kompas, Tom

    2011-12-01

    A key challenge in managing semiarid basins, such as in the Murray-Darling in Australia, is to balance the trade-offs between the net benefits of allocating water for irrigated agriculture, and other uses, versus the costs of reduced surface flows for the environment. Typically, water planners do not have the tools to optimally and dynamically allocate water among competing uses. We address this problem by developing a general stochastic, dynamic programming model with four state variables (the drought status, the current weather, weather correlation, and current storage) and two controls (environmental release and irrigation allocation) to optimally allocate water between extractions and in situ uses. The model is calibrated to Australia's Murray River that generates: (1) a robust qualitative result that "pulse" or artificial flood events are an optimal way to deliver environmental flows over and above conveyance of base flows; (2) from 2001 to 2009 a water reallocation that would have given less to irrigated agriculture and more to environmental flows would have generated between half a billion and over 3 billion U.S. dollars in overall economic benefits; and (3) water markets increase optimal environmental releases by reducing the losses associated with reduced water diversions.

  3. Game theoretic wireless resource allocation for H.264 MGS video transmission over cognitive radio networks

    NASA Astrophysics Data System (ADS)

    Fragkoulis, Alexandros; Kondi, Lisimachos P.; Parsopoulos, Konstantinos E.

    2015-03-01

    We propose a method for the fair and efficient allocation of wireless resources over a cognitive radio system network to transmit multiple scalable video streams to multiple users. The method exploits the dynamic architecture of the Scalable Video Coding extension of the H.264 standard, along with the diversity that OFDMA networks provide. We use a game-theoretic Nash Bargaining Solution (NBS) framework to ensure that each user receives the minimum video quality requirements, while maintaining fairness over the cognitive radio system. An optimization problem is formulated, where the objective is the maximization of the Nash product while minimizing the waste of resources. The problem is solved by using a Swarm Intelligence optimizer, namely Particle Swarm Optimization. Due to the high dimensionality of the problem, we also introduce a dimension-reduction technique. Our experimental results demonstrate the fairness imposed by the employed NBS framework.

  4. Flow of Funds Modeling for Localized Financial Markets: An Application of Spatial Price and Allocation Activity Analysis Models.

    DTIC Science & Technology

    1981-01-01

    on modeling the managerial aspects of the firm. The second has been the application to economic theory led by ...individual portfolio optimization problems which were embedded in a larger global optimization problem. In the global problem, portfolios were linked by market ...demand quantities or be given by linear demand relationships. As in~ the source markets , the model

  5. Scheduling Jobs with Variable Job Processing Times on Unrelated Parallel Machines

    PubMed Central

    Zhang, Guang-Qian; Wang, Jian-Jun; Liu, Ya-Jing

    2014-01-01

    m unrelated parallel machines scheduling problems with variable job processing times are considered, where the processing time of a job is a function of its position in a sequence, its starting time, and its resource allocation. The objective is to determine the optimal resource allocation and the optimal schedule to minimize a total cost function that dependents on the total completion (waiting) time, the total machine load, the total absolute differences in completion (waiting) times on all machines, and total resource cost. If the number of machines is a given constant number, we propose a polynomial time algorithm to solve the problem. PMID:24982933

  6. Steps Toward Optimal Competitive Scheduling

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy; Crawford, James; Khatib, Lina; Brafman, Ronen

    2006-01-01

    This paper is concerned with the problem of allocating a unit capacity resource to multiple users within a pre-defined time period. The resource is indivisible, so that at most one user can use it at each time instance. However, different users may use it at different times. The users have independent, se@sh preferences for when and for how long they are allocated this resource. Thus, they value different resource access durations differently, and they value different time slots differently. We seek an optimal allocation schedule for this resource. This problem arises in many institutional settings where, e.g., different departments, agencies, or personal, compete for a single resource. We are particularly motivated by the problem of scheduling NASA's Deep Space Satellite Network (DSN) among different users within NASA. Access to DSN is needed for transmitting data from various space missions to Earth. Each mission has different needs for DSN time, depending on satellite and planetary orbits. Typically, the DSN is over-subscribed, in that not all missions will be allocated as much time as they want. This leads to various inefficiencies - missions spend much time and resource lobbying for their time, often exaggerating their needs. NASA, on the other hand, would like to make optimal use of this resource, ensuring that the good for NASA is maximized. This raises the thorny problem of how to measure the utility to NASA of each allocation. In the typical case, it is difficult for the central agency, NASA in our case, to assess the value of each interval to each user - this is really only known to the users who understand their needs. Thus, our problem is more precisely formulated as follows: find an allocation schedule for the resource that maximizes the sum of users preferences, when the preference values are private information of the users. We bypass this problem by making the assumptions that one can assign money to customers. This assumption is reasonable; a committee is usually in charge of deciding the priority of each mission competing for access to the DSN within a time period while scheduling. Instead, we can assume that the committee assigns a budget to each mission.This paper is concerned with the problem of allocating a unit capacity resource to multiple users within a pre-defined time period. The resource is indivisible, so that at most one user can use it at each time instance. However, different users may use it at different times. The users have independent, se@sh preferences for when and for how long they are allocated this resource. Thus, they value different resource access durations differently, and they value different time slots differently. We seek an optimal allocation schedule for this resource. This problem arises in many institutional settings where, e.g., different departments, agencies, or personal, compete for a single resource. We are particularly motivated by the problem of scheduling NASA's Deep Space Satellite Network (DSN) among different users within NASA. Access to DSN is needed for transmitting data from various space missions to Earth. Each mission has different needs for DSN time, depending on satellite and planetary orbits. Typically, the DSN is over-subscribed, in that not all missions will be allocated as much time as they want. This leads to various inefficiencies - missions spend much time and resource lobbying for their time, often exaggerating their needs. NASA, on the other hand, would like to make optimal use of this resource, ensuring that the good for NASA is maximized. This raises the thorny problem of how to measure the utility to NASA of each allocation. In the typical case, it is difficult for the central agency, NASA in our case, to assess the value of each interval to each user - this is really only known to the users who understand their needs. Thus, our problem is more precisely formulated as follows: find an allocation schedule for the resource that maximizes the sum ofsers preferences, when the preference values are private information of the users. We bypass this problem by making the assumptions that one can assign money to customers. This assumption is reasonable; a committee is usually in charge of deciding the priority of each mission competing for access to the DSN within a time period while scheduling. Instead, we can assume that the committee assigns a budget to each mission.

  7. Optimal water resource allocation modelling in the Lowveld of Zimbabwe

    NASA Astrophysics Data System (ADS)

    Mhiribidi, Delight; Nobert, Joel; Gumindoga, Webster; Rwasoka, Donald T.

    2018-05-01

    The management and allocation of water from multi-reservoir systems is complex and thus requires dynamic modelling systems to achieve optimality. A multi-reservoir system in the Southern Lowveld of Zimbabwe is used for irrigation of sugarcane estates that produce sugar for both local and export consumption. The system is burdened with water allocation problems, made worse by decommissioning of dams. Thus the aim of this research was to develop an operating policy model for the Lowveld multi-reservoir system.The Mann Kendall Trend and Wilcoxon Signed-Rank tests were used to assess the variability of historic monthly rainfall and dam inflows for the period 1899-2015. The WEAP model was set up to evaluate the water allocation system of the catchment and come-up with a reference scenario for the 2015/2016 hydrologic year. Stochastic Dynamic Programming approach was used for optimisation of the multi-reservoirs releases.Results showed no significant trend in the rainfall but a significantly decreasing trend in inflows (p < 0.05). The water allocation model (WEAP) showed significant deficits ( ˜ 40 %) in irrigation water allocation in the reference scenario. The optimal rule curves for all the twelve months for each reservoir were obtained and considered to be a proper guideline for solving multi- reservoir management problems within the catchment. The rule curves are effective tools in guiding decision makers in the release of water without emptying the reservoirs but at the same time satisfying the demands based on the inflow, initial storage and end of month storage.

  8. Optimization, Monotonicity and the Determination of Nash Equilibria — An Algorithmic Analysis

    NASA Astrophysics Data System (ADS)

    Lozovanu, D.; Pickl, S. W.; Weber, G.-W.

    2004-08-01

    This paper is concerned with the optimization of a nonlinear time-discrete model exploiting the special structure of the underlying cost game and the property of inverse matrices. The costs are interlinked by a system of linear inequalities. It is shown that, if the players cooperate, i.e., minimize the sum of all the costs, they achieve a Nash equilibrium. In order to determine Nash equilibria, the simplex method can be applied with respect to the dual problem. An introduction into the TEM model and its relationship to an economic Joint Implementation program is given. The equivalence problem is presented. The construction of the emission cost game and the allocation problem is explained. The assumption of inverse monotony for the matrices leads to a new result in the area of such allocation problems. A generalization of such problems is presented.

  9. Joint Transmit Antenna Selection and Power Allocation for ISDF Relaying Mobile-to-Mobile Sensor Networks

    PubMed Central

    Xu, Lingwei; Zhang, Hao; Gulliver, T. Aaron

    2016-01-01

    The outage probability (OP) performance of multiple-relay incremental-selective decode-and-forward (ISDF) relaying mobile-to-mobile (M2M) sensor networks with transmit antenna selection (TAS) over N-Nakagami fading channels is investigated. Exact closed-form OP expressions for both optimal and suboptimal TAS schemes are derived. The power allocation problem is formulated to determine the optimal division of transmit power between the broadcast and relay phases. The OP performance under different conditions is evaluated via numerical simulation to verify the analysis. These results show that the optimal TAS scheme has better OP performance than the suboptimal scheme. Further, the power allocation parameter has a significant influence on the OP performance. PMID:26907282

  10. Optimal allocation of trend following strategies

    NASA Astrophysics Data System (ADS)

    Grebenkov, Denis S.; Serror, Jeremy

    2015-09-01

    We consider a portfolio allocation problem for trend following (TF) strategies on multiple correlated assets. Under simplifying assumptions of a Gaussian market and linear TF strategies, we derive analytical formulas for the mean and variance of the portfolio return. We construct then the optimal portfolio that maximizes risk-adjusted return by accounting for inter-asset correlations. The dynamic allocation problem for n assets is shown to be equivalent to the classical static allocation problem for n2 virtual assets that include lead-lag corrections in positions of TF strategies. The respective roles of asset auto-correlations and inter-asset correlations are investigated in depth for the two-asset case and a sector model. In contrast to the principle of diversification suggesting to treat uncorrelated assets, we show that inter-asset correlations allow one to estimate apparent trends more reliably and to adjust the TF positions more efficiently. If properly accounted for, inter-asset correlations are not deteriorative but beneficial for portfolio management that can open new profit opportunities for trend followers. These concepts are illustrated using daily returns of three highly correlated futures markets: the E-mini S&P 500, Euro Stoxx 50 index, and the US 10-year T-note futures.

  11. Joint Transmitter and Receiver Power Allocation under Minimax MSE Criterion with Perfect and Imperfect CSI for MC-CDMA Transmissions

    NASA Astrophysics Data System (ADS)

    Kotchasarn, Chirawat; Saengudomlert, Poompat

    We investigate the problem of joint transmitter and receiver power allocation with the minimax mean square error (MSE) criterion for uplink transmissions in a multi-carrier code division multiple access (MC-CDMA) system. The objective of power allocation is to minimize the maximum MSE among all users each of which has limited transmit power. This problem is a nonlinear optimization problem. Using the Lagrange multiplier method, we derive the Karush-Kuhn-Tucker (KKT) conditions which are necessary for a power allocation to be optimal. Numerical results indicate that, compared to the minimum total MSE criterion, the minimax MSE criterion yields a higher total MSE but provides a fairer treatment across the users. The advantages of the minimax MSE criterion are more evident when we consider the bit error rate (BER) estimates. Numerical results show that the minimax MSE criterion yields a lower maximum BER and a lower average BER. We also observe that, with the minimax MSE criterion, some users do not transmit at full power. For comparison, with the minimum total MSE criterion, all users transmit at full power. In addition, we investigate robust joint transmitter and receiver power allocation where the channel state information (CSI) is not perfect. The CSI error is assumed to be unknown but bounded by a deterministic value. This problem is formulated as a semidefinite programming (SDP) problem with bilinear matrix inequality (BMI) constraints. Numerical results show that, with imperfect CSI, the minimax MSE criterion also outperforms the minimum total MSE criterion in terms of the maximum and average BERs.

  12. Computationally efficient control allocation

    NASA Technical Reports Server (NTRS)

    Durham, Wayne (Inventor)

    2001-01-01

    A computationally efficient method for calculating near-optimal solutions to the three-objective, linear control allocation problem is disclosed. The control allocation problem is that of distributing the effort of redundant control effectors to achieve some desired set of objectives. The problem is deemed linear if control effectiveness is affine with respect to the individual control effectors. The optimal solution is that which exploits the collective maximum capability of the effectors within their individual physical limits. Computational efficiency is measured by the number of floating-point operations required for solution. The method presented returned optimal solutions in more than 90% of the cases examined; non-optimal solutions returned by the method were typically much less than 1% different from optimal and the errors tended to become smaller than 0.01% as the number of controls was increased. The magnitude of the errors returned by the present method was much smaller than those that resulted from either pseudo inverse or cascaded generalized inverse solutions. The computational complexity of the method presented varied linearly with increasing numbers of controls; the number of required floating point operations increased from 5.5 i, to seven times faster than did the minimum-norm solution (the pseudoinverse), and at about the same rate as did the cascaded generalized inverse solution. The computational requirements of the method presented were much better than that of previously described facet-searching methods which increase in proportion to the square of the number of controls.

  13. Optimized maritime emergency resource allocation under dynamic demand.

    PubMed

    Zhang, Wenfen; Yan, Xinping; Yang, Jiaqi

    2017-01-01

    Emergency resource is important for people evacuation and property rescue when accident occurs. The relief efforts could be promoted by a reasonable emergency resource allocation schedule in advance. As the marine environment is complicated and changeful, the place, type, severity of maritime accident is uncertain and stochastic, bringing about dynamic demand of emergency resource. Considering dynamic demand, how to make a reasonable emergency resource allocation schedule is challenging. The key problem is to determine the optimal stock of emergency resource for supplier centers to improve relief efforts. This paper studies the dynamic demand, and which is defined as a set. Then a maritime emergency resource allocation model with uncertain data is presented. Afterwards, a robust approach is developed and used to make sure that the resource allocation schedule performs well with dynamic demand. Finally, a case study shows that the proposed methodology is feasible in maritime emergency resource allocation. The findings could help emergency manager to schedule the emergency resource allocation more flexibly in terms of dynamic demand.

  14. Optimized maritime emergency resource allocation under dynamic demand

    PubMed Central

    Yan, Xinping; Yang, Jiaqi

    2017-01-01

    Emergency resource is important for people evacuation and property rescue when accident occurs. The relief efforts could be promoted by a reasonable emergency resource allocation schedule in advance. As the marine environment is complicated and changeful, the place, type, severity of maritime accident is uncertain and stochastic, bringing about dynamic demand of emergency resource. Considering dynamic demand, how to make a reasonable emergency resource allocation schedule is challenging. The key problem is to determine the optimal stock of emergency resource for supplier centers to improve relief efforts. This paper studies the dynamic demand, and which is defined as a set. Then a maritime emergency resource allocation model with uncertain data is presented. Afterwards, a robust approach is developed and used to make sure that the resource allocation schedule performs well with dynamic demand. Finally, a case study shows that the proposed methodology is feasible in maritime emergency resource allocation. The findings could help emergency manager to schedule the emergency resource allocation more flexibly in terms of dynamic demand. PMID:29240792

  15. Multiple Interacting Risk Factors: On Methods for Allocating Risk Factor Interactions.

    PubMed

    Price, Bertram; MacNicoll, Michael

    2015-05-01

    A persistent problem in health risk analysis where it is known that a disease may occur as a consequence of multiple risk factors with interactions is allocating the total risk of the disease among the individual risk factors. This problem, referred to here as risk apportionment, arises in various venues, including: (i) public health management, (ii) government programs for compensating injured individuals, and (iii) litigation. Two methods have been described in the risk analysis and epidemiology literature for allocating total risk among individual risk factors. One method uses weights to allocate interactions among the individual risk factors. The other method is based on risk accounting axioms and finding an optimal and unique allocation that satisfies the axioms using a procedure borrowed from game theory. Where relative risk or attributable risk is the risk measure, we find that the game-theory-determined allocation is the same as the allocation where risk factor interactions are apportioned to individual risk factors using equal weights. Therefore, the apportionment problem becomes one of selecting a meaningful set of weights for allocating interactions among the individual risk factors. Equal weights and weights proportional to the risks of the individual risk factors are discussed. © 2015 Society for Risk Analysis.

  16. Resource Allocation Algorithms for the Next Generation Cellular Networks

    NASA Astrophysics Data System (ADS)

    Amzallag, David; Raz, Danny

    This chapter describes recent results addressing resource allocation problems in the context of current and future cellular technologies. We present models that capture several fundamental aspects of planning and operating these networks, and develop new approximation algorithms providing provable good solutions for the corresponding optimization problems. We mainly focus on two families of problems: cell planning and cell selection. Cell planning deals with choosing a network of base stations that can provide the required coverage of the service area with respect to the traffic requirements, available capacities, interference, and the desired QoS. Cell selection is the process of determining the cell(s) that provide service to each mobile station. Optimizing these processes is an important step towards maximizing the utilization of current and future cellular networks.

  17. Optimal Power Allocation for CC-HARQ-based Cognitive Radio with Statistical CSI in Nakagami Slow Fading Channels

    NASA Astrophysics Data System (ADS)

    Xu, Ding; Li, Qun

    2017-01-01

    This paper addresses the power allocation problem for cognitive radio (CR) based on hybrid-automatic-repeat-request (HARQ) with chase combining (CC) in Nakagamimslow fading channels. We assume that, instead of the perfect instantaneous channel state information (CSI), only the statistical CSI is available at the secondary user (SU) transmitter. The aim is to minimize the SU outage probability under the primary user (PU) interference outage constraint. Using the Lagrange multiplier method, an iterative and recursive algorithm is derived to obtain the optimal power allocation for each transmission round. Extensive numerical results are presented to illustrate the performance of the proposed algorithm.

  18. New Mathematical Strategy Using Branch and Bound Method

    NASA Astrophysics Data System (ADS)

    Tarray, Tanveer Ahmad; Bhat, Muzafar Rasool

    In this paper, the problem of optimal allocation in stratified random sampling is used in the presence of nonresponse. The problem is formulated as a nonlinear programming problem (NLPP) and is solved using Branch and Bound method. Also the results are formulated through LINGO.

  19. Optimal Resource Allocation under Fair QoS in Multi-tier Server Systems

    NASA Astrophysics Data System (ADS)

    Akai, Hirokazu; Ushio, Toshimitsu; Hayashi, Naoki

    Recent development of network technology realizes multi-tier server systems, where several tiers perform functionally different processing requested by clients. It is an important issue to allocate resources of the systems to clients dynamically based on their current requests. On the other hand, Q-RAM has been proposed for resource allocation in real-time systems. In the server systems, it is important that execution results of all applications requested by clients are the same QoS(quality of service) level. In this paper, we extend Q-RAM to multi-tier server systems and propose a method for optimal resource allocation with fairness of the QoS levels of clients’ requests. We also consider an assignment problem of physical machines to be sleep in each tier sothat the energy consumption is minimized.

  20. Optimization in Ecology

    ERIC Educational Resources Information Center

    Cody, Martin L.

    1974-01-01

    Discusses the optimality of natural selection, ways of testing for optimum solutions to problems of time - or energy-allocation in nature, optimum patterns in spatial distribution and diet breadth, and how best to travel over a feeding area so that food intake is maximized. (JR)

  1. An intelligent allocation algorithm for parallel processing

    NASA Technical Reports Server (NTRS)

    Carroll, Chester C.; Homaifar, Abdollah; Ananthram, Kishan G.

    1988-01-01

    The problem of allocating nodes of a program graph to processors in a parallel processing architecture is considered. The algorithm is based on critical path analysis, some allocation heuristics, and the execution granularity of nodes in a program graph. These factors, and the structure of interprocessor communication network, influence the allocation. To achieve realistic estimations of the executive durations of allocations, the algorithm considers the fact that nodes in a program graph have to communicate through varying numbers of tokens. Coarse and fine granularities have been implemented, with interprocessor token-communication duration, varying from zero up to values comparable to the execution durations of individual nodes. The effect on allocation of communication network structures is demonstrated by performing allocations for crossbar (non-blocking) and star (blocking) networks. The algorithm assumes the availability of as many processors as it needs for the optimal allocation of any program graph. Hence, the focus of allocation has been on varying token-communication durations rather than varying the number of processors. The algorithm always utilizes as many processors as necessary for the optimal allocation of any program graph, depending upon granularity and characteristics of the interprocessor communication network.

  2. Capacity planning for waste management systems: an interval fuzzy robust dynamic programming approach.

    PubMed

    Nie, Xianghui; Huang, Guo H; Li, Yongping

    2009-11-01

    This study integrates the concepts of interval numbers and fuzzy sets into optimization analysis by dynamic programming as a means of accounting for system uncertainty. The developed interval fuzzy robust dynamic programming (IFRDP) model improves upon previous interval dynamic programming methods. It allows highly uncertain information to be effectively communicated into the optimization process through introducing the concept of fuzzy boundary interval and providing an interval-parameter fuzzy robust programming method for an embedded linear programming problem. Consequently, robustness of the optimization process and solution can be enhanced. The modeling approach is applied to a hypothetical problem for the planning of waste-flow allocation and treatment/disposal facility expansion within a municipal solid waste (MSW) management system. Interval solutions for capacity expansion of waste management facilities and relevant waste-flow allocation are generated and interpreted to provide useful decision alternatives. The results indicate that robust and useful solutions can be obtained, and the proposed IFRDP approach is applicable to practical problems that are associated with highly complex and uncertain information.

  3. Routing design and fleet allocation optimization of freeway service patrol: Improved results using genetic algorithm

    NASA Astrophysics Data System (ADS)

    Sun, Xiuqiao; Wang, Jian

    2018-07-01

    Freeway service patrol (FSP), is considered to be an effective method for incident management and can help transportation agency decision-makers alter existing route coverage and fleet allocation. This paper investigates the FSP problem of patrol routing design and fleet allocation, with the objective of minimizing the overall average incident response time. While the simulated annealing (SA) algorithm and its improvements have been applied to solve this problem, they often become trapped in local optimal solution. Moreover, the issue of searching efficiency remains to be further addressed. In this paper, we employ the genetic algorithm (GA) and SA to solve the FSP problem. To maintain population diversity and avoid premature convergence, niche strategy is incorporated into the traditional genetic algorithm. We also employ elitist strategy to speed up the convergence. Numerical experiments have been conducted with the help of the Sioux Falls network. Results show that the GA slightly outperforms the dual-based greedy (DBG) algorithm, the very large-scale neighborhood searching (VLNS) algorithm, the SA algorithm and the scenario algorithm.

  4. Optimal traffic resource allocation and management.

    DOT National Transportation Integrated Search

    2010-05-01

    "In this paper, we address the problem of determining the patrol routes of state troopers for maximum coverage of : highway spots with high frequencies of crashes (hot spots). We develop a mixed integer linear programming model : for this problem und...

  5. Improving Learning Performance Through Rational Resource Allocation

    NASA Technical Reports Server (NTRS)

    Gratch, J.; Chien, S.; DeJong, G.

    1994-01-01

    This article shows how rational analysis can be used to minimize learning cost for a general class of statistical learning problems. We discuss the factors that influence learning cost and show that the problem of efficient learning can be cast as a resource optimization problem. Solutions found in this way can be significantly more efficient than the best solutions that do not account for these factors. We introduce a heuristic learning algorithm that approximately solves this optimization problem and document its performance improvements on synthetic and real-world problems.

  6. A general optimality criteria algorithm for a class of engineering optimization problems

    NASA Astrophysics Data System (ADS)

    Belegundu, Ashok D.

    2015-05-01

    An optimality criteria (OC)-based algorithm for optimization of a general class of nonlinear programming (NLP) problems is presented. The algorithm is only applicable to problems where the objective and constraint functions satisfy certain monotonicity properties. For multiply constrained problems which satisfy these assumptions, the algorithm is attractive compared with existing NLP methods as well as prevalent OC methods, as the latter involve computationally expensive active set and step-size control strategies. The fixed point algorithm presented here is applicable not only to structural optimization problems but also to certain problems as occur in resource allocation and inventory models. Convergence aspects are discussed. The fixed point update or resizing formula is given physical significance, which brings out a strength and trim feature. The number of function evaluations remains independent of the number of variables, allowing the efficient solution of problems with large number of variables.

  7. Optimal Budget Allocation for Sample Average Approximation

    DTIC Science & Technology

    2011-06-01

    an optimization algorithm applied to the sample average problem. We examine the convergence rate of the estimator as the computing budget tends to...regime for the optimization algorithm . 1 Introduction Sample average approximation (SAA) is a frequently used approach to solving stochastic programs...appealing due to its simplicity and the fact that a large number of standard optimization algorithms are often available to optimize the resulting sample

  8. There is no silver bullet: the value of diversification in planning invasive species surveillance

    Treesearch

    Denys Yemshanov; Frank H. Koch; Bo Lu; D. Barry Lyons; Jeffrey P. Prestemon; Taylor Scarr; Klaus Koehler

    2014-01-01

    In this study we demonstrate how the notion of diversification can be used in broad-scale resource allocation for surveillance of invasive species. We consider the problem of short-term surveillance for an invasive species in a geographical environment.Wefind the optimal allocation of surveillance resourcesamongmultiple geographical subdivisions via application of a...

  9. Optimal allocation of invasive species surveillance with the maximum expected coverage concept

    Treesearch

    Denys Yemshanov; Robert G. Haight; Frank H. Koch; Bo Lu; Robert Venette; D. Barry Lyons; Taylor Scarr; Krista Ryall; Brian. Leung

    2015-01-01

    We address the problem of geographically allocating scarce survey resources to detect pests in their pathways of introduction given information about their likelihood of movement between origins and destinations. We introduce a model for selecting destination sites for survey that departs from the aim of reducing propagule pressure (PP) in pest destinations and instead...

  10. COOPERATIVE ROUTING FOR DYNAMIC AERIAL LAYER NETWORKS

    DTIC Science & Technology

    2018-03-01

    Advisor, Computing & Communications Division Information Directorate This report is published in the interest of scientific and technical...information accumulation at the physical layer, and study the cooperative routing and resource allocation problems associated with such SU networks...interference power constraint is studied . In [Shi2012Joint], an optimal power and sub-carrier allocation strategy to maximize SUs’ throughput subject to

  11. A model for dynamic allocation of human attention among multiple tasks

    NASA Technical Reports Server (NTRS)

    Sheridan, T. B.; Tulga, M. K.

    1978-01-01

    The problem of multi-task attention allocation with special reference to aircraft piloting is discussed with the experimental paradigm used to characterize this situation and the experimental results obtained in the first phase of the research. A qualitative description of an approach to mathematical modeling, and some results obtained with it are also presented to indicate what aspects of the model are most promising. Two appendices are given which (1) discuss the model in relation to graph theory and optimization and (2) specify the optimization algorithm of the model.

  12. Multi-robot task allocation based on two dimensional artificial fish swarm algorithm

    NASA Astrophysics Data System (ADS)

    Zheng, Taixiong; Li, Xueqin; Yang, Liangyi

    2007-12-01

    The problem of task allocation for multiple robots is to allocate more relative-tasks to less relative-robots so as to minimize the processing time of these tasks. In order to get optimal multi-robot task allocation scheme, a twodimensional artificial swarm algorithm based approach is proposed in this paper. In this approach, the normal artificial fish is extended to be two dimension artificial fish. In the two dimension artificial fish, each vector of primary artificial fish is extended to be an m-dimensional vector. Thus, each vector can express a group of tasks. By redefining the distance between artificial fish and the center of artificial fish, the behavior of two dimension fish is designed and the task allocation algorithm based on two dimension artificial swarm algorithm is put forward. At last, the proposed algorithm is applied to the problem of multi-robot task allocation and comparer with GA and SA based algorithm is done. Simulation and compare result shows the proposed algorithm is effective.

  13. Optimal allocation of land and water resources to achieve Water, Energy and Food Security in the upper Blue Nile basin

    NASA Astrophysics Data System (ADS)

    Allam, M.; Eltahir, E. A. B.

    2017-12-01

    Rapid population growth, hunger problems, increasing energy demands, persistent conflicts between the Nile basin riparian countries and the potential impacts of climate change highlight the urgent need for the conscious stewardship of the upper Blue Nile (UBN) basin resources. This study develops a framework for the optimal allocation of land and water resources to agriculture and hydropower production in the UBN basin. The framework consists of three optimization models that aim to: (a) provide accurate estimates of the basin water budget, (b) allocate land and water resources optimally to agriculture, and (c) allocate water to agriculture and hydropower production, and investigate trade-offs between them. First, a data assimilation procedure for data-scarce basins is proposed to deal with data limitations and produce estimates of the hydrologic components that are consistent with the principles of mass and energy conservation. Second, the most representative topography and soil properties datasets are objectively identified and used to delineate the agricultural potential in the basin. The agricultural potential is incorporated into a land-water allocation model that maximizes the net economic benefits from rain-fed agriculture while allowing for enhancing the soils from one suitability class to another to increase agricultural productivity in return for an investment in soil inputs. The optimal agricultural expansion is expected to reduce the basin flow by 7.6 cubic kilometres, impacting downstream countries. The optimization framework is expanded to include hydropower production. This study finds that allocating water to grow rain-fed teff in the basin is more profitable than allocating water for hydropower production. Optimal operation rules for the Grand Ethiopian Renaissance dam (GERD) are identified to maximize annual hydropower generation while achieving a relatively uniform monthly production rate. Trade-offs between agricultural expansion and hydropower generation are analysed in an attempt to define cooperation scenarios that would achieve win-win outcomes for all riparian countries.

  14. Asset Allocation and Optimal Contract for Delegated Portfolio Management

    NASA Astrophysics Data System (ADS)

    Liu, Jingjun; Liang, Jianfeng

    This article studies the portfolio selection and the contracting problems between an individual investor and a professional portfolio manager in a discrete-time principal-agent framework. Portfolio selection and optimal contracts are obtained in closed form. The optimal contract was composed with the fixed fee, the cost, and the fraction of excess expected return. The optimal portfolio is similar to the classical two-fund separation theorem.

  15. Controlling herding in minority game systems

    NASA Astrophysics Data System (ADS)

    Zhang, Ji-Qiang; Huang, Zi-Gang; Wu, Zhi-Xi; Su, Riqi; Lai, Ying-Cheng

    2016-02-01

    Resource allocation takes place in various types of real-world complex systems such as urban traffic, social services institutions, economical and ecosystems. Mathematically, the dynamical process of resource allocation can be modeled as minority games. Spontaneous evolution of the resource allocation dynamics, however, often leads to a harmful herding behavior accompanied by strong fluctuations in which a large majority of agents crowd temporarily for a few resources, leaving many others unused. Developing effective control methods to suppress and eliminate herding is an important but open problem. Here we develop a pinning control method, that the fluctuations of the system consist of intrinsic and systematic components allows us to design a control scheme with separated control variables. A striking finding is the universal existence of an optimal pinning fraction to minimize the variance of the system, regardless of the pinning patterns and the network topology. We carry out a generally applicable theory to explain the emergence of optimal pinning and to predict the dependence of the optimal pinning fraction on the network topology. Our work represents a general framework to deal with the broader problem of controlling collective dynamics in complex systems with potential applications in social, economical and political systems.

  16. Integrated optimization of unmanned aerial vehicle task allocation and path planning under steady wind.

    PubMed

    Luo, He; Liang, Zhengzheng; Zhu, Moning; Hu, Xiaoxuan; Wang, Guoqiang

    2018-01-01

    Wind has a significant effect on the control of fixed-wing unmanned aerial vehicles (UAVs), resulting in changes in their ground speed and direction, which has an important influence on the results of integrated optimization of UAV task allocation and path planning. The objective of this integrated optimization problem changes from minimizing flight distance to minimizing flight time. In this study, the Euclidean distance between any two targets is expanded to the Dubins path length, considering the minimum turning radius of fixed-wing UAVs. According to the vector relationship between wind speed, UAV airspeed, and UAV ground speed, a method is proposed to calculate the flight time of UAV between targets. On this basis, a variable-speed Dubins path vehicle routing problem (VS-DP-VRP) model is established with the purpose of minimizing the time required for UAVs to visit all the targets and return to the starting point. By designing a crossover operator and mutation operator, the genetic algorithm is used to solve the model, the results of which show that an effective UAV task allocation and path planning solution under steady wind can be provided.

  17. Integrated optimization of unmanned aerial vehicle task allocation and path planning under steady wind

    PubMed Central

    Liang, Zhengzheng; Zhu, Moning; Hu, Xiaoxuan; Wang, Guoqiang

    2018-01-01

    Wind has a significant effect on the control of fixed-wing unmanned aerial vehicles (UAVs), resulting in changes in their ground speed and direction, which has an important influence on the results of integrated optimization of UAV task allocation and path planning. The objective of this integrated optimization problem changes from minimizing flight distance to minimizing flight time. In this study, the Euclidean distance between any two targets is expanded to the Dubins path length, considering the minimum turning radius of fixed-wing UAVs. According to the vector relationship between wind speed, UAV airspeed, and UAV ground speed, a method is proposed to calculate the flight time of UAV between targets. On this basis, a variable-speed Dubins path vehicle routing problem (VS-DP-VRP) model is established with the purpose of minimizing the time required for UAVs to visit all the targets and return to the starting point. By designing a crossover operator and mutation operator, the genetic algorithm is used to solve the model, the results of which show that an effective UAV task allocation and path planning solution under steady wind can be provided. PMID:29561888

  18. GIS and Game Theory for Water Resource Management

    NASA Astrophysics Data System (ADS)

    Ganjali, N.; Guney, C.

    2017-11-01

    In this study, aspects of Game theory and its application on water resources management combined with GIS techniques are detailed. First, each term is explained and the advantages and limitations of its aspect is discussed. Then, the nature of combinations between each pair and literature on the previous studies are given. Several cases were investigated and results were magnified in order to conclude with the applicability and combination of GIS- Game Theory- Water Resources Management. It is concluded that the game theory is used relatively in limited studies of water management fields such as cost/benefit allocation among users, water allocation among trans-boundary users in water resources, water quality management, groundwater management, analysis of water policies, fair allocation of water resources development cost and some other narrow fields. Also, Decision-making in environmental projects requires consideration of trade-offs between socio-political, environmental, and economic impacts and is often complicated by various stakeholder views. Most of the literature on water allocation and conflict problems uses traditional optimization models to identify the most efficient scheme while the Game Theory, as an optimization method, combined GIS are beneficial platforms for agent based models to be used in solving Water Resources Management problems in the further studies.

  19. Adjacency Matrix-Based Transmit Power Allocation Strategies in Wireless Sensor Networks

    PubMed Central

    Consolini, Luca; Medagliani, Paolo; Ferrari, Gianluigi

    2009-01-01

    In this paper, we present an innovative transmit power control scheme, based on optimization theory, for wireless sensor networks (WSNs) which use carrier sense multiple access (CSMA) with collision avoidance (CA) as medium access control (MAC) protocol. In particular, we focus on schemes where several remote nodes send data directly to a common access point (AP). Under the assumption of finite overall network transmit power and low traffic load, we derive the optimal transmit power allocation strategy that minimizes the packet error rate (PER) at the AP. This approach is based on modeling the CSMA/CA MAC protocol through a finite state machine and takes into account the network adjacency matrix, depending on the transmit power distribution and determining the network connectivity. It will be then shown that the transmit power allocation problem reduces to a convex constrained minimization problem. Our results show that, under the assumption of low traffic load, the power allocation strategy, which guarantees minimal delay, requires the maximization of network connectivity, which can be equivalently interpreted as the maximization of the number of non-zero entries of the adjacency matrix. The obtained theoretical results are confirmed by simulations for unslotted Zigbee WSNs. PMID:22346705

  20. Multicriterion problem of allocation of resources in the heterogeneous distributed information processing systems

    NASA Astrophysics Data System (ADS)

    Antamoshkin, O. A.; Kilochitskaya, T. R.; Ontuzheva, G. A.; Stupina, A. A.; Tynchenko, V. S.

    2018-05-01

    This study reviews the problem of allocation of resources in the heterogeneous distributed information processing systems, which may be formalized in the form of a multicriterion multi-index problem with the linear constraints of the transport type. The algorithms for solution of this problem suggest a search for the entire set of Pareto-optimal solutions. For some classes of hierarchical systems, it is possible to significantly speed up the procedure of verification of a system of linear algebraic inequalities for consistency due to the reducibility of them to the stream models or the application of other solution schemes (for strongly connected structures) that take into account the specifics of the hierarchies under consideration.

  1. The use of an integrated variable fuzzy sets in water resources management

    NASA Astrophysics Data System (ADS)

    Qiu, Qingtai; Liu, Jia; Li, Chuanzhe; Yu, Xinzhe; Wang, Yang

    2018-06-01

    Based on the evaluation of the present situation of water resources and the development of water conservancy projects and social economy, optimal allocation of regional water resources presents an increasing need in the water resources management. Meanwhile it is also the most effective way to promote the harmonic relationship between human and water. In view of the own limitations of the traditional evaluations of which always choose a single index model using in optimal allocation of regional water resources, on the basis of the theory of variable fuzzy sets (VFS) and system dynamics (SD), an integrated variable fuzzy sets model (IVFS) is proposed to address dynamically complex problems in regional water resources management in this paper. The model is applied to evaluate the level of the optimal allocation of regional water resources of Zoucheng in China. Results show that the level of allocation schemes of water resources ranging from 2.5 to 3.5, generally showing a trend of lower level. To achieve optimal regional management of water resources, this model conveys a certain degree of accessing water resources management, which prominently improve the authentic assessment of water resources management by using the eigenvector of level H.

  2. Efficient Pricing Technique for Resource Allocation Problem in Downlink OFDM Cognitive Radio Networks

    NASA Astrophysics Data System (ADS)

    Abdulghafoor, O. B.; Shaat, M. M. R.; Ismail, M.; Nordin, R.; Yuwono, T.; Alwahedy, O. N. A.

    2017-05-01

    In this paper, the problem of resource allocation in OFDM-based downlink cognitive radio (CR) networks has been proposed. The purpose of this research is to decrease the computational complexity of the resource allocation algorithm for downlink CR network while concerning the interference constraint of primary network. The objective has been secured by adopting pricing scheme to develop power allocation algorithm with the following concerns: (i) reducing the complexity of the proposed algorithm and (ii) providing firm power control to the interference introduced to primary users (PUs). The performance of the proposed algorithm is tested for OFDM- CRNs. The simulation results show that the performance of the proposed algorithm approached the performance of the optimal algorithm at a lower computational complexity, i.e., O(NlogN), which makes the proposed algorithm suitable for more practical applications.

  3. Dimensions of design space: a decision-theoretic approach to optimal research design.

    PubMed

    Conti, Stefano; Claxton, Karl

    2009-01-01

    Bayesian decision theory can be used not only to establish the optimal sample size and its allocation in a single clinical study but also to identify an optimal portfolio of research combining different types of study design. Within a single study, the highest societal payoff to proposed research is achieved when its sample sizes and allocation between available treatment options are chosen to maximize the expected net benefit of sampling (ENBS). Where a number of different types of study informing different parameters in the decision problem could be conducted, the simultaneous estimation of ENBS across all dimensions of the design space is required to identify the optimal sample sizes and allocations within such a research portfolio. This is illustrated through a simple example of a decision model of zanamivir for the treatment of influenza. The possible study designs include: 1) a single trial of all the parameters, 2) a clinical trial providing evidence only on clinical endpoints, 3) an epidemiological study of natural history of disease, and 4) a survey of quality of life. The possible combinations, samples sizes, and allocation between trial arms are evaluated over a range of cost-effectiveness thresholds. The computational challenges are addressed by implementing optimization algorithms to search the ENBS surface more efficiently over such large dimensions.

  4. Maximizing phylogenetic diversity in biodiversity conservation: Greedy solutions to the Noah's Ark problem.

    PubMed

    Hartmann, Klaas; Steel, Mike

    2006-08-01

    The Noah's Ark Problem (NAP) is a comprehensive cost-effectiveness methodology for biodiversity conservation that was introduced by Weitzman (1998) and utilizes the phylogenetic tree containing the taxa of interest to assess biodiversity. Given a set of taxa, each of which has a particular survival probability that can be increased at some cost, the NAP seeks to allocate limited funds to conserving these taxa so that the future expected biodiversity is maximized. Finding optimal solutions using this framework is a computationally difficult problem to which a simple and efficient "greedy" algorithm has been proposed in the literature and applied to conservation problems. We show that, although algorithms of this type cannot produce optimal solutions for the general NAP, there are two restricted scenarios of the NAP for which a greedy algorithm is guaranteed to produce optimal solutions. The first scenario requires the taxa to have equal conservation cost; the second scenario requires an ultrametric tree. The NAP assumes a linear relationship between the funding allocated to conservation of a taxon and the increased survival probability of that taxon. This relationship is briefly investigated and one variation is suggested that can also be solved using a greedy algorithm.

  5. Neural Network Solves "Traveling-Salesman" Problem

    NASA Technical Reports Server (NTRS)

    Thakoor, Anilkumar P.; Moopenn, Alexander W.

    1990-01-01

    Experimental electronic neural network solves "traveling-salesman" problem. Plans round trip of minimum distance among N cities, visiting every city once and only once (without backtracking). This problem is paradigm of many problems of global optimization (e.g., routing or allocation of resources) occuring in industry, business, and government. Applied to large number of cities (or resources), circuits of this kind expected to solve problem faster and more cheaply.

  6. Research on Multirobot Pursuit Task Allocation Algorithm Based on Emotional Cooperation Factor

    PubMed Central

    Fang, Baofu; Chen, Lu; Wang, Hao; Dai, Shuanglu; Zhong, Qiubo

    2014-01-01

    Multirobot task allocation is a hot issue in the field of robot research. A new emotional model is used with the self-interested robot, which gives a new way to measure self-interested robots' individual cooperative willingness in the problem of multirobot task allocation. Emotional cooperation factor is introduced into self-interested robot; it is updated based on emotional attenuation and external stimuli. Then a multirobot pursuit task allocation algorithm is proposed, which is based on emotional cooperation factor. Combined with the two-step auction algorithm recruiting team leaders and team collaborators, set up pursuit teams, and finally use certain strategies to complete the pursuit task. In order to verify the effectiveness of this algorithm, some comparing experiments have been done with the instantaneous greedy optimal auction algorithm; the results of experiments show that the total pursuit time and total team revenue can be optimized by using this algorithm. PMID:25152925

  7. Research on multirobot pursuit task allocation algorithm based on emotional cooperation factor.

    PubMed

    Fang, Baofu; Chen, Lu; Wang, Hao; Dai, Shuanglu; Zhong, Qiubo

    2014-01-01

    Multirobot task allocation is a hot issue in the field of robot research. A new emotional model is used with the self-interested robot, which gives a new way to measure self-interested robots' individual cooperative willingness in the problem of multirobot task allocation. Emotional cooperation factor is introduced into self-interested robot; it is updated based on emotional attenuation and external stimuli. Then a multirobot pursuit task allocation algorithm is proposed, which is based on emotional cooperation factor. Combined with the two-step auction algorithm recruiting team leaders and team collaborators, set up pursuit teams, and finally use certain strategies to complete the pursuit task. In order to verify the effectiveness of this algorithm, some comparing experiments have been done with the instantaneous greedy optimal auction algorithm; the results of experiments show that the total pursuit time and total team revenue can be optimized by using this algorithm.

  8. From honeybees to Internet servers: biomimicry for distributed management of Internet hosting centers.

    PubMed

    Nakrani, Sunil; Tovey, Craig

    2007-12-01

    An Internet hosting center hosts services on its server ensemble. The center must allocate servers dynamically amongst services to maximize revenue earned from hosting fees. The finite server ensemble, unpredictable request arrival behavior and server reallocation cost make server allocation optimization difficult. Server allocation closely resembles honeybee forager allocation amongst flower patches to optimize nectar influx. The resemblance inspires a honeybee biomimetic algorithm. This paper describes details of the honeybee self-organizing model in terms of information flow and feedback, analyzes the homology between the two problems and derives the resulting biomimetic algorithm for hosting centers. The algorithm is assessed for effectiveness and adaptiveness by comparative testing against benchmark and conventional algorithms. Computational results indicate that the new algorithm is highly adaptive to widely varying external environments and quite competitive against benchmark assessment algorithms. Other swarm intelligence applications are briefly surveyed, and some general speculations are offered regarding their various degrees of success.

  9. Generating Data Flow Programs from Nonprocedural Specifications.

    DTIC Science & Technology

    1983-03-01

    With the I-structures, Gajski points out, it is difficult to know ahead of time the optimal memory allocation scheme to pertition large arrays. amory...contention problems may occur for frequently accessed elements stored in the sam memory module. Gajski observes that these are the same problem which

  10. Reactive power planning under high penetration of wind energy using Benders decomposition

    DOE PAGES

    Xu, Yan; Wei, Yanli; Fang, Xin; ...

    2015-11-05

    This study addresses the optimal allocation of reactive power volt-ampere reactive (VAR) sources under the paradigm of high penetration of wind energy. Reactive power planning (RPP) in this particular condition involves a high level of uncertainty because of wind power characteristic. To properly model wind generation uncertainty, a multi-scenario framework optimal power flow that considers the voltage stability constraint under the worst wind scenario and transmission N 1 contingency is developed. The objective of RPP in this study is to minimise the total cost including the VAR investment cost and the expected generation cost. Therefore RPP under this condition ismore » modelled as a two-stage stochastic programming problem to optimise the VAR location and size in one stage, then to minimise the fuel cost in the other stage, and eventually, to find the global optimal RPP results iteratively. Benders decomposition is used to solve this model with an upper level problem (master problem) for VAR allocation optimisation and a lower problem (sub-problem) for generation cost minimisation. Impact of the potential reactive power support from doubly-fed induction generator (DFIG) is also analysed. Lastly, case studies on the IEEE 14-bus and 118-bus systems are provided to verify the proposed method.« less

  11. Redundancy allocation problem for k-out-of- n systems with a choice of redundancy strategies

    NASA Astrophysics Data System (ADS)

    Aghaei, Mahsa; Zeinal Hamadani, Ali; Abouei Ardakan, Mostafa

    2017-03-01

    To increase the reliability of a specific system, using redundant components is a common method which is called redundancy allocation problem (RAP). Some of the RAP studies have focused on k-out-of- n systems. However, all of these studies assumed predetermined active or standby strategies for each subsystem. In this paper, for the first time, we propose a k-out-of- n system with a choice of redundancy strategies. Therefore, a k-out-of- n series-parallel system is considered when the redundancy strategy can be chosen for each subsystem. In other words, in the proposed model, the redundancy strategy is considered as an additional decision variable and an exact method based on integer programming is used to obtain the optimal solution of the problem. As the optimization of RAP belongs to the NP-hard class of problems, a modified version of genetic algorithm (GA) is also developed. The exact method and the proposed GA are implemented on a well-known test problem and the results demonstrate the efficiency of the new approach compared with the previous studies.

  12. Power Allocation Based on Data Classification in Wireless Sensor Networks

    PubMed Central

    Wang, Houlian; Zhou, Gongbo

    2017-01-01

    Limited node energy in wireless sensor networks is a crucial factor which affects the monitoring of equipment operation and working conditions in coal mines. In addition, due to heterogeneous nodes and different data acquisition rates, the number of arriving packets in a queue network can differ, which may lead to some queue lengths reaching the maximum value earlier compared with others. In order to tackle these two problems, an optimal power allocation strategy based on classified data is proposed in this paper. Arriving data is classified into dissimilar classes depending on the number of arriving packets. The problem is formulated as a Lyapunov drift optimization with the objective of minimizing the weight sum of average power consumption and average data class. As a result, a suboptimal distributed algorithm without any knowledge of system statistics is presented. The simulations, conducted in the perfect channel state information (CSI) case and the imperfect CSI case, reveal that the utility can be pushed arbitrarily close to optimal by increasing the parameter V, but with a corresponding growth in the average delay, and that other tunable parameters W and the classification method in the interior of utility function can trade power optimality for increased average data class. The above results show that data in a high class has priorities to be processed than data in a low class, and energy consumption can be minimized in this resource allocation strategy. PMID:28498346

  13. Energy-Efficient Optimal Power Allocation in Integrated Wireless Sensor and Cognitive Satellite Terrestrial Networks

    PubMed Central

    Li, Guangxia; An, Kang; Gao, Bin; Zheng, Gan

    2017-01-01

    This paper proposes novel satellite-based wireless sensor networks (WSNs), which integrate the WSN with the cognitive satellite terrestrial network. Having the ability to provide seamless network access and alleviate the spectrum scarcity, cognitive satellite terrestrial networks are considered as a promising candidate for future wireless networks with emerging requirements of ubiquitous broadband applications and increasing demand for spectral resources. With the emerging environmental and energy cost concerns in communication systems, explicit concerns on energy efficient resource allocation in satellite networks have also recently received considerable attention. In this regard, this paper proposes energy-efficient optimal power allocation schemes in the cognitive satellite terrestrial networks for non-real-time and real-time applications, respectively, which maximize the energy efficiency (EE) of the cognitive satellite user while guaranteeing the interference at the primary terrestrial user below an acceptable level. Specifically, average interference power (AIP) constraint is employed to protect the communication quality of the primary terrestrial user while average transmit power (ATP) or peak transmit power (PTP) constraint is adopted to regulate the transmit power of the satellite user. Since the energy-efficient power allocation optimization problem belongs to the nonlinear concave fractional programming problem, we solve it by combining Dinkelbach’s method with Lagrange duality method. Simulation results demonstrate that the fading severity of the terrestrial interference link is favorable to the satellite user who can achieve EE gain under the ATP constraint comparing to the PTP constraint. PMID:28869546

  14. Modeling forest stand dynamics from optimal balances of carbon and nitrogen

    Treesearch

    Harry T. Valentine; Annikki Makela

    2012-01-01

    We formulate a dynamic evolutionary optimization problem to predict the optimal pattern by which carbon (C) and nitrogen (N) are co-allocated to fine-root, leaf, and wood production, with the objective of maximizing height growth rate, year by year, in an even-aged stand. Height growth is maximized with respect to two adaptive traits, leaf N concentration and the ratio...

  15. Efficient Computing Budget Allocation for Finding Simplest Good Designs

    PubMed Central

    Jia, Qing-Shan; Zhou, Enlu; Chen, Chun-Hung

    2012-01-01

    In many applications some designs are easier to implement, require less training data and shorter training time, and consume less storage than the others. Such designs are called simple designs, and are usually preferred over complex ones when they all have good performance. Despite the abundant existing studies on how to find good designs in simulation-based optimization (SBO), there exist few studies on finding simplest good designs. We consider this important problem in this paper, and make the following contributions. First, we provide lower bounds for the probabilities of correctly selecting the m simplest designs with top performance, and selecting the best m such simplest good designs, respectively. Second, we develop two efficient computing budget allocation methods to find m simplest good designs and to find the best m such designs, respectively; and show their asymptotic optimalities. Third, we compare the performance of the two methods with equal allocations over 6 academic examples and a smoke detection problem in wireless sensor networks. We hope that this work brings insight to finding the simplest good designs in general. PMID:23687404

  16. A centre-free approach for resource allocation with lower bounds

    NASA Astrophysics Data System (ADS)

    Obando, Germán; Quijano, Nicanor; Rakoto-Ravalontsalama, Naly

    2017-09-01

    Since complexity and scale of systems are continuously increasing, there is a growing interest in developing distributed algorithms that are capable to address information constraints, specially for solving optimisation and decision-making problems. In this paper, we propose a novel method to solve distributed resource allocation problems that include lower bound constraints. The optimisation process is carried out by a set of agents that use a communication network to coordinate their decisions. Convergence and optimality of the method are guaranteed under some mild assumptions related to the convexity of the problem and the connectivity of the underlying graph. Finally, we compare our approach with other techniques reported in the literature, and we present some engineering applications.

  17. On the optimal use of a slow server in two-stage queueing systems

    NASA Astrophysics Data System (ADS)

    Papachristos, Ioannis; Pandelis, Dimitrios G.

    2017-07-01

    We consider two-stage tandem queueing systems with a dedicated server in each queue and a slower flexible server that can attend both queues. We assume Poisson arrivals and exponential service times, and linear holding costs for jobs present in the system. We study the optimal dynamic assignment of servers to jobs assuming that two servers cannot collaborate to work on the same job and preemptions are not allowed. We formulate the problem as a Markov decision process and derive properties of the optimal allocation for the dedicated (fast) servers. Specifically, we show that the one downstream should not idle, and the same is true for the one upstream when holding costs are larger there. The optimal allocation of the slow server is investigated through extensive numerical experiments that lead to conjectures on the structure of the optimal policy.

  18. Distributed Bees Algorithm Parameters Optimization for a Cost Efficient Target Allocation in Swarms of Robots

    PubMed Central

    Jevtić, Aleksandar; Gutiérrez, Álvaro

    2011-01-01

    Swarms of robots can use their sensing abilities to explore unknown environments and deploy on sites of interest. In this task, a large number of robots is more effective than a single unit because of their ability to quickly cover the area. However, the coordination of large teams of robots is not an easy problem, especially when the resources for the deployment are limited. In this paper, the Distributed Bees Algorithm (DBA), previously proposed by the authors, is optimized and applied to distributed target allocation in swarms of robots. Improved target allocation in terms of deployment cost efficiency is achieved through optimization of the DBA’s control parameters by means of a Genetic Algorithm. Experimental results show that with the optimized set of parameters, the deployment cost measured as the average distance traveled by the robots is reduced. The cost-efficient deployment is in some cases achieved at the expense of increased robots’ distribution error. Nevertheless, the proposed approach allows the swarm to adapt to the operating conditions when available resources are scarce. PMID:22346677

  19. Performance improvement of optical CDMA networks with stochastic artificial bee colony optimization technique

    NASA Astrophysics Data System (ADS)

    Panda, Satyasen

    2018-05-01

    This paper proposes a modified artificial bee colony optimization (ABC) algorithm based on levy flight swarm intelligence referred as artificial bee colony levy flight stochastic walk (ABC-LFSW) optimization for optical code division multiple access (OCDMA) network. The ABC-LFSW algorithm is used to solve asset assignment problem based on signal to noise ratio (SNR) optimization in OCDM networks with quality of service constraints. The proposed optimization using ABC-LFSW algorithm provides methods for minimizing various noises and interferences, regulating the transmitted power and optimizing the network design for improving the power efficiency of the optical code path (OCP) from source node to destination node. In this regard, an optical system model is proposed for improving the network performance with optimized input parameters. The detailed discussion and simulation results based on transmitted power allocation and power efficiency of OCPs are included. The experimental results prove the superiority of the proposed network in terms of power efficiency and spectral efficiency in comparison to networks without any power allocation approach.

  20. Optimal Golomb Ruler Sequences Generation for Optical WDM Systems: A Novel Parallel Hybrid Multi-objective Bat Algorithm

    NASA Astrophysics Data System (ADS)

    Bansal, Shonak; Singh, Arun Kumar; Gupta, Neena

    2017-02-01

    In real-life, multi-objective engineering design problems are very tough and time consuming optimization problems due to their high degree of nonlinearities, complexities and inhomogeneity. Nature-inspired based multi-objective optimization algorithms are now becoming popular for solving multi-objective engineering design problems. This paper proposes original multi-objective Bat algorithm (MOBA) and its extended form, namely, novel parallel hybrid multi-objective Bat algorithm (PHMOBA) to generate shortest length Golomb ruler called optimal Golomb ruler (OGR) sequences at a reasonable computation time. The OGRs found their application in optical wavelength division multiplexing (WDM) systems as channel-allocation algorithm to reduce the four-wave mixing (FWM) crosstalk. The performances of both the proposed algorithms to generate OGRs as optical WDM channel-allocation is compared with other existing classical computing and nature-inspired algorithms, including extended quadratic congruence (EQC), search algorithm (SA), genetic algorithms (GAs), biogeography based optimization (BBO) and big bang-big crunch (BB-BC) optimization algorithms. Simulations conclude that the proposed parallel hybrid multi-objective Bat algorithm works efficiently as compared to original multi-objective Bat algorithm and other existing algorithms to generate OGRs for optical WDM systems. The algorithm PHMOBA to generate OGRs, has higher convergence and success rate than original MOBA. The efficiency improvement of proposed PHMOBA to generate OGRs up to 20-marks, in terms of ruler length and total optical channel bandwidth (TBW) is 100 %, whereas for original MOBA is 85 %. Finally the implications for further research are also discussed.

  1. Optimal bit allocation for hybrid scalable/multiple-description video transmission over wireless channels

    NASA Astrophysics Data System (ADS)

    Jubran, Mohammad K.; Bansal, Manu; Kondi, Lisimachos P.

    2006-01-01

    In this paper, we consider the problem of optimal bit allocation for wireless video transmission over fading channels. We use a newly developed hybrid scalable/multiple-description codec that combines the functionality of both scalable and multiple-description codecs. It produces a base layer and multiple-description enhancement layers. Any of the enhancement layers can be decoded (in a non-hierarchical manner) with the base layer to improve the reconstructed video quality. Two different channel coding schemes (Rate-Compatible Punctured Convolutional (RCPC)/Cyclic Redundancy Check (CRC) coding and, product code Reed Solomon (RS)+RCPC/CRC coding) are used for unequal error protection of the layered bitstream. Optimal allocation of the bitrate between source and channel coding is performed for discrete sets of source coding rates and channel coding rates. Experimental results are presented for a wide range of channel conditions. Also, comparisons with classical scalable coding show the effectiveness of using hybrid scalable/multiple-description coding for wireless transmission.

  2. Intelligent Optimization of Modulation Indexes in Unified Tracking and Communication System

    NASA Astrophysics Data System (ADS)

    Yang, Wei-wei; Cong, Bo; Huang, Qiong; Zhu, Li-wei

    2016-02-01

    In the unified tracking and communication system, the ranging signal and the telemetry, communication signals are used in the same channel. In the link budget, it is necessary to allocate the power reasonably, so as to ensure the performance of system and reduce the cost. In this paper, the nonlinear optimization problem is studied using intelligent optimization method. Simulation analysis results show that the proposed method is effective.

  3. Optimizing Experimental Designs Relative to Costs and Effect Sizes.

    ERIC Educational Resources Information Center

    Headrick, Todd C.; Zumbo, Bruno D.

    A general model is derived for the purpose of efficiently allocating integral numbers of units in multi-level designs given prespecified power levels. The derivation of the model is based on a constrained optimization problem that maximizes a general form of a ratio of expected mean squares subject to a budget constraint. This model provides more…

  4. Optimizing congestion and emissions via tradable credit charge and reward scheme without initial credit allocations

    NASA Astrophysics Data System (ADS)

    Zhu, Wenlong; Ma, Shoufeng; Tian, Junfang

    2017-01-01

    This paper investigates the revenue-neutral tradable credit charge and reward scheme without initial credit allocations that can reassign network traffic flow patterns to optimize congestion and emissions. First, we prove the existence of the proposed schemes and further decentralize the minimum emission flow pattern to user equilibrium. Moreover, we design the solving method of the proposed credit scheme for minimum emission problem. Second, we investigate the revenue-neutral tradable credit charge and reward scheme without initial credit allocations for bi-objectives to obtain the Pareto system optimum flow patterns of congestion and emissions; and present the corresponding solutions are located in the polyhedron constituted by some inequalities and equalities system. Last, numerical example based on a simple traffic network is adopted to obtain the proposed credit schemes and verify they are revenue-neutral.

  5. An improved robust buffer allocation method for the project scheduling problem

    NASA Astrophysics Data System (ADS)

    Ghoddousi, Parviz; Ansari, Ramin; Makui, Ahmad

    2017-04-01

    Unpredictable uncertainties cause delays and additional costs for projects. Often, when using traditional approaches, the optimizing procedure of the baseline project plan fails and leads to delays. In this study, a two-stage multi-objective buffer allocation approach is applied for robust project scheduling. In the first stage, some decisions are made on buffer sizes and allocation to the project activities. A set of Pareto-optimal robust schedules is designed using the meta-heuristic non-dominated sorting genetic algorithm (NSGA-II) based on the decisions made in the buffer allocation step. In the second stage, the Pareto solutions are evaluated in terms of the deviation from the initial start time and due dates. The proposed approach was implemented on a real dam construction project. The outcomes indicated that the obtained buffered schedule reduces the cost of disruptions by 17.7% compared with the baseline plan, with an increase of about 0.3% in the project completion time.

  6. A Novel Joint Problem of Routing, Scheduling, and Variable-Width Channel Allocation in WMNs

    PubMed Central

    Liu, Wan-Yu; Chou, Chun-Hung

    2014-01-01

    This paper investigates a novel joint problem of routing, scheduling, and channel allocation for single-radio multichannel wireless mesh networks in which multiple channel widths can be adjusted dynamically through a new software technology so that more concurrent transmissions and suppressed overlapping channel interference can be achieved. Although the previous works have studied this joint problem, their linear programming models for the problem were not incorporated with some delicate constraints. As a result, this paper first constructs a linear programming model with more practical concerns and then proposes a simulated annealing approach with a novel encoding mechanism, in which the configurations of multiple time slots are devised to characterize the dynamic transmission process. Experimental results show that our approach can find the same or similar solutions as the optimal solutions for smaller-scale problems and can efficiently find good-quality solutions for a variety of larger-scale problems. PMID:24982990

  7. Optimal allocation of conservation effort among subpopulations of a threatened species: how important is patch quality?

    PubMed

    Chauvenet, Aliénor L M; Baxter, Peter W J; McDonald-Madden, Eve; Possingham, Hugh P

    2010-04-01

    Money is often a limiting factor in conservation, and attempting to conserve endangered species can be costly. Consequently, a framework for optimizing fiscally constrained conservation decisions for a single species is needed. In this paper we find the optimal budget allocation among isolated subpopulations of a threatened species to minimize local extinction probability. We solve the problem using stochastic dynamic programming, derive a useful and simple alternative guideline for allocating funds, and test its performance using forward simulation. The model considers subpopulations that persist in habitat patches of differing quality, which in our model is reflected in different relationships between money invested and extinction risk. We discover that, in most cases, subpopulations that are less efficient to manage should receive more money than those that are more efficient to manage, due to higher investment needed to reduce extinction risk. Our simple investment guideline performs almost as well as the exact optimal strategy. We illustrate our approach with a case study of the management of the Sumatran tiger, Panthera tigris sumatrae, in Kerinci Seblat National Park (KSNP), Indonesia. We find that different budgets should be allocated to the separate tiger subpopulations in KSNP. The subpopulation that is not at risk of extinction does not require any management investment. Based on the combination of risks of extinction and habitat quality, the optimal allocation for these particular tiger subpopulations is an unusual case: subpopulations that occur in higher-quality habitat (more efficient to manage) should receive more funds than the remaining subpopulation that is in lower-quality habitat. Because the yearly budget allocated to the KSNP for tiger conservation is small, to guarantee the persistence of all the subpopulations that are currently under threat we need to prioritize those that are easier to save. When allocating resources among subpopulations of a threatened species, the combined effects of differences in habitat quality, cost of action, and current subpopulation probability of extinction need to be integrated. We provide a useful guideline for allocating resources among isolated subpopulations of any threatened species.

  8. An intuitionistic fuzzy multi-objective non-linear programming model for sustainable irrigation water allocation under the combination of dry and wet conditions

    NASA Astrophysics Data System (ADS)

    Li, Mo; Fu, Qiang; Singh, Vijay P.; Ma, Mingwei; Liu, Xiao

    2017-12-01

    Water scarcity causes conflicts among natural resources, society and economy and reinforces the need for optimal allocation of irrigation water resources in a sustainable way. Uncertainties caused by natural conditions and human activities make optimal allocation more complex. An intuitionistic fuzzy multi-objective non-linear programming (IFMONLP) model for irrigation water allocation under the combination of dry and wet conditions is developed to help decision makers mitigate water scarcity. The model is capable of quantitatively solving multiple problems including crop yield increase, blue water saving, and water supply cost reduction to obtain a balanced water allocation scheme using a multi-objective non-linear programming technique. Moreover, it can deal with uncertainty as well as hesitation based on the introduction of intuitionistic fuzzy numbers. Consideration of the combination of dry and wet conditions for water availability and precipitation makes it possible to gain insights into the various irrigation water allocations, and joint probabilities based on copula functions provide decision makers an average standard for irrigation. A case study on optimally allocating both surface water and groundwater to different growth periods of rice in different subareas in Heping irrigation area, Qing'an County, northeast China shows the potential and applicability of the developed model. Results show that the crop yield increase target especially in tillering and elongation stages is a prevailing concern when more water is available, and trading schemes can mitigate water supply cost and save water with an increased grain output. Results also reveal that the water allocation schemes are sensitive to the variation of water availability and precipitation with uncertain characteristics. The IFMONLP model is applicable for most irrigation areas with limited water supplies to determine irrigation water strategies under a fuzzy environment.

  9. Fleet Assignment Using Collective Intelligence

    NASA Technical Reports Server (NTRS)

    Antoine, Nicolas E.; Bieniawski, Stefan R.; Kroo, Ilan M.; Wolpert, David H.

    2004-01-01

    Product distribution theory is a new collective intelligence-based framework for analyzing and controlling distributed systems. Its usefulness in distributed stochastic optimization is illustrated here through an airline fleet assignment problem. This problem involves the allocation of aircraft to a set of flights legs in order to meet passenger demand, while satisfying a variety of linear and non-linear constraints. Over the course of the day, the routing of each aircraft is determined in order to minimize the number of required flights for a given fleet. The associated flow continuity and aircraft count constraints have led researchers to focus on obtaining quasi-optimal solutions, especially at larger scales. In this paper, the authors propose the application of this new stochastic optimization algorithm to a non-linear objective cold start fleet assignment problem. Results show that the optimizer can successfully solve such highly-constrained problems (130 variables, 184 constraints).

  10. Handling Uncertain Gross Margin and Water Demand in Agricultural Water Resources Management using Robust Optimization

    NASA Astrophysics Data System (ADS)

    Chaerani, D.; Lesmana, E.; Tressiana, N.

    2018-03-01

    In this paper, an application of Robust Optimization in agricultural water resource management problem under gross margin and water demand uncertainty is presented. Water resource management is a series of activities that includes planning, developing, distributing and managing the use of water resource optimally. Water resource management for agriculture can be one of the efforts to optimize the benefits of agricultural output. The objective function of agricultural water resource management problem is to maximizing total benefits by water allocation to agricultural areas covered by the irrigation network in planning horizon. Due to gross margin and water demand uncertainty, we assume that the uncertain data lies within ellipsoidal uncertainty set. We employ robust counterpart methodology to get the robust optimal solution.

  11. A Mixed Integer Efficient Global Optimization Framework: Applied to the Simultaneous Aircraft Design, Airline Allocation and Revenue Management Problem

    NASA Astrophysics Data System (ADS)

    Roy, Satadru

    Traditional approaches to design and optimize a new system, often, use a system-centric objective and do not take into consideration how the operator will use this new system alongside of other existing systems. This "hand-off" between the design of the new system and how the new system operates alongside other systems might lead to a sub-optimal performance with respect to the operator-level objective. In other words, the system that is optimal for its system-level objective might not be best for the system-of-systems level objective of the operator. Among the few available references that describe attempts to address this hand-off, most follow an MDO-motivated subspace decomposition approach of first designing a very good system and then provide this system to the operator who decides the best way to use this new system along with the existing systems. The motivating example in this dissertation presents one such similar problem that includes aircraft design, airline operations and revenue management "subspaces". The research here develops an approach that could simultaneously solve these subspaces posed as a monolithic optimization problem. The monolithic approach makes the problem a Mixed Integer/Discrete Non-Linear Programming (MINLP/MDNLP) problem, which are extremely difficult to solve. The presence of expensive, sophisticated engineering analyses further aggravate the problem. To tackle this challenge problem, the work here presents a new optimization framework that simultaneously solves the subspaces to capture the "synergism" in the problem that the previous decomposition approaches may not have exploited, addresses mixed-integer/discrete type design variables in an efficient manner, and accounts for computationally expensive analysis tools. The framework combines concepts from efficient global optimization, Kriging partial least squares, and gradient-based optimization. This approach then demonstrates its ability to solve an 11 route airline network problem consisting of 94 decision variables including 33 integer and 61 continuous type variables. This application problem is a representation of an interacting group of systems and provides key challenges to the optimization framework to solve the MINLP problem, as reflected by the presence of a moderate number of integer and continuous type design variables and expensive analysis tool. The result indicates simultaneously solving the subspaces could lead to significant improvement in the fleet-level objective of the airline when compared to the previously developed sequential subspace decomposition approach. In developing the approach to solve the MINLP/MDNLP challenge problem, several test problems provided the ability to explore performance of the framework. While solving these test problems, the framework showed that it could solve other MDNLP problems including categorically discrete variables, indicating that the framework could have broader application than the new aircraft design-fleet allocation-revenue management problem.

  12. A note on the modelling of circular smallholder migration.

    PubMed

    Bigsten, A

    1988-01-01

    "It is argued that circular migration [in Africa] should be seen as an optimization problem, where the household allocates its labour resources across activities, including work which requires migration, so as to maximize the joint family utility function. The migration problem is illustrated in a simple diagram, which makes it possible to analyse economic aspects of migration." excerpt

  13. Pilot interaction with automated airborne decision making systems

    NASA Technical Reports Server (NTRS)

    Rouse, W. B.; Chu, Y. Y.; Greenstein, J. S.; Walden, R. S.

    1976-01-01

    An investigation was made of interaction between a human pilot and automated on-board decision making systems. Research was initiated on the topic of pilot problem solving in automated and semi-automated flight management systems and attempts were made to develop a model of human decision making in a multi-task situation. A study was made of allocation of responsibility between human and computer, and discussed were various pilot performance parameters with varying degrees of automation. Optimal allocation of responsibility between human and computer was considered and some theoretical results found in the literature were presented. The pilot as a problem solver was discussed. Finally the design of displays, controls, procedures, and computer aids for problem solving tasks in automated and semi-automated systems was considered.

  14. Real-Time Optimization for use in a Control Allocation System to Recover from Pilot Induced Oscillations

    NASA Technical Reports Server (NTRS)

    Leonard, Michael W.

    2013-01-01

    Integration of the Control Allocation technique to recover from Pilot Induced Oscillations (CAPIO) System into the control system of a Short Takeoff and Landing Mobility Concept Vehicle simulation presents a challenge because the CAPIO formulation requires that constrained optimization problems be solved at the controller operating frequency. We present a solution that utilizes a modified version of the well-known L-BFGS-B solver. Despite the iterative nature of the solver, the method is seen to converge in real time with sufficient reliability to support three weeks of piloted runs at the NASA Ames Vertical Motion Simulator (VMS) facility. The results of the optimization are seen to be excellent in the vast majority of real-time frames. Deficiencies in the quality of the results in some frames are shown to be improvable with simple termination criteria adjustments, though more real-time optimization iterations would be required.

  15. Moving on from rigid plant stoichiometry: Optimal canopy nitrogen allocation within a novel land surface model

    NASA Astrophysics Data System (ADS)

    Caldararu, S.; Kern, M.; Engel, J.; Zaehle, S.

    2016-12-01

    Despite recent advances in global vegetation models, we still lack the capacity to predict observed vegetation responses to experimental environmental changes such as elevated CO2, increased temperature or nutrient additions. In particular for elevated CO2 (FACE) experiments, studies have shown that this is related in part to the models' inability to represent plastic changes in nutrient use and biomass allocation. We present a newly developed vegetation model which aims to overcome these problems by including optimality processes to describe nitrogen (N) and carbon allocation within the plant. We represent nitrogen allocation to the canopy and within the canopy between photosynthetic components as an optimal processes which aims to maximize net primary production (NPP) of the plant. We also represent biomass investment into aboveground and belowground components (root nitrogen uptake , biological N fixation) as an optimal process that maximizes plant growth by considering plant carbon and nutrient demands as well as acquisition costs. The model can now represent plastic changes in canopy N content and chlorophyll and Rubisco concentrations as well as in belowground allocation both on seasonal and inter-annual time scales. Specifically, we show that under elevated CO2 conditions, the model predicts a lower optimal leaf N concentration, which, combined with a redistribution of leaf N between the Rubisco and chlorophyll components, leads to a continued NPP response under high CO2, where models with a fixed canopy stoichiometry would predicts a quick onset of N limitation. In general, our model aims to include physiologically-based plant processes and avoid arbitrarily imposed parameters and thresholds in order to improve our predictive capability of vegetation responses under changing environmental conditions.

  16. A QoS Aware Resource Allocation Strategy for 3D A/V Streaming in OFDMA Based Wireless Systems

    PubMed Central

    Chung, Young-uk; Choi, Yong-Hoon; Park, Suwon; Lee, Hyukjoon

    2014-01-01

    Three-dimensional (3D) video is expected to be a “killer app” for OFDMA-based broadband wireless systems. The main limitation of 3D video streaming over a wireless system is the shortage of radio resources due to the large size of the 3D traffic. This paper presents a novel resource allocation strategy to address this problem. In the paper, the video-plus-depth 3D traffic type is considered. The proposed resource allocation strategy focuses on the relationship between 2D video and the depth map, handling them with different priorities. It is formulated as an optimization problem and is solved using a suboptimal heuristic algorithm. Numerical results show that the proposed scheme provides a better quality of service compared to conventional schemes. PMID:25250377

  17. Irrigation water allocation optimization using multi-objective evolutionary algorithm (MOEA) - a review

    NASA Astrophysics Data System (ADS)

    Fanuel, Ibrahim Mwita; Mushi, Allen; Kajunguri, Damian

    2018-03-01

    This paper analyzes more than 40 papers with a restricted area of application of Multi-Objective Genetic Algorithm, Non-Dominated Sorting Genetic Algorithm-II and Multi-Objective Differential Evolution (MODE) to solve the multi-objective problem in agricultural water management. The paper focused on different application aspects which include water allocation, irrigation planning, crop pattern and allocation of available land. The performance and results of these techniques are discussed. The review finds that there is a potential to use MODE to analyzed the multi-objective problem, the application is more significance due to its advantage of being simple and powerful technique than any Evolutionary Algorithm. The paper concludes with the hopeful new trend of research that demand effective use of MODE; inclusion of benefits derived from farm byproducts and production costs into the model.

  18. Fleet Assignment Using Collective Intelligence

    NASA Technical Reports Server (NTRS)

    Antoine, Nicolas E.; Bieniawski, Stefan R.; Kroo, Ilan M.; Wolpert, David H.

    2004-01-01

    Airline fleet assignment involves the allocation of aircraft to a set of flights legs in order to meet passenger demand, while satisfying a variety of constraints. Over the course of the day, the routing of each aircraft is determined in order to minimize the number of required flights for a given fleet. The associated flow continuity and aircraft count constraints have led researchers to focus on obtaining quasi-optimal solutions, especially at larger scales. In this paper, the authors propose the application of an agent-based integer optimization algorithm to a "cold start" fleet assignment problem. Results show that the optimizer can successfully solve such highly- constrained problems (129 variables, 184 constraints).

  19. A Novel Optimal Joint Resource Allocation Method in Cooperative Multicarrier Networks: Theory and Practice

    PubMed Central

    Gao, Yuan; Zhou, Weigui; Ao, Hong; Chu, Jian; Zhou, Quan; Zhou, Bo; Wang, Kang; Li, Yi; Xue, Peng

    2016-01-01

    With the increasing demands for better transmission speed and robust quality of service (QoS), the capacity constrained backhaul gradually becomes a bottleneck in cooperative wireless networks, e.g., in the Internet of Things (IoT) scenario in joint processing mode of LTE-Advanced Pro. This paper focuses on resource allocation within capacity constrained backhaul in uplink cooperative wireless networks, where two base stations (BSs) equipped with single antennae serve multiple single-antennae users via multi-carrier transmission mode. In this work, we propose a novel cooperative transmission scheme based on compress-and-forward with user pairing to solve the joint mixed integer programming problem. To maximize the system capacity under the limited backhaul, we formulate the joint optimization problem of user sorting, subcarrier mapping and backhaul resource sharing among different pairs (subcarriers for users). A novel robust and efficient centralized algorithm based on alternating optimization strategy and perfect mapping is proposed. Simulations show that our novel method can improve the system capacity significantly under the constraint of the backhaul resource compared with the blind alternatives. PMID:27077865

  20. Mass and Volume Optimization of Space Flight Medical Kits

    NASA Technical Reports Server (NTRS)

    Keenan, A. B.; Foy, Millennia Hope; Myers, Jerry

    2014-01-01

    Resource allocation is a critical aspect of space mission planning. All resources, including medical resources, are subject to a number of mission constraints such a maximum mass and volume. However, unlike many resources, there is often limited understanding in how to optimize medical resources for a mission. The Integrated Medical Model (IMM) is a probabilistic model that estimates medical event occurrences and mission outcomes for different mission profiles. IMM simulates outcomes and describes the impact of medical events in terms of lost crew time, medical resource usage, and the potential for medically required evacuation. Previously published work describes an approach that uses the IMM to generate optimized medical kits that maximize benefit to the crew subject to mass and volume constraints. We improve upon the results obtained previously and extend our approach to minimize mass and volume while meeting some benefit threshold. METHODS We frame the medical kit optimization problem as a modified knapsack problem and implement an algorithm utilizing dynamic programming. Using this algorithm, optimized medical kits were generated for 3 mission scenarios with the goal of minimizing the medical kit mass and volume for a specified likelihood of evacuation or Crew Health Index (CHI) threshold. The algorithm was expanded to generate medical kits that maximize likelihood of evacuation or CHI subject to mass and volume constraints. RESULTS AND CONCLUSIONS In maximizing benefit to crew health subject to certain constraints, our algorithm generates medical kits that more closely resemble the unlimited-resource scenario than previous approaches which leverage medical risk information generated by the IMM. Our work here demonstrates that this algorithm provides an efficient and effective means to objectively allocate medical resources for spaceflight missions and provides an effective means of addressing tradeoffs in medical resource allocations and crew mission success parameters.

  1. Using game theory for perceptual tuned rate control algorithm in video coding

    NASA Astrophysics Data System (ADS)

    Luo, Jiancong; Ahmad, Ishfaq

    2005-03-01

    This paper proposes a game theoretical rate control technique for video compression. Using a cooperative gaming approach, which has been utilized in several branches of natural and social sciences because of its enormous potential for solving constrained optimization problems, we propose a dual-level scheme to optimize the perceptual quality while guaranteeing "fairness" in bit allocation among macroblocks. At the frame level, the algorithm allocates target bits to frames based on their coding complexity. At the macroblock level, the algorithm distributes bits to macroblocks by defining a bargaining game. Macroblocks play cooperatively to compete for shares of resources (bits) to optimize their quantization scales while considering the Human Visual System"s perceptual property. Since the whole frame is an entity perceived by viewers, macroblocks compete cooperatively under a global objective of achieving the best quality with the given bit constraint. The major advantage of the proposed approach is that the cooperative game leads to an optimal and fair bit allocation strategy based on the Nash Bargaining Solution. Another advantage is that it allows multi-objective optimization with multiple decision makers (macroblocks). The simulation results testify the algorithm"s ability to achieve accurate bit rate with good perceptual quality, and to maintain a stable buffer level.

  2. A review of distributed parameter groundwater management modeling methods

    USGS Publications Warehouse

    Gorelick, Steven M.

    1983-01-01

    Models which solve the governing groundwater flow or solute transport equations in conjunction with optimization techniques, such as linear and quadratic programing, are powerful aquifer management tools. Groundwater management models fall in two general categories: hydraulics or policy evaluation and water allocation. Groundwater hydraulic management models enable the determination of optimal locations and pumping rates of numerous wells under a variety of restrictions placed upon local drawdown, hydraulic gradients, and water production targets. Groundwater policy evaluation and allocation models can be used to study the influence upon regional groundwater use of institutional policies such as taxes and quotas. Furthermore, fairly complex groundwater-surface water allocation problems can be handled using system decomposition and multilevel optimization. Experience from the few real world applications of groundwater optimization-management techniques is summarized. Classified separately are methods for groundwater quality management aimed at optimal waste disposal in the subsurface. This classification is composed of steady state and transient management models that determine disposal patterns in such a way that water quality is protected at supply locations. Classes of research missing from the literature are groundwater quality management models involving nonlinear constraints, models which join groundwater hydraulic and quality simulations with political-economic management considerations, and management models that include parameter uncertainty.

  3. A Review of Distributed Parameter Groundwater Management Modeling Methods

    NASA Astrophysics Data System (ADS)

    Gorelick, Steven M.

    1983-04-01

    Models which solve the governing groundwater flow or solute transport equations in conjunction with optimization techniques, such as linear and quadratic programing, are powerful aquifer management tools. Groundwater management models fall in two general categories: hydraulics or policy evaluation and water allocation. Groundwater hydraulic management models enable the determination of optimal locations and pumping rates of numerous wells under a variety of restrictions placed upon local drawdown, hydraulic gradients, and water production targets. Groundwater policy evaluation and allocation models can be used to study the influence upon regional groundwater use of institutional policies such as taxes and quotas. Furthermore, fairly complex groundwater-surface water allocation problems can be handled using system decomposition and multilevel optimization. Experience from the few real world applications of groundwater optimization-management techniques is summarized. Classified separately are methods for groundwater quality management aimed at optimal waste disposal in the subsurface. This classification is composed of steady state and transient management models that determine disposal patterns in such a way that water quality is protected at supply locations. Classes of research missing from the literature are groundwater quality management models involving nonlinear constraints, models which join groundwater hydraulic and quality simulations with political-economic management considerations, and management models that include parameter uncertainty.

  4. A novel frame-level constant-distortion bit allocation for smooth H.264/AVC video quality

    NASA Astrophysics Data System (ADS)

    Liu, Li; Zhuang, Xinhua

    2009-01-01

    It is known that quality fluctuation has a major negative effect on visual perception. In previous work, we introduced a constant-distortion bit allocation method [1] for H.263+ encoder. However, the method in [1] can not be adapted to the newest H.264/AVC encoder directly as the well-known chicken-egg dilemma resulted from the rate-distortion optimization (RDO) decision process. To solve this problem, we propose a new two stage constant-distortion bit allocation (CDBA) algorithm with enhanced rate control for H.264/AVC encoder. In stage-1, the algorithm performs RD optimization process with a constant quantization QP. Based on prediction residual signals from stage-1 and target distortion for smooth video quality purpose, the frame-level bit target is allocated by using a close-form approximations of ratedistortion relationship similar to [1], and a fast stage-2 encoding process is performed with enhanced basic unit rate control. Experimental results show that, compared with original rate control algorithm provided by H.264/AVC reference software JM12.1, the proposed constant-distortion frame-level bit allocation scheme reduces quality fluctuation and delivers much smoother PSNR on all testing sequences.

  5. Optimal power allocation and joint source-channel coding for wireless DS-CDMA visual sensor networks

    NASA Astrophysics Data System (ADS)

    Pandremmenou, Katerina; Kondi, Lisimachos P.; Parsopoulos, Konstantinos E.

    2011-01-01

    In this paper, we propose a scheme for the optimal allocation of power, source coding rate, and channel coding rate for each of the nodes of a wireless Direct Sequence Code Division Multiple Access (DS-CDMA) visual sensor network. The optimization is quality-driven, i.e. the received quality of the video that is transmitted by the nodes is optimized. The scheme takes into account the fact that the sensor nodes may be imaging scenes with varying levels of motion. Nodes that image low-motion scenes will require a lower source coding rate, so they will be able to allocate a greater portion of the total available bit rate to channel coding. Stronger channel coding will mean that such nodes will be able to transmit at lower power. This will both increase battery life and reduce interference to other nodes. Two optimization criteria are considered. One that minimizes the average video distortion of the nodes and one that minimizes the maximum distortion among the nodes. The transmission powers are allowed to take continuous values, whereas the source and channel coding rates can assume only discrete values. Thus, the resulting optimization problem lies in the field of mixed-integer optimization tasks and is solved using Particle Swarm Optimization. Our experimental results show the importance of considering the characteristics of the video sequences when determining the transmission power, source coding rate and channel coding rate for the nodes of the visual sensor network.

  6. Site Selection and Resource Allocation of Oil Spill Emergency Base for Offshore Oil Facilities

    NASA Astrophysics Data System (ADS)

    Li, Yunbin; Liu, Jingxian; Wei, Lei; Wu, Weihuang

    2018-02-01

    Based on the analysis of the historical data about oil spill accidents in the Bohai Sea, this paper discretizes oil spilled source into a limited number of spill points. According to the probability of oil spill risk, the demand for salvage forces at each oil spill point is evaluated. Aiming at the specific location of the rescue base around the Bohai Sea, a cost-benefit analysis is conducted to determine the total cost of disasters for each rescue base. Based on the relationship between the oil spill point and the rescue site, a multi-objective optimization location model for the oil spill rescue base in the Bohai Sea region is established. And the genetic algorithm is used to solve the optimization problem, and determine the emergency rescue base optimization program and emergency resources allocation ratio.

  7. Enhanced Specification and Verification for Timed Planning

    DTIC Science & Technology

    2009-02-28

    Scheduling Problem The job-shop scheduling problem ( JSSP ) is a generic resource allocation problem in which common resources (“machines”) are required...interleaving of all processes Pi with the non-delay and mutual exclusion constraints: JSSP =̂ |||0<i6n Pi Where mutual-exclusion( JSSP ) For every complete...execution of JSSP (which terminates), its associated sched- ule S is a feasible schedule. An optimal schedule is a trace of JSSP with the minimum ending

  8. Optimizing basin-scale coupled water quantity and water quality man-agement with stochastic dynamic programming

    NASA Astrophysics Data System (ADS)

    Davidsen, Claus; Liu, Suxia; Mo, Xingguo; Engelund Holm, Peter; Trapp, Stefan; Rosbjerg, Dan; Bauer-Gottwein, Peter

    2015-04-01

    Few studies address water quality in hydro-economic models, which often focus primarily on optimal allocation of water quantities. Water quality and water quantity are closely coupled, and optimal management with focus solely on either quantity or quality may cause large costs in terms of the oth-er component. In this study, we couple water quality and water quantity in a joint hydro-economic catchment-scale optimization problem. Stochastic dynamic programming (SDP) is used to minimize the basin-wide total costs arising from water allocation, water curtailment and water treatment. The simple water quality module can handle conservative pollutants, first order depletion and non-linear reactions. For demonstration purposes, we model pollutant releases as biochemical oxygen demand (BOD) and use the Streeter-Phelps equation for oxygen deficit to compute the resulting min-imum dissolved oxygen concentrations. Inelastic water demands, fixed water allocation curtailment costs and fixed wastewater treatment costs (before and after use) are estimated for the water users (agriculture, industry and domestic). If the BOD concentration exceeds a given user pollution thresh-old, the user will need to pay for pre-treatment of the water before use. Similarly, treatment of the return flow can reduce the BOD load to the river. A traditional SDP approach is used to solve one-step-ahead sub-problems for all combinations of discrete reservoir storage, Markov Chain inflow clas-ses and monthly time steps. Pollution concentration nodes are introduced for each user group and untreated return flow from the users contribute to increased BOD concentrations in the river. The pollutant concentrations in each node depend on multiple decision variables (allocation and wastewater treatment) rendering the objective function non-linear. Therefore, the pollution concen-tration decisions are outsourced to a genetic algorithm, which calls a linear program to determine the remainder of the decision variables. This hybrid formulation keeps the optimization problem computationally feasible and represents a flexible and customizable method. The method has been applied to the Ziya River basin, an economic hotspot located on the North China Plain in Northern China. The basin is subject to severe water scarcity, and the rivers are heavily polluted with wastewater and nutrients from diffuse sources. The coupled hydro-economic optimiza-tion model can be used to assess costs of meeting additional constraints such as minimum water qual-ity or to economically prioritize investments in waste water treatment facilities based on economic criteria.

  9. Balancing Detection and Eradication for Control of Epidemics: Sudden Oak Death in Mixed-Species Stands

    PubMed Central

    Ndeffo Mbah, Martial L.; Gilligan, Christopher A.

    2010-01-01

    Culling of infected individuals is a widely used measure for the control of several plant and animal pathogens but culling first requires detection of often cryptically-infected hosts. In this paper, we address the problem of how to allocate resources between detection and culling when the budget for disease management is limited. The results are generic but we motivate the problem for the control of a botanical epidemic in a natural ecosystem: sudden oak death in mixed evergreen forests in coastal California, in which species composition is generally dominated by a spreader species (bay laurel) and a second host species (coast live oak) that is an epidemiological dead-end in that it does not transmit infection but which is frequently a target for preservation. Using a combination of an epidemiological model for two host species with a common pathogen together with optimal control theory we address the problem of how to balance the allocation of resources for detection and epidemic control in order to preserve both host species in the ecosystem. Contrary to simple expectations our results show that an intermediate level of detection is optimal. Low levels of detection, characteristic of low effort expended on searching and detection of diseased trees, and high detection levels, exemplified by the deployment of large amounts of resources to identify diseased trees, fail to bring the epidemic under control. Importantly, we show that a slight change in the balance between the resources allocated to detection and those allocated to control may lead to drastic inefficiencies in control strategies. The results hold when quarantine is introduced to reduce the ingress of infected material into the region of interest. PMID:20856850

  10. Power allocation for SWIPT in K-user interference channels using game theory

    NASA Astrophysics Data System (ADS)

    Wen, Zhigang; Liu, Ying; Liu, Xiaoqing; Li, Shan; Chen, Xianya

    2018-12-01

    A simultaneous wireless information and power transfer system in interference channels of multi-users is considered. In this system, each transmitter sends one data stream to its targeted receiver, which causes interference to other receivers. Since all transmitter-receiver links want to maximize their own average transmission rate, a power allocation problem under the transmit power constraints and the energy-harvesting constraints is developed. To solve this problem, we propose a game theory framework. Then, we convert the game into a variational inequalities problem by establishing the connection between game theory and variational inequalities and solve the variational inequalities problem. Through theoretical analysis, the existence and uniqueness of Nash equilibrium are both guaranteed by the theory of variational inequalities. A distributed iterative alternating optimization water-filling algorithm is derived, which is proved to converge. Numerical results show that the proposed algorithm reaches fast convergence and achieves a higher sum rate than the unaided scheme.

  11. Scenario-based modeling for multiple allocation hub location problem under disruption risk: multiple cuts Benders decomposition approach

    NASA Astrophysics Data System (ADS)

    Yahyaei, Mohsen; Bashiri, Mahdi

    2017-12-01

    The hub location problem arises in a variety of domains such as transportation and telecommunication systems. In many real-world situations, hub facilities are subject to disruption. This paper deals with the multiple allocation hub location problem in the presence of facilities failure. To model the problem, a two-stage stochastic formulation is developed. In the proposed model, the number of scenarios grows exponentially with the number of facilities. To alleviate this issue, two approaches are applied simultaneously. The first approach is to apply sample average approximation to approximate the two stochastic problem via sampling. Then, by applying the multiple cuts Benders decomposition approach, computational performance is enhanced. Numerical studies show the effective performance of the SAA in terms of optimality gap for small problem instances with numerous scenarios. Moreover, performance of multi-cut Benders decomposition is assessed through comparison with the classic version and the computational results reveal the superiority of the multi-cut approach regarding the computational time and number of iterations.

  12. Optimal Power Allocation Strategy in a Joint Bistatic Radar and Communication System Based on Low Probability of Intercept

    PubMed Central

    Wang, Fei; Salous, Sana; Zhou, Jianjiang

    2017-01-01

    In this paper, we investigate a low probability of intercept (LPI)-based optimal power allocation strategy for a joint bistatic radar and communication system, which is composed of a dedicated transmitter, a radar receiver, and a communication receiver. The joint system is capable of fulfilling the requirements of both radar and communications simultaneously. First, assuming that the signal-to-noise ratio (SNR) corresponding to the target surveillance path is much weaker than that corresponding to the line of sight path at radar receiver, the analytically closed-form expression for the probability of false alarm is calculated, whereas the closed-form expression for the probability of detection is not analytically tractable and is approximated due to the fact that the received signals are not zero-mean Gaussian under target presence hypothesis. Then, an LPI-based optimal power allocation strategy is presented to minimize the total transmission power for information signal and radar waveform, which is constrained by a specified information rate for the communication receiver and the desired probabilities of detection and false alarm for the radar receiver. The well-known bisection search method is employed to solve the resulting constrained optimization problem. Finally, numerical simulations are provided to reveal the effects of several system parameters on the power allocation results. It is also demonstrated that the LPI performance of the joint bistatic radar and communication system can be markedly improved by utilizing the proposed scheme. PMID:29186850

  13. Optimal Power Allocation Strategy in a Joint Bistatic Radar and Communication System Based on Low Probability of Intercept.

    PubMed

    Shi, Chenguang; Wang, Fei; Salous, Sana; Zhou, Jianjiang

    2017-11-25

    In this paper, we investigate a low probability of intercept (LPI)-based optimal power allocation strategy for a joint bistatic radar and communication system, which is composed of a dedicated transmitter, a radar receiver, and a communication receiver. The joint system is capable of fulfilling the requirements of both radar and communications simultaneously. First, assuming that the signal-to-noise ratio (SNR) corresponding to the target surveillance path is much weaker than that corresponding to the line of sight path at radar receiver, the analytically closed-form expression for the probability of false alarm is calculated, whereas the closed-form expression for the probability of detection is not analytically tractable and is approximated due to the fact that the received signals are not zero-mean Gaussian under target presence hypothesis. Then, an LPI-based optimal power allocation strategy is presented to minimize the total transmission power for information signal and radar waveform, which is constrained by a specified information rate for the communication receiver and the desired probabilities of detection and false alarm for the radar receiver. The well-known bisection search method is employed to solve the resulting constrained optimization problem. Finally, numerical simulations are provided to reveal the effects of several system parameters on the power allocation results. It is also demonstrated that the LPI performance of the joint bistatic radar and communication system can be markedly improved by utilizing the proposed scheme.

  14. Comparison of optimized algorithms in facility location allocation problems with different distance measures

    NASA Astrophysics Data System (ADS)

    Kumar, Rakesh; Chandrawat, Rajesh Kumar; Garg, B. P.; Joshi, Varun

    2017-07-01

    Opening the new firm or branch with desired execution is very relevant to facility location problem. Along the lines to locate the new ambulances and firehouses, the government desires to minimize average response time for emergencies from all residents of cities. So finding the best location is biggest challenge in day to day life. These type of problems were named as facility location problems. A lot of algorithms have been developed to handle these problems. In this paper, we review five algorithms that were applied to facility location problems. The significance of clustering in facility location problems is also presented. First we compare Fuzzy c-means clustering (FCM) algorithm with alternating heuristic (AH) algorithm, then with Particle Swarm Optimization (PSO) algorithms using different type of distance function. The data was clustered with the help of FCM and then we apply median model and min-max problem model on that data. After finding optimized locations using these algorithms we find the distance from optimized location point to the demanded point with different distance techniques and compare the results. At last, we design a general example to validate the feasibility of the five algorithms for facilities location optimization, and authenticate the advantages and drawbacks of them.

  15. Optimal Allocation of Sampling Effort in Depletion Surveys

    EPA Science Inventory

    We consider the problem of designing a depletion or removal survey as part of estimating animal abundance for populations with imperfect capture or detection rates. In a depletion survey, animals are captured from a given area, counted, and withheld from the population. This proc...

  16. The Normalized-Rate Iterative Algorithm: A Practical Dynamic Spectrum Management Method for DSL

    NASA Astrophysics Data System (ADS)

    Statovci, Driton; Nordström, Tomas; Nilsson, Rickard

    2006-12-01

    We present a practical solution for dynamic spectrum management (DSM) in digital subscriber line systems: the normalized-rate iterative algorithm (NRIA). Supported by a novel optimization problem formulation, the NRIA is the only DSM algorithm that jointly addresses spectrum balancing for frequency division duplexing systems and power allocation for the users sharing a common cable bundle. With a focus on being implementable rather than obtaining the highest possible theoretical performance, the NRIA is designed to efficiently solve the DSM optimization problem with the operators' business models in mind. This is achieved with the help of two types of parameters: the desired network asymmetry and the desired user priorities. The NRIA is a centralized DSM algorithm based on the iterative water-filling algorithm (IWFA) for finding efficient power allocations, but extends the IWFA by finding the achievable bitrates and by optimizing the bandplan. It is compared with three other DSM proposals: the IWFA, the optimal spectrum balancing algorithm (OSBA), and the bidirectional IWFA (bi-IWFA). We show that the NRIA achieves better bitrate performance than the IWFA and the bi-IWFA. It can even achieve performance almost as good as the OSBA, but with dramatically lower requirements on complexity. Additionally, the NRIA can achieve bitrate combinations that cannot be supported by any other DSM algorithm.

  17. Portfolio evaluation of health programs: a reply to Sendi et al.

    PubMed

    Bridges, John F P; Terris, Darcey D

    2004-05-01

    Sendi et al. (Soc. Sci. Med. 57 (2003) 2207) extend previous research on cost-effectiveness analysis to the evaluation of a portfolio of interventions with risky outcomes using a "second best" approach that can identify improvements in efficiency in the allocation of resources. This method, however, cannot be used to directly identify the optimal solution to the resource allocation problem. Theoretically, a stricter adherence to the foundations of portfolio theory would permit direct optimization in portfolio selection, however, when we include uncertainty in our analysis in addition to the traditional concept of risk (which is often mislabelled uncertainty) complexities are introduced that create significant hurdles in the development of practical applications of portfolio theory for health care policy decision making.

  18. A power allocation method for 2 × 2 VLC-MIMO indoor communication

    NASA Astrophysics Data System (ADS)

    Dai, Mingjun; Yuan, Jing; Feng, Renhai; Wang, Hui; Chen, Bin; Lin, Xiaohui

    2016-08-01

    Visible light communication (VLC) has been a promising field of optical communications which focuses on visible light spectrum that humans can see. Unlike existing studies which mainly discuss point-to-point communication, in this paper, we consider a VLC network, in particular a 2 × 2 system. Our focus is on dealing with interference in this network. The objective is to maximize the signal to interference plus noise ratio (SINR) of one receiver for a given SINR of another receiver. We formulate a power allocation optimization problem to deal with such interference, and introduce dichotomy to solve this optimization problem. Simulation results have twofold meaning: First, SINR_1 increases with the growth of SINR_2, which are the SINR of the two receivers, respectively. Second, our proposed scheme outperforms the classical time-division multiple access technique in terms of transmit powers of both light sources when the data rate for these two schemes are set to be identical for each user, respectively.

  19. Dynamic resource allocation in conservation planning

    USGS Publications Warehouse

    Golovin, D.; Krause, A.; Gardner, B.; Converse, S.J.; Morey, S.

    2011-01-01

    Consider the problem of protecting endangered species by selecting patches of land to be used for conservation purposes. Typically, the availability of patches changes over time, and recommendations must be made dynamically. This is a challenging prototypical example of a sequential optimization problem under uncertainty in computational sustainability. Existing techniques do not scale to problems of realistic size. In this paper, we develop an efficient algorithm for adaptively making recommendations for dynamic conservation planning, and prove that it obtains near-optimal performance. We further evaluate our approach on a detailed reserve design case study of conservation planning for three rare species in the Pacific Northwest of the United States. Copyright ?? 2011, Association for the Advancement of Artificial Intelligence. All rights reserved.

  20. A conceptual framework for economic optimization of an animal health surveillance portfolio.

    PubMed

    Guo, X; Claassen, G D H; Oude Lansink, A G J M; Saatkamp, H W

    2016-04-01

    Decision making on hazard surveillance in livestock product chains is a multi-hazard, multi-stakeholder, and multi-criteria process that includes a variety of decision alternatives. The multi-hazard aspect means that the allocation of the scarce resource for surveillance should be optimized from the point of view of a surveillance portfolio (SP) rather than a single hazard. In this paper, we present a novel conceptual approach for economic optimization of a SP to address the resource allocation problem for a surveillance organization from a theoretical perspective. This approach uses multi-criteria techniques to evaluate the performances of different settings of a SP, taking cost-benefit aspects of surveillance and stakeholders' preferences into account. The credibility of the approach has also been checked for conceptual validity, data needs and operational validity; the application potentials of the approach are also discussed.

  1. Binary Bees Algorithm - bioinspiration from the foraging mechanism of honeybees to optimize a multiobjective multidimensional assignment problem

    NASA Astrophysics Data System (ADS)

    Xu, Shuo; Ji, Ze; Truong Pham, Duc; Yu, Fan

    2011-11-01

    The simultaneous mission assignment and home allocation for hospital service robots studied is a Multidimensional Assignment Problem (MAP) with multiobjectives and multiconstraints. A population-based metaheuristic, the Binary Bees Algorithm (BBA), is proposed to optimize this NP-hard problem. Inspired by the foraging mechanism of honeybees, the BBA's most important feature is an explicit functional partitioning between global search and local search for exploration and exploitation, respectively. Its key parts consist of adaptive global search, three-step elitism selection (constraint handling, non-dominated solutions selection, and diversity preservation), and elites-centred local search within a Hamming neighbourhood. Two comparative experiments were conducted to investigate its single objective optimization, optimization effectiveness (indexed by the S-metric and C-metric) and optimization efficiency (indexed by computational burden and CPU time) in detail. The BBA outperformed its competitors in almost all the quantitative indices. Hence, the above overall scheme, and particularly the searching history-adapted global search strategy was validated.

  2. Memory and Energy Optimization Strategies for Multithreaded Operating System on the Resource-Constrained Wireless Sensor Node

    PubMed Central

    Liu, Xing; Hou, Kun Mean; de Vaulx, Christophe; Xu, Jun; Yang, Jianfeng; Zhou, Haiying; Shi, Hongling; Zhou, Peng

    2015-01-01

    Memory and energy optimization strategies are essential for the resource-constrained wireless sensor network (WSN) nodes. In this article, a new memory-optimized and energy-optimized multithreaded WSN operating system (OS) LiveOS is designed and implemented. Memory cost of LiveOS is optimized by using the stack-shifting hybrid scheduling approach. Different from the traditional multithreaded OS in which thread stacks are allocated statically by the pre-reservation, thread stacks in LiveOS are allocated dynamically by using the stack-shifting technique. As a result, memory waste problems caused by the static pre-reservation can be avoided. In addition to the stack-shifting dynamic allocation approach, the hybrid scheduling mechanism which can decrease both the thread scheduling overhead and the thread stack number is also implemented in LiveOS. With these mechanisms, the stack memory cost of LiveOS can be reduced more than 50% if compared to that of a traditional multithreaded OS. Not is memory cost optimized, but also the energy cost is optimized in LiveOS, and this is achieved by using the multi-core “context aware” and multi-core “power-off/wakeup” energy conservation approaches. By using these approaches, energy cost of LiveOS can be reduced more than 30% when compared to the single-core WSN system. Memory and energy optimization strategies in LiveOS not only prolong the lifetime of WSN nodes, but also make the multithreaded OS feasible to run on the memory-constrained WSN nodes. PMID:25545264

  3. Water resources planning and management : A stochastic dual dynamic programming approach

    NASA Astrophysics Data System (ADS)

    Goor, Q.; Pinte, D.; Tilmant, A.

    2008-12-01

    Allocating water between different users and uses, including the environment, is one of the most challenging task facing water resources managers and has always been at the heart of Integrated Water Resources Management (IWRM). As water scarcity is expected to increase over time, allocation decisions among the different uses will have to be found taking into account the complex interactions between water and the economy. Hydro-economic optimization models can capture those interactions while prescribing efficient allocation policies. Many hydro-economic models found in the literature are formulated as large-scale non linear optimization problems (NLP), seeking to maximize net benefits from the system operation while meeting operational and/or institutional constraints, and describing the main hydrological processes. However, those models rarely incorporate the uncertainty inherent to the availability of water, essentially because of the computational difficulties associated stochastic formulations. The purpose of this presentation is to present a stochastic programming model that can identify economically efficient allocation policies in large-scale multipurpose multireservoir systems. The model is based on stochastic dual dynamic programming (SDDP), an extension of traditional SDP that is not affected by the curse of dimensionality. SDDP identify efficient allocation policies while considering the hydrologic uncertainty. The objective function includes the net benefits from the hydropower and irrigation sectors, as well as penalties for not meeting operational and/or institutional constraints. To be able to implement the efficient decomposition scheme that remove the computational burden, the one-stage SDDP problem has to be a linear program. Recent developments improve the representation of the non-linear and mildly non- convex hydropower function through a convex hull approximation of the true hydropower function. This model is illustrated on a cascade of 14 reservoirs on the Nile river basin.

  4. Power allocation for target detection in radar networks based on low probability of intercept: A cooperative game theoretical strategy

    NASA Astrophysics Data System (ADS)

    Shi, Chenguang; Salous, Sana; Wang, Fei; Zhou, Jianjiang

    2017-08-01

    Distributed radar network systems have been shown to have many unique features. Due to their advantage of signal and spatial diversities, radar networks are attractive for target detection. In practice, the netted radars in radar networks are supposed to maximize their transmit power to achieve better detection performance, which may be in contradiction with low probability of intercept (LPI). Therefore, this paper investigates the problem of adaptive power allocation for radar networks in a cooperative game-theoretic framework such that the LPI performance can be improved. Taking into consideration both the transmit power constraints and the minimum signal to interference plus noise ratio (SINR) requirement of each radar, a cooperative Nash bargaining power allocation game based on LPI is formulated, whose objective is to minimize the total transmit power by optimizing the power allocation in radar networks. First, a novel SINR-based network utility function is defined and utilized as a metric to evaluate power allocation. Then, with the well-designed network utility function, the existence and uniqueness of the Nash bargaining solution are proved analytically. Finally, an iterative Nash bargaining algorithm is developed that converges quickly to a Pareto optimal equilibrium for the cooperative game. Numerical simulations and theoretic analysis are provided to evaluate the effectiveness of the proposed algorithm.

  5. Optimization Model for cooperative water allocation and valuation in large river basins regarding environmental constraints

    NASA Astrophysics Data System (ADS)

    Pournazeri, S.

    2011-12-01

    A comprehensive optimization model named Cooperative Water Allocation Model (CWAM) is developed for equitable and efficient water allocation and valuation of Zab river basin in order to solve the draught problems of Orumieh Lake in North West of Iran. The model's methodology consists of three phases. The first represents an initial water rights allocation among competing users. The second comprises the water reallocation process for complete usage by consumers. The third phase performs an allocation of the net benefit of the stakeholders participating in a coalition by applying cooperative game theory. The environmental constraints are accounted for in the water allocation model by entering probable environmental damage in a target function, and inputting the minimum water requirement of users. The potential of underground water usage is evaluated in order to compensate for the variation in the amount of surface water. This is conducted by applying an integrated economic- hydrologic river basin model. A node-link river basin network is utilized in CWAM which consists of two major blocks. The first indicates the internal water rights allocation and the second is associated to water and net benefit reallocation. System control, loss in links by evaporation or seepage, modification of inflow into the node, loss in nodes and loss in outflow are considered in this model. Water valuation is calculated for environmental, industrial, municipal and agricultural usage by net benefit function. It can be seen that the water rights are allocated efficiently and incomes are distributed appropriately based on quality and quantity limitations.

  6. Frequency allocations for a new satellite service - Digital audio broadcasting

    NASA Technical Reports Server (NTRS)

    Reinhart, Edward E.

    1992-01-01

    The allocation in the range 500-3000 MHz for digital audio broadcasting (DAB) is described in terms of key issues such as the transmission-system architectures. Attention is given to the optimal amount of spectrum for allocation and the technological considerations relevant to downlink bands for satellite and terrestrial transmissions. Proposals for DAB allocations are compared, and reference is made to factors impinging on the provision of ground/satellite feeder links. The allocation proposals describe the implementation of 50-60-MHz bandwidths for broadcasting in the ranges near 800 MHz, below 1525 MHz, near 2350 MHz, and near 2600 MHz. Three specific proposals are examined in terms of characteristics such as service areas, coverage/beam, channels/satellite beam, and FCC license status. Several existing problems are identified including existing services crowded with systems, the need for new bands in the 1000-3000-MHz range, and variations in the nature and intensity of implementations of existing allocations that vary from country to country.

  7. Leveraging human decision making through the optimal management of centralized resources

    NASA Astrophysics Data System (ADS)

    Hyden, Paul; McGrath, Richard G.

    2016-05-01

    Combining results from mixed integer optimization, stochastic modeling and queuing theory, we will advance the interdisciplinary problem of efficiently and effectively allocating centrally managed resources. Academia currently fails to address this, as the esoteric demands of each of these large research areas limits work across traditional boundaries. The commercial space does not currently address these challenges due to the absence of a profit metric. By constructing algorithms that explicitly use inputs across boundaries, we are able to incorporate the advantages of using human decision makers. Key improvements in the underlying algorithms are made possible by aligning decision maker goals with the feedback loops introduced between the core optimization step and the modeling of the overall stochastic process of supply and demand. A key observation is that human decision-makers must be explicitly included in the analysis for these approaches to be ultimately successful. Transformative access gives warfighters and mission owners greater understanding of global needs and allows for relationships to guide optimal resource allocation decisions. Mastery of demand processes and optimization bottlenecks reveals long term maximum marginal utility gaps in capabilities.

  8. Fog computing job scheduling optimization based on bees swarm

    NASA Astrophysics Data System (ADS)

    Bitam, Salim; Zeadally, Sherali; Mellouk, Abdelhamid

    2018-04-01

    Fog computing is a new computing architecture, composed of a set of near-user edge devices called fog nodes, which collaborate together in order to perform computational services such as running applications, storing an important amount of data, and transmitting messages. Fog computing extends cloud computing by deploying digital resources at the premise of mobile users. In this new paradigm, management and operating functions, such as job scheduling aim at providing high-performance, cost-effective services requested by mobile users and executed by fog nodes. We propose a new bio-inspired optimization approach called Bees Life Algorithm (BLA) aimed at addressing the job scheduling problem in the fog computing environment. Our proposed approach is based on the optimized distribution of a set of tasks among all the fog computing nodes. The objective is to find an optimal tradeoff between CPU execution time and allocated memory required by fog computing services established by mobile users. Our empirical performance evaluation results demonstrate that the proposal outperforms the traditional particle swarm optimization and genetic algorithm in terms of CPU execution time and allocated memory.

  9. ADVERTISING EXPENDITURES - A GAME OF STRATEGY

    DTIC Science & Technology

    The paper considers the problem of optimally allocating advertising funds from a game theory point of view. Two basic models are presented and then...One of the more interesting extensions of the basic model is the development of a relation between the amount of money spent on advertising and profit.

  10. Modified allocation capacitated planning model in blood supply chain management

    NASA Astrophysics Data System (ADS)

    Mansur, A.; Vanany, I.; Arvitrida, N. I.

    2018-04-01

    Blood supply chain management (BSCM) is a complex process management that involves many cooperating stakeholders. BSCM involves four echelon processes, which are blood collection or procurement, production, inventory, and distribution. This research develops an optimization model of blood distribution planning. The efficiency of decentralization and centralization policies in a blood distribution chain are compared, by optimizing the amount of blood delivered from a blood center to a blood bank. This model is developed based on allocation problem of capacitated planning model. At the first stage, the capacity and the cost of transportation are considered to create an initial capacitated planning model. Then, the inventory holding and shortage costs are added to the model. These additional parameters of inventory costs lead the model to be more realistic and accurate.

  11. Estimating risk of foreign exchange portfolio: Using VaR and CVaR based on GARCH-EVT-Copula model

    NASA Astrophysics Data System (ADS)

    Wang, Zong-Run; Chen, Xiao-Hong; Jin, Yan-Bo; Zhou, Yan-Ju

    2010-11-01

    This paper introduces GARCH-EVT-Copula model and applies it to study the risk of foreign exchange portfolio. Multivariate Copulas, including Gaussian, t and Clayton ones, were used to describe a portfolio risk structure, and to extend the analysis from a bivariate to an n-dimensional asset allocation problem. We apply this methodology to study the returns of a portfolio of four major foreign currencies in China, including USD, EUR, JPY and HKD. Our results suggest that the optimal investment allocations are similar across different Copulas and confidence levels. In addition, we find that the optimal investment concentrates on the USD investment. Generally speaking, t Copula and Clayton Copula better portray the correlation structure of multiple assets than Normal Copula.

  12. Automated Image Intelligence Adaptive Sensor Management System for High Altitude Long Endurance UAVs in a Dynamic and Anti-Access Area Denial Environment

    NASA Astrophysics Data System (ADS)

    Kim, Gi Young

    The problem we investigate deals with an Image Intelligence (IMINT) sensor allocation schedule for High Altitude Long Endurance UAVs in a dynamic and Anti-Access Area Denial (A2AD) environment. The objective is to maximize the Situational Awareness (SA) of decision makers. The value of SA can be improved in two different ways. First, if a sensor allocated to an Areas of Interest (AOI) detects target activity, then the SA value will be increased. Second, the SA value increases if an AOI is monitored for a certain period of time, regardless of target detections. These values are functions of the sensor allocation time, sensor type and mode. Relatively few studies in the archival literature have been devoted to an analytic, detailed explanation of the target detection process, and AOI monitoring value dynamics. These two values are the fundamental criteria used to choose the most judicious sensor allocation schedule. This research presents mathematical expressions for target detection processes, and shows the monitoring value dynamics. Furthermore, the dynamics of target detection is the result of combined processes between belligerent behavior (target activity) and friendly behavior (sensor allocation). We investigate these combined processes and derive mathematical expressions for simplified cases. These closed form mathematical models can be used for Measures of Effectiveness (MOEs), i.e., target activity detection to evaluate sensor allocation schedules. We also verify these models with discrete event simulations which can also be used to describe more complex systems. We introduce several methodologies to achieve a judicious sensor allocation schedule focusing on the AOI monitoring value. The first methodology is a discrete time integer programming model which provides an optimal solution but is impractical for real world scenarios due to its computation time. Thus, it is necessary to trade off the quality of solution with computation time. The Myopic Greedy Procedure (MGP) is a heuristic which chooses the largest immediate unit time return at each decision epoch. This reduces computation time significantly, but the quality of the solution may be only 95% of optimal (for small size problems). Another alternative is a multi-start random constructive Hybrid Myopic Greedy Procedure (H-MGP), which incorporates stochastic variation in choosing an action at each stage, and repeats it a predetermined number of times (roughly 99.3% of optimal with 1000 repetitions). Finally, the One Stage Look Ahead (OSLA) procedure considers all the 'top choices' at each stage for a temporary time horizon and chooses the best action (roughly 98.8% of optimal with no repetition). Using OSLA procedure, we can have ameliorated solutions within a reasonable computation time. Other important issues discussed in this research are methodologies for the development of input parameters for real world applications.

  13. Solving multi-objective optimization problems in conservation with the reference point method

    PubMed Central

    Dujardin, Yann; Chadès, Iadine

    2018-01-01

    Managing the biodiversity extinction crisis requires wise decision-making processes able to account for the limited resources available. In most decision problems in conservation biology, several conflicting objectives have to be taken into account. Most methods used in conservation either provide suboptimal solutions or use strong assumptions about the decision-maker’s preferences. Our paper reviews some of the existing approaches to solve multi-objective decision problems and presents new multi-objective linear programming formulations of two multi-objective optimization problems in conservation, allowing the use of a reference point approach. Reference point approaches solve multi-objective optimization problems by interactively representing the preferences of the decision-maker with a point in the criteria (objectives) space, called the reference point. We modelled and solved the following two problems in conservation: a dynamic multi-species management problem under uncertainty and a spatial allocation resource management problem. Results show that the reference point method outperforms classic methods while illustrating the use of an interactive methodology for solving combinatorial problems with multiple objectives. The method is general and can be adapted to a wide range of ecological combinatorial problems. PMID:29293650

  14. Mum, why do you keep on growing? Impacts of environmental variability on optimal growth and reproduction allocation strategies of annual plants.

    PubMed

    De Lara, Michel

    2006-05-01

    In their 1990 paper Optimal reproductive efforts and the timing of reproduction of annual plants in randomly varying environments, Amir and Cohen considered stochastic environments consisting of i.i.d. sequences in an optimal allocation discrete-time model. We suppose here that the sequence of environmental factors is more generally described by a Markov chain. Moreover, we discuss the connection between the time interval of the discrete-time dynamic model and the ability of the plant to rebuild completely its vegetative body (from reserves). We formulate a stochastic optimization problem covering the so-called linear and logarithmic fitness (corresponding to variation within and between years), which yields optimal strategies. For "linear maximizers'', we analyse how optimal strategies depend upon the environmental variability type: constant, random stationary, random i.i.d., random monotonous. We provide general patterns in terms of targets and thresholds, including both determinate and indeterminate growth. We also provide a partial result on the comparison between ;"linear maximizers'' and "log maximizers''. Numerical simulations are provided, allowing to give a hint at the effect of different mathematical assumptions.

  15. Rate and power efficient image compressed sensing and transmission

    NASA Astrophysics Data System (ADS)

    Olanigan, Saheed; Cao, Lei; Viswanathan, Ramanarayanan

    2016-01-01

    This paper presents a suboptimal quantization and transmission scheme for multiscale block-based compressed sensing images over wireless channels. The proposed method includes two stages: dealing with quantization distortion and transmission errors. First, given the total transmission bit rate, the optimal number of quantization bits is assigned to the sensed measurements in different wavelet sub-bands so that the total quantization distortion is minimized. Second, given the total transmission power, the energy is allocated to different quantization bit layers based on their different error sensitivities. The method of Lagrange multipliers with Karush-Kuhn-Tucker conditions is used to solve both optimization problems, for which the first problem can be solved with relaxation and the second problem can be solved completely. The effectiveness of the scheme is illustrated through simulation results, which have shown up to 10 dB improvement over the method without the rate and power optimization in medium and low signal-to-noise ratio cases.

  16. Joint terminals and relay optimization for two-way power line information exchange systems with QoS constraints

    NASA Astrophysics Data System (ADS)

    Wu, Xiaolin; Rong, Yue

    2015-12-01

    The quality-of-service (QoS) criteria (measured in terms of the minimum capacity requirement in this paper) are very important to practical indoor power line communication (PLC) applications as they greatly affect the user experience. With a two-way multicarrier relay configuration, in this paper we investigate the joint terminals and relay power optimization for the indoor broadband PLC environment, where the relay node works in the amplify-and-forward (AF) mode. As the QoS-constrained power allocation problem is highly non-convex, the globally optimal solution is computationally intractable to obtain. To overcome this challenge, we propose an alternating optimization (AO) method to decompose this problem into three convex/quasi-convex sub-problems. Simulation results demonstrate the fast convergence of the proposed algorithm under practical PLC channel conditions. Compared with the conventional bidirectional direct transmission (BDT) system, the relay-assisted two-way information exchange (R2WX) scheme can meet the same QoS requirement with less total power consumption.

  17. New optimization model for routing and spectrum assignment with nodes insecurity

    NASA Astrophysics Data System (ADS)

    Xuan, Hejun; Wang, Yuping; Xu, Zhanqi; Hao, Shanshan; Wang, Xiaoli

    2017-04-01

    By adopting the orthogonal frequency division multiplexing technology, elastic optical networks can provide the flexible and variable bandwidth allocation to each connection request and get higher spectrum utilization. The routing and spectrum assignment problem in elastic optical network is a well-known NP-hard problem. In addition, information security has received worldwide attention. We combine these two problems to investigate the routing and spectrum assignment problem with the guaranteed security in elastic optical network, and establish a new optimization model to minimize the maximum index of the used frequency slots, which is used to determine an optimal routing and spectrum assignment schemes. To solve the model effectively, a hybrid genetic algorithm framework integrating a heuristic algorithm into a genetic algorithm is proposed. The heuristic algorithm is first used to sort the connection requests and then the genetic algorithm is designed to look for an optimal routing and spectrum assignment scheme. In the genetic algorithm, tailor-made crossover, mutation and local search operators are designed. Moreover, simulation experiments are conducted with three heuristic strategies, and the experimental results indicate that the effectiveness of the proposed model and algorithm framework.

  18. Allocating conservation resources between areas where persistence of a species is uncertain.

    PubMed

    McDonald-Madden, Eve; Chadès, Iadine; McCarthy, Michael A; Linkie, Matthew; Possingham, Hugh P

    2011-04-01

    Research on the allocation of resources to manage threatened species typically assumes that the state of the system is completely observable; for example whether a species is present or not. The majority of this research has converged on modeling problems as Markov decision processes (MDP), which give an optimal strategy driven by the current state of the system being managed. However, the presence of threatened species in an area can be uncertain. Typically, resource allocation among multiple conservation areas has been based on the biggest expected benefit (return on investment) but fails to incorporate the risk of imperfect detection. We provide the first decision-making framework for confronting the trade-off between information and return on investment, and we illustrate the approach for populations of the Sumatran tiger (Panthera tigris sumatrae) in Kerinci Seblat National Park. The problem is posed as a partially observable Markov decision process (POMDP), which extends MDP to incorporate incomplete detection and allows decisions based on our confidence in particular states. POMDP has previously been used for making optimal management decisions for a single population of a threatened species. We extend this work by investigating two populations, enabling us to explore the importance of variation in expected return on investment between populations on how we should act. We compare the performance of optimal strategies derived assuming complete (MDP) and incomplete (POMDP) observability. We find that uncertainty about the presence of a species affects how we should act. Further, we show that assuming full knowledge of a species presence will deliver poorer strategic outcomes than if uncertainty about a species status is explicitly considered. MDP solutions perform up to 90% worse than the POMDP for highly cryptic species, and they only converge in performance when we are certain of observing the species during management: an unlikely scenario for many threatened species. This study illustrates an approach to allocating limited resources to threatened species where the conservation status of the species in different areas is uncertain. The results highlight the importance of including partial observability in future models of optimal species management when the species of concern is cryptic in nature.

  19. Resource Economics

    NASA Astrophysics Data System (ADS)

    Conrad, Jon M.

    2000-01-01

    Resource Economics is a text for students with a background in calculus, intermediate microeconomics, and a familiarity with the spreadsheet software Excel. The book covers basic concepts, shows how to set up spreadsheets to solve dynamic allocation problems, and presents economic models for fisheries, forestry, nonrenewable resources, stock pollutants, option value, and sustainable development. Within the text, numerical examples are posed and solved using Excel's Solver. These problems help make concepts operational, develop economic intuition, and serve as a bridge to the study of real-world problems of resource management. Through these examples and additional exercises at the end of Chapters 1 to 8, students can make dynamic models operational, develop their economic intuition, and learn how to set up spreadsheets for the simulation of optimization of resource and environmental systems. Book is unique in its use of spreadsheet software (Excel) to solve dynamic allocation problems Conrad is co-author of a previous book for the Press on the subject for graduate students Approach is extremely student-friendly; gives students the tools to apply research results to actual environmental issues

  20. Updating Rurality Index for Small Areas in Spain

    ERIC Educational Resources Information Center

    Prieto-Lara, Elisa; Ocana-Riola, Ricardo

    2010-01-01

    Nowadays, there is a wide debate about what rural means. An operational definition of rural concept is essential in order to measure health problems, optimize resource allocation and facilitate decision making aimed at closing the gap on inequity between areas. In 2005, the rurality index for Small Areas in Spain (IRAP) was developed using the…

  1. Outcome based state budget allocation for diabetes prevention programs using multi-criteria optimization with robust weights.

    PubMed

    Mehrotra, Sanjay; Kim, Kibaek

    2011-12-01

    We consider the problem of outcomes based budget allocations to chronic disease prevention programs across the United States (US) to achieve greater geographical healthcare equity. We use Diabetes Prevention and Control Programs (DPCP) by the Center for Disease Control and Prevention (CDC) as an example. We present a multi-criteria robust weighted sum model for such multi-criteria decision making in a group decision setting. The principal component analysis and an inverse linear programming techniques are presented and used to study the actual 2009 budget allocation by CDC. Our results show that the CDC budget allocation process for the DPCPs is not likely model based. In our empirical study, the relative weights for different prevalence and comorbidity factors and the corresponding budgets obtained under different weight regions are discussed. Parametric analysis suggests that money should be allocated to states to promote diabetes education and to increase patient-healthcare provider interactions to reduce disparity across the US.

  2. Make or buy analysis model based on tolerance allocation to minimize manufacturing cost and fuzzy quality loss

    NASA Astrophysics Data System (ADS)

    Rosyidi, C. N.; Puspitoingrum, W.; Jauhari, W. A.; Suhardi, B.; Hamada, K.

    2016-02-01

    The specification of tolerances has a significant impact on the quality of product and final production cost. The company should carefully pay attention to the component or product tolerance so they can produce a good quality product at the lowest cost. Tolerance allocation has been widely used to solve problem in selecting particular process or supplier. But before merely getting into the selection process, the company must first make a plan to analyse whether the component must be made in house (make), to be purchased from a supplier (buy), or used the combination of both. This paper discusses an optimization model of process and supplier selection in order to minimize the manufacturing costs and the fuzzy quality loss. This model can also be used to determine the allocation of components to the selected processes or suppliers. Tolerance, process capability and production capacity are three important constraints that affect the decision. Fuzzy quality loss function is used in this paper to describe the semantic of the quality, in which the product quality level is divided into several grades. The implementation of the proposed model has been demonstrated by solving a numerical example problem that used a simple assembly product which consists of three components. The metaheuristic approach were implemented to OptQuest software from Oracle Crystal Ball in order to obtain the optimal solution of the numerical example.

  3. Determination of optimal self-drive tourism route using the orienteering problem method

    NASA Astrophysics Data System (ADS)

    Hashim, Zakiah; Ismail, Wan Rosmanira; Ahmad, Norfaieqah

    2013-04-01

    This paper was conducted to determine the optimal travel routes for self-drive tourism based on the allocation of time and expense by maximizing the amount of attraction scores assigned to each city involved. Self-drive tourism represents a type of tourism where tourists hire or travel by their own vehicle. It only involves a tourist destination which can be linked with a network of roads. Normally, the traveling salesman problem (TSP) and multiple traveling salesman problems (MTSP) method were used in the minimization problem such as determination the shortest time or distance traveled. This paper involved an alternative approach for maximization method which is maximize the attraction scores and tested on tourism data for ten cities in Kedah. A set of priority scores are used to set the attraction score at each city. The classical approach of the orienteering problem was used to determine the optimal travel route. This approach is extended to the team orienteering problem and the two methods were compared. These two models have been solved by using LINGO12.0 software. The results indicate that the model involving the team orienteering problem provides a more appropriate solution compared to the orienteering problem model.

  4. Optimal Time-Resource Allocation for Energy-Efficient Physical Activity Detection

    PubMed Central

    Thatte, Gautam; Li, Ming; Lee, Sangwon; Emken, B. Adar; Annavaram, Murali; Narayanan, Shrikanth; Spruijt-Metz, Donna; Mitra, Urbashi

    2011-01-01

    The optimal allocation of samples for physical activity detection in a wireless body area network for health-monitoring is considered. The number of biometric samples collected at the mobile device fusion center, from both device-internal and external Bluetooth heterogeneous sensors, is optimized to minimize the transmission power for a fixed number of samples, and to meet a performance requirement defined using the probability of misclassification between multiple hypotheses. A filter-based feature selection method determines an optimal feature set for classification, and a correlated Gaussian model is considered. Using experimental data from overweight adolescent subjects, it is found that allocating a greater proportion of samples to sensors which better discriminate between certain activity levels can result in either a lower probability of error or energy-savings ranging from 18% to 22%, in comparison to equal allocation of samples. The current activity of the subjects and the performance requirements do not significantly affect the optimal allocation, but employing personalized models results in improved energy-efficiency. As the number of samples is an integer, an exhaustive search to determine the optimal allocation is typical, but computationally expensive. To this end, an alternate, continuous-valued vector optimization is derived which yields approximately optimal allocations and can be implemented on the mobile fusion center due to its significantly lower complexity. PMID:21796237

  5. Optimized model tuning in medical systems.

    PubMed

    Kléma, Jirí; Kubalík, Jirí; Lhotská, Lenka

    2005-12-01

    In medical systems it is often advantageous to utilize specific problem situations (cases) in addition to or instead of a general model. Decisions are then based on relevant past cases retrieved from a case memory. The reliability of such decisions depends directly on the ability to identify cases of practical relevance to the current situation. This paper discusses issues of automated tuning in order to obtain a proper definition of mutual case similarity in a specific medical domain. The main focus is on a reasonably time-consuming optimization of the parameters that determine case retrieval and further utilization in decision making/ prediction. The two case studies - mortality prediction after cardiological intervention, and resource allocation at a spa - document that the optimization process is influenced by various characteristics of the problem domain.

  6. A distributed multichannel demand-adaptive P2P VoD system with optimized caching and neighbor-selection

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Chen, Minghua; Parekh, Abhay; Ramchandran, Kannan

    2011-09-01

    We design a distributed multi-channel P2P Video-on-Demand (VoD) system using "plug-and-play" helpers. Helpers are heterogenous "micro-servers" with limited storage, bandwidth and number of users they can serve simultaneously. Our proposed system has the following salient features: (1) it jointly optimizes over helper-user connection topology, video storage distribution and transmission bandwidth allocation; (2) it minimizes server load, and is adaptable to varying supply and demand patterns across multiple video channels irrespective of video popularity; and (3) it is fully distributed and requires little or no maintenance overhead. The combinatorial nature of the problem and the system demand for distributed algorithms makes the problem uniquely challenging. By utilizing Lagrangian decomposition and Markov chain approximation based arguments, we address this challenge by designing two distributed algorithms running in tandem: a primal-dual storage and bandwidth allocation algorithm and a "soft-worst-neighbor-choking" topology-building algorithm. Our scheme provably converges to a near-optimal solution, and is easy to implement in practice. Packet-level simulation results show that the proposed scheme achieves minimum sever load under highly heterogeneous combinations of supply and demand patterns, and is robust to system dynamics of user/helper churn, user/helper asynchrony, and random delays in the network.

  7. Modeling an integrated hospital management planning problem using integer optimization approach

    NASA Astrophysics Data System (ADS)

    Sitepu, Suryati; Mawengkang, Herman; Irvan

    2017-09-01

    Hospital is a very important institution to provide health care for people. It is not surprising that nowadays the people’s demands for hospital is increasing. However, due to the rising cost of healthcare services, hospitals need to consider efficiencies in order to overcome these two problems. This paper deals with an integrated strategy of staff capacity management and bed allocation planning to tackle these problems. Mathematically, the strategy can be modeled as an integer linear programming problem. We solve the model using a direct neighborhood search approach, based on the notion of superbasic variables.

  8. Analysis of tasks for dynamic man/machine load balancing in advanced helicopters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jorgensen, C.C.

    1987-10-01

    This report considers task allocation requirements imposed by advanced helicopter designs incorporating mixes of human pilots and intelligent machines. Specifically, it develops an analogy between load balancing using distributed non-homogeneous multiprocessors and human team functions. A taxonomy is presented which can be used to identify task combinations likely to cause overload for dynamic scheduling and process allocation mechanisms. Designer criteria are given for function decomposition, separation of control from data, and communication handling for dynamic tasks. Possible effects of n-p complete scheduling problems are noted and a class of combinatorial optimization methods are examined.

  9. Adaptive sampling of information in perceptual decision-making.

    PubMed

    Cassey, Thomas C; Evens, David R; Bogacz, Rafal; Marshall, James A R; Ludwig, Casimir J H

    2013-01-01

    In many perceptual and cognitive decision-making problems, humans sample multiple noisy information sources serially, and integrate the sampled information to make an overall decision. We derive the optimal decision procedure for two-alternative choice tasks in which the different options are sampled one at a time, sources vary in the quality of the information they provide, and the available time is fixed. To maximize accuracy, the optimal observer allocates time to sampling different information sources in proportion to their noise levels. We tested human observers in a corresponding perceptual decision-making task. Observers compared the direction of two random dot motion patterns that were triggered only when fixated. Observers allocated more time to the noisier pattern, in a manner that correlated with their sensory uncertainty about the direction of the patterns. There were several differences between the optimal observer predictions and human behaviour. These differences point to a number of other factors, beyond the quality of the currently available sources of information, that influences the sampling strategy.

  10. Branch target buffer design and optimization

    NASA Technical Reports Server (NTRS)

    Perleberg, Chris H.; Smith, Alan J.

    1993-01-01

    Consideration is given to two major issues in the design of branch target buffers (BTBs), with the goal of achieving maximum performance for a given number of bits allocated to the BTB design. The first issue is BTB management; the second is what information to keep in the BTB. A number of solutions to these problems are reviewed, and various optimizations in the design of BTBs are discussed. Design target miss ratios for BTBs are developed, making it possible to estimate the performance of BTBs for real workloads.

  11. Radar Control Optimal Resource Allocation

    DTIC Science & Technology

    2015-07-13

    other tunable parameters of radars [17, 18]. Such radar resource scheduling usually demands massive computation. Even myopic 14 Distribution A: Approved...reduced validity of the optimal choice of radar resource. In the non- myopic context, the computational problem becomes exponentially more difficult...computed as t? = ασ2 q + σ r √ α q (σ + r + α q) α q2 r − 1ασ q2 + q r2 . (19) We are only interested in t? > 1 and solving the inequality we obtain the

  12. Computationally Efficient Power Allocation Algorithm in Multicarrier-Based Cognitive Radio Networks: OFDM and FBMC Systems

    NASA Astrophysics Data System (ADS)

    Shaat, Musbah; Bader, Faouzi

    2010-12-01

    Cognitive Radio (CR) systems have been proposed to increase the spectrum utilization by opportunistically access the unused spectrum. Multicarrier communication systems are promising candidates for CR systems. Due to its high spectral efficiency, filter bank multicarrier (FBMC) can be considered as an alternative to conventional orthogonal frequency division multiplexing (OFDM) for transmission over the CR networks. This paper addresses the problem of resource allocation in multicarrier-based CR networks. The objective is to maximize the downlink capacity of the network under both total power and interference introduced to the primary users (PUs) constraints. The optimal solution has high computational complexity which makes it unsuitable for practical applications and hence a low complexity suboptimal solution is proposed. The proposed algorithm utilizes the spectrum holes in PUs bands as well as active PU bands. The performance of the proposed algorithm is investigated for OFDM and FBMC based CR systems. Simulation results illustrate that the proposed resource allocation algorithm with low computational complexity achieves near optimal performance and proves the efficiency of using FBMC in CR context.

  13. Tolerance allocation for an electronic system using neural network/Monte Carlo approach

    NASA Astrophysics Data System (ADS)

    Al-Mohammed, Mohammed; Esteve, Daniel; Boucher, Jaque

    2001-12-01

    The intense global competition to produce quality products at a low cost has led many industrial nations to consider tolerances as a key factor to bring about cost as well as to remain competitive. In actually, Tolerance allocation stays widely applied on the Mechanic System. It is known that to study the tolerances in an electronic domain, Monte-Carlo method well be used. But the later method spends a long time. This paper reviews several methods (Worst-case, Statistical Method, Least Cost Allocation by Optimization methods) that can be used for treating the tolerancing problem for an Electronic System and explains their advantages and their limitations. Then, it proposes an efficient method based on the Neural Networks associated with Monte-Carlo method as basis data. The network is trained using the Error Back Propagation Algorithm to predict the individual part tolerances, minimizing the total cost of the system by a method of optimization. This proposed approach has been applied on Small-Signal Amplifier Circuit as an example. This method can be easily extended to a complex system of n-components.

  14. Optimal reservoir operation policies using novel nested algorithms

    NASA Astrophysics Data System (ADS)

    Delipetrev, Blagoj; Jonoski, Andreja; Solomatine, Dimitri

    2015-04-01

    Historically, the two most widely practiced methods for optimal reservoir operation have been dynamic programming (DP) and stochastic dynamic programming (SDP). These two methods suffer from the so called "dual curse" which prevents them to be used in reasonably complex water systems. The first one is the "curse of dimensionality" that denotes an exponential growth of the computational complexity with the state - decision space dimension. The second one is the "curse of modelling" that requires an explicit model of each component of the water system to anticipate the effect of each system's transition. We address the problem of optimal reservoir operation concerning multiple objectives that are related to 1) reservoir releases to satisfy several downstream users competing for water with dynamically varying demands, 2) deviations from the target minimum and maximum reservoir water levels and 3) hydropower production that is a combination of the reservoir water level and the reservoir releases. Addressing such a problem with classical methods (DP and SDP) requires a reasonably high level of discretization of the reservoir storage volume, which in combination with the required releases discretization for meeting the demands of downstream users leads to computationally expensive formulations and causes the curse of dimensionality. We present a novel approach, named "nested" that is implemented in DP, SDP and reinforcement learning (RL) and correspondingly three new algorithms are developed named nested DP (nDP), nested SDP (nSDP) and nested RL (nRL). The nested algorithms are composed from two algorithms: 1) DP, SDP or RL and 2) nested optimization algorithm. Depending on the way we formulate the objective function related to deficits in the allocation problem in the nested optimization, two methods are implemented: 1) Simplex for linear allocation problems, and 2) quadratic Knapsack method in the case of nonlinear problems. The novel idea is to include the nested optimization algorithm into the state transition that lowers the starting problem dimension and alleviates the curse of dimensionality. The algorithms can solve multi-objective optimization problems, without significantly increasing the complexity and the computational expenses. The algorithms can handle dense and irregular variable discretization, and are coded in Java as prototype applications. The three algorithms were tested at the multipurpose reservoir Knezevo of the Zletovica hydro-system located in the Republic of Macedonia, with eight objectives, including urban water supply, agriculture, ensuring ecological flow, and generation of hydropower. Because the Zletovica hydro-system is relatively complex, the novel algorithms were pushed to their limits, demonstrating their capabilities and limitations. The nSDP and nRL derived/learned the optimal reservoir policy using 45 (1951-1995) years historical data. The nSDP and nRL optimal reservoir policy was tested on 10 (1995-2005) years historical data, and compared with nDP optimal reservoir operation in the same period. The nested algorithms and optimal reservoir operation results are analysed and explained.

  15. Optimization in the utility maximization framework for conservation planning: a comparison of solution procedures in a study of multifunctional agriculture

    PubMed Central

    Stoms, David M.; Davis, Frank W.

    2014-01-01

    Quantitative methods of spatial conservation prioritization have traditionally been applied to issues in conservation biology and reserve design, though their use in other types of natural resource management is growing. The utility maximization problem is one form of a covering problem where multiple criteria can represent the expected social benefits of conservation action. This approach allows flexibility with a problem formulation that is more general than typical reserve design problems, though the solution methods are very similar. However, few studies have addressed optimization in utility maximization problems for conservation planning, and the effect of solution procedure is largely unquantified. Therefore, this study mapped five criteria describing elements of multifunctional agriculture to determine a hypothetical conservation resource allocation plan for agricultural land conservation in the Central Valley of CA, USA. We compared solution procedures within the utility maximization framework to determine the difference between an open source integer programming approach and a greedy heuristic, and find gains from optimization of up to 12%. We also model land availability for conservation action as a stochastic process and determine the decline in total utility compared to the globally optimal set using both solution algorithms. Our results are comparable to other studies illustrating the benefits of optimization for different conservation planning problems, and highlight the importance of maximizing the effectiveness of limited funding for conservation and natural resource management. PMID:25538868

  16. Hybrid Self-Adaptive Evolution Strategies Guided by Neighborhood Structures for Combinatorial Optimization Problems.

    PubMed

    Coelho, V N; Coelho, I M; Souza, M J F; Oliveira, T A; Cota, L P; Haddad, M N; Mladenovic, N; Silva, R C P; Guimarães, F G

    2016-01-01

    This article presents an Evolution Strategy (ES)--based algorithm, designed to self-adapt its mutation operators, guiding the search into the solution space using a Self-Adaptive Reduced Variable Neighborhood Search procedure. In view of the specific local search operators for each individual, the proposed population-based approach also fits into the context of the Memetic Algorithms. The proposed variant uses the Greedy Randomized Adaptive Search Procedure with different greedy parameters for generating its initial population, providing an interesting exploration-exploitation balance. To validate the proposal, this framework is applied to solve three different [Formula: see text]-Hard combinatorial optimization problems: an Open-Pit-Mining Operational Planning Problem with dynamic allocation of trucks, an Unrelated Parallel Machine Scheduling Problem with Setup Times, and the calibration of a hybrid fuzzy model for Short-Term Load Forecasting. Computational results point out the convergence of the proposed model and highlight its ability in combining the application of move operations from distinct neighborhood structures along the optimization. The results gathered and reported in this article represent a collective evidence of the performance of the method in challenging combinatorial optimization problems from different application domains. The proposed evolution strategy demonstrates an ability of adapting the strength of the mutation disturbance during the generations of its evolution process. The effectiveness of the proposal motivates the application of this novel evolutionary framework for solving other combinatorial optimization problems.

  17. Optimization in the utility maximization framework for conservation planning: a comparison of solution procedures in a study of multifunctional agriculture

    USGS Publications Warehouse

    Kreitler, Jason R.; Stoms, David M.; Davis, Frank W.

    2014-01-01

    Quantitative methods of spatial conservation prioritization have traditionally been applied to issues in conservation biology and reserve design, though their use in other types of natural resource management is growing. The utility maximization problem is one form of a covering problem where multiple criteria can represent the expected social benefits of conservation action. This approach allows flexibility with a problem formulation that is more general than typical reserve design problems, though the solution methods are very similar. However, few studies have addressed optimization in utility maximization problems for conservation planning, and the effect of solution procedure is largely unquantified. Therefore, this study mapped five criteria describing elements of multifunctional agriculture to determine a hypothetical conservation resource allocation plan for agricultural land conservation in the Central Valley of CA, USA. We compared solution procedures within the utility maximization framework to determine the difference between an open source integer programming approach and a greedy heuristic, and find gains from optimization of up to 12%. We also model land availability for conservation action as a stochastic process and determine the decline in total utility compared to the globally optimal set using both solution algorithms. Our results are comparable to other studies illustrating the benefits of optimization for different conservation planning problems, and highlight the importance of maximizing the effectiveness of limited funding for conservation and natural resource management.

  18. Two Reconfigurable Flight-Control Design Methods: Robust Servomechanism and Control Allocation

    NASA Technical Reports Server (NTRS)

    Burken, John J.; Lu, Ping; Wu, Zheng-Lu; Bahm, Cathy

    2001-01-01

    Two methods for control system reconfiguration have been investigated. The first method is a robust servomechanism control approach (optimal tracking problem) that is a generalization of the classical proportional-plus-integral control to multiple input-multiple output systems. The second method is a control-allocation approach based on a quadratic programming formulation. A globally convergent fixed-point iteration algorithm has been developed to make onboard implementation of this method feasible. These methods have been applied to reconfigurable entry flight control design for the X-33 vehicle. Examples presented demonstrate simultaneous tracking of angle-of-attack and roll angle commands during failures of the fight body flap actuator. Although simulations demonstrate success of the first method in most cases, the control-allocation method appears to provide uniformly better performance in all cases.

  19. Clustering of financial time series with application to index and enhanced index tracking portfolio

    NASA Astrophysics Data System (ADS)

    Dose, Christian; Cincotti, Silvano

    2005-09-01

    A stochastic-optimization technique based on time series cluster analysis is described for index tracking and enhanced index tracking problems. Our methodology solves the problem in two steps, i.e., by first selecting a subset of stocks and then setting the weight of each stock as a result of an optimization process (asset allocation). Present formulation takes into account constraints on the number of stocks and on the fraction of capital invested in each of them, whilst not including transaction costs. Computational results based on clustering selection are compared to those of random techniques and show the importance of clustering in noise reduction and robust forecasting applications, in particular for enhanced index tracking.

  20. Optimizing technology investments: a broad mission model approach

    NASA Technical Reports Server (NTRS)

    Shishko, R.

    2003-01-01

    A long-standing problem in NASA is how to allocate scarce technology development resources across advanced technologies in order to best support a large set of future potential missions. Within NASA, two orthogonal paradigms have received attention in recent years: the real-options approach and the broad mission model approach. This paper focuses on the latter.

  1. An integer programming model to optimize resource allocation for wildfire containment.

    Treesearch

    Geoffrey H. Donovan; Douglas B. Rideout

    2003-01-01

    Determining the specific mix of fire-fighting resources for a given fire is a necessary condition for identifying the minimum of the Cost Plus Net Value Change (C+NVC) function. Current wildland fire management models may not reliably do so. The problem of identifying the most efficient wildland fire organization is characterized mathematically using integer-...

  2. Resource Allocation and Seed Size Selection in Perennial Plants under Pollen Limitation.

    PubMed

    Huang, Qiaoqiao; Burd, Martin; Fan, Zhiwei

    2017-09-01

    Pollen limitation may affect resource allocation patterns in plants, but its role in the selection of seed size is not known. Using an evolutionarily stable strategy model of resource allocation in perennial iteroparous plants, we show that under density-independent population growth, pollen limitation (i.e., a reduction in ovule fertilization rate) should increase the optimal seed size. At any level of pollen limitation (including none), the optimal seed size maximizes the ratio of juvenile survival rate to the resource investment needed to produce one seed (including both ovule production and seed provisioning); that is, the optimum maximizes the fitness effect per unit cost. Seed investment may affect allocation to postbreeding adult survival. In our model, pollen limitation increases individual seed size but decreases overall reproductive allocation, so that pollen limitation should also increase the optimal allocation to postbreeding adult survival. Under density-dependent population growth, the optimal seed size is inversely proportional to ovule fertilization rate. However, pollen limitation does not affect the optimal allocation to postbreeding adult survival and ovule production. These results highlight the importance of allocation trade-offs in the effect pollen limitation has on the ecology and evolution of seed size and postbreeding adult survival in perennial plants.

  3. Learning and optimization with cascaded VLSI neural network building-block chips

    NASA Technical Reports Server (NTRS)

    Duong, T.; Eberhardt, S. P.; Tran, M.; Daud, T.; Thakoor, A. P.

    1992-01-01

    To demonstrate the versatility of the building-block approach, two neural network applications were implemented on cascaded analog VLSI chips. Weights were implemented using 7-b multiplying digital-to-analog converter (MDAC) synapse circuits, with 31 x 32 and 32 x 32 synapses per chip. A novel learning algorithm compatible with analog VLSI was applied to the two-input parity problem. The algorithm combines dynamically evolving architecture with limited gradient-descent backpropagation for efficient and versatile supervised learning. To implement the learning algorithm in hardware, synapse circuits were paralleled for additional quantization levels. The hardware-in-the-loop learning system allocated 2-5 hidden neurons for parity problems. Also, a 7 x 7 assignment problem was mapped onto a cascaded 64-neuron fully connected feedback network. In 100 randomly selected problems, the network found optimal or good solutions in most cases, with settling times in the range of 7-100 microseconds.

  4. Intelligent energy allocation strategy for PHEV charging station using gravitational search algorithm

    NASA Astrophysics Data System (ADS)

    Rahman, Imran; Vasant, Pandian M.; Singh, Balbir Singh Mahinder; Abdullah-Al-Wadud, M.

    2014-10-01

    Recent researches towards the use of green technologies to reduce pollution and increase penetration of renewable energy sources in the transportation sector are gaining popularity. The development of the smart grid environment focusing on PHEVs may also heal some of the prevailing grid problems by enabling the implementation of Vehicle-to-Grid (V2G) concept. Intelligent energy management is an important issue which has already drawn much attention to researchers. Most of these works require formulation of mathematical models which extensively use computational intelligence-based optimization techniques to solve many technical problems. Higher penetration of PHEVs require adequate charging infrastructure as well as smart charging strategies. We used Gravitational Search Algorithm (GSA) to intelligently allocate energy to the PHEVs considering constraints such as energy price, remaining battery capacity, and remaining charging time.

  5. Augmented Lagrange Hopfield network for solving economic dispatch problem in competitive environment

    NASA Astrophysics Data System (ADS)

    Vo, Dieu Ngoc; Ongsakul, Weerakorn; Nguyen, Khai Phuc

    2012-11-01

    This paper proposes an augmented Lagrange Hopfield network (ALHN) for solving economic dispatch (ED) problem in the competitive environment. The proposed ALHN is a continuous Hopfield network with its energy function based on augmented Lagrange function for efficiently dealing with constrained optimization problems. The ALHN method can overcome the drawbacks of the conventional Hopfield network such as local optimum, long computational time, and linear constraints. The proposed method is used for solving the ED problem with two revenue models of revenue based on payment for power delivered and payment for reserve allocated. The proposed ALHN has been tested on two systems of 3 units and 10 units for the two considered revenue models. The obtained results from the proposed methods are compared to those from differential evolution (DE) and particle swarm optimization (PSO) methods. The result comparison has indicated that the proposed method is very efficient for solving the problem. Therefore, the proposed ALHN could be a favorable tool for ED problem in the competitive environment.

  6. Assessing the effects of adaptation measures on optimal water resources allocation under varied water availability conditions

    NASA Astrophysics Data System (ADS)

    Liu, Dedi; Guo, Shenglian; Shao, Quanxi; Liu, Pan; Xiong, Lihua; Wang, Le; Hong, Xingjun; Xu, Yao; Wang, Zhaoli

    2018-01-01

    Human activities and climate change have altered the spatial and temporal distribution of water availability which is a principal prerequisite for allocation of different water resources. In order to quantify the impacts of climate change and human activities on water availability and optimal allocation of water resources, hydrological models and optimal water resource allocation models should be integrated. Given that increasing human water demand and varying water availability conditions necessitate adaptation measures, we propose a framework to assess the effects of these measures on optimal allocation of water resources. The proposed model and framework were applied to a case study of the middle and lower reaches of the Hanjiang River Basin in China. Two representative concentration pathway (RCP) scenarios (RCP2.6 and RCP4.5) were employed to project future climate, and the Variable Infiltration Capacity (VIC) hydrological model was used to simulate the variability of flows under historical (1956-2011) and future (2012-2099) conditions. The water availability determined by simulating flow with the VIC hydrological model was used to establish the optimal water resources allocation model. The allocation results were derived under an extremely dry year (with an annual average water flow frequency of 95%), a very dry year (with an annual average water flow frequency of 90%), a dry year (with an annual average water flow frequency of 75%), and a normal year (with an annual average water flow frequency of 50%) during historical and future periods. The results show that the total available water resources in the study area and the inflow of the Danjiangkou Reservoir will increase in the future. However, the uneven distribution of water availability will cause water shortage problems, especially in the boundary areas. The effects of adaptation measures, including water saving, and dynamic control of flood limiting water levels (FLWLs) for reservoir operation, were assessed and implemented to alleviate water shortages. The negative impacts from the South-to-North Water Transfer Project (Middle Route) in the mid-lower reaches of the Hanjiang River Basin can be avoided through the dynamic control of FLWLs in Danjiangkou Reservoir, under the historical and future RCP2.6 and RCP4.5 scenarios. However, the effects of adaptation measures are limited due to their own constraints, such as the characteristics of the reservoirs influencing the FLWLs. The utilization of storm water appears necessary to meet future water demand. Overall, the results indicate that the framework for assessing the effects of adaptation measures on water resources allocation might aid water resources management, not only in the study area but also in other places where water availability conditions vary due to climate change and human activities.

  7. Optimal land use management for soil erosion control by using an interval-parameter fuzzy two-stage stochastic programming approach.

    PubMed

    Han, Jing-Cheng; Huang, Guo-He; Zhang, Hua; Li, Zhong

    2013-09-01

    Soil erosion is one of the most serious environmental and public health problems, and such land degradation can be effectively mitigated through performing land use transitions across a watershed. Optimal land use management can thus provide a way to reduce soil erosion while achieving the maximum net benefit. However, optimized land use allocation schemes are not always successful since uncertainties pertaining to soil erosion control are not well presented. This study applied an interval-parameter fuzzy two-stage stochastic programming approach to generate optimal land use planning strategies for soil erosion control based on an inexact optimization framework, in which various uncertainties were reflected. The modeling approach can incorporate predefined soil erosion control policies, and address inherent system uncertainties expressed as discrete intervals, fuzzy sets, and probability distributions. The developed model was demonstrated through a case study in the Xiangxi River watershed, China's Three Gorges Reservoir region. Land use transformations were employed as decision variables, and based on these, the land use change dynamics were yielded for a 15-year planning horizon. Finally, the maximum net economic benefit with an interval value of [1.197, 6.311] × 10(9) $ was obtained as well as corresponding land use allocations in the three planning periods. Also, the resulting soil erosion amount was found to be decreased and controlled at a tolerable level over the watershed. Thus, results confirm that the developed model is a useful tool for implementing land use management as not only does it allow local decision makers to optimize land use allocation, but can also help to answer how to accomplish land use changes.

  8. Optimal Land Use Management for Soil Erosion Control by Using an Interval-Parameter Fuzzy Two-Stage Stochastic Programming Approach

    NASA Astrophysics Data System (ADS)

    Han, Jing-Cheng; Huang, Guo-He; Zhang, Hua; Li, Zhong

    2013-09-01

    Soil erosion is one of the most serious environmental and public health problems, and such land degradation can be effectively mitigated through performing land use transitions across a watershed. Optimal land use management can thus provide a way to reduce soil erosion while achieving the maximum net benefit. However, optimized land use allocation schemes are not always successful since uncertainties pertaining to soil erosion control are not well presented. This study applied an interval-parameter fuzzy two-stage stochastic programming approach to generate optimal land use planning strategies for soil erosion control based on an inexact optimization framework, in which various uncertainties were reflected. The modeling approach can incorporate predefined soil erosion control policies, and address inherent system uncertainties expressed as discrete intervals, fuzzy sets, and probability distributions. The developed model was demonstrated through a case study in the Xiangxi River watershed, China's Three Gorges Reservoir region. Land use transformations were employed as decision variables, and based on these, the land use change dynamics were yielded for a 15-year planning horizon. Finally, the maximum net economic benefit with an interval value of [1.197, 6.311] × 109 was obtained as well as corresponding land use allocations in the three planning periods. Also, the resulting soil erosion amount was found to be decreased and controlled at a tolerable level over the watershed. Thus, results confirm that the developed model is a useful tool for implementing land use management as not only does it allow local decision makers to optimize land use allocation, but can also help to answer how to accomplish land use changes.

  9. An Optimization Framework for Dynamic, Distributed Real-Time Systems

    NASA Technical Reports Server (NTRS)

    Eckert, Klaus; Juedes, David; Welch, Lonnie; Chelberg, David; Bruggerman, Carl; Drews, Frank; Fleeman, David; Parrott, David; Pfarr, Barbara

    2003-01-01

    Abstract. This paper presents a model that is useful for developing resource allocation algorithms for distributed real-time systems .that operate in dynamic environments. Interesting aspects of the model include dynamic environments, utility and service levels, which provide a means for graceful degradation in resource-constrained situations and support optimization of the allocation of resources. The paper also provides an allocation algorithm that illustrates how to use the model for producing feasible, optimal resource allocations.

  10. An integrated model of water resources optimization allocation based on projection pursuit model - Grey wolf optimization method in a transboundary river basin

    NASA Astrophysics Data System (ADS)

    Yu, Sen; Lu, Hongwei

    2018-04-01

    Under the effects of global change, water crisis ranks as the top global risk in the future decade, and water conflict in transboundary river basins as well as the geostrategic competition led by it is most concerned. This study presents an innovative integrated PPMGWO model of water resources optimization allocation in a transboundary river basin, which is integrated through the projection pursuit model (PPM) and Grey wolf optimization (GWO) method. This study uses the Songhua River basin and 25 control units as examples, adopting the PPMGWO model proposed in this study to allocate the water quantity. Using water consumption in all control units in the Songhua River basin in 2015 as reference to compare with optimization allocation results of firefly algorithm (FA) and Particle Swarm Optimization (PSO) algorithms as well as the PPMGWO model, results indicate that the average difference between corresponding allocation results and reference values are 0.195 bil m3, 0.151 bil m3, and 0.085 bil m3, respectively. Obviously, the average difference of the PPMGWO model is the lowest and its optimization allocation result is closer to reality, which further confirms the reasonability, feasibility, and accuracy of the PPMGWO model. And then the PPMGWO model is adopted to simulate allocation of available water quantity in Songhua River basin in 2018, 2020, and 2030. The simulation results show water quantity which could be allocated in all controls demonstrates an overall increasing trend with reasonable and equal exploitation and utilization of water resources in the Songhua River basin in future. In addition, this study has a certain reference value and application meaning to comprehensive management and water resources allocation in other transboundary river basins.

  11. Quid pro quo: a mechanism for fair collaboration in networked systems.

    PubMed

    Santos, Agustín; Fernández Anta, Antonio; López Fernández, Luis

    2013-01-01

    Collaboration may be understood as the execution of coordinated tasks (in the most general sense) by groups of users, who cooperate for achieving a common goal. Collaboration is a fundamental assumption and requirement for the correct operation of many communication systems. The main challenge when creating collaborative systems in a decentralized manner is dealing with the fact that users may behave in selfish ways, trying to obtain the benefits of the tasks but without participating in their execution. In this context, Game Theory has been instrumental to model collaborative systems and the task allocation problem, and to design mechanisms for optimal allocation of tasks. In this paper, we revise the classical assumptions of these models and propose a new approach to this problem. First, we establish a system model based on heterogenous nodes (users, players), and propose a basic distributed mechanism so that, when a new task appears, it is assigned to the most suitable node. The classical technique for compensating a node that executes a task is the use of payments (which in most networks are hard or impossible to implement). Instead, we propose a distributed mechanism for the optimal allocation of tasks without payments. We prove this mechanism to be robust evenevent in the presence of independent selfish or rationally limited players. Additionally, our model is based on very weak assumptions, which makes the proposed mechanisms susceptible to be implemented in networked systems (e.g., the Internet).

  12. An interval chance-constrained fuzzy modeling approach for supporting land-use planning and eco-environment planning at a watershed level.

    PubMed

    Ou, Guoliang; Tan, Shukui; Zhou, Min; Lu, Shasha; Tao, Yinghui; Zhang, Zuo; Zhang, Lu; Yan, Danping; Guan, Xingliang; Wu, Gang

    2017-12-15

    An interval chance-constrained fuzzy land-use allocation (ICCF-LUA) model is proposed in this study to support solving land resource management problem associated with various environmental and ecological constraints at a watershed level. The ICCF-LUA model is based on the ICCF (interval chance-constrained fuzzy) model which is coupled with interval mathematical model, chance-constrained programming model and fuzzy linear programming model and can be used to deal with uncertainties expressed as intervals, probabilities and fuzzy sets. Therefore, the ICCF-LUA model can reflect the tradeoff between decision makers and land stakeholders, the tradeoff between the economical benefits and eco-environmental demands. The ICCF-LUA model has been applied to the land-use allocation of Wujiang watershed, Guizhou Province, China. The results indicate that under highly land suitable conditions, optimized area of cultivated land, forest land, grass land, construction land, water land, unused land and landfill in Wujiang watershed will be [5015, 5648] hm 2 , [7841, 7965] hm 2 , [1980, 2056] hm 2 , [914, 1423] hm 2 , [70, 90] hm 2 , [50, 70] hm 2 and [3.2, 4.3] hm 2 , the corresponding system economic benefit will be between 6831 and 7219 billion yuan. Consequently, the ICCF-LUA model can effectively support optimized land-use allocation problem in various complicated conditions which include uncertainties, risks, economic objective and eco-environmental constraints. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Energy Harvesting Based Body Area Networks for Smart Health.

    PubMed

    Hao, Yixue; Peng, Limei; Lu, Huimin; Hassan, Mohammad Mehedi; Alamri, Atif

    2017-07-10

    Body area networks (BANs) are configured with a great number of ultra-low power consumption wearable devices, which constantly monitor physiological signals of the human body and thus realize intelligent monitoring. However, the collection and transfer of human body signals consume energy, and considering the comfort demand of wearable devices, both the size and the capacity of a wearable device's battery are limited. Thus, minimizing the energy consumption of wearable devices and optimizing the BAN energy efficiency is still a challenging problem. Therefore, in this paper, we propose an energy harvesting-based BAN for smart health and discuss an optimal resource allocation scheme to improve BAN energy efficiency. Specifically, firstly, considering energy harvesting in a BAN and the time limits of human body signal transfer, we formulate the energy efficiency optimization problem of time division for wireless energy transfer and wireless information transfer. Secondly, we convert the optimization problem into a convex optimization problem under a linear constraint and propose a closed-form solution to the problem. Finally, simulation results proved that when the size of data acquired by the wearable devices is small, the proportion of energy consumed by the circuit and signal acquisition of the wearable devices is big, and when the size of data acquired by the wearable devices is big, the energy consumed by the signal transfer of the wearable device is decisive.

  14. Energy Harvesting Based Body Area Networks for Smart Health

    PubMed Central

    Hao, Yixue; Peng, Limei; Alamri, Atif

    2017-01-01

    Body area networks (BANs) are configured with a great number of ultra-low power consumption wearable devices, which constantly monitor physiological signals of the human body and thus realize intelligent monitoring. However, the collection and transfer of human body signals consume energy, and considering the comfort demand of wearable devices, both the size and the capacity of a wearable device’s battery are limited. Thus, minimizing the energy consumption of wearable devices and optimizing the BAN energy efficiency is still a challenging problem. Therefore, in this paper, we propose an energy harvesting-based BAN for smart health and discuss an optimal resource allocation scheme to improve BAN energy efficiency. Specifically, firstly, considering energy harvesting in a BAN and the time limits of human body signal transfer, we formulate the energy efficiency optimization problem of time division for wireless energy transfer and wireless information transfer. Secondly, we convert the optimization problem into a convex optimization problem under a linear constraint and propose a closed-form solution to the problem. Finally, simulation results proved that when the size of data acquired by the wearable devices is small, the proportion of energy consumed by the circuit and signal acquisition of the wearable devices is big, and when the size of data acquired by the wearable devices is big, the energy consumed by the signal transfer of the wearable device is decisive. PMID:28698501

  15. Methodologies for optimal resource allocation to the national space program and new space utilizations. Volume 2: Resource allocation and smoothing model, programmer's manual

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Appendixes are presented that provide model input requirements, a sample case, flow charts, and a program listing. At the beginning of each appendix, descriptive details and technical comments are provided to indicate any special instructions applicable to the use of that appendix. In addition, the program listing includes comment cards that state the purpose of each subroutine in the complete program and describe operations performed within that subroutine. The input requirements includes details on the many options that adapt the program to the specific needs of the analyst for a particular problem.

  16. Cost effective campaigning in social networks

    NASA Astrophysics Data System (ADS)

    Kotnis, Bhushan; Kuri, Joy

    2016-05-01

    Campaigners are increasingly using online social networking platforms for promoting products, ideas and information. A popular method of promoting a product or even an idea is incentivizing individuals to evangelize the idea vigorously by providing them with referral rewards in the form of discounts, cash backs, or social recognition. Due to budget constraints on scarce resources such as money and manpower, it may not be possible to provide incentives for the entire population, and hence incentives need to be allocated judiciously to appropriate individuals for ensuring the highest possible outreach size. We aim to do the same by formulating and solving an optimization problem using percolation theory. In particular, we compute the set of individuals that are provided incentives for minimizing the expected cost while ensuring a given outreach size. We also solve the problem of computing the set of individuals to be incentivized for maximizing the outreach size for given cost budget. The optimization problem turns out to be non trivial; it involves quantities that need to be computed by numerically solving a fixed point equation. Our primary contribution is, that for a fairly general cost structure, we show that the optimization problems can be solved by solving a simple linear program. We believe that our approach of using percolation theory to formulate an optimization problem is the first of its kind.

  17. Optimization Model for Capacity Management and Bed Scheduling for Hospital

    NASA Astrophysics Data System (ADS)

    Sitepu, Suryati; Mawengkang, Herman; Husein, Ismail

    2018-01-01

    Hospital is a very important institution to provide health care for people. It is not surprising that nowadays the people’s demands for hospital is increasing.. However, due to the rising cost of healthcare services, hospitals need to consider efficiencies in order to overcome these two problems. This paper deals with an integrated strategy of staff capacity management and bed allocation planning to tackle these problems. Mathematically, the strategy can be modeled as an integer linear programming problem. We solve the model using a direct neighborhood search approach, based on the notion of superbasic variables.

  18. Sharing the cost of river basin adaptation portfolios to climate change: Insights from social justice and cooperative game theory

    NASA Astrophysics Data System (ADS)

    Girard, Corentin; Rinaudo, Jean-Daniel; Pulido-Velazquez, Manuel

    2016-10-01

    The adaptation of water resource systems to the potential impacts of climate change requires mixed portfolios of supply and demand adaptation measures. The issue is not only to select efficient, robust, and flexible adaptation portfolios but also to find equitable strategies of cost allocation among the stakeholders. Our work addresses such cost allocation problems by applying two different theoretical approaches: social justice and cooperative game theory in a real case study. First of all, a cost-effective portfolio of adaptation measures at the basin scale is selected using a least-cost optimization model. Cost allocation solutions are then defined based on economic rationality concepts from cooperative game theory (the Core). Second, interviews are conducted to characterize stakeholders' perceptions of social justice principles associated with the definition of alternatives cost allocation rules. The comparison of the cost allocation scenarios leads to contrasted insights in order to inform the decision-making process at the river basin scale and potentially reap the efficiency gains from cooperation in the design of river basin adaptation portfolios.

  19. Incentives for Optimal Multi-level Allocation of HIV Prevention Resources

    PubMed Central

    Malvankar, Monali M.; Zaric, Gregory S.

    2013-01-01

    HIV/AIDS prevention funds are often allocated at multiple levels of decision-making. Optimal allocation of HIV prevention funds maximizes the number of HIV infections averted. However, decision makers often allocate using simple heuristics such as proportional allocation. We evaluate the impact of using incentives to encourage optimal allocation in a two-level decision-making process. We model an incentive based decision-making process consisting of an upper-level decision maker allocating funds to a single lower-level decision maker who then distributes funds to local programs. We assume that the lower-level utility function is linear in the amount of the budget received from the upper-level, the fraction of funds reserved for proportional allocation, and the number of infections averted. We assume that the upper level objective is to maximize the number of infections averted. We illustrate with an example using data from California, U.S. PMID:23766551

  20. An Alternative Optimization Model and Robust Experimental Design for the Assignment Scheduling Capability for Unmanned Aerial Vehicles (ASC-U) Simulation

    DTIC Science & Technology

    2007-06-01

    introduces ASC-U’s approach for solving the dynamic UAV allocation problem. 26 Christopher J...18 Figure 6. Assignments Dynamics Example (after) .........................................................20 Figure 7. ASC-U Dynamic Cueing...decisions in order to respond to the dynamic environment they face. Thus, to succeed, the Army’s transformation cannot rely

  1. Distribution network design under demand uncertainty using genetic algorithm and Monte Carlo simulation approach: a case study in pharmaceutical industry

    NASA Astrophysics Data System (ADS)

    Izadi, Arman; Kimiagari, Ali mohammad

    2014-01-01

    Distribution network design as a strategic decision has long-term effect on tactical and operational supply chain management. In this research, the location-allocation problem is studied under demand uncertainty. The purposes of this study were to specify the optimal number and location of distribution centers and to determine the allocation of customer demands to distribution centers. The main feature of this research is solving the model with unknown demand function which is suitable with the real-world problems. To consider the uncertainty, a set of possible scenarios for customer demands is created based on the Monte Carlo simulation. The coefficient of variation of costs is mentioned as a measure of risk and the most stable structure for firm's distribution network is defined based on the concept of robust optimization. The best structure is identified using genetic algorithms and 14% reduction in total supply chain costs is the outcome. Moreover, it imposes the least cost variation created by fluctuation in customer demands (such as epidemic diseases outbreak in some areas of the country) to the logistical system. It is noteworthy that this research is done in one of the largest pharmaceutical distribution firms in Iran.

  2. Distribution network design under demand uncertainty using genetic algorithm and Monte Carlo simulation approach: a case study in pharmaceutical industry

    NASA Astrophysics Data System (ADS)

    Izadi, Arman; Kimiagari, Ali Mohammad

    2014-05-01

    Distribution network design as a strategic decision has long-term effect on tactical and operational supply chain management. In this research, the location-allocation problem is studied under demand uncertainty. The purposes of this study were to specify the optimal number and location of distribution centers and to determine the allocation of customer demands to distribution centers. The main feature of this research is solving the model with unknown demand function which is suitable with the real-world problems. To consider the uncertainty, a set of possible scenarios for customer demands is created based on the Monte Carlo simulation. The coefficient of variation of costs is mentioned as a measure of risk and the most stable structure for firm's distribution network is defined based on the concept of robust optimization. The best structure is identified using genetic algorithms and 14 % reduction in total supply chain costs is the outcome. Moreover, it imposes the least cost variation created by fluctuation in customer demands (such as epidemic diseases outbreak in some areas of the country) to the logistical system. It is noteworthy that this research is done in one of the largest pharmaceutical distribution firms in Iran.

  3. Electronic neural network for dynamic resource allocation

    NASA Technical Reports Server (NTRS)

    Thakoor, A. P.; Eberhardt, S. P.; Daud, T.

    1991-01-01

    A VLSI implementable neural network architecture for dynamic assignment is presented. The resource allocation problems involve assigning members of one set (e.g. resources) to those of another (e.g. consumers) such that the global 'cost' of the associations is minimized. The network consists of a matrix of sigmoidal processing elements (neurons), where the rows of the matrix represent resources and columns represent consumers. Unlike previous neural implementations, however, association costs are applied directly to the neurons, reducing connectivity of the network to VLSI-compatible 0 (number of neurons). Each row (and column) has an additional neuron associated with it to independently oversee activations of all the neurons in each row (and each column), providing a programmable 'k-winner-take-all' function. This function simultaneously enforces blocking (excitatory/inhibitory) constraints during convergence to control the number of active elements in each row and column within desired boundary conditions. Simulations show that the network, when implemented in fully parallel VLSI hardware, offers optimal (or near-optimal) solutions within only a fraction of a millisecond, for problems up to 128 resources and 128 consumers, orders of magnitude faster than conventional computing or heuristic search methods.

  4. Approximate Dynamic Programming for Military Resource Allocation

    DTIC Science & Technology

    2014-12-26

    difference in means for W = 200, T = 200 ( c ) W = 200, T = 200 5 10 15 20 25 30 35 40 45 50 −2 0 2 4 6 8 Problem Number M ea n A D P − M ea n M M R 95...will provide analysts with a means for effectively determining which weapons concepts to explore further, how to appropriately fit a set of aircraft ...which optimization of the multi-stage DWTA is used to determine optimal weaponeering of aircraft . Because of its flexibility and applicability to

  5. Optimization of over-provisioned clouds

    NASA Astrophysics Data System (ADS)

    Balashov, N.; Baranov, A.; Korenkov, V.

    2016-09-01

    The functioning of modern applications in cloud-centers is characterized by a huge variety of computational workloads generated. This causes uneven workload distribution and as a result leads to ineffective utilization of cloud-centers' hardware. The proposed article addresses the possible ways to solve this issue and demonstrates that it is a matter of necessity to optimize cloud-centers' hardware utilization. As one of the possible ways to solve the problem of the inefficient resource utilization in heterogeneous cloud-environments an algorithm of dynamic re-allocation of virtual resources is suggested.

  6. Consideration of plant behaviour in optimal servo-compensator design

    NASA Astrophysics Data System (ADS)

    Moase, W. H.; Manzie, C.

    2016-07-01

    Where the most prevalent optimal servo-compensator formulations penalise the behaviour of an error system, this paper considers the problem of additionally penalising the actual states and inputs of the plant. Doing so has the advantage of enabling the penalty function to better resemble an economic cost. This is especially true of problems where control effort needs to be sensibly allocated across weakly redundant inputs or where one wishes to use penalties to soft-constrain certain states or inputs. It is shown that, although the resulting cost function grows unbounded as its horizon approaches infinity, it is possible to formulate an equivalent optimisation problem with a bounded cost. The resulting optimisation problem is similar to those in earlier studies but has an additional 'correction term' in the cost function, and a set of equality constraints that arise when there are redundant inputs. A numerical approach to solve the resulting optimisation problem is presented, followed by simulations on a micro-macro positioner that illustrate the benefits of the proposed servo-compensator design approach.

  7. Optimal resource allocation strategy for two-layer complex networks

    NASA Astrophysics Data System (ADS)

    Ma, Jinlong; Wang, Lixin; Li, Sufeng; Duan, Congwen; Liu, Yu

    2018-02-01

    We study the traffic dynamics on two-layer complex networks, and focus on its delivery capacity allocation strategy to enhance traffic capacity measured by the critical value Rc. With the limited packet-delivering capacity, we propose a delivery capacity allocation strategy which can balance the capacities of non-hub nodes and hub nodes to optimize the data flow. With the optimal value of parameter αc, the maximal network capacity is reached because most of the nodes have shared the appropriate delivery capacity by the proposed delivery capacity allocation strategy. Our work will be beneficial to network service providers to design optimal networked traffic dynamics.

  8. Community-aware task allocation for social networked multiagent systems.

    PubMed

    Wang, Wanyuan; Jiang, Yichuan

    2014-09-01

    In this paper, we propose a novel community-aware task allocation model for social networked multiagent systems (SN-MASs), where the agent' cooperation domain is constrained in community and each agent can negotiate only with its intracommunity member agents. Under such community-aware scenarios, we prove that it remains NP-hard to maximize system overall profit. To solve this problem effectively, we present a heuristic algorithm that is composed of three phases: 1) task selection: select the desirable task to be allocated preferentially; 2) allocation to community: allocate the selected task to communities based on a significant task-first heuristics; and 3) allocation to agent: negotiate resources for the selected task based on a nonoverlap agent-first and breadth-first resource negotiation mechanism. Through the theoretical analyses and experiments, the advantages of our presented heuristic algorithm and community-aware task allocation model are validated. 1) Our presented heuristic algorithm performs very closely to the benchmark exponential brute-force optimal algorithm and the network flow-based greedy algorithm in terms of system overall profit in small-scale applications. Moreover, in the large-scale applications, the presented heuristic algorithm achieves approximately the same overall system profit, but significantly reduces the computational load compared with the greedy algorithm. 2) Our presented community-aware task allocation model reduces the system communication cost compared with the previous global-aware task allocation model and improves the system overall profit greatly compared with the previous local neighbor-aware task allocation model.

  9. Robust Rate Maximization for Heterogeneous Wireless Networks under Channel Uncertainties

    PubMed Central

    Xu, Yongjun; Hu, Yuan; Li, Guoquan

    2018-01-01

    Heterogeneous wireless networks are a promising technology in next generation wireless communication networks, which has been shown to efficiently reduce the blind area of mobile communication and improve network coverage compared with the traditional wireless communication networks. In this paper, a robust power allocation problem for a two-tier heterogeneous wireless networks is formulated based on orthogonal frequency-division multiplexing technology. Under the consideration of imperfect channel state information (CSI), the robust sum-rate maximization problem is built while avoiding sever cross-tier interference to macrocell user and maintaining the minimum rate requirement of each femtocell user. To be practical, both of channel estimation errors from the femtocells to the macrocell and link uncertainties of each femtocell user are simultaneously considered in terms of outage probabilities of users. The optimization problem is analyzed under no CSI feedback with some cumulative distribution function and partial CSI with Gaussian distribution of channel estimation error. The robust optimization problem is converted into the convex optimization problem which is solved by using Lagrange dual theory and subgradient algorithm. Simulation results demonstrate the effectiveness of the proposed algorithm by the impact of channel uncertainties on the system performance. PMID:29466315

  10. An Iterative Approach for the Optimization of Pavement Maintenance Management at the Network Level

    PubMed Central

    Torres-Machí, Cristina; Chamorro, Alondra; Videla, Carlos; Yepes, Víctor

    2014-01-01

    Pavement maintenance is one of the major issues of public agencies. Insufficient investment or inefficient maintenance strategies lead to high economic expenses in the long term. Under budgetary restrictions, the optimal allocation of resources becomes a crucial aspect. Two traditional approaches (sequential and holistic) and four classes of optimization methods (selection based on ranking, mathematical optimization, near optimization, and other methods) have been applied to solve this problem. They vary in the number of alternatives considered and how the selection process is performed. Therefore, a previous understanding of the problem is mandatory to identify the most suitable approach and method for a particular network. This study aims to assist highway agencies, researchers, and practitioners on when and how to apply available methods based on a comparative analysis of the current state of the practice. Holistic approach tackles the problem considering the overall network condition, while the sequential approach is easier to implement and understand, but may lead to solutions far from optimal. Scenarios defining the suitability of these approaches are defined. Finally, an iterative approach gathering the advantages of traditional approaches is proposed and applied in a case study. The proposed approach considers the overall network condition in a simpler and more intuitive manner than the holistic approach. PMID:24741352

  11. An iterative approach for the optimization of pavement maintenance management at the network level.

    PubMed

    Torres-Machí, Cristina; Chamorro, Alondra; Videla, Carlos; Pellicer, Eugenio; Yepes, Víctor

    2014-01-01

    Pavement maintenance is one of the major issues of public agencies. Insufficient investment or inefficient maintenance strategies lead to high economic expenses in the long term. Under budgetary restrictions, the optimal allocation of resources becomes a crucial aspect. Two traditional approaches (sequential and holistic) and four classes of optimization methods (selection based on ranking, mathematical optimization, near optimization, and other methods) have been applied to solve this problem. They vary in the number of alternatives considered and how the selection process is performed. Therefore, a previous understanding of the problem is mandatory to identify the most suitable approach and method for a particular network. This study aims to assist highway agencies, researchers, and practitioners on when and how to apply available methods based on a comparative analysis of the current state of the practice. Holistic approach tackles the problem considering the overall network condition, while the sequential approach is easier to implement and understand, but may lead to solutions far from optimal. Scenarios defining the suitability of these approaches are defined. Finally, an iterative approach gathering the advantages of traditional approaches is proposed and applied in a case study. The proposed approach considers the overall network condition in a simpler and more intuitive manner than the holistic approach.

  12. Twelve fundamental life histories evolving through allocation-dependent fecundity and survival.

    PubMed

    Johansson, Jacob; Brännström, Åke; Metz, Johan A J; Dieckmann, Ulf

    2018-03-01

    An organism's life history is closely interlinked with its allocation of energy between growth and reproduction at different life stages. Theoretical models have established that diminishing returns from reproductive investment promote strategies with simultaneous investment into growth and reproduction (indeterminate growth) over strategies with distinct phases of growth and reproduction (determinate growth). We extend this traditional, binary classification by showing that allocation-dependent fecundity and mortality rates allow for a large diversity of optimal allocation schedules. By analyzing a model of organisms that allocate energy between growth and reproduction, we find twelve types of optimal allocation schedules, differing qualitatively in how reproductive allocation increases with body mass. These twelve optimal allocation schedules include types with different combinations of continuous and discontinuous increase in reproduction allocation, in which phases of continuous increase can be decelerating or accelerating. We furthermore investigate how this variation influences growth curves and the expected maximum life span and body size. Our study thus reveals new links between eco-physiological constraints and life-history evolution and underscores how allocation-dependent fitness components may underlie biological diversity.

  13. Dynamic Resource Allocation and Access Class Barring Scheme for Delay-Sensitive Devices in Machine to Machine (M2M) Communications.

    PubMed

    Li, Ning; Cao, Chao; Wang, Cong

    2017-06-15

    Supporting simultaneous access of machine-type devices is a critical challenge in machine-to-machine (M2M) communications. In this paper, we propose an optimal scheme to dynamically adjust the Access Class Barring (ACB) factor and the number of random access channel (RACH) resources for clustered machine-to-machine (M2M) communications, in which Delay-Sensitive (DS) devices coexist with Delay-Tolerant (DT) ones. In M2M communications, since delay-sensitive devices share random access resources with delay-tolerant devices, reducing the resources consumed by delay-sensitive devices means that there will be more resources available to delay-tolerant ones. Our goal is to optimize the random access scheme, which can not only satisfy the requirements of delay-sensitive devices, but also take the communication quality of delay-tolerant ones into consideration. We discuss this problem from the perspective of delay-sensitive services by adjusting the resource allocation and ACB scheme for these devices dynamically. Simulation results show that our proposed scheme realizes good performance in satisfying the delay-sensitive services as well as increasing the utilization rate of the random access resources allocated to them.

  14. Inventory slack routing application in emergency logistics and relief distributions.

    PubMed

    Yang, Xianfeng; Hao, Wei; Lu, Yang

    2018-01-01

    Various natural and manmade disasters during last decades have highlighted the need of further improving on governmental preparedness to emergency events, and a relief supplies distribution problem named Inventory Slack Routing Problem (ISRP) has received increasing attentions. In an ISRP, inventory slack is defined as the duration between reliefs arriving time and estimated inventory stock-out time. Hence, a larger inventory slack could grant more responsive time in facing of various factors (e.g., traffic congestion) that may lead to delivery lateness. In this study, the relief distribution problem is formulated as an optimization model that maximize the minimum slack among all dispensing sites. To efficiently solve this problem, we propose a two-stage approach to tackle the vehicle routing and relief allocation sub-problems. By analyzing the inter-relations between these two sub-problems, a new objective function considering both delivery durations and dispensing rates of demand sites is applied in the first stage to design the vehicle routes. A hierarchical routing approach and a sweep approach are also proposed in this stage. Given the vehicle routing plan, the relief allocation could be easily solved in the second stage. Numerical experiment with a comparison of multi-vehicle Traveling Salesman Problem (TSP) has demonstrated the need of ISRP and the capability of the proposed solution approaches.

  15. Inventory slack routing application in emergency logistics and relief distributions

    PubMed Central

    Yang, Xianfeng; Lu, Yang

    2018-01-01

    Various natural and manmade disasters during last decades have highlighted the need of further improving on governmental preparedness to emergency events, and a relief supplies distribution problem named Inventory Slack Routing Problem (ISRP) has received increasing attentions. In an ISRP, inventory slack is defined as the duration between reliefs arriving time and estimated inventory stock-out time. Hence, a larger inventory slack could grant more responsive time in facing of various factors (e.g., traffic congestion) that may lead to delivery lateness. In this study, the relief distribution problem is formulated as an optimization model that maximize the minimum slack among all dispensing sites. To efficiently solve this problem, we propose a two-stage approach to tackle the vehicle routing and relief allocation sub-problems. By analyzing the inter-relations between these two sub-problems, a new objective function considering both delivery durations and dispensing rates of demand sites is applied in the first stage to design the vehicle routes. A hierarchical routing approach and a sweep approach are also proposed in this stage. Given the vehicle routing plan, the relief allocation could be easily solved in the second stage. Numerical experiment with a comparison of multi-vehicle Traveling Salesman Problem (TSP) has demonstrated the need of ISRP and the capability of the proposed solution approaches. PMID:29902196

  16. Optimal investment in a portfolio of HIV prevention programs.

    PubMed

    Zaric, G S; Brandeau, M L

    2001-01-01

    In this article, the authors determine the optimal allocation of HIV prevention funds and investigate the impact of different allocation methods on health outcomes. The authors present a resource allocation model that can be used to determine the allocation of HIV prevention funds that maximizes quality-adjusted life years (or life years) gained or HIV infections averted in a population over a specified time horizon. They apply the model to determine the allocation of a limited budget among 3 types of HIV prevention programs in a population of injection drug users and nonusers: needle exchange programs, methadone maintenance treatment, and condom availability programs. For each prevention program, the authors estimate a production function that relates the amount invested to the associated change in risky behavior. The authors determine the optimal allocation of funds for both objective functions for a high-prevalence population and a low-prevalence population. They also consider the allocation of funds under several common rules of thumb that are used to allocate HIV prevention resources. It is shown that simpler allocation methods (e.g., allocation based on HIV incidence or notions of equity among population groups) may lead to alloctions that do not yield the maximum health benefit. The optimal allocation of HIV prevention funds in a population depends on HIV prevalence and incidence, the objective function, the production functions for the prevention programs, and other factors. Consideration of cost, equity, and social and political norms may be important when allocating HIV prevention funds. The model presented in this article can help decision makers determine the health consequences of different allocations of funds.

  17. Statistical Power and Optimum Sample Allocation Ratio for Treatment and Control Having Unequal Costs Per Unit of Randomization

    ERIC Educational Resources Information Center

    Liu, Xiaofeng

    2003-01-01

    This article considers optimal sample allocation between the treatment and control condition in multilevel designs when the costs per sampling unit vary due to treatment assignment. Optimal unequal allocation may reduce the cost from that of a balanced design without sacrificing any power. The optimum sample allocation ratio depends only on the…

  18. Optimal Inspection of Imports to Prevent Invasive Pest Introduction.

    PubMed

    Chen, Cuicui; Epanchin-Niell, Rebecca S; Haight, Robert G

    2018-03-01

    The United States imports more than 1 billion live plants annually-an important and growing pathway for introduction of damaging nonnative invertebrates and pathogens. Inspection of imports is one safeguard for reducing pest introductions, but capacity constraints limit inspection effort. We develop an optimal sampling strategy to minimize the costs of pest introductions from trade by posing inspection as an acceptance sampling problem that incorporates key features of the decision context, including (i) simultaneous inspection of many heterogeneous lots, (ii) a lot-specific sampling effort, (iii) a budget constraint that limits total inspection effort, (iv) inspection error, and (v) an objective of minimizing cost from accepted defective units. We derive a formula for expected number of accepted infested units (expected slippage) given lot size, sample size, infestation rate, and detection rate, and we formulate and analyze the inspector's optimization problem of allocating a sampling budget among incoming lots to minimize the cost of slippage. We conduct an empirical analysis of live plant inspection, including estimation of plant infestation rates from historical data, and find that inspections optimally target the largest lots with the highest plant infestation rates, leaving some lots unsampled. We also consider that USDA-APHIS, which administers inspections, may want to continue inspecting all lots at a baseline level; we find that allocating any additional capacity, beyond a comprehensive baseline inspection, to the largest lots with the highest infestation rates allows inspectors to meet the dual goals of minimizing the costs of slippage and maintaining baseline sampling without substantial compromise. © 2017 Society for Risk Analysis.

  19. System of systems design: Evaluating aircraft in a fleet context using reliability and non-deterministic approaches

    NASA Astrophysics Data System (ADS)

    Frommer, Joshua B.

    This work develops and implements a solution framework that allows for an integrated solution to a resource allocation system-of-systems problem associated with designing vehicles for integration into an existing fleet to extend that fleet's capability while improving efficiency. Typically, aircraft design focuses on using a specific design mission while a fleet perspective would provide a broader capability. Aspects of design for both the vehicles and missions may be, for simplicity, deterministic in nature or, in a model that reflects actual conditions, uncertain. Toward this end, the set of tasks or goals for the to-be-planned system-of-systems will be modeled more accurately with non-deterministic values, and the designed platforms will be evaluated using reliability analysis. The reliability, defined as the probability of a platform or set of platforms to complete possible missions, will contribute to the fitness of the overall system. The framework includes building surrogate models for metrics such as capability and cost, and includes the ideas of reliability in the overall system-level design space. The concurrent design and allocation system-of-systems problem is a multi-objective mixed integer nonlinear programming (MINLP) problem. This study considered two system-of-systems problems that seek to simultaneously design new aircraft and allocate these aircraft into a fleet to provide a desired capability. The Coast Guard's Integrated Deepwater System program inspired the first problem, which consists of a suite of search-and-find missions for aircraft based on descriptions from the National Search and Rescue Manual. The second represents suppression of enemy air defense operations similar to those carried out by the U.S. Air Force, proposed as part of the Department of Defense Network Centric Warfare structure, and depicted in MILSTD-3013. The two problems seem similar, with long surveillance segments, but because of the complex nature of aircraft design, the analysis of the vehicle for high-speed attack combined with a long loiter period is considerably different from that for quick cruise to an area combined with a low speed search. However, the framework developed to solve this class of system-of-systems problem handles both scenarios and leads to a solution type for this kind of problem. On the vehicle-level of the problem, different technology can have an impact on the fleet-level. One such technology is Morphing, the ability to change shape, which is an ideal candidate technology for missions with dissimilar segments, such as the aforementioned two. A framework, using surrogate models based on optimally-sized aircraft, and using probabilistic parameters to define a concept of operations, is investigated; this has provided insight into the setup of the optimization problem, the use of the reliability metric, and the measurement of fleet level impacts of morphing aircraft. The research consisted of four phases. The two initial phases built and defined the framework to solve system-of-systems problem; these investigations used the search-and-find scenario as the example application. The first phase included the design of fixed-geometry and morphing aircraft for a range of missions and evaluated the aircraft capability using non-deterministic mission parameters. The second phase introduced the idea of multiple aircraft in a fleet, but only considered a fleet consisting of one aircraft type. The third phase incorporated the simultaneous design of a new vehicle and allocation into a fleet for the search-and-find scenario; in this phase, multiple types of aircraft are considered. The fourth phase repeated the simultaneous new aircraft design and fleet allocation for the SEAD scenario to show that the approach is not specific to the search-and-find scenario. The framework presented in this work appears to be a viable approach for concurrently designing and allocating constituents in a system, specifically aircraft in a fleet. The research also shows that new technology impact can be assessed at the fleet level using conceptual design principles.

  20. Applicability and Limitations of Reliability Allocation Methods

    NASA Technical Reports Server (NTRS)

    Cruz, Jose A.

    2016-01-01

    Reliability allocation process may be described as the process of assigning reliability requirements to individual components within a system to attain the specified system reliability. For large systems, the allocation process is often performed at different stages of system design. The allocation process often begins at the conceptual stage. As the system design develops, more information about components and the operating environment becomes available, different allocation methods can be considered. Reliability allocation methods are usually divided into two categories: weighting factors and optimal reliability allocation. When properly applied, these methods can produce reasonable approximations. Reliability allocation techniques have limitations and implied assumptions that need to be understood by system engineers. Applying reliability allocation techniques without understanding their limitations and assumptions can produce unrealistic results. This report addresses weighting factors, optimal reliability allocation techniques, and identifies the applicability and limitations of each reliability allocation technique.

  1. Payments for Ecosystem Services for watershed water resource allocations

    NASA Astrophysics Data System (ADS)

    Fu, Yicheng; Zhang, Jian; Zhang, Chunling; Zang, Wenbin; Guo, Wenxian; Qian, Zhan; Liu, Laisheng; Zhao, Jinyong; Feng, Jian

    2018-01-01

    Watershed water resource allocation focuses on concrete aspects of the sustainable management of Ecosystem Services (ES) that are related to water and examines the possibility of implementing Payment for Ecosystem Services (PES) for water ES. PES can be executed to satisfy both economic and environmental objectives and demands. Considering the importance of calculating PES schemes at the social equity and cooperative game (CG) levels, to quantitatively solve multi-objective problems, a water resources allocation model and multi-objective optimization are provided. The model consists of three modules that address the following processes: ① social equity mechanisms used to study water consumer associations, ② an optimal decision-making process based on variable intervals and CG theory, and ③ the use of Shapley values of CGs for profit maximization. The effectiveness of the proposed methodology for realizing sustainable development was examined. First, an optimization model with water allocation objective was developed based on sustainable water resources allocation framework that maximizes the net benefit of water use. Then, to meet water quality requirements, PES cost was estimated using trade-off curves among different pollution emission concentration permissions. Finally, to achieve equity and supply sufficient incentives for water resources protection, CG theory approaches were utilized to reallocate PES benefits. The potential of the developed model was examined by its application to a case study in the Yongding River watershed of China. Approximately 128 Mm3 of water flowed from the upper reach (Shanxi and Hebei Provinces) sections of the Yongding River to the lower reach (Beijing) in 2013. According to the calculated results, Beijing should pay USD6.31 M (¥39.03 M) for water-related ES to Shanxi and Hebei Provinces. The results reveal that the proposed methodology is an available tool that can be used for sustainable development with resolving PES amounts among different regions under social and environmental constraints by considering the characteristics of social equity and CGs.

  2. Optimal allocation of HIV prevention funds for state health departments.

    PubMed

    Yaylali, Emine; Farnham, Paul G; Cohen, Stacy; Purcell, David W; Hauck, Heather; Sansom, Stephanie L

    2018-01-01

    To estimate the optimal allocation of Centers for Disease Control and Prevention (CDC) HIV prevention funds for health departments in 52 jurisdictions, incorporating Health Resources and Services Administration (HRSA) Ryan White HIV/AIDS Program funds, to improve outcomes along the HIV care continuum and prevent infections. Using surveillance data from 2010 to 2012 and budgetary data from 2012, we divided the 52 health departments into 5 groups varying by number of persons living with diagnosed HIV (PLWDH), median annual CDC HIV prevention budget, and median annual HRSA expenditures supporting linkage to care, retention in care, and adherence to antiretroviral therapy. Using an optimization and a Bernoulli process model, we solved for the optimal CDC prevention budget allocation for each health department group. The optimal allocation distributed the funds across prevention interventions and populations at risk for HIV to prevent the greatest number of new HIV cases annually. Both the HIV prevention interventions funded by the optimal allocation of CDC HIV prevention funds and the proportions of the budget allocated were similar across health department groups, particularly those representing the large majority of PLWDH. Consistently funded interventions included testing, partner services and linkage to care and interventions for men who have sex with men (MSM). Sensitivity analyses showed that the optimal allocation shifted when there were differences in transmission category proportions and progress along the HIV care continuum. The robustness of the results suggests that most health departments can use these analyses to guide the investment of CDC HIV prevention funds into strategies to prevent the most new cases of HIV.

  3. Optimal allocation of HIV prevention funds for state health departments

    PubMed Central

    Farnham, Paul G.; Cohen, Stacy; Purcell, David W.; Hauck, Heather; Sansom, Stephanie L.

    2018-01-01

    Objective To estimate the optimal allocation of Centers for Disease Control and Prevention (CDC) HIV prevention funds for health departments in 52 jurisdictions, incorporating Health Resources and Services Administration (HRSA) Ryan White HIV/AIDS Program funds, to improve outcomes along the HIV care continuum and prevent infections. Methods Using surveillance data from 2010 to 2012 and budgetary data from 2012, we divided the 52 health departments into 5 groups varying by number of persons living with diagnosed HIV (PLWDH), median annual CDC HIV prevention budget, and median annual HRSA expenditures supporting linkage to care, retention in care, and adherence to antiretroviral therapy. Using an optimization and a Bernoulli process model, we solved for the optimal CDC prevention budget allocation for each health department group. The optimal allocation distributed the funds across prevention interventions and populations at risk for HIV to prevent the greatest number of new HIV cases annually. Results Both the HIV prevention interventions funded by the optimal allocation of CDC HIV prevention funds and the proportions of the budget allocated were similar across health department groups, particularly those representing the large majority of PLWDH. Consistently funded interventions included testing, partner services and linkage to care and interventions for men who have sex with men (MSM). Sensitivity analyses showed that the optimal allocation shifted when there were differences in transmission category proportions and progress along the HIV care continuum. Conclusion The robustness of the results suggests that most health departments can use these analyses to guide the investment of CDC HIV prevention funds into strategies to prevent the most new cases of HIV. PMID:29768489

  4. Auctions with Dynamic Populations: Efficiency and Revenue Maximization

    NASA Astrophysics Data System (ADS)

    Said, Maher

    We study a stochastic sequential allocation problem with a dynamic population of privately-informed buyers. We characterize the set of efficient allocation rules and show that a dynamic VCG mechanism is both efficient and periodic ex post incentive compatible; we also show that the revenue-maximizing direct mechanism is a pivot mechanism with a reserve price. We then consider sequential ascending auctions in this setting, both with and without a reserve price. We construct equilibrium bidding strategies in this indirect mechanism where bidders reveal their private information in every period, yielding the same outcomes as the direct mechanisms. Thus, the sequential ascending auction is a natural institution for achieving either efficient or optimal outcomes.

  5. Information-based approach to performance estimation and requirements allocation in multisensor fusion for target recognition

    NASA Astrophysics Data System (ADS)

    Harney, Robert C.

    1997-03-01

    A novel methodology offering the potential for resolving two of the significant problems of implementing multisensor target recognition systems, i.e., the rational selection of a specific sensor suite and optimal allocation of requirements among sensors, is presented. Based on a sequence of conjectures (and their supporting arguments) concerning the relationship of extractable information content to recognition performance of a sensor system, a set of heuristics (essentially a reformulation of Johnson's criteria applicable to all sensor and data types) is developed. An approach to quantifying the information content of sensor data is described. Coupling this approach with the widely accepted Johnson's criteria for target recognition capabilities results in a quantitative method for comparing the target recognition ability of diverse sensors (imagers, nonimagers, active, passive, electromagnetic, acoustic, etc.). Extension to describing the performance of multiple sensors is straightforward. The application of the technique to sensor selection and requirements allocation is discussed.

  6. Energy Efficiency Optimization in Relay-Assisted MIMO Systems With Perfect and Statistical CSI

    NASA Astrophysics Data System (ADS)

    Zappone, Alessio; Cao, Pan; Jorswieck, Eduard A.

    2014-01-01

    A framework for energy-efficient resource allocation in a single-user, amplify-and-forward relay-assisted MIMO system is devised in this paper. Previous results in this area have focused on rate maximization or sum power minimization problems, whereas fewer results are available when bits/Joule energy efficiency (EE) optimization is the goal. The performance metric to optimize is the ratio between the system's achievable rate and the total consumed power. The optimization is carried out with respect to the source and relay precoding matrices, subject to QoS and power constraints. Such a challenging non-convex problem is tackled by means of fractional programming and and alternating maximization algorithms, for various CSI assumptions at the source and relay. In particular the scenarios of perfect CSI and those of statistical CSI for either the source-relay or the relay-destination channel are addressed. Moreover, sufficient conditions for beamforming optimality are derived, which is useful in simplifying the system design. Numerical results are provided to corroborate the validity of the theoretical findings.

  7. Placing invasive species management in a spatiotemporal context.

    PubMed

    Baker, Christopher M; Bode, Michael

    2016-04-01

    Invasive species are a worldwide issue, both ecologically and economically. A large body of work focuses on various aspects of invasive species control, including how to allocate control efforts to eradicate an invasive population as cost effectively as possible: There are a diverse range of invasive species management problems, and past mathematical analyses generally focus on isolated examples, making it hard to identify and understand parallels between the different contexts. In this study, we use a single spatiotemporal model to tackle the problem of allocating control effort for invasive species when suppressing an island invasive species, and for long-term spatial suppression projects. Using feral cat suppression as an illustrative example, we identify the optimal resource allocation for island and mainland suppression projects. Our results demonstrate how using a single model to solve different problems reveals similar characteristics of the solutions in different scenarios. As well as illustrating the insights offered by linking problems through a spatiotemporal model, we also derive novel and practically applicable results for our case studies. For temporal suppression projects on islands, we find that lengthy projects are more cost effective and that rapid control projects are only economically cost effective when population growth rates are high or diminishing returns on control effort are low. When suppressing invasive species around conservation assets (e.g., national parks or exclusion fences), we find that the size of buffer zones should depend on the ratio of the species growth and spread rate.

  8. Optimal manpower allocation in aircraft line maintenance (Case in GMF AeroAsia)

    NASA Astrophysics Data System (ADS)

    Puteri, V. E.; Yuniaristanto, Hisjam, M.

    2017-11-01

    This paper presents a mathematical modeling to find the optimal manpower allocation in an aircraft line maintenance. This research focuses on assigning the number and type of manpower that allocated to each service. This study considers the licenced worker or Aircraft Maintenance Engineer Licence (AMEL) and non licenced worker or Aircraft Maintenance Technician (AMT). In this paper, we also consider the relationship of each station in terms of the possibility to transfer the manpower among them. The optimization model considers the number of manpowers needed for each service and the requirement of AMEL worker. This paper aims to determine the optimal manpower allocation using the mathematical modeling. The objective function of the model is to find the minimum employee expenses. The model was solved using the ILOG CPLEX software. The results show that the manpower allocation can meet the manpower need and the all load can be served.

  9. Optima Nutrition: an allocative efficiency tool to reduce childhood stunting by better targeting of nutrition-related interventions.

    PubMed

    Pearson, Ruth; Killedar, Madhura; Petravic, Janka; Kakietek, Jakub J; Scott, Nick; Grantham, Kelsey L; Stuart, Robyn M; Kedziora, David J; Kerr, Cliff C; Skordis-Worrall, Jolene; Shekar, Meera; Wilson, David P

    2018-03-20

    Child stunting due to chronic malnutrition is a major problem in low- and middle-income countries due, in part, to inadequate nutrition-related practices and insufficient access to services. Limited budgets for nutritional interventions mean that available resources must be targeted in the most cost-effective manner to have the greatest impact. Quantitative tools can help guide budget allocation decisions. The Optima approach is an established framework to conduct resource allocation optimization analyses. We applied this approach to develop a new tool, 'Optima Nutrition', for conducting allocative efficiency analyses that address childhood stunting. At the core of the Optima approach is an epidemiological model for assessing the burden of disease; we use an adapted version of the Lives Saved Tool (LiST). Six nutritional interventions have been included in the first release of the tool: antenatal micronutrient supplementation, balanced energy-protein supplementation, exclusive breastfeeding promotion, promotion of improved infant and young child feeding (IYCF) practices, public provision of complementary foods, and vitamin A supplementation. To demonstrate the use of this tool, we applied it to evaluate the optimal allocation of resources in 7 districts in Bangladesh, using both publicly available data (such as through DHS) and data from a complementary costing study. Optima Nutrition can be used to estimate how to target resources to improve nutrition outcomes. Specifically, for the Bangladesh example, despite only limited nutrition-related funding available (an estimated $0.75 per person in need per year), even without any extra resources, better targeting of investments in nutrition programming could increase the cumulative number of children living without stunting by 1.3 million (an extra 5%) by 2030 compared to the current resource allocation. To minimize stunting, priority interventions should include promotion of improved IYCF practices as well as vitamin A supplementation. Once these programs are adequately funded, the public provision of complementary foods should be funded as the next priority. Programmatic efforts should give greatest emphasis to the regions of Dhaka and Chittagong, which have the greatest number of stunted children. A resource optimization tool can provide important guidance for targeting nutrition investments to achieve greater impact.

  10. Large Scale Multi-area Static/Dynamic Economic Dispatch using Nature Inspired Optimization

    NASA Astrophysics Data System (ADS)

    Pandit, Manjaree; Jain, Kalpana; Dubey, Hari Mohan; Singh, Rameshwar

    2017-04-01

    Economic dispatch (ED) ensures that the generation allocation to the power units is carried out such that the total fuel cost is minimized and all the operating equality/inequality constraints are satisfied. Classical ED does not take transmission constraints into consideration, but in the present restructured power systems the tie-line limits play a very important role in deciding operational policies. ED is a dynamic problem which is performed on-line in the central load dispatch centre with changing load scenarios. The dynamic multi-area ED (MAED) problem is more complex due to the additional tie-line, ramp-rate and area-wise power balance constraints. Nature inspired (NI) heuristic optimization methods are gaining popularity over the traditional methods for complex problems. This work presents the modified particle swarm optimization (PSO) based techniques where parameter automation is effectively used for improving the search efficiency by avoiding stagnation to a sub-optimal result. This work validates the performance of the PSO variants with traditional solver GAMS for single as well as multi-area economic dispatch (MAED) on three test cases of a large 140-unit standard test system having complex constraints.

  11. Large-Scale Multiantenna Multisine Wireless Power Transfer

    NASA Astrophysics Data System (ADS)

    Huang, Yang; Clerckx, Bruno

    2017-11-01

    Wireless Power Transfer (WPT) is expected to be a technology reshaping the landscape of low-power applications such as the Internet of Things, Radio Frequency identification (RFID) networks, etc. Although there has been some progress towards multi-antenna multi-sine WPT design, the large-scale design of WPT, reminiscent of massive MIMO in communications, remains an open challenge. In this paper, we derive efficient multiuser algorithms based on a generalizable optimization framework, in order to design transmit sinewaves that maximize the weighted-sum/minimum rectenna output DC voltage. The study highlights the significant effect of the nonlinearity introduced by the rectification process on the design of waveforms in multiuser systems. Interestingly, in the single-user case, the optimal spatial domain beamforming, obtained prior to the frequency domain power allocation optimization, turns out to be Maximum Ratio Transmission (MRT). In contrast, in the general weighted sum criterion maximization problem, the spatial domain beamforming optimization and the frequency domain power allocation optimization are coupled. Assuming channel hardening, low-complexity algorithms are proposed based on asymptotic analysis, to maximize the two criteria. The structure of the asymptotically optimal spatial domain precoder can be found prior to the optimization. The performance of the proposed algorithms is evaluated. Numerical results confirm the inefficiency of the linear model-based design for the single and multi-user scenarios. It is also shown that as nonlinear model-based designs, the proposed algorithms can benefit from an increasing number of sinewaves.

  12. Simultaneous Liver-Kidney Allocation Policy: A Proposal to Optimize Appropriate Utilization of Scarce Resources.

    PubMed

    Formica, R N; Aeder, M; Boyle, G; Kucheryavaya, A; Stewart, D; Hirose, R; Mulligan, D

    2016-03-01

    The introduction of the Mayo End-Stage Liver Disease score into the Organ Procurement and Transplantation Network (OPTN) deceased donor liver allocation policy in 2002 has led to a significant increase in the number of simultaneous liver-kidney transplants in the United States. Despite multiple attempts, clinical science has not been able to reliably predict which liver candidates with renal insufficiency will recover renal function or need a concurrent kidney transplant. The problem facing the transplant community is that currently there are almost no medical criteria for candidacy for simultaneous liver-kidney allocation in the United States, and this lack of standardized rules and medical eligibility criteria for kidney allocation with a liver is counter to OPTN's Final Rule. Moreover, almost 50% of simultaneous liver-kidney organs come from a donor with a kidney donor profile index of ≤0.35. The kidneys from these donors could otherwise be allocated to pediatric recipients, young adults or prior organ donors. This paper presents the new OPTN and United Network of Organ Sharing simultaneous liver-kidney allocation policy, provides the supporting evidence and explains the rationale on which the policy was based. © Copyright 2015 The American Society of Transplantation and the American Society of Transplant Surgeons.

  13. Power allocation strategies to minimize energy consumption in wireless body area networks.

    PubMed

    Kailas, Aravind

    2011-01-01

    The wide scale deployment of wireless body area networks (WBANs) hinges on designing energy efficient communication protocols to support the reliable communication as well as to prolong the network lifetime. Cooperative communications, a relatively new idea in wireless communications, offers the benefits of multi-antenna systems, thereby improving the link reliability and boosting energy efficiency. In this short paper, the advantages of resorting to cooperative communications for WBANs in terms of minimized energy consumption are investigated. Adopting an energy model that encompasses energy consumptions in the transmitter and receiver circuits, and transmitting energy per bit, it is seen that cooperative transmission can improve energy efficiency of the wireless network. In particular, the problem of optimal power allocation is studied with the constraint of targeted outage probability. Two strategies of power allocation are considered: power allocation with and without posture state information. Using analysis and simulation-based results, two key points are demonstrated: (i) allocating power to the on-body sensors making use of the posture information can reduce the total energy consumption of the WBAN; and (ii) when the channel condition is good, it is better to recruit less relays for cooperation to enhance energy efficiency.

  14. Suggestions to ameliorate the inequity in urban/rural allocation of healthcare resources in China.

    PubMed

    Chen, Yiyi; Yin, Zhou; Xie, Qiong

    2014-05-01

    The imbalance in the allocation in healthcare resources between urban and rural areas has become a main focus of the recent medical reforms adopted in China. However, systematic analysis has identified wide differences in the allocation of healthcare resources between urban and rural areas, including healthcare expenditures and the number of healthcare facilities, available beds, and personnel. Therefore, the aim of this report was to identify ethical considerations in current governmental policies to rectify existing problems in the distribution of healthcare resources. Our findings indicate that the inequality in the distribution of healthcare resources does not adhere to ethical standards and the policies are flawed because they give rise to differences in the availability of medical care to urban and rural communities. To optimize the allocation of medical healthcare resources, countermeasures are proposed to formulate policies to urge the flow of public healthcare resources to rural areas, strengthen the responsibilities of both governmental and public financial investments, increase the construction of public healthcare facilities in rural areas, promote the quality of healthcare resources, adjust resource allocations to rural public healthcare facilities, and improve resource utilization efficiency by establishing two-way referral mechanisms.

  15. Research on schedulers for astronomical observatories

    NASA Astrophysics Data System (ADS)

    Colome, Josep; Colomer, Pau; Guàrdia, Josep; Ribas, Ignasi; Campreciós, Jordi; Coiffard, Thierry; Gesa, Lluis; Martínez, Francesc; Rodler, Florian

    2012-09-01

    The main task of a scheduler applied to astronomical observatories is the time optimization of the facility and the maximization of the scientific return. Scheduling of astronomical observations is an example of the classical task allocation problem known as the job-shop problem (JSP), where N ideal tasks are assigned to M identical resources, while minimizing the total execution time. A problem of higher complexity, called the Flexible-JSP (FJSP), arises when the tasks can be executed by different resources, i.e. by different telescopes, and it focuses on determining a routing policy (i.e., which machine to assign for each operation) other than the traditional scheduling decisions (i.e., to determine the starting time of each operation). In most cases there is no single best approach to solve the planning system and, therefore, various mathematical algorithms (Genetic Algorithms, Ant Colony Optimization algorithms, Multi-Objective Evolutionary algorithms, etc.) are usually considered to adapt the application to the system configuration and task execution constraints. The scheduling time-cycle is also an important ingredient to determine the best approach. A shortterm scheduler, for instance, has to find a good solution with the minimum computation time, providing the system with the capability to adapt the selected task to varying execution constraints (i.e., environment conditions). We present in this contribution an analysis of the task allocation problem and the solutions currently in use at different astronomical facilities. We also describe the schedulers for three different projects (CTA, CARMENES and TJO) where the conclusions of this analysis are applied to develop a suitable routine.

  16. Can hydro-economic river basin models simulate water shadow prices under asymmetric access?

    PubMed

    Kuhn, A; Britz, W

    2012-01-01

    Hydro-economic river basin models (HERBM) based on mathematical programming are conventionally formulated as explicit 'aggregate optimization' problems with a single, aggregate objective function. Often unintended, this format implicitly assumes that decisions on water allocation are made via central planning or functioning markets such as to maximize social welfare. In the absence of perfect water markets, however, individually optimal decisions by water users will differ from the social optimum. Classical aggregate HERBMs cannot simulate that situation and thus might be unable to describe existing institutions governing access to water and might produce biased results for alternative ones. We propose a new solution format for HERBMs, based on the format of the mixed complementarity problem (MCP), where modified shadow price relations express spatial externalities resulting from asymmetric access to water use. This new problem format, as opposed to commonly used linear (LP) or non-linear programming (NLP) approaches, enables the simultaneous simulation of numerous 'independent optimization' decisions by multiple water users while maintaining physical interdependences based on water use and flow in the river basin. We show that the alternative problem format allows the formulation HERBMs that yield more realistic results when comparing different water management institutions.

  17. Joint subchannel pairing and power control for cognitive radio networks with amplify-and-forward relaying.

    PubMed

    Shen, Yanyan; Wang, Shuqiang; Wei, Zhiming

    2014-01-01

    Dynamic spectrum sharing has drawn intensive attention in cognitive radio networks. The secondary users are allowed to use the available spectrum to transmit data if the interference to the primary users is maintained at a low level. Cooperative transmission for secondary users can reduce the transmission power and thus improve the performance further. We study the joint subchannel pairing and power allocation problem in relay-based cognitive radio networks. The objective is to maximize the sum rate of the secondary user that is helped by an amplify-and-forward relay. The individual power constraints at the source and the relay, the subchannel pairing constraints, and the interference power constraints are considered. The problem under consideration is formulated as a mixed integer programming problem. By the dual decomposition method, a joint optimal subchannel pairing and power allocation algorithm is proposed. To reduce the computational complexity, two suboptimal algorithms are developed. Simulations have been conducted to verify the performance of the proposed algorithms in terms of sum rate and average running time under different conditions.

  18. Attending Globally or Locally: Incidental Learning of Optimal Visual Attention Allocation

    ERIC Educational Resources Information Center

    Beck, Melissa R.; Goldstein, Rebecca R.; van Lamsweerde, Amanda E.; Ericson, Justin M.

    2018-01-01

    Attention allocation determines the information that is encoded into memory. Can participants learn to optimally allocate attention based on what types of information are most likely to change? The current study examined whether participants could incidentally learn that changes to either high spatial frequency (HSF) or low spatial frequency (LSF)…

  19. A Goal Programming Optimization Model for The Allocation of Liquid Steel Production

    NASA Astrophysics Data System (ADS)

    Hapsari, S. N.; Rosyidi, C. N.

    2018-03-01

    This research was conducted in one of the largest steel companies in Indonesia which has several production units and produces a wide range of steel products. One of the important products in the company is billet steel. The company has four Electric Arc Furnace (EAF) which produces liquid steel which must be procesed further to be billet steel. The billet steel plant needs to make their production process more efficient to increase the productvity. The management has four goals to be achieved and hence the optimal allocation of the liquid steel production is needed to achieve those goals. In this paper, a goal programming optimization model is developed to determine optimal allocation of liquid steel production in each EAF, to satisfy demand in 3 periods and the company goals, namely maximizing the volume of production, minimizing the cost of raw materials, minimizing maintenance costs, maximizing sales revenues, and maximizing production capacity. From the results of optimization, only maximizing production capacity goal can not achieve the target. However, the model developed in this papare can optimally allocate liquid steel so the allocation of production does not exceed the maximum capacity of the machine work hours and maximum production capacity.

  20. Energy Efficiency Maximization for WSNs with Simultaneous Wireless Information and Power Transfer

    PubMed Central

    Yu, Hongyan; Zhang, Yongqiang; Yang, Yuanyuan; Ji, Luyue

    2017-01-01

    Recently, the simultaneous wireless information and power transfer (SWIPT) technique has been regarded as a promising approach to enhance performance of wireless sensor networks with limited energy supply. However, from a green communication perspective, energy efficiency optimization for SWIPT system design has not been investigated in Wireless Rechargeable Sensor Networks (WRSNs). In this paper, we consider the tradeoffs between energy efficiency and three factors including spectral efficiency, the transmit power and outage target rate for two different modes, i.e., power splitting (PS) and time switching modes (TS), at the receiver. Moreover, we formulate the energy efficiency maximization problem subject to the constraints of minimum Quality of Service (QoS), minimum harvested energy and maximum transmission power as non-convex optimization problem. In particular, we focus on optimizing power control and power allocation policy in PS and TS modes to maximize energy efficiency of data transmission. For PS and TS modes, we propose the corresponding algorithm to characterize a non-convex optimization problem that takes into account the circuit power consumption and the harvested energy. By exploiting nonlinear fractional programming and Lagrangian dual decomposition, we propose suboptimal iterative algorithms to obtain the solutions of non-convex optimization problems. Furthermore, we derive the outage probability and effective throughput from the scenarios that the transmitter does not or partially know the channel state information (CSI) of the receiver. Simulation results illustrate that the proposed optimal iterative algorithm can achieve optimal solutions within a small number of iterations and various tradeoffs between energy efficiency and spectral efficiency, transmit power and outage target rate, respectively. PMID:28820496

  1. Energy Efficiency Maximization for WSNs with Simultaneous Wireless Information and Power Transfer.

    PubMed

    Yu, Hongyan; Zhang, Yongqiang; Guo, Songtao; Yang, Yuanyuan; Ji, Luyue

    2017-08-18

    Recently, the simultaneous wireless information and power transfer (SWIPT) technique has been regarded as a promising approach to enhance performance of wireless sensor networks with limited energy supply. However, from a green communication perspective, energy efficiency optimization for SWIPT system design has not been investigated in Wireless Rechargeable Sensor Networks (WRSNs). In this paper, we consider the tradeoffs between energy efficiency and three factors including spectral efficiency, the transmit power and outage target rate for two different modes, i.e., power splitting (PS) and time switching modes (TS), at the receiver. Moreover, we formulate the energy efficiency maximization problem subject to the constraints of minimum Quality of Service (QoS), minimum harvested energy and maximum transmission power as non-convex optimization problem. In particular, we focus on optimizing power control and power allocation policy in PS and TS modes to maximize energy efficiency of data transmission. For PS and TS modes, we propose the corresponding algorithm to characterize a non-convex optimization problem that takes into account the circuit power consumption and the harvested energy. By exploiting nonlinear fractional programming and Lagrangian dual decomposition, we propose suboptimal iterative algorithms to obtain the solutions of non-convex optimization problems. Furthermore, we derive the outage probability and effective throughput from the scenarios that the transmitter does not or partially know the channel state information (CSI) of the receiver. Simulation results illustrate that the proposed optimal iterative algorithm can achieve optimal solutions within a small number of iterations and various tradeoffs between energy efficiency and spectral efficiency, transmit power and outage target rate, respectively.

  2. MASM: a market architecture for sensor management in distributed sensor networks

    NASA Astrophysics Data System (ADS)

    Viswanath, Avasarala; Mullen, Tracy; Hall, David; Garga, Amulya

    2005-03-01

    Rapid developments in sensor technology and its applications have energized research efforts towards devising a firm theoretical foundation for sensor management. Ubiquitous sensing, wide bandwidth communications and distributed processing provide both opportunities and challenges for sensor and process control and optimization. Traditional optimization techniques do not have the ability to simultaneously consider the wildly non-commensurate measures involved in sensor management in a single optimization routine. Market-oriented programming provides a valuable and principled paradigm to designing systems to solve this dynamic and distributed resource allocation problem. We have modeled the sensor management scenario as a competitive market, wherein the sensor manager holds a combinatorial auction to sell the various items produced by the sensors and the communication channels. However, standard auction mechanisms have been found not to be directly applicable to the sensor management domain. For this purpose, we have developed a specialized market architecture MASM (Market architecture for Sensor Management). In MASM, the mission manager is responsible for deciding task allocations to the consumers and their corresponding budgets and the sensor manager is responsible for resource allocation to the various consumers. In addition to having a modified combinatorial winner determination algorithm, MASM has specialized sensor network modules that address commensurability issues between consumers and producers in the sensor network domain. A preliminary multi-sensor, multi-target simulation environment has been implemented to test the performance of the proposed system. MASM outperformed the information theoretic sensor manager in meeting the mission objectives in the simulation experiments.

  3. Minimum variance optimal rate allocation for multiplexed H.264/AVC bitstreams.

    PubMed

    Tagliasacchi, Marco; Valenzise, Giuseppe; Tubaro, Stefano

    2008-07-01

    Consider the problem of transmitting multiple video streams to fulfill a constant bandwidth constraint. The available bit budget needs to be distributed across the sequences in order to meet some optimality criteria. For example, one might want to minimize the average distortion or, alternatively, minimize the distortion variance, in order to keep almost constant quality among the encoded sequences. By working in the rho-domain, we propose a low-delay rate allocation scheme that, at each time instant, provides a closed form solution for either the aforementioned problems. We show that minimizing the distortion variance instead of the average distortion leads, for each of the multiplexed sequences, to a coding penalty less than 0.5 dB, in terms of average PSNR. In addition, our analysis provides an explicit relationship between model parameters and this loss. In order to smooth the distortion also along time, we accommodate a shared encoder buffer to compensate for rate fluctuations. Although the proposed scheme is general, and it can be adopted for any video and image coding standard, we provide experimental evidence by transcoding bitstreams encoded using the state-of-the-art H.264/AVC standard. The results of our simulations reveal that is it possible to achieve distortion smoothing both in time and across the sequences, without sacrificing coding efficiency.

  4. Joint optimization of maintenance, buffers and machines in manufacturing lines

    NASA Astrophysics Data System (ADS)

    Nahas, Nabil; Nourelfath, Mustapha

    2018-01-01

    This article considers a series manufacturing line composed of several machines separated by intermediate buffers of finite capacity. The goal is to find the optimal number of preventive maintenance actions performed on each machine, the optimal selection of machines and the optimal buffer allocation plan that minimize the total system cost, while providing the desired system throughput level. The mean times between failures of all machines are assumed to increase when applying periodic preventive maintenance. To estimate the production line throughput, a decomposition method is used. The decision variables in the formulated optimal design problem are buffer levels, types of machines and times between preventive maintenance actions. Three heuristic approaches are developed to solve the formulated combinatorial optimization problem. The first heuristic consists of a genetic algorithm, the second is based on the nonlinear threshold accepting metaheuristic and the third is an ant colony system. The proposed heuristics are compared and their efficiency is shown through several numerical examples. It is found that the nonlinear threshold accepting algorithm outperforms the genetic algorithm and ant colony system, while the genetic algorithm provides better results than the ant colony system for longer manufacturing lines.

  5. Risk-Constrained Dynamic Programming for Optimal Mars Entry, Descent, and Landing

    NASA Technical Reports Server (NTRS)

    Ono, Masahiro; Kuwata, Yoshiaki

    2013-01-01

    A chance-constrained dynamic programming algorithm was developed that is capable of making optimal sequential decisions within a user-specified risk bound. This work handles stochastic uncertainties over multiple stages in the CEMAT (Combined EDL-Mobility Analyses Tool) framework. It was demonstrated by a simulation of Mars entry, descent, and landing (EDL) using real landscape data obtained from the Mars Reconnaissance Orbiter. Although standard dynamic programming (DP) provides a general framework for optimal sequential decisionmaking under uncertainty, it typically achieves risk aversion by imposing an arbitrary penalty on failure states. Such a penalty-based approach cannot explicitly bound the probability of mission failure. A key idea behind the new approach is called risk allocation, which decomposes a joint chance constraint into a set of individual chance constraints and distributes risk over them. The joint chance constraint was reformulated into a constraint on an expectation over a sum of an indicator function, which can be incorporated into the cost function by dualizing the optimization problem. As a result, the chance-constraint optimization problem can be turned into an unconstrained optimization over a Lagrangian, which can be solved efficiently using a standard DP approach.

  6. I/O-aware bandwidth allocation for petascale computing systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Zhou; Yang, Xu; Zhao, Dongfang

    In the Big Data era, the gap between the storage performance and an appli- cation's I/O requirement is increasing. I/O congestion caused by concurrent storage accesses from multiple applications is inevitable and severely harms the performance. Conventional approaches either focus on optimizing an ap- plication's access pattern individually or handle I/O requests on a low-level storage layer without any knowledge from the upper-level applications. In this paper, we present a novel I/O-aware bandwidth allocation framework to coordinate ongoing I/O requests on petascale computing systems. The motivation behind this innovation is that the resource management system has a holistic view ofmore » both the system state and jobs' activities and can dy- namically control the jobs' status or allocate resource on the y during their execution. We treat a job's I/O requests as periodical subjobs within its lifecycle and transform the I/O congestion issue into a classical scheduling problem. Based on this model, we propose a bandwidth management mech- anism as an extension to the existing scheduling system. We design several bandwidth allocation policies with different optimization objectives either on user-oriented metrics or system performance. We conduct extensive trace- based simulations using real job traces and I/O traces from a production IBM Blue Gene/Q system at Argonne National Laboratory. Experimental results demonstrate that our new design can improve job performance by more than 30%, as well as increasing system performance.« less

  7. Swarm based mean-variance mapping optimization (MVMOS) for solving economic dispatch

    NASA Astrophysics Data System (ADS)

    Khoa, T. H.; Vasant, P. M.; Singh, M. S. Balbir; Dieu, V. N.

    2014-10-01

    The economic dispatch (ED) is an essential optimization task in the power generation system. It is defined as the process of allocating the real power output of generation units to meet required load demand so as their total operating cost is minimized while satisfying all physical and operational constraints. This paper introduces a novel optimization which named as Swarm based Mean-variance mapping optimization (MVMOS). The technique is the extension of the original single particle mean-variance mapping optimization (MVMO). Its features make it potentially attractive algorithm for solving optimization problems. The proposed method is implemented for three test power systems, including 3, 13 and 20 thermal generation units with quadratic cost function and the obtained results are compared with many other methods available in the literature. Test results have indicated that the proposed method can efficiently implement for solving economic dispatch.

  8. Resource-Competing Oscillator Network as a Model of Amoeba-Based Neurocomputer

    NASA Astrophysics Data System (ADS)

    Aono, Masashi; Hirata, Yoshito; Hara, Masahiko; Aihara, Kazuyuki

    An amoeboid organism, Physarum, exhibits rich spatiotemporal oscillatory behavior and various computational capabilities. Previously, the authors created a recurrent neurocomputer incorporating the amoeba as a computing substrate to solve optimization problems. In this paper, considering the amoeba to be a network of oscillators coupled such that they compete for constant amounts of resources, we present a model of the amoeba-based neurocomputer. The model generates a number of oscillation modes and produces not only simple behavior to stabilize a single mode but also complex behavior to spontaneously switch among different modes, which reproduces well the experimentally observed behavior of the amoeba. To explore the significance of the complex behavior, we set a test problem used to compare computational performances of the oscillation modes. The problem is a kind of optimization problem of how to allocate a limited amount of resource to oscillators such that conflicts among them can be minimized. We show that the complex behavior enables to attain a wider variety of solutions to the problem and produces better performances compared with the simple behavior.

  9. Assessment of nursing management and utilization of nursing resources with the RAFAELA patient classification system--case study from the general wards of one central hospital.

    PubMed

    Rainio, Anna-Kaisa; Ohinmaa, Arto E

    2005-07-01

    RAFAELA is a new Finnish PCS, which is used in several University Hospitals and Central Hospitals and has aroused considerable interest in hospitals in Europe. The aim of the research is firstly to assess the feasibility of the RAFAELA Patient Classification System (PCS) in nursing staff management and, secondly, whether it can be seen as the transferring of nursing resources between wards according to the information received from nursing care intensity classification. The material was received from the Central Hospital's 12 general wards between 2000 and 2001. The RAFAELA PCS consists of three different measures: a system measuring patient care intensity, a system recording daily nursing resources, and a system measuring the optimal nursing care intensity/nurse situation. The data were analysed in proportion to the labour costs of nursing work and, from that, we calculated the employer's loss (a situation below the optimal level) and savings (a situation above the optimal level) per ward as both costs and the number of nurses. In 2000 the wards had on average 77 days below the optimal level and 106 days above it. In 2001 the wards had on average 71 days below the optimal level and 129 above it. Converting all these days to monetary and personnel resources the employer lost 307,745 or 9.84 nurses and saved 369,080 or 11.80 nurses in total in 2000. In 2001 the employer lost in total 242,143 or 7.58 nurses and saved 457,615 or 14.32 nurses. During the time period of the research nursing resources seemed not have been transferred between wards. RAFAELA PCS is applicable to the allocation of nursing resources but its possibilities have not been entirely used in the researched hospital. The management of nursing work should actively use the information received in nursing care intensity classification and plan and implement the transferring of nursing resources in order to ensure the quality of patient care. Information on which units resources should be allocated to is needed in the planning of staff resources of the whole hospital. More resources do not solve the managerial problem of the right allocation of resources. If resources are placed wrongly, the problems of daily staff management and cost control continue.

  10. Kalai-Smorodinsky bargaining solution for optimal resource allocation over wireless DS-CDMA visual sensor networks

    NASA Astrophysics Data System (ADS)

    Pandremmenou, Katerina; Kondi, Lisimachos P.; Parsopoulos, Konstantinos E.

    2012-01-01

    Surveillance applications usually require high levels of video quality, resulting in high power consumption. The existence of a well-behaved scheme to balance video quality and power consumption is crucial for the system's performance. In the present work, we adopt the game-theoretic approach of Kalai-Smorodinsky Bargaining Solution (KSBS) to deal with the problem of optimal resource allocation in a multi-node wireless visual sensor network (VSN). In our setting, the Direct Sequence Code Division Multiple Access (DS-CDMA) method is used for channel access, while a cross-layer optimization design, which employs a central processing server, accounts for the overall system efficacy through all network layers. The task assigned to the central server is the communication with the nodes and the joint determination of their transmission parameters. The KSBS is applied to non-convex utility spaces, efficiently distributing the source coding rate, channel coding rate and transmission powers among the nodes. In the underlying model, the transmission powers assume continuous values, whereas the source and channel coding rates can take only discrete values. Experimental results are reported and discussed to demonstrate the merits of KSBS over competing policies.

  11. Research on allocation efficiency of the daisy chain allocation algorithm

    NASA Astrophysics Data System (ADS)

    Shi, Jingping; Zhang, Weiguo

    2013-03-01

    With the improvement of the aircraft performance in reliability, maneuverability and survivability, the number of the control effectors increases a lot. How to distribute the three-axis moments into the control surfaces reasonably becomes an important problem. Daisy chain method is simple and easy to be carried out in the design of the allocation system. But it can not solve the allocation problem for entire attainable moment subset. For the lateral-directional allocation problem, the allocation efficiency of the daisy chain can be directly measured by the area of its subset of attainable moments. Because of the non-linear allocation characteristic, the subset of attainable moments of daisy-chain method is a complex non-convex polygon, and it is difficult to solve directly. By analyzing the two-dimensional allocation problems with a "micro-element" idea, a numerical calculation algorithm is proposed to compute the area of the non-convex polygon. In order to improve the allocation efficiency of the algorithm, a genetic algorithm with the allocation efficiency chosen as the fitness function is proposed to find the best pseudo-inverse matrix.

  12. A game theory-reinforcement learning (GT-RL) method to develop optimal operation policies for multi-operator reservoir systems

    NASA Astrophysics Data System (ADS)

    Madani, Kaveh; Hooshyar, Milad

    2014-11-01

    Reservoir systems with multiple operators can benefit from coordination of operation policies. To maximize the total benefit of these systems the literature has normally used the social planner's approach. Based on this approach operation decisions are optimized using a multi-objective optimization model with a compound system's objective. While the utility of the system can be increased this way, fair allocation of benefits among the operators remains challenging for the social planner who has to assign controversial weights to the system's beneficiaries and their objectives. Cooperative game theory provides an alternative framework for fair and efficient allocation of the incremental benefits of cooperation. To determine the fair and efficient utility shares of the beneficiaries, cooperative game theory solution methods consider the gains of each party in the status quo (non-cooperation) as well as what can be gained through the grand coalition (social planner's solution or full cooperation) and partial coalitions. Nevertheless, estimation of the benefits of different coalitions can be challenging in complex multi-beneficiary systems. Reinforcement learning can be used to address this challenge and determine the gains of the beneficiaries for different levels of cooperation, i.e., non-cooperation, partial cooperation, and full cooperation, providing the essential input for allocation based on cooperative game theory. This paper develops a game theory-reinforcement learning (GT-RL) method for determining the optimal operation policies in multi-operator multi-reservoir systems with respect to fairness and efficiency criteria. As the first step to underline the utility of the GT-RL method in solving complex multi-agent multi-reservoir problems without a need for developing compound objectives and weight assignment, the proposed method is applied to a hypothetical three-agent three-reservoir system.

  13. A Grouping Particle Swarm Optimizer with Personal-Best-Position Guidance for Large Scale Optimization.

    PubMed

    Guo, Weian; Si, Chengyong; Xue, Yu; Mao, Yanfen; Wang, Lei; Wu, Qidi

    2017-05-04

    Particle Swarm Optimization (PSO) is a popular algorithm which is widely investigated and well implemented in many areas. However, the canonical PSO does not perform well in population diversity maintenance so that usually leads to a premature convergence or local optima. To address this issue, we propose a variant of PSO named Grouping PSO with Personal- Best-Position (Pbest) Guidance (GPSO-PG) which maintains the population diversity by preserving the diversity of exemplars. On one hand, we adopt uniform random allocation strategy to assign particles into different groups and in each group the losers will learn from the winner. On the other hand, we employ personal historical best position of each particle in social learning rather than the current global best particle. In this way, the exemplars diversity increases and the effect from the global best particle is eliminated. We test the proposed algorithm to the benchmarks in CEC 2008 and CEC 2010, which concern the large scale optimization problems (LSOPs). By comparing several current peer algorithms, GPSO-PG exhibits a competitive performance to maintain population diversity and obtains a satisfactory performance to the problems.

  14. Compound Event Barrier Coverage in Wireless Sensor Networks under Multi-Constraint Conditions.

    PubMed

    Zhuang, Yaoming; Wu, Chengdong; Zhang, Yunzhou; Jia, Zixi

    2016-12-24

    It is important to monitor compound event by barrier coverage issues in wireless sensor networks (WSNs). Compound event barrier coverage (CEBC) is a novel coverage problem. Unlike traditional ones, the data of compound event barrier coverage comes from different types of sensors. It will be subject to multiple constraints under complex conditions in real-world applications. The main objective of this paper is to design an efficient algorithm for complex conditions that can combine the compound event confidence. Moreover, a multiplier method based on an active-set strategy (ASMP) is proposed to optimize the multiple constraints in compound event barrier coverage. The algorithm can calculate the coverage ratio efficiently and allocate the sensor resources reasonably in compound event barrier coverage. The proposed algorithm can simplify complex problems to reduce the computational load of the network and improve the network efficiency. The simulation results demonstrate that the proposed algorithm is more effective and efficient than existing methods, especially in the allocation of sensor resources.

  15. Compound Event Barrier Coverage in Wireless Sensor Networks under Multi-Constraint Conditions

    PubMed Central

    Zhuang, Yaoming; Wu, Chengdong; Zhang, Yunzhou; Jia, Zixi

    2016-01-01

    It is important to monitor compound event by barrier coverage issues in wireless sensor networks (WSNs). Compound event barrier coverage (CEBC) is a novel coverage problem. Unlike traditional ones, the data of compound event barrier coverage comes from different types of sensors. It will be subject to multiple constraints under complex conditions in real-world applications. The main objective of this paper is to design an efficient algorithm for complex conditions that can combine the compound event confidence. Moreover, a multiplier method based on an active-set strategy (ASMP) is proposed to optimize the multiple constraints in compound event barrier coverage. The algorithm can calculate the coverage ratio efficiently and allocate the sensor resources reasonably in compound event barrier coverage. The proposed algorithm can simplify complex problems to reduce the computational load of the network and improve the network efficiency. The simulation results demonstrate that the proposed algorithm is more effective and efficient than existing methods, especially in the allocation of sensor resources. PMID:28029118

  16. On portfolio risk diversification

    NASA Astrophysics Data System (ADS)

    Takada, Hellinton H.; Stern, Julio M.

    2017-06-01

    The first portfolio risk diversification strategy was put into practice by the All Weather fund in 1996. The idea of risk diversification is related to the risk contribution of each available asset class or investment factor to the total portfolio risk. The maximum diversification or the risk parity allocation is achieved when the set of risk contributions is given by a uniform distribution. Meucci (2009) introduced the maximization of the Rényi entropy as part of a leverage constrained optimization problem to achieve such diversified risk contributions when dealing with uncorrelated investment factors. A generalization of the risk parity is the risk budgeting when there is a prior for the distribution of the risk contributions. Our contribution is the generalization of the existent optimization frameworks to be able to solve the risk budgeting problem. In addition, our framework does not possess any leverage constraint.

  17. Contract portfolio optimization for a gasoline supply chain

    NASA Astrophysics Data System (ADS)

    Wang, Shanshan

    Major oil companies sell gasoline through three channels of trade: branded (associated with long-term contracts), unbranded (associated with short-term contracts), and spot market. The branded channel provides them with a long-term secured and sustainable demand source, but requires an inflexible long-term commitment with demand and price risks. The unbranded channel provides a medium level of allocation flexibility. The spot market provides them with the greatest allocation flexibility to the changing market conditions, but the spot market's illiquidity mitigates this benefit. In order to sell the product in a profitable and sustainable way, they need an optimal contract portfolio. This dissertation addresses the contract portfolio optimization problem from different perspectives (retrospective view and forward-looking view) at different levels (strategic level, tactical level and operational level). The objective of the retrospective operational model is to develop a financial case to estimate the business value of having a dynamic optimization model and quantify the opportunity values missed in the past. This model proves the financial significance of the problem and provides top management valuable insights into the business. BP has applied the insights and principles gained from this work and implemented the model to the entire Midwest gasoline supply chain to retrospectively review optimization opportunities. The strategic model is the most parsimonious model that captures the essential economic tradeoffs among different contract types, to demonstrate the need for a contract portfolio and what drives the portfolio. We examine the properties of the optimal contract portfolio and provide a comparative statics analysis by changing the model parameters. As the strategic model encapsulates the business problem at the macroscopic level, the tactical model resolves lower level issues. It considers the time dynamics, the information flow and contracting flow. Using this model, we characterize a simple and easily implementable dynamic contract portfolio policy that would enable the company to dynamically rebalance its supply contract portfolio over time in anticipation of the future market conditions in each individual channel while satisfying the contractual obligations. The optimal policy is a state-dependent base-share contract portfolio policy characterized by a branded base-share level and an unbranded contract commitment combination, given as a function of the initial information state. Using real-world market data, we estimate the model parameters. We also apply an efficient modified policy iteration method to compute the optimal contract portfolio strategies and corresponding profit value. We present computational results in order to obtain insights into the structure of optimal policies, capture the value of the dynamic contract portfolio policy by comparing it with static policies, and illustrate the sensitivity of the optimal contract portfolio and corresponding profit value in terms of the different parameters. Considering the geographic dispersion of different market areas and the pipeline network together with the dynamic contract portfolio optimization problem, we formulate a forward-looking operational model, which could be used by gasoline suppliers for lower-level planning. Finally, we discuss the generalization of the framework to other problems and applications, as well as further research.

  18. Optimizing Utilization of Detectors

    DTIC Science & Technology

    2016-03-01

    provide a quantifiable process to determine how much time should be allocated to each task sharing the same asset . This optimized expected time... allocation is calculated by numerical analysis and Monte Carlo simulation. Numerical analysis determines the expectation by involving an integral and...determines the optimum time allocation of the asset by repeatedly running experiments to approximate the expectation of the random variables. This

  19. A Comparison of Monte Carlo Tree Search and Rolling Horizon Optimization for Large Scale Dynamic Resource Allocation Problems

    DTIC Science & Technology

    2015-05-01

    decisions on the fly in an online retail environment. Tech. rep., Working Paper, Massachusetts Institute of Technology, Boston, MA. Arneson, Broderick , Ryan...Hayward, Philip Henderson. 2009. MoHex wins Hex tournament. International Computer Games Association Journal 32 114–116. Arneson, Broderick , Ryan B...Combina- torial Search. Enzenberger, Markus, Martin Muller, Broderick Arneson, Richard Segal. 2010. Fuego—an open-source framework for board games and

  20. Planning Framework for Mesolevel Optimization of Urban Runoff Control Schemes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Qianqian; Blohm, Andrew; Liu, Bo

    A planning framework is developed to optimize runoff control schemes at scales relevant for regional planning at an early stage. The framework employs less sophisticated modeling approaches to allow a practical application in developing regions with limited data sources and computing capability. The methodology contains three interrelated modules: (1)the geographic information system (GIS)-based hydrological module, which aims at assessing local hydrological constraints and potential for runoff control according to regional land-use descriptions; (2)the grading module, which is built upon the method of fuzzy comprehensive evaluation. It is used to establish a priority ranking system to assist the allocation of runoffmore » control targets at the subdivision level; and (3)the genetic algorithm-based optimization module, which is included to derive Pareto-based optimal solutions for mesolevel allocation with multiple competing objectives. The optimization approach describes the trade-off between different allocation plans and simultaneously ensures that all allocation schemes satisfy the minimum requirement on runoff control. Our results highlight the importance of considering the mesolevel allocation strategy in addition to measures at macrolevels and microlevels in urban runoff management. (C) 2016 American Society of Civil Engineers.« less

  1. Optimal Resource Allocation in Library Systems

    ERIC Educational Resources Information Center

    Rouse, William B.

    1975-01-01

    Queueing theory is used to model processes as either waiting or balking processes. The optimal allocation of resources to these processes is defined as that which maximizes the expected value of the decision-maker's utility function. (Author)

  2. Optimizing 4DCBCT projection allocation to respiratory bins.

    PubMed

    O'Brien, Ricky T; Kipritidis, John; Shieh, Chun-Chien; Keall, Paul J

    2014-10-07

    4D cone beam computed tomography (4DCBCT) is an emerging image guidance strategy used in radiotherapy where projections acquired during a scan are sorted into respiratory bins based on the respiratory phase or displacement. 4DCBCT reduces the motion blur caused by respiratory motion but increases streaking artefacts due to projection under-sampling as a result of the irregular nature of patient breathing and the binning algorithms used. For displacement binning the streak artefacts are so severe that displacement binning is rarely used clinically. The purpose of this study is to investigate if sharing projections between respiratory bins and adjusting the location of respiratory bins in an optimal manner can reduce or eliminate streak artefacts in 4DCBCT images. We introduce a mathematical optimization framework and a heuristic solution method, which we will call the optimized projection allocation algorithm, to determine where to position the respiratory bins and which projections to source from neighbouring respiratory bins. Five 4DCBCT datasets from three patients were used to reconstruct 4DCBCT images. Projections were sorted into respiratory bins using equispaced, equal density and optimized projection allocation. The standard deviation of the angular separation between projections was used to assess streaking and the consistency of the segmented volume of a fiducial gold marker was used to assess motion blur. The standard deviation of the angular separation between projections using displacement binning and optimized projection allocation was 30%-50% smaller than conventional phase based binning and 59%-76% smaller than conventional displacement binning indicating more uniformly spaced projections and fewer streaking artefacts. The standard deviation in the marker volume was 20%-90% smaller when using optimized projection allocation than using conventional phase based binning suggesting more uniform marker segmentation and less motion blur. Images reconstructed using displacement binning and the optimized projection allocation algorithm were clearer, contained visibly fewer streak artefacts and produced more consistent marker segmentation than those reconstructed with either equispaced or equal-density binning. The optimized projection allocation algorithm significantly improves image quality in 4DCBCT images and provides, for the first time, a method to consistently generate high quality displacement binned 4DCBCT images in clinical applications.

  3. Optimum Allocation of Water to the Cultivation Farms Using Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Saeidian, B.; Saadi Mesgari, M.; Ghodousi, M.

    2015-12-01

    The water scarcity crises in the world and specifically in Iran, requires the proper management of this valuable resource. According to the official reports, around 90 percent of the water in Iran is used for agriculture. Therefore, the adequate management and usage of water in this section can help significantly to overcome the above crises. The most important aspect of agricultural water management is related to the irrigation planning, which is basically an allocation problem. The proper allocation of water to the farms is not a simple and trivial problem, because of the limited amount of available water, the effect of different parameters, nonlinear characteristics of the objective function, and the wideness of the solution space. Usually To solve such complex problems, a meta-heuristic method such as genetic algorithm could be a good candidate. In this paper, Genetic Algorithm (GA) is used for the allocation of different amount of water to a number of farms. In this model, the amount of water transferable using canals of level one, in one period of irrigation is specified. In addition, the amount of water required by each farm is calculated using crop type, stage of crop development, and other parameters. Using these, the water production function of each farm is determined. Then, using the water production function, farm areas, and the revenue and cost of each crop type, the objective function is calculated. This objective function is used by GA for the allocation of water to the farms. The objective function is defined such that the economical profit extracted from all farms is maximized. Moreover, the limitation related to the amount of available water is considered as a constraint. In general, the total amount of allocated water should be less than the finally available water (the water transferred trough the level one canals). Because of the intensive scarcity of water, the deficit irrigation method are considered. In this method, the planning is on the basis of the optimum and limited allocation of water, and not on the basis of the each crop water requirement. According to the available literature, in the condition of water scarcity, the implementation of deficit irrigation strategy results in higher economical income. The main difference of this research with others is the allocation of water to the farms. Whilst, most of similar researches concentrate on the allocation of water to different water consumption sections (such as agriculture, industry etc.), networks and crops. Using the GA for the optimization of the water allocation, proper solutions were generated that maximize the total economical income in the entire study area. In addition, although the search space was considerably wide, the results of the implementation showed an adequate convergence speed. The repeatability test of the algorithm also proved that the algorithm is reasonably stable. In general the usage of GA algorithm can be considered as an efficient and trustable method for such irrigation planning problems. By optimum allocation of the water to the farms with different areas and crop types, and considering the deficit irrigation method, the general income of the entire area can be improved substantially.

  4. Improved ant colony optimization for optimal crop and irrigation water allocation by incorporating domain knowledge

    USDA-ARS?s Scientific Manuscript database

    An improved ant colony optimization (ACO) formulation for the allocation of crops and water to different irrigation areas is developed. The formulation enables dynamic adjustment of decision variable options and makes use of visibility factors (VFs, the domain knowledge that can be used to identify ...

  5. Design and Analysis of Self-Adapted Task Scheduling Strategies in Wireless Sensor Networks

    PubMed Central

    Guo, Wenzhong; Xiong, Naixue; Chao, Han-Chieh; Hussain, Sajid; Chen, Guolong

    2011-01-01

    In a wireless sensor network (WSN), the usage of resources is usually highly related to the execution of tasks which consume a certain amount of computing and communication bandwidth. Parallel processing among sensors is a promising solution to provide the demanded computation capacity in WSNs. Task allocation and scheduling is a typical problem in the area of high performance computing. Although task allocation and scheduling in wired processor networks has been well studied in the past, their counterparts for WSNs remain largely unexplored. Existing traditional high performance computing solutions cannot be directly implemented in WSNs due to the limitations of WSNs such as limited resource availability and the shared communication medium. In this paper, a self-adapted task scheduling strategy for WSNs is presented. First, a multi-agent-based architecture for WSNs is proposed and a mathematical model of dynamic alliance is constructed for the task allocation problem. Then an effective discrete particle swarm optimization (PSO) algorithm for the dynamic alliance (DPSO-DA) with a well-designed particle position code and fitness function is proposed. A mutation operator which can effectively improve the algorithm’s ability of global search and population diversity is also introduced in this algorithm. Finally, the simulation results show that the proposed solution can achieve significant better performance than other algorithms. PMID:22163971

  6. Combinatorial Optimization in Project Selection Using Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Dewi, Sari; Sawaluddin

    2018-01-01

    This paper discusses the problem of project selection in the presence of two objective functions that maximize profit and minimize cost and the existence of some limitations is limited resources availability and time available so that there is need allocation of resources in each project. These resources are human resources, machine resources, raw material resources. This is treated as a consideration to not exceed the budget that has been determined. So that can be formulated mathematics for objective function (multi-objective) with boundaries that fulfilled. To assist the project selection process, a multi-objective combinatorial optimization approach is used to obtain an optimal solution for the selection of the right project. It then described a multi-objective method of genetic algorithm as one method of multi-objective combinatorial optimization approach to simplify the project selection process in a large scope.

  7. Computer architecture for efficient algorithmic executions in real-time systems: New technology for avionics systems and advanced space vehicles

    NASA Technical Reports Server (NTRS)

    Carroll, Chester C.; Youngblood, John N.; Saha, Aindam

    1987-01-01

    Improvements and advances in the development of computer architecture now provide innovative technology for the recasting of traditional sequential solutions into high-performance, low-cost, parallel system to increase system performance. Research conducted in development of specialized computer architecture for the algorithmic execution of an avionics system, guidance and control problem in real time is described. A comprehensive treatment of both the hardware and software structures of a customized computer which performs real-time computation of guidance commands with updated estimates of target motion and time-to-go is presented. An optimal, real-time allocation algorithm was developed which maps the algorithmic tasks onto the processing elements. This allocation is based on the critical path analysis. The final stage is the design and development of the hardware structures suitable for the efficient execution of the allocated task graph. The processing element is designed for rapid execution of the allocated tasks. Fault tolerance is a key feature of the overall architecture. Parallel numerical integration techniques, tasks definitions, and allocation algorithms are discussed. The parallel implementation is analytically verified and the experimental results are presented. The design of the data-driven computer architecture, customized for the execution of the particular algorithm, is discussed.

  8. Computer architecture for efficient algorithmic executions in real-time systems: new technology for avionics systems and advanced space vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carroll, C.C.; Youngblood, J.N.; Saha, A.

    1987-12-01

    Improvements and advances in the development of computer architecture now provide innovative technology for the recasting of traditional sequential solutions into high-performance, low-cost, parallel system to increase system performance. Research conducted in development of specialized computer architecture for the algorithmic execution of an avionics system, guidance and control problem in real time is described. A comprehensive treatment of both the hardware and software structures of a customized computer which performs real-time computation of guidance commands with updated estimates of target motion and time-to-go is presented. An optimal, real-time allocation algorithm was developed which maps the algorithmic tasks onto the processingmore » elements. This allocation is based on the critical path analysis. The final stage is the design and development of the hardware structures suitable for the efficient execution of the allocated task graph. The processing element is designed for rapid execution of the allocated tasks. Fault tolerance is a key feature of the overall architecture. Parallel numerical integration techniques, tasks definitions, and allocation algorithms are discussed. The parallel implementation is analytically verified and the experimental results are presented. The design of the data-driven computer architecture, customized for the execution of the particular algorithm, is discussed.« less

  9. Many-objective robust decision making for water allocation under climate change.

    PubMed

    Yan, Dan; Ludwig, Fulco; Huang, He Qing; Werners, Saskia E

    2017-12-31

    Water allocation is facing profound challenges due to climate change uncertainties. To identify adaptive water allocation strategies that are robust to climate change uncertainties, a model framework combining many-objective robust decision making and biophysical modeling is developed for large rivers. The framework was applied to the Pearl River basin (PRB), China where sufficient flow to the delta is required to reduce saltwater intrusion in the dry season. Before identifying and assessing robust water allocation plans for the future, the performance of ten state-of-the-art MOEAs (multi-objective evolutionary algorithms) is evaluated for the water allocation problem in the PRB. The Borg multi-objective evolutionary algorithm (Borg MOEA), which is a self-adaptive optimization algorithm, has the best performance during the historical periods. Therefore it is selected to generate new water allocation plans for the future (2079-2099). This study shows that robust decision making using carefully selected MOEAs can help limit saltwater intrusion in the Pearl River Delta. However, the framework could perform poorly due to larger than expected climate change impacts on water availability. Results also show that subjective design choices from the researchers and/or water managers could potentially affect the ability of the model framework, and cause the most robust water allocation plans to fail under future climate change. Developing robust allocation plans in a river basin suffering from increasing water shortage requires the researchers and water managers to well characterize future climate change of the study regions and vulnerabilities of their tools. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Sort-Mid tasks scheduling algorithm in grid computing.

    PubMed

    Reda, Naglaa M; Tawfik, A; Marzok, Mohamed A; Khamis, Soheir M

    2015-11-01

    Scheduling tasks on heterogeneous resources distributed over a grid computing system is an NP-complete problem. The main aim for several researchers is to develop variant scheduling algorithms for achieving optimality, and they have shown a good performance for tasks scheduling regarding resources selection. However, using of the full power of resources is still a challenge. In this paper, a new heuristic algorithm called Sort-Mid is proposed. It aims to maximizing the utilization and minimizing the makespan. The new strategy of Sort-Mid algorithm is to find appropriate resources. The base step is to get the average value via sorting list of completion time of each task. Then, the maximum average is obtained. Finally, the task has the maximum average is allocated to the machine that has the minimum completion time. The allocated task is deleted and then, these steps are repeated until all tasks are allocated. Experimental tests show that the proposed algorithm outperforms almost other algorithms in terms of resources utilization and makespan.

  11. Sort-Mid tasks scheduling algorithm in grid computing

    PubMed Central

    Reda, Naglaa M.; Tawfik, A.; Marzok, Mohamed A.; Khamis, Soheir M.

    2014-01-01

    Scheduling tasks on heterogeneous resources distributed over a grid computing system is an NP-complete problem. The main aim for several researchers is to develop variant scheduling algorithms for achieving optimality, and they have shown a good performance for tasks scheduling regarding resources selection. However, using of the full power of resources is still a challenge. In this paper, a new heuristic algorithm called Sort-Mid is proposed. It aims to maximizing the utilization and minimizing the makespan. The new strategy of Sort-Mid algorithm is to find appropriate resources. The base step is to get the average value via sorting list of completion time of each task. Then, the maximum average is obtained. Finally, the task has the maximum average is allocated to the machine that has the minimum completion time. The allocated task is deleted and then, these steps are repeated until all tasks are allocated. Experimental tests show that the proposed algorithm outperforms almost other algorithms in terms of resources utilization and makespan. PMID:26644937

  12. Quadratic Programming for Allocating Control Effort

    NASA Technical Reports Server (NTRS)

    Singh, Gurkirpal

    2005-01-01

    A computer program calculates an optimal allocation of control effort in a system that includes redundant control actuators. The program implements an iterative (but otherwise single-stage) algorithm of the quadratic-programming type. In general, in the quadratic-programming problem, one seeks the values of a set of variables that minimize a quadratic cost function, subject to a set of linear equality and inequality constraints. In this program, the cost function combines control effort (typically quantified in terms of energy or fuel consumed) and control residuals (differences between commanded and sensed values of variables to be controlled). In comparison with prior control-allocation software, this program offers approximately equal accuracy but much greater computational efficiency. In addition, this program offers flexibility, robustness to actuation failures, and a capability for selective enforcement of control requirements. The computational efficiency of this program makes it suitable for such complex, real-time applications as controlling redundant aircraft actuators or redundant spacecraft thrusters. The program is written in the C language for execution in a UNIX operating system.

  13. A Control Allocation System for Automatic Detection and Compensation of Phase Shift Due to Actuator Rate Limiting

    NASA Technical Reports Server (NTRS)

    Yildiz, Yidiray; Kolmanovsky, Ilya V.; Acosta, Diana

    2011-01-01

    This paper proposes a control allocation system that can detect and compensate the phase shift between the desired and the actual total control effort due to rate limiting of the actuators. Phase shifting is an important problem in control system applications since it effectively introduces a time delay which may destabilize the closed loop dynamics. A relevant example comes from flight control where aggressive pilot commands, high gain of the flight control system or some anomaly in the system may cause actuator rate limiting and effective time delay introduction. This time delay can instigate Pilot Induced Oscillations (PIO), which is an abnormal coupling between the pilot and the aircraft resulting in unintentional and undesired oscillations. The proposed control allocation system reduces the effective time delay by first detecting the phase shift and then minimizing it using constrained optimization techniques. Flight control simulation results for an unstable aircraft with inertial cross coupling are reported, which demonstrate phase shift minimization and recovery from a PIO event.

  14. Robust allocation of a defensive budget considering an attacker's private information.

    PubMed

    Nikoofal, Mohammad E; Zhuang, Jun

    2012-05-01

    Attackers' private information is one of the main issues in defensive resource allocation games in homeland security. The outcome of a defense resource allocation decision critically depends on the accuracy of estimations about the attacker's attributes. However, terrorists' goals may be unknown to the defender, necessitating robust decisions by the defender. This article develops a robust-optimization game-theoretical model for identifying optimal defense resource allocation strategies for a rational defender facing a strategic attacker while the attacker's valuation of targets, being the most critical attribute of the attacker, is unknown but belongs to bounded distribution-free intervals. To our best knowledge, no previous research has applied robust optimization in homeland security resource allocation when uncertainty is defined in bounded distribution-free intervals. The key features of our model include (1) modeling uncertainty in attackers' attributes, where uncertainty is characterized by bounded intervals; (2) finding the robust-optimization equilibrium for the defender using concepts dealing with budget of uncertainty and price of robustness; and (3) applying the proposed model to real data. © 2011 Society for Risk Analysis.

  15. PRACTICAL: Planning and Resource Allocation in C2-Domains With Time Critical Algorithms (PRACTICAL: Planning en Allocatie in C2-Domeinen Met Tijdkritische Algoritmen)

    DTIC Science & Technology

    1993-02-01

    the (re)planning framework, incorporating the demonstrators CALIGULA and ALLOCATOR for resource allocation and scheduling respectively. In the Command...demonstrator CALIGULA for the problem of allocating frequencies to a radio link network. The problems in the domain of scheduling are dealt with. which has...demonstrating the (re)planning framework, incorporating the demonstrators CALIGULA and ALLOCATOR for resource allocation and scheduling respectively

  16. Joint-layer encoder optimization for HEVC scalable extensions

    NASA Astrophysics Data System (ADS)

    Tsai, Chia-Ming; He, Yuwen; Dong, Jie; Ye, Yan; Xiu, Xiaoyu; He, Yong

    2014-09-01

    Scalable video coding provides an efficient solution to support video playback on heterogeneous devices with various channel conditions in heterogeneous networks. SHVC is the latest scalable video coding standard based on the HEVC standard. To improve enhancement layer coding efficiency, inter-layer prediction including texture and motion information generated from the base layer is used for enhancement layer coding. However, the overall performance of the SHVC reference encoder is not fully optimized because rate-distortion optimization (RDO) processes in the base and enhancement layers are independently considered. It is difficult to directly extend the existing joint-layer optimization methods to SHVC due to the complicated coding tree block splitting decisions and in-loop filtering process (e.g., deblocking and sample adaptive offset (SAO) filtering) in HEVC. To solve those problems, a joint-layer optimization method is proposed by adjusting the quantization parameter (QP) to optimally allocate the bit resource between layers. Furthermore, to make more proper resource allocation, the proposed method also considers the viewing probability of base and enhancement layers according to packet loss rate. Based on the viewing probability, a novel joint-layer RD cost function is proposed for joint-layer RDO encoding. The QP values of those coding tree units (CTUs) belonging to lower layers referenced by higher layers are decreased accordingly, and the QP values of those remaining CTUs are increased to keep total bits unchanged. Finally the QP values with minimal joint-layer RD cost are selected to match the viewing probability. The proposed method was applied to the third temporal level (TL-3) pictures in the Random Access configuration. Simulation results demonstrate that the proposed joint-layer optimization method can improve coding performance by 1.3% for these TL-3 pictures compared to the SHVC reference encoder without joint-layer optimization.

  17. A systematic approach to designing statistically powerful heteroscedastic 2 × 2 factorial studies while minimizing financial costs.

    PubMed

    Jan, Show-Li; Shieh, Gwowen

    2016-08-31

    The 2 × 2 factorial design is widely used for assessing the existence of interaction and the extent of generalizability of two factors where each factor had only two levels. Accordingly, research problems associated with the main effects and interaction effects can be analyzed with the selected linear contrasts. To correct for the potential heterogeneity of variance structure, the Welch-Satterthwaite test is commonly used as an alternative to the t test for detecting the substantive significance of a linear combination of mean effects. This study concerns the optimal allocation of group sizes for the Welch-Satterthwaite test in order to minimize the total cost while maintaining adequate power. The existing method suggests that the optimal ratio of sample sizes is proportional to the ratio of the population standard deviations divided by the square root of the ratio of the unit sampling costs. Instead, a systematic approach using optimization technique and screening search is presented to find the optimal solution. Numerical assessments revealed that the current allocation scheme generally does not give the optimal solution. Alternatively, the suggested approaches to power and sample size calculations give accurate and superior results under various treatment and cost configurations. The proposed approach improves upon the current method in both its methodological soundness and overall performance. Supplementary algorithms are also developed to aid the usefulness and implementation of the recommended technique in planning 2 × 2 factorial designs.

  18. Conditional Optimal Design in Three- and Four-Level Experiments

    ERIC Educational Resources Information Center

    Hedges, Larry V.; Borenstein, Michael

    2014-01-01

    The precision of estimates of treatment effects in multilevel experiments depends on the sample sizes chosen at each level. It is often desirable to choose sample sizes at each level to obtain the smallest variance for a fixed total cost, that is, to obtain optimal sample allocation. This article extends previous results on optimal allocation to…

  19. A Multiuser Manufacturing Resource Service Composition Method Based on the Bees Algorithm

    PubMed Central

    Xie, Yongquan; Zhou, Zude; Pham, Duc Truong; Xu, Wenjun; Ji, Chunqian

    2015-01-01

    In order to realize an optimal resource service allocation in current open and service-oriented manufacturing model, multiuser resource service composition (RSC) is modeled as a combinational and constrained multiobjective problem. The model takes into account both subjective and objective quality of service (QoS) properties as representatives to evaluate a solution. The QoS properties aggregation and evaluation techniques are based on existing researches. The basic Bees Algorithm is tailored for finding a near optimal solution to the model, since the basic version is only proposed to find a desired solution in continuous domain and thus not suitable for solving the problem modeled in our study. Particular rules are designed for handling the constraints and finding Pareto optimality. In addition, the established model introduces a trusted service set to each user so that the algorithm could start by searching in the neighbor of more reliable service chains (known as seeds) than those randomly generated. The advantages of these techniques are validated by experiments in terms of success rate, searching speed, ability of avoiding ingenuity, and so forth. The results demonstrate the effectiveness of the proposed method in handling multiuser RSC problems. PMID:26339232

  20. Reconfigurable Flight Control Designs With Application to the X-33 Vehicle

    NASA Technical Reports Server (NTRS)

    Burken, John J.; Lu, Ping; Wu, Zhenglu

    1999-01-01

    Two methods for control system reconfiguration have been investigated. The first method is a robust servomechanism control approach (optimal tracking problem) that is a generalization of the classical proportional-plus-integral control to multiple input-multiple output systems. The second method is a control-allocation approach based on a quadratic programming formulation. A globally convergent fixed-point iteration algorithm has been developed to make onboard implementation of this method feasible. These methods have been applied to reconfigurable entry flight control design for the X-33 vehicle. Examples presented demonstrate simultaneous tracking of angle-of-attack and roll angle commands during failures of the right body flap actuator. Although simulations demonstrate success of the first method in most cases, the control-allocation method appears to provide uniformly better performance in all cases.

  1. A robust optimization model for distribution and evacuation in the disaster response phase

    NASA Astrophysics Data System (ADS)

    Fereiduni, Meysam; Shahanaghi, Kamran

    2017-03-01

    Natural disasters, such as earthquakes, affect thousands of people and can cause enormous financial loss. Therefore, an efficient response immediately following a natural disaster is vital to minimize the aforementioned negative effects. This research paper presents a network design model for humanitarian logistics which will assist in location and allocation decisions for multiple disaster periods. At first, a single-objective optimization model is presented that addresses the response phase of disaster management. This model will help the decision makers to make the most optimal choices in regard to location, allocation, and evacuation simultaneously. The proposed model also considers emergency tents as temporary medical centers. To cope with the uncertainty and dynamic nature of disasters, and their consequences, our multi-period robust model considers the values of critical input data in a set of various scenarios. Second, because of probable disruption in the distribution infrastructure (such as bridges), the Monte Carlo simulation is used for generating related random numbers and different scenarios; the p-robust approach is utilized to formulate the new network. The p-robust approach can predict possible damages along pathways and among relief bases. We render a case study of our robust optimization approach for Tehran's plausible earthquake in region 1. Sensitivity analysis' experiments are proposed to explore the effects of various problem parameters. These experiments will give managerial insights and can guide DMs under a variety of conditions. Then, the performances of the "robust optimization" approach and the "p-robust optimization" approach are evaluated. Intriguing results and practical insights are demonstrated by our analysis on this comparison.

  2. Optimal Control of Micro Grid Operation Mode Seamless Switching Based on Radau Allocation Method

    NASA Astrophysics Data System (ADS)

    Chen, Xiaomin; Wang, Gang

    2017-05-01

    The seamless switching process of micro grid operation mode directly affects the safety and stability of its operation. According to the switching process from island mode to grid-connected mode of micro grid, we establish a dynamic optimization model based on two grid-connected inverters. We use Radau allocation method to discretize the model, and use Newton iteration method to obtain the optimal solution. Finally, we implement the optimization mode in MATLAB and get the optimal control trajectory of the inverters.

  3. Analysis of labor employment assessment on production machine to minimize time production

    NASA Astrophysics Data System (ADS)

    Hernawati, Tri; Suliawati; Sari Gumay, Vita

    2018-03-01

    Every company both in the field of service and manufacturing always trying to pass efficiency of it’s resource use. One resource that has an important role is labor. Labor has different efficiency levels for different jobs anyway. Problems related to the optimal allocation of labor that has different levels of efficiency for different jobs are called assignment problems, which is a special case of linear programming. In this research, Analysis of Labor Employment Assesment on Production Machine to Minimize Time Production, in PT PDM is done by using Hungarian algorithm. The aim of the research is to get the assignment of optimal labor on production machine to minimize time production. The results showed that the assignment of existing labor is not suitable because the time of completion of the assignment is longer than the assignment by using the Hungarian algorithm. By applying the Hungarian algorithm obtained time savings of 16%.

  4. Scheduling IT Staff at a Bank: A Mathematical Programming Approach

    PubMed Central

    Labidi, M.; Mrad, M.; Gharbi, A.; Louly, M. A.

    2014-01-01

    We address a real-world optimization problem: the scheduling of a Bank Information Technologies (IT) staff. This problem can be defined as the process of constructing optimized work schedules for staff. In a general sense, it requires the allocation of suitably qualified staff to specific shifts to meet the demands for services of an organization while observing workplace regulations and attempting to satisfy individual work preferences. A monthly shift schedule is prepared to determine the shift duties of each staff considering shift coverage requirements, seniority-based workload rules, and staff work preferences. Due to the large number of conflicting constraints, a multiobjective programming model has been proposed to automate the schedule generation process. The suggested mathematical model has been implemented using Lingo software. The results indicate that high quality solutions can be obtained within a few seconds compared to the manually prepared schedules. PMID:24772032

  5. Scheduling IT staff at a bank: a mathematical programming approach.

    PubMed

    Labidi, M; Mrad, M; Gharbi, A; Louly, M A

    2014-01-01

    We address a real-world optimization problem: the scheduling of a Bank Information Technologies (IT) staff. This problem can be defined as the process of constructing optimized work schedules for staff. In a general sense, it requires the allocation of suitably qualified staff to specific shifts to meet the demands for services of an organization while observing workplace regulations and attempting to satisfy individual work preferences. A monthly shift schedule is prepared to determine the shift duties of each staff considering shift coverage requirements, seniority-based workload rules, and staff work preferences. Due to the large number of conflicting constraints, a multiobjective programming model has been proposed to automate the schedule generation process. The suggested mathematical model has been implemented using Lingo software. The results indicate that high quality solutions can be obtained within a few seconds compared to the manually prepared schedules.

  6. A cooperative game theory approach to transmission planning in power systems

    NASA Astrophysics Data System (ADS)

    Contreras, Javier

    The rapid restructuring of the electric power industry from a vertically integrated entity into a decentralized industry has given rise to complex problems. In particular, the transmission component of the electric power system requires new methodologies to fully capture this emerging competitive industry. Game theory models are used to model strategic interactions in a competitive environment. This thesis presents a new decentralized framework to study the transmission network expansion problem using cooperative game theory. First, the players and the rules of the game are defined. Second, a coalition formation scheme is developed. Finally, the optimized cost of expansion is allocated based on the history of the coalition formation.

  7. Optimal routing and buffer allocation for a class of finite capacity queueing systems

    NASA Technical Reports Server (NTRS)

    Towsley, Don; Sparaggis, Panayotis D.; Cassandras, Christos G.

    1992-01-01

    The problem of routing jobs to K parallel queues with identical exponential servers and unequal finite buffer capacities is considered. Routing decisions are taken by a controller which has buffering space available to it and may delay routing of a customer to a queue. Using ideas from weak majorization, it is shown that the shorter nonfull queue delayed (SNQD) policy minimizes both the total number of customers in the system at any time and the number of customers that are rejected by that time. The SNQD policy always delays routing decisions as long as all servers are busy. Only when all the buffers at the controller are occupied is a customer routed to the queue with the shortest queue length that is not at capacity. Moreover, it is shown that, if a fixed number of buffers is to be distributed among the K queues, then the optimal allocation scheme is the one in which the difference between the maximum and minimum queue capacities is minimized, i.e., becomes either 0 or 1.

  8. Integer-Linear-Programing Optimization in Scalable Video Multicast with Adaptive Modulation and Coding in Wireless Networks

    PubMed Central

    Lee, Chaewoo

    2014-01-01

    The advancement in wideband wireless network supports real time services such as IPTV and live video streaming. However, because of the sharing nature of the wireless medium, efficient resource allocation has been studied to achieve a high level of acceptability and proliferation of wireless multimedia. Scalable video coding (SVC) with adaptive modulation and coding (AMC) provides an excellent solution for wireless video streaming. By assigning different modulation and coding schemes (MCSs) to video layers, SVC can provide good video quality to users in good channel conditions and also basic video quality to users in bad channel conditions. For optimal resource allocation, a key issue in applying SVC in the wireless multicast service is how to assign MCSs and the time resources to each SVC layer in the heterogeneous channel condition. We formulate this problem with integer linear programming (ILP) and provide numerical results to show the performance under 802.16 m environment. The result shows that our methodology enhances the overall system throughput compared to an existing algorithm. PMID:25276862

  9. KARMA: the observation preparation tool for KMOS

    NASA Astrophysics Data System (ADS)

    Wegner, Michael; Muschielok, Bernard

    2008-08-01

    KMOS is a multi-object integral field spectrometer working in the near infrared which is currently being built for the ESO VLT by a consortium of UK and German institutes. It is capable of selecting up to 24 target fields for integral field spectroscopy simultaneously by means of 24 robotic pick-off arms. For the preparation of observations with KMOS a dedicated preparation tool KARMA ("KMOS Arm Allocator") will be provided which optimizes the assignment of targets to these arms automatically, thereby taking target priorities and several mechanical and optical constraints into account. For this purpose two efficient algorithms, both being able to cope with the underlying optimization problem in a different way, were developed. We present the concept and architecture of KARMA in general and the optimization algorithms in detail.

  10. Generalized networking engineering: optimal pricing and routing in multiservice networks

    NASA Astrophysics Data System (ADS)

    Mitra, Debasis; Wang, Qiong

    2002-07-01

    One of the functions of network engineering is to allocate resources optimally to forecasted demand. We generalize the mechanism by incorporating price-demand relationships into the problem formulation, and optimizing pricing and routing jointly to maximize total revenue. We consider a network, with fixed topology and link bandwidths, that offers multiple services, such as voice and data, each having characteristic price elasticity of demand, and quality of service and policy requirements on routing. Prices, which depend on service type and origin-destination, determine demands, that are routed, subject to their constraints, so as to maximize revenue. We study the basic properties of the optimal solution and prove that link shadow costs provide the basis for both optimal prices and optimal routing policies. We investigate the impact of input parameters, such as link capacities and price elasticities, on prices, demand growth, and routing policies. Asymptotic analyses, in which network bandwidth is scaled to grow, give results that are noteworthy for their qualitative insights. Several numerical examples illustrate the analyses.

  11. A modular approach to large-scale design optimization of aerospace systems

    NASA Astrophysics Data System (ADS)

    Hwang, John T.

    Gradient-based optimization and the adjoint method form a synergistic combination that enables the efficient solution of large-scale optimization problems. Though the gradient-based approach struggles with non-smooth or multi-modal problems, the capability to efficiently optimize up to tens of thousands of design variables provides a valuable design tool for exploring complex tradeoffs and finding unintuitive designs. However, the widespread adoption of gradient-based optimization is limited by the implementation challenges for computing derivatives efficiently and accurately, particularly in multidisciplinary and shape design problems. This thesis addresses these difficulties in two ways. First, to deal with the heterogeneity and integration challenges of multidisciplinary problems, this thesis presents a computational modeling framework that solves multidisciplinary systems and computes their derivatives in a semi-automated fashion. This framework is built upon a new mathematical formulation developed in this thesis that expresses any computational model as a system of algebraic equations and unifies all methods for computing derivatives using a single equation. The framework is applied to two engineering problems: the optimization of a nanosatellite with 7 disciplines and over 25,000 design variables; and simultaneous allocation and mission optimization for commercial aircraft involving 330 design variables, 12 of which are integer variables handled using the branch-and-bound method. In both cases, the framework makes large-scale optimization possible by reducing the implementation effort and code complexity. The second half of this thesis presents a differentiable parametrization of aircraft geometries and structures for high-fidelity shape optimization. Existing geometry parametrizations are not differentiable, or they are limited in the types of shape changes they allow. This is addressed by a novel parametrization that smoothly interpolates aircraft components, providing differentiability. An unstructured quadrilateral mesh generation algorithm is also developed to automate the creation of detailed meshes for aircraft structures, and a mesh convergence study is performed to verify that the quality of the mesh is maintained as it is refined. As a demonstration, high-fidelity aerostructural analysis is performed for two unconventional configurations with detailed structures included, and aerodynamic shape optimization is applied to the truss-braced wing, which finds and eliminates a shock in the region bounded by the struts and the wing.

  12. Application of Hybrid Optimization-Expert System for Optimal Power Management on Board Space Power Station

    NASA Technical Reports Server (NTRS)

    Momoh, James; Chattopadhyay, Deb; Basheer, Omar Ali AL

    1996-01-01

    The space power system has two sources of energy: photo-voltaic blankets and batteries. The optimal power management problem on-board has two broad operations: off-line power scheduling to determine the load allocation schedule of the next several hours based on the forecast of load and solar power availability. The nature of this study puts less emphasis on speed requirement for computation and more importance on the optimality of the solution. The second category problem, on-line power rescheduling, is needed in the event of occurrence of a contingency to optimally reschedule the loads to minimize the 'unused' or 'wasted' energy while keeping the priority on certain type of load and minimum disturbance of the original optimal schedule determined in the first-stage off-line study. The computational performance of the on-line 'rescheduler' is an important criterion and plays a critical role in the selection of the appropriate tool. The Howard University Center for Energy Systems and Control has developed a hybrid optimization-expert systems based power management program. The pre-scheduler has been developed using a non-linear multi-objective optimization technique called the Outer Approximation method and implemented using the General Algebraic Modeling System (GAMS). The optimization model has the capability of dealing with multiple conflicting objectives viz. maximizing energy utilization, minimizing the variation of load over a day, etc. and incorporates several complex interaction between the loads in a space system. The rescheduling is performed using an expert system developed in PROLOG which utilizes a rule-base for reallocation of the loads in an emergency condition viz. shortage of power due to solar array failure, increase of base load, addition of new activity, repetition of old activity etc. Both the modules handle decision making on battery charging and discharging and allocation of loads over a time-horizon of a day divided into intervals of 10 minutes. The models have been extensively tested using a case study for the Space Station Freedom and the results for the case study will be presented. Several future enhancements of the pre-scheduler and the 'rescheduler' have been outlined which include graphic analyzer for the on-line module, incorporating probabilistic considerations, including spatial location of the loads and the connectivity using a direct current (DC) load flow model.

  13. Successive equimarginal approach for optimal design of a pump and treat system

    NASA Astrophysics Data System (ADS)

    Guo, Xiaoniu; Zhang, Chuan-Mian; Borthwick, John C.

    2007-08-01

    An economic concept-based optimization method is developed for groundwater remediation design. Design of a pump and treat (P&T) system is viewed as a resource allocation problem constrained by specified cleanup criteria. An optimal allocation of resources requires that the equimarginal principle, a fundamental economic principle, must hold. The proposed method is named successive equimarginal approach (SEA), which continuously shifts a pumping rate from a less effective well to a more effective one until equal marginal productivity for all units is reached. Through the successive process, the solution evenly approaches the multiple inequality constraints that represent the specified cleanup criteria in space and in time. The goal is to design an equal protection system so that the distributed contaminant plumes can be equally contained without bypass and overprotection is minimized. SEA is a hybrid of the gradient-based method and the deterministic heuristics-based method, which allows flexibility in dealing with multiple inequality constraints without using a penalty function and in balancing computational efficiency with robustness. This method was applied to design a large-scale P&T system for containment of multiple plumes at the former Blaine Naval Ammunition Depot (NAD) site, near Hastings, Nebraska. To evaluate this method, the SEA results were also compared with those using genetic algorithms.

  14. Optimized coordination of brakes and active steering for a 4WS passenger car.

    PubMed

    Tavasoli, Ali; Naraghi, Mahyar; Shakeri, Heman

    2012-09-01

    Optimum coordination of individual brakes and front/rear steering subsystems is presented. The integrated control strategy consists of three modules. A coordinated high-level control determines the body forces/moment required to achieve vehicle motion objectives. The body forces/moment are allocated to braking and steering subsystems through an intermediate unit, which integrates available subsystems based on phase plane notion in an optimal manner. To this end, an optimization problem including several equality and inequality constraints is defined and solved analytically, such that a real-time implementation can be realized without the use of numeric optimization software. A low-level slip-ratio controller works to generate the desired longitudinal forces at small longitudinal slip-ratios, while averting wheel locking at large slip-ratios. The efficiency of the suggested approach is demonstrated through computer simulations. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Research on air and missile defense task allocation based on extended contract net protocol

    NASA Astrophysics Data System (ADS)

    Zhang, Yunzhi; Wang, Gang

    2017-10-01

    Based on the background of air and missile defense distributed element corporative engagement, the interception task allocation problem of multiple weapon units with multiple targets under network condition is analyzed. Firstly, a mathematical model of task allocation is established by combat task decomposition. Secondly, the initialization assignment based on auction contract and the adjustment allocation scheme based on swap contract were introduced to the task allocation. Finally, through the simulation calculation of typical situation, the model can be used to solve the task allocation problem in complex combat environment.

  16. Inverse problem and variation method to optimize cascade heat exchange network in central heating system

    NASA Astrophysics Data System (ADS)

    Zhang, Yin; Wei, Zhiyuan; Zhang, Yinping; Wang, Xin

    2017-12-01

    Urban heating in northern China accounts for 40% of total building energy usage. In central heating systems, heat is often transferred from heat source to users by the heat network where several heat exchangers are installed at heat source, substations and terminals respectively. For given overall heating capacity and heat source temperature, increasing the terminal fluid temperature is an effective way to improve the thermal performance of such cascade heat exchange network for energy saving. In this paper, the mathematical optimization model of the cascade heat exchange network with three-stage heat exchangers in series is established. Aim at maximizing the cold fluid temperature for given hot fluid temperature and overall heating capacity, the optimal heat exchange area distribution and the medium fluids' flow rates are determined through inverse problem and variation method. The preliminary results show that the heat exchange areas should be distributed equally for each heat exchanger. It also indicates that in order to improve the thermal performance of the whole system, more heat exchange areas should be allocated to the heat exchanger where flow rate difference between two fluids is relatively small. This work is important for guiding the optimization design of practical cascade heating systems.

  17. Resource Allocation and Cross Layer Control in Wireless Networks

    DTIC Science & Technology

    2006-08-25

    arrival rates lies within the capacity region of the network. The notion of controlling the system to maximize its stability region and the following...optimization problem (4.5) that must be solved at the beginning of 48 Dynamic Control for Network Stability each time slot requires in general knowledge...Dynamic Control for Network Stability ~ (c) ab (t) those of any other feasible algorithm, then for any time t 0; X ic U (c) i (t) "X b ~ (c) ab (t) X

  18. Stochastic resource allocation in emergency departments with a multi-objective simulation optimization algorithm.

    PubMed

    Feng, Yen-Yi; Wu, I-Chin; Chen, Tzu-Li

    2017-03-01

    The number of emergency cases or emergency room visits rapidly increases annually, thus leading to an imbalance in supply and demand and to the long-term overcrowding of hospital emergency departments (EDs). However, current solutions to increase medical resources and improve the handling of patient needs are either impractical or infeasible in the Taiwanese environment. Therefore, EDs must optimize resource allocation given limited medical resources to minimize the average length of stay of patients and medical resource waste costs. This study constructs a multi-objective mathematical model for medical resource allocation in EDs in accordance with emergency flow or procedure. The proposed mathematical model is complex and difficult to solve because its performance value is stochastic; furthermore, the model considers both objectives simultaneously. Thus, this study develops a multi-objective simulation optimization algorithm by integrating a non-dominated sorting genetic algorithm II (NSGA II) with multi-objective computing budget allocation (MOCBA) to address the challenges of multi-objective medical resource allocation. NSGA II is used to investigate plausible solutions for medical resource allocation, and MOCBA identifies effective sets of feasible Pareto (non-dominated) medical resource allocation solutions in addition to effectively allocating simulation or computation budgets. The discrete event simulation model of ED flow is inspired by a Taiwan hospital case and is constructed to estimate the expected performance values of each medical allocation solution as obtained through NSGA II. Finally, computational experiments are performed to verify the effectiveness and performance of the integrated NSGA II and MOCBA method, as well as to derive non-dominated medical resource allocation solutions from the algorithms.

  19. Optimal co-allocation of carbon and nitrogen in a forest stand at steady state

    Treesearch

    Annikki Makela; Harry T. Valentine; Helja-Sisko Helmisaari

    2008-01-01

    Nitrogen (N) is essential for plant production, but N uptake imposes carbon (C) costs through maintenance respiration and fine-root construction, suggesting that an optimal C:N balance can be found. Previous studies have elaborated this optimum under exponential growth; work on closed canopies has focused on foliage only. Here, the optimal co-allocation of C and N to...

  20. Initial Effects of Heavy Vehicle Trafficking on Vegetated Soils

    DTIC Science & Technology

    2012-08-01

    ER D C/ CR R EL T R -1 2 -6 Optimal Allocation of Land for Training and Non-training Uses ( OPAL ) Initial Effects of Heavy Vehicle...the outdoor loam test section. Optimal Allocation of Land for Training and Non-training Uses ( OPAL ) ERDC/CRREL TR-12-6 August 2012 Initial...mal Allocation of Land for Training and Non-Training Uses ( OPAL ) Pro- gram. The work was conducted by Nicole Buck and Sally Shoop of the Force

  1. Dynamic resource allocation in a hierarchical multiprocessor system: A preliminary study

    NASA Technical Reports Server (NTRS)

    Ngai, Tin-Fook

    1986-01-01

    An integrated system approach to dynamic resource allocation is proposed. Some of the problems in dynamic resource allocation and the relationship of these problems to system structures are examined. A general dynamic resource allocation scheme is presented. A hierarchial system architecture which dynamically maps between processor structure and programs at multiple levels of instantiations is described. Simulation experiments were conducted to study dynamic resource allocation on the proposed system. Preliminary evaluation based on simple dynamic resource allocation algorithms indicates that with the proposed system approach, the complexity of dynamic resource management could be significantly reduced while achieving reasonable effective dynamic resource allocation.

  2. A Real-Time Greedy-Index Dispatching Policy for using PEVs to Provide Frequency Regulation Service

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ke, Xinda; Wu, Di; Lu, Ning

    This article presents a real-time greedy-index dispatching policy (GIDP) for using plug-in electric vehicles (PEVs) to provide frequency regulation services. A new service cost allocation mechanism is proposed to award PEVs based on the amount of service they provided, while considering compensations for delayed-charging and reduction of battery lifetime due to participation of the service. The GIDP transforms the optimal dispatch problem from a high-dimensional space into a one-dimensional space while preserving the solution optimality. When solving the transformed problem in real-time, the global optimality of the GIDP solution can be guaranteed by mathematically proved “indexability”. Because the GIDP indexmore » can be calculated upon the PEV’s arrival and used for the entire decision making process till its departure, the computational burden is minimized and the complexity of the aggregator dispatch process is significantly reduced. Finally, simulation results are used to evaluate the proposed GIDP, and to demonstrate the potential profitability from providing frequency regulation service by using PEVs.« less

  3. Optimal control of vancomycin-resistant enterococci using preventive care and treatment of infections.

    PubMed

    Lowden, Jonathan; Miller Neilan, Rachael; Yahdi, Mohammed

    2014-03-01

    The rising prevalence of vancomycin-resistant enterococci (VRE) is a major health problem in intensive care units (ICU) because of its association with increased mortality and high health care costs. We present a mathematical framework for determining cost-effective strategies for prevention and treatment of VRE in the ICU. A system of five ordinary differential equations describes the movement of ICU patients in and out of five VRE-related states. Two control variables representing the prevention and treatment of VRE are incorporated into the system. The basic reproductive number is derived and calculated for different levels of the two controls. An optimal control problem is formulated to minimize VRE-related deaths and costs associated with prevention and treatment controls over a finite time period. Numerical solutions illustrate optimal single and dual allocations of the controls for various cost values. Results show that preventive care has the greatest impact in reducing the basic reproductive number, while treatment of VRE infections has the most impact on reducing VRE-related deaths. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. A Real-Time Greedy-Index Dispatching Policy for using PEVs to Provide Frequency Regulation Service

    DOE PAGES

    Ke, Xinda; Wu, Di; Lu, Ning

    2017-09-18

    This article presents a real-time greedy-index dispatching policy (GIDP) for using plug-in electric vehicles (PEVs) to provide frequency regulation services. A new service cost allocation mechanism is proposed to award PEVs based on the amount of service they provided, while considering compensations for delayed-charging and reduction of battery lifetime due to participation of the service. The GIDP transforms the optimal dispatch problem from a high-dimensional space into a one-dimensional space while preserving the solution optimality. When solving the transformed problem in real-time, the global optimality of the GIDP solution can be guaranteed by mathematically proved “indexability”. Because the GIDP indexmore » can be calculated upon the PEV’s arrival and used for the entire decision making process till its departure, the computational burden is minimized and the complexity of the aggregator dispatch process is significantly reduced. Finally, simulation results are used to evaluate the proposed GIDP, and to demonstrate the potential profitability from providing frequency regulation service by using PEVs.« less

  5. Cell transmission model of dynamic assignment for urban rail transit networks.

    PubMed

    Xu, Guangming; Zhao, Shuo; Shi, Feng; Zhang, Feilian

    2017-01-01

    For urban rail transit network, the space-time flow distribution can play an important role in evaluating and optimizing the space-time resource allocation. For obtaining the space-time flow distribution without the restriction of schedules, a dynamic assignment problem is proposed based on the concept of continuous transmission. To solve the dynamic assignment problem, the cell transmission model is built for urban rail transit networks. The priority principle, queuing process, capacity constraints and congestion effects are considered in the cell transmission mechanism. Then an efficient method is designed to solve the shortest path for an urban rail network, which decreases the computing cost for solving the cell transmission model. The instantaneous dynamic user optimal state can be reached with the method of successive average. Many evaluation indexes of passenger flow can be generated, to provide effective support for the optimization of train schedules and the capacity evaluation for urban rail transit network. Finally, the model and its potential application are demonstrated via two numerical experiments using a small-scale network and the Beijing Metro network.

  6. Scheduling Independent Partitions in Integrated Modular Avionics Systems

    PubMed Central

    Du, Chenglie; Han, Pengcheng

    2016-01-01

    Recently the integrated modular avionics (IMA) architecture has been widely adopted by the avionics industry due to its strong partition mechanism. Although the IMA architecture can achieve effective cost reduction and reliability enhancement in the development of avionics systems, it results in a complex allocation and scheduling problem. All partitions in an IMA system should be integrated together according to a proper schedule such that their deadlines will be met even under the worst case situations. In order to help provide a proper scheduling table for all partitions in IMA systems, we study the schedulability of independent partitions on a multiprocessor platform in this paper. We firstly present an exact formulation to calculate the maximum scaling factor and determine whether all partitions are schedulable on a limited number of processors. Then with a Game Theory analogy, we design an approximation algorithm to solve the scheduling problem of partitions, by allowing each partition to optimize its own schedule according to the allocations of the others. Finally, simulation experiments are conducted to show the efficiency and reliability of the approach proposed in terms of time consumption and acceptance ratio. PMID:27942013

  7. Optimizing Irrigation Water Allocation under Multiple Sources of Uncertainty in an Arid River Basin

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Tang, D.; Gao, H.; Ding, Y.

    2015-12-01

    Population growth and climate change add additional pressures affecting water resources management strategies for meeting demands from different economic sectors. It is especially challenging in arid regions where fresh water is limited. For instance, in the Tailanhe River Basin (Xinjiang, China), a compromise must be made between water suppliers and users during drought years. This study presents a multi-objective irrigation water allocation model to cope with water scarcity in arid river basins. To deal with the uncertainties from multiple sources in the water allocation system (e.g., variations of available water amount, crop yield, crop prices, and water price), the model employs a interval linear programming approach. The multi-objective optimization model developed from this study is characterized by integrating eco-system service theory into water-saving measures. For evaluation purposes, the model is used to construct an optimal allocation system for irrigation areas fed by the Tailan River (Xinjiang Province, China). The objective functions to be optimized are formulated based on these irrigation areas' economic, social, and ecological benefits. The optimal irrigation water allocation plans are made under different hydroclimate conditions (wet year, normal year, and dry year), with multiple sources of uncertainty represented. The modeling tool and results are valuable for advising decision making by the local water authority—and the agricultural community—especially on measures for coping with water scarcity (by incorporating uncertain factors associated with crop production planning).

  8. A novel approach to find and optimize bin locations and collection routes using a geographic information system.

    PubMed

    Erfani, Seyed Mohammad Hassan; Danesh, Shahnaz; Karrabi, Seyed Mohsen; Shad, Rouzbeh

    2017-07-01

    One of the major challenges in big cities is planning and implementation of an optimized, integrated solid waste management system. This optimization is crucial if environmental problems are to be prevented and the expenses to be reduced. A solid waste management system consists of many stages including collection, transfer and disposal. In this research, an integrated model was proposed and used to optimize two functional elements of municipal solid waste management (storage and collection systems) in the Ahmadabad neighbourhood located in the City of Mashhad - Iran. The integrated model was performed by modelling and solving the location allocation problem and capacitated vehicle routing problem (CVRP) through Geographic Information Systems (GIS). The results showed that the current collection system is not efficient owing to its incompatibility with the existing urban structure and population distribution. Application of the proposed model could significantly improve the storage and collection system. Based on the results of minimizing facilities analyses, scenarios with 100, 150 and 180 m walking distance were considered to find optimal bin locations for Alamdasht, C-metri and Koohsangi. The total number of daily collection tours was reduced to seven as compared to the eight tours carried out in the current system (12.50% reduction). In addition, the total number of required crews was minimized and reduced by 41.70% (24 crews in the current collection system vs 14 in the system provided by the model). The total collection vehicle routing was also optimized such that the total travelled distances during night and day working shifts was cut back by 53%.

  9. Optimal allocation of industrial PV-storage micro-grid considering important load

    NASA Astrophysics Data System (ADS)

    He, Shaohua; Ju, Rong; Yang, Yang; Xu, Shuai; Liang, Lei

    2018-03-01

    At present, the industrial PV-storage micro-grid has been widely used. This paper presents an optimal allocation model of PV-storage micro-grid capacity considering the important load of industrial users. A multi-objective optimization model is established to promote the local extinction of PV power generation and the maximum investment income of the enterprise as the objective function. Particle swarm optimization (PSO) is used to solve the case of a city in Jiangsu Province, the results are analyzed economically.

  10. Bigger testes increase paternity in a simultaneous hermaphrodite, independently of the sperm competition level.

    PubMed

    Vellnow, N; Marie-Orleach, L; Zadesenets, K S; Schärer, L

    2018-02-01

    Hermaphroditic animals face the fundamental evolutionary optimization problem of allocating their resources to their male vs. female reproductive function (e.g. testes and sperm vs. ovaries and eggs), and this optimal sex allocation can be affected by both pre- and post-copulatory sexual selection. For example, local sperm competition (LSC) - the competition between related sperm for the fertilization of a partner's ova - occurs in small mating groups and can favour a female-biased sex allocation, because, under LSC, investment into sperm production is predicted to show diminishing fitness returns. Here, we test whether higher testis investment increases an individual's paternity success under sperm competition, and whether the strength of this effect diminishes when LSC is stronger, as predicted by sex allocation theory. We created two subsets of individuals of the simultaneously hermaphroditic flatworm Macrostomum lignano - by sampling worms from either the highest or lowest quartile of the testis investment distribution - and estimated their paternity success in group sizes of either three (strong LSC) or eight individuals (weak LSC). Specifically, using transgenic focal individuals expressing a dominant green-fluorescent protein marker, we showed that worms with high testis investment sired 22% more offspring relative to those with low investment, corroborating previous findings in M. lignano and other species. However, the strength of this effect was not significantly modulated by the experienced group size, contrasting theoretical expectations of more strongly diminishing fitness returns under strong LSC. We discuss the possible implications for the evolutionary maintenance of hermaphroditism in M. lignano. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  11. A Simplified GCS-DCSK Modulation and Its Performance Optimization

    NASA Astrophysics Data System (ADS)

    Xu, Weikai; Wang, Lin; Chi, Chong-Yung

    2016-12-01

    In this paper, a simplified Generalized Code-Shifted Differential Chaos Shift Keying (GCS-DCSK) whose transmitter never needs any delay circuits, is proposed. However, its performance is deteriorated because the orthogonality between substreams cannot be guaranteed. In order to optimize its performance, the system model of the proposed GCS-DCSK with power allocations on substreams is presented. An approximate bit error rate (BER) expression of the proposed model, which is a function of substreams’ power, is derived using Gaussian Approximation. Based on the BER expression, an optimal power allocation strategy between information substreams and reference substream is obtained. Simulation results show that the BER performance of the proposed GCS-DCSK with the optimal power allocation can be significantly improved when the number of substreams M is large.

  12. Power Allocation and Outage Probability Analysis for SDN-based Radio Access Networks

    NASA Astrophysics Data System (ADS)

    Zhao, Yongxu; Chen, Yueyun; Mai, Zhiyuan

    2018-01-01

    In this paper, performance of Access network Architecture based SDN (Software Defined Network) is analyzed with respect to the power allocation issue. A power allocation scheme PSO-PA (Particle Swarm Optimization-power allocation) algorithm is proposed, the proposed scheme is subjected to constant total power with the objective of minimizing system outage probability. The entire access network resource configuration is controlled by the SDN controller, then it sends the optimized power distribution factor to the base station source node (SN) and the relay node (RN). Simulation results show that the proposed scheme reduces the system outage probability at a low complexity.

  13. Robust attitude control design for spacecraft under assigned velocity and control constraints.

    PubMed

    Hu, Qinglei; Li, Bo; Zhang, Youmin

    2013-07-01

    A novel robust nonlinear control design under the constraints of assigned velocity and actuator torque is investigated for attitude stabilization of a rigid spacecraft. More specifically, a nonlinear feedback control is firstly developed by explicitly taking into account the constraints on individual angular velocity components as well as external disturbances. Considering further the actuator misalignments and magnitude deviation, a modified robust least-squares based control allocator is employed to deal with the problem of distributing the previously designed three-axis moments over the available actuators, in which the focus of this control allocation is to find the optimal control vector of actuators by minimizing the worst-case residual error using programming algorithms. The attitude control performance using the controller structure is evaluated through a numerical example. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Design and implementation of intelligent electronic warfare decision making algorithm

    NASA Astrophysics Data System (ADS)

    Peng, Hsin-Hsien; Chen, Chang-Kuo; Hsueh, Chi-Shun

    2017-05-01

    Electromagnetic signals and the requirements of timely response have been a rapid growth in modern electronic warfare. Although jammers are limited resources, it is possible to achieve the best electronic warfare efficiency by tactical decisions. This paper proposes the intelligent electronic warfare decision support system. In this work, we develop a novel hybrid algorithm, Digital Pheromone Particle Swarm Optimization, based on Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO) and Shuffled Frog Leaping Algorithm (SFLA). We use PSO to solve the problem and combine the concept of pheromones in ACO to accumulate more useful information in spatial solving process and speed up finding the optimal solution. The proposed algorithm finds the optimal solution in reasonable computation time by using the method of matrix conversion in SFLA. The results indicated that jammer allocation was more effective. The system based on the hybrid algorithm provides electronic warfare commanders with critical information to assist commanders in effectively managing the complex electromagnetic battlefield.

  15. Graph Design via Convex Optimization: Online and Distributed Perspectives

    NASA Astrophysics Data System (ADS)

    Meng, De

    Network and graph have long been natural abstraction of relations in a variety of applications, e.g. transportation, power system, social network, communication, electrical circuit, etc. As a large number of computation and optimization problems are naturally defined on graphs, graph structures not only enable important properties of these problems, but also leads to highly efficient distributed and online algorithms. For example, graph separability enables the parallelism for computation and operation as well as limits the size of local problems. More interestingly, graphs can be defined and constructed in order to take best advantage of those problem properties. This dissertation focuses on graph structure and design in newly proposed optimization problems, which establish a bridge between graph properties and optimization problem properties. We first study a new optimization problem called Geodesic Distance Maximization Problem (GDMP). Given a graph with fixed edge weights, finding the shortest path, also known as the geodesic, between two nodes is a well-studied network flow problem. We introduce the Geodesic Distance Maximization Problem (GDMP): the problem of finding the edge weights that maximize the length of the geodesic subject to convex constraints on the weights. We show that GDMP is a convex optimization problem for a wide class of flow costs, and provide a physical interpretation using the dual. We present applications of the GDMP in various fields, including optical lens design, network interdiction, and resource allocation in the control of forest fires. We develop an Alternating Direction Method of Multipliers (ADMM) by exploiting specific problem structures to solve large-scale GDMP, and demonstrate its effectiveness in numerical examples. We then turn our attention to distributed optimization on graph with only local communication. Distributed optimization arises in a variety of applications, e.g. distributed tracking and localization, estimation problems in sensor networks, multi-agent coordination. Distributed optimization aims to optimize a global objective function formed by summation of coupled local functions over a graph via only local communication and computation. We developed a weighted proximal ADMM for distributed optimization using graph structure. This fully distributed, single-loop algorithm allows simultaneous updates and can be viewed as a generalization of existing algorithms. More importantly, we achieve faster convergence by jointly designing graph weights and algorithm parameters. Finally, we propose a new problem on networks called Online Network Formation Problem: starting with a base graph and a set of candidate edges, at each round of the game, player one first chooses a candidate edge and reveals it to player two, then player two decides whether to accept it; player two can only accept limited number of edges and make online decisions with the goal to achieve the best properties of the synthesized network. The network properties considered include the number of spanning trees, algebraic connectivity and total effective resistance. These network formation games arise in a variety of cooperative multiagent systems. We propose a primal-dual algorithm framework for the general online network formation game, and analyze the algorithm performance by the competitive ratio and regret.

  16. Optimal sampling and quantization of synthetic aperture radar signals

    NASA Technical Reports Server (NTRS)

    Wu, C.

    1978-01-01

    Some theoretical and experimental results on optimal sampling and quantization of synthetic aperture radar (SAR) signals are presented. It includes a description of a derived theoretical relationship between the pixel signal to noise ratio of processed SAR images and the number of quantization bits per sampled signal, assuming homogeneous extended targets. With this relationship known, a solution may be realized for the problem of optimal allocation of a fixed data bit-volume (for specified surface area and resolution criterion) between the number of samples and the number of bits per sample. The results indicate that to achieve the best possible image quality for a fixed bit rate and a given resolution criterion, one should quantize individual samples coarsely and thereby maximize the number of multiple looks. The theoretical results are then compared with simulation results obtained by processing aircraft SAR data.

  17. Optimal allocation of bulk water supplies to competing use sectors based on economic criterion - An application to the Chao Phraya River Basin, Thailand

    NASA Astrophysics Data System (ADS)

    Divakar, L.; Babel, M. S.; Perret, S. R.; Gupta, A. Das

    2011-04-01

    SummaryThe study develops a model for optimal bulk allocations of limited available water based on an economic criterion to competing use sectors such as agriculture, domestic, industry and hydropower. The model comprises a reservoir operation module (ROM) and a water allocation module (WAM). ROM determines the amount of water available for allocation, which is used as an input to WAM with an objective function to maximize the net economic benefits of bulk allocations to different use sectors. The total net benefit functions for agriculture and hydropower sectors and the marginal net benefit from domestic and industrial sectors are established and are categorically taken as fixed in the present study. The developed model is applied to the Chao Phraya basin in Thailand. The case study results indicate that the WAM can improve net economic returns compared to the current water allocation practices.

  18. Advances in liver transplantation allocation systems.

    PubMed

    Schilsky, Michael L; Moini, Maryam

    2016-03-14

    With the growing number of patients in need of liver transplantation, there is a need for adopting new and modifying existing allocation policies that prioritize patients for liver transplantation. Policy should ensure fair allocation that is reproducible and strongly predictive of best pre and post transplant outcomes while taking into account the natural history of the potential recipients liver disease and its complications. There is wide acceptance for allocation policies based on urgency in which the sickest patients on the waiting list with the highest risk of mortality receive priority. Model for end-stage liver disease and Child-Turcotte-Pugh scoring system, the two most universally applicable systems are used in urgency-based prioritization. However, other factors must be considered to achieve optimal allocation. Factors affecting pre-transplant patient survival and the quality of the donor organ also affect outcome. The optimal system should have allocation prioritization that accounts for both urgency and transplant outcome. We reviewed past and current liver allocation systems with the aim of generating further discussion about improvement of current policies.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Canavan, G.H.

    Optimizations of missile allocation based on linearized exchange equations produce accurate allocations, but the limits of validity of the linearization are not known. These limits are explored in the context of the upload of weapons by one side to initially small, equal forces of vulnerable and survivable weapons. The analysis compares analytic and numerical optimizations and stability induces based on aggregated interactions of the two missile forces, the first and second strikes they could deliver, and they resulting costs. This note discusses the costs and stability indices induced by unilateral uploading of weapons to an initially symmetrical low force configuration.more » These limits are quantified for forces with a few hundred missiles by comparing analytic and numerical optimizations of first strike costs. For forces of 100 vulnerable and 100 survivable missiles on each side, the analytic optimization agrees closely with the numerical solution. For 200 vulnerable and 200 survivable missiles on each side, the analytic optimization agrees with the induces to within about 10%, but disagrees with the allocation of the side with more weapons by about 50%. The disagreement comes from the interaction of the possession of more weapons with the shift of allocation from missiles to value that they induce.« less

  20. Development of Gis Tool for the Solution of Minimum Spanning Tree Problem using Prim's Algorithm

    NASA Astrophysics Data System (ADS)

    Dutta, S.; Patra, D.; Shankar, H.; Alok Verma, P.

    2014-11-01

    minimum spanning tree (MST) of a connected, undirected and weighted network is a tree of that network consisting of all its nodes and the sum of weights of all its edges is minimum among all such possible spanning trees of the same network. In this study, we have developed a new GIS tool using most commonly known rudimentary algorithm called Prim's algorithm to construct the minimum spanning tree of a connected, undirected and weighted road network. This algorithm is based on the weight (adjacency) matrix of a weighted network and helps to solve complex network MST problem easily, efficiently and effectively. The selection of the appropriate algorithm is very essential otherwise it will be very hard to get an optimal result. In case of Road Transportation Network, it is very essential to find the optimal results by considering all the necessary points based on cost factor (time or distance). This paper is based on solving the Minimum Spanning Tree (MST) problem of a road network by finding it's minimum span by considering all the important network junction point. GIS technology is usually used to solve the network related problems like the optimal path problem, travelling salesman problem, vehicle routing problems, location-allocation problems etc. Therefore, in this study we have developed a customized GIS tool using Python script in ArcGIS software for the solution of MST problem for a Road Transportation Network of Dehradun city by considering distance and time as the impedance (cost) factors. It has a number of advantages like the users do not need a greater knowledge of the subject as the tool is user-friendly and that allows to access information varied and adapted the needs of the users. This GIS tool for MST can be applied for a nationwide plan called Prime Minister Gram Sadak Yojana in India to provide optimal all weather road connectivity to unconnected villages (points). This tool is also useful for constructing highways or railways spanning several cities optimally or connecting all cities with minimum total road length.

  1. Multi-objective flexible job-shop scheduling problem using modified discrete particle swarm optimization.

    PubMed

    Huang, Song; Tian, Na; Wang, Yan; Ji, Zhicheng

    2016-01-01

    Taking resource allocation into account, flexible job shop problem (FJSP) is a class of complex scheduling problem in manufacturing system. In order to utilize the machine resources rationally, multi-objective particle swarm optimization (MOPSO) integrating with variable neighborhood search is introduced to address FJSP efficiently. Firstly, the assignment rules (AL) and dispatching rules (DR) are provided to initialize the population. And then special discrete operators are designed to produce new individuals and earliest completion machine (ECM) is adopted in the disturbance operator to escape the optima. Secondly, personal-best archives (cognitive memories) and global-best archive (social memory), which are updated by the predefined non-dominated archive update strategy, are simultaneously designed to preserve non-dominated individuals and select personal-best positions and the global-best position. Finally, three neighborhoods are provided to search the neighborhoods of global-best archive for enhancing local search ability. The proposed algorithm is evaluated by using Kacem instances and Brdata instances, and a comparison with other approaches shows the effectiveness of the proposed algorithm for FJSP.

  2. Ramsey waits: allocating public health service resources when there is rationing by waiting.

    PubMed

    Gravelle, Hugh; Siciliani, Luigi

    2008-09-01

    The optimal allocation of a public health care budget across treatments must take account of the way in which care is rationed within treatments since this will affect their marginal value. We investigate the optimal allocation rules for public health care systems where user charges are fixed and care is rationed by waiting. The optimal waiting time is higher for treatments with demands more elastic to waiting time, higher costs, lower charges, smaller marginal welfare loss from waiting by treated patients, and smaller marginal welfare losses from under-consumption of care. The results hold for a wide range of welfarist and non-welfarist objective functions and for systems in which there is also a private health care sector. They imply that allocation rules based purely on cost effectiveness ratios are suboptimal because they assume that there is no rationing within treatments.

  3. Sharing the Wealth: Factors Influencing Resource Allocation in the Sharing Game

    ERIC Educational Resources Information Center

    Fantino, Edmund; Kennelly, Arthur

    2009-01-01

    Students chose between two allocation options, one that gave the allocator more and another participant still more (the "optimal" choice) and one which gave the allocator less and the other participant still less (the "competitive" choice). In a within-subjects design, students' behavior patterns were significantly correlated across the two rounds…

  4. Aquatic habitat measurement and valuation: imputing social benefits to instream flow levels

    USGS Publications Warehouse

    Douglas, Aaron J.; Johnson, Richard L.

    1991-01-01

    Instream flow conflicts have been analysed from the perspectives offered by policy oriented applied (physical) science, theories of conflict resolution and negotiation strategy, and psychological analyses of the behavior patterns of the bargaining parties. Economics also offers some useful insights in analysing conflict resolution within the context of these water allocation problems. We attempt to analyse the economics of the bargaining process in conjunction with a discussion of the water allocation process. In particular, we examine in detail the relation between certain habitat estimation techniques, and the socially optimal allocation of non-market resources. The results developed here describe the welfare implications implicit in the contemporary general equilibrium analysis of a competitive market economy. We also review certain currently available techniques for assigning dollar values to the social benefits of instream flow. The limitations of non-market valuation techniques with respect to estimating the benefits provided by instream flows and the aquatic habitat contingent on these flows should not deter resource managers from using economic analysis as a basic tool for settling instream flow conflicts.

  5. An improved risk-explicit interval linear programming model for pollution load allocation for watershed management.

    PubMed

    Xia, Bisheng; Qian, Xin; Yao, Hong

    2017-11-01

    Although the risk-explicit interval linear programming (REILP) model has solved the problem of having interval solutions, it has an equity problem, which can lead to unbalanced allocation between different decision variables. Therefore, an improved REILP model is proposed. This model adds an equity objective function and three constraint conditions to overcome this equity problem. In this case, pollution reduction is in proportion to pollutant load, which supports balanced development between different regional economies. The model is used to solve the problem of pollution load allocation in a small transboundary watershed. Compared with the REILP original model result, our model achieves equity between the upstream and downstream pollutant loads; it also overcomes the problem of greatest pollution reduction, where sources are nearest to the control section. The model provides a better solution to the problem of pollution load allocation than previous versions.

  6. Wireless Power Transfer for Distributed Estimation in Sensor Networks

    NASA Astrophysics Data System (ADS)

    Mai, Vien V.; Shin, Won-Yong; Ishibashi, Koji

    2017-04-01

    This paper studies power allocation for distributed estimation of an unknown scalar random source in sensor networks with a multiple-antenna fusion center (FC), where wireless sensors are equipped with radio-frequency based energy harvesting technology. The sensors' observation is locally processed by using an uncoded amplify-and-forward scheme. The processed signals are then sent to the FC, and are coherently combined at the FC, at which the best linear unbiased estimator (BLUE) is adopted for reliable estimation. We aim to solve the following two power allocation problems: 1) minimizing distortion under various power constraints; and 2) minimizing total transmit power under distortion constraints, where the distortion is measured in terms of mean-squared error of the BLUE. Two iterative algorithms are developed to solve the non-convex problems, which converge at least to a local optimum. In particular, the above algorithms are designed to jointly optimize the amplification coefficients, energy beamforming, and receive filtering. For each problem, a suboptimal design, a single-antenna FC scenario, and a common harvester deployment for colocated sensors, are also studied. Using the powerful semidefinite relaxation framework, our result is shown to be valid for any number of sensors, each with different noise power, and for an arbitrarily number of antennas at the FC.

  7. Hybrid maize breeding with doubled haploids: I. One-stage versus two-stage selection for testcross performance.

    PubMed

    Longin, C Friedrich H; Utz, H Friedrich; Reif, Jochen C; Schipprack, Wolfgang; Melchinger, Albrecht E

    2006-03-01

    Optimum allocation of resources is of fundamental importance for the efficiency of breeding programs. The objectives of our study were to (1) determine the optimum allocation for the number of lines and test locations in hybrid maize breeding with doubled haploids (DHs) regarding two optimization criteria, the selection gain deltaG(k) and the probability P(k) of identifying superior genotypes, (2) compare both optimization criteria including their standard deviations (SDs), and (3) investigate the influence of production costs of DHs on the optimum allocation. For different budgets, number of finally selected lines, ratios of variance components, and production costs of DHs, the optimum allocation of test resources under one- and two-stage selection for testcross performance with a given tester was determined by using Monte Carlo simulations. In one-stage selection, lines are tested in field trials in a single year. In two-stage selection, optimum allocation of resources involves evaluation of (1) a large number of lines in a small number of test locations in the first year and (2) a small number of the selected superior lines in a large number of test locations in the second year, thereby maximizing both optimization criteria. Furthermore, to have a realistic chance of identifying a superior genotype, the probability P(k) of identifying superior genotypes should be greater than 75%. For budgets between 200 and 5,000 field plot equivalents, P(k) > 75% was reached only for genotypes belonging to the best 5% of the population. As the optimum allocation for P(k)(5%) was similar to that for deltaG(k), the choice of the optimization criterion was not crucial. The production costs of DHs had only a minor effect on the optimum number of locations and on values of the optimization criteria.

  8. Offspring Size and Reproductive Allocation in Harvester Ants.

    PubMed

    Wiernasz, Diane C; Cole, Blaine J

    2018-01-01

    A fundamental decision that an organism must make is how to allocate resources to offspring, with respect to both size and number. The two major theoretical approaches to this problem, optimal offspring size and optimistic brood size models, make different predictions that may be reconciled by including how offspring fitness is related to size. We extended the reasoning of Trivers and Willard (1973) to derive a general model of how parents should allocate additional resources with respect to the number of males and females produced, and among individuals of each sex, based on the fitness payoffs of each. We then predicted how harvester ant colonies should invest additional resources and tested three hypotheses derived from our model, using data from 3 years of food supplementation bracketed by 6 years without food addition. All major results were predicted by our model: food supplementation increased the number of reproductives produced. Male, but not female, size increased with food addition; the greatest increases in male size occurred in colonies that made small females. We discuss how use of a fitness landscape improves quantitative predictions about allocation decisions. When parents can invest differentially in offspring of different types, the best strategy will depend on parental state as well as the effect of investment on offspring fitness.

  9. Optimal allocation in annual plants and its implications for drought response

    NASA Astrophysics Data System (ADS)

    Caldararu, Silvia; Smith, Matthew; Purves, Drew

    2015-04-01

    The concept of plant optimality refers to the plastic behaviour of plants that results in lifetime and offspring fitness. Optimality concepts have been used in vegetation models for a variety of processes, including stomatal conductance, leaf phenology and biomass allocation. Including optimality in vegetation models has the advantages of creating process based models with a relatively low complexity in terms of parameter numbers but which are capable of reproducing complex plant behaviour. We present a general model of plant growth for annual plants based on the hypothesis that plants allocate biomass to aboveground and belowground vegetative organs in order to maintain an optimal C:N ratio. The model also represents reproductive growth through a second optimality criteria, which states that plants flower when they reach peak nitrogen uptake. We apply this model to wheat and maize crops at 15 locations corresponding to FLUXNET cropland sites. The model parameters are data constrained using a Bayesian fitting algorithm to eddy covariance data, satellite derived vegetation indices, specifically the MODIS fAPAR product and field level crop yield data. We use the model to simulate the plant drought response under the assumption of plant optimality and show that the plants maintain unstressed total biomass levels under drought for a reduction in precipitation of up to 40%. Beyond that level plant response stops being plastic and growth decreases sharply. This behaviour results simply from the optimal allocation criteria as the model includes no explicit drought sensitivity component. Models that use plant optimality concepts are a useful tool for simulation plant response to stress without the addition of artificial thresholds and parameters.

  10. PSOLA: A Heuristic Land-Use Allocation Model Using Patch-Level Operations and Knowledge-Informed Rules.

    PubMed

    Liu, Yaolin; Peng, Jinjin; Jiao, Limin; Liu, Yanfang

    2016-01-01

    Optimizing land-use allocation is important to regional sustainable development, as it promotes the social equality of public services, increases the economic benefits of land-use activities, and reduces the ecological risk of land-use planning. Most land-use optimization models allocate land-use using cell-level operations that fragment land-use patches. These models do not cooperate well with land-use planning knowledge, leading to irrational land-use patterns. This study focuses on building a heuristic land-use allocation model (PSOLA) using particle swarm optimization. The model allocates land-use with patch-level operations to avoid fragmentation. The patch-level operations include a patch-edge operator, a patch-size operator, and a patch-compactness operator that constrain the size and shape of land-use patches. The model is also integrated with knowledge-informed rules to provide auxiliary knowledge of land-use planning during optimization. The knowledge-informed rules consist of suitability, accessibility, land use policy, and stakeholders' preference. To validate the PSOLA model, a case study was performed in Gaoqiao Town in Zhejiang Province, China. The results demonstrate that the PSOLA model outperforms a basic PSO (Particle Swarm Optimization) in the terms of the social, economic, ecological, and overall benefits by 3.60%, 7.10%, 1.53% and 4.06%, respectively, which confirms the effectiveness of our improvements. Furthermore, the model has an open architecture, enabling its extension as a generic tool to support decision making in land-use planning.

  11. PSOLA: A Heuristic Land-Use Allocation Model Using Patch-Level Operations and Knowledge-Informed Rules

    PubMed Central

    Liu, Yaolin; Peng, Jinjin; Jiao, Limin; Liu, Yanfang

    2016-01-01

    Optimizing land-use allocation is important to regional sustainable development, as it promotes the social equality of public services, increases the economic benefits of land-use activities, and reduces the ecological risk of land-use planning. Most land-use optimization models allocate land-use using cell-level operations that fragment land-use patches. These models do not cooperate well with land-use planning knowledge, leading to irrational land-use patterns. This study focuses on building a heuristic land-use allocation model (PSOLA) using particle swarm optimization. The model allocates land-use with patch-level operations to avoid fragmentation. The patch-level operations include a patch-edge operator, a patch-size operator, and a patch-compactness operator that constrain the size and shape of land-use patches. The model is also integrated with knowledge-informed rules to provide auxiliary knowledge of land-use planning during optimization. The knowledge-informed rules consist of suitability, accessibility, land use policy, and stakeholders’ preference. To validate the PSOLA model, a case study was performed in Gaoqiao Town in Zhejiang Province, China. The results demonstrate that the PSOLA model outperforms a basic PSO (Particle Swarm Optimization) in the terms of the social, economic, ecological, and overall benefits by 3.60%, 7.10%, 1.53% and 4.06%, respectively, which confirms the effectiveness of our improvements. Furthermore, the model has an open architecture, enabling its extension as a generic tool to support decision making in land-use planning. PMID:27322619

  12. Optimal time--energy allocation and the evolution of colony demography among eusocial insects. [Polistes fuscatus, Vespa orientalis, ants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macevicz, S.C.

    1979-05-09

    This thesis attempts to explain the evolution of certain features of social insect colony population structure by the use of optimization models. Two areas are examined in detail. First, the optimal reproductive strategies of annual eusocial insects are considered. A model is constructed for the growth of workers and reproductives as a function of the resources allocated to each. Next the allocation schedule is computed which yields the maximum number of reproductives by season's end. The results indicate that if there is constant return to scale for allocated resources the optimal strategy is to invest in colony growth until approximatelymore » one generation before season's end, whereupon worker production ceases and reproductive effort is switched entirely to producing queens and males. Furthermore, the results indicate that if there is decreasing return to scale for allocated resources then simultaneous production of workers and reproductives is possible. The model is used to explain the colony demography of two species of wasp, Polistes fuscatus and Vespa orientalis. Colonies of these insects undergo a sudden switch from the production of workers to the production of reproductives. The second area examined concerns optimal forager size distributions for monomorphic ant colonies. A model is constructed that describes the colony's energetic profit as a function which depends on the size distribution of food resources as well as forager efficiency, metabolic costs, and manufacturing costs.« less

  13. A robust optimisation approach to the problem of supplier selection and allocation in outsourcing

    NASA Astrophysics Data System (ADS)

    Fu, Yelin; Keung Lai, Kin; Liang, Liang

    2016-03-01

    We formulate the supplier selection and allocation problem in outsourcing under an uncertain environment as a stochastic programming problem. Both the decision-maker's attitude towards risk and the penalty parameters for demand deviation are considered in the objective function. A service level agreement, upper bound for each selected supplier's allocation and the number of selected suppliers are considered as constraints. A novel robust optimisation approach is employed to solve this problem under different economic situations. Illustrative examples are presented with managerial implications highlighted to support decision-making.

  14. Differentiated protection services with failure probability guarantee for workflow-based applications

    NASA Astrophysics Data System (ADS)

    Zhong, Yaoquan; Guo, Wei; Jin, Yaohui; Sun, Weiqiang; Hu, Weisheng

    2010-12-01

    A cost-effective and service-differentiated provisioning strategy is very desirable to service providers so that they can offer users satisfactory services, while optimizing network resource allocation. Providing differentiated protection services to connections for surviving link failure has been extensively studied in recent years. However, the differentiated protection services for workflow-based applications, which consist of many interdependent tasks, have scarcely been studied. This paper investigates the problem of providing differentiated services for workflow-based applications in optical grid. In this paper, we develop three differentiated protection services provisioning strategies which can provide security level guarantee and network-resource optimization for workflow-based applications. The simulation demonstrates that these heuristic algorithms provide protection cost-effectively while satisfying the applications' failure probability requirements.

  15. Ensuring the Reliable Operation of the Power Grid: State-Based and Distributed Approaches to Scheduling Energy and Contingency Reserves

    NASA Astrophysics Data System (ADS)

    Prada, Jose Fernando

    Keeping a contingency reserve in power systems is necessary to preserve the security of real-time operations. This work studies two different approaches to the optimal allocation of energy and reserves in the day-ahead generation scheduling process. Part I presents a stochastic security-constrained unit commitment model to co-optimize energy and the locational reserves required to respond to a set of uncertain generation contingencies, using a novel state-based formulation. The model is applied in an offer-based electricity market to allocate contingency reserves throughout the power grid, in order to comply with the N-1 security criterion under transmission congestion. The objective is to minimize expected dispatch and reserve costs, together with post contingency corrective redispatch costs, modeling the probability of generation failure and associated post contingency states. The characteristics of the scheduling problem are exploited to formulate a computationally efficient method, consistent with established operational practices. We simulated the distribution of locational contingency reserves on the IEEE RTS96 system and compared the results with the conventional deterministic method. We found that assigning locational spinning reserves can guarantee an N-1 secure dispatch accounting for transmission congestion at a reasonable extra cost. The simulations also showed little value of allocating downward reserves but sizable operating savings from co-optimizing locational nonspinning reserves. Overall, the results indicate the computational tractability of the proposed method. Part II presents a distributed generation scheduling model to optimally allocate energy and spinning reserves among competing generators in a day-ahead market. The model is based on the coordination between individual generators and a market entity. The proposed method uses forecasting, augmented pricing and locational signals to induce efficient commitment of generators based on firm posted prices. It is price-based but does not rely on multiple iterations, minimizes information exchange and simplifies the market clearing process. Simulations of the distributed method performed on a six-bus test system showed that, using an appropriate set of prices, it is possible to emulate the results of a conventional centralized solution, without need of providing make-whole payments to generators. Likewise, they showed that the distributed method can accommodate transactions with different products and complex security constraints.

  16. Fault tolerance of artificial neural networks with applications in critical systems

    NASA Technical Reports Server (NTRS)

    Protzel, Peter W.; Palumbo, Daniel L.; Arras, Michael K.

    1992-01-01

    This paper investigates the fault tolerance characteristics of time continuous recurrent artificial neural networks (ANN) that can be used to solve optimization problems. The principle of operations and performance of these networks are first illustrated by using well-known model problems like the traveling salesman problem and the assignment problem. The ANNs are then subjected to 13 simultaneous 'stuck at 1' or 'stuck at 0' faults for network sizes of up to 900 'neurons'. The effects of these faults is demonstrated and the cause for the observed fault tolerance is discussed. An application is presented in which a network performs a critical task for a real-time distributed processing system by generating new task allocations during the reconfiguration of the system. The performance degradation of the ANN under the presence of faults is investigated by large-scale simulations, and the potential benefits of delegating a critical task to a fault tolerant network are discussed.

  17. A hybrid system dynamics and optimization approach for supporting sustainable water resources planning in Zhengzhou City, China

    NASA Astrophysics Data System (ADS)

    Li, Zhi; Li, Chunhui; Wang, Xuan; Peng, Cong; Cai, Yanpeng; Huang, Weichen

    2018-01-01

    Problems with water resources restrict the sustainable development of a city with water shortages. Based on system dynamics (SD) theory, a model of sustainable utilization of water resources using the STELLA software has been established. This model consists of four subsystems: population system, economic system, water supply system and water demand system. The boundaries of the four subsystems are vague, but they are closely related and interdependent. The model is applied to Zhengzhou City, China, which has a serious water shortage. The difference between the water supply and demand is very prominent in Zhengzhou City. The model was verified with data from 2009 to 2013. The results show that water demand of Zhengzhou City will reach 2.57 billion m3 in 2020. A water resources optimization model is developed based on interval-parameter two-stage stochastic programming. The objective of the model is to allocate water resources to each water sector and make the lowest cost under the minimum water demand. Using the simulation results, decision makers can easily weigh the costs of the system, the water allocation objectives, and the system risk. The hybrid system dynamics method and optimization model is a rational try to support water resources management in many cities, particularly for cities with potential water shortage and it is solidly supported with previous studies and collected data.

  18. Resource Allocation and Outpatient Appointment Scheduling Using Simulation Optimization

    PubMed Central

    Ling, Teresa Wai Ching; Yeung, Wing Kwan

    2017-01-01

    This paper studies the real-life problems of outpatient clinics having the multiple objectives of minimizing resource overtime, patient waiting time, and waiting area congestion. In the clinic, there are several patient classes, each of which follows different treatment procedure flow paths through a multiphase and multiserver queuing system with scarce staff and limited space. We incorporate the stochastic factors for the probabilities of the patients being diverted into different flow paths, patient punctuality, arrival times, procedure duration, and the number of accompanied visitors. We present a novel two-stage simulation-based heuristic algorithm to assess various tactical and operational decisions for optimizing the multiple objectives. In stage I, we search for a resource allocation plan, and in stage II, we determine a block appointment schedule by patient class and a service discipline for the daily operational level. We also explore the effects of the separate strategies and their integration to identify the best possible combination. The computational experiments are designed on the basis of data from a study of an ophthalmology clinic in a public hospital. Results show that our approach significantly mitigates the undesirable outcomes by integrating the strategies and increasing the resource flexibility at the bottleneck procedures without adding resources. PMID:29104748

  19. Resource Allocation and Outpatient Appointment Scheduling Using Simulation Optimization.

    PubMed

    Lin, Carrie Ka Yuk; Ling, Teresa Wai Ching; Yeung, Wing Kwan

    2017-01-01

    This paper studies the real-life problems of outpatient clinics having the multiple objectives of minimizing resource overtime, patient waiting time, and waiting area congestion. In the clinic, there are several patient classes, each of which follows different treatment procedure flow paths through a multiphase and multiserver queuing system with scarce staff and limited space. We incorporate the stochastic factors for the probabilities of the patients being diverted into different flow paths, patient punctuality, arrival times, procedure duration, and the number of accompanied visitors. We present a novel two-stage simulation-based heuristic algorithm to assess various tactical and operational decisions for optimizing the multiple objectives. In stage I, we search for a resource allocation plan, and in stage II, we determine a block appointment schedule by patient class and a service discipline for the daily operational level. We also explore the effects of the separate strategies and their integration to identify the best possible combination. The computational experiments are designed on the basis of data from a study of an ophthalmology clinic in a public hospital. Results show that our approach significantly mitigates the undesirable outcomes by integrating the strategies and increasing the resource flexibility at the bottleneck procedures without adding resources.

  20. A set partitioning reformulation for the multiple-choice multidimensional knapsack problem

    NASA Astrophysics Data System (ADS)

    Voß, Stefan; Lalla-Ruiz, Eduardo

    2016-05-01

    The Multiple-choice Multidimensional Knapsack Problem (MMKP) is a well-known ?-hard combinatorial optimization problem that has received a lot of attention from the research community as it can be easily translated to several real-world problems arising in areas such as allocating resources, reliability engineering, cognitive radio networks, cloud computing, etc. In this regard, an exact model that is able to provide high-quality feasible solutions for solving it or being partially included in algorithmic schemes is desirable. The MMKP basically consists of finding a subset of objects that maximizes the total profit while observing some capacity restrictions. In this article a reformulation of the MMKP as a set partitioning problem is proposed to allow for new insights into modelling the MMKP. The computational experimentation provides new insights into the problem itself and shows that the new model is able to improve on the best of the known results for some of the most common benchmark instances.

  1. Flexible operation strategy for environment control system in abnormal supply power condition

    NASA Astrophysics Data System (ADS)

    Liping, Pang; Guoxiang, Li; Hongquan, Qu; Yufeng, Fang

    2017-04-01

    This paper establishes an optimization method that can be applied to the flexible operation of the environment control system in an abnormal supply power condition. A proposed conception of lifespan is used to evaluate the depletion time of the non-regenerative substance. The optimization objective function is to maximize the lifespans. The optimization variables are the allocated powers of subsystems. The improved Non-dominated Sorting Genetic Algorithm is adopted to obtain the pareto optimization frontier with the constraints of the cabin environmental parameters and the adjustable operating parameters of the subsystems. Based on the same importance of objective functions, the preferred power allocation of subsystems can be optimized. Then the corresponding running parameters of subsystems can be determined to ensure the maximum lifespans. A long-duration space station with three astronauts is used to show the implementation of the proposed optimization method. Three different CO2 partial pressure levels are taken into consideration in this study. The optimization results show that the proposed optimization method can obtain the preferred power allocation for the subsystems when the supply power is at a less-than-nominal value. The method can be applied to the autonomous control for the emergency response of the environment control system.

  2. Optimal Bi-Objective Redundancy Allocation for Systems Reliability and Risk Management.

    PubMed

    Govindan, Kannan; Jafarian, Ahmad; Azbari, Mostafa E; Choi, Tsan-Ming

    2016-08-01

    In the big data era, systems reliability is critical to effective systems risk management. In this paper, a novel multiobjective approach, with hybridization of a known algorithm called NSGA-II and an adaptive population-based simulated annealing (APBSA) method is developed to solve the systems reliability optimization problems. In the first step, to create a good algorithm, we use a coevolutionary strategy. Since the proposed algorithm is very sensitive to parameter values, the response surface method is employed to estimate the appropriate parameters of the algorithm. Moreover, to examine the performance of our proposed approach, several test problems are generated, and the proposed hybrid algorithm and other commonly known approaches (i.e., MOGA, NRGA, and NSGA-II) are compared with respect to four performance measures: 1) mean ideal distance; 2) diversification metric; 3) percentage of domination; and 4) data envelopment analysis. The computational studies have shown that the proposed algorithm is an effective approach for systems reliability and risk management.

  3. Multi Sensor Fusion Using Fitness Adaptive Differential Evolution

    NASA Astrophysics Data System (ADS)

    Giri, Ritwik; Ghosh, Arnob; Chowdhury, Aritra; Das, Swagatam

    The rising popularity of multi-source, multi-sensor networks supports real-life applications calls for an efficient and intelligent approach to information fusion. Traditional optimization techniques often fail to meet the demands. The evolutionary approach provides a valuable alternative due to its inherent parallel nature and its ability to deal with difficult problems. We present a new evolutionary approach based on a modified version of Differential Evolution (DE), called Fitness Adaptive Differential Evolution (FiADE). FiADE treats sensors in the network as distributed intelligent agents with various degrees of autonomy. Existing approaches based on intelligent agents cannot completely answer the question of how their agents could coordinate their decisions in a complex environment. The proposed approach is formulated to produce good result for the problems that are high-dimensional, highly nonlinear, and random. The proposed approach gives better result in case of optimal allocation of sensors. The performance of the proposed approach is compared with an evolutionary algorithm coordination generalized particle model (C-GPM).

  4. IESIP - AN IMPROVED EXPLORATORY SEARCH TECHNIQUE FOR PURE INTEGER LINEAR PROGRAMMING PROBLEMS

    NASA Technical Reports Server (NTRS)

    Fogle, F. R.

    1994-01-01

    IESIP, an Improved Exploratory Search Technique for Pure Integer Linear Programming Problems, addresses the problem of optimizing an objective function of one or more variables subject to a set of confining functions or constraints by a method called discrete optimization or integer programming. Integer programming is based on a specific form of the general linear programming problem in which all variables in the objective function and all variables in the constraints are integers. While more difficult, integer programming is required for accuracy when modeling systems with small numbers of components such as the distribution of goods, machine scheduling, and production scheduling. IESIP establishes a new methodology for solving pure integer programming problems by utilizing a modified version of the univariate exploratory move developed by Robert Hooke and T.A. Jeeves. IESIP also takes some of its technique from the greedy procedure and the idea of unit neighborhoods. A rounding scheme uses the continuous solution found by traditional methods (simplex or other suitable technique) and creates a feasible integer starting point. The Hook and Jeeves exploratory search is modified to accommodate integers and constraints and is then employed to determine an optimal integer solution from the feasible starting solution. The user-friendly IESIP allows for rapid solution of problems up to 10 variables in size (limited by DOS allocation). Sample problems compare IESIP solutions with the traditional branch-and-bound approach. IESIP is written in Borland's TURBO Pascal for IBM PC series computers and compatibles running DOS. Source code and an executable are provided. The main memory requirement for execution is 25K. This program is available on a 5.25 inch 360K MS DOS format diskette. IESIP was developed in 1990. IBM is a trademark of International Business Machines. TURBO Pascal is registered by Borland International.

  5. Determining Optimal Allocation of Naval Obstetric Resources with Linear Programming

    DTIC Science & Technology

    2013-12-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA MBA PROFESSIONAL REPORT DETERMINING OPTIMAL ALLOCATION OF NAVAL OBSTETRIC RESOURCES...Davis Approved for public release; distribution is unlimited THIS PAGE INTENTIONALLY LEFT BLANK REPORT DOCUMENTATION PAGE Form Approved...OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for

  6. Optimality Based Dynamic Plant Allocation Model: Predicting Acclimation Response to Climate Change

    NASA Astrophysics Data System (ADS)

    Srinivasan, V.; Drewry, D.; Kumar, P.; Sivapalan, M.

    2009-12-01

    Allocation of assimilated carbon to different plant parts determines the future plant status and is important to predict long term (months to years) vegetated land surface fluxes. Plants have the ability to modify their allometry and exhibit plasticity by varying the relative proportions of the structural biomass contained in each of its tissue. The ability of plants to be plastic provides them with the potential to acclimate to changing environmental conditions in order to enhance their probability of survival. Allometry based allocation models and other empirical allocation models do not account for plant plasticity cause by acclimation due to environmental changes. In the absence of a detailed understanding of the various biophysical processes involved in plant growth and development an optimality approach is adopted here to predict carbon allocation in plants. Existing optimality based models of plant growth are either static or involve considerable empiricism. In this work, we adopt an optimality based approach (coupled with limitations on plant plasticity) to predict the dynamic allocation of assimilated carbon to different plant parts. We explore the applicability of this approach using several optimization variables such as net primary productivity, net transpiration, realized growth rate, total end of growing season reproductive biomass etc. We use this approach to predict the dynamic nature of plant acclimation in its allocation of carbon to different plant parts under current and future climate scenarios. This approach is designed as a growth sub-model in the multi-layer canopy plant model (MLCPM) and is used to obtain land surface fluxes and plant properties over the growing season. The framework of this model is such that it retains the generality and can be applied to different types of ecosystems. We test this approach using the data from free air carbon dioxide enrichment (FACE) experiments using soybean crop at the Soy-FACE research site. Our results show that there are significant changes in the allocation patterns of vegetation when subjected to elevated CO2 indicating that our model is able to account for plant plasticity arising from acclimation. Soybeans when grown under elevated CO2, increased their allocation to structural components such as leaves and decreased their allocation to reproductive biomass. This demonstrates that plant acclimation causes lower than expected crop yields when grown under elevated CO2. Our findings can have serious implications in estimating future crop yields under climate change scenarios where it is widely expected that rising CO2 will fully offset losses due to climate change.

  7. Design of exploration and minerals-data-collection programs in developing areas

    USGS Publications Warehouse

    Attanasi, E.D.

    1981-01-01

    This paper considers the practical problem of applying economic analysis to designing minerals exploration and data collection strategies for developing countries. Formal decision rules for the design of government exploration and minerals-data-collection programs are derived by using a minerals-industry planning model that has been extended to include an exploration function. Rules derived are applicable to centrally planned minerals industries as well as market-oriented minerals sectors. They pertain to the spatial allocation of exploration effort and to the allocation of activities between government and private concerns for market-oriented economies. Programs characterized by uniform expenditures, uniform information coverage across regions, or uniform-density grid drilling progrmas are shown to be inferior to the strategy derived. Moreover, for market-oriented economies, the economically optimal mix in exploration activities between private and government data collection would require that only private firms assess local sites and that government agencies carry out regional surveys. ?? 1981.

  8. Game Theory for Wireless Sensor Networks: A Survey

    PubMed Central

    Shi, Hai-Yan; Wang, Wan-Liang; Kwok, Ngai-Ming; Chen, Sheng-Yong

    2012-01-01

    Game theory (GT) is a mathematical method that describes the phenomenon of conflict and cooperation between intelligent rational decision-makers. In particular, the theory has been proven very useful in the design of wireless sensor networks (WSNs). This article surveys the recent developments and findings of GT, its applications in WSNs, and provides the community a general view of this vibrant research area. We first introduce the typical formulation of GT in the WSN application domain. The roles of GT are described that include routing protocol design, topology control, power control and energy saving, packet forwarding, data collection, spectrum allocation, bandwidth allocation, quality of service control, coverage optimization, WSN security, and other sensor management tasks. Then, three variations of game theory are described, namely, the cooperative, non-cooperative, and repeated schemes. Finally, existing problems and future trends are identified for researchers and engineers in the field. PMID:23012533

  9. Improving the sampling efficiency of Monte Carlo molecular simulations: an evolutionary approach

    NASA Astrophysics Data System (ADS)

    Leblanc, Benoit; Braunschweig, Bertrand; Toulhoat, Hervé; Lutton, Evelyne

    We present a new approach in order to improve the convergence of Monte Carlo (MC) simulations of molecular systems belonging to complex energetic landscapes: the problem is redefined in terms of the dynamic allocation of MC move frequencies depending on their past efficiency, measured with respect to a relevant sampling criterion. We introduce various empirical criteria with the aim of accounting for the proper convergence in phase space sampling. The dynamic allocation is performed over parallel simulations by means of a new evolutionary algorithm involving 'immortal' individuals. The method is bench marked with respect to conventional procedures on a model for melt linear polyethylene. We record significant improvement in sampling efficiencies, thus in computational load, while the optimal sets of move frequencies are liable to allow interesting physical insights into the particular systems simulated. This last aspect should provide a new tool for designing more efficient new MC moves.

  10. Cognitive radio based optimal channel sensing and resources allocation

    NASA Astrophysics Data System (ADS)

    Vijayasarveswari, V.; Khatun, S.; Fakir, M. M.; Nayeem, M. N.; Kamarudin, L. M.; Jakaria, A.

    2017-03-01

    Cognitive radio (CR) is the latest type of wireless technoloy that is proposed to mitigate spectrum saturation problem. İn cognitve radio, secondary user will use primary user's spectrum during primary user's absence without interupting primary user's transmission. This paper focuses on practical cognitive radio network development process using Android based smart phone for the data transmission. Energy detector based sensing method was proposed and used here because it doesnot require primary user's information. Bluetooth and Wi-fi are the two available types of spectrum that was sensed for CR detection. Simulation showed cognitive radio network can be developed using Android based smart phones. So, a complete application was developed using Java based Android Eclipse program. Finally, the application was uploaded and run on Android based smart phone to form and verify CR network for channel sensing and resource allocation. The observed efficiency of the application was around 81%.

  11. Spatial decision on allocating automated external defibrillators (AED) in communities by multi-criterion two-step floating catchment area (MC2SFCA).

    PubMed

    Lin, Bo-Cheng; Chen, Chao-Wen; Chen, Chien-Chou; Kuo, Chiao-Ling; Fan, I-Chun; Ho, Chi-Kung; Liu, I-Chuan; Chan, Ta-Chien

    2016-05-25

    The occurrence of out-of-hospital cardiac arrest (OHCA) is a critical life-threatening event which frequently warrants early defibrillation with an automated external defibrillator (AED). The optimization of allocating a limited number of AEDs in various types of communities is challenging. We aimed to propose a two-stage modeling framework including spatial accessibility evaluation and priority ranking to identify the highest gaps between demand and supply for allocating AEDs. In this study, a total of 6135 OHCA patients were defined as demand, and the existing 476 publicly available AEDs locations and 51 emergency medical service (EMS) stations were defined as supply. To identify the demand for AEDs, Bayesian spatial analysis with the integrated nested Laplace approximation (INLA) method is applied to estimate the composite spatial risks from multiple factors. The population density, proportion of elderly people, and land use classifications are identified as risk factors. Then, the multi-criterion two-step floating catchment area (MC2SFCA) method is used to measure spatial accessibility of AEDs between the spatial risks and the supply of AEDs. Priority ranking is utilized for prioritizing deployment of AEDs among communities because of limited resources. Among 6135 OHCA patients, 56.85 % were older than 65 years old, and 79.04 % were in a residential area. The spatial distribution of OHCA incidents was found to be concentrated in the metropolitan area of Kaohsiung City, Taiwan. According to the posterior mean estimated by INLA, the spatial effects including population density and proportion of elderly people, and land use classifications are positively associated with the OHCA incidence. Utilizing the MC2SFCA for spatial accessibility, we found that supply of AEDs is less than demand in most areas, especially in rural areas. Under limited resources, we identify priority places for deploying AEDs based on transportation time to the nearest hospital and population size of the communities. The proposed method will be beneficial for optimizing resource allocation while considering multiple local risks. The optimized deployment of AEDs can broaden EMS coverage and minimize the problems of the disparity in urban areas and the deficiency in rural areas.

  12. Analysis, Evaluation and Improvement of Sequential Single-Item Auctions for the Cooperative Real-Time Allocation of Tasks

    DTIC Science & Technology

    2013-03-30

    Abstract: We study multi-robot routing problems (MR- LDR ) where a team of robots has to visit a set of given targets with linear decreasing rewards over...time, such as required for the delivery of goods to rescue sites after disasters. The objective of MR- LDR is to find an assignment of targets to...We develop a mixed integer program that solves MR- LDR optimally with a flow-type formulation and can be solved faster than the standard TSP-type

  13. Optimizing prescribed fire allocation for managing fire risk in central Catalonia.

    PubMed

    Alcasena, Fermín J; Ager, Alan A; Salis, Michele; Day, Michelle A; Vega-Garcia, Cristina

    2018-04-15

    We used spatial optimization to allocate and prioritize prescribed fire treatments in the fire-prone Bages County, central Catalonia (northeastern Spain). The goal of this study was to identify suitable strategic locations on forest lands for fuel treatments in order to: 1) disrupt major fire movements, 2) reduce ember emissions, and 3) reduce the likelihood of large fires burning into residential communities. We first modeled fire spread, hazard and exposure metrics under historical extreme fire weather conditions, including node influence grid for surface fire pathways, crown fraction burned and fire transmission to residential structures. Then, we performed an optimization analysis on individual planning areas to identify production possibility frontiers for addressing fire exposure and explore alternative prescribed fire treatment configurations. The results revealed strong trade-offs among different fire exposure metrics, showed treatment mosaics that optimize the allocation of prescribed fire, and identified specific opportunities to achieve multiple objectives. Our methods can contribute to improving the efficiency of prescribed fire treatment investments and wildfire management programs aimed at creating fire resilient ecosystems, facilitating safe and efficient fire suppression, and safeguarding rural communities from catastrophic wildfires. The analysis framework can be used to optimally allocate prescribed fire in other fire-prone areas within the Mediterranean region and elsewhere. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Task allocation among multiple intelligent robots

    NASA Technical Reports Server (NTRS)

    Gasser, L.; Bekey, G.

    1987-01-01

    Researchers describe the design of a decentralized mechanism for allocating assembly tasks in a multiple robot assembly workstation. Currently, the approach focuses on distributed allocation to explore its feasibility and its potential for adaptability to changing circumstances, rather than for optimizing throughput. Individual greedy robots make their own local allocation decisions using both dynamic allocation policies which propagate through a network of allocation goals, and local static and dynamic constraints describing which robots are elibible for which assembly tasks. Global coherence is achieved by proper weighting of allocation pressures propagating through the assembly plan. Deadlock avoidance and synchronization is achieved using periodic reassessments of local allocation decisions, ageing of allocation goals, and short-term allocation locks on goals.

  15. An Analytical Planning Model to Estimate the Optimal Density of Charging Stations for Electric Vehicles.

    PubMed

    Ahn, Yongjun; Yeo, Hwasoo

    2015-01-01

    The charging infrastructure location problem is becoming more significant due to the extensive adoption of electric vehicles. Efficient charging station planning can solve deeply rooted problems, such as driving-range anxiety and the stagnation of new electric vehicle consumers. In the initial stage of introducing electric vehicles, the allocation of charging stations is difficult to determine due to the uncertainty of candidate sites and unidentified charging demands, which are determined by diverse variables. This paper introduces the Estimating the Required Density of EV Charging (ERDEC) stations model, which is an analytical approach to estimating the optimal density of charging stations for certain urban areas, which are subsequently aggregated to city level planning. The optimal charging station's density is derived to minimize the total cost. A numerical study is conducted to obtain the correlations among the various parameters in the proposed model, such as regional parameters, technological parameters and coefficient factors. To investigate the effect of technological advances, the corresponding changes in the optimal density and total cost are also examined by various combinations of technological parameters. Daejeon city in South Korea is selected for the case study to examine the applicability of the model to real-world problems. With real taxi trajectory data, the optimal density map of charging stations is generated. These results can provide the optimal number of chargers for driving without driving-range anxiety. In the initial planning phase of installing charging infrastructure, the proposed model can be applied to a relatively extensive area to encourage the usage of electric vehicles, especially areas that lack information, such as exact candidate sites for charging stations and other data related with electric vehicles. The methods and results of this paper can serve as a planning guideline to facilitate the extensive adoption of electric vehicles.

  16. Modeling Limited Foresight in Water Management Systems

    NASA Astrophysics Data System (ADS)

    Howitt, R.

    2005-12-01

    The inability to forecast future water supplies means that their management inevitably occurs under situations of limited foresight. Three modeling problems arise, first what type of objective function is a manager with limited foresight optimizing? Second how can we measure these objectives? Third can objective functions that incorporate uncertainty be integrated within the structure of optimizing water management models? The paper reviews the concepts of relative risk aversion and intertemporal substitution that underlie stochastic dynamic preference functions. Some initial results from the estimation of such functions for four different dam operations in northern California are presented and discussed. It appears that the path of previous water decisions and states influences the decision-makers willingness to trade off water supplies between periods. A compromise modeling approach that incorporates carry-over value functions under limited foresight within a broader net work optimal water management model is developed. The approach uses annual carry-over value functions derived from small dimension stochastic dynamic programs embedded within a larger dimension water allocation network. The disaggregation of the carry-over value functions to the broader network is extended using the space rule concept. Initial results suggest that the solution of such annual nonlinear network optimizations is comparable to, or faster than, the solution of linear network problems over long time series.

  17. Transmission Scheduling and Routing Algorithms for Delay Tolerant Networks

    NASA Technical Reports Server (NTRS)

    Dudukovich, Rachel; Raible, Daniel E.

    2016-01-01

    The challenges of data processing, transmission scheduling and routing within a space network present a multi-criteria optimization problem. Long delays, intermittent connectivity, asymmetric data rates and potentially high error rates make traditional networking approaches unsuitable. The delay tolerant networking architecture and protocols attempt to mitigate many of these issues, yet transmission scheduling is largely manually configured and routes are determined by a static contact routing graph. A high level of variability exists among the requirements and environmental characteristics of different missions, some of which may allow for the use of more opportunistic routing methods. In all cases, resource allocation and constraints must be balanced with the optimization of data throughput and quality of service. Much work has been done researching routing techniques for terrestrial-based challenged networks in an attempt to optimize contact opportunities and resource usage. This paper examines several popular methods to determine their potential applicability to space networks.

  18. Software for Optimizing Quality Assurance of Other Software

    NASA Technical Reports Server (NTRS)

    Feather, Martin; Cornford, Steven; Menzies, Tim

    2004-01-01

    Software assurance is the planned and systematic set of activities that ensures that software processes and products conform to requirements, standards, and procedures. Examples of such activities are the following: code inspections, unit tests, design reviews, performance analyses, construction of traceability matrices, etc. In practice, software development projects have only limited resources (e.g., schedule, budget, and availability of personnel) to cover the entire development effort, of which assurance is but a part. Projects must therefore select judiciously from among the possible assurance activities. At its heart, this can be viewed as an optimization problem; namely, to determine the allocation of limited resources (time, money, and personnel) to minimize risk or, alternatively, to minimize the resources needed to reduce risk to an acceptable level. The end result of the work reported here is a means to optimize quality-assurance processes used in developing software.

  19. Robust planning of dynamic wireless charging infrastructure for battery electric buses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zhaocai; Song, Ziqi

    Battery electric buses with zero tailpipe emissions have great potential in improving environmental sustainability and livability of urban areas. However, the problems of high cost and limited range associated with on-board batteries have substantially limited the popularity of battery electric buses. The technology of dynamic wireless power transfer (DWPT), which provides bus operators with the ability to charge buses while in motion, may be able to effectively alleviate the drawbacks of electric buses. In this paper, we address the problem of simultaneously selecting the optimal location of the DWPT facilities and designing the optimal battery sizes of electric buses formore » a DWPT electric bus system. The problem is first constructed as a deterministic model in which the uncertainty of energy consumption and travel time of electric buses is neglected. The methodology of robust optimization (RO) is then adopted to address the uncertainty of energy consumption and travel time. The affinely adjustable robust counterpart (AARC) of the deterministic model is developed, and its equivalent tractable mathematical programming is derived. Both the deterministic model and the robust model are demonstrated with a real-world bus system. The results of our study demonstrate that the proposed deterministic model can effectively determine the allocation of DWPT facilities and the battery sizes of electric buses for a DWPT electric bus system; and the robust model can further provide optimal designs that are robust against the uncertainty of energy consumption and travel time for electric buses.« less

  20. Robust planning of dynamic wireless charging infrastructure for battery electric buses

    DOE PAGES

    Liu, Zhaocai; Song, Ziqi

    2017-10-01

    Battery electric buses with zero tailpipe emissions have great potential in improving environmental sustainability and livability of urban areas. However, the problems of high cost and limited range associated with on-board batteries have substantially limited the popularity of battery electric buses. The technology of dynamic wireless power transfer (DWPT), which provides bus operators with the ability to charge buses while in motion, may be able to effectively alleviate the drawbacks of electric buses. In this paper, we address the problem of simultaneously selecting the optimal location of the DWPT facilities and designing the optimal battery sizes of electric buses formore » a DWPT electric bus system. The problem is first constructed as a deterministic model in which the uncertainty of energy consumption and travel time of electric buses is neglected. The methodology of robust optimization (RO) is then adopted to address the uncertainty of energy consumption and travel time. The affinely adjustable robust counterpart (AARC) of the deterministic model is developed, and its equivalent tractable mathematical programming is derived. Both the deterministic model and the robust model are demonstrated with a real-world bus system. The results of our study demonstrate that the proposed deterministic model can effectively determine the allocation of DWPT facilities and the battery sizes of electric buses for a DWPT electric bus system; and the robust model can further provide optimal designs that are robust against the uncertainty of energy consumption and travel time for electric buses.« less

  1. Rate distortion optimal bit allocation methods for volumetric data using JPEG 2000.

    PubMed

    Kosheleva, Olga M; Usevitch, Bryan E; Cabrera, Sergio D; Vidal, Edward

    2006-08-01

    Computer modeling programs that generate three-dimensional (3-D) data on fine grids are capable of generating very large amounts of information. These data sets, as well as 3-D sensor/measured data sets, are prime candidates for the application of data compression algorithms. A very flexible and powerful compression algorithm for imagery data is the newly released JPEG 2000 standard. JPEG 2000 also has the capability to compress volumetric data, as described in Part 2 of the standard, by treating the 3-D data as separate slices. As a decoder standard, JPEG 2000 does not describe any specific method to allocate bits among the separate slices. This paper proposes two new bit allocation algorithms for accomplishing this task. The first procedure is rate distortion optimal (for mean squared error), and is conceptually similar to postcompression rate distortion optimization used for coding codeblocks within JPEG 2000. The disadvantage of this approach is its high computational complexity. The second bit allocation algorithm, here called the mixed model (MM) approach, mathematically models each slice's rate distortion curve using two distinct regions to get more accurate modeling at low bit rates. These two bit allocation algorithms are applied to a 3-D Meteorological data set. Test results show that the MM approach gives distortion results that are nearly identical to the optimal approach, while significantly reducing computational complexity.

  2. A unified framework of unsupervised subjective optimized bit allocation for multiple video object coding

    NASA Astrophysics Data System (ADS)

    Chen, Zhenzhong; Han, Junwei; Ngan, King Ngi

    2005-10-01

    MPEG-4 treats a scene as a composition of several objects or so-called video object planes (VOPs) that are separately encoded and decoded. Such a flexible video coding framework makes it possible to code different video object with different distortion scale. It is necessary to analyze the priority of the video objects according to its semantic importance, intrinsic properties and psycho-visual characteristics such that the bit budget can be distributed properly to video objects to improve the perceptual quality of the compressed video. This paper aims to provide an automatic video object priority definition method based on object-level visual attention model and further propose an optimization framework for video object bit allocation. One significant contribution of this work is that the human visual system characteristics are incorporated into the video coding optimization process. Another advantage is that the priority of the video object can be obtained automatically instead of fixing weighting factors before encoding or relying on the user interactivity. To evaluate the performance of the proposed approach, we compare it with traditional verification model bit allocation and the optimal multiple video object bit allocation algorithms. Comparing with traditional bit allocation algorithms, the objective quality of the object with higher priority is significantly improved under this framework. These results demonstrate the usefulness of this unsupervised subjective quality lifting framework.

  3. Car painting process scheduling with harmony search algorithm

    NASA Astrophysics Data System (ADS)

    Syahputra, M. F.; Maiyasya, A.; Purnamawati, S.; Abdullah, D.; Albra, W.; Heikal, M.; Abdurrahman, A.; Khaddafi, M.

    2018-02-01

    Automotive painting program in the process of painting the car body by using robot power, making efficiency in the production system. Production system will be more efficient if pay attention to scheduling of car order which will be done by considering painting body shape of car. Flow shop scheduling is a scheduling model in which the job-job to be processed entirely flows in the same product direction / path. Scheduling problems often arise if there are n jobs to be processed on the machine, which must be specified which must be done first and how to allocate jobs on the machine to obtain a scheduled production process. Harmony Search Algorithm is a metaheuristic optimization algorithm based on music. The algorithm is inspired by observations that lead to music in search of perfect harmony. This musical harmony is in line to find optimal in the optimization process. Based on the tests that have been done, obtained the optimal car sequence with minimum makespan value.

  4. HIV epidemic control-a model for optimal allocation of prevention and treatment resources.

    PubMed

    Alistar, Sabina S; Long, Elisa F; Brandeau, Margaret L; Beck, Eduard J

    2014-06-01

    With 33 million people living with human immunodeficiency virus (HIV) worldwide and 2.7 million new infections occurring annually, additional HIV prevention and treatment efforts are urgently needed. However, available resources for HIV control are limited and must be used efficiently to minimize the future spread of the epidemic. We develop a model to determine the appropriate resource allocation between expanded HIV prevention and treatment services. We create an epidemic model that incorporates multiple key populations with different transmission modes, as well as production functions that relate investment in prevention and treatment programs to changes in transmission and treatment rates. The goal is to allocate resources to minimize R 0, the reproductive rate of infection. We first develop a single-population model and determine the optimal resource allocation between HIV prevention and treatment. We extend the analysis to multiple independent populations, with resource allocation among interventions and populations. We then include the effects of HIV transmission between key populations. We apply our model to examine HIV epidemic control in two different settings, Uganda and Russia. As part of these applications, we develop a novel approach for estimating empirical HIV program production functions. Our study provides insights into the important question of resource allocation for a country's optimal response to its HIV epidemic and provides a practical approach for decision makers. Better decisions about allocating limited HIV resources can improve response to the epidemic and increase access to HIV prevention and treatment services for millions of people worldwide.

  5. Problems in the Study of lineaments

    NASA Astrophysics Data System (ADS)

    Anokhin, Vladimir; Kholmyanskii, Michael

    2015-04-01

    The study of linear objects in upper crust, called lineaments, led at one time to a major scientific results - discovery of the planetary regmatic network, the birth of some new tectonic concepts, establishment of new search for signs of mineral deposits. But now lineaments studied not enough for such a promising research direction. Lineament geomorphology has a number of problems. 1.Terminology problems. Lineament theme still has no generally accepted terminology base. Different scientists have different interpretations even for the definition of lineament We offer an expanded definition for it: lineaments - line features of the earth's crust, expressed by linear landforms, geological linear forms, linear anomalies of physical fields may follow each other, associated with faults. The term "lineament" is not identical to the term "fault", but always lineament - reasonable suspicion to fault, and this suspicion is justified in most cases. The structure lineament may include only the objects that are at least presumably can be attributed to the deep processes. Specialists in the lineament theme can overcome terminological problems if together create a common terminology database. 2. Methodological problems. Procedure manual selection lineaments mainly is depiction of straight line segments along the axes of linear morphostructures on some cartographic basis. Reduce the subjective factors of manual selection is possible, following a few simple rules: - The choice of optimal projection, scale and quality of cartographic basis; - Selection of the optimal type of linear objects under study; - The establishment of boundary conditions for the allocation lineament (minimum length, maximum bending, the minimum length to width ratio, etc.); - Allocation of an increasing number of lineaments - for representative sampling and reduce the influence of random errors; - Ranking lineaments: fine lines (rank 3) combined to form larger lineaments rank 2; which, when combined capabilities in large lineaments rank 1; - Correlation of the resulting pattern of lineaments with a pattern already known of faults in the study area; - Separate allocation lineaments by several experts with correlation of the resulting schemes and create a common scheme. The problem of computer lineament allocation is not solved yet. Existing programs for lineament analysis is not so perfect to completely rely on them. In any of them, changing the initial parameters, we can get pictures lineaments any desired configuration. Also a high probability of heavy and hardly recognized systematic errors. In any case, computer lineament patterns after their creation should be subject to examination Real. 3. Interpretive problems. To minimize the distortion results of the lineament analysis is advisable to stick to a few techniques and rules: - use of visualization techniques, in particular, rose-charts, which are submitted azimuth and length of selected lineaments; - consistent downscaling of analysis. A preliminary analysis of a larger area that includes the area of interest with surroundings; - using the available information on the location of the already known faults and other tectonic linear objects of the study area; - comparison of the lineament scheme with schemes of other authors - can reduce the element of subjectivity in the schemes. The study of lineaments is a very promising direction of geomorfology and tectonics. Challenges facing the lineament theme, are solvable. To solve them, professionals should meet and talk to each other. The results of further work in this direction may exceed expectations.

  6. WE-AB-209-10: Optimizing the Delivery of Sequential Fluence Maps for Efficient VMAT Delivery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craft, D; Balvert, M

    2016-06-15

    Purpose: To develop an optimization model and solution approach for computing MLC leaf trajectories and dose rates for high quality matching of a set of optimized fluence maps to be delivered sequentially around a patient in a VMAT treatment. Methods: We formulate the fluence map matching problem as a nonlinear optimization problem where time is discretized but dose rates and leaf positions are continuous variables. For a given allotted time, which is allocated across the fluence maps based on the complexity of each fluence map, the optimization problem searches for the best leaf trajectories and dose rates such that themore » original fluence maps are closely recreated. Constraints include maximum leaf speed, maximum dose rate, and leaf collision avoidance, as well as the constraint that the ending leaf positions for one map are the starting leaf positions for the next map. The resulting model is non-convex but smooth, and therefore we solve it by local searches from a variety of starting positions. We improve solution time by a custom decomposition approach which allows us to decouple the rows of the fluence maps and solve each leaf pair individually. This decomposition also makes the problem easily parallelized. Results: We demonstrate method on a prostate case and a head-and-neck case and show that one can recreate fluence maps to high degree of fidelity in modest total delivery time (minutes). Conclusion: We present a VMAT sequencing method that reproduces optimal fluence maps by searching over a vast number of possible leaf trajectories. By varying the total allotted time given, this approach is the first of its kind to allow users to produce VMAT solutions that span the range of wide-field coarse VMAT deliveries to narrow-field high-MU sliding window-like approaches.« less

  7. Optimization of location routing inventory problem with transshipment

    NASA Astrophysics Data System (ADS)

    Ghani, Nor Edayu Abd; Shariff, S. Sarifah Radiah; Zahari, Siti Meriam

    2015-05-01

    Location Routing Inventory Problem (LRIP) is a collaboration of the three components in the supply chain. It is confined by location-allocation, vehicle routing and inventory management. The aim of the study is to minimize the total system cost in the supply chain. Transshipment is introduced in order to allow the products to be shipped to a customer who experiences a shortage, either directly from the supplier or from another customer. In the study, LRIP is introduced with the transshipment (LRIPT) and customers act as the transshipment points. We select the transshipment point by using the p-center and we present the results in two divisions of cases. Based on the analysis, the results indicated that LRIPT performed well compared to LRIP.

  8. Performance analysis of optimal power allocation in wireless cooperative communication systems

    NASA Astrophysics Data System (ADS)

    Babikir Adam, Edriss E.; Samb, Doudou; Yu, Li

    2013-03-01

    Cooperative communication has been recently proposed in wireless communication systems for exploring the inherent spatial diversity in relay channels.The Amplify-and-Forward (AF) cooperation protocols with multiple relays have not been sufficiently investigated even if it has a low complexity in term of implementation. We consider in this work a cooperative diversity system in which a source transmits some information to a destination with the help of multiple relay nodes with AF protocols and investigate the optimality of allocating powers both at the source and the relays system by optimizing the symbol error rate (SER) performance in an efficient way. Firstly we derive a closedform SER formulation for MPSK signal using the concept of moment generating function and some statistical approximations in high signal to noise ratio (SNR) for the system under studied. We then find a tight corresponding lower bound which converges to the same limit as the theoretical upper bound and develop an optimal power allocation (OPA) technique with mean channel gains to minimize the SER. Simulation results show that our scheme outperforms the equal power allocation (EPA) scheme and is tight to the theoretical approximation based on the SER upper bound in high SNR for different number of relays.

  9. Improving operating room schedules.

    PubMed

    Li, Fei; Gupta, Diwakar; Potthoff, Sandra

    2016-09-01

    Operating rooms (ORs) in US hospitals are costly to staff, generate about 70 % of a hospital's revenues, and operate at a staffed-capacity utilization of 60-70 %. Many hospitals allocate blocks of OR time to individual or groups of surgeons as guaranteed allocation, who book surgeries one at a time in their blocks. The booking procedure frequently results in unused time between surgeries. Realizing that this presents an opportunity to improve OR utilization, hospitals manually reschedule surgery start times one or two days before each day of surgical operations. The purpose of rescheduling is to decrease OR staffing costs, which are determined by the number of concurrently staffed ORs. We formulate the rescheduling problem as a variant of the bin-packing problem with interrelated items, which are the surgeries performed by the same surgeon. We develop a lower bound (LB) construction algorithm and prove that the LB is at least (2/3) of the optimal staffing cost. A key feature of our approach is that we allow hospitals to have two shift lengths. Our analytical results form the basis of a branch-and-bound algorithm, which we test on data obtained from three hospitals. Experiments show that rescheduling saves significant staffing costs.

  10. Primal-dual techniques for online algorithms and mechanisms

    NASA Astrophysics Data System (ADS)

    Liaghat, Vahid

    An offline algorithm is one that knows the entire input in advance. An online algorithm, however, processes its input in a serial fashion. In contrast to offline algorithms, an online algorithm works in a local fashion and has to make irrevocable decisions without having the entire input. Online algorithms are often not optimal since their irrevocable decisions may turn out to be inefficient after receiving the rest of the input. For a given online problem, the goal is to design algorithms which are competitive against the offline optimal solutions. In a classical offline scenario, it is often common to see a dual analysis of problems that can be formulated as a linear or convex program. Primal-dual and dual-fitting techniques have been successfully applied to many such problems. Unfortunately, the usual tricks come short in an online setting since an online algorithm should make decisions without knowing even the whole program. In this thesis, we study the competitive analysis of fundamental problems in the literature such as different variants of online matching and online Steiner connectivity, via online dual techniques. Although there are many generic tools for solving an optimization problem in the offline paradigm, in comparison, much less is known for tackling online problems. The main focus of this work is to design generic techniques for solving integral linear optimization problems where the solution space is restricted via a set of linear constraints. A general family of these problems are online packing/covering problems. Our work shows that for several seemingly unrelated problems, primal-dual techniques can be successfully applied as a unifying approach for analyzing these problems. We believe this leads to generic algorithmic frameworks for solving online problems. In the first part of the thesis, we show the effectiveness of our techniques in the stochastic settings and their applications in Bayesian mechanism design. In particular, we introduce new techniques for solving a fundamental linear optimization problem, namely, the stochastic generalized assignment problem (GAP). This packing problem generalizes various problems such as online matching, ad allocation, bin packing, etc. We furthermore show applications of such results in the mechanism design by introducing Prophet Secretary, a novel Bayesian model for online auctions. In the second part of the thesis, we focus on the covering problems. We develop the framework of "Disk Painting" for a general class of network design problems that can be characterized by proper functions. This class generalizes the node-weighted and edge-weighted variants of several well-known Steiner connectivity problems. We furthermore design a generic technique for solving the prize-collecting variants of these problems when there exists a dual analysis for the non-prize-collecting counterparts. Hence, we solve the online prize-collecting variants of several network design problems for the first time. Finally we focus on designing techniques for online problems with mixed packing/covering constraints. We initiate the study of degree-bounded graph optimization problems in the online setting by designing an online algorithm with a tight competitive ratio for the degree-bounded Steiner forest problem. We hope these techniques establishes a starting point for the analysis of the important class of online degree-bounded optimization on graphs.

  11. Fuel, environmental, and transmission pricing considerations in a deregulated environment

    NASA Astrophysics Data System (ADS)

    Obessis, Emmanouil Vlassios

    The 1992 National Energy Policy Act drastically changed the traditional structure of the vertically integrated utility. To facilitate increased competition in the power utility sector, all markets related to power generation have been opened to free competition and trading. To survive in the new competitive environment, power producers need to reduce costs and increase efficiency. Fuel marketing strategies are thus, getting more aggressive and fuel markets are becoming more competitive, offering more options regarding fuel supplies and contracts. At the same time, the 1990 Clean Air Act Amendments are taking effect. Although tightening the emission standards, this legislation offers utilities a wider flexibility in choosing compliance strategies. It also set maximum annual allowable levels replacing the traditional uniform maximum emission rates. The bill also introduced the concept of marketable emission allowances and provided for the establishment of nationwide markets where allowances may be traded, sold, or purchased. Several fuel- and emission-constrained algorithms have been historically presented, but those two classes of constraints, in general, were handled independently. The multiobjective optimization model developed in this research work, concurrently satisfies sets of detailed fuel and emission limits, modeling in a more accurate way the fuel supply and environmental limitations and their complexities in the new deregulated operational environment. Development of the implementation software is an integral part of this research project. This software may be useful for both daily scheduling activities and short-term operational planning. A Lagrangian multipliers-based variant is used to solve the problem. Single line searches are used to update the multipliers, thus offering attractive execution times. This work also investigates the applicability of cooperative games to the problem of transmission cost allocation. Interest in game theory as a powerful tool to solve common property allocation problems has been renewed. A simple allocation framework is developed using capacity based costing rules. Different solution concepts are applied to solve small scale transmission pricing problems. Game models may render themselves useful in investigating "what if" scenarios.

  12. Mathematical model and metaheuristics for simultaneous balancing and sequencing of a robotic mixed-model assembly line

    NASA Astrophysics Data System (ADS)

    Li, Zixiang; Janardhanan, Mukund Nilakantan; Tang, Qiuhua; Nielsen, Peter

    2018-05-01

    This article presents the first method to simultaneously balance and sequence robotic mixed-model assembly lines (RMALB/S), which involves three sub-problems: task assignment, model sequencing and robot allocation. A new mixed-integer programming model is developed to minimize makespan and, using CPLEX solver, small-size problems are solved for optimality. Two metaheuristics, the restarted simulated annealing algorithm and co-evolutionary algorithm, are developed and improved to address this NP-hard problem. The restarted simulated annealing method replaces the current temperature with a new temperature to restart the search process. The co-evolutionary method uses a restart mechanism to generate a new population by modifying several vectors simultaneously. The proposed algorithms are tested on a set of benchmark problems and compared with five other high-performing metaheuristics. The proposed algorithms outperform their original editions and the benchmarked methods. The proposed algorithms are able to solve the balancing and sequencing problem of a robotic mixed-model assembly line effectively and efficiently.

  13. On the Allocation of Resources for Secondary Schools

    ERIC Educational Resources Information Center

    Haelermans, Carla; De Witte, Kristof; Blank, Jos L. T.

    2012-01-01

    This paper studies the optimal allocation of resources--in terms of school management, teachers, supporting employees and materials--in secondary schools. We use a flexible budget constrained output distance function model to estimate both technical and allocative efficiency scores for 448 Dutch secondary schools between 2002 and 2007. The results…

  14. Allocative and implementation efficiency in HIV prevention and treatment for people who inject drugs.

    PubMed

    Benedikt, Clemens; Kelly, Sherrie L; Wilson, David; Wilson, David P

    2016-12-01

    Estimated global new HIV infections among people who inject drugs (PWID) remained stable over the 2010-2015 period and the target of a 50% reduction over this period was missed. To achieve the 2020 UNAIDS target of reducing adult HIV infections by 75% compared to 2010, accelerated action in scaling up HIV programs for PWID is required. In a context of diminishing external support to HIV programs in countries where most HIV-affected PWID live, it is essential that available resources are allocated and used as efficiently as possible. Allocative and implementation efficiency analysis methods were applied. Optima, a dynamic, population-based HIV model with an integrated program and economic analysis framework was applied in eight countries in Eastern Europe and Central Asia (EECA). Mathematical analyses established optimized allocations of resources. An implementation efficiency analysis focused on examining technical efficiency, unit costs, and heterogeneity of service delivery models and practices. Findings from the latest reported data revealed that countries allocated between 4% (Bulgaria) and 40% (Georgia) of total HIV resources to programs targeting PWID - with a median of 13% for the eight countries. When distributing the same amount of HIV funding optimally, between 9% and 25% of available HIV resources would be allocated to PWID programs with a median allocation of 16% and, in addition, antiretroviral therapy would be scaled up including for PWID. As a result of optimized allocations, new HIV infections are projected to decline by 3-28% and AIDS-related deaths by 7-53% in the eight countries. Implementation efficiencies identified involve potential reductions in drug procurement costs, service delivery models, and practices and scale of service delivery influencing cost and outcome. A high level of implementation efficiency was associated with high volumes of PWID clients accessing a drug harm reduction facility. A combination of optimized allocation of resources, improved implementation efficiency and increased investment of non-HIV resources is required to enhance coverage and improve outcomes of programs for PWID. Increasing efficiency of HIV programs for PWID is a key step towards avoiding implicit rationing and ensuring transparent allocation of resources where and how they would have the largest impact on the health of PWID, and thereby ensuring that funding spent on PWID becomes a global best buy in public health. Copyright © 2016. Published by Elsevier B.V.

  15. Biomass Allocation of Stoloniferous and Rhizomatous Plant in Response to Resource Availability: A Phylogenetic Meta-Analysis

    PubMed Central

    Xie, Xiu-Fang; Hu, Yu-Kun; Pan, Xu; Liu, Feng-Hong; Song, Yao-Bin; Dong, Ming

    2016-01-01

    Resource allocation to different functions is central in life-history theory. Plasticity of functional traits allows clonal plants to regulate their resource allocation to meet changing environments. In this study, biomass allocation traits of clonal plants were categorized into absolute biomass for vegetative growth vs. for reproduction, and their relative ratios based on a data set including 115 species and derived from 139 published literatures. We examined general pattern of biomass allocation of clonal plants in response to availabilities of resource (e.g., light, nutrients, and water) using phylogenetic meta-analysis. We also tested whether the pattern differed among clonal organ types (stolon vs. rhizome). Overall, we found that stoloniferous plants were more sensitive to light intensity than rhizomatous plants, preferentially allocating biomass to vegetative growth, aboveground part and clonal reproduction under shaded conditions. Under nutrient- and water-poor condition, rhizomatous plants were constrained more by ontogeny than by resource availability, preferentially allocating biomass to belowground part. Biomass allocation between belowground and aboveground part of clonal plants generally supported the optimal allocation theory. No general pattern of trade-off was found between growth and reproduction, and neither between sexual and clonal reproduction. Using phylogenetic meta-analysis can avoid possible confounding effects of phylogeny on the results. Our results shown the optimal allocation theory explained a general trend, which the clonal plants are able to plastically regulate their biomass allocation, to cope with changing resource availability, at least in stoloniferous and rhizomatous plants. PMID:27200071

  16. Geometric Reasoning for Automated Planning

    NASA Technical Reports Server (NTRS)

    Clement, Bradley J.; Knight, Russell L.; Broderick, Daniel

    2012-01-01

    An important aspect of mission planning for NASA s operation of the International Space Station is the allocation and management of space for supplies and equipment. The Stowage, Configuration Analysis, and Operations Planning teams collaborate to perform the bulk of that planning. A Geometric Reasoning Engine is developed in a way that can be shared by the teams to optimize item placement in the context of crew planning. The ISS crew spends (at the time of this writing) a third or more of their time moving supplies and equipment around. Better logistical support and optimized packing could make a significant impact on operational efficiency of the ISS. Currently, computational geometry and motion planning do not focus specifically on the optimized orientation and placement of 3D objects based on multiple distance and containment preferences and constraints. The software performs reasoning about the manipulation of 3D solid models in order to maximize an objective function based on distance. It optimizes for 3D orientation and placement. Spatial placement optimization is a general problem and can be applied to object packing or asset relocation.

  17. Analytical Study on Multi-Tier 5G Heterogeneous Small Cell Networks: Coverage Performance and Energy Efficiency.

    PubMed

    Xiao, Zhu; Liu, Hongjing; Havyarimana, Vincent; Li, Tong; Wang, Dong

    2016-11-04

    In this paper, we investigate the coverage performance and energy efficiency of multi-tier heterogeneous cellular networks (HetNets) which are composed of macrocells and different types of small cells, i.e., picocells and femtocells. By virtue of stochastic geometry tools, we model the multi-tier HetNets based on a Poisson point process (PPP) and analyze the Signal to Interference Ratio (SIR) via studying the cumulative interference from pico-tier and femto-tier. We then derive the analytical expressions of coverage probabilities in order to evaluate coverage performance in different tiers and investigate how it varies with the small cells' deployment density. By taking the fairness and user experience into consideration, we propose a disjoint channel allocation scheme and derive the system channel throughput for various tiers. Further, we formulate the energy efficiency optimization problem for multi-tier HetNets in terms of throughput performance and resource allocation fairness. To solve this problem, we devise a linear programming based approach to obtain the available area of the feasible solutions. System-level simulations demonstrate that the small cells' deployment density has a significant effect on the coverage performance and energy efficiency. Simulation results also reveal that there exits an optimal small cell base station (SBS) density ratio between pico-tier and femto-tier which can be applied to maximize the energy efficiency and at the same time enhance the system performance. Our findings provide guidance for the design of multi-tier HetNets for improving the coverage performance as well as the energy efficiency.

  18. Analytical Study on Multi-Tier 5G Heterogeneous Small Cell Networks: Coverage Performance and Energy Efficiency

    PubMed Central

    Xiao, Zhu; Liu, Hongjing; Havyarimana, Vincent; Li, Tong; Wang, Dong

    2016-01-01

    In this paper, we investigate the coverage performance and energy efficiency of multi-tier heterogeneous cellular networks (HetNets) which are composed of macrocells and different types of small cells, i.e., picocells and femtocells. By virtue of stochastic geometry tools, we model the multi-tier HetNets based on a Poisson point process (PPP) and analyze the Signal to Interference Ratio (SIR) via studying the cumulative interference from pico-tier and femto-tier. We then derive the analytical expressions of coverage probabilities in order to evaluate coverage performance in different tiers and investigate how it varies with the small cells’ deployment density. By taking the fairness and user experience into consideration, we propose a disjoint channel allocation scheme and derive the system channel throughput for various tiers. Further, we formulate the energy efficiency optimization problem for multi-tier HetNets in terms of throughput performance and resource allocation fairness. To solve this problem, we devise a linear programming based approach to obtain the available area of the feasible solutions. System-level simulations demonstrate that the small cells’ deployment density has a significant effect on the coverage performance and energy efficiency. Simulation results also reveal that there exits an optimal small cell base station (SBS) density ratio between pico-tier and femto-tier which can be applied to maximize the energy efficiency and at the same time enhance the system performance. Our findings provide guidance for the design of multi-tier HetNets for improving the coverage performance as well as the energy efficiency. PMID:27827917

  19. The constraints satisfaction problem approach in the design of an architectural functional layout

    NASA Astrophysics Data System (ADS)

    Zawidzki, Machi; Tateyama, Kazuyoshi; Nishikawa, Ikuko

    2011-09-01

    A design support system with a new strategy for finding the optimal functional configurations of rooms for architectural layouts is presented. A set of configurations satisfying given constraints is generated and ranked according to multiple objectives. The method can be applied to problems in architectural practice, urban or graphic design-wherever allocation of related geometrical elements of known shape is optimized. Although the methodology is shown using simplified examples-a single story residential building with two apartments each having two rooms-the results resemble realistic functional layouts. One example of a practical size problem of a layout of three apartments with a total of 20 rooms is demonstrated, where the generated solution can be used as a base for a realistic architectural blueprint. The discretization of design space is discussed, followed by application of a backtrack search algorithm used for generating a set of potentially 'good' room configurations. Next the solutions are classified by a machine learning method (FFN) as 'proper' or 'improper' according to the internal communication criteria. Examples of interactive ranking of the 'proper' configurations according to multiple criteria and choosing 'the best' ones are presented. The proposed framework is general and universal-the criteria, parameters and weights can be individually defined by a user and the search algorithm can be adjusted to a specific problem.

  20. A multiobjective optimization framework for multicontaminant industrial water network design.

    PubMed

    Boix, Marianne; Montastruc, Ludovic; Pibouleau, Luc; Azzaro-Pantel, Catherine; Domenech, Serge

    2011-07-01

    The optimal design of multicontaminant industrial water networks according to several objectives is carried out in this paper. The general formulation of the water allocation problem (WAP) is given as a set of nonlinear equations with binary variables representing the presence of interconnections in the network. For optimization purposes, three antagonist objectives are considered: F(1), the freshwater flow-rate at the network entrance, F(2), the water flow-rate at inlet of regeneration units, and F(3), the number of interconnections in the network. The multiobjective problem is solved via a lexicographic strategy, where a mixed-integer nonlinear programming (MINLP) procedure is used at each step. The approach is illustrated by a numerical example taken from the literature involving five processes, one regeneration unit and three contaminants. The set of potential network solutions is provided in the form of a Pareto front. Finally, the strategy for choosing the best network solution among those given by Pareto fronts is presented. This Multiple Criteria Decision Making (MCDM) problem is tackled by means of two approaches: a classical TOPSIS analysis is first implemented and then an innovative strategy based on the global equivalent cost (GEC) in freshwater that turns out to be more efficient for choosing a good network according to a practical point of view. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Optimal allocation of thermodynamic irreversibility for the integrated design of propulsion and thermal management systems

    NASA Astrophysics Data System (ADS)

    Maser, Adam Charles

    More electric aircraft systems, high power avionics, and a reduction in heat sink capacity have placed a larger emphasis on correctly satisfying aircraft thermal management requirements during conceptual design. Thermal management systems must be capable of dealing with these rising heat loads, while simultaneously meeting mission performance. Since all subsystem power and cooling requirements are ultimately traced back to the engine, the growing interactions between the propulsion and thermal management systems are becoming more significant. As a result, it is necessary to consider their integrated performance during the conceptual design of the aircraft gas turbine engine cycle to ensure that thermal requirements are met. This can be accomplished by using thermodynamic subsystem modeling and simulation while conducting the necessary design trades to establish the engine cycle. However, this approach also poses technical challenges associated with the existence of elaborate aircraft subsystem interactions. This research addresses these challenges through the creation of a parsimonious, transparent thermodynamic model of propulsion and thermal management systems performance with a focus on capturing the physics that have the largest impact on propulsion design choices. This modeling environment, known as Cycle Refinement for Aircraft Thermodynamically Optimized Subsystems (CRATOS), is capable of operating in on-design (parametric) and off-design (performance) modes and includes a system-level solver to enforce design constraints. A key aspect of this approach is the incorporation of physics-based formulations involving the concurrent usage of the first and second laws of thermodynamics, which are necessary to achieve a clearer view of the component-level losses across the propulsion and thermal management systems. This is facilitated by the direct prediction of the exergy destruction distribution throughout the system and the resulting quantification of available work losses over the time history of the mission. The characterization of the thermodynamic irreversibility distribution helps give the propulsion systems designer an absolute and consistent view of the tradeoffs associated with the design of the entire integrated system. Consequently, this leads directly to the question of the proper allocation of irreversibility across each of the components. The process of searching for the most favorable allocation of this irreversibility is the central theme of the research and must take into account production cost and vehicle mission performance. The production cost element is accomplished by including an engine component weight and cost prediction capability within the system model. The vehicle mission performance is obtained by directly linking the propulsion and thermal management model to a vehicle performance model and flying it through a mission profile. A canonical propulsion and thermal management systems architecture is then presented to experimentally test each element of the methodology separately: first the integrated modeling and simulation, then the irreversibility, cost, and mission performance considerations, and then finally the proper technique to perform the optimal allocation. A goal of this research is the description of the optimal allocation of system irreversibility to enable an engine cycle design with improved performance and cost at the vehicle-level. To do this, a numerical optimization was first used to minimize system-level production and operating costs by fixing the performance requirements and identifying the best settings for all of the design variables. There are two major drawbacks to this approach: It does not allow the designer to directly trade off the performance requirements and it does not allow the individual component losses to directly factor into the optimization. An irreversibility allocation approach based on the economic concept of resource allocation is then compared to the numerical optimization. By posing the problem in economic terms, exergy destruction is treated as a true common currency to barter for improved efficiency, cost, and performance. This allows the designer to clearly see how changes in the irreversibility distribution impact the overall system. The inverse design is first performed through a filtered Monte Carlo to allow the designer to view the irreversibility design space. The designer can then directly perform the allocation using the exergy destruction, which helps to place the design choices on an even thermodynamic footing. Finally, two use cases are presented to show how the irreversibility allocation approach can assist the designer. The first describes a situation where the designer can better address competing system-level requirements; the second describes a different situation where the designer can choose from a number of options to improve a system in a manner that is more robust to future requirements.

  2. Rethinking Traffic Management: Design of Optimizable Networks

    DTIC Science & Technology

    2008-06-01

    Though this paper used optimization theory to design and analyze DaVinci , op- timization theory is one of many possible tools to enable a grounded...dynamically allocate bandwidth shares. The distributed protocols can be implemented using DaVinci : Dynamically Adaptive VIrtual Networks for a Customized...Internet. In DaVinci , each virtual network runs traffic-management protocols optimized for a traffic class, and link bandwidth is dynamically allocated

  3. Distributed Power Allocation for Wireless Sensor Network Localization: A Potential Game Approach.

    PubMed

    Ke, Mingxing; Li, Ding; Tian, Shiwei; Zhang, Yuli; Tong, Kaixiang; Xu, Yuhua

    2018-05-08

    The problem of distributed power allocation in wireless sensor network (WSN) localization systems is investigated in this paper, using the game theoretic approach. Existing research focuses on the minimization of the localization errors of individual agent nodes over all anchor nodes subject to power budgets. When the service area and the distribution of target nodes are considered, finding the optimal trade-off between localization accuracy and power consumption is a new critical task. To cope with this issue, we propose a power allocation game where each anchor node minimizes the square position error bound (SPEB) of the service area penalized by its individual power. Meanwhile, it is proven that the power allocation game is an exact potential game which has one pure Nash equilibrium (NE) at least. In addition, we also prove the existence of an ϵ -equilibrium point, which is a refinement of NE and the better response dynamic approach can reach the end solution. Analytical and simulation results demonstrate that: (i) when prior distribution information is available, the proposed strategies have better localization accuracy than the uniform strategies; (ii) when prior distribution information is unknown, the performance of the proposed strategies outperforms power management strategies based on the second-order cone program (SOCP) for particular agent nodes after obtaining the estimated distribution of agent nodes. In addition, proposed strategies also provide an instructional trade-off between power consumption and localization accuracy.

  4. Optimum allocation of conservation funds and choice of conservation programs for a set of African cattle breeds

    PubMed Central

    Reist-Marti, Sabine B; Abdulai, Awudu; Simianer, Henner

    2006-01-01

    Although funds for livestock conservation are limited there is little known about the optimal allocation of conservation funds. A new algorithm was used to allocate Mio US$ 1, 2, 3, 5 or unlimited funds, discounted over 50 years, on 23 African cattle breeds conserved with four different possible conservation programs. Additionally, Mio US$ 1 was preferably allocated to breeds with special traits. The conceptional in situ conservation programs strongly involve breeders and give them part of the responsibility for the conservation of the breed. Therefore, the pure in situ conservation was more efficient than cryoconservation or combined in situ and cryoconservation. The average annual discounted conservation cost for a breed can be as low as US$ 1000 to US$ 4400 depending on the design of the conservation program and the economic situation of the country of conservation. The choice of the breeds and the optimal conservation program and the amount of money allocated to each breed depend on many factors such as the amount of funds available, the conservation potential of each breed, the effects of the conservation program as well as its cost. With Mio US$ 1, 64% of the present diversity could be maintained over 50 years, which is 13% more than would be maintained if no conservation measures were implemented. Special traits could be conserved with a rather small amount of the total funds. Diversity can not be conserved completely, not even with unlimited funds. A maximum of 92% of the present diversity could be conserved with Mio US$ 10, leaving 8% of the diversity to unpredictable happenings. The suggested algorithm proved to be useful for optimal allocation of conservation funds. It allocated the funds optimally among breeds by identifying the most suited conservation program for each breed, also accounting for differences in currency exchange rates between the different countries. PMID:16451794

  5. Distributed Channel Allocation and Time Slot Optimization for Green Internet of Things.

    PubMed

    Ding, Kaiqi; Zhao, Haitao; Hu, Xiping; Wei, Jibo

    2017-10-28

    In sustainable smart cities, power saving is a severe challenge in the energy-constrained Internet of Things (IoT). Efficient utilization of limited multiple non-overlap channels and time resources is a promising solution to reduce the network interference and save energy consumption. In this paper, we propose a joint channel allocation and time slot optimization solution for IoT. First, we propose a channel ranking algorithm which enables each node to rank its available channels based on the channel properties. Then, we propose a distributed channel allocation algorithm so that each node can choose a proper channel based on the channel ranking and its own residual energy. Finally, the sleeping duration and spectrum sensing duration are jointly optimized to maximize the normalized throughput and satisfy energy consumption constraints simultaneously. Different from the former approaches, our proposed solution requires no central coordination or any global information that each node can operate based on its own local information in a total distributed manner. Also, theoretical analysis and extensive simulations have validated that when applying our solution in the network of IoT: (i) each node can be allocated to a proper channel based on the residual energy to balance the lifetime; (ii) the network can rapidly converge to a collision-free transmission through each node's learning ability in the process of the distributed channel allocation; and (iii) the network throughput is further improved via the dynamic time slot optimization.

  6. Artificial intelligent techniques for optimizing water allocation in a reservoir watershed

    NASA Astrophysics Data System (ADS)

    Chang, Fi-John; Chang, Li-Chiu; Wang, Yu-Chung

    2014-05-01

    This study proposes a systematical water allocation scheme that integrates system analysis with artificial intelligence techniques for reservoir operation in consideration of the great uncertainty upon hydrometeorology for mitigating droughts impacts on public and irrigation sectors. The AI techniques mainly include a genetic algorithm and adaptive-network based fuzzy inference system (ANFIS). We first derive evaluation diagrams through systematic interactive evaluations on long-term hydrological data to provide a clear simulation perspective of all possible drought conditions tagged with their corresponding water shortages; then search the optimal reservoir operating histogram using genetic algorithm (GA) based on given demands and hydrological conditions that can be recognized as the optimal base of input-output training patterns for modelling; and finally build a suitable water allocation scheme through constructing an adaptive neuro-fuzzy inference system (ANFIS) model with a learning of the mechanism between designed inputs (water discount rates and hydrological conditions) and outputs (two scenarios: simulated and optimized water deficiency levels). The effectiveness of the proposed approach is tested on the operation of the Shihmen Reservoir in northern Taiwan for the first paddy crop in the study area to assess the water allocation mechanism during drought periods. We demonstrate that the proposed water allocation scheme significantly and substantially avails water managers of reliably determining a suitable discount rate on water supply for both irrigation and public sectors, and thus can reduce the drought risk and the compensation amount induced by making restrictions on agricultural use water.

  7. Proposing integrated Shannon's entropy-inverse data envelopment analysis methods for resource allocation problem under a fuzzy environment

    NASA Astrophysics Data System (ADS)

    Çakır, Süleyman

    2017-10-01

    In this study, a two-phase methodology for resource allocation problems under a fuzzy environment is proposed. In the first phase, the imprecise Shannon's entropy method and the acceptability index are suggested, for the first time in the literature, to select input and output variables to be used in the data envelopment analysis (DEA) application. In the second step, an interval inverse DEA model is executed for resource allocation in a short run. In an effort to exemplify the practicality of the proposed fuzzy model, a real case application has been conducted involving 16 cement firms listed in Borsa Istanbul. The results of the case application indicated that the proposed hybrid model is a viable procedure to handle input-output selection and resource allocation problems under fuzzy conditions. The presented methodology can also lend itself to different applications such as multi-criteria decision-making problems.

  8. 77 FR 32183 - Transmission Planning and Cost Allocation by Transmission Owning and Operating Public Utilities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-31

    ... it would not wait for systemic problems to undermine transmission planning before action is taken... that the development of transmission facilities can involve long lead times and complex problems... rather than allowing the problems in transmission planning and cost allocation to continue or to increase...

  9. Three Essays on Macroeconomics

    NASA Astrophysics Data System (ADS)

    Doda, Lider Baran

    This dissertation consists of three independent essays in macroeconomics. The first essay studies the transition to a low carbon economy using an extension of the neoclassical growth model featuring endogenous energy efficiency, exhaustible energy and explicit climate-economy interaction. I derive the properties of the laissez faire equilibrium and compare them to the optimal allocations of a social planner who internalizes the climate change externality. Three main results emerge. First, the exhaustibility of energy generates strong market based incentives to improve energy efficiency and reduce CO 2 emissions without any government intervention. Second, the market and optimal allocations are substantially different suggesting a role for the government. Third, high and persistent taxes are required to implement the optimal allocations as a competitive equilibrium with taxes. The second essay focuses on coal fired power plants (CFPP) - one of the largest sources of CO2 emissions globally - and their generation efficiency using a macroeconomic model with an embedded CFPP sector. A key feature of the model is the endogenous choice of production technologies which differ in their energy efficiency. After establishing four empirical facts about the CFPP sector, I analyze the long run quantitative effects of energy taxes. Using the calibrated model, I find that sector-specific coal taxes have large effects on generation efficiency by inducing the use of more efficient technologies. Moreover, such taxes achieve large CO2 emissions reductions with relatively small effects on consumption and output. The final essay studies the procyclicality of fiscal policy in developing countries, which is a well-documented empirical observation seemingly at odds with Neoclassical and Keynesian policy prescriptions. I examine this issue by solving the optimal fiscal policy problem of a small open economy government when the interest rates on external debt are endogenous. Given an incomplete asset market, endogeneity is achieved by removing the government's ability to commit to repaying its external obligations. When calibrated to Argentina, the model generates procyclical government spending and countercyclical labor income tax rates. Simultaneously, the model's implications for key business cycle moments align well with the data.

  10. Liver Sharing and Organ Procurement Organization Performance under Redistricted Allocation

    PubMed Central

    Gentry, Sommer E.; Chow, Eric KH.; Massie, Allan; Luo, Xun; Shteyn, Eugene; Pyke, Joshua; Zaun, David; Snyder, Jon J.; Israni, Ajay K.; Kasiske, Bert; Segev, Dorry L.

    2015-01-01

    Concerns have been raised that optimized redistricting of liver allocation areas might have the unintended result of shifting livers from better-performing to poorer-performing OPOs. We used the Liver Simulated Allocation Model to simulate a 5-year period of liver sharing within either 4 or 8 optimized districts. We investigated whether each OPO’s net liver import under redistricting would be correlated with two OPO performance metrics (observed to expected liver yield and liver donor conversion ratio), along with two other potential correlates (eligible deaths and incident listings above MELD 15). We found no evidence that livers would flow from better-performing OPOs to poorer-performing OPOs in either redistricting scenario. Instead, under these optimized redistricting plans, our simulations suggest that livers would flow from OPOs with more-than-expected eligible deaths toward those with fewer-than-expected eligible deaths, and that livers would flow from OPOs with fewer-than-expected incident listings to those with more-than-expected incident listings, the latter a pattern already established in the current allocation system. Redistricting liver distribution to reduce geographic inequity is expected to align liver allocation across the country with the distribution of supply and demand, rather than transferring livers from better-performing OPOs to poorer-performing OPOs. PMID:25990089

  11. Optimal conservation resource allocation under variable economic and ecological time discounting rates in boreal forest.

    PubMed

    Mazziotta, Adriano; Pouzols, Federico Montesino; Mönkkönen, Mikko; Kotiaho, Janne S; Strandman, Harri; Moilanen, Atte

    2016-09-15

    Resource allocation to multiple alternative conservation actions is a complex task. A common trade-off occurs between protection of smaller, expensive, high-quality areas versus larger, cheaper, partially degraded areas. We investigate optimal allocation into three actions in boreal forest: current standard forest management rules, setting aside of mature stands, or setting aside of clear-cuts. We first estimated how habitat availability for focal indicator species and economic returns from timber harvesting develop through time as a function of forest type and action chosen. We then developed an optimal resource allocation by accounting for budget size and habitat availability of indicator species in different forest types. We also accounted for the perspective adopted towards sustainability, modeled via temporal preference and economic and ecological time discounting. Controversially, we found that in boreal forest set-aside followed by protection of clear-cuts can become a winning cost-effective strategy when accounting for habitat requirements of multiple species, long planning horizon, and limited budget. It is particularly effective when adopting a long-term sustainability perspective, and accounting for present revenues from timber harvesting. The present analysis assesses the cost-effective conditions to allocate resources into an inexpensive conservation strategy that nevertheless has potential to produce high ecological values in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Equalizing access to pandemic influenza vaccines through optimal allocation to public health distribution points.

    PubMed

    Huang, Hsin-Chan; Singh, Bismark; Morton, David P; Johnson, Gregory P; Clements, Bruce; Meyers, Lauren Ancel

    2017-01-01

    Vaccines are arguably the most important means of pandemic influenza mitigation. However, as during the 2009 H1N1 pandemic, mass immunization with an effective vaccine may not begin until a pandemic is well underway. In the U.S., state-level public health agencies are responsible for quickly and fairly allocating vaccines as they become available to populations prioritized to receive vaccines. Allocation decisions can be ethically and logistically complex, given several vaccine types in limited and uncertain supply and given competing priority groups with distinct risk profiles and vaccine acceptabilities. We introduce a model for optimizing statewide allocation of multiple vaccine types to multiple priority groups, maximizing equal access. We assume a large fraction of available vaccines are distributed to healthcare providers based on their requests, and then optimize county-level allocation of the remaining doses to achieve equity. We have applied the model to the state of Texas, and incorporated it in a Web-based decision-support tool for the Texas Department of State Health Services (DSHS). Based on vaccine quantities delivered to registered healthcare providers in response to their requests during the 2009 H1N1 pandemic, we find that a relatively small cache of discretionary doses (DSHS reserved 6.8% in 2009) suffices to achieve equity across all counties in Texas.

  13. Optimal allocation of leaf epidermal area for gas exchange.

    PubMed

    de Boer, Hugo J; Price, Charles A; Wagner-Cremer, Friederike; Dekker, Stefan C; Franks, Peter J; Veneklaas, Erik J

    2016-06-01

    A long-standing research focus in phytology has been to understand how plants allocate leaf epidermal space to stomata in order to achieve an economic balance between the plant's carbon needs and water use. Here, we present a quantitative theoretical framework to predict allometric relationships between morphological stomatal traits in relation to leaf gas exchange and the required allocation of epidermal area to stomata. Our theoretical framework was derived from first principles of diffusion and geometry based on the hypothesis that selection for higher anatomical maximum stomatal conductance (gsmax ) involves a trade-off to minimize the fraction of the epidermis that is allocated to stomata. Predicted allometric relationships between stomatal traits were tested with a comprehensive compilation of published and unpublished data on 1057 species from all major clades. In support of our theoretical framework, stomatal traits of this phylogenetically diverse sample reflect spatially optimal allometry that minimizes investment in the allocation of epidermal area when plants evolve towards higher gsmax . Our results specifically highlight that the stomatal morphology of angiosperms evolved along spatially optimal allometric relationships. We propose that the resulting wide range of viable stomatal trait combinations equips angiosperms with developmental and evolutionary flexibility in leaf gas exchange unrivalled by gymnosperms and pteridophytes. © 2016 The Authors New Phytologist © 2016 New Phytologist Trust.

  14. Dynamic subframe allocation for mobile broadband m-health using IEEE 802.16j mobile multihop relay networks.

    PubMed

    Alinejad, Ali; Istepanian, R S H; Philip, N

    2012-01-01

    The concept of 4G health will be one of the key focus areas of future m-health research and enterprise activities in the coming years. WiMAX technology is one of the constituent 4G wireless technologies that provides broadband wireless access (BWA). Despite the fact that WiMAX is able to provide a high data rate in a relatively large coverage; this technology has specific limitations such as: coverage, signal attenuation problems due to shadowing or path loss, and limited available spectrum. The IEEE 802.16j mobile multihop relay (MMR) technology is a pragmatic solution designed to overcome these limitations. The aim of IEEE 802.16j MMR is to expand the IEEE 802.16e's capabilities with multihop features. In particular, the uplink (UL) and downlink (DL) subframe allocation in WiMAX network is usually fixed. However, dynamic frame allocation is a useful mechanism to optimize uplink and downlink subframe size dynamically based on the traffic conditions through real-time traffic monitoring. This particular mechanism is important for future WiMAX based m-health applications as it allows the tradeoff in both UL and DL channels. In this paper, we address the dynamic frame allocation issue in IEEE 802.16j MMR network for m-health applications. A comparative performance analysis of the proposed approach is validated using the OPNET Modeler(®). The simulation results have shown an improved performance of resource allocation and end-to-end delay performance for typical medical video streaming application.

  15. OPAL Netlogo Land Condition Model

    DTIC Science & Technology

    2014-08-15

    ER D C/ CE RL T R- 14 -1 2 Optimal Allocation of Land for Training and Non-training Uses ( OPAL ) OPAL Netlogo Land Condition Model...Fulton, Natalie Myers, Scott Tweddale, Dick Gebhart, Ryan Busby, Anne Dain-Owens, and Heidi Howard August 2014 OPAL team measuring above and...online library at http://acwc.sdp.sirsi.net/client/default. Optimal Allocation of Land for Training and Non-training Uses ( OPAL ) ERDC/CERL TR-14-12

  16. Optimization model for the allocation of water resources based on the maximization of employment in the agriculture and industry sectors

    NASA Astrophysics Data System (ADS)

    Habibi Davijani, M.; Banihabib, M. E.; Nadjafzadeh Anvar, A.; Hashemi, S. R.

    2016-02-01

    In many discussions, work force is mentioned as the most important factor of production. Principally, work force is a factor which can compensate for the physical and material limitations and shortcomings of other factors to a large extent which can help increase the production level. On the other hand, employment is considered as an effective factor in social issues. The goal of the present research is the allocation of water resources so as to maximize the number of jobs created in the industry and agriculture sectors. An objective that has attracted the attention of policy makers involved in water supply and distribution is the maximization of the interests of beneficiaries and consumers in case of certain policies adopted. The present model applies the particle swarm optimization (PSO) algorithm in order to determine the optimum amount of water allocated to each water-demanding sector, area under cultivation, agricultural production, employment in the agriculture sector, industrial production and employment in the industry sector. Based on the results obtained from this research, by optimally allocating water resources in the central desert region of Iran, 1096 jobs can be created in the industry and agriculture sectors, which constitutes an improvement of about 13% relative to the previous situation (non-optimal water utilization). It is also worth mentioning that by optimizing the employment factor as a social parameter, the other areas such as the economic sector are influenced as well. For example, in this investigation, the resulting economic benefits (incomes) have improved from 73 billion Rials at baseline employment figures to 112 billion Rials in the case of optimized employment condition. Therefore, it is necessary to change the inter-sector and intra-sector water allocation models in this region, because this change not only leads to more jobs in this area, but also causes an improvement in the region's economic conditions.

  17. Motion-Based Piloted Simulation Evaluation of a Control Allocation Technique to Recover from Pilot Induced Oscillations

    NASA Technical Reports Server (NTRS)

    Craun, Robert W.; Acosta, Diana M.; Beard, Steven D.; Leonard, Michael W.; Hardy, Gordon H.; Weinstein, Michael; Yildiz, Yildiray

    2013-01-01

    This paper describes the maturation of a control allocation technique designed to assist pilots in the recovery from pilot induced oscillations (PIOs). The Control Allocation technique to recover from Pilot Induced Oscillations (CAPIO) is designed to enable next generation high efficiency aircraft designs. Energy efficient next generation aircraft require feedback control strategies that will enable lowering the actuator rate limit requirements for optimal airframe design. One of the common issues flying with actuator rate limits is PIOs caused by the phase lag between the pilot inputs and control surface response. CAPIO utilizes real-time optimization for control allocation to eliminate phase lag in the system caused by control surface rate limiting. System impacts of the control allocator were assessed through a piloted simulation evaluation of a non-linear aircraft simulation in the NASA Ames Vertical Motion Simulator. Results indicate that CAPIO helps reduce oscillatory behavior, including the severity and duration of PIOs, introduced by control surface rate limiting.

  18. Resource Economics

    NASA Astrophysics Data System (ADS)

    Conrad, Jon M.

    1999-10-01

    Resource Economics is a text for students with a background in calculus, intermediate microeconomics, and a familiarity with the spreadsheet software Excel. The book covers basic concepts, shows how to set up spreadsheets to solve dynamic allocation problems, and presents economic models for fisheries, forestry, nonrenewable resources, stock pollutants, option value, and sustainable development. Within the text, numerical examples are posed and solved using Excel's Solver. Through these examples and additional exercises at the end of each chapter, students can make dynamic models operational, develop their economic intuition, and learn how to set up spreadsheets for the simulation of optimization of resource and environmental systems.

  19. Single-tier city logistics model for single product

    NASA Astrophysics Data System (ADS)

    Saragih, N. I.; Nur Bahagia, S.; Suprayogi; Syabri, I.

    2017-11-01

    This research develops single-tier city logistics model which consists of suppliers, UCCs, and retailers. The problem that will be answered in this research is how to determine the location of UCCs, to allocate retailers to opened UCCs, to assign suppliers to opened UCCs, to control inventory in the three entities involved, and to determine the route of the vehicles from opened UCCs to retailers. This model has never been developed before. All the decisions will be simultaneously optimized. Characteristic of the demand is probabilistic following a normal distribution, and the number of product is single.

  20. Shift scheduling model considering workload and worker’s preference for security department

    NASA Astrophysics Data System (ADS)

    Herawati, A.; Yuniartha, D. R.; Purnama, I. L. I.; Dewi, LT

    2018-04-01

    Security department operates for 24 hours and applies shift scheduling to organize its workers as well as in hotel industry. This research has been conducted to develop shift scheduling model considering the workers physical workload using rating of perceived exertion (RPE) Borg’s Scale and workers’ preference to accommodate schedule flexibility. The mathematic model is developed in integer linear programming and results optimal solution for simple problem. Resulting shift schedule of the developed model has equally distribution shift allocation among workers to balance the physical workload and give flexibility for workers in working hours arrangement.

  1. Application of RFID in the area of agricultural products quality traceability and tracking and the anti-collision algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Zu-liang; Zhang, Ting; Xie, Shi-yang

    2017-01-01

    In order to improve the agricultural tracing efficiency and reduce tracking and monitoring cost, agricultural products quality tracking and tracing based on Radio-Frequency Identification(RFID) technology is studied, then tracing and tracking model is set up. Three-layer structure model is established to realize the high quality of agricultural products traceability and tracking. To solve the collision problems between multiple RFID tags and improve the identification efficiency a new reservation slot allocation mechanism is proposed. And then we analyze and optimize the parameter by numerical simulation method.

  2. Theater-Level Gaming and Analysis Workshop for Force Planning. Volume II. Summary, Discussion of Issues and Requirements for Research. September 27- 29, 1977, Held at Xerox International Center for Training and Management Development, Leesburg, Virginia

    DTIC Science & Technology

    1981-05-01

    be allocated to targets on the battlefield and in the rear area. The speaker describes the VECTOR I/NUCLEAR model, a combination of the UNICORN target...outlined. UNICORN is compatible with VECTOR 1 in level of detail. It is an expected value damage model and uses linear programming to optimize the...and a growing appreciation for the power of simulation in addressing large, complex problems, it was only a few short years before these games had

  3. Economic aspects of spectrum management

    NASA Technical Reports Server (NTRS)

    Stibolt, R. D.

    1979-01-01

    Problems associated with the allocation of the radio frequency spectrum are addressed. It is observed that the current method very likely does not allocate the resource to those most valuing its use. Ecomonic criteria by which the effectiveness of resource allocation schemes can be judged are set forth and some thoughts on traditional objections to implementation of market characteristics into frequency allocation are offered. The problem of dividing orbit and spectrum between two satellite services sharing the same band but having significantly different system characteristics is discussed. The problem is compounded by the likelihood that one service will commence operation much sooner than the other. Some alternative schemes are offered that, within proper international constraints, could achieve a desired flexibility in the division of orbit and frequency between the two services domestically over the next several years.

  4. Analyzing the Effect of Multi-fuel and Practical Constraints on Realistic Economic Load Dispatch using Novel Two-stage PSO

    NASA Astrophysics Data System (ADS)

    Chintalapudi, V. S.; Sirigiri, Sivanagaraju

    2017-04-01

    In power system restructuring, pricing the electrical power plays a vital role in cost allocation between suppliers and consumers. In optimal power dispatch problem, not only the cost of active power generation but also the costs of reactive power generated by the generators should be considered to increase the effectiveness of the problem. As the characteristics of reactive power cost curve are similar to that of active power cost curve, a nonconvex reactive power cost function is formulated. In this paper, a more realistic multi-fuel total cost objective is formulated by considering active and reactive power costs of generators. The formulated cost function is optimized by satisfying equality, in-equality and practical constraints using the proposed uniform distributed two-stage particle swarm optimization. The proposed algorithm is a combination of uniform distribution of control variables (to start the iterative process with good initial value) and two-stage initialization processes (to obtain best final value in less number of iterations) can enhance the effectiveness of convergence characteristics. Obtained results for the considered standard test functions and electrical systems indicate the effectiveness of the proposed algorithm and can obtain efficient solution when compared to existing methods. Hence, the proposed method is a promising method and can be easily applied to optimize the power system objectives.

  5. Adaptive Sensing of Time Series with Application to Remote Exploration

    NASA Technical Reports Server (NTRS)

    Thompson, David R.; Cabrol, Nathalie A.; Furlong, Michael; Hardgrove, Craig; Low, Bryan K. H.; Moersch, Jeffrey; Wettergreen, David

    2013-01-01

    We address the problem of adaptive informationoptimal data collection in time series. Here a remote sensor or explorer agent throttles its sampling rate in order to track anomalous events while obeying constraints on time and power. This problem is challenging because the agent has limited visibility -- all collected datapoints lie in the past, but its resource allocation decisions require predicting far into the future. Our solution is to continually fit a Gaussian process model to the latest data and optimize the sampling plan on line to maximize information gain. We compare the performance characteristics of stationary and nonstationary Gaussian process models. We also describe an application based on geologic analysis during planetary rover exploration. Here adaptive sampling can improve coverage of localized anomalies and potentially benefit mission science yield of long autonomous traverses.

  6. Life-history strategies of North American elk: trade-offs associated with reproduction and survival

    Treesearch

    Sabrina Morano; Kelley M. Stewart; James S. Sedinger; Christopher A. Nicolai; Marty Vavra

    2013-01-01

    The principle of energy allocation states that individuals should attempt to maximize fitness by allocating resources optimally among growth, maintenance, and reproduction. Such allocation may result in trade-offs between survival and reproduction, or between current and future reproduction. We used a marked population of North American elk (Cervus elaphus...

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Canavan, G.H.

    Optimal offensive missile allocations for moderate offensive and defensive forces are derived and used to study their sensitivity to force structure parameters levels. It is shown that the first strike cost is a product of the number of missiles and a function of the optimum allocation. Thus, the conditions under which the number of missiles should increase or decrease in time is also determined by this allocation.

  8. Multi-objective evolutionary optimization for the joint operation of reservoirs of water supply under water-food-energy nexus management

    NASA Astrophysics Data System (ADS)

    Uen, T. S.; Tsai, W. P.; Chang, F. J.; Huang, A.

    2016-12-01

    In recent years, urbanization had a great effect on the growth of population and the resource management scheme of water, food and energy nexus (WFE nexus) in Taiwan. Resource shortages of WFE become a long-term and thorny issue due to the complex interactions of WFE nexus. In consideration of rapid socio-economic development, it is imperative to explore an efficient and practical approach for WFE resources management. This study aims to search the optimal solution to WFE nexus and construct a stable water supply system for multiple stakeholders. The Shimen Reservoir and Feitsui Reservoir in northern Taiwan are chosen to conduct the joint operation of the two reservoirs for water supply. This study intends to achieve water resource allocation from the two reservoirs subject to different operating rules and restrictions of resource allocation. The multi-objectives of the joint operation aim at maximizing hydro-power synergistic gains while minimizing water supply deficiency as well as food shortages. We propose to build a multi-objective evolutionary optimization model for analyzing the hydro-power synergistic gains to suggest the most favorable solutions in terms of tradeoffs between WFE. First, this study collected data from two reservoirs and Taiwan power company. Next, we built a WFE nexus model based on system dynamics. Finally, this study optimized the joint operation of the two reservoirs and calculated the synergy of hydro-power generation. The proposed methodology can tackle the complex joint reservoir operation problems. Results can suggest a reliable policy for joint reservoir operation for creating a green economic city under the lowest risks of water supply.

  9. A leader-follower-interactive method for regional water resources management with considering multiple water demands and eco-environmental constraints

    NASA Astrophysics Data System (ADS)

    Chen, Yizhong; Lu, Hongwei; Li, Jing; Ren, Lixia; He, Li

    2017-05-01

    This study presents the mathematical formulation and implementations of a synergistic optimization framework based on an understanding of water availability and reliability together with the characteristics of multiple water demands. This framework simultaneously integrates a set of leader-followers-interactive objectives established by different decision makers during the synergistic optimization. The upper-level model (leader's one) determines the optimal pollutants discharge to satisfy the environmental target. The lower-level model (follower's one) accepts the dispatch requirement from the upper-level one and dominates the optimal water-allocation strategy to maximize economic benefits representing the regional authority. The complicated bi-level model significantly improves upon the conventional programming methods through the mutual influence and restriction between the upper- and lower-level decision processes, particularly when limited water resources are available for multiple completing users. To solve the problem, a bi-level interactive solution algorithm based on satisfactory degree is introduced into the decision-making process for measuring to what extent the constraints are met and the objective reaches its optima. The capabilities of the proposed model are illustrated through a real-world case study of water resources management system in the district of Fengtai located in Beijing, China. Feasible decisions in association with water resources allocation, wastewater emission and pollutants discharge would be sequentially generated for balancing the objectives subject to the given water-related constraints, which can enable Stakeholders to grasp the inherent conflicts and trade-offs between the environmental and economic interests. The performance of the developed bi-level model is enhanced by comparing with single-level models. Moreover, in consideration of the uncertainty in water demand and availability, sensitivity analysis and policy analysis are employed for identifying their impacts on the final decisions and improving the practical applications.

  10. Multiple sensitive estimation and optimal sample size allocation in the item sum technique.

    PubMed

    Perri, Pier Francesco; Rueda García, María Del Mar; Cobo Rodríguez, Beatriz

    2018-01-01

    For surveys of sensitive issues in life sciences, statistical procedures can be used to reduce nonresponse and social desirability response bias. Both of these phenomena provoke nonsampling errors that are difficult to deal with and can seriously flaw the validity of the analyses. The item sum technique (IST) is a very recent indirect questioning method derived from the item count technique that seeks to procure more reliable responses on quantitative items than direct questioning while preserving respondents' anonymity. This article addresses two important questions concerning the IST: (i) its implementation when two or more sensitive variables are investigated and efficient estimates of their unknown population means are required; (ii) the determination of the optimal sample size to achieve minimum variance estimates. These aspects are of great relevance for survey practitioners engaged in sensitive research and, to the best of our knowledge, were not studied so far. In this article, theoretical results for multiple estimation and optimal allocation are obtained under a generic sampling design and then particularized to simple random sampling and stratified sampling designs. Theoretical considerations are integrated with a number of simulation studies based on data from two real surveys and conducted to ascertain the efficiency gain derived from optimal allocation in different situations. One of the surveys concerns cannabis consumption among university students. Our findings highlight some methodological advances that can be obtained in life sciences IST surveys when optimal allocation is achieved. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Development of Regional Supply Functions and a Least-Cost Model for Allocating Water Resources in Utah: A Parametric Linear Programming Approach.

    DTIC Science & Technology

    SYSTEMS ANALYSIS, * WATER SUPPLIES, MATHEMATICAL MODELS, OPTIMIZATION, ECONOMICS, LINEAR PROGRAMMING, HYDROLOGY, REGIONS, ALLOCATIONS, RESTRAINT, RIVERS, EVAPORATION, LAKES, UTAH, SALVAGE, MINES(EXCAVATIONS).

  12. Footwear used by older people and a history of hyperkeratotic lesions on the foot

    PubMed Central

    Palomo-López, Patricia; Becerro-de-Bengoa-Vallejo, Ricardo; Losa-Iglesias, Marta Elena; Rodríguez-Sanz, David; Calvo-Lobo, César; López-López, Daniel

    2017-01-01

    Abstract Inadequate footwear, painful and hyperkeratotic lesions (HL) are an extremely common problems amongst older people. Such problems increase the risk of falls, hamper mobility, reduction of quality of life, dignity, and ability to remain independent. The etiology of painful and feet conditions is poorly understood. To discover footwear preferences of older people, pain tolerance may favor presence of HL for the use of inadequate footwear in old age. A sample of 100 participants with a mean age of 74.90 ± 7.01 years attended an outpatient clinic where self-reported demographic data, frequency with which they checked their feet were recorded and measurements were taken of foot sensitivity. Additionally, all participants’ shoes were allocated into optimal, adequate, and dangerous categories based on design, structural and safety features, and materials. Only 12% of the sample population checked their feet every day, 37% revealed symptoms of neuropathy, 14% used optimal shoes, and 61% presented HL. In a bivariate analysis, no significant differences were observed. HL are associated with inadequate footwear, loss of sensitivity, and low frequency of foot health checks. PMID:28403112

  13. A survey and taxonomy on energy efficient resource allocation techniques for cloud computing systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hameed, Abdul; Khoshkbarforoushha, Alireza; Ranjan, Rajiv

    In a cloud computing paradigm, energy efficient allocation of different virtualized ICT resources (servers, storage disks, and networks, and the like) is a complex problem due to the presence of heterogeneous application (e.g., content delivery networks, MapReduce, web applications, and the like) workloads having contentious allocation requirements in terms of ICT resource capacities (e.g., network bandwidth, processing speed, response time, etc.). Several recent papers have tried to address the issue of improving energy efficiency in allocating cloud resources to applications with varying degree of success. However, to the best of our knowledge there is no published literature on this subjectmore » that clearly articulates the research problem and provides research taxonomy for succinct classification of existing techniques. Hence, the main aim of this paper is to identify open challenges associated with energy efficient resource allocation. In this regard, the study, first, outlines the problem and existing hardware and software-based techniques available for this purpose. Furthermore, available techniques already presented in the literature are summarized based on the energy-efficient research dimension taxonomy. The advantages and disadvantages of the existing techniques are comprehensively analyzed against the proposed research dimension taxonomy namely: resource adaption policy, objective function, allocation method, allocation operation, and interoperability.« less

  14. Using Simple Environmental Variables to Estimate Biomass Disturbance

    DTIC Science & Technology

    2014-08-01

    ER D C/ CE RL T R- 14 -1 3 Optimal Allocation of Land for Training and Non-Training Uses ( OPAL ) Using Simple Environmental Variables to...Uses ( OPAL ) ERDC/CERL TR-14-13 August 2014 Using Simple Environmental Variables to Estimate Biomass Disturbance Natalie Myers, Daniel Koch...Development of the Optimal Allocation of Land for Training and Non-Training Uses ( OPAL ) Program was undertak- en to meet this need. This phase of work

  15. OPAL Land Condition Model

    DTIC Science & Technology

    2014-08-01

    ER D C/ CE RL S R- 14 -7 Optimal Allocation of Land for Training and Non-training Uses OPAL Land Condition Model Co ns tr uc tio n En...Optimal Allocation of Land for Training and Non-training Uses ERDC/CERL SR-14-7 August 2014 OPAL Land Condition Model Daniel Koch, Scott Tweddale...programmer information supporting the Op- timal Programming of Army Lands ( OPAL ) model, which was designed for use by trainers, Integrated Training

  16. Virtual optical network mapping and core allocation in elastic optical networks using multi-core fibers

    NASA Astrophysics Data System (ADS)

    Xuan, Hejun; Wang, Yuping; Xu, Zhanqi; Hao, Shanshan; Wang, Xiaoli

    2017-11-01

    Virtualization technology can greatly improve the efficiency of the networks by allowing the virtual optical networks to share the resources of the physical networks. However, it will face some challenges, such as finding the efficient strategies for virtual nodes mapping, virtual links mapping and spectrum assignment. It is even more complex and challenging when the physical elastic optical networks using multi-core fibers. To tackle these challenges, we establish a constrained optimization model to determine the optimal schemes of optical network mapping, core allocation and spectrum assignment. To solve the model efficiently, tailor-made encoding scheme, crossover and mutation operators are designed. Based on these, an efficient genetic algorithm is proposed to obtain the optimal schemes of the virtual nodes mapping, virtual links mapping, core allocation. The simulation experiments are conducted on three widely used networks, and the experimental results show the effectiveness of the proposed model and algorithm.

  17. A decision modeling for phasor measurement unit location selection in smart grid systems

    NASA Astrophysics Data System (ADS)

    Lee, Seung Yup

    As a key technology for enhancing the smart grid system, Phasor Measurement Unit (PMU) provides synchronized phasor measurements of voltages and currents of wide-area electric power grid. With various benefits from its application, one of the critical issues in utilizing PMUs is the optimal site selection of units. The main aim of this research is to develop a decision support system, which can be used in resource allocation task for smart grid system analysis. As an effort to suggest a robust decision model and standardize the decision modeling process, a harmonized modeling framework, which considers operational circumstances of component, is proposed in connection with a deterministic approach utilizing integer programming. With the results obtained from the optimal PMU placement problem, the advantages and potential that the harmonized modeling process possesses are assessed and discussed.

  18. Monitoring and decision making by people in man machine systems

    NASA Technical Reports Server (NTRS)

    Johannsen, G.

    1979-01-01

    The analysis of human monitoring and decision making behavior as well as its modeling are described. Classic and optimal control theoretical, monitoring models are surveyed. The relationship between attention allocation and eye movements is discussed. As an example of applications, the evaluation of predictor displays by means of the optimal control model is explained. Fault detection involving continuous signals and decision making behavior of a human operator engaged in fault diagnosis during different operation and maintenance situations are illustrated. Computer aided decision making is considered as a queueing problem. It is shown to what extent computer aids can be based on the state of human activity as measured by psychophysiological quantities. Finally, management information systems for different application areas are mentioned. The possibilities of mathematical modeling of human behavior in complex man machine systems are also critically assessed.

  19. Strategies on the Implementation of China's Logistics Information Network

    NASA Astrophysics Data System (ADS)

    Dong, Yahui; Li, Wei; Guo, Xuwen

    The economic globalization and trend of e-commerce network have determined that the logistics industry will be rapidly developed in the 21st century. In order to achieve the optimal allocation of resources, a worldwide rapid and sound customer service system should be established. The establishment of a corresponding modern logistics system is the inevitable choice of this requirement. It is also the inevitable choice for the development of modern logistics industry in China. The perfect combination of modern logistics and information network can better promote the development of the logistics industry. Through the analysis of Status of Logistics Industry in China, this paper summed up the domestic logistics enterprise logistics information system in the building of some common problems. According to logistics information systems planning methods and principles set out logistics information system to optimize the management model.

  20. A decision-analytic approach to the optimal allocation of resources for endangered species consultation

    USGS Publications Warehouse

    Converse, Sarah J.; Shelley, Kevin J.; Morey, Steve; Chan, Jeffrey; LaTier, Andrea; Scafidi, Carolyn; Crouse, Deborah T.; Runge, Michael C.

    2011-01-01

    The resources available to support conservation work, whether time or money, are limited. Decision makers need methods to help them identify the optimal allocation of limited resources to meet conservation goals, and decision analysis is uniquely suited to assist with the development of such methods. In recent years, a number of case studies have been described that examine optimal conservation decisions under fiscal constraints; here we develop methods to look at other types of constraints, including limited staff and regulatory deadlines. In the US, Section Seven consultation, an important component of protection under the federal Endangered Species Act, requires that federal agencies overseeing projects consult with federal biologists to avoid jeopardizing species. A benefit of consultation is negotiation of project modifications that lessen impacts on species, so staff time allocated to consultation supports conservation. However, some offices have experienced declining staff, potentially reducing the efficacy of consultation. This is true of the US Fish and Wildlife Service's Washington Fish and Wildlife Office (WFWO) and its consultation work on federally-threatened bull trout (Salvelinus confluentus). To improve effectiveness, WFWO managers needed a tool to help allocate this work to maximize conservation benefits. We used a decision-analytic approach to score projects based on the value of staff time investment, and then identified an optimal decision rule for how scored projects would be allocated across bins, where projects in different bins received different time investments. We found that, given current staff, the optimal decision rule placed 80% of informal consultations (those where expected effects are beneficial, insignificant, or discountable) in a short bin where they would be completed without negotiating changes. The remaining 20% would be placed in a long bin, warranting an investment of seven days, including time for negotiation. For formal consultations (those where expected effects are significant), 82% of projects would be placed in a long bin, with an average time investment of 15. days. The WFWO is using this decision-support tool to help allocate staff time. Because workload allocation decisions are iterative, we describe a monitoring plan designed to increase the tool's efficacy over time. This work has general application beyond Section Seven consultation, in that it provides a framework for efficient investment of staff time in conservation when such time is limited and when regulatory deadlines prevent an unconstrained approach. ?? 2010.

  1. Control Allocation with Load Balancing

    NASA Technical Reports Server (NTRS)

    Bodson, Marc; Frost, Susan A.

    2009-01-01

    Next generation aircraft with a large number of actuators will require advanced control allocation methods to compute the actuator commands needed to follow desired trajectories while respecting system constraints. Previously, algorithms were proposed to minimize the l1 or l2 norms of the tracking error and of the actuator deflections. The paper discusses the alternative choice of the l(infinity) norm, or sup norm. Minimization of the control effort translates into the minimization of the maximum actuator deflection (min-max optimization). The paper shows how the problem can be solved effectively by converting it into a linear program and solving it using a simplex algorithm. Properties of the algorithm are also investigated through examples. In particular, the min-max criterion results in a type of load balancing, where the load is th desired command and the algorithm balances this load among various actuators. The solution using the l(infinity) norm also results in better robustness to failures and to lower sensitivity to nonlinearities in illustrative examples.

  2. Maintaining Situation Awareness with Autonomous Airborne Observation Platforms

    NASA Technical Reports Server (NTRS)

    Freed, Michael; Fitzgerald, Will

    2005-01-01

    Unmanned Aerial Vehicles (UAVs) offer tremendous potential as intelligence, surveillance and reconnaissance (ISR) platforms for early detection of security threats and for acquisition and maintenance of situation awareness in crisis conditions. However, using their capabilities effectively requires addressing a range of practical and theoretical problems. The paper will describe progress by the "Autonomous Rotorcraft Project," a collaborative effort between NASA and the U.S. Army to develop a practical, flexible capability for UAV-based ISR. Important facets of the project include optimization methods for allocating scarce aircraft resources to observe numerous, distinct sites of interest; intelligent flight automation software than integrates high-level plan generation capabilities with executive control, failure response and flight control functions; a system architecture supporting reconfiguration of onboard sensors to address different kinds of threats; and an advanced prototype vehicle designed to allow large-scale production at low cost. The paper will also address human interaction issues including an empirical method for determining how to allocate roles and responsibilities between flight automation and human operations.

  3. Optimal resource allocation for novelty detection in a human auditory memory.

    PubMed

    Sinkkonen, J; Kaski, S; Huotilainen, M; Ilmoniemi, R J; Näätänen, R; Kaila, K

    1996-11-04

    A theory of resource allocation for neuronal low-level filtering is presented, based on an analysis of optimal resource allocation in simple environments. A quantitative prediction of the theory was verified in measurements of the magnetic mismatch response (MMR), an auditory event-related magnetic response of the human brain. The amplitude of the MMR was found to be directly proportional to the information conveyed by the stimulus. To the extent that the amplitude of the MMR can be used to measure resource usage by the auditory cortex, this finding supports our theory that, at least for early auditory processing, energy resources are used in proportion to the information content of incoming stimulus flow.

  4. Optimal Control Allocation with Load Sensor Feedback for Active Load Suppression, Experiment Development

    NASA Technical Reports Server (NTRS)

    Miller, Christopher J.; Goodrick, Dan

    2017-01-01

    The problem of control command and maneuver induced structural loads is an important aspect of any control system design. The aircraft structure and the control architecture must be designed to achieve desired piloted control responses while limiting the imparted structural loads. The classical approach is to utilize high structural margins, restrict control surface commands to a limited set of analyzed combinations, and train pilots to follow procedural maneuvering limitations. With recent advances in structural sensing and the continued desire to improve safety and vehicle fuel efficiency, it is both possible and desirable to develop control architectures that enable lighter vehicle weights while maintaining and improving protection against structural damage. An optimal control technique has been explored and shown to achieve desirable vehicle control performance while limiting sensed structural loads. The subject of this paper is the design of the optimal control architecture, and provides the reader with some techniques for tailoring the architecture, along with detailed simulation results.

  5. Mathematical programming models for the economic design and assessment of wind energy conversion systems

    NASA Astrophysics Data System (ADS)

    Reinert, K. A.

    The use of linear decision rules (LDR) and chance constrained programming (CCP) to optimize the performance of wind energy conversion clusters coupled to storage systems is described. Storage is modelled by LDR and output by CCP. The linear allocation rule and linear release rule prescribe the size and optimize a storage facility with a bypass. Chance constraints are introduced to explicitly treat reliability in terms of an appropriate value from an inverse cumulative distribution function. Details of deterministic programming structure and a sample problem involving a 500 kW and a 1.5 MW WECS are provided, considering an installed cost of $1/kW. Four demand patterns and three levels of reliability are analyzed for optimizing the generator choice and the storage configuration for base load and peak operating conditions. Deficiencies in ability to predict reliability and to account for serial correlations are noted in the model, which is concluded useful for narrowing WECS design options.

  6. Study on optimal configuration of the grid-connected wind-solar-battery hybrid power system

    NASA Astrophysics Data System (ADS)

    Ma, Gang; Xu, Guchao; Ju, Rong; Wu, Tiantian

    2017-08-01

    The capacity allocation of each energy unit in the grid-connected wind-solar-battery hybrid power system is a significant segment in system design. In this paper, taking power grid dispatching into account, the research priorities are as follows: (1) We establish the mathematic models of each energy unit in the hybrid power system. (2) Based on dispatching of the power grid, energy surplus rate, system energy volatility and total cost, we establish the evaluation system for the wind-solar-battery power system and use a number of different devices as the constraint condition. (3) Based on an improved Genetic algorithm, we put forward a multi-objective optimisation algorithm to solve the optimal configuration problem in the hybrid power system, so we can achieve the high efficiency and economy of the grid-connected hybrid power system. The simulation result shows that the grid-connected wind-solar-battery hybrid power system has a higher comprehensive performance; the method of optimal configuration in this paper is useful and reasonable.

  7. A Multiple-player-game Approach to Agricultural Water Use in Regions of Seasonal Drought

    NASA Astrophysics Data System (ADS)

    Lu, Z.

    2013-12-01

    In the wide distributed regions of seasonal drought, conflicts of water allocation between multiple stakeholders (which means water consumers and policy makers) are frequent and severe problems. These conflicts become extremely serious in the dry seasons, and are ultimately caused by an intensive disparity between the lack of natural resource and the great demand of social development. Meanwhile, these stakeholders are often both competitors and cooperators in water saving problems, because water is a type of public resource. Conflicts often occur due to lack of appropriate water allocation scheme. Among the many uses of water, the need of agricultural irrigation water is highly elastic, but this factor has not yet been made full use to free up water from agriculture use. The primary goal of this work is to design an optimal distribution scheme of water resource for dry seasons to maximize benefits from precious water resources, considering the high elasticity of agriculture water demand due to the dynamic of soil moisture affected by the uncertainty of precipitation and other factors like canopy interception. A dynamic programming model will be used to figure out an appropriate allocation of water resources among agricultural irrigation and other purposes like drinking water, industry, and hydropower, etc. In this dynamic programming model, we analytically quantify the dynamic of soil moisture in the agricultural fields by describing the interception with marked Poisson process and describing the rainfall depth with exponential distribution. Then, we figure out a water-saving irrigation scheme, which regulates the timetable and volumes of water in irrigation, in order to minimize irrigation water requirement under the premise of necessary crop yield (as a constraint condition). And then, in turn, we provide a scheme of water resource distribution/allocation among agriculture and other purposes, taking aim at maximizing benefits from precious water resources, or in other words, make best use of limited water resource.

  8. Performance Evaluation Model for Application Layer Firewalls.

    PubMed

    Xuan, Shichang; Yang, Wu; Dong, Hui; Zhang, Jiangchuan

    2016-01-01

    Application layer firewalls protect the trusted area network against information security risks. However, firewall performance may affect user experience. Therefore, performance analysis plays a significant role in the evaluation of application layer firewalls. This paper presents an analytic model of the application layer firewall, based on a system analysis to evaluate the capability of the firewall. In order to enable users to improve the performance of the application layer firewall with limited resources, resource allocation was evaluated to obtain the optimal resource allocation scheme in terms of throughput, delay, and packet loss rate. The proposed model employs the Erlangian queuing model to analyze the performance parameters of the system with regard to the three layers (network, transport, and application layers). Then, the analysis results of all the layers are combined to obtain the overall system performance indicators. A discrete event simulation method was used to evaluate the proposed model. Finally, limited service desk resources were allocated to obtain the values of the performance indicators under different resource allocation scenarios in order to determine the optimal allocation scheme. Under limited resource allocation, this scheme enables users to maximize the performance of the application layer firewall.

  9. Supply chain carbon footprinting and responsibility allocation under emission regulations.

    PubMed

    Chen, Jin-Xiao; Chen, Jian

    2017-03-01

    Reduction of greenhouse gas emissions has become an enormous challenge for any single enterprise and its supply chain because of the increasing concern on global warming. This paper investigates carbon footprinting and responsibility allocation for supply chains involved in joint production. Our study is conducted from the perspective of a social planner who aims to achieve social value optimization. The carbon footprinting model is based on operational activities rather than on firms because joint production blurs the organizational boundaries of footprints. A general model is proposed for responsibility allocation among firms who seek to maximize individual profits. This study looks into ways for the decentralized supply chain to achieve centralized optimality of social value under two emission regulations. Given a balanced allocation for the entire supply chain, we examine the necessity of over-allocation to certain firms under specific situations and find opportunities for the firms to avoid over-allocation. The comparison of the two regulations reveals that setting an emission standard per unit of product will motivate firms to follow the standard and improve their emission efficiencies. Hence, a more efficient and promising policy is needed in contrast to existing regulations on total production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Optimal allocation of the limited oral cholera vaccine supply between endemic and epidemic settings.

    PubMed

    Moore, Sean M; Lessler, Justin

    2015-10-06

    The World Health Organization (WHO) recently established a global stockpile of oral cholera vaccine (OCV) to be preferentially used in epidemic response (reactive campaigns) with any vaccine remaining after 1 year allocated to endemic settings. Hence, the number of cholera cases or deaths prevented in an endemic setting represents the minimum utility of these doses, and the optimal risk-averse response to any reactive vaccination request (i.e. the minimax strategy) is one that allocates the remaining doses between the requested epidemic response and endemic use in order to ensure that at least this minimum utility is achieved. Using mathematical models, we find that the best minimax strategy is to allocate the majority of doses to reactive campaigns, unless the request came late in the targeted epidemic. As vaccine supplies dwindle, the case for reactive use of the remaining doses grows stronger. Our analysis provides a lower bound for the amount of OCV to keep in reserve when responding to any request. These results provide a strategic context for the fulfilment of requests to the stockpile, and define allocation strategies that minimize the number of OCV doses that are allocated to suboptimal situations. © 2015 The Authors.

  11. Motion-related resource allocation in dynamic wireless visual sensor network environments.

    PubMed

    Katsenou, Angeliki V; Kondi, Lisimachos P; Parsopoulos, Konstantinos E

    2014-01-01

    This paper investigates quality-driven cross-layer optimization for resource allocation in direct sequence code division multiple access wireless visual sensor networks. We consider a single-hop network topology, where each sensor transmits directly to a centralized control unit (CCU) that manages the available network resources. Our aim is to enable the CCU to jointly allocate the transmission power and source-channel coding rates for each node, under four different quality-driven criteria that take into consideration the varying motion characteristics of each recorded video. For this purpose, we studied two approaches with a different tradeoff of quality and complexity. The first one allocates the resources individually for each sensor, whereas the second clusters them according to the recorded level of motion. In order to address the dynamic nature of the recorded scenery and re-allocate the resources whenever it is dictated by the changes in the amount of motion in the scenery, we propose a mechanism based on the particle swarm optimization algorithm, combined with two restarting schemes that either exploit the previously determined resource allocation or conduct a rough estimation of it. Experimental simulations demonstrate the efficiency of the proposed approaches.

  12. Decision tables and rule engines in organ allocation systems for optimal transparency and flexibility.

    PubMed

    Schaafsma, Murk; van der Deijl, Wilfred; Smits, Jacqueline M; Rahmel, Axel O; de Vries Robbé, Pieter F; Hoitsma, Andries J

    2011-05-01

    Organ allocation systems have become complex and difficult to comprehend. We introduced decision tables to specify the rules of allocation systems for different organs. A rule engine with decision tables as input was tested for the Kidney Allocation System (ETKAS). We compared this rule engine with the currently used ETKAS by running 11,000 historical match runs and by running the rule engine in parallel with the ETKAS on our allocation system. Decision tables were easy to implement and successful in verifying correctness, completeness, and consistency. The outcomes of the 11,000 historical matches in the rule engine and the ETKAS were exactly the same. Running the rule engine simultaneously in parallel and in real time with the ETKAS also produced no differences. Specifying organ allocation rules in decision tables is already a great step forward in enhancing the clarity of the systems. Yet, using these tables as rule engine input for matches optimizes the flexibility, simplicity and clarity of the whole process, from specification to the performed matches, and in addition this new method allows well controlled simulations. © 2011 The Authors. Transplant International © 2011 European Society for Organ Transplantation.

  13. Multiresolution strategies for the numerical solution of optimal control problems

    NASA Astrophysics Data System (ADS)

    Jain, Sachin

    There exist many numerical techniques for solving optimal control problems but less work has been done in the field of making these algorithms run faster and more robustly. The main motivation of this work is to solve optimal control problems accurately in a fast and efficient way. Optimal control problems are often characterized by discontinuities or switchings in the control variables. One way of accurately capturing the irregularities in the solution is to use a high resolution (dense) uniform grid. This requires a large amount of computational resources both in terms of CPU time and memory. Hence, in order to accurately capture any irregularities in the solution using a few computational resources, one can refine the mesh locally in the region close to an irregularity instead of refining the mesh uniformly over the whole domain. Therefore, a novel multiresolution scheme for data compression has been designed which is shown to outperform similar data compression schemes. Specifically, we have shown that the proposed approach results in fewer grid points in the grid compared to a common multiresolution data compression scheme. The validity of the proposed mesh refinement algorithm has been verified by solving several challenging initial-boundary value problems for evolution equations in 1D. The examples have demonstrated the stability and robustness of the proposed algorithm. The algorithm adapted dynamically to any existing or emerging irregularities in the solution by automatically allocating more grid points to the region where the solution exhibited sharp features and fewer points to the region where the solution was smooth. Thereby, the computational time and memory usage has been reduced significantly, while maintaining an accuracy equivalent to the one obtained using a fine uniform mesh. Next, a direct multiresolution-based approach for solving trajectory optimization problems is developed. The original optimal control problem is transcribed into a nonlinear programming (NLP) problem that is solved using standard NLP codes. The novelty of the proposed approach hinges on the automatic calculation of a suitable, nonuniform grid over which the NLP problem is solved, which tends to increase numerical efficiency and robustness. Control and/or state constraints are handled with ease, and without any additional computational complexity. The proposed algorithm is based on a simple and intuitive method to balance several conflicting objectives, such as accuracy of the solution, convergence, and speed of the computations. The benefits of the proposed algorithm over uniform grid implementations are demonstrated with the help of several nontrivial examples. Furthermore, two sequential multiresolution trajectory optimization algorithms for solving problems with moving targets and/or dynamically changing environments have been developed. For such problems, high accuracy is desirable only in the immediate future, yet the ultimate mission objectives should be accommodated as well. An intelligent trajectory generation for such situations is thus enabled by introducing the idea of multigrid temporal resolution to solve the associated trajectory optimization problem on a non-uniform grid across time that is adapted to: (i) immediate future, and (ii) potential discontinuities in the state and control variables.

  14. MoGIRE: A Model for Integrated Water Management

    NASA Astrophysics Data System (ADS)

    Reynaud, A.; Leenhardt, D.

    2008-12-01

    Climate change and growing water needs have resulted in many parts of the world in water scarcity problems that must by managed by public authorities. Hence, policy-makers are more and more often asked to define and to implement water allocation rules between competitive users. This requires to develop new tools aiming at designing those rules for various scenarios of context (climatic, agronomic, economic). If models have been developed for each type of water use however, very few integrated frameworks link these different uses, while such an integrated approach is a relevant stake for designing regional water and land policies. The lack of such integrated models can be explained by the difficulty of integrating models developed by very different disciplines and by the problem of scale change (collecting data on large area, arbitrate between the computational tractability of models and their level of aggregation). However, modelers are more and more asked to deal with large basin scales while analyzing some policy impacts at very high detailed levels. These contradicting objectives require to develop new modeling tools. The CALVIN economically-driven optimization model developed for managing water in California is a good example of this type of framework, Draper et al. (2003). Recent reviews of the literature on integrated water management at the basin level include Letcher et al. (2007) or Cai (2008). We present here an original framework for integrated water management at the river basin scale called MoGIRE ("Modèle pour la Gestion Intégrée de la Ressource en Eau"). It is intended to optimize water use at the river basin level and to evaluate scenarios (agronomic, climatic or economic) for a better planning of agricultural and non-agricultural water use. MoGIRE includes a nodal representation of the water network. Agricultural, urban and environmental water uses are also represented using mathematical programming and econometric approaches. The model then optimizes at each date (10 days step) the allocation of water across agricultural and urban water demands in order to maximize the social surplus derived from water consumption given the constraints imposed by the water network. An application of the model is proposed for the Neste system located in South-West of France. 67 regions competing for water allocation have been identified in the Neste system. Those regions are characterized by specific cropping systems, specific climate and soil characteristics and by their connections to the water network. The model, including the nodal representation of the water network, has been coded using the algebraic modeling language GAMS. We are currently analyzing the robustness of the approach through scenario testing. Keywords : Integrated water management, optimization-simulation model, agronomic-economic modeling, river basin.

  15. A novel profit-allocation strategy for SDN enterprises

    NASA Astrophysics Data System (ADS)

    Hu, Wei; Hou, Ye; Tian, Longwei; Li, Yuan

    2017-01-01

    Aiming to solve the problem of profit allocation for supply and demand network (SDN) enterprises that ignores risk factors and generates low satisfaction, a novel profit-allocation model based on cooperative game theory and TOPSIS is proposed. This new model avoids the defect of the single-profit allocation model by introducing risk factors, compromise coefficients and high negotiation points. By measuring the Euclidean distance between the ideal solution vector and the negative ideal solution vector, every node's satisfaction problem for the SDN was resolved, and the mess phenomenon was avoided. Finally, the rationality and effectiveness of the proposed model was verified using a numerical example.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hameed, Abdul; Khoshkbarforoushha, Alireza; Ranjan, Rajiv

    In a cloud computing paradigm, energy efficient allocation of different virtualized ICT resources (servers, storage disks, and networks, and the like) is a complex problem due to the presence of heterogeneous application (e.g., content delivery networks, MapReduce, web applications, and the like) workloads having contentious allocation requirements in terms of ICT resource capacities (e.g., network bandwidth, processing speed, response time, etc.). Several recent papers have tried to address the issue of improving energy efficiency in allocating cloud resources to applications with varying degree of success. However, to the best of our knowledge there is no published literature on this subjectmore » that clearly articulates the research problem and provides research taxonomy for succinct classification of existing techniques. Hence, the main aim of this paper is to identify open challenges associated with energy efficient resource allocation. In this regard, the study, first, outlines the problem and existing hardware and software-based techniques available for this purpose. Furthermore, available techniques already presented in the literature are summarized based on the energy-efficient research dimension taxonomy. The advantages and disadvantages of the existing techniques are comprehensively analyzed against the proposed research dimension taxonomy namely: resource adaption policy, objective function, allocation method, allocation operation, and interoperability.« less

  17. A hybrid flowshop scheduling model considering dedicated machines and lot-splitting for the solar cell industry

    NASA Astrophysics Data System (ADS)

    Wang, Li-Chih; Chen, Yin-Yann; Chen, Tzu-Li; Cheng, Chen-Yang; Chang, Chin-Wei

    2014-10-01

    This paper studies a solar cell industry scheduling problem, which is similar to traditional hybrid flowshop scheduling (HFS). In a typical HFS problem, the allocation of machine resources for each order should be scheduled in advance. However, the challenge in solar cell manufacturing is the number of machines that can be adjusted dynamically to complete the job. An optimal production scheduling model is developed to explore these issues, considering the practical characteristics, such as hybrid flowshop, parallel machine system, dedicated machines, sequence independent job setup times and sequence dependent job setup times. The objective of this model is to minimise the makespan and to decide the processing sequence of the orders/lots in each stage, lot-splitting decisions for the orders and the number of machines used to satisfy the demands in each stage. From the experimental results, lot-splitting has significant effect on shortening the makespan, and the improvement effect is influenced by the processing time and the setup time of orders. Therefore, the threshold point to improve the makespan can be identified. In addition, the model also indicates that more lot-splitting approaches, that is, the flexibility of allocating orders/lots to machines is larger, will result in a better scheduling performance.

  18. Accuracy analysis and design of A3 parallel spindle head

    NASA Astrophysics Data System (ADS)

    Ni, Yanbing; Zhang, Biao; Sun, Yupeng; Zhang, Yuan

    2016-03-01

    As functional components of machine tools, parallel mechanisms are widely used in high efficiency machining of aviation components, and accuracy is one of the critical technical indexes. Lots of researchers have focused on the accuracy problem of parallel mechanisms, but in terms of controlling the errors and improving the accuracy in the stage of design and manufacturing, further efforts are required. Aiming at the accuracy design of a 3-DOF parallel spindle head(A3 head), its error model, sensitivity analysis and tolerance allocation are investigated. Based on the inverse kinematic analysis, the error model of A3 head is established by using the first-order perturbation theory and vector chain method. According to the mapping property of motion and constraint Jacobian matrix, the compensatable and uncompensatable error sources which affect the accuracy in the end-effector are separated. Furthermore, sensitivity analysis is performed on the uncompensatable error sources. The sensitivity probabilistic model is established and the global sensitivity index is proposed to analyze the influence of the uncompensatable error sources on the accuracy in the end-effector of the mechanism. The results show that orientation error sources have bigger effect on the accuracy in the end-effector. Based upon the sensitivity analysis results, the tolerance design is converted into the issue of nonlinearly constrained optimization with the manufacturing cost minimum being the optimization objective. By utilizing the genetic algorithm, the allocation of the tolerances on each component is finally determined. According to the tolerance allocation results, the tolerance ranges of ten kinds of geometric error sources are obtained. These research achievements can provide fundamental guidelines for component manufacturing and assembly of this kind of parallel mechanisms.

  19. Some dynamic resource allocation problems in wireless networks

    NASA Astrophysics Data System (ADS)

    Berry, Randall

    2001-07-01

    We consider dynamic resource allocation problems that arise in wireless networking. Specifically transmission scheduling problems are studied in cases where a user can dynamically allocate communication resources such as transmission rate and power based on current channel knowledge as well as traffic variations. We assume that arriving data is stored in a transmission buffer, and investigate the trade-off between average transmission power and average buffer delay. A general characterization of this trade-off is given and the behavior of this trade-off in the regime of asymptotically large buffer delays is explored. An extension to a more general utility based quality of service definition is also discussed.

  20. Trading a Problem-solving Task

    NASA Astrophysics Data System (ADS)

    Matsubara, Shigeo

    This paper focuses on a task allocation problem, especially cases where the task is to find a solution in a search problem or a constraint satisfaction problem. If the search problem is hard to solve, a contractor may fail to find a solution. Here, the more computational resources such as the CPU time the contractor invests in solving the search problem, the more a solution is likely to be found. This brings about a new problem that a contractee has to find an appropriate level of the quality in a task achievement as well as to find an efficient allocation of a task among contractors. For example, if the contractee asks the contractor to find a solution with certainty, the payment from the contractee to the contractor may exceed the contractee's benefit from obtaining a solution, which discourages the contractee from trading a task. However, solving this problem is difficult because the contractee cannot ascertain the contractor's problem-solving ability such as the amount of available resources and knowledge (e.g. algorithms, heuristics) or monitor what amount of resources are actually invested in solving the allocated task. To solve this problem, we propose a task allocation mechanism that is able to choose an appropriate level of the quality in a task achievement and prove that this mechanism guarantees that each contractor reveals its true information. Moreover, we show that our mechanism can increase the contractee's utility compared with a simple auction mechanism by using computer simulation.

  1. An Analytical Planning Model to Estimate the Optimal Density of Charging Stations for Electric Vehicles

    PubMed Central

    Ahn, Yongjun; Yeo, Hwasoo

    2015-01-01

    The charging infrastructure location problem is becoming more significant due to the extensive adoption of electric vehicles. Efficient charging station planning can solve deeply rooted problems, such as driving-range anxiety and the stagnation of new electric vehicle consumers. In the initial stage of introducing electric vehicles, the allocation of charging stations is difficult to determine due to the uncertainty of candidate sites and unidentified charging demands, which are determined by diverse variables. This paper introduces the Estimating the Required Density of EV Charging (ERDEC) stations model, which is an analytical approach to estimating the optimal density of charging stations for certain urban areas, which are subsequently aggregated to city level planning. The optimal charging station’s density is derived to minimize the total cost. A numerical study is conducted to obtain the correlations among the various parameters in the proposed model, such as regional parameters, technological parameters and coefficient factors. To investigate the effect of technological advances, the corresponding changes in the optimal density and total cost are also examined by various combinations of technological parameters. Daejeon city in South Korea is selected for the case study to examine the applicability of the model to real-world problems. With real taxi trajectory data, the optimal density map of charging stations is generated. These results can provide the optimal number of chargers for driving without driving-range anxiety. In the initial planning phase of installing charging infrastructure, the proposed model can be applied to a relatively extensive area to encourage the usage of electric vehicles, especially areas that lack information, such as exact candidate sites for charging stations and other data related with electric vehicles. The methods and results of this paper can serve as a planning guideline to facilitate the extensive adoption of electric vehicles. PMID:26575845

  2. Optimizing multiple reliable forward contracts for reservoir allocation using multitime scale streamflow forecasts

    NASA Astrophysics Data System (ADS)

    Lu, Mengqian; Lall, Upmanu; Robertson, Andrew W.; Cook, Edward

    2017-03-01

    Streamflow forecasts at multiple time scales provide a new opportunity for reservoir management to address competing objectives. Market instruments such as forward contracts with specified reliability are considered as a tool that may help address the perceived risk associated with the use of such forecasts in lieu of traditional operation and allocation strategies. A water allocation process that enables multiple contracts for water supply and hydropower production with different durations, while maintaining a prescribed level of flood risk reduction, is presented. The allocation process is supported by an optimization model that considers multitime scale ensemble forecasts of monthly streamflow and flood volume over the upcoming season and year, the desired reliability and pricing of proposed contracts for hydropower and water supply. It solves for the size of contracts at each reliability level that can be allocated for each future period, while meeting target end of period reservoir storage with a prescribed reliability. The contracts may be insurable, given that their reliability is verified through retrospective modeling. The process can allow reservoir operators to overcome their concerns as to the appropriate skill of probabilistic forecasts, while providing water users with short-term and long-term guarantees as to how much water or energy they may be allocated. An application of the optimization model to the Bhakra Dam, India, provides an illustration of the process. The issues of forecast skill and contract performance are examined. A field engagement of the idea is useful to develop a real-world perspective and needs a suitable institutional environment.

  3. A stream-scale model to optimize the water allocation for Small Hydropower Plants and the application to traditional systems

    NASA Astrophysics Data System (ADS)

    Razurel, Pierre; Niayifar, Amin; Perona, Paolo

    2017-04-01

    Hydropower plays an important role in supplying worldwide energy demand where it contributes to approximately 16% of global electricity production. Although hydropower, as an emission-free renewable energy, is a reliable source of energy to mitigate climate change, its development will increase river exploitation. The environmental impacts associated with both small hydropower plants (SHP) and traditional dammed systems have been found to the consequence of changing natural flow regime with other release policies, e.g. the minimal flow. Nowadays, in some countries, proportional allocation rules are also applied aiming to mimic the natural flow variability. For example, these dynamic rules are part of the environmental guidance in the United Kingdom and constitute an improvement in comparison to static rules. In a context in which the full hydropower potential might be reached in a close future, a solution to optimize the water allocation seems essential. In this work, we present a model that enables to simulate a wide range of water allocation rules (static and dynamic) for a specific hydropower plant and to evaluate their associated economic and ecological benefits. It is developed in the form of a graphical user interface (GUI) where, depending on the specific type of hydropower plant (i.e., SHP or traditional dammed system), the user is able to specify the different characteristics (e.g., hydrological data and turbine characteristics) of the studied system. As an alternative to commonly used policies, a new class of dynamic allocation functions (non-proportional repartition rules) is introduced (e.g., Razurel et al., 2016). The efficiency plot resulting from the simulations shows the environmental indicator and the energy produced for each allocation policies. The optimal water distribution rules can be identified on the Pareto's frontier, which is obtained by stochastic optimization in the case of storage systems (e.g., Niayifar and Perona, submitted) and by direct simulation for small hydropower ones (Razurel et al., 2016). Compared to proportional and constant minimal flows, economic and ecological efficiencies are found to be substantially improved in the case of using non-proportional water allocation rules for both SHP and traditional systems.

  4. Resource allocation for wildland fire suppression planning using a stochastic program

    Treesearch

    Alex Taylor Masarie

    2011-01-01

    Resource allocation for wildland fire suppression problems, referred to here as Fire-S problems, have been studied for over a century. Not only have the many variants of the base Fire-S problem made it such a durable one to study, but advances in suppression technology and our ever-expanding knowledge of and experience with wildland fire behavior have required almost...

  5. Optimal Allocation of Restoration Practices Using Indexes for Stream Health

    EPA Science Inventory

    Methodologies that allocate the placement of agricultural and urban green infrastructure management practices with the intent to achieve both economic and environmental objectives typically use objectives related to individual intermediary environmental outputs, yet guidance is n...

  6. Comprehensive reliability allocation method for CNC lathes based on cubic transformed functions of failure mode and effects analysis

    NASA Astrophysics Data System (ADS)

    Yang, Zhou; Zhu, Yunpeng; Ren, Hongrui; Zhang, Yimin

    2015-03-01

    Reliability allocation of computerized numerical controlled(CNC) lathes is very important in industry. Traditional allocation methods only focus on high-failure rate components rather than moderate failure rate components, which is not applicable in some conditions. Aiming at solving the problem of CNC lathes reliability allocating, a comprehensive reliability allocation method based on cubic transformed functions of failure modes and effects analysis(FMEA) is presented. Firstly, conventional reliability allocation methods are introduced. Then the limitations of direct combination of comprehensive allocation method with the exponential transformed FMEA method are investigated. Subsequently, a cubic transformed function is established in order to overcome these limitations. Properties of the new transformed functions are discussed by considering the failure severity and the failure occurrence. Designers can choose appropriate transform amplitudes according to their requirements. Finally, a CNC lathe and a spindle system are used as an example to verify the new allocation method. Seven criteria are considered to compare the results of the new method with traditional methods. The allocation results indicate that the new method is more flexible than traditional methods. By employing the new cubic transformed function, the method covers a wider range of problems in CNC reliability allocation without losing the advantages of traditional methods.

  7. Scheduling language and algorithm development study. Volume 1, phase 2: Design considerations for a scheduling and resource allocation system

    NASA Technical Reports Server (NTRS)

    Morrell, R. A.; Odoherty, R. J.; Ramsey, H. R.; Reynolds, C. C.; Willoughby, J. K.; Working, R. D.

    1975-01-01

    Data and analyses related to a variety of algorithms for solving typical large-scale scheduling and resource allocation problems are presented. The capabilities and deficiencies of various alternative problem solving strategies are discussed from the viewpoint of computer system design.

  8. New spatial clustering-based models for optimal urban facility location considering geographical obstacles

    NASA Astrophysics Data System (ADS)

    Javadi, Maryam; Shahrabi, Jamal

    2014-03-01

    The problems of facility location and the allocation of demand points to facilities are crucial research issues in spatial data analysis and urban planning. It is very important for an organization or governments to best locate its resources and facilities and efficiently manage resources to ensure that all demand points are covered and all the needs are met. Most of the recent studies, which focused on solving facility location problems by performing spatial clustering, have used the Euclidean distance between two points as the dissimilarity function. Natural obstacles, such as mountains and rivers, can have drastic impacts on the distance that needs to be traveled between two geographical locations. While calculating the distance between various supply chain entities (including facilities and demand points), it is necessary to take such obstacles into account to obtain better and more realistic results regarding location-allocation. In this article, new models were presented for location of urban facilities while considering geographical obstacles at the same time. In these models, three new distance functions were proposed. The first function was based on the analysis of shortest path in linear network, which was called SPD function. The other two functions, namely PD and P2D, were based on the algorithms that deal with robot geometry and route-based robot navigation in the presence of obstacles. The models were implemented in ArcGIS Desktop 9.2 software using the visual basic programming language. These models were evaluated using synthetic and real data sets. The overall performance was evaluated based on the sum of distance from demand points to their corresponding facilities. Because of the distance between the demand points and facilities becoming more realistic in the proposed functions, results indicated desired quality of the proposed models in terms of quality of allocating points to centers and logistic cost. Obtained results show promising improvements of the allocation, the logistics costs and the response time. It can also be inferred from this study that the P2D-based model and the SPD-based model yield similar results in terms of the facility location and the demand allocation. It is noted that the P2D-based model showed better execution time than the SPD-based model. Considering logistic costs, facility location and response time, the P2D-based model was appropriate choice for urban facility location problem considering the geographical obstacles.

  9. A heuristic approach to handle capacitated facility location problem evaluated using clustering internal evaluation

    NASA Astrophysics Data System (ADS)

    Sutanto, G. R.; Kim, S.; Kim, D.; Sutanto, H.

    2018-03-01

    One of the problems in dealing with capacitated facility location problem (CFLP) is occurred because of the difference between the capacity numbers of facilities and the number of customers that needs to be served. A facility with small capacity may result in uncovered customers. These customers need to be re-allocated to another facility that still has available capacity. Therefore, an approach is proposed to handle CFLP by using k-means clustering algorithm to handle customers’ allocation. And then, if customers’ re-allocation is needed, is decided by the overall average distance between customers and the facilities. This new approach is benchmarked to the existing approach by Liao and Guo which also use k-means clustering algorithm as a base idea to decide the facilities location and customers’ allocation. Both of these approaches are benchmarked by using three clustering evaluation methods with connectedness, compactness, and separations factors.

  10. Optimal JPWL Forward Error Correction Rate Allocation for Robust JPEG 2000 Images and Video Streaming over Mobile Ad Hoc Networks

    NASA Astrophysics Data System (ADS)

    Agueh, Max; Diouris, Jean-François; Diop, Magaye; Devaux, François-Olivier; De Vleeschouwer, Christophe; Macq, Benoit

    2008-12-01

    Based on the analysis of real mobile ad hoc network (MANET) traces, we derive in this paper an optimal wireless JPEG 2000 compliant forward error correction (FEC) rate allocation scheme for a robust streaming of images and videos over MANET. The packet-based proposed scheme has a low complexity and is compliant to JPWL, the 11th part of the JPEG 2000 standard. The effectiveness of the proposed method is evaluated using a wireless Motion JPEG 2000 client/server application; and the ability of the optimal scheme to guarantee quality of service (QoS) to wireless clients is demonstrated.

  11. Optimized planning methodologies of ASON implementation

    NASA Astrophysics Data System (ADS)

    Zhou, Michael M.; Tamil, Lakshman S.

    2005-02-01

    Advanced network planning concerns effective network-resource allocation for dynamic and open business environment. Planning methodologies of ASON implementation based on qualitative analysis and mathematical modeling are presented in this paper. The methodology includes method of rationalizing technology and architecture, building network and nodal models, and developing dynamic programming for multi-period deployment. The multi-layered nodal architecture proposed here can accommodate various nodal configurations for a multi-plane optical network and the network modeling presented here computes the required network elements for optimizing resource allocation.

  12. Regulation of C:N:P stoichiometry of microbes and soil organic matter by optimizing enzyme allocation: an omics-informed model study

    NASA Astrophysics Data System (ADS)

    Song, Y.; Yao, Q.; Wang, G.; Yang, X.; Mayes, M. A.

    2017-12-01

    Increasing evidences is indicating that soil organic matter (SOM) decomposition and stabilization process is a continuum process and controlled by both microbial functions and their interaction with minerals (known as the microbial efficiency-matrix stabilization theory (MEMS)). Our metagenomics analysis of soil samples from both P-deficit and P-fertilization sites in Panama has demonstrated that community-level enzyme functions could adapt to maximize the acquisition of limiting nutrients and minimize energy demand for foraging (known as the optimal foraging theory). This optimization scheme can mitigate the imbalance of C/P ratio between soil substrate and microbial community and relieve the P limitation on microbial carbon use efficiency over the time. Dynamic allocation of multiple enzyme groups and their interaction with microbial/substrate stoichiometry has rarely been considered in biogeochemical models due to the difficulties in identifying microbial functional groups and quantifying the change in enzyme expression in response to soil nutrient availability. This study aims to represent the omics-informed optimal foraging theory in the Continuum Microbial ENzyme Decomposition model (CoMEND), which was developed to represent the continuum SOM decomposition process following the MEMS theory. The SOM pools in the model are classified based on soil chemical composition (i.e. Carbohydrates, lignin, N-rich SOM and P-rich SOM) and the degree of SOM depolymerization. The enzyme functional groups for decomposition of each SOM pool and N/P mineralization are identified by the relative composition of gene copy numbers. The responses of microbial activities and SOM decomposition to nutrient availability are simulated by optimizing the allocation of enzyme functional groups following the optimal foraging theory. The modeled dynamic enzyme allocation in response to P availability is evaluated by the metagenomics data measured from P addition and P-deficit soil samples in Panama sites.The implementation of dynamic enzyme allocation in response to nutrient availability in the CoMEND model enables us to capture the varying microbial C/P ratio and soil carbon dynamics in response to shifting nutrient constraints over time in tropical soils.

  13. Multi-Agent Coordination Techniques for Naval Tactical Combat Resources Management

    DTIC Science & Technology

    2008-07-01

    resource coordination and cooperation problems. The combat resource allocation planning problem is treated in the companion report [2]. 2.3 Resource...report focuses on the resource coordination problem, while allocation algorithms are discussed in the companion report [2]. First, coordination in...classification of each should be indicated as with the title.) Canada’s Leader in Defence and National Security Science and Technology Chef de file au Canada en

  14. Optimal allocation of resources over health care programmes: dealing with decreasing marginal utility and uncertainty.

    PubMed

    Al, Maiwenn J; Feenstra, Talitha L; Hout, Ben A van

    2005-07-01

    This paper addresses the problem of how to value health care programmes with different ratios of costs to effects, specifically when taking into account that these costs and effects are uncertain. First, the traditional framework of maximising health effects with a given health care budget is extended to a flexible budget using a value function over money and health effects. Second, uncertainty surrounding costs and effects is included in the model using expected utility. Other approaches to uncertainty that do not specify a utility function are discussed and it is argued that these also include implicit notions about risk attitude.

  15. Robust Assignment Of Eigensystems For Flexible Structures

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Lim, Kyong B.; Junkins, John L.

    1992-01-01

    Improved method for placement of eigenvalues and eigenvectors of closed-loop control system by use of either state or output feedback. Applied to reduced-order finite-element mathematical model of NASA's MAST truss beam structure. Model represents deployer/retractor assembly, inertial properties of Space Shuttle, and rigid platforms for allocation of sensors and actuators. Algorithm formulated in real arithmetic for efficient implementation. Choice of open-loop eigenvector matrix and its closest unitary matrix believed suitable for generating well-conditioned eigensystem with small control gains. Implication of this approach is that element of iterative search for "optimal" unitary matrix appears unnecessary in practice for many test problems.

  16. How large customer direct power transaction mode give consideration to power generation cleaning and power saving

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Zeng, Ming; Liu, Wei; Li, Ran

    2017-05-01

    The so-called Large Customers' Direct Power Transaction, refers to the mode that the users on high voltage level, or being seized of hold the large power or independent power distribution, have the qualification of purchasing electricity directly from the generation companies and pay reasonable electricity transmission and distribution fee to the power network enterprises because the transaction is through its transmission channel. The Direct Purchase promotes the marketization level of electricity trading, but there are some problems in its developing process, especially whether promotes the green optimal allocation of power resources, this paper aims to explore the solution.

  17. Resource Allocation in Healthcare: Implications of Models of Medicine as a Profession

    PubMed Central

    Kluge, Eike-Henner W.

    2007-01-01

    For decades, the problem of how to allocate healthcare resources in a just and equitable fashion has been the subject of concerted discussion and analysis, yet the issue has stubbornly resisted resolution. This article suggests that a major reason for this is that the discussion has focused exclusively on the nature and status of the material resources, and that the nature and role of the medical profession have been entirely ignored. Because physicians are gatekeepers to healthcare resources, their role in allocation is central from a process perspective. This article identifies 3 distinct interpretations of the nature of medicine, shows how each mandates a different method of allocation, and argues that unless an appropriate model of medicine is developed that acknowledges the valid points contained in each of the 3 approaches, the allocation problem will remain unsolvable. PMID:17435657

  18. A mathematical modeling approach to resource allocation for railroad-highway crossing safety upgrades.

    PubMed

    Konur, Dinçer; Golias, Mihalis M; Darks, Brandon

    2013-03-01

    State Departments of Transportation (S-DOT's) periodically allocate budget for safety upgrades at railroad-highway crossings. Efficient resource allocation is crucial for reducing accidents at railroad-highway crossings and increasing railroad as well as highway transportation safety. While a specific method is not restricted to S-DOT's, sorting type of procedures are recommended by the Federal Railroad Administration (FRA), United States Department of Transportation for the resource allocation problem. In this study, a generic mathematical model is proposed for the resource allocation problem for railroad-highway crossing safety upgrades. The proposed approach is compared to sorting based methods for safety upgrades of public at-grade railroad-highway crossings in Tennessee. The comparison shows that the proposed mathematical modeling approach is more efficient than sorting methods in reducing accidents and severity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Hybrid digital-analog coding with bandwidth expansion for correlated Gaussian sources under Rayleigh fading

    NASA Astrophysics Data System (ADS)

    Yahampath, Pradeepa

    2017-12-01

    Consider communicating a correlated Gaussian source over a Rayleigh fading channel with no knowledge of the channel signal-to-noise ratio (CSNR) at the transmitter. In this case, a digital system cannot be optimal for a range of CSNRs. Analog transmission however is optimal at all CSNRs, if the source and channel are memoryless and bandwidth matched. This paper presents new hybrid digital-analog (HDA) systems for sources with memory and channels with bandwidth expansion, which outperform both digital-only and analog-only systems over a wide range of CSNRs. The digital part is either a predictive quantizer or a transform code, used to achieve a coding gain. Analog part uses linear encoding to transmit the quantization error which improves the performance under CSNR variations. The hybrid encoder is optimized to achieve the minimum AMMSE (average minimum mean square error) over the CSNR distribution. To this end, analytical expressions are derived for the AMMSE of asymptotically optimal systems. It is shown that the outage CSNR of the channel code and the analog-digital power allocation must be jointly optimized to achieve the minimum AMMSE. In the case of HDA predictive quantization, a simple algorithm is presented to solve the optimization problem. Experimental results are presented for both Gauss-Markov sources and speech signals.

  20. How to allocate limited healthcare resources: Lessons from the introduction of antiretroviral therapy in rural Mozambique

    PubMed Central

    Dodson, Zan M.; Agadjanian, Victor; Driessen, Julia

    2016-01-01

    Proper allocation of limited healthcare resources is a challenging task for policymakers in developing countries. Allocation of and access to these resources typically varies based on how need is defined, thus determining how individuals access and acquire healthcare. Using the introduction of antiretroviral therapy in southern Mozambique as an example, we examine alternative definitions of need for rural populations and how they might impact the allocation of this vital health service. Our results show that how need is defined matters when allocating limited healthcare resources and the use of need-based metrics can help ensure more optimal distribution of services. PMID:28596630

Top