Science.gov

Sample records for allocentric reference frame

  1. Egocentric and allocentric reference frames for catching a falling object.

    PubMed

    Le Séac'h, Anne Brec'hed; Senot, Patrice; McIntyre, Joseph

    2010-04-01

    When programming movement, one must account for gravitational acceleration. This is particularly important when catching a falling object because the task requires a precise estimate of time-to-contact. Knowledge of gravity's effects is intimately linked to our definition of 'up' and 'down'. Both directions can be described in an allocentric reference frame, based on visual and/or gravitational cues, or in an egocentric reference frame in which the body axis is taken as vertical. To test which frame humans use to predict gravity's effect, we asked participants to intercept virtual balls approaching from above or below with artificially controlled acceleration that could be congruent or not with gravity. To dissociate between these frames, subjects were seated upright (trunk parallel to gravity) or lying down (body axis orthogonal to the gravitational axis). We report data in line with the use of an allocentric reference frame and discuss its relevance depending on available gravity-related cues.

  2. Are All Spatial Reference Frames Egocentric? Reinterpreting Evidence for Allocentric, Object-Centered, or World-Centered Reference Frames

    PubMed Central

    Filimon, Flavia

    2015-01-01

    The use and neural representation of egocentric spatial reference frames is well-documented. In contrast, whether the brain represents spatial relationships between objects in allocentric, object-centered, or world-centered coordinates is debated. Here, I review behavioral, neuropsychological, neurophysiological (neuronal recording), and neuroimaging evidence for and against allocentric, object-centered, or world-centered spatial reference frames. Based on theoretical considerations, simulations, and empirical findings from spatial navigation, spatial judgments, and goal-directed movements, I suggest that all spatial representations may in fact be dependent on egocentric reference frames. PMID:26696861

  3. Reference Frames and Relativity.

    ERIC Educational Resources Information Center

    Swartz, Clifford

    1989-01-01

    Stresses the importance of a reference frame in mechanics. Shows the Galilean transformation in terms of relativity theory. Discusses accelerated reference frames and noninertial reference frames. Provides examples of reference frames with diagrams. (YP)

  4. Celestial Reference Frames

    NASA Astrophysics Data System (ADS)

    Jacobs, Christopher S.

    2013-03-01

    Concepts and Background: This paper gives an overview of modern celestial reference frames as realized at radio frequencies using the Very Long baseline Interferometry (VLBI) technique. We discuss basic celestial reference frame concepts, desired properties, and uses. We review the networks of antennas used for this work. We briefly discuss the history of the science of astrometry touching upon the discovery of precession, proper motion, nutation, and parallax, and the field of radio astronomy. Building Celestial Frames: Next, we discuss the multi-step process of building a celestial frame: First candidate sources are identified based on point-like properties from single dish radio telescopes surveys. Second, positions are refined using connected element interferometers such as the Very Large Array, and the ATCA. Third, positions of approximately milli-arcsecond (mas) accuracy are determined using intercontinental VLBI surveys. Fourth, sub-mas positions are determined by multiyear programs using intercontinental VLBI. These sub-mas sets of positions are then verified by multiple teams in preparation for release to non-specialists in the form of an official IAU International Celestial Reference Frame (ICRF). The process described above has until recently been largely restricted to work at S/X-band (2.3/8.4 GHz). However, in the last decade sub-mas work has expanded to include celestial frames at K-band (24 GHz), Ka-band (32 GHz), and Q-band (43 GHz). While these frames currently have the disadvantage of far smaller data sets, the astrophysical quality of the sources themselves improves at these higher frequencies and thus make these frequencies attractive for realizations of celestial reference frames. Accordingly, we review progress at these higher frequency bands. Path to the Future: We discuss prospects for celestial reference frames over the next decade. We present an example of an error budget for astrometric VLBI and discuss the budget's use as a tool for

  5. Celestial Reference Frame

    NASA Astrophysics Data System (ADS)

    Jacobs, Christopher S.

    2013-09-01

    Concepts and Background: This paper gives an overview of modern celestial reference frames as realized at radio frequencies using the Very Long baseline Interferometry (VLBI) technique. We discuss basic celestial reference frame concepts, desired properties, and uses. We review the networks of antennas used for this work. We briefly discuss the history of the science of astrometry touching upon the discovery of precession, proper motion, nutation, and parallax, and the field of radio astronomy. Building Celestial Frames: Next, we discuss the multi-step process of building a celestial frame: First candidate sources are identified based on point-like properties from single dish radio telescopes surveys. Second, positions are refined using connected element interferometers such as the Very Large Array, and the ATCA. Third, positions of approximately milli-arcsecond (mas) accuracy are determined using intercontinental VLBI surveys. Fourth, sub-mas positions are determined by multiyear programs using intercontinental VLBI. These sub-mas sets of positions are then verified by multiple teams in preparation for release to non-specialists in the form of an official IAU International Celestial Reference Frame (ICRF). The process described above has until recently been largely restricted to work at S/X-band (2.3/8.4 GHz). However, in the last decade sub-mas work has expanded to include celestial frames at K-band (24 GHz), Ka-band (32 GHz), and Q-band (43 GHz). While these frames currently have the disadvantage of far smaller data sets, the astrophysical quality of the sources themselves improves at these higher frequencies and thus make these frequencies attractive for realizations of celestial reference frames. Accordingly, we review progress at these higher frequency bands. Path to the Future: We discuss prospects for celestial reference frames over the next decade. We present an example of an error budget for astrometric VLBI and discuss the budget's use as a tool for

  6. Reference memory and allocentric spatial localization deficits after unilateral cortical brain injury in the rat.

    PubMed

    Soblosky, J S; Tabor, S L; Matthews, M A; Davidson, J F; Chorney, D A; Carey, M E

    1996-10-01

    Traumatic brain injury (TBI) produces learning and memory impairments in humans. This study investigated the effects of TBI on memory and spatial localization strategies in rats. Prior to TBI, separate groups of rats were trained in an 8-arm radial maze with either all 8 arms baited (Expt. 1) or only 4 of the 8 arms baited (Expt. 2). TBI was produced by a controlled pneumatic impactor striking the entire right sensorimotor cortex of the anesthetized rat. Rats used in Expt. 1 were selected because they did not use a stereotypic response strategy (going to adjacent arms) in performing the maze before injury. After TBI the rats were not different from control rats in the number of working memory (WM) errors made. They did, however, display a distinct propensity to go to adjacent arms, i.e., exhibit stereotypic behavior, with a right-handed (ipsiversive) bias (P < 0.005). After TBI, rats which were trained with only 4 of 8 arms baited committed more reference memory (RM) errors than control rats (P < 0.05). They did not differ from controls on WM errors. Injured rats took longer to re-attain criteria than controls (P < 0.0001). Injured rats also initially displayed a propensity to enter the adjacent arm sequentially before re-attaining criteria. Further analysis indicated that injured rats re-learned the maze with a right-hand bias (P < 0.0001). The results of both experiments suggest that after TBI, rats shifted from an allocentric to an egocentric strategy to re-learn the maze. It was suggested that damage to the parietal cortex may have been responsible for both RM errors and the shift away from an allocentric strategy to an egocentric strategy. Possibly, the ipsiversive (right-hand) bias may be the result of a behaviorally or injury-induced neurochemical asymmetry within the motor system.

  7. Reference frames in virtual spatial navigation are viewpoint dependent

    PubMed Central

    Török, Ágoston; Nguyen, T. Peter; Kolozsvári, Orsolya; Buchanan, Robert J.; Nadasdy, Zoltan

    2014-01-01

    Spatial navigation in the mammalian brain relies on a cognitive map of the environment. Such cognitive maps enable us, for example, to take the optimal route from a given location to a known target. The formation of these maps is naturally influenced by our perception of the environment, meaning it is dependent on factors such as our viewpoint and choice of reference frame. Yet, it is unknown how these factors influence the construction of cognitive maps. Here, we evaluated how various combinations of viewpoints and reference frames affect subjects' performance when they navigated in a bounded virtual environment without landmarks. We measured both their path length and time efficiency and found that (1) ground perspective was associated with egocentric frame of reference, (2) aerial perspective was associated with allocentric frame of reference, (3) there was no appreciable performance difference between first and third person egocentric viewing positions and (4) while none of these effects were dependent on gender, males tended to perform better in general. Our study provides evidence that there are inherent associations between visual perspectives and cognitive reference frames. This result has implications about the mechanisms of path integration in the human brain and may also inspire designs of virtual reality applications. Lastly, we demonstrated the effective use of a tablet PC and spatial navigation tasks for studying spatial and cognitive aspects of human memory. PMID:25249956

  8. Asymmetric Learning Transfer between Imagined Viewer- and Object-Rotations: Evidence of a Hierarchical Organization of Spatial Reference Frames

    ERIC Educational Resources Information Center

    Pellizzer, Giuseppe; Ba, Maryse Badan; Zanello, Adriano; Merlo, Marco C. G.

    2009-01-01

    Neural resources subserving spatial processing in either egocentric or allocentric reference frames are, at least partly, dissociated. However, it is unclear whether these two types of representations are independent or whether they interact. We investigated this question using a learning transfer paradigm. The experiment and material were…

  9. Frames of Reference in the Classroom

    ERIC Educational Resources Information Center

    Grossman, Joshua

    2012-01-01

    The classic film "Frames of Reference" effectively illustrates concepts involved with inertial and non-inertial reference frames. In it, Donald G. Ivey and Patterson Hume use the cameras perspective to allow the viewer to see motion in reference frames translating with a constant velocity, translating while accelerating, and rotating--all with…

  10. Goal-directed reaching: movement strategies influence the weighting of allocentric and egocentric visual cues.

    PubMed

    Neely, Kristina A; Tessmer, Ayla; Binsted, Gordon; Heath, Matthew

    2008-04-01

    The location of an object in peripersonal space can be represented with respect to our body (i.e., egocentric frame of reference) or relative to contextual features and other objects (i.e., allocentric frame of reference). In the current study, we sought to determine whether the frame, or frames, of visual reference supporting motor output is influenced by reach trajectories structured to maximize visual feedback utilization (i.e., controlled online) or structured largely in advance of movement onset via central planning mechanisms (i.e., controlled offline). Reaches were directed to a target embedded in a pictorial illusion (the induced Roelofs effect: IRE) and advanced knowledge of visual feedback was manipulated to influence the nature of reaching control as reported by Zelaznik et al. (J Mot Behav 15:217-236, 1983). When vision could not be predicted in advance of movement onset, trajectories showed primary evidence of an offline mode of control (even when vision was provided) and endpoints demonstrated amplified sensitivity to the illusory (i.e., allocentric) features of the IRE. In contrast, reaches performed with reliable visual feedback evidenced a primarily online mode of control and showed increased visuomotor resistance to the IRE. These findings suggest that the manner a reaching response is structured differentially influences the weighting of allocentric and egocentric visual information. More specifically, when visual feedback is unavailable or unpredictable, the weighting of allocentric visual information for the advanced planning of a reach trajectory is increased.

  11. Mechanical Energy Change in Inertial Reference Frames

    ERIC Educational Resources Information Center

    Ghanbari, Saeed

    2016-01-01

    The mechanical energy change of a system in an inertial frame of reference equals work done by the total nonconservative force in the same frame. This relation is covariant under the Galilean transformations from inertial frame S to S', where S' moves with constant velocity relative to S. In the presence of nonconservative forces, such as normal…

  12. Concepts in Geodetic Reference Frames.

    DTIC Science & Technology

    1979-10-01

    in the years 1900-1905. The period of C around the origin is about 1.2 years, the Chandler period. The z-axis of the terrestrial coordinate system is...multiplication by the matrix W which expresses the effect of polar motion, also called polar wobble . It has the form 1 0 x w= 0 1 -y (6-4) -x y 1 where...reference. The periods of forced rnotion (of F, H, and I) are about 1 day, the period of free motion of S, C’ and E0 around 0 is the Chandler period of

  13. Physics of Non-Inertial Reference Frames

    SciTech Connect

    Kamalov, Timur F.

    2010-12-22

    Physics of non-inertial reference frames is a generalizing of Newton's laws to any reference frames. It is the system of general axioms for classical and quantum mechanics. The first, Kinematics Principle reads: the kinematic state of a body free of forces conserves and equal in absolute value to an invariant of the observer's reference frame. The second, Dynamics Principle extended Newton's second law to non-inertial reference frames and also contains additional variables there are higher derivatives of coordinates. Dynamics Principle reads: a force induces a change in the kinematic state of the body and is proportional to the rate of its change. It is mean that if the kinematic invariant of the reference frame is n-th derivative with respect the time, then the dynamics of a body being affected by the force F is described by the 2n-th differential equation. The third, Statics Principle reads: the sum of all forces acting a body at rest is equal to zero.

  14. A Computational Model for Spatial Navigation Based on Reference Frames in the Hippocampus, Retrosplenial Cortex, and Posterior Parietal Cortex.

    PubMed

    Oess, Timo; Krichmar, Jeffrey L; Röhrbein, Florian

    2017-01-01

    Behavioral studies for humans, monkeys, and rats have shown that, while traversing an environment, these mammals tend to use different frames of reference and frequently switch between them. These frames represent allocentric, egocentric, or route-centric views of the environment. However, combinations of either of them are often deployed. Neurophysiological studies on rats have indicated that the hippocampus, the retrosplenial cortex, and the posterior parietal cortex contribute to the formation of these frames and mediate the transformation between those. In this paper, we construct a computational model of the posterior parietal cortex and the retrosplenial cortex for spatial navigation. We demonstrate how the transformation of reference frames could be realized in the brain and suggest how different brain areas might use these reference frames to form navigational strategies and predict under what conditions an animal might use a specific type of reference frame. Our simulated navigation experiments demonstrate that the model's results closely resemble behavioral findings in humans and rats. These results suggest that navigation strategies may depend on the animal's reliance in a particular reference frame and shows how low confidence in a reference frame can lead to fluid adaptation and deployment of alternative navigation strategies. Because of its flexibility, our biologically inspired navigation system may be applied to autonomous robots.

  15. A Computational Model for Spatial Navigation Based on Reference Frames in the Hippocampus, Retrosplenial Cortex, and Posterior Parietal Cortex

    PubMed Central

    Oess, Timo; Krichmar, Jeffrey L.; Röhrbein, Florian

    2017-01-01

    Behavioral studies for humans, monkeys, and rats have shown that, while traversing an environment, these mammals tend to use different frames of reference and frequently switch between them. These frames represent allocentric, egocentric, or route-centric views of the environment. However, combinations of either of them are often deployed. Neurophysiological studies on rats have indicated that the hippocampus, the retrosplenial cortex, and the posterior parietal cortex contribute to the formation of these frames and mediate the transformation between those. In this paper, we construct a computational model of the posterior parietal cortex and the retrosplenial cortex for spatial navigation. We demonstrate how the transformation of reference frames could be realized in the brain and suggest how different brain areas might use these reference frames to form navigational strategies and predict under what conditions an animal might use a specific type of reference frame. Our simulated navigation experiments demonstrate that the model’s results closely resemble behavioral findings in humans and rats. These results suggest that navigation strategies may depend on the animal’s reliance in a particular reference frame and shows how low confidence in a reference frame can lead to fluid adaptation and deployment of alternative navigation strategies. Because of its flexibility, our biologically inspired navigation system may be applied to autonomous robots. PMID:28223931

  16. Ray Effect Mitigation Through Reference Frame Rotation

    DOE PAGES

    Tencer, John

    2016-05-01

    The discrete ordinates method is a popular and versatile technique for solving the radiative transport equation, a major drawback of which is the presence of ray effects. Mitigation of ray effects can yield significantly more accurate results and enhanced numerical stability for combined mode codes. Moreover, when ray effects are present, the solution is seen to be highly dependent upon the relative orientation of the geometry and the global reference frame. It is an undesirable property. A novel ray effect mitigation technique of averaging the computed solution for various reference frame orientations is proposed.

  17. Celestial Reference Frames at Multiple Radio Wavelengths

    NASA Technical Reports Server (NTRS)

    Jacobs, Christopher S.

    2012-01-01

    In 1997 the IAU adopted the International Celestial Reference Frame (ICRF) built from S/X VLBI data. In response to IAU resolutions encouraging the extension of the ICRF to additional frequency bands, VLBI frames have been made at 24, 32, and 43 gigahertz. Meanwhile, the 8.4 gigahertz work has been greatly improved with the 2009 release of the ICRF-2. This paper discusses the motivations for extending the ICRF to these higher radio bands. Results to date will be summarized including evidence that the high frequency frames are rapidly approaching the accuracy of the 8.4 gigahertz ICRF-2. We discuss current limiting errors and prospects for the future accuracy of radio reference frames. We note that comparison of multiple radio frames is characterizing the frequency dependent systematic noise floor from extended source morphology and core shift. Finally, given Gaia's potential for high accuracy optical astrometry, we have simulated the precision of a radio-optical frame tie to be approximately10-15 microarcseconds ((1-sigma) (1-standard deviation), per component).

  18. Frames of Reference in the Classroom

    NASA Astrophysics Data System (ADS)

    Grossman, Joshua

    2012-12-01

    The classic film "Frames of Reference"1,2 effectively illustrates concepts involved with inertial and non-inertial reference frames. In it, Donald G. Ivey and Patterson Hume use the cameras perspective to allow the viewer to see motion in reference frames translating with a constant velocity, translating while accelerating, and rotating—all with respect to the Earth frame. The film is a classic for good reason, but today it does have a couple of drawbacks: 1) The film by nature only accommodates passive learning. It does not give students the opportunity to try any of the experiments themselves. 2) The dated style of the 50-year-old film can distract students from the physics content. I present here a simple setup that can recreate many of the movies demonstrations in the classroom. The demonstrations can be used to supplement the movie or in its place, if desired. All of the materials except perhaps the inexpensive web camera should likely be available already in most teaching laboratories. Unlike previously described activities, these experiments do not require travel to another location3 or an involved setup.4,5

  19. URAT and the celestial reference frame

    NASA Astrophysics Data System (ADS)

    Zacharias, Norbert

    2015-08-01

    The US Naval Observatory Robotic Astrometric Telescope (URAT) survey begun in April 2012 and the Northern Hemisphere program will be completed in 2015. Positions of over 228 million stars in the about R = 3 to 19 mag range were published with the URAT1 catalog release (CDS I/329) and positional accuracy near 10 mas per coordinate for mid-range magnitude objects.URAT directly observes Hipparcos stars as well as counterparts of extragalactic ICRF2 sources. The status of the current celestial reference frame is investigated with URAT data. The accuracy of Hipparcos positions at URAT epoch is analyzed. Radio-optical position differences are investigated for possible astrophysical offsets which would affect the Gaia to radio reference frame alignment accuracy.

  20. Frames of reference in spatial language acquisition.

    PubMed

    Shusterman, Anna; Li, Peggy

    2016-08-01

    Languages differ in how they encode spatial frames of reference. It is unknown how children acquire the particular frame-of-reference terms in their language (e.g., left/right, north/south). The present paper uses a word-learning paradigm to investigate 4-year-old English-speaking children's acquisition of such terms. In Part I, with five experiments, we contrasted children's acquisition of novel word pairs meaning left-right and north-south to examine their initial hypotheses and the relative ease of learning the meanings of these terms. Children interpreted ambiguous spatial terms as having environment-based meanings akin to north and south, and they readily learned and generalized north-south meanings. These studies provide the first direct evidence that children invoke geocentric representations in spatial language acquisition. However, the studies leave unanswered how children ultimately acquire "left" and "right." In Part II, with three more experiments, we investigated why children struggle to master body-based frame-of-reference words. Children successfully learned "left" and "right" when the novel words were systematically introduced on their own bodies and extended these words to novel (intrinsic and relative) uses; however, they had difficulty learning to talk about the left and right sides of a doll. This difficulty was paralleled in identifying the left and right sides of the doll in a non-linguistic memory task. In contrast, children had no difficulties learning to label the front and back sides of a doll. These studies begin to paint a detailed account of the acquisition of spatial terms in English, and provide insights into the origins of diverse spatial reference frames in the world's languages.

  1. The celestial reference frame defined by VLBI

    NASA Technical Reports Server (NTRS)

    Ma, C.; Shaffer, D. B.

    1988-01-01

    VLBI currently produces the most accurate positions of celestial objects. From 1979 to 1987, 114 extragalactic radio sources have been observed with dual-frequency Mark III VLBI as part of the NASA Crustal Dynamics Project and the NGS POLARIS/IRIS program. The formal statistical errors of conventional celestial coordinates are as small as 0.3 milliarcseconds. The fundamental quantity measured by VLBI is the arc length between radio sources. Thus, it is suggested that VLBI be used to establish a coordinate reference frame based solely on radio positions, and that this system not necessarily be coupled to right ascension and declination.

  2. Corrections to the FK5 reference frame

    NASA Astrophysics Data System (ADS)

    Jordi, C.; Rossello, G.

    1987-04-01

    Corrections to the equinox and equator of the FK5 reference frame have been obtained from an analysis of lunar occultations of stars made in the period AD 1800 to 1980. The ephemeris DE200/LE200 was used to reduce the data. The results show that the FK5 and dynamical equinox (defined by the ephemeris) agree closely at J2000.0; but they show that the equinox of the FK5 has a motion of -0.226±0.028 arcsec cy-1 with respect to the dynamical equinox. The equator of the FK5 differs from the dynamical equator by -0.099±0.006 arcsec at J2000.0 and has a motion of -0.150±0.009 arcsec cy-1 with respect to the dynamical equator.

  3. Polarization rotation, reference frames, and Mach's principle

    NASA Astrophysics Data System (ADS)

    Brodutch, Aharon; Terno, Daniel R.

    2011-12-01

    Polarization of light rotates in a gravitational field. The accrued phase is operationally meaningful only with respect to a local polarization basis. In stationary space-times, we construct local reference frames that allow us to isolate the Machian gravimagnetic effect from the geodetic (mass) contribution to the rotation. The Machian effect is supplemented by the geometric term that arises from the choice of standard polarizations. The phase accrued along a close trajectory is gauge-independent and is zero in the Schwarzschild space-time. The geometric term may give a dominant contribution to the phase. We calculate polarization rotation for several trajectories and find it to be more significant than is usually believed, pointing to its possible role as a future gravity probe.

  4. Reference-frame-independent quantum key distribution

    SciTech Connect

    Laing, Anthony; Rarity, John G.; O'Brien, Jeremy L.; Scarani, Valerio

    2010-07-15

    We describe a quantum key distribution protocol based on pairs of entangled qubits that generates a secure key between two partners in an environment of unknown and slowly varying reference frame. A direction of particle delivery is required, but the phases between the computational basis states need not be known or fixed. The protocol can simplify the operation of existing setups and has immediate applications to emerging scenarios such as earth-to-satellite links and the use of integrated photonic waveguides. We compute the asymptotic secret key rate for a two-qubit source, which coincides with the rate of the six-state protocol for white noise. We give the generalization of the protocol to higher-dimensional systems and detail a scheme for physical implementation in the three-dimensional qutrit case.

  5. Convecting reference frames and invariant numerical models

    NASA Astrophysics Data System (ADS)

    Bihlo, Alexander; Nave, Jean-Christophe

    2014-09-01

    In the recent paper by Bernardini et al. [1] the discrepancy in the performance of finite difference and spectral models for simulations of flows with a preferential direction of propagation was studied. In a simplified investigation carried out using the viscous Burgers equation the authors attributed the poorer numerical results of finite difference models to a violation of Galilean invariance in the discretization and propose to carry out the computations in a reference frame moving with the bulk velocity of the flow. Here we further discuss this problem and relate it to known results on invariant discretization schemes. Non-invariant and invariant finite difference discretizations of Burgers equation are proposed and compared with the discretization using the remedy proposed by Bernardini et al.

  6. Development of egocentric and allocentric spatial representations from childhood to elderly age.

    PubMed

    Ruggiero, Gennaro; D'Errico, Ortensia; Iachini, Tina

    2016-03-01

    Spatial reference frames are fundamental to represent the position of objects or places. Although research has reported changes in spatial memory abilities during childhood and elderly age, no study has assessed reference frames processing during the entire lifespan using the same task. Here, we aimed at providing some preliminary data on the capacity to process reference frames in 283 healthy participants from 6 to 89 years of age. A spatial memory task requiring egocentric/allocentric verbal judgments about objects in peri-/extrapersonal space was used. The main goals were: (1) tracing a baseline of the normal process of development of these spatial components; (2) clarifying if reference frames are differently vulnerable to age-related effects. Results showed a symmetry between children of 6-7 years and older people of 80-89 years who were slower and less accurate than all other age groups. As regards processing time, age had a strong effect on the allocentric component, especially in extrapersonal space, with a longer time in 6- to 7-year-old children and 80- to 89-year-old adults. The egocentric component looked less affected by aging. Regarding the level of spatial ability (accuracy), the allocentric ability appeared less sensitive to age-related variations, whereas the egocentric ability progressively improved from 8 years and declined from 60 years. The symmetry in processing time and level of spatial ability is discussed in relation to the development of executive functions and to the structural and functional changes due to incomplete maturation (in youngest children) and deterioration (in oldest adults) of underlying cerebral areas.

  7. Spatial priming in ecologically relevant reference frames.

    PubMed

    Tower-Richardi, Sarah M; Leber, Andrew B; Golomb, Julie D

    2016-01-01

    In recent years, researchers have observed many phenomena demonstrating how the visual system exploits spatial regularities in the environment in order to benefit behavior. In this paper, we question whether spatial priming can be considered one such phenomenon. Spatial priming is defined as a response time facilitation to a visual search target when its spatial position has been repeated in recent trials (Maljkovic & Nakayama, 1996, Perception & Psychophysics, 58, 977-991). Does this priming serve a behaviorally adaptive role or is it merely a byproduct of ongoing visual processing? Critically, an adaptive priming mechanism must actively transform visual inputs from native retinotopic (eye-centered) coordinates into ecologically relevant coordinates, e.g., spatiotopic (world-centered) and/or object-centered. In Experiment 1, we tested this hypothesis by having participants move their eyes between trials, which dissociated retinotopic and spatiotopic frames of reference. Results showed only weak retinotopic priming, but robust spatiotopic priming. The second experiment again had participants move their eyes between trials but also manipulated the placement of a grouped array of display objects from trial to trial. This allowed us to measure not just retinotopic and spatiotopic priming, but object-centered priming as well. Results from this experiment did not yield retinotopic priming but showed robust spatiotopic and object-centered priming. These findings demonstrate that spatial priming operates within ecologically relevant coordinate systems, and the findings support the notion that spatial priming serves an adaptive role in human behavior.

  8. Allocentric or Craniocentric Representation of Acoustic Space: An Electrotomography Study Using Mismatch Negativity

    PubMed Central

    Altmann, Christian F.; Getzmann, Stephan; Lewald, Jörg

    2012-01-01

    The world around us appears stable in spite of our constantly moving head, eyes, and body. How this is achieved by our brain is hardly understood and even less so in the auditory domain. Using electroencephalography and the so-called mismatch negativity, we investigated whether auditory space is encoded in an allocentric (referenced to the environment) or craniocentric representation (referenced to the head). Fourteen subjects were presented with noise bursts from loudspeakers in an anechoic environment. Occasionally, subjects were cued to rotate their heads and a deviant sound burst occurred, that deviated from the preceding standard stimulus either in terms of an allocentric or craniocentric frame of reference. We observed a significant mismatch negativity, i.e., a more negative response to deviants with reference to standard stimuli from about 136 to 188 ms after stimulus onset in the craniocentric deviant condition only. Distributed source modeling with sLORETA revealed an involvement of lateral superior temporal gyrus and inferior parietal lobule in the underlying neural processes. These findings suggested a craniocentric, rather than allocentric, representation of auditory space at the level of the mismatch negativity. PMID:22848643

  9. Diverse spatial reference frames of vestibular signals in parietal cortex

    PubMed Central

    Chen, Xiaodong; DeAngelis, Gregory C; Angelaki, Dora E

    2013-01-01

    Summary Reference frames are important for understanding how sensory cues from different modalities are coordinated to guide behavior, and the parietal cortex is critical to these functions. We compare reference frames of vestibular self-motion signals in the ventral intraparietal area (VIP), parietoinsular vestibular cortex (PIVC), and dorsal medial superior temporal area (MSTd). Vestibular heading tuning in VIP is invariant to changes in both eye and head positions, indicating a body (or world)-centered reference frame. Vestibular signals in PIVC have reference frames that are intermediate between head- and body-centered. In contrast, MSTd neurons show reference frames between head- and eye-centered, but not body-centered. Eye and head position gain fields were strongest in MSTd and weakest in PIVC. Our findings reveal distinct spatial reference frames for representing vestibular signals, and pose new challenges for understanding the respective roles of these areas in potentially diverse vestibular functions. PMID:24239126

  10. On excitation of Earth's free wobble and reference frames

    NASA Technical Reports Server (NTRS)

    Chao, B. F.

    1983-01-01

    The excitation of the Earth's polar motion in connection with problems that are associated with the diversity of reference frames involved in observations and theoretical computations is studied. Following the dynamics of the Earth's polar motion, the kinematics that relates observations from different reference frames is developed. The conventional procedures of studying the seismic excitation of polar motion are re-examined, subject to the question: relative to what reference frame? It is concluded that an inconsistency in reference frames has prevailed in the literature. While this inconsistency is indeed far from trivial, the resultant discrepancy, however, is small for all practical purposes.

  11. Spatial vision within egocentric and exocentric frames of reference

    NASA Technical Reports Server (NTRS)

    Howard, Ian P.

    1991-01-01

    It is remarkable that we are able to perceive a stable visual world and judge the directions, orientations, and movements of visual objects given that images move on the retina, the eyes move in the head, the head moves on the body, and the body moves in space. An understanding of the mechanisms underlying perceptual stability and spatial judgements requires precise definitions of relevant coordinate systems. An egocentric frame of reference is defined with respect to some part of the observer. There are four principal egocentric frames of reference, a station-point frame associated with the nodal point of the eye, an retinocentric frame associated with the retina, a headcentric frame associated with the head, and a bodycentric frame (torsocentric) associated with the torso. Additional egocentric frames can be identified with respect to any segment of the body. An egocentric task is one in which the position, orientation, or motion of an object is judged with respect to an egocentric frame of reference. A proprioceptive is a special kind of egocentric task in which the object being judged is also part of the body. An example of a proprioceptive task is that of directing the gaze toward the seen or unseen toe. An exocentric frame of reference is external to the observer. Geographical coordinates and the direction of gravity are examples of exocentric frames of reference. These various frames are listed in tabular form, together with examples of judgements of each type.

  12. As the world turns: short-term human spatial memory in egocentric and allocentric coordinates.

    PubMed

    Banta Lavenex, Pamela; Lecci, Sandro; Prêtre, Vincent; Brandner, Catherine; Mazza, Christian; Pasquier, Jérôme; Lavenex, Pierre

    2011-05-16

    We aimed to determine whether human subjects' reliance on different sources of spatial information encoded in different frames of reference (i.e., egocentric versus allocentric) affects their performance, decision time and memory capacity in a short-term spatial memory task performed in the real world. Subjects were asked to play the Memory game (a.k.a. the Concentration game) without an opponent, in four different conditions that controlled for the subjects' reliance on egocentric and/or allocentric frames of reference for the elaboration of a spatial representation of the image locations enabling maximal efficiency. We report experimental data from young adult men and women, and describe a mathematical model to estimate human short-term spatial memory capacity. We found that short-term spatial memory capacity was greatest when an egocentric spatial frame of reference enabled subjects to encode and remember the image locations. However, when egocentric information was not reliable, short-term spatial memory capacity was greater and decision time shorter when an allocentric representation of the image locations with respect to distant objects in the surrounding environment was available, as compared to when only a spatial representation encoding the relationships between the individual images, independent of the surrounding environment, was available. Our findings thus further demonstrate that changes in viewpoint produced by the movement of images placed in front of a stationary subject is not equivalent to the movement of the subject around stationary images. We discuss possible limitations of classical neuropsychological and virtual reality experiments of spatial memory, which typically restrict the sensory information normally available to human subjects in the real world.

  13. Interaction between Reference Frames, A Concern in Embedded Training?

    DTIC Science & Technology

    2009-10-01

    RTO-MP-HFM-169 8 - 1 Interaction between Reference Frames, A Concern in Embedded Training? PMB Sandor 1,2 MD-PhD, D Hartnagel 1 PhD, L...Lepecq JC, Sandor PMB, Pergandi JM, Mestre D (2009). Interaction between reference frames during subjective vertical estimates in a tilted immersive

  14. The Dirac oscillator in a rotating frame of reference

    NASA Astrophysics Data System (ADS)

    Strange, P.; Ryder, L. H.

    2016-10-01

    The Dirac equation in a rotating frame of reference is derived from first principles within a linear approximation. This equation is employed to exhibit an equivalence between a particle in a Dirac oscillator potential and a free particle in a rotating frame of reference. A zero-point contribution to the energy of the particle, resulting from its spin, is also noted.

  15. Use of Reference Frames for Interplanetary Navigation at JPL

    NASA Technical Reports Server (NTRS)

    Heflin, Michael; Jacobs, Chris; Sovers, Ojars; Moore, Angelyn; Owen, Sue

    2010-01-01

    Navigation of interplanetary spacecraft is typically based on range, Doppler, and differential interferometric measurements made by ground-based telescopes. Acquisition and interpretation of these observations requires accurate knowledge of the terrestrial reference frame and its orientation with respect to the celestial frame. Work is underway at JPL to reprocess historical VLBI and GPS data to improve realizations of the terrestrial and celestial frames. Improvements include minimal constraint alignment, improved tropospheric modeling, better orbit determination, and corrections for antenna phase center patterns.

  16. Future National Reference Frames for the United States

    NASA Astrophysics Data System (ADS)

    Stone, W. A.

    2015-12-01

    The mission of the National Oceanic and Atmospheric Administration's National Geodetic Survey (NGS) is "to define, maintain and provide access to the National Spatial Reference System (NSRS) to meet our nation's economic, social, and environmental needs." NSRS is the nation's system of latitude, longitude, elevation, and related geophysical and geodetic models and tools, which provides a consistent spatial reference framework for the broad spectrum of geoscientific applications and other positioning-related requirements. Technological developments - notably Global Navigation Satellite Systems (GNSS) - and user accuracy requirements necessitate that NGS endeavor to modernize the NSRS. Preparations are underway by NGS for a comprehensive NSRS makeover, to be completed in 2022 and delivered through a new generation of horizontal and vertical datums (reference frames), featuring unprecedented accuracy, repeatability, and efficiency of access. This evolution is outlined in the "National Geodetic Survey Ten-Year Strategic Plan, 2013-2023." This presentation will outline the motivation for this effort and the history, current status and planned evolution of NSRS. Fundamental to the delivery of the future reference frame paradigm are new geometric and geopotential (elevation) frameworks. The new geometric reference frame, realized through GNSS Continuously Operating Reference Stations (CORS), will replace the North American Datum of 1983 (NAD83) and will provide the nationwide framework for determination of latitude, longitude, and ellipsoid height. Designed to complement the new geometric reference frame, a corresponding geopotential reference frame - based on a national gravimetric geoid and replacing the North American Vertical Datum of 1988 (NAVD88) - will be developed and co-released. The gravimetric geoid - or definitional reference surface (zero elevation) - for the future geopotential reference frame will be built in part from airborne gravimetric data collected in

  17. Newton-Cartan Gravity in Noninertial Reference Frames

    NASA Astrophysics Data System (ADS)

    Rodriguez, Leo; St. Germaine-Fuller, James; Wickramasekara, Sujeev

    2015-03-01

    We study Newton-Cartan gravity under transformations into all noninertial, nonrelativistic reference frames. These transformations form an infinite dimensional Lie group, called the Galilean line group, which contains as a subgroup the Galilei group. The fictitious forces of noninertial reference frames are encoded in the Cartan connection transformed under the Galilean line group. These fictitious forces, which are coordinate effects, do not contribute to the Ricci tensor. Only the 00-component of the Ricci tensor is non-zero and equals (4 π times) the matter density in all reference frames. While the Ricci field equation and Gauss' law are fulfilled by the physical matter density in inertial and linearly accelerating reference frames, in rotating reference frames Gauss' law holds for an effective mass density that differs from the physical matter density. This effective density has its origin in the simulated magnetic field of rotating frames, highlighting a striking difference between linearly and rotationally accelerating frames. The equations governing the simulated fields have the same form as Maxwell's equations, a surprising result given that these equations obey special relativity (and U (1) -gauge symmetry), rather than Galilean symmetry. This work was supported in part by the HHMI Undergraduate Science Education Award 52006298 and the Grinnell College Academic Affairs' CSFS and MAP programs.

  18. Astrometric microlensing and rotation of extragalactic reference frame

    NASA Astrophysics Data System (ADS)

    Zhdanov, V. I.; Alexandrov, A. N.; Fedorova, E. V.

    Gravitational field of foreground stars of the Galaxy causes additional motion of images of extragalactic sources. We estimate characteristics of stochastic and average motions of these images. The probability distribution for the image motions and their changes is obtained for general spatial density of microlenses. We show that collective motion of stars induces small nonzero dragging velocity of the reference frame. The results obtained are compared to the other relativistic effects in optical satellite-oriented reference frame.

  19. Spatial vision within egocentric and exocentric frames of reference

    NASA Technical Reports Server (NTRS)

    Howard, Ian P.

    1989-01-01

    The extent to which perceptual judgements within egocentric and exocentric frames of reference are subject to illusory disturbances and long term modifications is discussed. It is argued that well known spatial illusions, such as the oculogyral illusion and induced visual motion have usually been discussed without proper attention being paid to the frame of reference within which they occur, and that this has led to the construction of inadequate theories and inappropriate procedures for testing them.

  20. Estimation and Analysis of Parameters for Reference Frame Transformation

    NASA Astrophysics Data System (ADS)

    Yang, T. G.; Gao, Y. P.; Tong, M. L.; Zhao, C. S.; Gao, F.

    2016-07-01

    Based on the estimation method of parameters for reference frame transformation, the parameters used for transformation between different modern DE (Develop-ment Ephemeris) ephemeris pairs are derived using the data of heliocentric coordinates of Earth-Moon barycenter from DE ephemeris pairs, and the transformation parameters between DE ephemeris dynamic reference frame and ICRF (International Celestial Reference Frame) are estimated by using the timing data and VLBI (Very Long Baseline Interferometry) observation results of millisecond pulsars. The estimated parameters for the reference frame transformation include three rotational angles of rotational matrix and their derivatives of time. The reference epoch of estimated parameters for the reference frame transformation is MJD51545, that is J2000.0. Our results show that the absolute maximum value of rotational angles for the transformation of DE200 to DE405 ephemeris is 13 mas, and its derivative of time is -0.0007 mas/d. No absolute value of rotational angles is larger than 0.1 mas for the transformation of DE414 to DE421 ephemeris. The absolute maximum value of rotational angles of rotation matrix for the transformation of DE421 ephemeris to ICRF is 3 mas, and the time derivatives of three rotational angles are also necessarily included.

  1. Turbulence Modeling in Non-Inertial Frames of Reference,

    DTIC Science & Technology

    1988-03-01

    40-R193 962 TURBULENCE MODELING IN NON-INERTIAL FRAMES OF REFERENCE 1Iii (U) INSTITUTE FOR COMPUTER APLICATIONS IN SCIENCE AND ENGINERIN C G MPEZIALE...0ICASE r TURBULENCE MODELING IN NON-INE&TIAL ~ FRANKS OF REFERENCE D1C SELECD Charles G. Spezial* APR0 81D Contract No. NASI-18107 March 1988 Vr oum

  2. Hippocampal Volume Reduction in Humans Predicts Impaired Allocentric Spatial Memory in Virtual-Reality Navigation

    PubMed Central

    Dzieciol, Anna M.; Gadian, David G.; Jentschke, Sebastian; Doeller, Christian F.; Burgess, Neil; Mishkin, Mortimer

    2015-01-01

    The extent to which navigational spatial memory depends on hippocampal integrity in humans is not well documented. We investigated allocentric spatial recall using a virtual environment in a group of patients with severe hippocampal damage (SHD), a group of patients with “moderate” hippocampal damage (MHD), and a normal control group. Through four learning blocks with feedback, participants learned the target locations of four different objects in a circular arena. Distal cues were present throughout the experiment to provide orientation. A circular boundary as well as an intra-arena landmark provided spatial reference frames. During a subsequent test phase, recall of all four objects was tested with only the boundary or the landmark being present. Patients with SHD were impaired in both phases of this task. Across groups, performance on both types of spatial recall was highly correlated with memory quotient (MQ), but not with intelligence quotient (IQ), age, or sex. However, both measures of spatial recall separated experimental groups beyond what would be expected based on MQ, a widely used measure of general memory function. Boundary-based and landmark-based spatial recall were both strongly related to bilateral hippocampal volumes, but not to volumes of the thalamus, putamen, pallidum, nucleus accumbens, or caudate nucleus. The results show that boundary-based and landmark-based allocentric spatial recall are similarly impaired in patients with SHD, that both types of recall are impaired beyond that predicted by MQ, and that recall deficits are best explained by a reduction in bilateral hippocampal volumes. SIGNIFICANCE STATEMENT In humans, bilateral hippocampal atrophy can lead to profound impairments in episodic memory. Across species, perhaps the most well-established contribution of the hippocampus to memory is not to episodic memory generally but to allocentric spatial memory. However, the extent to which navigational spatial memory depends on

  3. Transport equations of electrodiffusion processes in the laboratory reference frame.

    PubMed

    Garrido, Javier

    2006-02-23

    The transport equations of electrodiffusion processes use three reference frames for defining the fluxes: Fick's reference in diffusion, solvent-fixed reference in transference numbers, and laboratory fluxes in electric conductivity. The convenience of using only one reference frame is analyzed here from the point of view of the thermodynamics of irreversible processes. A relation between the fluxes of ions and solvent and the electric current density is deduced first from a mass and volume balance. This is then used to show that (i) the laboratory and Fick's diffusion coefficients are identical and (ii) the transference numbers of both the solvent and the ion in the laboratory reference frame are related. Finally, four experimental methods for the measurement of ion transference numbers are analyzed critically. New expressions for evaluating transference numbers for the moving boundary method and the chronopotentiometry technique are deduced. It is concluded that the ion transport equation in the laboratory reference frame plays a key role in the description of electrodiffusion processes.

  4. Overall properties of the Gaia DR1 reference frame

    NASA Astrophysics Data System (ADS)

    Liu, N.; Zhu, Z.; Liu, J.-C.; Ding, C.-Y.

    2017-03-01

    Aims: The first Gaia data release (Gaia DR1) provides 2191 ICRF2 sources with their positions in the auxiliary quasar solution and five astrometric parameters - positions, parallaxes, and proper motions - for stars in common between the Tycho-2 catalogue and Gaia in the joint Tycho-Gaia astrometric solution (TGAS). We aim to analyze the overall properties of Gaia DR1 reference frame. Methods: We compare quasar positions of the auxiliary quasar solution with ICRF2 sources using different samples and evaluate the influence on the Gaia DR1 reference frame owing to the Galactic aberration effect over the J2000.0-J2015.0 period. Then we estimate the global rotation between TGAS with Tycho-2 proper motion systems to investigate the property of the Gaia DR1 reference frame. Finally, the Galactic kinematics analysis using the K-M giant proper motions is performed to understand the property of Gaia DR1 reference frame. Results: The positional comparison between the auxiliary quasar solution and ICRF2 shows negligible orientation and validates the declination bias of -0.1mas in Gaia quasar positions with respect to ICRF2. Galactic aberration effect is thought to cause an offset 0.01mas of the Z axis direction of Gaia DR1 reference frame. The global rotation between TGAS and Tycho-2 proper motion systems, obtained by different samples, shows a much smaller value than the claimed value 0.24mas yr-1. For the Galactic kinematics analysis of the TGAS K-M giants, we find possible non-zero Galactic rotation components beyond the classical Oort constants: the rigid part ωYG = -0.38±0.15mas yr-1 and the differential part ω^primeYG = -0.29±0.19mas yr-1 around the YG axis of Galactic coordinates, which indicates possible residual rotation in Gaia DR1 reference frame or problems in the current Galactic kinematical model. Conclusions: The Gaia DR1 reference frame is well aligned to ICRF2, and the possible influence of the Galactic aberration effect should be taken into consideration

  5. Reference frame-induced errors in VLBI Earth rotation determinations

    NASA Astrophysics Data System (ADS)

    Heinkelmann, Robert; Karbon, Maria; Liu, Li; Lu, Cuixian; Mora-Diaz, Julian A.; Nilsson, Tobias J.; Raposo-Pulido, Virginia; Soja, Benedikt; Xu, Minghui; Schuh, Harald

    2014-05-01

    Earth Rotation is defined as the transformation between the Geocentric Celestial Reference System (GCRS) and the International Terrestrial Reference System (ITRS). It is a three-dimensional rotation which is described by the precession/nutation Q, the Earth rotation R, and the polar motion W matrices (IERS Coventions 2010): xGCRS = QRWxITRS. The actual determination of Earth Rotation by Very Long Baseline Interferometry (VLBI) is based on the reference frames involved in the VLBI analysis. VLBI is the only space-geodetic technique used for the realization of the International Celestial Reference System (ICRS), which is the geocentric celestial reference system (GCRS) practically realized to evaluate the above equation. Since the Earth Orientation Parameters (EOP) are obtained as 'session-wise parameters', they can suffer from any inconsistencies between session-wise TRF and CRF realizations. In this paper we assess the session-wise TRF and CRF differences by determining the respective transformation parameters of the adjusted terrestrial and celestial positions on a session basis to the catalogue coordinates, given by the International Terrestrial Reference Frame 2008 (ITRF2008) and the Second International Celestial Reference Frame (ICRF2).

  6. Turbulence modeling in non-inertial frames of reference

    NASA Technical Reports Server (NTRS)

    Speziale, Charles G.

    1988-01-01

    The effect of an arbitrary change of frame on the structure of turbulence models is examined from a fundamental theoretical standpoint. It is proven, as a rigorous consequence of the Navier-Stokes equations, that turbulence models must be form invariant under arbitrary translational accelerations of the reference frame and should only be affected by rotations through the intrinsic mean vorticity. A direct application of the invariance property along with the Taylor-Proudman Theorem, material frame-indifference in the limit of two-dimensional turbulence and Rapid Distortion Theory is shown to yield powerful constraints on the allowable form of turbulence models. Most of the commonly used turbulence models are demonstrated to be in serious violation of these constraints and consequently are inconsistent with the Navier-Stokes equations in non-inertial frames. Alternative models with improved non-inertial properties are developed and some simple applications to rotating turbulent flows are considered.

  7. Global reference frame: Intercomparison of results (SLR, VLBI and GPS)

    NASA Technical Reports Server (NTRS)

    Ma, Chopo; Watkins, Michael M.; Heflin, M.

    1994-01-01

    The terrestrial reference frame (TRF) is realized by a set of positions and velocities derived from a combination of the three space geodetic techniques, SLR, VLBI and GPS. The standard International TRF is constructed by the International Earth Rotation Service in such a way that it is stable with time and the addition of new data. An adopted model for overall plate motion, NUVEL-1 NNR, defines the conceptual reference frame in which all the plates are moving. In addition to the measurements made between reference points within the space geodetic instruments, it is essential to have accurate, documented eccentricity measurements from the instrument reference points to ground monuments. Proper local surveys between the set of ground monuments at a site are also critical for the use of the space geodetic results. Eccentricities and local surveys are, in fact, the most common and vexing sources of error in the use of the TRF for such activities as collocation and intercomparison.

  8. The equations of relative motion in the orbital reference frame

    NASA Astrophysics Data System (ADS)

    Casotto, Stefano

    2016-03-01

    The analysis of relative motion of two spacecraft in Earth-bound orbits is usually carried out on the basis of simplifying assumptions. In particular, the reference spacecraft is assumed to follow a circular orbit, in which case the equations of relative motion are governed by the well-known Hill-Clohessy-Wiltshire equations. Circular motion is not, however, a solution when the Earth's flattening is accounted for, except for equatorial orbits, where in any case the acceleration term is not Newtonian. Several attempts have been made to account for the J_2 effects, either by ingeniously taking advantage of their differential effects, or by cleverly introducing ad-hoc terms in the equations of motion on the basis of geometrical analysis of the J_2 perturbing effects. Analysis of relative motion about an unperturbed elliptical orbit is the next step in complexity. Relative motion about a J_2-perturbed elliptic reference trajectory is clearly a challenging problem, which has received little attention. All these problems are based on either the Hill-Clohessy-Wiltshire equations for circular reference motion, or the de Vries/Tschauner-Hempel equations for elliptical reference motion, which are both approximate versions of the exact equations of relative motion. The main difference between the exact and approximate forms of these equations consists in the expression for the angular velocity and the angular acceleration of the rotating reference frame with respect to an inertial reference frame. The rotating reference frame is invariably taken as the local orbital frame, i.e., the RTN frame generated by the radial, the transverse, and the normal directions along the primary spacecraft orbit. Some authors have tried to account for the non-constant nature of the angular velocity vector, but have limited their correction to a mean motion value consistent with the J_2 perturbation terms. However, the angular velocity vector is also affected in direction, which causes precession

  9. Mesoscopic mechanical resonators as quantum noninertial reference frames

    NASA Astrophysics Data System (ADS)

    Katz, B. N.; Blencowe, M. P.; Schwab, K. C.

    2015-10-01

    An atom attached to a micrometer-scale wire that is vibrating at a frequency ˜100 MHz and with displacement amplitude ˜1 nm experiences an acceleration magnitude ˜109ms -2 , approaching the surface gravity of a neutron star. As one application of such extreme noninertial forces in a mesoscopic setting, we consider a model two-path atom interferometer with one path consisting of the 100 MHz vibrating wire atom guide. The vibrating wire guide serves as a noninertial reference frame and induces an in principle measurable phase shift in the wave function of an atom traversing the wire frame. We furthermore consider the effect on the two-path atom wave interference when the vibrating wire is modeled as a quantum object, hence functioning as a quantum noninertial reference frame. We outline a possible realization of the vibrating wire, atom interferometer using a superfluid helium quantum interference setup.

  10. Deriving a unique reference frame for GPS measurements

    NASA Technical Reports Server (NTRS)

    Malla, Rajendra P.; Wu, Sien-Chong

    1988-01-01

    Two strategies for deriving a unique reference frame for GPS (Global Positioning System) measurements are discussed. The first strategy utilizes the precise relative positions which have been predetermined by VLBI (very long baseline interferometry) to fix the frame orientation and the absolute scaling, while the offset from the geocenter is determined from GPS measurements. Three different cases are presented under this strategy. The second strategy establishes a reference frame by holding only the longitudinal of one of the tracking sites fixed. The absolute scaling is determined by the adopted gravitational constant (GM) of the earth; and the latitude is inferred from the time signature of the earth's rotation in the GPS measurements. The coordinate system thus defined will be a geocentric earth fixed coordinate system. A covariance analysis shows that geometric positioning to an accuracy of a few centimeters can be achieved with just one day of precise GPS pseudorange and carrier phase data.

  11. Change of Reference Frame for Tactile Localization during Child Development

    ERIC Educational Resources Information Center

    Pagel, Birthe; Heed, Tobias; Roder, Brigitte

    2009-01-01

    Temporal order judgements (TOJ) for two tactile stimuli, one presented to the left and one to the right hand, are less precise when the hands are crossed over the midline than when the hands are uncrossed. This "crossed hand" effect has been considered as evidence for a remapping of tactile input into an external reference frame. Since late, but…

  12. Limited Aspects of Reality: Frames of Reference in Language Assessment

    ERIC Educational Resources Information Center

    Fulcher, Glenn; Svalberg, Agneta

    2013-01-01

    Language testers operate within two frames of reference: norm-referenced (NRT) and criterion-referenced testing (CRT). The former underpins the world of large-scale standardized testing that prioritizes variability and comparison. The latter supports substantive score meaning in formative and domain specific assessment. Some claim that the…

  13. The Bernoulli Equation in a Moving Reference Frame

    ERIC Educational Resources Information Center

    Mungan, Carl E.

    2011-01-01

    Unlike other standard equations in introductory classical mechanics, the Bernoulli equation is not Galilean invariant. The explanation is that, in a reference frame moving with respect to constrictions or obstacles, those surfaces do work on the fluid, constituting an extra term that needs to be included in the work-energy calculation. A…

  14. Reference Frames during the Acquisition and Development of Spatial Memories

    ERIC Educational Resources Information Center

    Kelly, Jonathan W.; McNamara, Timothy P.

    2010-01-01

    Four experiments investigated the role of reference frames during the acquisition and development of spatial knowledge, when learning occurs incrementally across views. In two experiments, participants learned overlapping spatial layouts. Layout 1 was first studied in isolation, and Layout 2 was later studied in the presence of Layout 1. The…

  15. Cross-Sensory Transfer of Reference Frames in Spatial Memory

    ERIC Educational Resources Information Center

    Kelly, Jonathan W.; Avraamides, Marios N.

    2011-01-01

    Two experiments investigated whether visual cues influence spatial reference frame selection for locations learned through touch. Participants experienced visual cues emphasizing specific environmental axes and later learned objects through touch. Visual cues were manipulated and haptic learning conditions were held constant. Imagined perspective…

  16. Using quasar physics to improve the celestial reference frame

    NASA Astrophysics Data System (ADS)

    Shabala, Stanislav; Plank, Lucia; McCallum, Jamie; Boehm, Johannes

    2015-08-01

    Radio-loud quasars making up the International Celestial Reference Frame (ICRF) are dynamic objects with significant structure that changes on timescales of months and years. This is a problem for reference frame stability, as realised through the geodetic and astrometric Very Long Baseline Interferometry (VLBI) technique, which has so far largely treated quasars as point sources in analysis. I will describe the source structure simulator recently implemented in the Vienna VLBI Software (VieVS) package, and quantify the effects of various levels of source structure on the celestial and terrestrial reference frames, and Earth Orientation Parameters linking these two frames. We find that even relatively modest levels of quasar structure can produce systematic effects that affect derived quasar positions significantly in excess of the noise floor of the present ICRF realisation, ICRF2.I will also discuss the observed relationship between astrophysical properties of quasars, their structure and geodetic stability. By simulating quasar structure and evolution in VieVS, we have devised various quasar mitigation strategies. These include: (1) astrophysically-based quasar selection techniques; (2) scheduling sources by taking into account quasar structure; and (3) analyzing geodetic and astrometric VLBI observations using knowledge of quasar structure. I will describe our simulation results, and outline promising quasar structure mitigation strategies.

  17. Realizing a terrestrial reference frame using the Global Positioning System

    NASA Astrophysics Data System (ADS)

    Haines, Bruce J.; Bar-Sever, Yoaz E.; Bertiger, Willy I.; Desai, Shailen D.; Harvey, Nate; Sibois, Aurore E.; Weiss, Jan P.

    2015-08-01

    We describe a terrestrial reference frame (TRF) realization based on Global Positioning System (GPS) data alone. Our approach rests on a highly dynamic, long-arc (9 day) estimation strategy and on GPS satellite antenna calibrations derived from Gravity Recovery and Climate Experiment and TOPEX/Poseidon low Earth orbit receiver GPS data. Based on nearly 17 years of data (1997-2013), our solution for scale rate agrees with International Terrestrial Reference Frame (ITRF)2008 to 0.03 ppb yr-1, and our solution for 3-D origin rate agrees with ITRF2008 to 0.4 mm yr-1. Absolute scale differs by 1.1 ppb (7 mm at the Earth's surface) and 3-D origin by 8 mm. These differences lie within estimated error levels for the contemporary TRF.

  18. Disentangling the External Reference Frames Relevant to Tactile Localization

    PubMed Central

    Backhaus, Jenny; Röder, Brigitte; Badde, Stephanie

    2016-01-01

    Different reference frames appear to be relevant for tactile spatial coding. When participants give temporal order judgments (TOJ) of two tactile stimuli, one on each hand, performance declines when the hands are crossed. This effect is attributed to a conflict between anatomical and external location codes: hand crossing places the anatomically right hand into the left side of external space. However, hand crossing alone does not specify the anchor of the external reference frame, such as gaze, trunk, or the stimulated limb. Experiments that used explicit localization responses, such as pointing to tactile stimuli rather than crossing manipulations, have consistently implicated gaze-centered coding for touch. To test whether crossing effects can be explained by gaze-centered coding alone, participants made TOJ while the position of the hands was manipulated relative to gaze and trunk. The two hands either lay on different sides of space relative to gaze or trunk, or they both lay on one side of the respective space. In the latter posture, one hand was on its "regular side of space" despite hand crossing, thus reducing overall conflict between anatomical and external codes. TOJ crossing effects were significantly reduced when the hands were both located on the same side of space relative to gaze, indicating gaze-centered coding. Evidence for trunk-centered coding was tentative, with an effect in reaction time but not in accuracy. These results link paradigms that use explicit localization and TOJ, and corroborate the relevance of gaze-related coding for touch. Yet, gaze and trunk-centered coding did not account for the total size of crossing effects, suggesting that tactile localization relies on additional, possibly limb-centered, reference frames. Thus, tactile location appears to be estimated by integrating multiple anatomical and external reference frames. PMID:27391805

  19. An improved celestial radio reference frame: JPL 1982-4

    NASA Technical Reports Server (NTRS)

    Fanselow, J. L.; Sovers, O. J.; Thomas, J. B.; Purcell, G. J., Jr.

    1983-01-01

    In the development of a celestial radio reference frame, there are now over 100 sources whose relative positions are known with an average uncertainty less than 5 milliarcseconds. These sources are fairly uniformly distributed over the celestial sphere north of -40 deg declination. Their positions are expressed in the new IAU system. This presentation describes the analysis involved in obtaining these results, as well as future plans for linking this system to the JPL planetary ephemerides.

  20. Global GPS reference frame solutions of unlimited size

    NASA Astrophysics Data System (ADS)

    Boomkamp, H.

    2010-07-01

    This paper reports on the Dancer project, which is one of three related projects initiated by working group 1 of the International Association of Geodesy. The Dancer project develops JAVA parameter estimation software that runs in the form of a distributed process on the internet, in such a way that each processing node handles the data of a single geodetic instrument. By exchanging a minimum amount of information among all processing nodes, the same global normal equation solution is found by all instruments. The result is a fully scalable least squares solution that has no practical limit to the number of GPS receivers or other tracking devices that may be included in a single reference frame realization. High-end GPS users will also be able to run a Dancer process for their own data, without contributing to the reference frame solution but taking full advantage of its global consistency. This offers direct access to precise International Terrestrial Reference Frame and UTC realizations, anywhere on Earth where there is an internet connection. Mission control centres of low satellites with GPS receivers can run a Dancer process on the incoming data from the orbiting receiver, to introduce strong ties with other techniques such as Satellite Laser Ranging.

  1. Specular vision-touch synaesthesia: two reference frames.

    PubMed

    White, Rebekah C; Aimola Davies, Anne M

    2012-01-01

    Two subtypes of vision-touch synaesthesia (VTS) have been identified. For anatomical VTS, sight of touch on another person elicits synaesthetic tactile sensation at the same location on the observer's own body (e.g., viewed touch on the left cheek elicits sensation on the observer's left cheek). For specular VTS, sight of touch on another person elicits synaesthetic tactile sensation at the mirror-reflected location (e.g., viewed touch on the left cheek elicits sensation on the observer's right cheek). Here we report two distinctly different patterns of sensation within the specular subtype. Both participants experienced synaesthetic tactile sensation on their right hand when they viewed unidirectional brushstrokes administered to a prosthetic left hand (positioned with fingers pointing toward the participant), but the direction of sensation matched the viewed touch in a hand-centred (spatial) reference frame for RS and in an external (viewer-centred) reference frame for NC. Competing reference frames affect how individuals with specular VTS experience synaesthetic tactile sensation.

  2. Face-infringement space: the frame of reference of the ventral intraparietal area.

    PubMed

    McCollum, Gin; Klam, François; Graf, Werner

    2012-07-01

    Experimental studies have shown that responses of ventral intraparietal area (VIP) neurons specialize in head movements and the environment near the head. VIP neurons respond to visual, auditory, and tactile stimuli, smooth pursuit eye movements, and passive and active movements of the head. This study demonstrates mathematical structure on a higher organizational level created within VIP by the integration of a complete set of variables covering face-infringement. Rather than positing dynamics in an a priori defined coordinate system such as those of physical space, we assemble neuronal receptive fields to find out what space of variables VIP neurons together cover. Section 1 presents a view of neurons as multidimensional mathematical objects. Each VIP neuron occupies or is responsive to a region in a sensorimotor phase space, thus unifying variables relevant to the disparate sensory modalities and movements. Convergence on one neuron joins variables functionally, as space and time are joined in relativistic physics to form a unified spacetime. The space of position and motion together forms a neuronal phase space, bridging neurophysiology and the physics of face-infringement. After a brief review of the experimental literature, the neuronal phase space natural to VIP is sequentially characterized, based on experimental data. Responses of neurons indicate variables that may serve as axes of neural reference frames, and neuronal responses have been so used in this study. The space of sensory and movement variables covered by VIP receptive fields joins visual and auditory space to body-bound sensory modalities: somatosensation and the inertial senses. This joining of allocentric and egocentric modalities is in keeping with the known relationship of the parietal lobe to the sense of self in space and to hemineglect, in both humans and monkeys. Following this inductive step, variables are formalized in terms of the mathematics of graph theory to deduce which

  3. On the Assessment of Global Terrestrial Reference Frame Temporal Variations

    NASA Astrophysics Data System (ADS)

    Ampatzidis, Dimitrios; Koenig, Rolf; Zhu, Shengyuan

    2015-04-01

    Global Terrestrial Reference Frames (GTRFs) as the International Terrestrial Reference Frame (ITRF) provide reliable 4-D position information (3-D coordinates and their evolution through time). The given 3-D velocities play a significant role in precise position acquisition and are estimated from long term coordinate time series from the space-geodetic techniques DORIS, GNSS, SLR, and VLBI. GTRFs temporal evolution is directly connected with their internal stability: The more intense and inhomogeneous velocity field, the less stable TRF is derived. The assessment of the quality of the GTRF is mainly realized by comparing it to each individual technique's reference frame. E.g the comparison of GTRFs to SLR-only based TRF gives the sense of the ITRF stability with respect to the Geocenter and scale and their associated rates respectively. In addition, the comparison of ITRF to the VLBI-only based TRF can be used for the scale validation. However, till now there is not any specified methodology for the total assessment (in terms of origin, orientation and scale respectively) of the temporal evolution and GTRFs associated accuracy. We present a new alternative diagnostic tool for the assessment of GTRFs temporal evolution based on the well-known time-dependent Helmert type transformation formula (three shifts, three rotations and scale rates respectively). The advantage of the new methodology relies on the fact that it uses the full velocity field of the TRF and therefore all points not just the ones common to different techniques. It also examines simultaneously rates of origin, orientation and scale. The methodology is presented and implemented to the two existing GTRFs on the market (ITRF and DTRF which is computed from DGFI) , the results are discussed. The results also allow to compare directly each GTRF dynamic behavior. Furthermore, the correlations of the estimated parameters can also provide useful information to the proposed GTRFs assessment scheme.

  4. Standardization of Observatories, Instruments and Reference Frames for Planetary Sciences

    NASA Astrophysics Data System (ADS)

    Cecconi, Baptiste; Erard, Stéphane; Le Sidaner, Pierre

    2015-08-01

    The recent developments on planetary science interoperability showed that a standardization of naming conventions was required for observatories (including ground based facilities and space mission), instruments (types and names) as well as reference frames used to describe planetary observations. A review of existing catalogs and naming for those entities is presented. We also report on the discussions that occurred within the IVOA (International Virtual Observatory Alliance), IPDA (International Planetary Data Alliance) and VESPA (Virtual European Solar and Planetary Access) working groups. A proposal for standard lists, possibly to be endorsed by IAU, is presented and discussed.

  5. Standardization of Observatories, Instruments and Reference Frames for Planetary Sciences

    NASA Astrophysics Data System (ADS)

    Cecconi, B.; Erard, S.; Le Sidaner, P.

    2015-10-01

    The recent developments on planetary science interoperability showed that a standardization of naming conventions was required for observatories (including ground based facilities and space mission), instruments (types and names) as well as reference frames used to describe planetary observations. A review of existing catalogs and naming for those entities is presented. We also report on the discussions that occurred within the IVOA (International Virtual Observatory Alliance), IPDA (International Planetary Data Alliance) and VESPA (Virtual European Solar and Planetary Access) working groups. A proposal for standard lists, possibly to be endorsed by IAU, is presented and discussed.

  6. X/Ka Celestial Reference Frame Improvements: Vision to Reality

    NASA Astrophysics Data System (ADS)

    Jacobs, Christopher S.; Bagri, D. S.; Brticliffe, M. J.; Clark, J. E.; Franco, M. M.; García-Miró, C.; Goodhart, C. E.; Horiuchi, S.; Lowe, S. T.; Moll, V. E.; Navarro, R.; Rogstad, S. P.; Proctor, R. C.; Skjerve, L. J.; Soriano, M. A.; Sovers, O. J.; Tucker, B. C.; Wang, D.; White, L. A.

    2010-12-01

    In order to extend the International Celestial Reference Frame from its S/X-band (2.3/8.4 GHz) basis to a complementary frame at X/Ka-band (8.4/32 GHz), we began in mid-2005 an ongoing series of X/Ka observations using NASA's Deep Space Network (DSN) radio telescopes. Over the course of 47 sessions, we have detected 351 extra-galactic radio sources covering the full 24 hours of right ascension and declinations down to -45 degrees. Angular source position accuracy is at the part-per-billion level. We developed an error budget which shows that the main errors arise from limited sensitivity, mismodeling of the troposphere, uncalibrated instrumental effects, and the lack of a southern baseline. Recent work has improved sensitivity by improving pointing calibrations and by increasing the data rate four-fold. Troposphere calibration has been demonstrated at the mm-level. Construction of instrumental phase calibrators and new digital baseband filtering electronics began in recent months. We will discuss the expected effect of these improvements on the X/Ka frame.

  7. Flexible conceptual projection of time onto spatial frames of reference.

    PubMed

    Torralbo, Ana; Santiago, Julio; Lupiáñez, Juan

    2006-07-08

    Flexibility in conceptual projection constitutes one of the most challenging issues in the embodiment and conceptual metaphor literatures. We sketch a theoretical proposal that places the burden of the explanation on attentional dynamics in interaction with mental models in working memory that are constrained to be maximally coherent. A test of this theory is provided in the context of the conceptual projection of time onto the domain of space. Participants categorized words presented at different spatial locations (back-front, left-right) as referring to the past or to the future. Responses were faster when the irrelevant word location was congruent with the back-past, front-future metaphoric mapping. Moreover, when a new highly task-relevant spatial frame of reference was introduced, it changed the projection of past and future onto space in a way that was congruent with the new frame (past was now projected to left space and future to right space), as predicted by the theory. This study shows that there is substantial flexibility in conceptual projection and opens a venue to study metaphoric variation across tasks, individuals, and cultures as the result of attentional dynamics.

  8. Terrestrial Reference Systems and Frames. A review of current activities

    NASA Astrophysics Data System (ADS)

    Boucher, C. C.

    2009-12-01

    Terrestrial Reference Systems (TRS) refer to an important domain of Geodesy, involving both theoretical and applied aspects, as well as deep connections with Astronomy, Earth Sciences and Geo-information. The concept of TRS implies several visions : - An astronomical vision, using TRS to study translational and rotational motion of the Earth in inertial space - An Earth Science vision, using TRS to build physical models of the Earth system, and its various components (solid earth, oceans, atmosphere, hydrosphere) - A metrological vision, using TRS together with suitable coordinate systems (geographical coordinates, map projections…) to define geographical position of objects in the Earth’s vicinity A survey of current activities in this area is presented, referring to works done by the International Association of Geodesy (IAG) and more specifically its Commission 1, GGOS and IERS. A focus is done on concepts and terminology, as well as progresses to get a wide acceptance on the International Terrestrial Reference System (ITRS) and its system of realizations through global, regional and national frames, as well as through specific systems such as satellite navigation systems.

  9. Reference frame selection in dialog: priming or preference?

    PubMed Central

    Johannsen, Katrin; Ruiter, Jan P. De

    2013-01-01

    We investigate effects of priming and preference on frame of reference (FOR) selection in dialog. In a first study, we determine FOR preferences for specific object configurations to establish a baseline. In a second study, we focus on the selection of the relative or the intrinsic FOR in dialog using the same stimuli and addressing the questions whether (a) interlocutors prime each other to use the same FOR consistently or (b) the preference for the intrinsic FOR predominates priming effects. Our results show effects of priming (more use of the relative FOR) and a decreased preference for the intrinsic FOR. However, as FOR selection did not have an effect on target trial accuracy, neither effect alone represents the key to successful communication in this domain. Rather, we found that successful communication depended on the adaptation of strategies between interlocutors: the more the interlocutors adapted to each other's strategies, the more successful they were. PMID:24137122

  10. Comparison of Realizations of the Terrestrial Reference Frame

    NASA Technical Reports Server (NTRS)

    Ma, C.; Macmillan, D.; Bolotin, S.; Le Bail, K.; Gordon, D.; Gipson, J.

    2015-01-01

    IGN and DGFI both generated realizations of the terrestrial reference frame under the auspices of the IERS from combination of the same space geodetic data. We compared the IGN and DGFI TRFs with a GSFC CALC/SOLVE TRF. WRMS position and velocity differences for the 40 most frequently observed sites were 2-3 mm and 0.3-0.4 mm/year. There was a scale difference of 0.39/0.09 ppb between the IGN/DGFI realizations and the GSFC solution. When we fixed positions and velocities to either the IGN or DGFI values in CALC/SOLVE solutions, the resulting EOP estimates were not significantly different from the estimates from a standard TRF solution.

  11. A Global Moving Hotspot Reference Frame: How well it fits?

    NASA Astrophysics Data System (ADS)

    Doubrovine, P. V.; Steinberger, B.; Torsvik, T. H.

    2010-12-01

    Since the early 1970s, when Jason Morgan proposed that hotspot tracks record motion of lithosphere over deep-seated mantle plumes, the concept of fixed hotspots has dominated the way we think about absolute plate reconstructions. In the last decade, with compelling evidence for southward drift of the Hawaiian hotspot from paleomagnetic studies, and for the relative motion between the Pacific and Indo-Atlantic hotspots from refined plate circuit reconstructions, the perception changed and a global moving hotspot reference frame (GMHRF) was introduced, in which numerical models of mantle convection and advection of plume conduits in the mantle flow were used to estimate hotspot motion. This reference frame showed qualitatively better performance in fitting hotspot tracks globally, but the error analysis and formal estimates of the goodness of fitted rotations were lacking in this model. Here we present a new generation of the GMHRF, in which updated plate circuit reconstructions and radiometric age data from the hotspot tracks were combined with numerical models of plume motion, and uncertainties of absolute plate rotations were estimated through spherical regression analysis. The overall quality of fit was evaluated using a formal statistical test, by comparing misfits produced by the model with uncertainties assigned to the data. Alternative plate circuit models linking the Pacific plate to the plates of Indo-Atlantic hemisphere were tested and compared to the fixed hotspot models with identical error budgets. Our results show that, with an appropriate choice of the Pacific plate circuit, it is possible to reconcile relative plate motions and modeled motions of mantle plumes globally back to Late Cretaceous time (80 Ma). In contrast, all fixed hotspot models failed to produce acceptable fits for Paleogene to Late Cretaceous time (30-80 Ma), highlighting significance of relative motion between the Pacific and Indo-Atlantic hotspots during this interval. The

  12. Accurate Realization of GPS Vertical Global Reference Frame

    NASA Technical Reports Server (NTRS)

    Elosegui, Pedro

    2005-01-01

    The goal of this project is to improve our current understanding of GPS error sources associated with estimates of radial velocities at global scales. An improvement in the accuracy of radial global velocities would have a very positive impact on a large number of geophysical studies of current general interest such as global sea-level and climate change, coastal hazards, glacial isostatic adjustment, atmospheric and oceanic loading, glaciology and ice mass variability, tectonic deformation and volcanic inflation, and geoid variability. A set of GPS error sources relevant to this project are those related to the combination of the positions and velocities of a set of globally distributed stations as determined &om the analysis of GPS data, including possible methods of combining and defining terrestrial reference frames. This is were our research activities during this reporting period have concentrated. During this reporting period, we have researched two topics: (1) The effect of errors on the GPS satellite antenna models (or lack thereof) on global GPS vertical position and velocity estimates; (2) The effect of reference W e definition and practice on estimates of the geocenter variations.

  13. Spatial frames of reference and somatosensory processing: a neuropsychological perspective.

    PubMed Central

    Vallar, G

    1997-01-01

    In patients with lesions in the right hemisphere, frequently involving the posterior parietal regions, left-sided somatosensory (and visual and motor) deficits not only reflect a disorder of primary sensory processes, but also have a higher-order component related to a defective spatial representation of the body. This additional factor, related to right brain damage, is clinically relevant: contralesional hemianaesthesia (and hemianopia and hemiplegia) is more frequent in right brain-damaged patients than in patients with damage to the left side of the brain. Three main lines of investigation suggest the existence of this higher-order pathological factor. (i) Right brain-damaged patients with left hemineglect may show physiological evidence of preserved processing of somatosensory stimuli, of which they are not aware. Similar results have been obtained in the visual domain. (ii) Direction-specific vestibular, visual optokinetic and somatosensory or proprioceptive stimulations may displace spatial frames of reference in right brain-damaged patients with left hemineglect, reducing or increasing the extent of the patients' ipsilesional rightward directional error, and bring about similar directional effects in normal subjects. These stimulations, which may improve or worsen a number of manifestations of the neglect syndrome (such as extrapersonal and personal hemineglect), have similar effects on the severity of left somatosensory deficits (defective detection of tactile stimuli, position sense disorders). However, visuospatial hemineglect and the somatosensory deficits improved by these stimulations are independent, albeit related, disorders. (iii) The severity of left somatosensory deficits is affected by the spatial position of body segments, with reference to the midsagittal plane of the trunk. A general implication of these observations is that spatial (non-somatotopic) levels of representation contribute to corporeal awareness. The neural basis of these spatial

  14. Gaia Reference frame determination: the AVU/GSR pipeline

    NASA Astrophysics Data System (ADS)

    Vecchiato, Alberto; Abbas, Ummi; Becciani, Ugo; Bianchi, Luca; Bucciarelli, Beatrice; Crosta, Mariateresa; Lattanzi, Mario G.

    2015-08-01

    The main goal of the Gaia ESA mission is the production of a 5 parameters astrometric catalog - i.e. including positions, parallaxes and the two components of the proper motions - of about 1 billion stars of our Galaxy at an accuracy level going from the few micro-arcseconds of the brightest objects to some ~100 micro-arcseconds of the faintests. This goal will be reached by means of high-precision astrometric measurements conducted by a satellite sweeping continuously the celestial sphere during its 5-years mission.A fundamental step toward the realization of this catalog is the so-called ''Sphere Reconstruction'', which determines the celestial reference frame using the observations of a subset of up to 100 million ''primary stars'' among those observed by Gaia.From a mathematical point of view, these observations translate into a large number of equations, linearized with respect to the unknown parameters around known initial values, whose solution in the least-squares sense eventually provides the catalog with its errors, and determines the Gaia reference frame.This represents an extremely challenging problem because of the high accuracy of the observations and of the large number of unknowns involved. The former issue implies that an adequately accurate relativistic astrometric model has to be used, while the huge number of unknowns and observations puts this task at the forefront of the High-Performance Computing problems.These challenges, and the absolute character of the Gaia measurements and results, calls for a careful scientific validation of the sphere reconstruction, as it was done for the previous HIPPARCOS mission. For these reasons the Gaia Data Processing and Analysis Consortium (DPAC) decided to replicate the baseline process, named AGIS (Astrometric Global Iterative Solution) with another independent solution, named GSR (Global Sphere Reconstruction) which uses a different astrometric model and different algorithms for the system solution

  15. Spatial reference frame of attention in a large outdoor environment

    PubMed Central

    Jiang, Yuhong V.; Won, Bo-Yeong; Swallow, Khena M.; Mussack, Dominic M.

    2014-01-01

    A central question about spatial attention is whether it is referenced relative to the external environment or to the viewer. This question has received great interest in recent psychological and neuroscience research, with many but not all, finding evidence for a viewer-centered representation. However, these previous findings were confined to computer-based tasks that involved stationary viewers. Because natural search behaviors differ from computer-based tasks in viewer mobility and spatial scale, it is important to understand how spatial attention is coded in the natural environment. To this end, we created an outdoor visual search task in which participants searched a large (690 square feet), concrete, outdoor space to report which side of a coin on the ground faced up. They began search in the middle of the space and were free to move around. Attentional cuing by statistical learning was examined by placing the coin in one quadrant of the search space on 50% of the trials. As in computer-based tasks participants learned and used these regularities to guide search. However, cuing could be referenced to either the environment or the viewer. The spatial reference frame of attention shows greater flexibility in the natural environment than previously found in the lab. PMID:24842066

  16. Spatial reference frame of attention in a large outdoor environment.

    PubMed

    Jiang, Yuhong V; Won, Bo-Yeong; Swallow, Khena M; Mussack, Dominic M

    2014-08-01

    A central question about spatial attention is whether it is referenced relative to the external environment or to the viewer. This question has received great interest in recent psychological and neuroscience research, with many but not all, finding evidence for a viewer-centered representation. However, these previous findings were confined to computer-based tasks that involved stationary viewers. Because natural search behaviors differ from computer-based tasks in viewer mobility and spatial scale, it is important to understand how spatial attention is coded in the natural environment. To this end, we created an outdoor visual search task in which participants searched a large (690 square ft), concrete, outdoor space to report which side of a coin on the ground faced up. They began search in the middle of the space and were free to move around. Attentional cuing by statistical learning was examined by placing the coin in 1 quadrant of the search space on 50% of the trials. As in computer-based tasks, participants learned and used these regularities to guide search. However, cuing could be referenced to either the environment or the viewer. The spatial reference frame of attention shows greater flexibility in the natural environment than previously found in the lab.

  17. GPS inferred geocentric reference frame for satellite positioning and navigation

    NASA Technical Reports Server (NTRS)

    Malla, Rajendra P.; Wu, Sien-Chong

    1989-01-01

    Accurate geocentric three-dimensional positioning is of great importance for various geodetic and oceanographic applications. While relative positioning accuracy of a few centimeters has become a reality using Very Long Baseline Interferometry (VLBI), the uncertainty in the offset of the adopted coordinate system origin from the geocenter is still believed to be of the order of one meter. Satellite Laser Ranging (SLR) is capable of determining this offset to better than 10 cm, though, because of the limited number of satellites, this requires a long arc of data. The Global Positioning System (GPS) measurements provide a powerful alternative for an accurate determination of this origin offset in relatively short period of time. Two strategies are discussed, the first utilizes the precise relative positions predetermined by VLBI, whereas the second establishes a reference frame by holding only one of the tracking sites longitude fixed. Covariance analysis studies indicate that geocentric positioning to an accuracy of a few centimeters can be achieved with just one day of precise GPS pseudorange and carrier phase data.

  18. Quantum Reference Frames in Flat Space-Time and Gravity

    NASA Astrophysics Data System (ADS)

    Mayburov, S.

    2002-12-01

    It was argued recently that in Quantum Mechanics (QM) the correct definition of physical reference frame (RF) must differ principally from universally accepted one. [1]. The reason is that in exact theory the quantum properties of any massive object M1 with which physical RF F1 associated must be taken into account, despite their possible smallness in laboratory conditions. Consequently F1 evolution must obey to Schrodinger equation, and its free state relative to external observer at rest F0 is the localizable wave packet Ψ(x1,t), not the classical trajectory. As the example F1 can be rocket in outer space and F0 earth, M0 → ∞. If F1 localized state Ψ(x,t0) ~ δ(x) prepared by F0 it will smear in space unrestrictedly with the time σx ~ t1/2. This smearing introduces additional uncertainty into the measurement of particles mi space coordinates by F1 xi1 = xi-x1 in F1, because x1 is also operator, mi states transformations between two such quantum RFs includes quantum corrections to Galilean transformations, which depends on RFs states vectors [1]. Consistent nonrelativistic quantization in such RFs of free particles mi and other quantum systems in two alternative formalisms was proposed [2]...

  19. Displacements and rotations of a body moving about an arbitrary axis in a global reference frame

    SciTech Connect

    Hollerbach, K.; Hollister, A.

    1995-11-01

    Measurement of human joint motion frequently involves the use of markers to describe joint motion in a global reference frame. Results may be quite arbitrary if the reference frame is not properly chosen with respect to the joint`s rotational axis(es). In nature joint axes can exist at any orientation and location relative to an arbitrarily chosen global reference frame. An arbitrary axis is any axis that is not coincident with a reference coordinate. Calculations are made of the errors that result when joint motion occurs about an arbitrary axis in a global reference frame.

  20. Directed Energy Beam Jitter Mitigation Using the Line-of-Sight Reference Frame

    DTIC Science & Technology

    2011-05-10

    frame . Small angular differences in the reference frames would indicate coupled rotational motion in one reference frame while another may indicate a...not available outside of the laboratory environment. Therefore, on -platform sensors, such as accelerometers and angular rate sensors, must be used to...Systems.” Second IEEE Conference on Control Applications, Sep 1993. 25 frame can be determined. Therefore, the expected position of the beam at

  1. Goce Gradients In Various Reference Frames and Their Accuracies

    NASA Astrophysics Data System (ADS)

    Müller, J.; Oberndorfer, H.

    The objective of GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) is the determination of the Earth's gravity field with high spatial resolution. The main sensor is a gradiometer which measures gravity gradients, i.e. the matrix of the sec- ond derivatives of the gravitational potential. Some of them (the diagonal compo- nents of the gravity tensor) are observed with highest accuracy of about 3 mE/ (Hz), whereas the others are determined less accurate. The gradients will be observed in the instrument frame, which approximates the satellite frame (beside some misalign- ments). Some users, however, need the gradients in more convenient frames for further processing. For the transformation of the gradients in other frames (e.g.in the nominal orbital frame or a terrestrial frame), the transformation parameters (orientation angles) and the single components of the gravity tensor have to be known with sufficient ac- curacy. As the accuracy of both quantities is restricted because of conceptual reasons, the resulting gradients in the new frames have only a reduced accuracy. We show how the elements of the gravity tensor and their accuracies look like in the various frames as well as their spectral behaviour.

  2. Global GPS Solution for Station Velocities Without Conventional Reference Frame

    NASA Astrophysics Data System (ADS)

    Kogan, M. G.; Steblov, G. M.

    2005-12-01

    Meaningful GPS station velocities should not depend on the choice of a specific reference frame since the origin translation rate (OTR) can be estimated from velocities in stable plate interiors, and an appropriate correction can be applied (R.W. King, private communication). A conventional approach is to translate and rotate the initial, loosely constrained geodetic solution in order to best fit the velocities of official ITRF2000. A very different approach used in this study consists of following steps: (1) Assume that tectonic plates do not move with respect to each other and that they are perfectly rigid. This assumption is equivalent to setting all a priori velocities to zero. (2) Translate and rotate the loose geodetic solution to best fit the zero velocities at stations uniformly distributed over the whole network. (3) Evaluate OTR from station velocities in stable plate interiors, obtained in step 2. (4) Correct the velocities for OTR and estimate plate rotation vectors. (5) Repeat steps 1-4 as many times as required, typically four iterations is adequate. Such approach was realized in recent versions of the GAMIT/GLOBK software which we used. We tested at step 1 various starting reference frames with nonzero a priori velocities, such as ITRF2000 and NUVEL1-A, with no change in the final solution at step 5. Our database included: all daily GAMIT solutions for positions of the IGS network performed at SOPAC in interval 1995.0 - 2005.5; our daily GAMIT solutions from observations of several tens of continuous and survey mode stations on the Eurasian, North American, and Pacific plates. We then combined by GLOBK (Kalman filter) all daily solutions in the database and produced a multiyear loose solution for positions and velocities. By iteratively applying procedure 1-5, we came to the constrained solution in terms of plate-residual velocities for all stations and a set of rotation vectors for eight major plates. 76 sites with zero velocity chosen for initial

  3. Improved DORIS Reference Frame Solution from NASA GSFC

    NASA Technical Reports Server (NTRS)

    Lemoine, Frank; Chinn, D. S.; Le Bail, K.; Zelensky, N. P.; Ray, R. D.; Beckley, B. D.; Beall, J. W.

    2012-01-01

    At GSFC, since 2008, we have been routinely processing data to DORIS and SLR satellites from 1993. A SINEX time series, based on processing of DORIS data from 1993 to 2008 (designated wd10) was included in the IDS combination for ITRF2008 (Le Bail et al., 2010; Valette et al., 2010). We have updated this series with the addition of new satellites Cryosat2 and Jason-2, and the new series (designated wd12) is routinely submitted to the IDS combination center for inclusion in the DORIS operational combination. In preparation for an eventual reprocessing of all the DORIS data for eventual inclusion in a new ITRF we are now updating our processing standards. As a first step, we update to the ITRF2008 reference frame as expressed through DPOD2008. In addition, we apply the GMF and GPT models for the troposphere, and we update the modeling for the change in pitch of SPOT-5 solar arrays after January 2008. Finally, we consider updated standards for static and time-variable gravity modeling. With this base series, we compute cumulative solution, expressed in ITRF2008, and examine the week-by-week station solution parameters, in particular scale, WRMS and Helmert transformation parameters. Finally we consider a joint solution with SLR, where the DORIS system is tied to SLR in two ways, first through the orbit computations using satellites tracked by both SLR and DORIS (e.g. TOPEX, Envisat, Jason-2, Cryosat2), and second through explicit ties at collocated sites. As one of the means of testing of these DORIS-only and SLR+DORIS solutions, we examine the vertical rates at sites in the vicinity of tide gauges.

  4. Neural Substrates of Visual Spatial Coding and Visual Feedback Control for Hand Movements in Allocentric and Target-Directed Tasks

    PubMed Central

    Thaler, Lore; Goodale, Melvyn A.

    2011-01-01

    Neuropsychological evidence suggests that different brain areas may be involved in movements that are directed at visual targets (e.g., pointing or reaching), and movements that are based on allocentric visual information (e.g., drawing or copying). Here we used fMRI to investigate the neural correlates of these two types of movements in healthy volunteers. Subjects (n = 14) performed right hand movements in either a target-directed task (moving a cursor to a target dot) or an allocentric task (moving a cursor to reproduce the distance and direction between two distal target dots) with or without visual feedback about their hand movement. Movements were monitored with an MR compatible touch panel. A whole brain analysis revealed that movements in allocentric conditions led to an increase in activity in the fundus of the left intra-parietal sulcus (IPS), in posterior IPS, in bilateral dorsal premotor cortex (PMd), and in the lateral occipital complex (LOC). Visual feedback in both target-directed and allocentric conditions led to an increase in activity in area MT+, superior parietal–occipital cortex (SPOC), and posterior IPS (all bilateral). In addition, we found that visual feedback affected brain activity differently in target-directed as compared to allocentric conditions, particularly in the pre-supplementary motor area, PMd, IPS, and parieto-occipital cortex. Our results, in combination with previous findings, suggest that the LOC is essential for allocentric visual coding and that SPOC is involved in visual feedback control. The differences in brain activity between target-directed and allocentric visual feedback conditions may be related to behavioral differences in visual feedback control. Our results advance the understanding of the visual coordinate frame used by the LOC. In addition, because of the nature of the allocentric task, our results have relevance for the understanding of neural substrates of magnitude estimation and vector coding of

  5. Neural substrates of visual spatial coding and visual feedback control for hand movements in allocentric and target-directed tasks.

    PubMed

    Thaler, Lore; Goodale, Melvyn A

    2011-01-01

    Neuropsychological evidence suggests that different brain areas may be involved in movements that are directed at visual targets (e.g., pointing or reaching), and movements that are based on allocentric visual information (e.g., drawing or copying). Here we used fMRI to investigate the neural correlates of these two types of movements in healthy volunteers. Subjects (n = 14) performed right hand movements in either a target-directed task (moving a cursor to a target dot) or an allocentric task (moving a cursor to reproduce the distance and direction between two distal target dots) with or without visual feedback about their hand movement. Movements were monitored with an MR compatible touch panel. A whole brain analysis revealed that movements in allocentric conditions led to an increase in activity in the fundus of the left intra-parietal sulcus (IPS), in posterior IPS, in bilateral dorsal premotor cortex (PMd), and in the lateral occipital complex (LOC). Visual feedback in both target-directed and allocentric conditions led to an increase in activity in area MT+, superior parietal-occipital cortex (SPOC), and posterior IPS (all bilateral). In addition, we found that visual feedback affected brain activity differently in target-directed as compared to allocentric conditions, particularly in the pre-supplementary motor area, PMd, IPS, and parieto-occipital cortex. Our results, in combination with previous findings, suggest that the LOC is essential for allocentric visual coding and that SPOC is involved in visual feedback control. The differences in brain activity between target-directed and allocentric visual feedback conditions may be related to behavioral differences in visual feedback control. Our results advance the understanding of the visual coordinate frame used by the LOC. In addition, because of the nature of the allocentric task, our results have relevance for the understanding of neural substrates of magnitude estimation and vector coding of

  6. Concepts for reference frames in geodesy and geodynamics - The reference directions

    NASA Technical Reports Server (NTRS)

    Grafarend, E. W.; Richter, B.; Mueller, I. I.; Papo, H. B.

    1979-01-01

    The paper discusses a study that establishes a reference frame, moving with the earth (in some average sense), in which the geometric and dynamical behavior of the earth can be monitored, and whose motion with respect to inertial space can also be determined. Emphasis is placed on the fact that the reference directions at an observation point on the earth surface, are defined by fundamental vectors for both space and time. The interrelationships between this space- and time-variant angular parameter are illustrated in a commutative diagram and tower of triads. Although the model tower is also space- and time-variant, its variations are described by adopted parameters using our current knowledge of the earth.

  7. An Automated Reference Frame Selection (ARFS) Algorithm for Cone Imaging with Adaptive Optics Scanning Light Ophthalmoscopy

    PubMed Central

    Salmon, Alexander E.; Cooper, Robert F.; Langlo, Christopher S.; Baghaie, Ahmadreza; Dubra, Alfredo; Carroll, Joseph

    2017-01-01

    Purpose To develop an automated reference frame selection (ARFS) algorithm to replace the subjective approach of manually selecting reference frames for processing adaptive optics scanning light ophthalmoscope (AOSLO) videos of cone photoreceptors. Methods Relative distortion was measured within individual frames before conducting image-based motion tracking and sorting of frames into distinct spatial clusters. AOSLO images from nine healthy subjects were processed using ARFS and human-derived reference frames, then aligned to undistorted AO-flood images by nonlinear registration and the registration transformations were compared. The frequency at which humans selected reference frames that were rejected by ARFS was calculated in 35 datasets from healthy subjects, and subjects with achromatopsia, albinism, or retinitis pigmentosa. The level of distortion in this set of human-derived reference frames was assessed. Results The average transformation vector magnitude required for registration of AOSLO images to AO-flood images was significantly reduced from 3.33 ± 1.61 pixels when using manual reference frame selection to 2.75 ± 1.60 pixels (mean ± SD) when using ARFS (P = 0.0016). Between 5.16% and 39.22% of human-derived frames were rejected by ARFS. Only 2.71% to 7.73% of human-derived frames were ranked in the top 5% of least distorted frames. Conclusion ARFS outperforms expert observers in selecting minimally distorted reference frames in AOSLO image sequences. The low success rate in human frame choice illustrates the difficulty in subjectively assessing image distortion. Translational Relevance Manual reference frame selection represented a significant barrier to a fully automated image-processing pipeline (including montaging, cone identification, and metric extraction). The approach presented here will aid in the clinical translation of AOSLO imaging. PMID:28392976

  8. Geometric Cues, Reference Frames, and the Equivalence of Experienced-Aligned and Novel-Aligned Views in Human Spatial Memory

    ERIC Educational Resources Information Center

    Kelly, Jonathan W.; Sjolund, Lori A.; Sturz, Bradley R.

    2013-01-01

    Spatial memories are often organized around reference frames, and environmental shape provides a salient cue to reference frame selection. To date, however, the environmental cues responsible for influencing reference frame selection remain relatively unknown. To connect research on reference frame selection with that on orientation via…

  9. Tilted frames of reference have similar effects on the perception of gravitational vertical and the planning of vertical saccadic eye movements.

    PubMed

    Morgan, Michael; Grant, Simon; Melmoth, Dean; Solomon, Joshua A

    2015-07-01

    We investigated the effects of a tilted reference frame (i.e., allocentric visual context) on the perception of the gravitational vertical and saccadic eye movements along a planned egocentric vertical path. Participants (n = 5) in a darkened room fixated a point in the center of a circle on an LCD display and decided which of two sequentially presented dots was closer to the unmarked '6 o'clock' position on that circle (i.e., straight down toward their feet). The slope of their perceptual psychometric functions showed that participants were able to locate which dot was nearer the vertical with a precision of 1°-2°. For three of the participants, a square frame centered at fixation and tilted (in the roll direction) 5.6° from the vertical caused a strong perceptual bias, manifest as a shift in the psychometric function, in the direction of the traditional 'rod-and-frame' effect, without affecting precision. The other two participants showed negligible or no equivalent biases. The same subjects participated in the saccade version of the task, in which they were instructed to shift their gaze to the 6 o'clock position as soon as the central fixation point disappeared. The participants who showed perceptual biases showed biases of similar magnitude in their saccadic endpoints, with a strong correlation between perceptual and saccadic biases across all subjects. Tilting of the head 5.6° reduced both perceptual and saccadic biases in all but one observer, who developed a strong saccadic bias. Otherwise, the overall pattern and significant correlations between results remained the same. We conclude that our observers' saccades-to-vertical were dominated by perceptual input, which outweighed any gravitational or head-centered input.

  10. Connection Between the ICRF and the Dynamical Reference Frame for the Outer Planets

    NASA Astrophysics Data System (ADS)

    da Silva Neto, D. N.; Assafin, M.; Andrei, A. H.; Vieira Martins, R.

    2005-01-01

    This work brings an approach intending to improve the connection between the Dynamical Reference Frame and the Extragalactic Reference Frame. For that, close encounters of outer Solar System objects and quasars are used. With this goal, Uranus, Neptune and two quasars were observed at Laborat´orio Nacional de Astrof´ısica (LNA), Brazil. The optical reference frame is the HCRF, as given by the UCAC2 catalogue. The first results show an accuracy of 45 mas - 50 mas in the optical positions. The optical minus radio offsets give the local orientation between the catalogue and radio frame. From this, it is possible to place the optical planet coordinates on the extragalactic frame. A comparison between the new corrected optical coordinates and the respective DE ephemeris to these planets can give the instant orientations of the Dynamical Reference Frame with regard to the ICRS, for this zone of outer Solar System.

  11. The Inertial Property of Approximately Inertial Frames of Reference

    ERIC Educational Resources Information Center

    Chubykalo, Andrew E.; Espinoza, Augusto; Kosyakov, B. P.

    2011-01-01

    Is it possible to compare approximately inertial frames in the inertial property? If this is the case, the inertial property becomes a measurable quantity. We give a positive answer to this question, and discuss the general principle of design of devices for making the required measurements. This paper is intended for advanced undergraduate and…

  12. Realization of ETRF2000 as a New Terrestrial Reference Frame in Republic of Serbia

    NASA Astrophysics Data System (ADS)

    Blagojevic, D.; Vasilic, V.

    2012-12-01

    The International Earth Rotation and Reference Systems Service (IERS) is a joint service of the International Association of Geodesy (IAG) and the International Astronomical Union (IAU), which provides the scientific community with the means for computing the transformation from the International Celestial Reference System (ICRS) to the International Terrestrial Reference System (ITRS). It further maintains the realizations of these systems by appropriate coordinate sets called "frames". The densification of terrestrial frame usually serves as official frame for positioning and navigation tasks within the territory of particular country. One of these densifications was recently performed in order to establish new reference frame for Republic of Serbia. The paper describes related activities resulting in ETRF2000 as a new Serbian terrestrial reference frame.

  13. Concurrent use of somatotopic and external reference frames in a tactile mislocalization task.

    PubMed

    Tamè, Luigi; Wühle, Anja; Petri, Caroline D; Pavani, Francesco; Braun, Christoph

    2017-02-01

    Localizing tactile stimuli on our body requires sensory information to be represented in multiple frames of reference along the sensory pathways. These reference frames include the representation of sensory information in skin coordinates, in which the spatial relationship of skin regions is maintained. The organization of the primary somatosensory cortex matches such somatotopic reference frame. In contrast, higher-order representations are based on external coordinates, in which body posture and gaze direction are taken into account in order to localise touch in other meaningful ways according to task demands. Dominance of one representation or the other, or the use of multiple representations with different weights, is thought to depend on contextual factors of cognitive and/or sensory origins. However, it is unclear under which situations a reference frame takes over another or when different reference frames are jointly used at the same time. The study of tactile mislocalizations at the fingers has shown a key role of the somatotopic frame of reference, both when touches are delivered unilaterally to a single hand, and when they are delivered bilaterally to both hands. Here, we took advantage of a well-established tactile mislocalization paradigm to investigate whether the reference frame used to integrate bilateral tactile stimuli can change as a function of the spatial relationship between the two hands. Specifically, supra-threshold interference stimuli were applied to the index or little fingers of the left hand 200ms prior to the application of a test stimulus on a finger of the right hand. Crucially, different hands postures were adopted (uncrossed or crossed). Results show that introducing a change in hand-posture triggered the concurrent use of somatotopic and external reference frames when processing bilateral touch at the fingers. This demonstrates that both somatotopic and external reference frames can be concurrently used to localise tactile

  14. Experimentally demonstrating reference-frame-independent violations of Bell inequalities

    NASA Astrophysics Data System (ADS)

    Palsson, Matthew S.; Wallman, Joel J.; Bennet, Adam J.; Pryde, Geoff J.

    2012-09-01

    We experimentally demonstrate, using qubits encoded in photon polarization, that two parties who share a single reference direction and use locally orthogonal measurements will always violate a Bell inequality, up to experimental deficiencies. This contrasts with the standard view of Bell inequalities, in which the parties need to completely align their measurements. Furthermore, we experimentally demonstrate that as the reference direction degrades the probability of the observers randomly choosing measurements that violate a Bell inequality decreases gradually and smoothly to 39.7%±0.1% in the limiting case that the observers do not share a reference direction. This result promises simplified distribution of entanglement between separated parties, with applications in fundamental investigations of quantum physics and tasks such as quantum communication.

  15. Report of the panel on earth rotation and reference frames, section 7

    NASA Technical Reports Server (NTRS)

    Dickey, Jean O.; Dickman, Steven R.; Eubanks, Marshall T.; Feissel, Martine; Herring, Thomas A.; Mueller, Ivan I.; Rosen, Richard D.; Schutz, Robert E.; Wahr, John M.; Wilson, Charles R.

    1991-01-01

    Objectives and requirements for Earth rotation and reference frame studies in the 1990s are discussed. The objectives are to observe and understand interactions of air and water with the rotational dynamics of the Earth, the effects of the Earth's crust and mantle on the dynamics and excitation of Earth rotation variations over time scales of hours to centuries, and the effects of the Earth's core on the rotational dynamics and the excitation of Earth rotation variations over time scales of a year or longer. Another objective is to establish, refine and maintain terrestrial and celestrial reference frames. Requirements include improvements in observations and analysis, improvements in celestial and terrestrial reference frames and reference frame connections, and improved observations of crustal motion and mass redistribution on the Earth.

  16. Sensory transformations and the use of multiple reference frames for reach planning.

    PubMed

    McGuire, Leah M M; Sabes, Philip N

    2009-08-01

    The sensory signals that drive movement planning arrive in a variety of 'reference frames', and integrating or comparing them requires sensory transformations. We propose a model in which the statistical properties of sensory signals and their transformations determine how these signals are used. This model incorporates the patterns of gaze-dependent errors that we found in our human psychophysics experiment when the sensory signals available for reach planning were varied. These results challenge the widely held ideas that error patterns directly reflect the reference frame of the underlying neural representation and that it is preferable to use a single common reference frame for movement planning. We found that gaze-dependent error patterns, often cited as evidence for retinotopic reach planning, can be explained by a transformation bias and are not exclusively linked to retinotopic representations. Furthermore, the presence of multiple reference frames allows for optimal use of available sensory information and explains task-dependent reweighting of sensory signals.

  17. Full-Frame Reference for Test Photo of Moon

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This pair of views shows how little of the full image frame was taken up by the Moon in test images taken Sept. 8, 2005, by the High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter. The Mars-bound camera imaged Earth's Moon from a distance of about 10 million kilometers (6 million miles) away -- 26 times the distance between Earth and the Moon -- as part of an activity to test and calibrate the camera. The images are very significant because they show that the Mars Reconnaissance Orbiter spacecraft and this camera can properly operate together to collect very high-resolution images of Mars. The target must move through the camera's telescope view in just the right direction and speed to acquire a proper image. The day's test images also demonstrate that the focus mechanism works properly with the telescope to produce sharp images.

    Out of the 20,000-pixel-by-6,000-pixel full frame, the Moon's diameter is about 340 pixels, if the full Moon could be seen. The illuminated crescent is about 60 pixels wide, and the resolution is about 10 kilometers (6 miles) per pixel. At Mars, the entire image region will be filled with high-resolution information.

    The Mars Reconnaissance Orbiter, launched on Aug. 12, 2005, is on course to reach Mars on March 10, 2006. After gradually adjusting the shape of its orbit for half a year, it will begin its primary science phase in November 2006. From the mission's planned science orbit about 300 kilometers (186 miles) above the surface of Mars, the high resolution camera will be able to discern features as small as one meter or yard across.

    The Mars Reconnaissance Orbiter mission is managed by NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology, Pasadena, for the NASA Science Mission Directorate. Lockheed Martin Space Systems, Denver, prime contractor for the project, built the spacecraft. Ball Aerospace & Technologies Corp., Boulder, Colo

  18. The task of the relativistic oscillator in a non-inertial frame of reference

    NASA Astrophysics Data System (ADS)

    Perepelkin, E. E.; Sadovnikov, B. I.; Inozemtseva, N. G.

    2016-09-01

    The relativistic theory is one of the most difficult parts of theoretical physics to understand by high school students and scientists alike. In this paper, the important aspects from this theory are considered. The case of the non-inertial reference frame in which the space-time interval was presented for the Lorentz-like transformations, and the condition by which the transition to the inertial reference frame takes place, is shown.

  19. Looking for systematic error in scale from terrestrial reference frames derived from DORIS data

    NASA Technical Reports Server (NTRS)

    Willis, Pascal; Soudarin, L.; Lemoine, F. G.

    2005-01-01

    The long-term stability of the scale of Terrestrial Reference Frames is directly linked with station height determination and is critical for several scientific studies, such as global mean sea level rise or ocean circulation with consequences on global warming studies. In recent International Terrestrial Reference Frame solutions, the DORIS technique was not sonsidered able to provide any useful information on scale. We have analyzed three different DORIS time series of coordinates performed independently using different software packages.

  20. A Unified Global Reference Frame of Vertical Crustal Movements by Satellite Laser Ranging

    PubMed Central

    Zhu, Xinhui; Wang, Ren; Sun, Fuping; Wang, Jinling

    2016-01-01

    Crustal movement is one of the main factors influencing the change of the Earth system, especially in its vertical direction, which affects people’s daily life through the frequent occurrence of earthquakes, geological disasters, and so on. In order to get a better study and application of the vertical crustal movement, as well as its changes, the foundation and prerequisite areto devise and establish its reference frame; especially, a unified global reference frame is required. Since SLR (satellite laser ranging) is one of the most accurate space techniques for monitoring geocentric motion and can directly measure the ground station’s geocentric coordinates and velocities relative to the centre of the Earth’s mass, we proposed to take the vertical velocity of the SLR technique in the ITRF2008 framework as the reference frame of vertical crustal motion, which we defined as the SLR vertical reference frame (SVRF). The systematic bias between other velocity fields and the SVRF was resolved by using the GPS (Global Positioning System) and VLBI (very long baseline interferometry) velocity observations, and the unity of other velocity fields and SVRF was realized, as well. The results show that it is feasible and suitable to take the SVRF as a reference frame, which has both geophysical meanings and geodetic observations, so we recommend taking the SLR vertical velocity under ITRF2008 as the global reference frame of vertical crustal movement. PMID:26867197

  1. A Unified Global Reference Frame of Vertical Crustal Movements by Satellite Laser Ranging.

    PubMed

    Zhu, Xinhui; Wang, Ren; Sun, Fuping; Wang, Jinling

    2016-02-08

    Crustal movement is one of the main factors influencing the change of the Earth system, especially in its vertical direction, which affects people's daily life through the frequent occurrence of earthquakes, geological disasters, and so on. In order to get a better study and application of the vertical crustal movement,as well as its changes, the foundation and prerequisite areto devise and establish its reference frame; especially, a unified global reference frame is required. Since SLR (satellite laser ranging) is one of the most accurate space techniques for monitoring geocentric motion and can directly measure the ground station's geocentric coordinates and velocities relative to the centre of the Earth's mass, we proposed to take the vertical velocity of the SLR technique in the ITRF2008 framework as the reference frame of vertical crustal motion, which we defined as the SLR vertical reference frame (SVRF). The systematic bias between other velocity fields and the SVRF was resolved by using the GPS (Global Positioning System) and VLBI (very long baseline interferometry) velocity observations, and the unity of other velocity fields and SVRF was realized,as well. The results show that it is feasible and suitable to take the SVRF as a reference frame, which has both geophysical meanings and geodetic observations, so we recommend taking the SLR vertical velocity under ITRF2008 as the global reference frame of vertical crustal movement.

  2. The role of perspective taking in how children connect reference frames when explaining astronomical phenomena

    NASA Astrophysics Data System (ADS)

    Plummer, Julia D.; Bower, Corinne A.; Liben, Lynn S.

    2016-02-01

    This study investigates the role of perspective-taking skills in how children explain spatially complex astronomical phenomena. Explaining many astronomical phenomena, especially those studied in elementary and middle school, requires shifting between an Earth-based description of the phenomena and a space-based reference frame. We studied 7- to 9-year-old children (N = 15) to (a) develop a method for capturing how children make connections between reference frames and to (b) explore connections between perspective-taking skill and the nature of children's explanations. Children's explanations for the apparent motion of the Sun and stars and for seasonal changes in constellations were coded for accuracy of explanation, connection between frames of reference, and use of gesture. Children with higher spatial perspective-taking skills made more explicit connections between reference frames and used certain gesture-types more frequently, although this pattern was evident for only some phenomena. Findings suggest that children - particularly those with lower perspective-taking skills - may need additional support in learning to explicitly connect reference frames in astronomy. Understanding spatial thinking among children who successfully made explicit connections between reference frames in their explanations could be a starting point for future instruction in this domain.

  3. Accurate Realization of GPS Vertical Global Reference Frame

    NASA Technical Reports Server (NTRS)

    Elosegui, Pedro

    2004-01-01

    The few millimeter per year level accuracy of radial global velocity estimates with the Global Positioning System (GPS) is at least an order of magnitude poorer than the accuracy of horizontal global motions. An improvement in the accuracy of radial global velocities would have a very positive impact on a number of geophysical studies of current general interest such as global sea-level and climate change, coastal hazards, glacial isostatic adjustment, atmospheric and oceanic loading, glaciology and ice mass variability, tectonic deformation and volcanic inflation, and geoid variability. The goal of this project is to improve our current understanding of GPS error sources associated with estimates of radial velocities at global scales. GPS error sources relevant to this project can be classified in two broad categories: (1) those related to the analysis of the GPS phase observable, and (2) those related to the combination of the positions and velocities of a set of globally distributed stations as determined from the analysis of GPS data important aspect in the first category include the effect on vertical rate estimates due to standard analysis choices, such as orbit modeling, network geometry, ambiguity resolution, as well as errors in models (or simply the lack of models) for clocks, multipath, phase-center variations, atmosphere, and solid-Earth tides. The second category includes the possible methods of combining and defining terrestrial reference flames for determining vertical velocities in a global scale. The latter has been the subject of our research activities during this reporting period.

  4. Disentangling gravitational, environmental, and egocentric reference frames in spatial neglect.

    PubMed

    Karnath, H O; Fetter, M; Niemeier, M

    1998-11-01

    gravity-based reference system.

  5. Testing Absolute Plate Reference Frames and the Implications for the Generation of Geodynamic Mantle Heterogeneity Structure

    NASA Astrophysics Data System (ADS)

    Shephard, G. E.; Bunge, H.; Schuberth, B. S.; Müller, D.; Talsma, A.; Moder, C.

    2010-12-01

    Several absolute reference frames for Cretaceous-Tertiary plate tectonic reconstructions have been proposed over the last decade. They include reference frames based on hotspot tracks displaying age progression, and assuming either fixed or moving hotspots, as well as palaeomagnetically-based reference frames, a subduction reference frame and hybrid reference frames. All these alternative reference frames imply a particular history of the location of subduction zones through time, the associated subduction history, and the evolution of mantle heterogeneity via the mixing of subducted slab material with the mantle. Therefore it is possible to evaluate the observed distribution of subducted slab material in the mantle versus that predicted by a forward geodynamic model in which the plate kinematic history given by a particular absolute plate is coupled with a mantle convection model. We present a comparison of five alternative absolute plate motion models in terms of their consequences for global deep mantle structure by utilizing the 3-D spherical finite element mantle convection code TERRA, coupled with the global plate tectonic reconstruction software GPlates. We impose global palaeo-plate boundaries and plate velocities back to 140 Ma as surface boundary conditions for each absolute rotation model and forward model the associated subduction history. The correlation of seismic tomography with the predicted present-day mantle structure from each of plate models is then assessed using well-imaged slabs. We will present and discuss a comparison of geodynamically predicted mantle heterogeneity and seismic tomography to infer the robustness of each absolute reference frame through time, thus providing additional constraints for the integration of plate tectonics and mantle dynamics.

  6. Flexible Reference Frames for Grasp Planning in Human Parietofrontal Cortex(1,2,3).

    PubMed

    Leoné, Frank T M; Monaco, Simona; Henriques, Denise Y P; Toni, Ivan; Medendorp, W Pieter

    2015-01-01

    Reaching to a location in space is supported by a cortical network that operates in a variety of reference frames. Computational models and recent fMRI evidence suggest that this diversity originates from neuronal populations dynamically shifting between reference frames as a function of task demands and sensory modality. In this human fMRI study, we extend this framework to nonmanipulative grasping movements, an action that depends on multiple properties of a target, not only its spatial location. By presenting targets visually or somaesthetically, and by manipulating gaze direction, we investigate how information about a target is encoded in gaze- and body-centered reference frames in dorsomedial and dorsolateral grasping-related circuits. Data were analyzed using a novel multivariate approach that combines classification and cross-classification measures to explicitly aggregate evidence in favor of and against the presence of gaze- and body-centered reference frames. We used this approach to determine whether reference frames are differentially recruited depending on the availability of sensory information, and where in the cortical networks there is common coding across modalities. Only in the left anterior intraparietal sulcus (aIPS) was coding of the grasping target modality dependent: predominantly gaze-centered for visual targets and body-centered for somaesthetic targets. Left superior parieto-occipital cortex consistently coded targets for grasping in a gaze-centered reference frame. Left anterior precuneus and premotor areas operated in a modality-independent, body-centered frame. These findings reveal how dorsolateral grasping area aIPS could play a role in the transition between modality-independent gaze-centered spatial maps and body-centered motor areas.

  7. Flexible Reference Frames for Grasp Planning in Human Parietofrontal Cortex1,2,3

    PubMed Central

    Leoné, Frank T. M.; Monaco, Simona; Henriques, Denise Y. P.; Toni, Ivan

    2015-01-01

    Abstract Reaching to a location in space is supported by a cortical network that operates in a variety of reference frames. Computational models and recent fMRI evidence suggest that this diversity originates from neuronal populations dynamically shifting between reference frames as a function of task demands and sensory modality. In this human fMRI study, we extend this framework to nonmanipulative grasping movements, an action that depends on multiple properties of a target, not only its spatial location. By presenting targets visually or somaesthetically, and by manipulating gaze direction, we investigate how information about a target is encoded in gaze- and body-centered reference frames in dorsomedial and dorsolateral grasping-related circuits. Data were analyzed using a novel multivariate approach that combines classification and cross-classification measures to explicitly aggregate evidence in favor of and against the presence of gaze- and body-centered reference frames. We used this approach to determine whether reference frames are differentially recruited depending on the availability of sensory information, and where in the cortical networks there is common coding across modalities. Only in the left anterior intraparietal sulcus (aIPS) was coding of the grasping target modality dependent: predominantly gaze-centered for visual targets and body-centered for somaesthetic targets. Left superior parieto-occipital cortex consistently coded targets for grasping in a gaze-centered reference frame. Left anterior precuneus and premotor areas operated in a modality-independent, body-centered frame. These findings reveal how dorsolateral grasping area aIPS could play a role in the transition between modality-independent gaze-centered spatial maps and body-centered motor areas. PMID:26464989

  8. Aligning VLBI and Gaia Extragalactic Celestial Reference Frames: source selection scenario

    NASA Astrophysics Data System (ADS)

    Bourda, Geraldine; Charlot, Patrick; Collioud, Arnaud

    2015-08-01

    The European space astrometry mission Gaia will construct a dense optical celestial reference frame based on Quasi Stellar Objects. Accordingly, by 2020, two extragalactic celestial reference frames will coexist: the VLBI frame (Very Long Baseline Interferometry) in the radio domain, currently adopted by the IAU as the fundamental one, and the Gaia frame determined from direct optical observations of quasars by the satellite.For consistency between optical and radio positions of any celestial targets, it will be fundamental to align the Gaia and VLBI frames with the highest accuracy. This issue is also important in the framework of astrophysics, for example to probe properly the jets properties and the physics of the Active Galactic Nuclei.In this paper, based on the ICRF2 catalogue (International Celestial Reference Frame) and specific dedicated VLBI projects (e.g. designed to observe additional weaker extragalactic radio sources), we will discuss the selection of the VLBI-Gaia transfer sources, present our initiatives to reach this alignment, review the status of the various projects in question and draw plans for the future.

  9. Terrestrial and Celestial Reference Frame Realization with Highly Elliptical Orbit - The ESA STE-QUEST Mission

    NASA Astrophysics Data System (ADS)

    Svehla, Drazen; Rothacher, Markus; Hugentobler, Urs; Nothnagel, Axel; Willis, Pascal; Biancale, Richard; Ziebart, Marek; Appleby, Graham; Schuh, Harald; Ádám, József; Iess, Luciano; Cacciapuoti, Luigi

    2014-05-01

    The Space-Time Explorer and QUantum Equivalence Principle Space Test (STE-QUEST) is a Medium Class fundamental physics mission pre-selected for the M3 slot of the ESA Cosmic Vision Programme to test Einstein's Equivalence Principle using atom interferometry and the general and special theory of relativity. Two secondary mission objectives are related to space geodesy: terrestrial and celestial reference frame of the Earth and relativistic geodesy aiming at the realization of unified reference frame for positioning, time, and temporal gravity. The highly elliptical orbit of the STE-QUEST satellite can be used for terrestrial reference frame realization by means of on board GNSS, SLR and VLBI radio source (STE-QUEST metrology link tracked by VLBI antenna - compatible with VLBI2010). By upgrading the on board GNSS receiver for DORIS tracking, the STE-QUEST mission will be similar to the GRASP mission proposal from JPL. Due to the highly elliptical orbit of STE-QUEST (apogee

  10. Effects of adopting new precession, nutation and equinox corrections on the terrestrial reference frame

    NASA Technical Reports Server (NTRS)

    Zhu, S. Y.; Mueller, I. I.

    1982-01-01

    The effect of adopting definitive precession and equinox corrections on the terrestrial reference frame was investigated. It is noted that the effect on polar motion is a diurnal periodic term with an amplitude increasing linearly in time whole on UT1 it is a linear term: general principles are given to determine the effects of small rotations of the frame of a conventional inertial reference system (CIS) on the frame of the conventional terrestrial reference system (CTS); seven CTS options are presented, one of which is necessary to accommodate such rotation. Accommodating possible future changes in the astronomical nutation is discussed. The effects of differences which may exist between the various CTS's and CIS's on Earth rotation parameters (ERP) and how these differences can be determined are examined. It is shown that the CTS differences can be determined from observations made at the same site. The CIS differences by comparing the ERP's are determined by the different techniques during the same time period.

  11. Impact of the VLBA on reference frames and earth orientation studies

    NASA Astrophysics Data System (ADS)

    Gordon, David

    2016-09-01

    The geodetic VLBI community began using VLBA antennas in 1989 for geodesy and astrometry. We examine how usage of the VLBA has improved the celestial reference frame, the terrestrial reference frame, and Earth orientation parameters. Without the VLBA, ICRF2 would have had only 1011 sources instead of 3414. ICRF3 will contain at least 4121 sources, with approximately 70 % or more coming exclusively from VLBA astrometry and geodesy sessions. The terrestrial reference frame is also more stable and precise due to VLBA geodesy sessions. Approximately two dozen geodesy stations that have participated in VLBA sessions show average position formal errors that are ˜ 13-14 % better in the horizontal components and ˜ 5 % better in the vertical component than would be expected solely from the increased number of observations. Also the Earth orientation parameters obtained from the RDV sessions represent the most accurate EOP series of any of the long-term VLBI session types.

  12. Influences of indigenous language on spatial frames of reference in Aboriginal English

    NASA Astrophysics Data System (ADS)

    Edmonds-Wathen, Cris

    2014-06-01

    The Aboriginal English spoken by Indigenous children in remote communities in the Northern Territory of Australia is influenced by the home languages spoken by themselves and their families. This affects uses of spatial terms used in mathematics such as `in front' and `behind.' Speakers of the endangered Indigenous Australian language Iwaidja use the intrinsic frame of reference in contexts where speakers of Standard Australian English use the relative frame of reference. Children speaking Aboriginal English show patterns of use that parallel the Iwaidja contexts. This paper presents detailed examples of spatial descriptions in Iwaidja and Aboriginal English that demonstrate the parallel patterns of use. The data comes from a study that investigated how an understanding of spatial frame of reference in Iwaidja could assist teaching mathematics to Indigenous language-speaking students. Implications for teaching mathematics are explored for teachers without previous experience in a remote Indigenous community.

  13. Experimental demonstration of genuine multipartite quantum nonlocality without shared reference frames

    NASA Astrophysics Data System (ADS)

    Wang, Zhao; Zhang, Chao; Huang, Yun-Feng; Liu, Bi-Heng; Li, Chuan-Feng; Guo, Guang-Can

    2016-03-01

    Multipartite quantum nonlocality is an important diagnostic tool and resource for both researches in fundamental quantum mechanics and applications in quantum information protocols. Shared reference frames among all parties are usually required for experimentally observing quantum nonlocality, which is not possible in many circumstances. Previous results have shown violations of bipartite Bell inequalities with approaching unit probability, without shared reference frames. Here we experimentally demonstrate genuine multipartite quantum nonlocality without shared reference frames, using the Svetlichny inequality. A significant violation probability of 0.58 is observed with a high-fidelity three-photon Greenberger-Horne-Zeilinger state. Furthermore, when there is one shared axis among all the parties, which is the usual case in fiber-optic or earth-satellite links, the experimental results demonstrate the genuine three-partite nonlocality with certainty. Our experiment will be helpful for applications in multipartite quantum communication protocols.

  14. Gaia reference frame amid quasar variability and proper motion patterns in the data

    NASA Astrophysics Data System (ADS)

    Bachchan, R. K.; Hobbs, D.; Lindegren, L.

    2016-05-01

    Context. Gaia's very accurate astrometric measurements will allow the optical realisation of the International Celestial Reference System to be improved by a few orders of magnitude. Several sets of quasars are used to define a kinematically stable non-rotating reference frame with the barycentre of the solar system as its origin. Gaia will also observe a large number of galaxies. Although they are not point-like, it may be possible to determine accurate positions and proper motions for some of their compact bright features. Aims: The optical stability of the quasars is critical, and we investigate how accurately the reference frame can be recovered. Various proper motion patterns are also present in the data, the best known is caused by the acceleration of the solar system barycentre, presumably, towards the Galactic centre. We review some other less well-known effects that are not part of standard astrometric models. Methods: We modelled quasars and galaxies using realistic sky distributions, magnitudes, and redshifts. Position variability was introduced using a Markov chain model. The reference frame was determined using the algorithm developed for the Gaia mission, which also determines the acceleration of the solar system. We also tested a method for measuring the velocity of the solar system barycentre in a cosmological frame. Results: We simulated the recovery of the reference frame and the acceleration of the solar system and conclude that they are not significantly disturbed by quasar variability, which is statistically averaged. However, the effect of a non-uniform sky distribution of the quasars can result in a correlation between the parameters describing the spin components of the reference frame and the acceleration components, which degrades the solution. Our results suggest that an attempt should be made to astrometrically determine the redshift-dependent apparent drift of galaxies that is due to our velocity relative to the cosmic microwave

  15. Comparison of Weekly and Daily IGS Reference Frames: The First Year

    NASA Astrophysics Data System (ADS)

    Clarke, P. J.

    2013-12-01

    In August 2012, the IGS analysis centers switched from publishing weekly realizations of the GNSS reference frame to publishing these on a daily basis. Based on Newcastle GNAAC and official IGS combinations in the year following the changes, compared with previous data, I analyze the impact that this change has had on the quality of reference frame and site coordinate time series. Despite an expected increase in high-frequency noise, the daily solutions offer advantages for the detection of short-period and transient signals.

  16. On the dynamics of Armbruster Guckenheimer Kim galactic potential in a rotating reference frame

    NASA Astrophysics Data System (ADS)

    Elmandouh, A. A.

    2016-06-01

    In this article, we are interested in studying some dynamics aspects for the Armbruster Guckenheimer Kim galactic potential in a rotating reference frame. We introduce a non-integrability condition for this problem using Painlevé analysis. The equilibrium positions are given and their stability is studied. Furthermore, we prove the force resulting from the rotation of the reference frame can be used to stabilize the unstable maximum equilibrium positions. The periodic solutions near the equilibrium positions are constructed by applying Lyapunov method. The permitted region of motion is determined.

  17. Quantum mechanics in noninertial reference frames: Relativistic accelerations and fictitious forces

    SciTech Connect

    Klink, W.H.; Wickramasekara, S.

    2016-06-15

    One-particle systems in relativistically accelerating reference frames can be associated with a class of unitary representations of the group of arbitrary coordinate transformations, an extension of the Wigner–Bargmann definition of particles as the physical realization of unitary irreducible representations of the Poincaré group. Representations of the group of arbitrary coordinate transformations become necessary to define unitary operators implementing relativistic acceleration transformations in quantum theory because, unlike in the Galilean case, the relativistic acceleration transformations do not themselves form a group. The momentum operators that follow from these representations show how the fictitious forces in noninertial reference frames are generated in quantum theory.

  18. The Reciprocal Internal/External Frame of Reference Model Using Grades and Test Scores

    ERIC Educational Resources Information Center

    Möller, Jens; Zimmermann, Friederike; Köller, Olaf

    2014-01-01

    Background: The reciprocal I/E model (RI/EM) combines the internal/external frame of reference model (I/EM) with the reciprocal effects model (REM). The RI/EM extends the I/EM longitudinally and the REM across domains. The model predicts that, within domains, mathematics and verbal achievement (VACH) and academic self-concept have positive effects…

  19. Antecedents of Academic Emotions: Testing the Internal/External Frame of Reference Model for Academic Enjoyment

    ERIC Educational Resources Information Center

    Goetz, Thomas; Frenzel, Anne C.; Hall, Nathan C.; Pekrun, Reinhard

    2008-01-01

    The present study focused on students' academic enjoyment as predicted by achievement in multiple academic domains. Assumptions were based on Marsh's internal/external (I/E) frame of reference model and Pekrun's control-value theory of achievement emotions, and were tested in a sample of 1380 German students from grades 5 to 10. Students' academic…

  20. Sometimes Losing Your Self in Space: Children's and Adults' Spontaneous Use of Multiple Spatial Reference Frames

    ERIC Educational Resources Information Center

    Surtees, Andrew D. R.; Noordzij, Matthijs L.; Apperly, Ian A.

    2012-01-01

    Two experiments tested 6- to 11-year-old children's and college students' use of different frames of reference when making judgments about descriptions of social and nonsocial scenes. In Experiment 1, when social and nonsocial scenes were mixed, both children and students (N = 144) showed spontaneous sensitivity to the intrinsic and the relative…

  1. Layout Geometry in the Selection of Intrinsic Frames of Reference from Multiple Viewpoints

    ERIC Educational Resources Information Center

    Mou, Weimin; Zhao, Mintao; McNamara, Timothy P.

    2007-01-01

    Four experiments investigated the roles of layout geometry in the selection of intrinsic frames of reference in spatial memory. Participants learned the locations of objects in a room from 2 or 3 viewing perspectives. One view corresponded to the axis of bilateral symmetry of the layout, and the other view(s) was (were) nonorthogonal to the axis…

  2. Aligning Body and World: Stable Reference Frames Improve Young Children's Search for Hidden Objects

    ERIC Educational Resources Information Center

    Perry, Lynn K.; Samuelson, Larissa K.; Spencer, John P.

    2009-01-01

    This study investigated how young children's increasingly flexible use of spatial reference frames enables accurate search for hidden objects by using a task that 3-year-olds have been shown to perform with great accuracy and 2-year-olds have been shown to perform inaccurately. Children watched as an object was rolled down a ramp, behind a panel…

  3. The Period of a Swinging Rod in an Oscillating Frame of Reference

    ERIC Educational Resources Information Center

    Biezeveld, Hubert

    2012-01-01

    It was obvious long ago that for mechanical behavior a gravitational field and an accelerating frame of reference are equivalent. Or in other words: it is impossible to decide whether you are in an accelerating elevator or in a closed room on a planet with a different value of "g". In the first section of this article I will describe a simple…

  4. Does Changing the Reference Frame Affect Infant Categorization of the Spatial Relation BETWEEN?

    ERIC Educational Resources Information Center

    Quinn, Paul C.; Doran, Matthew M.; Papafragou, Anna

    2011-01-01

    Past research has shown that variation in the target objects depicting a given spatial relation disrupts the formation of a category representation for that relation. In the current research, we asked whether changing the orientation of the referent frame depicting the spatial relation would also disrupt the formation of a category representation…

  5. The Effects of Frame of Reference on Responses to Questions about Sexual Assault Victimization and Perpetration

    ERIC Educational Resources Information Center

    Abbey, Antonia; Parkhill, Michele R.; Koss, Mary P.

    2005-01-01

    Self-reports of sexual assault are affected by a variety of factors including the number of questions, question phrasing, and context. Participants (307 women, 166 men) were randomly assigned to one of two forms of a questionnaire. One form had the tactics used to obtain forced sex as the initial frame of reference, whereas the other form had the…

  6. Spatial Mental Representations Derived from Survey and Route Descriptions: When Individuals Prefer Extrinsic Frame of Reference

    ERIC Educational Resources Information Center

    Meneghetti, Chiara; Pazzaglia, Francesca; De Beni, Rossana

    2011-01-01

    The present research investigates the role of individual differences in preference for adopting extrinsic frame of reference (EFR) in ability to represent mentally spatial information learned through survey and route descriptions. A sample of 191 participants (100 females and 91 males) was categorized as four groups with high (H-EFR), medium-high…

  7. The Generalized Internal/External Frame of Reference Model: An Extension to Dimensional Comparison Theory

    ERIC Educational Resources Information Center

    Möller, Jens; Müller-Kalthoff, Hanno; Helm, Friederike; Nagy, Nicole; Marsh, Herb W.

    2016-01-01

    The dimensional comparison theory (DCT) focuses on the effects of internal, dimensional comparisons (e.g., "How good am I in math compared to English?") on academic self-concepts with widespread consequences for students' self-evaluation, motivation, and behavioral choices. DCT is based on the internal/external frame of reference model…

  8. Understanding Frame-of-Reference Training Success: A Social Learning Theory Perspective

    ERIC Educational Resources Information Center

    Sulsky, Lorne M.; Kline, Theresa J. B.

    2007-01-01

    Employing the social learning theory (SLT) perspective on training, we analysed the effects of alternative frame-of-reference (FOR) training protocols on various criteria of training effectiveness. Undergraduate participants (N = 65) were randomly assigned to one of four FOR training conditions and a control condition. Training effectiveness was…

  9. The Role of Perspective Taking in How Children Connect Reference Frames When Explaining Astronomical Phenomena

    ERIC Educational Resources Information Center

    Plummer, Julia D.; Bower, Corinne A.; Liben, Lynn S.

    2016-01-01

    This study investigates the role of perspective-taking skills in how children explain spatially complex astronomical phenomena. Explaining many astronomical phenomena, especially those studied in elementary and middle school, requires shifting between an Earth-based description of the phenomena and a space-based reference frame. We studied 7- to…

  10. The relativistic blackbody spectrum in inertial and non-inertial reference frames

    NASA Astrophysics Data System (ADS)

    Lee, Jeffrey S.; Cleaver, Gerald B.

    2017-04-01

    By invoking inverse temperature as a van Kampen-Israel future-directed timelike 4-vector, this paper derives the Relativistic Blackbody Spectrum, the Relativistic Wien's Displacement Law, and the Relativistic Stefan-Boltzmann Law in inertial and non-inertial reference frames.

  11. Myths, Misconceptions, and Misunderstandings: A Different Spin on Coriolis--Applying Frame of Reference

    ERIC Educational Resources Information Center

    DiSpezio, Michael A.

    2011-01-01

    This article addresses misconceptions surrounding the Coriolis force and describes how it should be presented as a function within inertial and noninertial frames of reference. Not only does this demonstrate the nature of science as it strives to best interpret the natural world (and presents alternative explanations), but it offers a rich…

  12. Operationalization of a Frame of Reference for Studying Organizational Culture in Middle Schools.

    ERIC Educational Resources Information Center

    Daniel, Larry G.

    A frame of reference for studying culture in middle schools was developed. Items for the Middle School Description Survey (MSDS), which was designed to test elements of the ideal middle school culture, were created based on middle school advocacy literature. The items were conceptually categorized according to E. H. Schein's (1985) cultural…

  13. Frame of Reference Rater Training Issues: Recall, Time and Behavior Observation Training.

    ERIC Educational Resources Information Center

    Roch, Sylvia G.; O'Sullivan, Brian J.

    2003-01-01

    Graduate students were trained as raters either using frame of reference (FOR, n=220, behavior observation training (BOT, n=21), or performance appraisal (controls, n=21). They rated videotaped lecturers twice. FOR increased number of behaviors recalled; FOR and BOT improved recall quality. FOR improved rating accuracy even after 2 weeks.…

  14. On the consistency of the current conventional EOP series and the celestial and terrestrial reference frames

    NASA Astrophysics Data System (ADS)

    Belda, Santiago; Heinkelmann, Robert; Ferrándiz, José M.; Nilsson, Tobias; Schuh, Harald

    2017-02-01

    Precise transformation between the celestial reference frames (CRF) and terrestrial reference frames (TRF) is needed for many purposes in Earth and space sciences. According to the Global Geodetic Observing System (GGOS) recommendations, the accuracy of positions and stability of reference frames should reach 1 mm and 0.1 mm year^{-1}, and thus, the Earth Orientation Parameters (EOP) should be estimated with similar accuracy. Different realizations of TRFs, based on the combination of solutions from four different space geodetic techniques, and CRFs, based on a single technique only (VLBI, Very Long Baseline Interferometry), might cause a slow degradation of the consistency among EOP, CRFs, and TRFs (e.g., because of differences in geometry, orientation and scale) and a misalignment of the current conventional EOP series, IERS 08 C04. We empirically assess the consistency among the conventional reference frames and EOP by analyzing the record of VLBI sessions since 1990 with varied settings to reflect the impact of changing frames or other processing strategies on the EOP estimates. Our tests show that the EOP estimates are insensitive to CRF changes, but sensitive to TRF variations and unmodeled geophysical signals at the GGOS level. The differences between the conventional IERS 08 C04 and other EOP series computed with distinct TRF settings exhibit biases and even non-negligible trends in the cases where no differential rotations should appear, e.g., a drift of about 20 μ as year^{-1 }in y_{pol } when the VLBI-only frame VTRF2008 is used. Likewise, different strategies on station position modeling originate scatters larger than 150 μ as in the terrestrial pole coordinates.

  15. On the consistency of the current conventional EOP series and the celestial and terrestrial reference frames

    NASA Astrophysics Data System (ADS)

    Belda, Santiago; Heinkelmann, Robert; Ferrándiz, José M.; Nilsson, Tobias; Schuh, Harald

    2016-08-01

    Precise transformation between the celestial reference frames (CRF) and terrestrial reference frames (TRF) is needed for many purposes in Earth and space sciences. According to the Global Geodetic Observing System (GGOS) recommendations, the accuracy of positions and stability of reference frames should reach 1 mm and 0.1 mm year^{-1} , and thus, the Earth Orientation Parameters (EOP) should be estimated with similar accuracy. Different realizations of TRFs, based on the combination of solutions from four different space geodetic techniques, and CRFs, based on a single technique only (VLBI, Very Long Baseline Interferometry), might cause a slow degradation of the consistency among EOP, CRFs, and TRFs (e.g., because of differences in geometry, orientation and scale) and a misalignment of the current conventional EOP series, IERS 08 C04. We empirically assess the consistency among the conventional reference frames and EOP by analyzing the record of VLBI sessions since 1990 with varied settings to reflect the impact of changing frames or other processing strategies on the EOP estimates. Our tests show that the EOP estimates are insensitive to CRF changes, but sensitive to TRF variations and unmodeled geophysical signals at the GGOS level. The differences between the conventional IERS 08 C04 and other EOP series computed with distinct TRF settings exhibit biases and even non-negligible trends in the cases where no differential rotations should appear, e.g., a drift of about 20 μ as year^{-1 } in y_{pol } when the VLBI-only frame VTRF2008 is used. Likewise, different strategies on station position modeling originate scatters larger than 150 μ as in the terrestrial pole coordinates.

  16. Consistent Feature Extraction From Vector Fields: Combinatorial Representations and Analysis Under Local Reference Frames

    SciTech Connect

    Bhatia, Harsh

    2015-05-01

    This dissertation presents research on addressing some of the contemporary challenges in the analysis of vector fields—an important type of scientific data useful for representing a multitude of physical phenomena, such as wind flow and ocean currents. In particular, new theories and computational frameworks to enable consistent feature extraction from vector fields are presented. One of the most fundamental challenges in the analysis of vector fields is that their features are defined with respect to reference frames. Unfortunately, there is no single “correct” reference frame for analysis, and an unsuitable frame may cause features of interest to remain undetected, thus creating serious physical consequences. This work develops new reference frames that enable extraction of localized features that other techniques and frames fail to detect. As a result, these reference frames objectify the notion of “correctness” of features for certain goals by revealing the phenomena of importance from the underlying data. An important consequence of using these local frames is that the analysis of unsteady (time-varying) vector fields can be reduced to the analysis of sequences of steady (timeindependent) vector fields, which can be performed using simpler and scalable techniques that allow better data management by accessing the data on a per-time-step basis. Nevertheless, the state-of-the-art analysis of steady vector fields is not robust, as most techniques are numerical in nature. The residing numerical errors can violate consistency with the underlying theory by breaching important fundamental laws, which may lead to serious physical consequences. This dissertation considers consistency as the most fundamental characteristic of computational analysis that must always be preserved, and presents a new discrete theory that uses combinatorial representations and algorithms to provide consistency guarantees during vector field analysis along with the uncertainty

  17. Extrinsic reference frames modify the neural substrates of object-location representations.

    PubMed

    Chan, Edgar; Baumann, Oliver; Bellgrove, Mark A; Mattingley, Jason B

    2013-04-01

    The ability to form spatial representations of object locations is an important component of successful spatial navigation. Evidence from behavioral studies suggests that environmental features that have a salient coordinate axis (e.g., a rectangular building or a geometrical room) may provide a reference frame for the encoding of object-location information. Here we used functional magnetic resonance imaging (fMRI) to determine the brain networks engaged when object-location representations are stored with respect to an extrinsic reference frame. Participants learned the layout of an object array in an active, virtual-navigation paradigm. A square mat positioned on the floor of the virtual arena acted as the extrinsic reference frame. Knowledge of the spatial arrangement of the object array was probed while participants underwent fMRI, using a spatial judgment task that required them to imagine orientations of the learned array that were either aligned or misaligned with the geometry of the mat. Consistent with previous findings, participants responded faster and were more accurate when the imagined orientation was aligned, as opposed to misaligned, with the extrinsic reference frame. Analysis of the fMRI data revealed important differences in brain activity between the two conditions. Significantly greater activity was observed in the aligned condition compared with the misaligned condition across a bilateral network of brain areas that included the inferior occipital gyri, inferior and middle temporal gyri, and fusiform gyri. By contrast, activity in the misaligned condition was significantly greater than in the aligned condition in bilateral dorsolateral prefrontal and anterior cingulate cortex, and in the right anterior prefrontal and anterior insular cortex. These results suggest that retrieval of spatial locations that are aligned with an extrinsic reference frame involve direct access to detailed and accurate representations within the ventral visual

  18. A Ka-band Celestial Reference Frame with Applications to Deep Space Navigation

    NASA Astrophysics Data System (ADS)

    Jacobs, Christopher S.; Clark, J. E.; García-Miró, C.; Horiuchi, S.; Sotuela, I.

    2011-10-01

    The Ka-band radio spectrum is now being used for a wide variety of applications. This paper highlights the use of Ka-band as a frequency for precise deep space navigation based on a set of reference beacons provided by extragalactic quasars which emit broadband noise at Ka-band. This quasar-based celestial reference frame is constructed using X/Ka-band (8.4/32 GHz) from fifty-five 24-hour sessions with the Deep Space Network antennas in California, Australia, and Spain. We report on observations which have detected 464 sources covering the full 24 hours of Right Ascension and declinations down to -45 deg. Comparison of this X/Ka-band frame to the international standard S/X-band (2.3/8.4 GHz) ICRF2 shows wRMS agreement of ~200 micro-arcsec (μas) in α cos δ and ~300 μas in δ. There is evidence for systematic errors at the 100 μas level. Known errors include limited SNR, lack of instrumental phase calibration, tropospheric refraction mis-modeling, and limited southern geometry. The motivation for extending the celestial reference frame to frequencies above 8 GHz is to access more compact source morphology for improved frame stability and to support spacecraft navigation for Ka-band based NASA missions.

  19. The Gaia inertial reference frame and the tilting of the Milky Way disk

    SciTech Connect

    Perryman, Michael; Spergel, David N.; Lindegren, Lennart

    2014-07-10

    While the precise relationship between the Milky Way disk and the symmetry planes of the dark matter halo remains somewhat uncertain, a time-varying disk orientation with respect to an inertial reference frame seems probable. Hierarchical structure formation models predict that the dark matter halo is triaxial and tumbles with a characteristic rate of ∼2 rad H{sub 0}{sup −1} (∼30 μas yr{sup –1}). These models also predict a time-dependent accretion of gas, such that the angular momentum vector of the disk should be misaligned with that of the halo. These effects, as well as tidal effects of the LMC, will result in the rotation of the angular momentum vector of the disk population with respect to the quasar reference frame. We assess the accuracy with which the positions and proper motions from Gaia can be referred to a kinematically non-rotating system, and show that the spin vector of the transformation from any rigid self-consistent catalog frame to the quasi-inertial system defined by quasars should be defined to better than 1 μas yr{sup –1}. Determination of this inertial frame by Gaia will reveal any signature of the disk orientation varying with time, improve models of the potential and dynamics of the Milky Way, test theories of gravity, and provide new insights into the orbital evolution of the Sagittarius dwarf galaxy and the Magellanic Clouds.

  20. A Ka-Band Celestial Reference Frame with Applications to Deep Space Navigation

    NASA Technical Reports Server (NTRS)

    Jacobs, Christopher S.; Clark, J. Eric; Garcia-Miro, Cristina; Horiuchi, Shinji; Sotuela, Ioana

    2011-01-01

    The Ka-band radio spectrum is now being used for a wide variety of applications. This paper highlights the use of Ka-band as a frequency for precise deep space navigation based on a set of reference beacons provided by extragalactic quasars which emit broadband noise at Ka-band. This quasar-based celestial reference frame is constructed using X/Ka-band (8.4/32 GHz) from fifty-five 24-hour sessions with the Deep Space Network antennas in California, Australia, and Spain. We report on observations which have detected 464 sources covering the full 24 hours of Right Ascension and declinations down to -45 deg. Comparison of this X/Ka-band frame to the international standard S/X-band (2.3/8.4 GHz) ICRF2 shows wRMS agreement of approximately 200 micro-arcsec in alpha cos(delta) and approximately 300 micro-arcsec in delta. There is evidence for systematic errors at the 100 micro-arcsec level. Known errors include limited SNR, lack of instrumental phase calibration, tropospheric refraction mis-modeling, and limited southern geometry. The motivation for extending the celestial reference frame to frequencies above 8 GHz is to access more compact source morphology for improved frame stability and to support spacecraft navigation for Ka-band based NASA missions.

  1. Examining reference frame interaction in spatial memory using a distribution analysis.

    PubMed

    Street, Whitney N; Wang, Ranxiao Frances

    2016-02-01

    Previous research showed competition among reference frames in spatial attention and language. The present studies developed a new distribution analysis to examine reference frame interactions in spatial memory. Participants viewed virtual arrays of colored pegs and were instructed to remember them either from their own perspective or from the perspective aligned with the rectangular floor. Then they made judgments of relative directions from their respective encoding orientation. Those taking the floor-axis perspective showed systematic bias in the signed errors toward their egocentric perspective, while those taking their own perspective showed no systematic bias, both for random and symmetrical object arrays. The bias toward the egocentric perspective was observed when learning a real symmetric regular object array with strong environmental cues for the aligned axis. These results indicate automatic processing of the self reference while taking the floor-axis perspective but not vice versa, and suggest that research on spatial memory needs to consider the implications of competition effects in reference frame use.

  2. The Celestial Reference Frame at X/Ka-band (8.4/32 GHz)

    NASA Technical Reports Server (NTRS)

    Jacobs, C. S.; Clark, J. E.; Heflin, M. B.; Skjerve, L. J.; Sovers, O. J.; Garcia-Miro, C.; Moll, V. E.; Horiuchi, S.

    2010-01-01

    A celestial reference frame at X/Kaband (8.4/32 GHz) has been constructed using fiftyone 24-hour sessions with the Deep Space Network. We report on observations which have detected 436 sources covering the full 24 hours of right ascension and declinations down to -45 deg. Comparison of this X/Ka-band frame to the S/X-band (2.3/8.4 GHz) ICRF2 shows wRMS agreement of 200 micro-arcsec ( mu as) in alpha cos delta and 290 mu as in delta. There is evidence for zonal errors at the 100 mu as level. Known errors include limited SNR, lack of phase calibration, troposphere mismodelling, and limited southern geometry. The motivations for extending the ICRF to frequencies above 8 GHz are to access more compact source morphology for improved frame stability, to provide calibrators for phase referencing, and to support spacecraft navigation at Ka-band.

  3. The Celestial Reference Frame at X/Ka-band (8.4/32 GHz)

    NASA Technical Reports Server (NTRS)

    Jacobs, C. S.; Clark, J. E.; Heflin, M. B.; Skjerve, L. J.; Sovers, O. J.; Garcia-Miro, C.; Moll, V. E.; Horiuchi, S.

    2011-01-01

    A celestial reference frame at X/Ka-band (8.4/32 GHz) has been constructed using fifty-one 24-hour sessions with the Deep Space Network. We report on observations which have detected 436 sources covering the full 24 hours of right ascension and declinations down to -45 deg. Comparison of this X/Ka-band frame to the S/X-band (2.3/8.4 GHz) ICRF2 shows wRMS agreement of 200 micro-arcsec in a cos delta and 290 micro-arcsec in delta. There is evidence for zonal errors at the 100 micro-arcsec level. Known errors include limited SNR, lack of phase calibration, troposphere mismodelling, and limited southern geometry. The motivations for extending the ICRF to frequencies above 8 GHz are to access more compact source morphology for improved frame stability, to provide calibrators for phase referencing, and to support spacecraft navigation at Ka-band.

  4. Frames of Reference: A Metaphor for Analyzing and Interpreting Attitudes of Environmental Policy Makers and Policy Influencers

    PubMed

    Swaffield

    1998-07-01

    / The concept of frame of reference offers a potentially useful analytical metaphor in environmental management. This is illustrated by a case study in which attitudes of individuals involved in the management of trees in the New Zealand high country are classified into seven distinctive frames of reference. Some practical and theoretical implications of the use of the frame metaphor are explored, including its potential contribution to the emerg- ing field of communicative planning. KEY WORDS: Frames of reference; Environmental policy analysis; Metaphor; New Zealand high country

  5. A reinvestigation of the reference frame of the tilt-adaptation aftereffect

    PubMed Central

    Mathôt, Sebastiaan; Theeuwes, Jan

    2013-01-01

    The tilt-adaptation aftereffect (TAE) is the phenomenon that prolonged perception of a tilted ‘adapter’ stimulus affects the perceived tilt of a subsequent ‘tester’ stimulus. Although it is clear that TAE is strongest when adapter and tester are presented at the same location, the reference frame of the effect is debated. Some authors have reported that TAE is spatiotopic (world centred): It occurs when adapter and tester are presented at the same display location, even when this corresponds to different retinal locations. Others have reported that TAE is exclusively retinotopic (eye centred): It occurs only when adapter and tester are presented at the same retinal location, even when this corresponds to different display locations. Because this issue is crucial for models of transsaccadic perception, we reinvestigated the reference frame of TAE. We report that TAE is exclusively retinotopic, supporting the notion that there is no transsaccadic integration of low-level visual information. PMID:23359857

  6. Transfer of spatial reference frame using singlet states and classical communication

    NASA Astrophysics Data System (ADS)

    Bahder, Thomas B.

    2016-03-01

    A simple protocol is described for transferring spatial orientation from Alice to Bob (two spatially separated observers). The two observers are assumed to share quantum singlet states and classical communication. The protocol assumes that Alice and Bob have complete free will (measurement independence) and is based on maximizing the Shannon mutual information between Alice and Bob's measurement outcomes. Repeated use of this protocol for each spatial axis of Alice allows transfer of a complete three-dimensional reference frame, up to inversion of each of the axes. The technological complexity of this protocol is similar to that needed for BB84 quantum key distribution and hence is much simpler to implement than recently proposed schemes for transmission of reference frames. A second protocol based on a Bayesian formalism is also discussed.

  7. Proof-of-principle experiment of reference-frame-independent quantum key distribution with phase coding

    PubMed Central

    Liang, Wen-Ye; Wang, Shuang; Li, Hong-Wei; Yin, Zhen-Qiang; Chen, Wei; Yao, Yao; Huang, Jing-Zheng; Guo, Guang-Can; Han, Zheng-Fu

    2014-01-01

    We have demonstrated a proof-of-principle experiment of reference-frame-independent phase coding quantum key distribution (RFI-QKD) over an 80-km optical fiber. After considering the finite-key bound, we still achieve a distance of 50 km. In this scenario, the phases of the basis states are related by a slowly time-varying transformation. Furthermore, we developed and realized a new decoy state method for RFI-QKD systems with weak coherent sources to counteract the photon-number-splitting attack. With the help of a reference-frame-independent protocol and a Michelson interferometer with Faraday rotator mirrors, our system is rendered immune to the slow phase changes of the interferometer and the polarization disturbances of the channel, making the procedure very robust. PMID:24402550

  8. Proof-of-principle experiment of reference-frame-independent quantum key distribution with phase coding.

    PubMed

    Liang, Wen-Ye; Wang, Shuang; Li, Hong-Wei; Yin, Zhen-Qiang; Chen, Wei; Yao, Yao; Huang, Jing-Zheng; Guo, Guang-Can; Han, Zheng-Fu

    2014-01-09

    We have demonstrated a proof-of-principle experiment of reference-frame-independent phase coding quantum key distribution (RFI-QKD) over an 80-km optical fiber. After considering the finite-key bound, we still achieve a distance of 50 km. In this scenario, the phases of the basis states are related by a slowly time-varying transformation. Furthermore, we developed and realized a new decoy state method for RFI-QKD systems with weak coherent sources to counteract the photon-number-splitting attack. With the help of a reference-frame-independent protocol and a Michelson interferometer with Faraday rotator mirrors, our system is rendered immune to the slow phase changes of the interferometer and the polarization disturbances of the channel, making the procedure very robust.

  9. Proof-of-principle experiment of reference-frame-independent quantum key distribution with phase coding

    NASA Astrophysics Data System (ADS)

    Liang, Wen-Ye; Wang, Shuang; Li, Hong-Wei; Yin, Zhen-Qiang; Chen, Wei; Yao, Yao; Huang, Jing-Zheng; Guo, Guang-Can; Han, Zheng-Fu

    2014-01-01

    We have demonstrated a proof-of-principle experiment of reference-frame-independent phase coding quantum key distribution (RFI-QKD) over an 80-km optical fiber. After considering the finite-key bound, we still achieve a distance of 50 km. In this scenario, the phases of the basis states are related by a slowly time-varying transformation. Furthermore, we developed and realized a new decoy state method for RFI-QKD systems with weak coherent sources to counteract the photon-number-splitting attack. With the help of a reference-frame-independent protocol and a Michelson interferometer with Faraday rotator mirrors, our system is rendered immune to the slow phase changes of the interferometer and the polarization disturbances of the channel, making the procedure very robust.

  10. Reference frames for reaching when decoupling eye and target position in depth and direction

    PubMed Central

    Bosco, A.; Breveglieri, R.; Hadjidimitrakis, K.; Galletti, C.; Fattori, P.

    2016-01-01

    Spatial representations in cortical areas involved in reaching movements were traditionally studied in a frontoparallel plane where the two-dimensional target location and the movement direction were the only variables to consider in neural computations. No studies so far have characterized the reference frames for reaching considering both depth and directional signals. Here we recorded from single neurons of the medial posterior parietal area V6A during a reaching task where fixation point and reaching targets were decoupled in direction and depth. We found a prevalent mixed encoding of target position, with eye-centered and spatiotopic representations differently balanced in the same neuron. Depth was stronger in defining the reference frame of eye-centered cells, while direction was stronger in defining that of spatiotopic cells. The predominant presence of various typologies of mixed encoding suggests that depth and direction signals are processed on the basis of flexible coordinate systems to ensure optimal motor response. PMID:26876496

  11. Research Activities for the DORIS Contribution to the Next International Terrestrial Reference Frame

    NASA Technical Reports Server (NTRS)

    Soudarin, L.; Moreaux, G.; Lemoine, F.; Willis, P.; Stepanek, P.; Otten, M.; Govind, R.; Kuzin, S.; Ferrage, P.

    2012-01-01

    For the preparation of ITRF2008, the IDS processed data from 1993 to 2008, including data from TOPEX/Poseidon, the SPOT satellites and Envisat in the weekly solutions. Since the development of ITRF2008, the IDS has been engaged in a number of efforts to try and improve the reference frame solutions. These efforts include (i) assessing the contribution of the new DORIS satellites, Jason-2 and Cryosat2 (2008-2011), (ii) individually analyzing the DORIS satellite contributions to geocenter and scale, and (iii) improving orbit dynamics (atmospheric loading effects, satellite surface force modeling. . . ). We report on the preliminary results from these research activities, review the status of the IDS combination which is now routinely generated from the contributions of the IDS analysis centers, and discuss the prospects for continued improvement in the DORIS contribution to the next international reference frame.

  12. The Relationship Between Global Mean Sea Level Rise and the Reference Frame

    NASA Technical Reports Server (NTRS)

    Lemoine, F.; Luthcke, S.; Zelensky, N.; Pavlis, E.; Beckley, B.; Ray, R.; Petrov, L.; Pavlis, D.; Rowlands, D.

    2006-01-01

    The Terrestrial Reference Frame is the fundamental means by which we relate observations in space and time. For example, in order to generate a homogeneous and consistent time series of geo-referenced altimeter measurements over the span of the Topex/Poseidon and Jason-1 missions, we must examine carefully the role of improvements in measurement modelling, force modelling, and improved reference frame realizations. In this paper, we quantify the effects of improvements in force modelling, for example the use of new GRACE-derived gravity models, the effect of time-variable gravity derived from GRACE on altimeter satellite orbits. In addition, we examine the effects of modelling geocenter in altimeteric satellite POD, and look at how the application of atmospheric loading might affect the time-series of precise orbits for Topex/Poseidon and Jason-1.

  13. Tomographic Approach in Reference-Frame-Independent Measurement-Device-Independent Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Fang, Xi; Wang, Chao; Han, Yun-Guang; Yin, Zhen-Qiang; Chen, Wei; Han, Zheng-Fu

    2016-11-01

    Recently, a novel reference-frame-independent measurement-device-independent quantum key distribution protocol was proposed, which can remove all detector side channels as well as tolerate unknown and slow variance of reference frame without active alignment. In this paper, we propose a new tomographic method to estimate the key rate in that protocol. We estimate the key rate using conventional method and tomographic method respectively and compare the two methods by numerical simulation. The numerical simulation results show that tomographic approach is equivalent to the conventional approach, which can be used as an alternative method. Supported by the National Basic Research Program of China under Grant Nos. 2011CBA00200 and 2011CB921200, the National Natural Science Foundation of China under Grant Nos. 61475148, 61575183, and the “Strategic Priority Research Program (B)” of the Chinese Academy of Sciences under Grant Nos. XDB01030100, XDB01030300

  14. Generalization of Dexterous Manipulation Is Sensitive to the Frame of Reference in Which It Is Learned.

    PubMed

    Marneweck, Michelle; Knelange, Elisabeth; Lee-Miller, Trevor; Santello, Marco; Gordon, Andrew M

    2015-01-01

    Studies have shown that internal representations of manipulations of objects with asymmetric mass distributions that are generated within a specific orientation are not generalizable to novel orientations, i.e., subjects fail to prevent object roll on their first grasp-lift attempt of the object following 180° object rotation. This suggests that representations of these manipulations are specific to the reference frame in which they are formed. However, it is unknown whether that reference frame is specific to the hand, the body, or both, because rotating the object 180° modifies the relation between object and body as well as object and hand. An alternative, untested explanation for the above failure to generalize learned manipulations is that any rotation will disrupt grasp performance, regardless if the reference frame in which the manipulation was learned is maintained or modified. We examined the effect of rotations that (1) maintain and (2) modify relations between object and body, and object and hand, on the generalizability of learned two-digit manipulation of an object with an asymmetric mass distribution. Following rotations that maintained the relation between object and body and object and hand (e.g., rotating the object and subject 180°), subjects continued to use appropriate digit placement and load force distributions, thus generating sufficient compensatory moments to minimize object roll. In contrast, following rotations that modified the relation between (1) object and hand (e.g. rotating the hand around to the opposite object side), (2) object and body (e.g. rotating subject and hand 180°), or (3) both (e.g. rotating the subject 180°), subjects used the same, yet inappropriate digit placement and load force distribution, as those used prior to the rotation. Consequently, the compensatory moments were insufficient to prevent large object rolls. These findings suggest that representations of learned manipulation of objects with asymmetric mass

  15. Generalization of Dexterous Manipulation Is Sensitive to the Frame of Reference in Which It Is Learned

    PubMed Central

    Marneweck, Michelle; Knelange, Elisabeth; Lee-Miller, Trevor; Santello, Marco; Gordon, Andrew M.

    2015-01-01

    Studies have shown that internal representations of manipulations of objects with asymmetric mass distributions that are generated within a specific orientation are not generalizable to novel orientations, i.e., subjects fail to prevent object roll on their first grasp-lift attempt of the object following 180° object rotation. This suggests that representations of these manipulations are specific to the reference frame in which they are formed. However, it is unknown whether that reference frame is specific to the hand, the body, or both, because rotating the object 180° modifies the relation between object and body as well as object and hand. An alternative, untested explanation for the above failure to generalize learned manipulations is that any rotation will disrupt grasp performance, regardless if the reference frame in which the manipulation was learned is maintained or modified. We examined the effect of rotations that (1) maintain and (2) modify relations between object and body, and object and hand, on the generalizability of learned two-digit manipulation of an object with an asymmetric mass distribution. Following rotations that maintained the relation between object and body and object and hand (e.g., rotating the object and subject 180°), subjects continued to use appropriate digit placement and load force distributions, thus generating sufficient compensatory moments to minimize object roll. In contrast, following rotations that modified the relation between (1) object and hand (e.g. rotating the hand around to the opposite object side), (2) object and body (e.g. rotating subject and hand 180°), or (3) both (e.g. rotating the subject 180°), subjects used the same, yet inappropriate digit placement and load force distribution, as those used prior to the rotation. Consequently, the compensatory moments were insufficient to prevent large object rolls. These findings suggest that representations of learned manipulation of objects with asymmetric mass

  16. Brownian motion of a harmonic oscillator in a noninertial reference frame.

    PubMed

    Jiménez-Aquino, J I; Romero-Bastida, M

    2013-08-01

    The Brownian motion of a charged harmonic oscillator in the presence of additional force fields, such as a constant magnetic field and arbitrary time-dependent electric and mechanical forces, is studied in a rotational reference frame under uniform motion. By assuming an isotropic surrounding medium (a scalar friction constant), we solve explicitly the Smoluchowski equation associated with the Langevin equation for the charged harmonic oscillator and calculate the mean square displacements along and orthogonal to the rotation axis.

  17. Frames of reference for helicopter electronic maps - The relevance of spatial cognition and componential analysis

    NASA Technical Reports Server (NTRS)

    Harwood, Kelly; Wickens, Christopher D.

    1991-01-01

    Computer-generated map displays for NOE and low-level helicopter flight were formed according to prior research on maps, navigational problem solving, and spatial cognition in large-scale environments. The north-up map emphasized consistency of object location, wheareas, the track-up map emphasized map-terrain congruency. A component analysis indicates that different cognitive components, e.g., orienting and absolute object location, are supported to varying degrees by properties of different frames of reference.

  18. The Large Quasar Reference Frame (LQRF). An Optical Representation of the ICRS

    DTIC Science & Technology

    2009-10-01

    A&A 505, 385–404 (2009) DOI: 10.1051/0004-6361/200912041 c© ESO 2009 Astronomy & Astrophysics The large quasar reference frame (LQRF) An optical...RJ, Brasil Received 12 March 2009 / Accepted 20 May 2009 ABSTRACT Context. The large number and all-sky distribution of quasars from different...surveys, along with their presence in large , deep astro- metric catalogs, enables us to build of an optical materialization of the International Celestial

  19. The Multi-Disciplinary Graduate Program in Educational Research. Final Report, Part V; The Frame of Reference Study.

    ERIC Educational Resources Information Center

    Lazarsfeld, Paul F., Ed.

    This "Frame of Reference Study" consists of the fifth section of the final report of the Multi-Disciplinary Graduate Program in Educational Research of the University of Pittsburgh. The term, "frames of reference," is used to mean the context of assumptions, procedures, rules, cognitive models, and conceptions of the nature of…

  20. Effects of adopting new precession, nutation and equinox corrections on the terrestrial reference frame

    NASA Astrophysics Data System (ADS)

    Zhu, Sheng-Yuan; Mueller, Ivan I.

    1983-03-01

    First, the paper is devoted to the effects of adopting new definitive precession and equinox corrections on the terrestrial reference frame: The effect on polar motion is a diurnal periodic term with an amplitude increasing linearly in time; on UT1 it is a linear term. Second, general principles are given the use of which can determine the effects of small rotations (such as precession, nutation or equinox corrections) of the frame of a Conventional Inertial Reference System (CIS) on the frame of the Conventional Terrestrial Reference System (CTS). Next, seven CTS options are presented, one of which is necessary to accommodate such rotations (corrections). The last of these options requiring no changes in the origin of terrestrial longitudes and in UT1 is advocated; this option would be maintained by eventually referencing the Greenwich Mean Sidereal Time to a fixed point on the equator, instead of to the mean equinox of date, the current practice. Accommodating possible future changes in the astronomical nutation is discussed in the last section. The Appendix deals with the effects of differences which may exist between the various CTS's and CIS's (inherent in the various observational techniques) on earth rotation parameters (ERP) and how these differences can be determined. It is shown that the CTS differences can be determined from observations made at the same site, while the CIS differences by comparing the ERP's determined by the different techniques during the same time period.

  1. Effects of adopting new precession, nutation and equinox corrections on the terrestrial reference frame

    NASA Technical Reports Server (NTRS)

    Zhu, S. Y.; Mueller, I. I.

    1982-01-01

    The effects of adopting new definitive precession and equinox corrections on the terrestrial reference frame was investigated. It is noted that: (1) the effect on polar motion is a diurnal periodic term with an amplitude increasing linearly in time whole on UT1 it is a linear term; (2) general principles are given to determine the effects of small rotations of the frame of a conventional inertial reference system (CIS) on the frame of the conventional terrestrial reference system (CTS); (3) seven CTS options are presented, one of which is necessary to accommodate such rotation. Accommodating possible future changes in the astronomical nutation is discussed. The effects of differences which may exist between the various CTS's and CIS's on Earth rotation parameters (ERP) and how these differences can be determined are examined. It is shown that the CTS differences can be determined from observations made at the same site, while the CIS differences by comparing the ERP's determined by the different techniques during the same time period.

  2. Spatial scale, rather than nature of task or locomotion, modulates the spatial reference frame of attention

    PubMed Central

    Jiang, Yuhong V.; Won, Bo-Yeong

    2015-01-01

    Visuospatial attention is strongly biased to locations that frequently contained a search target before. However, the function of this bias depends on the reference frame in which attended locations are coded. Previous research has shown a striking difference between tasks administered on a computer monitor and in a large environment, with the former inducing viewer-centered learning and the latter environment-centered learning. Why does environment-centered learning fail on a computer? Here we tested three possibilities: differences in spatial scale, nature of task, and locomotion may influence the reference frame of attention. Participants searched for a target on a monitor placed flat on a stand. On each trial they stood at a different location around the monitor. The target was frequently located in a fixed area of the monitor, but changes in participants’ perspective rendered this area random relative to the participants. Under incidental learning conditions participants failed to acquire environment-centered learning even when (i) the task and display resembled the large-scale task, and (ii) the search task required locomotion. The difficulty in inducing environment-centered learning on a computer underscores the egocentric nature of visual attention. It supports the idea that spatial scale modulates the reference frame of attention. PMID:25867510

  3. Environmentally defined frames of reference: their time course and sensitivity to spatial cues and attention.

    PubMed

    Danziger, S; Kingstone, A; Ward, R

    2001-04-01

    In a Simon task the effects of spatial cues and attention on spatial stimulus coding were explored. Participants made speeded responses corresponding to the direction of target arrows that were preceded by peripherally presented cues. Cue validity varied across experiments as did the percentage of trials on which the target appeared peripherally or centrally. The data indicate (a) that targets are coded relative to multiple reference frames, (b) that spatial coding of a target is not affected when attention is shifted to the target, and (c) that an object serves as a referent for spatial coding of other objects even after its spatial code no longer activates responses.

  4. Associations of collectivism with relationship commitment, passion, and mate preferences: opposing roles of parental influence and family allocentrism.

    PubMed

    Bejanyan, Kathrine; Marshall, Tara C; Ferenczi, Nelli

    2015-01-01

    In collectivist cultures, families tend to be characterized by respect for parental authority and strong, interdependent ties. Do these aspects of collectivism exert countervailing pressures on mate choices and relationship quality? In the present research, we found that collectivism was associated with greater acceptance of parental influence over mate choice, thereby driving relationship commitment down (Studies 1 and 2), but collectivism was also associated with stronger family ties (referred to as family allocentrism), which drove commitment up (Study 2). Along similar lines, Study 1 found that collectivists' greater acceptance of parental influence on mate choice contributed to their reduced relationship passion, whereas Study 2 found that their greater family allocentrism may have enhanced their passion. Study 2 also revealed that collectivists may have reported a smaller discrepancy between their own preferences for mates high in warmth and trustworthiness and their perception of their parents' preferences for these qualities because of their stronger family allocentrism. However, their higher tolerance of parental influence may have also contributed to a smaller discrepancy in their mate preferences versus their perceptions of their parents' preferences for qualities signifying status and resources. Implications for the roles of collectivism, parental influence, and family allocentrism in relationship quality and mate selection will be discussed.

  5. Associations of Collectivism with Relationship Commitment, Passion, and Mate Preferences: Opposing Roles of Parental Influence and Family Allocentrism

    PubMed Central

    Bejanyan, Kathrine; Marshall, Tara C.; Ferenczi, Nelli

    2015-01-01

    In collectivist cultures, families tend to be characterized by respect for parental authority and strong, interdependent ties. Do these aspects of collectivism exert countervailing pressures on mate choices and relationship quality? In the present research, we found that collectivism was associated with greater acceptance of parental influence over mate choice, thereby driving relationship commitment down (Studies 1 and 2), but collectivism was also associated with stronger family ties (referred to as family allocentrism), which drove commitment up (Study 2). Along similar lines, Study 1 found that collectivists’ greater acceptance of parental influence on mate choice contributed to their reduced relationship passion, whereas Study 2 found that their greater family allocentrism may have enhanced their passion. Study 2 also revealed that collectivists may have reported a smaller discrepancy between their own preferences for mates high in warmth and trustworthiness and their perception of their parents’ preferences for these qualities because of their stronger family allocentrism. However, their higher tolerance of parental influence may have also contributed to a smaller discrepancy in their mate preferences versus their perceptions of their parents’ preferences for qualities signifying status and resources. Implications for the roles of collectivism, parental influence, and family allocentrism in relationship quality and mate selection will be discussed. PMID:25719563

  6. The impact of egocentric vs. allocentric agency attributions on the neural bases of reasoning about social rules.

    PubMed

    Canessa, Nicola; Pantaleo, Giuseppe; Crespi, Chiara; Gorini, Alessandra; Cappa, Stefano F

    2014-09-18

    We used the "standard" and "switched" social contract versions of the Wason Selection-task to investigate the neural bases of human reasoning about social rules. Both these versions typically elicit the deontically correct answer, i.e. the proper identification of the violations of a conditional obligation. Only in the standard version of the task, however, this response corresponds to the logically correct one. We took advantage of this differential adherence to logical vs. deontical accuracy to test the different predictions of logic rule-based vs. visuospatial accounts of inferential abilities in 14 participants who solved the standard and switched versions of the Selection-task during functional-Magnetic-Resonance-Imaging. Both versions activated the well known left fronto-parietal network of deductive reasoning. The standard version additionally recruited the medial parietal and right inferior parietal cortex, previously associated with mental imagery and with the adoption of egocentric vs. allocentric spatial reference frames. These results suggest that visuospatial processes encoding one's own subjective experience in social interactions may support and shape the interpretation of deductive arguments and/or the resulting inferences, thus contributing to elicit content effects in human reasoning.

  7. Numerical methods for the weakly compressible Generalized Langevin Model in Eulerian reference frame

    SciTech Connect

    Azarnykh, Dmitrii Litvinov, Sergey; Adams, Nikolaus A.

    2016-06-01

    A well established approach for the computation of turbulent flow without resolving all turbulent flow scales is to solve a filtered or averaged set of equations, and to model non-resolved scales by closures derived from transported probability density functions (PDF) for velocity fluctuations. Effective numerical methods for PDF transport employ the equivalence between the Fokker–Planck equation for the PDF and a Generalized Langevin Model (GLM), and compute the PDF by transporting a set of sampling particles by GLM (Pope (1985) [1]). The natural representation of GLM is a system of stochastic differential equations in a Lagrangian reference frame, typically solved by particle methods. A representation in a Eulerian reference frame, however, has the potential to significantly reduce computational effort and to allow for the seamless integration into a Eulerian-frame numerical flow solver. GLM in a Eulerian frame (GLMEF) formally corresponds to the nonlinear fluctuating hydrodynamic equations derived by Nakamura and Yoshimori (2009) [12]. Unlike the more common Landau–Lifshitz Navier–Stokes (LLNS) equations these equations are derived from the underdamped Langevin equation and are not based on a local equilibrium assumption. Similarly to LLNS equations the numerical solution of GLMEF requires special considerations. In this paper we investigate different numerical approaches to solving GLMEF with respect to the correct representation of stochastic properties of the solution. We find that a discretely conservative staggered finite-difference scheme, adapted from a scheme originally proposed for turbulent incompressible flow, in conjunction with a strongly stable (for non-stochastic PDE) Runge–Kutta method performs better for GLMEF than schemes adopted from those proposed previously for the LLNS. We show that equilibrium stochastic fluctuations are correctly reproduced.

  8. Numerical methods for the weakly compressible Generalized Langevin Model in Eulerian reference frame

    NASA Astrophysics Data System (ADS)

    Azarnykh, Dmitrii; Litvinov, Sergey; Adams, Nikolaus A.

    2016-06-01

    A well established approach for the computation of turbulent flow without resolving all turbulent flow scales is to solve a filtered or averaged set of equations, and to model non-resolved scales by closures derived from transported probability density functions (PDF) for velocity fluctuations. Effective numerical methods for PDF transport employ the equivalence between the Fokker-Planck equation for the PDF and a Generalized Langevin Model (GLM), and compute the PDF by transporting a set of sampling particles by GLM (Pope (1985) [1]). The natural representation of GLM is a system of stochastic differential equations in a Lagrangian reference frame, typically solved by particle methods. A representation in a Eulerian reference frame, however, has the potential to significantly reduce computational effort and to allow for the seamless integration into a Eulerian-frame numerical flow solver. GLM in a Eulerian frame (GLMEF) formally corresponds to the nonlinear fluctuating hydrodynamic equations derived by Nakamura and Yoshimori (2009) [12]. Unlike the more common Landau-Lifshitz Navier-Stokes (LLNS) equations these equations are derived from the underdamped Langevin equation and are not based on a local equilibrium assumption. Similarly to LLNS equations the numerical solution of GLMEF requires special considerations. In this paper we investigate different numerical approaches to solving GLMEF with respect to the correct representation of stochastic properties of the solution. We find that a discretely conservative staggered finite-difference scheme, adapted from a scheme originally proposed for turbulent incompressible flow, in conjunction with a strongly stable (for non-stochastic PDE) Runge-Kutta method performs better for GLMEF than schemes adopted from those proposed previously for the LLNS. We show that equilibrium stochastic fluctuations are correctly reproduced.

  9. Formal structures, the concepts of covariance, invariance, equivalent reference frames, and the principle Relativity

    NASA Astrophysics Data System (ADS)

    Rodrigues, W. A.; Scanavini, M. E. F.; de Alcantara, L. P.

    1990-02-01

    In this paper a given spacetime theory T is characterized as the theory of a certain species of structure in the sense of Bourbaki [1]. It is then possible to clarify in a rigorous way the concepts of passive and active covariance of T under the action of the manifold mapping group G M . For each T, we define also an invariance group G I T and, in general, G I T ≠ G M . This group is defined once we realize that, for each τ ∈ ModT, each explicit geometrical object defining the structure can be classified as absolute or dynamical [2]. All spacetime theories possess also implicit geometrical objects that do not appear explicitly in the structure. These implicit objects are not absolute nor dynamical. Among them there are the reference frame fields, i.e., “timelike” vector fields X ∈ TU,U subseteq M M, where M is a manifold which is part of ST, a substructure for each τ ∈ ModT, called spacetime. We give a physically motivated definition of equivalent reference frames and introduce the concept of the equivalence group of a class of reference frames of kind X according to T, G X T. We define that T admits a weak principle of relativity (WPR) only if G X T ≠ identity for some X. If G X T = G I T for some X, we say that T admits a strong principle of relativity (PR). The results of this paper generalize and clarify several results obtained by Anderson [2], Scheibe [3], Hiskes [4], Recami and Rodrigues [5], Friedman [6], Fock [7], and Scanavini [8]. Among the novelties here, there is the realization that the definitions of G I T and G X T can be given only when certain boundary conditions for the equations of motion of T can be physically realizable in the domain U U subseteq M M, where a given reference frame is defined. The existence of physically realizable boundary conditions for each τ ∈ ModT (in ∂ U), in contrast with the mathematically possible boundary condition, is then seen to be essential for the validity of a principle of relativity for T

  10. The role of spatial memory and frames of reference in the precision of angular path integration.

    PubMed

    Arthur, Joeanna C; Philbeck, John W; Kleene, Nicholas J; Chichka, David

    2012-09-01

    Angular path integration refers to the ability to maintain an estimate of self-location after a rotational displacement by integrating internally-generated (idiothetic) self-motion signals over time. Previous work has found that non-sensory inputs, namely spatial memory, can play a powerful role in angular path integration (Arthur et al., 2007, 2009). Here we investigated the conditions under which spatial memory facilitates angular path integration. We hypothesized that the benefit of spatial memory is particularly likely in spatial updating tasks in which one's self-location estimate is referenced to external space. To test this idea, we administered passive, non-visual body rotations (ranging 40°-140°) about the yaw axis and asked participants to use verbal reports or open-loop manual pointing to indicate the magnitude of the rotation. Prior to some trials, previews of the surrounding environment were given. We found that when participants adopted an egocentric frame of reference, the previously-observed benefit of previews on within-subject response precision was not manifested, regardless of whether remembered spatial frameworks were derived from vision or spatial language. We conclude that the powerful effect of spatial memory is dependent on one's frame of reference during self-motion updating.

  11. Effects of tectonic plate deformation on the geodetic reference frame of Mexico

    NASA Astrophysics Data System (ADS)

    Gonzalez Franco, G. A.; Avalos, D.; Esquivel, R.

    2013-05-01

    Positioning for geodetic applications is commonly determined at one observation epoch, but tectonic drift and tectonic deformation cause the coordinates to be different for any other epoch. Finding the right coordinates at a different epoch from that of the observation time is necessary in Mexico in order to comply the official reference frame, which requires all coordinates to be referred to the standard epoch 2010.0. Available models of horizontal movement in rigid tectonic plates are used to calculate the displacement of coordinates; however for a portion of Mexico these models fail because of miss-modeled regional deformation, decreasing the quality of users' data transformed to the standard epoch. In this work we present the progress achieved in measuring actual horizontal motion towards an improved modeling of horizontal displacements for some regions. Miss-modeled velocities found are as big as 23mm/a, affecting significantly applications like cadastral and geodetic control. Data from a large set of GNSS permanent stations in Mexico is being analyzed to produce the preliminary model of horizontal crustal movement that will be used to minimize distortions of the reference frame.

  12. Antarctic VLNDEF Network for Regional Deformation Control in Absolute Reference Frame: Problems and Possible Solution.

    NASA Astrophysics Data System (ADS)

    Capra, A.; Gandolfi, S.; Mancini, F.; Negusini, M.; Vittuari, L.

    2004-05-01

    VLNDEF (Victoria Land Network for DEFormationn control) Geodetic Program addresses the crustal deformation control of the Northern Victoria Land (Antarctica) by means of geodetic GPS measurements. The project is within the activity of GIANT (Geodetic Infrastructure of Antarctica) SCAR Program and was established within the actions of ANTEC (ANTarctic NeoTECtonics) Group of Specialists. During 1999-2000 and 2000-2001 Italian expeditions a network of 27 stations was established and completely surveyed over an area extending from the southernmost points at 70 degrees latitude south to the Oates Coast region at 76°S, corresponding to a wideness of 700 km along the south-north and 300 km in the west to east directions. The average distance between stations is about of 70-80 km. During the field activities in the 2002-03 expedition the whole network was surveyed. During those expeditions long time sessions of connection between VLNDEF and TAMDEF networks performed. TAMDEF is a USA NSF program for crustal deformation control on southern Victoria Land. The dataset has been processed using different package such as Bernese and Gipsy in order to compare solutions and fix the better approach for the transition between reference frame. The first solution was initially constrained in the ITRF97 solution using the TNB1 GPS permanent station coordinate provided by the SCAR GPS Epoch solution. The approach to crustal deformation determination is relevant in terms of relative regional deformation, among the network stations, and the absolute deformation study, through the connection to international reference frame. Particularly important is the study of for VLNDEF in order to integrated evaluation with other continental and regional networks, as SCAR GPS Epoch and TAMDEF.Some aspects related to the data processing in the Antarctic region and the use of the ITRF2000 as reference frame will be discussed in the paper in addition to the analysis of the deformation in the area.

  13. Evidence for a reference frame transformation of vestibular signal contributions to voluntary reaching.

    PubMed

    Moreau-Debord, Ian; Martin, Christophe Z; Landry, Marianne; Green, Andrea M

    2014-05-01

    To contribute appropriately to voluntary reaching during body motion, vestibular signals must be transformed from a head-centered to a body-centered reference frame. We quantitatively investigated the evidence for this transformation during online reach execution by using galvanic vestibular stimulation (GVS) to simulate rotation about a head-fixed, roughly naso-occipital axis as human subjects made planar reaching movements to a remembered location with their head in different orientations. If vestibular signals that contribute to reach execution have been transformed from a head-centered to a body-centered reference frame, the same stimulation should be interpreted as body tilt with the head upright but as vertical-axis rotation with the head inclined forward. Consequently, GVS should perturb reach trajectories in a head-orientation-dependent way. Consistent with this prediction, GVS applied during reach execution induced trajectory deviations that were significantly larger with the head forward compared with upright. Only with the head forward were trajectories consistently deviated in opposite directions for rightward versus leftward simulated rotation, as appropriate to compensate for body vertical-axis rotation. These results demonstrate that vestibular signals contributing to online reach execution have indeed been transformed from a head-centered to a body-centered reference frame. Reach deviation amplitudes were comparable to those predicted for ideal compensation for body rotation using a biomechanical limb model. Finally, by comparing the effects of application of GVS during reach execution versus prior to reach onset we also provide evidence that spatially transformed vestibular signals contribute to at least partially distinct compensation mechanisms for body motion during reach planning versus execution.

  14. OPTICAL SPECTRA OF CANDIDATE INTERNATIONAL CELESTIAL REFERENCE FRAME (ICRF) FLAT-SPECTRUM RADIO SOURCES

    SciTech Connect

    Titov, O.; Stanford, Laura M.; Johnston, Helen M.; Hunstead, Richard W.; Pursimo, T.; Jauncey, David L.; Maslennikov, K.

    2013-07-01

    Continuing our program of spectroscopic observations of International Celestial Reference Frame (ICRF) sources, we present redshifts for 120 quasars and radio galaxies. Data were obtained with five telescopes: the 3.58 m European Southern Observatory New Technology Telescope, the two 8.2 m Gemini telescopes, the 2.5 m Nordic Optical Telescope (NOT), and the 6.0 m Big Azimuthal Telescope of the Special Astrophysical Observatory in Russia. The targets were selected from the International VLBI Service for Geodesy and Astrometry candidate International Celestial Reference Catalog which forms part of an observational very long baseline interferometry (VLBI) program to strengthen the celestial reference frame. We obtained spectra of the potential optical counterparts of more than 150 compact flat-spectrum radio sources, and measured redshifts of 120 emission-line objects, together with 19 BL Lac objects. These identifications add significantly to the precise radio-optical frame tie to be undertaken by Gaia, due to be launched in 2013, and to the existing data available for analyzing source proper motions over the celestial sphere. We show that the distribution of redshifts for ICRF sources is consistent with the much larger sample drawn from Faint Images of the Radio Sky at Twenty cm (FIRST) and Sloan Digital Sky Survey, implying that the ultra-compact VLBI sources are not distinguished from the overall radio-loud quasar population. In addition, we obtained NOT spectra for five radio sources from the FIRST and NRAO VLA Sky Survey catalogs, selected on the basis of their red colors, which yielded three quasars with z > 4.

  15. Optical Spectra of Candidate International Celestial Reference Frame (ICRF) Flat-spectrum Radio Sources. III.

    NASA Astrophysics Data System (ADS)

    Titov, O.; Pursimo, T.; Johnston, Helen M.; Stanford, Laura M.; Hunstead, Richard W.; Jauncey, David L.; Zenere, Katrina A.

    2017-04-01

    In extending our spectroscopic program, which targets sources drawn from the International Celestial Reference Frame (ICRF) Catalog, we have obtained spectra for ∼160 compact, flat-spectrum radio sources and determined redshifts for 112 quasars and radio galaxies. A further 14 sources with featureless spectra have been classified as BL Lac objects. Spectra were obtained at three telescopes: the 3.58 m European Southern Observatory New Technology Telescope, and the two 8.2 m Gemini telescopes in Hawaii and Chile. While most of the sources are powerful quasars, a significant fraction of radio galaxies is also included from the list of non-defining ICRF radio sources.

  16. Contribution to defining a geodetic reference frame for Africa (AFREF): Geodynamics implications

    NASA Astrophysics Data System (ADS)

    Saria, Elifuraha E.

    African Reference Frame (AFREF) is the proposed regional three-dimensional standard frame, which will be used to reference positions and velocities for geodetic sites in Africa and surrounding. This frame will play a crucial role in scientific application for example plate motion and crustal deformation studies, and also in mapping when it involves for example national boundary surveying, remote sensing, GIS, engineering projects and other development programs in Africa. To contribute to the definition of geodetic reference frame for Africa and provide the first continent-wide position/velocity solution for Africa, we processed and analyzed 16 years of GPS and 17 years of DORIS data at 133 GPS sites and 9 DORIS sites continuously operating geodetic sites in Africa and surroundings to describe the present-day kinematics of the Nubian and Somalian plates and constrain relative motions across the East African Rift. We use the resulting horizontal velocities to determine the level of rigidity of Nubia and updated a plate motion model for the East African Rift and revise the counter clockwise rotation of the Victoria plate and clockwise rotation of the Rovuma plate with respect to Nubia. The vertical velocity ranges from -2 to +2 mm/yr, close to their uncertainties with no clear geographical pattern. This study provides the first continent-wide position/velocity solution for Africa, expressed in International Terrestrial Reference Frame (ITRF2008), a contribution to the upcoming African Reference Frame (AFREF). In the next step we used the substantial increase in the geologic, geophysical and geodetic data in Africa to improve our understanding of the rift geometry and the block kinematics of the EAR. We determined the best-fit fault structure of the rift in terms of the locking depth and dip angle and use a block modeling approach where observed velocities are described as the contribution of rigid block rotation and strain accumulation on locked faults. Our results

  17. W production at LHC: lepton angular distributions and reference frames for probing hard QCD

    NASA Astrophysics Data System (ADS)

    Richter-Was, E.; Was, Z.

    2017-02-01

    Precision tests of the Standard Model in the Strong and Electroweak sectors play a crucial role, among the physics program of LHC experiments. Because of the nature of proton-proton processes, observables based on the measurement of the direction and energy of final state leptons provide the most precise probes of such processes. In the present paper, we concentrate on the angular distribution of leptons from W → ℓ ν decays in the lepton-pair rest-frame. The vector nature of the intermediate state imposes that distributions are to a good precision described by spherical harmonics of at most second order. We argue, that contrary to general belief often expressed in the literature, the full set of angular coefficients can be measured experimentally, despite the presence of escaping detection neutrino in the final state. There is thus no principle difference with respect to the phenomenology of the Z/γ → ℓ ^+ ℓ ^- Drell-Yan process. We show also, that with the proper choice of the reference frames, only one coefficient in this polynomial decomposition remains sizable, even in the presence of one or more high p_T jets. The necessary stochastic choice of the frames relies on probabilities independent from any coupling constants. In this way, electroweak effects (dominated by the V-A nature of W couplings to fermions), can be better separated from the ones of strong interactions. The separation is convenient for the measurements interpretation.

  18. Selective frame dropping based on hypothetical reference decoder buffer model for initial buffering delay reduction

    NASA Astrophysics Data System (ADS)

    Deshpande, Sachin

    2008-02-01

    We propose a method for selective frame dropping based on hypothetical reference decoder buffer model for initial buffering delay reduction. The client side buffering consists of two logical buffers: a de-jitter buffer and a pre-decoder buffer. To playback an encoded bit-stream without underflow the client must do a minimum initial buffering. This minimum initial buffering is a property of the bit-stream. The minimum initial buffering relates to the pre-decoder buffer. In addition the client can do additional initial buffering to handle network jitter and other bandwidth variations. Our proposed approach relates to reducing the minimum initial buffering delay for an already encoded bit-stream. We propose a method for selectively dropping frames to reduce the amount of initial buffering the client needs to do to avoid underflow during the streaming. Our proposed method is especially applicable to pre-stored content. The method is also particularly useful for variable bit-rate (VBR) encoded media. The method can be used by a streaming server. Alternatively the method can be implemented by a trans-rater/ transcoder. In a preferred embodiment our method can be applied in advance on a pre-stored bit-stream to decide which frames to drop to reduce the required minimum initial buffering.

  19. POINTS - A global reference frame opportunity. [Precision Optical Interferometer in Space

    NASA Technical Reports Server (NTRS)

    Chandler, J. F.; Reasenberg, R. D.

    1990-01-01

    POINTS is a space-based optical astrometric interferometer capable of measuring the angular separation of two stars about 90 degrees apart with 5-microarcsec nominal accuracy . During the intended ten-year mission, a repeated survey of a few hundred targets over the whole sky, including a few bright quasars, establish a 'rigid' reference grid with 0.5 microarcsec position uncertainties. At that level, the grid is free of regional biases and tied to the extra-Galactic frame that is the present best candidate for an inertial frame. POINTS will also determine parallaxes and annual proper motions at about the same level. Further, the planetary ephemeris frame is tied through stellar aberration to the grid at about 300 microarcsec. Additional targets of interest, to a limiting magnitude of greater than 20, are observed relative to the grid, yielding determinations with uncertainties depending on the observing schedule. Measurement at the microarcsec/year level of the apparent relative velocities of quasars that are widely separated on the sky severely test the assumption of cosmological quasar distances and may also constrain models of the early universe.

  20. A reference Pelton turbine - High speed visualization in the rotating frame

    NASA Astrophysics Data System (ADS)

    Solemslie, Bjørn W.; Dahlhaug, Ole G.

    2016-11-01

    To enable a detailed study the flow mechanisms effecting the flow within the reference Pelton runner designed at the Waterpower Laboratory (NTNLT) a flow visualization system has been developed. The system enables high speed filming of the hydraulic surface of a single bucket in the rotating frame of reference. It is built with an angular borescopes adapter entering the turbine along the rotational axis and a borescope embedded within a bucket. A stationary high speed camera located outside the turbine housing has been connected to the optical arrangement by a non-contact coupling. The view point of the system includes the whole hydraulic surface of one half of a bucket. The system has been designed to minimize the amount of vibrations and to ensure that the vibrations felt by the borescope are the same as those affecting the camera. The preliminary results captured with the system are promising and enable a detailed study of the flow within the turbine.

  1. Unit Template Synchronous Reference Frame Theory Based Control Algorithm for DSTATCOM

    NASA Astrophysics Data System (ADS)

    Bangarraju, J.; Rajagopal, V.; Jayalaxmi, A.

    2014-04-01

    This article proposes new and simplified unit templates instead of standard phase locked loop (PLL) for Synchronous Reference Frame Theory Control Algorithm (SRFT). The extraction of synchronizing components (sinθ and cosθ) for parks and inverse parks transformation using standard PLL takes more execution time. This execution time in control algorithm delays the extraction of reference source current generation. The standard PLL not only takes more execution time but also increases the reactive power burden on the Distributed Static Compensator (DSTATCOM). This work proposes a unit template based SRFT control algorithm for four-leg insulated gate bipolar transistor based voltage source converter for DSTATCOM in distribution systems. This will reduce the execution time and reactive power burden on the DSTATCOM. The proposed DSTATCOM suppress harmonics, regulates the terminal voltage along with neutral current compensation. The DSTATCOM in distribution systems with proposed control algorithm is modeled and simulated using MATLAB using SIMULINK and Simpower systems toolboxes.

  2. An anti-disturbance high-precision alignment for distributed POS based on inertial reference frame

    NASA Astrophysics Data System (ADS)

    Bai, Lijian; Wang, Yue

    2017-03-01

    The distributed POS is playing an important role in the ultra-high resolution aerial survey and remote sensing system, and can accurately provide time-spatial reference information for various imaging sensors. However, the distributed POS faces a special problem that the flexible arms used to connect the inertial measurement units (IMUs) would deteriorate the phenomenon that external disturbance leads to serious alignment errors. In order to improve the alignment precision of distributed POS in external disturbance, an anti-disturbance coarse alignment based on inertial reference frame is proposed. This method is developed mainly based on the structure of non-collinear vectors, which are constructed by a velocity vector determined by gravity vector integration. The disturbed acceleration and rotation is decreased a lot by the integral operation in the proposed method. Finally, the experiments were carried out and verified the validity of the proposed method.

  3. OPTICAL SPECTRA OF CANDIDATE SOUTHERN HEMISPHERE INTERNATIONAL CELESTIAL REFERENCE FRAME (ICRF) RADIO SOURCES

    SciTech Connect

    Titov, O.; Jauncey, D. L.; Johnston, H. M.; Hunstead, R. W.; Christensen, L.

    2011-11-15

    We present the results of spectroscopic observations of the optical counterparts of 47 southern radio sources from the candidate International Celestial Reference Catalogue as part of a very long baseline interferometry (VLBI) program to strengthen the celestial reference frame, especially in the south. We made the observations with the 3.58 m European Southern Observatory New Technology Telescope. We obtained redshifts for 30 quasars and one radio galaxy, with a further seven objects being probable BL Lac objects with featureless spectra. Of the remainder, four were clear misidentifications with Galactic stars and five had low signal-to-noise spectra and could not be classified. These results, in combination with new VLBI data of the radio sources with redshifts more than 2, add significantly to the existing data needed to refine the distribution of source proper motions over the celestial sphere.

  4. Determination of a terrestrial reference frame via Kalman filtering of very long baseline interferometry data

    NASA Astrophysics Data System (ADS)

    Soja, Benedikt; Nilsson, Tobias; Balidakis, Kyriakos; Glaser, Susanne; Heinkelmann, Robert; Schuh, Harald

    2016-12-01

    Terrestrial reference frames (TRF), such as the ITRF2008, are primary products of geodesy. In this paper, we present TRF solutions based on Kalman filtering of very long baseline interferometry (VLBI) data, for which we estimate steady station coordinates over more than 30 years that are updated for every single VLBI session. By applying different levels of process noise, non-linear signals, such as seasonal and seismic effects, are taken into account. The corresponding stochastic model is derived site-dependent from geophysical loading deformation time series and is adapted during periods of post-seismic deformations. Our results demonstrate that the choice of stochastic process has a much smaller impact on the coordinate time series and velocities than the overall noise level. If process noise is applied, tests with and without additionally estimating seasonal signals indicate no difference between the resulting coordinate time series for periods when observational data are available. In a comparison with epoch reference frames, the Kalman filter solutions provide better short-term stability. Furthermore, we find out that the Kalman filter solutions are of similar quality when compared to a consistent least-squares solution, however, with the enhanced attribute of being easier to update as, for instance, in a post-earthquake period.

  5. Lost in space: multisensory conflict yields adaptation in spatial representations across frames of reference.

    PubMed

    Lohmann, Johannes; Butz, Martin V

    2017-03-27

    According to embodied cognition, bodily interactions with our environment shape the perception and representation of our body and the surrounding space, that is, peripersonal space. To investigate the adaptive nature of these spatial representations, we introduced a multisensory conflict between vision and proprioception in an immersive virtual reality. During individual bimanual interaction trials, we gradually shifted the visual hand representation. As a result, participants unknowingly shifted their actual hands to compensate for the visual shift. We then measured the adaptation to the invoked multisensory conflict by means of a self-localization and an external localization task. While effects of the conflict were observed in both tasks, the effects systematically interacted with the type of localization task and the available visual information while performing the localization task (i.e., the visibility of the virtual hands). The results imply that the localization of one's own hands is based on a multisensory integration process, which is modulated by the saliency of the currently most relevant sensory modality and the involved frame of reference. Moreover, the results suggest that our brain strives for consistency between its body and spatial estimates, thereby adapting multiple, related frames of reference, and the spatial estimates within, due to a sensory conflict in one of them.

  6. Device-dependent and device-independent quantum key distribution without a shared reference frame

    NASA Astrophysics Data System (ADS)

    Slater, Joshua A.; Branciard, Cyril; Brunner, Nicolas; Tittel, Wolfgang

    2014-04-01

    Standard quantum key distribution (QKD) protocols typically assume that the distant parties share a common reference frame. In practice, however, establishing and maintaining a good alignment between distant observers is rarely a trivial issue, which may significantly restrain the implementation of long-distance quantum communication protocols. Here we propose simple QKD protocols that do not require the parties to share any reference frame, and study their security and feasibility in both the usual device-dependent (DD) case—in which the two parties use well characterized measurement devices—as well as in the device-independent (DI) case—in which the measurement devices can be untrusted, and the security relies on the violation of a Bell inequality. To illustrate the practical relevance of these ideas, we present a proof-of-principle demonstration of our protocols using polarization entangled photons distributed over a coiled 10-km long optical fiber. We consider two situations, in which either the fiber spool's polarization transformation freely drifts, or randomly chosen polarization transformations are applied. The correlations obtained from measurements allow, with high probability, to generate positive asymptotic secret key rates in both the DD and DI scenarios (under the fair-sampling assumption for the latter case).

  7. Preserved learning about allocentric cues but impaired flexible memory expression in rats with hippocampal lesions.

    PubMed

    Ramos, Juan M J

    2010-05-01

    Several studies have shown that slight modifications in the standard reference spatial memory procedure normally used for allocentric learning in the Morris water maze and the radial maze, can overcome the classic deficit in allocentric navigation typically observed in rats with hippocampal damage. In these special paradigms, however, there is only intramaze manipulation of a salient stimulus. The present study was designed to investigate whether extramaze manipulations produce a similar outcome. With this aim a four-arm plus-shaped maze and a reference spatial memory paradigm were used, in which the goal arm was marked in two ways: by a prominent extramaze cue (intermittent light), which maintained a constant relation with the goal, and by the extramaze constellation of stimuli around the maze. Experiment 1 showed that, unlike the standard version of the task, using this special training procedure hippocampally-damaged rats could learn a place response as quickly as control animals; importantly, one day after reaching criterion, lesioned and control subjects performed the task perfectly during a transfer test in which the salient extramaze stimulus used during the acquisition was removed. However, although acquisition deficit was overcomed in these lesioned animals, a profound deficit in retention was detected 15 days later. Experiment 2 suggests that although under our special paradigm hippocampal rats can learn a place response, spatial memory only can be expressed when the requisites of behavioral flexibility are minimal. These findings suggest that, under certain circumstances, extrahippocampal structures are sufficient for building a coherent allocentric representation of space; however, flexible memory expression is dependent, fundamentally, on hippocampal functioning.

  8. Test of source selection for constructing a more stable and uniform celestial reference frame

    NASA Astrophysics Data System (ADS)

    Liu, N.; Liu, J.-C.; Zhu, Z.

    2017-04-01

    We aim to evaluate the possibility of improving the International Celestial Reference System realization starting from the ICRF2 catalogue by investigating the coordinate time series of radio sources observed by the very long baseline interferometry between 1979 and 2016. Sources with long observational history are selected as the candidates and the least-squares fits with special handling of the weights are performed to derive the linear drifts of the source coordinates. Then the sources are sorted, based on the normalized linear drift (i) over the whole sky, and (ii) in four homolographic areas divided by declinations. The axial stability of the reference system and sky distribution defined by the selected sources are evaluated, which are acted as the criterion for the final source lists. With our improved source selection scheme, two groups of sources are proposed and considered suitable for defining a more stable and homogeneous celestial reference system compared to the second version of the current International Celestial Reference Frame (ICRF2). The number of sources in the final lists are 323 and 294, respectively, and the global rotations of the axes derived from apparent motion of the sources are about two times better than the ICRF2.

  9. The International DORIS Service contribution to the 2014 realization of the International Terrestrial Reference Frame

    NASA Astrophysics Data System (ADS)

    Moreaux, Guilhem; Lemoine, Frank G.; Capdeville, Hugues; Kuzin, Sergey; Otten, Michiel; Štěpánek, Petr; Willis, Pascal; Ferrage, Pascale

    2016-12-01

    In preparation of the 2014 realization of the International Terrestrial Reference Frame (ITRF2014), the International DORIS Service delivered to the International Earth Rotation and Reference Systems Service a set of 1140 weekly solution files including station coordinates and Earth orientation parameters, covering the time period from 1993.0 to 2015.0. The data come from eleven DORIS satellites: TOPEX/Poseidon, SPOT2, SPOT3, SPOT4, SPOT5, Envisat, Jason-1, Jason-2, Cryosat-2, Saral and HY-2A. In their processing, the six analysis centers which contributed to the DORIS combined solution used the latest time variable gravity models and estimated DORIS ground beacon frequency variations. Furthermore, all the analysis centers but one excepted included in their processing phase center variations for ground antennas. The main objective of this study is to present the combination process and to analyze the impact of the new modeling on the performance of the new combined solution. Comparisons with the IDS contribution to ITRF2008 show that (i) the application of the DORIS ground phase center variations in the data processing shifts the combined scale upward by nearly 7-11 mm and (ii) thanks to estimation of DORIS ground beacon frequency variations, the new combined solution no longer shows any scale discontinuity in early 2002 and does not present unexplained vertical discontinuities in any station position time series. However, analysis of the new series with respect to ITRF2008 exhibits a scale increase late 2011 which is not yet explained. A new DORIS Terrestrial Reference Frame was computed to evaluate the intrinsic quality of the new combined solution. That evaluation shows that the addition of data from the new missions equipped with the latest generation of DORIS receiver (Jason-2, Cryosat-2, HY-2A, Saral), results in an internal position consistency of 10 mm or better after mid-2008.

  10. Absolute plate motion changes around 50 Ma in a Global Moving Hotspot Reference Frame

    NASA Astrophysics Data System (ADS)

    Steinberger, B. M.; Doubrovine, P. V.; Torsvik, T. H.

    2011-12-01

    To understand causes of plate motion changes around 50 Ma, it is important to know which plates also have changed their motion relative to the underlying mantle. Towards that end, we have developed a global reference frame that is based on fitting the age progression along five hotspot tracks: Hawaii, Louisville, Tristan, Reunion and New England. We use all available information on relative plate motions and two alternative plate chains - one through East and West Antarctica and one through Australia and Lord Howe Rise - to compute the motion of the Pacific relative to Africa. Our model also considers the predicted motion of these hotspots due to large-scale mantle flow: This flow is computed from mantle density anomalies inferred from seismic tomography. Hereby it is assumed that both seismic velocity and density anomalies in the mantle are due to temperature variations, except in parts of the uppermost mantle (tectosphere) and possibly parts of the lowermost mantle (Large Low Shear Velocity Provinces). We use a radial mantle viscosity structure that is consistent with mineral physics and the Haskell average inferred from postglacial rebound, and that also gives predictions for geoid and global mantle heat flux that agree well with observations. We compute the motion of mantle plume conduits, assuming they are initially vertical, and subsequently get advected with flow, but also rise buoyantly. Our resulting best-fit model yields acceptable fits to all hotspot tracks. It confirms that Pacific plate motion has changed at the time of the bend, but the Hawaiian hotspot has also moved southward by several hundred km. We also consider alternatively a paleomagnetic reference frame, which has been corrected for true polar wander (TPW) by interpreting the coherent rotation component of all continents around their common center of mass as TPW. Due to the TPW correction, both reference frames are rather similar. Bends in apparent polar wander (APW) paths are often

  11. Coordinated turn-and-reach movements. II. Planning in an external frame of reference

    NASA Technical Reports Server (NTRS)

    Pigeon, Pascale; Bortolami, Simone B.; DiZio, Paul; Lackner, James R.

    2003-01-01

    The preceding study demonstrated that normal subjects compensate for the additional interaction torques generated when a reaching movement is made during voluntary trunk rotation. The present paper assesses the influence of trunk rotation on finger trajectories and on interjoint coordination and determines whether simultaneous turn-and-reach movements are most simply described relative to a trunk-based or an external reference frame. Subjects reached to targets requiring different extents of arm joint and trunk rotation at a natural pace and quickly in normal lighting and in total darkness. We first examined whether the larger interaction torques generated during rapid turn-and-reach movements perturb finger trajectories and interjoint coordination and whether visual feedback plays a role in compensating for these torques. These issues were addressed using generalized Procrustes analysis (GPA), which attempts to overlap a group of configurations (e.g., joint trajectories) through translations and rotations in multi-dimensional space. We first used GPA to identify the mean intrinsic patterns of finger and joint trajectories (i.e., their average shape irrespective of location and orientation variability in the external and joint workspaces) from turn-and-reach movements performed in each experimental condition and then calculated their curvatures. We then quantified the discrepancy between each finger or joint trajectory and the intrinsic pattern both after GPA was applied individually to trajectories from a pair of experimental conditions and after GPA was applied to the same trajectories pooled together. For several subjects, joint trajectories but not finger trajectories were more curved in fast than slow movements. The curvature of both joint and finger trajectories of turn-and-reach movements was relatively unaffected by the vision conditions. Pooling across speed conditions significantly increased the discrepancy between joint but not finger trajectories for

  12. Accuracy and Stability of a Terrestrial Reference Frame Realized from GPS Data

    NASA Astrophysics Data System (ADS)

    Haines, B. J.; Bertiger, W.; Desai, S. D.; Harvey, N. E.; Sibois, A.; Weiss, J. P.

    2012-12-01

    We describe new realizations of the terrestrial reference frame (TRF) based exclusively on GPS data. One of the historical weaknesses of the GPS technique is determination of scale at the level necessary to support the most demanding applications of the TRF (e.g., sea-level change). This weakness is linked primarily to uncertainties in the the antenna phase variations (APV) of the GPS satellite transmitters, which are designed to support navigation rather than mm-level geodesy. Building on our prior work, we characterize the APV of the GPS satellite transmitters using GPS data collected by satellites in low-Earth orbit (LEO). LEO data offer a number of substantial advantages for characterizing the APV of the GPS satellites. The perspective afforded by GPS receivers in orbit is unmatched in terms of both spatial and temporal coverage. In addition, there is no troposphere signal to confound interpretation of the GPS data. More important, however, the scale (mean height) of the precise orbit solutions is well determined (cm-level) from dynamical constraints. This scale knowledge translates into improved scale for the TRF, assuming the APV of the reference LEO antenna is well understood. For our latest APV solutions, the GPS antenna on the TOPEX/POSEIDON mission (1992-2005) serves as our reference LEO antenna. A choke-ring on a 4-m boom extending above the spacecraft, the antenna configuration is very favorable from the standpoint of phase multipath. In addition, the intrinsic APV of the choke-ring antenna assembly was measured before launch at the JPL test range. Since T/P observed only the legacy (Block II/IIA) GPS satellites, we use data from the GRACE mission (2002-pr.) to transfer the T/P reference to the replenishment (Block IIR) GPS satellites. We apply the resulting APV models in weekly network solutions in order to realize the terrestrial reference frame from GPS alone. Current comparisons of our GPS-based TRF (1999-2012) with ITRF2008 yield 0.2 mm

  13. The All Sky Celestial Reference Frame at X/Ka-band (8.4/32 GHz)

    NASA Astrophysics Data System (ADS)

    Horiuchi, S.; Clark, J. E.; García-Miró, C.; Goodhart, C. E.; Jacobs, Christopher S.; Maddè, R.; Mercolino, M.; Snedeker, L. G.; Sotuela, I.; White, L. A.

    2014-08-01

    We have constructed an X/Ka-band (8.4/32 GHz) celestial reference frame using over seventy ~24-hour sessions with the Deep Space Network. We detected 646 sources covering the full 24 hours of right ascension and the full range of declinations. Comparison of 520 X/Ka sources in common with the S/X-band (2.3/8.4 GHz) ICRF2 shows wRMS agreement of 167 micro-arcsec μas in RA cos(dec) and 219 μas in Dec. There is evidence for systematic errors at the 100 μas level. Known errors include limited SNR, lack of phase calibration, troposphere mismodelling. We recently began a collaboration with ESA using their Malargüe, Argentina antenna. This site greatly improves our geometry in the south. Compared to X-band, Ka-band allows access to more compact source morphology and reduced core shift. Existing X/Ka data and simulated Gaia data predict a frame tie precision of 7 μas (1-sigma, per 3-D rotation component) with anticipated improvements reducing that to ~5 μas per component.

  14. Guaranteed violation of a Bell inequality without aligned reference frames or calibrated devices.

    PubMed

    Shadbolt, Peter; Vértesi, Tamás; Liang, Yeong-Cherng; Branciard, Cyril; Brunner, Nicolas; O'Brien, Jeremy L

    2012-01-01

    Bell tests - the experimental demonstration of a Bell inequality violation - are central to understanding the foundations of quantum mechanics, and are a powerful diagnostic tool for the development of quantum technologies. To date, Bell tests have relied on careful calibration of measurement devices and alignment of a shared reference frame between two parties - both technically demanding tasks. We show that neither of these operations are necessary, violating Bell inequalities (i) with certainty using unaligned, but calibrated, measurement devices, and (ii) with near-certainty using uncalibrated and unaligned devices. We demonstrate generic quantum nonlocality with randomly chosen measurements on a singlet state of two photons, implemented using a reconfigurable integrated optical waveguide circuit. The observed results demonstrate the robustness of our schemes to imperfections and statistical noise. This approach is likely to have important applications both in fundamental science and quantum technologies, including device-independent quantum key distribution.

  15. Superfluid vortex front at T→0: decoupling from the reference frame.

    PubMed

    Hosio, J J; Eltsov, V B; de Graaf, R; Heikkinen, P J; Hänninen, R; Krusius, M; L'vov, V S; Volovik, G E

    2011-09-23

    Steady-state turbulent motion is created in superfluid (3)He-B at low temperatures in the form of a turbulent vortex front, which moves axially along a rotating cylindrical container of (3)He-B and replaces vortex-free flow with vortex lines at constant density. We present the first measurements on the thermal signal from dissipation as a function of time, recorded at 0.2T(c) during the front motion, which is monitored using NMR techniques. Both the measurements and the numerical calculations of the vortex dynamics show that at low temperatures the density of the propagating vortices falls well below the equilibrium value, i.e., the superfluid rotates at a smaller angular velocity than the container. This is the first evidence for the decoupling of the superfluid from the container reference frame in the zero-temperature limit.

  16. Demonstration of free-space reference frame independent quantum key distribution

    NASA Astrophysics Data System (ADS)

    Wabnig, J.; Bitauld, D.; Li, H. W.; Laing, A.; O'Brien, J. L.; Niskanen, A. O.

    2013-07-01

    Quantum key distribution (QKD) is moving from research laboratories towards applications. As computing becomes more mobile, cashless as well as cardless payment solutions are introduced. A possible route to increase the security of wireless communications is to incorporate QKD in a mobile device. Handheld devices present a particular challenge as the orientation and the phase of a qubit will depend on device motion. This problem is addressed by the reference frame independent (RFI) QKD scheme. The scheme tolerates an unknown phase between logical states that vary slowly compared to the rate of particle repetition. Here we experimentally demonstrate the feasibility of RFI QKD over a free-space link in a prepare and measure scheme using polarization encoding. We extend the security analysis of the RFI QKD scheme to be able to deal with uncalibrated devices and a finite number of measurements. Together these advances are an important step towards mass production of handheld QKD devices.

  17. Numerical Analysis of a Rotating Detonation Engine in the Relative Reference Frame

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.

    2014-01-01

    A two-dimensional, computational fluid dynamic (CFD) simulation of a semi-idealized rotating detonation engine (RDE) is described. The simulation operates in the detonation frame of reference and utilizes a relatively coarse grid such that only the essential primary flow field structure is captured. This construction yields rapidly converging, steady solutions. Results from the simulation are compared to those from a more complex and refined code, and found to be in reasonable agreement. The performance impacts of several RDE design parameters are then examined. Finally, for a particular RDE configuration, it is found that direct performance comparison can be made with a straight-tube pulse detonation engine (PDE). Results show that they are essentially equivalent.

  18. Temperature and solute-transport simulation in streamflow using a Lagrangian reference frame

    USGS Publications Warehouse

    Jobson, Harvey E.

    1980-01-01

    A computer program for simulating one-dimensional, unsteady temperature and solute transport in a river has been developed and documented for general use. The solution approach to the convective-diffusion equation uses a moving reference frame (Lagrangian) which greatly simplifies the mathematics of the solution procedure and dramatically reduces errors caused by numerical dispersion. The model documentation is presented as a series of four programs of increasing complexity. The conservative transport model can be used to route a single conservative substance. The simplified temperature model is used to predict water temperature in rivers when only temperature and windspeed data are available. The complete temperature model is highly accurate but requires rather complete meteorological data. Finally, the 10-parameter model can be used to route as many as 10 interacting constituents through a river reach. (USGS)

  19. Global Reference Frame Realization on National Level Based on the Integration of National CORS Networks

    NASA Astrophysics Data System (ADS)

    Kenyeres, A.; Caporali, A.; Horvath, T.; Baron, A.; Doncker, F. D.; Droscak, B.; Duret, A.; Franke, P.; Georgiev, I.; Gianniou, M.; Hansen, D.; Huisman, L.; Morozova, K.; Nagl, J.; Pihlak, P.; Stangl, G.; Valdes, M.; Ryczywolski, M.; Zurutuza, J.

    2015-12-01

    The national permanent GNSS networks are not only serving the general surveying practice in real-time mode, but they are deployed at reference frame maintenance and geodynamic studies relying on their homogeneously analyzed long-term data series. The ongoing EPN (EUREF Permanent Network) densification targets the integration of the national CORS networks and a homogeneous, dense position and velocity product is derived using the EPN as backbone infrastructure. The homogeneous cumulative solution relies on the national weekly SINEX products in order to minimize inconsistencies (e.g. site naming, discontinuities). The integration is done with the CATREF software (Altamimi et al, IGN) using the Minimum Constraint approach. The derived position and velocity product will be an essential material for various geokinematic studies (PGR, intraplate and plate boundary zone investigations), and also for the better realization of ETRS89 over tectonically active regions. This work is very well inline with the goals of other European initiatives as EPOS and EUPOS. The preparatory work is well in progress, several years of weekly SINEX files are already available and analyzed. The database contains more than 2000 stations stemming from 15 contributing Analysis Centres. A significant effort is devoted to the cleaning and organization of the station metadata and publish on the EPNCB website, which is necessary to improve the quality and reliabilty of the combination product.This presentation, beyond the publication of the state-of the-art combination results partly focuses on the analysis of existing reference frame realization issues caused by the GNSS antenna PCV updates not yet eliminated on the national CORS level.

  20. A Stable Geodetic Reference Frame within the COCONET Footprint to Enable High-Accuracy Ground Deformation Study

    NASA Astrophysics Data System (ADS)

    Liu, H.; Wang, G.; Yu, J.

    2014-12-01

    COCONET(Continuously Operating Caribbean GPS Observational Network) is a multidisciplinary research infrastructure focused on improving the ability to understand, predict, and prepare for multiple natural hazards in the Caribbean, Central America, and Northern Andes. GPS data alone cannot provide accurate ground deformation information over time and space. A precise regional reference frame is needed in interpolating GPS observations to address regional and local ground deformations. Failure to use a precise reference frame would cause unintended negative consequences. The mainly purpose of this study is to establish a stable geodetic reference frame within the COCONet footprint (abbreviated as "COCONet-RF") and to provide positional time series and velocities (relative to COCONet-RF) of all permanent GPS stations within the COCONet footprint to the public. The GIPSY software package was used to calculate position within IGS08. The local reference frame was realized by a 14-parameter Helmert transformation technique. It will be periodically updated in order to synchronize with the update of the IGS reference frame. This stable COCONer-RF would provide a higher accuracy geodetic infrastructure for delineating the magnitude and spatial and temporal variations of ground deformations associated with landslides, faulting, subsidence, and volcanoes. Researchers who are not familiar with GPS data processing and reference transformation will be able to directly integrate COCONET products into their specific research.

  1. ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions

    NASA Astrophysics Data System (ADS)

    Altamimi, Zuheir; Rebischung, Paul; Métivier, Laurent; Collilieux, Xavier

    2016-08-01

    For the first time in the International Terrestrial Reference Frame (ITRF) history, the ITRF2014 is generated with an enhanced modeling of nonlinear station motions, including seasonal (annual and semiannual) signals of station positions and postseismic deformation for sites that were subject to major earthquakes. Using the full observation history of the four space geodetic techniques (very long baseline interferometry (VLBI), satellite laser ranging (SLR), Global Navigation Satellite Systems (GNSS), and Doppler orbitography and radiopositioning integrated by satellite (DORIS)), the corresponding international services provided reprocessed time series (weekly from SLR and DORIS, daily from GNSS, and 24 h session-wise from VLBI) of station positions and daily Earth Orientation Parameters. ITRF2014 is demonstrated to be superior to past ITRF releases, as it precisely models the actual station trajectories leading to a more robust secular frame and site velocities. The ITRF2014 long-term origin coincides with the Earth system center of mass as sensed by SLR observations collected on the two LAGEOS satellites over the time span between 1993.0 and 2015.0. The estimated accuracy of the ITRF2014 origin, as reflected by the level of agreement with the ITRF2008 (both origins are defined by SLR), is at the level of less than 3 mm at epoch 2010.0 and less than 0.2 mm/yr in time evolution. The ITRF2014 scale is defined by the arithmetic average of the implicit scales of SLR and VLBI solutions as obtained by the stacking of their respective time series. The resulting scale and scale rate differences between the two solutions are 1.37 (±0.10) ppb at epoch 2010.0 and 0.02 (±0.02) ppb/yr. While the postseismic deformation models were estimated using GNSS/GPS data, the resulting parametric models at earthquake colocation sites were applied to the station position time series of the three other techniques, showing a very high level of consistency which enforces more the link

  2. Comparison of HMD ownship status symbology and frame of reference orientation during two aircraft control tasks

    NASA Astrophysics Data System (ADS)

    Havig, Paul R.; Jenkins, J. Chris; Geiselman, Eric E.

    2002-08-01

    Recent technological advances allow symbology to be displayed on the pilot's visor. A major benefit of this is that the pilot will be able to take this information with them when they look off-boresight. However, when looking off-boresight the question arises as to what is the best orientation, or frame of reference, for attitude symbology against the horizon (i.e., forward or line-of-sight) in order to maximize interpretation and performance. This study tested five different symbologies (standard HUD, visually coupled acquisition and targeting symbology, arc segmented attitude reference, theta ball, and non-distributed flight reference) of which three have both forward and line-of-sight orientations. The experiment consisted of two different tasks, with the pilots performing either facing the monitor or rotated 90 degree(s) and looking over their shoulder (off-boresight). In the first task, pilots maintained straight and level flight with simulated turbulence. The second task had pilots interpret a static representation of their attitude and respond via a key press, and then the display went live and they had to fly to a new commanded attitude. This second task was similar to a recovery from unusual attitude methodology, except the end state was never straight and level. Instead, a second unknown end state attitude was commanded by the experiment. Results indicate that performance is better when the symbology is forward as opposed to line-of-sight referenced. Further, performance was best in both tasks for the non-distributed flight reference. We discuss these results in terms of implications for helmet-mounted display symbology design.

  3. Morphology of QSOs-the gridpoints of the Gaia Celestial Reference Frame

    NASA Astrophysics Data System (ADS)

    Andrei, Alexandre Humberto; Souchay, Jean; Martins, Roberto Vieira; Anton, Sonia; Taris, Francois; Bouquillon, Sebastien; Assafin, Marcelo; Barache, Christophe; Camargo, Julio Ignacio Bueno; Coelho, Bruno; da Silva Neto, Dario Nepomuceno

    2012-08-01

    The acronym QSO refers to the particular time in the life of giant galaxies, often elliptic ones, when the nucleus becomes extremely active fueled by matter infalling onto the accretion disk feeding the massive central black hole. But the duration and intensity of such a phase make QSOs to be treated as a class of objects, and indeed a c lass of enhanced cosmologic, astrophysical and astrometric bearings. As a consequence, even in the optical domain, the morphology of a quasar can be understood as comprehending the domineering central source, the immediate surrounding regions, the jet basis and features along the jet, and a bright host galaxy which is likely to be intensely star forming and generally speaking a lively place in itself. Morphology, and its color dependent aspects, can thus inform on the physical processes at work on a given Q SO, for example what is likeness to exhibit different time scales of variability. The ESA Gaia mission will have its fundamental reference frame formed by quasars, which are desired to be as point like as can be gathered for the sake of ensuring maximum astrometric precision and accuracy. We will present how the morphology characteristic is indicated in the Gaia Initial QSO Catalog and the related investigations. We will also outline t he Gaia extended sources methods that will be applied to all QSOs observe d, and the vast amount of information that will be made available from the mission outcomes.

  4. UTC(SU) and EOP(SU) - the only legal reference frames of Russian Federation

    NASA Astrophysics Data System (ADS)

    Koshelyaevsky, Nikolay B.; Blinov, Igor Yu; Pasynok, Sergey L.

    2015-08-01

    There are two legal time reference frames in Russian Federation. UTC(SU) deals with atomic time and play a role of reference for legal timing through the whole country. The other one, EOP(SU), deals with Earth's orientation parameters and provides the official EOP data for scientific, technical and metrological applications in Russia.The atomic time is based on two essential hardware components: primary Cs fountain standards and ensemble of continuously operating H-masers as a time unit/time scale keeper. Basing on H-maser intercomparison system data, regular H-maser frequency calibration against Cs standards and time algorithm autonomous TA(SU) time scale is maintained by the Main Metrological Center. Since 2013 time unit in TA(SU) is the second (SU) reproduced independently by VNIIFTRI Cs primary standards in accordance to it’s definition in the SI. UTC(SU) is relied on TA(SU) and steering to UTC basing on TWSTFT/GNSS time link data. As a result TA(SU) stability level relative to TT considerably exceeds 1×10-15 for sample time one month and more, RMS[UTC-UTC(SU)] ≤ 3 ns for the period of 2013-2015. UTC(SU) is broadcasted by different national means such as specialized radio and TV stations, NTP servers and GLONASS. Signals of Russian radio stations contains DUT1 and dUT1 values at 0.1s and 0.02s resolution respectively.The definitive EOP(SU) are calculated by the Main Metrological Center basing on composition of the eight independent individual EOP data streams delivered by four Russian analysis centers: VNIIFTRI, Institute of Applied Astronomy, Information-Analytical Center of Russian Space Agency and Analysis Center of Russian Space Agency. The accuracy of ultra-rapid EOP values for 2014 is estimated ≤ 0.0006" for polar motion, ≤ 70 microseconds for UT1-UTC and ≤ 0.0003" for celestial pole offsets respectively.The other VNIIFTRI EOP activities can be grouped in three basic directions:- arrangement and carrying out GNSS and SLR observations at five

  5. Developmental vision determines the reference frame for the multisensory control of action.

    PubMed

    Röder, Brigitte; Kusmierek, Anna; Spence, Charles; Schicke, Tobias

    2007-03-13

    Both animal and human studies suggest that action goals are defined in external coordinates regardless of their sensory modality. The present study used an auditory-manual task to test whether the default use of such an external reference frame is innately determined or instead acquired during development because of the increasing dominance of vision over manual control. In Experiment I, congenitally blind, late blind, and age-matched sighted adults had to press a left or right response key depending on the bandwidth of pink noise bursts presented from either the left or right loudspeaker. Although the spatial location of the sounds was entirely task-irrelevant, all groups responded more efficiently with uncrossed hands when the sound was presented from the same side as the responding hand ("Simon effect"). This effect reversed with crossed hands only in the congenitally blind: They responded faster with the hand that was located contralateral to the sound source. In Experiment II, the instruction to the participants was changed: They now had to respond with the hand located next to the sound source. In contrast to Experiment I ("Simon-task"), this task required an explicit matching of the sound's location with the position of the responding hand. In Experiment II, the congenitally blind participants showed a significantly larger crossing deficit than both the sighted and late blind adults. This pattern of results implies that developmental vision induces the default use of an external coordinate frame for multisensory action control; this facilitates not only visual but also auditory-manual control.

  6. The Two-Wrongs model explains perception-action dissociations for illusions driven by distortions of the egocentric reference frame.

    PubMed

    Dassonville, Paul; Reed, Scott A

    2015-01-01

    Several studies have demonstrated a dissociation of the effects of illusion on perception and action, with perception generally reported to be susceptible to illusions, while actions are seemingly immune. These findings have been interpreted to support Milner and Goodale's Two Visual Systems model, which proposes the existence of separate visual processing streams for perception and action. However, an alternative interpretation suggests that this type of behavioral dissociation will occur for any illusion that is caused by a distortion of the observer's egocentric reference frame, without requiring the existence of separate perception and action systems that are differently affected by the illusion. In this scenario, movements aimed at illusory targets will be accurate if they are guided within the same distorted reference frame used for target encoding, since the error of motor guidance will cancel with the error of encoding (hence, for actions, two wrongs do make a right). We further test this Two-Wrongs model by examining two illusions for which the hypothesis makes very different predictions: the rod-and-frame illusion (which affects perception but not actions) and the simultaneous-tilt illusion (which affects perception and actions equally). We demonstrate that the rod-and-frame illusion is caused by a distortion of the observer's egocentric reference frame suitable for the cancellation of errors predicted by the Two-Wrongs model. In contrast, the simultaneous-tilt illusion is caused by local interactions between stimulus elements within an undistorted reference frame, precluding the cancellation of errors associated with the Two-Wrongs model such that the illusion is reflected in both perception and actions. These results provide evidence for a class of illusions that lead to dissociations of perception and action through distortions of the observer's spatial reference frame, rather than through the actions of functionally separate visual processing streams.

  7. The Two-Wrongs model explains perception-action dissociations for illusions driven by distortions of the egocentric reference frame

    PubMed Central

    Dassonville, Paul; Reed, Scott A.

    2015-01-01

    Several studies have demonstrated a dissociation of the effects of illusion on perception and action, with perception generally reported to be susceptible to illusions, while actions are seemingly immune. These findings have been interpreted to support Milner and Goodale's Two Visual Systems model, which proposes the existence of separate visual processing streams for perception and action. However, an alternative interpretation suggests that this type of behavioral dissociation will occur for any illusion that is caused by a distortion of the observer's egocentric reference frame, without requiring the existence of separate perception and action systems that are differently affected by the illusion. In this scenario, movements aimed at illusory targets will be accurate if they are guided within the same distorted reference frame used for target encoding, since the error of motor guidance will cancel with the error of encoding (hence, for actions, two wrongs do make a right). We further test this Two-Wrongs model by examining two illusions for which the hypothesis makes very different predictions: the rod-and-frame illusion (which affects perception but not actions) and the simultaneous-tilt illusion (which affects perception and actions equally). We demonstrate that the rod-and-frame illusion is caused by a distortion of the observer's egocentric reference frame suitable for the cancellation of errors predicted by the Two-Wrongs model. In contrast, the simultaneous-tilt illusion is caused by local interactions between stimulus elements within an undistorted reference frame, precluding the cancellation of errors associated with the Two-Wrongs model such that the illusion is reflected in both perception and actions. These results provide evidence for a class of illusions that lead to dissociations of perception and action through distortions of the observer's spatial reference frame, rather than through the actions of functionally separate visual processing streams

  8. Rotor reference frame models of a multiloop 2-phase motor drive in brushless DC and microstepping modes

    SciTech Connect

    Chen, J.E.

    1995-12-31

    This paper describes non-linear models of a 2-phase permanent magnet synchronous motor drive in brushless DC and microstepping modes. The models account for everything from the main power bus up to and including the mechanical load and velocity feedback loop. In particular, the models include the power electronics for each phase complete with their internal feedback loops. Classical state space averaged power electronics models are transformed to the rotor reference frame along with the usual electromechanical variables. Since SPICE linearizes the rotor reference frame model about shaft velocity, instead of shaft angle, frequency domain methods apply. The frequency domain analysis detects unstable interactions between torque angle and deliberate feedback within the drives. Time domain simulations using stator reference frame models confirm the results. All models are SPICE-compatible but were developed on Cadence`s Analog Workbench.

  9. Gaia Data Release 1. Reference frame and optical properties of ICRF sources

    NASA Astrophysics Data System (ADS)

    Mignard, F.; Klioner, S.; Lindegren, L.; Bastian, U.; Bombrun, A.; Hernández, J.; Hobbs, D.; Lammers, U.; Michalik, D.; Ramos-Lerate, M.; Biermann, M.; Butkevich, A.; Comoretto, G.; Joliet, E.; Holl, B.; Hutton, A.; Parsons, P.; Steidelmüller, H.; Andrei, A.; Bourda, G.; Charlot, P.

    2016-11-01

    Context. As part of the data processing for Gaia Data Release 1 (Gaia DR1) a special astrometric solution was computed, the so-called auxiliary quasar solution. This gives positions for selected extragalactic objects, including radio sources in the second realisation of the International Celestial Reference Frame (ICRF2) that have optical counterparts bright enough to be observed with Gaia. A subset of these positions was used to align the positional reference frame of Gaia DR1 with the ICRF2. Although the auxiliary quasar solution was important for internal validation and calibration purposes, the resulting positions are in general not published in Gaia DR1. Aims: We describe the properties of the Gaia auxiliary quasar solution for a subset of sources matched to ICRF2, and compare their optical and radio positions at the sub-mas level. Methods: Descriptive statistics are used to characterise the optical data for the ICRF sources and the optical-radio differences. The most discrepant cases are examined using online resources to find possible alternative explanations than a physical optical-radio offset of the quasars. Results: In the auxiliary quasar solution 2191 sources have good optical positions matched to ICRF2 sources with high probability. Their formal standard errors are better than 0.76 milliarcsec (mas) for 50% of the sources and better than 3.35 mas for 90%. Optical magnitudes are obtained in Gaia's unfiltered photometric G band. The Gaia results for these sources are given as a separate table in Gaia DR1. The comparison with the radio positions of the defining sources shows no systematic differences larger than a few tenths of a mas. The fraction of questionable solutions, not readily accounted for by the statistics, is less than 6%. Normalised differences have extended tails requiring case-by-case investigations for around 100 sources, but we have not seen any difference indisputably linked to an optical-radio offset in the sources. Conclusions: With

  10. Impact of uncertain reference-frame motions in plate kinematic reconstructions: A theoretical appraisal

    NASA Astrophysics Data System (ADS)

    Iaffaldano, Giampiero; Stein, Seth

    2017-01-01

    Geoscientists infer past plate motions, which serve as fundamental constraints for a range of studies, from observations of magnetic isochrons as well as hotspots tracks on the ocean floor and, for stages older than the Cretaceous, from paleomagnetic data. These observations effectively represent time-integrals of past plate motions but, because they are made at present, yield plate kinematics naturally tied to a present-day reference-frame, which may be another plate or a hotspots system. These kinematics are therefore different than those occurred at the time when the rocks acquired their magnetisation or when hotspot-related marine volcanism took place, and are normally corrected for the reference-frame absolute motion (RFAM) that occurred since then. The impact of true-polar-wander events on paleomagnetic data and the challenge of inferring hotspot drifts result in RFAMs being less resolved - in a temporal sense - and prone to noise. This limitation is commonly perceived to hamper the correction of plate kinematic reconstructions for RFAMs, but the extent to which this may be the case has not been explored. Here we assess the impact of uncertain RFAMs on kinematic reconstructions using synthetic models of plate motions over 100 million years. We use randomly-drawn models for the kinematics of two plates separated by a spreading ridge to generate a synthetic magnetisation pattern of the ocean floor. The kinematics we infer from such a pattern are outputs that we correct for synthetic RFAMs using two equivalent methods (a classical one as well as another that we propose and test here) and then compare to the 'true' motions input. We assess the misfits between true and inferred kinematics by exploring a statistically-significant number of models where we systematically downgrade the temporal resolution of RFAM synthetic data and add noise to them. We show that even poorly-resolved, noisy RFAMs are sufficient to retrieve reliable plate kinematic reconstructions

  11. Celestial Reference Frame at X/KA-Band (8.4/32 GHz) for Deep Space Navigation

    NASA Astrophysics Data System (ADS)

    Jacobs, Christopher S.; Clark, J. E.; García-Miró, C.; Horiuchi, S.; Romero-Wolf, A.; Snedeker, L. G.; Sotuela, I.

    2012-10-01

    Deep space tracking and navigation are done in a quasi-inertial reference frame based upon the angular positions of distant active galactic nuclei (AGN). These objects, which are found at extreme distances characterized by median redshifts of z = 1, are ideal for reference frame definition because they exhibit no measurable parallax or proper motion. They are thought to be powered by super massive black holes whose gravitational energy drives galactic sized relativistic jets. These jets produce synchrotron emissions which are detectable by modern radio techniques such as Very Long baseline Interferometry (VLBI). We have constructed a reference frame based on sixty seven X/Ka-band (8.4/32 GHz) VLBI observing sessions (2005 to present), each of ∼24 hours duration, using the intercontinental baselines of NASA's Deep Space Network (DSN): Goldstone, California to Madrid, Spain and Canberra, Australia. We detected 482 sources covering the full 24 hours of right ascension and declinations down to -45 deg. Comparison of 460 X/Ka sources in common with the international standard ICRF2 at S/X-band (2.3/8.4 GHz) shows wRMS agreement of 180 μas in RA cos(dec) and 270 μas in Dec. There is evidence for systematic errors at the 100 μas level. Known errors include limited SNR, lack of phase calibration, troposphere mismodelling, and limited southern geometry. Compared to S/X-band frames (e.g. ICRF2 (Ma et al, 2009)), X/Ka-band allows access to more compact source morphology and reduced core shift. Both these improvements allow for a more well-defined and stable reference frame at X/Ka-band. In the next decade, the optically-based Gaia mission (Lindegren, 2008) may produce a frame with competitive precision. By accurately registering radio frames with Gaia, we could study wavelength dependent systematic errors. A simulated frame tie between our X/Ka radio frame and the Gaia optical frame predicts a frame tie precision of 10-15 μas (1-σ, per 3-D rotation component) with

  12. The right frame of reference makes it simple: an example of introductory mechanics supported by video analysis of motion

    NASA Astrophysics Data System (ADS)

    Klein, P.; Gröber, S.; Kuhn, J.; Fleischhauer, A.; Müller, A.

    2015-01-01

    The selection and application of coordinate systems is an important issue in physics. However, considering different frames of references in a given problem sometimes seems un-intuitive and is difficult for students. We present a concrete problem of projectile motion which vividly demonstrates the value of considering different frames of references. We use this example to explore the effectiveness of video-based motion analysis (VBMA) as an instructional technique at university level in enhancing students’ understanding of the abstract concept of coordinate systems. A pilot study with 47 undergraduate students indicates that VBMA instruction improves conceptual understanding of this issue.

  13. A Celestial Reference Frame at X/ka-Band (8.4/32 Ghz) for Deep Space Navigation

    NASA Technical Reports Server (NTRS)

    Jacobs, C. S.; Clark, J. E.; Garcia-Miro, C.; Horiuchi, S.; Romero-Wolf, A.; Snedeker, L.; Sotuela, I.

    2012-01-01

    Deep space tracking and navigation are done in a quasi-inertial reference frame based upon the angular positions of distant active galactic nuclei (AGN). These objects, which are found at extreme distances characterized by median redshifts of z = 1, are ideal for reference frame definition because they exhibit no measurable parallax or proper motion. They are thought to be powered by super massive black holes whose gravitational energy drives galactic sized relativistic jets. These jets produce synchrotron emissions which are detectable by modern radio techniques such as Very Long baseline Interferometry (VLBI).

  14. International Celestial Reference Frame (ICRF): mantenimiento y extensión

    NASA Astrophysics Data System (ADS)

    Ma, C.; Arias, E. F.; Eubanks, T.; Fey, A. L.; Gontier, A.-M.; Jacobs, C. S.; Sovers, O. J.; Archinal, B. A.; Charlot, P.

    A partir de enero de 1998 el sistema de referencia celeste convencional está representado por el International Celestial Reference System (ICRS) y materializado a través de las coordenadas VLBI del conjunto de radiofuentes extragalácticas que conforman el International Celestial Reference Frame (ICRF). La primera realización del ICRF, fue elaborada en 1995 por un grupo de expertos designado por la IAU, la que encomendó al International Earth Rotation Service el mantenimiento del ICRS, del ICRF y del vínculo con marcos de referencia en otras frecuencias. Una primera extensión del ICRF se realizó entre abril y junio de 1999, con el objetivo primario de proveer posiciones de radiofuentes extragalácticas observadas a partir de julio de 1995 y de mejorar las posiciones de las fuentes ``candidatas" con la inclusión de observaciones adicionales. Objetivos secundarios fueron monitorear a las radiofuentes para verificar que siguen siendo adecuadas para realizar al ICRF y mejorar las técnicas de análisis de datos. Como resultado del nuevo análisis se obtuvo una solución a partir de la cual se construyó la primera extensión del ICRF, denominada ICRF - Ext.1. Ella representa al ICRS, sus fuentes de definición se mantienen con las mismas posiciones y errores que en la primera realización del ICRF; las demás radiofuentes tienen coordenadas mejor determinadas que en ICRF; el marco de referencia se densificó con el agregado de 59 nuevas radiofuentes.

  15. Deep mantle structure as a reference frame for movements in and on the Earth

    PubMed Central

    Torsvik, Trond H.; van der Voo, Rob; Doubrovine, Pavel V.; Burke, Kevin; Steinberger, Bernhard; Ashwal, Lewis D.; Trønnes, Reidar G.; Webb, Susan J.; Bull, Abigail L.

    2014-01-01

    Earth’s residual geoid is dominated by a degree-2 mode, with elevated regions above large low shear-wave velocity provinces on the core–mantle boundary beneath Africa and the Pacific. The edges of these deep mantle bodies, when projected radially to the Earth’s surface, correlate with the reconstructed positions of large igneous provinces and kimberlites since Pangea formed about 320 million years ago. Using this surface-to-core–mantle boundary correlation to locate continents in longitude and a novel iterative approach for defining a paleomagnetic reference frame corrected for true polar wander, we have developed a model for absolute plate motion back to earliest Paleozoic time (540 Ma). For the Paleozoic, we have identified six phases of slow, oscillatory true polar wander during which the Earth’s axis of minimum moment of inertia was similar to that of Mesozoic times. The rates of Paleozoic true polar wander (<1°/My) are compatible with those in the Mesozoic, but absolute plate velocities are, on average, twice as high. Our reconstructions generate geologically plausible scenarios, with large igneous provinces and kimberlites sourced from the margins of the large low shear-wave velocity provinces, as in Mesozoic and Cenozoic times. This absolute kinematic model suggests that a degree-2 convection mode within the Earth’s mantle may have operated throughout the entire Phanerozoic. PMID:24889632

  16. Applicability of the "Frame of Reference" approach for environmental monitoring of offshore renewable energy projects.

    PubMed

    Garel, Erwan; Rey, Cibran Camba; Ferreira, Oscar; van Koningsveld, Mark

    2014-08-01

    This paper assesses the applicability of the Frame of Reference (FoR) approach for the environmental monitoring of large-scale offshore Marine Renewable Energy (MRE) projects. The focus is on projects harvesting energy from winds, waves and currents. Environmental concerns induced by MRE projects are reported based on a classification scheme identifying stressors, receptors, effects and impacts. Although the potential effects of stressors on most receptors are identified, there are large knowledge gaps regarding the corresponding (positive and negative) impacts. In that context, the development of offshore MRE requires the implementation of fit-for-purpose monitoring activities aimed at environmental protection and knowledge development. Taking European legislation as an example, it is suggested to adopt standardized monitoring protocols for the enhanced usage and utility of environmental indicators. Towards this objective, the use of the FoR approach is advocated since it provides guidance for the definition and use of coherent set of environmental state indicators. After a description of this framework, various examples of applications are provided considering a virtual MRE project located in European waters. Finally, some conclusions and recommendations are provided for the successful implementation of the FoR approach and for future studies.

  17. A cold pool reference frame for analyzing polar stratospheric clouds and tropospheric forcing

    NASA Astrophysics Data System (ADS)

    Fromm, M. D.

    2011-12-01

    The dominance of synoptic scale tropospheric forcing as a driver for Arctic PSC existence has been established for a single season [Teitelbaum et al., 2001, J. Geophys. Res.] and over the entire SAM II, POAM II, POAM III era [Fromm et al. 2003, J. Geophys. Res.]. These results suggest that a meteorological context for PSC occurrence and composition, based on synoptic-scale dynamics, is appropriate and useful for unified PSC studies. Here we analyze satellite PSC observations in a new geospatial context: the cold pool reference frame (CPRF). We present a CPRF using the canonical nitric acid trihydrate (NAT) saturation isotherm as the boundary, with isotherms for liquid ternary aerosol condensation and the water-ice frost point for inner PSC-composition "latitudes." The temperature minimum and the longitude of the temperature minimum mark the pole and axis of the CPRF, respectively. The CPRF also incorporates the air flow through the cold pool with the Montgomery stream function. With such information, we relate SAGE and POAM occurrence of PSCs with respect to the cold pool axis and the upwind/downwind PSC-composition latitude belts. The CPRF model, and a justification based on monthly average December 2002 meteorological analyses, is presented. To illustrate, we show the case of 19 December 2002 as well as monthly PSC results. We also apply the CPRF to PSC observations from the Arctic winter of 2010/2011.

  18. The virtual hand illusion is moderated by context-induced spatial reference frames.

    PubMed

    Zhang, Jing; Ma, Ke; Hommel, Bernhard

    2015-01-01

    The tendency to perceive an artificial effector as part of one's own body is known to depend on temporal criteria, like the synchrony between stimulus events informing about the effector. The role of spatial factors is less well understood. Rather than physical distance, which has been manipulated in previous studies, we investigated the role of relative, context-induced distance between the participant's real hand and an artificial hand stimulated synchronously or asynchronously with the real hand. We replicated previously reported distance effects in a virtual reality setup: the perception of ownership increased with decreased distance, and the impact of synchrony was stronger for short distances. More importantly, we found that ownership perception and impact of synchrony were affected by previous distance: the same, medium distance between real and artificial hand induced more pronounced ownership after having experienced a far-distance condition than after a near-distance condition. This suggests that subjective, context-induced spatial reference frames contribute to ownership perception, which does not seem to fit with the idea of fixed spatial criteria and/or permanent body representations as the sole determinants of perceived body ownership.

  19. Deep Mantle Structure As a Reference Frame for Absolute Plate Motions

    NASA Astrophysics Data System (ADS)

    Torsvik, T. H.; Van Der Voo, R.; Doubrovine, P. V.; Burke, K. C.; Steinberger, B. M.; Domeier, M.

    2014-12-01

    Since the Pangea supercontinent formed some 320 million years ago, the majority of large igneous provinces and diamond-bearing rocks (kimberlites) near Earth's surface can be sourced to plumes erupting from the margins of two large thermochemical reservoirs at the core-mantle boundary. Using this surface to core-mantle boundary correlation to locate continents in longitude and a new iterative approach for defining a paleomagnetic reference frame corrected for true polar wander, we present a model for plate motion back to earliest Paleozoic time (540 Ma). We have identified six phases of slow, oscillatory true polar wander during the Paleozoic. True polar wander rates (<1 Degree/Myr) are compatible to those in the Mesozoic but plate velocities are on average twice as high. We show that a geologically reasonable model that reconstructs continents in longitude in such a way that large igneous provinces and kimberlites are positioned above the plume generation zones at the times of their formation can be successfully applied to the entire Phanerozoic. Our model is a kinematic model for only the continents. The next step in improving it will be developing a model for the entire lithosphere, including synthetic oceanic lithosphere. This is challenging, but we will demonstrate a full-plate model back to the Late Paleozoic (410 Ma).

  20. The virtual hand illusion is moderated by context-induced spatial reference frames

    PubMed Central

    Zhang, Jing; Ma, Ke; Hommel, Bernhard

    2015-01-01

    The tendency to perceive an artificial effector as part of one’s own body is known to depend on temporal criteria, like the synchrony between stimulus events informing about the effector. The role of spatial factors is less well understood. Rather than physical distance, which has been manipulated in previous studies, we investigated the role of relative, context-induced distance between the participant’s real hand and an artificial hand stimulated synchronously or asynchronously with the real hand. We replicated previously reported distance effects in a virtual reality setup: the perception of ownership increased with decreased distance, and the impact of synchrony was stronger for short distances. More importantly, we found that ownership perception and impact of synchrony were affected by previous distance: the same, medium distance between real and artificial hand induced more pronounced ownership after having experienced a far-distance condition than after a near-distance condition. This suggests that subjective, context-induced spatial reference frames contribute to ownership perception, which does not seem to fit with the idea of fixed spatial criteria and/or permanent body representations as the sole determinants of perceived body ownership. PMID:26579042

  1. Multi-point Adjoint-Based Design of Tilt-Rotors in a Noninertial Reference Frame

    NASA Technical Reports Server (NTRS)

    Jones, William T.; Nielsen, Eric J.; Lee-Rausch, Elizabeth M.; Acree, Cecil W.

    2014-01-01

    Optimization of tilt-rotor systems requires the consideration of performance at multiple design points. In the current study, an adjoint-based optimization of a tilt-rotor blade is considered. The optimization seeks to simultaneously maximize the rotorcraft figure of merit in hover and the propulsive efficiency in airplane-mode for a tilt-rotor system. The design is subject to minimum thrust constraints imposed at each design point. The rotor flowfields at each design point are cast as steady-state problems in a noninertial reference frame. Geometric design variables used in the study to control blade shape include: thickness, camber, twist, and taper represented by as many as 123 separate design variables. Performance weighting of each operational mode is considered in the formulation of the composite objective function, and a build up of increasing geometric degrees of freedom is used to isolate the impact of selected design variables. In all cases considered, the resulting designs successfully increase both the hover figure of merit and the airplane-mode propulsive efficiency for a rotor designed with classical techniques.

  2. Efficient quantum key distribution with trines of reference-frame-free qubits

    NASA Astrophysics Data System (ADS)

    Tabia, Gelo; Englert, Berthold-Georg

    2011-01-01

    We propose a rotationally-invariant quantum key distribution scheme that uses a pair of orthogonal qubit trines, realized as mixed states of three physical qubits. The measurement outcomes do not depend on how Alice and Bob choose their individual reference frames. The efficient key generation by two-way communication produces two independent raw keys, a bit key and a trit key. For a noiseless channel, Alice and Bob get a total of 0.573 key bits per trine state sent (98% of the Shannon limit). This exceeds by a considerable amount the yield of standard trine schemes, which ideally attain half a key bit per trine state. Eavesdropping introduces an ɛ-fraction of unbiased noise, ensured by twirling if necessary. The security analysis reveals an asymmetry in Eve's conditioned ancillas for Alice and Bob resulting from their inequivalent roles in the key generation. Upon simplifying the analysis by a plausible symmetry assumption, we find that a secret key can be generated if the noise is below the threshold set by ɛ=0.197.

  3. Deep mantle structure as a reference frame for movements in and on the Earth.

    PubMed

    Torsvik, Trond H; van der Voo, Rob; Doubrovine, Pavel V; Burke, Kevin; Steinberger, Bernhard; Ashwal, Lewis D; Trønnes, Reidar G; Webb, Susan J; Bull, Abigail L

    2014-06-17

    Earth's residual geoid is dominated by a degree-2 mode, with elevated regions above large low shear-wave velocity provinces on the core-mantle boundary beneath Africa and the Pacific. The edges of these deep mantle bodies, when projected radially to the Earth's surface, correlate with the reconstructed positions of large igneous provinces and kimberlites since Pangea formed about 320 million years ago. Using this surface-to-core-mantle boundary correlation to locate continents in longitude and a novel iterative approach for defining a paleomagnetic reference frame corrected for true polar wander, we have developed a model for absolute plate motion back to earliest Paleozoic time (540 Ma). For the Paleozoic, we have identified six phases of slow, oscillatory true polar wander during which the Earth's axis of minimum moment of inertia was similar to that of Mesozoic times. The rates of Paleozoic true polar wander (<1°/My) are compatible with those in the Mesozoic, but absolute plate velocities are, on average, twice as high. Our reconstructions generate geologically plausible scenarios, with large igneous provinces and kimberlites sourced from the margins of the large low shear-wave velocity provinces, as in Mesozoic and Cenozoic times. This absolute kinematic model suggests that a degree-2 convection mode within the Earth's mantle may have operated throughout the entire Phanerozoic.

  4. The IAU2000 Standards: The Newly Adopted Time, Coordinates, and Reference Frames.

    NASA Astrophysics Data System (ADS)

    Standish, E. M.

    2003-08-01

    Over the past dozen years or so, the IAU has been deluged with resolutions from Division I (Fundamental Astronomy) regarding dynamics, reference frames, fundamental time-scales, earth orientation, etc. Some of the resolutions are merely cosmetic in nature, detailing the basic foundations which have been used by serious researchers for many years. Some of the other resolutions, however, will have a direct affect upon a number of different fields of study. Sooner or later, these changes will actually be implemented, and they will affect anyone doing precision-type work in astronomy, geophysics, and related fields. As with most changes, there are pros and cons; these will be discussed. On a more practical level, the following questions will be addressed: What major areas of astrometry will be affected? What specific items will change? What does one need to know in order to survive the changes? What does one have to do in order to not be adversely affected? The research described in this publication was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  5. Facing the Sunrise: Cultural Worldview Underlying Intrinsic-Based Encoding of Absolute Frames of Reference in Aymara

    ERIC Educational Resources Information Center

    Nunez, Rafael E.; Cornejo, Carlos

    2012-01-01

    The Aymara of the Andes use absolute (cardinal) frames of reference for describing the relative position of ordinary objects. However, rather than encoding them in available absolute lexemes, they do it in lexemes that are intrinsic to the body: "nayra" ("front") and "qhipa" ("back"), denoting east and west,…

  6. The Internal/External Frame of Reference Model Revisited: Incorporating General Cognitive Ability and General Academic Self-Concept

    ERIC Educational Resources Information Center

    Brunner, Martin; Ludtke, Oliver; Trautwein, Ulrich

    2008-01-01

    The internal/external frame of reference model (I/E model; Marsh, 1986) is a highly influential model of self-concept formation, which predicts that domain-specific abilities have positive effects on academic self-concepts in the corresponding domain and negative effects across domains. Investigations of the I/E model do not typically incorporate…

  7. Business vs. Cultural Frames of Reference in Group Decision Making: Interactions among Austrian, Finnish, and Swedish Business Students.

    ERIC Educational Resources Information Center

    Auer-Rizzi, Werner; Berry Michael

    2000-01-01

    Examines ways business and cultural frames of reference affect decision making in multicultural groups. Finds students' reactions to two class activities shows how "groupthink" arose in both exercises; cultural interference paralyzed group decision making in one group; and cultural interference demonstrated the importance of a cultural…

  8. Incremental validity of the frame-of-reference effect in personality scale scores: a replication and extension.

    PubMed

    Bing, Mark N; Whanger, James C; Davison, H Kristl; VanHook, Jayson B

    2004-02-01

    Context-specific personality items provide respondents with a common frame of reference unlike more traditional, noncontextual personality items. The common frame of reference standardizes item interpretation and has been shown to reduce measurement error while increasing validity in comparison to noncontextual items (M. J. Schmit, A. M. Ryan. S. L. Stierwalt. & S. L. Powell, 1995). Although the frame-of-reference effect on personality scales scores has been well investigated (e.g., M. J. Schmit et al., 1995), the ability of this innovation to obtain incremental validity above and beyond the well-established, noncontextual personality scale scores has yet to be examined. The current study replicates and extends work by M. J. Schmit et al. (1995) to determine the incremental validity of the frame-of-reference effect. The results indicate that context-specific personality items do indeed obtain incremental validity above and beyond both noncontextual items and cognitive ability, and in spite of socially desirable responding induced by applicant instructions. The implications of these findings for personnel selection are discussed.

  9. Learning to Explain Astronomy across Moving Frames of Reference: Exploring the Role of Classroom and Planetarium-Based Instructional Contexts

    ERIC Educational Resources Information Center

    Plummer, Julia Diane; Kocareli, Alicia; Slagle, Cynthia

    2014-01-01

    Learning astronomy involves significant spatial reasoning, such as learning to describe Earth-based phenomena and understanding space-based explanations for those phenomena as well as using the relevant size and scale information to interpret these frames of reference. This study examines daily celestial motion (DCM) as one case of how children…

  10. Justifying Alternative Models in Learning Astronomy: A Study of K-8 Science Teachers' Understanding of Frames of Reference

    ERIC Educational Resources Information Center

    Shen, Ji; Confrey, Jere

    2010-01-01

    Understanding frames of reference is critical in describing planetary motion and learning astronomy. Historically, the geocentric and heliocentric models were defended and advocated against each other. Today, there are still many people who do not understand the relationship between the two models. This topic is not adequately treated in astronomy…

  11. Reference Frames and 3-D Shape Perception of Pictured Objects: On Verticality and Viewpoint-From-Above

    PubMed Central

    van Doorn, Andrea J.; Wagemans, Johan

    2016-01-01

    Research on the influence of reference frames has generally focused on visual phenomena such as the oblique effect, the subjective visual vertical, the perceptual upright, and ambiguous figures. Another line of research concerns mental rotation studies in which participants had to discriminate between familiar or previously seen 2-D figures or pictures of 3-D objects and their rotated versions. In the present study, we disentangled the influence of the environmental and the viewer-centered reference frame, as classically done, by comparing the performances obtained in various picture and participant orientations. However, this time, the performance is the pictorial relief: the probed 3-D shape percept of the depicted object reconstructed from the local attitude settings of the participant. Comparisons between the pictorial reliefs based on different picture and participant orientations led to two major findings. First, in general, the pictorial reliefs were highly similar if the orientation of the depicted object was vertical with regard to the environmental or the viewer-centered reference frame. Second, a viewpoint-from-above interpretation could almost completely account for the shears occurring between the pictorial reliefs. More specifically, the shears could largely be considered as combinations of slants generated from the viewpoint-from-above, which was determined by the environmental as well as by the viewer-centered reference frame. PMID:27433329

  12. Flying over uneven moving terrain based on optic-flow cues without any need for reference frames or accelerometers.

    PubMed

    Expert, Fabien; Ruffier, Franck

    2015-02-26

    Two bio-inspired guidance principles involving no reference frame are presented here and were implemented in a rotorcraft, which was equipped with panoramic optic flow (OF) sensors but (as in flying insects) no accelerometer. To test these two guidance principles, we built a tethered tandem rotorcraft called BeeRotor (80 grams), which was tested flying along a high-roofed tunnel. The aerial robot adjusts its pitch and hence its speed, hugs the ground and lands safely without any need for an inertial reference frame. The rotorcraft's altitude and forward speed are adjusted via two OF regulators piloting the lift and the pitch angle on the basis of the common-mode and differential rotor speeds, respectively. The robot equipped with two wide-field OF sensors was tested in order to assess the performances of the following two systems of guidance involving no inertial reference frame: (i) a system with a fixed eye orientation based on the curved artificial compound eye (CurvACE) sensor, and (ii) an active system of reorientation based on a quasi-panoramic eye which constantly realigns its gaze, keeping it parallel to the nearest surface followed. Safe automatic terrain following and landing were obtained with CurvACE under dim light to daylight conditions and the active eye-reorientation system over rugged, changing terrain, without any need for an inertial reference frame.

  13. The Human Retrosplenial Cortex and Thalamus Code Head Direction in a Global Reference Frame

    PubMed Central

    Shine, Jonathan P.; Valdés-Herrera, José P.; Hegarty, Mary; Wolbers, Thomas

    2017-01-01

    Spatial navigation is a multisensory process involving integration of visual and body-based cues. In rodents, head direction (HD) cells, which are most abundant in the thalamus, integrate these cues to code facing direction. Human fMRI studies examining HD coding in virtual environments (VE) have reported effects in retrosplenial complex and (pre-)subiculum, but not the thalamus. Furthermore, HD coding appeared insensitive to global landmarks. These tasks, however, provided only visual cues for orientation, and attending to global landmarks did not benefit task performance. In the present study, participants explored a VE comprising four separate locales, surrounded by four global landmarks. To provide body-based cues, participants wore a head-mounted display so that physical rotations changed facing direction in the VE. During subsequent MRI scanning, subjects saw stationary views of the environment and judged whether their orientation was the same as in the preceding trial. Parameter estimates extracted from retrosplenial cortex and the thalamus revealed significantly reduced BOLD responses when HD was repeated. Moreover, consistent with rodent findings, the signal did not continue to adapt over repetitions of the same HD. These results were supported by a whole-brain analysis showing additional repetition suppression in the precuneus. Together, our findings suggest that (i) consistent with the rodent literature, the human thalamus may integrate visual, and body-based, orientation cues, (ii) global reference frame cues can be used to integrate HD across separate individual locales, and (iii) immersive training procedures providing full body-based cues may help to elucidate the neural mechanisms supporting spatial navigation. PMID:27307227

  14. Implications of a comprehensive, spreading-aligned plate motion reference frame in light of seismic anisotropy and global trench migration

    NASA Astrophysics Data System (ADS)

    Becker, T. W.; Schaeffer, A. J.; Lebedev, S.; Conrad, C. P.

    2015-12-01

    An absolute plate motion model is required to address issues such as the thermo-chemical evolution of Earth's mantle, yet all such models have to rely on indirect inferences. Given that azimuthal seismic anisotropy in the uppermost mantle appears to show fast axes parallel to seafloor spreading, we explore a new, spreading-aligned reference frame. We show that this reference frame indeed fits azimuthal seismic anisotropy from surface waves and SKS splitting very well. The corresponding Euler pole (at 64∘E, 61∘S, with rotation of ~0.25∘/Myr) is close to those of hot spot reference frames, as expected if hot spots were due to relatively stationary mantle plumes. The new Euler pole is also close to that of ridge motion minimizing models, and its amplitude broadly consistent with estimates of net rotation generation by mantle convection with strong continental keels and a weak asthenosphere. The finding that relative spreading aligns with absolute plate motions implies that ridges are passive and that transform faults weak, allowing for easy realignment of spreading centers during slab-driven plate reorganizations. We also explore the implications of our new reference frame for slabs where we find that all of the major eastern Pacific subduction zone trenches are rolling back (away from the overriding plate). Fast trench advance is only predicted in regions with strong corner flow and pivoting (Tonga), continental plate interactions (Sumatra and Caribbean), and most clearly in an ocean-ocean setting for the Philippine Sea Plate where double subduction, slab-slab interactions may explain the fast advance of the Marianas. We conclude that a net rotation pole guided by the spreading-aligned model could indeed represent a comprehensive reference frame for present-day plate motions with respect to the deep mantle.

  15. Supercontinent Pangea, Mantle Dynamics, and Reference Frame of Global Plate Motions

    NASA Astrophysics Data System (ADS)

    Zhong, S.; Rudolph, M. L.; Liu, X.

    2014-12-01

    Arguably the most important and challenging goal in geodynamics is to understand the two-way dynamics between tectonic plates and mantle convection. While it has long been recognized that the present-day degree-2 mantle structure as imaged seismically is closely related to the plate motions (Hager and O'Connell, 1981) and their history (<119 Ma) (Ricard et al., 1993; McNamara and Zhong, 2005), recent studies have expanded this concept, from two different perspectives, by seeking connections between Pangea assembly and breakup and mantle structure and dynamics. First, it has been proposed that the large igneous provinces (LIPs) and kimberlite volcanism erupted mainly along the edges of the two major seismically slow anomalies above the core-mantle boundary (often referred to as the Africa and Pacific LLSVPs) (Torsvik et al, 2010). This has led to the proposal that the present-day degree-2 mantle structure has existed for >500 Ma (Torsvik et al., 2014), although its statistical significance has been challenged (Austermann et al., 2013). The proposals of the spatially stable Africa and Pacific LLSVPs and of the LIP eruptions along their edges have also been exploited in attempts to build global plate motion models since the Pangea assembly by providing a plate motion reference frame or inferring true polar wander (TPW) corrections to the plate motions (Torsvik et al., 2014). Second, mantle dynamics studies indicate that degree-1 mantle convection, which is expected with realistic lithospheric and mantle viscosity, may be needed for assembly of a supercontinent (e.g., Pangea) (Zhong et al., 2007). This suggests that the present degree-2 mantle structure may have been formed only after the Pangea assembly from an initially degree-1 structure - a scenario that is consistent with convection calculations with a proxy plate motion model that considers Pangea process (Zhang et al., 2010). In this presentation, in addition to critically reviewing these arguments, we will

  16. Search strategy selection in the Morris water maze indicates allocentric map formation during learning that underpins spatial memory formation.

    PubMed

    Rogers, Jake; Churilov, Leonid; Hannan, Anthony J; Renoir, Thibault

    2017-03-01

    reference to the other areas of the pool), was not sensitive to cue saliency or impaired in 5-HT1AR KO mice. Importantly, in the absence of a search strategy analysis, this suggests that to establish that the Morris water maze has worked (i.e. control mice have formed an allocentric map to the escape goal location), a measure of quadrant preference needs to be reported to establish spatial memory formation. This has implications for studies that claim hippocampal functioning is impaired using latency to platform or path length differences within the existing Morris water maze literature.

  17. GPS derived ground motions (2005-2014) within the Gulf of Mexico region referred to a stable Gulf of Mexico reference frame

    NASA Astrophysics Data System (ADS)

    Yu, J.; Wang, G.

    2015-11-01

    This study investigates current ground motions derived from the GPS geodesy infrastructure in the Gulf of Mexico region. The positions and velocity vectors of 161 continuous GPS (CGPS) stations are presented with respect to a newly established local reference frame, the Stable Gulf of Mexico Reference Frame (SGOMRF). Thirteen long-term (> 5 years) CGPS are used to realize the local reference frame. The root-mean-square (RMS) of the velocities of the 13 SGOMRF reference stations achieves 0.2 mm yr-1 in the horizontal and 0.3 mm yr-1 in the vertical directions. GPS observations presented in this study indicate significant land subsidence in the coastal area of southeastern Louisiana, the greater Houston metropolitan area, and two cities in Mexico (Aguascalientes and Mexico City). The most rapid subsidence is recorded at the Mexico City International airport, which is up to 26.6 cm yr-1 (2008-2014). Significant spatial variation of subsidence rates is observed in both Mexico City and the Houston area. The overall subsidence rate in the Houston area is decreasing. GPS observations in southeastern Louisiana indicate minor (4.0-6.0 mm yr-1) but consistent subsidence over time and space. This poses a potential threat to the safety of costal infrastructure in the long-term.

  18. GPS-derived ground deformation (2005-2014) within the Gulf of Mexico region referred to a stable Gulf of Mexico reference frame

    NASA Astrophysics Data System (ADS)

    Yu, Jiangbo; Wang, Guoquan

    2016-07-01

    This study investigates current ground deformation derived from the GPS geodesy infrastructure in the Gulf of Mexico region. The positions and velocity vectors of 161 continuous GPS (CGPS) stations are presented with respect to a newly established local reference frame, the Stable Gulf of Mexico Reference Frame (SGOMRF). Thirteen long-term (> 5 years) CGPS are used to realize the local reference frame. The root mean square (RMS) of the velocities of the 13 SGOMRF reference stations achieves 0.2 mm yr-1 in the horizontal and 0.3 mm yr-1 in the vertical directions. GPS observations presented in this study indicate significant land subsidence in the coastal area of southeastern Louisiana, the greater Houston metropolitan area, and two cities in Mexico (Aguascalientes and Mexico City). The most rapid subsidence is recorded at the Mexico City International airport, which is up to 26.6 cm yr-1 (2008-2014). Significant spatial variation of subsidence rates is observed in both Mexico City and the Houston area. The overall subsidence rate in the Houston area is decreasing. The subsidence rate in southeastern Louisiana is relatively smaller (4.0-6.0 mm yr-1) but tends to be steady over time. This poses a potential threat to the safety of coastal infrastructure in the long-term.

  19. Derivation of acoustoelastic Lamb wave dispersion curves in anisotropic plates at the initial and natural frames of reference.

    PubMed

    C Kubrusly, Alan; M B Braga, Arthur; von der Weid, Jean Pierre

    2016-10-01

    The propagation speed of ultrasonic waves in pre-stressed media can be evaluated either at the natural or initial frames of reference. In this paper general equations that can be applied to the partial wave technique are presented in order to obtain the dispersion spectra of acoustoelastic Lamb waves in anisotropic plates in either frame of reference. Employing these equations, dispersion curves for the fundamental modes in a pre-stressed transversely isotropic aluminum plate were numerically obtained in both reference frames under longitudinal and transverse loading with the material transverse axis along each of the Cartesian directions, as well as the propagation along a non-principal direction. Results confirm that due to the material natural anisotropy, the speed variation depends not only on the pre-stress direction but also on the material orientation as well as on the polarization of the propagating mode. Similar to bulk waves, the relationship between the speed at the natural and initial frames is a function of the load direction.

  20. The ICRF-3: Status, Plans, and Multi-wavelength Progress on the next generation Celestial Reference Frame.

    NASA Astrophysics Data System (ADS)

    Jacobs, Christopher

    2015-08-01

    ICRF-3 seeks to improve upon the highly successful ICRF-2. Our goals are to improve the precision, spatial and frequency coverage relative to the ICRF-2 by 2018. This date is driven by the desire to create radio frames that are ready for comparison with the Gaia optical frame.Several specific actions are underway. A collaboration to improve at S/X-band precision of the Very Long Baseline Array (VLBA) Calibrator Survey's ~2200 sources, which are typically 5 times less precise than the rest of the ICRF-2, is bearing fruit and is projected to yield a factor of 3 improvement in precision. S/X-band southern hemisphere precision improvements are underway with observations using southern antennas such as the AuScope, Warkworth, and HartRAO, South Africa.We also seek to improve radio frequency coverage with X/Ka-band and K-band work. An X/Ka frame of 660 sources now has full sky coverage from the addition of a 2nd southern station in Argentina which is strengthening the southern hemisphere in general. The X/Ka-band frame's precision is now comparable to the ICRF-2 for the 530 sources in common. A K-band collaboration has formed with similar coverage and southern precision goals. By the time of this meeting, we expect K-band to complete full sky coverage with south polar cap observations and to improve spatial density north of -30 deg declination with VLBA observations.On the analysis front, special attention is being given to combination techniques both of Very Long Baseline Interferometry (VLBI) frames and of multiple data types. Consistency of the Celestial Reference Frame (CRF) with the Terrestrial Reference Frame (TRF) and Earth Oreintation Parameters (EOP) is another area of concern. Comparison of celestial frame solutions from various groups is underway in order to identify and correct systematic errors. We will discuss evidence emerging for 100 µas zonal errors in the ICRF2 in the declination range from 0 to -30 deg.Finally, work is underway to identify and

  1. A radio/optical reference frame. 5: Additional source positions in the mid-latitude southern hemisphere

    NASA Technical Reports Server (NTRS)

    Russell, J. L.; Reynolds, J. E.; Jauncey, D. L.; De Vegt, C.; Zacharias, N.; Ma, C.; Fey, A. L.; Johnston, K. J.; Hindsley, R.; Hughes, J. A.

    1994-01-01

    We report new accurate radio position measurements for 30 sources, preliminary positions for two sources, improved radio postions for nine additional sources which had limited previous observations, and optical positions and optical-radio differences for six of the radio sources. The Very Long Baseline Interferometry (VLBI) observations are part of the continuing effort to establish a global radio reference frame of about 400 compact, flat spectrum sources, which are evenly distributed across the sky. The observations were made using Mark III data format in four separate sessions in 1988-89 with radio telescopes at Tidbinbilla, Australia, Kauai, USA, and Kashima, Japan. We observed a total of 54 sources, including ten calibrators and three which were undetected. The 32 new source positions bring the total number in the radio reference frame catalog to 319 (172 northern and 147 southern) and fill in the zone -25 deg greater than delta greater than -45 deg which, prior to this list, had the lowest source density. The VLBI positions have an average formal precision of less than 1 mas, although unknown radio structure effects of about 1-2 mas may be present. The six new optical postion measurements are part of the program to obtain positions of the optical counterparts of the radio reference frame source and to map accurately the optical on to the radio reference frames. The optical measurements were obtained from United States Naval Observatory (USNO) Black Birch astrograph plates and source plates from the AAT, and Kitt Peak National Observatory (KPNO) 4 m, and the European Southern Observatory (ESO) Schmidt. The optical positions have an average precision of 0.07 sec, mostly due to the zero point error when adjusted to the FK5 optical frame using the IRS catalog. To date we have measured optical positions for 46 sources.

  2. Extending the ILRS Terrestrial Reference Frame Development Contribution to ITRF2014

    NASA Astrophysics Data System (ADS)

    Luceri, Vincenza; Pavlis, Erricos C.; Pace, Brigida; Kuzmicz-Cieslak, Magdalena; König, Daniel; Bianco, Giuseppe; Evans, Keith

    2015-04-01

    The announcement of a possible extension of the next International Terrestrial Reference Frame (ITRF) model to include all of 2014 required the extension of all techniques' contributions by an additional year within a tight delivery schedule (end of February 2015). The ILRS Analysis Working Group (AWG) agreed to support this activity and laid out a plan to ensure that we can meet this strict deadline. Although Satellite Laser Ranging (SLR) data have contributed to the definition of the ITRF over the past three decades, delivering products under such a tight schedule (only a few weeks after the last data are taken) was never before required. Careful planning to ensure the timely availability of the ancillary information required for the reduction of the SLR data and the fact that the analysis procedures of each contributing AC were already validated with the ITRF2013 submissions helped us meet the deadline and demonstrated that it is possible to do so even routinely. The ILRS contribution is only an extension to what was submitted for ITRF2013, with no other changes in modeling or standards of analysis. The main focus of our re-analysis is monitoring systematic errors at individual stations, accounting for undocumented discontinuities, and improving the target signature models. The latter has been addressed with the adoption of mm-accurate models for all of our targets. As far as the station systematics, the AWG had already embarked on a major effort to improve the handling of such errors prior to the development of ITRF2008. The re-analysis for ITRF2014 extends from 1983 to the end of 2014. As in the case of ITRF2008, station engineers and analysts have worked together to determine the magnitude and cause of systematic errors that were noticed during the analysis, rationalize them based on events at the stations, and develop appropriate corrections whenever possible. With the completion of ITRF2014 the ILRS will next turn its attention to the development of new

  3. Fixing the Extragalactic Reference Frame For the Proper Motion of the Carina Dwarf Spheroidal

    NASA Astrophysics Data System (ADS)

    Carlin, Jeffrey L.; Majewski, Steven R.; Munoz, Ricardo R.

    2010-08-01

    The orbital shapes of Milky Way dwarf spheroidal (dSph) galaxies provide specific constraints on CDM models of hierarchical structure formation on small scales and for late infalling subhalos. Furthermore, many physical properties of these dSph systems are shaped by tidal impulses, the magnitude of which depends on the orbit of the dSph. Unfortunately, the tangential (i.e., proper) motions of distant Milky Way dSphs are extremely difficult to measure, and thus remain poorly constrained (or in most cases unknown). We propose to remedy this for the Carina dSph, for which we have used a large, unique set of photographic plates spanning a 14 year baseline and covering large enough area to allow for a precise proper motion measurement. We have digitized these plates and derived precise (1-2 mas/yr per star) relative proper motions for 565 confirmed Carina members, and >1000 more likely members; these lead to a bulk relative proper motion for the system defined to 0.04 mas/yr. Despite this extreme precision, the absolute (relative to the ``fixed'' extragalactic background) proper motion of Carina is still poorly constrained, due to the paucity of identified QSOs (only 7) in the field of view to fix the reference frame. With our proposed search for QSOs among the ~2000 objects in our proper-motion catalog, we expect to discover ~50 QSOs, which will improve the accuracy of our proper motion zero point by a factor of 3 in each dimension, and likely more. This will allow for a precise determination of the orbit of the Carina dwarf galaxy, with an expected accuracy 2× better than the recent proper motion for this object, which disagrees with the proper motion expected from the direction of Carina's tidal tails. This is a resubmission of a proposal that was granted time in 2010A; the observing run in Feb. 2010 was beset by poor weather conditions and instrument trouble, yielding very little usable data.

  4. Improvement of Allocentric Spatial Memory Resolution in Children from 2 to 4 Years of Age

    ERIC Educational Resources Information Center

    Lambert, Farfalla Ribordy; Lavenex, Pierre; Lavenex, Pamela Banta

    2015-01-01

    Allocentric spatial memory, the memory for locations coded in relation to objects comprising our environment, is a fundamental component of episodic memory and is dependent on the integrity of the hippocampal formation in adulthood. Previous research from different laboratories reported that basic allocentric spatial memory abilities are reliably…

  5. Non-linear VLBI station motions and their impact on the celestial reference frame and Earth orientation parameters.

    PubMed

    Krásná, Hana; Malkin, Zinovy; Böhm, Johannes

    The increasing accuracy and growing time span of Very Long Baseline Interferometry (VLBI) observations allow the determination of seasonal signals in station positions which still remain unmodelled in conventional analysis approaches. In this study we focus on the impact of the neglected seasonal signals in the station displacement on the celestial reference frame and Earth orientation parameters. We estimate empirical harmonic models for selected stations within a global solution of all suitable VLBI sessions and create mean annual models by stacking yearly time series of station positions which are then entered a priori in the analysis of VLBI observations. Our results reveal that there is no systematic propagation of the seasonal signal into the orientation of celestial reference frame but position changes occur for radio sources observed non-evenly over the year. On the other hand, the omitted seasonal harmonic signal in horizontal station coordinates propagates directly into the Earth rotation parameters causing differences of several tens of microarcseconds.

  6. Functional correlates of the lateral and medial entorhinal cortex: objects, path integration and local-global reference frames.

    PubMed

    Knierim, James J; Neunuebel, Joshua P; Deshmukh, Sachin S

    2014-02-05

    The hippocampus receives its major cortical input from the medial entorhinal cortex (MEC) and the lateral entorhinal cortex (LEC). It is commonly believed that the MEC provides spatial input to the hippocampus, whereas the LEC provides non-spatial input. We review new data which suggest that this simple dichotomy between 'where' versus 'what' needs revision. We propose a refinement of this model, which is more complex than the simple spatial-non-spatial dichotomy. MEC is proposed to be involved in path integration computations based on a global frame of reference, primarily using internally generated, self-motion cues and external input about environmental boundaries and scenes; it provides the hippocampus with a coordinate system that underlies the spatial context of an experience. LEC is proposed to process information about individual items and locations based on a local frame of reference, primarily using external sensory input; it provides the hippocampus with information about the content of an experience.

  7. Differential School Contextual Effects for Math and English: Integrating the Big-Fish-Little-Pond Effect and the Internal/External Frame of Reference

    ERIC Educational Resources Information Center

    Parker, Philip D.; Marsh, Herbert W.; Ludtke, Oliver; Trautwein, Ulrich

    2013-01-01

    The internal/external frame of reference and the big-fish-little-pond effect are two major models of academic self-concept formation which have considerable theoretical and empirical support. Integrating the domain specific and compensatory processes of the internal/external frame of reference model with the big-fish-little-pond effect suggests a…

  8. The Reciprocal Internal/External Frame of Reference Model: An Integration of Models of Relations between Academic Achievement and Self-Concept

    ERIC Educational Resources Information Center

    Moller, Jens; Retelsdorf, Jan; Koller, Olaf; Marsh, Herb W.

    2011-01-01

    The reciprocal internal/external frame of reference model (RI/EM) combines the internal/external frame of reference model and the reciprocal effects model. The RI/EM predicts positive effects of mathematics and verbal achievement and academic self-concepts (ASC) on subsequent mathematics and verbal achievements and ASCs within domains and negative…

  9. Allocentric spatial learning and memory deficits in Down syndrome

    PubMed Central

    Lavenex, Pamela Banta; Bostelmann, Mathilde; Brandner, Catherine; Costanzo, Floriana; Fragnière, Emilie; Klencklen, Giuliana; Lavenex, Pierre; Menghini, Deny; Vicari, Stefano

    2015-01-01

    Studies have shown that persons with Down syndrome (DS) exhibit relatively poor language capacities, and impaired verbal and visuoperceptual memory, whereas their visuospatial memory capacities appear comparatively spared. Individuals with DS recall better where an object was previously seen than what object was previously seen. However, most of the evidence concerning preserved visuospatial memory comes from tabletop or computerized experiments which are biased toward testing egocentric (viewpoint-dependent) spatial representations. Accordingly, allocentric (viewpoint-independent) spatial learning and memory capacities may not be necessary to perform these tasks. Thus, in order to more fully characterize the spatial capacities of individuals with DS, allocentric processes underlying real-world navigation must also be investigated. We tested 20 participants with DS and 16 mental age-matched, typically developing (TD) children in a real-world, allocentric spatial (AS) memory task. During local cue (LC) trials, participants had to locate three rewards marked by local color cues, among 12 locations distributed in a 4 m × 4 m arena. During AS trials, participants had to locate the same three rewards, in absence of LCs, based on their relations to distal environmental cues. All TD participants chose rewarded locations in LC and AS trials at above chance level. In contrast, although all but one of the participants with DS exhibited a preference for the rewarded locations in LC trials, only 50% of participants with DS chose the rewarded locations at above chance level in AS trials. As a group, participants with DS performed worse than TD children on all measures of task performance. These findings demonstrate that individuals with DS are impaired at using an AS representation to learn and remember discrete locations in a controlled environment, suggesting persistent and pervasive deficits in hippocampus-dependent memory in DS. PMID:25762946

  10. Learning to Explain Astronomy Across Moving Frames of Reference: Exploring the role of classroom and planetarium-based instructional contexts

    NASA Astrophysics Data System (ADS)

    Plummer, Julia Diane; Kocareli, Alicia; Slagle, Cynthia

    2014-05-01

    Learning astronomy involves significant spatial reasoning, such as learning to describe Earth-based phenomena and understanding space-based explanations for those phenomena as well as using the relevant size and scale information to interpret these frames of reference. This study examines daily celestial motion (DCM) as one case of how children learn to move between frames of reference in astronomy wherein one explains Earth-based descriptions of the Sun's, Moon's, and stars' apparent motion using the Earth's daily rotation. We analysed interviews with 8-9-year-old students (N = 99) who participated in one of four instructional conditions emphasizing: the space-based perspective; the Earth-based perspective in the planetarium; constructing explanations for the Earth-based observations; and a combination of the planetarium plus constructing explanations in the classroom. We used an embodied cognition framework to analyse outcomes while also considering challenges learners face due to the high cognitive demands of spatial reasoning. Results support the hypothesis that instruction should engage students in learning both the Earth-based observations and space-based explanations, as focusing on a single frame of reference resulted in less sophisticated explanations; however, few students were able to construct a fully scientific explanation after instruction.

  11. Allocentric kin recognition is not affected by facial inversion

    PubMed Central

    Dal Martello, Maria F.; DeBruine, Lisa M.; Maloney, Laurence T.

    2015-01-01

    Typical judgments involving faces are disrupted by inversion, with the Thatcher illusion serving as a compelling example. In two experiments, we examined how inversion affects allocentric kin recognition—the ability to judge the degree of genetic relatedness of others. In the first experiment, participants judged whether pairs of photographs of children portrayed siblings or unrelated children. Half of the pairs were siblings, half were unrelated. In three experimental conditions, photographs were viewed in upright orientation, flipped around a horizontal axis, or rotated 180°. Neither rotation nor flipping had any detectable effect on allocentric kin recognition. In the second experiment, participants judged pairs of photographs of adult women. Half of the pairs were sisters, half were unrelated. We again found no significant effect of facial inversion. Unlike almost all other face judgments, judgments of kinship from facial appearance do not rely on perceptual cues disrupted by inversion, suggesting that they rely more on spatially localized cues rather than “holistic” cues. We conclude that kin recognition is not simply a byproduct of other face perception abilities. We discuss the implications for cue combination models of other facial judgments that are affected by inversion. PMID:26381836

  12. The X/Ka Celestial Reference Frame: Results from combined NASA-ESA baselines including Malargüe, Argentina

    NASA Astrophysics Data System (ADS)

    Jacobs, Christopher S.; Clark, J. E.; Garcí-Miró, C.; Goodhart, C. E.; Horiuchi, S.; Madde, R.; Mercolino, M.; Naudet, C. J.; Snedeker, L. G.; Sotuela, I.; White, L. A.

    2014-03-01

    An X/Ka-band (8.4/32 GHz) celestial reference frame has been constructed using a combined NASA and ESA Deep Space Network. Observations at X/Ka-band are motivated by their ability to access more compact source morphology and reduced core shift relative to observations at the historically standard S/X-band. In 86 observing sessions we detected 631 sources covering the full 24 hours of right ascension and the full range of declinations. The collaboration between NASA and ESA's deep space antenna in Malargüe, Argentina was created with an emphasis on addressing weaknesses in the southern hemisphere. The accuracy of the resulting CRF was quantified by comparison of 520 X/Ka sources in common with the S/X-band (2.3/8.4 GHz) ICRF2 producing wRMS agreement of 175 μas in RA cos(dec) and 220 μas in Declination. There is evidence for systematic errors at the ~100 μas level. Known errors include limited SNR, lack of phase calibration, troposphere mismodelling, and terrestrial frame distortions. Actions are underway to reduce all of these errors. The recent successful launch of the Gaia optical astrometric satellite motivates work to tie the radio and optical frames. Existing X/Ka data and simulated Gaia data predict a frame tie precision of ~10 μas (1-sigma, per 3-D rotation component) with anticipated improvements having the potential to produce a tie of 5 μas per component. If XKa precision can be pushed below 100 µas, the XKa frame has potential to produce a tie to Gaia that is superior to S/X due to reduced astrophysical systematics at X/Ka relative to S/X.

  13. The assessment of the transformation of global tectonic plate models and the global terrestrial reference frames using the Velocity Decomposition Analysis

    NASA Astrophysics Data System (ADS)

    Ampatzidis, Dimitrios; König, Rolf; Glaser, Susanne; Heinkelmann, Robert; Schuh, Harald; Flechtner, Frank; Nilsson, Tobias

    2016-04-01

    The aim of our study is to assess the classical Helmert similarity transformation using the Velocity Decomposition Analysis (VEDA). The VEDA is a new methodology, developed by GFZ for the assessment of the reference frames' temporal variation and it is based on the separation of the velocities into two specified parts: The first is related to the reference system choice (the so called datum effect) and the latter one which refers to the real deformation of the terrestrial points. The advantage of the VEDA is its ability to detect the relative biases and reference system effects between two different frames or two different realizations of the same frame, respectively. We apply the VEDA for the assessment between several modern tectonic plate models and the recent global terrestrial reference frames.

  14. Radio-optical reference frame link using the U.S. Naval observatory astrograph and deep CCD imaging

    SciTech Connect

    Zacharias, N.; Zacharias, M. I.

    2014-05-01

    Between 1997 and 2004 several observing runs were conducted, mainly with the CTIO 0.9 m, to image International Celestial Reference Frame (ICRF) counterparts (mostly QSOs) in order to determine accurate optical positions. Contemporary to these deep CCD images, the same fields were observed with the U.S. Naval Observatory astrograph in the same bandpass. They provide accurate positions on the Hipparcos/Tycho-2 system for stars in the 10-16 mag range used as reference stars for the deep CCD imaging data. Here we present final optical position results of 413 sources based on reference stars obtained by dedicated astrograph observations that were reduced following two different procedures. These optical positions are compared to radio very long baseline interferometry positions. The current optical system is not perfectly aligned to the ICRF radio system with rigid body rotation angles of 3-5 mas (= 3σ level) found between them for all three axes. Furthermore, statistically, the optical-radio position differences are found to exceed the total, combined, known errors in the observations. Systematic errors in the optical reference star positions and physical offsets between the centers of optical and radio emissions are both identified as likely causes. A detrimental, astrophysical, random noise component is postulated to be on about the 10 mas level. If confirmed by future observations, this could severely limit the Gaia to ICRF reference frame alignment accuracy to an error of about 0.5 mas per coordinate axis with the current number of sources envisioned to provide the link. A list of 36 ICRF sources without the detection of an optical counterpart to a limiting magnitude of about R = 22 is provided as well.

  15. Transformation from proper time on earth to coordinate time in solar system barycentric space-time frame of reference

    NASA Technical Reports Server (NTRS)

    Moyer, T. D.

    1976-01-01

    An expression was derived for the time transformation t - tau, where t is coordinate time in the solar system barycentric space-time frame of reference and tau is proper time obtained from a fixed atomic clock on earth. This transformation is suitable for use in the computation of high-precision earth-based range and Doppler observables of a spacecraft or celestial body located anywhere in the solar system; it can also be used in obtaining computed values of very long baseline interferometry data types. The formulation for computing range and Doppler observables, which is an explicit function of the transformation t - tau, is described briefly.

  16. Auger electron angular distribution of double core-hole states in the molecular reference frame.

    PubMed

    Cryan, James P; Glownia, J M; Andreasson, J; Belkacem, A; Berrah, N; Blaga, C I; Bostedt, C; Bozek, J; Buth, C; DiMauro, L F; Fang, L; Gessner, O; Guehr, M; Hajdu, J; Hertlein, M P; Hoener, M; Kornilov, O; Marangos, J P; March, A M; McFarland, B K; Merdji, H; Petrović, V S; Raman, C; Ray, D; Reis, D; Tarantelli, F; Trigo, M; White, J L; White, W; Young, L; Bucksbaum, P H; Coffee, R N

    2010-08-20

    The Linac Coherent Light Source free electron laser is a source of high brightness x rays, 2×10(11) photons in a ∼5 fs pulse, that can be focused to produce double core vacancies through rapid sequential ionization. This enables double core vacancy Auger electron spectroscopy, an entirely new way to study femtosecond chemical dynamics with Auger electrons that probe the local valence structure of molecules near a specific atomic core. Using 1.1 keV photons for sequential x-ray ionization of impulsively aligned molecular nitrogen, we observed a rich single-site double core vacancy Auger electron spectrum near 413 eV, in good agreement with ab initio calculations, and we measured the corresponding Auger electron angle dependence in the molecular frame.

  17. Auger Electron Angular Distribution of Double Core-Hole States in the Molecular Reference Frame

    NASA Astrophysics Data System (ADS)

    Cryan, James P.; Glownia, J. M.; Andreasson, J.; Belkacem, A.; Berrah, N.; Blaga, C. I.; Bostedt, C.; Bozek, J.; Buth, C.; Dimauro, L. F.; Fang, L.; Gessner, O.; Guehr, M.; Hajdu, J.; Hertlein, M. P.; Hoener, M.; Kornilov, O.; Marangos, J. P.; March, A. M.; McFarland, B. K.; Merdji, H.; Petrović, V. S.; Raman, C.; Ray, D.; Reis, D.; Tarantelli, F.; Trigo, M.; White, J. L.; White, W.; Young, L.; Bucksbaum, P. H.; Coffee, R. N.

    2010-08-01

    The Linac Coherent Light Source free electron laser is a source of high brightness x rays, 2×1011 photons in a ˜5fs pulse, that can be focused to produce double core vacancies through rapid sequential ionization. This enables double core vacancy Auger electron spectroscopy, an entirely new way to study femtosecond chemical dynamics with Auger electrons that probe the local valence structure of molecules near a specific atomic core. Using 1.1 keV photons for sequential x-ray ionization of impulsively aligned molecular nitrogen, we observed a rich single-site double core vacancy Auger electron spectrum near 413 eV, in good agreement with ab initio calculations, and we measured the corresponding Auger electron angle dependence in the molecular frame.

  18. A Multi-Componential Approach to Frame of Reference Acceptability in Tabletop Space

    ERIC Educational Resources Information Center

    Robinette, Laurie E.

    2010-01-01

    English spatial term assignment can involve some level of ambiguity, in that a single preposition may map onto a different area of space depending upon contextual issues involved in the assignment. For example, a located object can be said to be "above" a reference object in different ways: (1) according to properties of the environment, (2)…

  19. Power quality improvement by unified power quality conditioner based on CSC topology using synchronous reference frame theory.

    PubMed

    Dharmalingam, Rajasekaran; Dash, Subhransu Sekhar; Senthilnathan, Karthikrajan; Mayilvaganan, Arun Bhaskar; Chinnamuthu, Subramani

    2014-01-01

    This paper deals with the performance of unified power quality conditioner (UPQC) based on current source converter (CSC) topology. UPQC is used to mitigate the power quality problems like harmonics and sag. The shunt and series active filter performs the simultaneous elimination of current and voltage problems. The power fed is linked through common DC link and maintains constant real power exchange. The DC link is connected through the reactor. The real power supply is given by the photovoltaic system for the compensation of power quality problems. The reference current and voltage generation for shunt and series converter is based on phase locked loop and synchronous reference frame theory. The proposed UPQC-CSC design has superior performance for mitigating the power quality problems.

  20. Power Quality Improvement by Unified Power Quality Conditioner Based on CSC Topology Using Synchronous Reference Frame Theory

    PubMed Central

    Dharmalingam, Rajasekaran; Dash, Subhransu Sekhar; Senthilnathan, Karthikrajan; Mayilvaganan, Arun Bhaskar; Chinnamuthu, Subramani

    2014-01-01

    This paper deals with the performance of unified power quality conditioner (UPQC) based on current source converter (CSC) topology. UPQC is used to mitigate the power quality problems like harmonics and sag. The shunt and series active filter performs the simultaneous elimination of current and voltage problems. The power fed is linked through common DC link and maintains constant real power exchange. The DC link is connected through the reactor. The real power supply is given by the photovoltaic system for the compensation of power quality problems. The reference current and voltage generation for shunt and series converter is based on phase locked loop and synchronous reference frame theory. The proposed UPQC-CSC design has superior performance for mitigating the power quality problems. PMID:25013854

  1. Quantum nonlocality and preferred frames of reference: A return to a Lorentzian interpretation of the special theory of relativity

    NASA Astrophysics Data System (ADS)

    Mujica-Parodi, Lilianne Rivka

    I argue in the dissertation that there exists a fundamental contradiction between quantum theory and the special theory of relativity and that most of the well- known arguments to the contrary suffer from internal inconsistencies that render them ineffective in resolving the conflict. After an examination of these proposed solutions, I conclude that only four of them actually succeed without degenerating into logical inconsistency. These are: (a) the acceptance of an inherent nonseparability within nonfactorizable systems; (b) the requirement that all physical description exist only with respect to a particular spacetime hyperplane; (c) the allowance of a symmetric understanding of causality in which effects may sometimes temporally precede their causes; or (d) the negation of a realist interpretation of relativity in which all statements in one frame of reference may be Lorentz transformable into equivalent statements in all other frames of reference. In conclusion, I argue that the first three of these options, but not the fourth, succomb to a global inconsistency with respect to their relationship within science, leaving only the ``Lorentzian interpretation'' as a viable option at this time.

  2. Time-Dependent Selection of an Optimal Set of Sources to Define a Stable Celestial Reference Frame

    NASA Technical Reports Server (NTRS)

    Le Bail, Karine; Gordon, David

    2010-01-01

    Temporal statistical position stability is required for VLBI sources to define a stable Celestial Reference Frame (CRF) and has been studied in many recent papers. This study analyzes the sources from the latest realization of the International Celestial Reference Frame (ICRF2) with the Allan variance, in addition to taking into account the apparent linear motions of the sources. Focusing on the 295 defining sources shows how they are a good compromise of different criteria, such as statistical stability and sky distribution, as well as having a sufficient number of sources, despite the fact that the most stable sources of the entire ICRF2 are mostly in the Northern Hemisphere. Nevertheless, the selection of a stable set is not unique: studying different solutions (GSF005a and AUG24 from GSFC and OPA from the Paris Observatory) over different time periods (1989.5 to 2009.5 and 1999.5 to 2009.5) leads to selections that can differ in up to 20% of the sources. Observing, recording, and network improvement are some of the causes, showing better stability for the CRF over the last decade than the last twenty years. But this may also be explained by the assumption of stationarity that is not necessarily right for some sources.

  3. The error of L5/S1 joint moment calculation in a body-centered non-inertial reference frame when the fictitious force is ignored.

    PubMed

    Xu, Xu; Faber, Gert S; Kingma, Idsart; Chang, Chien-Chi; Hsiang, Simon M

    2013-07-26

    In ergonomics studies, linked segment models are commonly used for estimating dynamic L5/S1 joint moments during lifting tasks. The kinematics data input to these models are with respect to an arbitrary stationary reference frame. However, a body-centered reference frame, which is defined using the position and the orientation of human body segments, is sometimes used to conveniently identify the location of the load relative to the body. When a body-centered reference frame is moving with the body, it is a non-inertial reference frame and fictitious force exists. Directly applying a linked segment model to the kinematics data with respect to a body-centered non-inertial reference frame will ignore the effect of this fictitious force and introduce errors during L5/S1 moment estimation. In the current study, various lifting tasks were performed in the laboratory environment. The L5/S1 joint moments during the lifting tasks were calculated by a linked segment model with respect to a stationary reference frame and to a body-centered non-inertial reference frame. The results indicate that applying a linked segment model with respect to a body-centered non-inertial reference frame will result in overestimating the peak L5/S1 joint moments of the coronal plane, sagittal plane, and transverse plane during lifting tasks by 78%, 2%, and 59% on average, respectively. The instant when the peak moment occurred was delayed by 0.13, 0.03, and 0.09s on average, correspondingly for the three planes. The root-mean-square errors of the L5/S1 joint moment for the three planes are 21Nm, 19Nm, and 9Nm, correspondingly.

  4. Investigations on the hierarchy of reference frames in geodesy and geodynamics

    NASA Technical Reports Server (NTRS)

    Grafarend, E. W.; Mueller, I. I.; Papo, H. B.; Richter, B.

    1979-01-01

    Problems related to reference directions were investigated. Space and time variant angular parameters are illustrated in hierarchic structures or towers. Using least squares techniques, model towers of triads are presented which allow the formation of linear observation equations. Translational and rotational degrees of freedom (origin and orientation) are discussed along with and the notion of length and scale degrees of freedom. According to the notion of scale parallelism, scale factors with respect to a unit length are given. Three-dimensional geodesy was constructed from the set of three base vectors (gravity, earth-rotation and the ecliptic normal vector). Space and time variations are given with respect to a polar and singular value decomposition or in terms of changes in translation, rotation, deformation (shear, dilatation or angular and scale distortions).

  5. Moving Forward in Space and Time: How Strong is the Conceptual Link between Spatial and Temporal Frames of Reference?

    PubMed Central

    Bender, Andrea; Rothe-Wulf, Annelie; Hüther, Lisa; Beller, Sieghard

    2012-01-01

    People often use spatial vocabulary to describe temporal relations, and this increasingly has motivated attempts to map spatial frames of reference (FoRs) onto time. Recent research suggested that speech communities, which differ in how they conceptualize space, may also differ in how they conceptualize time and, more specifically, that the preferences for spatial FoRs should carry over to the domain of time. Here, we scrutinize this assumption (a) by reviewing data from recent studies on temporal references, (b) by comparing data we had collected in previous studies on preferences for spatial and temporal FoRs in four languages, (c) by analyzing new data from dynamic spatial tasks that resemble the temporal tasks more closely, and (d) by assessing the co-variation of individual preferences of English speakers across space and time. While the first set of data paints a mixed picture, the latter three do not support the assumption of a close link between referencing preferences across domains. We explore possible reasons for this lack of consistency and discuss implications for research on temporal references. PMID:23162519

  6. Facing the sunrise: cultural worldview underlying intrinsic-based encoding of absolute frames of reference in aymara.

    PubMed

    Núñez, Rafael E; Cornejo, Carlos

    2012-08-01

    The Aymara of the Andes use absolute (cardinal) frames of reference for describing the relative position of ordinary objects. However, rather than encoding them in available absolute lexemes, they do it in lexemes that are intrinsic to the body: nayra ("front") and qhipa ("back"), denoting east and west, respectively. Why? We use different but complementary ethnographic methods to investigate the nature of this encoding: (a) linguistic expressions and speech-gesture co-production, (b) linguistic patterns in the distinct regional Spanish-based variety Castellano Andino (CA), (c) metaphorical extensions of CA's spatial patterns to temporal ones, and (d) layouts of traditional houses. Findings indicate that, following fundamental principles of Aymara cosmology, people, objects, and land--as a whole--are conceived as having an implicit canonical orientation facing east, a primary landmark determined by the sunrise. The above bodily based lexicalizations are thus linguistic manifestations of a broader macro-cultural worldview and its psycho-cognitive reality.

  7. Outputs of paired Gabor filters summed across the background frame of reference predict the direction of movement

    NASA Technical Reports Server (NTRS)

    Lawton, Teri B.

    1989-01-01

    A cortical neural network that computes the visibility of shifts in the direction of movement is proposed. The network computes: (1) the magnitude of the position difference between the test and background patterns, (2) localized contrast differences at different spatial scales analyzed by computing temporal gradients of the difference and sum of the outputs of paired even- and odd-symmetric bandpass filters convolved with the input pattern, and (3) using global processes that pool the output from paired even- and odd-symmetric simple and complex cells across the spatial extent of the background frame of reference the direction a test pattern moved relative to a textured background. Evidence that magnocellular pathways are used to discriminate the direction of movement is presented. Since magnocellular pathways are used to discriminate the direction of movement, this task is not affected by small pattern changes such as jitter, short presentations, blurring, and different background contrasts that result when the veiling illumination in a scene changes.

  8. Adjoint-Based Design of Rotors using the Navier-Stokes Equations in a Noninertial Reference Frame

    NASA Technical Reports Server (NTRS)

    Nielsen, Eric J.; Lee-Rausch, Elizabeth M.; Jones, William T.

    2009-01-01

    Optimization of rotorcraft flowfields using an adjoint method generally requires a time-dependent implementation of the equations. The current study examines an intermediate approach in which a subset of rotor flowfields are cast as steady problems in a noninertial reference frame. This technique permits the use of an existing steady-state adjoint formulation with minor modifications to perform sensitivity analyses. The formulation is valid for isolated rigid rotors in hover or where the freestream velocity is aligned with the axis of rotation. Discrete consistency of the implementation is demonstrated using comparisons with a complex-variable technique, and a number of single- and multi-point optimizations for the rotorcraft figure of merit function are shown for varying blade collective angles. Design trends are shown to remain consistent as the grid is refined.

  9. Adjoint-Based Design of Rotors Using the Navier-Stokes Equations in a Noninertial Reference Frame

    NASA Technical Reports Server (NTRS)

    Nielsen, Eric J.; Lee-Rausch, Elizabeth M.; Jones, William T.

    2010-01-01

    Optimization of rotorcraft flowfields using an adjoint method generally requires a time-dependent implementation of the equations. The current study examines an intermediate approach in which a subset of rotor flowfields are cast as steady problems in a noninertial reference frame. This technique permits the use of an existing steady-state adjoint formulation with minor modifications to perform sensitivity analyses. The formulation is valid for isolated rigid rotors in hover or where the freestream velocity is aligned with the axis of rotation. Discrete consistency of the implementation is demonstrated by using comparisons with a complex-variable technique, and a number of single- and multipoint optimizations for the rotorcraft figure of merit function are shown for varying blade collective angles. Design trends are shown to remain consistent as the grid is refined.

  10. Vehicle-track interaction at high frequencies - Modelling of a flexible rotating wheelset in non-inertial reference frames

    NASA Astrophysics Data System (ADS)

    Guiral, A.; Alonso, A.; Giménez, J. G.

    2015-10-01

    Vehicle-track interaction in the mid- and high-frequency range has become an important issue for rolling-stock manufacturers, railway operators and administrations. Previous modelling approaches have been focused on the development of flexible wheelset-track systems based on the assumption that the unsprung masses are decoupled from the high-frequency dynamic behaviour of carbody and bogies. In this respect, the available flexible wheelset models account for gyroscopic and inertial effects due to the main rotation but are, in general, developed from the viewpoint of inertial spaces and consequently restricted to the study of tangent layouts. The aim of this paper is to present the formulation of a flexible rotating wheelset derived within the framework of a non-inertial vehicle moving reference frame. This brings a double advantage; on the one hand, the formulation is not restricted to tangent tracks, but is also suitable for the study of transition curves and curve negotiation. On the other hand, the use of a vehicle moving reference frame allows the introduction of the hypothesis of small displacement for the degrees of freedom of the wheelset. This hypothesis is not applied to the pitch angle, as it is associated with the main axis of rotation. In addition, unlike previous flexible wheelset models that only consider the rotation around the main axis, all the degrees of freedom will be considered when developing the dynamic equations of motion. Results for the proposed model will be presented and the influence of the inertial and gyroscopic terms not taken into account in previous derived formulations will be evaluated.

  11. Quantum frames

    NASA Astrophysics Data System (ADS)

    Brown, Matthew J.

    2014-02-01

    The framework of quantum frames can help unravel some of the interpretive difficulties i the foundation of quantum mechanics. In this paper, I begin by tracing the origins of this concept in Bohr's discussion of quantum theory and his theory of complementarity. Engaging with various interpreters and followers of Bohr, I argue that the correct account of quantum frames must be extended beyond literal space-time reference frames to frames defined by relations between a quantum system and the exosystem or external physical frame, of which measurement contexts are a particularly important example. This approach provides superior solutions to key EPR-type measurement and locality paradoxes.

  12. Framing of grid cells within and beyond navigation boundaries

    PubMed Central

    Savelli, Francesco; Luck, JD; Knierim, James J

    2017-01-01

    Grid cells represent an ideal candidate to investigate the allocentric determinants of the brain’s cognitive map. Most studies of grid cells emphasized the roles of geometric boundaries within the navigational range of the animal. Behaviors such as novel route-taking between local environments indicate the presence of additional inputs from remote cues beyond the navigational borders. To investigate these influences, we recorded grid cells as rats explored an open-field platform in a room with salient, remote cues. The platform was rotated or translated relative to the room frame of reference. Although the local, geometric frame of reference often exerted the strongest control over the grids, the remote cues demonstrated a consistent, sometimes dominant, countervailing influence. Thus, grid cells are controlled by both local geometric boundaries and remote spatial cues, consistent with prior studies of hippocampal place cells and providing a rich representational repertoire to support complex navigational (and perhaps mnemonic) processes. DOI: http://dx.doi.org/10.7554/eLife.21354.001 PMID:28084992

  13. Development and reproducibility of a 3D stereophotogrammetric reference frame for facial soft tissue growth of babies and young children with and without orofacial clefts.

    PubMed

    Brons, S; van Beusichem, M E; Maal, T J J; Plooij, J M; Bronkhorst, E M; Bergé, S J; Kuijpers-Jagtman, A M

    2013-01-01

    The aim of this study was to develop a reference frame for three dimensional (3D) facial soft tissue growth analysis in children and to determine its reproducibility. Two observers twice placed the reference frame on 39 3D-stereophotogrammetry facial images of children with orofacial clefts and control children. The observers' performances were analyzed by calculating mean distance, distance variability, and P95 between the same facial surfaces at two different time points. Correlations between observers were analyzed with Pearson's correlation coefficient. The influence of presence of a cleft, absence of one ear in the photograph, and age on the reproducibility of the reference frame was checked using Student's t test. Results of intraobserver comparisons showed a mean distance of <0.40 mm, distance variability of <0.51 mm, and P95 of <0.80 mm. For interobserver reliability, the mean distance was <0.52 mm, distance variability was <0.53 mm, and P95 was <1.10 mm. Presence of a cleft, age, and absence of one ear on the 3D photograph did not have a significant influence on the reproducibility of placing the reference frame. The children's reference frame is a reproducible method to superimpose on 3D soft tissue stereophotogrammetry photographs of growing individuals with and without orofacial clefts.

  14. Retrieval of diffusing surface by two-frame interferometric method with blind phase shift of a reference wave

    NASA Astrophysics Data System (ADS)

    Muravsky, Leonid I.; Kmet', Arkady B.; Voronyak, Taras I.

    2011-08-01

    Two-frame interferometric method with blind phase shift of a reference wave for smooth surfaces retrieval is considered. The ability of this method to reconstruct a macrorelief of diffusing surfaces with a given roughness is studied. Computer simulations have testified the ability of reliable low-noise reconstruction of the diffusing surface macrorelief with standard deviation of the roughness heights up to λ/10 by using the developed interferogram processing algorithm. The simulations have shown that the proposed correlation approach, which is used to determine the reference wave blind phase shift, is more suitable for a diffusing surface than for a smooth one and the increase of surface roughness leads to a quadruple decrease of this error in comparison with that for the smooth surface. Experimental verification of the interferometric method performance to retrieve real diffusing surface macroreliefs with given roughness has been done by using the experimental setup based on a Twyman-Green interferometer and roughness comparison specimen. The obtained experimental results virtually have coincided with the computer simulation results that prove the performance of the considered method to retrieve not only smooth, but also diffusing surfaces.

  15. Allocentric spatial memory in humans with hippocampal lesions.

    PubMed

    Parslow, David M; Morris, Robin G; Fleminger, Simon; Rahman, Qazi; Abrahams, Sharon; Recce, Michael

    2005-01-01

    An immersive virtual reality (IVR) system was used to investigate allocentric spatial memory in a patient (PR) who had selective hippocampal damage, and also in patients who had undergone unilateral temporal lobectomies (17 right TL and 19 left TL), their performance compared against normal control groups. A human analogue of the Olton [Olton (1979). Hippocampus, space, and memory. Behavioural Brain Science, 2, 315] spatial maze was developed, consisting of a virtual room, a central virtual circular table and an array of radially arranged up-turned 'shells.' The participant had to search these shells in turn in order to find a blue 'cube' that would then 'move' to another location and so on, until all the shells had been target locations. Within-search errors could be made when the participants returned to a previously visited location during a search, and between-search errors when they revisited previously successful, but now incorrect locations. PR made significantly more between-search errors than his control group, but showed no increase in within-search errors. The right TL group showed a similar pattern of impairment, but the left TL group showed no impairment. This finding implicates the right hippocampal formation in spatial memory functioning in a scenario in which the visual environment was controlled so as to eliminate extraneous visual cues.

  16. Acute stress switches spatial navigation strategy from egocentric to allocentric in a virtual Morris water maze.

    PubMed

    van Gerven, Dustin J H; Ferguson, Thomas; Skelton, Ronald W

    2016-07-01

    Stress and stress hormones are known to influence the function of the hippocampus, a brain structure critical for cognitive-map-based, allocentric spatial navigation. The caudate nucleus, a brain structure critical for stimulus-response-based, egocentric navigation, is not as sensitive to stress. Evidence for this comes from rodent studies, which show that acute stress or stress hormones impair allocentric, but not egocentric navigation. However, there have been few studies investigating the effect of acute stress on human spatial navigation, and the results of these have been equivocal. To date, no study has investigated whether acute stress can shift human navigational strategy selection between allocentric and egocentric navigation. The present study investigated this question by exposing participants to an acute psychological stressor (the Paced Auditory Serial Addition Task, PASAT), before testing navigational strategy selection in the Dual-Strategy Maze, a modified virtual Morris water maze. In the Dual-Strategy maze, participants can chose to navigate using a constellation of extra-maze cues (allocentrically) or using a single cue proximal to the goal platform (egocentrically). Surprisingly, PASAT stress biased participants to solve the maze allocentrically significantly more, rather than less, often. These findings have implications for understanding the effects of acute stress on cognitive function in general, and the function of the hippocampus in particular.

  17. The Internal/External Frame of Reference Model Revisited: Incorporating General Cognitive Ability and General Academic Self-Concept.

    PubMed

    Brunner, Martin; Lüdtke, Oliver; Trautwein, Ulrich

    2008-01-01

    The internal/external frame of reference model (I/E model; Marsh, 1986 ) is a highly influential model of self-concept formation, which predicts that domain-specific abilities have positive effects on academic self-concepts in the corresponding domain and negative effects across domains. Investigations of the I/E model do not typically incorporate general cognitive ability or general academic self-concept. This article investigates alternative measurement models for domain-specific and domain-general cognitive abilities and academic self-concepts within an extended I/E model framework using representative data from 25,301 9th-grade students. Empirical support was found for the external validity of a new measurement model for academic self-concepts with respect to key student characteristics (gender, school satisfaction, educational aspirations, domain-specific interests, grades). Moreover, the basic predictions of the I/E model were confirmed, and the new extension of the traditional I/E model permitted meaningful relations to be drawn between domain-general cognitive ability and domain-general academic self-concept as well as between the domain-specific elements of the model.

  18. Effect of general relativity on a near-Earth satellite in the geocentric and barycentric reference frames

    NASA Technical Reports Server (NTRS)

    Ries, J. C.; Huang, C.; Watkins, M. M.

    1988-01-01

    Whether one uses a solar-system barycentric frame or a geocentric frame when including the general theory of relativity in orbit determinations for near-Earth satellites, the results should be equivalent to some limiting accuracy. The purpose of this paper is to clarify the effects of relativity in each frame and to demonstrate their equivalence through the analysis of real laser-tracking data. A correction to the conventional barycentric equations of motion is shown to be required.

  19. Extension of the Internal/External Frame of Reference Model of Self-Concept Formation: Importance of Native and Nonnative Languages for Chinese Students.

    ERIC Educational Resources Information Center

    Hau, Kit-Tai; Kong, Chit-Kwong; Marsh, Herbert W.; Cheng, Zi-Juan

    The internal/external frame of reference (I/E) model of self-concept formation was extended by relating Chinese, English, and mathematics achievement to Chinese, English, and mathematics self-concepts in a 5-year longitudinal study based on a large (N=9,482) representative sample of Hong Kong high school students. Tests of the I/E model are…

  20. The Internal/External Frame of Reference Model of Self-Concept and Achievement Relations: Age-Cohort and Cross-Cultural Differences

    ERIC Educational Resources Information Center

    Marsh, Herbert W.; Abduljabbar, Adel Salah; Parker, Philip D.; Morin, Alexandre J. S.; Abdelfattah, Faisal; Nagengast, Benjamin; Möller, Jens; Abu-Hilal, Maher M.

    2015-01-01

    The internal/external frame of reference (I/E) model and dimensional comparison theory posit paradoxical relations between achievement (ACH) and self-concept (SC) in mathematics (M) and verbal (V) domains; ACH in each domain positively affects SC in the matching domain (e.g., MACH to MSC) but negatively in the nonmatching domain (e.g., MACH to…

  1. The Longitudinal Interplay of Students' Academic Self-Concepts and Achievements within and across Domains: Replicating and Extending the Reciprocal Internal/External Frame of Reference Model

    ERIC Educational Resources Information Center

    Niepel, Christoph; Brunner, Martin; Preckel, Franzis

    2014-01-01

    Students' cognitive and motivational profiles have a large impact on their academic careers. The development of such profiles can partly be explained by the reciprocal internal/external frame of reference model (RI/E model). The RI/E model predicts positive and negative longitudinal effects between academic self-concepts and achievements within…

  2. Explaining as Mediated Action: An Analysis of Pre-Service Teachers' Account of Forces of Inertia in Non-Inertial Frames of Reference

    ERIC Educational Resources Information Center

    de Pereira, Alexsandro Pereira; Lima Junior, Paulo; Rodrigues, Renato Felix

    2016-01-01

    Explaining is one of the most important everyday practices in science education. In this article, we examine how scientific explanations could serve as cultural tools for members of a group of pre-service physics teachers. Specifically, we aim at their use of explanations about forces of inertia in non-inertial frames of reference. A basic…

  3. Transforming in-situ observations of CME-driven shock accelerated protons into the shock's reference frame.

    NASA Astrophysics Data System (ADS)

    Robinson, I. M.; Simnett, G. M.

    2005-07-01

    We examine the solar energetic particle event following solar activity from 14, 15 April 2001 which includes a "bump-on-the-tail" in the proton energy spectra at 0.99 AU from the Sun. We find this population was generated by a CME-driven shock which arrived at 0.99 AU around midnight 18 April. As such this population represents an excellent opportunity to study in isolation, the effects of proton acceleration by the shock. The peak energy of the bump-on-the-tail evolves to progressively lower energies as the shock approaches the observing spacecraft at the inner Lagrange point. Focusing on the evolution of this peak energy we demonstrate a technique which transforms these in-situ spectral observations into a frame of reference co-moving with the shock whilst making allowance for the effects of pitch angle scattering and focusing. The results of this transform suggest the bump-on-the-tail population was not driven by the 15 April activity but was generated or at least modulated by a CME-driven shock which left the Sun on 14 April. The existence of a bump-on-the-tail population is predicted by models in Rice et al. (2003) and Li et al. (2003) which we compare with observations and the results of our analysis in the context of both the 14 April and 15 April CMEs. We find an origin of the bump-on-the-tail at the 14 April CME-driven shock provides better agreement with these modelled predictions although some discrepancy exists as to the shock's ability to accelerate 100 MeV protons. Keywords. Solar physics, astrophysics and astronomy (Energetic particles; Flares and mass ejections) Space plasma physics (Transport processes)

  4. Lateralization of Egocentric and Allocentric Spatial Processing after Parietal Brain Lesions

    ERIC Educational Resources Information Center

    Iachini, Tina; Ruggiero, Gennaro; Conson, Massimiliano; Trojano, Luigi

    2009-01-01

    The purpose of this paper was to verify whether left and right parietal brain lesions may selectively impair egocentric and allocentric processing of spatial information in near/far spaces. Two Right-Brain-Damaged (RBD), 2 Left-Brain-Damaged (LBD) patients (not affected by neglect or language disturbances) and eight normal controls were submitted…

  5. The Forced Choice Dilemma: A Model Incorporating Idiocentric/Allocentric Cultural Orientation

    ERIC Educational Resources Information Center

    Jung, Jae Yup; McCormick, John; Gross, Miraca U. M.

    2012-01-01

    This study developed and tested a new model of the forced choice dilemma (i.e., the belief held by some intellectually gifted students that they must choose between academic achievement and peer acceptance) that incorporates individual-level cultural orientation variables (i.e., vertical allocentrism and vertical idiocentrism). A survey that had…

  6. Developmental Time Course of the Acquisition of Sequential Egocentric and Allocentric Navigation Strategies

    ERIC Educational Resources Information Center

    Bullens, Jessie; Igloi, Kinga; Berthoz, Alain; Postma, Albert; Rondi-Reig, Laure

    2010-01-01

    Navigation in a complex environment can rely on the use of different spatial strategies. We have focused on the employment of "allocentric" (i.e., encoding interrelationships among environmental cues, movements, and the location of the goal) and "sequential egocentric" (i.e., sequences of body turns associated with specific choice points)…

  7. Individual Differences in the Encoding Processes of Egocentric and Allocentric Survey Knowledge

    ERIC Educational Resources Information Center

    Wen, Wen; Ishikawa, Toru; Sato, Takao

    2013-01-01

    This study examined how different components of working memory are involved in the acquisition of egocentric and allocentric survey knowledge by people with a good and poor sense of direction (SOD). We employed a dual-task method and asked participants to learn routes from videos with verbal, visual, and spatial interference tasks and without any…

  8. Development of Allocentric Spatial Memory Abilities in Children from 18 months to 5 Years of Age

    ERIC Educational Resources Information Center

    Ribordy, Farfalla; Jabes, Adeline; Lavenex, Pamela Banta; Lavenex, Pierre

    2013-01-01

    Episodic memories for autobiographical events that happen in unique spatiotemporal contexts are central to defining who we are. Yet, before 2 years of age, children are unable to form or store episodic memories for recall later in life, a phenomenon known as infantile amnesia. Here, we studied the development of allocentric spatial memory, a…

  9. A critical review of the allocentric spatial representation and its neural underpinnings: toward a network-based perspective

    PubMed Central

    Ekstrom, Arne D.; Arnold, Aiden E. G. F.; Iaria, Giuseppe

    2014-01-01

    While the widely studied allocentric spatial representation holds a special status in neuroscience research, its exact nature and neural underpinnings continue to be the topic of debate, particularly in humans. Here, based on a review of human behavioral research, we argue that allocentric representations do not provide the kind of map-like, metric representation one might expect based on past theoretical work. Instead, we suggest that almost all tasks used in past studies involve a combination of egocentric and allocentric representation, complicating both the investigation of the cognitive basis of an allocentric representation and the task of identifying a brain region specifically dedicated to it. Indeed, as we discuss in detail, past studies suggest numerous brain regions important to allocentric spatial memory in addition to the hippocampus, including parahippocampal, retrosplenial, and prefrontal cortices. We thus argue that although allocentric computations will often require the hippocampus, particularly those involving extracting details across temporally specific routes, the hippocampus is not necessary for all allocentric computations. We instead suggest that a non-aggregate network process involving multiple interacting brain areas, including hippocampus and extra-hippocampal areas such as parahippocampal, retrosplenial, prefrontal, and parietal cortices, better characterizes the neural basis of spatial representation during navigation. According to this model, an allocentric representation does not emerge from the computations of a single brain region (i.e., hippocampus) nor is it readily decomposable into additive computations performed by separate brain regions. Instead, an allocentric representation emerges from computations partially shared across numerous interacting brain regions. We discuss our non-aggregate network model in light of existing data and provide several key predictions for future experiments. PMID:25346679

  10. The effect of helmet-mounted display symbology on the opto-kinetic cervical reflex, frame of reference, and pilot performance

    NASA Astrophysics Data System (ADS)

    Liggett, Kristen Kim

    2000-08-01

    In spite of all the latest technological advances incorporated into today's modern fighter aircraft, spatial disorientation (SD) in flight continues to be a problem. To determine their attitude, pilots need a frame of reference against which their orientation can be compared. Recently, there have been numerous studies conducted that verify and characterize a visual reflex observed in pilots called the opto-kinetic cervical reflex (OKCR), which implies that pilots use a world frame of reference to orient themselves when looking at real world visual cues. In contrast, when pilots use instruments to determine orientation, the information is portrayed in an aircraft frame of reference. Transitions between the two frames of reference appear to be related to SD incidences. New helmet-mounted display (HMD) technology is being designed for the cockpit. HMDs portray aircraft-referenced symbology superimposed on a world-referenced scene. This research was designed to investigate how pilots would use real world and symbology frames of reference under various task configurations. Because the HMD horizon symbol is conformal to the true horizon, it was hypothesized that pilots would exhibit the OKCR, when viewing the real-world horizon cue with the HMD horizon symbol as in visual meteorological conditions (VMC) and when viewing the horizon symbology alone during instrument meteorological conditions (IMC). It was also hypothesized that transitions between different visual cues would be easier for the pilot to achieve when using the HMD. Twelve pilot-subjects completed four tasks (VMC flight, IMC flight, unusual attitude recovery, and in and out of clouds) to examine frames of reference and pilot performance. Results showed that pilots did not exhibit the OKCR when using the HMD symbology during the VMC and IMC tasks, indicating that a world frame of reference was not used to perform the tasks. In tasks where both real world visuals and the HMD symbology were present, pilots were

  11. Egocentric and allocentric navigation strategies in Williams syndrome and typical development.

    PubMed

    Broadbent, Hannah J; Farran, Emily K; Tolmie, Andy

    2014-11-01

    Recent findings suggest that difficulties on small-scale visuospatial tasks documented in Williams syndrome (WS) also extend to large-scale space. In particular, individuals with WS often present with difficulties in allocentric spatial coding (encoding relationships between items within an environment or array). This study examined the effect of atypical spatial processing in WS on large-scale navigational strategies, using a novel 3D virtual environment. During navigation of recently learnt large-scale space, typically developing (TD) children predominantly rely on the use of a sequential egocentric strategy (recalling the sequence of left-right body turns throughout a route), but become more able to use an allocentric strategy between 5 and 10 years of age. The navigation strategies spontaneously employed by TD children between 5 and 10 years of age and individuals with WS were analysed. The ability to use an allocentric strategy on trials where spatial relational knowledge was required to find the shortest route was also examined. Results showed that, unlike TD children, during spontaneous navigation the WS group did not predominantly employ a sequential egocentric strategy. Instead, individuals with WS followed the path until the correct environmental landmarks were found, suggesting the use of a time-consuming and inefficient view-matching strategy for wayfinding. Individuals with WS also presented with deficits in allocentric spatial coding, demonstrated by difficulties in determining short-cuts when required and difficulties developing a mental representation of the environment layout. This was found even following extensive experience in an environment, suggesting that - unlike in typical development - experience cannot contribute to the development of spatial relational processing in WS. This atypical presentation of both egocentric and allocentric spatial encoding is discussed in relation to specific difficulties on small-scale spatial tasks and known

  12. High-precision square-root filter/smoother for near-singular system in estimation of terrestrial reference frame

    NASA Astrophysics Data System (ADS)

    Chin, T. M.; Gross, R. S.; Heflin, M. B.; Abbondanza, C.; Parker, J. W.; Wu, X.

    2015-12-01

    In most space and ground-based Earth observations, the accuracy with which objects can be positioned depends ultimately on the accuracy of the underlying terrestrial reference frame (TRF). For example, errors in the currently available TRFs could account for as much as 15% of the observed sea level rise signal. Determination of a TRF typically involves precise estimation of the positions and velocities of surface stations using decades of space geodetic observations. The model of station motions needs to address heterogeneous time scales including secular drifts of plate tectonics and seasonal periodicities due to atmospheric and ground water loadings. Seismic events and post-seismic relaxation tend to lead to discontinuities in the observation time series, which become sources of nonlinearity in the estimation problem. The state dimension of the smoothing problem is usually on the order of ten thousands, which is two to four orders of magnitude smaller than that of a typical atmospheric and ocean data assimilation problem. However, TRF requires a precision of 1mm in position out of a mean dynamic range of about 1 meter, as well as a full posterior error covariance matrix. These requirements challenge the available computation capabilities. Moreover, the use of prior models are kept minimal to prevent introduction of biases in the observations, leading to a smoothing problem that involves matrices with relatively high condition numbers. A filter/smoother solution based on the information matrix is desirable here since the prior model tends to be only partial or implicit. A "square-root" solution is also desirable since a major source of numerical instability is round-off error affecting positive definiteness of covariance and information matrices. The well-known Square-Root Information Filter followed by the Dyer-McReynolds Covariance Smoother seem suitable although this approach requires a large array for Householder transformations. The Modified Bryson

  13. Verification of the Polish Geodetic Reference Frame by Means of a New Solution Based on Permanent GNSS Data from the Years 2011-2014

    NASA Astrophysics Data System (ADS)

    Liwosz, T.; Ryczywolski, M.

    2016-12-01

    The new solution for the Polish geodetic primary GNSS network was created to verify the currently used reference frame (PL-ETRF2000). The new solution is based on more GNSS data (more daily observation sessions included, a longer data timespan, GLONASS observations added) which were processed in a newer reference frame (IGb08) according to up-to-date methodology and using the latest version of Bernese GNSS Software. The new long-term solution (spanning 3.7 years) was aligned to the IGb08 reference frame using a minimum constraints approach. We categorized Polish reference stations into two categories according to their data length. We obtained good agreement of the new solution with the PL-ETRF2000: for most stations position differences did not exceed 5 mm in horizontal, and 10 mm in vertical components. However, for 30 stations we observed discontinuities in position time series, mostly due to GNSS equipment changes, which occured after the introduction of PL-ETRF2000. Position changes due to the discontinuities reached 9.1 mm in horizontal components, and 26.9 mm in vertical components. The new solution takes into account position discontinuities, and in addition also includes six new stations which were installed after the introduction of the PL-ETRF2000. Therefore, we propose to update the currently-used reference frame for the Polish geodetic primary network (PL-ETRF2000) with the new solution. The new solution was also accepted by the EUREF Technical Working Group as a class A solution (highest accuracy) according to EUREF standards.

  14. Orbital motions of astronomical bodies and their centre of mass from different reference frames: a conceptual step between the geocentric and heliocentric models

    NASA Astrophysics Data System (ADS)

    Guerra, André G. C.; Simeão Carvalho, Paulo

    2016-09-01

    The motion of astronomical bodies and the centre of mass of the system is not always well perceived by students. One of the struggles is the conceptual change of reference frame, which is the same that held back the acceptance of the Heliocentric model over the Geocentric one. To address the question, the notion of centre of mass, motion equations (and their numerical solution for a system of multiple bodies), and change of frame of reference is introduced. The discussion is done based on conceptual and real world examples, using the solar system. Consequently, through the use of simple ‘do it yourself’ methods and basic equations, students can debate complex motions, and have a wider and potentially effective understanding of physics.

  15. A radio optical reference frame. I - Precise radio source positions determined by Mark III VLBI - Observations from 1979 to 1988 and a tie to the FK5

    NASA Technical Reports Server (NTRS)

    Ma, C.; Shaffer, D. B.; De Vegt, C.; Johnston, K. J.; Russell, J. L.

    1990-01-01

    Observations from 600 Mark III VLBI experiments from 1979 to 1988, resulting in 237,681 acceptable pairs of group delay and phase delay rate observations, have been used to derive positions of 182 extragalactic radio sources with typical formal standard errors less than 1 mas. The sources are distributed fairly evenly above delta = -30 deg, and 70 sources have delta greater than 0 deg. Analysis with different troposphere models, as well as internal and external comparisons, indicates that a coordinate frame defined by this set of radio sources should be reliable at the 1 mas level. The right ascension zero point of this reference frame has been aligned with the FK5 by using the optical positions of 28 extragalactic radio sources whose positions are on the FK5 system. Because of known defects in the knowledge of astronomical constants, daily nutation offsets in longitude and obliquity were determined relative to an arbitrary reference day in the set of experiments.

  16. The role of online visual feedback for the control of target-directed and allocentric hand movements.

    PubMed

    Thaler, Lore; Goodale, Melvyn A

    2011-02-01

    Studies that have investigated how sensory feedback about the moving hand is used to control hand movements have relied on paradigms such as pointing or reaching that require subjects to acquire target locations. In the context of these target-directed tasks, it has been found repeatedly that the human sensory-motor system relies heavily on visual feedback to control the ongoing movement. This finding has been formalized within the framework of statistical optimality according to which different sources of sensory feedback are combined such as to minimize variance in sensory information during movement control. Importantly, however, many hand movements that people perform every day are not target-directed, but based on allocentric (object-centered) visual information. Examples of allocentric movements are gesture imitation, drawing, or copying. Here we tested if visual feedback about the moving hand is used in the same way to control target-directed and allocentric hand movements. The results show that visual feedback is used significantly more to reduce movement scatter in the target-directed as compared with the allocentric movement task. Furthermore, we found that differences in the use of visual feedback between target-directed and allocentric hand movements cannot be explained based on differences in uncertainty about the movement goal. We conclude that the role played by visual feedback for movement control is fundamentally different for target-directed and allocentric movements. The results suggest that current computational and neural models of sensorimotor control that are based entirely on data derived from target-directed paradigms have to be modified to accommodate performance in the allocentric tasks used in our experiments. As a consequence, the results cast doubt on the idea that models of sensorimotor control developed exclusively from data obtained in target-directed paradigms are also valid in the context of allocentric tasks, such as drawing

  17. No-Net-Rotation and Indo-Atlantic Hotspot Reference Frames: Towards a New View of Tectonic Plate Motions and Earth Dynamics

    NASA Astrophysics Data System (ADS)

    Quere, S.; Rowley, D.; Forte, A.; Moucha, R.

    2007-12-01

    A new view of plate tectonics coupled to mantle dynamics is emerging from recent paleomagnetic reconstructions of tectonic plate histories obtained in the hotspot and no-net-rotation reference frames. A number of fundamental differences relative to past plate reconstructions have been discerned. Firstly, in previous models the difference between present-day plate motions in the global hotspot and no-net-rotation reference frames consisted of a westward drift of the lithosphere due to the dominant motion of the Pacific plate in the hotspot frame. In contrast, the new plate motion reconstructions based on the Indo-Atlantic hotspot reference frame now show that the present-day global rotation of the lithosphere is mainly in the South-North direction. Second, we find a more than 100% speed-up of the Nazca plate motion at 35 Ma which we have interpreted in terms of a slab avalanche event below the Nazca-South America plate boundary. This may be the first direct geological evidence for a mantle avalanche event occurring at a time which precedes a significant plate reorganisation. Third, the speed-up of the Nazca plate does not appear to be associated with a jump of the East-Pacific rise, therefore this feature may not be completely passive as previously thought. Fourth, the Hawaiian-Emperor bend which was a key element in previous plate reconstruction based on the assumption of a fixed Hawaiian hotspot, can no longer be explained by a change of direction of the Pacific plate and this corroborates recent studies showing a southward motion of the Hawaiian hotspot. Finally, the new Indo-Atlantic hotspot reconstruction of present-day plate motions is significantly different from the one previously established by Gripp and Gordon (1990) and the model appears to be in greater accord with plate motions predicted by seismic tomography-based mantle convection models.

  18. Allocentric spatial memory activation of the hippocampal formation measured with fMRI.

    PubMed

    Parslow, David M; Rose, David; Brooks, Barbara; Fleminger, Simon; Gray, Jeffrey A; Giampietro, Vincent; Brammer, Michael J; Williams, Steven; Gasston, David; Andrew, Christopher; Vythelingum, Goparlen N; Loannou, Glafkos; Simmons, Andrew; Morris, Robin G

    2004-07-01

    Hippocampal activation was investigated, comparing allocentric and egocentric spatial memory. Healthy participants were immersed in a virtual reality circular arena, with pattern-rendered walls. In a viewpoint-independent task, they moved toward a pole, which was then removed. They were relocated to another position and had to move to the prior location of the pole. For viewpoint-dependent memory, the participants were not moved to a new starting point, but the patterns were rotated to prevent them from indicating the final position. Hippocampal and parahippocampal activation were found in the viewpoint-independent memory encoding phase. Viewpoint-dependent memory did not result in such activation. These results suggest differential activation of the hippocampal formation during allocentric encoding, in partial support of the spatial mapping hypothesis as applied to humans.

  19. Optical monitoring of extragalactic sources for linking the ICRF and the future Gaia celestial reference frame. I. Variability of ICRF sources

    NASA Astrophysics Data System (ADS)

    Taris, F.; Andrei, A.; Klotz, A.; Vachier, F.; Côte, R.; Bouquillon, S.; Souchay, J.; Lambert, S.; Anton, S.; Bourda, G.; Coward, D.

    2013-04-01

    Context. The astrometric mission Gaia of the European Space Agency is scheduled to be launched in 2013. It will provide an astrometric catalog of 500 000 extragalactic sources that could be the basis of a new optical reference frame after the Hipparcos satellite one. On the other hand, the current International Celestial Reference Frame (ICRF) is based on observations of extragalactic sources at radio wavelength. The astrometric coordinates of sources in these two reference systems will have roughly the same uncertainty. It is then mandatory to observe a set of common targets at both optical and radio wavelengths to link the ICRF with what could be called the Gaia Celestial Reference Frame (GCRF). Aims: The goal of this work is to observe a first set of 70 extragalactic sources at optical wavelengths that could achieve the link with the ICRF. Variations in the light curves of these targets are connected with astrophysical processes that could produce displacements of the optical photocenter. Such displacements, if they exist, are critical in the framework of the link of reference systems. Methods: Four telescopes were used to observe the targets at optical wavelengths. Two of them are located in France, one in Chile, and the last one in Australia. First observations were carried out during one year and a half in the R and V bands. A new method of characterizing the compactness of the targets was applied to the images obtained. Results: This paper presents results for the optical monitoring of extragalactic sources suitable for linking reference systems. We show that a large number of targets in our set are variable at the two observational wavelengths. A short presentation of each object is given, along with some references to earlier photometric studies. A morphological index is defined and applied to the 5000 images obtained during the observation campaign. Conclusions: This work fits into a more general project of astrophotometric and astrophysical studies of

  20. Development of allocentric spatial recall from new viewpoints in virtual reality.

    PubMed

    Negen, James; Heywood-Everett, Edward; Roome, Hannah E; Nardini, Marko

    2017-03-02

    Using landmarks and other scene features to recall locations from new viewpoints is a critical skill in spatial cognition. In an immersive virtual reality task, we asked children 3.5-4.5 years old to remember the location of a target using various cues. On some trials they could use information from their own self-motion. On some trials they could use a view match. In the very hardest kind of trial, they were 'teleported' to a new viewpoint and could only use an allocentric spatial representation. This approach provides a strict test for allocentric coding (without either a matching viewpoint or self-motion information) while avoiding additional task demands in previous studies (it does not require them to deal with a small table-top environment or to manage stronger cue conflicts). Both the younger and older groups were able to point back at the target location better than chance when they could use view matching and/or self-motion, but allocentric recall was only seen in the older group (4.0-4.5). In addition, we only obtained evidence for a specific kind of allocentric recall in the older group: they tracked one major axis of the space significantly above chance, r(158) = .28, but not the other, r(158) = -.01. We conclude that there is a major qualitative change in coding for spatial recall around the fourth birthday, potentially followed by further development towards fully flexible recall from new viewpoints.

  1. Grasping spatial relationships: failure to demonstrate allocentric visual coding in a patient with visual form agnosia.

    PubMed

    Dijkerman, H C; Milner, A D; Carey, D P

    1998-09-01

    The cortical visual mechanisms involved in processing spatial relationships remain subject to debate. According to one current view, the "dorsal stream" of visual areas, emanating from primary visual cortex and culminating in the posterior parietal cortex, mediates this aspect of visual processing. More recently, others have argued that while the dorsal stream provides egocentric coding of visual location for motor control, the separate "ventral" stream is needed for allocentric spatial coding. We have assessed the visual form agnosic patient DF, whose lesion mainly affects the ventral stream, on a prehension task requiring allocentric spatial coding. She was presented with transparent circular disks. Each disk had circular holes cut in it. DF was asked to reach out and grasp the disk by placing her fingers through the holes. The disks either had three holes (for forefinger, middle finger, and thumb) or two holes (for forefinger and thumb). The distance between the forefinger and thumb holes, and the orientation of the line formed by them, were independently varied. DF was quite unable to adjust her grip aperture or her hand orientation in the three-hole task. Although she was able to orient her hand appropriately for the two-hole disks, she still remained unable to adjust her grip aperture to the distance between the holes. These findings are consistent with the idea that allocentric processing of spatial information requires a functioning ventral stream, even when the information is being used to guide a motor response.

  2. Integration of egocentric and allocentric information during memory-guided reaching to images of a natural environment.

    PubMed

    Fiehler, Katja; Wolf, Christian; Klinghammer, Mathias; Blohm, Gunnar

    2014-01-01

    When interacting with our environment we generally make use of egocentric and allocentric object information by coding object positions relative to the observer or relative to the environment, respectively. Bayesian theories suggest that the brain integrates both sources of information optimally for perception and action. However, experimental evidence for egocentric and allocentric integration is sparse and has only been studied using abstract stimuli lacking ecological relevance. Here, we investigated the use of egocentric and allocentric information during memory-guided reaching to images of naturalistic scenes. Participants encoded a breakfast scene containing six objects on a table (local objects) and three objects in the environment (global objects). After a 2 s delay, a visual test scene reappeared for 1 s in which 1 local object was missing (= target) and of the remaining, 1, 3 or 5 local objects or one of the global objects were shifted to the left or to the right. The offset of the test scene prompted participants to reach to the target as precisely as possible. Only local objects served as potential reach targets and thus were task-relevant. When shifting objects we predicted accurate reaching if participants only used egocentric coding of object position and systematic shifts of reach endpoints if allocentric information were used for movement planning. We found that reaching movements were largely affected by allocentric shifts showing an increase in endpoint errors in the direction of object shifts with the number of local objects shifted. No effect occurred when one local or one global object was shifted. Our findings suggest that allocentric cues are indeed used by the brain for memory-guided reaching towards targets in naturalistic visual scenes. Moreover, the integration of egocentric and allocentric object information seems to depend on the extent of changes in the scene.

  3. Deletion of the serotonin receptor type 7 disrupts the acquisition of allocentric but not egocentric navigation strategies in mice.

    PubMed

    Beaudet, Gregory; Jozet-Alves, Christelle; Asselot, Rachel; Schumann-Bard, Pascale; Freret, Thomas; Boulouard, Michel; Paizanis, Eleni

    2017-03-01

    Spatial navigation is achieved through both egocentric (body-centered) and allocentric (externally-centered) strategies but decline with age, especially allocentric strategies. A better understanding of the neurobiological mechanisms underlying these strategies would allow the development of new treatments to mitigate this deterioration. Among them, the modulation of 5-HT7 receptor (5-HT7R) may constitute a potential strategy. Indeed, this receptor is known to play a role in spatial navigation, however its precise role in egocentric and allocentric strategies remains unclear. Here, we first examined the effect of 5-HT7 genetic invalidation (knock-out (KO) mice) in two versions of a water cross-maze task in which only egocentric or allocentric strategies were efficient to solve the task. Our results demonstrated that KO mice are able to learn an allocentric strategy. However, contrary to wild-type mice (WT mice), the acquisition rate was slower compared to the task requiring the acquisition of an egocentric strategy. Mice were then trained in a third version of the water maze, allowing the use of both egocentric and allocentric strategies. When facing conflicting spatial information, both KO and WT mice preferentially used an egocentric strategy. However, only WT mice displayed a greater latency to achieve the task. This suggests that WT mice are able to learn both information in parallel, but not KO mice (i.e. only learning an egocentric strategy). Altogether, these results provide evidence for the essential role of the 5HT7R in the acquisition of an allocentric strategy and in the ability to learn concomitantly both strategies.

  4. Integration of egocentric and allocentric information during memory-guided reaching to images of a natural environment

    PubMed Central

    Fiehler, Katja; Wolf, Christian; Klinghammer, Mathias; Blohm, Gunnar

    2014-01-01

    When interacting with our environment we generally make use of egocentric and allocentric object information by coding object positions relative to the observer or relative to the environment, respectively. Bayesian theories suggest that the brain integrates both sources of information optimally for perception and action. However, experimental evidence for egocentric and allocentric integration is sparse and has only been studied using abstract stimuli lacking ecological relevance. Here, we investigated the use of egocentric and allocentric information during memory-guided reaching to images of naturalistic scenes. Participants encoded a breakfast scene containing six objects on a table (local objects) and three objects in the environment (global objects). After a 2 s delay, a visual test scene reappeared for 1 s in which 1 local object was missing (= target) and of the remaining, 1, 3 or 5 local objects or one of the global objects were shifted to the left or to the right. The offset of the test scene prompted participants to reach to the target as precisely as possible. Only local objects served as potential reach targets and thus were task-relevant. When shifting objects we predicted accurate reaching if participants only used egocentric coding of object position and systematic shifts of reach endpoints if allocentric information were used for movement planning. We found that reaching movements were largely affected by allocentric shifts showing an increase in endpoint errors in the direction of object shifts with the number of local objects shifted. No effect occurred when one local or one global object was shifted. Our findings suggest that allocentric cues are indeed used by the brain for memory-guided reaching towards targets in naturalistic visual scenes. Moreover, the integration of egocentric and allocentric object information seems to depend on the extent of changes in the scene. PMID:25202252

  5. Differential contribution of hippocampus, perirhinal cortex and postrhinal cortex to allocentric spatial memory in the radial maze.

    PubMed

    Ramos, Juan M J

    2013-06-15

    Rats with hippocampal, perirhinal cortex and postrhinal cortex lesions were trained in a reference spatial memory task to determine whether these structures contribute differentially to the acquisition and retention of spatial information. The results of Experiment 1 indicated that hippocampal lesions profoundly impaired the acquisition of the task. However, postrhinal lesions produced only a mild deficit and perirhinal lesions produced no deficit whatsoever in the learning of the task. During acquisition, hippocampus-damaged rats committed more perseverative errors than postrhinal rats, suggesting that the nature of the operations performed by each of these structures is different. The results of Experiment 2 showed a profound deficit in retention in hippocampal and postrhinal-lesioned animals tested 24 days after training. Perirhinal-lesioned animals, however, executed the task just as well as the control subjects did. These functional data, in consonance with existing connectivity data, suggest that each of these medial temporal lobe regions makes a different contribution to allocentric spatial learning and memory.

  6. The "when" and the "where" of single-trial allocentric spatial memory performance in young children: Insights into the development of episodic memory.

    PubMed

    Ribordy Lambert, Farfalla; Lavenex, Pierre; Banta Lavenex, Pamela

    2017-03-01

    Allocentric spatial memory, "where" with respect to the surrounding environment, is one of the three fundamental components of episodic memory: what, where, when. Whereas basic allocentric spatial memory abilities are reliably observed in children after 2 years of age, coinciding with the offset of infantile amnesia, the resolution of allocentric spatial memory acquired over repeated trials improves from 2 to 4 years of age. Here, we first show that single-trial allocentric spatial memory performance improves in children from 3.5 to 7 years of age, during the typical period of childhood amnesia. Second, we show that large individual variation exists in children's performance at this age. Third, and most importantly, we show that improvements in single-trial allocentric spatial memory performance are due to an increasing ability to spatially and temporally separate locations and events. Such improvements in spatial and temporal processing abilities may contribute to the gradual offset of childhood amnesia.

  7. Development of allocentric spatial memory abilities in children from 18 months to 5 years of age.

    PubMed

    Ribordy, Farfalla; Jabès, Adeline; Banta Lavenex, Pamela; Lavenex, Pierre

    2013-02-01

    Episodic memories for autobiographical events that happen in unique spatiotemporal contexts are central to defining who we are. Yet, before 2 years of age, children are unable to form or store episodic memories for recall later in life, a phenomenon known as infantile amnesia. Here, we studied the development of allocentric spatial memory, a fundamental component of episodic memory, in two versions of a real-world memory task requiring 18 month- to 5-year-old children to search for rewards hidden beneath cups distributed in an open-field arena. Whereas children 25-42-months-old were not capable of discriminating three reward locations among 18 possible locations in absence of local cues marking these locations, children older than 43 months found the reward locations reliably. These results support previous findings suggesting that allocentric spatial memory, if present, is only rudimentary in children under 3.5 years of age. However, when tested with only one reward location among four possible locations, children 25-39-months-old found the reward reliably in absence of local cues, whereas 18-23-month-olds did not. Our findings thus show that the ability to form a basic allocentric representation of the environment is present by 2 years of age, and its emergence coincides temporally with the offset of infantile amnesia. However, the ability of children to distinguish and remember closely related spatial locations improves from 2 to 3.5 years of age, a developmental period marked by persistent deficits in long-term episodic memory known as childhood amnesia. These findings support the hypothesis that the differential maturation of distinct hippocampal circuits contributes to the emergence of specific memory processes during early childhood.

  8. Basal Forebrain Atrophy Contributes to Allocentric Navigation Impairment in Alzheimer's Disease Patients.

    PubMed

    Kerbler, Georg M; Nedelska, Zuzana; Fripp, Jurgen; Laczó, Jan; Vyhnalek, Martin; Lisý, Jiří; Hamlin, Adam S; Rose, Stephen; Hort, Jakub; Coulson, Elizabeth J

    2015-01-01

    The basal forebrain degenerates in Alzheimer's disease (AD) and this process is believed to contribute to the cognitive decline observed in AD patients. Impairment in spatial navigation is an early feature of the disease but whether basal forebrain dysfunction in AD is responsible for the impaired navigation skills of AD patients is not known. Our objective was to investigate the relationship between basal forebrain volume and performance in real space as well as computer-based navigation paradigms in an elderly cohort comprising cognitively normal controls, subjects with amnestic mild cognitive impairment and those with AD. We also tested whether basal forebrain volume could predict the participants' ability to perform allocentric- vs. egocentric-based navigation tasks. The basal forebrain volume was calculated from 1.5 T magnetic resonance imaging (MRI) scans, and navigation skills were assessed using the human analog of the Morris water maze employing allocentric, egocentric, and mixed allo/egocentric real space as well as computerized tests. When considering the entire sample, we found that basal forebrain volume correlated with spatial accuracy in allocentric (cued) and mixed allo/egocentric navigation tasks but not the egocentric (uncued) task, demonstrating an important role of the basal forebrain in mediating cue-based spatial navigation capacity. Regression analysis revealed that, although hippocampal volume reflected navigation performance across the entire sample, basal forebrain volume contributed to mixed allo/egocentric navigation performance in the AD group, whereas hippocampal volume did not. This suggests that atrophy of the basal forebrain contributes to aspects of navigation impairment in AD that are independent of hippocampal atrophy.

  9. Mental rotation of letters, body parts and scenes during whole-body tilt: role of a body-centered versus a gravitational reference frame.

    PubMed

    Bock, Otmar L; Dalecki, Marc

    2015-04-01

    It is known that in mental-rotation tasks, subjects mentally transform the displayed material until it appears "upright" and then make a judgment. Here we evaluate, by using three typical mental rotation tasks with different degrees of embodiment, whether "upright" is coded to a gravitational or egocentric reference frame, or a combination of both. Observers stood erect or were whole-body tilted by 60°, with their left ear down. In either posture, they saw stimuli presented at different orientation angles in their frontal plane: in condition LETTER, they judged whether the stimuli were normal or mirror-reversed letters, in condition HAND whether they represented a left or a right hand, and in condition SCENE whether a weapon laid left or right in front of a displayed person. Data confirm that reaction times are modulated by stimulus orientation angle, and the modulation curve in LETTER and HAND differs from that in SCENE. More importantly, during 60° body tilt, the modulation curve shifted 12° away from the gravitational towards the egocentric vertical reference; this shift was comparable in all three conditions and independent of the degree of embodiment. We conclude that mental rotation in all conditions relied on a similar spatial reference, which seems to be a weighted average of the gravitational and the egocentric vertical, with a higher weight given to the former.

  10. Studying impacts of strategy choices concerning the Celestial Reference Frame on the estimates of nutation time series during geodesic VLBI Analysis

    NASA Astrophysics Data System (ADS)

    Gattano, César; Lambert, Sébastien; Bizouard, Christian; Souchay, Jean

    2015-08-01

    Very Large Baseline Interferometry (VLBI) is the only technique which permits to determine Earth's precession-nutation at submilliarcsecond accuracy. With its 35 years of observations, at the rate of 2 observing sessions a week during the last decade, it allows to estimate nutation over periods from 14 days to 20 years. But VLBI data analysis is of such a complexity that there are as much different nutation time series that there are analysis center working on it. So, it is worthful to investigate the nature of these differences in relation with the choices in the analysis strategy.Differences between the operationnal nutation time series are considered as composed of a signal and a noise, determined by mean of wavelets and Allan variance analysis. We try to explain them by the choices made on the Celestial Reference Frame. In particulary, the ICRF2 catalog is perturbed by introducting random shifts on all the 3414 sources, and we investigate the consequences on nutation.

  11. Frame-of-reference training effectiveness: effects of goal orientation and self-efficacy on affective, cognitive, skill-based, and transfer outcomes.

    PubMed

    Dierdorff, Erich C; Surface, Eric A; Brown, Kenneth G

    2010-11-01

    Empirical evidence supporting frame-of-reference (FOR) training as an effective intervention for calibrating raters is convincing. Yet very little is known about who does better or worse in FOR training. We conducted a field study of how motivational factors influence affective, cognitive, and behavioral learning outcomes, as well as near transfer indexed by achieving professional certification. Relying on goal orientation theory, we hypothesized effects for 3 goal orientations: learning, prove performance, and avoid performance. Results were generally supportive across learning outcomes and transfer. Findings further supported a hypothesized interaction between learning self-efficacy and avoid performance goal orientation, such that higher levels of learning self-efficacy mitigated the negative effects of higher performance avoid tendencies.

  12. Reliable measurement of 3D foot bone angles based on the frame-of-reference derived from a sole of the foot

    NASA Astrophysics Data System (ADS)

    Kim, Taeho; Lee, Dong Yeon; Park, Jinah

    2016-03-01

    Clinical management of foot pathology requires accurate and robust measurement of the anatomical angles. In order to measure a 3D angle, recent approaches have adopted a landmark-based local coordinate system to establish bone angles used in orthopedics. These measurement methods mainly assess the relative angle between bones using a representative axis derived from the morphological feature of the bone and therefore, the results can be affected by bone deformities. In this study, we propose a method of deriving a global frame-of-reference to acquire consistent direction of the foot by extracting the undersurface of the foot from the CT image data. The two lowest positions of the foot skin are identified from the surface to define the base plane, and the direction from the hallux to the fourth toe is defined together to construct the global coordinate system. We performed the experiment on 10 volumes of foot CT images of healthy subjects to verify that the proposed method provides reliable measurements. We measured 3D angles for talus-calcaneus and talus-navicular using facing articular surfaces of paired bones. The angle was reported in 3 projection angles based on both coordinate systems defined by proposed global frame-of-reference and by CT image planes (saggital, frontal, and transverse). The result shows that the quantified angle using the proposed method considerably reduced the standard deviation (SD) against the angle using the conventional projection planes, and it was also comparable with the measured angles obtained from local coordinate systems of the bones. Since our method is independent from any individual local shape of a bone, unlike the measurement method using the local coordinate system, it is suitable for inter-subject comparison studies.

  13. A new velocity field for Africa from combined GPS and DORIS space geodetic Solutions: Contribution to the definition of the African reference frame (AFREF)

    NASA Astrophysics Data System (ADS)

    Saria, E.; Calais, E.; Altamimi, Z.; Willis, P.; Farah, H.

    2013-04-01

    We analyzed 16 years of GPS and 17 years of Doppler orbitography and radiopositioning integrated by satellite (DORIS) data at continuously operating geodetic sites in Africa and surroundings to describe the present-day kinematics of the Nubian and Somalian plates and constrain relative motions across the East African Rift. The resulting velocity field describes horizontal and vertical motion at 133 GPS sites and 9 DORIS sites. Horizontal velocities at sites located on stable Nubia fit a single plate model with a weighted root mean square residual of 0.6 mm/yr (maximum residual 1 mm/yr), an upper bound for plate-wide motions and for regional-scale deformation in the seismically active southern Africa and Cameroon volcanic line. We confirm significant southward motion ( ˜ 1.5 mm/yr) in Morocco with respect to Nubia, consistent with earlier findings. We propose an updated angular velocity for the divergence between Nubia and Somalia, which provides the kinematic boundary conditions to rifting in East Africa. We update a plate motion model for the East African Rift and revise the counterclockwise rotation of the Victoria plate and clockwise rotation of the Rovuma plate with respect to Nubia. Vertical velocities range from - 2 to +2 mm/yr, close to their uncertainties, with no clear geographic pattern. This study provides the first continent-wide position/velocity solution for Africa, expressed in International Terrestrial Reference Frame (ITRF2008), a contribution to the upcoming African Reference Frame (AFREF). Except for a few regions, the African continent remains largely under-sampled by continuous space geodetic data. Efforts are needed to augment the geodetic infrastructure and openly share existing data sets so that the objectives of AFREF can be fully reached.

  14. Emotion modulates allocentric but not egocentric stimulus localization: implications for dual visual systems perspectives.

    PubMed

    Kryklywy, James H; Mitchell, Derek G V

    2014-12-01

    Considerable evidence suggests that emotional cues influence processing prioritization and neural representations of stimuli. Specifically, within the visual domain, emotion is known to impact ventral stream processes and ventral stream-mediated behaviours; it remains unclear, however, the extent to which emotion impacts dorsal stream processes. In the present study, participants localized a visual target stimulus embedded within a background array utilizing allocentric localization (requiring an object-centred representation of visual space to perform an action) and egocentric localization (requiring purely target-directed actions), which are thought to differentially rely on the ventral versus dorsal visual stream, respectively. Simultaneously, a task-irrelevant negative, positive or neutral sound was presented to produce an emotional context. In line with predictions, we found that during allocentric localization, response accuracy was enhanced in the context of negative compared to either neutral or positive sounds. In contrast, no significant effects of emotion were identified during egocentric localization. These results raise the possibility that negative emotional auditory contexts enhance ventral stream, but not dorsal stream, processing in the visual domain. Furthermore, this study highlights the complexity of emotion-cognition interactions, indicating how emotion can have a differential impact on almost identical overt behaviours that may be governed by distinct neurocognitive systems.

  15. Disentangling neural processes of egocentric and allocentric mental spatial transformations using whole-body photos of self and other.

    PubMed

    Ganesh, Shanti; van Schie, Hein T; Cross, Emily S; de Lange, Floris P; Wigboldus, Daniël H J

    2015-08-01

    Mental imagery of one's body moving through space is important for imagining changing visuospatial perspectives, as well as for determining how we might appear to other people. Previous neuroimaging research has implicated the temporoparietal junction (TPJ) in this process. It is unclear, however, how neural activity in the TPJ relates to the rotation perspectives from which mental spatial transformation (MST) of one's own body can take place, i.e. from an egocentric or an allocentric perspective. It is also unclear whether TPJ involvement in MST is self-specific or whether the TPJ may also be involved in MST of other human bodies. The aim of the current study was to disentangle neural processes involved in egocentric versus allocentric MSTs of human bodies representing self and other. We measured functional brain activity of healthy participants while they performed egocentric and allocentric MSTs in relation to whole-body photographs of themselves and a same-sex stranger. Findings indicated higher blood oxygen level-dependent (BOLD) response in bilateral TPJ during egocentric versus allocentric MST. Moreover, BOLD response in the TPJ during egocentric MST correlated positively with self-report scores indicating how awkward participants felt while viewing whole-body photos of themselves. These findings considerably advance our understanding of TPJ involvement in MST and its interplay with self-awareness.

  16. Cancelling prism adaptation by a shift of background: a novel utility of allocentric coordinates for extracting motor errors.

    PubMed

    Uchimura, Motoaki; Kitazawa, Shigeru

    2013-04-24

    Many previous studies have reported that our brains are able to encode a target position not only in body-centered coordinates but also in terms of landmarks in the background. The importance of such allocentric memory increases when we are forced to complete a delayed reaching task after the target has disappeared. However, the merit of allocentric memory in natural situations in which we are free to make an immediate reach toward a target has remained elusive. We hypothesized that allocentric memory is essential even in an immediate reach for dissociating between error attributable to the motor system and error attributable to target motion. We show here in humans that prism adaptation, that is, adaptation of reaching movements in response to errors attributable to displacement of the visual field, can be cancelled or enhanced simply by moving the background in mid-flight of the reaching movement. The results provide direct evidence for the novel contribution of allocentric memory in providing information on "where I intended to go," thereby discriminating the effect of target motion from the error resulting from the issued motor control signals.

  17. Does the Integration of Haptic and Visual Cues Reduce the Effect of a Biased Visual Reference Frame on the Subjective Head Orientation?

    PubMed Central

    Gueguen, Marc; Vuillerme, Nicolas; Isableu, Brice

    2012-01-01

    Background The selection of appropriate frames of reference (FOR) is a key factor in the elaboration of spatial perception and the production of robust interaction with our environment. The extent to which we perceive the head axis orientation (subjective head orientation, SHO) with both accuracy and precision likely contributes to the efficiency of these spatial interactions. A first goal of this study was to investigate the relative contribution of both the visual and egocentric FOR (centre-of-mass) in the SHO processing. A second goal was to investigate humans' ability to process SHO in various sensory response modalities (visual, haptic and visuo-haptic), and the way they modify the reliance to either the visual or egocentric FORs. A third goal was to question whether subjects combined visual and haptic cues optimally to increase SHO certainty and to decrease the FORs disruption effect. Methodology/Principal Findings Thirteen subjects were asked to indicate their SHO while the visual and/or egocentric FORs were deviated. Four results emerged from our study. First, visual rod settings to SHO were altered by the tilted visual frame but not by the egocentric FOR alteration, whereas no haptic settings alteration was observed whether due to the egocentric FOR alteration or the tilted visual frame. These results are modulated by individual analysis. Second, visual and egocentric FOR dependency appear to be negatively correlated. Third, the response modality enrichment appears to improve SHO. Fourth, several combination rules of the visuo-haptic cues such as the Maximum Likelihood Estimation (MLE), Winner-Take-All (WTA) or Unweighted Mean (UWM) rule seem to account for SHO improvements. However, the UWM rule seems to best account for the improvement of visuo-haptic estimates, especially in situations with high FOR incongruence. Finally, the data also indicated that FOR reliance resulted from the application of UWM rule. This was observed more particularly, in the

  18. The Uniformly Accelerated Reference Frame

    ERIC Educational Resources Information Center

    Hamilton, J. Dwayne

    1978-01-01

    The observations that would be made by a uniformly accelerated observer, including the observer's event horizon, the variation of clock rates with position, and the effects of following a freely falling object are considered in detail. (SL)

  19. Frame of Reference: Special Collections

    ERIC Educational Resources Information Center

    Goetsch, Lori A.

    2010-01-01

    Rare, distinctive, unique--academic libraries are exploring new ways to describe and define what they've traditionally called special collections: incunabula, manuscripts, rare books, cultural artifacts and more. These valuable, historically important, and often one-of-a-kind artifacts can be a treasure trove for scholars and students. Technology…

  20. Long-term R and V-band monitoring of some suitable targets for the link between ICRF and the future Gaia celestial reference frame

    NASA Astrophysics Data System (ADS)

    Taris, F.; Andrei, A.; Roland, J.; Klotz, A.; Vachier, F.; Souchay, J.

    2016-03-01

    Context. The Gaia astrometric mission of the European Space Agency was launched on December 2013. It will provide a catalog of 500 000 quasars. Some of these targets will be chosen to build an optical reference system that will be linked to the International Celestial Reference Frame (ICRF). The astrometric coordinates of these sources will have roughly the same uncertainty at both optical and radio wavelengths, and it is then mandatory to observe a common set of targets to build the link. In the ICRF, some targets have been chosen because of their pointlikeness. They are quoted as defining sources, and they ensure very good uncertainty about their astrometric coordinates. At optical wavelengths, a comparable uncertainty could be achieved for targets that do not exhibit strong astrophysical phenomena, which is a potential source of photocenter flickering. A signature of these phenomena is a magnitude variation at optical wavelengths. Aims: The goal of this work is to present the time series of 14 targets suitable for the link between the ICRF and the future Gaia Celestial Reference Frame. The observations have been done systematically by robotic telescopes in France and Chile once every two nights since 2011 and in two filters. These time series are analyzed to search for periodic or quasi-periodic phenomena that must be taken into account when computing the uncertainty about the astrometric coordinates. Methods: Two independent methods were used in this work to analyze the time series. We used the CLEAN algorithm to compare the frequency obtained to those given by the Lomb-Scargle method. It avoids misinterpreting the frequency peaks given in the periodograms. Results: For the 14 targets we determine some periods with a confidence level above 90% in each case. Some of the periods found in this work were not previously known. For the others, we did a comparative study of the periods previously studied by others and always confirm their values. All the periods given

  1. Vombat: an open source proof-of-concept for the use of Digital outcrop models as reference frame for stratigraphic observations

    NASA Astrophysics Data System (ADS)

    Penasa, Luca; Franceschi, Marco; Preto, Nereo; Girardeau-Montaut, Daniel

    2015-04-01

    passive remote sensing devices). This information requires to be merged with geological data collected in the field, in a consistent and reproducible way. We present Vombat, a proof-of-concept of open-source software to illustrate some of the possibilities in terms of information storage, visualization and exploitation of outcrop stratigraphic information. Our solution integrates with CloudCompare, a software that permits to visualize and edit point clouds. A dedicated algorithm estimates stratigraphic attitudes from point cloud data, without the need of exposed planar bedding surfaces. These attitudes can be used to define a virtual stratigraphic section. Composite sections can then be realized defining stratigraphic constraints between different reference frames. Any observation can be displayed in a stratigraphic framework that is directly generated from a VOM. The virtual outcrop, the samples and the stratigraphic reference frames can be saved into an XML file. In the future, the adoption of a standard format (e.g. GeoSciML) will permit easier exchange of stratigraphic data among researchers. The software constitutes a first step towards the full exploitation of VOMs in stratigraphy, is stored at http://github.com/luca-penasa/vombat‏ and is open source. Comments and suggestions are most welcome and will help focusing and refining the software and its tools.

  2. Interactive navigation-guided ophthalmic plastic surgery: assessment of optical versus electromagnetic modes and role of dynamic reference frame location using navigation-enabled human skulls

    PubMed Central

    Ali, Mohammad Javed; Naik, Milind N; Girish, Chetan Mallikarjuniah; Ali, Mohammad Hasnat; Kaliki, Swathi; Dave, Tarjani Vivek; Dendukuri, Gautam

    2016-01-01

    Aim The aim of this study was to assess the anatomical accuracy of navigation technology in localizing defined anatomic landmarks within the orbit with respect to type of technology (optical versus electromagnetic systems) and position of the dynamic reference marker on the skull (vertex, temporal, parietal, and mastoid) using in vitro navigation-enabled human skulls. The role of this model as a possible learning tool for anatomicoradiological correlations was also assessed. Methods Computed tomography (CT) scans were performed on three cadaveric human skulls using the standard image-guidance acquisition protocols. Thirty-five anatomical landmarks were identified for stereotactic navigation using the image-guided StealthStation S7™ in both electromagnetic and optical modes. Three outcome measures studied were accuracy of anatomical localization and its repeatability, comparisons between the electromagnetic and optical modes in assessing radiological accuracy, and the efficacy of dynamic reference frame (DRF) at different locations on the skull. Results The geometric localization of all the identified anatomical landmarks could be achieved accurately. The Cohen’s kappa agreements between the surgeons were found to be perfect (kappa =0.941) at all predetermined points. There was no difference in anatomical localization between the optical and electromagnetic modes (P≤0.001). Precision for radiological identification did not differ with various positions of the DRF. Skulls with intact anatomical details and careful CT image acquisitions were found to be stereotactically useful. Conclusion Accuracy of anatomic localization within the orbit with navigation technology is equal with optical and electromagnetic system. The location of DRF does not affect the accuracy. Navigation-enabled skull models can be potentially useful as teaching tools for achieving the accurate radiological orientation of orbital and periorbital structures. PMID:27932861

  3. Explaining as Mediated Action. An Analysis of Pre-service Teachers' Account of Forces of Inertia in Non-inertial Frames of Reference

    NASA Astrophysics Data System (ADS)

    de Pereira, Alexsandro Pereira; Lima Junior, Paulo; Rodrigues, Renato Felix

    2016-05-01

    Explaining is one of the most important everyday practices in science education. In this article, we examine how scientific explanations could serve as cultural tools for members of a group of pre-service physics teachers. Specifically, we aim at their use of explanations about forces of inertia in non-inertial frames of reference. A basic assumption of our study is that explanatory tools (e.g., typical explanations learned) shape the ways we think and speak about the world. Drawing on the theory of mediated action, analysis illustrates three major claims on scientific explanations: (1) explaining is an act of actively responding to explanations presented by others (and not only to evidence itself); (2) the actual experience of explaining involves the enactment of power and authority; (3) resistance (not acknowledging an explanation as one's own) might be a constitutive part of learning how to explain (hence, teachers could approach scientific explanation in a less dogmatic way). These assertions expand the possibilities of dialogue between studies of scientific explanations and the social sciences. Implications for science teaching and research in science education are presented.

  4. An improved synchronous reference frame current control strategy for a photovoltaic grid-connected inverter under unbalanced and nonlinear load conditions

    PubMed Central

    Naderipour, Amirreza; Asuhaimi Mohd Zin, Abdullah; Bin Habibuddin, Mohd Hafiz; Miveh, Mohammad Reza; Guerrero, Josep M.

    2017-01-01

    In recent years, renewable energy sources have been considered the most encouraging resources for grid and off-grid power generation. This paper presents an improved current control strategy for a three-phase photovoltaic grid-connected inverter (GCI) under unbalanced and nonlinear load conditions. It is challenging to suppress the harmonic content in the output current below a pre-set value in the GCI. It is also difficult to compensate for unbalanced loads even when the grid is under disruption due to total harmonic distortion (THD) and unbalanced loads. The primary advantage and objective of this method is to effectively compensate for the harmonic current content of the grid current and microgrid without the use of any compensation devices, such as active and passive filters. This method leads to a very low THD in both the GCI currents and the current exchanged with the grid. The control approach is designed to control the active and reactive power and harmonic current compensation, and it also corrects the system unbalance. The proposed control method features the synchronous reference frame (SRF) method. Simulation results are presented to demonstrate the effective performance of the proposed method. PMID:28192436

  5. Transformation from proper time on earth to coordinate time in solar system barycentric space-time frame of reference. I. II

    NASA Technical Reports Server (NTRS)

    Moyer, T. D.

    1981-01-01

    It is noted that in order to obtain accurate computed values of earth-based range and Doppler observables of a deep space probe, an expression is required for the difference between coordinate time (t) in the solar system barycentric space-time frame of reference and proper time (tau) recorded on a fixed atomic clock on earth. This is part 1 of a two-part article which obtains an expression for the coordinate time/proper time difference that can be used in deriving computed values of observations of a spacecraft or celestial body located anywhere in the solar system. The expression can also be used in computing Very Long Baseline Interferometry data types. In part 1, expression for the coordinate time/proper time difference is obtained that is a function of position and velocity vectors of the major celestial bodies of the solar system and the atomic clock on earth which reads proper time. This expression is transformed in part 2 to a function of time and the earth-fixed coordinates of the atomic clock.

  6. Self-concept and self-efficacy: a test of the internal/external frame of reference model and predictions of subsequent motivation and achievement.

    PubMed

    Skaalvik, Einar M; Skaalvik, Sidsel

    2004-12-01

    We examined how final grades in mathematics and verbal arts in the first year of high school (Grade 11) were predicted in a Norwegian population by sex, previous grades in middle school (Grade 10), self-concept, self-efficacy at a domain-specific level, and intrinsic motivation. Direct and indirect relations were examined by means of a series of regression analyses. Participants were 483 students from six Norwegian high schools. End of term grades in high school correlated positively with grades in middle school in both mathematics (r = .62) and verbal arts (r = .55). The relation between grades at the two points of time was to a large extent mediated through mathematics, verbal self-concept, and self-efficacy. Intrinsic motivation also correlated positively with subsequent achievement (r = .63 and .42 in mathematics and verbal arts, respectively). However, intrinsic motivation had little predictive value for subsequent grades over and above the prediction made by self-concept and self-efficacy. Thus, self-concept and self-efficacy were the strongest predictors of subsequent grades. Predictions from the Internal/External frame of reference model were supported for self-concept but not for domain-specific self-efficacy.

  7. An improved synchronous reference frame current control strategy for a photovoltaic grid-connected inverter under unbalanced and nonlinear load conditions.

    PubMed

    Naderipour, Amirreza; Asuhaimi Mohd Zin, Abdullah; Bin Habibuddin, Mohd Hafiz; Miveh, Mohammad Reza; Guerrero, Josep M

    2017-01-01

    In recent years, renewable energy sources have been considered the most encouraging resources for grid and off-grid power generation. This paper presents an improved current control strategy for a three-phase photovoltaic grid-connected inverter (GCI) under unbalanced and nonlinear load conditions. It is challenging to suppress the harmonic content in the output current below a pre-set value in the GCI. It is also difficult to compensate for unbalanced loads even when the grid is under disruption due to total harmonic distortion (THD) and unbalanced loads. The primary advantage and objective of this method is to effectively compensate for the harmonic current content of the grid current and microgrid without the use of any compensation devices, such as active and passive filters. This method leads to a very low THD in both the GCI currents and the current exchanged with the grid. The control approach is designed to control the active and reactive power and harmonic current compensation, and it also corrects the system unbalance. The proposed control method features the synchronous reference frame (SRF) method. Simulation results are presented to demonstrate the effective performance of the proposed method.

  8. The 5-HT7 receptor is involved in allocentric spatial memory information processing.

    PubMed

    Sarkisyan, Gor; Hedlund, Peter B

    2009-08-24

    The hippocampus has been implicated in aspects of spatial memory. Its ability to generate new neurons has been suggested to play a role in memory formation. Hippocampal serotonin (5-HT) neurotransmission has also been proposed as a contributor to memory processing. Studies have shown that the 5-HT(7) receptor is present in the hippocampus in relatively high abundance. Thus the aim of the present study was to investigate the possible role of the 5-HT(7) receptor in spatial memory using 5-HT(7) receptor-deficient mice (5-HT(7)(-/-)). A hippocampus-associated spatial memory deficit in 5-HT(7)(-/-) mice was demonstrated using a novel location/novel object test. A similar reduction in novel location exploration was observed in C57BL/6J mice treated with the selective 5-HT(7) receptor antagonist SB-269970. These findings prompted an extended analysis using the Barnes maze demonstrating that 5-HT(7)(-/-) mice were less efficient in accommodating to changes in spatial arrangement than 5-HT(7)(+/+) mice. 5-HT(7)(-/-) mice had specific impairments in memory compilation required for resolving spatial tasks, which resulted in impaired allocentric spatial memory whereas egocentric spatial memory remained intact after the mice were forced to switch back from striatum-dependent egocentric to hippocampus-dependent allocentric memory. To further investigate the physiological bases underlining these behaviors we compared hippocampal neurogenesis in 5-HT(7)(+/+) and 5-HT(7)(-/-) mice employing BrdU immunohistochemistry. The rate of cell proliferation in the dentate gyrus was identical in the two genotypes. From the current data we conclude that the 5-HT(7)(-/-) mice performed by remembering a simple sequence of actions that resulted in successfully locating a hidden target in a static environment.

  9. Reference frame access under the effects of great earthquakes: a least squares collocation approach for non-secular post-seismic evolution

    NASA Astrophysics Data System (ADS)

    Gómez, D. D.; Piñón, D. A.; Smalley, R.; Bevis, M.; Cimbaro, S. R.; Lenzano, L. E.; Barón, J.

    2016-03-01

    The 2010, (Mw 8.8) Maule, Chile, earthquake produced large co-seismic displacements and non-secular, post-seismic deformation, within latitudes 28°S-40°S extending from the Pacific to the Atlantic oceans. Although these effects are easily resolvable by fitting geodetic extended trajectory models (ETM) to continuous GPS (CGPS) time series, the co- and post-seismic deformation cannot be determined at locations without CGPS (e.g., on passive geodetic benchmarks). To estimate the trajectories of passive geodetic benchmarks, we used CGPS time series to fit an ETM that includes the secular South American plate motion and plate boundary deformation, the co-seismic discontinuity, and the non-secular, logarithmic post-seismic transient produced by the earthquake in the Posiciones Geodésicas Argentinas 2007 (POSGAR07) reference frame (RF). We then used least squares collocation (LSC) to model both the background secular inter-seismic and the non-secular post-seismic components of the ETM at the locations without CGPS. We tested the LSC modeled trajectories using campaign and CGPS data that was not used to generate the model and found standard deviations (95 % confidence level) for position estimates for the north and east components of 3.8 and 5.5 mm, respectively, indicating that the model predicts the post-seismic deformation field very well. Finally, we added the co-seismic displacement field, estimated using an elastic finite element model. The final, trajectory model allows accessing the POSGAR07 RF using post-Maule earthquake coordinates within 5 cm for ˜ 91 % of the passive test benchmarks.

  10. Identification and Estimation of Postseismic Deformation: Implications for Plate Motion Models, Models of the Earthquake Cycle, and Terrestrial Reference Frame Definition

    NASA Astrophysics Data System (ADS)

    Kedar, S.; Bock, Y.; Moore, A. W.; Argus, D. F.; Fang, P.; Liu, Z.; Haase, J. S.; Su, L.; Owen, S. E.; Goldberg, D.; Squibb, M. B.; Geng, J.

    2015-12-01

    Postseismic deformation indicates a viscoelastic response of the lithosphere. It is critical, then, to identify and estimate the extent of postseismic deformation in both space and time, not only for its inherent information on crustal rheology and earthquake physics, but also since it must considered for plate motion models that are derived geodetically from the "steady-state" interseismic velocities, models of the earthquake cycle that provide interseismic strain accumulation and earthquake probability forecasts, as well as terrestrial reference frame definition that is the basis for space geodetic positioning. As part of the Solid Earth Science ESDR System) SESES project under a NASA MEaSUREs grant, JPL and SIO estimate combined daily position time series for over 1800 GNSS stations, both globally and at plate boundaries, independently using the GIPSY and GAMIT software packages, but with a consistent set of a prior epoch-date coordinates and metadata. The longest time series began in 1992, and many of them contain postseismic signals. For example, about 90 of the global GNSS stations out of more than 400 that define the ITRF have experienced one or more major earthquakes and 36 have had multiple earthquakes; as expected, most plate boundary stations have as well. We quantify the spatial (distance from rupture) and temporal (decay time) extent of postseismic deformation. We examine parametric models (log, exponential) and a physical model (rate- and state-dependent friction) to fit the time series. Using a PCA analysis, we determine whether or not a particular earthquake can be uniformly fit by a single underlying postseismic process - otherwise we fit individual stations. Then we investigate whether the estimated time series velocities can be directly used as input to plate motion models, rather than arbitrarily removing the apparent postseismic portion of a time series and/or eliminating stations closest to earthquake epicenters.

  11. Magnetic-resonance imaging and simplified Kozeny-Carman-model analysis of glass-bead packs as a frame of reference to study permeability of reservoir rocks

    NASA Astrophysics Data System (ADS)

    Wang, Dayong; Han, Dongyan; Li, Wenqiang; Zheng, Zhanpeng; Song, Yongchen

    2017-03-01

    Permeability variation in reservoir rocks results from the combined effects of various factors, and makes porosity-permeability (ϕ-k) relationships more complex, or, in some cases, non-existent. In this work, the ϕ-k relationship of macroscopically homogeneous glass-bead packs is deduced based on magnetic resonance imaging (MRI) measurement and Kozeny-Carman (K-C) model analysis; these are used as a frame of reference to study permeability of reservoir rocks. The results indicate: (1) most of the commonly used simplified K-C models (e.g. the simplified traditional (omitting specific surface area), high-order, threshold, and fractal models) are suitable for estimating permeability of glass-bead packs. The simplified traditional model does not present obvious dependence on rock samples. Whether for the glass-bead packs or clean natural sandstones, the sample coefficients almost remain invariant. Comparably, the high-order, the fractal, and the threshold models are strongly sample-specific and cannot be extrapolated from the glass-bead packs to natural sandstones; (2) the ϕ-k relationships of quartz sands and silty sandstones resemble those of the glass-bead packs, but they significantly deviate from the K-C models at low porosities due to small pore entry radius; (3) a small amount of intergranular cements (<10%v) does not affect the general variation trend of permeability with porosity but can potentially increase predictive errors of the K-C models, whereas in the case of more cements, the ϕ-k relationships of sandstones become uncertain and cannot be described by any of these K-C models.

  12. Drifting while stepping in place in old adults: Association of self-motion perception with reference frame reliance and ground optic flow sensitivity.

    PubMed

    Agathos, Catherine P; Bernardin, Delphine; Baranton, Konogan; Assaiante, Christine; Isableu, Brice

    2017-04-07

    Optic flow provides visual self-motion information and is shown to modulate gait and provoke postural reactions. We have previously reported an increased reliance on the visual, as opposed to the somatosensory-based egocentric, frame of reference (FoR) for spatial orientation with age. In this study, we evaluated FoR reliance for self-motion perception with respect to the ground surface. We examined how effects of ground optic flow direction on posture may be enhanced by an intermittent podal contact with the ground, and reliance on the visual FoR and aging. Young, middle-aged and old adults stood quietly (QS) or stepped in place (SIP) for 30s under static stimulation, approaching and receding optic flow on the ground and a control condition. We calculated center of pressure (COP) translation and optic flow sensitivity was defined as the ratio of COP translation velocity over absolute optic flow velocity: the visual self-motion quotient (VSQ). COP translation was more influenced by receding flow during QS and by approaching flow during SIP. In addition, old adults drifted forward while SIP without any imposed visual stimulation. Approaching flow limited this natural drift and receding flow enhanced it, as indicated by the VSQ. The VSQ appears to be a motor index of reliance on the visual FoR during SIP and is associated with greater reliance on the visual and reduced reliance on the egocentric FoR. Exploitation of the egocentric FoR for self-motion perception with respect to the ground surface is compromised by age and associated with greater sensitivity to optic flow.

  13. CCD Positions Determined in the International Celestial Reference Frame for the Outer Planets and Many of Their Satellites in 1995-1999

    NASA Astrophysics Data System (ADS)

    Stone, Ronald C.; Harris, Frederick H.

    2000-04-01

    This paper presents 1155 accurate equatorial positions for the outer planets Uranus, Neptune, and Pluto and 17 satellites of Jupiter-Neptune. Additional positions for Jupiter, Saturn, Uranus, and Neptune can be determined from the planetocentric motions of their satellites given in this paper. All the positions were determined in the International Celestial Reference Frame (ICRF), the IAU standard for all future astrometric reductions, from CCD observations taken with the Flagstaff Astrometric Scanning Transit Telescope (FASTT) and reduced differentially using the ACT reference stars. The methods used to determine these positions are fully described. Accuracies of +/-0.08" to +/-0.25" were obtained in each coordinate, depending on the signal-to-noise ratio observed for each object. In many cases, planets and satellites were imaged in the same CCD field of view, thereby giving excellent relative astrometry (+/-0.04") for well-exposed images. Moreover, 424 older FASTT positions determined in 1995-1997 for Uranus, Neptune, and Pluto were converted to the ICRF and are given also in this paper. When FASTT positions are compared with modern Jet Propulsion Laboratory (JPL) ephemerides for the planets and satellites considered herein, there is generally good agreement (less than 0.05") between observation and theory. For the planets, FASTT observations and DE405 ephemerides all agree to better than 0.05" and, in most cases, less than 0.03" when mean differences are formed. There are some exceptions for the satellites. Namely, the ephemerides for the outer satellites of Jupiter and Saturn considered in this paper (Himalia, Elara, Pasiphae, and Phoebe) and the Uranian satellites Titania and Oberon probably need improvement as indicated from the FASTT observational data. The former show systematic trends when (FASTT-JPL ephemeris) coordinate differences are plotted against either coordinate position or orbital phase, and the latter show a possible offset between the right

  14. Detecting early egocentric and allocentric impairments deficits in Alzheimer’s disease: an experimental study with virtual reality

    PubMed Central

    Serino, Silvia; Morganti, Francesca; Di Stefano, Fabio; Riva, Giuseppe

    2015-01-01

    Several studies have pointed out that egocentric and allocentric spatial impairments are one of the earliest manifestations of Alzheimer’s Disease (AD). It is less clear how a break in the continuous interaction between these two representations may be a crucial marker to detect patients who are at risk to develop dementia. The main objective of this study is to compare the performances of participants suffering from amnestic mild cognitive impairment (aMCI group), patients with AD (AD group) and a control group (CG), using a virtual reality (VR)-based procedure for assessing the abilities in encoding, storing and syncing different spatial representations. In the first task, participants were required to indicate on a real map the position of the object they had memorized, while in the second task they were invited to retrieve its position from an empty version of the same virtual room, starting from a different position. The entire procedure was repeated across three different trials, depending on the object location in the encoding phase. Our finding showed that aMCI patients performed significantly more poorly in the third trial of the first task, showing a deficit in the ability to encode and store an allocentric viewpoint independent representation. On the other hand, AD patients performed significantly more poorly when compared to the CG in the second task, indicating a specific impairment in storing an allocentric viewpoint independent representation and then syncing it with the allocentric viewpoint dependent representation. Furthermore, data suggested that these impairments are not a product of generalized cognitive decline or of general decay in spatial abilities, but instead may reflect a selective deficit in the spatial organization Overall, these findings provide an initial insight into the cognitive underpinnings of amnestic impairment in aMCI and AD patient exploiting the potentiality of VR. PMID:26042034

  15. From Geocentrism to Allocentrism: Teaching the Phases of the Moon in a Digital Full-Dome Planetarium

    NASA Astrophysics Data System (ADS)

    Chastenay, Pierre

    2016-02-01

    An increasing number of planetariums worldwide are turning digital, using ultra-fast computers, powerful graphic cards, and high-resolution video projectors to create highly realistic astronomical imagery in real time. This modern technology makes it so that the audience can observe astronomical phenomena from a geocentric as well as an allocentric perspective (the view from space). While the dome creates a sense of immersion, the digital planetarium introduces a new way to teach astronomy, especially for topics that are inherently three-dimensional and where seeing the phenomenon from different points of view is essential. Like a virtual-reality environment, an immersive digital planetarium helps learners create a more scientifically accurate visualization of astronomical phenomena. In this study, a digital planetarium was used to teach the phases of the Moon to children aged 12 to 14. To fully grasp the lunar phases, one must imagine the spherical Moon (as perceived from space), revolving around the Earth while being illuminated by the Sun, and then reconcile this view with the geocentric perspective. Digital planetariums allow learners to have both an allocentric and a geocentric perspective on the lunar phases. Using a Design experiment approach, we tested an educational scenario in which the lunar phases were taught in an allocentric digital planetarium. Based on qualitative data collected before, during, and after the planetarium intervention, we were able to demonstrate that five out of six participants had a better understanding of the lunar phases after the planetarium session.

  16. The Prognosis of Allocentric and Egocentric Neglect: Evidence from Clinical Scans

    PubMed Central

    Chechlacz, Magdalena; Rotshtein, Pia; Roberts, Katherine L.; Bickerton, Wai-Ling; Lau, Johnny K. L.; Humphreys, Glyn W.

    2012-01-01

    We contrasted the neuroanatomical substrates of sub-acute and chronic visuospatial deficits associated with different aspects of unilateral neglect using computed tomography scans acquired as part of routine clinical diagnosis. Voxel-wise statistical analyses were conducted on a group of 160 stroke patients scanned at a sub-acute stage. Lesion-deficit relationships were assessed across the whole brain, separately for grey and white matter. We assessed lesions that were associated with behavioural performance (i) at a sub-acute stage (within 3 months of the stroke) and (ii) at a chronic stage (after 9 months post stroke). Allocentric and egocentric neglect symptoms at the sub-acute stage were associated with lesions to dissociated regions within the frontal lobe, amongst other regions. However the frontal lesions were not associated with neglect at the chronic stage. On the other hand, lesions in the angular gyrus were associated with persistent allocentric neglect. In contrast, lesions within the superior temporal gyrus extending into the supramarginal gyrus, as well as lesions within the basal ganglia and insula, were associated with persistent egocentric neglect. Damage within the temporo-parietal junction was associated with both types of neglect at the sub-acute stage and 9 months later. Furthermore, white matter disconnections resulting from damage along the superior longitudinal fasciculus were associated with both types of neglect and critically related to both sub-acute and chronic deficits. Finally, there was a significant difference in the lesion volume between patients who recovered from neglect and patients with chronic deficits. The findings presented provide evidence that (i) the lesion location and lesion size can be used to successfully predict the outcome of neglect based on clinical CT scans, (ii) lesion location alone can serve as a critical predictor for persistent neglect symptoms, (iii) wide spread lesions are associated with neglect symptoms

  17. A time stepping coupled finite element-state space modeling environment for synchronous machine performance and design analysis in the ABC frame of reference

    NASA Astrophysics Data System (ADS)

    Deng, Fang

    iteratively used in obtaining inductance parameters prior to another round of SS computation of the steady-state current profiles. Again, the model is iterative in nature, in which the user continues cycling through the two sections, namely the FE and SS sections of the CFE-SS modeling environment, until the desired degree of convergence is achieved. The CFE-SS approach uses only design data such as physical dimensions, magnetic circuit geometry, magnetic material characteristics, winding particulars and layouts, and hence does not depend on the existence of actual hardware. The modeling environment is totally within the ABC frame of reference, therefore no approximating assumptions such as sinusoidally distributed mmf's or current sheets were made.

  18. Virtual Reality Body Swapping: A Tool for Modifying the Allocentric Memory of the Body.

    PubMed

    Serino, Silvia; Pedroli, Elisa; Keizer, Anouk; Triberti, Stefano; Dakanalis, Antonios; Pallavicini, Federica; Chirico, Alice; Riva, Giuseppe

    2016-02-01

    An increasing amount of evidence has shown that embodiment of a virtual body via visuo-tactile stimulation can lead to an altered perception of body and object size. The current study aimed to investigate whether virtual reality (VR) body swapping can be an effective tool for modifying the enduring memory of the body. The experimental sample included 21 female participants who were asked to estimate the width and circumference of different body parts before any kind of stimulation and after two types of body swapping illusions ("synchronous visuo-tactile stimulation" and "asynchronous visuo-tactile stimulation"). Findings revealed that after participants embodied a virtual body with a skinny belly (independently of the type of visuo-tactile stimulation), there was an update of the stored representation of the body: participants reported a decrease in the ratio between estimated and actual body measures for most of the body parts considered. Based on the Allocentric Lock Theory, these findings provide first evidence that VR body swapping is able to induce a change in the memory of the body. This knowledge may be potentially useful for patients suffering from eating and weight disorders.

  19. Mechanisms of homing in the fiddler crab Uca rapax. 2. Information sources and frame of reference for a path integration system.

    PubMed

    Layne, John E; Barnes, W Jon P; Duncan, Lindsey M J

    2003-12-01

    Fiddler crabs Uca rapax are central-place foragers, making feeding excursions of up to several meters from their burrows. This study investigates the sources of directional and distance information used by these crabs when returning to their burrows. We tested the spatial frame of reference (egocentric or exocentric), and the source of spatial information (idiothetic or allothetic) used during homing. We also tested which components of their locomotion they integrated (only voluntary, or voluntary plus reflexive). Fiddler crabs in their natural mudflat habitat were passively rotated during normal foraging behavior using experimenter-controlled disks, before they returned home. Crabs resisted passive rotations on the disk by counter-rotating when the disk turned, which was a compensatory response to unintended movement. Crabs were usually situated eccentrically on the disk, and therefore were also subjected to a translation when the disk rotated. No crab actively compensated for this translation. Crabs that fully compensated for disk rotation made no directional homing error. Crabs that did not fully compensate homed in a direction that reflected their new body orientation. In other words, if we succeeded in reorienting a crab (i.e. it undercompensated for disk rotation), its homing error was equal to the angle by which it had been reoriented, regardless of the magnitude of the optomotor compensation. Computer-modelled crabs, each equipped with a path integrator utilizing different combinations of external (allothetic) and path-related (idiothetic) input, traversed the digitized paths of the real crabs. The home vector computed by the model crab was then compared to the homing direction observed in the real crab. The model home vector that most closely matched that of the real crab was taken to comprise the path integration mechanism employed by fiddler crabs. The model that best matched the real crab gained direction and distance idiothetically (from internal

  20. Does an Oblique/Slanted Perspective during Virtual Navigation Engage Both Egocentric and Allocentric Brain Strategies?

    PubMed Central

    Barra, Julien; Laou, Laetitia; Poline, Jean-Baptiste; Lebihan, Denis; Berthoz, Alain

    2012-01-01

    Perspective (route or survey) during the encoding of spatial information can influence recall and navigation performance. In our experiment we investigated a third type of perspective, which is a slanted view. This slanted perspective is a compromise between route and survey perspectives, offering both information about landmarks as in route perspective and geometric information as in survey perspective. We hypothesized that the use of slanted perspective would allow the brain to use either egocentric or allocentric strategies during storage and recall. Twenty-six subjects were scanned (3-Tesla fMRI) during the encoding of a path (40-s navigation movie within a virtual city). They were given the task of encoding a segment of travel in the virtual city and of subsequent shortcut-finding for each perspective: route, slanted and survey. The analysis of the behavioral data revealed that perspective influenced response accuracy, with significantly more correct responses for slanted and survey perspectives than for route perspective. Comparisons of brain activation with route, slanted, and survey perspectives suggested that slanted and survey perspectives share common brain activity in the left lingual and fusiform gyri and lead to very similar behavioral performance. Slanted perspective was also associated with similar activation to route perspective during encoding in the right middle occipital gyrus. Furthermore, slanted perspective induced intermediate patterns of activation (in between route and survey) in some brain areas, such as the right lingual and fusiform gyri. Our results suggest that the slanted perspective may be considered as a hybrid perspective. This result offers the first empirical support for the choice to present the slanted perspective in many navigational aids. PMID:23209583

  1. Similarities and differences between the brain networks underlying allocentric and egocentric spatial learning in rat revealed by cytochrome oxidase histochemistry.

    PubMed

    Rubio, S; Begega, A; Méndez, M; Méndez-López, M; Arias, J L

    2012-10-25

    The involvement of different brain regions in place- and response-learning was examined using a water cross-maze. Rats were trained to find the goal from the initial arm by turning left at the choice point (egocentric strategy) or by using environmental cues (allocentric strategy). Although different strategies were required, the same maze and learning conditions were used. Using cytochrome oxidase histochemistry as a marker of cellular activity, the function of the 13 diverse cortical and subcortical regions was assessed in rats performing these two tasks. Our results show that allocentric learning depends on the recruitment of a large functional network, which includes the hippocampal CA3, dentate gyrus, medial mammillary nucleus and supramammillary nucleus. Along with the striatum, these last three structures are also related to egocentric spatial learning. The present study provides evidence for the contribution of these regions to spatial navigation and supports a possible functional interaction between the two memory systems, as their structural convergence may facilitate functional cooperation in the behaviours guided by more than one strategy. In summary, it can be argued that spatial learning is based on dynamic functional systems in which the interaction of brain regions is modulated by task requirements.

  2. Scopolamine disrupts hippocampal activity during allocentric spatial memory in humans: an fMRI study using a virtual reality analogue of the Morris Water Maze.

    PubMed

    Antonova, Elena; Parslow, David; Brammer, Michael; Simmons, Andrew; Williams, Steven; Dawson, Gerard R; Morris, Robin

    2011-09-01

    The role of the septohippocampal cholinergic system in memory disorders is well established. The effects of cholinergic challenge in animals have been extensively studied using the Morris Water Maze (MWM) which engages allocentric spatial memory. The present study investigated the effect of the centrally active muscarinic antagonist scopolamine on allocentric spatial memory in humans using a virtual reality analogue of the MWM task, the Arena task. Twenty right-handed healthy male adults with a mean age of 28 years (range 23-35 years) were studied using functional MRI in a randomized double-blind cross-over design with scopolamine bromide (0.4 mg i.m.) or placebo (saline) administered 70-90 min before the beginning of the functional scan. Scopolamine induced a significant reduction in the activation of the hippocampus/parahippocampal gyrus compared with placebo. Furthermore, there was dissociation between hippocampus-based and striatal-based memory systems, which were significantly more activated in the placebo and scopolamine conditions, respectively. The activation of the striatal system under scopolamine challenge was accompanied by the activation of the amygdala. In conclusion, the study extends the well-documented finding in animals of the attenuating effect of scopolamine on hippocampal activity during allocentric spatial memory to humans. Furthermore, the results call for further investigation of the dissociation between the hippocampal and neostriatal memory systems during allocentric spatial processing under cholinergic blockade in humans.

  3. The impact of map orientation and generalisation on congestion decisions: a comparison of schematic-egocentric and topographic-allocentric maps.

    PubMed

    Crundall, David; Crundall, Elizabeth; Burnett, Gary; Shalloe, Sally; Sharples, Sarah

    2011-08-01

    Map information for drivers is usually presented in an allocentric-topographic form (as with printed maps) or in an egocentric-schematic form (as with road signs). The advent of new variable message boards on UK motorways raises the possibility of presenting road maps to reflect congestion ahead. Should these maps be allocentric-topographic or egocentric-schematic? This was assessed in an eye tracking study, with participants viewing maps of a motorway network in order to identify whether any congestion was relevant to their intended route. The schematic-egocentric maps were responded to most accurately with shorter fixation durations suggesting easier processing. In particular, the driver's entrance and intended exit from the map were attended to more in the allocentric maps. Individual differences in mental rotation ability also seem to contribute to poor performance on allocentric maps. The results favour schematic-egocentric maps for roadside congestion information, but also provide theoretical insights into map-rotation and individual differences. Statement of Relevance: This study informs designers and policy makers about optimum representations of traffic congestion on roadside variable message signs and, furthermore, demonstrates that individual differences contribute to problems with processing certain sign types. Schematic-egocentric representations of a motorway network produced the best results, as noted in behavioural and eye movement measures.

  4. Differential hippocampal and retrosplenial involvement in egocentric-updating, rotation, and allocentric processing during online spatial encoding: an fMRI study.

    PubMed

    Gomez, Alice; Cerles, Mélanie; Rousset, Stéphane; Rémy, Chantal; Baciu, Monica

    2014-01-01

    The way new spatial information is encoded seems to be crucial in disentangling the role of decisive regions within the spatial memory network (i.e., hippocampus, parahippocampal, parietal, retrosplenial,…). Several data sources converge to suggest that the hippocampus is not always involved or indeed necessary for allocentric processing. Hippocampal involvement in spatial coding could reflect the integration of new information generated by "online" self-related changes. In this fMRI study, the participants started by encoding several object locations in a virtual reality environment and then performed a pointing task. Allocentric encoding was maximized by using a survey perspective and an object-to-object pointing task. Two egocentric encoding conditions were used, involving self-related changes processed under a first-person perspective and implicating a self-to-object pointing task. The Egocentric-updating condition involved navigation whereas the Egocentric with rotation only condition involved orientation changes only. Conjunction analysis of spatial encoding conditions revealed a wide activation of the occipito-parieto-frontal network and several medio-temporal structures. Interestingly, only the cuneal areas were significantly more recruited by the allocentric encoding in comparison to other spatial conditions. Moreover, the enhancement of hippocampal activation was found during Egocentric-updating encoding whereas the retrosplenial activation was observed during the Egocentric with rotation only condition. Hence, in some circumstances, hippocampal and retrosplenial structures-known for being involved in allocentric environmental coding-demonstrate preferential involvement in the egocentric coding of space. These results indicate that the raw differentiation between allocentric versus egocentric representation seems to no longer be sufficient in understanding the complexity of the mechanisms involved during spatial encoding.

  5. Allocentric Spatial Memory Testing Predicts Conversion from Mild Cognitive Impairment to Dementia: An Initial Proof-of-Concept Study

    PubMed Central

    Wood, Ruth A.; Moodley, Kuven K.; Lever, Colin; Minati, Ludovico; Chan, Dennis

    2016-01-01

    The hippocampus is one of the first regions to exhibit neurodegeneration in Alzheimer’s disease (AD), and knowledge of its role in allocentric spatial memory may therefore aid early diagnosis of AD. The 4 Mountains Test (4MT) is a short and easily administered test of spatial memory based on the cognitive map theory of hippocampal function as derived from rodent single cell and behavioral studies. The 4MT has been shown in previous cross-sectional studies to be sensitive and specific for mild cognitive impairment (MCI) due to AD. This report describes the initial results of a longitudinal study testing the hypothesis that allocentric spatial memory is predictive of conversion from MCI to dementia. Fifteen patients with MCI underwent baseline testing on the 4MT in addition to CSF amyloid/tau biomarker studies, volumetric MRI and neuropsychological assessment including the Rey Auditory Verbal Learning Test (RAVLT) and Trail Making Test “B” (TMT-B). At 24 months, 9/15 patients had converted to AD dementia. The 4MT predicted conversion to AD with 93% accuracy (Cohen’s d = 2.52). The predictive accuracies of the comparator measures were as follows: CSF tau/β-amyloid1–42 ratio 92% (d = 1.81), RAVLT 64% (d = 0.41), TMT-B 78% (d = 1.56), and hippocampal volume 77% (d = 0.65). CSF tau levels were strongly negatively correlated with 4MT scores (r = −0.71). This proof-of-concept study provides initial support for the hypothesis that allocentric spatial memory testing is a predictive cognitive marker of hippocampal neurodegeneration in pre-dementia AD. The 4MT is a brief, non-invasive, straightforward spatial memory test and is therefore ideally suited for use in routine clinical diagnostic practice. This is of particular importance given the current unmet need for simple accurate diagnostic tests for early AD and the ongoing development of potential disease-modifying therapeutic agents, which may be more efficacious when given earlier in

  6. Extending the X/Ka Celestial Reference Frame over the South Polar Cap: Results from combined NASA-ESA Deep Space Network baselines to Malargüe, Argentina

    NASA Astrophysics Data System (ADS)

    Jacobs, Christopher S.; de Vicente, J.; Dugast, M.; García-Miró, C.; Goodhart, C. E.; Horiuchi, S.; Lowe, S. T.; Maddè, R.; Mercolino, M.; Naudet, C. J.; Snedeker, L. G.; Sotuela, I.; White, L. A.

    2013-03-01

    In order to extend the X/Ka-band (8.4/32 GHz) Celestial Reference Frame coverage over the south polar cap region of declinations -45 to -90 deg, we developed a collaboration between the NASA and ESA Deep Space Networks. In particular ESA's new 35-meter X/Ka-band antenna in Malargüe, Argentina which became operational in January 2013 is now available for X/Ka VLBI baselines to NASA's antennas in Tidbinbilla, Australia; Goldstone, California; and Robledo, Spain. We report first fringes on baselines from Malargüe to Tidbinbilla, Goldstone, and Robledo using a semi-portable digital backend recording at 256 Mbps. To the best of our knowledge the Giga-lambda Malargüe-Tidbinbilla baseline is producing the highest resolution interferometry ever achieved over the south polar cap. We will present the distribution of Ka-band sources detected on this all-southern baseline. Lastly, we will discuss the prospects for using these new baselines to improve the astrometric accuracy of the X/Ka frame in the southern hemisphere.

  7. Non-Syntactic Antecedents and Frame Semantics.

    ERIC Educational Resources Information Center

    Gensler, Orin

    A polemic is made for frame semantics and the linguistic phenomenon of anaphoric reference without noun phrase (NP) antecedent is examined within this frame. Non-syntactic anaphora is that which does not point out into the real world but rather points back into the discourse in a frame which has been built up between the speaker and hearer in a…

  8. Evidence from Visuomotor Adaptation for Two Partially Independent Visuomotor Systems

    ERIC Educational Resources Information Center

    Thaler, Lore; Todd, James T.

    2010-01-01

    Visual information can specify spatial layout with respect to the observer (egocentric) or with respect to an external frame of reference (allocentric). People can use both of these types of visual spatial information to guide their hands. The question arises if movements based on egocentric and movements based on allocentric visual information…

  9. Geophysical Studies Related to Geodetic Reference Frames

    DTIC Science & Technology

    1990-02-09

    Chandler wobble to estimate anelasticity at the 14 month wob- ble period. The 18.6 year solid-Earth and ocean tides, related to the precession of the...should continue to improve as more satellite data are acquired. The Chandler wobble constraint on anelasticity [see, for example, Smith and Dahlen...coincidental is the existence of a normal mode of the earth (the Chandler wobble ) near one of the peaks in the local pressure spectrum, and the fact that the

  10. Union-Management Ideological Frames of Reference.

    ERIC Educational Resources Information Center

    Wolters, Roger S.

    1982-01-01

    Looks at union-management (U-M) ideology as a potential explanatory variable in labor relations and demonstrates a method of measuring the ideology of union (N=34) and management (N=38) representatives. Semantic differential and antecedent-consequent techniques indicated significant union-management differences on all 10 U-M beliefs measured. (WAS)

  11. [The framing effect: medical implications].

    PubMed

    Mazzocco, Ketti; Cherubini, Paolo; Rumiati, Rino

    2005-01-01

    Over the last 20 years, many studies explored how the way information is presented modifies choices. This sort of effect, referred to as "framing effects", typically consists of the inversion of choices when presenting structurally identical decision problems in different ways. It is a common assumption that physicians are unaffected (or less affected) by the surface description of a decision problem, because they are formally trained in medical decision making. However, several studies showed that framing effects occur even in the medical field. The complexity and variability of these effects are remarkable, making it necessary to distinguish among different framing effects, depending on whether the effect is obtained by modifying adjectives (attribute framing), goals of a behavior (goal framing), or the probability of an outcome (risky choice framing). A further reason for the high variability of the framing effects seems to be the domain of the decision problem, with different effects occurring in prevention decisions, disease-detection decisions, and treatment decisions. The present work reviews the studies on framing effects, in order to summarize them and clarify their possible role in medical decision making.

  12. Geodetic precession or dragging of inertial frames

    SciTech Connect

    Ashby, N. ); Shahid-Saless, B. )

    1990-08-15

    In metric theories of gravity the principle of general covariance allows one to describe phenomena by means of any convenient choice of coordinate system. In this paper it is shown that in an appropriately chosen coordinate system, geodetic precession of a gyroscope orbiting a spherically symmetric, spinning mass can be recast as a Lense-Thirring frame-dragging effect without invoking spatial curvature. The origin of this reference frame moves around the source but the frame axes point in fixed directions. The drag can be interpreted to arise from the orbital angular momentum of the source around the origin of the reference frame. In this reference frame the effects of geodetic precession and Lense-Thirring drag due to intrinsic angular momentum of the source have the same origin, namely, gravitomagnetism.

  13. Framing Effects: Dynamics and Task Domains

    PubMed

    Wang

    1996-11-01

    The author examines the mechanisms and dynamics of framing effects in risky choices across three distinct task domains (i.e., life-death, public property, and personal money). The choice outcomes of the problems presented in each of the three task domains had a binary structure of a sure thing vs a gamble of equal expected value; the outcomes differed in their framing conditions and the expected values, raging from 6000, 600, 60, to 6, numerically. It was hypothesized that subjects would become more risk seeking, if the sure outcome was below their aspiration level (the minimum requirement). As predicted, more subjects preferred the gamble when facing the life-death choice problems than facing the counterpart problems presented in the other two task domains. Subjects' risk preference varied categorically along the group size dimension in the life-death domain but changed more linearly over the expected value dimension in the monetary domain. Framing effects were observed in 7 of 13 pairs of problems, showing a positive frame-risk aversion and negative frame-risk seeking relationship. In addition, two types of framing effects were theoretically defined and empirically identified. A bidirectional framing effect involves a reversal in risk preference, and occurs when a decision maker's risk preference is ambiguous or weak. Four bidirectional effects were observed; in each case a majority of subjects preferred the sure outcome under a positive frame but the gamble under a negative frame. In contrast, a unidirectional framing effect refers to a preference shift due to the framing of choice outcomes: A majority of subjects preferred one choice outcome (either the sure thing or the gamble) under both framing conditions, with positive frame augmented the preference for the sure thing and negative frame augmented the preference for the gamble. These findings revealed some dynamic regularities of framing effects and posed implications for developing predictive and testable

  14. Automating Frame Analysis

    SciTech Connect

    Sanfilippo, Antonio P.; Franklin, Lyndsey; Tratz, Stephen C.; Danielson, Gary R.; Mileson, Nicholas D.; Riensche, Roderick M.; McGrath, Liam

    2008-04-01

    Frame Analysis has come to play an increasingly stronger role in the study of social movements in Sociology and Political Science. While significant steps have been made in providing a theory of frames and framing, a systematic characterization of the frame concept is still largely lacking and there are no rec-ognized criteria and methods that can be used to identify and marshal frame evi-dence reliably and in a time and cost effective manner. Consequently, current Frame Analysis work is still too reliant on manual annotation and subjective inter-pretation. The goal of this paper is to present an approach to the representation, acquisition and analysis of frame evidence which leverages Content Analysis, In-formation Extraction and Semantic Search methods to provide a systematic treat-ment of a Frame Analysis and automate frame annotation.

  15. A guide frame for the Taylor Spatial Frame.

    PubMed

    Kanellopoulos, Anastasios D; Mavrogenis, Andreas F; Kanellopoulos, Nikolaos D; Magnissalis, Evangellos A; Papagelopoulos, Panayiotis J

    2009-08-01

    The Taylor Spatial Frame (TSF) is a versatile multiplanar external fixator that combines ease of application with computer accuracy to effectively reduce fractures and correct all aspects of deformity in reconstructive orthopaedic surgery. However, postapplication adjustments depend on adequate anteroposterior and lateral radiographic measurements to yield the most accurate output from the program. These radiographs need to be taken in an orthogonal plane to the reference ring. We describe a noninvasive technique using a specifically designed radiolucent frame that can be attached to the TSF to guide the surgeon and radiologist in obtaining lateral and anteroposterior radiographs, with the reference ring perfectly orthogonal in single exposures for each radiographic view. By using this guiding frame, reproducible and consistent x-rays oriented orthogonally to the reference ring at different points in the correction may be achieved, thus eliminating the need for repeat radiographs and radiation exposure for patients, radiologists, and surgeons. In this manner, the mounting parameters and the orientation of the bony deformity will be consistent. This should lead to enhanced accuracy of the TSF correction.

  16. FRAME: the early days.

    PubMed

    Rowan, Andrew N

    2009-12-01

    The article reviews the early history of FRAME from the perspective of its first "Scientific Administrator". The roles of Mrs Hegarty the founder, and other early contributors to FRAME's development are described. In addition, the article discusses FRAME's strategic approach to the subject and how Mrs Hegarty's background influenced the development of that approach.

  17. VIRTUAL FRAME BUFFER INTERFACE

    NASA Technical Reports Server (NTRS)

    Wolfe, T. L.

    1994-01-01

    Large image processing systems use multiple frame buffers with differing architectures and vendor supplied user interfaces. This variety of architectures and interfaces creates software development, maintenance, and portability problems for application programs. The Virtual Frame Buffer Interface program makes all frame buffers appear as a generic frame buffer with a specified set of characteristics, allowing programmers to write code which will run unmodified on all supported hardware. The Virtual Frame Buffer Interface converts generic commands to actual device commands. The virtual frame buffer consists of a definition of capabilities and FORTRAN subroutines that are called by application programs. The virtual frame buffer routines may be treated as subroutines, logical functions, or integer functions by the application program. Routines are included that allocate and manage hardware resources such as frame buffers, monitors, video switches, trackballs, tablets and joysticks; access image memory planes; and perform alphanumeric font or text generation. The subroutines for the various "real" frame buffers are in separate VAX/VMS shared libraries allowing modification, correction or enhancement of the virtual interface without affecting application programs. The Virtual Frame Buffer Interface program was developed in FORTRAN 77 for a DEC VAX 11/780 or a DEC VAX 11/750 under VMS 4.X. It supports ADAGE IK3000, DEANZA IP8500, Low Resolution RAMTEK 9460, and High Resolution RAMTEK 9460 Frame Buffers. It has a central memory requirement of approximately 150K. This program was developed in 1985.

  18. IERS Reference System.

    NASA Astrophysics Data System (ADS)

    Yokoyama, K.

    Present circumstances related to IERS activities are described from various points of view. The NASA Dynamics of Solid Earth (DOSE) program and the IERS intensive campaign proposed by J. Dickey of JPL are particularly interesting. It is important to implement international cooperation to establish a fundamental radio reference frame by carrying out global solution based on all geodetic observations, past and future. A precession and nutation model may be determined observationally with an accuracy of 0.2 - 0.3 mas in a few years. Then it will become possible to establish the radio reference frame with this accuracy.

  19. Multiple frame cluster tracking

    NASA Astrophysics Data System (ADS)

    Gadaleta, Sabino; Klusman, Mike; Poore, Aubrey; Slocumb, Benjamin J.

    2002-08-01

    Tracking large number of closely spaced objects is a challenging problem for any tracking system. In missile defense systems, countermeasures in the form of debris, chaff, spent fuel, and balloons can overwhelm tracking systems that track only individual objects. Thus, tracking these groups or clusters of objects followed by transitions to individual object tracking (if and when individual objects separate from the groups) is a necessary capability for a robust and real-time tracking system. The objectives of this paper are to describe the group tracking problem in the context of multiple frame target tracking and to formulate a general assignment problem for the multiple frame cluster/group tracking problem. The proposed approach forms multiple clustering hypotheses on each frame of data and base individual frame clustering decisions on the information from multiple frames of data in much the same way that MFA or MHT work for individual object tracking. The formulation of the assignment problem for resolved object tracking and candidate clustering methods for use in multiple frame cluster tracking are briefly reviewed. Then, three different formulations are presented for the combination of multiple clustering hypotheses on each frame of data and the multiple frame assignments of clusters between frames.

  20. The Frame Game

    ERIC Educational Resources Information Center

    Edwards, Michael Todd; Cox, Dana C.

    2011-01-01

    In this article, the authors explore framing, a non-multiplicative technique commonly employed by students as they construct similar shapes. When students frame, they add (or subtract) a "border" of fixed width about a geometric object. Although the approach does not yield similar shapes in general, the mathematical underpinnings of…

  1. That Article: Frame Relay.

    ERIC Educational Resources Information Center

    Schuyler, Michael

    1994-01-01

    Compares Frame Relay with digital and analog alternatives for connecting sites on a Wide Area Network. Cost considerations, the concepts on which the technology is based, its carrying capacity, the use of CD-ROM and Graphical User Interface (GUI) on Frame Relay, and engineering bandwidth limitations are covered. (KRN)

  2. The Kepler Full Frame Images

    NASA Technical Reports Server (NTRS)

    Dotson, Jessie L.; Batalha, Natalie; Bryson, Stephen T.; Caldwell, Douglas A.; Clarke, Bruce D.

    2010-01-01

    NASA's exoplanet discovery mission Kepler provides uninterrupted 1-min and 30-min optical photometry of a 100 square degree field over a 3.5 yr nominal mission. Downlink bandwidth is filled at these short cadences by selecting only detector pixels specific to 105 preselected stellar targets. The majority of the Kepler field, comprising 4 x 10(exp 6) m_v < 20 sources, is sampled at much lower 1-month cadence in the form of a full-frame image. The Full Frame Images (FFIs) are calibrated by the Science Operations Center at NASA Ames Research Center. The Kepler Team employ these images for astrometric and photometric reference but make the images available to the astrophysics community through the Multimission Archive at STScI (MAST). The full-frame images provide a resource for potential Kepler Guest Observers to select targets and plan observing proposals, while also providing a freely-available long-cadence legacy of photometric variation across a swathe of the Galactic disk.

  3. Informative-frame filtering in endoscopy videos

    NASA Astrophysics Data System (ADS)

    An, Yong Hwan; Hwang, Sae; Oh, JungHwan; Lee, JeongKyu; Tavanapong, Wallapak; de Groen, Piet C.; Wong, Johnny

    2005-04-01

    Advances in video technology are being incorporated into today"s healthcare practice. For example, colonoscopy is an important screening tool for colorectal cancer. Colonoscopy allows for the inspection of the entire colon and provides the ability to perform a number of therapeutic operations during a single procedure. During a colonoscopic procedure, a tiny video camera at the tip of the endoscope generates a video signal of the internal mucosa of the colon. The video data are displayed on a monitor for real-time analysis by the endoscopist. Other endoscopic procedures include upper gastrointestinal endoscopy, enteroscopy, bronchoscopy, cystoscopy, and laparoscopy. However, a significant number of out-of-focus frames are included in this type of videos since current endoscopes are equipped with a single, wide-angle lens that cannot be focused. The out-of-focus frames do not hold any useful information. To reduce the burdens of the further processes such as computer-aided image processing or human expert"s examinations, these frames need to be removed. We call an out-of-focus frame as non-informative frame and an in-focus frame as informative frame. We propose a new technique to classify the video frames into two classes, informative and non-informative frames using a combination of Discrete Fourier Transform (DFT), Texture Analysis, and K-Means Clustering. The proposed technique can evaluate the frames without any reference image, and does not need any predefined threshold value. Our experimental studies indicate that it achieves over 96% of four different performance metrics (i.e. precision, sensitivity, specificity, and accuracy).

  4. Whose hand is this? Handedness and visual perspective modulate self/other discrimination.

    PubMed

    Conson, Massimiliano; Aromino, Anna Rita; Trojano, Luigi

    2010-10-01

    We required healthy subjects to recognize visually presented one's own or others' hands in egocentric or allocentric perspective. Both right- and left-handers were faster in recognizing dominant hands in egocentric perspective and others' non-dominant hand in allocentric perspective. These findings demonstrated that body-specific information contributes to sense of ownership, and that the "peri-dominant-hand space" is the preferred reference frame to distinguish self from not-self body parts.

  5. Frame modal analysis

    NASA Technical Reports Server (NTRS)

    Guyan, R. J.; Heckenlaible, R. N.

    1971-01-01

    Computer model calculates natural frequencies and modal displacements of three-dimensional frame structures, and generates stiffness and mass matrices. Structures may be divided into several substructures prior to calculation of modal characteristics.

  6. Space-Frame Antenna

    NASA Technical Reports Server (NTRS)

    Curtis, Steven A.

    2010-01-01

    The space-frame antenna is a conceptual antenna structure that would be lightweight, deployable from compact stowage, and capable of deforming itself to a size, shape, and orientation required for a specific use. The space-frame antenna would be a trusslike structure consisting mostly of a tetrahedral mesh of nodes connected by variable-length struts. The deformation of the antenna to a desired size, shape, and orientation would be effected through coordinated lengthening and shorting of the struts.

  7. Emergent Bilinguals: Framing Students as Statistical Data?

    ERIC Educational Resources Information Center

    Koyama, Jill; Menken, Kate

    2013-01-01

    Immigrant youth who are designated as English language learners in American schools--whom we refer to as "emergent bilinguals"--are increasingly framed by numerical calculations. Utilizing the notion of assemblage from actor-network theory (ANT), we trace how emergent bilinguals are discursively constructed by officials, administrators,…

  8. Building Trades. Block III. Floor Framing.

    ERIC Educational Resources Information Center

    Texas A and M Univ., College Station. Vocational Instructional Services.

    This document contains three units of a course on floor framing to be used as part of a building trades program. Each unit consists, first, of an informational lesson, with complete lesson plan for the teacher's use. Included in each lesson plan are the lesson aim; lists of teaching aids, materials, references, and prerequisites for students;…

  9. Computation of the Dual Frame: Forward and Backward Greville Formulas

    DTIC Science & Technology

    2007-04-01

    ABSTRACT We study the computation of the dual frame for oversampled filter banks (OFBs) by exploiting Greville’s formula, which was derived in 1960 to...lost. Index Terms— Error resilience, Frames, Greville formula, Lapla- cian pyramid, Oversampled filter banks . 1. INTRODUCTION Over the past few years...the references therein). From a signal-processing point of view, frames in l2(Z) correspond to per- fect reconstruction (PR) oversampled filter banks

  10. To frame is to explain: a deductive frame-analysis of Dutch and French climate change coverage during the annual UN Conferences of the Parties.

    PubMed

    Dirikx, Astrid; Gelders, Dave

    2010-11-01

    This study examines the way Dutch and French newspapers frame climate change during the annual United Nations Conferences of the Parties. The methods used in previous studies on the framing of climate change do not allow for general cross-national comparisons. We conduct a quantitative deductive framing analysis on 257 quality Dutch and French newspaper articles between 2001 and 2007. Both countries' newspapers seem to frame climate change through mainly the same lens. The majority of the articles make reference to the consequences of the (non-)pursuit of a certain course of action and of possible losses and gains (consequences frame). Additionally, many articles mention the need for urgent actions, refer to possible solutions and suggest that governments are responsible for and/or capable of alleviating climate change problems (responsibility frame). Finally, the conflict frame was found to be used less often than the aforementioned frames, but more regularly than the human interest frame.

  11. Towards ICRF3:preparing the VLBI frame for future synergy with the Gaia frame

    NASA Astrophysics Data System (ADS)

    Charlot, Patrick; Bourda, Géraldine

    2012-08-01

    The European space astrometric mission Gaia to be launched in 2013 will produce a QSO - based celestial reference frame with unprecedented position accuracy and sky density. By the end of the decade, two highly - accurate reference frames will thus cohabit, the International Celestial Reference Frame (ICRF) derived from Very Long Baseline Interferometry (VLBI) data and the Gaia optical frame, both with individual source position accuracies below 100 microarcseconds. For consistency be tween optical and radio positions, it will be fundamental to align the two frames with the highest possible accuracy. This is important not only for continuity of celestial frames but also to exploit at best their synergies for astrophysics. The latter includes probing the Active Galactic Nuclei (AGN) jets properties and the physics of these objects by comparing the spatial location of the optical and radio emission re gions. The alignment between the VLBI and Gaia frames requires a large number of sources common to the two frames, i.e. radio - loud QSOs with position accurately known from both VLBI and Gaia. This implies that the sources must be brighter than magnitude 18 (so that their Gaia positions may be derived with the highest accuracy) and have compact VLBI structure on milliarcsecond scales (for highly - accurate VLBI positions). In this paper, we review the current source potential for this alignment based on the ICRF2 and an ongoing dedicated VLBI project aimed at finding additional weaker extragalactic radio sources for this purpose. We also stress that these sources must be monitored during the mission (especially their VLBI position stability and structure) in order to control their relevance for the alignment, and present the observations we envision to this end in the framework of the IVS and other VLBI networks.

  12. Promotional Frames' Influence on Price Perceptions of Two Apparel Products.

    ERIC Educational Resources Information Center

    Stanforth, Nancy; Lennon, Sharron; Shin, Jung Im

    2001-01-01

    A study explored the differences in price perceptions of two apparel products when promotions were framed as either a price discount or a gift-with-purchase. The majority preferred the discount. Results illustrate the importance of promotional framing in forming consumer price perceptions. (Contains 30 references.) (Author/JOW)

  13. The Virtual Reference Librarian's Handbook.

    ERIC Educational Resources Information Center

    Lipow, Anne Grodzins

    This book is a practical guide to librarians and their administrators who are thinking about or in the early stages of providing virtual reference service. Part 1, "The Decision to Go Virtual," provides a context for thinking about virtual reference, including the benefits and problems, getting in the virtual frame of mind, and shopping…

  14. 22. CRUNCH BOARD #2 HANGAR BAY FRAME 100 STARBOARD SIDETERM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. CRUNCH BOARD #2 HANGAR BAY FRAME 100 STARBOARD SIDE-TERM CRUNCH REFERS TO HANGAR DECK MISHAPS WHICH RESULTED IN DAMAGE TO AIRCRAFT. - U.S.S. HORNET, Puget Sound Naval Shipyard, Sinclair Inlet, Bremerton, Kitsap County, WA

  15. Framing Evolution Discussion Intellectually

    ERIC Educational Resources Information Center

    Oliveira, Alandeom W.; Cook, Kristin; Buck, Gayle A.

    2011-01-01

    This study examines how a first-year biology teacher facilitates a series of whole-class discussions about evolution during the implementation of a problem-based unit. A communicative theoretical perspective is adopted wherein evolution discussions are viewed as social events that the teacher can frame intellectually (i.e., present or organize as…

  16. Frame dragging and superenergy

    SciTech Connect

    Herrera, L.; Di Prisco, A.; Carot, J.

    2007-08-15

    We show that the vorticity appearing in stationary vacuum spacetimes is always related to the existence of a flow of superenergy on the plane orthogonal to the vorticity vector. This result, together with the previously established link between vorticity and superenergy in radiative (Bondi-Sachs) spacetimes, strengthens further the case for this latter quantity as the cause of frame dragging.

  17. Framing for Scientific Argumentation

    ERIC Educational Resources Information Center

    Berland, Leema K.; Hammer, David

    2012-01-01

    In recent years, research on students' scientific argumentation has progressed to a recognition of nascent resources: Students can and do argue when they experience the need and possibility of persuading others who may hold competing views. Our purpose in this article is to contribute to this progress by applying the perspective of framing to the…

  18. Solid-state framing camera with multiple time frames

    SciTech Connect

    Baker, K. L.; Stewart, R. E.; Steele, P. T.; Vernon, S. P.; Hsing, W. W.; Remington, B. A.

    2013-10-07

    A high speed solid-state framing camera has been developed which can operate over a wide range of photon energies. This camera measures the two-dimensional spatial profile of the flux incident on a cadmium selenide semiconductor at multiple times. This multi-frame camera has been tested at 3.1 eV and 4.5 keV. The framing camera currently records two frames with a temporal separation between the frames of 5 ps but this separation can be varied between hundreds of femtoseconds up to nanoseconds and the number of frames can be increased by angularly multiplexing the probe beam onto the cadmium selenide semiconductor.

  19. Recursive adaptive frame integration limited

    NASA Astrophysics Data System (ADS)

    Rafailov, Michael K.

    2006-05-01

    Recursive Frame Integration Limited was proposed as a way to improve frame integration performance and mitigate issues related to high data rate needed for conventional frame integration. The technique applies two thresholds - one tuned for optimum probability of detection, the other to manage required false alarm rate - and allows a non-linear integration process that, along with Signal-to-Noise Ratio (SNR) gain, provides system designers more capability where cost, weight, or power considerations limit system data rate, processing, or memory capability. However, Recursive Frame Integration Limited may have performance issues when single frame SNR is really low. Recursive Adaptive Frame Integration Limited is proposed as a means to improve limited integration performance with really low single frame SNR. It combines the benefits of nonlinear recursive limited frame integration and adaptive thresholds with a kind of conventional frame integration.

  20. Framing Vision: An Examination of Framing, Sensegiving, and Sensemaking during a Change Initiative

    ERIC Educational Resources Information Center

    Hamilton, William

    2016-01-01

    The purpose of this short article is to review the findings from an instrumental case study that examines how a college president used what this article refers to as "frame alignment processes" to mobilize internal and external support for a college initiative--one that achieved success under the current president. Specifically, I…

  1. Optical loop framing

    SciTech Connect

    Kalibjian, R.; Chong, Y.P.; Prono, D.S.; Cavagnolo, H.R.

    1984-06-01

    The ATA provides an electron beam pulse of 70-ns duration at a 1-Hz rate. Our present optical diagnostics technique involve the imaging of the visible light generated by the beam incident onto the plant of a thin sheet of material. It has already been demonstrated that the light generated has a sufficiently fast temporal reponse in performing beam diagnostics. Notwithstanding possible beam emittance degradation due to scattering in the thin sheet, the observation of beam spatial profiles with relatively high efficiencies has provided data complementary to that obtained from beam wall current monitors and from various x-ray probes and other electrical probes. The optical image sensor consists of a gated, intensified television system. The gate pulse of the image intensifier can be appropriately delayed to give frames that are time-positioned from the head to the tail of the beam with a minimum gate time of 5-ns. The spatial correlation of the time frames from pulse to pulse is very good for a stable electron beam; however, when instabilities do occur, it is difficult to properly assess the spatial composition of the head and the tail of the beam on a pulse-to-pulse basis. Multiple gating within a pulse duration becomes desirable but cannot be performed because the recycle time (20-ms) of the TV system is much longer than the beam pulse. For this reason we have developed an optical-loop framing technique that will allow the recording of two frames within one pulse duration with our present gated/intensified TV system.

  2. Electrically insulating and sealing frame

    DOEpatents

    Guthrie, Robin J.

    1983-11-08

    A combination gas seal and electrical insulator having a closed frame shape interconnects a fuel cell stack and a reactant gas plenum of a fuel cell generator. The frame can be of rectangular shape including at least one slidable spline connection in each side to permit expansion or contraction consistent with that of the walls of the gas plenum and fuel cell stack. The slidable spline connections in the frame sides minimizes lateral movement between the frame side members and sealing material interposed between the frame and the fuel cell stack or between the frame and the reactant gas plenum.

  3. Frame for a firearm

    DOEpatents

    Crandall, David L.; Watson, Richard W.

    2008-03-04

    A firearm frame which is adapted to be disposed in operative relationship as a component part of a firearm, the firearm having disposed in operative relationships each with one or more of the others, a barrel, a receiver, and at least one firing mechanism; wherein the barrel and receiver form operative parts of a movable assembly and the at least one firing mechanism is disposed in a substantially stationary operative relationship therewith; the firearm frame including at least one elongated support structure discrete from the barrel and receiver, the elongated support structure being adapted to directly support the movable assembly in an operative movable relationship therewith; whereby at least one of the barrel and receiver is in direct contact with and movable on the elongated support structure; and, a firing mechanism support structure connected to the at least one elongated support structure, the firing mechanism support structure being adapted to have the firing mechanism connected thereto; the firearm frame also directly supporting the movable assembly and the firing mechanism in corresponding movable and stationary operative relationships each with the other.

  4. Brain potentials associated with the outcome processing in framing effects.

    PubMed

    Ma, Qingguo; Feng, Yandong; Xu, Qing; Bian, Jun; Tang, Huixian

    2012-10-24

    Framing effect is a cognitive bias referring to the phenomenon that people respond differently to different but objectively equivalent descriptions of the same problem. By measuring event-related potentials, the present study aimed to investigate the neural mechanisms underlying the framing effect, especially how the negative and positive frames influence the outcome processing in our brain. Participants were presented directly with outcomes framed either positively in terms of lives saved or negatively in terms of lives lost in large and small group conditions, and were asked to rate the favorableness of each of them. The behavioral results showed that the framing effect occurred in both group size conditions, with more favorable evaluations associated with positive framing. Compared with outcomes in positive framing condition, a significant feedback-related negativity (FRN) effect was elicited by outcomes in negative framing condition, even though the outcomes in different conditions were objectively equivalent. The results are explained in terms of the associative model of attribute framing effect which states that attribute framing effect occurs as a result of a valence-based associative processing.

  5. MedlinePlus FAQ: Framing

    MedlinePlus

    ... URL of this page: https://medlineplus.gov/faq/framing.html I'd like to link to MedlinePlus, ... as HealthDay. Our license agreements do not permit framing of their content from our site. For more ...

  6. Conformal frame dependence of inflation

    SciTech Connect

    Domènech, Guillem; Sasaki, Misao E-mail: misao@yukawa.kyoto-u.ac.jp

    2015-04-01

    Physical equivalence between different conformal frames in scalar-tensor theory of gravity is a known fact. However, assuming that matter minimally couples to the metric of a particular frame, which we call the matter Jordan frame, the matter point of view of the universe may vary from frame to frame. Thus, there is a clear distinction between gravitational sector (curvature and scalar field) and matter sector. In this paper, focusing on a simple power-law inflation model in the Einstein frame, two examples are considered; a super-inflationary and a bouncing universe Jordan frames. Then we consider a spectator curvaton minimally coupled to a Jordan frame, and compute its contribution to the curvature perturbation power spectrum. In these specific examples, we find a blue tilt at short scales for the super-inflationary case, and a blue tilt at large scales for the bouncing case.

  7. Attautsikut/Together: Understanding Cultural Frames of Reference.

    ERIC Educational Resources Information Center

    Maguire, Mary H.; McAlpine, Lynn

    1996-01-01

    Qitiqliq Secondary School (Arviat, Keewatin region, Northwest Territories) is the only Inuit school in Canada's Exemplary Schools Project. White "mainstream" researchers describe the challenges of striving to understand culture, change, and success in the school and community, and focus on the shifting social, linguistic, economic, and…

  8. Prolonged weightlessness, reference frames and visual symmetry detection.

    PubMed

    Leone, G; de Schonen, S; Lipshits, M

    1998-01-01

    We evaluated the influence of prolonged weightlessness on the performance of three cosmonauts to bilateral symmetry detection in the course of a 15-day-long Russian-French mission CASSIOPEE 96 aboard the MIR station. We tested the influence of weightlessness on subjects' performance as a function of the retinal orientation of axis of symmetry. as a function of type of stimuli (closed versus multi-elements shapes) and as a function of visual field presentation (at fixation, left visual field. right visual field). The results indicate firstly a difference between presentation at fixation versus away of fixation. Away of fixation, no effect of microgravity on performance was shown. A hypothesis of hemispheric specialization for symmetry detection was not supported as well. At fixation, an effect of micro-gravity was shown and more interestingly, the effect was quite different as a function of type of shapes used. suggesting that symmetry detection is a multiple-stage process.

  9. Dynamical Reference Frame - Current Relevance and Future Prospects

    DTIC Science & Technology

    2000-03-01

    provided by ICRF- based VLBI observations of the Magellan spacecraft in orbit about Venus and the Phobos spacecraft on its approach to Mars. These...right gure, between Goldstone and Canberra, indicates a linear combination of and . The observations in the two lower gures are from Phobos at Mars...the wider lines of these two ellipses indicate the higher uncertainties for the Phobos observations. Table 1 lists all of the VLBI observations for

  10. Frames of Reference in Mobile Augmented Reality Displays

    ERIC Educational Resources Information Center

    Mou, Weimin; Biocca, Frank; Owen, Charles B.; Tang, Arthur; Xiao, Fan; Lim, Lynette

    2004-01-01

    In 3 experiments, the authors investigated spatial updating in augmented reality environments. Participants learned locations of virtual objects on the physical floor. They were turned to appropriate facing directions while blindfolded before making pointing judgments (e.g., "Imagine you are facing X. Point to Y"). Experiments manipulated the…

  11. Extension of the Optical Reference Frame: Space Based

    NASA Astrophysics Data System (ADS)

    Röser, S.

    The author presents a brief overview of currently planned astrometry space missions. These include GAIA (Global Astrometric Interferometer for Astrophysics), FAME (Fizeau Astrometric Mapping Explorer), LIGHT (Light Interferometer satellite for the study of Galactic Halo Tracers), and DIVA (Double Interferometer for Visual Astrometry).

  12. The Second International Celestial Reference Frame (ICRF2)

    NASA Technical Reports Server (NTRS)

    Ma, Chopo

    2010-01-01

    The ICRF2 catalog was constructed by the IERS/IVS Working Group with oversight by the IAU Working Group. Derived using data from August 1979 through March 2009, it is a great improvement over the original ICRF with 3414 extragalactic radio source positions, a noise floor of 40 microarcsec, and axis stability of 10 microarcsec. Significant refinements were made in the selection of defining sources, modeling, and the integration of CRF, TRF, and EOP. The adoption of the ICRF2 was approved by the IAU in Resolution B3 at the XXVII IAU General Assembly and became effective 1 January 2010.

  13. Childhood PTSD in Israel: A Cross Cultural Frame of Reference.

    ERIC Educational Resources Information Center

    Milgram, Noach Norman

    There is considerable awareness among Israeli mental health workers and citizens of the importance of differentiating between acute or chronic reactions to severely stressful life situations and manifestations of mental illness and anxiety, or developmental and adjustment disorders. Israeli mental health workers have become expert and are heavily…

  14. Impact of GNSS Orbit Modeling on Reference Frame Parameters

    NASA Astrophysics Data System (ADS)

    Arnold, Daniel; Meindl, Michael; Lutz, Simon; Steigenberger, Peter; Beutler, Gerhard; Dach, Rolf; Schaer, Stefan; Prange, Lars; Sosnica, Krzysztof; Jäggi, Adrian

    2015-04-01

    The Center for Orbit Determination in Europe (CODE) contributes with a re-processing solution covering the years 1994 to 2013 (IGS repro2 effort) to the next ITRF release. The measurements to the GLONASS satellites are included since January 2002 in a rigorously combined solution. Around the year 2008 the network of combined GPS/GLONASS tracking stations became truly global. Since December 2011, 24 GLONASS satellites are active in their nominal positions. Since then the re-processing series shows - as the CODE operational solution - spurious signals in geophysical parameters, in particular in the Earth Rotation Parameters (ERPs) and in the estimated geocenter coordinates. These signals grew creepingly with the increasing influence of GLONASS. The problems could be attributed to deficiencies of the Empirical CODE Orbit Model (ECOM) for the GLONASS satellites. Based on the GPS-only, GLONASS-only, and combined GPS/GLONASS observations of recent years we study the impact of different orbit parameterizations on geodynamically relevant parameters, namely on ERPs, geocenter coordinates, and station coordinates. We also asses the quality of the GNSS orbits by measuring the orbit misclosures at the day boundaries and by validating the orbits using satellite laser ranging observations. We present an updated ECOM, which substantially reduces spurious signals in the estimated parameters in 1-day and in 3-day solutions.

  15. The role of perceptual reference frames in visual field asymmetries.

    PubMed

    Robertson, L C; Lamb, M R

    1988-01-01

    The direct access model of hemispheric asymmetry was tested in a letter reflection (normal of reflected) judgement task. In the baseline condition letters were presented in their upright orientation, and reaction times were faster to letters presented in the right visual field than to those presented in the left visual field. In two other conditions the slides, and thus the letters, were rotated +90 degrees clockwise (Rotated +90) from upright or -90 degrees counterclockwise (Rotated -90). This resulted in the letters in both rotated conditions being shown in the upper or lower visual field through the sagittal plane but rotated 90 degrees. Despite this fact a "right field" advantage was again found when the right field was defined relative to the orientation of the tops of the rotated letters (lower visual field in the Rotated +90 condition and upper visual field in the Rotated -90 condition). These results demonstrate that the internal representation of locations in space is more important in predicting visual field asymmetries, at least in the present task, than the field of stimulus presentation relative to the fovea.

  16. The axisymmetric jet in a rotating reference frame

    NASA Astrophysics Data System (ADS)

    Lawrie, A. G. W.; Duran-Matute, M.; Scott, J. F.; Godeferd, F.; Flor, J.-B.; Cambon, C.; Danaila, L.

    2011-12-01

    The axisymmetric jet is a geometrically simple, statistically stationary example of inhomogenous turbulence. Considering conservation of volume and momentum, Morton et al. (1956) offered a prediction of jet development, characterised solely by an unknown, constant entrainment coefficient. The presence of background rotation complicates the kinematics of the entrainment, and without special treatment, the jet suffers a helical instability. Here, we present one technique which stabilises the axisymmetric jet, yet preserves its desirable turbulent properties. The jet offers a steady-state flow in which there is an axial variation of local Rossby number, and after decay along the axis to a critical value, cones of inertial waves emerge. In this paper, we demonstrate these features using our numerical software MOBILE, offer our solution to stabilise the jet, and explain the mechanisms involved.

  17. Frame of Reference: Open Access Starts with You

    ERIC Educational Resources Information Center

    Goetsch, Lori A.

    2010-01-01

    Federal legislation now requires the deposit of some taxpayer-funded research in "open-access" repositories--that is, sites where scholarship and research are made freely available over the Internet. The institutions whose faculty produce the research have begun to see the benefit of open-access publication as well. From the perspective of faculty…

  18. Automatic frame-centered object representation and integration revealed by iconic memory, visual priming, and backward masking

    PubMed Central

    Lin, Zhicheng; He, Sheng

    2012-01-01

    Object identities (“what”) and their spatial locations (“where”) are processed in distinct pathways in the visual system, raising the question of how the what and where information is integrated. Because of object motions and eye movements, the retina-based representations are unstable, necessitating nonretinotopic representation and integration. A potential mechanism is to code and update objects according to their reference frames (i.e., frame-centered representation and integration). To isolate frame-centered processes, in a frame-to-frame apparent motion configuration, we (a) presented two preceding or trailing objects on the same frame, equidistant from the target on the other frame, to control for object-based (frame-based) effect and space-based effect, and (b) manipulated the target's relative location within its frame to probe frame-centered effect. We show that iconic memory, visual priming, and backward masking depend on objects' relative frame locations, orthogonal of the retinotopic coordinate. These findings not only reveal that iconic memory, visual priming, and backward masking can be nonretinotopic but also demonstrate that these processes are automatically constrained by contextual frames through a frame-centered mechanism. Thus, object representation is robustly and automatically coupled to its reference frame and continuously being updated through a frame-centered, location-specific mechanism. These findings lead to an object cabinet framework, in which objects (“files”) within the reference frame (“cabinet”) are orderly coded relative to the frame. PMID:23104817

  19. The Levels of Visual Framing

    ERIC Educational Resources Information Center

    Rodriguez, Lulu; Dimitrova, Daniela V.

    2011-01-01

    While framing research has centered mostly on the evaluations of media texts, visual news discourse has remained relatively unexamined. This study surveys the visual framing techniques and methods employed in previous studies and proposes a four-tiered model of identifying and analyzing visual frames: (1) visuals as denotative systems, (2) visuals…

  20. VIOLENT FRAMES IN ACTION

    SciTech Connect

    Sanfilippo, Antonio P.; McGrath, Liam R.; Whitney, Paul D.

    2011-11-17

    We present a computational approach to radical rhetoric that leverages the co-expression of rhetoric and action features in discourse to identify violent intent. The approach combines text mining and machine learning techniques with insights from Frame Analysis and theories that explain the emergence of violence in terms of moral disengagement, the violation of sacred values and social isolation in order to build computational models that identify messages from terrorist sources and estimate their proximity to an attack. We discuss a specific application of this approach to a body of documents from and about radical and terrorist groups in the Middle East and present the results achieved.

  1. Identifying Issue Frames in Text

    PubMed Central

    Sagi, Eyal; Diermeier, Daniel; Kaufmann, Stefan

    2013-01-01

    Framing, the effect of context on cognitive processes, is a prominent topic of research in psychology and public opinion research. Research on framing has traditionally relied on controlled experiments and manually annotated document collections. In this paper we present a method that allows for quantifying the relative strengths of competing linguistic frames based on corpus analysis. This method requires little human intervention and can therefore be efficiently applied to large bodies of text. We demonstrate its effectiveness by tracking changes in the framing of terror over time and comparing the framing of abortion by Democrats and Republicans in the U.S. PMID:23874909

  2. Cognitive framing in action.

    PubMed

    Huhn, John M; Potts, Cory Adam; Rosenbaum, David A

    2016-06-01

    Cognitive framing effects have been widely reported in higher-level decision-making and have been ascribed to rules of thumb for quick thinking. No such demonstrations have been reported for physical action, as far as we know, but they would be expected if cognition for physical action is fundamentally similar to cognition for higher-level decision-making. To test for such effects, we asked participants to reach for a horizontally-oriented pipe to move it from one height to another while turning the pipe 180° to bring one end (the "business end") to a target on the left or right. From a physical perspective, participants could have always rotated the pipe in the same angular direction no matter which end was the business end; a given participant could have always turned the pipe clockwise or counter-clockwise. Instead, our participants turned the business end counter-clockwise for left targets and clockwise for right targets. Thus, the way the identical physical task was framed altered the way it was performed. This finding is consistent with the hypothesis that cognition for physical action is fundamentally similar to cognition for higher-level decision-making. A tantalizing possibility is that higher-level decision heuristics have roots in the control of physical action, a hypothesis that accords with embodied views of cognition.

  3. Frame junction vibration transmission with a modified frame deformation model.

    PubMed

    Moore, J A

    1990-12-01

    A previous paper dealt with vibration transmission through junctions of connected frame members where the allowed frame deformations included bending, torsion, and longitudinal motions [J.A. Moore, J. Acoust. Soc. Am. 88, 2766-2776 (1990)]. In helicopter and aircraft structures the skin panels can constitute a high impedance connection along the length of the frames that effectively prohibits in-plane motion at the elevation of the skin panels. This has the effect of coupling in-plane bending and torsional motions within the frame. This paper discusses the transmission behavior through frame junctions that accounts for the in-plane constraint in idealized form by assuming that the attached skin panels completely prohibit inplane motion in the frames. Also, transverse shear deformation is accounted for in describing the relatively deep web frame constructions common in aircraft structures. Longitudinal motion in the frames is not included in the model. Transmission coefficient predictions again show the importance of out-of-plane bending deformation to the transmission of vibratory energy in an aircraft structure. Comparisons are shown with measured vibration transmission data along the framing in the overhead of a helicopter airframe, with good agreement. The frame junction description has been implemented within a general purpose statistical energy analysis (SEA) computer code in modeling the entire airframe structure including skin panels.

  4. Semiclassical framed BPS states

    NASA Astrophysics Data System (ADS)

    Moore, Gregory W.; Royston, Andrew B.; Van den Bleeken, Dieter

    2016-07-01

    We provide a semiclassical description of framed BPS states in four-dimensional {N}=2 super Yang-Mills theories probed by 't Hooft defects, in terms of a supersymmetric quantum mechanics on the moduli space of singular monopoles. Framed BPS states, like their ordinary counterparts in the theory without defects, are associated with the L 2 kernel of certain Dirac operators on moduli space, or equivalently with the L 2 cohomology of related Dolbeault operators. The Dirac/Dolbeault operators depend on two Cartan-valued Higgs vevs. We conjecture a map between these vevs and the Seiberg-Witten special coordinates, consistent with a one-loop analysis and checked in examples. The map incorporates all perturbative and nonperturbative corrections that are relevant for the semiclassical construction of BPS states, over a suitably defined weak coupling regime of the Coulomb branch. We use this map to translate wall crossing formulae and the no-exotics theorem to statements about the Dirac/Dolbeault operators. The no-exotics theorem, concerning the absence of nontrivial SU(2) R representations in the BPS spectrum, implies that the kernel of the Dirac operator is chiral, and further translates into a statement that all L 2 cohomology of the Dolbeault operator is concentrated in the middle degree. Wall crossing formulae lead to detailed predictions for where the Dirac operators fail to be Fredholm and how their kernels jump. We explore these predictions in nontrivial examples. This paper explains the background and arguments behind the results announced in the short note [1].

  5. Framing the Game: Examining Frame Choice in Bargaining.

    PubMed

    Blount; Larrick

    2000-01-01

    This article introduces the study of frame choice in negotiation. Here, the selection of a procedural frame is treated as a dependent variable-a choice that bargainers make in addition to determining their offers. The empirical focus of the article is on whether, when given a choice between two alternative versions of the ultimatum bargaining game, negotiators choose the description that maximizes their expected payoffs. For example, in one frame-choice task, negotiators assigned to the Player 1 role were asked to select between framing the game as "Player 1 proposes a division and Player 2 accepts or rejects it" or "Player 1 makes a claim from a common pool and Player 2 makes a counterclaim." Past research has shown that the second frame leads to higher expected payoffs for Player 1 than does the first. Across four studies and three established framing effects, it is found that participants consistently fail to select the procedural frames that optimize monetary outcomes. Subsequent analyses suggest that this tendency is due to two factors: (a) nonmonetary motivations, such as fairness and respect, that influence frame-choice preferences and (b) cognitive limitations that inhibit the ability to accurately predict the effect of alternative procedural frames on opponents' responses Copyright 2000 Academic Press.

  6. T-Shaped Frame Critical and Post-Critical Analysis

    NASA Astrophysics Data System (ADS)

    Doicheva, Albena

    2016-03-01

    The paper shows solution of a T-shaped frame, strength- ened with two linear springs, regarding critical and post-critical analysis. The solution is exact using the Euler elastic approach and the frame of reference, originated in the point of column axis inflexion. The derived Numerical results show the effect of the springs strengthening for the crit- ical and the post-critical system behaviour. The influence of the geometry change is analyzed, as well.

  7. Virtual Frame Buffer Interface Program

    NASA Technical Reports Server (NTRS)

    Wolfe, Thomas L.

    1990-01-01

    Virtual Frame Buffer Interface program makes all frame buffers appear as generic frame buffer with specified set of characteristics, allowing programmers to write codes that run unmodified on all supported hardware. Converts generic commands to actual device commands. Consists of definition of capabilities and FORTRAN subroutines called by application programs. Developed in FORTRAN 77 for DEC VAX 11/780 or DEC VAX 11/750 computer under VMS 4.X.

  8. Effects of news frames on perceived risk, emotions, and learning.

    PubMed

    Otieno, Christine; Spada, Hans; Renkl, Alexander

    2013-01-01

    The media play a key role in forming opinions by influencing people´s understanding and perception of a topic. People gather information about topics of interest from the internet and print media, which employ various news frames to attract attention. One example of a common news frame is the human-interest frame, which emotionalizes and dramatizes information and often accentuates individual affectedness. Our study investigated effects of human-interest frames compared to a neutral-text condition with respect to perceived risk, emotions, and knowledge acquisition, and tested whether these effects can be "generalized" to common variants of the human-interest frame. Ninety-one participants read either one variant of the human-interest frame or a neutrally formulated version of a newspaper article describing the effects of invasive species in general and the Asian ladybug (an invasive species) in particular. The framing was achieved by varying the opening and concluding paragraphs (about invasive species), as well as the headline. The core text (about the Asian ladybug) was the same across all conditions. All outcome variables on framing effects referred to this common core text. We found that all versions of the human-interest frame increased perceived risk and the strength of negative emotions compared to the neutral text. Furthermore, participants in the human-interest frame condition displayed better (quantitative) learning outcomes but also biased knowledge, highlighting a potential dilemma: Human-interest frames may increase learning, but they also lead to a rather unbalanced view of the given topic on a "deeper level".

  9. Effects of News Frames on Perceived Risk, Emotions, and Learning

    PubMed Central

    Otieno, Christine; Spada, Hans; Renkl, Alexander

    2013-01-01

    The media play a key role in forming opinions by influencing people´s understanding and perception of a topic. People gather information about topics of interest from the internet and print media, which employ various news frames to attract attention. One example of a common news frame is the human-interest frame, which emotionalizes and dramatizes information and often accentuates individual affectedness. Our study investigated effects of human-interest frames compared to a neutral-text condition with respect to perceived risk, emotions, and knowledge acquisition, and tested whether these effects can be "generalized" to common variants of the human-interest frame. Ninety-one participants read either one variant of the human-interest frame or a neutrally formulated version of a newspaper article describing the effects of invasive species in general and the Asian ladybug (an invasive species) in particular. The framing was achieved by varying the opening and concluding paragraphs (about invasive species), as well as the headline. The core text (about the Asian ladybug) was the same across all conditions. All outcome variables on framing effects referred to this common core text. We found that all versions of the human-interest frame increased perceived risk and the strength of negative emotions compared to the neutral text. Furthermore, participants in the human-interest frame condition displayed better (quantitative) learning outcomes but also biased knowledge, highlighting a potential dilemma: Human-interest frames may increase learning, but they also lead to a rather unbalanced view of the given topic on a “deeper level”. PMID:24223999

  10. Language use depending on news frame and immigrant origin.

    PubMed

    Fernández, Itziar; Igartua, Juan-José; Moral, Félix; Palacios, Elena; Acosta, Tania; Muñoz, Dolores

    2013-01-01

    The purpose of this study was to analyze the effect of the media on individuals' specific language use in relation to a news story on immigration: the influence of the news frame and group cue. Abstraction, complexity of language use, and negative affective language were evaluated. The 523 participants were randomly distributed to each of the four experimental conditions: news frame (crime versus economic contribution) by group cue (geographical origin of the immigrants involved: Moroccans versus Latin Americans). Through content analysis of the ideas and reflections that arose after the participants read the different news stories, using the Linguistic Category Model (LCM; Semin & Fiedler, 1991) to measure abstract language and the Linguistic Inquiry and Word Count (LIWC; Pennebaker, Booth, & Francis, 2007) to analyze complex language and negative affective language, it emerged that abstract language and negative affective language were more frequent in the participants assigned to the news frame on crime. Complex language was more commonly used when the news frame referred to the economic contribution of immigrants. Regression analyses showed the mediating role of attitude to immigration in the effects of news frame on negative affective language. The bootstrap method was used to assess the magnitude of the indirect effect. A significant mediator effect was also found through structural equation modeling. Analyses of covariance showed one interaction between news frame and group cue: Among those who read the news story in a frame linking immigration to crime and Moroccan origin, abstract language was more characteristic. The results are discussed from the theoretical perspective of framing.

  11. Backreaction of frame dragging

    SciTech Connect

    Herdeiro, Carlos A. R.; Rebelo, Carmen; Warnick, Claude M.

    2009-10-15

    The backreaction on black holes due to dragging heavy, rather than test, objects is discussed. As a case study, a five-dimensional regular black Saturn system where the central black hole has vanishing intrinsic angular momentum, J{sup BH}=0, is considered. It is shown that there is a correlation between the sign of two response functions. One is interpreted as a moment of inertia of the black ring in the black Saturn system. The other measures the variation of the black ring horizon angular velocity with the central black hole mass, for fixed ring mass and angular momentum. The two different phases defined by these response functions collapse, for small central black hole mass, to the thin and fat ring phases. In the fat phase, the zero area limit of the black Saturn ring has reduced spin j{sup 2}>1, which is related to the behavior of the ring angular velocity. Using the 'gravitomagnetic clock effect', for which a universality property is exhibited, it is shown that frame dragging measured by an asymptotic observer decreases, in both phases, when the central black hole mass increases, for fixed ring mass and angular momentum. A close parallelism between the results for the fat phase and those obtained recently for the double Kerr solution is drawn, considering also a regular black Saturn system with J{sup BH}{ne}0.

  12. Reference Services.

    ERIC Educational Resources Information Center

    Bunge, Charles A.

    1999-01-01

    Discusses library reference services. Topics include the historical development of reference services; instruction in library use, particularly in college and university libraries; guidance; information and referral services and how they differ from traditional question-answering service; and future concerns, including user fees and the planning…

  13. Reference Assessment

    ERIC Educational Resources Information Center

    Bivens-Tatum, Wayne

    2006-01-01

    This article presents interesting articles that explore several different areas of reference assessment, including practical case studies and theoretical articles that address a range of issues such as librarian behavior, patron satisfaction, virtual reference, or evaluation design. They include: (1) "Evaluating the Quality of a Chat Service"…

  14. Reference Revolutions.

    ERIC Educational Resources Information Center

    Mason, Marilyn Gell

    1998-01-01

    Describes developments in Online Computer Library Center (OCLC) electronic reference services. Presents a background on networked cataloging and the initial implementation of reference services by OCLC. Discusses the introduction of OCLC FirstSearch service, which today offers access to over 65 databases, future developments in integrated…

  15. Putting a Frame on Leadership

    ERIC Educational Resources Information Center

    Dexter, Robin R.; Berube, William B.; Perry, Suzanne M.; Stader, David L.

    2005-01-01

    Teachers are learning more about the theories that support conceptual frameworks as a learning tool. A literature review revealed that frame theory is an accepted principle used to describe how the brain organizes experiences and new information. Frame theory supports the understanding that individuals can organize their thoughts to better…

  16. FRAMES and Other IEM Technologies

    EPA Science Inventory

    A presentation package is developed that describes the FRAMES software technology system. The philosophy of FRAMES is discussed; its components and editors are reviewed; its relationship to integrated environmental modeling technologies; such as D4EM and SuperMUSE, are described;...

  17. Framing the patent troll debate.

    PubMed

    Risch, Michael

    2014-02-01

    The patent troll debate has reached a fevered pitch in the USA. This editorial seeks to frame the debate by pointing out the lack of clarity in defining patent trolls and their allegedly harmful actions. It then frames the debate by asking currently unanswered questions: Where do troll patents come from? What are the effects of troll assertions? Will policy changes improve the system?

  18. Eckart frames for planar molecules

    NASA Astrophysics Data System (ADS)

    Wei, Hua

    2003-04-01

    Explicit analytic expressions of Eckart frames for planar molecules in Radau, Jacobi and bond coordinates have been presented. The orientation of the frame axis system with respect to the molecular plane at equilibrium is specified by an angle θ1e.

  19. Stress Analysis of Circular Frames

    NASA Technical Reports Server (NTRS)

    Fahlbusch, H; Wegner, W

    1941-01-01

    The stresses in circular frames of constant bending stiffnesses, as encountered in thin-wall shells, are investigated from the point of view of finite depth of sectional area of frame. The solution is carried out for four fundamental load conditions. The method is illustrated on a worked out example.

  20. Framing of task performance strategies: effects on performance in a multiattribute dynamic decision making environment.

    PubMed

    Nygren, T E

    1997-09-01

    It is well documented that the way a static choice task is "framed" can dramatically alter choice behavior, often leading to observable preference reversals. This framing effect appears to result from perceived changes in the nature or location of a person's initial reference point, but it is not clear how framing effects might generalize to performance on dynamic decision making tasks that are characterized by high workload, time constraints, risk, or stress. A study was conducted to examine the hypothesis that framing can introduce affective components to the decision making process and can influence, either favorably (positive frame) or adversely (negative frame), the implementation and use of decision making strategies in dynamic high-workload environments. Results indicated that negative frame participants were significantly impaired in developing and employing a simple optimal decision strategy relative to a positive frame group. Discussion focuses on implications of these results for models of dynamic decision making.

  1. Ready Reference.

    ERIC Educational Resources Information Center

    Koltay, Emery

    1999-01-01

    Includes the following ready reference information: "Publishers' Toll-Free Telephone Numbers"; "How to Obtain an ISBN (International Standard Book Number)"; "How to Obtain an ISSN (International Standard Serial Number)"; and "How to Obtain an SAN (Standard Address Number)". (AEF)

  2. Framed School--Frame Factors, Frames and the Dynamics of Social Interaction in School

    ERIC Educational Resources Information Center

    Persson, Anders

    2015-01-01

    This paper aims to show how the Goffman frame perspective can be used in an analysis of school and education and how it can be combined, in such analysis, with the frame factor perspective. The latter emphasizes factors that are determined outside the teaching process, while the former stresses how actors organize their experiences and define…

  3. Framing Obesity: How News Frames Shape Attributions and Behavioral Responses.

    PubMed

    Sun, Ye; Krakow, Melinda; John, Kevin K; Liu, Miao; Weaver, Jeremy

    2016-01-01

    Based on a public health model of obesity, this study set out to examine whether a news article reporting the obesity issue in a societal versus individual frame would increase perceptions of societal responsibilities for the obesity problem and motivate responsibility-taking behaviors. Responsibility-taking behaviors were examined at 3 levels: personal, interpersonal, and societal. Data from a Web-based experiment revealed significant framing effects on behaviors via causal and treatment responsibility attributions. The societal frame increased societal causal and treatment attribution, which led to greater likelihoods of interpersonal and social responsibility-taking behaviors as well as personal behaviors. Our findings suggest that news framing can be an effective venue for raising awareness of obesity as a societal issue and mobilizing collective efforts.

  4. Framing post-pandemic preparedness: Comparing eight European plans.

    PubMed

    Holmberg, Martin; Lundgren, Britta

    2016-03-07

    Framing has previously been studied in the field of pandemic preparedness and global health governance and influenza pandemics have usually been framed in terms of security and evidence-based medicine on a global scale. This paper is based on the pandemic preparedness plans, published after 2009, from eight European countries. We study how pandemic preparedness is framed and how pandemic influenza in general is narrated in the plans. All plans contain references to 'uncertainty', 'pandemic phases', 'risk management', 'vulnerability' and 'surveillance'. These themes were all framed differently in the studied plans. The preparedness plans in the member states diverge in ways that will challenge the ambition of the European Union to make the pandemic preparedness plans interoperable and to co-ordinate the member states during future pandemics.

  5. A Possible Approach to Inclusion of Space and Time in Frame Fields of Quantum Representations of Real and Complex Numbers

    DOE PAGES

    Benioff, Paul

    2009-01-01

    Tmore » his work is based on the field of reference frames based on quantum representations of real and complex numbers described in other work. Here frame domains are expanded to include space and time lattices. Strings of qukits are described as hybrid systems as they are both mathematical and physical systems. As mathematical systems they represent numbers. As physical systems in each frame the strings have a discrete Schrodinger dynamics on the lattices.he frame field has an iterative structure such that the contents of a stage j frame have images in a stage j - 1 (parent) frame. A discussion of parent frame images includes the proposal that points of stage j frame lattices have images as hybrid systems in parent frames.he resulting association of energy with images of lattice point locations, as hybrid systems states, is discussed. Representations and images of other physical systems in the different frames are also described.« less

  6. Framing as a Theory of Media Effects.

    ERIC Educational Resources Information Center

    Scheufele, Dietram A.

    1999-01-01

    Systematizes the fragmented approaches to framing in political communication and integrates them into a comprehensive model. Classifies previous approaches to framing research along two dimensions: media frames versus audience frames; and the way frames are operationalized (independent variable or dependent variable). Identifies four key processes…

  7. Vibrations of elastically restrained frames

    NASA Astrophysics Data System (ADS)

    Albarracín, Carlos Marcelo; Grossi, Ricardo Oscar

    2005-07-01

    This paper deals with the determination of eigenfrequencies of a frame which consists of a beam supported by a column and is submitted to intermediate elastic constraints. The ends of the frame are elastically restrained against rotation and translation. The individual members of the frame are assumed to be governed by the transverse and axial vibration theory of an Euler-Bernoulli beam. The boundary and eigenvalue problem which governs the dynamical behavior of the frame structure is derived using the techniques of calculus of variations. Exact values of eigenfrequencies are determined by the application of the separation of variables method. Also, results are obtained by the use of the finite element method. The natural frequencies and mode shapes are presented for a wide range of values of the restraint parameters. Several particular cases are presented and some of these have been compared with those available in the literature.

  8. Multi-Frame Object Detection

    DTIC Science & Technology

    2012-09-01

    was originally developed by Intel, but is now sup- ported by Willow Garage and Itseez [13]. The library includes many applications including facial...apply two- dimensional features to each frame of a multi-frame sample in the same locations and sum the results, as shown in the following equation and...Dataset We created a synthetic dataset that depicts a circular object undergoing a diagonal back-and- forth motion. 200 sequences, each spanning three

  9. Framing Youth within the Politics of Foreign Assistance

    ERIC Educational Resources Information Center

    Ignatowski, Clare A.

    2007-01-01

    Although in the past the field of youth development has been subsumed within or occluded by other traditional development sectors such as education, a re-emerging emphasis on security in US government foreign assistance has tended to foreground youth as a frame of reference for international development programming and public diplomacy. While…

  10. Judging hand laterality from my or your point of view: interactions between motor imagery and visual perspective.

    PubMed

    Conson, Massimiliano; Mazzarella, Elisabetta; Donnarumma, Carmela; Trojano, Luigi

    2012-11-14

    Motor imagery tasks (hand laterality judgment) are usually performed with respect to a self-body (egocentric) representation, but manipulations of stimulus features (hand orientation) can induce a shift to other's body (allocentric) reference frame. Visual perspective taking tasks are also performed in self-body perspective but a shift to an allocentric frame can be triggered by manipulations of context features (e.g., another person present in the to-be-judged scene). Combining hand laterality task and visual perspective taking, we demonstrated that both stimulus and context features can modulate motor imagery performance. In Experiment 1, participants judged laterality of a hand embedded in a human or non-human silhouette. Results showed that observing a human silhouette interfered with judgments on "egocentric hand stimuli" (right hand, fingers up). In Experiment 2, participants were explicitly required to judge laterality of a hand embedded in a human silhouette from their own (egocentric group) or from the silhouette's perspective (allocentric group). Consistent with previous results, the egocentric group was significantly faster than the allocentric group in judging fingers-up right hand stimuli. These findings showed that concurrent activation of egocentric and allocentric frames during mental transformation of body parts impairs participants' performance due to a conflict between motor and visual mechanisms.

  11. Poroelastic references

    SciTech Connect

    Morency, Christina

    2014-12-12

    This file contains a list of relevant references on the Biot theory (forward and inverse approaches), the double-porosity and dual-permeability theory, and seismic wave propagation in fracture porous media, in RIS format, to approach seismic monitoring in a complex fractured porous medium such as Brady?s Geothermal Field.

  12. Ready Reference.

    ERIC Educational Resources Information Center

    Koltay, Emery

    2001-01-01

    Includes four articles that relate to ready reference, including a list of publishers' toll-free telephone numbers and Web sites; how to obtain an ISBN (International Standard Book Number) and an ISSN (International Standard Serial Number); and how to obtain an SAN (Standard Address Number), for organizations that are involved in the book…

  13. Framing, truth telling and the problem with non‐directive counselling

    PubMed Central

    Kirklin, D

    2007-01-01

    In this paper several reasons as to why framing issues should be of greater interest to both medical ethicists and healthcare professionals are suggested: firstly, framing can help in explaining health behaviours that can, from the medical perspective, appear perverse; secondly, framing provides a way of describing the internal structure of ethical arguments; and thirdly, an understanding of framing issues can help in identifying clinical practices, such as non‐directive counselling, which may, inadvertently, be failing to meet their own stated ethical aims. The effect of framing on how individuals interpret information and how healthcare choices are influenced by framing are described. Next, the role of framing in ethical discourse is discussed with specific reference to Judith Jarvis Thomson's philosophical mind experiment about abortion and the violinist. Finally, the implications of this analysis are examined for the practice of non‐directive counselling, which aims at communicating information in a neutral, value‐free way and thereby protecting patient autonomy. PMID:17209114

  14. Framing, truth telling and the problem with non-directive counselling.

    PubMed

    Kirklin, D

    2007-01-01

    In this paper several reasons as to why framing issues should be of greater interest to both medical ethicists and healthcare professionals are suggested: firstly, framing can help in explaining health behaviours that can, from the medical perspective, appear perverse; secondly, framing provides a way of describing the internal structure of ethical arguments; and thirdly, an understanding of framing issues can help in identifying clinical practices, such as non-directive counselling, which may, inadvertently, be failing to meet their own stated ethical aims. The effect of framing on how individuals interpret information and how healthcare choices are influenced by framing are described. Next, the role of framing in ethical discourse is discussed with specific reference to Judith Jarvis Thomson's philosophical mind experiment about abortion and the violinist. Finally, the implications of this analysis are examined for the practice of non-directive counselling, which aims at communicating information in a neutral, value-free way and thereby protecting patient autonomy.

  15. Hamiltonian approach to frame dragging

    NASA Astrophysics Data System (ADS)

    Epstein, Kenneth J.

    2008-07-01

    A Hamiltonian approach makes the phenomenon of frame dragging apparent “up front” from the appearance of the drag velocity in the Hamiltonian of a test particle in an arbitrary metric. Hamiltonian (1) uses the inhomogeneous force equation (4), which applies to non-geodesic motion as well as to geodesics. The Hamiltonian is not in manifestly covariant form, but is covariant because it is derived from Hamilton’s manifestly covariant scalar action principle. A distinction is made between manifest frame dragging such as that in the Kerr metric, and hidden frame dragging that can be made manifest by a coordinate transformation such as that applied to the Robertson-Walker metric in Sect. 2. In Sect. 3 a zone of repulsive gravity is found in the extreme Kerr metric. Section 4 treats frame dragging in special relativity as a manifestation of the equivalence principle in accelerated frames. It answers a question posed by Bell about how the Lorentz contraction can break a thread connecting two uniformly accelerated rocket ships. In Sect. 5 the form of the Hamiltonian facilitates the definition of gravitomagnetic and gravitoelectric potentials.

  16. Efficient bit allocation using new intra and inter-frame modeling for H.264/AVC

    NASA Astrophysics Data System (ADS)

    Hrarti, Miryem; Saadane, Abdelhakim; Larabi, Mohamed-Chaker; Tamtaoui, Ahmed; Aboutajdine, Driss

    2012-01-01

    Rate control is a critical issue in H.264/AVC video coding standard because it suffers from some shortcomings that make the bit allocation process not optimal. This leads to a video quality that may vary significantly from frame to frame. Our aim is to enhance the rate control efficiency in H.264/AVC baseline profile by handling two of its defects: the initial quantization parameter (QP) estimation for Intra-Frames (I-Frames) and the target number of bits determination for Inter-Frames (P-Frames) encoding. First, we propose a Rate-Quantization (R-Q) model for the I-Frame constructed empirically after extensive experiments. The optimal initial QP calculation is based on both target bit-rate and I-Frame complexity. The I-Frame target bit-rate is derived from the global target bit-rate by using a new non-linear model. Secondly, we propose an enhancement of the bit allocation process by exploiting frame complexity measures. The target number of bits determination for P-Frames is adjusted by combining two temporal measures: the first is a motion ratio based on actual bits used to encode previous frames; the second measure exploits the difference between two consecutive frames and the histogram of this difference. The simulation results, carried out using the JM15.0 reference software and the JVT-O016 rate control algorithm, show that the right choice of initial QP for I-Frame and first P-Frame allows improvement of both the bit-rate and peak signal-to-noise ratio (PSNR). Finally, the Inter-Frame bit allocation process further improves the bit-rates while keeping the same PSNR improvement (up to +1.33 dB/+2 dB for QCIF/CIF resolutions). Moreover, this process reduces the buffer level variation leading to a more consistent quality of reconstructed videos.

  17. Enhancement Strategies for Frame-To Uas Stereo Visual Odometry

    NASA Astrophysics Data System (ADS)

    Kersten, J.; Rodehorst, V.

    2016-06-01

    Autonomous navigation of indoor unmanned aircraft systems (UAS) requires accurate pose estimations usually obtained from indirect measurements. Navigation based on inertial measurement units (IMU) is known to be affected by high drift rates. The incorporation of cameras provides complementary information due to the different underlying measurement principle. The scale ambiguity problem for monocular cameras is avoided when a light-weight stereo camera setup is used. However, also frame-to-frame stereo visual odometry (VO) approaches are known to accumulate pose estimation errors over time. Several valuable real-time capable techniques for outlier detection and drift reduction in frame-to-frame VO, for example robust relative orientation estimation using random sample consensus (RANSAC) and bundle adjustment, are available. This study addresses the problem of choosing appropriate VO components. We propose a frame-to-frame stereo VO method based on carefully selected components and parameters. This method is evaluated regarding the impact and value of different outlier detection and drift-reduction strategies, for example keyframe selection and sparse bundle adjustment (SBA), using reference benchmark data as well as own real stereo data. The experimental results demonstrate that our VO method is able to estimate quite accurate trajectories. Feature bucketing and keyframe selection are simple but effective strategies which further improve the VO results. Furthermore, introducing the stereo baseline constraint in pose graph optimization (PGO) leads to significant improvements.

  18. Framing and Frame Shifting in a Higher Education Merger

    ERIC Educational Resources Information Center

    Pick, David

    2003-01-01

    Late in 1996, Kalgoorlie College and the Western Australian School of Mines in Western Australia were merged to form an expanded campus of Curtin University, based in the state capital city of Perth. This paper uses a frame analytical approach to examining how differing and competing interpretations and commitments affected how the merger was…

  19. Modeling laser wakefield accelerators in a Lorentz boosted frame

    SciTech Connect

    Vay, J.-L.; Geddes, C.G.R.; Cormier-Michel, E.; Grote, D.P.

    2010-09-15

    Modeling of laser-plasma wakefield accelerators in an optimal frame of reference [1] is shown to produce orders of magnitude speed-up of calculations from first principles. Obtaining these speedups requires mitigation of a high frequency instability that otherwise limits effectiveness in addition to solutions for handling data input and output in a relativistically boosted frame of reference. The observed high-frequency instability is mitigated using methods including an electromagnetic solver with tunable coefficients, its extension to accomodate Perfectly Matched Layers and Friedman's damping algorithms, as well as an efficient large bandwidth digital filter. It is shown that choosing theframe of the wake as the frame of reference allows for higher levels of filtering and damping than is possible in other frames for the same accuracy. Detailed testing also revealed serendipitously the existence of a singular time step at which the instability level is minimized, independently of numerical dispersion, thus indicating that the observed instability may not be due primarily to Numerical Cerenkov as has been conjectured. The techniques developed for Cerenkov mitigation prove nonetheless to be very efficient at controlling the instability. Using these techniques, agreement at the percentage level is demonstrated between simulations using different frames of reference, with speedups reaching two orders of magnitude for a 0.1 GeV class stages. The method then allows direct and efficient full-scale modeling of deeply depleted laser-plasma stages of 10 GeV-1 TeV for the first time, verifying the scaling of plasma accelerators to very high energies. Over 4, 5 and 6 orders of magnitude speedup is achieved for the modeling of 10 GeV, 100 GeV and 1 TeV class stages, respectively.

  20. 49 CFR 393.201 - Frames.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Frames. 393.201 Section 393.201 Transportation... SAFE OPERATION Frames, Cab and Body Components, Wheels, Steering, and Suspension Systems § 393.201 Frames. (a) The frame or chassis of each commercial motor vehicle shall not be cracked, loose, sagging...

  1. 49 CFR 393.201 - Frames.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 5 2011-10-01 2011-10-01 false Frames. 393.201 Section 393.201 Transportation... SAFE OPERATION Frames, Cab and Body Components, Wheels, Steering, and Suspension Systems § 393.201 Frames. (a) The frame or chassis of each commercial motor vehicle shall not be cracked, loose, sagging...

  2. Examining the Linkage Between FRAMES and GMS

    SciTech Connect

    Whelan, Gene; Castleton, Karl J.

    2006-02-13

    Because GMS provides so many features, of which some are also addressed by FRAMES, it could represent a platform to link to FRAMES, or FRAMES could represent a platform to link to GMS. The focus of this summary is to examine the strengths and weaknesses of the potential linkage direction and provide recommendations for the linkage between FRAMES and GMS.

  3. Plans for an accurate alignment of the VLBI frame and the future Gaia frame

    NASA Astrophysics Data System (ADS)

    Bourda, G.; Charlot, P.

    2012-12-01

    The European space astrometry mission Gaia will construct a dense optical QSO-based celestial reference frame. For consistency between optical and radio positions, it will be fundamental to align the Gaia and VLBI frames with the highest accuracy. A proper alignment is also important in the framework of astrophysics, for example to probe properly the AGN jets properties and the physics of these objects. The VLBI-Gaia frame alignment requires quasars that are bright at optical wavelength, that have a compact radio core, and that do not exhibit complex structures. In this paper, we draw prospects for this alignment, based on the ICRF2 catalogue and an ongoing dedicated VLBI project designed to observe additional weaker extragalactic radio sources for this purpose. The list of suitable sources will have to be monitored to check the relevance of the sources for the alignment, especially in terms of position stability and structures. Accordingly, we present the observations we envision in the framework of the IVS and other VLBI networks, before and during the Gaia mission.

  4. Terrestrial Coordinate Systems and Frames

    NASA Astrophysics Data System (ADS)

    Boucher, C.; Murdin, P.

    2000-11-01

    A terrestrial reference system (TRS) is a spatial reference system corotating with the Earth in its DIURNAL MOTION in space. In such a system, the positions of points anchored on the Earth's solid surface have coordinates which have only small variations with time, as a result of geophysical effects (tectonic or tidal deformations; see TECTONICS, EARTH'S INTERIOR, TIDES). A terrestrial reference ...

  5. Frame Rate and Human Vision

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.

    2012-01-01

    To enhance the quality of the theatre experience, the film industry is interested in achieving higher frame rates for capture and display. In this talk I will describe the basic spatio-temporal sensitivities of human vision, and how they respond to the time sequence of static images that is fundamental to cinematic presentation.

  6. SEOS frame camera applications study

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A research and development satellite is discussed which will provide opportunities for observation of transient phenomena that fall within the fixed viewing circle of the spacecraft. The evaluation of possible applications for frame cameras, for SEOS, are studied. The computed lens characteristics for each camera are listed.

  7. Space-Frame Lunar Lander

    NASA Technical Reports Server (NTRS)

    Curtis, Steven A.

    2010-01-01

    The space-frame lunar lander was originally intended to (1) land on rough lunar terrain, (2) deform itself to conform to the terrain so as to be able to remain there in a stable position and orientation, and (3) if required, further deform itself to perform various functions. In principle, the space-frame lunar lander could be used in the same way on Earth, as might be required, for example, to place meteorological sensors or a radio-communication relay station on an otherwise inaccessible mountain peak. the space-frame lunar lander would include a truss-like structure consisting mostly of a tetrahedral mesh of nodes connected by variable-length struts, the lengths of which would be altered in coordination to impart the desired overall size and shape to the structure. Thrusters (that is, small rocket engines), propellant tanks, a control system, and instrumentation would be mounted in and on the structure (see figure). Once it had landed and deformed itself to the terrain through coordinated variations in the lengths of the struts, the structure could be further deformed into another space-frame structure

  8. Handedness differences in information framing.

    PubMed

    Jasper, John D; Fournier, Candice; Christman, Stephen D

    2014-02-01

    Previous research has shown that strength of handedness predicts differences in sensory illusions, Stroop interference, episodic memory, and beliefs about body image. Recent evidence also suggests handedness differences in the susceptibility to common decision biases such as anchoring and sunk cost. The present paper extends this line of work to attribute framing effects. Sixty-three undergraduates were asked to advise a friend concerning the use of a safe allergy medication during pregnancy. A third of the participants received negatively-framed information concerning the fetal risk of the drug (1-3% chance of having a malformed child); another third received positively-framed information (97-99% chance of having a normal child); and the final third received no counseling information and served as the control. Results indicated that, as predicted, inconsistent (mixed)-handers were more responsive than consistent (strong)-handers to information changes and readily update their beliefs. Although not significant, the data also suggested that only inconsistent handers were affected by information framing. Theoretical implications as well as ongoing work in holistic versus analytic processing, contextual sensitivity, and brain asymmetry will be discussed.

  9. Gold plating on spectacle frames.

    PubMed

    Kenny, I; Mitchell, J W; Walsh, G

    1997-05-01

    An investigation was carried out into the thickness and standard of application of the plating and lacquer coatings applied to three metal spectacle frames. All conform to BS 6625 (1991) for plating thickness, but there was considerable variation in regularity and porosity.

  10. The key to unlocking the virtual body: virtual reality in the treatment of obesity and eating disorders.

    PubMed

    Riva, Giuseppe

    2011-03-01

    Obesity and eating disorders are usually considered unrelated problems with different causes. However, various studies identify unhealthful weight-control behaviors (fasting, vomiting, or laxative abuse), induced by a negative experience of the body, as the common antecedents of both obesity and eating disorders. But how might negative body image--common to most adolescents, not only to medical patients--be behind the development of obesity and eating disorders? In this paper, I review the "allocentric lock theory" of negative body image as the possible antecedent of both obesity and eating disorders. Evidence from psychology and neuroscience indicates that our bodily experience involves the integration of different sensory inputs within two different reference frames: egocentric (first-person experience) and allocentric (third-person experience). Even though functional relations between these two frames are usually limited, they influence each other during the interaction between long- and short-term memory processes in spatial cognition. If this process is impaired either through exogenous (e.g., stress) or endogenous causes, the egocentric sensory inputs are unable to update the contents of the stored allocentric representation of the body. In other words, these patients are locked in an allocentric (observer view) negative image of their body, which their sensory inputs are no longer able to update even after a demanding diet and a significant weight loss. This article discusses the possible role of virtual reality in addressing this problem within an integrated treatment approach based on the allocentric lock theory.

  11. Alcohol coverage in California newspapers: frequency, prominence, and framing.

    PubMed

    Myhre, Sonja L; Saphir, Melissa Nichols; Flora, June A; Howard, Kim Ammann; Gonzalez, Emily McChesney

    2002-01-01

    The purpose of this study was to investigate the nature and extent of alcohol coverage in California newspapers by examining the frequency, positioning, and framing of alcohol-related articles. A content analysis assessed the frequency and nature of alcohol references in news content drawn from a random sample of nine California newspaper issues from September 1997 to June 1998. The study findings indicate that alcohol is mentioned at least once a day in daily newspapers with more frequent mention in smaller newspapers. Alcohol is most often discussed in relation to trauma or in the context of promoting alcohol consumption. Articles on trauma and driving while intoxicated receive more prominence than other stories mentioning alcohol. Despite the relative frequency of alcohol content in trauma news, these stories are rarely framed with any sort of health context. Public health advocates should work toward increasing the frequency and improving the framing of alcohol in newspaper coverage.

  12. Intraoperative measurement of mounting parameters for the Taylor Spatial Frame.

    PubMed

    Gantsoudes, George D; Fragomen, Austin T; Rozbruch, S Robert

    2010-04-01

    The Taylor Spatial Frame (Smith & Nephew, Memphis, TN) is a powerful tool in providing gradual correction of deformity. The Taylor Spatial Frame has the potential to allow for very accurate corrections achieved over one or more schedules through the use of the software on www.spatialframe.com. The accuracy of the frame is contingent upon the input of precise parameters. The correction occurs about a virtual hinge in space called the origin. The location of the origin is defined by its spatial relationship to the reference ring. Mounting parameters are the measurements that define the location of the origin (virtual hinge). We present a simple practical method for obtaining mounting parameters during surgery using standard equipment.

  13. Nine Frames as Jupiter Turns

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This sequence of nine true-color, narrow-angle images shows the varying appearance of Jupiter as it rotated through more than a complete 360-degree turn. The smallest features seen in this sequence are no bigger than about 380 kilometers (about 236 miles). Rotating more than twice as fast as Earth, Jupiter completes one rotation in about 10 hours. These images were taken on Oct. 22 and 23, 2000. From image to image (proceeding left to right across each row and then down to the next row), cloud features on Jupiter move from left to right before disappearing over the edge onto the nightside of the planet. The most obvious Jovian feature is the Great Red Spot, which can be seen moving onto the dayside in the third frame (below and to the left of the center of the planet). In the fourth frame, taken about 1 hour and 40 minutes later, the Great Red Spot has been carried by the planet's rotation to the east and does not appear again until the final frame, which was taken one complete rotation after the third frame.

    Unlike weather systems on Earth, which change markedly from day to day, large cloud systems in Jupiter's colder, thicker atmosphere are long-lived, so the two frames taken one rotation apart have a very similar appearance. However, when this sequence of images is eventually animated, strong winds blowing eastward at some latitudes and westward at other latitudes will be readily apparent. The results of such differential motions can be seen even in the still frames shown here. For example, the clouds of the Great Red Spot rotate counterclockwise. The strong westward winds northeast of the Great Red Spot are deflected around the spot and form a wake of turbulent clouds downstream (visible in the fourth image), just as a rock in a rapidly flowing river deflects the fluid around it.

    The equatorial zone on Jupiter is currently bright white, indicating the presence of clouds much like cirrus clouds on Earth, but made of ammonia instead of water ice. This

  14. Ultra-fast framing camera tube

    DOEpatents

    Kalibjian, Ralph

    1981-01-01

    An electronic framing camera tube features focal plane image dissection and synchronized restoration of the dissected electron line images to form two-dimensional framed images. Ultra-fast framing is performed by first streaking a two-dimensional electron image across a narrow slit, thereby dissecting the two-dimensional electron image into sequential electron line images. The dissected electron line images are then restored into a framed image by a restorer deflector operated synchronously with the dissector deflector. The number of framed images on the tube's viewing screen is equal to the number of dissecting slits in the tube. The distinguishing features of this ultra-fast framing camera tube are the focal plane dissecting slits, and the synchronously-operated restorer deflector which restores the dissected electron line images into a two-dimensional framed image. The framing camera tube can produce image frames having high spatial resolution of optical events in the sub-100 picosecond range.

  15. Enhanced adaptive loop filter for motion compensated frame.

    PubMed

    Yoo, Young-Joe; Seo, Chan-Won; Han, Jong-Ki; Nguyen, Truong Q

    2011-08-01

    We propose an adaptive loop filter to remove the redundancy between current and motion compensated frames so that the residual signal is minimized, thus coding efficiency increases. The loop filter coefficients and offset are optimized for each frame or a set of blocks to minimize the total energy of the residual signal resulting from motion estimation and compensation. The optimized loop filter with offset is applied for the set of blocks where the filtering process gives coding gain based upon rate-distortion cost. The proposed loop filter is used for the motion compensated frame whereas the conventional adaptive interpolation filter (AIF) is applied to the reference frames to interpolate the subpixel values. Another conventional scheme adaptive loop filter (ALF), is used after deblocking filtering to enhance quality of reconstructed frames, not to minimize energy of residual signal. The proposed loop filter can be used in combination with the AIF and ALF. Experimental results show that proposed algorithm provides the averaged bit reduction of 8% compared to conventional H.264/AVC scheme. When the proposed scheme is combined with AIF and ALF, the coding gain increases even further.

  16. Lattice QCD in rotating frames.

    PubMed

    Yamamoto, Arata; Hirono, Yuji

    2013-08-23

    We formulate lattice QCD in rotating frames to study the physics of QCD matter under rotation. We construct the lattice QCD action with the rotational metric and apply it to the Monte Carlo simulation. As the first application, we calculate the angular momenta of gluons and quarks in the rotating QCD vacuum. This new framework is useful to analyze various rotation-related phenomena in QCD.

  17. ostglacial rebound from VLBI Geodesy: On Establishing Vertical Reference

    NASA Technical Reports Server (NTRS)

    Argus, Donald .

    1996-01-01

    I propose that a useful reference frame for vertical motions is that found by minimizing differences between vertical motions observed with VLBI [Ma and Ryan, 1995] and predictions from postglacial rebound predictions [Peltier, 1995].

  18. Monolithic LTCC seal frame and lid

    SciTech Connect

    Krueger, Daniel S.; Peterson, Kenneth A.; Stockdale, Dave; Duncan, James Brent; Riggs, Bristen

    2016-06-21

    A method for forming a monolithic seal frame and lid for use with a substrate and electronic circuitry comprises the steps of forming a mandrel from a ceramic and glass based material, forming a seal frame and lid block from a ceramic and glass based material, creating a seal frame and lid by forming a compartment and a plurality of sidewalls in the seal frame and lid block, placing the seal frame and lid on the mandrel such that the mandrel fits within the compartment, and cofiring the seal frame and lid block.

  19. Image denoising using a tight frame.

    PubMed

    Shen, Lixin; Papadakis, Manos; Kakadiaris, Ioannis A; Konstantinidis, Ioannis; Kouri, Donald; Hoffman, David

    2006-05-01

    We present a general mathematical theory for lifting frames that allows us to modify existing filters to construct new ones that form Parseval frames. We apply our theory to design nonseparable Parseval frames from separable (tensor) products of a piecewise linear spline tight frame. These new frame systems incorporate the weighted average operator, the Sobel operator, and the Laplacian operator in directions that are integer multiples of 45 degrees. A new image denoising algorithm is then proposed, tailored to the specific properties of these new frame filters. We demonstrate the performance of our algorithm on a diverse set of images with very encouraging results.

  20. Mars Science Laboratory Frame Manager for Centralized Frame Tree Database and Target Pointing

    NASA Technical Reports Server (NTRS)

    Kim, Won S.; Leger, Chris; Peters, Stephen; Carsten, Joseph; Diaz-Calderon, Antonio

    2013-01-01

    The FM (Frame Manager) flight software module is responsible for maintaining the frame tree database containing coordinate transforms between frames. The frame tree is a proper tree structure of directed links, consisting of surface and rover subtrees. Actual frame transforms are updated by their owner. FM updates site and saved frames for the surface tree. As the rover drives to a new area, a new site frame with an incremented site index can be created. Several clients including ARM and RSM (Remote Sensing Mast) update their related rover frames that they own. Through the onboard centralized FM frame tree database, client modules can query transforms between any two frames. Important applications include target image pointing for RSM-mounted cameras and frame-referenced arm moves. The use of frame tree eliminates cumbersome, error-prone calculations of coordinate entries for commands and thus simplifies flight operations significantly.

  1. Framing effects on metacognitive monitoring and control

    PubMed Central

    Finn, Bridgid

    2008-01-01

    Three experiments explored the contribution of framing effects on metamemory judgments. In Experiment 1, participants studied word pairs. After each presentation, they made an immediate judgment of learning (JOL), framed in terms of either remembering or forgetting. In the remember frame, participants made judgments about how likely it was that they would remember each pair on the upcoming test. In the forget frame, participants made judgments about how likely it was that they would forget each pair. Confidence differed as a result of the frame. Forget frame JOLs, equated to the remember frame JOL scale by a 1-judgment conversion, were lower and demonstrated a smaller overconfidence bias than did remember frame JOLs. When judgments were made at a delay, framing effects did not occur. In Experiment 2, people chose to restudy more items when choices were made within a forget frame. In Experiment 3, people studied Spanish–English vocabulary pairs ranging in difficulty. The framing effect was replicated with judgments and choices. Moreover, forget frame participants included more easy and medium items to restudy. These results demonstrated the important consequences of framing effects on assessment and control of study. PMID:18604963

  2. Optical Reference Stars for Space Surveillance: Future Plans: Latest Developments

    DTIC Science & Technology

    2010-01-01

    respect to each other. Thus, the relationship between GAST and UT1 includes terms due to precession and nutation . The Earth Rotation Angle, and its...epoch. The International Celestial Reference Frame (ICRF) is the reference frame implementing the ICRS. However, we observe from the Earth , which has...replace the equinox. A new precession- nutation model has been developed with considerably improved accuracies. The Celestial Intermediate Pole (CIP

  3. Fabric panel clean change-out frame

    DOEpatents

    Brown, Ronald M.

    1995-01-31

    A fabric panel clean change-out frame, for use on a containment structure having rigid walls, is formed of a compression frame and a closure panel. The frame is formed of elongated spacers, each carrying a plurality of closely spaced flat springs, and each having a hooked lip extending on the side of the spring facing the spacer. The closure panel is includes a perimeter frame formed of flexible, wedge-shaped frame members that are receivable under the springs to deflect the hooked lips. A groove on the flexible frame members engages the hooked lips and locks the frame members in place under the springs. A flexible fabric panel is connected to the flexible frame members and closes its center.

  4. 100-ps framing-camera tube.

    PubMed

    Kalibjian, R

    1978-07-01

    The optoelectronic framing-camera tube described is capable of recording two-dimensional image frames with high spatial resolution in the <100-ps range. Framing is performed by streaking a two-dimensional electron image across narrow slits. The resulting dissected electron line images from the slits are restored into framed images by a restorer deflector operating synchronously with the dissector deflector. The number of framed images on the tube's viewing screen equals the number of dissecting slits in the tube. Performance has been demonstrated in a prototype tube by recording 135-ps-duration framed images of 2.5-mm patterns at the cathode. The limitation in the framing speed is in the external drivers for the deflectors and not in the tube design characteristics. Faster frame speeds in the <100-ps range can be obtained by use of faster deflection drivers.

  5. Pushover Analysis of GFRP Pultruded Frames

    NASA Astrophysics Data System (ADS)

    Casalegno, C.; Russo, S.

    2015-11-01

    Results of a pushover analysis of GFRP pultruded frames aimed at the evaluation of their overall ductility are presented. It is assumed that the dissipation capacity of the frame structures is concentrated in joints due to their nonlinear behavior induced by progressive damage, while a brittle-elastic behavior is assumed for frame members. A two-storey one-bay GFRP pultruded frame is considered for a case study in which the column-base and beam-column joints are modeled with nonlinear rotational springs with different moment-rotation laws derived from experimental results available in the literature. For comparison, frames with hinged connections and moment-resisting frames are also analyzed. Finally, the results obtained are compared with those for a similar steel frame. The final results bear witness, in particular, to the absence of a significant ductility of pultruded frames and the relevant influence of the characteristics of bracings on their structural response.

  6. A Frame Analysis of Barth's "Menelaiad".

    ERIC Educational Resources Information Center

    Roberts, C. Janene

    Frame analysis is an approach to social situations that can be applied profitably to literature and performance. A frame is the reality status of a situation; keys are the characteristics that define a frame. Most literary works are keying on real life frameworks. Literary works that are based on other literary works, such as parodies, are…

  7. 21 CFR 886.5842 - Spectacle frame.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Spectacle frame. 886.5842 Section 886.5842 Food... DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5842 Spectacle frame. (a) Identification. A spectacle frame is a device made of metal or plastic intended to hold prescription spectacle lenses worn by...

  8. Popcorn Story Frames from a Multicultural Perspective.

    ERIC Educational Resources Information Center

    DiLella, Carol Ann

    Popcorn story frames from a multicultural perspective are holistic outlines that in the reading/writing process facilitate comprehension for all cultures learning to read and write stories. Popcorn story frames are structured and modeled in a horizontal fashion just like popcorn pops in a horizontal fashion. The frames are designed for learners…

  9. 10 CFR 710.35 - Time frames.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Time frames. 710.35 Section 710.35 Energy DEPARTMENT OF... Matter or Special Nuclear Material Miscellaneous § 710.35 Time frames. Statements of time established for processing aspects of a case under this subpart are the agency's desired time frames in implementing...

  10. 10 CFR 710.35 - Time frames.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Time frames. 710.35 Section 710.35 Energy DEPARTMENT OF... Matter or Special Nuclear Material Miscellaneous § 710.35 Time frames. Statements of time established for processing aspects of a case under this subpart are the agency's desired time frames in implementing...

  11. Simultaneous message framing and error detection

    NASA Technical Reports Server (NTRS)

    Frey, A. H., Jr.

    1968-01-01

    Circuitry simultaneously inserts message framing information and detects noise errors in binary code data transmissions. Separate message groups are framed without requiring both framing bits and error-checking bits, and predetermined message sequence are separated from other message sequences without being hampered by intervening noise.

  12. Information Leakage from Logically Equivalent Frames

    ERIC Educational Resources Information Center

    Sher, Shlomi; McKenzie, Craig R. M.

    2006-01-01

    Framing effects are said to occur when equivalent frames lead to different choices. However, the equivalence in question has been incompletely conceptualized. In a new normative analysis of framing effects, we complete the conceptualization by introducing the notion of information equivalence. Information equivalence obtains when no…

  13. 10 CFR 710.35 - Time frames.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Time frames. 710.35 Section 710.35 Energy DEPARTMENT OF... Matter or Special Nuclear Material Miscellaneous § 710.35 Time frames. Statements of time established for processing aspects of a case under this subpart are the agency's desired time frames in implementing...

  14. 10 CFR 710.35 - Time frames.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Time frames. 710.35 Section 710.35 Energy DEPARTMENT OF... Matter or Special Nuclear Material Miscellaneous § 710.35 Time frames. Statements of time established for processing aspects of a case under this subpart are the agency's desired time frames in implementing...

  15. 10 CFR 710.35 - Time frames.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Time frames. 710.35 Section 710.35 Energy DEPARTMENT OF... Matter or Special Nuclear Material Miscellaneous § 710.35 Time frames. Statements of time established for processing aspects of a case under this subpart are the agency's desired time frames in implementing...

  16. Influence of framing on medical decision making

    PubMed Central

    Gong, Jingjing; Zhang, Yan; Feng, Jun; Huang, Yonghua; Wei, Yazhou; Zhang, Weiwei

    2013-01-01

    Numerous studies have demonstrated the robustness of the framing effect in a variety of contexts, especially in medical decision making. Unfortunately, research is still inconsistent as to how so many variables impact framing effects in medical decision making. Additionally, much attention should be paid to the framing effect not only in hypothetical scenarios but also in clinical experience. PMID:27034630

  17. Algebraic and geometric spread in finite frames

    NASA Astrophysics Data System (ADS)

    King, Emily J.

    2015-08-01

    When searching for finite unit norm tight frames (FUNTFs) of M vectors in FN which yield robust representations, one is concerned with finding frames consisting of frame vectors which are in some sense as spread apart as possible. Algebraic spread and geometric spread are the two most commonly used measures of spread. A frame with optimal algebraic spread is called full spark and is such that any subcollection of N frame vectors is a basis for FN. A Grassmannian frame is a FUNTF which satisfies the Grassmannian packing problem; that is, the frame vectors are optimally geometrically spread given fixed M and N. A particular example of a Grassmannian frame is an equiangular frame, which is such that the absolute value of all inner products of distinct vectors is equal. The relationship between these two types of optimal spread is complicated. The folk knowledge for many years was that equiangular frames were full spark; however, this is now known not to hold for an infinite class of equiangular frames. The exact relationship between these types of spread will be further explored in this talk, as well as Plücker coordinates and coherence, which are measures of how much a frame misses being optimally algebraically or geometrically spread.

  18. One frame subnanosecond spectroscopy camera

    NASA Astrophysics Data System (ADS)

    Silkis, E. G.; Titov, V. D.; Fel'Dman, G. G.; Zhilkina, V. M.; Petrokovich, O. A.; Syrtsev, V. N.

    1991-04-01

    The recording of ultraweak spectra is presently undertaken by a high-speed multichannel-spectrum camera (HSMSC) with a subnanosec-range time resolution in its photon-counting mode. This HSMSC's photodetector is a one-frame streak tube equipped with a grid shutter which is connected via fiber-optic contact to a linear CCD. The grain furnished by the streak tube on the basis of a microchannel plate is sufficiently high for recording single photoelectron signals. The HSMSC is compact and easy to handle.

  19. Message framing in social networking sites.

    PubMed

    Kao, Danny Tengti; Chuang, Shih-Chieh; Wang, Sui-Min; Zhang, Lei

    2013-10-01

    Online social networking sites represent significant new opportunities for Internet advertisers. However, results based on the real world cannot be generalized to all virtual worlds. In this research, the moderating effects of need for cognition (NFC) and knowledge were applied to examine the impact of message framing on attitudes toward social networking sites. A total of 216 undergraduates participated in the study. Results reveal that for social networking sites, while high-NFC individuals form more favorable attitudes toward negatively framed messages than positively framed messages, low-NFC individuals form more favorable attitudes toward positively framed messages than negatively framed messages. In addition, low-knowledge individuals demonstrate more favorable attitudes toward negatively framed messages than positively framed messages; however, the framing effect does not differentially affect the attitudes of high-knowledge individuals. Furthermore, the framing effect does not differentially affect the attitudes of high-NFC individuals with high knowledge. In contrast, low-NFC individuals with low knowledge hold more favorable attitudes toward positively framed messages than negatively framed messages.

  20. Writing More Informative Letters of Reference

    PubMed Central

    Wright, Scott M; Ziegelstein, Roy C

    2004-01-01

    Writing a meaningful and valuable letter of reference is not an easy task. Several factors influence the quality of any letter of reference. First, the accuracy and reliability of the writer's impressions and judgment depend on how well he knows the individual being described. Second, the writer's frame of reference, which is determined by the number of persons at the same level that he has worked with, will impact the context and significance of his beliefs and estimations. Third, the letter-writing skills of the person composing the letter will naturally affect the letter. To support the other components of a candidate's application, a letter of reference should provide specific examples of how an individual's behavior or attitude compares to a reference group and should assess “intangibles” that are hard to glean from a curriculum vitae or from test scores. This report offers suggestions that should help physicians write more informative letters of reference. PMID:15109330

  1. "Think" versus "feel" framing effects in persuasion.

    PubMed

    Mayer, Nicole D; Tormala, Zakary L

    2010-04-01

    Three studies explored think ("I think . . . ") versus feel ("I feel . . . ") message framing effects on persuasion.The authors propose a matching hypothesis, suggesting that think framing will be more persuasive when the target attitude or message recipient is cognitively oriented, whereas feel framing will be more persuasive when the target attitude or message recipient is affectively oriented. Study 1 presented cognitively and affectively oriented individuals with a think- or feel-framed message. Study 2 primed cognitive or affective orientation and then presented a think- or feel-framed message. Study 3 presented male and female participants with an advertisement containing think- or feel-framed arguments. Results indicated that think (feel) framing was more persuasive when the target attitude or recipient was cognitively (affectively) oriented. Moreover, Study 2 demonstrated that this matching effect was mediated by processing fluency. Theoretical and practical implications are discussed.

  2. Nonlinear pushover analysis of infilled concrete frames

    NASA Astrophysics Data System (ADS)

    Huang, Chao Hsun; Tuan, Yungting Alex; Hsu, Ruo Yun

    2006-12-01

    Six reinforced concrete frames with or without masonry infills were constructed and tested under horizontal cyclic loads. All six frames had identical details in which the transverse reinforcement in columns was provided by rectangular hoops that did not meet current ACI specifications for ductile frames. For comparison purposes, the columns in three of these frames were jacketed by carbon-fiber-reinforced-polymer (CFRP) sheets to avoid possible shear failure. A nonlinear pushover analysis, in which the force-deformation relationships of individual elements were developed based on ACI 318, FEMA 356, and Chen’s model, was carried out for these frames and compared to test results. Both the failure mechanisms and impact of infills on the behaviors of these frames were examined in the study. Conclusions from the present analysis provide structural engineers with valuable information for evaluation and design of infilled concrete frame building structures.

  3. Adding HDLC Framing to CCSDS Recommendations

    NASA Technical Reports Server (NTRS)

    Hogie, Keith; Criscuolo, Ed; Parise, Ron

    2004-01-01

    Current Space IP missions use High-Level Data Link Control (HDLC) framing to provide standard serial link interfaces over a space link. HDLC is the standard framing technique used by all routers over clock and data serial lines and is also the basic framing used in all Frame Relay services which are widely deployed in national and international communication networks. In late 2003 a presentation was made to CCSDS committees to initiate discussion on including HDLC in the CCSDS recommendations for space systems. This presentation will summarize the differences between variable length HDLC frames and fixed length CCSDS frames. It will also discuss where and how HDLC framing would fit into the overall CCSDS structures.

  4. Numeracy and framing bias in epilepsy.

    PubMed

    Choi, Hyunmi; Wong, John B; Mendiratta, Anil; Heiman, Gary A; Hamberger, Marla J

    2011-01-01

    Patients with epilepsy are frequently confronted with complex treatment decisions. Communicating treatment risks is often difficult because patients may have difficulty with basic statistical concepts (i.e., low numeracy) or might misconceive the statistical information based on the way information is presented, a phenomenon known as "framing bias." We assessed numeracy and framing bias in 95 adults with chronic epilepsy and explored cognitive correlates of framing bias. Compared with normal controls, patients with epilepsy had significantly poorer performance on the Numeracy scale (P=0.02), despite a higher level of education than normal controls (P<0.001). Compared with patients with higher numeracy, patients with lower numeracy were significantly more likely to exhibit framing bias. Abstract problem solving performance correlated with the degree of framing bias (r=0.631, P<0.0001), suggesting a relationship between aspects of executive functioning and framing bias. Poor numeracy and susceptibility framing bias place patients with epilepsy at risk for uninformed decisions.

  5. Fulling-Unruh effect in general stationary accelerated frames

    SciTech Connect

    Korsbakken, Jan Ivar; Leinaas, Jon Magne

    2004-10-15

    We study the generalized Unruh effect for accelerated reference frames that include rotation in addition to acceleration. We focus particularly on the case where the motion is planar, with the presence of a static limit in addition to the event horizon. Possible definitions of an accelerated vacuum state are examined and the interpretation of the Minkowski vacuum state as a thermodynamic state is discussed. Such a thermodynamic state is shown to depend on two parameters, the acceleration temperature and a drift velocity, which are determined by the acceleration and angular velocity of the accelerated frame. We relate the properties of the Minkowski vacuum in the accelerated frame to the excitation spectrum of a detector that is stationary in this frame. The detector can be excited both by absorbing positive energy quanta in the 'hot' vacuum state and by emitting negative energy quanta into the 'ergosphere' between the horizon and the static limit. The effects are related to similar effects in the gravitational field of a rotating black hole.

  6. Relation of the frame in a portable rod-and-frame apparatus to judgements of perceived verticality.

    PubMed

    Blowers, G H

    1977-02-01

    To assess the effect of the frame on the mean error in the portable rod-and-frame 18 subjects were tested once with frame present and once without it. 11 frame-dependent subjects produced smaller mean error without the frame; 7 frame-independent subjects were not significantly affected by removal of the frame. Nyborg's statistical method of differentiating frame-dependent and frame-independent subjects appears validated.

  7. Moving frames and prolongation algebras

    NASA Technical Reports Server (NTRS)

    Estabrook, F. B.

    1982-01-01

    Differential ideals generated by sets of 2-forms which can be written with constant coefficients in a canonical basis of 1-forms are considered. By setting up a Cartan-Ehresmann connection, in a fiber bundle over a base space in which the 2-forms live, one finds an incomplete Lie algebra of vector fields in the fields in the fibers. Conversely, given this algebra (a prolongation algebra), one can derive the differential ideal. The two constructs are thus dual, and analysis of either derives properties of both. Such systems arise in the classical differential geometry of moving frames. Examples of this are discussed, together with examples arising more recently: the Korteweg-de Vries and Harrison-Ernst systems.

  8. Parallel integrated frame synchronizer chip

    NASA Technical Reports Server (NTRS)

    Ghuman, Parminder Singh (Inventor); Solomon, Jeffrey Michael (Inventor); Bennett, Toby Dennis (Inventor)

    2000-01-01

    A parallel integrated frame synchronizer which implements a sequential pipeline process wherein serial data in the form of telemetry data or weather satellite data enters the synchronizer by means of a front-end subsystem and passes to a parallel correlator subsystem or a weather satellite data processing subsystem. When in a CCSDS mode, data from the parallel correlator subsystem passes through a window subsystem, then to a data alignment subsystem and then to a bit transition density (BTD)/cyclical redundancy check (CRC) decoding subsystem. Data from the BTD/CRC decoding subsystem or data from the weather satellite data processing subsystem is then fed to an output subsystem where it is output from a data output port.

  9. ML Frame Synchronization for OFDM Systems Using a Known Pilot and Cyclic Prefixes

    NASA Astrophysics Data System (ADS)

    Huh, Heon

    Orthogonal frequency-division multiplexing (OFDM) is a popular air interface technology that is adopted as a standard modulation scheme for 4G communication systems owing to its excellent spectral efficiency. For OFDM systems, synchronization problems have received much attention along with peak-to-average power ratio (PAPR) reduction. In addition to frequency offset estimation, frame synchronization is a challenging problem that must be solved to achieve optimal system performance. In this paper, we present a maximum likelihood (ML) frame synchronizer for OFDM systems. The synchronizer exploits a synchronization word and cyclic prefixes together to improve the synchronization performance. Numerical results show that the performance of the proposed frame synchronizer is better than that of conventional schemes. The proposed synchronizer can be used as a reference for evaluating the performance of other suboptimal frame synchronizers. We also modify the proposed frame synchronizer to reduce the implementation complexity and propose a near-ML synchronizer for time-varying fading channels.

  10. A new frame-based registration algorithm

    NASA Technical Reports Server (NTRS)

    Yan, C. H.; Whalen, R. T.; Beaupre, G. S.; Sumanaweera, T. S.; Yen, S. Y.; Napel, S.

    1998-01-01

    This paper presents a new algorithm for frame registration. Our algorithm requires only that the frame be comprised of straight rods, as opposed to the N structures or an accurate frame model required by existing algorithms. The algorithm utilizes the full 3D information in the frame as well as a least squares weighting scheme to achieve highly accurate registration. We use simulated CT data to assess the accuracy of our algorithm. We compare the performance of the proposed algorithm to two commonly used algorithms. Simulation results show that the proposed algorithm is comparable to the best existing techniques with knowledge of the exact mathematical frame model. For CT data corrupted with an unknown in-plane rotation or translation, the proposed technique is also comparable to the best existing techniques. However, in situations where there is a discrepancy of more than 2 mm (0.7% of the frame dimension) between the frame and the mathematical model, the proposed technique is significantly better (p < or = 0.05) than the existing techniques. The proposed algorithm can be applied to any existing frame without modification. It provides better registration accuracy and is robust against model mis-match. It allows greater flexibility on the frame structure. Lastly, it reduces the frame construction cost as adherence to a concise model is not required.

  11. Visualization rhetoric: framing effects in narrative visualization.

    PubMed

    Hullman, Jessica; Diakopoulos, Nicholas

    2011-12-01

    Narrative visualizations combine conventions of communicative and exploratory information visualization to convey an intended story. We demonstrate visualization rhetoric as an analytical framework for understanding how design techniques that prioritize particular interpretations in visualizations that "tell a story" can significantly affect end-user interpretation. We draw a parallel between narrative visualization interpretation and evidence from framing studies in political messaging, decision-making, and literary studies. Devices for understanding the rhetorical nature of narrative information visualizations are presented, informed by the rigorous application of concepts from critical theory, semiotics, journalism, and political theory. We draw attention to how design tactics represent additions or omissions of information at various levels-the data, visual representation, textual annotations, and interactivity-and how visualizations denote and connote phenomena with reference to unstated viewing conventions and codes. Classes of rhetorical techniques identified via a systematic analysis of recent narrative visualizations are presented, and characterized according to their rhetorical contribution to the visualization. We describe how designers and researchers can benefit from the potentially positive aspects of visualization rhetoric in designing engaging, layered narrative visualizations and how our framework can shed light on how a visualization design prioritizes specific interpretations. We identify areas where future inquiry into visualization rhetoric can improve understanding of visualization interpretation.

  12. Framing effects: behavioral dynamics and neural basis.

    PubMed

    Zheng, Hongming; Wang, X T; Zhu, Liqi

    2010-09-01

    This study examined the neural basis of framing effects using life-death decision problems framed either positively in terms of lives saved or negatively in terms of lives lost in large group and small group contexts. Using functional MRI we found differential brain activations to the verbal and social cues embedded in the choice problems. In large group contexts, framing effects were significant where participants were more risk seeking under the negative (loss) framing than under the positive (gain) framing. This behavioral difference in risk preference was mainly regulated by the activation in the right inferior frontal gyrus, including the homologue of the Broca's area. In contrast, framing effects diminished in small group contexts while the insula and parietal lobe in the right hemisphere were distinctively activated, suggesting an important role of emotion in switching choice preference from an indecisive mode to a more consistent risk-taking inclination, governed by a kith-and-kin decision rationality.

  13. Do framing effects reveal irrational choice?

    PubMed

    Mandel, David R

    2014-06-01

    Framing effects have long been viewed as compelling evidence of irrationality in human decision making, yet that view rests on the questionable assumption that numeric quantifiers used to convey the expected values of choice options are uniformly interpreted as exact values. Two experiments show that when the exactness of such quantifiers is made explicit by the experimenter, framing effects vanish. However, when the same quantifiers are given a lower bound (at least) meaning, the typical framing effect is found. A 3rd experiment confirmed that most people spontaneously interpret the quantifiers in standard framing tests as lower bounded and that their interpretations strongly moderate the framing effect. Notably, in each experiment, a significant majority of participants made rational choices, either choosing the option that maximized expected value (i.e., lives saved) or choosing consistently across frames when the options were of equal expected value.

  14. Time-Resolved Molecular Frame Dynamics of Fixed-in-Space CS2 Molecules

    SciTech Connect

    Bisgaard, Christer; Clarkin, Owen; Wu, Guorong; Lee, Anthony; Gessner, Oliver; Hayden, Carl; Stolow, Albert

    2009-04-02

    Random orientation of molecules within a sample leads to blurred observationsof chemical reactions studied from the laboratory perspective. Methodsdeveloped for the dynamic imaging of molecular structures and processesstruggle with this, as measurements are optimally made in the molecular frame.Here we uselaser alignment to transiently fix CS2 molecules in space longenough to elucidate, in the molecular reference frame, details of ultrafast electronic vibrationaldynamics during a photochemical reaction. These three-dimensional photoelectron imaging results, combined with ongoing efforts in molecular alignment and orientation, presage a wide range of insights obtainable fromtime-resolved studies in the molecular frame.

  15. Molecular frame Auger electron energy spectrum from N2

    NASA Astrophysics Data System (ADS)

    Cryan, J. P.; Glownia, J. M.; Andreasson, J.; Belkacem, A.; Berrah, N.; Blaga, C. I.; Bostedt, C.; Bozek, J.; Cherepkov, N. A.; DiMauro, L. F.; Fang, L.; Gessner, O.; Gühr, M.; Hajdu, J.; Hertlein, M. P.; Hoener, M.; Kornilov, O.; Marangos, J. P.; March, A. M.; McFarland, B. K.; Merdji, H.; Messerschmidt, M.; Petrović, V. S.; Raman, C.; Ray, D.; Reis, D. A.; Semenov, S. K.; Trigo, M.; White, J. L.; White, W.; Young, L.; Bucksbaum, P. H.; Coffee, R. N.

    2012-03-01

    Here we present the first angle-resolved, non-resonant (normal) Auger spectra for impulsively aligned nitrogen molecules. We have measured the angular pattern of Auger electron emission following K-shell photoionization by 1.1 keV photons from the Linac Coherent Light Source (LCLS). Using strong-field-induced molecular alignment to make molecular frame measurements is equally effective for both repulsive and quasi-bound final states. The capability to resolve Auger emission angular distributions in the molecular frame of reference provides a new tool for spectral assignments in congested Auger electron spectra that takes advantage of the symmetries of the final diction states. Based on our experimental results and theoretical predictions, we propose the assignment of the spectral features in the Auger electron spectrum.

  16. Clerical frames for nursing practice: missionary nurses at Rehoboth.

    PubMed

    Lagerwey, Mary D

    2003-03-01

    This paper presents a discourse analysis of publications of the Christian Reformed Church regarding its Rehoboth Mission near Gallup, New Mexico, among the Navajo. All issues of The Banner, Acts of Synod of the Christian Reformed Church, the Rehoboth Hospital Bulletin, and the Annual Report of the Rehoboth Mission from 1880 to the present were reviewed for references to health-care at Rehoboth from 1903 to 1943. Four religiously framed discourses were identified: discourses justifying provision of health-care at the mission, discourses of the Navajos as immature and potentially dangerous, needing to be civilized, discourses of cleanliness, and discourses of calling. This paper adds to a growing body of knowledge about religious frames within which nurses have practiced in North America.

  17. Gabor frame sets of invariance: a Hamiltonian approach to Gabor frame deformations.

    PubMed

    Faulhuber, Markus

    In this work we study families of pairs of window functions and lattices which lead to Gabor frames which all possess the same frame bounds. To be more precise, for every generalized Gaussian g, we will construct an uncountable family of lattices [Formula: see text] such that each pairing of g with some [Formula: see text] yields a Gabor frame, and all pairings yield the same frame bounds. On the other hand, for each lattice we will find a countable family of generalized Gaussians [Formula: see text] such that each pairing leaves the frame bounds invariant. Therefore, we are tempted to speak about Gabor Frame Sets of Invariance.

  18. Pyramidal space frame and associated methods

    DOEpatents

    Clark, Ryan Michael; White, David; Farr, Jr, Adrian Lawrence

    2016-07-19

    A space frame having a high torsional strength comprising a first square bipyramid and two planar structures extending outward from an apex of the first square bipyramid to form a "V" shape is disclosed. Some embodiments comprise a plurality of edge-sharing square bipyramids configured linearly, where the two planar structures contact apexes of all the square bipyramids. A plurality of bridging struts, apex struts, corner struts and optional internal bracing struts increase the strength and rigidity of the space frame. In an embodiment, the space frame supports a solar reflector, such as a parabolic solar reflector. Methods of fabricating and using the space frames are also disclosed.

  19. Pilotless Frame Synchronization Using LDPC Code Constraints

    NASA Technical Reports Server (NTRS)

    Jones, Christopher; Vissasenor, John

    2009-01-01

    A method of pilotless frame synchronization has been devised for low- density parity-check (LDPC) codes. In pilotless frame synchronization , there are no pilot symbols; instead, the offset is estimated by ex ploiting selected aspects of the structure of the code. The advantag e of pilotless frame synchronization is that the bandwidth of the sig nal is reduced by an amount associated with elimination of the pilot symbols. The disadvantage is an increase in the amount of receiver data processing needed for frame synchronization.

  20. Asteroid Ida - Five Frame Mosaic

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This view of the asteroid 243 Ida is a mosaic of five image frames acquired by the Galileo spacecraft's solid-state imaging system at ranges of 3,057 to 3,821 kilometers (1,900 to 2,375 miles) on August 28, 1993, about 3-1/2 minutes before the spacecraft made its closest approach to the asteroid. Galileo flew about 2,400 kilometers (1,500 miles) from Ida at a relative velocity of 12.4 km/sec (28,000 mph). Asteroid and spacecraft were 441 million kilometers (274 million miles) from the Sun. Ida is the second asteroid ever encountered by a spacecraft. It appears to be about 52 kilometers (32 miles) in length, more than twice as large as Gaspra, the first asteroid observed by Galileo in October 1991. Ida is an irregularly shaped asteroid placed by scientists in the S class (believed to be like stony or stony iron meteorites). It is a member of the Koronis family, presumed fragments left from the breakup of a precursor asteroid in a catastrophic collision. This view shows numerous craters, including many degraded craters larger than any seen on Gaspra. The extensive cratering seems to dispel theories about Ida's surface being geologically youthful. This view also seems to rule out the idea that Ida is a double body. The south pole is believed to be in the darkside near the middle of the asteroid. The camera's clear filter was used to produce this extremely sharp picture. Spatial resolution is 31 to 38 meters (roughly 100 feet) per pixel. A 30-frame mosaic was taken to assure capturing Ida; its position was somewhat uncertain before the Galileo encounter. Galileo shuttered and recorded a total of 150 images in order to capture Ida 21 different times during a five hour period (about one rotation of the asteroid). Color filters were used at many of these times to allow reconstruction of color images. Playback to Earth of the remaining images is planned for April through June 1994. The Galileo project, whose primary mission is the exploration of the Jupiter system in 1995