Science.gov

Sample records for allocentric spatial representation

  1. A critical review of the allocentric spatial representation and its neural underpinnings: toward a network-based perspective

    PubMed Central

    Ekstrom, Arne D.; Arnold, Aiden E. G. F.; Iaria, Giuseppe

    2014-01-01

    While the widely studied allocentric spatial representation holds a special status in neuroscience research, its exact nature and neural underpinnings continue to be the topic of debate, particularly in humans. Here, based on a review of human behavioral research, we argue that allocentric representations do not provide the kind of map-like, metric representation one might expect based on past theoretical work. Instead, we suggest that almost all tasks used in past studies involve a combination of egocentric and allocentric representation, complicating both the investigation of the cognitive basis of an allocentric representation and the task of identifying a brain region specifically dedicated to it. Indeed, as we discuss in detail, past studies suggest numerous brain regions important to allocentric spatial memory in addition to the hippocampus, including parahippocampal, retrosplenial, and prefrontal cortices. We thus argue that although allocentric computations will often require the hippocampus, particularly those involving extracting details across temporally specific routes, the hippocampus is not necessary for all allocentric computations. We instead suggest that a non-aggregate network process involving multiple interacting brain areas, including hippocampus and extra-hippocampal areas such as parahippocampal, retrosplenial, prefrontal, and parietal cortices, better characterizes the neural basis of spatial representation during navigation. According to this model, an allocentric representation does not emerge from the computations of a single brain region (i.e., hippocampus) nor is it readily decomposable into additive computations performed by separate brain regions. Instead, an allocentric representation emerges from computations partially shared across numerous interacting brain regions. We discuss our non-aggregate network model in light of existing data and provide several key predictions for future experiments. PMID:25346679

  2. Development of egocentric and allocentric spatial representations from childhood to elderly age.

    PubMed

    Ruggiero, Gennaro; D'Errico, Ortensia; Iachini, Tina

    2016-03-01

    Spatial reference frames are fundamental to represent the position of objects or places. Although research has reported changes in spatial memory abilities during childhood and elderly age, no study has assessed reference frames processing during the entire lifespan using the same task. Here, we aimed at providing some preliminary data on the capacity to process reference frames in 283 healthy participants from 6 to 89 years of age. A spatial memory task requiring egocentric/allocentric verbal judgments about objects in peri-/extrapersonal space was used. The main goals were: (1) tracing a baseline of the normal process of development of these spatial components; (2) clarifying if reference frames are differently vulnerable to age-related effects. Results showed a symmetry between children of 6-7 years and older people of 80-89 years who were slower and less accurate than all other age groups. As regards processing time, age had a strong effect on the allocentric component, especially in extrapersonal space, with a longer time in 6- to 7-year-old children and 80- to 89-year-old adults. The egocentric component looked less affected by aging. Regarding the level of spatial ability (accuracy), the allocentric ability appeared less sensitive to age-related variations, whereas the egocentric ability progressively improved from 8 years and declined from 60 years. The symmetry in processing time and level of spatial ability is discussed in relation to the development of executive functions and to the structural and functional changes due to incomplete maturation (in youngest children) and deterioration (in oldest adults) of underlying cerebral areas.

  3. Allocentric spatial learning and memory deficits in Down syndrome

    PubMed Central

    Lavenex, Pamela Banta; Bostelmann, Mathilde; Brandner, Catherine; Costanzo, Floriana; Fragnière, Emilie; Klencklen, Giuliana; Lavenex, Pierre; Menghini, Deny; Vicari, Stefano

    2015-01-01

    Studies have shown that persons with Down syndrome (DS) exhibit relatively poor language capacities, and impaired verbal and visuoperceptual memory, whereas their visuospatial memory capacities appear comparatively spared. Individuals with DS recall better where an object was previously seen than what object was previously seen. However, most of the evidence concerning preserved visuospatial memory comes from tabletop or computerized experiments which are biased toward testing egocentric (viewpoint-dependent) spatial representations. Accordingly, allocentric (viewpoint-independent) spatial learning and memory capacities may not be necessary to perform these tasks. Thus, in order to more fully characterize the spatial capacities of individuals with DS, allocentric processes underlying real-world navigation must also be investigated. We tested 20 participants with DS and 16 mental age-matched, typically developing (TD) children in a real-world, allocentric spatial (AS) memory task. During local cue (LC) trials, participants had to locate three rewards marked by local color cues, among 12 locations distributed in a 4 m × 4 m arena. During AS trials, participants had to locate the same three rewards, in absence of LCs, based on their relations to distal environmental cues. All TD participants chose rewarded locations in LC and AS trials at above chance level. In contrast, although all but one of the participants with DS exhibited a preference for the rewarded locations in LC trials, only 50% of participants with DS chose the rewarded locations at above chance level in AS trials. As a group, participants with DS performed worse than TD children on all measures of task performance. These findings demonstrate that individuals with DS are impaired at using an AS representation to learn and remember discrete locations in a controlled environment, suggesting persistent and pervasive deficits in hippocampus-dependent memory in DS. PMID:25762946

  4. Are All Spatial Reference Frames Egocentric? Reinterpreting Evidence for Allocentric, Object-Centered, or World-Centered Reference Frames

    PubMed Central

    Filimon, Flavia

    2015-01-01

    The use and neural representation of egocentric spatial reference frames is well-documented. In contrast, whether the brain represents spatial relationships between objects in allocentric, object-centered, or world-centered coordinates is debated. Here, I review behavioral, neuropsychological, neurophysiological (neuronal recording), and neuroimaging evidence for and against allocentric, object-centered, or world-centered spatial reference frames. Based on theoretical considerations, simulations, and empirical findings from spatial navigation, spatial judgments, and goal-directed movements, I suggest that all spatial representations may in fact be dependent on egocentric reference frames. PMID:26696861

  5. As the world turns: short-term human spatial memory in egocentric and allocentric coordinates.

    PubMed

    Banta Lavenex, Pamela; Lecci, Sandro; Prêtre, Vincent; Brandner, Catherine; Mazza, Christian; Pasquier, Jérôme; Lavenex, Pierre

    2011-05-16

    We aimed to determine whether human subjects' reliance on different sources of spatial information encoded in different frames of reference (i.e., egocentric versus allocentric) affects their performance, decision time and memory capacity in a short-term spatial memory task performed in the real world. Subjects were asked to play the Memory game (a.k.a. the Concentration game) without an opponent, in four different conditions that controlled for the subjects' reliance on egocentric and/or allocentric frames of reference for the elaboration of a spatial representation of the image locations enabling maximal efficiency. We report experimental data from young adult men and women, and describe a mathematical model to estimate human short-term spatial memory capacity. We found that short-term spatial memory capacity was greatest when an egocentric spatial frame of reference enabled subjects to encode and remember the image locations. However, when egocentric information was not reliable, short-term spatial memory capacity was greater and decision time shorter when an allocentric representation of the image locations with respect to distant objects in the surrounding environment was available, as compared to when only a spatial representation encoding the relationships between the individual images, independent of the surrounding environment, was available. Our findings thus further demonstrate that changes in viewpoint produced by the movement of images placed in front of a stationary subject is not equivalent to the movement of the subject around stationary images. We discuss possible limitations of classical neuropsychological and virtual reality experiments of spatial memory, which typically restrict the sensory information normally available to human subjects in the real world.

  6. Development of allocentric spatial recall from new viewpoints in virtual reality.

    PubMed

    Negen, James; Heywood-Everett, Edward; Roome, Hannah E; Nardini, Marko

    2017-03-02

    Using landmarks and other scene features to recall locations from new viewpoints is a critical skill in spatial cognition. In an immersive virtual reality task, we asked children 3.5-4.5 years old to remember the location of a target using various cues. On some trials they could use information from their own self-motion. On some trials they could use a view match. In the very hardest kind of trial, they were 'teleported' to a new viewpoint and could only use an allocentric spatial representation. This approach provides a strict test for allocentric coding (without either a matching viewpoint or self-motion information) while avoiding additional task demands in previous studies (it does not require them to deal with a small table-top environment or to manage stronger cue conflicts). Both the younger and older groups were able to point back at the target location better than chance when they could use view matching and/or self-motion, but allocentric recall was only seen in the older group (4.0-4.5). In addition, we only obtained evidence for a specific kind of allocentric recall in the older group: they tracked one major axis of the space significantly above chance, r(158) = .28, but not the other, r(158) = -.01. We conclude that there is a major qualitative change in coding for spatial recall around the fourth birthday, potentially followed by further development towards fully flexible recall from new viewpoints.

  7. Improvement of Allocentric Spatial Memory Resolution in Children from 2 to 4 Years of Age

    ERIC Educational Resources Information Center

    Lambert, Farfalla Ribordy; Lavenex, Pierre; Lavenex, Pamela Banta

    2015-01-01

    Allocentric spatial memory, the memory for locations coded in relation to objects comprising our environment, is a fundamental component of episodic memory and is dependent on the integrity of the hippocampal formation in adulthood. Previous research from different laboratories reported that basic allocentric spatial memory abilities are reliably…

  8. Development of allocentric spatial memory abilities in children from 18 months to 5 years of age.

    PubMed

    Ribordy, Farfalla; Jabès, Adeline; Banta Lavenex, Pamela; Lavenex, Pierre

    2013-02-01

    Episodic memories for autobiographical events that happen in unique spatiotemporal contexts are central to defining who we are. Yet, before 2 years of age, children are unable to form or store episodic memories for recall later in life, a phenomenon known as infantile amnesia. Here, we studied the development of allocentric spatial memory, a fundamental component of episodic memory, in two versions of a real-world memory task requiring 18 month- to 5-year-old children to search for rewards hidden beneath cups distributed in an open-field arena. Whereas children 25-42-months-old were not capable of discriminating three reward locations among 18 possible locations in absence of local cues marking these locations, children older than 43 months found the reward locations reliably. These results support previous findings suggesting that allocentric spatial memory, if present, is only rudimentary in children under 3.5 years of age. However, when tested with only one reward location among four possible locations, children 25-39-months-old found the reward reliably in absence of local cues, whereas 18-23-month-olds did not. Our findings thus show that the ability to form a basic allocentric representation of the environment is present by 2 years of age, and its emergence coincides temporally with the offset of infantile amnesia. However, the ability of children to distinguish and remember closely related spatial locations improves from 2 to 3.5 years of age, a developmental period marked by persistent deficits in long-term episodic memory known as childhood amnesia. These findings support the hypothesis that the differential maturation of distinct hippocampal circuits contributes to the emergence of specific memory processes during early childhood.

  9. Allocentric spatial memory in humans with hippocampal lesions.

    PubMed

    Parslow, David M; Morris, Robin G; Fleminger, Simon; Rahman, Qazi; Abrahams, Sharon; Recce, Michael

    2005-01-01

    An immersive virtual reality (IVR) system was used to investigate allocentric spatial memory in a patient (PR) who had selective hippocampal damage, and also in patients who had undergone unilateral temporal lobectomies (17 right TL and 19 left TL), their performance compared against normal control groups. A human analogue of the Olton [Olton (1979). Hippocampus, space, and memory. Behavioural Brain Science, 2, 315] spatial maze was developed, consisting of a virtual room, a central virtual circular table and an array of radially arranged up-turned 'shells.' The participant had to search these shells in turn in order to find a blue 'cube' that would then 'move' to another location and so on, until all the shells had been target locations. Within-search errors could be made when the participants returned to a previously visited location during a search, and between-search errors when they revisited previously successful, but now incorrect locations. PR made significantly more between-search errors than his control group, but showed no increase in within-search errors. The right TL group showed a similar pattern of impairment, but the left TL group showed no impairment. This finding implicates the right hippocampal formation in spatial memory functioning in a scenario in which the visual environment was controlled so as to eliminate extraneous visual cues.

  10. Allocentric or Craniocentric Representation of Acoustic Space: An Electrotomography Study Using Mismatch Negativity

    PubMed Central

    Altmann, Christian F.; Getzmann, Stephan; Lewald, Jörg

    2012-01-01

    The world around us appears stable in spite of our constantly moving head, eyes, and body. How this is achieved by our brain is hardly understood and even less so in the auditory domain. Using electroencephalography and the so-called mismatch negativity, we investigated whether auditory space is encoded in an allocentric (referenced to the environment) or craniocentric representation (referenced to the head). Fourteen subjects were presented with noise bursts from loudspeakers in an anechoic environment. Occasionally, subjects were cued to rotate their heads and a deviant sound burst occurred, that deviated from the preceding standard stimulus either in terms of an allocentric or craniocentric frame of reference. We observed a significant mismatch negativity, i.e., a more negative response to deviants with reference to standard stimuli from about 136 to 188 ms after stimulus onset in the craniocentric deviant condition only. Distributed source modeling with sLORETA revealed an involvement of lateral superior temporal gyrus and inferior parietal lobule in the underlying neural processes. These findings suggested a craniocentric, rather than allocentric, representation of auditory space at the level of the mismatch negativity. PMID:22848643

  11. Acute stress switches spatial navigation strategy from egocentric to allocentric in a virtual Morris water maze.

    PubMed

    van Gerven, Dustin J H; Ferguson, Thomas; Skelton, Ronald W

    2016-07-01

    Stress and stress hormones are known to influence the function of the hippocampus, a brain structure critical for cognitive-map-based, allocentric spatial navigation. The caudate nucleus, a brain structure critical for stimulus-response-based, egocentric navigation, is not as sensitive to stress. Evidence for this comes from rodent studies, which show that acute stress or stress hormones impair allocentric, but not egocentric navigation. However, there have been few studies investigating the effect of acute stress on human spatial navigation, and the results of these have been equivocal. To date, no study has investigated whether acute stress can shift human navigational strategy selection between allocentric and egocentric navigation. The present study investigated this question by exposing participants to an acute psychological stressor (the Paced Auditory Serial Addition Task, PASAT), before testing navigational strategy selection in the Dual-Strategy Maze, a modified virtual Morris water maze. In the Dual-Strategy maze, participants can chose to navigate using a constellation of extra-maze cues (allocentrically) or using a single cue proximal to the goal platform (egocentrically). Surprisingly, PASAT stress biased participants to solve the maze allocentrically significantly more, rather than less, often. These findings have implications for understanding the effects of acute stress on cognitive function in general, and the function of the hippocampus in particular.

  12. Lateralization of Egocentric and Allocentric Spatial Processing after Parietal Brain Lesions

    ERIC Educational Resources Information Center

    Iachini, Tina; Ruggiero, Gennaro; Conson, Massimiliano; Trojano, Luigi

    2009-01-01

    The purpose of this paper was to verify whether left and right parietal brain lesions may selectively impair egocentric and allocentric processing of spatial information in near/far spaces. Two Right-Brain-Damaged (RBD), 2 Left-Brain-Damaged (LBD) patients (not affected by neglect or language disturbances) and eight normal controls were submitted…

  13. Development of Allocentric Spatial Memory Abilities in Children from 18 months to 5 Years of Age

    ERIC Educational Resources Information Center

    Ribordy, Farfalla; Jabes, Adeline; Lavenex, Pamela Banta; Lavenex, Pierre

    2013-01-01

    Episodic memories for autobiographical events that happen in unique spatiotemporal contexts are central to defining who we are. Yet, before 2 years of age, children are unable to form or store episodic memories for recall later in life, a phenomenon known as infantile amnesia. Here, we studied the development of allocentric spatial memory, a…

  14. Differential hippocampal and retrosplenial involvement in egocentric-updating, rotation, and allocentric processing during online spatial encoding: an fMRI study.

    PubMed

    Gomez, Alice; Cerles, Mélanie; Rousset, Stéphane; Rémy, Chantal; Baciu, Monica

    2014-01-01

    The way new spatial information is encoded seems to be crucial in disentangling the role of decisive regions within the spatial memory network (i.e., hippocampus, parahippocampal, parietal, retrosplenial,…). Several data sources converge to suggest that the hippocampus is not always involved or indeed necessary for allocentric processing. Hippocampal involvement in spatial coding could reflect the integration of new information generated by "online" self-related changes. In this fMRI study, the participants started by encoding several object locations in a virtual reality environment and then performed a pointing task. Allocentric encoding was maximized by using a survey perspective and an object-to-object pointing task. Two egocentric encoding conditions were used, involving self-related changes processed under a first-person perspective and implicating a self-to-object pointing task. The Egocentric-updating condition involved navigation whereas the Egocentric with rotation only condition involved orientation changes only. Conjunction analysis of spatial encoding conditions revealed a wide activation of the occipito-parieto-frontal network and several medio-temporal structures. Interestingly, only the cuneal areas were significantly more recruited by the allocentric encoding in comparison to other spatial conditions. Moreover, the enhancement of hippocampal activation was found during Egocentric-updating encoding whereas the retrosplenial activation was observed during the Egocentric with rotation only condition. Hence, in some circumstances, hippocampal and retrosplenial structures-known for being involved in allocentric environmental coding-demonstrate preferential involvement in the egocentric coding of space. These results indicate that the raw differentiation between allocentric versus egocentric representation seems to no longer be sufficient in understanding the complexity of the mechanisms involved during spatial encoding.

  15. Hippocampal Volume Reduction in Humans Predicts Impaired Allocentric Spatial Memory in Virtual-Reality Navigation

    PubMed Central

    Dzieciol, Anna M.; Gadian, David G.; Jentschke, Sebastian; Doeller, Christian F.; Burgess, Neil; Mishkin, Mortimer

    2015-01-01

    The extent to which navigational spatial memory depends on hippocampal integrity in humans is not well documented. We investigated allocentric spatial recall using a virtual environment in a group of patients with severe hippocampal damage (SHD), a group of patients with “moderate” hippocampal damage (MHD), and a normal control group. Through four learning blocks with feedback, participants learned the target locations of four different objects in a circular arena. Distal cues were present throughout the experiment to provide orientation. A circular boundary as well as an intra-arena landmark provided spatial reference frames. During a subsequent test phase, recall of all four objects was tested with only the boundary or the landmark being present. Patients with SHD were impaired in both phases of this task. Across groups, performance on both types of spatial recall was highly correlated with memory quotient (MQ), but not with intelligence quotient (IQ), age, or sex. However, both measures of spatial recall separated experimental groups beyond what would be expected based on MQ, a widely used measure of general memory function. Boundary-based and landmark-based spatial recall were both strongly related to bilateral hippocampal volumes, but not to volumes of the thalamus, putamen, pallidum, nucleus accumbens, or caudate nucleus. The results show that boundary-based and landmark-based allocentric spatial recall are similarly impaired in patients with SHD, that both types of recall are impaired beyond that predicted by MQ, and that recall deficits are best explained by a reduction in bilateral hippocampal volumes. SIGNIFICANCE STATEMENT In humans, bilateral hippocampal atrophy can lead to profound impairments in episodic memory. Across species, perhaps the most well-established contribution of the hippocampus to memory is not to episodic memory generally but to allocentric spatial memory. However, the extent to which navigational spatial memory depends on

  16. Grasping spatial relationships: failure to demonstrate allocentric visual coding in a patient with visual form agnosia.

    PubMed

    Dijkerman, H C; Milner, A D; Carey, D P

    1998-09-01

    The cortical visual mechanisms involved in processing spatial relationships remain subject to debate. According to one current view, the "dorsal stream" of visual areas, emanating from primary visual cortex and culminating in the posterior parietal cortex, mediates this aspect of visual processing. More recently, others have argued that while the dorsal stream provides egocentric coding of visual location for motor control, the separate "ventral" stream is needed for allocentric spatial coding. We have assessed the visual form agnosic patient DF, whose lesion mainly affects the ventral stream, on a prehension task requiring allocentric spatial coding. She was presented with transparent circular disks. Each disk had circular holes cut in it. DF was asked to reach out and grasp the disk by placing her fingers through the holes. The disks either had three holes (for forefinger, middle finger, and thumb) or two holes (for forefinger and thumb). The distance between the forefinger and thumb holes, and the orientation of the line formed by them, were independently varied. DF was quite unable to adjust her grip aperture or her hand orientation in the three-hole task. Although she was able to orient her hand appropriately for the two-hole disks, she still remained unable to adjust her grip aperture to the distance between the holes. These findings are consistent with the idea that allocentric processing of spatial information requires a functioning ventral stream, even when the information is being used to guide a motor response.

  17. Allocentric spatial memory activation of the hippocampal formation measured with fMRI.

    PubMed

    Parslow, David M; Rose, David; Brooks, Barbara; Fleminger, Simon; Gray, Jeffrey A; Giampietro, Vincent; Brammer, Michael J; Williams, Steven; Gasston, David; Andrew, Christopher; Vythelingum, Goparlen N; Loannou, Glafkos; Simmons, Andrew; Morris, Robin G

    2004-07-01

    Hippocampal activation was investigated, comparing allocentric and egocentric spatial memory. Healthy participants were immersed in a virtual reality circular arena, with pattern-rendered walls. In a viewpoint-independent task, they moved toward a pole, which was then removed. They were relocated to another position and had to move to the prior location of the pole. For viewpoint-dependent memory, the participants were not moved to a new starting point, but the patterns were rotated to prevent them from indicating the final position. Hippocampal and parahippocampal activation were found in the viewpoint-independent memory encoding phase. Viewpoint-dependent memory did not result in such activation. These results suggest differential activation of the hippocampal formation during allocentric encoding, in partial support of the spatial mapping hypothesis as applied to humans.

  18. The "when" and the "where" of single-trial allocentric spatial memory performance in young children: Insights into the development of episodic memory.

    PubMed

    Ribordy Lambert, Farfalla; Lavenex, Pierre; Banta Lavenex, Pamela

    2017-03-01

    Allocentric spatial memory, "where" with respect to the surrounding environment, is one of the three fundamental components of episodic memory: what, where, when. Whereas basic allocentric spatial memory abilities are reliably observed in children after 2 years of age, coinciding with the offset of infantile amnesia, the resolution of allocentric spatial memory acquired over repeated trials improves from 2 to 4 years of age. Here, we first show that single-trial allocentric spatial memory performance improves in children from 3.5 to 7 years of age, during the typical period of childhood amnesia. Second, we show that large individual variation exists in children's performance at this age. Third, and most importantly, we show that improvements in single-trial allocentric spatial memory performance are due to an increasing ability to spatially and temporally separate locations and events. Such improvements in spatial and temporal processing abilities may contribute to the gradual offset of childhood amnesia.

  19. Constructing representations of spatial location from briefly presented displays.

    PubMed

    Gunzelmann, Glenn; Lyon, Don R

    2017-02-01

    Spatial memory and reasoning rely heavily on allocentric (often map-like) representations of spatial knowledge. While research has documented many ways in which spatial information can be represented in allocentric form, less is known about how such representations are constructed. For example: Are the very early, pre-attentive parts of the process hard-wired, or can they be altered by experience? We addressed this issue by presenting sub-saccadic (53 ms) masked stimuli consisting of a target among one to three reference features. We then shifted the location of the feature array, and asked participants to identify the target's new relative location. Experience altered feature processing even when the display duration was too short to allow attention re-allocation. The results demonstrate the importance of early perceptual processes in the creation of representations of spatial location, and the malleability of those processes based on experience and expectations.

  20. The 5-HT7 receptor is involved in allocentric spatial memory information processing.

    PubMed

    Sarkisyan, Gor; Hedlund, Peter B

    2009-08-24

    The hippocampus has been implicated in aspects of spatial memory. Its ability to generate new neurons has been suggested to play a role in memory formation. Hippocampal serotonin (5-HT) neurotransmission has also been proposed as a contributor to memory processing. Studies have shown that the 5-HT(7) receptor is present in the hippocampus in relatively high abundance. Thus the aim of the present study was to investigate the possible role of the 5-HT(7) receptor in spatial memory using 5-HT(7) receptor-deficient mice (5-HT(7)(-/-)). A hippocampus-associated spatial memory deficit in 5-HT(7)(-/-) mice was demonstrated using a novel location/novel object test. A similar reduction in novel location exploration was observed in C57BL/6J mice treated with the selective 5-HT(7) receptor antagonist SB-269970. These findings prompted an extended analysis using the Barnes maze demonstrating that 5-HT(7)(-/-) mice were less efficient in accommodating to changes in spatial arrangement than 5-HT(7)(+/+) mice. 5-HT(7)(-/-) mice had specific impairments in memory compilation required for resolving spatial tasks, which resulted in impaired allocentric spatial memory whereas egocentric spatial memory remained intact after the mice were forced to switch back from striatum-dependent egocentric to hippocampus-dependent allocentric memory. To further investigate the physiological bases underlining these behaviors we compared hippocampal neurogenesis in 5-HT(7)(+/+) and 5-HT(7)(-/-) mice employing BrdU immunohistochemistry. The rate of cell proliferation in the dentate gyrus was identical in the two genotypes. From the current data we conclude that the 5-HT(7)(-/-) mice performed by remembering a simple sequence of actions that resulted in successfully locating a hidden target in a static environment.

  1. Reference memory and allocentric spatial localization deficits after unilateral cortical brain injury in the rat.

    PubMed

    Soblosky, J S; Tabor, S L; Matthews, M A; Davidson, J F; Chorney, D A; Carey, M E

    1996-10-01

    Traumatic brain injury (TBI) produces learning and memory impairments in humans. This study investigated the effects of TBI on memory and spatial localization strategies in rats. Prior to TBI, separate groups of rats were trained in an 8-arm radial maze with either all 8 arms baited (Expt. 1) or only 4 of the 8 arms baited (Expt. 2). TBI was produced by a controlled pneumatic impactor striking the entire right sensorimotor cortex of the anesthetized rat. Rats used in Expt. 1 were selected because they did not use a stereotypic response strategy (going to adjacent arms) in performing the maze before injury. After TBI the rats were not different from control rats in the number of working memory (WM) errors made. They did, however, display a distinct propensity to go to adjacent arms, i.e., exhibit stereotypic behavior, with a right-handed (ipsiversive) bias (P < 0.005). After TBI, rats which were trained with only 4 of 8 arms baited committed more reference memory (RM) errors than control rats (P < 0.05). They did not differ from controls on WM errors. Injured rats took longer to re-attain criteria than controls (P < 0.0001). Injured rats also initially displayed a propensity to enter the adjacent arm sequentially before re-attaining criteria. Further analysis indicated that injured rats re-learned the maze with a right-hand bias (P < 0.0001). The results of both experiments suggest that after TBI, rats shifted from an allocentric to an egocentric strategy to re-learn the maze. It was suggested that damage to the parietal cortex may have been responsible for both RM errors and the shift away from an allocentric strategy to an egocentric strategy. Possibly, the ipsiversive (right-hand) bias may be the result of a behaviorally or injury-induced neurochemical asymmetry within the motor system.

  2. Search strategy selection in the Morris water maze indicates allocentric map formation during learning that underpins spatial memory formation.

    PubMed

    Rogers, Jake; Churilov, Leonid; Hannan, Anthony J; Renoir, Thibault

    2017-03-01

    Using a Matlab classification algorithm, we demonstrate that a highly salient distal cue array is required for significantly increased likelihoods of spatial search strategy selection during Morris water maze spatial learning. We hypothesized that increased spatial search strategy selection during spatial learning would be the key measure demonstrating the formation of an allocentric map to the escape location. Spatial memory, as indicated by quadrant preference for the area of the pool formally containing the hidden platform, was assessed as the main measure that this allocentric map had formed during spatial learning. Our C57BL/6J wild-type (WT) mice exhibit quadrant preference in the highly salient cue paradigm but not the low, corresponding with a 120% increase in the odds of a spatial search strategy selection during learning. In contrast, quadrant preference remains absent in serotonin 1A receptor (5-HT1AR) knockout (KO) mice, who exhibit impaired search strategy selection during spatial learning. Additionally, we also aimed to assess the impact of the quality of the distal cue array on the spatial learning curves of both latency to platform and path length using mixed-effect regression models and found no significant associations or interactions. In contrast, we demonstrated that the spatial learning curve for search strategy selection was absent during training in the low saliency paradigm. Therefore, we propose that allocentric search strategy selection during spatial learning is the learning parameter in mice that robustly indicates the formation of a cognitive map for the escape goal location. These results also suggest that both latency to platform and path length spatial learning curves do not discriminate between allocentric and egocentric spatial learning and do not reliably predict spatial memory formation. We also show that spatial memory, as indicated by the absolute time in the quadrant formerly containing the hidden platform alone (without

  3. Disentangling neural processes of egocentric and allocentric mental spatial transformations using whole-body photos of self and other.

    PubMed

    Ganesh, Shanti; van Schie, Hein T; Cross, Emily S; de Lange, Floris P; Wigboldus, Daniël H J

    2015-08-01

    Mental imagery of one's body moving through space is important for imagining changing visuospatial perspectives, as well as for determining how we might appear to other people. Previous neuroimaging research has implicated the temporoparietal junction (TPJ) in this process. It is unclear, however, how neural activity in the TPJ relates to the rotation perspectives from which mental spatial transformation (MST) of one's own body can take place, i.e. from an egocentric or an allocentric perspective. It is also unclear whether TPJ involvement in MST is self-specific or whether the TPJ may also be involved in MST of other human bodies. The aim of the current study was to disentangle neural processes involved in egocentric versus allocentric MSTs of human bodies representing self and other. We measured functional brain activity of healthy participants while they performed egocentric and allocentric MSTs in relation to whole-body photographs of themselves and a same-sex stranger. Findings indicated higher blood oxygen level-dependent (BOLD) response in bilateral TPJ during egocentric versus allocentric MST. Moreover, BOLD response in the TPJ during egocentric MST correlated positively with self-report scores indicating how awkward participants felt while viewing whole-body photos of themselves. These findings considerably advance our understanding of TPJ involvement in MST and its interplay with self-awareness.

  4. Similarities and differences between the brain networks underlying allocentric and egocentric spatial learning in rat revealed by cytochrome oxidase histochemistry.

    PubMed

    Rubio, S; Begega, A; Méndez, M; Méndez-López, M; Arias, J L

    2012-10-25

    The involvement of different brain regions in place- and response-learning was examined using a water cross-maze. Rats were trained to find the goal from the initial arm by turning left at the choice point (egocentric strategy) or by using environmental cues (allocentric strategy). Although different strategies were required, the same maze and learning conditions were used. Using cytochrome oxidase histochemistry as a marker of cellular activity, the function of the 13 diverse cortical and subcortical regions was assessed in rats performing these two tasks. Our results show that allocentric learning depends on the recruitment of a large functional network, which includes the hippocampal CA3, dentate gyrus, medial mammillary nucleus and supramammillary nucleus. Along with the striatum, these last three structures are also related to egocentric spatial learning. The present study provides evidence for the contribution of these regions to spatial navigation and supports a possible functional interaction between the two memory systems, as their structural convergence may facilitate functional cooperation in the behaviours guided by more than one strategy. In summary, it can be argued that spatial learning is based on dynamic functional systems in which the interaction of brain regions is modulated by task requirements.

  5. Allocentric Spatial Memory Testing Predicts Conversion from Mild Cognitive Impairment to Dementia: An Initial Proof-of-Concept Study

    PubMed Central

    Wood, Ruth A.; Moodley, Kuven K.; Lever, Colin; Minati, Ludovico; Chan, Dennis

    2016-01-01

    The hippocampus is one of the first regions to exhibit neurodegeneration in Alzheimer’s disease (AD), and knowledge of its role in allocentric spatial memory may therefore aid early diagnosis of AD. The 4 Mountains Test (4MT) is a short and easily administered test of spatial memory based on the cognitive map theory of hippocampal function as derived from rodent single cell and behavioral studies. The 4MT has been shown in previous cross-sectional studies to be sensitive and specific for mild cognitive impairment (MCI) due to AD. This report describes the initial results of a longitudinal study testing the hypothesis that allocentric spatial memory is predictive of conversion from MCI to dementia. Fifteen patients with MCI underwent baseline testing on the 4MT in addition to CSF amyloid/tau biomarker studies, volumetric MRI and neuropsychological assessment including the Rey Auditory Verbal Learning Test (RAVLT) and Trail Making Test “B” (TMT-B). At 24 months, 9/15 patients had converted to AD dementia. The 4MT predicted conversion to AD with 93% accuracy (Cohen’s d = 2.52). The predictive accuracies of the comparator measures were as follows: CSF tau/β-amyloid1–42 ratio 92% (d = 1.81), RAVLT 64% (d = 0.41), TMT-B 78% (d = 1.56), and hippocampal volume 77% (d = 0.65). CSF tau levels were strongly negatively correlated with 4MT scores (r = −0.71). This proof-of-concept study provides initial support for the hypothesis that allocentric spatial memory testing is a predictive cognitive marker of hippocampal neurodegeneration in pre-dementia AD. The 4MT is a brief, non-invasive, straightforward spatial memory test and is therefore ideally suited for use in routine clinical diagnostic practice. This is of particular importance given the current unmet need for simple accurate diagnostic tests for early AD and the ongoing development of potential disease-modifying therapeutic agents, which may be more efficacious when given earlier in

  6. Scopolamine disrupts hippocampal activity during allocentric spatial memory in humans: an fMRI study using a virtual reality analogue of the Morris Water Maze.

    PubMed

    Antonova, Elena; Parslow, David; Brammer, Michael; Simmons, Andrew; Williams, Steven; Dawson, Gerard R; Morris, Robin

    2011-09-01

    The role of the septohippocampal cholinergic system in memory disorders is well established. The effects of cholinergic challenge in animals have been extensively studied using the Morris Water Maze (MWM) which engages allocentric spatial memory. The present study investigated the effect of the centrally active muscarinic antagonist scopolamine on allocentric spatial memory in humans using a virtual reality analogue of the MWM task, the Arena task. Twenty right-handed healthy male adults with a mean age of 28 years (range 23-35 years) were studied using functional MRI in a randomized double-blind cross-over design with scopolamine bromide (0.4 mg i.m.) or placebo (saline) administered 70-90 min before the beginning of the functional scan. Scopolamine induced a significant reduction in the activation of the hippocampus/parahippocampal gyrus compared with placebo. Furthermore, there was dissociation between hippocampus-based and striatal-based memory systems, which were significantly more activated in the placebo and scopolamine conditions, respectively. The activation of the striatal system under scopolamine challenge was accompanied by the activation of the amygdala. In conclusion, the study extends the well-documented finding in animals of the attenuating effect of scopolamine on hippocampal activity during allocentric spatial memory to humans. Furthermore, the results call for further investigation of the dissociation between the hippocampal and neostriatal memory systems during allocentric spatial processing under cholinergic blockade in humans.

  7. Differential contribution of hippocampus, perirhinal cortex and postrhinal cortex to allocentric spatial memory in the radial maze.

    PubMed

    Ramos, Juan M J

    2013-06-15

    Rats with hippocampal, perirhinal cortex and postrhinal cortex lesions were trained in a reference spatial memory task to determine whether these structures contribute differentially to the acquisition and retention of spatial information. The results of Experiment 1 indicated that hippocampal lesions profoundly impaired the acquisition of the task. However, postrhinal lesions produced only a mild deficit and perirhinal lesions produced no deficit whatsoever in the learning of the task. During acquisition, hippocampus-damaged rats committed more perseverative errors than postrhinal rats, suggesting that the nature of the operations performed by each of these structures is different. The results of Experiment 2 showed a profound deficit in retention in hippocampal and postrhinal-lesioned animals tested 24 days after training. Perirhinal-lesioned animals, however, executed the task just as well as the control subjects did. These functional data, in consonance with existing connectivity data, suggest that each of these medial temporal lobe regions makes a different contribution to allocentric spatial learning and memory.

  8. Neural Substrates of Visual Spatial Coding and Visual Feedback Control for Hand Movements in Allocentric and Target-Directed Tasks

    PubMed Central

    Thaler, Lore; Goodale, Melvyn A.

    2011-01-01

    Neuropsychological evidence suggests that different brain areas may be involved in movements that are directed at visual targets (e.g., pointing or reaching), and movements that are based on allocentric visual information (e.g., drawing or copying). Here we used fMRI to investigate the neural correlates of these two types of movements in healthy volunteers. Subjects (n = 14) performed right hand movements in either a target-directed task (moving a cursor to a target dot) or an allocentric task (moving a cursor to reproduce the distance and direction between two distal target dots) with or without visual feedback about their hand movement. Movements were monitored with an MR compatible touch panel. A whole brain analysis revealed that movements in allocentric conditions led to an increase in activity in the fundus of the left intra-parietal sulcus (IPS), in posterior IPS, in bilateral dorsal premotor cortex (PMd), and in the lateral occipital complex (LOC). Visual feedback in both target-directed and allocentric conditions led to an increase in activity in area MT+, superior parietal–occipital cortex (SPOC), and posterior IPS (all bilateral). In addition, we found that visual feedback affected brain activity differently in target-directed as compared to allocentric conditions, particularly in the pre-supplementary motor area, PMd, IPS, and parieto-occipital cortex. Our results, in combination with previous findings, suggest that the LOC is essential for allocentric visual coding and that SPOC is involved in visual feedback control. The differences in brain activity between target-directed and allocentric visual feedback conditions may be related to behavioral differences in visual feedback control. Our results advance the understanding of the visual coordinate frame used by the LOC. In addition, because of the nature of the allocentric task, our results have relevance for the understanding of neural substrates of magnitude estimation and vector coding of

  9. Neural substrates of visual spatial coding and visual feedback control for hand movements in allocentric and target-directed tasks.

    PubMed

    Thaler, Lore; Goodale, Melvyn A

    2011-01-01

    Neuropsychological evidence suggests that different brain areas may be involved in movements that are directed at visual targets (e.g., pointing or reaching), and movements that are based on allocentric visual information (e.g., drawing or copying). Here we used fMRI to investigate the neural correlates of these two types of movements in healthy volunteers. Subjects (n = 14) performed right hand movements in either a target-directed task (moving a cursor to a target dot) or an allocentric task (moving a cursor to reproduce the distance and direction between two distal target dots) with or without visual feedback about their hand movement. Movements were monitored with an MR compatible touch panel. A whole brain analysis revealed that movements in allocentric conditions led to an increase in activity in the fundus of the left intra-parietal sulcus (IPS), in posterior IPS, in bilateral dorsal premotor cortex (PMd), and in the lateral occipital complex (LOC). Visual feedback in both target-directed and allocentric conditions led to an increase in activity in area MT+, superior parietal-occipital cortex (SPOC), and posterior IPS (all bilateral). In addition, we found that visual feedback affected brain activity differently in target-directed as compared to allocentric conditions, particularly in the pre-supplementary motor area, PMd, IPS, and parieto-occipital cortex. Our results, in combination with previous findings, suggest that the LOC is essential for allocentric visual coding and that SPOC is involved in visual feedback control. The differences in brain activity between target-directed and allocentric visual feedback conditions may be related to behavioral differences in visual feedback control. Our results advance the understanding of the visual coordinate frame used by the LOC. In addition, because of the nature of the allocentric task, our results have relevance for the understanding of neural substrates of magnitude estimation and vector coding of

  10. Mental "Space" Travel: Damage to Posterior Parietal Cortex Prevents Egocentric Navigation and Reexperiencing of Remote Spatial Memories

    ERIC Educational Resources Information Center

    Ciaramelli, Elisa; Rosenbaum, R. Shayna; Solcz, Stephanie; Levine, Brian; Moscovitch, Morris

    2010-01-01

    The ability to navigate in a familiar environment depends on both an intact mental representation of allocentric spatial information and the integrity of systems supporting complementary egocentric representations. Although the hippocampus has been implicated in learning new allocentric spatial information, converging evidence suggests that the…

  11. Egocentric and allocentric navigation strategies in Williams syndrome and typical development.

    PubMed

    Broadbent, Hannah J; Farran, Emily K; Tolmie, Andy

    2014-11-01

    Recent findings suggest that difficulties on small-scale visuospatial tasks documented in Williams syndrome (WS) also extend to large-scale space. In particular, individuals with WS often present with difficulties in allocentric spatial coding (encoding relationships between items within an environment or array). This study examined the effect of atypical spatial processing in WS on large-scale navigational strategies, using a novel 3D virtual environment. During navigation of recently learnt large-scale space, typically developing (TD) children predominantly rely on the use of a sequential egocentric strategy (recalling the sequence of left-right body turns throughout a route), but become more able to use an allocentric strategy between 5 and 10 years of age. The navigation strategies spontaneously employed by TD children between 5 and 10 years of age and individuals with WS were analysed. The ability to use an allocentric strategy on trials where spatial relational knowledge was required to find the shortest route was also examined. Results showed that, unlike TD children, during spontaneous navigation the WS group did not predominantly employ a sequential egocentric strategy. Instead, individuals with WS followed the path until the correct environmental landmarks were found, suggesting the use of a time-consuming and inefficient view-matching strategy for wayfinding. Individuals with WS also presented with deficits in allocentric spatial coding, demonstrated by difficulties in determining short-cuts when required and difficulties developing a mental representation of the environment layout. This was found even following extensive experience in an environment, suggesting that - unlike in typical development - experience cannot contribute to the development of spatial relational processing in WS. This atypical presentation of both egocentric and allocentric spatial encoding is discussed in relation to specific difficulties on small-scale spatial tasks and known

  12. Detecting early egocentric and allocentric impairments deficits in Alzheimer’s disease: an experimental study with virtual reality

    PubMed Central

    Serino, Silvia; Morganti, Francesca; Di Stefano, Fabio; Riva, Giuseppe

    2015-01-01

    Several studies have pointed out that egocentric and allocentric spatial impairments are one of the earliest manifestations of Alzheimer’s Disease (AD). It is less clear how a break in the continuous interaction between these two representations may be a crucial marker to detect patients who are at risk to develop dementia. The main objective of this study is to compare the performances of participants suffering from amnestic mild cognitive impairment (aMCI group), patients with AD (AD group) and a control group (CG), using a virtual reality (VR)-based procedure for assessing the abilities in encoding, storing and syncing different spatial representations. In the first task, participants were required to indicate on a real map the position of the object they had memorized, while in the second task they were invited to retrieve its position from an empty version of the same virtual room, starting from a different position. The entire procedure was repeated across three different trials, depending on the object location in the encoding phase. Our finding showed that aMCI patients performed significantly more poorly in the third trial of the first task, showing a deficit in the ability to encode and store an allocentric viewpoint independent representation. On the other hand, AD patients performed significantly more poorly when compared to the CG in the second task, indicating a specific impairment in storing an allocentric viewpoint independent representation and then syncing it with the allocentric viewpoint dependent representation. Furthermore, data suggested that these impairments are not a product of generalized cognitive decline or of general decay in spatial abilities, but instead may reflect a selective deficit in the spatial organization Overall, these findings provide an initial insight into the cognitive underpinnings of amnestic impairment in aMCI and AD patient exploiting the potentiality of VR. PMID:26042034

  13. Exploring the Structure of Spatial Representations

    PubMed Central

    Madl, Tamas; Franklin, Stan; Chen, Ke; Trappl, Robert; Montaldi, Daniela

    2016-01-01

    It has been suggested that the map-like representations that support human spatial memory are fragmented into sub-maps with local reference frames, rather than being unitary and global. However, the principles underlying the structure of these ‘cognitive maps’ are not well understood. We propose that the structure of the representations of navigation space arises from clustering within individual psychological spaces, i.e. from a process that groups together objects that are close in these spaces. Building on the ideas of representational geometry and similarity-based representations in cognitive science, we formulate methods for learning dissimilarity functions (metrics) characterizing participants’ psychological spaces. We show that these learned metrics, together with a probabilistic model of clustering based on the Bayesian cognition paradigm, allow prediction of participants’ cognitive map structures in advance. Apart from insights into spatial representation learning in human cognition, these methods could facilitate novel computational tools capable of using human-like spatial concepts. We also compare several features influencing spatial memory structure, including spatial distance, visual similarity and functional similarity, and report strong correlations between these dimensions and the grouping probability in participants’ spatial representations, providing further support for clustering in spatial memory. PMID:27347681

  14. Spatial Representations of Taxi Drivers.

    DTIC Science & Technology

    1982-09-28

    some people have suggested that adults, when they learn a new environment, proceed through these same Piagetian Stages in their representations...East Green Street Naval Postgraduate School Pasadena, CA 91101 Monterey, CA 93940 1 Special Asst. for Education and I Dr. Robert Wisher Training (OP-O1E...Research Laborat Pensacola, FL 32508 1 Dr. Gary Poock Operations Research Department Code 55PK Naval Postgraduate School Monterey, CA 93940 1 Roger W

  15. Spatial Performance, Cognitive Representation, and Cerebral Processes

    DTIC Science & Technology

    1984-07-01

    auditory- visual perception and visual proprioception in human development. In R. D. Walk & H. L. Pick, Jr. (Ed.). Intersensory perception and sensory...Spatial ability Sensory interaction Analog and prepositional representation Visual and auditory...systems is associated with spatial ability, visual , auditory, and bimodal brain event-related potentials were recorded from 50 right-handed

  16. Spatial representations of place cells in darkness are supported by path integration and border information.

    PubMed

    Zhang, Sijie; Schönfeld, Fabian; Wiskott, Laurenz; Manahan-Vaughan, Denise

    2014-01-01

    Effective spatial navigation is enabled by reliable reference cues that derive from sensory information from the external environment, as well as from internal sources such as the vestibular system. The integration of information from these sources enables dead reckoning in the form of path integration. Navigation in the dark is associated with the accumulation of errors in terms of perception of allocentric position and this may relate to error accumulation in path integration. We assessed this by recording from place cells in the dark under circumstances where spatial sensory cues were suppressed. Spatial information content, spatial coherence, place field size, and peak and infield firing rates decreased whereas sparsity increased following exploration in the dark compared to the light. Nonetheless it was observed that place field stability in darkness was sustained by border information in a subset of place cells. To examine the impact of encountering the environment's border on navigation, we analyzed the trajectory and spiking data gathered during navigation in the dark. Our data suggest that although error accumulation in path integration drives place field drift in darkness, under circumstances where border contact is possible, this information is integrated to enable retention of spatial representations.

  17. Spatial representations of place cells in darkness are supported by path integration and border information

    PubMed Central

    Zhang, Sijie; Schönfeld, Fabian; Wiskott, Laurenz; Manahan-Vaughan, Denise

    2014-01-01

    Effective spatial navigation is enabled by reliable reference cues that derive from sensory information from the external environment, as well as from internal sources such as the vestibular system. The integration of information from these sources enables dead reckoning in the form of path integration. Navigation in the dark is associated with the accumulation of errors in terms of perception of allocentric position and this may relate to error accumulation in path integration. We assessed this by recording from place cells in the dark under circumstances where spatial sensory cues were suppressed. Spatial information content, spatial coherence, place field size, and peak and infield firing rates decreased whereas sparsity increased following exploration in the dark compared to the light. Nonetheless it was observed that place field stability in darkness was sustained by border information in a subset of place cells. To examine the impact of encountering the environment’s border on navigation, we analyzed the trajectory and spiking data gathered during navigation in the dark. Our data suggest that although error accumulation in path integration drives place field drift in darkness, under circumstances where border contact is possible, this information is integrated to enable retention of spatial representations. PMID:25009477

  18. Preserved learning about allocentric cues but impaired flexible memory expression in rats with hippocampal lesions.

    PubMed

    Ramos, Juan M J

    2010-05-01

    Several studies have shown that slight modifications in the standard reference spatial memory procedure normally used for allocentric learning in the Morris water maze and the radial maze, can overcome the classic deficit in allocentric navigation typically observed in rats with hippocampal damage. In these special paradigms, however, there is only intramaze manipulation of a salient stimulus. The present study was designed to investigate whether extramaze manipulations produce a similar outcome. With this aim a four-arm plus-shaped maze and a reference spatial memory paradigm were used, in which the goal arm was marked in two ways: by a prominent extramaze cue (intermittent light), which maintained a constant relation with the goal, and by the extramaze constellation of stimuli around the maze. Experiment 1 showed that, unlike the standard version of the task, using this special training procedure hippocampally-damaged rats could learn a place response as quickly as control animals; importantly, one day after reaching criterion, lesioned and control subjects performed the task perfectly during a transfer test in which the salient extramaze stimulus used during the acquisition was removed. However, although acquisition deficit was overcomed in these lesioned animals, a profound deficit in retention was detected 15 days later. Experiment 2 suggests that although under our special paradigm hippocampal rats can learn a place response, spatial memory only can be expressed when the requisites of behavioral flexibility are minimal. These findings suggest that, under certain circumstances, extrahippocampal structures are sufficient for building a coherent allocentric representation of space; however, flexible memory expression is dependent, fundamentally, on hippocampal functioning.

  19. [Temporal and spatial representations of tactile sensation].

    PubMed

    Yamamoto, Shinya

    2014-04-01

    How does the brain encode "when" and "where" events that have occurred during tactile sensory processing? The simplest protocol to address this question would be asking participants to judge the temporal order of tactile stimuli delivered to both hands while varying their spatial relationship. In this review, I will focus on the illusion that the subjective temporal order of two tactile stimuli (one delivered to each hand) is reversed when the arms are crossed. By introducing recent findings related to this illusion, I will discuss how the temporal and spatial representations of tactile sensation interact with each other, and propose neural mechanisms potentially underlying this interaction.

  20. The Ability of Young Korean Children to Use Spatial Representations

    ERIC Educational Resources Information Center

    Kim, Minsung; Bednarz, Robert; Kim, Jaeyil

    2012-01-01

    The National Research Council emphasizes using tools of representation as an essential element of spatial thinking. However, it is debatable at what age the use of spatial representation for spatial thinking skills should begin. This study investigated whether young Korean children possess the potential to understand map-like representation using…

  1. Space representation in unilateral spatial neglect.

    PubMed

    Chedru, F

    1976-11-01

    Patients with unilateral brain lesions were given a task requiring exploration of space with the hand in order to assess the visual dependency of unilateral spatial neglect. The task was carried out both without visual control and under visual control. Performances were compared with that of normal subjects. Results were :(1) patients with right brain damage with no visual field defect demonstrated left-sided neglect only when the exploration was not controlled visually; (2) patients with left and right brain damage with visual field defect demonstrated contralateral neglect only when the exploration was under visual guidance. The performance of the patients with right brain damage without visual field defect in not clearly understood. The other results suggest that inner spatial representation remains intact in most cases of spatial neglect. The role of parietal lobe damage in the development of this visually induced phenomenon is hypothesised. The dominant position of vision among the senses is indicated.

  2. Spatial attention and neglect: parietal, frontal and cingulate contributions to the mental representation and attentional targeting of salient extrapersonal events.

    PubMed Central

    Mesulam, M M

    1999-01-01

    The syndrome of contralesional neglect reflects a lateralized disruption of spatial attention. In the human, the left hemisphere shifts attention predominantly in the contralateral hemispace and in a contraversive direction whereas the right hemisphere distributes attention more evenly, in both hemispaces and both directions. As a consequence of this asymmetry, severe contralesional neglect occurs almost exclusively after right hemisphere lesions. Patients with left neglect experience a loss of salience in the mental representation and conscious perception of the left side and display a reluctance to direct orientating and exploratory behaviours to the left. Neglect is distributed according to egocentric, allocentric, world-centred, and object-centred frames of reference. Neglected events can continue to exert an implicit influence on behaviour, indicating that the attentional filtering occurs at the level of an internalized representation rather than at the level of peripheral sensory input. The unilateral neglect syndrome is caused by a dysfunction of a large-scale neurocognitive network, the cortical epicentres of which are located in posterior parietal cortex, the frontal eye fields, and the cingulate gyrus. This network coordinates all aspects of spatial attention, regardless of the modality of input or output. It helps to compile a mental representation of extrapersonal events in terms of their motivational salience, and to generate 'kinetic strategies' so that the attentional focus can shift from one target to another. PMID:10466154

  3. Medial septum regulates the hippocampal spatial representation

    PubMed Central

    Mamad, Omar; McNamara, Harold M.; Reilly, Richard B.; Tsanov, Marian

    2015-01-01

    The hippocampal circuitry undergoes attentional modulation by the cholinergic medial septum. However, it is unclear how septal activation regulates the spatial properties of hippocampal neurons. We investigated here what is the functional effect of selective-cholinergic and non-selective septal stimulation on septo-hippocampal system. We show for the first time selective activation of cholinergic cells and their differential network effect in medial septum of freely-behaving transgenic rats. Our data show that depolarization of cholinergic septal neurons evokes frequency-dependent response from the non-cholinergic septal neurons and hippocampal interneurons. Our findings provide vital evidence that cholinergic effect on septo-hippocampal axis is behavior-dependent. During the active behavioral state the activation of septal cholinergic projections is insufficient to evoke significant change in the spiking of the hippocampal neurons. The efficiency of septo-hippocampal processing during active exploration relates to the firing patterns of the non-cholinergic theta-bursting cells. Non-selective septal theta-burst stimulation resets the spiking of hippocampal theta cells, increases theta synchronization, entrains the spiking of hippocampal place cells, and tunes the spatial properties in a timing-dependent manner. The spatial properties are augmented only when the stimulation is applied in the periphery of the place field or 400–650 ms before the animals approached the center of the field. In summary, our data show that selective cholinergic activation triggers a robust network effect in the septo-hippocampal system during inactive behavioral state, whereas the non-cholinergic septal activation regulates hippocampal functional properties during explorative behavior. Together, our findings uncover fast septal modulation on hippocampal network and reveal how septal inputs up-regulate and down-regulate the encoding of spatial representation. PMID:26175674

  4. Medial septum regulates the hippocampal spatial representation.

    PubMed

    Mamad, Omar; McNamara, Harold M; Reilly, Richard B; Tsanov, Marian

    2015-01-01

    The hippocampal circuitry undergoes attentional modulation by the cholinergic medial septum. However, it is unclear how septal activation regulates the spatial properties of hippocampal neurons. We investigated here what is the functional effect of selective-cholinergic and non-selective septal stimulation on septo-hippocampal system. We show for the first time selective activation of cholinergic cells and their differential network effect in medial septum of freely-behaving transgenic rats. Our data show that depolarization of cholinergic septal neurons evokes frequency-dependent response from the non-cholinergic septal neurons and hippocampal interneurons. Our findings provide vital evidence that cholinergic effect on septo-hippocampal axis is behavior-dependent. During the active behavioral state the activation of septal cholinergic projections is insufficient to evoke significant change in the spiking of the hippocampal neurons. The efficiency of septo-hippocampal processing during active exploration relates to the firing patterns of the non-cholinergic theta-bursting cells. Non-selective septal theta-burst stimulation resets the spiking of hippocampal theta cells, increases theta synchronization, entrains the spiking of hippocampal place cells, and tunes the spatial properties in a timing-dependent manner. The spatial properties are augmented only when the stimulation is applied in the periphery of the place field or 400-650 ms before the animals approached the center of the field. In summary, our data show that selective cholinergic activation triggers a robust network effect in the septo-hippocampal system during inactive behavioral state, whereas the non-cholinergic septal activation regulates hippocampal functional properties during explorative behavior. Together, our findings uncover fast septal modulation on hippocampal network and reveal how septal inputs up-regulate and down-regulate the encoding of spatial representation.

  5. Squeezing, Striking, and Vocalizing: Is Number Representation Fundamentally Spatial?

    ERIC Educational Resources Information Center

    Nunez, Rafael; Doan, D.; Nikoulina, Anastasia

    2011-01-01

    Numbers are fundamental entities in mathematics, but their cognitive bases are unclear. Abundant research points to linear space as a natural grounding for number representation. But, is number representation fundamentally spatial? We disentangle number representation from standard number-to-line reporting methods, and compare numerical…

  6. Remembering the Past and Imagining the Future: A Neural Model of Spatial Memory and Imagery

    ERIC Educational Resources Information Center

    Byrne, Patrick; Becker, Suzanna; Burgess, Neil

    2007-01-01

    The authors model the neural mechanisms underlying spatial cognition, integrating neuronal systems and behavioral data, and address the relationships between long-term memory, short-term memory, and imagery, and between egocentric and allocentric and visual and ideothetic representations. Long-term spatial memory is modeled as attractor dynamics…

  7. Body-Specific Representations of Spatial Location

    ERIC Educational Resources Information Center

    Brunye, Tad T.; Gardony, Aaron; Mahoney, Caroline R.; Taylor, Holly A.

    2012-01-01

    The body specificity hypothesis (Casasanto, 2009) posits that the way in which people interact with the world affects their mental representation of information. For instance, right- versus left-handedness affects the mental representation of affective valence, with right-handers categorically associating good with rightward areas and bad with…

  8. Object-based representations of spatial images

    NASA Astrophysics Data System (ADS)

    Newsam, Shawn; Bhagavathy, Sitaram; Kenney, Charles; Manjunath, B. S.; Fonseca, Leila

    2001-03-01

    Object based representations of image data enable new content-related functionalities while facilitating management of large image databases. Developing such representations for multi-date and multi-spectral images is one of the objectives of the second phase of the Alexandria Digital Library (ADL) project at UCSB. Image segmentation and image registration are two of the main issues that are to be addressed in creating localized image representations. We present in this paper some of the recent and current work by the ADL's image processing group on robust image segmentation, registration, and the use of image texture for content representation. Built upon these technologies are techniques for managing large repositories of data. A texture thesaurus assists in creating a semantic classification of image regions. An object-based representation is proposed to facilitate data storage, retrieval, analysis, and navigation.

  9. Sensori-motor spatial training of number magnitude representation.

    PubMed

    Fischer, Ursula; Moeller, Korbinian; Bientzle, Martina; Cress, Ulrike; Nuerk, Hans-Christoph

    2011-02-01

    An adequately developed spatial representation of number magnitude is associated with children's general arithmetic achievement. Therefore, a new spatial-numerical training program for kindergarten children was developed in which presentation and response were associated with a congruent spatial numerical representation. In particular, children responded by a full-body spatial movement on a digital dance mat in a magnitude comparison task. This spatial-numerical training was more effective than a non-spatial control training in enhancing children's performance on a number line estimation task and a subtest of a standardized mathematical achievement battery (TEDI-MATH). A mediation analysis suggested that these improvements were driven by an improvement of children's mental number line representation and not only by unspecific factors such as attention or motivation. These results suggest a benefit of spatial numerical associations. Rather than being a merely associated covariate, they work as an independently manipulated variable which is functional for numerical development.

  10. Mental space travel: damage to posterior parietal cortex prevents egocentric navigation and reexperiencing of remote spatial memories.

    PubMed

    Ciaramelli, Elisa; Rosenbaum, R Shayna; Solcz, Stephanie; Levine, Brian; Moscovitch, Morris

    2010-05-01

    The ability to navigate in a familiar environment depends on both an intact mental representation of allocentric spatial information and the integrity of systems supporting complementary egocentric representations. Although the hippocampus has been implicated in learning new allocentric spatial information, converging evidence suggests that the posterior parietal cortex (PPC) might support egocentric representations. To date, however, few studies have examined long-standing egocentric representations of environments learned long ago. Here we tested 7 patients with focal lesions in PPC and 12 normal controls in remote spatial memory tasks, including 2 tasks reportedly reliant on allocentric representations (distance and proximity judgments) and 2 tasks reportedly reliant on egocentric representations (landmark sequencing and route navigation; see Rosenbaum, Ziegler, Winocur, Grady, & Moscovitch, 2004). Patients were unimpaired in distance and proximity judgments. In contrast, they all failed in route navigation, and left-lesioned patients also showed marginally impaired performance in landmark sequencing. Patients' subjective experience associated with navigation was impoverished and disembodied compared with that of the controls. These results suggest that PPC is crucial for accessing remote spatial memories within an egocentric reference frame that enables both navigation and reexperiencing. Additionally, PPC was found to be necessary to implement specific aspects of allocentric navigation with high demands on spontaneous retrieval.

  11. Language, Perception, and the Schematic Representation of Spatial Relations

    ERIC Educational Resources Information Center

    Amorapanth, Prin; Kranjec, Alexander; Bromberger, Bianca; Lehet, Matthew; Widick, Page; Woods, Adam J.; Kimberg, Daniel Y.; Chatterjee, Anjan

    2012-01-01

    Schemas are abstract nonverbal representations that parsimoniously depict spatial relations. Despite their ubiquitous use in maps and diagrams, little is known about their neural instantiation. We sought to determine the extent to which schematic representations are neurally distinguished from language on the one hand, and from rich perceptual…

  12. Heterogeneous spatial representation by different subpopulations of neurons in the subiculum.

    PubMed

    Brotons-Mas, J R; Schaffelhofer, S; Guger, C; O'Mara, S M; Sanchez-Vives, M V

    2017-02-20

    The subiculum is a pivotal structure located in the hippocampal formation that receives inputs from grid and place cells and that mediates the output from the hippocampus to cortical and sub-cortical areas. Previous studies have demonstrated the existence of boundary vector cells (BVC) in the subiculum, as well as exceptional stability during recordings conducted in the dark, suggesting that the subiculum is involved in the coding of allocentric cues and also in path integration. In order to better understand the role of the subiculum in spatial processing and the coding of external cues, we recorded subicular units in freely moving rats while performing two experiments: the "size experiment" in which we modified the arena size, and the "barrier experiment" in which we inserted new barriers in a familiar open field thus dividing the enclosure into four comparable sub-chambers. We hypothesized that if physical boundaries were deterministic of the firing of subicular units a strong spatial replication pattern would be found in most spatially modulated units. In contrast, our results demonstrate heterogeneous space coding by different cell types: place cells, barrier-related units and BVC. We also found units characterized by narrow spike waveforms, most likely belonging to axonal recordings, that showed grid-like patterns. Our data indicate that the subiculum codes space in a flexible manner, and that it is involved in the processing of allocentric information, external cues and path integration, thus broadly supporting spatial navigation.

  13. The Effect of Barriers on Spatial Representations.

    ERIC Educational Resources Information Center

    Cohen, Robert; Weatherford, David L.

    1981-01-01

    Examined children's recall of the spatial configurations of an environment after the children followed prearranged paths and encountered barriers to movement. When asked to reconstruct the environmental configuration from memory, males estimated distances more accurately than did females. No age differences were noted. (Author/DB)

  14. Asymmetric Learning Transfer between Imagined Viewer- and Object-Rotations: Evidence of a Hierarchical Organization of Spatial Reference Frames

    ERIC Educational Resources Information Center

    Pellizzer, Giuseppe; Ba, Maryse Badan; Zanello, Adriano; Merlo, Marco C. G.

    2009-01-01

    Neural resources subserving spatial processing in either egocentric or allocentric reference frames are, at least partly, dissociated. However, it is unclear whether these two types of representations are independent or whether they interact. We investigated this question using a learning transfer paradigm. The experiment and material were…

  15. Developmental Time Course of the Acquisition of Sequential Egocentric and Allocentric Navigation Strategies

    ERIC Educational Resources Information Center

    Bullens, Jessie; Igloi, Kinga; Berthoz, Alain; Postma, Albert; Rondi-Reig, Laure

    2010-01-01

    Navigation in a complex environment can rely on the use of different spatial strategies. We have focused on the employment of "allocentric" (i.e., encoding interrelationships among environmental cues, movements, and the location of the goal) and "sequential egocentric" (i.e., sequences of body turns associated with specific choice points)…

  16. Individual Differences in the Encoding Processes of Egocentric and Allocentric Survey Knowledge

    ERIC Educational Resources Information Center

    Wen, Wen; Ishikawa, Toru; Sato, Takao

    2013-01-01

    This study examined how different components of working memory are involved in the acquisition of egocentric and allocentric survey knowledge by people with a good and poor sense of direction (SOD). We employed a dual-task method and asked participants to learn routes from videos with verbal, visual, and spatial interference tasks and without any…

  17. Auditory spatial attention representations in the human cerebral cortex.

    PubMed

    Kong, Lingqiang; Michalka, Samantha W; Rosen, Maya L; Sheremata, Summer L; Swisher, Jascha D; Shinn-Cunningham, Barbara G; Somers, David C

    2014-03-01

    Auditory spatial attention serves important functions in auditory source separation and selection. Although auditory spatial attention mechanisms have been generally investigated, the neural substrates encoding spatial information acted on by attention have not been identified in the human neocortex. We performed functional magnetic resonance imaging experiments to identify cortical regions that support auditory spatial attention and to test 2 hypotheses regarding the coding of auditory spatial attention: 1) auditory spatial attention might recruit the visuospatial maps of the intraparietal sulcus (IPS) to create multimodal spatial attention maps; 2) auditory spatial information might be encoded without explicit cortical maps. We mapped visuotopic IPS regions in individual subjects and measured auditory spatial attention effects within these regions of interest. Contrary to the multimodal map hypothesis, we observed that auditory spatial attentional modulations spared the visuotopic maps of IPS; the parietal regions activated by auditory attention lacked map structure. However, multivoxel pattern analysis revealed that the superior temporal gyrus and the supramarginal gyrus contained significant information about the direction of spatial attention. These findings support the hypothesis that auditory spatial information is coded without a cortical map representation. Our findings suggest that audiospatial and visuospatial attention utilize distinctly different spatial coding schemes.

  18. Spatial representation of pitch height: the SMARC effect.

    PubMed

    Rusconi, Elena; Kwan, Bonnie; Giordano, Bruno L; Umiltà, Carlo; Butterworth, Brian

    2006-03-01

    Through the preferential pairing of response positions to pitch, here we show that the internal representation of pitch height is spatial in nature and affects performance, especially in musically trained participants, when response alternatives are either vertically or horizontally aligned. The finding that our cognitive system maps pitch height onto an internal representation of space, which in turn affects motor performance even when this perceptual attribute is irrelevant to the task, extends previous studies on auditory perception and suggests an interesting analogy between music perception and mathematical cognition. Both the basic elements of mathematical cognition (i.e. numbers) and the basic elements of musical cognition (i.e. pitches), appear to be mapped onto a mental spatial representation in a way that affects motor performance.

  19. Vectorial representation of spatial goals in the hippocampus of bats.

    PubMed

    Sarel, Ayelet; Finkelstein, Arseny; Las, Liora; Ulanovsky, Nachum

    2017-01-13

    To navigate, animals need to represent not only their own position and orientation, but also the location of their goal. Neural representations of an animal's own position and orientation have been extensively studied. However, it is unknown how navigational goals are encoded in the brain. We recorded from hippocampal CA1 neurons of bats flying in complex trajectories toward a spatial goal. We discovered a subpopulation of neurons with angular tuning to the goal direction. Many of these neurons were tuned to an occluded goal, suggesting that goal-direction representation is memory-based. We also found cells that encoded the distance to the goal, often in conjunction with goal direction. The goal-direction and goal-distance signals make up a vectorial representation of spatial goals, suggesting a previously unrecognized neuronal mechanism for goal-directed navigation.

  20. Spatial Representation of Pitch Height: The SMARC Effect

    ERIC Educational Resources Information Center

    Rusconi, Elena; Kwan, Bonnie; Giordano, Bruno L.; Umilta, Carlo; Butterworth, Brian

    2006-01-01

    Through the preferential pairing of response positions to pitch, here we show that the internal representation of pitch height is spatial in nature and affects performance, especially in musically trained participants, when response alternatives are either vertically or horizontally aligned. The finding that our cognitive system maps pitch height…

  1. The Externalization of Spatial Representation by Blind Persons.

    ERIC Educational Resources Information Center

    Huertas, J. A.; Ochaita, E.

    1992-01-01

    Forty blind children and adolescents had to learn two unknown environments and then externalize the spatial representation via two methods--building a scale model and verbally estimating distances. High correlations were found between the two methods and between those methods and two systems of measuring mobility. (Author/JDD)

  2. Spectral-spatial hyperspectral image classification using super-pixel-based spatial pyramid representation

    NASA Astrophysics Data System (ADS)

    Fan, Jiayuan; Tan, Hui Li; Toomik, Maria; Lu, Shijian

    2016-10-01

    Spatial pyramid matching has demonstrated its power for image recognition task by pooling features from spatially increasingly fine sub-regions. Motivated by the concept of feature pooling at multiple pyramid levels, we propose a novel spectral-spatial hyperspectral image classification approach using superpixel-based spatial pyramid representation. This technique first generates multiple superpixel maps by decreasing the superpixel number gradually along with the increased spatial regions for labelled samples. By using every superpixel map, sparse representation of pixels within every spatial region is then computed through local max pooling. Finally, features learned from training samples are aggregated and trained by a support vector machine (SVM) classifier. The proposed spectral-spatial hyperspectral image classification technique has been evaluated on two public hyperspectral datasets, including the Indian Pines image containing 16 different agricultural scene categories with a 20m resolution acquired by AVIRIS and the University of Pavia image containing 9 land-use categories with a 1.3m spatial resolution acquired by the ROSIS-03 sensor. Experimental results show significantly improved performance compared with the state-of-the-art works. The major contributions of this proposed technique include (1) a new spectral-spatial classification approach to generate feature representation for hyperspectral image, (2) a complementary yet effective feature pooling approach, i.e. the superpixel-based spatial pyramid representation that is used for the spatial correlation study, (3) evaluation on two public hyperspectral image datasets with superior image classification performance.

  3. Deletion of the serotonin receptor type 7 disrupts the acquisition of allocentric but not egocentric navigation strategies in mice.

    PubMed

    Beaudet, Gregory; Jozet-Alves, Christelle; Asselot, Rachel; Schumann-Bard, Pascale; Freret, Thomas; Boulouard, Michel; Paizanis, Eleni

    2017-03-01

    Spatial navigation is achieved through both egocentric (body-centered) and allocentric (externally-centered) strategies but decline with age, especially allocentric strategies. A better understanding of the neurobiological mechanisms underlying these strategies would allow the development of new treatments to mitigate this deterioration. Among them, the modulation of 5-HT7 receptor (5-HT7R) may constitute a potential strategy. Indeed, this receptor is known to play a role in spatial navigation, however its precise role in egocentric and allocentric strategies remains unclear. Here, we first examined the effect of 5-HT7 genetic invalidation (knock-out (KO) mice) in two versions of a water cross-maze task in which only egocentric or allocentric strategies were efficient to solve the task. Our results demonstrated that KO mice are able to learn an allocentric strategy. However, contrary to wild-type mice (WT mice), the acquisition rate was slower compared to the task requiring the acquisition of an egocentric strategy. Mice were then trained in a third version of the water maze, allowing the use of both egocentric and allocentric strategies. When facing conflicting spatial information, both KO and WT mice preferentially used an egocentric strategy. However, only WT mice displayed a greater latency to achieve the task. This suggests that WT mice are able to learn both information in parallel, but not KO mice (i.e. only learning an egocentric strategy). Altogether, these results provide evidence for the essential role of the 5HT7R in the acquisition of an allocentric strategy and in the ability to learn concomitantly both strategies.

  4. Spatial coherence wavelets and phase-space representation of diffraction.

    PubMed

    Castañeda, Román; Carrasquilla, Juan

    2008-08-01

    The phase-space representation of the Fresnel-Fraunhofer diffraction of optical fields in any state of spatial coherence is based on the marginal power spectrum carried by the spatial coherence wavelets. Its structure is analyzed in terms of the classes of source pairs and the spot of the field, which is treated as the hologram of the map of classes. Negative values of the marginal power spectrum are interpreted as negative energies. The influence of the aperture edge on diffraction is stated in terms of the distortion of the supports of the complex degree of spatial coherence near it. Experimental results are presented.

  5. Spatial mental representations derived from spatial descriptions: the predicting and mediating roles of spatial preferences, strategies, and abilities.

    PubMed

    Meneghetti, Chiara; Ronconi, Lucia; Pazzaglia, Francesca; De Beni, Rossana

    2014-08-01

    The aim of this research was to investigate how spatial self-assessments and spatial cognitive abilities jointly influence the construction of mental representations derived from spatial descriptions. Two studies were conducted using the path models approach to test to what extent spatial self-assessments (Study 1, 194 participants) and the combination of the latter with spatial abilities (Study 2, 206 participants) can be modelled to predict memory for spatial descriptions. In both studies, we recorded spatial representation preferences (distinguishing between survey, route, and landmark-focused mode) and self-reported strategies used to memorize descriptions (distinguishing between survey, route, and verbal strategies); in Study 2, we also measured spatial abilities by testing mental rotation (MR) and visuo-spatial working memory (VSWM). Participants listened to spatial descriptions and then completed recall tasks. In both studies, the final path models showed that spatial preferences influenced spatial recall through the mediation of congruent strategies: that is a survey (route) preference influenced spatial recall mediated by a survey (route) strategy. MR predicted spatial recall, mediated by both VSWM and survey strategy (Study 2). Overall, these findings indicate that spatial preferences (particularly for a survey mode) in association with spatial abilities effectively concur to help form mental representations derived from spatial descriptions.

  6. Spatial sensory organization and body representation in pain perception.

    PubMed

    Haggard, Patrick; Iannetti, Gian Domenico; Longo, Matthew R

    2013-02-18

    Pain is a subjective experience that protects the body. This function implies a special relation between the brain mechanisms underlying pain perception and representation of the body. All sensory systems involve the body for the trivial reason that sensory receptors are located in the body. The nociceptive system of detecting noxious stimuli comprises two classes of peripheral afferents, Aδ and C nociceptors, that cover almost the entire body surface. We review evidence from experimental studies of pain in humans and other animals suggesting that Aδ skin nociceptors project to a spatially-organised, somatotopic map in the primary somatosensory cortex. While the relation between pain perception and homeostatic regulation of bodily systems is widely acknowledged, the organization of nociceptive information into spatial maps of the body has received little attention. Importantly, the somatotopic neural organization of pain systems can shed light on pain-related plasticity and pain modulation. Finally, we show that the neural coding of noxious stimuli, and consequent experience of pain, are both strongly influenced when cognitive representations of the body are activated by viewing the body, as opposed to viewing another object - an effect we term 'visual analgesia'. We argue that pain perception involves some of the representational properties of exteroceptive senses, such as vision and touch. Pain, however, has the unique feature that the content of representation is the body itself, rather than any external object of perception. We end with some suggestions regarding how linking pain to body representation could shed light on clinical conditions, notably chronic pain.

  7. Allocentric kin recognition is not affected by facial inversion

    PubMed Central

    Dal Martello, Maria F.; DeBruine, Lisa M.; Maloney, Laurence T.

    2015-01-01

    Typical judgments involving faces are disrupted by inversion, with the Thatcher illusion serving as a compelling example. In two experiments, we examined how inversion affects allocentric kin recognition—the ability to judge the degree of genetic relatedness of others. In the first experiment, participants judged whether pairs of photographs of children portrayed siblings or unrelated children. Half of the pairs were siblings, half were unrelated. In three experimental conditions, photographs were viewed in upright orientation, flipped around a horizontal axis, or rotated 180°. Neither rotation nor flipping had any detectable effect on allocentric kin recognition. In the second experiment, participants judged pairs of photographs of adult women. Half of the pairs were sisters, half were unrelated. We again found no significant effect of facial inversion. Unlike almost all other face judgments, judgments of kinship from facial appearance do not rely on perceptual cues disrupted by inversion, suggesting that they rely more on spatially localized cues rather than “holistic” cues. We conclude that kin recognition is not simply a byproduct of other face perception abilities. We discuss the implications for cue combination models of other facial judgments that are affected by inversion. PMID:26381836

  8. The relation between body semantics and spatial body representations.

    PubMed

    van Elk, Michiel; Blanke, Olaf

    2011-11-01

    The present study addressed the relation between body semantics (i.e. semantic knowledge about the human body) and spatial body representations, by presenting participants with word pairs, one below the other, referring to body parts. The spatial position of the word pairs could be congruent (e.g. EYE / MOUTH) or incongruent (MOUTH / EYE) with respect to the spatial position of the words' referents. In addition, the spatial distance between the words' referents was varied, resulting in word pairs referring to body parts that are close (e.g. EYE / MOUTH) or far in space (e.g. EYE / FOOT). A spatial congruency effect was observed when subjects made an iconicity judgment (Experiments 2 and 3) but not when making a semantic relatedness judgment (Experiment 1). In addition, when making a semantic relatedness judgment (Experiment 1) reaction times increased with increased distance between the body parts but when making an iconicity judgment (Experiments 2 and 3) reaction times decreased with increased distance. These findings suggest that the processing of body-semantics results in the activation of a detailed visuo-spatial body representation that is modulated by the specific task requirements. We discuss these new data with respect to theories of embodied cognition and body semantics.

  9. Visual and Spatial Mental Imagery: Dissociable Systems of Representation.

    DTIC Science & Technology

    1987-08-07

    between vistiql and spatial representations of visual stimuli in perception. The concept of "two cortical visual systems." Ungeleider and Mishkin (1982...Pohl. 1973: Iwai & Mishkin . 1968: Brody & Pribram. 197Rp hq,,, observed a marked contrast between the effects of parietal and temporal lesions in vlculI...between different forms, patterns and objects. Ungeleider and Mishkin called the system that represents visual appearance. located in the temporal

  10. Visual attention modulates the asymmetric influence of each cerebral hemisphere on spatial perception

    PubMed Central

    Wang, Meijian; Wang, Xiuhai; Xue, Lingyan; Huang, Dan; Chen, Yao

    2016-01-01

    Although the allocation of brain functions across the two cerebral hemispheres has aroused public interest over the past century, asymmetric interhemispheric cooperation under attentional modulation has been scarcely investigated. An example of interhemispheric cooperation is visual spatial perception. During this process, visual information from each hemisphere is integrated because each half of the visual field predominantly projects to the contralateral visual cortex. Both egocentric and allocentric coordinates can be employed for visual spatial representation, but they activate different areas in primate cerebral hemispheres. Recent studies have determined that egocentric representation affects the reaction time of allocentric perception; furthermore, this influence is asymmetric between the two visual hemifields. The egocentric-allocentric incompatibility effect and its asymmetry between the two hemispheres can produce this phenomenon. Using an allocentric position judgment task, we found that this incompatibility effect was reduced, and its asymmetry was eliminated on an attentional task rather than a neutral task. Visual attention might activate cortical areas that process conflicting information, such as the anterior cingulate cortex, and balance the asymmetry between the two hemispheres. Attention may enhance and balance this interhemispheric cooperation because this imbalance may also be caused by the asymmetric cooperation of each hemisphere in spatial perception. PMID:26758349

  11. Characteristics of Haptic Peripersonal Spatial Representation of Object Relations

    PubMed Central

    2016-01-01

    Haptic perception of space is known to show characteristics that are different to actual space. The current study extends on this line of research, investigating whether systematic deviations are also observed in the formation of haptic spatial representations of object-to-object relations. We conducted a haptic spatial reproduction task analogous to the parallelity task with spatial layouts. Three magnets were positioned to form corners of an isosceles triangle and the task of the participant was to reproduce the right angle corner. Weobserved systematic deviations in the reproduction of the right angle triangle. The systematic deviations were not observed when the task was conducted on the mid-sagittal plane. Furthermore, the magnitude of the deviation was decreased when non-informative vision was introduced. These results suggest that there is a deformation in spatial representation of object-to-object relations formed using haptics. However, as no systematic deviation was observed when the task was conducted on the mid-saggital plane, we suggest that the perception of object-to-object relations use a different egocentric reference frame to the perception of orientation. PMID:27462990

  12. Social and representational cues jointly influence spatial perspective-taking.

    PubMed

    Galati, Alexia; Avraamides, Marios N

    2015-05-01

    We examined how social cues (the conversational partner's viewpoint) and representational ones (the intrinsic structure of a spatial layout) jointly shape people's spatial memory representations and their subsequent descriptions. In 24 pairs, Directors studied an array with a symmetrical structure while either knowing their Matcher's subsequent viewpoint or not. During the subsequent description of the array, the array's intrinsic structure was aligned with the Director, the Matcher, or neither partner. According to memory tests preceding descriptions, Directors who had studied the array while aligned with its structure were more likely to use its orientation as an organizing direction. Directors who had studied the array while misaligned with its structure used its orientation more frequently as an organizing orientation when knowing that the Matcher would be aligned with it, but used their own viewpoint more frequently as an organizing direction when not knowing the Matcher's viewpoint. Directors also adapted their descriptions strategically, using more egocentric expressions when aligned with the intrinsic structure and more partner-centered expressions when their Matchers were the ones aligned with the structure, even when this information wasn't available in advance. These findings suggest that speakers are guided by converging social and representational cues to adapt flexibly the organization of their memories and the perspectives of their descriptions.

  13. Spatial, Temporal and Spectral Satellite Image Fusion via Sparse Representation

    NASA Astrophysics Data System (ADS)

    Song, Huihui

    Remote sensing provides good measurements for monitoring and further analyzing the climate change, dynamics of ecosystem, and human activities in global or regional scales. Over the past two decades, the number of launched satellite sensors has been increasing with the development of aerospace technologies and the growing requirements on remote sensing data in a vast amount of application fields. However, a key technological challenge confronting these sensors is that they tradeoff between spatial resolution and other properties, including temporal resolution, spectral resolution, swath width, etc., due to the limitations of hardware technology and budget constraints. To increase the spatial resolution of data with other good properties, one possible cost-effective solution is to explore data integration methods that can fuse multi-resolution data from multiple sensors, thereby enhancing the application capabilities of available remote sensing data. In this thesis, we propose to fuse the spatial resolution with temporal resolution and spectral resolution, respectively, based on sparse representation theory. Taking the study case of Landsat ETM+ (with spatial resolution of 30m and temporal resolution of 16 days) and MODIS (with spatial resolution of 250m ~ 1km and daily temporal resolution) reflectance, we propose two spatial-temporal fusion methods to combine the fine spatial information of Landsat image and the daily temporal resolution of MODIS image. Motivated by that the images from these two sensors are comparable on corresponding bands, we propose to link their spatial information on available Landsat- MODIS image pair (captured on prior date) and then predict the Landsat image from the MODIS counterpart on prediction date. To well-learn the spatial details from the prior images, we use a redundant dictionary to extract the basic representation atoms for both Landsat and MODIS images based on sparse representation. Under the scenario of two prior Landsat

  14. A tesselated probabilistic representation for spatial robot perception and navigation

    NASA Technical Reports Server (NTRS)

    Elfes, Alberto

    1989-01-01

    The ability to recover robust spatial descriptions from sensory information and to efficiently utilize these descriptions in appropriate planning and problem-solving activities are crucial requirements for the development of more powerful robotic systems. Traditional approaches to sensor interpretation, with their emphasis on geometric models, are of limited use for autonomous mobile robots operating in and exploring unknown and unstructured environments. Here, researchers present a new approach to robot perception that addresses such scenarios using a probabilistic tesselated representation of spatial information called the Occupancy Grid. The Occupancy Grid is a multi-dimensional random field that maintains stochastic estimates of the occupancy state of each cell in the grid. The cell estimates are obtained by interpreting incoming range readings using probabilistic models that capture the uncertainty in the spatial information provided by the sensor. A Bayesian estimation procedure allows the incremental updating of the map using readings taken from several sensors over multiple points of view. An overview of the Occupancy Grid framework is given, and its application to a number of problems in mobile robot mapping and navigation are illustrated. It is argued that a number of robotic problem-solving activities can be performed directly on the Occupancy Grid representation. Some parallels are drawn between operations on Occupancy Grids and related image processing operations.

  15. Three-dimensional spatial representation in freely swimming fish.

    PubMed

    Burt de Perera, Theresa; Holbrook, Robert I

    2012-08-01

    Research on spatial cognition has focused on how animals encode the horizontal component of space. However, most animals travel vertically within their environments, particularly those that fly or swim. Pelagic fish move with six degrees of freedom and must integrate these components to navigate accurately--how do they do this? Using an assay based on associative learning of the vertical and horizontal components of space within a rotating Y-maze, we found that fish (Astyanax fasciatus) learned and remembered information from both horizontal and vertical axes when they were presented either separately or as an integrated three-dimensional unit. When information from the two components conflicted, the fish used the previously learned vertical information in preference to the horizontal. This not only demonstrates that the horizontal and vertical components are stored separately in the fishes' representation of space (simplifying the problem of 3D navigation), but also suggests that the vertical axis contains particularly salient spatial cues--presumably including hydrostatic pressure. To explore this latter possibility, we developed a physical theoretical model that shows how fish could determine their absolute depth using pressure. We next considered full volumetric spatial cognition. Astyanax were trained to swim towards a reward in a Y-maze that could be rotated, before the arms were removed during probe trials. The subjects were tracked in three dimensions as they swam freely through the surrounding cubic tank. The results revealed that fish are able to accurately encode metric information in a volume, and that the error accrued in the horizontal and vertical axes whilst swimming in probe trials was similar. Together, these experiments demonstrate that unlike in surface-bound rats, the vertical component of the representation of space is vitally important to fishes. We hypothesise that the representation of space in the brain of vertebrates could ultimately be

  16. Dynamics of hippocampal spatial representation in echolocating bats.

    PubMed

    Ulanovsky, Nachum; Moss, Cynthia F

    2011-02-01

    The "place fields" of hippocampal pyramidal neurons are not static. For example, upon a contextual change in the environment, place fields may "remap" within typical timescales of ~ 1 min. A few studies have shown more rapid dynamics in hippocampal activity, linked to internal processes, such as switches between spatial reference frames or changes within the theta cycle. However, little is known about rapid hippocampal place field dynamics in response to external, sensory stimuli. Here, we studied this question in big brown bats, echolocating mammals in which we can readily measure rapid changes in sensory dynamics (sonar signals), as well as rapid behavioral switches between distal and proximal exploratory modes. First, we show that place field size was modulated by the availability of sensory information, on a timescale of ~ 300 ms: Bat hippocampal place fields were smallest immediately after an echolocation call, but place fields "diffused" with the passage of time after the call, when echo information was no longer arriving. Second, we show rapid modulation of hippocampal place fields as the animal switched between two exploratory modes. Third, we compared place fields and spatial view fields of individual neurons and found that place tuning was much more pronounced than spatial view tuning. In addition, dynamic fluctuations in spatial view tuning were stronger than fluctuations in place tuning. Taken together, these results suggest that spatial representation in mammalian hippocampus can be very rapidly modulated by external sensory and behavioral events.

  17. Spatial Database Organization for Multi-attribute Sensor Data Representation

    NASA Astrophysics Data System (ADS)

    Gouveia, Feliz R.; Barthes, Jean-Paul A.

    1990-03-01

    This paper surveys spatial database organization and modelling as it is becoming a crucial issue for an ever increasing number of geometric data manipulation systems. We are here interested in efficient representation and storage structures for rapid processing of large sets of geometric data, as required by robotics applications, Very Large Scale Integration (VLSI) layout design, cartography, Computer Aided Design (CAD), or geographic information systems (GIS), where frequent operations involve spatial reasoning over that data. Existing database systems lack expressiveness to store some kinds of information which are inherently present in a geometric reasoning process, such as metric information, e.g. proximity, parallelism; or topological information, e.g. inclusion, intersection, contiguity, crossing. Geometric databases (GDB) alleviate this problem by providing an explicit representation for the spatial layout of the world in terms of empty and occupied space, together with a complete description of each object in it. Access to the data is done in an associative manner, that is, by specifying values over some usually small (sub)set of attributes, e.g. the coordinates of physical space. Manipulating data in GDB systems involves often spatially localized operations, i.e., locations, and consequently objects, which are accessed in the present are likely to be accessed again in a near future; this locality of reference which Hegron [24] calls temporal coherence, is due mainly to real world physical constraints. Indeed if accesses are caused for example by a sensor module which inspects its surroundings, then it is reasonable to suppose that successive scanned territories are not very far apart.

  18. Visual-Spatial Representation in Mathematical Problem Solving by Deaf and Hearing Students

    ERIC Educational Resources Information Center

    Blatto-Vallee, Gary; Kelly, Ronald R.; Gaustad, Martha G.; Porter, Jeffrey; Fonzi, Judith

    2007-01-01

    This research examined the use of visual-spatial representation by deaf and hearing students while solving mathematical problems. The connection between spatial skills and success in mathematics performance has long been established in the literature. This study examined the distinction between visual-spatial "schematic" representations that…

  19. Spatial memory and the monkey hippocampus: not all space is created equal.

    PubMed

    Banta Lavenex, Pamela; Lavenex, Pierre

    2009-01-01

    Studies of the role of the monkey hippocampus in spatial learning and memory, however few, have reliably produced inconsistent results. Whereas the role of the hippocampus in spatial learning and memory has been clearly established in rodents, studies in nonhuman primates have made a variety of claims that range from the involvement of the hippocampus in spatial memory only at relatively longer memory delays, to no role for the hippocampus in spatial memory at all. In contrast, we have shown that selective damage restricted to the hippocampus (CA regions) prevents the learning or use of allocentric, spatial relational representations of the environment in freely behaving adult monkeys tested in an open-field arena. In this commentary, we discuss a unifying framework that explains these apparently discrepant results regarding the role of the monkey hippocampus in spatial learning and memory. We describe clear and strict criteria to interpret the findings from previous studies and guide future investigations of spatial memory in monkeys. Specifically, we affirm that, as in the rodent, the primate hippocampus is critical for spatial relational learning and memory, and in a time-independent manner. We describe how claims to the contrary are the result of experimental designs that fail to recognize, and control for, egocentric (hippocampus-independent) and allocentric (hippocampus-dependent) spatial frames of reference. Finally, we conclude that the available data demonstrate unequivocally that the central role of the hippocampus in allocentric, spatial relational learning and memory is conserved among vertebrates, including nonhuman primates.

  20. Robust face representation using hybrid spatial feature interdependence matrix.

    PubMed

    Yao, Anbang; Yu, Shan

    2013-08-01

    A key issue in face recognition is to seek an effective descriptor for representing face appearance. In the context of considering the face image as a set of small facial regions, this paper presents a new face representation approach coined spatial feature interdependence matrix (SFIM). Unlike classical face descriptors which usually use a hierarchically organized or a sequentially concatenated structure to describe the spatial layout features extracted from local regions, SFIM is attributed to the exploitation of the underlying feature interdependences regarding local region pairs inside a class specific face. According to SFIM, the face image is projected onto an undirected connected graph in a manner that explicitly encodes feature interdependence-based relationships between local regions. We calculate the pair-wise interdependence strength as the weighted discrepancy between two feature sets extracted in a hybrid feature space fusing histograms of intensity, local binary pattern and oriented gradients. To achieve the goal of face recognition, our SFIM-based face descriptor is embedded in three different recognition frameworks, namely nearest neighbor search, subspace-based classification, and linear optimization-based classification. Extensive experimental results on four well-known face databases and comprehensive comparisons with the state-of-the-art results are provided to demonstrate the efficacy of the proposed SFIM-based descriptor.

  1. The precuneus and hippocampus contribute to individual differences in the unfolding of spatial representations during episodic autobiographical memory.

    PubMed

    Hebscher, Melissa; Levine, Brian; Gilboa, Asaf

    2017-03-30

    Spatial information is a central aspect of episodic autobiographical memory (EAM). Space-based theories of memory, including cognitive map and scene construction models, posit that spatial reinstatement is a required process during early event recall. Spatial information can be represented from both allocentric (third-person) and egocentric (first-person) perspectives during EAM, with egocentric perspectives being important for mental imagery and supported by the precuneus. Individuals differ in their tendency to rely on allocentric or egocentric information, and in general, the subjective experience of remembering in EAM differs greatly across individuals. Here we examined individual differences in spatial aspects of EAM, how such differences influence the vividness and temporal order of recollection, and their anatomical correlates. We cued healthy young participants (n =63) with personally familiar locations and non-locations. We examined how cue type affects (i) retrieval dynamics and (ii) phenomenological aspects of remembering, and related behavioural performance to regional brain volumes (n =42). Participants tended to spontaneously recall spatial information early during recollection, even in the absence of spatial cues, and individuals with a stronger tendency to recall space first also displayed faster reaction times. Across participants, place-cued memories were re-experienced more vividly and were richer in detail than those cued by objects, but not more than those cued by familiar persons. Volumetric differences were associated with behavioural performance such that egocentric remembering was positively associated with precuneus volume. Hippocampal CA2/CA3 volumes were associated with the tendency to recall place-cued memories less effortfully. Consistent with scene construction theories, this study suggests that spatial information is reinstated early and contributes to the efficiency and phenomenology of EAM. However, early recall of spatial

  2. Auditory Spatial Perception without Vision

    PubMed Central

    Voss, Patrice

    2016-01-01

    Valuable insights into the role played by visual experience in shaping spatial representations can be gained by studying the effects of visual deprivation on the remaining sensory modalities. For instance, it has long been debated how spatial hearing evolves in the absence of visual input. While several anecdotal accounts tend to associate complete blindness with exceptional hearing abilities, experimental evidence supporting such claims is, however, matched by nearly equal amounts of evidence documenting spatial hearing deficits. The purpose of this review is to summarize the key findings which support either enhancements or deficits in spatial hearing observed following visual loss and to provide a conceptual framework that isolates the specific conditions under which they occur. Available evidence will be examined in terms of spatial dimensions (horizontal, vertical, and depth perception) and in terms of frames of reference (egocentric and allocentric). Evidence suggests that while early blind individuals show superior spatial hearing in the horizontal plane, they also show significant deficits in the vertical plane. Potential explanations underlying these contrasting findings will be discussed. Early blind individuals also show spatial hearing impairments when performing tasks that require the use of an allocentric frame of reference. Results obtained with late-onset blind individuals suggest that early visual experience plays a key role in the development of both spatial hearing enhancements and deficits. PMID:28066286

  3. Emotion modulates allocentric but not egocentric stimulus localization: implications for dual visual systems perspectives.

    PubMed

    Kryklywy, James H; Mitchell, Derek G V

    2014-12-01

    Considerable evidence suggests that emotional cues influence processing prioritization and neural representations of stimuli. Specifically, within the visual domain, emotion is known to impact ventral stream processes and ventral stream-mediated behaviours; it remains unclear, however, the extent to which emotion impacts dorsal stream processes. In the present study, participants localized a visual target stimulus embedded within a background array utilizing allocentric localization (requiring an object-centred representation of visual space to perform an action) and egocentric localization (requiring purely target-directed actions), which are thought to differentially rely on the ventral versus dorsal visual stream, respectively. Simultaneously, a task-irrelevant negative, positive or neutral sound was presented to produce an emotional context. In line with predictions, we found that during allocentric localization, response accuracy was enhanced in the context of negative compared to either neutral or positive sounds. In contrast, no significant effects of emotion were identified during egocentric localization. These results raise the possibility that negative emotional auditory contexts enhance ventral stream, but not dorsal stream, processing in the visual domain. Furthermore, this study highlights the complexity of emotion-cognition interactions, indicating how emotion can have a differential impact on almost identical overt behaviours that may be governed by distinct neurocognitive systems.

  4. Think Spatial: The Representation in Mental Rotation Is Nonvisual

    ERIC Educational Resources Information Center

    Liesefeld, Heinrich R.; Zimmer, Hubert D.

    2013-01-01

    For mental rotation, introspection, theories, and interpretations of experimental results imply a certain type of mental representation, namely, visual mental images. Characteristics of the rotated representation can be examined by measuring the influence of stimulus characteristics on rotational speed. If the amount of a given type of information…

  5. Basal Forebrain Atrophy Contributes to Allocentric Navigation Impairment in Alzheimer's Disease Patients.

    PubMed

    Kerbler, Georg M; Nedelska, Zuzana; Fripp, Jurgen; Laczó, Jan; Vyhnalek, Martin; Lisý, Jiří; Hamlin, Adam S; Rose, Stephen; Hort, Jakub; Coulson, Elizabeth J

    2015-01-01

    The basal forebrain degenerates in Alzheimer's disease (AD) and this process is believed to contribute to the cognitive decline observed in AD patients. Impairment in spatial navigation is an early feature of the disease but whether basal forebrain dysfunction in AD is responsible for the impaired navigation skills of AD patients is not known. Our objective was to investigate the relationship between basal forebrain volume and performance in real space as well as computer-based navigation paradigms in an elderly cohort comprising cognitively normal controls, subjects with amnestic mild cognitive impairment and those with AD. We also tested whether basal forebrain volume could predict the participants' ability to perform allocentric- vs. egocentric-based navigation tasks. The basal forebrain volume was calculated from 1.5 T magnetic resonance imaging (MRI) scans, and navigation skills were assessed using the human analog of the Morris water maze employing allocentric, egocentric, and mixed allo/egocentric real space as well as computerized tests. When considering the entire sample, we found that basal forebrain volume correlated with spatial accuracy in allocentric (cued) and mixed allo/egocentric navigation tasks but not the egocentric (uncued) task, demonstrating an important role of the basal forebrain in mediating cue-based spatial navigation capacity. Regression analysis revealed that, although hippocampal volume reflected navigation performance across the entire sample, basal forebrain volume contributed to mixed allo/egocentric navigation performance in the AD group, whereas hippocampal volume did not. This suggests that atrophy of the basal forebrain contributes to aspects of navigation impairment in AD that are independent of hippocampal atrophy.

  6. The impact of map orientation and generalisation on congestion decisions: a comparison of schematic-egocentric and topographic-allocentric maps.

    PubMed

    Crundall, David; Crundall, Elizabeth; Burnett, Gary; Shalloe, Sally; Sharples, Sarah

    2011-08-01

    Map information for drivers is usually presented in an allocentric-topographic form (as with printed maps) or in an egocentric-schematic form (as with road signs). The advent of new variable message boards on UK motorways raises the possibility of presenting road maps to reflect congestion ahead. Should these maps be allocentric-topographic or egocentric-schematic? This was assessed in an eye tracking study, with participants viewing maps of a motorway network in order to identify whether any congestion was relevant to their intended route. The schematic-egocentric maps were responded to most accurately with shorter fixation durations suggesting easier processing. In particular, the driver's entrance and intended exit from the map were attended to more in the allocentric maps. Individual differences in mental rotation ability also seem to contribute to poor performance on allocentric maps. The results favour schematic-egocentric maps for roadside congestion information, but also provide theoretical insights into map-rotation and individual differences. Statement of Relevance: This study informs designers and policy makers about optimum representations of traffic congestion on roadside variable message signs and, furthermore, demonstrates that individual differences contribute to problems with processing certain sign types. Schematic-egocentric representations of a motorway network produced the best results, as noted in behavioural and eye movement measures.

  7. Sensory Substitution: The Spatial Updating of Auditory Scenes “Mimics” the Spatial Updating of Visual Scenes

    PubMed Central

    Pasqualotto, Achille; Esenkaya, Tayfun

    2016-01-01

    Visual-to-auditory sensory substitution is used to convey visual information through audition, and it was initially created to compensate for blindness; it consists of software converting the visual images captured by a video-camera into the equivalent auditory images, or “soundscapes”. Here, it was used by blindfolded sighted participants to learn the spatial position of simple shapes depicted in images arranged on the floor. Very few studies have used sensory substitution to investigate spatial representation, while it has been widely used to investigate object recognition. Additionally, with sensory substitution we could study the performance of participants actively exploring the environment through audition, rather than passively localizing sound sources. Blindfolded participants egocentrically learnt the position of six images by using sensory substitution and then a judgment of relative direction task (JRD) was used to determine how this scene was represented. This task consists of imagining being in a given location, oriented in a given direction, and pointing towards the required image. Before performing the JRD task, participants explored a map that provided allocentric information about the scene. Although spatial exploration was egocentric, surprisingly we found that performance in the JRD task was better for allocentric perspectives. This suggests that the egocentric representation of the scene was updated. This result is in line with previous studies using visual and somatosensory scenes, thus supporting the notion that different sensory modalities produce equivalent spatial representation(s). Moreover, our results have practical implications to improve training methods with sensory substitution devices (SSD). PMID:27148000

  8. Effects of Representation Sequences and Spatial Ability on Students' Scientific Understandings about the Mechanism of Breathing

    ERIC Educational Resources Information Center

    Wu, Hsin-Kai; Lin, Yu-Fen; Hsu, Ying-Shao

    2013-01-01

    The purpose of this study was to investigate the effects of representation sequences and spatial ability on students' scientific understandings about the mechanism of breathing in human beings. 130 seventh graders were assigned to two groups with different sequential combinations of static and dynamic representations: SD group (i.e., viewing…

  9. Visual spatial representation in mathematical problem solving by deaf and hearing students.

    PubMed

    Blatto-Vallee, Gary; Kelly, Ronald R; Gaustad, Martha G; Porter, Jeffrey; Fonzi, Judith

    2007-01-01

    This research examined the use of visual-spatial representation by deaf and hearing students while solving mathematical problems. The connection between spatial skills and success in mathematics performance has long been established in the literature. This study examined the distinction between visual-spatial "schematic" representations that encode the spatial relations described in a problem versus visual-spatial "pictorial" representations that encode only the visual appearance of the objects described in a problem. A total of 305 hearing (n = 156) and deaf (n = 149) participants from middle school, high school, and college participated in this study. At all educational levels, the hearing students performed significantly better in solving the mathematical problems compared to their deaf peers. Although the deaf baccalaureate students exhibited the highest performance of all the deaf participants, they only performed as well as the hearing middle school students who were the lowest scoring hearing group. Deaf students remained flat in their performance on the mathematical problem-solving task from middle school through the college associate degree level. The analysis of the students' problem representations showed that the hearing participants utilized visual-spatial schematic representation to a greater extent than did the deaf participants. However, the use of visual-spatial schematic representations was a stronger positive predictor of mathematical problem-solving performance for the deaf students. When deaf students' problem representation focused simply on the visual-spatial pictorial or iconic aspects of the mathematical problems, there was a negative predictive relationship with their problem-solving performance. On two measures of visual-spatial abilities, the hearing students in high school and college performed significantly better than their deaf peers.

  10. Hippocampal lesion prevents spatial relational learning in adult macaque monkeys.

    PubMed

    Lavenex, Pamela Banta; Amaral, David G; Lavenex, Pierre

    2006-04-26

    The role of the hippocampus in spatial learning and memory has been extensively studied in rodents. Comparable studies in nonhuman primates, however, are few, and findings are often contradictory. This may be attributable to the failure to distinguish between allocentric and egocentric spatial representations in experimental designs. For this experiment, six adult monkeys received bilateral hippocampal ibotenic acid lesions, and six control subjects underwent sham surgery. Freely moving monkeys then foraged for food located in two arrays of three distinct locations among 18 locations distributed in an open-field arena. Multiple goals and four pseudorandomly chosen entrance points precluded the monkeys' ability to rely on an egocentric strategy to identify food locations. Monkeys were tested in two conditions. First, local visual cues marked the food locations. Second, no local cues marked the food locations, so that monkeys had to rely on an allocentric (spatial relational) representation of the environment to discriminate these locations. Both hippocampal-lesioned and control monkeys discriminated the food locations in the presence of local cues. However, in the absence of local cues, control subjects discriminated the food locations, whereas hippocampal-lesioned monkeys were unable to do so. Interestingly, histological analysis of the brain of one control monkey whose behavior was identical to that of the experimentally lesioned animals revealed a bilateral ischemic lesion restricted to the hippocampus. These findings demonstrate that the adult monkey hippocampal formation is critical for the establishment or use of allocentric spatial representations and that selective damage of the hippocampus prevents spatial relational learning in adult nonhuman primates.

  11. Sex Differences in the Spatial Representation of Number

    ERIC Educational Resources Information Center

    Bull, Rebecca; Cleland, Alexandra A.; Mitchell, Thomas

    2013-01-01

    There is a large body of accumulated evidence from behavioral and neuroimaging studies regarding how and where in the brain we represent basic numerical information. A number of these studies have considered how numerical representations may differ between individuals according to their age or level of mathematical ability, but one issue rarely…

  12. Population Coding of Visual Space: Comparison of Spatial Representations in Dorsal and Ventral Pathways

    PubMed Central

    Sereno, Anne B.; Lehky, Sidney R.

    2011-01-01

    Although the representation of space is as fundamental to visual processing as the representation of shape, it has received relatively little attention from neurophysiological investigations. In this study we characterize representations of space within visual cortex, and examine how they differ in a first direct comparison between dorsal and ventral subdivisions of the visual pathways. Neural activities were recorded in anterior inferotemporal cortex (AIT) and lateral intraparietal cortex (LIP) of awake behaving monkeys, structures associated with the ventral and dorsal visual pathways respectively, as a stimulus was presented at different locations within the visual field. In spatially selective cells, we find greater modulation of cell responses in LIP with changes in stimulus position. Further, using a novel population-based statistical approach (namely, multidimensional scaling), we recover the spatial map implicit within activities of neural populations, allowing us to quantitatively compare the geometry of neural space with physical space. We show that a population of spatially selective LIP neurons, despite having large receptive fields, is able to almost perfectly reconstruct stimulus locations within a low-dimensional representation. In contrast, a population of AIT neurons, despite each cell being spatially selective, provide less accurate low-dimensional reconstructions of stimulus locations. They produce instead only a topologically (categorically) correct rendition of space, which nevertheless might be critical for object and scene recognition. Furthermore, we found that the spatial representation recovered from population activity shows greater translation invariance in LIP than in AIT. We suggest that LIP spatial representations may be dimensionally isomorphic with 3D physical space, while in AIT spatial representations may reflect a more categorical representation of space (e.g., “next to” or “above”). PMID:21344010

  13. Ontogeny of neural circuits underlying spatial memory in the rat

    PubMed Central

    Ainge, James A.; Langston, Rosamund F.

    2012-01-01

    Spatial memory is a well-characterized psychological function in both humans and rodents. The combined computations of a network of systems including place cells in the hippocampus, grid cells in the medial entorhinal cortex and head direction cells found in numerous structures in the brain have been suggested to form the neural instantiation of the cognitive map as first described by Tolman in 1948. However, while our understanding of the neural mechanisms underlying spatial representations in adults is relatively sophisticated, we know substantially less about how this network develops in young animals. In this article we briefly review studies examining the developmental timescale that these systems follow. Electrophysiological recordings from very young rats show that directional information is at adult levels at the outset of navigational experience. The systems supporting allocentric memory, however, take longer to mature. This is consistent with behavioral studies of young rats which show that spatial memory based on head direction develops very early but that allocentric spatial memory takes longer to mature. We go on to report new data demonstrating that memory for associations between objects and their spatial locations is slower to develop than memory for objects alone. This is again consistent with previous reports suggesting that adult like spatial representations have a protracted development in rats and also suggests that the systems involved in processing non-spatial stimuli come online earlier. PMID:22403529

  14. Exclusion of agricultural lands in spatial conservation prioritization strategies: consequences for biodiversity and ecosystem service representation.

    PubMed

    Durán, América P; Duffy, James P; Gaston, Kevin J

    2014-10-07

    Agroecosystems have traditionally been considered incompatible with biological conservation goals, and often been excluded from spatial conservation prioritization strategies. The consequences for the representativeness of identified priority areas have been little explored. Here, we evaluate these for biodiversity and carbon storage representation when agricultural land areas are excluded from a spatial prioritization strategy for South America. Comparing different prioritization approaches, we also assess how the spatial overlap of priority areas changes. The exclusion of agricultural lands was detrimental to biodiversity representation, indicating that priority areas for agricultural production overlap with areas of relatively high occurrence of species. By contrast, exclusion of agricultural lands benefits representation of carbon storage within priority areas, as lands of high value for agriculture and carbon storage overlap little. When agricultural lands were included and equally weighted with biodiversity and carbon storage, a balanced representation resulted. Our findings suggest that with appropriate management, South American agroecosystems can significantly contribute to biodiversity conservation.

  15. Development of spatial representation of numbers: a study of the SNARC effect in Chinese children.

    PubMed

    Yang, Tao; Chen, Chuansheng; Zhou, Xinlin; Xu, Jihong; Dong, Qi; Chen, Chunhui

    2014-01-01

    Using the standard parity judgment task, this study investigated the development of numerical-spatial representation. Participants were 314 healthy right-handed Chinese children (from kindergarteners to sixth graders) and adults. The results revealed that all age groups showed a significant (or marginally significant in the case of first graders) SNARC (spatial-numerical association of response codes) effect, indicating that Chinese children as young as kindergarteners already had developed automatic spatial representations of numbers (or the mental number line). Surprisingly, however, the size of the SNARC effect did not show much developmental change. These results are discussed in the context of the literature on spatial representations of numbers and on cross-cultural differences in early development of number cognition.

  16. Neural representation of spatial topology in the rodent hippocampus.

    PubMed

    Chen, Zhe; Gomperts, Stephen N; Yamamoto, Jun; Wilson, Matthew A

    2014-01-01

    Pyramidal cells in the rodent hippocampus often exhibit clear spatial tuning in navigation. Although it has been long suggested that pyramidal cell activity may underlie a topological code rather than a topographic code, it remains unclear whether an abstract spatial topology can be encoded in the ensemble spiking activity of hippocampal place cells. Using a statistical approach developed previously, we investigate this question and related issues in greater detail. We recorded ensembles of hippocampal neurons as rodents freely foraged in one- and two-dimensional spatial environments and used a "decode-to-uncover" strategy to examine the temporally structured patterns embedded in the ensemble spiking activity in the absence of observed spatial correlates during periods of rodent navigation or awake immobility. Specifically, the spatial environment was represented by a finite discrete state space. Trajectories across spatial locations ("states") were associated with consistent hippocampal ensemble spiking patterns, which were characterized by a state transition matrix. From this state transition matrix, we inferred a topology graph that defined the connectivity in the state space. In both one- and two-dimensional environments, the extracted behavior patterns from the rodent hippocampal population codes were compared against randomly shuffled spike data. In contrast to a topographic code, our results support the efficiency of topological coding in the presence of sparse sample size and fuzzy space mapping. This computational approach allows us to quantify the variability of ensemble spiking activity, examine hippocampal population codes during off-line states, and quantify the topological complexity of the environment.

  17. Testing the shared spatial representation of magnitude of auditory and visual intensity.

    PubMed

    Fairhurst, Merle T; Deroy, Ophelia

    2017-03-01

    The largely automatic mapping observed between space and sensory magnitudes suggests representation by a single system across domains. Using stimulus response compatibility tasks, the study confirms that a relative, auditory magnitude such as loudness shows a spatial compatibility effect similar to those evidenced for visual sensory domains but only with comparison tasks and for vertically oriented responses. No effect is seen when participants track changes in amplitude or when responses are oriented vertically. In a bimodal context, the study tested whether the spatial mapping of magnitude in 1 sensory modality (loudness) interacts with the spatial representation of magnitude in another sense (luminance). Observed interactions across modalities suggest overlap of magnitude representation across distinct sensory domains, whereas the absence of an effect for dynamic changes in loudness suggests that it is useful for decisions to act on 1 of several objects rather than for tracking magnitude changes in 1 object. (PsycINFO Database Record

  18. A study of kindergarten children's spatial representation in a mapping project

    NASA Astrophysics Data System (ADS)

    Davis, Genevieve A.; Hyun, Eunsook

    2005-02-01

    This phenomenological study examined kindergarten children's development of spatial representation in a year long mapping project. Findings and discussion relative to how children conceptualised and represented physical space are presented in light of theoretical notions advanced by Piaget, van Hiele, and cognitive science researchers Battista and Clements. Analyses of the processes the children used and their finished products indicate that children can negotiate meaning for complex systems of geometric concepts when given opportunities to debate, negotiate, reflect, evaluate and seek meaning for representing space. The complexity and "holistic" nature of spatial representation of young children emerged in this study.

  19. Spatial and Temporal knowledge representation techniques for traditional machine learning classifiers applied to remote sensing data.

    NASA Astrophysics Data System (ADS)

    Cervone, G.; Kafatos, M.

    2005-12-01

    Formulating general hypotheses from limited observations is one of the fundamental principles of scientific discovery. The data mining approach consists, among others, in generating new knowledge analyzing massive amounts of data and using background knowledge. Knowledge representation is one of the fundamental topics of data mining, because the representation language dictates which algorithms to use, as well as the effective usefulness of the learned hypotheses. Programs that use richer representation languages have the advantage of generating hypotheses that are compact and easy to understand, and the disadvantage of being more complex, slower and ususally with more control parameters. On the other hand, programs that use simpler representaiton languages overcome these shortcomings, but fail to generate hypotheses that can be easily interpreted and used for problem solving and decision making. Symbolic machine learning methods, such as decision rule classifiers, use a complex representation language which can be used to describe difficult concepts, and allow to cope with spatial and temporal data, such as remote sensing data. Because data are usually collected as a sequence of observations over time and in specific locations, very often it is necessary to find relations not only in the data per se, but also in the temporal and spatial distribution of the observations. Due to the increasingly large amount of spatial and temporal data collected and analyzed in several fields such as remote sensing, geographical information systems (GIS), bioinformatics, medicine, bank transactions, etc, spatial and temporal knowledge representaion has become a problem of crucial importance. Present research investigates methods to use existing symbolic machine learning classifiers with temporal and spatial data. The data are converted in a representation language which is suitable to learn spatial and temporal relationship without modifying the existing algorithms. Results from

  20. Egocentric and allocentric reference frames for catching a falling object.

    PubMed

    Le Séac'h, Anne Brec'hed; Senot, Patrice; McIntyre, Joseph

    2010-04-01

    When programming movement, one must account for gravitational acceleration. This is particularly important when catching a falling object because the task requires a precise estimate of time-to-contact. Knowledge of gravity's effects is intimately linked to our definition of 'up' and 'down'. Both directions can be described in an allocentric reference frame, based on visual and/or gravitational cues, or in an egocentric reference frame in which the body axis is taken as vertical. To test which frame humans use to predict gravity's effect, we asked participants to intercept virtual balls approaching from above or below with artificially controlled acceleration that could be congruent or not with gravity. To dissociate between these frames, subjects were seated upright (trunk parallel to gravity) or lying down (body axis orthogonal to the gravitational axis). We report data in line with the use of an allocentric reference frame and discuss its relevance depending on available gravity-related cues.

  1. Impaired Spatial Category Representations in Williams Syndrome; an Investigation of the Mechanistic Contributions of Non-verbal Cognition and Spatial Language Performance.

    PubMed

    Farran, Emily K; Atkinson, Lauren; Broadbent, Hannah

    2016-01-01

    The aims of this study were to: provide a precise characterisation of spatial category representations in Williams syndrome (WS); to determine the nature of the mechanistic contributions from spatial language performance and non-verbal cognition to spatial category representations in WS; and to explore the stability of spatial category representations in WS using error analysis. Spatial category representation was assessed across nine spatial categories (In, On, Under, In Front, Behind, Above, Below, Left, and Right) using an odd-one-out task. The performance of individuals with WS (N = 24; 12;00 years;months to 30;07 years;months) was compared to data from typically developing children aged four to 7 years (N = 75), published in Farran and Atkinson (2016). The WS group performed at the level of typical 4- and 5-year-olds. Despite this low level of ability, they demonstrated typical variation in their representation of easier to harder spatial categories, in line with the spatial category representation model (Farran and Atkinson, 2016). Error analysis of broad category understanding (i.e., category understanding which includes non-prototypical category members), however, showed that errors reflected fewer guess responses than expected by chance in the WS group only, which could suggest strategic responding in this group. Developmental trajectory analyses demonstrated a significant contributing influence of both non-verbal mental age and spatial language ability in the TD group. For the WS group, non-verbal mental age significantly contributed to spatial category representations, whilst the contributing influence of spatial language ability was marginally significant. With reference to level of ability, spatial category representations in the WS group were consistently lower than would be expected for non-verbal mental age, but on a par with their (low) spatial language mental age. Spatial category representations in WS are discussed with reference to their

  2. Impaired Spatial Category Representations in Williams Syndrome; an Investigation of the Mechanistic Contributions of Non-verbal Cognition and Spatial Language Performance

    PubMed Central

    Farran, Emily K.; Atkinson, Lauren; Broadbent, Hannah

    2016-01-01

    The aims of this study were to: provide a precise characterisation of spatial category representations in Williams syndrome (WS); to determine the nature of the mechanistic contributions from spatial language performance and non-verbal cognition to spatial category representations in WS; and to explore the stability of spatial category representations in WS using error analysis. Spatial category representation was assessed across nine spatial categories (In, On, Under, In Front, Behind, Above, Below, Left, and Right) using an odd-one-out task. The performance of individuals with WS (N = 24; 12;00 years;months to 30;07 years;months) was compared to data from typically developing children aged four to 7 years (N = 75), published in Farran and Atkinson (2016). The WS group performed at the level of typical 4- and 5-year-olds. Despite this low level of ability, they demonstrated typical variation in their representation of easier to harder spatial categories, in line with the spatial category representation model (Farran and Atkinson, 2016). Error analysis of broad category understanding (i.e., category understanding which includes non-prototypical category members), however, showed that errors reflected fewer guess responses than expected by chance in the WS group only, which could suggest strategic responding in this group. Developmental trajectory analyses demonstrated a significant contributing influence of both non-verbal mental age and spatial language ability in the TD group. For the WS group, non-verbal mental age significantly contributed to spatial category representations, whilst the contributing influence of spatial language ability was marginally significant. With reference to level of ability, spatial category representations in the WS group were consistently lower than would be expected for non-verbal mental age, but on a par with their (low) spatial language mental age. Spatial category representations in WS are discussed with reference to their

  3. Spatial Representations in Local Field Potential Activity of Primate Anterior Intraparietal Cortex (AIP).

    PubMed

    Lehmann, Sebastian J; Scherberger, Hansjörg

    2015-01-01

    The execution of reach-to-grasp movements in order to interact with our environment is an important subset of the human movement repertoire. To coordinate such goal-directed movements, information about the relative spatial position of target and effector (in this case the hand) has to be continuously integrated and processed. Recently, we reported the existence of spatial representations in spiking-activity of the cortical fronto-parietal grasp network (Lehmann & Scherberger 2013), and in particular in the anterior intraparietal cortex (AIP). To further investigate the nature of these spatial representations, we explored in two rhesus monkeys (Macaca mulatta) how different frequency bands of the local field potential (LFP) in AIP are modulated by grip type, target position, and gaze position, during the planning and execution of reach-to-grasp movements. We systematically varied grasp type, spatial target, and gaze position and found that both spatial and grasp information were encoded in a variety of frequency bands (1-13Hz, 13-30Hz, 30-60Hz, and 60-100Hz, respectively). Whereas the representation of grasp type strongly increased towards and during movement execution, spatial information was represented throughout the task. Both spatial and grasp type representations could be readily decoded from all frequency bands. The fact that grasp type and spatial (reach) information was found not only in spiking activity, but also in various LFP frequency bands of AIP, might significantly contribute to the development of LFP-based neural interfaces for the control of upper limb prostheses.

  4. Task-dependent transfer of perceptual to memory representations during delayed spatial frequency discrimination.

    PubMed

    Lalonde, Jasmin; Chaudhuri, Avi

    2002-06-01

    Discrimination thresholds were obtained using a delayed spatial frequency discrimination task. In Experiment 1, we found that presentation of a mask 3 s before onset of a reference Gabor patch caused a selective, spatial frequency dependent interference in a subsequent discrimination task. However, a 10 s interval abolished this masking effect. In Experiment 2, the mask was associated with a second spatial frequency discrimination task so that a representation of the mask had to be coded into short-term perceptual memory. This experiment was performed to assess whether absence of masking in the 10 s condition of Experiment 1 might be due to decay of the mask information in the perceptual or the memory representational domain. The presence of this second discrimination task now caused similar interference effects on the primary discrimination task at both the 3 s and 10 s interstimulus intervals (ISI) conditions. Finally, to test the robustness of the masking effect, the nature of the secondary masking task was changed from a spatial frequency discrimination task to an orientation discrimination task in Experiment 3. The masking effect was now abolished in both the 3 and 10 s ISI conditions. Together, the results from these experiments are consistent with the idea of a two-level perceptual memory mechanism. The results also suggest that stimulus representations during a perceptual discrimination task are shared between the perceptual and memory representation domains in a task-dependent manner.

  5. Qualitative Differences in the Representation of Spatial Relations for Different Object Classes

    ERIC Educational Resources Information Center

    Cooper, Eric E.; Brooks, Brian E.

    2004-01-01

    Two experiments investigated whether the representations used for animal, produce, and object recognition code spatial relations in a similar manner. Experiment 1 tested the effects of planar rotation on the recognition of animals and nonanimal objects. Response times for recognizing animals followed an inverted U-shaped function, whereas those…

  6. A Study of Kindergarten Children's Spatial Representation in a Mapping Project

    ERIC Educational Resources Information Center

    Davis, Genevieve A.; Hyun, Eunsook

    2005-01-01

    This phenomenological study examined kindergarten children's development of spatial representation in a year long mapping project. Findings and discussion relative to how children conceptualised and represented physical space are presented in light of theoretical notions advanced by Piaget, van Hiele, and cognitive science researchers Battista and…

  7. Selection of preconfigured cell assemblies for representation of novel spatial experiences

    PubMed Central

    Dragoi, George; Tonegawa, Susumu

    2014-01-01

    Internal representations about the external world can be driven by the external stimuli or can be internally generated in their absence. It has been a matter of debate whether novel stimuli from the external world are instructive over the brain network to create de novo representations or, alternatively, are selecting from existing pre-representations hosted in preconfigured brain networks. The hippocampus is a brain area necessary for normal internally generated spatial–temporal representations and its dysfunctions have resulted in anterograde amnesia, impaired imagining of new experiences, and hallucinations. The compressed temporal sequence of place cell activity in the rodent hippocampus serves as an animal model of internal representation of the external space. Based on our recent results on the phenomenon of novel place cell sequence preplay, we submit that the place cell sequence of a novel spatial experience is determined, in part, by a selection of a set of cellular firing sequences from a repertoire of existing temporal firing sequences in the hippocampal network. Conceptually, this indicates that novel stimuli from the external world select from their pre-representations rather than create de novo our internal representations of the world. PMID:24366134

  8. Stepping into a map: initial heading direction influences spatial memory flexibility.

    PubMed

    Gagnon, Stephanie A; Brunyé, Tad T; Gardony, Aaron; Noordzij, Matthijs L; Mahoney, Caroline R; Taylor, Holly A

    2014-03-01

    Learning a novel environment involves integrating first-person perceptual and motoric experiences with developing knowledge about the overall structure of the surroundings. The present experiments provide insights into the parallel development of these egocentric and allocentric memories by intentionally conflicting body- and world-centered frames of reference during learning, and measuring outcomes via online and offline measures. Results of two experiments demonstrate faster learning and increased memory flexibility following route perspective reading (Experiment 1) and virtual navigation (Experiment 2) when participants begin exploring the environment on a northward (vs. any other direction) allocentric heading. We suggest that learning advantages due to aligning body-centered (left/right/forward/back) with world-centered (NSEW) reference frames are indicative of three features of spatial memory development and representation. First, memories for egocentric and allocentric information develop in parallel during novel environment learning. Second, cognitive maps have a preferred orientation relative to world-centered coordinates. Finally, this preferred orientation corresponds to traditional orientation of physical maps (i.e., north is upward), suggesting strong associations between daily perceptual and motor experiences and the manner in which we preferentially represent spatial knowledge.

  9. Comprehension of Spatial Language in Williams Syndrome: Evidence for Impaired Spatial Representation of Verbal Descriptions

    ERIC Educational Resources Information Center

    Laing, Emma; Jarrold, Christopher

    2007-01-01

    Individuals with the rare genetic disorder, Williams syndrome, have an unusual cognitive profile with relatively good language abilities but poor non-verbal and spatial skills. This study explored the interaction between linguistic and spatial functioning in Williams syndrome by investigating individuals' comprehension of spatial language. A group…

  10. In (or outside of) your neck of the woods: laterality in spatial body representation

    PubMed Central

    Hach, Sylvia; Schütz-Bosbach, Simone

    2014-01-01

    Beside language, space is to date the most widely recognized lateralized systems. For example, it has been shown that even mental representations of space and the spatial representation of abstract concepts display lateralized characteristics. For the most part, this body of literature describes space as distal or something outside of the observer or actor. What has been strangely absent in the literature on the whole and specifically in the spatial literature until recently is the most proximal space imaginable – the body. In this review, we will summarize three strands of literature showing laterality in body representations. First, evidence of hemispheric asymmetries in body space in health and, second in body space in disease will be examined. Third, studies pointing to differential contributions of the right and left hemisphere to illusory body (space) will be summarized. Together these studies show hemispheric asymmetries to be evident in body representations at the level of simple somatosensory and proprioceptive representations. We propose a novel working hypothesis, whereby neural systems dedicated to processing action-oriented information about one’s own body space may ontogenetically serve as a template for the perception of the external world. PMID:24600421

  11. The development of spatial behaviour and the hippocampal neural representation of space

    PubMed Central

    Wills, Thomas J.; Muessig, Laurenz; Cacucci, Francesca

    2014-01-01

    The role of the hippocampal formation in spatial cognition is thought to be supported by distinct classes of neurons whose firing is tuned to an organism's position and orientation in space. In this article, we review recent research focused on how and when this neural representation of space emerges during development: each class of spatially tuned neurons appears at a different age, and matures at a different rate, but all the main spatial responses tested so far are present by three weeks of age in the rat. We also summarize the development of spatial behaviour in the rat, describing how active exploration of space emerges during the third week of life, the first evidence of learning in formal tests of hippocampus-dependent spatial cognition is observed in the fourth week, whereas fully adult-like spatial cognitive abilities require another few weeks to be achieved. We argue that the development of spatially tuned neurons needs to be considered within the context of the development of spatial behaviour in order to achieve an integrated understanding of the emergence of hippocampal function and spatial cognition. PMID:24366148

  12. Gravity influences the visual representation of object tilt in parietal cortex.

    PubMed

    Rosenberg, Ari; Angelaki, Dora E

    2014-10-22

    Sensory systems encode the environment in egocentric (e.g., eye, head, or body) reference frames, creating inherently unstable representations that shift and rotate as we move. However, it is widely speculated that the brain transforms these signals into an allocentric, gravity-centered representation of the world that is stable and independent of the observer's spatial pose. Where and how this representation may be achieved is currently unknown. Here we demonstrate that a subpopulation of neurons in the macaque caudal intraparietal area (CIP) visually encodes object tilt in nonegocentric coordinates defined relative to the gravitational vector. Neuronal responses to the tilt of a visually presented planar surface were measured with the monkey in different spatial orientations (upright and rolled left/right ear down) and then compared. This revealed a continuum of representations in which planar tilt was encoded in a gravity-centered reference frame in approximately one-tenth of the comparisons, intermediate reference frames ranging between gravity-centered and egocentric in approximately two-tenths of the comparisons, and in an egocentric reference frame in less than half of the comparisons. Altogether, almost half of the comparisons revealed a shift in the preferred tilt and/or a gain change consistent with encoding object orientation in nonegocentric coordinates. Through neural network modeling, we further show that a purely gravity-centered representation of object tilt can be achieved directly from the population activity of CIP-like units. These results suggest that area CIP may play a key role in creating a stable, allocentric representation of the environment defined relative to an "earth-vertical" direction.

  13. Simulating a lesion in a basis function model of spatial representations: comparison with hemineglect.

    PubMed

    Pouget, A; Sejnowski, T J

    2001-07-01

    The basis function theory of spatial representations explains how neurons in the parietal cortex can perform nonlinear transformations from sensory to motor coordinates. The authors present computer simulations showing that unilateral parietal lesions leading to a neuronal gradient in basis function maps can account for the behavior of patients with hemineglect, including (a) neglect in line cancellation and line bisection experiments; (b) neglect in multiple frames of reference simultaneously; (c) relative neglect, a form of what is sometime called object-centered neglect; and (d) neglect without optic ataxia. Contralateral neglect arises in the model because the lesion produces an imbalance in the salience of stimuli that is modulated by the orientation of the body in space. These results strongly support the basis function theory for spatial representations in humans and provide a computational model of hemineglect at the single-cell level.

  14. Distinct pathways for rule-based retrieval and spatial mapping of memory representations in hippocampal neurons

    PubMed Central

    Navawongse, Rapeechai; Eichenbaum, Howard

    2013-01-01

    Hippocampal neurons encode events within the context in which they occurred, a fundamental feature of episodic memory. Here we explored the sources of event and context information represented by hippocampal neurons during the retrieval of object associations in rats. Temporary inactivation of the medial prefrontal cortex differentially reduced the selectivity of rule-based object associations represented by hippocampal neuronal firing patterns but did not affect spatial firing patterns. By contrast, inactivation of the medial entorhinal cortex resulted in a pervasive reorganization of hippocampal mappings of spatial context and events. These results suggest distinct and cooperative prefrontal and medial temporal mechanisms in memory representation. PMID:23325238

  15. Deployment of spatial attention towards locations in memory representations. An EEG study.

    PubMed

    Leszczyński, Marcin; Wykowska, Agnieszka; Perez-Osorio, Jairo; Müller, Hermann J

    2013-01-01

    Recalling information from visual short-term memory (VSTM) involves the same neural mechanisms as attending to an actually perceived scene. In particular, retrieval from VSTM has been associated with orienting of visual attention towards a location within a spatially-organized memory representation. However, an open question concerns whether spatial attention is also recruited during VSTM retrieval even when performing the task does not require access to spatial coordinates of items in the memorized scene. The present study combined a visual search task with a modified, delayed central probe protocol, together with EEG analysis, to answer this question. We found a temporal contralateral negativity (TCN) elicited by a centrally presented go-signal which was spatially uninformative and featurally unrelated to the search target and informed participants only about a response key that they had to press to indicate a prepared target-present vs. -absent decision. This lateralization during VSTM retrieval (TCN) provides strong evidence of a shift of attention towards the target location in the memory representation, which occurred despite the fact that the present task required no spatial (or featural) information from the search to be encoded, maintained, and retrieved to produce the correct response and that the go-signal did not itself specify any information relating to the location and defining feature of the target.

  16. Deployment of Spatial Attention towards Locations in Memory Representations. An EEG Study

    PubMed Central

    Perez-Osorio, Jairo; Müller, Hermann J.

    2013-01-01

    Recalling information from visual short-term memory (VSTM) involves the same neural mechanisms as attending to an actually perceived scene. In particular, retrieval from VSTM has been associated with orienting of visual attention towards a location within a spatially-organized memory representation. However, an open question concerns whether spatial attention is also recruited during VSTM retrieval even when performing the task does not require access to spatial coordinates of items in the memorized scene. The present study combined a visual search task with a modified, delayed central probe protocol, together with EEG analysis, to answer this question. We found a temporal contralateral negativity (TCN) elicited by a centrally presented go-signal which was spatially uninformative and featurally unrelated to the search target and informed participants only about a response key that they had to press to indicate a prepared target-present vs. -absent decision. This lateralization during VSTM retrieval (TCN) provides strong evidence of a shift of attention towards the target location in the memory representation, which occurred despite the fact that the present task required no spatial (or featural) information from the search to be encoded, maintained, and retrieved to produce the correct response and that the go-signal did not itself specify any information relating to the location and defining feature of the target. PMID:24386295

  17. Fractionating the Neural Substrates of Transitive Reasoning: Task-Dependent Contributions of Spatial and Verbal Representations

    PubMed Central

    Mutreja, Rachna; Booth, James R.

    2013-01-01

    It has long been suggested that transitive reasoning relies on spatial representations in the posterior parietal cortex (PPC). Previous neuroimaging studies, however, have always focused on linear arguments, such as “John is taller than Tom, Tom is taller than Chris, therefore John is taller than Chris.” Using functional magnetic resonance imaging (fMRI), we demonstrate here that verbal representations contribute to transitive reasoning when it involves set-inclusion relations (e.g., “All Tulips are Flowers, All Flowers are Plants, therefore All Tulips are Plants”). In the present study, such arguments were found to engage verbal processing regions of the left inferior frontal gyrus (IFG) and left PPC that were identified in an independent localizer task. Specifically, activity in these verbal regions increased as the number of relations increased in set-inclusion arguments. Importantly, this effect was specific to set-inclusion arguments because left IFG and left PPC were not differentially engaged when the number of relations increased in linear arguments. Instead, such an increase was linked to decreased activity in a spatial processing region of the right PPC that was identified in an independent localizer task. Therefore, both verbal and spatial representations can underlie transitive reasoning, but their engagement depends upon the structure of the argument. PMID:22275478

  18. Lost in space: multisensory conflict yields adaptation in spatial representations across frames of reference.

    PubMed

    Lohmann, Johannes; Butz, Martin V

    2017-03-27

    According to embodied cognition, bodily interactions with our environment shape the perception and representation of our body and the surrounding space, that is, peripersonal space. To investigate the adaptive nature of these spatial representations, we introduced a multisensory conflict between vision and proprioception in an immersive virtual reality. During individual bimanual interaction trials, we gradually shifted the visual hand representation. As a result, participants unknowingly shifted their actual hands to compensate for the visual shift. We then measured the adaptation to the invoked multisensory conflict by means of a self-localization and an external localization task. While effects of the conflict were observed in both tasks, the effects systematically interacted with the type of localization task and the available visual information while performing the localization task (i.e., the visibility of the virtual hands). The results imply that the localization of one's own hands is based on a multisensory integration process, which is modulated by the saliency of the currently most relevant sensory modality and the involved frame of reference. Moreover, the results suggest that our brain strives for consistency between its body and spatial estimates, thereby adapting multiple, related frames of reference, and the spatial estimates within, due to a sensory conflict in one of them.

  19. Fractionating the neural substrates of transitive reasoning: task-dependent contributions of spatial and verbal representations.

    PubMed

    Prado, Jérôme; Mutreja, Rachna; Booth, James R

    2013-03-01

    It has long been suggested that transitive reasoning relies on spatial representations in the posterior parietal cortex (PPC). Previous neuroimaging studies, however, have always focused on linear arguments, such as "John is taller than Tom, Tom is taller than Chris, therefore John is taller than Chris." Using functional magnetic resonance imaging (fMRI), we demonstrate here that verbal representations contribute to transitive reasoning when it involves set-inclusion relations (e.g., "All Tulips are Flowers, All Flowers are Plants, therefore All Tulips are Plants"). In the present study, such arguments were found to engage verbal processing regions of the left inferior frontal gyrus (IFG) and left PPC that were identified in an independent localizer task. Specifically, activity in these verbal regions increased as the number of relations increased in set-inclusion arguments. Importantly, this effect was specific to set-inclusion arguments because left IFG and left PPC were not differentially engaged when the number of relations increased in linear arguments. Instead, such an increase was linked to decreased activity in a spatial processing region of the right PPC that was identified in an independent localizer task. Therefore, both verbal and spatial representations can underlie transitive reasoning, but their engagement depends upon the structure of the argument.

  20. The Cognitive Architecture of Spatial Navigation: Hippocampal and Striatal Contributions.

    PubMed

    Chersi, Fabian; Burgess, Neil

    2015-10-07

    Spatial navigation can serve as a model system in cognitive neuroscience, in which specific neural representations, learning rules, and control strategies can be inferred from the vast experimental literature that exists across many species, including humans. Here, we review this literature, focusing on the contributions of hippocampal and striatal systems, and attempt to outline a minimal cognitive architecture that is consistent with the experimental literature and that synthesizes previous related computational modeling. The resulting architecture includes striatal reinforcement learning based on egocentric representations of sensory states and actions, incidental Hebbian association of sensory information with allocentric state representations in the hippocampus, and arbitration of the outputs of both systems based on confidence/uncertainty in medial prefrontal cortex. We discuss the relationship between this architecture and learning in model-free and model-based systems, episodic memory, imagery, and planning, including some open questions and directions for further experiments.

  1. A double dissociation between linguistic and perceptual representations of spatial relationships.

    PubMed

    Kemmerer, D; Tranel, D

    2000-07-01

    This paper explores from a neuropsychological perspective the relation between the meanings of English locative prepositions (e.g., in, on, above, below) and the kinds of representations that are used for many visuospatial processes such as recognising, drawing, and constructing spatially complex objects. One possibility that has been proposed by some psycholinguists is that the meanings of prepositions are the same as the representations used in these other processes. An alternative possibility, which has been proposed by a different group of researchers, is that the relation is more distant such that the meanings of prepositions constitute language-specific semantic structures that are distinct from the representations that underlie many visuospatial abilities. Here we report a detailed assessment of the linguistic as well as perceptual and cognitive representations of spatial relationships in two brain-damaged subjects. Four tests were administered that involve both the production and comprehension of English locative prepositions. In addition, four standardised neuropsychological tests that probe high-level nonlinguistic visuospatial perception and cognition were administered. Case 1 was significantly impaired on all of the preposition tests but was normal on all of the visuospatial tests. In striking contrast, Case 2 was normal on all of the preposition tests but was significantly impaired on all of the visuospatial tests. The subjects also had entirely different brain lesions: Case 1 had a left-hemisphere lesion in the frontoparietal region, and Case 2 had a right-hemisphere lesion in the frontoparietal and temporal regions. Together, the results constitute a "double dissociation," suggesting that the preposition tests and the visuospatial tests require cognitively and neurally distinct mechanisms that can be disrupted independently of each other. We interpret the data as supporting the second possibility described-namely, that the meanings of locative

  2. Listeners use speaker identity to access representations of spatial perspective during online language comprehension.

    PubMed

    Ryskin, Rachel A; Wang, Ranxiao Frances; Brown-Schmidt, Sarah

    2016-02-01

    Little is known about how listeners represent another person's spatial perspective during language processing (e.g., two people looking at a map from different angles). Can listeners use contextual cues such as speaker identity to access a representation of the interlocutor's spatial perspective? In two eye-tracking experiments, participants received auditory instructions to move objects around a screen from two randomly alternating spatial perspectives (45° vs. 315° or 135° vs. 225° rotations from the participant's viewpoint). Instructions were spoken either by one voice, where the speaker's perspective switched at random, or by two voices, where each speaker maintained one perspective. Analysis of participant eye-gaze showed that interpretation of the instructions improved when each viewpoint was associated with a different voice. These findings demonstrate that listeners can learn mappings between individual talkers and viewpoints, and use these mappings to guide online language processing.

  3. Spatial representations of temporal and spectral sound cues in human auditory cortex.

    PubMed

    Herdener, Marcus; Esposito, Fabrizio; Scheffler, Klaus; Schneider, Peter; Logothetis, Nikos K; Uludag, Kamil; Kayser, Christoph

    2013-01-01

    Natural and behaviorally relevant sounds are characterized by temporal modulations of their waveforms, which carry important cues for sound segmentation and communication. Still, there is little consensus as to how this temporal information is represented in auditory cortex. Here, by using functional magnetic resonance imaging (fMRI) optimized for studying the auditory system, we report the existence of a topographically ordered spatial representation of temporal sound modulation rates in human auditory cortex. We found a topographically organized sensitivity within auditory cortex to sounds with varying modulation rates, with enhanced responses to lower modulation rates (2 and 4 Hz) on lateral parts of Heschl's gyrus (HG) and faster modulation rates (16 and 32 Hz) on medial HG. The representation of temporal modulation rates was distinct from the representation of sound frequencies (tonotopy) that was orientated roughly orthogonal. Moreover, the combination of probabilistic anatomical maps with a previously proposed functional delineation of auditory fields revealed that the distinct maps of temporal and spectral sound features both prevail within two presumed primary auditory fields hA1 and hR. Our results reveal a topographically ordered representation of temporal sound cues in human primary auditory cortex that is complementary to maps of spectral cues. They thereby enhance our understanding of the functional parcellation and organization of auditory cortical processing.

  4. Patterns of preserved and impaired spatial memory in a case of developmental amnesia

    PubMed Central

    Rosenbaum, R. Shayna; Cassidy, Benjamin N.; Herdman, Katherine A.

    2015-01-01

    The hippocampus is believed to have evolved to support allocentric spatial representations of environments as well as the details of personal episodes that occur within them, whereas other brain structures are believed to support complementary egocentric spatial representations. Studies of patients with adult-onset lesions lend support to these distinctions for newly encountered places but suggest that with time and/or experience, schematic aspects of environments can exist independent of the hippocampus. Less clear is the quality of spatial memories acquired in individuals with impaired episodic memory in the context of a hippocampal system that did not develop normally. Here we describe a detailed investigation of the integrity of spatial representations of environments navigated repeatedly over many years in the rare case of H.C., a person with congenital absence of the mammillary bodies and abnormal hippocampal and fornix development. H.C. and controls who had extensive experience navigating the residential and downtown areas known to H.C. were tested on mental navigation tasks that assess the identity, location, and spatial relations among landmarks, and the ability to represent routes. H.C. was able to represent distances and directions between familiar landmarks and provide accurate, though inefficient, route descriptions. However, difficulties producing detailed spatial features on maps and accurately ordering more than two landmarks that are in close proximity to one another along a route suggest a spatial representation that includes only coarse, schematic information that lacks coherence and that cannot be used flexibly. This pattern of performance is considered in the context of other areas of preservation and impairment exhibited by H.C. and suggests that the allocentric-egocentric dichotomy with respect to hippocampal and extended hippocampal system function may need to be reconsidered. PMID:26029074

  5. Landmark and route knowledge in children’s spatial representation of a virtual environment

    PubMed Central

    Nys, Marion; Gyselinck, Valérie; Orriols, Eric; Hickmann, Maya

    2015-01-01

    This study investigates the development of landmark and route knowledge in complex wayfinding situations. It focuses on how children (aged 6, 8, and 10 years) and young adults (n = 79) indicate, recognize, and bind landmarks and directions in both verbal and visuo-spatial tasks after learning a virtual route. Performance in these tasks is also related to general verbal and visuo-spatial abilities as assessed by independent standardized tests (attention, working memory, perception of direction, production and comprehension of spatial terms, sentences and stories). The results first show that the quantity and quality of landmarks and directions produced and recognized by participants in both verbal and visuo-spatial tasks increased with age. In addition, an increase with age was observed in participants’ selection of decisional landmarks (i.e., landmarks associated with a change of direction), as well as in their capacity to bind landmarks and directions. Our results support the view that children first acquire landmark knowledge, then route knowledge, as shown by their late developing ability to bind knowledge of directions and landmarks. Overall, the quality of verbal and visuo-spatial information in participants’ spatial representations was found to vary mostly with their visuo-spatial abilities (attention and perception of directions) and not with their verbal abilities. Interestingly, however, when asked to recognize landmarks encountered during the route, participants show an increasing bias with age toward choosing a related landmark of the same category, regardless of its visual characteristics, i.e., they incorrectly choose the picture of another fountain. The discussion highlights the need for further studies to determine more precisely the role of verbal and visuo-spatial knowledge and the nature of how children learn to represent and memorize routes. PMID:25667573

  6. Virtual Reality Body Swapping: A Tool for Modifying the Allocentric Memory of the Body.

    PubMed

    Serino, Silvia; Pedroli, Elisa; Keizer, Anouk; Triberti, Stefano; Dakanalis, Antonios; Pallavicini, Federica; Chirico, Alice; Riva, Giuseppe

    2016-02-01

    An increasing amount of evidence has shown that embodiment of a virtual body via visuo-tactile stimulation can lead to an altered perception of body and object size. The current study aimed to investigate whether virtual reality (VR) body swapping can be an effective tool for modifying the enduring memory of the body. The experimental sample included 21 female participants who were asked to estimate the width and circumference of different body parts before any kind of stimulation and after two types of body swapping illusions ("synchronous visuo-tactile stimulation" and "asynchronous visuo-tactile stimulation"). Findings revealed that after participants embodied a virtual body with a skinny belly (independently of the type of visuo-tactile stimulation), there was an update of the stored representation of the body: participants reported a decrease in the ratio between estimated and actual body measures for most of the body parts considered. Based on the Allocentric Lock Theory, these findings provide first evidence that VR body swapping is able to induce a change in the memory of the body. This knowledge may be potentially useful for patients suffering from eating and weight disorders.

  7. Spatial and Foveal Biases, Not Perceived Mass or Heaviness, Explain the Effect of Target Size on Representational Momentum and Representational Gravity

    ERIC Educational Resources Information Center

    De Sá Teixeira, Nuno; Oliveira, Armando Mónica

    2014-01-01

    The spatial memory for the last position occupied by a moving target is usually displaced forward in the direction of motion. Interpreted as a mental analogue of physical momentum, this phenomenon was coined "representational momentum" (RM). As momentum is given by the product of an object's velocity and mass, both these factors came to…

  8. How Informative Are Spatial CA3 Representations Established by the Dentate Gyrus?

    PubMed Central

    Cerasti, Erika; Treves, Alessandro

    2010-01-01

    In the mammalian hippocampus, the dentate gyrus (DG) is characterized by sparse and powerful unidirectional projections to CA3 pyramidal cells, the so-called mossy fibers. Mossy fiber synapses appear to duplicate, in terms of the information they convey, what CA3 cells already receive from entorhinal cortex layer II cells, which project both to the dentate gyrus and to CA3. Computational models of episodic memory have hypothesized that the function of the mossy fibers is to enforce a new, well separated pattern of activity onto CA3 cells, to represent a new memory, prevailing over the interference produced by the traces of older memories already stored on CA3 recurrent collateral connections. Can this hypothesis apply also to spatial representations, as described by recent neurophysiological recordings in rats? To address this issue quantitatively, we estimate the amount of information DG can impart on a new CA3 pattern of spatial activity, using both mathematical analysis and computer simulations of a simplified model. We confirm that, also in the spatial case, the observed sparse connectivity and level of activity are most appropriate for driving memory storage – and not to initiate retrieval. Surprisingly, the model also indicates that even when DG codes just for space, much of the information it passes on to CA3 acquires a non-spatial and episodic character, akin to that of a random number generator. It is suggested that further hippocampal processing is required to make full spatial use of DG inputs. PMID:20454678

  9. Evaluating Geography Textbook Questions from a Spatial Perspective: Using Concepts of Space, Tools of Representation, and Cognitive Processes to Evaluate Spatiality

    ERIC Educational Resources Information Center

    Jo, Injeong; Bednarz, Sarah Witham

    2009-01-01

    This article examines whether questions embedded in geography textbooks address three components of spatial thinking: concepts of space, tools of representation, and processes of reasoning. A three-dimensional taxonomy of spatial thinking was developed and used to evaluate questions in four high school level geography textbooks. The results…

  10. a Representation-Driven Ontology for Spatial Data Quality Elements, with Orthoimagery as Running Example

    NASA Astrophysics Data System (ADS)

    Hangouët, J.-F.

    2015-08-01

    The many facets of what is encompassed by such an expression as "quality of spatial data" can be considered as a specific domain of reality worthy of formal description, i.e. of ontological abstraction. Various ontologies for data quality elements have already been proposed in literature. Today, the system of quality elements is most generally used and discussed according to the configuration exposed in the "data dictionary for data quality" of international standard ISO 19157. Our communication proposes an alternative view. This is founded on a perspective which focuses on the specificity of spatial data as a product: the representation perspective, where data in the computer are meant to show things of the geographic world and to be interpreted as such. The resulting ontology introduces new elements, the usefulness of which will be illustrated by orthoimagery examples.

  11. Cellular, columnar and modular organization of spatial representations in medial entorhinal cortex.

    PubMed

    Burgalossi, Andrea; Brecht, Michael

    2014-02-01

    Spatial discharge patterns in medial entorhinal cortex consist of grid, head direction, border and spatial-band cells. These firing patterns differ from the single-peaked fields of hippocampal place cells, in that they have well-defined geometries and extend throughout the available space. Such discharge properties could contribute to a metric representation of space. Both functional and anatomical evidence point to principal cell diversity, modularity and columnar organization, but linking entorhinal anatomy and physiology remains challenging. Layer 2 microcircuits consist of pyramidal neurons and a stellate cell network, which lacks recurrent excitation and is coupled by disynaptic inhibition. Intracellular recordings showed that periodic, grid-like firing emerges from depolarization ramps, whereas theta-oscillations determine spike timing. Interference with various inputs to entorhinal cortex abolishes grid activity, often without concomitant loss of hippocampal place activity.

  12. Auditory spatial representations of the world are compressed in blind humans.

    PubMed

    Kolarik, Andrew J; Pardhan, Shahina; Cirstea, Silvia; Moore, Brian C J

    2017-02-01

    Compared to sighted listeners, blind listeners often display enhanced auditory spatial abilities such as localization in azimuth. However, less is known about whether blind humans can accurately judge distance in extrapersonal space using auditory cues alone. Using virtualization techniques, we show that auditory spatial representations of the world beyond the peripersonal space of blind listeners are compressed compared to those for normally sighted controls. Blind participants overestimated the distance to nearby sources and underestimated the distance to remote sound sources, in both reverberant and anechoic environments, and for speech, music, and noise signals. Functions relating judged and actual virtual distance were well fitted by compressive power functions, indicating that the absence of visual information regarding the distance of sound sources may prevent accurate calibration of the distance information provided by auditory signals.

  13. Fine-Grained, Local Maps and Coarse, Global Representations Support Human Spatial Working Memory

    PubMed Central

    Katshu, Mohammad Zia Ul Haq; d'Avossa, Giovanni

    2014-01-01

    While sensory processes are tuned to particular features, such as an object's specific location, color or orientation, visual working memory (vWM) is assumed to store information using representations, which generalize over a feature dimension. Additionally, current vWM models presume that different features or objects are stored independently. On the other hand, configurational effects, when observed, are supposed to mainly reflect encoding strategies. We show that the location of the target, relative to the display center and boundaries, and overall memory load influenced recall precision, indicating that, like sensory processes, capacity limited vWM resources are spatially tuned. When recalling one of three memory items the target distance from the display center was overestimated, similar to the error when only one item was memorized, but its distance from the memory items' average position was underestimated, showing that not only individual memory items' position, but also the global configuration of the memory array may be stored. Finally, presenting the non-target items at recall, consequently providing landmarks and configurational information, improved precision and accuracy of target recall. Similarly, when the non-target items were translated at recall, relative to their position in the initial display, a parallel displacement of the recalled target was observed. These findings suggest that fine-grained spatial information in vWM is represented in local maps whose resolution varies with distance from landmarks, such as the display center, while coarse representations are used to store the memory array configuration. Both these representations are updated at the time of recall. PMID:25259601

  14. Mental representations derived from spatial descriptions: the influence of orientation specificity and visuospatial abilities.

    PubMed

    Meneghetti, Chiara; Pazzaglia, Francesca; De Beni, Rossana

    2015-03-01

    This study aimed to investigate the orientation dependence effect and the role of visuospatial abilities in mental representations derived from spatial descriptions. The analysis focused on how the orientation effect and the involvement of visuospatial abilities change when survey and route descriptions are used, and the initial and main orientation of an imaginary tour. In Experiment 1, 48 participants listened to survey or route descriptions in which information was mainly north-oriented (matching the initial heading and main direction of travel expressed in the description). In Experiment 2, 40 participants listened to route descriptions in which the initial orientation (north-oriented) was mismatched with the main direction of travel (east-oriented). Participants performed pointing task while facing north vs south (Exp. 1 and 2), and while facing east vs west (Exp. 2), as well as a map drawing task and several visuospatial measures. In both experiments, the results showed that pointing was easier while facing north than while facing south, and map drawings were arranged with a north-up orientation (with no difference between survey and route descriptions). In Experiment 2, pointing while facing east was easier than in the other pointing conditions. The results obtained with the visuospatial tasks showed that perspective-taking (PT) skill was the main predictor of the ability to imagine positions misaligned with the direction expressed in the descriptions (i.e., pointing while facing south in Experiment 1; pointing while facing north, south or west in Experiment 2). Overall, these findings indicate that mental representations derived from spatial descriptions are specifically oriented and their orientation is influenced by the main direction of travel and by the initial orientation. These mental representations, and the adoption of counter-aligned imaginary orientations, demand visuospatial skills and PT ability in particular.

  15. Efficient spatial and temporal representations of global ionosphere maps over Japan using B-spline wavelets

    NASA Astrophysics Data System (ADS)

    Mautz, R.; Ping, J.; Heki, K.; Schaffrin, B.; Shum, C.; Potts, L.

    2005-05-01

    Wavelet expansion has been demonstrated to be suitable for the representation of spatial functions. Here we propose the so-called B-spline wavelets to represent spatial time-series of GPS-derived global ionosphere maps (GIMs) of the vertical total electron content (TEC) from the Earth’s surface to the mean altitudes of GPS satellites, over Japan. The scalar-valued B-spline wavelets can be defined in a two-dimensional, but not necessarily planar, domain. Generated by a sequence of knots, different degrees of B-splines can be implemented: degree 1 represents the Haar wavelet; degree 2, the linear B-spline wavelet, or degree 4, the cubic B-spline wavelet. A non-uniform version of these wavelets allows us to handle data on a bounded domain without any edge effects. B-splines are easily extended with great computational efficiency to domains of arbitrary dimensions, while preserving their properties. This generalization employs tensor products of B-splines, defined as linear superposition of products of univariate B-splines in different directions. The data and model may be identical at the locations of the data points if the number of wavelet coefficients is equal to the number of grid points. In addition, data compression is made efficient by eliminating the wavelet coefficients with negligible magnitudes, thereby reducing the observational noise. We applied the developed methodology to the representation of the spatial and temporal variations of GIM from an extremely dense GPS network, the GPS Earth Observation Network (GEONET) in Japan. Since the sampling of the TEC is registered regularly in time, we use a two-dimensional B-spline wavelet representation in space and a one-dimensional spline interpolation in time. Over the Japan region, the B-spline wavelet method can overcome the problem of bias for the spherical harmonic model at the boundary, caused by the non-compact support. The hierarchical decomposition not only allows an inexpensive calculation, but also

  16. Relative Contributions of Visual and Auditory Spatial Representations to Tactile Localization

    PubMed Central

    Noel, Jean-Paul; Wallace, Mark

    2016-01-01

    Spatial localization of touch is critically dependent upon coordinate transformation between different reference frames, which must ultimately allow for alignment between somatotopic and external representations of space. Although prior work has shown an important role for cues such as body posture in influencing the spatial localization of touch, the relative contributions of the different sensory systems to this process are unknown. In the current study, we had participants perform a tactile temporal order judgment (TOJ) under different body postures and conditions of sensory deprivation. Specifically, participants performed non-speeded judgments about the order of two tactile stimuli presented in rapid succession on their ankles during conditions in which their legs were either uncrossed or crossed (and thus bringing somatotopic and external reference frames into conflict). These judgments were made in the absence of 1) visual, 2) auditory, or 3) combined audio-visual spatial information by blindfolding and/or placing participants in an anechoic chamber. As expected, results revealed that tactile temporal acuity was poorer under crossed than uncrossed leg postures. Intriguingly, results also revealed that auditory and audio-visual deprivation exacerbated the difference in tactile temporal acuity between uncrossed to crossed leg postures, an effect not seen for visual-only deprivation. Furthermore, the effects under combined audio-visual deprivation were greater than those seen for auditory deprivation. Collectively, these results indicate that mechanisms governing the alignment between somatotopic and external reference frames extend beyond those imposed by body posture to include spatial features conveyed by the auditory and visual modalities – with a heavier weighting of auditory than visual spatial information. Thus, sensory modalities conveying exteroceptive spatial information contribute to judgments regarding the localization of touch. PMID:26768124

  17. Spatial representations in older adults are not modified by action: Evidence from tool use.

    PubMed

    Costello, Matthew C; Bloesch, Emily K; Davoli, Christopher C; Panting, Nicholas D; Abrams, Richard A; Brockmole, James R

    2015-09-01

    Theories of embodied perception hold that the visual system is calibrated by both the body schema and the action system, allowing for adaptive action-perception responses. One example of embodied perception involves the effects of tool use on distance perception, in which wielding a tool with the intention to act upon a target appears to bring that object closer. This tool-based spatial compression (i.e., tool-use effect) has been studied exclusively with younger adults, but it is unknown whether the phenomenon exists with older adults. In this study, we examined the effects of tool use on distance perception in younger and older adults in 2 experiments. In Experiment 1, younger and older adults estimated the distances of targets just beyond peripersonal space while either wielding a tool or pointing with the hand. Younger adults, but not older adults, estimated targets to be closer after reaching with a tool. In Experiment 2, younger and older adults estimated the distance to remote targets while using either a baton or a laser pointer. Younger adults displayed spatial compression with the laser pointer compared to the baton, although older adults did not. Taken together, these findings indicate a generalized absence of the tool-use effect in older adults during distance estimation, suggesting that the visuomotor system of older adults does not remap from peripersonal to extrapersonal spatial representations during tool use.

  18. Spatial Representations in Older Adults are Not Modified by Action: Evidence from Tool Use

    PubMed Central

    Costello, Matthew C.; Bloesch, Emily K.; Davoli, Christopher C.; Panting, Nicholas D.; Abrams, Richard A.; Brockmole, James R.

    2015-01-01

    Theories of embodied perception hold that the visual system is calibrated by both the body schema and the action system, allowing for adaptive action-perception responses. One example of embodied perception involves the effects of tool-use on distance perception, in which wielding a tool with the intention to act upon a target appears to bring that object closer. This tool-based spatial compression (i.e., tool-use effect) has been studied exclusively with younger adults, but it is unknown whether the phenomenon exists with older adults. In this study, we examined the effects of tool use on distance perception in younger and older adults in two experiments. In Experiment 1, younger and older adults estimated the distances of targets just beyond peripersonal space while either wielding a tool or pointing with the hand. Younger adults, but not older adults, estimated targets to be closer after reaching with a tool. In Experiment 2, younger and older adults estimated the distance to remote targets while using either a baton or laser pointer. Younger adults displayed spatial compression with the laser pointer compared to the baton, although older adults did not. Taken together, these findings indicate a generalized absence of the tool-use effect in older adults during distance estimation suggesting that the visuomotor system of older adults does not remap from peripersonal to extrapersonal spatial representations during tool use. PMID:26052886

  19. The number line is a critical spatial-numerical representation: Evidence from a fraction intervention.

    PubMed

    Hamdan, Noora; Gunderson, Elizabeth A

    2017-03-01

    Children's ability to place fractions on a number line strongly correlates with math achievement. But does the number line play a causal role in fraction learning or does it simply index more advanced fraction knowledge? The number line may be a particularly effective representation for fraction learning because its properties align with the desired mental representation and take advantage of preexisting spatial-numeric biases. Using a pretest-training-posttest design, we examined second and third graders' fraction learning in 3 conditions: number line training, area model training, and a non-numerical control. Children who received number line training improved at representing fractions with number lines, and children who received area model training improved at representing fractions with area models. Critically, only the number line training led to transfer to an untrained fraction magnitude comparison task. We conclude that the number line plays a causal role in children's fraction magnitude understanding, and is more beneficial than the widely used area model. (PsycINFO Database Record

  20. Spatial representation in the social interaction potential metric: an analysis of scale and parameter sensitivity

    NASA Astrophysics Data System (ADS)

    Li, Xiao; Farber, Steven

    2016-10-01

    The social interaction potential (SIP) metric measures urban structural constraints on social interaction opportunities of a metropolitan region based on the time geographic concept of joint accessibility. Previous implementations of the metric used an interaction surface based on census tracts and the locations of their centroids. This has been shown to be a shortcoming, as the metric strongly depends on the scale of the zoning system in the region, making it difficult to compare the SIP metric between metropolitan regions. This research explores the role of spatial representation in the SIP metric and identifies a suitable grid-based representation that allows for comparison between regions while retaining cost-effectiveness with respect to computational burden. We also report on findings from an extensive sensitivity analysis investigating the SIP metric's input parameters such as a travel flow congestion factor and the length of the allowable time budget for social activities. The results provide new insights on the role of the modifiable areal unit problem in the computation of time geographic measures of accessibility.

  1. Spatial orientation and the representation of space with parietal lobe lesions.

    PubMed Central

    Karnath, H O

    1997-01-01

    Damage to the human parietal cortex leads to disturbances of spatial perception and of motor behaviour. Within the parietal lobe, lesions of the superior and of the inferior lobule induce quite different, characteristic deficits. Patients with inferior (predominantly right) parietal lobe lesions fail to explore the contralesional part of space by eye or limb movements (spatial neglect). In contrast, superior parietal lobe lesions lead to specific impairments of goal-directed movements (optic ataxia). The observations reported in this paper support the view of dissociated functions represented in the inferior and the superior lobule of the human parietal cortex. They suggest that a spatial reference frame for exploratory behaviour is disturbed in patients with neglect. Data from these patients' visual search argue that their failure to explore the contralesional side is due to a disturbed input transformation leading to a deviation of egocentric space representation to the ipsilesional side. Data further show that this deviation follows a rotation around the earth-vertical body axis to the ipsilesional side rather than a translation towards that side. The results are in clear contrast to explanations that assume a lateral gradient ranging from a minimum of exploration in the extreme contralesional to a maximum in the extreme ipsilesional hemispace. Moreover, the failure to orient towards and to explore the contralesional part of space appears to be distinct from those deficits observed once an object of interest has been located and releases reaching. Although patients with neglect exhibit a severe bias of exploratory movements, their hand trajectories to targets in peripersonal space may follow a straight path. This result suggests that (i) exploratory and (ii) goal-directed behaviour in space do not share the same neural control mechanisms. Neural representation of space in the inferior parietal lobule seems to serve as a matrix for spatial exploration and for

  2. Children’s Spatial Representations: 3- and 4-Year-Olds are Affected by Irrelevant Peripheral References

    PubMed Central

    Krüger, Markus; Jahn, Georg

    2015-01-01

    Children as young as 3 years can remember an object’s location within an arrangement and can retrieve it from a novel viewpoint (Nardini et al., 2006). However, this ability is impaired if the arrangement is rotated to compensate for the novel viewpoint, or, if the arrangement is rotated and children stand still. There are two dominant explanations for this phenomenon: self-motion induces an automatic spatial updating process which is beneficial if children move around the arrangement, but misleading if the children’s movement is matched by the arrangement and not activated if children stand still and only the arrangement is moved (see spatial updating; Simons and Wang, 1998). Another explanation concerns reference frames: spatial representations might depend on peripheral spatial relations concerning the surrounding room instead on proximal relations within the arrangement, even if these proximal relations are sufficient or more informative. To evaluate these possibilities, we rotated children (N = 120) aged between 3 and 6 years with an occluded arrangement. When the arrangement was in misalignment to the surrounding room, 3- and 4-year-olds’ spatial memory was impaired and 5-year-olds’ was lightly impaired suggesting that they relied on peripheral references of the surrounding room for retrieval. In contrast, 6-years-olds’ spatial representation seemed robust against misalignment indicating a successful integration of spatial representations. PMID:26617537

  3. Sensorimotor representation and knowledge-based reasoning for spatial exploration and localisation.

    PubMed

    Zetzsche, C; Wolter, J; Schill, K

    2008-12-01

    We investigate a hybrid system for autonomous exploration and navigation, and implement it in a virtual mobile agent, which operates in virtual spatial environments. The system is based on several distinguishing properties. The representation is not map-like, but based on sensorimotor features, i.e. on combinations of sensory features and motor actions. The system has a hybrid architecture, which integrates a bottom-up processing of sensorimotor features with a top-down, knowledge-based reasoning strategy. This strategy selects the optimal motor action in each step according to the principle of maximum information gain. Two sensorimotor levels with different behavioural granularity are implemented, a macro-level, which controls the movements of the agent in space, and a micro-level, which controls its eye movements. At each level, the same type of hybrid architecture and the same principle of information gain are used for sensorimotor control. The localisation performance of the system is tested with large sets of virtual rooms containing different mixtures of unique and non-unique objects. The results demonstrate that the system efficiently performs those exploratory motor actions that yield a maximum amount of information about the current environment. Localisation is typically achieved within a few steps. Furthermore, the computational complexity of the underlying computations is limited, and the system is robust with respect to minor variations in the spatial environments.

  4. Auditory Spatial Recalibration in Congenital Blind Individuals

    PubMed Central

    Finocchietti, Sara; Cappagli, Giulia; Gori, Monica

    2017-01-01

    Blind individuals show impairments for auditory spatial skills that require complex spatial representation of the environment. We suggest that this is partially due to the egocentric frame of reference used by blind individuals. Here we investigate the possibility of reducing the mentioned auditory spatial impairments with an audio-motor training. Our hypothesis is that the association between a motor command and the corresponding movement's sensory feedback can provide an allocentric frame of reference and consequently help blind individuals in understanding complex spatial relationships. Subjects were required to localize the end point of a moving sound before and after either 2-min of audio-motor training or a complete rest. During the training, subjects were asked to move their hand, and consequently the sound source, to freely explore the space around the setup and the body. Both congenital blind (N = 20) and blindfolded healthy controls (N = 28) participated in the study. Results suggest that the audio-motor training was effective in improving space perception of blind individuals. The improvement was not observed in those subjects that did not perform the training. This study demonstrates that it is possible to recalibrate the auditory spatial representation in congenital blind individuals with a short audio-motor training and provides new insights for rehabilitation protocols in blind people. PMID:28261053

  5. Retrieval of Brain Tumors by Adaptive Spatial Pooling and Fisher Vector Representation

    PubMed Central

    Huang, Meiyan; Huang, Wei; Jiang, Jun; Zhou, Yujia; Yang, Ru; Zhao, Jie; Feng, Yanqiu; Feng, Qianjin; Chen, Wufan

    2016-01-01

    Content-based image retrieval (CBIR) techniques have currently gained increasing popularity in the medical field because they can use numerous and valuable archived images to support clinical decisions. In this paper, we concentrate on developing a CBIR system for retrieving brain tumors in T1-weighted contrast-enhanced MRI images. Specifically, when the user roughly outlines the tumor region of a query image, brain tumor images in the database of the same pathological type are expected to be returned. We propose a novel feature extraction framework to improve the retrieval performance. The proposed framework consists of three steps. First, we augment the tumor region and use the augmented tumor region as the region of interest to incorporate informative contextual information. Second, the augmented tumor region is split into subregions by an adaptive spatial division method based on intensity orders; within each subregion, we extract raw image patches as local features. Third, we apply the Fisher kernel framework to aggregate the local features of each subregion into a respective single vector representation and concatenate these per-subregion vector representations to obtain an image-level signature. After feature extraction, a closed-form metric learning algorithm is applied to measure the similarity between the query image and database images. Extensive experiments are conducted on a large dataset of 3604 images with three types of brain tumors, namely, meningiomas, gliomas, and pituitary tumors. The mean average precision can reach 94.68%. Experimental results demonstrate the power of the proposed algorithm against some related state-of-the-art methods on the same dataset. PMID:27273091

  6. Parental Socioeconomic Status and the Neural Basis of Arithmetic: Differential Relations to Verbal and Visuo-Spatial Representations

    ERIC Educational Resources Information Center

    Demir, Özlem Ece; Prado, Jérôme; Booth, James R.

    2015-01-01

    We examined the relation of parental socioeconomic status (SES) to the neural bases of subtraction in school-age children (9- to 12-year-olds). We independently localized brain regions subserving verbal versus visuo-spatial representations to determine whether the parental SES-related differences in children's reliance on these neural…

  7. Using Eye Tracking to Investigate Semantic and Spatial Representations of Scientific Diagrams during Text-Diagram Integration

    ERIC Educational Resources Information Center

    Jian, Yu-Cin; Wu, Chao-Jung

    2015-01-01

    We investigated strategies used by readers when reading a science article with a diagram and assessed whether semantic and spatial representations were constructed while reading the diagram. Seventy-one undergraduate participants read a scientific article while tracking their eye movements and then completed a reading comprehension test. Our…

  8. The perirhinal cortex and long-term spatial memory in rats.

    PubMed

    Ramos, Juan M J

    2002-08-30

    Two experiments examined the effects of perirhinal cortex and hippocampal neurotoxic lesions on the retention of allocentric information. Perirhinal (Expt. 1) and hippocampal rats (Expt. 2) were trained on an allocentric task until they reached a performance equal to that of the control groups. Results showed that 24 days after acquisition, during a retraining period, only the hippocampal rats presented a deficit in retention. These results suggest that the perirhinal cortex and the hippocampus can be functionally dissociated in terms of their participation in the formation of long-term spatial memory. Also, the allocentric spatial memory functions of the hippocampus seem not to depend on their afferent connections with the perirhinal cortex.

  9. Lexical-semantic body knowledge in 5- to 11-year-old children: How spatial body representation influences body semantics.

    PubMed

    Auclair, Laurent; Jambaqué, Isabelle

    2015-01-01

    This study addresses the relation between lexico-semantic body knowledge (i.e., body semantics) and spatial body representation (i.e., structural body representation) by analyzing naming performances as a function of body structural topography. One hundred and forty-one children ranging from 5 years 2 months to 10 years 5 months old were asked to provide a lexical label for isolated body part pictures. We compared the children's naming performances according to the location of the body parts (body parts vs. head features and also upper vs. lower limbs) or to their involvement in motor skills (distal segments, joints, and broader body parts). The results showed that the children's naming performance was better for facial body parts than for other body parts. Furthermore, it was found that the naming of body parts was better for body parts related to action. These findings suggest that the development of a spatial body representation shapes the elaboration of semantic body representation processing. Moreover, this influence was not limited to younger children. In our discussion of these results, we focus on the important role of action in the development of body representations and semantic organization.

  10. Semantic numerical representation in blind subjects: the role of vision in the spatial format of the mental number line.

    PubMed

    Castronovo, Julie; Seron, Xavier

    2007-01-01

    Does vision play a role in the elaboration of the semantic representation of small and large numerosities, notably in its spatial format? To investigate this issue, we decided to compare in the auditory modality the performance of congenitally and early blind people with that of a sighted control group, in two number comparison tasks (to 5 and to 55) and in one parity judgement task. Blind and sighted participants presented exactly the same distance and SNARC (Spatial Numerical Association of Response Codes) effects, indicating that they share the same semantic numerical representation. In consequence, our results suggest that the spatial dimension of the numerical representation is not necessarily attributable to the visual modality and that the absence of vision does not preclude the elaboration of this representation for 1-digit (Experiment 1) and 2-digit numerosities (Experiment 2). Moreover, as classical semantic numerical effects were observed in the auditory modality, the postulate of the amodal nature of the mental number line for both small and large magnitudes was reinforced.

  11. Modulation of spatial orientation processing by mental imagery instructions: a MEG study of representational momentum.

    PubMed

    Amorim, M A; Lang, W; Lindinger, G; Mayer, D; Deecke, L; Berthoz, A

    2000-07-01

    Under appropriate conditions, an observer's memory for the final position of an abruptly halted moving object is distorted in the direction of the represented motion. This phenomenon is called "representational momentum" (RM). We examined the effect of mental imagery instructions on the modulation of spatial orientation processing by testing for RM under conditions of picture versus body rotation perception and imagination. Behavioral data were gathered via classical reaction time and error measurements, whereas brain activity was recorded with the help of magnetoencephalography (MEG). Due to the so-called inverse problem and to signal complexity, results were described at the signal level rather than with the source location modeling. Brain magnetic field strength and spatial distribution, as well as latency of P200m evoked fields were used as neurocognitive markers. A task was devised where a subject examined a rotating sea horizon as seen from a virtual boat in order to extrapolate either the picture motion or the body motion relative to the picture while the latter disappeared temporarily until a test-view was displayed as a final orientation candidate. Results suggest that perceptual interpretation and extrapolation of visual motion in the roll plane capitalize on the fronto-parietal cortical networks involving working memory processes. Extrapolation of the rotational dynamics of sea horizon revealed a RM effect simulating the role of gravity in rotational equilibrium. Modulation of the P200m component reflected spatial orientation processing and a non-voluntary detection of an incongruity between displayed and expected final orientations given the implied motion. Neuromagnetic properties of anticipatory (Contingent Magnetic Variation) and evoked (P200m) brain magnetic fields suggest, respectively, differential allocation of attentional resources by mental imagery instructions (picture vs. body tilt), and a communality of neural structures (in the right centro

  12. Does an Oblique/Slanted Perspective during Virtual Navigation Engage Both Egocentric and Allocentric Brain Strategies?

    PubMed Central

    Barra, Julien; Laou, Laetitia; Poline, Jean-Baptiste; Lebihan, Denis; Berthoz, Alain

    2012-01-01

    Perspective (route or survey) during the encoding of spatial information can influence recall and navigation performance. In our experiment we investigated a third type of perspective, which is a slanted view. This slanted perspective is a compromise between route and survey perspectives, offering both information about landmarks as in route perspective and geometric information as in survey perspective. We hypothesized that the use of slanted perspective would allow the brain to use either egocentric or allocentric strategies during storage and recall. Twenty-six subjects were scanned (3-Tesla fMRI) during the encoding of a path (40-s navigation movie within a virtual city). They were given the task of encoding a segment of travel in the virtual city and of subsequent shortcut-finding for each perspective: route, slanted and survey. The analysis of the behavioral data revealed that perspective influenced response accuracy, with significantly more correct responses for slanted and survey perspectives than for route perspective. Comparisons of brain activation with route, slanted, and survey perspectives suggested that slanted and survey perspectives share common brain activity in the left lingual and fusiform gyri and lead to very similar behavioral performance. Slanted perspective was also associated with similar activation to route perspective during encoding in the right middle occipital gyrus. Furthermore, slanted perspective induced intermediate patterns of activation (in between route and survey) in some brain areas, such as the right lingual and fusiform gyri. Our results suggest that the slanted perspective may be considered as a hybrid perspective. This result offers the first empirical support for the choice to present the slanted perspective in many navigational aids. PMID:23209583

  13. Goal-directed reaching: movement strategies influence the weighting of allocentric and egocentric visual cues.

    PubMed

    Neely, Kristina A; Tessmer, Ayla; Binsted, Gordon; Heath, Matthew

    2008-04-01

    The location of an object in peripersonal space can be represented with respect to our body (i.e., egocentric frame of reference) or relative to contextual features and other objects (i.e., allocentric frame of reference). In the current study, we sought to determine whether the frame, or frames, of visual reference supporting motor output is influenced by reach trajectories structured to maximize visual feedback utilization (i.e., controlled online) or structured largely in advance of movement onset via central planning mechanisms (i.e., controlled offline). Reaches were directed to a target embedded in a pictorial illusion (the induced Roelofs effect: IRE) and advanced knowledge of visual feedback was manipulated to influence the nature of reaching control as reported by Zelaznik et al. (J Mot Behav 15:217-236, 1983). When vision could not be predicted in advance of movement onset, trajectories showed primary evidence of an offline mode of control (even when vision was provided) and endpoints demonstrated amplified sensitivity to the illusory (i.e., allocentric) features of the IRE. In contrast, reaches performed with reliable visual feedback evidenced a primarily online mode of control and showed increased visuomotor resistance to the IRE. These findings suggest that the manner a reaching response is structured differentially influences the weighting of allocentric and egocentric visual information. More specifically, when visual feedback is unavailable or unpredictable, the weighting of allocentric visual information for the advanced planning of a reach trajectory is increased.

  14. The Forced Choice Dilemma: A Model Incorporating Idiocentric/Allocentric Cultural Orientation

    ERIC Educational Resources Information Center

    Jung, Jae Yup; McCormick, John; Gross, Miraca U. M.

    2012-01-01

    This study developed and tested a new model of the forced choice dilemma (i.e., the belief held by some intellectually gifted students that they must choose between academic achievement and peer acceptance) that incorporates individual-level cultural orientation variables (i.e., vertical allocentrism and vertical idiocentrism). A survey that had…

  15. Evidence of the impact of visuo-spatial processing on magnitude representation in 22q11.2 microdeletion syndrome.

    PubMed

    Attout, Lucie; Noël, Marie-Pascale; Vossius, Line; Rousselle, Laurence

    2017-03-23

    The influence of visuo-spatial skills on numerical magnitude processing is the subject of a long-standing debate. As most of the numerical and non-numerical magnitude abilities underpinning mathematical development are visual by nature, they are often assessed in the visual modality, thereby confusing visuo-spatial and numerical processing. In order to assess the influence of visuo-spatial processing on numerical magnitude representation, we examined magnitude processing in patients with 22q11.2 deletion syndrome (22q11DS), a genetic condition characterized by a cognitive profile with a relative weakness in visuo-spatial abilities but with preserved verbal abilities. Twenty-seven participants with 22q11DS were compared to two control groups (one matched on verbal intelligence and the other on visuo-spatial abilities) on several magnitude comparison tasks each with different visuo-spatial processing requirements. Our results showed that participants with 22q11DS present a consistent pattern of impairment in magnitude comparison tasks requiring the processing of visuo-spatial dimensions: comparison of lengths and collections. In contrast, their performance did not differ from the control groups in a visual task with no spatial processing requirement (i.e. numerical comparison of flashed dot sequences) or in auditory tasks (i.e., duration comparison and numerical comparison of sound sequences). Finally, a specific deficit of enumeration processes was observed in the subitizing range. Taken together, these results show that deficits in magnitude can occur as a consequence of a visuo-spatial deficit. This highlights the influence of the nature of the tasks selected to assess magnitude representation.

  16. Per pixel uncertainty modelling and its spatial representation on land cover maps obtained by hybrid classification.

    NASA Astrophysics Data System (ADS)

    Pons, Xavier; Sevillano, Eva; Moré, Gerard; Serra, Pere; Cornford, Dan; Ninyerola, Miquel

    2013-04-01

    The usage of remote sensing imagery combined with statistical classifiers to obtain categorical cartography is now common practice. As in many other areas of geographic information quality assessment, knowing the accuracy of these maps is crucial, and the spatialization of quality information is becoming ever more important for a large range of applications. Whereas some classifiers (e.g., maximum likelihood, linear discriminant analysis, naive Bayes, etc) permit the estimation and spatial representation of the uncertainty through a pixel level probabilistic estimator (and, from that, to compute a global accuracy estimator for the whole map), for other methods such a direct estimator does not exist. Regardless of the classification method applied, ground truth data is almost always available (to train the classifier and/or to compute the global accuracy and, usually, a confusion matrix). Our research is devoted to the development of a protocol to spatialize the error on a general framework based on the classifier parameters, and some ground truth reference data. In the methodological experiment presented here we provide an insight into uncertainty modelling for a hybrid classifier that combines unsupervised and supervised stages (implemented in the MiraMon GIS). In this work we describe what we believe is the first attempt to characterise pixel level uncertainty in a two stage classification process. We describe the model setup, show the preliminary results and identify future work that will be undertaken. The study area is a Landsat full frame located at the North-eastern region of the Iberian Peninsula. The six non-thermal bands + NDVI of a multi-temporal set of six geometrically and radiometrically corrected Landsat-5 images (between 2005 and 2007) were submitted to a hybrid classification process, together with some ancillary data (climate, slopes, etc). Training areas were extracted from the Land Cover Map of Catalonia (MCSC), a 0.5 m resolution map created by

  17. Evaluation of a Computer-Based Training Program for Enhancing Arithmetic Skills and Spatial Number Representation in Primary School Children

    PubMed Central

    Rauscher, Larissa; Kohn, Juliane; Käser, Tanja; Mayer, Verena; Kucian, Karin; McCaskey, Ursina; Esser, Günter; von Aster, Michael

    2016-01-01

    Calcularis is a computer-based training program which focuses on basic numerical skills, spatial representation of numbers and arithmetic operations. The program includes a user model allowing flexible adaptation to the child's individual knowledge and learning profile. The study design to evaluate the training comprises three conditions (Calcularis group, waiting control group, spelling training group). One hundred and thirty-eight children from second to fifth grade participated in the study. Training duration comprised a minimum of 24 training sessions of 20 min within a time period of 6–8 weeks. Compared to the group without training (waiting control group) and the group with an alternative training (spelling training group), the children of the Calcularis group demonstrated a higher benefit in subtraction and number line estimation with medium to large effect sizes. Therefore, Calcularis can be used effectively to support children in arithmetic performance and spatial number representation. PMID:27445889

  18. Diagrammatic Representational Constraints of Spatial Scale in Earth-Moon System Astronomy Instruction

    ERIC Educational Resources Information Center

    Taylor, Roger S.; Grundstrom, Erika D.

    2011-01-01

    Given that astronomy heavily relies on visual representations it is especially likely for individuals to assume that instructional materials, such as visual representations of the Earth-Moon system (EMS), would be relatively accurate. However, in our research, we found that images in middle-school textbooks and educational webpages were commonly…

  19. Spatial choices of macaque monkeys based on the visual representation of the response space: rotation of the stimuli.

    PubMed

    Nedvidek, Jan; Nekovarova, Tereza; Bures, Jan

    2008-11-21

    In earlier experiments we have demonstrated that macaque monkeys (Macaca mulatta) are able to use abstract visual stimuli presented on a computer screen to make spatial choices in the real environment. In those experiments a touch board ("response space") was directly connected to the computer screen ("virtual space"). The goal of the present experiment was to find out whether macaque monkeys are able: (1) To make spatial choices in a response space which is completely separated from the screen where the stimuli (designed as representation of the response space) are presented. (2) To make spatial choices based on visual stimuli representing the configuration of the response space which are rotated with respect to this response space. The monkeys were trained to choose one of the nine "touch holes" on a transparent touch panel situated beside a computer monitor on which the visual stimuli were presented. The visual stimuli were designed as an abstract representation of the response space: the rewarded position was shown as a bright circle situated at a certain position in the rectangle representing the contours of the touch panel. At first, the monkeys were trained with non-rotated spatial stimuli. After this initial training, the visual stimuli were gradually rotated by 20 degrees in each step. In the last phase, the stimulus was suddenly rotated in the opposite direction by 60 degrees in one step. The results of the experiment suggest that the monkeys are able to use successfully abstract stimuli from one spatial frame for spatial choices in another frame. Effective use of the stimuli after their rotation suggested that the monkeys perceived the stimuli as a representation of the configuration of the touch holes in the real space, not only as different geometrical patterns without configuration information.

  20. Individual differences in spatial cognition influence mental simulation of language.

    PubMed

    Vukovic, Nikola; Williams, John N

    2015-09-01

    The factors that contribute to perceptual simulation during sentence comprehension remain underexplored. Extant research on perspective taking in language has largely focused on linguistic constraints, such as the role of pronouns in guiding perspective adoption. In the present study, we identify preferential usage of egocentric and allocentric reference frames in individuals, and test the two groups on a standard sentence-picture verification task. Across three experiments, we show that individual biases in spatial reference frame adoption observed in non-linguistic tasks influence visual simulation of perspective in language. Our findings suggest that typically reported grand-averaged effects may obscure important between-subject differences, and support proposals arguing for representational pluralism, where perceptual information is integrated dynamically and in a way that is sensitive to contextual and especially individual constraints.

  1. How Fast Do Objects Fall in Visual Memory? Uncovering the Temporal and Spatial Features of Representational Gravity.

    PubMed

    De Sá Teixeira, Nuno

    2016-01-01

    Visual memory for the spatial location where a moving target vanishes has been found to be systematically displaced downward in the direction of gravity. Moreover, it was recently reported that the magnitude of the downward error increases steadily with increasing retention intervals imposed after object's offset and before observers are allowed to perform the spatial localization task, in a pattern where the remembered vanishing location drifts downward as if following a falling trajectory. This outcome was taken to reflect the dynamics of a representational model of earth's gravity. The present study aims to establish the spatial and temporal features of this downward drift by taking into account the dynamics of the motor response. The obtained results show that the memory for the last location of the target drifts downward with time, thus replicating previous results. Moreover, the time taken for completion of the behavioural localization movements seems to add to the imposed retention intervals in determining the temporal frame during which the visual memory is updated. Overall, it is reported that the representation of spatial location drifts downward by about 3 pixels for each two-fold increase of time until response. The outcomes are discussed in relation to a predictive internal model of gravity which outputs an on-line spatial update of remembered objects' location.

  2. How Fast Do Objects Fall in Visual Memory? Uncovering the Temporal and Spatial Features of Representational Gravity

    PubMed Central

    De Sá Teixeira, Nuno

    2016-01-01

    Visual memory for the spatial location where a moving target vanishes has been found to be systematically displaced downward in the direction of gravity. Moreover, it was recently reported that the magnitude of the downward error increases steadily with increasing retention intervals imposed after object’s offset and before observers are allowed to perform the spatial localization task, in a pattern where the remembered vanishing location drifts downward as if following a falling trajectory. This outcome was taken to reflect the dynamics of a representational model of earth’s gravity. The present study aims to establish the spatial and temporal features of this downward drift by taking into account the dynamics of the motor response. The obtained results show that the memory for the last location of the target drifts downward with time, thus replicating previous results. Moreover, the time taken for completion of the behavioural localization movements seems to add to the imposed retention intervals in determining the temporal frame during which the visual memory is updated. Overall, it is reported that the representation of spatial location drifts downward by about 3 pixels for each two-fold increase of time until response. The outcomes are discussed in relation to a predictive internal model of gravity which outputs an on-line spatial update of remembered objects’ location. PMID:26910260

  3. Spatial cognition, body representation and affective processes: the role of vestibular information beyond ocular reflexes and control of posture

    PubMed Central

    Mast, Fred W.; Preuss, Nora; Hartmann, Matthias; Grabherr, Luzia

    2014-01-01

    A growing number of studies in humans demonstrate the involvement of vestibular information in tasks that are seemingly remote from well-known functions such as space constancy or postural control. In this review article we point out three emerging streams of research highlighting the importance of vestibular input: (1) Spatial Cognition: Modulation of vestibular signals can induce specific changes in spatial cognitive tasks like mental imagery and the processing of numbers. This has been shown in studies manipulating body orientation (changing the input from the otoliths), body rotation (changing the input from the semicircular canals), in clinical findings with vestibular patients, and in studies carried out in microgravity. There is also an effect in the reverse direction; top-down processes can affect perception of vestibular stimuli. (2) Body Representation: Numerous studies demonstrate that vestibular stimulation changes the representation of body parts, and sensitivity to tactile input or pain. Thus, the vestibular system plays an integral role in multisensory coordination of body representation. (3) Affective Processes and Disorders: Studies in psychiatric patients and patients with a vestibular disorder report a high comorbidity of vestibular dysfunctions and psychiatric symptoms. Recent studies investigated the beneficial effect of vestibular stimulation on psychiatric disorders, and how vestibular input can change mood and affect. These three emerging streams of research in vestibular science are—at least in part—associated with different neuronal core mechanisms. Spatial transformations draw on parietal areas, body representation is associated with somatosensory areas, and affective processes involve insular and cingulate cortices, all of which receive vestibular input. Even though a wide range of different vestibular cortical projection areas has been ascertained, their functionality still is scarcely understood. PMID:24904327

  4. Spatial and foveal biases, not perceived mass or heaviness, explain the effect of target size on representational momentum and representational gravity.

    PubMed

    De Sá Teixeira, Nuno; Oliveira, Armando Mónica

    2014-11-01

    The spatial memory for the last position occupied by a moving target is usually displaced forward in the direction of motion. Interpreted as a mental analogue of physical momentum, this phenomenon was coined representational momentum (RM). As momentum is given by the product of an object's velocity and mass, both these factors came to be under scrutiny in RM studies, the goal being to provide support for the internalization hypothesis. Although velocity was found to determine RM's magnitude, possible effects of mass were more elusive. Recently, an effect of target size on RM was reported, adding to previous findings that bigger targets were more mislocalized downward in the direction of gravity (via perceived heaviness and representational gravity; RG). The aim in the present research was to test that those outcomes reflect an internalization of momentum by excluding oculomotor factors. The results showed that an effect of target size, when it emerged, could be accounted for by a foveal bias such that bigger targets were more displaced toward gaze than were smaller ones. Specific contingencies between eye movements and target size seem to account for previous reports regarding the alleged effects of perceived mass on both RM and RG. This phenomenon seems furthermore to be modulated by the presence of other visual elements (fixation point) and the range of target velocities. These outcomes are taken as a rebuttal to the claim that cognitive analogues of mass or heaviness are responsible for previously reported effects of target size on both RM and RG.

  5. The role of online visual feedback for the control of target-directed and allocentric hand movements.

    PubMed

    Thaler, Lore; Goodale, Melvyn A

    2011-02-01

    Studies that have investigated how sensory feedback about the moving hand is used to control hand movements have relied on paradigms such as pointing or reaching that require subjects to acquire target locations. In the context of these target-directed tasks, it has been found repeatedly that the human sensory-motor system relies heavily on visual feedback to control the ongoing movement. This finding has been formalized within the framework of statistical optimality according to which different sources of sensory feedback are combined such as to minimize variance in sensory information during movement control. Importantly, however, many hand movements that people perform every day are not target-directed, but based on allocentric (object-centered) visual information. Examples of allocentric movements are gesture imitation, drawing, or copying. Here we tested if visual feedback about the moving hand is used in the same way to control target-directed and allocentric hand movements. The results show that visual feedback is used significantly more to reduce movement scatter in the target-directed as compared with the allocentric movement task. Furthermore, we found that differences in the use of visual feedback between target-directed and allocentric hand movements cannot be explained based on differences in uncertainty about the movement goal. We conclude that the role played by visual feedback for movement control is fundamentally different for target-directed and allocentric movements. The results suggest that current computational and neural models of sensorimotor control that are based entirely on data derived from target-directed paradigms have to be modified to accommodate performance in the allocentric tasks used in our experiments. As a consequence, the results cast doubt on the idea that models of sensorimotor control developed exclusively from data obtained in target-directed paradigms are also valid in the context of allocentric tasks, such as drawing

  6. Change detection based on deep feature representation and mapping transformation for multi-spatial-resolution remote sensing images

    NASA Astrophysics Data System (ADS)

    Zhang, Puzhao; Gong, Maoguo; Su, Linzhi; Liu, Jia; Li, Zhizhou

    2016-06-01

    Multi-spatial-resolution change detection is a newly proposed issue and it is of great significance in remote sensing, environmental and land use monitoring, etc. Though multi-spatial-resolution image-pair are two kinds of representations of the same reality, they are often incommensurable superficially due to their different modalities and properties. In this paper, we present a novel multi-spatial-resolution change detection framework, which incorporates deep-architecture-based unsupervised feature learning and mapping-based feature change analysis. Firstly, we transform multi-resolution image-pair into the same pixel-resolution through co-registration, followed by details recovery, which is designed to remedy the spatial details lost in the registration. Secondly, the denoising autoencoder is stacked to learn local and high-level representation/feature from the local neighborhood of the given pixel, in an unsupervised fashion. Thirdly, motivated by the fact that multi-resolution image-pair share the same reality in the unchanged regions, we try to explore the inner relationships between them by building a mapping neural network. And it can be used to learn a mapping function based on the most-unlikely-changed feature-pairs, which are selected from all the feature-pairs via a coarse initial change map generated in advance. The learned mapping function can bridge the different representations and highlight changes. Finally, we can build a robust and contractive change map through feature similarity analysis, and the change detection result is obtained through the segmentation of the final change map. Experiments are carried out on four real datasets, and the results confirmed the effectiveness and superiority of the proposed method.

  7. Shared Spatial Representations for Numbers and Space: The Reversal of the SNARC and the Simon Effects

    ERIC Educational Resources Information Center

    Notebaert, Wim; Gevers, Wim; Verguts, Tom; Fias, Wim

    2006-01-01

    In 4 experiments, the authors investigated the reversal of spatial congruency effects when participants concurrently practiced incompatible mapping rules (J. G. Marble & R. W. Proctor, 2000). The authors observed an effect of an explicit spatially incompatible mapping rule on the way numerical information was associated with spatial responses. The…

  8. First-Graders' Spatial-Mathematical Reasoning about Plane and Solid Shapes and Their Representations

    ERIC Educational Resources Information Center

    Hallowell, David A.; Okamoto, Yukari; Romo, Laura F.; La Joy, Jonna R.

    2015-01-01

    The primary goal of the study was to explore first-grade children's reasoning about plane and solid shapes across various kinds of geometric representations. Children were individually interviewed while completing a shape-matching task developed for this study. This task required children to compose and decompose geometric figures to identify…

  9. Assessing Spatial Learning and Memory in Rodents

    PubMed Central

    Vorhees, Charles V.; Williams, Michael T.

    2014-01-01

    Maneuvering safely through the environment is central to survival of almost all species. The ability to do this depends on learning and remembering locations. This capacity is encoded in the brain by two systems: one using cues outside the organism (distal cues), allocentric navigation, and one using self-movement, internal cues and nearby proximal cues, egocentric navigation. Allocentric navigation involves the hippocampus, entorhinal cortex, and surrounding structures; in humans this system encodes allocentric, semantic, and episodic memory. This form of memory is assessed in laboratory animals in many ways, but the dominant form of assessment is the Morris water maze (MWM). Egocentric navigation involves the dorsal striatum and connected structures; in humans this system encodes routes and integrated paths and, when overlearned, becomes procedural memory. In this article, several allocentric assessment methods for rodents are reviewed and compared with the MWM. MWM advantages (little training required, no food deprivation, ease of testing, rapid and reliable learning, insensitivity to differences in body weight and appetite, absence of nonperformers, control methods for proximal cue learning, and performance effects) and disadvantages (concern about stress, perhaps not as sensitive for working memory) are discussed. Evidence-based design improvements and testing methods are reviewed for both rats and mice. Experimental factors that apply generally to spatial navigation and to MWM specifically are considered. It is concluded that, on balance, the MWM has more advantages than disadvantages and compares favorably with other allocentric navigation tasks. PMID:25225309

  10. The Role of Cognitive Flexibility in the Spatial Representation of Children's Drawings

    ERIC Educational Resources Information Center

    Ebersbach, Mirjam; Hagedorn, Helena

    2011-01-01

    Representing the spatial appearance of objects and scenes in drawings is a difficult task for young children in particular. In the present study, the relationship between spatial drawing and cognitive flexibility was investigated. Seven- to 11-year-olds (N = 60) were asked to copy a three-dimensional model in a drawing. The use of depth cues as an…

  11. Representation of Survey and Route Spatial Descriptions in Children with Nonverbal (Visuospatial) Learning Disabilities

    ERIC Educational Resources Information Center

    Mammarella, Irene C.; Meneghetti, Chiara; Pazzaglia, Francesca; Gitti, Filippo; Gomez, Claudia; Cornoldi, Cesare

    2009-01-01

    This study aims to investigate the types of difficulty encountered by children with nonverbal (visuospatial) learning disabilities (NLD) during the processing of spatial information derived from descriptions. Two spatial descriptions--one in survey, one in route perspective--and one nonspatial description were orally presented to children aged…

  12. How to Rapidly Construct a Spatial-Numerical Representation in Preliterate Children (At Least Temporarily)

    ERIC Educational Resources Information Center

    Patro, Katarzyna; Fischer, Ursula; Nuerk, Hans-Christoph; Cress, Ulrike

    2016-01-01

    Spatial processing of numbers has emerged as one of the basic properties of humans' mathematical thinking. However, how and when number-space relations develop is a highly contested issue. One dominant view has been that a link between numbers and left/right spatial directions is constructed based on directional experience associated with reading…

  13. The impact of egocentric vs. allocentric agency attributions on the neural bases of reasoning about social rules.

    PubMed

    Canessa, Nicola; Pantaleo, Giuseppe; Crespi, Chiara; Gorini, Alessandra; Cappa, Stefano F

    2014-09-18

    We used the "standard" and "switched" social contract versions of the Wason Selection-task to investigate the neural bases of human reasoning about social rules. Both these versions typically elicit the deontically correct answer, i.e. the proper identification of the violations of a conditional obligation. Only in the standard version of the task, however, this response corresponds to the logically correct one. We took advantage of this differential adherence to logical vs. deontical accuracy to test the different predictions of logic rule-based vs. visuospatial accounts of inferential abilities in 14 participants who solved the standard and switched versions of the Selection-task during functional-Magnetic-Resonance-Imaging. Both versions activated the well known left fronto-parietal network of deductive reasoning. The standard version additionally recruited the medial parietal and right inferior parietal cortex, previously associated with mental imagery and with the adoption of egocentric vs. allocentric spatial reference frames. These results suggest that visuospatial processes encoding one's own subjective experience in social interactions may support and shape the interpretation of deductive arguments and/or the resulting inferences, thus contributing to elicit content effects in human reasoning.

  14. The application of quaternions and other spatial representations to the reconstruction of re-entry vehicle motion.

    SciTech Connect

    De Sapio, Vincent

    2010-09-01

    The analysis of spacecraft kinematics and dynamics requires an efficient scheme for spatial representation. While the representation of displacement in three dimensional Euclidean space is straightforward, orientation in three dimensions poses particular challenges. The unit quaternion provides an approach that mitigates many of the problems intrinsic in other representation approaches, including the ill-conditioning that arises from computing many successive rotations. This report focuses on the computational utility of unit quaternions and their application to the reconstruction of re-entry vehicle (RV) motion history from sensor data. To this end they will be used in conjunction with other kinematic and data processing techniques. We will present a numerical implementation for the reconstruction of RV motion solely from gyroscope and accelerometer data. This will make use of unit quaternions due to their numerical efficacy in dealing with the composition of many incremental rotations over a time series. In addition to signal processing and data conditioning procedures, algorithms for numerical quaternion-based integration of gyroscope data will be addressed, as well as accelerometer triangulation and integration to yield RV trajectory. Actual processed flight data will be presented to demonstrate the implementation of these methods.

  15. Touch perception reveals the dominance of spatial over digital representation of numbers

    PubMed Central

    Brozzoli, Claudio; Ishihara, Masami; Göbel, Silke M.; Salemme, Roméo; Rossetti, Yves; Farnè, Alessandro

    2008-01-01

    We learn counting on our fingers, and the digital representation of numbers we develop is still present in adulthood [Andres M, et al. (2007) J Cognit Neurosci 19:563–576]. Such an anatomy–magnitude association establishes tight functional correspondences between fingers and numbers [Di Luca S, et al. (2006) Q J Exp Psychol 59:1648–1663]. However, it has long been known that small-to-large magnitude information is arranged left-to-right along a mental number line [Dehaene S, et al. (1993) J Exp Psychol Genet 122:371–396]. Here, we investigated touch perception to disambiguate whether number representation is embodied on the hand (“1” = thumb; “5” = little finger) or disembodied in the extrapersonal space (“1” = left; “5” = right). We directly contrasted these number representations in two experiments using a single centrally located effector (the foot) and a simple postural manipulation of the hand (palm-up vs. palm-down). We show that visual presentation of a number (“1” or “5”) shifts attention cross-modally, modulating the detection of tactile stimuli delivered on the little finger or thumb. With the hand resting palm-down, subjects perform better when reporting tactile stimuli delivered to the little finger after presentation of number “5” than number “1.” Crucially, this pattern reverses (better performance after number “1” than “5”) when the hand is in a palm-up posture, in which the position of the fingers in external space, but not their relative anatomical position, is reversed. The human brain can thus use either space- or body-based representation of numbers, but in case of competition, the former dominates the latter, showing the stronger role played by the mental number line organization. PMID:18385382

  16. Echo-acoustic flow shapes object representation in spatially complex acoustic scenes.

    PubMed

    Greiter, Wolfgang; Firzlaff, Uwe

    2017-03-08

    Echolocating bats use echoes of their sonar emissions to determine the position and distance of objects or prey. Target distance is represented as a map of echo delay in the auditory cortex (AC) of bats. During a bat's flight through a natural complex environment, echo streams are reflected from multiple objects along its flight path. Separating such complex streams of echoes or other sounds is a challenge for the auditory system of bats as well as other animals. We investigated the representation of multiple echo streams in the AC of anaesthetized bats (Phyllostomus discolor) and tested the hypothesis, if neurons can lock on echoes from specific objects in a complex echo-acoustic pattern while the representation of surrounding objects is suppressed. We combined naturalistic pulse/echo sequences simulating a bat's flight through a virtual acoustic space with extracellular recordings. Neurons could selectively lock on echoes from one object in complex echo streams originating from two different objects along a virtual flight path. The objects were processed sequentially in the order in which they were approached. Object selection depended on sequential changes of echo delay and amplitude but not on absolute values. Furthermore, the detailed representation of the object echo delays in the cortical target range map was not fixed but could be dynamically adapted depending on the temporal pattern of sonar emission during target approach within a simulated flight sequence.

  17. Integration of egocentric and allocentric information during memory-guided reaching to images of a natural environment.

    PubMed

    Fiehler, Katja; Wolf, Christian; Klinghammer, Mathias; Blohm, Gunnar

    2014-01-01

    When interacting with our environment we generally make use of egocentric and allocentric object information by coding object positions relative to the observer or relative to the environment, respectively. Bayesian theories suggest that the brain integrates both sources of information optimally for perception and action. However, experimental evidence for egocentric and allocentric integration is sparse and has only been studied using abstract stimuli lacking ecological relevance. Here, we investigated the use of egocentric and allocentric information during memory-guided reaching to images of naturalistic scenes. Participants encoded a breakfast scene containing six objects on a table (local objects) and three objects in the environment (global objects). After a 2 s delay, a visual test scene reappeared for 1 s in which 1 local object was missing (= target) and of the remaining, 1, 3 or 5 local objects or one of the global objects were shifted to the left or to the right. The offset of the test scene prompted participants to reach to the target as precisely as possible. Only local objects served as potential reach targets and thus were task-relevant. When shifting objects we predicted accurate reaching if participants only used egocentric coding of object position and systematic shifts of reach endpoints if allocentric information were used for movement planning. We found that reaching movements were largely affected by allocentric shifts showing an increase in endpoint errors in the direction of object shifts with the number of local objects shifted. No effect occurred when one local or one global object was shifted. Our findings suggest that allocentric cues are indeed used by the brain for memory-guided reaching towards targets in naturalistic visual scenes. Moreover, the integration of egocentric and allocentric object information seems to depend on the extent of changes in the scene.

  18. Integration of egocentric and allocentric information during memory-guided reaching to images of a natural environment

    PubMed Central

    Fiehler, Katja; Wolf, Christian; Klinghammer, Mathias; Blohm, Gunnar

    2014-01-01

    When interacting with our environment we generally make use of egocentric and allocentric object information by coding object positions relative to the observer or relative to the environment, respectively. Bayesian theories suggest that the brain integrates both sources of information optimally for perception and action. However, experimental evidence for egocentric and allocentric integration is sparse and has only been studied using abstract stimuli lacking ecological relevance. Here, we investigated the use of egocentric and allocentric information during memory-guided reaching to images of naturalistic scenes. Participants encoded a breakfast scene containing six objects on a table (local objects) and three objects in the environment (global objects). After a 2 s delay, a visual test scene reappeared for 1 s in which 1 local object was missing (= target) and of the remaining, 1, 3 or 5 local objects or one of the global objects were shifted to the left or to the right. The offset of the test scene prompted participants to reach to the target as precisely as possible. Only local objects served as potential reach targets and thus were task-relevant. When shifting objects we predicted accurate reaching if participants only used egocentric coding of object position and systematic shifts of reach endpoints if allocentric information were used for movement planning. We found that reaching movements were largely affected by allocentric shifts showing an increase in endpoint errors in the direction of object shifts with the number of local objects shifted. No effect occurred when one local or one global object was shifted. Our findings suggest that allocentric cues are indeed used by the brain for memory-guided reaching towards targets in naturalistic visual scenes. Moreover, the integration of egocentric and allocentric object information seems to depend on the extent of changes in the scene. PMID:25202252

  19. NMDA receptor ablation on parvalbumin-positive interneurons impairs hippocampal synchrony, spatial representations, and working memory.

    PubMed

    Korotkova, Tatiana; Fuchs, Elke C; Ponomarenko, Alexey; von Engelhardt, Jakob; Monyer, Hannah

    2010-11-04

    Activity of parvalbumin-positive hippocampal interneurons is critical for network synchronization but the receptors involved therein have remained largely unknown. Here we report network and behavioral deficits in mice with selective ablation of NMDA receptors in parvalbumin-positive interneurons (NR1(PVCre-/-)). Recordings of local field potentials and unitary neuronal activity in the hippocampal CA1 area revealed altered theta oscillations (5-10 Hz) in freely behaving NR1(PVCre-/-) mice. Moreover, in contrast to controls, in NR1(PVCre-/-) mice the remaining theta rhythm was abolished by the administration of atropine. Gamma oscillations (35-85 Hz) were increased and less modulated by the concurrent theta rhythm in the mutant. Positional firing of pyramidal cells in NR1(PVCre-/-) mice was less spatially and temporally precise. Finally, NR1(PVCre-/-) mice exhibited impaired spatial working as well as spatial short- and long-term recognition memory but showed no deficits in open field exploratory activity and spatial reference learning.

  20. The photo-colorimetric space as a medium for the representation of spatial data

    NASA Technical Reports Server (NTRS)

    Kraiss, K. Friedrich; Widdel, Heino

    1989-01-01

    Spatial displays and instruments are usually used in the context of vehicle guidance, but it is hard to find applicable spatial formats in information retrieval and interaction systems. Human interaction with spatial data structures and the applicability of the CIE color space to improve dialogue transparency is discussed. A proposal is made to use the color space to code spatially represented data. The semantic distances of the categories of dialogue structures or, more general, of database structures, are determined empirically. Subsequently the distances are transformed and depicted into the color space. The concept is demonstrated for a car diagnosis system, where the category cooling system could, e.g., be coded in blue, the category ignition system in red. Hereby a correspondence between color and semantic distances is achieved. Subcategories can be coded as luminance differences within the color space.

  1. A sampling method for improving the representation of spatially varying precipitation and soil moisture using the Simple Biosphere Model

    NASA Astrophysics Data System (ADS)

    Medina, Isaac D.; Denning, A. Scott; Baker, Ian T.; Ramirez, Jorge A.; Randall, David A.

    2014-03-01

    spatially varying precipitation for current grid length scales used in General Circulation Models (GCMs) is a continuing challenge. Furthermore, to fully capture the hydrologic effects of nonuniform precipitation, a representation of soil moisture heterogeneity and distribution of spatially varying precipitation must exist within the same framework. For this study, the explicit and sampling methods of Sellers et al. (2007) are tested off-line using the Simple Biosphere Model (SiB3) in an arid, semiarid, and wet site, and are numerically compared to the bulk method, which is currently used in GCMs. To carry out the numerical experiments, an arbitrary grid area was defined by (1) a single instance of SiB3 (bulk method), (2) 100 instances of SiB3 (explicit method), and (3) less than 100 instances of SiB3 (sampling method). Precipitation was randomly distributed over fractions of the grid area for the explicit and sampling methods, while the standard SiB3 exponential distribution relating precipitation intensity to the grid area wet fraction was used in the bulk method. Comparing the sampling and bulk method to the explicit method indicates that 10 instances of SiB3 in the sampling method better captures the spatial variability in soil moisture and grid area flux calculations produced by the explicit method, and deals realistically with spatially varying precipitation at little additional computational cost to the bulk method.

  2. Representation of survey and route spatial descriptions in children with nonverbal (visuospatial) learning disabilities.

    PubMed

    Mammarella, Irene C; Meneghetti, Chiara; Pazzaglia, Francesca; Gitti, Filippo; Gomez, Claudia; Cornoldi, Cesare

    2009-11-01

    This study aims to investigate the types of difficulty encountered by children with nonverbal (visuospatial) learning disabilities (NLD) during the processing of spatial information derived from descriptions. Two spatial descriptions--one in survey, one in route perspective--and one nonspatial description were orally presented to children aged 9-12 divided in three groups: (i) with NLD (N=12), (ii) with reading disability (RD) (N=11), and (iii) without learning disabilities who served as controls (N=16). Children performed two tasks: sentence verification and location. In the verification task, NLD performed worse in survey text than control and RD groups. Moreover, in the location task NLD were worse than controls in both survey and route descriptions, but significantly poorer than the RD group only in the survey description. The results are discussed considering their implications in understanding the neuropsychological profile of NLD and the processes involved by different types of spatial descriptions.

  3. Bisections in Two Languages: When Number Processing, Spatial Representation, and Habitual Reading Direction Interact

    ERIC Educational Resources Information Center

    Kazandjian, Seta; Cavezian, Celine; Zivotofsky, Ari Z.; Chokron, Sylvie

    2010-01-01

    Calabria and Rossetti (2005) demonstrated that spatial biases related to the mental number line can be seen even when bisecting strings of number words. Strings of smaller magnitude number words were bisected further to the left than strings of larger magnitude number words. The current study investigated whether the left-to-right mental number…

  4. Models of Sensory Deprivation: The Nature/nurture Dichotomy and Spatial Representation in the Blind.

    ERIC Educational Resources Information Center

    Millar, Susanna

    1988-01-01

    Examines the fallacies about the nature of abilities and learning and about the interaction between sense modalities which follow from the dichotomy in relation to explanations of spatial development in the blind. Suggests that interactions between cognitive and perceptual factors need to be considered to explain more adequately effects of sensory…

  5. An Effect of Spatial-Temporal Association of Response Codes: Understanding the Cognitive Representations of Time

    ERIC Educational Resources Information Center

    Vallesi, Antonino; Binns, Malcolm A.; Shallice, Tim

    2008-01-01

    The present study addresses the question of how such an abstract concept as time is represented by our cognitive system. Specifically, the aim was to assess whether temporal information is cognitively represented through left-to-right spatial coordinates, as already shown for other ordered sequences (e.g., numbers). In Experiment 1, the…

  6. Representation of spatial information in key areas of the descending pain modulatory system.

    PubMed

    Ritter, Christoph; Hebart, Martin N; Wolbers, Thomas; Bingel, Ulrike

    2014-03-26

    Behavioral studies have demonstrated that descending pain modulation can be spatially specific, as is evident in placebo analgesia, which can be limited to the location at which pain relief is expected. This suggests that higher-order cortical structures of the descending pain modulatory system carry spatial information about the site of stimulation. Here, we used functional magnetic resonance imaging and multivariate pattern analysis in 15 healthy human volunteers to test whether spatial information of painful stimuli is represented in areas of the descending pain modulatory system. We show that the site of nociceptive stimulation (arm or leg) can be successfully decoded from local patterns of brain activity during the anticipation and receipt of painful stimulation in the rostral anterior cingulate cortex, the dorsolateral prefrontal cortices, and the contralateral parietal operculum. These results demonstrate that information regarding the site of nociceptive stimulation is represented in these brain regions. Attempts to predict arm and leg stimulation from the periaqueductal gray, control regions (e.g., white matter) or the control time interval in the intertrial phase did not allow for classifications above chance level. This finding represents an important conceptual advance in the understanding of endogenous pain control mechanisms by bridging the gap between previous behavioral and neuroimaging studies, suggesting a spatial specificity of endogenous pain control.

  7. Spatial Mental Representations Derived from Survey and Route Descriptions: When Individuals Prefer Extrinsic Frame of Reference

    ERIC Educational Resources Information Center

    Meneghetti, Chiara; Pazzaglia, Francesca; De Beni, Rossana

    2011-01-01

    The present research investigates the role of individual differences in preference for adopting extrinsic frame of reference (EFR) in ability to represent mentally spatial information learned through survey and route descriptions. A sample of 191 participants (100 females and 91 males) was categorized as four groups with high (H-EFR), medium-high…

  8. Spatially-global integration of closed, fragmented contours by finding the shortest-path in a log-polar representation

    PubMed Central

    Kwon, TaeKyu; Agrawal, Kunal; Li, Yunfeng; Pizlo, Zygmunt

    2015-01-01

    Finding the occluding contours of objects in real 2D retinal images of natural 3D scenes is done by determining, which contour fragments are relevant, and the order in which they should be connected. We developed a model that finds the closed contour represented in the image by solving a shortest path problem that uses a log-polar representation of the image; the kind of representation known to exist in area V1 of the primate cortex. The shortest path in a log-polar representation favors the smooth, convex and closed contours in the retinal image that have the smallest number of gaps. This approach is practical because finding a globally-optimal solution to a shortest path problem is computationally easy. Our model was tested in four psychophysical experiments. In the first two experiments, the subject was presented with a fragmented convex or concave polygon target among a large number of unrelated pieces of contour (distracters). The density of these pieces of contour was uniform all over the screen to minimize spatially-local cues. The orientation of each target contour fragment was randomly perturbed by varying the levels of jitter. Subjects drew a closed contour that represented the target’s contour on a screen. The subjects’ performance was nearly perfect when the jitter-level was low. Their performance deteriorated as jitter-levels were increased. The performance of our model was very similar to our subjects’. In two subsequent experiments, the subject was asked to discriminate a briefly-presented egg-shaped object while maintaining fixation at several different positions relative to the closed contour of the shape. The subject’s discrimination performance was affected by the fixation position in much the same way as the model’s. PMID:26241462

  9. Effects of number of animals monitored on representations of cattle group movement characteristics and spatial occupancy.

    PubMed

    Liu, Tong; Green, Angela R; Rodríguez, Luis F; Ramirez, Brett C; Shike, Daniel W

    2015-01-01

    The number of animals required to represent the collective characteristics of a group remains a concern in animal movement monitoring with GPS. Monitoring a subset of animals from a group instead of all animals can reduce costs and labor; however, incomplete data may cause information losses and inaccuracy in subsequent data analyses. In cattle studies, little work has been conducted to determine the number of cattle within a group needed to be instrumented considering subsequent analyses. Two different groups of cattle (a mixed group of 24 beef cows and heifers, and another group of 8 beef cows) were monitored with GPS collars at 4 min intervals on intensively managed pastures and corn residue fields in 2011. The effects of subset group size on cattle movement characterization and spatial occupancy analysis were evaluated by comparing the results between subset groups and the entire group for a variety of summarization parameters. As expected, more animals yield better results for all parameters. Results show the average group travel speed and daily travel distances are overestimated as subset group size decreases, while the average group radius is underestimated. Accuracy of group centroid locations and group radii are improved linearly as subset group size increases. A kernel density estimation was performed to quantify the spatial occupancy by cattle via GPS location data. Results show animals among the group had high similarity of spatial occupancy. Decisions regarding choosing an appropriate subset group size for monitoring depend on the specific use of data for subsequent analysis: a small subset group may be adequate for identifying areas visited by cattle; larger subset group size (e.g. subset group containing more than 75% of animals) is recommended to achieve better accuracy of group movement characteristics and spatial occupancy for the use of correlating cattle locations with other environmental factors.

  10. Spatial representations in dorsal hippocampal neurons during a tactile-visual conditional discrimination task.

    PubMed

    Griffin, Amy L; Owens, Cullen B; Peters, Gregory J; Adelman, Peter C; Cline, Kathryn M

    2012-02-01

    Trajectory-dependent coding in dorsal CA1 of hippocampus has been evident in various spatial memory tasks aiming to model episodic memory. Hippocampal neurons are considered to be trajectory-dependent if the neuron has a place field located on an overlapping segment of two trajectories and exhibits a reliable difference in firing rate between the two trajectories. It is unclear whether trajectory-dependent coding in hippocampus is a mechanism used by the rat to solve spatial memory tasks. A first step in answering this question is to compare results between studies using tasks that require spatial working memory and those that do not. We recorded single units from dorsal CA1 of hippocampus during performance of a discrete-trial, tactile-visual conditional discrimination (CD) task in a T-maze. In this task, removable floor inserts that differ in texture and appearance cue the rat to visit either the left or right goal arm to receive a food reward. Our goal was to assess whether trajectory coding would be evident in the CD task. Our results show that trajectory coding was rare in the CD task, with only 12 of 71 cells with place fields on the maze stem showing a significant firing rate difference between left and right trials. For comparison, we recorded from dorsal CA1 during the acquisition and performance of a continuous spatial alternation task identical to that used in previous studies and found a proportion of trajectory coding neurons similar to what has been previously reported. Our data suggest that trajectory coding is not a universal mechanism used by the hippocampus to disambiguate similar trajectories, and instead may be more likely to appear in tasks that require the animal to retrieve information about a past trajectory, particularly in tasks that are continuous rather than discrete in nature.

  11. How to rapidly construct a spatial-numerical representation in preliterate children (at least temporarily).

    PubMed

    Patro, Katarzyna; Fischer, Ursula; Nuerk, Hans-Christoph; Cress, Ulrike

    2016-01-01

    Spatial processing of numbers has emerged as one of the basic properties of humans' mathematical thinking. However, how and when number-space relations develop is a highly contested issue. One dominant view has been that a link between numbers and left/right spatial directions is constructed based on directional experience associated with reading and writing. However, some early forms of a number-space link have been observed in preschool children who cannot yet read and write. As literacy experience is evidently not necessary for number-space effects, we are searching for other potential sources of this association. Here we propose and test a hypothesis that the number-space link can be quickly constructed in preschool children's cognition on the basis of spatially oriented visuo-motor activities. We trained 3- and 4-year-old children with a non-numerical spatial movement task (left-to-right or right-to-left), where via touch screen children had to move a frog across a pond. After the training, children had to perform a numerosity comparison task. After left-to-right training, we observed a SNARC-like effect (reactions to smaller numbers were faster on the left side, and reactions to larger numbers on the right side), and after right-to-left training a reverse effect. These results are the first to show a causal link between visuo-motor activities and number-space associations in children before they learn to read and write. We argue that simple activities, such as manual games, dominant in a given society, might shape number-space associations in children in a way similar to lifelong reading training.

  12. The impact of conflicting spatial representations in airborne unmanned aerial system sensor control

    DTIC Science & Technology

    2016-02-01

    was chosen because all participants were familiar with the geography and surface structures in and around this location. The fidelity of all visual...Golledge, R. G. (1998). Spatial updating of self-position and orientation during real, imagined, and virtual locomotion. Psychological Science, 9...Journal of Experimental Psychology : Learning, Memory and Cognition, 24, 215–226. Shepard, R and Metzler. J. (1971). "Mental rotation of three

  13. Interaction envelope: Local spatial representations of objects at all scales in scene-selective regions.

    PubMed

    Bainbridge, Wilma Alice; Oliva, Aude

    2015-11-15

    While several cortical regions have been highlighted for their category selectivity (e.g., scene-selective regions like the parahippocampal place area, object selective regions like the lateral occipital complex), a growing trend in cognitive neuroscience has been to investigate what particular perceptual properties these regions calculate. Classical scene-selective regions have been particularly targeted in recent work as being sensitive to object size or other related properties. Here we test to which extent these regions are sensitive to spatial information of stimuli at any size. We introduce the spatial object property of "interaction envelope," defined as the space through which a user transverses to interact with an object. In two functional magnetic resonance imaging experiments, we examined activity in a comprehensive set of perceptual regions of interest for when human participants viewed object images varying along the dimensions of interaction envelope and physical size. Importantly, we controlled for confounding perceptual and semantic object properties. We find that scene-selective regions are in fact sensitive to object interaction envelope for small, manipulable objects regardless of real-world size and task. Meanwhile, small-scale entity regions maintain selectivity to stimulus physical size. These results indicate that regions traditionally associated with scene processing may not be solely sensitive to larger object and scene information, but instead are calculating local spatial information of objects and scenes of all sizes.

  14. Gaze modulates non-propositional reasoning: further evidence for spatial representation of reasoning premises.

    PubMed

    Brunamonti, E; Genovesio, A; Carbè, K; Ferraina, S

    2011-01-26

    Human and animals are able to decide that A>C after having learnt that A>B and B>C. This basic property of logical thinking has been studied by transitive inference (TI) tasks. It has been hypothesized that subjects displace the premises of the inference on a mental line to solve the task. An evidence in favor of this interpretation is the observation of the symbolic distance effect, that is the improvement of the performance as the distance between items increases. This effect has been interpreted as support to the hypothesis that ability to perform TI tasks follows the same rules and is mediated by the same brain circuits involved in the performance of spatial tasks. We tested ten subjects performing a TI on an ordered list of Japanese characters while they were fixating either leftwards or rightwards, to evaluate whether the eye position modulated the performance in making TI as it does in spatial tasks. Our results show a significant linear decrease of the reaction time with the increase of the symbolic distance and a shift of this trend towards lower reaction times when subjects were fixating to the left. We interpret this eye position effect as a further evidence that spatial and reasoning tasks share the same underlying mechanisms and neural substrates. The eye position effect also points to a parietal cortex involvement in the neural circuit involved in transitive reasoning.

  15. Increased Variability and Asymmetric Expansion of the Hippocampal Spatial Representation in a Distal Cue-Dependent Memory Task.

    PubMed

    Park, Seong-Beom; Lee, Inah

    2016-08-01

    Place cells in the hippocampus fire at specific positions in space, and distal cues in the environment play critical roles in determining the spatial firing patterns of place cells. Many studies have shown that place fields are influenced by distal cues in foraging animals. However, it is largely unknown whether distal-cue-dependent changes in place fields appear in different ways in a memory task if distal cues bear direct significance to achieving goals. We investigated this possibility in this study. Rats were trained to choose different spatial positions in a radial arm in association with distal cue configurations formed by visual cue sets attached to movable curtains around the apparatus. The animals were initially trained to associate readily discernible distal cue configurations (0° vs. 80° angular separation between distal cue sets) with different food-well positions and then later experienced ambiguous cue configurations (14° and 66°) intermixed with the original cue configurations. Rats showed no difficulty in transferring the associated memory formed for the original cue configurations when similar cue configurations were presented. Place field positions remained at the same locations across different cue configurations, whereas stability and coherence of spatial firing patterns were significantly disrupted when ambiguous cue configurations were introduced. Furthermore, the spatial representation was extended backward and skewed more negatively at the population level when processing ambiguous cue configurations, compared with when processing the original cue configurations only. This effect was more salient for large cue-separation conditions than for small cue-separation conditions. No significant rate remapping was observed across distal cue configurations. These findings suggest that place cells in the hippocampus dynamically change their detailed firing characteristics in response to a modified cue environment and that some of the firing

  16. Students' Visualization of Diagrams Representing the Human Circulatory System: The use of spatial isomorphism and representational conventions

    NASA Astrophysics Data System (ADS)

    Cheng, Maurice M. W.; Gilbert, John K.

    2015-01-01

    This study investigated students' interpretation of diagrams representing the human circulatory system. We conducted an interview study with three students aged 14-15 (Year 10) who were studying biology in a Hong Kong school. During the interviews, students were asked to interpret diagrams and relationships between diagrams that represented aspects of the circulatory system. All diagrams used in the interviews had been used by their teacher when teaching the topic. Students' interpretations were expressed by their verbal response and their drawing. Dual coding theory was used to interpret students' responses. There was evidence that one student relied on verbal recall as a strategy in interpreting diagrams. It was found that students might have relied unduly on similarities in spatial features, rather than on deeper meanings represented by conventions, of diagrams when they associated diagrams that represented different aspects of the circulatory system. A pattern of students' understanding of structure-behaviour-function relationship of the biological system was observed. This study suggests the importance of a consistent diagrammatic and verbal representation in communicating scientific ideas. Implications for teaching practice that facilitates learning with diagrams and address students' undue focus on spatial features of diagrams are discussed.

  17. Phosphorus in Phoenix: a budget and spatial representation of phosphorus in an urban ecosystem.

    PubMed

    Metson, Geneviève S; Hale, Rebecca L; Iwaniec, David M; Cook, Elizabeth M; Corman, Jessica R; Galletti, Christopher S; Childers, Daniel L

    2012-03-01

    As urban environments dominate the landscape, we need to examine how limiting nutrients such as phosphorus (P) cycle in these novel ecosystems. Sustainable management of P resources is necessary to ensure global food security and to minimize freshwater pollution. We used a spatially explicit budget to quantify the pools and fluxes of P in the Greater Phoenix Area in Arizona, USA, using the boundaries of the Central Arizona-Phoenix Long-Term Ecological Research site. Inputs were dominated by direct imports of food and fertilizer for local agriculture, while most outputs were small, including water, crops, and material destined for recycling. Internally, fluxes were dominated by transfers of food and feed from local agriculture and the recycling of human and animal excretion. Spatial correction of P dynamics across the city showed that human density and associated infrastructure, especially asphalt, dominated the distribution of P pools across the landscape. Phosphorus fluxes were dominated by agricultural production, with agricultural soils accumulating P. Human features (infrastructure, technology, and waste management decisions) and biophysical characteristics (soil properties, water fluxes, and storage) mediated P dynamics in Phoenix. P cycling was most notably affected by water management practices that conserve and recycle water, preventing the loss of waterborne P from the ecosystem. P is not intentionally managed, and as a result, changes in land use and demographics, particularly increased urbanization and declining agriculture, may lead to increased losses of P from this system. We suggest that city managers should minimize cross-boundary fluxes of P to the city. Reduced P fluxes may be accomplished through more efficient recycling of waste, therefore decreasing dependence on external nonrenewable P resources and minimizing aquatic pollution. Our spatial approach and consideration of both pools and fluxes across a heterogeneous urban ecosystem increases the

  18. Representation of spatial and temporal variability in large-domain hydrological models: case study for a mesoscale pre-Alpine basin

    NASA Astrophysics Data System (ADS)

    Melsen, Lieke; Teuling, Adriaan; Torfs, Paul; Zappa, Massimiliano; Mizukami, Naoki; Clark, Martyn; Uijlenhoet, Remko

    2016-06-01

    The transfer of parameter sets over different temporal and spatial resolutions is common practice in many large-domain hydrological modelling studies. The degree to which parameters are transferable across temporal and spatial resolutions is an indicator of how well spatial and temporal variability is represented in the models. A large degree of transferability may well indicate a poor representation of such variability in the employed models. To investigate parameter transferability over resolution in time and space we have set up a study in which the Variable Infiltration Capacity (VIC) model for the Thur basin in Switzerland was run with four different spatial resolutions (1 km × 1 km, 5 km × 5 km, 10 km × 10 km, lumped) and evaluated for three relevant temporal resolutions (hour, day, month), both applied with uniform and distributed forcing. The model was run 3150 times using the Hierarchical Latin Hypercube Sample and the best 1 % of the runs was selected as behavioural. The overlap in behavioural sets for different spatial and temporal resolutions was used as an indicator of parameter transferability. A key result from this study is that the overlap in parameter sets for different spatial resolutions was much larger than for different temporal resolutions, also when the forcing was applied in a distributed fashion. This result suggests that it is easier to transfer parameters across different spatial resolutions than across different temporal resolutions. However, the result also indicates a substantial underestimation in the spatial variability represented in the hydrological simulations, suggesting that the high spatial transferability may occur because the current generation of large-domain models has an inadequate representation of spatial variability and hydrologic connectivity. The results presented in this paper provide a strong motivation to further investigate and substantially improve the representation of spatial and temporal variability in

  19. An efficient representation of spatial information for expert reasoning in robotic vehicles

    NASA Technical Reports Server (NTRS)

    Scott, Steven; Interrante, Mark

    1987-01-01

    The previous generation of robotic vehicles and drones was designed for a specific task, with limited flexibility in executing their mission. This limited flexibility arises because the robotic vehicles do not possess the intelligence and knowledge upon which to make significant tactical decisions. Current development of robotic vehicles is toward increased intelligence and capabilities, adapting to a changing environment and altering mission objectives. The latest techniques in artificial intelligence (AI) are being employed to increase the robotic vehicle's intelligent decision-making capabilities. This document describes the design of the SARA spatial database tool, which is composed of request parser, reasoning, computations, and database modules that collectively manage and derive information useful for robotic vehicles.

  20. Representation of abstract quantitative rules applied to spatial and numerical magnitudes in primate prefrontal cortex.

    PubMed

    Eiselt, Anne-Kathrin; Nieder, Andreas

    2013-04-24

    Processing quantity information based on abstract principles is central to intelligent behavior. Neural correlates of quantitative rule selectivity have been identified previously in the prefrontal cortex (PFC). However, whether individual neurons represent rules applied to multiple magnitude types is unknown. We recorded from PFC neurons while monkeys switched between "greater than/less than" rules applied to spatial and numerical magnitudes. A majority of rule-selective neurons responded only to the quantitative rules applied to one specific magnitude type. However, another population of neurons generalized the magnitude principle and represented the quantitative rules related to both magnitudes. This indicates that the primate brain uses rule-selective neurons specialized in guiding decisions related to a specific magnitude type only, as well as generalizing neurons that respond abstractly to the overarching concept "magnitude rules."

  1. Children's representations of another person's spatial perspective: Different strategies for different viewpoints?

    PubMed

    Vander Heyden, Karin M; Huizinga, Mariette; Raijmakers, Maartje E J; Jolles, Jelle

    2017-01-01

    The current study investigated development and strategy use of spatial perspective taking (i.e., the ability to represent how an object or array of objects looks from other viewpoints) in children between 8 and 12years of age. We examined this ability with a task requiring children to navigate a route through a model city of wooden blocks from a 90° and 180° rotated perspective. We tested two hypotheses. First, we hypothesized that children's perspective-taking skills increase during this age period and that this process is related to a co-occurring increase in working memory capacity. Results indeed showed clear age effects; accuracy and speed of perspective-taking performance were higher in the older age groups. Positive associations between perspective-taking performance and working memory were observed. Second, we hypothesized that children, like adults, use a mental self-rotation strategy during spatial perspective taking. To confirm this hypothesis, children's performance should be better in the 90° condition than in the 180° condition of the task. Overall, the results did show the reversed pattern; children were less accurate, were slower, and committed more egocentric errors in the 90° condition than in the 180° condition. These findings support an alternative scenario in which children employ different strategies for different rotation angles. We propose that children mentally rotated their egocentric reference frame for 90° rotations; for the 180° rotations, they inverted the left-right and front-back axes without rotating their mental position.

  2. A Computational Model of Spatial Development

    NASA Astrophysics Data System (ADS)

    Hiraki, Kazuo; Sashima, Akio; Phillips, Steven

    Psychological experiments on children's development of spatial knowledge suggest experience at self-locomotion with visual tracking as important factors. Yet, the mechanism underlying development is unknown. We propose a robot that learns to mentally track a target object (i.e., maintaining a representation of an object's position when outside the field-of-view) as a model for spatial development. Mental tracking is considered as prediction of an object's position given the previous environmental state and motor commands, and the current environment state resulting from movement. Following Jordan & Rumelhart's (1992) forward modeling architecture the system consists of two components: an inverse model of sensory input to desired motor commands; and a forward model of motor commands to desired sensory input (goals). The robot was tested on the `three cups' paradigm (where children are required to select the cup containing the hidden object under various movement conditions). Consistent with child development, without the capacity for self-locomotion the robot's errors are self-center based. When given the ability of self-locomotion the robot responds allocentrically.

  3. Individual subject classification for Alzheimer's disease based on incremental learning using a spatial frequency representation of cortical thickness data.

    PubMed

    Cho, Youngsang; Seong, Joon-Kyung; Jeong, Yong; Shin, Sung Yong

    2012-02-01

    Patterns of brain atrophy measured by magnetic resonance structural imaging have been utilized as significant biomarkers for diagnosis of Alzheimer's disease (AD). However, brain atrophy is variable across patients and is non-specific for AD in general. Thus, automatic methods for AD classification require a large number of structural data due to complex and variable patterns of brain atrophy. In this paper, we propose an incremental method for AD classification using cortical thickness data. We represent the cortical thickness data of a subject in terms of their spatial frequency components, employing the manifold harmonic transform. The basis functions for this transform are obtained from the eigenfunctions of the Laplace-Beltrami operator, which are dependent only on the geometry of a cortical surface but not on the cortical thickness defined on it. This facilitates individual subject classification based on incremental learning. In general, methods based on region-wise features poorly reflect the detailed spatial variation of cortical thickness, and those based on vertex-wise features are sensitive to noise. Adopting a vertex-wise cortical thickness representation, our method can still achieve robustness to noise by filtering out high frequency components of the cortical thickness data while reflecting their spatial variation. This compromise leads to high accuracy in AD classification. We utilized MR volumes provided by Alzheimer's Disease Neuroimaging Initiative (ADNI) to validate the performance of the method. Our method discriminated AD patients from Healthy Control (HC) subjects with 82% sensitivity and 93% specificity. It also discriminated Mild Cognitive Impairment (MCI) patients, who converted to AD within 18 months, from non-converted MCI subjects with 63% sensitivity and 76% specificity. Moreover, it showed that the entorhinal cortex was the most discriminative region for classification, which is consistent with previous pathological findings. In

  4. Motivational states activate distinct hippocampal representations to guide goal-directed behaviors.

    PubMed

    Kennedy, Pamela J; Shapiro, Matthew L

    2009-06-30

    Adaptive behaviors are guided by motivation and memory. Motivational states specify goals, and memory can inform motivated behavior by providing detailed records of past experiences when goals were obtained. These 2 fundamental processes interact to guide animals to biologically relevant targets, but the neuronal mechanisms that integrate them remain unknown. To investigate these mechanisms, we recorded unit activity from the same population of hippocampal neurons as rats performed identical tasks while either food or water deprived. We compared the influence of motivational state (hunger and thirst), memory demand, and spatial behavior in 2 tasks: hippocampus-dependent contextual memory retrieval and hippocampus-independent random foraging. We found that: (i) hippocampal coding was most strongly influenced by motivational state during contextual memory retrieval, when motivational cues were required to select among remembered, goal-directed actions in the same places; (ii) the same neuronal populations were relatively unaffected by motivational state during random foraging, when hunger and thirst were incidental to behavior, and signals derived from deprivation states thus informed, but did not determine, hippocampal coding; and (iii) "prospective coding" in the contextual retrieval task was not influenced by allocentric spatial trajectory, but rather by the animal's deprivation state and the associated, non-spatial target, suggesting that hippocampal coding includes a wide range of predictive associations. The results show that beyond coding spatiotemporal context, hippocampal representations encode the relationships between internal states, the external environment, and action to provide a mechanism by which motivation and memory are coordinated to guide behavior.

  5. The Neural Representation of Prospective Choice during Spatial Planning and Decisions

    PubMed Central

    Kaplan, Raphael; Koster, Raphael; Penny, William D.; Burgess, Neil; Friston, Karl J.

    2017-01-01

    We are remarkably adept at inferring the consequences of our actions, yet the neuronal mechanisms that allow us to plan a sequence of novel choices remain unclear. We used functional magnetic resonance imaging (fMRI) to investigate how the human brain plans the shortest path to a goal in novel mazes with one (shallow maze) or two (deep maze) choice points. We observed two distinct anterior prefrontal responses to demanding choices at the second choice point: one in rostrodorsal medial prefrontal cortex (rd-mPFC)/superior frontal gyrus (SFG) that was also sensitive to (deactivated by) demanding initial choices and another in lateral frontopolar cortex (lFPC), which was only engaged by demanding choices at the second choice point. Furthermore, we identified hippocampal responses during planning that correlated with subsequent choice accuracy and response time, particularly in mazes affording sequential choices. Psychophysiological interaction (PPI) analyses showed that coupling between the hippocampus and rd-mPFC increases during sequential (deep versus shallow) planning and is higher before correct versus incorrect choices. In short, using a naturalistic spatial planning paradigm, we reveal how the human brain represents sequential choices during planning without extensive training. Our data highlight a network centred on the cortical midline and hippocampus that allows us to make prospective choices while maintaining initial choices during planning in novel environments. PMID:28081125

  6. Spatial gradient in value representation along the medial prefrontal cortex reflects individual differences in prosociality

    PubMed Central

    Sul, Sunhae; Tobler, Philippe N.; Hein, Grit; Leiberg, Susanne; Jung, Daehyun; Fehr, Ernst; Kim, Hackjin

    2015-01-01

    Despite the importance of valuing another person’s welfare for prosocial behavior, currently we have only a limited understanding of how these values are represented in the brain and, more importantly, how they give rise to individual variability in prosociality. In the present study, participants underwent functional magnetic resonance imaging while performing a prosocial learning task in which they could choose to benefit themselves and/or another person. Choice behavior indicated that participants valued the welfare of another person, although less so than they valued their own welfare. Neural data revealed a spatial gradient in activity within the medial prefrontal cortex (MPFC), such that ventral parts predominantly represented self-regarding values and dorsal parts predominantly represented other-regarding values. Importantly, compared with selfish individuals, prosocial individuals showed a more gradual transition from self-regarding to other-regarding value signals in the MPFC and stronger MPFC–striatum coupling when they made choices for another person rather than for themselves. The present study provides evidence of neural markers reflecting individual differences in human prosociality. PMID:26056280

  7. The Neural Representation of Prospective Choice during Spatial Planning and Decisions.

    PubMed

    Kaplan, Raphael; King, John; Koster, Raphael; Penny, William D; Burgess, Neil; Friston, Karl J

    2017-01-01

    We are remarkably adept at inferring the consequences of our actions, yet the neuronal mechanisms that allow us to plan a sequence of novel choices remain unclear. We used functional magnetic resonance imaging (fMRI) to investigate how the human brain plans the shortest path to a goal in novel mazes with one (shallow maze) or two (deep maze) choice points. We observed two distinct anterior prefrontal responses to demanding choices at the second choice point: one in rostrodorsal medial prefrontal cortex (rd-mPFC)/superior frontal gyrus (SFG) that was also sensitive to (deactivated by) demanding initial choices and another in lateral frontopolar cortex (lFPC), which was only engaged by demanding choices at the second choice point. Furthermore, we identified hippocampal responses during planning that correlated with subsequent choice accuracy and response time, particularly in mazes affording sequential choices. Psychophysiological interaction (PPI) analyses showed that coupling between the hippocampus and rd-mPFC increases during sequential (deep versus shallow) planning and is higher before correct versus incorrect choices. In short, using a naturalistic spatial planning paradigm, we reveal how the human brain represents sequential choices during planning without extensive training. Our data highlight a network centred on the cortical midline and hippocampus that allows us to make prospective choices while maintaining initial choices during planning in novel environments.

  8. Improving the spatial representation of soil properties and hydrology using topographically derived watershed model initialization processes

    NASA Astrophysics Data System (ADS)

    Easton, Z. M.; Fuka, D.; Collick, A.; Kleinman, P. J. A.; Auerbach, D.; Sommerlot, A.; Wagena, M. B.

    2015-12-01

    Topography exerts critical controls on many hydrologic, geomorphologic, and environmental biophysical processes. Unfortunately many watershed modeling systems use topography only to define basin boundaries and stream channels and do not explicitly account for the topographic controls on processes such as soil genesis, soil moisture distributions and hydrological response. We develop and demonstrate a method that uses topography to spatially adjust soil morphological and soil hydrological attributes [soil texture, depth to the C-horizon, saturated conductivity, bulk density, porosity, and the field capacities at 33kpa (~ field capacity) and 1500kpa (~ wilting point) tensions]. In order to test the performance of the method the topographical adjusted soils and standard SSURGO soil (available at 1:20,000 scale) were overlaid on soil pedon pit data in the Grasslands Soil and Water Research Lab in Resiel, TX. The topographically adjusted soils exhibited significant correlations with measurements from the soil pits, while the SSURGO soil data showed almost no correlation to measured data. We also applied the method to the Grasslands Soil and Water Research watershed using the Soil and Water Assessment Tool (SWAT) model to 15 separate fields as a proxy to propagate changes in soil properties into field scale hydrological responses. Results of this test showed that the topographically adjusted soils resulted better model predictions of field runoff in 50% of the field, with the SSURGO soils preforming better in the remainder of the fields. However, the topographically adjusted soils generally predicted baseflow response more accurately, reflecting the influence of these soil properties on non-storm responses. These results indicate that adjusting soil properties based on topography can result in more accurate soil characterization and, in some cases improve model performance.

  9. Associations of collectivism with relationship commitment, passion, and mate preferences: opposing roles of parental influence and family allocentrism.

    PubMed

    Bejanyan, Kathrine; Marshall, Tara C; Ferenczi, Nelli

    2015-01-01

    In collectivist cultures, families tend to be characterized by respect for parental authority and strong, interdependent ties. Do these aspects of collectivism exert countervailing pressures on mate choices and relationship quality? In the present research, we found that collectivism was associated with greater acceptance of parental influence over mate choice, thereby driving relationship commitment down (Studies 1 and 2), but collectivism was also associated with stronger family ties (referred to as family allocentrism), which drove commitment up (Study 2). Along similar lines, Study 1 found that collectivists' greater acceptance of parental influence on mate choice contributed to their reduced relationship passion, whereas Study 2 found that their greater family allocentrism may have enhanced their passion. Study 2 also revealed that collectivists may have reported a smaller discrepancy between their own preferences for mates high in warmth and trustworthiness and their perception of their parents' preferences for these qualities because of their stronger family allocentrism. However, their higher tolerance of parental influence may have also contributed to a smaller discrepancy in their mate preferences versus their perceptions of their parents' preferences for qualities signifying status and resources. Implications for the roles of collectivism, parental influence, and family allocentrism in relationship quality and mate selection will be discussed.

  10. Cancelling prism adaptation by a shift of background: a novel utility of allocentric coordinates for extracting motor errors.

    PubMed

    Uchimura, Motoaki; Kitazawa, Shigeru

    2013-04-24

    Many previous studies have reported that our brains are able to encode a target position not only in body-centered coordinates but also in terms of landmarks in the background. The importance of such allocentric memory increases when we are forced to complete a delayed reaching task after the target has disappeared. However, the merit of allocentric memory in natural situations in which we are free to make an immediate reach toward a target has remained elusive. We hypothesized that allocentric memory is essential even in an immediate reach for dissociating between error attributable to the motor system and error attributable to target motion. We show here in humans that prism adaptation, that is, adaptation of reaching movements in response to errors attributable to displacement of the visual field, can be cancelled or enhanced simply by moving the background in mid-flight of the reaching movement. The results provide direct evidence for the novel contribution of allocentric memory in providing information on "where I intended to go," thereby discriminating the effect of target motion from the error resulting from the issued motor control signals.

  11. Associations of Collectivism with Relationship Commitment, Passion, and Mate Preferences: Opposing Roles of Parental Influence and Family Allocentrism

    PubMed Central

    Bejanyan, Kathrine; Marshall, Tara C.; Ferenczi, Nelli

    2015-01-01

    In collectivist cultures, families tend to be characterized by respect for parental authority and strong, interdependent ties. Do these aspects of collectivism exert countervailing pressures on mate choices and relationship quality? In the present research, we found that collectivism was associated with greater acceptance of parental influence over mate choice, thereby driving relationship commitment down (Studies 1 and 2), but collectivism was also associated with stronger family ties (referred to as family allocentrism), which drove commitment up (Study 2). Along similar lines, Study 1 found that collectivists’ greater acceptance of parental influence on mate choice contributed to their reduced relationship passion, whereas Study 2 found that their greater family allocentrism may have enhanced their passion. Study 2 also revealed that collectivists may have reported a smaller discrepancy between their own preferences for mates high in warmth and trustworthiness and their perception of their parents’ preferences for these qualities because of their stronger family allocentrism. However, their higher tolerance of parental influence may have also contributed to a smaller discrepancy in their mate preferences versus their perceptions of their parents’ preferences for qualities signifying status and resources. Implications for the roles of collectivism, parental influence, and family allocentrism in relationship quality and mate selection will be discussed. PMID:25719563

  12. Orientational Manoeuvres in the Dark: Dissociating Allocentric and Egocentric Influences on Spatial Memory

    ERIC Educational Resources Information Center

    Burgess, Neil; Spiers, Hugo J.; Paleologou, Eleni

    2004-01-01

    Subjects in a darkroom saw an array of five phosphorescent objects on a circular table and, after a short delay, indicated which object had been moved. During the delay the subject, the table or a phosphorescent landmark external to the array was moved (a rotation about the centre of the table) either alone or together. The subject then had to…

  13. Illusions in the spatial sense of the eye: geometrical-optical illusions and the neural representation of space.

    PubMed

    Westheimer, Gerald

    2008-09-01

    Differences between the geometrical properties of simple configurations and their visual percept are called geometrical-optical illusions. They can be differentiated from illusions in the brightness or color domains, from ambiguous figures and impossible objects, from trompe l'oeil and perspective drawing with perfectly valid views, and from illusory contours. They were discovered independently by several scientists in a short time span in the 1850's. The clear distinction between object and visual space that they imply allows the question to be raised whether the transformation between the two spaces can be productively investigated in terms of differential geometry and metrical properties. Perceptual insight and psychophysical research prepares the ground for investigation of the neural representation of space but, because visual attributes are processed separately in parallel, one looks in vain for a neural map that is isomorphic with object space or even with individual forms it contains. Geometrical-optical illusions help reveal parsing rules for sensory signals by showing how conflicts are resolved when there is mismatch in the output of the processing modules for various primitives as a perceptual pattern's unitary structure is assembled. They point to a hierarchical ordering of spatial primitives: cardinal directions and explicit contours predominate over oblique orientation and implicit contours (Poggendorff illusion); rectilinearity yields to continuity (Hering illusion), point position and line length to contour orientation (Ponzo). Hence the geometrical-optical illusions show promise as analytical tools in unraveling neural processing in vision.

  14. Associative-memory representations emerge as shared spatial patterns of theta activity spanning the primate temporal cortex

    PubMed Central

    Nakahara, Kiyoshi; Adachi, Ken; Kawasaki, Keisuke; Matsuo, Takeshi; Sawahata, Hirohito; Majima, Kei; Takeda, Masaki; Sugiyama, Sayaka; Nakata, Ryota; Iijima, Atsuhiko; Tanigawa, Hisashi; Suzuki, Takafumi; Kamitani, Yukiyasu; Hasegawa, Isao

    2016-01-01

    Highly localized neuronal spikes in primate temporal cortex can encode associative memory; however, whether memory formation involves area-wide reorganization of ensemble activity, which often accompanies rhythmicity, or just local microcircuit-level plasticity, remains elusive. Using high-density electrocorticography, we capture local-field potentials spanning the monkey temporal lobes, and show that the visual pair-association (PA) memory is encoded in spatial patterns of theta activity in areas TE, 36, and, partially, in the parahippocampal cortex, but not in the entorhinal cortex. The theta patterns elicited by learned paired associates are distinct between pairs, but similar within pairs. This pattern similarity, emerging through novel PA learning, allows a machine-learning decoder trained on theta patterns elicited by a particular visual item to correctly predict the identity of those elicited by its paired associate. Our results suggest that the formation and sharing of widespread cortical theta patterns via learning-induced reorganization are involved in the mechanisms of associative memory representation. PMID:27282247

  15. Spatial memory and hippocampal pallium through vertebrate evolution: insights from reptiles and teleost fish.

    PubMed

    Rodríguez, F; López, J C; Vargas, J P; Broglio, C; Gómez, Y; Salas, C

    The forebrain of vertebrates shows great morphological variation and specialized adaptations. However, an increasing amount of neuroanatomical and functional data reveal that the evolution of the vertebrate forebrain could have been more conservative than previously realized. For example, the pallial region of the teleost telencephalon contains subdivisions presumably homologous with various pallial areas in amniotes, including possibly a homologue of the medial pallium or hippocampus. In mammals and birds, the hippocampus is critical for encoding complex spatial information to form map-like cognitive representations of the environment. Here, we present data showing that the pallial areas of reptiles and fish, previously proposed as homologous to the hippocampus of mammals and birds on an anatomical basis, are similarly involved in spatial memory and navigation by map-like or relational representations of the allocentric space. These data suggest that early in vertebrate evolution, the medial pallium of an ancestral fish group that gave rise to the extant vertebrates became specialized for processing and encoding complex spatial information, and that this functional trait has been retained through the evolution of each independent vertebrate lineage.

  16. Spatiotemporal data representation and its effect on the performance of spatial analysis in a cyberinfrastructure environment - A case study with raster zonal analysis

    NASA Astrophysics Data System (ADS)

    Song, Miaomiao; Li, Wenwen; Zhou, Bin; Lei, Ting

    2016-02-01

    This paper conducts a systematic research to uncover the impact of spatiotemporal data representation on the performance of raster analysis in a cyberinfrastructure environment. Two broad categories of data organization based on file system and database system are presented and discussed. In particular, these include five specific approaches of storing time-series raster data involving tiling (partitioning the entire image file into non-overlapping pieces), stacking (compositing multiple single-band images into a large multi-band image) techniques, and a combination of tiling and stacking in files or database tables. Raster zonal statistics, which have been used to support a variety of GIS applications ranging from watershed analysis to summarizing forest products, is selected as an example raster analysis algorithm. A series of experiments were conducted to evaluate the performance of the five proposed approaches using different spatial and spatiotemporal queries. The results show that spatiotemporal data representation, though largely ignored in the design of a cyberinfrastructure system, does play an important role in system performance. Specifically, tiling techniques with the support of spatial database outperforms all other approaches, especially those adopting stacking techniques in the data organization. For illustration, the best raster analysis solution was implemented and integrated into an operational cyberinfrastructure in the context of providing spatial decision support in polar science. We expect this work to offer insights to develop efficient cyberinfrastructure modules to support spatial analysis through a thorough analysis of spatiotemporal data representation.

  17. The representation of space and the hippocampus in rats, robots and humans.

    PubMed

    Burgess, N; Donnett, J G; O'Keefe, J

    1998-01-01

    Experimental evidence suggests that the hippocampus represents locations within an allocentric representation of space. The environmental inputs that underlie the rat's representation of its own location within an environment (in the firing of place cells) are the distances to walls, and different walls are identified by their allocentric direction from the rat. We propose that the locations of goals in an environment is stored downstream of the place cells, in the subiculum. In addition to firing rate coding, place cells may use phase coding relative to the theta rhythm of the EEG. In some circumstances path integration may be used, in addition to environmental information, as an input to the hippocampal system. A detailed computational model of the hippocampus successfully guides the navigation of a mobile robot. The model's behaviour is compared to electrophysiological and behavioural data in rats, and implications for the role of the hippocampus in primates are explored.

  18. Is order the defining feature of magnitude representation? An ERP study on learning numerical magnitude and spatial order of artificial symbols.

    PubMed

    Zhao, Hui; Chen, Chuansheng; Zhang, Hongchuan; Zhou, Xinlin; Mei, Leilei; Chen, Chunhui; Chen, Lan; Cao, Zhongyu; Dong, Qi

    2012-01-01

    Using an artificial-number learning paradigm and the ERP technique, the present study investigated neural mechanisms involved in the learning of magnitude and spatial order. 54 college students were divided into 2 groups matched in age, gender, and school major. One group was asked to learn the associations between magnitude (dot patterns) and the meaningless Gibson symbols, and the other group learned the associations between spatial order (horizontal positions on the screen) and the same set of symbols. Results revealed differentiated neural mechanisms underlying the learning processes of symbolic magnitude and spatial order. Compared to magnitude learning, spatial-order learning showed a later and reversed distance effect. Furthermore, an analysis of the order-priming effect showed that order was not inherent to the learning of magnitude. Results of this study showed a dissociation between magnitude and order, which supports the numerosity code hypothesis of mental representations of magnitude.

  19. From Geocentrism to Allocentrism: Teaching the Phases of the Moon in a Digital Full-Dome Planetarium

    NASA Astrophysics Data System (ADS)

    Chastenay, Pierre

    2016-02-01

    An increasing number of planetariums worldwide are turning digital, using ultra-fast computers, powerful graphic cards, and high-resolution video projectors to create highly realistic astronomical imagery in real time. This modern technology makes it so that the audience can observe astronomical phenomena from a geocentric as well as an allocentric perspective (the view from space). While the dome creates a sense of immersion, the digital planetarium introduces a new way to teach astronomy, especially for topics that are inherently three-dimensional and where seeing the phenomenon from different points of view is essential. Like a virtual-reality environment, an immersive digital planetarium helps learners create a more scientifically accurate visualization of astronomical phenomena. In this study, a digital planetarium was used to teach the phases of the Moon to children aged 12 to 14. To fully grasp the lunar phases, one must imagine the spherical Moon (as perceived from space), revolving around the Earth while being illuminated by the Sun, and then reconcile this view with the geocentric perspective. Digital planetariums allow learners to have both an allocentric and a geocentric perspective on the lunar phases. Using a Design experiment approach, we tested an educational scenario in which the lunar phases were taught in an allocentric digital planetarium. Based on qualitative data collected before, during, and after the planetarium intervention, we were able to demonstrate that five out of six participants had a better understanding of the lunar phases after the planetarium session.

  20. The Prognosis of Allocentric and Egocentric Neglect: Evidence from Clinical Scans

    PubMed Central

    Chechlacz, Magdalena; Rotshtein, Pia; Roberts, Katherine L.; Bickerton, Wai-Ling; Lau, Johnny K. L.; Humphreys, Glyn W.

    2012-01-01

    We contrasted the neuroanatomical substrates of sub-acute and chronic visuospatial deficits associated with different aspects of unilateral neglect using computed tomography scans acquired as part of routine clinical diagnosis. Voxel-wise statistical analyses were conducted on a group of 160 stroke patients scanned at a sub-acute stage. Lesion-deficit relationships were assessed across the whole brain, separately for grey and white matter. We assessed lesions that were associated with behavioural performance (i) at a sub-acute stage (within 3 months of the stroke) and (ii) at a chronic stage (after 9 months post stroke). Allocentric and egocentric neglect symptoms at the sub-acute stage were associated with lesions to dissociated regions within the frontal lobe, amongst other regions. However the frontal lesions were not associated with neglect at the chronic stage. On the other hand, lesions in the angular gyrus were associated with persistent allocentric neglect. In contrast, lesions within the superior temporal gyrus extending into the supramarginal gyrus, as well as lesions within the basal ganglia and insula, were associated with persistent egocentric neglect. Damage within the temporo-parietal junction was associated with both types of neglect at the sub-acute stage and 9 months later. Furthermore, white matter disconnections resulting from damage along the superior longitudinal fasciculus were associated with both types of neglect and critically related to both sub-acute and chronic deficits. Finally, there was a significant difference in the lesion volume between patients who recovered from neglect and patients with chronic deficits. The findings presented provide evidence that (i) the lesion location and lesion size can be used to successfully predict the outcome of neglect based on clinical CT scans, (ii) lesion location alone can serve as a critical predictor for persistent neglect symptoms, (iii) wide spread lesions are associated with neglect symptoms

  1. Impairments in spatial representations and rhythmic coordination of place cells in the 3xTg mouse model of Alzheimer's disease.

    PubMed

    Mably, Alexandra J; Gereke, Brian J; Jones, Dylan T; Colgin, Laura Lee

    2017-04-01

    Alzheimer's disease (AD) is an irreversible and highly progressive neurodegenerative disease. Clinically, patients with AD display impairments in episodic and spatial memory. However, the underlying neuronal dysfunctions that result in these impairments remain poorly understood. The hippocampus is crucial for spatial and episodic memory, and thus we tested the hypothesis that abnormal neuronal representations of space in the hippocampus contribute to memory deficits in AD. To test this hypothesis, we recorded spikes from place cells in hippocampal subfield CA1, together with corresponding rhythmic activity in local field potentials, in the 3xTg AD mouse model. We observed disturbances in place cell firing patterns, many of which were consistent with place cell disturbances reported in other rodent models of AD. We found place cell representations of space to be unstable in 3xTg mice compared to control mice. Furthermore, coordination of place cell firing by hippocampal rhythms was disrupted in 3xTg mice. Specifically, a smaller proportion of place cells from 3xTg mice were significantly phase-locked to theta and slow gamma rhythms, and the theta and slow gamma phases at which spikes occurred were also altered. Remarkably, these disturbances were observed at an age before detectable Aβ pathology had developed. Consistencies between these findings in 3xTg mice and previous findings from other AD models suggest that disturbances in place cell firing and hippocampal rhythms are related to AD rather than reflecting peculiarities inherent to a particular transgenic model. Thus, disturbed rhythmic organization of place cell activity may contribute to unstable spatial representations, and related spatial memory deficits, in AD. © 2017 Wiley Periodicals, Inc.

  2. Where am I? Who am I? The Relation Between Spatial Cognition, Social Cognition and Individual Differences in the Built Environment

    PubMed Central

    Proulx, Michael J.; Todorov, Orlin S.; Taylor Aiken, Amanda; de Sousa, Alexandra A.

    2016-01-01

    Knowing who we are, and where we are, are two fundamental aspects of our physical and mental experience. Although the domains of spatial and social cognition are often studied independently, a few recent areas of scholarship have explored the interactions of place and self. This fits in with increasing evidence for embodied theories of cognition, where mental processes are grounded in action and perception. Who we are might be integrated with where we are, and impact how we move through space. Individuals vary in personality, navigational strategies, and numerous cognitive and social competencies. Here we review the relation between social and spatial spheres of existence in the realms of philosophical considerations, neural and psychological representations, and evolutionary context, and how we might use the built environment to suit who we are, or how it creates who we are. In particular we investigate how two spatial reference frames, egocentric and allocentric, might transcend into the social realm. We then speculate on how environments may interact with spatial cognition. Finally, we suggest how a framework encompassing spatial and social cognition might be taken in consideration by architects and urban planners. PMID:26903893

  3. Assessing representation errors of IAGOS CO2, CO and CH4 profile observations: the impact of spatial variations in near-field emissions

    NASA Astrophysics Data System (ADS)

    Boschetti, Fabio; Thouret, Valerie; Nedelec, Philippe; Chen, Huilin; Gerbig, Christoph

    2015-04-01

    Airborne platforms have their main strength in the ability of collecting mixing ratio and meteorological data at different heights across a vertical profile, allowing an insight in the internal structure of the atmosphere. However, rental airborne platforms are usually expensive, limiting the number of flights that can be afforded and hence on the amount of data that can be collected. To avoid this disadvantage, the MOZAIC/IAGOS (Measurements of Ozone and water vapor by Airbus In-service airCraft/In-service Aircraft for a Global Observing System) program makes use of commercial airliners, providing data on a regular basis. It is therefore considered an important tool in atmospheric investigations. However, due to the nature of said platforms, MOZAIC/IAGOS's profiles are located near international airports, which are usually significant emission sources, and are in most cases close to major urban settlements, characterized by higher anthropogenic emissions compared to rural areas. When running transport models at finite resolution, these local emissions can heavily affect measurements resulting in biases in model/observation mismatch. Model/observation mismatch can include different aspects in both horizontal and vertical direction, for example spatial and temporal resolution of the modeled fluxes, or poorly represented convective transport or turbulent mixing in the boundary layer. In the framework of the IGAS (IAGOS for GMES Atmospheric Service) project, whose aim is to improve connections between data collected by MOZAIC/IAGOS and Copernicus Atmospheric Service, the present study is focused on the effect of the spatial resolution of emission fluxes, referred to here as representation error. To investigate this, the Lagrangian transport model STILT (Stochastic Time Inverted Lagrangian Transport) was coupled with EDGAR (Emission Database for Global Atmospheric Research) version-4.3 emission inventory at European regional scale. EDGAR's simulated fluxes for CO, CO2

  4. A Review of the Effects of Visual-Spatial Representations and Heuristics on Word Problem Solving in Middle School Mathematics

    ERIC Educational Resources Information Center

    Kribbs, Elizabeth E.; Rogowsky, Beth A.

    2016-01-01

    Mathematics word-problems continue to be an insurmountable challenge for many middle school students. Educators have used pictorial and schematic illustrations within the classroom to help students visualize these problems. However, the data shows that pictorial representations can be more harmful than helpful in that they only display objects or…

  5. Anticipatory Spatial Representation of 3D Regions Explored by Sighted Observers and a Deaf-and-Blind-Observer

    ERIC Educational Resources Information Center

    Intraub, Helene

    2004-01-01

    Viewers who study photographs of scenes tend to remember having seen beyond the boundaries of the view ["boundary extension"; J. Exp. Psychol. Learn. Mem. Cogn. 15 (1989) 179]. Is this a fundamental aspect of scene representation? Forty undergraduates explored bounded regions of six common (3D) scenes, visually or haptically (while blindfolded)…

  6. Advanced techniques for the storage and use of very large, heterogeneous spatial databases. The representation of geographic knowledge: Toward a universal framework. [relations (mathematics)

    NASA Technical Reports Server (NTRS)

    Peuquet, Donna J.

    1987-01-01

    A new approach to building geographic data models that is based on the fundamental characteristics of the data is presented. An overall theoretical framework for representing geographic data is proposed. An example of utilizing this framework in a Geographic Information System (GIS) context by combining artificial intelligence techniques with recent developments in spatial data processing techniques is given. Elements of data representation discussed include hierarchical structure, separation of locational and conceptual views, and the ability to store knowledge at variable levels of completeness and precision.

  7. Data Representations for Geographic Information Systems.

    ERIC Educational Resources Information Center

    Shaffer, Clifford A.

    1992-01-01

    Surveys the field and literature of geographic information systems (GIS) and spatial data representation as it relates to GIS. Highlights include GIS terms, data types, and operations; vector representations and raster, or grid, representations; spatial indexing; elevation data representations; large spatial databases; and problem areas and future…

  8. Neurodevelopmental aspects of spatial navigation: a virtual reality fMRI study.

    PubMed

    Pine, Daniel S; Grun, Joseph; Maguire, Eleanor A; Burgess, Neil; Zarahn, Eric; Koda, Vivian; Fyer, Abby; Szeszko, Philip R; Bilder, Robert M

    2002-02-01

    Navigation in spatial contexts has been studied in diverse species, yielding insights into underlying neural mechanisms and their phylogenetic progression. Spatial navigation in humans is marked by age-related changes that may carry important implications for understanding cortical development. The emergence of "allocentric" processing, reflecting that ability to use viewer-independent spatial abstractions, represents an important developmental change. We used fMRI to map brain regions engaged during memory-guided navigation in a virtual reality environment in adolescents and adults. Blood oxygen level-dependent (BOLD) signal was monitored in eight adolescents and eight adults in a 1.5-T MRI scanner during three conditions: (1) memory-guided navigation (NAV); (2) arrow-guided navigation (ARROW); and (3) fixation (FIX). We quantified navigation ability during scanning and allocentric memory after scanning, based on subjects' ability to label a previously unseen, aerial view of the town. Adolescents and adults exhibited similar memory-guided navigation ability, but adults exhibited superior allocentric memory ability. Memory-guided navigation ability during scanning correlated with BOLD change between NAV/ARROWS in various regions, including a right frontal and right-anterior medial temporal lobe region. Age group and allocentric memory together explained significant variance in BOLD change in temporoparietal association cortex and the cerebellum, particularly in the left hemisphere. Consistent with developmental models, these findings relate maturation in the coding of spatial information to functional changes in a distributed, left-lateralized neural network.

  9. Switching from Reaching to Navigation: Differential Cognitive Strategies for Spatial Memory in Children and Adults

    ERIC Educational Resources Information Center

    Belmonti, Vittorio; Cioni, Giovanni; Berthoz, Alain

    2015-01-01

    Navigational and reaching spaces are known to involve different cognitive strategies and brain networks, whose development in humans is still debated. In fact, high-level spatial processing, including allocentric location encoding, is already available to very young children, but navigational strategies are not mature until late childhood. The…

  10. Fluoxetine Restores Spatial Learning but Not Accelerated Forgetting in Mesial Temporal Lobe Epilepsy

    ERIC Educational Resources Information Center

    Barkas, Lisa; Redhead, Edward; Taylor, Matthew; Shtaya, Anan; Hamilton, Derek A.; Gray, William P.

    2012-01-01

    Learning and memory dysfunction is the most common neuropsychological effect of mesial temporal lobe epilepsy, and because the underlying neurobiology is poorly understood, there are no pharmacological strategies to help restore memory function in these patients. We have demonstrated impairments in the acquisition of an allocentric spatial task,…

  11. Connecting multiple spatial scales to decode the population activity of grid cells

    PubMed Central

    Stemmler, Martin; Mathis, Alexander; Herz, Andreas V. M.

    2015-01-01

    Mammalian grid cells fire when an animal crosses the points of an imaginary hexagonal grid tessellating the environment. We show how animals can navigate by reading out a simple population vector of grid cell activity across multiple spatial scales, even though neural activity is intrinsically stochastic. This theory of dead reckoning explains why grid cells are organized into discrete modules within which all cells have the same lattice scale and orientation. The lattice scale changes from module to module and should form a geometric progression with a scale ratio of around 3/2 to minimize the risk of making large-scale errors in spatial localization. Such errors should also occur if intermediate-scale modules are silenced, whereas knocking out the module at the smallest scale will only affect spatial precision. For goal-directed navigation, the allocentric grid cell representation can be readily transformed into the egocentric goal coordinates needed for planning movements. The goal location is set by nonlinear gain fields that act on goal vector cells. This theory predicts neural and behavioral correlates of grid cell readout that transcend the known link between grid cells of the medial entorhinal cortex and place cells of the hippocampus. PMID:26824061

  12. The Evolution of Spatial Representation During Complex Visual Data Analysis: Knowing When and How to be Exact

    DTIC Science & Technology

    2005-09-30

    many spatial reasoning researchers have traditionally made only a 2-way distinction: either the what/where distinction (Ungerleider & Mishkin , 1982...Journal of Spatial Cognition and Computation, 1, 399-412. Ungerleider, L. G., & Mishkin , M. (1982). Two cortical visual systems. In D. J. Ingle, M. A

  13. Applying Two Binned Methods to the Simple Biosphere Model (SiB) for Improving the Representation of Spatially Varying Precipitation and Soil Wetness

    NASA Astrophysics Data System (ADS)

    Medina, I. D.; Denning, A.

    2011-12-01

    Representing subgrid-scale variability is a continuing challenge for modelers, but is crucial for accurately calculating the exchanges of energy, moisture, and momentum between the land surface and atmospheric boundary layer. Soil wetness is highly spatially variable and difficult to resolve at grid length scales (~100 km) used in General Circulation Models (GCMs). Currently, GCMs use an area average precipitation rate that results in a single soil wetness value for the entire grid area, and due to the highly nonlinear relationship between soil wetness and evapotranspiration, significant inaccuracies arise in the calculation of the grid area latent heat flux. Using a finer GCM resolution will not solve this problem completely, and other methods of modeling need to be considered. For this study, the binned and alternative binned method of Sellers et al. (2007) are applied to the Simple Biosphere Model (SiB) for improving the representation of spatially varying precipitation, soil wetness and surface-atmosphere fluxes. The methods are tested in a dry, semi-arid, and wet biome for two off-line precipitation distribution experiments, and results are compared to an explicit method, which is ideal for resolving subgrid-scale variability, and the bulk method (area averaged), which is currently in use with GCMs. Results indicate that the alternative binned method better captures the spatial variability in soil wetness and grid area flux calculations produced by the explicit method, and deals realistically with spatially varying precipitation at little additional computational cost to the bulk method.

  14. Spatial memory deficit across aging: current insights of the role of 5-HT7 receptors

    PubMed Central

    Beaudet, Gregory; Bouet, Valentine; Jozet-Alves, Christelle; Schumann-Bard, Pascale; Dauphin, François; Paizanis, Eleni; Boulouard, Michel; Freret, Thomas

    2015-01-01

    Elderly persons often face biological, psychological or social changes over time that may cause discomfort or morbidity. While some cognitive domains remain stable over time, others undergo a decline. Spatial navigation is a complex cognitive function essential for independence, safety and quality of life. While egocentric (body-centered) navigation is quite preserved during aging, allocentric (externally-centered) navigation—based on a cognitive map using distant landmarks—declines with age. Recent preclinical studies showed that serotonergic 5-HT7 receptors are localized in brain regions associated with allocentric spatial navigation processing. Behavioral assessments with pharmacological or genetic tools have confirmed the role of 5-HT7 receptors in allocentric navigation. Moreover, few data suggested a selective age-related decrease in the expression of 5-HT7 receptors in pivotal brain structures implicated in allocentric navigation such as the hippocampal CA3 region. We aim to provide a short overview of the potential role of 5-HT7 receptors in spatial navigation, and to argue for their interests as therapeutic targets against age-related cognitive decline. PMID:25642173

  15. Spatial memory deficit across aging: current insights of the role of 5-HT7 receptors.

    PubMed

    Beaudet, Gregory; Bouet, Valentine; Jozet-Alves, Christelle; Schumann-Bard, Pascale; Dauphin, François; Paizanis, Eleni; Boulouard, Michel; Freret, Thomas

    2014-01-01

    Elderly persons often face biological, psychological or social changes over time that may cause discomfort or morbidity. While some cognitive domains remain stable over time, others undergo a decline. Spatial navigation is a complex cognitive function essential for independence, safety and quality of life. While egocentric (body-centered) navigation is quite preserved during aging, allocentric (externally-centered) navigation-based on a cognitive map using distant landmarks-declines with age. Recent preclinical studies showed that serotonergic 5-HT7 receptors are localized in brain regions associated with allocentric spatial navigation processing. Behavioral assessments with pharmacological or genetic tools have confirmed the role of 5-HT7 receptors in allocentric navigation. Moreover, few data suggested a selective age-related decrease in the expression of 5-HT7 receptors in pivotal brain structures implicated in allocentric navigation such as the hippocampal CA3 region. We aim to provide a short overview of the potential role of 5-HT7 receptors in spatial navigation, and to argue for their interests as therapeutic targets against age-related cognitive decline.

  16. Spatial localization and distribution of the TMS-related ‘hotspot’ of the tibialis anterior muscle representation in the healthy and post-stroke motor cortex

    PubMed Central

    Sivaramakrishnan, Anjali; Tahara-Eckl, Lenore; Madhavan, Sangeetha

    2016-01-01

    Transcranial magnetic stimulation (TMS) is a type of noninvasive brain stimulation used to study corticomotor excitability of the intact and injured brain. Identification of muscle representations in the motor cortex is typically done using a procedure called ‘hotspotting’, which involves establishing the optimal location on the scalp that evokes a maximum TMS response with minimum stimulator intensity. The purpose of this study was to report the hotspot locations for the tibialis anterior (TA) muscle representation in the motor cortex of healthy and post stroke individuals. A retrospective data analyses from 42 stroke participants and 32 healthy participants was conducted for reporting TMS hotspot locations and their spatial patterns. Single pulse TMS, using a 110 mm double cone coil, was used to identify the motor representation of the TA. The hotspot locations were represented as x and y-distances from the vertex for each participant. The mediolateral extent of the loci from the vertex (x-coordinate) and anteroposterior extent of the loci from the vertex (y-coordinate) was reported for each hemisphere: non-lesioned (XNLes, YNLes), lesioned (XLes, YLes) and healthy (XH, YH). We found that the mean hotspot loci for TA muscle from the vertex were approximately: 1.29 cm lateral and 0.55 cm posterior in the non-lesioned hemisphere, 1.25 cm lateral and 0.5 cm posterior in the lesioned hemisphere and 1.6 cm lateral and 0.8 cm posterior in the healthy brain. There was no significant difference in the x- and y-coordinates between the lesioned and non-lesioned hemispheres. However, the locations of the XNLes (p = 0.01) and XLes (p = 0.004) were significantly different from XH. The YNLes and YLes showed no significant differences from YH loci. Analyses of spatial clustering patterns using the Moran’s I index showed a negative autocorrelation in stroke participants (NLes: Moran’s I = −0.09, p < 0.001; Les: Moran’s I = −0.14, p = 0.002), and a positive

  17. Assessment of Habitat Representation across a Network of Marine Protected Areas with Implications for the Spatial Design of Monitoring

    PubMed Central

    Young, Mary; Carr, Mark

    2015-01-01

    Networks of marine protected areas (MPAs) are being adopted globally to protect ecosystems and supplement fisheries management. The state of California recently implemented a coast-wide network of MPAs, a statewide seafloor mapping program, and ecological characterizations of species and ecosystems targeted for protection by the network. The main goals of this study were to use these data to evaluate how well seafloor features, as proxies for habitats, are represented and replicated across an MPA network and how well ecological surveys representatively sampled fish habitats inside MPAs and adjacent reference sites. Seafloor data were classified into broad substrate categories (rock and sediment) and finer scale geomorphic classifications standard to marine classification schemes using surface analyses (slope, ruggedness, etc.) done on the digital elevation model derived from multibeam bathymetry data. These classifications were then used to evaluate the representation and replication of seafloor structure within the MPAs and across the ecological surveys. Both the broad substrate categories and the finer scale geomorphic features were proportionately represented for many of the classes with deviations of 1-6% and 0-7%, respectively. Within MPAs, however, representation of seafloor features differed markedly from original estimates, with differences ranging up to 28%. Seafloor structure in the biological monitoring design had mismatches between sampling in the MPAs and their corresponding reference sites and some seafloor structure classes were missed entirely. The geomorphic variables derived from multibeam bathymetry data for these analyses are known determinants of the distribution and abundance of marine species and for coastal marine biodiversity. Thus, analyses like those performed in this study can be a valuable initial method of evaluating and predicting the conservation value of MPAs across a regional network. PMID:25760858

  18. Know Thyself: Behavioral Evidence for a Structural Representation of the Human Body

    PubMed Central

    Rusconi, Elena; Gonzaga, Mirandola; Adriani, Michela; Braun, Christoph; Haggard, Patrick

    2009-01-01

    Background Representing one's own body is often viewed as a basic form of self-awareness. However, little is known about structural representations of the body in the brain. Methods and Findings We developed an inter-manual version of the classical “in-between” finger gnosis task: participants judged whether the number of untouched fingers between two touched fingers was the same on both hands, or different. We thereby dissociated structural knowledge about fingers, specifying their order and relative position within a hand, from tactile sensory codes. Judgments following stimulation on homologous fingers were consistently more accurate than trials with no or partial homology. Further experiments showed that structural representations are more enduring than purely sensory codes, are used even when number of fingers is irrelevant to the task, and moreover involve an allocentric representation of finger order, independent of hand posture. Conclusions Our results suggest the existence of an allocentric representation of body structure at higher stages of the somatosensory processing pathway, in addition to primary sensory representation. PMID:19412538

  19. Representation, archaeology and genealogy: Three "spatial metaphors" for inquiring into nursing phenomena with Foucauldian discourse analysis.

    PubMed

    Clinton, Michael E; Springer, Rusla Anne

    2017-02-14

    Foucault used the "Quadrilateral of Language" metaphor to describe how language functioned in what the French called the Classic Age, roughly 1650 to 1800, the period from Descartes to Kant. His purpose was to show how the functions of language changed radically with the arrival of the Modern Age (~1800). Foucault developed his archaeological methods to investigate the impact of this change, but later revised his methods to introduce genealogical strategies to conduct "histories of the present". Our purpose in this paper is to clarify Foucault's thinking about ruptures in the functions of language and to show their implications for analyzing nursing discourse. Our account provides an overview of radical changes in both the functions of language and in Foucault's analytical methods. Drawing on Foucault's "Quadrilateral of Language", his anthropological quadrilateral, and our spatialized conception of his genealogical methods, we critique advanced nursing practice (APN) discourse and invite others to inquire into nursing phenomena with spatialized thinking.

  20. Representation of spatial- and object-specific behavioral goals in the dorsal globus pallidus of monkeys during reaching movement.

    PubMed

    Saga, Yosuke; Hashimoto, Masashi; Tremblay, Léon; Tanji, Jun; Hoshi, Eiji

    2013-10-09

    The dorsal aspect of the globus pallidus (GP) communicates with the prefrontal cortex and higher-order motor areas, indicating that it plays a role in goal-directed behavior. We examined the involvement of dorsal GP neurons in behavioral goal monitoring and maintenance, essential components of executive function. We trained two macaque monkeys to choose a reach target based on relative target position in a spatial goal task or a target shape in an object-goal task. The monkeys were trained to continue to choose a certain behavioral goal when reward volume was constant and to switch the goals when the volume began to decrease. Because the judgment for the next goal was made in the absence of visual signals, the monkeys were required to monitor and maintain the chosen goals during the reaching movement. We obtained three major findings. (1) GP neurons reflected more of the relative spatial position than the shape of the reaching target during the spatial goal task. During the object-goal task, the shape of the reaching object was represented more than the relative position. (2) The selectivity of individual neurons for the relative position was enhanced during the spatial goal task, whereas the object-shape selectivity was enhanced during the object-goal task. (3) When the monkeys switched the goals, the selectivity for either the position or shape also switched. Together, these findings suggest that the dorsal GP is involved in behavioral goal monitoring and maintenance during execution of goal-oriented actions, presumably in collaboration with the prefrontal cortex.

  1. Age-related similarities and differences in monitoring spatial cognition.

    PubMed

    Ariel, Robert; Moffat, Scott D

    2017-03-31

    Spatial cognitive performance is impaired in later adulthood but it is unclear whether the metacognitive processes involved in monitoring spatial cognitive performance are also compromised. Inaccurate monitoring could affect whether people choose to engage in tasks that require spatial thinking and also the strategies they use in spatial domains such as navigation. The current experiment examined potential age differences in monitoring spatial cognitive performance in a variety of spatial domains including visual-spatial working memory, spatial orientation, spatial visualization, navigation, and place learning. Younger and older adults completed a 2D mental rotation test, 3D mental rotation test, paper folding test, spatial memory span test, two virtual navigation tasks, and a cognitive mapping test. Participants also made metacognitive judgments of performance (confidence judgments, judgments of learning, or navigation time estimates) on each trial for all spatial tasks. Preference for allocentric or egocentric navigation strategies was also measured. Overall, performance was poorer and confidence in performance was lower for older adults than younger adults. In most spatial domains, the absolute and relative accuracy of metacognitive judgments was equivalent for both age groups. However, age differences in monitoring accuracy (specifically relative accuracy) emerged in spatial tasks involving navigation. Confidence in navigating for a target location also mediated age differences in allocentric navigation strategy use. These findings suggest that with the possible exception of navigation monitoring, spatial cognition may be spared from age-related decline even though spatial cognition itself is impaired in older age.

  2. Environmental Geometry Aligns the Hippocampal Map during Spatial Reorientation.

    PubMed

    Keinath, Alex T; Julian, Joshua B; Epstein, Russell A; Muzzio, Isabel A

    2017-02-06

    When a navigator's internal sense of direction is disrupted, she must rely on external cues to regain her bearings, a process termed spatial reorientation. Extensive research has demonstrated that the geometric shape of the environment exerts powerful control over reorientation behavior, but the neural and cognitive mechanisms underlying this phenomenon are not well understood. Whereas some theories claim that geometry controls behavior through an allocentric mechanism potentially tied to the hippocampus, others postulate that disoriented navigators reach their goals by using an egocentric view-matching strategy. To resolve this debate, we characterized hippocampal representations during reorientation. We first recorded from CA1 cells as disoriented mice foraged in chambers of various shapes. We found that the alignment of the recovered hippocampal map was determined by the geometry of the chamber, but not by nongeometric cues, even when these cues could be used to disambiguate geometric ambiguities. We then recorded hippocampal activity as disoriented mice performed a classical goal-directed spatial memory task in a rectangular chamber. Again, we found that the recovered hippocampal map aligned solely to the chamber geometry. Critically, we also found a strong correspondence between the hippocampal map alignment and the animal's behavior, making it possible to predict the search location of the animal from neural responses on a trial-by-trial basis. Together, these results demonstrate that spatial reorientation involves the alignment of the hippocampal map to local geometry. We hypothesize that geometry may be an especially salient cue for reorientation because it is an inherently stable aspect of the environment.

  3. Neurocognitive stages of spatial cognitive mapping measured during free exploration of a large-scale virtual environment.

    PubMed

    Plank, Markus; Snider, Joseph; Kaestner, Erik; Halgren, Eric; Poizner, Howard

    2015-02-01

    Using a novel, fully mobile virtual reality paradigm, we investigated the EEG correlates of spatial representations formed during unsupervised exploration. On day 1, subjects implicitly learned the location of 39 objects by exploring a room and popping bubbles that hid the objects. On day 2, they again popped bubbles in the same environment. In most cases, the objects hidden underneath the bubbles were in the same place as on day 1. However, a varying third of them were misplaced in each block. Subjects indicated their certainty that the object was in the same location as the day before. Compared with bubble pops revealing correctly placed objects, bubble pops revealing misplaced objects evoked a decreased negativity starting at 145 ms, with scalp topography consistent with generation in medial parietal cortex. There was also an increased negativity starting at 515 ms to misplaced objects, with scalp topography consistent with generation in inferior temporal cortex. Additionally, misplaced objects elicited an increase in frontal midline theta power. These findings suggest that the successive neurocognitive stages of processing allocentric space may include an initial template matching, integration of the object within its spatial cognitive map, and memory recall, analogous to the processing negativity N400 and theta that support verbal cognitive maps in humans.

  4. Retention of spatial information in hippocampally damaged rats overtrained on a cartographic task.

    PubMed

    Ramos, J M

    2000-10-06

    Hippocampal rats were overtrained on a cartographic task until they reached a performance equal to that of the control group. Twenty-four days later, during a retraining period, lesioned rats showed a profound retention deficit as compared to controls. However, Expt. 2 shows no retention deficit when a guidance strategy is used to acquire the spatial task. These results suggest that the hippocampus is crucial for long-term retention/consolidation of allocentric spatial information.

  5. Embedded Data Representations.

    PubMed

    Willett, Wesley; Jansen, Yvonne; Dragicevic, Pierre

    2017-01-01

    We introduce embedded data representations, the use of visual and physical representations of data that are deeply integrated with the physical spaces, objects, and entities to which the data refers. Technologies like lightweight wireless displays, mixed reality hardware, and autonomous vehicles are making it increasingly easier to display data in-context. While researchers and artists have already begun to create embedded data representations, the benefits, trade-offs, and even the language necessary to describe and compare these approaches remain unexplored. In this paper, we formalize the notion of physical data referents - the real-world entities and spaces to which data corresponds - and examine the relationship between referents and the visual and physical representations of their data. We differentiate situated representations, which display data in proximity to data referents, and embedded representations, which display data so that it spatially coincides with data referents. Drawing on examples from visualization, ubiquitous computing, and art, we explore the role of spatial indirection, scale, and interaction for embedded representations. We also examine the tradeoffs between non-situated, situated, and embedded data displays, including both visualizations and physicalizations. Based on our observations, we identify a variety of design challenges for embedded data representation, and suggest opportunities for future research and applications.

  6. Optogenetically Blocking Sharp Wave Ripple Events in Sleep Does Not Interfere with the Formation of Stable Spatial Representation in the CA1 Area of the Hippocampus

    PubMed Central

    Kovács, Krisztián A.; O’Neill, Joseph; Schoenenberger, Philipp; Penttonen, Markku; Ranguel Guerrero, Damaris K.; Csicsvari, Jozsef

    2016-01-01

    During hippocampal sharp wave/ripple (SWR) events, previously occurring, sensory input-driven neuronal firing patterns are replayed. Such replay is thought to be important for plasticity-related processes and consolidation of memory traces. It has previously been shown that the electrical stimulation-induced disruption of SWR events interferes with learning in rodents in different experimental paradigms. On the other hand, the cognitive map theory posits that the plastic changes of the firing of hippocampal place cells constitute the electrophysiological counterpart of the spatial learning, observable at the behavioral level. Therefore, we tested whether intact SWR events occurring during the sleep/rest session after the first exploration of a novel environment are needed for the stabilization of the CA1 code, which process requires plasticity. We found that the newly-formed representation in the CA1 has the same level of stability with optogenetic SWR blockade as with a control manipulation that delivered the same amount of light into the brain. Therefore our results suggest that at least in the case of passive exploratory behavior, SWR-related plasticity is dispensable for the stability of CA1 ensembles. PMID:27760158

  7. Spatial cognition

    NASA Technical Reports Server (NTRS)

    Kaiser, Mary Kister; Remington, Roger

    1988-01-01

    Spatial cognition is the ability to reason about geometric relationships in the real (or a metaphorical) world based on one or more internal representations of those relationships. The study of spatial cognition is concerned with the representation of spatial knowledge, and our ability to manipulate these representations to solve spatial problems. Spatial cognition is utilized most critically when direct perceptual cues are absent or impoverished. Examples are provided of how human spatial cognitive abilities impact on three areas of space station operator performance: orientation, path planning, and data base management. A videotape provides demonstrations of relevant phenomena (e.g., the importance of orientation for recognition of complex, configural forms). The presentation is represented by abstract and overhead visuals only.

  8. Why Representations?

    ERIC Educational Resources Information Center

    Schultz, James E.; Waters, Michael S.

    2000-01-01

    Discusses representations in the context of solving a system of linear equations. Views representations (concrete, tables, graphs, algebraic, matrices) from perspectives of understanding, technology, generalization, exact versus approximate solution, and learning style. (KHR)

  9. Memory for Complex Visual Objects but Not for Allocentric Locations during the First Year of Life

    ERIC Educational Resources Information Center

    Dupierrix, Eve; Hillairet de Boisferon, Anne; Barbeau, Emmanuel; Pascalis, Olivier

    2015-01-01

    Although human infants demonstrate early competence to retain visual information, memory capacities during infancy remain largely undocumented. In three experiments, we used a Visual Paired Comparison (VPC) task to examine abilities to encode identity (Experiment 1) and spatial properties (Experiments 2a and 2b) of unfamiliar complex visual…

  10. Exploring the contribution of spatial navigation to cognitive functioning in older adults.

    PubMed

    Laczó, Jan; Andel, Ross; Nedelska, Zuzana; Vyhnalek, Martin; Vlcek, Kamil; Crutch, Sebastian; Harrison, John; Hort, Jakub

    2017-03-01

    Spatial navigation (SN) impairment is present early in Alzheimer's disease (AD). We tested whether SN performance, self-centered (egocentric) and world-centered (allocentric), was distinguishable from performance on established cognitive functions-verbal and nonverbal memory, executive and visuospatial function, attention/working memory, and language function. 108 older adults (53 cognitively normal [CN] and 55 with amnestic mild cognitive impairment [aMCI]) underwent neuropsychological examination and real-space navigation testing. Subset (n = 63) had automated hippocampal volumetry. In a factor analysis, allocentric and egocentric navigation tasks loaded highly onto the same factor with low loadings on other factors comprising other cognitive functions. In linear regression, performance on other cognitive functions was not, or was only marginally, associated with spatial navigation performance in CN or aMCI groups. After adjustment for age, gender, and education, right hippocampal volume explained 26% of the variance in allocentric navigation in aMCI group. In conclusion, spatial navigation, a known cognitive marker of early AD, may be distinguished from other cognitive functions. Therefore, its assessment along with other major cognitive functions may be highly beneficial in terms of obtaining a comprehensive neuropsychological profile.

  11. Emergent Spatial Patterns of Excitatory and Inhibitory Synaptic Strengths Drive Somatotopic Representational Discontinuities and their Plasticity in a Computational Model of Primary Sensory Cortical Area 3b

    PubMed Central

    Grajski, Kamil A.

    2016-01-01

    Mechanisms underlying the emergence and plasticity of representational discontinuities in the mammalian primary somatosensory cortical representation of the hand are investigated in a computational model. The model consists of an input lattice organized as a three-digit hand forward-connected to a lattice of cortical columns each of which contains a paired excitatory and inhibitory cell. Excitatory and inhibitory synaptic plasticity of feedforward and lateral connection weights is implemented as a simple covariance rule and competitive normalization. Receptive field properties are computed independently for excitatory and inhibitory cells and compared within and across columns. Within digit representational zones intracolumnar excitatory and inhibitory receptive field extents are concentric, single-digit, small, and unimodal. Exclusively in representational boundary-adjacent zones, intracolumnar excitatory and inhibitory receptive field properties diverge: excitatory cell receptive fields are single-digit, small, and unimodal; and the paired inhibitory cell receptive fields are bimodal, double-digit, and large. In simulated syndactyly (webbed fingers), boundary-adjacent intracolumnar receptive field properties reorganize to within-representation type; divergent properties are reacquired following syndactyly release. This study generates testable hypotheses for assessment of cortical laminar-dependent receptive field properties and plasticity within and between cortical representational zones. For computational studies, present results suggest that concurrent excitatory and inhibitory plasticity may underlie novel emergent properties. PMID:27504086

  12. Independent coding of target distance and direction in visuo-spatial working memory.

    PubMed

    Chieffi, S; Allport, D A

    1997-01-01

    The organization of manual reaching movements suggests considerable independence in the initial programming with respect to the direction and the distance of the intended movement. It was hypothesized that short-term memory for a visually-presented location within reaching space, in the absence of other allocentric reference points, might also be represented in a motoric code, showing similar independence in the encoding of direction and distance. This hypothesis was tested in two experiments, using adult human subjects who were required to remember the location of a briefly presented luminous spot. Stimuli were presented in the dark, thus providing purely egocentric spatial information. After the specified delay, subjects were instructed to point to the remembered location. In Exp. 1, temporal decay of location memory was studied, over a range of 4-30 s. The results showed that (a) memory for both the direction and the distance of the visual target location declined over time, at about the same rate for both parameters; however, (b) errors of distance were much greater in the left than in the right hemispace, whereas direction errors showed no such effect; (c) the distance and direction errors were essentially uncorrelated, at all delays. These findings suggest independent representation of these two parameters in working memory. In Exp. 2 the subjects were required to remember the locations of two visual stimuli presented sequentially, one after the other. Only after both stimuli had been presented did the subject receive a signal from the experimenter as to which one was to be pointed to. The results showed that the encoding of a second location selectively interfered with memory for the direction but not for the distance of the to-be-remembered target location. As in Exp. 1, direction and distance errors were again uncorrelated. The results of both experiments indicate that memory for egocentrically-specified visual locations can encode the direction and

  13. Different “routes” to a cognitive map: Dissociable forms of spatial knowledge derived from route and cartographic map learning

    PubMed Central

    Zhang, Hui; Zherdeva, Ksenia; Ekstrom, Arne D.

    2014-01-01

    An important, but as of yet, incompletely resolved issue, is whether spatial knowledge acquired during navigation differs significantly from that acquired by studying a cartographic map. This, in turn, is relevant to understanding the generalizability of the concept of a “cognitive map,” which is often likened to a cartographic map. Based on previous theoretical proposals, we hypothesized that route and cartographic map learning would produce differences in the dynamics of acquisition of landmark-referenced (allocentric) knowledge compared to view-referenced (egocentric) knowledge. We compared this model with competing predictions from two other models linked to route vs. map learning. To test these ideas, participants repeatedly performed a judgment of relative direction (JRD) and scene and orientation-dependent pointing (SOP) task while undergoing route and cartographic map learning of virtual spatial environments. In Experiment 1, we found that map learning led to significantly faster improvements in JRD pointing accuracy compared to route learning. In Experiment 2, in contrast, we found that route learning led to more immediate and greater improvements overall in SOP accuracy compared to map learning. Comparing Experiment 1 and 2, we found a significant 3-way interaction effect, indicating that improvements in performance differed for the JRD vs. SOP task as a function of route vs. map learning. We interpret these findings to suggest that learning modality differentially affects the dynamics of how we utilize primarily landmark-referenced vs. view-referenced knowledge, suggesting potential differences in how we utilize spatial representations acquired from routes vs. cartographic maps. PMID:24845757

  14. What does spatial alternation tell us about retrosplenial cortex function?

    PubMed Central

    Nelson, Andrew J. D.; Powell, Anna L.; Holmes, Joshua D.; Vann, Seralynne D.; Aggleton, John P.

    2015-01-01

    The retrosplenial cortex supports navigation, but there are good reasons to suppose that the retrosplenial cortex has a very different role in spatial memory from that of the hippocampus and anterior thalamic nuclei. For example, retrosplenial lesions appear to have little or no effect on standard tests of spatial alternation. To examine these differences, the current study sought to determine whether the retrosplenial cortex is important for just one spatial cue type (e.g., allocentric, directional or intra-maze cues) or whether the retrosplenial cortex helps the animal switch between competing spatial strategies or competing cue types. Using T-maze alternation, retrosplenial lesion rats were challenged with situations in which the available spatial information between the sample and test phases was changed, so taxing the interaction between different cue types. Clear lesion deficits emerged when intra- and extra-maze cues were placed in conflict (by rotating the maze between the sample and choice phases), or when the animals were tested in the dark in a double-maze. Finally, temporary inactivation of the retrosplenial cortex by muscimol infusions resulted in a striking deficit on standard T-maze alternation, indicating that, over time, other sites may be able to compensate for the loss of the retrosplenial cortex. This pattern of results is consistent with the impoverished use of both allocentric and directional information, exacerbated by an impaired ability to switch between different cue types. PMID:26042009

  15. Complementary Roles of the Hippocampus and the Dorsomedial Striatum during Spatial and Sequence-Based Navigation Behavior

    PubMed Central

    Watilliaux, Aurélie; Bontempi, Bruno; Rondi-Reig, Laure

    2013-01-01

    We investigated the neural bases of navigation based on spatial or sequential egocentric representation during the completion of the starmaze, a complex goal-directed navigation task. In this maze, mice had to swim along a path composed of three choice points to find a hidden platform. As reported previously, this task can be solved by using two hippocampal-dependent strategies encoded in parallel i) the allocentric strategy requiring encoding of the contextual information, and ii) the sequential egocentric strategy requiring temporal encoding of a sequence of successive body movements associated to specific choice points. Mice were trained during one day and tested the following day in a single probe trial to reveal which of the two strategies was spontaneously preferred by each animal. Imaging of the activity-dependent gene c-fos revealed that both strategies are supported by an overlapping network involving the dorsal hippocampus, the dorsomedial striatum (DMS) and the medial prefrontal cortex. A significant higher activation of the ventral CA1 subregion was observed when mice used the sequential egocentric strategy. To investigate the potential different roles of the dorsal hippocampus and the DMS in both types of navigation, we performed region-specific excitotoxic lesions of each of these two structures. Dorsal hippocampus lesioned mice were unable to optimally learn the sequence but improved their performances by developing a serial strategy instead. DMS lesioned mice were severely impaired, failing to learn the task. Our data support the view that the hippocampus organizes information into a spatio-temporal representation, which can then be used by the DMS to perform goal-directed navigation. PMID:23826243

  16. Early non-visual experience influences proprioceptive-spatial discrimination acuity in adulthood.

    PubMed

    Fiehler, Katja; Reuschel, Johanna; Rösler, Frank

    2009-02-01

    The present study tested whether non-visual spatial experience affects later acuity of space perception. Congenitally blind adults who differed in the age acquired spatial knowledge via an orientation and mobility (O&M) training and matched sighted controls performed passive arm movements and judged the direction of the sensed movement. Proprioceptive-spatial discrimination acuity was assessed by an adaptive psychophysical procedure in two spatial coding conditions. In the egocentric coding condition, participants judged whether the hand trajectory felt left- or right-tilted in reference to a straight trajectory aligned to the transverse horizontal plane of the body midline axis. In the allocentric coding condition, they indicated whether the hand trajectory felt acute- or obtuse-angled in reference to a right angle. Proprioceptive-spatial acuity of congenitally blind participants significantly covaried with the age they attended an O&M training. The earlier the congenitally blind participants started the O&M training the more accurate was their space perception. Congenitally blind participants who underwent an O&M training after the age of 12 years showed poorer acuity than sighted controls. Congenitally blind participants with an earlier O&M training, however, approached the performance level of the sighted controls. The observed improvement in spatial acuity was more pronounced when judgements were given on the basis of an allocentric than an egocentric frame of reference. These findings suggest that proprioceptive-spatial acuity in adulthood depends on non-visual spatial experience during early development.

  17. The haptic perception of spatial orientations

    PubMed Central

    Baud-Bovy, Gabriel; Luyat, Marion

    2008-01-01

    This review examines the isotropy of the perception of spatial orientations in the haptic system. It shows the existence of an oblique effect (i.e., a better perception of vertical and horizontal orientations than oblique orientations) in a spatial plane intrinsic to the haptic system, determined by the gravitational cues and the cognitive resources and defined in a subjective frame of reference. Similar results are observed from infancy to adulthood. In 3D space, the haptic processing of orientations is also anisotropic and seems to use both egocentric and allocentric cues. Taken together, these results revealed that the haptic oblique effect occurs when the sensory motor traces associated with exploratory movement are represented more abstractly at a cognitive level. PMID:18446332

  18. Representing Representation

    ERIC Educational Resources Information Center

    Kuntz, Aaron M.

    2010-01-01

    What can be known and how to render what we know are perpetual quandaries met by qualitative research, complicated further by the understanding that the everyday discourses influencing our representations are often tacit, unspoken or heard so often that they seem to warrant little reflection. In this article, I offer analytic memos as a means for…

  19. Design of a Virtual Reality Navigational (VRN) experiment for assessment of egocentric spatial cognition.

    PubMed

    Byagowi, Ahmad; Moussavi, Zahra

    2012-01-01

    Virtual reality (VR) experiments are commonly used to assess human brain functions. We orient ourselves in an environment by computing precise self-to-object spatial relations (egocentric orientation) as well as object-to-object spatial relations (allocentric orientation). Egocentric orientation involves cues that depend on the position of the observer (i.e. left-right, front-behind), whereas allocentric orientation is maintained through the use of environmental features such as landmarks. As such, allocentric orientation involves short-term memory, whereas egocentric orientation does not. This paper presents a Virtual Reality Navigational (VRN) experiment specifically designed to assess egocentric spatial cognition. The design aimed to minimize the effect of spatial cues or landmarks for human navigation in a naturalistic VR environment. The VRN experiment designed for this study, called the Virtual House, is a symmetric three story cubic building, with 3 windows on each side on every floor, and one entrance on each side of the building. In each trial, a window is marked by a pseudo-random sequence as the objective. The marked window is shown to the participant from an outdoor view. The task is to reach the objective window using the shortest path through the building. The experiment entails 2 sets of 8 trials to cover all possibilities. The participants' performance error is measured by the difference between their traversed distance trajectory and the shortest natural distance (calculated using the VR engine), normalized by the shortest distance, in each trial. Fifty-two cognitively healthy adults participated in the study. The results show no learning effect during the 16 trails, implying that the experiment does not rely on short-term memory. Furthermore, the subjects' normalized performance error showed an almost linear increase with age, implying that egocentric spatial cognition ability declines with age.

  20. Biomedical image representation approach using visualness and spatial information in a concept feature space for interactive region-of-interest-based retrieval.

    PubMed

    Rahman, Md Mahmudur; Antani, Sameer K; Demner-Fushman, Dina; Thoma, George R

    2015-10-01

    This article presents an approach to biomedical image retrieval by mapping image regions to local concepts where images are represented in a weighted entropy-based concept feature space. The term "concept" refers to perceptually distinguishable visual patches that are identified locally in image regions and can be mapped to a glossary of imaging terms. Further, the visual significance (e.g., visualness) of concepts is measured as the Shannon entropy of pixel values in image patches and is used to refine the feature vector. Moreover, the system can assist the user in interactively selecting a region-of-interest (ROI) and searching for similar image ROIs. Further, a spatial verification step is used as a postprocessing step to improve retrieval results based on location information. The hypothesis that such approaches would improve biomedical image retrieval is validated through experiments on two different data sets, which are collected from open access biomedical literature.

  1. Biomedical image representation approach using visualness and spatial information in a concept feature space for interactive region-of-interest-based retrieval

    PubMed Central

    Rahman, Md. Mahmudur; Antani, Sameer K.; Demner-Fushman, Dina; Thoma, George R.

    2015-01-01

    Abstract. This article presents an approach to biomedical image retrieval by mapping image regions to local concepts where images are represented in a weighted entropy-based concept feature space. The term “concept” refers to perceptually distinguishable visual patches that are identified locally in image regions and can be mapped to a glossary of imaging terms. Further, the visual significance (e.g., visualness) of concepts is measured as the Shannon entropy of pixel values in image patches and is used to refine the feature vector. Moreover, the system can assist the user in interactively selecting a region-of-interest (ROI) and searching for similar image ROIs. Further, a spatial verification step is used as a postprocessing step to improve retrieval results based on location information. The hypothesis that such approaches would improve biomedical image retrieval is validated through experiments on two different data sets, which are collected from open access biomedical literature. PMID:26730398

  2. Parallels between Spatial Cognition and Spatial Language: Evidence from Williams Syndrome

    ERIC Educational Resources Information Center

    Landau, B.; Hoffman, J.E.

    2005-01-01

    Does the acquisition of spatial language always reflect the characteristics of non-linguistic spatial representation? We explored this question by examining spatial representation and spatial language among children and adults with Williams syndrome, a rare genetic syndrome that gives rise to a pattern of severe spatial impairment together with…

  3. Different strategies for spatial updating in yaw and pitch path integration.

    PubMed

    Goeke, Caspar M; König, Peter; Gramann, Klaus

    2013-01-01

    Research in spatial navigation revealed the existence of discrete strategies defined by the use of distinct reference frames during virtual path integration. The present study investigated the distribution of these navigation strategies as a function of gender, video gaming experience, and self-estimates of spatial navigation abilities in a population of 300 subjects. Participants watched videos of virtual passages through a star-field with one turn in either the horizontal (yaw) or the vertical (pitch) axis. At the end of a passage they selected one out of four homing arrows to indicate the initial starting location. To solve the task, participants could employ two discrete strategies, navigating within either an egocentric or an allocentric reference frame. The majority of valid subjects (232/260) consistently used the same strategy in more than 75% of all trials. With that approach 33.1% of all participants were classified as Turners (using an egocentric reference frame on both axes) and 46.5% as Non-turners (using an allocentric reference frame on both axes). 9.2% of all participants consistently used an egocentric reference frame in the yaw plane but an allocentric reference frame in the pitch plane (Switcher). Investigating the influence of gender on navigation strategies revealed that females predominantly used the Non-turner strategy while males used both the Turner and the Non-turner strategy with comparable probabilities. Other than expected, video gaming experience did not influence strategy use. Based on a strong quantitative basis with the sample size about an order of magnitude larger than in typical psychophysical studies these results demonstrate that most people reliably use one out of three possible navigation strategies (Turners, Non-turners, Switchers) for spatial updating and provides a sound estimate of how those strategies are distributed within the general population.

  4. Differentiating Spatial Memory from Spatial Transformations

    ERIC Educational Resources Information Center

    Street, Whitney N.; Wang, Ranxiao Frances

    2014-01-01

    The perspective-taking task is one of the most common paradigms used to study the nature of spatial memory, and better performance for certain orientations is generally interpreted as evidence of spatial representations using these reference directions. However, performance advantages can also result from the relative ease in certain…

  5. Models as Feedback: Developing Representational Competence in Chemistry

    ERIC Educational Resources Information Center

    Padalkar, Shamin; Hegarty, Mary

    2015-01-01

    Spatial information in science is often expressed through representations such as diagrams and models. Learning the strengths and limitations of these representations and how to relate them are important aspects of developing scientific understanding, referred to as "representational competence." Diagram translation is particularly…

  6. Anticipatory control and spatial cognition in locomotion and navigation through typical development and in cerebral palsy.

    PubMed

    Belmonti, Vittorio; Cioni, Giovanni; Berthoz, Alain

    2016-03-01

    Behavioural evidence, summarized in this narrative review, supports a developmental model of locomotor control based on increasing neural integration of spatial reference frames. Two consistent adult locomotor behaviours are head stabilization and head anticipation: the head is stabilized to gravity and leads walking direction. This cephalocaudal orienting organization aligns gaze and vestibula with a reference frame centred on the upcoming walking direction, allowing anticipatory control on body kinematics, but is not fully developed until adolescence. Walking trajectories and those of hand movements share many aspects, including power laws coupling velocity to curvature, and minimized spatial variability. In fact, the adult brain can code trajectory geometry in an allocentric reference frame, irrespective of the end effector, regulating body kinematics thereafter. Locomotor trajectory formation, like head anticipation, matures in early adolescence, indicating common neurocomputational substrates. These late-developing control mechanisms can be distinguished from biomechanical problems in children with cerebral palsy (CP). Children's performance on a novel navigation test, the Magic Carpet, indicates that typical navigation development consists of the increasing integration of egocentric and allocentric reference frames. In CP, right-brain impairment seems to reduce navigation performance due to a maladaptive left-brain sequential egocentric strategy. Spatial integration should be considered more in rehabilitation.

  7. Space representation in the prefrontal cortex.

    PubMed

    Funahashi, Shintaro

    2013-04-01

    The representation of space and its function in the prefrontal cortex have been examined using a variety of behavioral tasks. Among them, since the delayed-response task requires the temporary maintenance of spatial information, this task has been used to examine the mechanisms of spatial representation. In addition, the concept of working memory to explain prefrontal functions has helped us to understand the nature and functions of space representation in the prefrontal cortex. The detailed analysis of delay-period activity observed in spatial working memory tasks has provided important information for understanding space representation in the prefrontal cortex. Directional delay-period activity has been shown to be a neural correlate of the mechanism for temporarily maintaining information and represent spatial information for the visual cue and the saccade. In addition, many task-related prefrontal neurons exhibit spatially selective activities. These neurons are also important components of spatial information processing. In fact, information flow from sensory-related neurons to motor-related neurons has been demonstrated, along with a change in spatial representation as the trial progresses. The dynamic functional interactions among neurons exhibiting different task-related activities and representing different aspects of information could play an essential role in information processing. In addition, information provided from other cortical or subcortical areas might also be necessary for the representation of space in the prefrontal cortex. To better understand the representation of space and its function in the prefrontal cortex, we need to understand the nature of functional interactions between the prefrontal cortex and other cortical and subcortical areas.

  8. Two Systems of Spatial Representation Underlying Navigation

    PubMed Central

    Lee, Sang Ah; Spelke, Elizabeth S.

    2011-01-01

    We review evidence for two distinct cognitive processes by which humans and animals represent the navigable environment. One process uses the shape of the extended 3D surface layout to specify the navigator’s position and orientation. A second process uses objects and patterns as beacons to specify the locations of significant objects. Although much of the evidence for these processes comes from neurophysiological studies of navigating animals and neuroimaging studies of human adults, behavioral studies of navigating children shed light both on the nature of these systems and on their interactions. PMID:20614214

  9. [Time perceptions and representations].

    PubMed

    Tordjman, S

    2015-09-01

    fundamentally lacking in their physiological development due to possibly altered circadian rhythms, including arhythmy and asynchrony. Time measurement, based on the repetition of discontinuity at regular intervals, involves also a spatial representation. It is our own trajectory through space-time, and thus our own motion, including the physiological process of aging, that affords us a representation of the passing of time, just as the countryside seems to be moving past us when we travel in a vehicle. Chinese and Indian societies actually have circular representations of time, and linear representations of time and its trajectory through space-time are currently a feature of Western societies. Circular time is collective time, and its metaphysical representations go beyond the life of a single individual, referring to the cyclical, or at least nonlinear, nature of time. Linear time is individual time, in that it refers to the scale of a person's lifetime, and it is physically represented by an arrow flying ineluctably from the past to the future. An intermediate concept can be proposed that acknowledges the existence of linear time involving various arrows of time corresponding to different lifespans (human, animal, plant, planet lifespans, etc.). In fact, the very notion of time would depend on the trajectory of each arrow of time, like shooting stars in the sky with different trajectory lengths which would define different time scales. The time scale of these various lifespans are very different (for example, a few decades for humans and a few days or hours for insects). It would not make sense to try to understand the passage of time experienced by an insect which may live only a few hours based on a human time scale. One hour in an insect's life cannot be compared to one experienced by a human. Yet again, it appears that there is a coexistence of different clocks based here on different lifespans. Finally, the evolution of our society focused on the present moment and

  10. Culture as shared cognitive representations.

    PubMed Central

    Romney, A K; Boyd, J P; Moore, C C; Batchelder, W H; Brazill, T J

    1996-01-01

    Culture consists of shared cognitive representations in the minds of individuals. This paper investigates the extent to which English speakers share the "same" semantic structure of English kinship terms. The semantic structure is defined as the arrangement of the terms relative to each other as represented in a metric space in which items judged more similar are placed closer to each other than items judged as less similar. The cognitive representation of the semantic structure, residing in the mind of an individual, is measured by judged similarity tasks involving comparisons among terms. Using six independent measurements, from each of 122 individuals, correspondence analysis represents the data in a common multidimensional spatial representation. Judged by a variety of statistical procedures, the individuals in our sample share virtually identical cognitive representations of the semantic structure of kinship terms. This model of culture accounts for 70-90% of the total variability in these data. We argue that our findings on kinship should generalize to all semantic domains--e.g., animals, emotions, etc. The investigation of semantic domains is important because they may reside in localized functional units in the brain, because they relate to a variety of cognitive processes, and because they have the potential to provide methods for diagnosing individual breakdowns in the structure of cognitive representations typical of such ailments as Alzheimer disease. PMID:11607678

  11. Hippocampal damage impairs long-term spatial memory in rats: comparison between electrolytic and neurotoxic lesions.

    PubMed

    Ramos, Juan M J

    2008-03-18

    In previous studies we have suggested that the dorsal hippocampus is involved in spatial consolidation by showing that rats with electrolytic hippocampal lesions exhibit a profound deficit in the retention of an allocentric task 24 days after the acquisition. However, in various hippocampal-dependent tasks, several studies have shown an overestimation of the behavioral deficit when electrolytic versus axon-sparing cytotoxic lesions has been used. For this reason, in this report we compare the effects on spatial retention of electrolytic and neurotoxic lesions to the dorsal hippocampus. Results showed a similar deficit in spatial retention in both groups 24 days after acquisition. Thus, the hippocampus proper and not fibers of passage or extrahippocampal damage is directly responsible for the deficit in spatial retention seen in rats with electrolytic lesions.

  12. Reflections on the hand: the use of a mirror highlights the contributions of interpreted and retinotopic representations in the rubber-hand illusion.

    PubMed

    Kontaris, Ioannis; Downing, Paul E

    2011-01-01

    In the rubber-hand illusion, observing a rubber hand stroked in synchrony with one's own hand results in mislocalisation of the own hand, which is perceived as being located closer to the rubber hand. This illusion depends on having the rubber hand placed at a plausible egocentric orientation with respect to the observer. In the present study, we took advantage of this finding in order to compare the relative influence on the illusion of the rubber hand's perceived retinotopic image against its real-world position. The rubber hand was positioned egocentrically (fingers away from the participant) or allocentrically (fingers towards the participant), while participants viewed it either directly or via a mirror that was placed facing the participant. In the mirror conditions, the orientation of the retinotopic image of the hand (either egocentric or allocentric) was opposed to its real-world orientation. We found that the illusion was elicited in both mirror conditions, to roughly the same extent. Thus either of two representations can elicit the rubber-hand illusion: a world-centred understanding of the scene, resulting from the inferred position of the hand based on its mirror reflection, or a purely visual retinotopic representation of the viewed hand. In the mirror conditions, the illusion was somewhat weaker than in the typical directly viewed egocentric condition. We attribute this to competition between two incompatible representations introduced by the presence of the mirror. Finally, in two control experiments we ruled out that this reduction was due to two properties of mirror reflections: the increased perceived distance of items and the reversal of the apparent handedness of the rubber hand.

  13. Understanding Representation in Design.

    ERIC Educational Resources Information Center

    Bodker, Susanne

    1998-01-01

    Discusses the design of computer applications, focusing on understanding design representations--what makes design representations work, and how, in different contexts. Examines the place of various types of representation (e.g., formal notations, models, prototypes, scenarios, and mock-ups) in design and the role of formalisms and representations…

  14. Predicting cognitive styles from spatial abilities.

    PubMed

    Nori, Raffaella; Giusberti, Fiorella

    2006-01-01

    Previous studies on spatial memory reveal that people represent spatial information in 3 different forms: landmark, route, and survey. The aim of this work was to assess spatial abilities in order to predict a person's cognitive style. In order to do this we used 9 different spatial tasks, which were linked with these 3 forms of spatial representations. We found that the 9 spatial tasks are able to distinguish different levels of spatial ability.

  15. Long-term spatial memory in rats with hippocampal lesions.

    PubMed

    Ramos, J M

    2000-09-01

    In animal models of human amnesia, using lesion methods, it has been difficult to establish the role played by the hippocampus in the formation of long-term spatial knowledge. For example, lesions sustained after acquisition have generally produced a flat retrograde amnesia for spatial information. These results have not made it possible to dissociate the participation of the hippocampus in retrieval/performance processes from its participation in consolidation/retention. The present study was designed to investigate if electrolytic hippocampal lesions made before training lead to a deficit in the long-term retention of spatial knowledge when the rats show equal performance levels during the acquisition. Results show that lesioned rats learn a place response just as well as the control rats when, during the training, an intramaze cue orients the animal in its navigation towards the goal arm. One day after reaching criterion, lesioned and control rats remember the task perfectly during a transfer test in which the intramaze signal used previously is not present. However, 24 days later, the hippocampal animals manifest a profound deficit in the retention of the spatial information. When the spatial task learned during the acquisition phase requires only the use of a guidance strategy, control and lesioned animals show the same level of performance during the training phase and the same degree of retention during the retraining phase 24 days after criterion. Taken together, these results suggest that the hippocampus plays a crucial role in long-term retention of allocentric spatial information.

  16. Cognitive representation of negative numbers.

    PubMed

    Fischer, Martin H

    2003-05-01

    To understand negative numbers, must we refer to positive number representations (the phylogenetic hypothesis), or do we acquire a negative mental number line (the ontogenetic hypothesis)? In the experiment reported here, participants made lateralized button responses to indicate the larger of two digits from the range -9 to 9. Digit pairs were displayed spatially congruent or incongruent with either a phylogenetic or an ontogenetic mental number line. The pattern of decision latencies suggests that negative numbers become associated with left space, thus supporting the ontogenetic view.

  17. Convergent spectral representation for three-dimensional inverse MHD equilibria

    SciTech Connect

    Hirshman, S.P.

    1984-10-01

    By rearranging terms in a polar representation for the cylindrical spatial coordinates (R, theta, Z), a renormalized Fourier series moment expansion is obtained that possesses superior convergence properties in mode number space. This convergent spectral representation also determines a unique poloidal angle and thus resolves the underdetermined structure of previous moment expansions. A conformal mapping technique is used to demonstrate the existence and uniqueness of the new representation.

  18. Conditional Covariance-based Representation of Multidimensional Test Structure.

    ERIC Educational Resources Information Center

    Bolt, Daniel M.

    2001-01-01

    Presents a new nonparametric method for constructing a spatial representation of multidimensional test structure, the Conditional Covariance-based SCALing (CCSCAL) method. Describes an index to measure the accuracy of the representation. Uses simulation and real-life data analyses to show that the method provides a suitable approximation to…

  19. XML-BASED REPRESENTATION

    SciTech Connect

    R. KELSEY

    2001-02-01

    For focused applications with limited user and use application communities, XML can be the right choice for representation. It is easy to use, maintain, and extend and enjoys wide support in commercial and research sectors. When the knowledge and information to be represented is object-based and use of that knowledge and information is a high priority, then XML-based representation should be considered. This paper discusses some of the issues involved in using XML-based representation and presents an example application that successfully uses an XML-based representation.

  20. A study of remote spatial memory in aged rats.

    PubMed

    Winocur, Gordon; Moscovitch, Morris; Rosenbaum, R Shayna; Sekeres, Melanie

    2010-01-01

    The effect of aging on remote spatial memory was tested in a group of 2-year-old rats (VR-O) that, as young adults, were reared for 3 months in a complex 'village' environment. The VR-O rats exhibited significant savings in finding the locations of specific reward compartments within the village, relative to a group of old rats (VNR-O) experiencing the village for the first time. The VNR-O rats were also impaired, relative to naive young rats, in learning the reward locations. Probe tests indicated that the VR-O rats retained allocentric spatial memory for the environment and were not using sensory or other non-spatial cues to guide behaviour. Overall, the results indicate that the aged rats experienced a decline in the ability to learn and remember detailed spatial relationships and that the VR-O group's successful performance on the remote spatial memory test was guided by a form of schematic memory that captured the essential features of the village environment. The potential contribution of the hippocampus to the pattern of lost and spared learning and memory observed in the aged rats was discussed.

  1. Where am I and how will I get there from here? A role for posterior parietal cortex in the integration of spatial information and route planning

    PubMed Central

    Calton, Jeffrey L.; Taube, Jeffrey S.

    2009-01-01

    The ability of an organism to accurately navigate from one place to another requires integration of multiple spatial constructs, including the determination of one's position and direction in space relative to allocentric landmarks, movement velocity, and the perceived location of the goal of the movement. In this review we propose that while limbic areas are important for the sense of spatial orientation, the posterior parietal cortex is responsible for relating this sense with the location of a navigational goal and in formulating a plan to attain it. Hence, the posterior parietal cortex is important for the computation of the correct trajectory or route to be followed while navigating. Prefrontal and motor areas are subsequently responsible for executing the planned movement. Using this theory, we are able to bridge the gap between the rodent and primate literatures by suggesting that the allocentric role of the rodent PPC is largely analogous to the egocentric role typically emphasized in primates, that is, the integration of spatial orientation with potential goals in the planning of goal-directed movements. PMID:18929674

  2. Where am I and how will I get there from here? A role for posterior parietal cortex in the integration of spatial information and route planning.

    PubMed

    Calton, Jeffrey L; Taube, Jeffrey S

    2009-02-01

    The ability of an organism to accurately navigate from one place to another requires integration of multiple spatial constructs, including the determination of one's position and direction in space relative to allocentric landmarks, movement velocity, and the perceived location of the goal of the movement. In this review, we propose that while limbic areas are important for the sense of spatial orientation, the posterior parietal cortex is responsible for relating this sense with the location of a navigational goal and in formulating a plan to attain it. Hence, the posterior parietal cortex is important for the computation of the correct trajectory or route to be followed while navigating. Prefrontal and motor areas are subsequently responsible for executing the planned movement. Using this theory, we are able to bridge the gap between the rodent and primate literatures by suggesting that the allocentric role of the rodent PPC is largely analogous to the egocentric role typically emphasized in primates, that is, the integration of spatial orientation with potential goals in the planning of goal-directed movements.

  3. Inscriptions Becoming Representations in Representational Practices

    ERIC Educational Resources Information Center

    Medina, Richard; Suthers, Daniel

    2013-01-01

    We analyze the interaction of 3 students working on mathematics problems over several days in a virtual math team. Our analysis traces out how successful collaboration in a later session is contingent upon the work of prior sessions and shows how the development of representational practices is an important aspect of these participants' problem…

  4. One Spatial Map or Many? Spatial Coding of Connected Environments

    ERIC Educational Resources Information Center

    Han, Xue; Becker, Suzanna

    2014-01-01

    We investigated how humans encode large-scale spatial environments using a virtual taxi game. We hypothesized that if 2 connected neighborhoods are explored jointly, people will form a single integrated spatial representation of the town. However, if the neighborhoods are first learned separately and later observed to be connected, people will…

  5. Prediction of seizure incidence probability in PTZ model of kindling through spatial learning ability in male and female rats.

    PubMed

    Haeri, Narges-Al-Sadat; Palizvan, Mohammad Reza; Sadegh, Mehdi; Aghaei, Zohre; Rafiei, Mohammad

    2016-07-01

    Epilepsy is a common neurological disease characterized by periodic seizures. Cognitive deficits and impairments in learning and memory are also associated with epilepsy. Neuronal changes and synaptic modifications in kindling model of epilepsy are similar to those occur during the learning procedure and memory formation. Herein we investigated whether seizure susceptibility in pentylenetetrazol (PTZ) model of kindling is predictable based on the learning ability in the Morris water maze (MWM) task in male and female rats. Allocentric learning was tested using MWM in present of light while egocentric learning was evaluated by MWM in dark room. The results indicated no significant differences in allocentric learning abilities between male and female rats. However, male rats were able to memorize the location of the platform more effectively compared to females in egocentric test. In addition, a statistically significant negative correlation between learning abilities (working memory) and seizure susceptibility in male rats was found while this correlation was positive in female rats. On the other hand, although there was no significant correlation between retrieval (reference memory) of spatial memories and seizure parameters in male rats, female rats showed a significant negative correlation. These findings may provide some evidences for prediction of seizure susceptibility according to learning ability and memory retention.

  6. Remote sensing image fusion via wavelet transform and sparse representation

    NASA Astrophysics Data System (ADS)

    Cheng, Jian; Liu, Haijun; Liu, Ting; Wang, Feng; Li, Hongsheng

    2015-06-01

    In this paper, we propose a remote sensing image fusion method which combines the wavelet transform and sparse representation to obtain fusion images with high spectral resolution and high spatial resolution. Firstly, intensity-hue-saturation (IHS) transform is applied to Multi-Spectral (MS) images. Then, wavelet transform is used to the intensity component of MS images and the Panchromatic (Pan) image to construct the multi-scale representation respectively. With the multi-scale representation, different fusion strategies are taken on the low-frequency and the high-frequency sub-images. Sparse representation with training dictionary is introduced into the low-frequency sub-image fusion. The fusion rule for the sparse representation coefficients of the low-frequency sub-images is defined by the spatial frequency maximum. For high-frequency sub-images with prolific detail information, the fusion rule is established by the images information fusion measurement indicator. Finally, the fused results are obtained through inverse wavelet transform and inverse IHS transform. The wavelet transform has the ability to extract the spectral information and the global spatial details from the original pairwise images, while sparse representation can extract the local structures of images effectively. Therefore, our proposed fusion method can well preserve the spectral information and the spatial detail information of the original images. The experimental results on the remote sensing images have demonstrated that our proposed method could well maintain the spectral characteristics of fusion images with a high spatial resolution.

  7. Switching from reaching to navigation: differential cognitive strategies for spatial memory in children and adults.

    PubMed

    Belmonti, Vittorio; Cioni, Giovanni; Berthoz, Alain

    2015-07-01

    Navigational and reaching spaces are known to involve different cognitive strategies and brain networks, whose development in humans is still debated. In fact, high-level spatial processing, including allocentric location encoding, is already available to very young children, but navigational strategies are not mature until late childhood. The Magic Carpet (MC) is a new electronic device translating the traditional Corsi Block-tapping Test (CBT) to navigational space. In this study, the MC and the CBT were used to assess spatial memory for navigation and for reaching, respectively. Our hypothesis was that school-age children would not treat MC stimuli as navigational paths, assimilating them to reaching sequences. Ninety-one healthy children aged 6 to 11 years and 18 adults were enrolled. Overall short-term memory performance (span) on both tests, effects of sequence geometry, and error patterns according to a new classification were studied. Span increased with age on both tests, but relatively more in navigational than in reaching space, particularly in males. Sequence geometry specifically influenced navigation, not reaching. The number of body rotations along the path affected MC performance in children more than in adults, and in women more than in men. Error patterns indicated that navigational sequences were increasingly retained as global paths across development, in contrast to separately stored reaching locations. A sequence of spatial locations can be coded as a navigational path only if a cognitive switch from a reaching mode to a navigation mode occurs. This implies the integration of egocentric and allocentric reference frames, of visual and idiothetic cues, and access to long-term memory. This switch is not yet fulfilled at school age due to immature executive functions.

  8. The World Is Not Flat: Can People Reorient Using Slope?

    ERIC Educational Resources Information Center

    Nardi, Daniele; Newcombe, Nora S.; Shipley, Thomas F.

    2011-01-01

    Studies of spatial representation generally focus on flat environments and visual input. However, the world is not flat, and slopes are part of most natural environments. In a series of 4 experiments, we examined whether humans can use a slope as a source of allocentric, directional information for reorientation. A target was hidden in a corner of…

  9. Function, anticipation, representation

    NASA Astrophysics Data System (ADS)

    Bickhard, Mark. H.

    2001-06-01

    Function emerges in certain kinds of far-from-equilibrium systems. One important kind of function is that of interactive anticipation, an adaptedness to temporal complexity. Interactive anticipation is the locus of the emergence of normative representational content, and, thus, of representation in general: interactive anticipation is the naturalistic core of the evolution of cognition. Higher forms of such anticipation are involved in the subsequent macro-evolutionary sequence of learning, emotions, and reflexive consciousness.

  10. Spatialization of Time in Mian

    PubMed Central

    Fedden, Sebastian; Boroditsky, Lera

    2012-01-01

    We examine representations of time among the Mianmin of Papua New Guinea. We begin by describing the patterns of spatial and temporal reference in Mian. Mian uses a system of spatial terms that derive from the orientation and direction of the Hak and Sek rivers and the surrounding landscape. We then report results from a temporal arrangement task administered to a group of Mian speakers. The results reveal evidence for a variety of temporal representations. Some participants arranged time with respect to their bodies (left to right or toward the body). Others arranged time as laid out on the landscape, roughly along the east/west axis (either east to west or west to east). This absolute pattern is consistent both with the axis of the motion of the sun and the orientation of the two rivers, which provides the basis for spatial reference in the Mian language. The results also suggest an increase in left to right temporal representations with increasing years of formal education (and the reverse pattern for absolute spatial representations for time). These results extend previous work on spatial representations for time to a new geographical region, physical environment, and linguistic and cultural system. PMID:23181037

  11. Contacts de langues et representations (Language Contacts and Representations).

    ERIC Educational Resources Information Center

    Matthey, Marinette, Ed.

    1997-01-01

    Essays on language contact and the image of language, entirely in French, include: "Representations 'du' contexte et representations 'en' contexte? Eleves et enseignants face a l'apprentissage de la langue" ("Representations 'of' Context or Representations 'in' Context? Students and Teachers Facing Language Learning" (Laurent…

  12. Reference frames in virtual spatial navigation are viewpoint dependent

    PubMed Central

    Török, Ágoston; Nguyen, T. Peter; Kolozsvári, Orsolya; Buchanan, Robert J.; Nadasdy, Zoltan

    2014-01-01

    Spatial navigation in the mammalian brain relies on a cognitive map of the environment. Such cognitive maps enable us, for example, to take the optimal route from a given location to a known target. The formation of these maps is naturally influenced by our perception of the environment, meaning it is dependent on factors such as our viewpoint and choice of reference frame. Yet, it is unknown how these factors influence the construction of cognitive maps. Here, we evaluated how various combinations of viewpoints and reference frames affect subjects' performance when they navigated in a bounded virtual environment without landmarks. We measured both their path length and time efficiency and found that (1) ground perspective was associated with egocentric frame of reference, (2) aerial perspective was associated with allocentric frame of reference, (3) there was no appreciable performance difference between first and third person egocentric viewing positions and (4) while none of these effects were dependent on gender, males tended to perform better in general. Our study provides evidence that there are inherent associations between visual perspectives and cognitive reference frames. This result has implications about the mechanisms of path integration in the human brain and may also inspire designs of virtual reality applications. Lastly, we demonstrated the effective use of a tablet PC and spatial navigation tasks for studying spatial and cognitive aspects of human memory. PMID:25249956

  13. Neonatal atlas construction using sparse representation.

    PubMed

    Shi, Feng; Wang, Li; Wu, Guorong; Li, Gang; Gilmore, John H; Lin, Weili; Shen, Dinggang

    2014-09-01

    Atlas construction generally includes first an image registration step to normalize all images into a common space and then an atlas building step to fuse the information from all the aligned images. Although numerous atlas construction studies have been performed to improve the accuracy of the image registration step, unweighted or simply weighted average is often used in the atlas building step. In this article, we propose a novel patch-based sparse representation method for atlas construction after all images have been registered into the common space. By taking advantage of local sparse representation, more anatomical details can be recovered in the built atlas. To make the anatomical structures spatially smooth in the atlas, the anatomical feature constraints on group structure of representations and also the overlapping of neighboring patches are imposed to ensure the anatomical consistency between neighboring patches. The proposed method has been applied to 73 neonatal MR images with poor spatial resolution and low tissue contrast, for constructing a neonatal brain atlas with sharp anatomical details. Experimental results demonstrate that the proposed method can significantly enhance the quality of the constructed atlas by discovering more anatomical details especially in the highly convoluted cortical regions. The resulting atlas demonstrates superior performance of our atlas when applied to spatially normalizing three different neonatal datasets, compared with other start-of-the-art neonatal brain atlases.

  14. Grassmannian sparse representations

    NASA Astrophysics Data System (ADS)

    Azary, Sherif; Savakis, Andreas

    2015-05-01

    We present Grassmannian sparse representations (GSR), a sparse representation Grassmann learning framework for efficient classification. Sparse representation classification offers a powerful approach for recognition in a variety of contexts. However, a major drawback of sparse representation methods is their computational performance and memory utilization for high-dimensional data. A Grassmann manifold is a space that promotes smooth surfaces where points represent subspaces and the relationship between points is defined by the mapping of an orthogonal matrix. Grassmann manifolds are well suited for computer vision problems because they promote high between-class discrimination and within-class clustering, while offering computational advantages by mapping each subspace onto a single point. The GSR framework combines Grassmannian kernels and sparse representations, including regularized least squares and least angle regression, to improve high accuracy recognition while overcoming the drawbacks of performance and dependencies on high dimensional data distributions. The effectiveness of GSR is demonstrated on computationally intensive multiview action sequences, three-dimensional action sequences, and face recognition datasets.

  15. Spacecraft Attitude Representations

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis

    1999-01-01

    The direction cosine matrix or attitude matrix is the most fundamental representation of the attitude, but it is very inefficient: It has six redundant parameters, it is difficult to enforce the six (orthogonality) constraints. the four-component quaternion representation is very convenient: it has only one redundant parameter, it is easy to enforce the normalization constraint, the attitude matrix is a homogeneous quadratic function of q, quaternion kinematics are bilinear in q and m. Euler angles are extensively used: they often have a physical interpretation, they provide a natural description of some spacecraft motions (COBE, MAP), but kinematics and attitude matrix involve trigonometric functions, "gimbal lock" for certain values of the angles. Other minimum (three-parameter) representations: Gibbs vector is infinite for 180 deg rotations, but useful for analysis, Modified Rodrigues Parameters are nonsingular, no trig functions, Rotation vector phi is nonsingular, but requires trig functions.

  16. Learning network representations

    NASA Astrophysics Data System (ADS)

    Moyano, Luis G.

    2017-02-01

    In this review I present several representation learning methods, and discuss the latest advancements with emphasis in applications to network science. Representation learning is a set of techniques that has the goal of efficiently mapping data structures into convenient latent spaces. Either for dimensionality reduction or for gaining semantic content, this type of feature embeddings has demonstrated to be useful, for example, for node classification or link prediction tasks, among many other relevant applications to networks. I provide a description of the state-of-the-art of network representation learning as well as a detailed account of the connections with other fields of study such as continuous word embeddings and deep learning architectures. Finally, I provide a broad view of several applications of these techniques to networks in various domains.

  17. Umbra's system representation.

    SciTech Connect

    McDonald, Michael James

    2005-07-01

    This document describes the Umbra System representation. Umbra System representation, initially developed in the spring of 2003, is implemented in Incr/Tcl using concepts borrowed from Carnegie Mellon University's Architecture Description Language (ADL) called Acme. In the spring of 2004 through January 2005, System was converted to Umbra 4, extended slightly, and adopted as the underlying software system for a variety of Umbra applications that support Complex Systems Engineering (CSE) and Complex Adaptive Systems Engineering (CASE). System is now a standard part Of Umbra 4. While Umbra 4 also includes an XML parser for System, the XML parser and Schema are not described in this document.

  18. Perception, representation and recognition: a holistic view of recognition.

    PubMed

    Christou, C; Bülthoff, H H

    2000-01-01

    It is clear that humans have mental representations of their spatial environments and that these representations are useful, if not essential, in a wide variety of cognitive tasks such as identification of landmarks and objects, guiding actions and navigation and in directing spatial awareness and attention. Determining the properties of mental representation has long been a contentious issue (see Pinker, 1984). One method of probing the nature of human representation is by studying the extent to which representation can surpass or go beyond the visual (or sensory) experience from which it derives. From a strictly empiricist standpoint what is not sensed cannot be represented; except as a combination of things that have been experienced. But perceptual experience is always limited by our view of the world and the properties of our visual system. It is therefore not surprising when human representation is found to be highly dependent on the initial viewpoint of the observer and on any shortcomings thereof. However, representation is not a static entity; it evolves with experience. The debate as to whether human representation of objects is view-dependent or view-invariant that has dominated research journals recently may simply be a discussion concerning how much information is available in the retinal image during experimental tests and whether this information is sufficient for the task at hand. Here we review an approach to the study of the development of human spatial representation under realistic problem solving scenarios. This is facilitated by the use of realistic virtual environments, exploratory learning and redundancy in visual detail.

  19. Restoring Latent Visual Working Memory Representations in Human Cortex.

    PubMed

    Sprague, Thomas C; Ester, Edward F; Serences, John T

    2016-08-03

    Working memory (WM) enables the storage and manipulation of limited amounts of information over short periods. Prominent models posit that increasing the number of remembered items decreases the spiking activity dedicated to each item via mutual inhibition, which irreparably degrades the fidelity of each item's representation. We tested these models by determining if degraded memory representations could be recovered following a post-cue indicating which of several items in spatial WM would be recalled. Using an fMRI-based image reconstruction technique, we identified impaired behavioral performance and degraded mnemonic representations with elevated memory load. However, in several cortical regions, degraded mnemonic representations recovered substantially following a post-cue, and this recovery tracked behavioral performance. These results challenge pure spike-based models of WM and suggest that remembered items are additionally encoded within latent or hidden neural codes that can help reinvigorate active WM representations.

  20. Knowledge Representation in PARKA

    DTIC Science & Technology

    1990-02-01

    the color of Poodle could be restricted to being just black or white, while the color of Irish-Setter could be set to red. Note that this would allow a...sub- field of knowledge representation with considerable subtlety and a history of interesting, difficult problems (see, e.g. [10]). Winston et. al

  1. Reading Students' Representations

    ERIC Educational Resources Information Center

    Diezmann, Carmel M.; McCosker, Natalie T.

    2011-01-01

    Representations play a key role in mathematical thinking: They offer "a medium" to express mathematical knowledge or organize mathematical information and to discern mathematical relationships (e.g., relative household expenditures on a pie chart) using text, symbols, or graphics. They also furnish "tools" for mathematical processes (e.g., use of…

  2. The Problem of Representation

    ERIC Educational Resources Information Center

    Tervo, Juuso

    2012-01-01

    In "Postphysical Vision: Art Education's Challenge in an Age of Globalized Aesthetics (AMondofesto)" (2008) and "Beyond Aesthetics: Returning Force and Truth to Art and Its Education" (2009), jan jagodzinski argued for politics that go "beyond" representation--a project that radically questions visual culture…

  3. ALGORITHM DEVELOPMENT FOR SPATIAL OPERATORS.

    USGS Publications Warehouse

    Claire, Robert W.

    1984-01-01

    An approach is given that develops spatial operators about the basic geometric elements common to spatial data structures. In this fashion, a single set of spatial operators may be accessed by any system that reduces its operands to such basic generic representations. Algorithms based on this premise have been formulated to perform operations such as separation, overlap, and intersection. Moreover, this generic approach is well suited for algorithms that exploit concurrent properties of spatial operators. The results may provide a framework for a geometry engine to support fundamental manipulations within a geographic information system.

  4. Identifying Representational Competence with Multi-Representational Displays

    ERIC Educational Resources Information Center

    Stieff, Mike; Hegarty, Mary; Deslongchamps, Ghislain

    2011-01-01

    Increasingly, multi-representational educational technologies are being deployed in science classrooms to support science learning and the development of representational competence. Several studies have indicated that students experience significant challenges working with these multi-representational displays and prefer to use only one…

  5. Grid-cell representations in mental simulation

    PubMed Central

    Bellmund, Jacob LS; Deuker, Lorena; Navarro Schröder, Tobias; Doeller, Christian F

    2016-01-01

    Anticipating the future is a key motif of the brain, possibly supported by mental simulation of upcoming events. Rodent single-cell recordings suggest the ability of spatially tuned cells to represent subsequent locations. Grid-like representations have been observed in the human entorhinal cortex during virtual and imagined navigation. However, hitherto it remains unknown if grid-like representations contribute to mental simulation in the absence of imagined movement. Participants imagined directions between building locations in a large-scale virtual-reality city while undergoing fMRI without re-exposure to the environment. Using multi-voxel pattern analysis, we provide evidence for representations of absolute imagined direction at a resolution of 30° in the parahippocampal gyrus, consistent with the head-direction system. Furthermore, we capitalize on the six-fold rotational symmetry of grid-cell firing to demonstrate a 60° periodic pattern-similarity structure in the entorhinal cortex. Our findings imply a role of the entorhinal grid-system in mental simulation and future thinking beyond spatial navigation. DOI: http://dx.doi.org/10.7554/eLife.17089.001 PMID:27572056

  6. Process and representation in graphical displays

    NASA Technical Reports Server (NTRS)

    Gillan, Douglas J.; Lewis, Robert; Rudisill, Marianne

    1990-01-01

    How people comprehend graphics is examined. Graphical comprehension involves the cognitive representation of information from a graphic display and the processing strategies that people apply to answer questions about graphics. Research on representation has examined both the features present in a graphic display and the cognitive representation of the graphic. The key features include the physical components of a graph, the relation between the figure and its axes, and the information in the graph. Tests of people's memory for graphs indicate that both the physical and informational aspect of a graph are important in the cognitive representation of a graph. However, the physical (or perceptual) features overshadow the information to a large degree. Processing strategies also involve a perception-information distinction. In order to answer simple questions (e.g., determining the value of a variable, comparing several variables, and determining the mean of a set of variables), people switch between two information processing strategies: (1) an arithmetic, look-up strategy in which they use a graph much like a table, looking up values and performing arithmetic calculations; and (2) a perceptual strategy in which they use the spatial characteristics of the graph to make comparisons and estimations. The user's choice of strategies depends on the task and the characteristics of the graph. A theory of graphic comprehension is presented.

  7. Modeling anatomical spatial relations with description logics.

    PubMed Central

    Schulz, S.; Hahn, U.; Romacker, M.

    2000-01-01

    Although spatial relations are essential for the anatomy domain, spatial reasoning is only weakly supported by medical knowledge representation systems. To remedy this shortcoming we express spatial relations that can intuitively be applied to anatomical objects (such as 'disconnected', 'externally connected', 'partial overlap' and 'proper part') within the formal framework of description logics. A special encoding of concept descriptions (in terms of SEP triplets) allows us to emulate spatial reasoning by classification-based reasoning. PMID:11079990

  8. Standard model of knowledge representation

    NASA Astrophysics Data System (ADS)

    Yin, Wensheng

    2016-09-01

    Knowledge representation is the core of artificial intelligence research. Knowledge representation methods include predicate logic, semantic network, computer programming language, database, mathematical model, graphics language, natural language, etc. To establish the intrinsic link between various knowledge representation methods, a unified knowledge representation model is necessary. According to ontology, system theory, and control theory, a standard model of knowledge representation that reflects the change of the objective world is proposed. The model is composed of input, processing, and output. This knowledge representation method is not a contradiction to the traditional knowledge representation method. It can express knowledge in terms of multivariate and multidimensional. It can also express process knowledge, and at the same time, it has a strong ability to solve problems. In addition, the standard model of knowledge representation provides a way to solve problems of non-precision and inconsistent knowledge.

  9. Representing Spatial Structure through Maps and Language: Lord of the Rings Encodes the Spatial Structure of Middle Earth

    ERIC Educational Resources Information Center

    Louwerse, Max M.; Benesh, Nick

    2012-01-01

    Spatial mental representations can be derived from linguistic and non-linguistic sources of information. This study tested whether these representations could be formed from statistical linguistic frequencies of city names, and to what extent participants differed in their performance when they estimated spatial locations from language or maps. In…

  10. Representation in incremental learning

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Work focused on two areas in machine learning: representation for inductive learning and how to apply concept learning techniques to learning state preferences, which can represent search control knowledge for problem solving. Specifically, in the first area the issues of the effect of representation on learning, on how learning formalisms are biased, and how concept learning can benefit from the use of a hybrid formalism are addressed. In the second area, the issues of developing an agent to learn search control knowledge from the relative values of states, of the source of that qualitative information, and of the ability to use both quantitative and qualitative information in order to develop an effective problem-solving policy are examined.

  11. Multiple Sparse Representations Classification

    PubMed Central

    Plenge, Esben; Klein, Stefan S.; Niessen, Wiro J.; Meijering, Erik

    2015-01-01

    Sparse representations classification (SRC) is a powerful technique for pixelwise classification of images and it is increasingly being used for a wide variety of image analysis tasks. The method uses sparse representation and learned redundant dictionaries to classify image pixels. In this empirical study we propose to further leverage the redundancy of the learned dictionaries to achieve a more accurate classifier. In conventional SRC, each image pixel is associated with a small patch surrounding it. Using these patches, a dictionary is trained for each class in a supervised fashion. Commonly, redundant/overcomplete dictionaries are trained and image patches are sparsely represented by a linear combination of only a few of the dictionary elements. Given a set of trained dictionaries, a new patch is sparse coded using each of them, and subsequently assigned to the class whose dictionary yields the minimum residual energy. We propose a generalization of this scheme. The method, which we call multiple sparse representations classification (mSRC), is based on the observation that an overcomplete, class specific dictionary is capable of generating multiple accurate and independent estimates of a patch belonging to the class. So instead of finding a single sparse representation of a patch for each dictionary, we find multiple, and the corresponding residual energies provides an enhanced statistic which is used to improve classification. We demonstrate the efficacy of mSRC for three example applications: pixelwise classification of texture images, lumen segmentation in carotid artery magnetic resonance imaging (MRI), and bifurcation point detection in carotid artery MRI. We compare our method with conventional SRC, K-nearest neighbor, and support vector machine classifiers. The results show that mSRC outperforms SRC and the other reference methods. In addition, we present an extensive evaluation of the effect of the main mSRC parameters: patch size, dictionary size, and

  12. Why do lesions in the rodent anterior thalamic nuclei cause such severe spatial deficits?

    PubMed

    Aggleton, John P; Nelson, Andrew J D

    2015-07-01

    Lesions of the rodent anterior thalamic nuclei cause severe deficits to multiple spatial learning tasks. Possible explanations for these effects are examined, with particular reference to T-maze alternation. Anterior thalamic lesions not only impair allocentric place learning but also disrupt other spatial processes, including direction learning, path integration, and relative length discriminations, as well as aspects of nonspatial learning, e.g., temporal discriminations. Working memory tasks, such as T-maze alternation, appear particularly sensitive as they combine an array of these spatial and nonspatial demands. This sensitivity partly reflects the different functions supported by individual anterior thalamic nuclei, though it is argued that anterior thalamic lesion effects also arise from covert pathology in sites distal to the thalamus, most critically in the retrosplenial cortex and hippocampus. This two-level account, involving both local and distal lesion effects, explains the range and severity of the spatial deficits following anterior thalamic lesions. These findings highlight how the anterior thalamic nuclei form a key component in a series of interdependent systems that support multiple spatial functions.

  13. Why do lesions in the rodent anterior thalamic nuclei cause such severe spatial deficits?

    PubMed Central

    Aggleton, John P.; Nelson, Andrew J.D.

    2015-01-01

    Lesions of the rodent anterior thalamic nuclei cause severe deficits to multiple spatial learning tasks. Possible explanations for these effects are examined, with particular reference to T-maze alternation. Anterior thalamic lesions not only impair allocentric place learning but also disrupt other spatial processes, including direction learning, path integration, and relative length discriminations, as well as aspects of nonspatial learning, e.g., temporal discriminations. Working memory tasks, such as T-maze alternation, appear particularly sensitive as they combine an array of these spatial and nonspatial demands. This sensitivity partly reflects the different functions supported by individual anterior thalamic nuclei, though it is argued that anterior thalamic lesion effects also arise from covert pathology in sites distal to the thalamus, most critically in the retrosplenial cortex and hippocampus. This two-level account, involving both local and distal lesion effects, explains the range and severity of the spatial deficits following anterior thalamic lesions. These findings highlight how the anterior thalamic nuclei form a key component in a series of interdependent systems that support multiple spatial functions. PMID:25195980

  14. Chronic enhancement of CREB activity in the hippocampus interferes with the retrieval of spatial information.

    PubMed

    Viosca, Jose; Malleret, Gaël; Bourtchouladze, Rusiko; Benito, Eva; Vronskava, Svetlana; Kandel, Eric R; Barco, Angel

    2009-03-01

    The activation of cAMP-responsive element-binding protein (CREB)-dependent gene expression is thought to be critical for the formation of different types of long-term memory. To explore the consequences of chronic enhancement of CREB function on spatial memory in mammals, we examined spatial navigation in bitransgenic mice that express in a regulated and restricted manner a constitutively active form of CREB, VP16-CREB, in forebrain neurons. We found that chronic enhancement of CREB activity delayed the acquisition of an allocentric strategy to solve the hidden platform task. The ability to turn on and off transgene expression allowed us to dissect the role of CREB in dissociable memory processes. In mice in which transgene expression was turned on during memory acquisition, turning off the transgene re-established the access to the memory trace, whereas in mice in which transgene expression was turned off during acquisition, turning on the transgene impaired memory expression in a reversible manner, indicating that CREB enhancement specifically interfered with the retrieval of spatial information. The defects on spatial navigation in mice with chronic enhancement of CREB function were not corrected by conditions that increased further CREB-dependent activation of hippocampal memory systems, such as housing in an enriched environment. These results along with previous findings in CREB-deficient mutants indicate that the relationship of CREB-mediated plasticity to spatial memory is an inverted-U function, and that optimal learning in the water maze requires accurate regulation of this pathway.

  15. Translation between representation languages

    NASA Technical Reports Server (NTRS)

    Vanbaalen, Jeffrey

    1994-01-01

    A capability for translating between representation languages is critical for effective knowledge base reuse. A translation technology for knowledge representation languages based on the use of an interlingua for communicating knowledge is described. The interlingua-based translation process consists of three major steps: translation from the source language into a subset of the interlingua, translation between subsets of the interlingua, and translation from a subset of the interlingua into the target language. The first translation step into the interlingua can typically be specified in the form of a grammar that describes how each top-level form in the source language translates into the interlingua. In cases where the source language does not have a declarative semantics, such a grammar is also a specification of a declarative semantics for the language. A methodology for building translators that is currently under development is described. A 'translator shell' based on this methodology is also under development. The shell has been used to build translators for multiple representation languages and those translators have successfully translated nontrivial knowledge bases.

  16. The representation of space in the brain.

    PubMed

    Grieves, Roddy M; Jeffery, Kate J

    2017-02-01

    Animals can navigate vast distances and often display behaviours or activities that indicate a detailed, internal spatial representation of their surrounding environment or a 'cognitive map'. Over a century of behavioural research on spatial navigation in humans and animals has greatly increased our understanding of how this highly complex feat is achieved. In turn this has inspired half a century of electrophysiological spatial navigation and memory research which has further advanced our understanding of the brain. In particular, three functional cell types have been suggested to underlie cognitive mapping processes; place cells, head direction cells and grid cells. However, there are numerous other spatially modulated neurons in the brain. For a more complete understanding of the electrophysiological systems and behavioural processes underlying spatial navigation we must also examine these lesser understood neurons. In this review we will briefly summarise the literature surrounding place cells, head direction cells, grid cells and the evidence that these cells collectively form the neural basis of a cognitive map. We will then review literature covering many other spatially modulated neurons in the brain that perhaps further augment this cognitive map.

  17. Getting the Big Picture: Development of Spatial Scaling Abilities

    ERIC Educational Resources Information Center

    Frick, Andrea; Newcombe, Nora S.

    2012-01-01

    Spatial scaling is an integral aspect of many spatial tasks that involve symbol-to-referent correspondences (e.g., map reading, drawing). In this study, we asked 3-6-year-olds and adults to locate objects in a two-dimensional spatial layout using information from a second spatial representation (map). We examined how scaling factor and reference…

  18. Building Bridges to Spatial Reasoning

    ERIC Educational Resources Information Center

    Shumway, Jessica F.

    2013-01-01

    Spatial reasoning, which involves "building and manipulating mental representations of two-and three-dimensional objects and perceiving an object from different perspectives" is a critical aspect of geometric thinking and reasoning. Through building, drawing, and analyzing two-and three-dimensional shapes, students develop a foundation…

  19. Induced Pictorial Representations

    DTIC Science & Technology

    1989-12-05

    structural descriptions (e. g., Marr, 1982; Minsky, 1975; Palmer, 1977; Pinker , 1984), that is, perspective-free accounts of the spatial relations of parts of...inwards or smaliwards. This pattern could be due to memory organization, that is spatial memory may be hierarchically organized ( Stevens & Coupe, 1978...Cognitive Psychology, 9, 441-474. Pinker , S. (1984). Visual cognition: An introduction. Cognition, 18, 1-63. Perrig, W., & Kintsch, W. (1985). Propositional

  20. Forms of momentum across space: representational, operational, and attentional.

    PubMed

    Hubbard, Timothy L

    2014-12-01

    Cognition can exhibit biases consistent with future expectations, and some of these biases result in momentum-like effects and have been linked with the idea of an internalization of the effects of momentum. These momentum-like effects include representational momentum, operational momentum, and attentional momentum. Similarities and differences between these different momentum-like effects are considered. Hubbard's (2005) review of representational momentum is updated to include studies published since that review appeared, and the first full reviews of operational momentum and attentional momentum are provided. It is suggested that (1) many variables that influence one of these momentum-like effects have a similar influence on another momentum-like effect, (2) representational momentum, operational momentum, and attentional momentum reflect similar or overlapping mechanisms, and operational momentum and attentional momentum are special cases of representational momentum, and (3) representational momentum, operational momentum, and attentional momentum reflect properties of a more general spatial representation in which change or transformation of a stimulus is mapped onto motion in a spatial coordinate system.

  1. The link between mental rotation ability and basic numerical representations

    PubMed Central

    Thompson, Jacqueline M.; Nuerk, Hans-Christoph; Moeller, Korbinian; Cohen Kadosh, Roi

    2013-01-01

    Mental rotation and number representation have both been studied widely, but although mental rotation has been linked to higher-level mathematical skills, to date it has not been shown whether mental rotation ability is linked to the most basic mental representation and processing of numbers. To investigate the possible connection between mental rotation abilities and numerical representation, 43 participants completed four tasks: 1) a standard pen-and-paper mental rotation task; 2) a multi-digit number magnitude comparison task assessing the compatibility effect, which indicates separate processing of decade and unit digits; 3) a number-line mapping task, which measures precision of number magnitude representation; and 4) a random number generation task, which yields measures both of executive control and of spatial number representations. Results show that mental rotation ability correlated significantly with both size of the compatibility effect and with number mapping accuracy, but not with any measures from the random number generation task. Together, these results suggest that higher mental rotation abilities are linked to more developed number representation, and also provide further evidence for the connection between spatial and numerical abilities. PMID:23933002

  2. SPATIAL NEGLECT AND ATTENTION NETWORKS

    PubMed Central

    Corbetta, Maurizio; Shulman, Gordon L.

    2013-01-01

    Unilateral spatial neglect is a common neurological syndrome following predominantly right hemisphere injuries to ventral fronto-parietal cortex. We propose that neglect reflects deficits in the coding of saliency, control of spatial attention, and representation within an egocentric frame of reference, in conjunction with non-spatial deficits of reorienting, target detection, and arousal/vigilance. In contrast to theories that link spatial neglect to structural damage of specific brain regions, we argue that neglect is better explained by the physiological dysfunction of distributed cortical networks. The ventral lesions in right parietal, temporal, and frontal cortex that cause neglect directly impair non-spatial functions and hypoactivate the right hemisphere, inducing abnormalities in task-evoked activity and functional connectivity of a dorsal frontal-parietal network that controls spatial attention. The anatomy and right hemisphere dominance of neglect follows from the anatomy and laterality of the ventral regions that interact with the dorsal attention network. PMID:21692662

  3. Teaching Representation Translations with Magnetic Field Experiments

    NASA Astrophysics Data System (ADS)

    Tillotson, Wilson Andrew; McCaskey, Timothy; Nasser, Luis

    2017-01-01

    We have developed a laboratory exercise designed to help students translate between different field representations. It starts with students qualitatively mapping field lines for various bar magnet configurations and continues with a Hall probe experiment in which students execute a series of scaffolded tasks, culminating in the prediction and measurement of the spatial variation of magnetic field components along a line near magnets. We describe the experimental tasks, various difficulties students have throughout, and ways this lab makes even their incorrect predictions better. We suggest that developing lab activities of this nature brings a new dimension to the ways students learn and interact with field concepts.

  4. Computer aided surface representation

    SciTech Connect

    Barnhill, R.E.

    1990-02-19

    The central research problem of this project is the effective representation, computation, and display of surfaces interpolating to information in three or more dimensions. If the given information is located on another surface, then the problem is to construct a surface defined on a surface''. Sometimes properties of an already defined surface are desired, which is geometry processing''. Visualization of multivariate surfaces is possible by means of contouring higher dimensional surfaces. These problems and more are discussed below. The broad sweep from constructive mathematics through computational algorithms to computer graphics illustrations is utilized in this research. The breadth and depth of this research activity makes this research project unique.

  5. Modeling Mental Spatial Reasoning about Cardinal Directions

    ERIC Educational Resources Information Center

    Schultheis, Holger; Bertel, Sven; Barkowsky, Thomas

    2014-01-01

    This article presents research into human mental spatial reasoning with orientation knowledge. In particular, we look at reasoning problems about cardinal directions that possess multiple valid solutions (i.e., are spatially underdetermined), at human preferences for some of these solutions, and at representational and procedural factors that lead…

  6. Monkeys in space: primate neural data suggest volumetric representations.

    PubMed

    Lehky, Sidney R; Sereno, Anne B; Sereno, Margaret E

    2013-10-01

    The target article does not consider neural data on primate spatial representations, which we suggest provide grounds for believing that navigational space may be three-dimensional rather than quasi-two-dimensional. Furthermore, we question the authors' interpretation of rat neurophysiological data as indicating that the vertical dimension may be encoded in a neural structure separate from the two horizontal dimensions.

  7. Multiple representations and mechanisms for visuomotor adaptation in young children.

    PubMed

    Tahej, Pierre-Karim; Ferrel-Chapus, Carole; Olivier, Isabelle; Ginhac, Dominique; Rolland, Jean-Pierre

    2012-12-01

    In this study, we utilized transformed spatial mappings to perturb visuomotor integration in 5-yr-old children and adults. The participants were asked to perform pointing movements under five different conditions of visuomotor rotation (from 0° to 180°), which were designed to reveal explicit vs. implicit representations as well as the mechanisms underlying the visual-motor mapping. Several tests allowed us to separately evaluate sensorimotor (i.e., the dynamic dimension of movement) and cognitive (i.e., the explicit representations of target position and the strategies used by the participants) representations of visuo-proprioceptive distortion. Our results indicate that children do not establish representations in the same manner as adults and that children exhibit multiple visuomotor representations. Sensorimotor representations were relatively precise, presumably due to the recovery of proprioceptive information and efferent copy. Furthermore, a bidirectional mechanism was used to re-map visual and motor spaces. In contrast, cognitive representations were supplied with visual information and followed a unidirectional visual-motor mapping. Therefore, it appears that sensorimotor mechanisms develop before the use of explicit strategies during development, and young children showed impaired visuomotor adaptation when confronted with large distortions.

  8. Presence of lacunar infarctions is associated with the spatial navigation impairment in patients with mild cognitive impairment: a DTI study

    PubMed Central

    Liu, Qing-Ping; He, Wen-Wen; Ding, Hong; Nedelska, Zuzana; Hort, Jakub; Zhang, Bing; Xu, Yun

    2016-01-01

    Lacunar cerebral infarction (LI) is one of risk factors of vascular dementia and correlates with progression of cognitive impairment including the executive functions. However, little is known on spatial navigation impairment and its underlying microstructural alteration of white matter in patients with LI and with or without mild cognitive impairment (MCI). Our aim was to investigate whether the spatial navigation impairment correlated with the white matter integrity in LI patients with MCI (LI-MCI). Thirty patients with LI were included in the study and were divided into LI-MCI (n=17) and non MCI (LI-Non MCI) groups (n=13) according neuropsychological tests.The microstructural integrity of white matter was assessed by calculating a fractional anisotropy (FA) and mean diffusivity (MD) from diffusion tensor imaging (DTI) scans. The spatial navigation accuracy, separately evaluated as egocentric and allocentric, was assessed by a computerized human analogue of the Morris Water Maze tests Amunet. LI-MCI performed worse than the CN and LI-NonMCI groups on egocentric and delayed spatial navigation subtests. LI-MCI patients have spatial navigation deficits. The microstructural abnormalities in diffuse brain regions, including hippocampus, uncinate fasciculus and other brain regions may contribute to the spatial navigation impairment in LI-MCI patients at follow-up. PMID:27861154

  9. Presence of lacunar infarctions is associated with the spatial navigation impairment in patients with mild cognitive impairment: a DTI study.

    PubMed

    Wu, Yan-Feng; Wu, Wen-Bo; Liu, Qing-Ping; He, Wen-Wen; Ding, Hong; Nedelska, Zuzana; Hort, Jakub; Zhang, Bing; Xu, Yun

    2016-11-29

    Lacunar cerebral infarction (LI) is one of risk factors of vascular dementia and correlates with progression of cognitive impairment including the executive functions. However, little is known on spatial navigation impairment and its underlying microstructural alteration of white matter in patients with LI and with or without mild cognitive impairment (MCI). Our aim was to investigate whether the spatial navigation impairment correlated with the white matter integrity in LI patients with MCI (LI-MCI). Thirty patients with LI were included in the study and were divided into LI-MCI (n=17) and non MCI (LI-Non MCI) groups (n=13) according neuropsychological tests.The microstructural integrity of white matter was assessed by calculating a fractional anisotropy (FA) and mean diffusivity (MD) from diffusion tensor imaging (DTI) scans. The spatial navigation accuracy, separately evaluated as egocentric and allocentric, was assessed by a computerized human analogue of the Morris Water Maze tests Amunet. LI-MCI performed worse than the CN and LI-NonMCI groups on egocentric and delayed spatial navigation subtests. LI-MCI patients have spatial navigation deficits. The microstructural abnormalities in diffuse brain regions, including hippocampus, uncinate fasciculus and other brain regions may contribute to the spatial navigation impairment in LI-MCI patients at follow-up.

  10. The key to unlocking the virtual body: virtual reality in the treatment of obesity and eating disorders.

    PubMed

    Riva, Giuseppe

    2011-03-01

    Obesity and eating disorders are usually considered unrelated problems with different causes. However, various studies identify unhealthful weight-control behaviors (fasting, vomiting, or laxative abuse), induced by a negative experience of the body, as the common antecedents of both obesity and eating disorders. But how might negative body image--common to most adolescents, not only to medical patients--be behind the development of obesity and eating disorders? In this paper, I review the "allocentric lock theory" of negative body image as the possible antecedent of both obesity and eating disorders. Evidence from psychology and neuroscience indicates that our bodily experience involves the integration of different sensory inputs within two different reference frames: egocentric (first-person experience) and allocentric (third-person experience). Even though functional relations between these two frames are usually limited, they influence each other during the interaction between long- and short-term memory processes in spatial cognition. If this process is impaired either through exogenous (e.g., stress) or endogenous causes, the egocentric sensory inputs are unable to update the contents of the stored allocentric representation of the body. In other words, these patients are locked in an allocentric (observer view) negative image of their body, which their sensory inputs are no longer able to update even after a demanding diet and a significant weight loss. This article discusses the possible role of virtual reality in addressing this problem within an integrated treatment approach based on the allocentric lock theory.

  11. Comparing Tactile Maps and Haptic Digital Representations of a Maritime Environment

    ERIC Educational Resources Information Center

    Simonnet, Mathieu; Vieilledent, Steephane; Jacobson, R. Daniel; Tisseau, Jacques

    2011-01-01

    A map exploration and representation exercise was conducted with participants who were totally blind. Representations of maritime environments were presented either with a tactile map or with a digital haptic virtual map. We assessed the knowledge of spatial configurations using a triangulation technique. The results revealed that both types of…

  12. Bag of Lines (BoL) for Improved Aerial Scene Representation

    DOE PAGES

    Sridharan, Harini; Cheriyadat, Anil M.

    2014-09-22

    Feature representation is a key step in automated visual content interpretation. In this letter, we present a robust feature representation technique, referred to as bag of lines (BoL), for high-resolution aerial scenes. The proposed technique involves extracting and compactly representing low-level line primitives from the scene. The compact scene representation is generated by counting the different types of lines representing various linear structures in the scene. Through extensive experiments, we show that the proposed scene representation is invariant to scale changes and scene conditions and can discriminate urban scene categories accurately. We compare the BoL representation with the popular scalemore » invariant feature transform (SIFT) and Gabor wavelets for their classification and clustering performance on an aerial scene database consisting of images acquired by sensors with different spatial resolutions. The proposed BoL representation outperforms the SIFT- and Gabor-based representations.« less

  13. Bag of Lines (BoL) for Improved Aerial Scene Representation

    SciTech Connect

    Sridharan, Harini; Cheriyadat, Anil M.

    2014-09-22

    Feature representation is a key step in automated visual content interpretation. In this letter, we present a robust feature representation technique, referred to as bag of lines (BoL), for high-resolution aerial scenes. The proposed technique involves extracting and compactly representing low-level line primitives from the scene. The compact scene representation is generated by counting the different types of lines representing various linear structures in the scene. Through extensive experiments, we show that the proposed scene representation is invariant to scale changes and scene conditions and can discriminate urban scene categories accurately. We compare the BoL representation with the popular scale invariant feature transform (SIFT) and Gabor wavelets for their classification and clustering performance on an aerial scene database consisting of images acquired by sensors with different spatial resolutions. The proposed BoL representation outperforms the SIFT- and Gabor-based representations.

  14. The 4 Mountains Test: A Short Test of Spatial Memory with High Sensitivity for the Diagnosis of Pre-dementia Alzheimer's Disease

    PubMed Central

    Chan, Dennis; Gallaher, Laura Marie; Moodley, Kuven; Minati, Ludovico; Burgess, Neil; Hartley, Tom

    2016-01-01

    This protocol describes the administration of the 4 Mountains Test (4MT), a short test of spatial memory, in which memory for the topographical layout of four mountains within a computer-generated landscape is tested using a delayed match-to-sample paradigm. Allocentric spatial memory is assessed by altering the viewpoint, colors and textures between the initially presented and target images. Allocentric spatial memory is a key function of the hippocampus, one of the earliest brain regions to be affected in Alzheimer's disease (AD) and impairment of hippocampal function predates the onset of dementia. It was hypothesized that performance on the 4MT would aid the diagnosis of predementia AD, which manifests clinically as Mild Cognitive Impairment (MCI). The 4MT was applied to patients with MCI, stratified further based on cerebrospinal fluid (CSF) AD biomarker status (10 MCI biomarker positive, 9 MCI biomarker negative), and with mild AD dementia, as well as healthy controls. Comparator tests included tests of episodic memory and attention widely accepted as sensitive measures of early AD. Behavioral data were correlated with quantitative MRI measures of the hippocampus, precuneus and posterior cingulate gyrus. 4MT scores were significantly different between the two MCI groups (p = 0.001), with a test score of ≤8/15 associated with 100% sensitivity and 78% specificity for the classification of MCI with positive AD biomarkers, i.e., predementia AD. 4MT test scores correlated with hippocampal volume (r = 0.42) and cortical thickness of the precuneus (r = 0.55). In conclusion, the 4MT is effective in identifying the early stages of AD. The short duration, easy application and scoring, and favorable psychometric properties of the 4MT fulfil the need for a simple but accurate diagnostic test for predementia AD. PMID:27768046

  15. Aerial Scene Recognition using Efficient Sparse Representation

    SciTech Connect

    Cheriyadat, Anil M

    2012-01-01

    Advanced scene recognition systems for processing large volumes of high-resolution aerial image data are in great demand today. However, automated scene recognition remains a challenging problem. Efficient encoding and representation of spatial and structural patterns in the imagery are key in developing automated scene recognition algorithms. We describe an image representation approach that uses simple and computationally efficient sparse code computation to generate accurate features capable of producing excellent classification performance using linear SVM kernels. Our method exploits unlabeled low-level image feature measurements to learn a set of basis vectors. We project the low-level features onto the basis vectors and use simple soft threshold activation function to derive the sparse features. The proposed technique generates sparse features at a significantly lower computational cost than other methods~\\cite{Yang10, newsam11}, yet it produces comparable or better classification accuracy. We apply our technique to high-resolution aerial image datasets to quantify the aerial scene classification performance. We demonstrate that the dense feature extraction and representation methods are highly effective for automatic large-facility detection on wide area high-resolution aerial imagery.

  16. DNA Rearrangements through Spatial Graphs

    NASA Astrophysics Data System (ADS)

    Jonoska, Nataša; Saito, Masahico

    The paper is a short overview of a recent model of homologous DNA recombination events guided by RNA templates that have been observed in certain species of ciliates. This model uses spatial graphs to describe DNA rearrangements and show how gene recombination can be modeled as topological braiding of the DNA. We show that a graph structure, which we refer to as an assembly graph, containing only 1- and 4-valent rigid vertices can provide a physical representation of the DNA at the time of recombination. With this representation, 4-valent vertices correspond to the alignment of the recombination sites, and we model the actual recombination event as smoothing of these vertices.

  17. Intentionality, Representation, and Anticipation

    NASA Astrophysics Data System (ADS)

    De Preester, Helena

    2002-09-01

    Both Brentano and Merleau-Ponty have developed an account of intentionality, which nevertheless differ profoundly in the following respect. According to Brentano, intentionality mainly is a matter of mental presentations. This marks the beginning of phenomenology's difficult relation with the nature of the intentional reference. Merleau-Ponty, on the other hand, has situated intentionality on the level of the body, a turn which has important implications for the nature of intentionality. Intentionality no longer is primarily based on having (re)presentations, but is rooted in the dynamics of the living body. To contrast those approaches enables us to make clear in what way intentionality is studied nowadays. On the one hand, intentionality is conceived of as a matter of formal-syntactical causality in cognitive science, and in particular in classical-computational theory. On the other hand, a interactivist approach offers a more Merleau-Ponty-like point of view, in which autonomy, embodiment and interaction are stressed.

  18. Computer aided surface representation

    SciTech Connect

    Barnhill, R.E.

    1991-04-02

    Modern computing resources permit the generation of large amounts of numerical data. These large data sets, if left in numerical form, can be overwhelming. Such large data sets are usually discrete points from some underlying physical phenomenon. Because we need to evaluate the phenomenon at places where we don't have data, a continuous representation (a surface'') is required. A simple example is a weather map obtained from a discrete set of weather stations. (For more examples including multi-dimensional ones, see the article by Dr. Rosemary Chang in the enclosed IRIS Universe). In order to create a scientific structure encompassing the data, we construct an interpolating mathematical surface which can evaluate at arbitrary locations. We can also display and analyze the results via interactive computer graphics. In our research we construct a very wide variety of surfaces for applied geometry problems that have sound theoretical foundations. However, our surfaces have the distinguishing feature that they are constructed to solve short or long term practical problems. This DOE-funded project has developed the premiere research team in the subject of constructing surfaces (3D and higher dimensional) that provide smooth representations of real scientific and engineering information, including state of the art computer graphics visualizations. However, our main contribution is in the development of fundamental constructive mathematical methods and visualization techniques which can be incorporated into a wide variety of applications. This project combines constructive mathematics, algorithms, and computer graphics, all applied to real problems. The project is a unique resource, considered by our peers to be a de facto national center for this type of research.

  19. Spatial-Operator Algebra For Robotic Manipulators

    NASA Technical Reports Server (NTRS)

    Rodriguez, Guillermo; Kreutz, Kenneth K.; Milman, Mark H.

    1991-01-01

    Report discusses spatial-operator algebra developed in recent studies of mathematical modeling, control, and design of trajectories of robotic manipulators. Provides succinct representation of mathematically complicated interactions among multiple joints and links of manipulator, thereby relieving analyst of most of tedium of detailed algebraic manipulations. Presents analytical formulation of spatial-operator algebra, describes some specific applications, summarizes current research, and discusses implementation of spatial-operator algebra in the Ada programming language.

  20. Performance comparison of polynomial representations for optimizing optical freeform systems

    NASA Astrophysics Data System (ADS)

    Brömel, A.; Gross, H.; Ochse, D.; Lippmann, U.; Ma, C.; Zhong, Y.; Oleszko, M.

    2015-09-01

    Optical systems can benefit strongly from freeform surfaces, however the choice of the right representation isn`t an easy one. Classical representations like X-Y-polynomials, as well as Zernike-polynomials are often used for such systems, but should have some disadvantage regarding their orthogonality, resulting in worse convergence and reduced quality in final results compared to newer representations like the Q-polynomials by Forbes. Additionally the supported aperture is a circle, which can be a huge drawback in case of optical systems with rectangular aperture. In this case other representations like Chebyshev-or Legendre-polynomials come into focus. There are a larger number of possibilities; however the experience with these newer representations is rather limited. Therefore in this work the focus is on investigating the performance of four widely used representations in optimizing two ambitious systems with very different properties: Three-Mirror-Anastigmat and an anamorphic System. The chosen surface descriptions offer support for circular or rectangular aperture, as well as different grades of departure from rotational symmetry. The basic shapes are for example a conic or best-fit-sphere and the polynomial set is non-, spatial or slope-orthogonal. These surface representations were chosen to evaluate the impact of these aspects on the performance optimization of the two example systems. Freeform descriptions investigated here were XY-polynomials, Zernike in Fringe representation, Q-polynomials by Forbes, as well as 2-dimensional Chebyshev-polynomials. As a result recommendations for the right choice of freeform surface representations for practical issues in the optimization of optical systems can be given.

  1. Generalized movement representation in haptic perception.

    PubMed

    Dupin, Lucile; Hayward, Vincent; Wexler, Mark

    2017-03-01

    The extraction of spatial information by touch often involves exploratory movements, with tactile and kinesthetic signals combined to construct a spatial haptic percept. However, the body has many tactile sensory surfaces that can move independently, giving rise to the source binding problem: when there are multiple tactile signals originating from sensory surfaces with multiple movements, are the tactile and kinesthetic signals bound to one another? We studied haptic signal combination by applying the tactile signal to a stationary fingertip while another body part (the other hand or a foot) or a visual target moves, and using a task that can only be done if the tactile and kinesthetic signals are combined. We found that both direction and speed of movement transfer across limbs, but only direction transfers between visual target motion and the tactile signal. In control experiments, we excluded the role of explicit reasoning or knowledge of motion kinematics in this transfer. These results demonstrate the existence of 2 motion representations in the haptic system-one of direction and another of speed or amplitude-that are both source-free or unbound from their sensory surface of origin. These representations may well underlie our flexibility in haptic perception and sensorimotor control. (PsycINFO Database Record

  2. Representation of critical natural capital in China.

    PubMed

    Lü, Yihe; Zhang, Liwei; Zeng, Yuan; Fu, Bojie; Whitham, Charlotte; Liu, Shuguang; Wu, Bingfang

    2017-02-20

    Traditional means of assessing representativeness of conservation value in protected areas depend on measures of structural biodiversity. The effectiveness of priority conservation areas at representing critical natural capital (CNC) (i.e., an essential and renewable subset of natural capital) remains largely unknown. We analyzed the representativeness of CNC-conservation priority areas in national nature reserves (i.e., nature reserves under jurisdiction of the central government with large spatial distribution across the provinces) in China with a new biophysical-based composite indicator approach. With this approach, we integrated the net primary production of vegetation, topography, soil, and climate variables to map and rank terrestrial ecosystems capacities to generate CNC. National nature reserves accounted for 6.7% of CNC-conservation priority areas across China. Considerable gaps (35.2%) existed between overall (or potential) CNC representativeness nationally and CNC representation in national reserves, and there was significant spatial heterogeneity of representativeness in CNC-conservation priority areas at the regional and provincial levels. For example, the best and worst representations were, respectively, 13.0% and 1.6% regionally and 28.9% and 0.0% provincially. Policy in China is transitioning toward the goal of an ecologically sustainable civilization. We identified CNC-conservation priority areas and conservation gaps and thus contribute to the policy goals of optimization of the national nature reserve network and the demarcation of areas critical to improving the representativeness and conservation of highly functioning areas of natural capital. Moreover, our method for assessing representation of CNC can be easily adapted to other large-scale networks of conservation areas because few data are needed, and our model is relatively simple.

  3. Mechanisms for Human Spatial Competence

    NASA Astrophysics Data System (ADS)

    Gunzelmann, Glenn; Lyon, Don R.

    Research spanning decades has generated a long list of phenomena associated with human spatial information processing. Additionally, a number of theories have been proposed about the representation, organization and processing of spatial information by humans. This paper presents a broad account of human spatial competence, integrated with the ACT-R cognitive architecture. Using a cognitive architecture grounds the research in a validated theory of human cognition, enhancing the plausibility of the overall account. This work posits a close link of aspects of spatial information processing to vision and motor planning, and integrates theoretical perspectives that have been proposed over the history of research in this area. In addition, the account is supported by evidence from neuropsychological investigations of human spatial ability. The mechanisms provide a means of accounting for a broad range of phenomena described in the experimental literature.

  4. Sparse coding based feature representation method for remote sensing images

    NASA Astrophysics Data System (ADS)

    Oguslu, Ender

    In this dissertation, we study sparse coding based feature representation method for the classification of multispectral and hyperspectral images (HSI). The existing feature representation systems based on the sparse signal model are computationally expensive, requiring to solve a convex optimization problem to learn a dictionary. A sparse coding feature representation framework for the classification of HSI is presented that alleviates the complexity of sparse coding through sub-band construction, dictionary learning, and encoding steps. In the framework, we construct the dictionary based upon the extracted sub-bands from the spectral representation of a pixel. In the encoding step, we utilize a soft threshold function to obtain sparse feature representations for HSI. Experimental results showed that a randomly selected dictionary could be as effective as a dictionary learned from optimization. The new representation usually has a very high dimensionality requiring a lot of computational resources. In addition, the spatial information of the HSI data has not been included in the representation. Thus, we modify the framework by incorporating the spatial information of the HSI pixels and reducing the dimension of the new sparse representations. The enhanced model, called sparse coding based dense feature representation (SC-DFR), is integrated with a linear support vector machine (SVM) and a composite kernels SVM (CKSVM) classifiers to discriminate different types of land cover. We evaluated the proposed algorithm on three well known HSI datasets and compared our method to four recently developed classification methods: SVM, CKSVM, simultaneous orthogonal matching pursuit (SOMP) and image fusion and recursive filtering (IFRF). The results from the experiments showed that the proposed method can achieve better overall and average classification accuracies with a much more compact representation leading to more efficient sparse models for HSI classification. To further

  5. Spatial Representation and Reasoning for Human-Robot Collaboration

    DTIC Science & Technology

    2007-07-01

    gesture recognition system. Robot Hardware The robot is a commercial iRobot B21r. It is an upright cylinder with a zero-turn-radius drive system and...laser rangefinder. In addition, a high-fidelity stereo camera system was added to allow for gesture recognition . The robot’s mobility capabilities...interaction with the human team member may be based solely on gestures. Gesture Recognition To maintain the covert nature of StealthBot

  6. Spatial remapping of tactile events

    PubMed Central

    Azañón, Elena

    2008-01-01

    During the apparently mindless act of localizing a tactile sensation, our brain must realign its initial spatial representation (somatotopicaly arranged) according to current body posture (arising from proprioception, vision and even audition).1–3 We have recently illustrated4 the temporal course of this recoding of tactile space from somatotopic to external coordinates using a crossmodal cueing psychophysical paradigm5,6 where behavioral reactions to visual targets are evaluated as a function of the location of irrelevant tactile cues. We found that the tactile events are initially represented in terms of a fleeting, non-conscious but nevertheless behaviorally consequential somatotopic format, which is quickly replaced by the representations referred to external spatial locations that prevail in our everyday experience. In this addendum, we test the intuition that frequent changes in body posture will make it harder to update the spatial remapping system and thus, produce stronger psychophysical correlates of the initial somatotopically-based spatial representations. Contrary to this expectation, however, we found no evidence for a modulation when preventing adaptation to a body posture. PMID:19704788

  7. Spatially ordered treemaps.

    PubMed

    Wood, Jo; Dykes, Jason

    2008-01-01

    Existing treemap layout algorithms suffer to some extent from poor or inconsistent mappings between data order and visual ordering in their representation, reducing their cognitive plausibility. While attempts have been made to quantify this mismatch, and algorithms proposed to minimize inconsistency, solutions provided tend to concentrate on one-dimensional ordering. We propose extensions to the existing squarified layout algorithm that exploit the two-dimensional arrangement of treemap nodes more effectively. Our proposed spatial squarified layout algorithm provides a more consistent arrangement of nodes while maintaining low aspect ratios. It is suitable for the arrangement of data with a geographic component and can be used to create tessellated cartograms for geovisualization. Locational consistency is measured and visualized and a number of layout algorithms are compared. CIELab color space and displacement vector overlays are used to assess and emphasize the spatial layout of treemap nodes. A case study involving locations of tagged photographs in the Flickr database is described.

  8. Revealing Children's Implicit Spelling Representations

    ERIC Educational Resources Information Center

    Critten, Sarah; Pine, Karen J.; Messer, David J.

    2013-01-01

    Conceptualizing the underlying representations and cognitive mechanisms of children's spelling development is a key challenge for literacy researchers. Using the Representational Redescription model (Karmiloff-Smith), Critten, Pine and Steffler (2007) demonstrated that the acquisition of phonological and morphological knowledge may be underpinned…

  9. Scientific Representation and Science Learning

    ERIC Educational Resources Information Center

    Matta, Corrado

    2014-01-01

    In this article I examine three examples of philosophical theories of scientific representation with the aim of assessing which of these is a good candidate for a philosophical theory of scientific representation in science learning. The three candidate theories are Giere's intentional approach, Suárez's inferential approach and Lynch and…

  10. Learning with Interactive Graphical Representations.

    ERIC Educational Resources Information Center

    Saljo, Roger, Ed.

    1999-01-01

    The seven articles of this theme issue deal with the use of computer-based interactive graphical representations. Studying their use will bring answers to users of static graphics in traditional paper-based media and those who plan instruction using graphical representations that allow semantically direct manipulation. (SLD)

  11. Representation of Fuzzy Symmetric Relations

    DTIC Science & Technology

    1986-03-19

    Std Z39-18 REPRESENTATION OF FUZZY SYMMETRIC RELATIONS L. Valverde Dept. de Matematiques i Estadistica Universitat Politecnica de Catalunya Avda...REPRESENTATION OF FUZZY SYMMETRIC RELATIONS L. "Valverde* Dept. de Matematiques i Estadistica Universitat Politecnica de Catalunya Avda. Diagonal, 649

  12. The Representational Value of Hats

    ERIC Educational Resources Information Center

    Watson, Jane M.; Fitzallen, Noleine E.; Wilson, Karen G.; Creed, Julie F.

    2008-01-01

    The literature that is available on the topic of representations in mathematics is vast. One commonly discussed item is graphical representations. From the history of mathematics to modern uses of technology, a variety of graphical forms are available for middle school students to use to represent mathematical ideas. The ideas range from algebraic…

  13. Symbolic representation of probabilistic worlds.

    PubMed

    Feldman, Jacob

    2012-04-01

    Symbolic representation of environmental variables is a ubiquitous and often debated component of cognitive science. Yet notwithstanding centuries of philosophical discussion, the efficacy, scope, and validity of such representation has rarely been given direct consideration from a mathematical point of view. This paper introduces a quantitative measure of the effectiveness of symbolic representation, and develops formal constraints under which such representation is in fact warranted. The effectiveness of symbolic representation hinges on the probabilistic structure of the environment that is to be represented. For arbitrary probability distributions (i.e., environments), symbolic representation is generally not warranted. But in modal environments, defined here as those that consist of mixtures of component distributions that are narrow ("spiky") relative to their spreads, symbolic representation can be shown to represent the environment with a relatively negligible loss of information. Modal environments support propositional forms, logical relations, and other familiar features of symbolic representation. Hence the assumption that our environment is, in fact, modal is a key tacit assumption underlying the use of symbols in cognitive science.

  14. Symbolic Representation of Probabilistic Worlds

    ERIC Educational Resources Information Center

    Feldman, Jacob

    2012-01-01

    Symbolic representation of environmental variables is a ubiquitous and often debated component of cognitive science. Yet notwithstanding centuries of philosophical discussion, the efficacy, scope, and validity of such representation has rarely been given direct consideration from a mathematical point of view. This paper introduces a quantitative…

  15. A generalized wavelet extrema representation

    SciTech Connect

    Lu, Jian; Lades, M.

    1995-10-01

    The wavelet extrema representation originated by Stephane Mallat is a unique framework for low-level and intermediate-level (feature) processing. In this paper, we present a new form of wavelet extrema representation generalizing Mallat`s original work. The generalized wavelet extrema representation is a feature-based multiscale representation. For a particular choice of wavelet, our scheme can be interpreted as representing a signal or image by its edges, and peaks and valleys at multiple scales. Such a representation is shown to be stable -- the original signal or image can be reconstructed with very good quality. It is further shown that a signal or image can be modeled as piecewise monotonic, with all turning points between monotonic segments given by the wavelet extrema. A new projection operator is introduced to enforce piecewise inonotonicity of a signal in its reconstruction. This leads to an enhancement to previously developed algorithms in preventing artifacts in reconstructed signal.

  16. Revealing children's implicit spelling representations.

    PubMed

    Critten, Sarah; Pine, Karen J; Messer, David J

    2013-06-01

    Conceptualizing the underlying representations and cognitive mechanisms of children's spelling development is a key challenge for literacy researchers. Using the Representational Redescription model (Karmiloff-Smith), Critten, Pine and Steffler (2007) demonstrated that the acquisition of phonological and morphological knowledge may be underpinned by increasingly explicit levels of spelling representation. However, their proposal that implicit representations may underlie early 'visually based' spelling remains unresolved. Children (N = 101, aged 4-6 years) were given a recognition task (Critten et al., 2007) and a novel production task, both involving verbal justifications of why spellings are correct/incorrect, strategy use and word pattern similarity. Results for both tasks supported an implicit level of spelling characterized by the ability to correctly recognize/produce words but the inability to explain operational strategies or generalize knowledge. Explicit levels and multiple representations were also in evidence across the two tasks. Implications for cognitive mechanisms underlying spelling development are discussed.

  17. Spatial Breakdown in Spatial Construction: Evidence from Eye Fixations in Children with Williams Syndrome

    ERIC Educational Resources Information Center

    Hoffman, James E.; Landau, Barbara; Pagani, Barney

    2003-01-01

    We investigated the role of executive and spatial representational processes in impaired performance of block construction tasks by children with Williams syndrome (WS), a rare genetic defect that results in severely impaired spatial cognition. In Experiment 1, we examined performance in two kinds of block construction tasks, Simple Puzzles, in…

  18. Textbook Questions to Support Spatial Thinking: Differences in Spatiality by Question Location

    ERIC Educational Resources Information Center

    Jo, Injeong; Bednarz, Sarah W.

    2011-01-01

    This study investigates the location and varying spatiality of questions in geography textbooks. The results show that study questions posed in page margins address the three components of spatial thinking--concepts of space, using tools of representation, and processes of reasoning--more than questions in other locations within the text. Three…

  19. The Spatial and the Visual in Mental Spatial Reasoning: An Ill-Posed Distinction

    NASA Astrophysics Data System (ADS)

    Schultheis, Holger; Bertel, Sven; Barkowsky, Thomas; Seifert, Inessa

    It is an ongoing and controversial debate in cognitive science which aspects of knowledge humans process visually and which ones they process spatially. Similarly, artificial intelligence (AI) and cognitive science research, in building computational cognitive systems, tended to use strictly spatial or strictly visual representations. The resulting systems, however, were suboptimal both with respect to computational efficiency and cognitive plau sibility. In this paper, we propose that the problems in both research strands stem from a mis conception of the visual and the spatial in mental spatial knowl edge pro cessing. Instead of viewing the visual and the spatial as two clearly separable categories, they should be conceptualized as the extremes of a con tinuous dimension of representation. Regarding psychology, a continuous di mension avoids the need to exclusively assign processes and representations to either one of the cate gories and, thus, facilitates a more unambiguous rating of processes and rep resentations. Regarding AI and cognitive science, the con cept of a continuous spatial / visual dimension provides the possibility of rep re sentation structures which can vary continuously along the spatial / visual di mension. As a first step in exploiting these potential advantages of the pro posed conception we (a) introduce criteria allowing for a non-dichotomic judgment of processes and representations and (b) present an approach towards rep re sentation structures that can flexibly vary along the spatial / visual dimension.

  20. New shape representation and similarity measure for efficient shape indexing

    NASA Astrophysics Data System (ADS)

    Kupeev, Konstantin Y.; Sivan, Zohar

    2001-12-01

    Efficient search and retrieval of similar shapes in large databases stipulates two hardly compatible demands to the shape representations. On one hand, shape similarity conveys similarity of spatial relations of the shape parts. Thus, the representation should embed a kind of graph description of the shape, and allow estimation of the (inexact) correspondence between these descriptions. On the other hand, the representation should enable fast retrieval in large databases. Current shape indexing solutions do not comply well to these stipulations simultaneously. The G-graphs have been introduced as shape descriptors conveying structural and quantitative shape information. In the current work we define a representation of the G-graphs by strings consisting of the symbols from a four-letter alphabet such that two G-graphs are isomorphic as G-graphs if and only if their string representations are identical. This allows us to represent shapes by vectors consisting of strings and to introduce a shape representation satisfying both above demands. Experimental results are presented.

  1. Early Education for Spatial Intelligence: Why, What, and How

    ERIC Educational Resources Information Center

    Newcombe, Nora S.; Frick, Andrea

    2010-01-01

    Spatial representation and thinking have evolutionary importance for any mobile organism. In addition, they help reasoning in domains that are not obviously spatial, for example, through the use of graphs and diagrams. This article reviews the literature suggesting that mental spatial transformation abilities, while present in some precursory form…

  2. Unveiling the metric structure of internal representations of space

    PubMed Central

    Stella, Federico; Cerasti, Erika; Treves, Alessandro

    2013-01-01

    How are neuronal representations of space organized in the hippocampus? The self-organization of such representations, thought to be driven in the CA3 network by the strong randomizing input from the Dentate Gyrus, appears to run against preserving the topology and even less the exact metric of physical space. We present a way to assess this issue quantitatively, and find that in a simple neural network model of CA3, the average topology is largely preserved, but the local metric is loose, retaining e.g., 10% of the optimal spatial resolution. PMID:23637653

  3. [Social representations of complex social environments through drawings and texts].

    PubMed

    de Souza Filho, Edson

    2009-12-01

    The objective of this work was to observe representations of complex social environments through drawings and texts. We adopted Moscovici's theory, which supposes that the social representations phenomenon is a modern and democratic societies' manifestation. To overcome existing constraints/unequalities, we adopted drawings as a means of expression. We asked secondary students, self-defined as African-Brazilians, Mixed people and Whites, to drawn the classroom. The material was analysed according to manifest themes. There was statistical diferentiation on objects, spatial perspectives, teacher colleagues and student. Among high academic performer African-Brazilians we noticed more references to colleagues and conflict/negotiation with teachers.

  4. Multiple Representations of Buoyancy

    NASA Astrophysics Data System (ADS)

    Oliviera, Jessica; Weglarz, Meredith; Vesenka, James

    2009-10-01

    For many students the concept of buoyancy falls under a category that can be loosely described as ``knowing it when they see it.'' Unfortunately some of the misconceptions this generates are that ``objects float because they are light'' and ``objects float because they are full of air'' [1]. Those these can some times be true, these descriptions are vague at best, and frequently can be wrong. Part of these misconceptions may stem from incomplete immersion of the object in the fluid and the vector nature of forces. We describe a demonstration/lab activity to help students make sense about relationship between the tension on and weight of an object immersed in water. The activity is in rich in multiple representations, graphical, diagrammatical as well as mathematical. A simple four question multiple choice pre/post test survey has been developed to evaluate the effectiveness of the lab activity.[4pt] [1] Bruce Harlan ``Diving Science'', www.stmatthewsschool.com/deep/pdfs/Diving%20Science.pdf

  5. The neural organization of spatial thought and language.

    PubMed

    Chatterjee, Anjan

    2008-08-01

    The cognitive neuroscience of semantics has focused largely on object knowledge. By contrast, spatial semantics, especially as related to language, has received little attention. Spatial thought and language gives our semantic system a rich texture by introducing relational thinking and greater levels of abstraction than is evoked by object semantics. This article describes the neural instantiation of spatial thought and language based on imaging and lesion studies. We underscore two functional-anatomical organizational principles. First, perceptual and conceptual representations have a parallel organizational structure within the nervous system. Lateral temporal cortices are important for manners of motion, action representations, and action verbs. More dorsal regions are important for paths of motion, locative representations, and prepositions. Second, posterior perceptual representations serve as points of entry for more anterior and centripetally located peri-Sylvian conceptual and linguistic representations.

  6. Representational neglect for words as revealed by bisection tasks.

    PubMed

    Arduino, Lisa S; Marinelli, Chiara Valeria; Pasotti, Fabrizio; Ferrè, Elisa Raffaella; Bottini, Gabriella

    2012-03-01

    In the present study, we showed that a representational disorder for words can dissociate from both representational neglect for objects and neglect dyslexia. This study involved 14 brain-damaged patients with left unilateral spatial neglect and a group of normal subjects. Patients were divided into four groups based on presence of left neglect dyslexia and representational neglect for non-verbal material, as evaluated by the Clock Drawing test. The patients were presented with bisection tasks for words and lines. The word bisection tasks (with words of five and seven letters) comprised the following: (1) representational bisection: the experimenter pronounced a word and then asked the patient to name the letter in the middle position; (2) visual bisection: same as (1) with stimuli presented visually; and (3) motor bisection: the patient was asked to cross out the letter in the middle position. The standard line bisection task was presented using lines of different length. Consistent with the literature, long lines were bisected to the right and short lines, rendered comparable in length to the words of the word bisection test, deviated to the left (crossover effect). Both patients and controls showed the same leftward bias on words in the visual and motor bisection conditions. A significant difference emerged between the groups only in the case of the representational bisection task, whereas the group exhibiting neglect dyslexia associated with representational neglect for objects showed a significant rightward bias, while the other three patient groups and the controls showed a leftward bisection bias. Neither the presence of neglect alone nor the presence of visual neglect dyslexia was sufficient to produce a specific disorder in mental imagery. These results demonstrate a specific representational neglect for words independent of both representational neglect and neglect dyslexia.

  7. Attitude Representations for Kalman Filtering

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    The four-component quaternion has the lowest dimensionality possible for a globally nonsingular attitude representation, it represents the attitude matrix as a homogeneous quadratic function, and its dynamic propagation equation is bilinear in the quaternion and the angular velocity. The quaternion is required to obey a unit norm constraint, though, so Kalman filters often employ a quaternion for the global attitude estimate and a three-component representation for small errors about the estimate. We consider these mixed attitude representations for both a first-order Extended Kalman filter and a second-order filter, as well for quaternion-norm-preserving attitude propagation.

  8. Representations of mechanical assembly sequences

    NASA Technical Reports Server (NTRS)

    Homem De Mello, Luiz S.; Sanderson, Arthur C.

    1991-01-01

    Five types of representations for assembly sequences are reviewed: the directed graph of feasible assembly sequences, the AND/OR graph of feasible assembly sequences, the set of establishment conditions, and two types of sets of precedence relationships. (precedence relationships between the establishment of one connection between parts and the establishment of another connection, and precedence relationships between the establishment of one connection and states of the assembly process). The mappings of one representation into the others are established. The correctness and completeness of these representations are established. The results presented are needed in the proof of correctness and completeness of algorithms for the generation of mechanical assembly sequences.

  9. Computer aided surface representation

    SciTech Connect

    Barnhill, R.E.

    1989-02-09

    The central research problem of this project is the effective representation and display of surfaces, interpolating to given information, in three or more dimensions. In a typical problem, we wish to create a surface from some discrete information. If this information is itself on another surface, the problem is to determine a surface defined on a surface,'' which is discussed below. Often, properties of an already constructed surface are desired: such geometry processing'' is described below. The Summary of Proposed Research from our original proposal describes the aims of this research project. This Summary and the Table of Contents from the original proposal are enclosed as an Appendix to this Progress Report. The broad sweep from constructive mathematics through algorithms and computer graphics displays is utilized in the research. The wide range of activity, directed in both theory and applications, makes this project unique. Last month in the first Ardent Titan delivered in the State of Arizona came to our group, funded by the DOE and Arizona State University. Although the Titan is a commercial product, its newness requires our close collaboration with Ardent to maximize results. During the past year, four faculty members and several graduate research assistants have worked on this DOE project. The gaining of new professionals is an important aspect of this project. A listing of the students and their topics is given in the Appendix. The most significant publication during the past year is the book, Curves and Surfaces for Computer Aided Geometric Design, by Dr. Gerald Farin. This 300 page volume helps fill a considerable gap in the subject and includes many new results on Bernstein-Bezier curves and surfaces.

  10. An electrophysiological correlate of conflict processing in an auditory spatial Stroop task: the effect of individual differences in navigational style.

    PubMed

    Buzzell, George A; Roberts, Daniel M; Baldwin, Carryl L; McDonald, Craig G

    2013-11-01

    Recent work has identified an event-related potential (ERP) component, the incongruency negativity (N(inc)), which is sensitive to auditory Stroop conflict processing. Here, we investigated how this index of conflict processing is influenced by individual differences in cognitive style. There is evidence that individuals differ in the strategy they use to navigate through the environment; some use a predominantly verbal-egocentric strategy while others rely more heavily on a spatial-allocentric strategy. In addition, navigational strategy, assessed by a way-finding questionnaire, is predictive of performance on an auditory spatial Stroop task, in which either the semantic or spatial dimension of stimuli must be ignored. To explore the influence of individual differences in navigational style on conflict processing, participants took part in an auditory spatial Stroop task while the electroencephalogram (EEG) was recorded. Whereas behavioral performance only showed a main effect of congruency, we observed the predicted three-way interaction between congruency, task type and navigational style with respect to our physiological measure of Stroop conflict. Specifically, congruency-dependent modulation of the N(inc) was observed only when participants performed their non-dominant task (e.g., verbal navigators attempting to ignore semantic information). These results confirm that the N(inc) reliably indexes auditory Stroop conflict and extend previous results by demonstrating that the N(inc) is predictably modulated by individual differences in cognitive style.

  11. Coarse-to-Fine Encoding of Spatial Frequency Information into Visual Short-Term Memory for Faces but Impartial Decay

    ERIC Educational Resources Information Center

    Gao, Zaifeng; Bentin, Shlomo

    2011-01-01

    Face perception studies investigated how spatial frequencies (SF) are extracted from retinal display while forming a perceptual representation, or their selective use during task-imposed categorization. Here we focused on the order of encoding low-spatial frequencies (LSF) and high-spatial frequencies (HSF) from perceptual representations into…

  12. The Influence of Vertical Spatial Orientation on Property Verification

    ERIC Educational Resources Information Center

    Setic, Mia; Domijan, Drazen

    2007-01-01

    According to the spatial registration hypothesis, the representation of stimulus location is automatically encoded during perception and it can interact with a more abstract linguistic representation. We tested this hypothesis in two experiments, using the semantic judgements of words. In the first experiment, words for animals that either fly or…

  13. Spatial Coding and Discourse Models during Text Reading.

    ERIC Educational Resources Information Center

    Baccino, Thierry; Pynte, Joel

    1994-01-01

    Studied representation of text content and representation of the surface form of the text in two studies of native French speakers. Twenty-five subjects (aged 23-30) participated in Experiment 1, and 40 subjects (aged 23-30) participated in Experiment 2. Data confirm that readers retain the spatial location of words read. (Contains 18 references.)…

  14. Multiple dynamic representations in the motor cortex during sensorimotor learning.

    PubMed

    Huber, D; Gutnisky, D A; Peron, S; O'Connor, D H; Wiegert, J S; Tian, L; Oertner, T G; Looger, L L; Svoboda, K

    2012-04-25

    The mechanisms linking sensation and action during learning are poorly understood. Layer 2/3 neurons in the motor cortex might participate in sensorimotor integration and learning; they receive input from sensory cortex and excite deep layer neurons, which control movement. Here we imaged activity in the same set of layer 2/3 neurons in the motor cortex over weeks, while mice learned to detect objects with their whiskers and report detection with licking. Spatially intermingled neurons represented sensory (touch) and motor behaviours (whisker movements and licking). With learning, the population-level representation of task-related licking strengthened. In trained mice, population-level representations were redundant and stable, despite dynamism of single-neuron representations. The activity of a subpopulation of neurons was consistent with touch driving licking behaviour. Our results suggest that ensembles of motor cortex neurons couple sensory input to multiple, related motor programs during learning.

  15. Prospective representation of navigational goals in the human hippocampus.

    PubMed

    Brown, Thackery I; Carr, Valerie A; LaRocque, Karen F; Favila, Serra E; Gordon, Alan M; Bowles, Ben; Bailenson, Jeremy N; Wagner, Anthony D

    2016-06-10

    Mental representation of the future is a fundamental component of goal-directed behavior. Computational and animal models highlight prospective spatial coding in the hippocampus, mediated by interactions with the prefrontal cortex, as a putative mechanism for simulating future events. Using whole-brain high-resolution functional magnetic resonance imaging and multi-voxel pattern classification, we tested whether the human hippocampus and interrelated cortical structures support prospective representation of navigational goals. Results demonstrated that hippocampal activity patterns code for future goals to which participants subsequently navigate, as well as for intervening locations along the route, consistent with trajectory-specific simulation. The strength of hippocampal goal representations covaried with goal-related coding in the prefrontal, medial temporal, and medial parietal cortex. Collectively, these data indicate that a hippocampal-cortical network supports prospective simulation of navigational events during goal-directed planning.

  16. Computer representation of molecular surfaces

    SciTech Connect

    Max, N.L.

    1981-07-06

    This review article surveys recent work on computer representation of molecular surfaces. Several different algorithms are discussed for producing vector or raster drawings of space-filling models formed as the union of spheres. Other smoother surfaces are also considered.

  17. Vietnamese Document Representation and Classification

    NASA Astrophysics Data System (ADS)

    Nguyen, Giang-Son; Gao, Xiaoying; Andreae, Peter

    Vietnamese is very different from English and little research has been done on Vietnamese document classification, or indeed, on any kind of Vietnamese language processing, and only a few small corpora are available for research. We created a large Vietnamese text corpus with about 18000 documents, and manually classified them based on different criteria such as topics and styles, giving several classification tasks of different difficulty levels. This paper introduces a new syllable-based document representation at the morphological level of the language for efficient classification. We tested the representation on our corpus with different classification tasks using six classification algorithms and two feature selection techniques. Our experiments show that the new representation is effective for Vietnamese categorization, and suggest that best performance can be achieved using syllable-pair document representation, an SVM with a polynomial kernel as the learning algorithm, and using Information gain and an external dictionary for feature selection.

  18. Graphical Representation of Complex Functions.

    ERIC Educational Resources Information Center

    Renka, Robert J.

    1988-01-01

    Describes methods and software for graphing representation of a complex function of a complex variable. Includes an application of a graphical interpretation of the complex zeros of the cubic and their properties. (PK)

  19. Body-Centered Representations for Visually-Guided Action Emerge during Early Infancy.

    ERIC Educational Resources Information Center

    Gilmore, Rick O.; Johnson, Mark H.

    1997-01-01

    Investigated the nature of spatial representations underlying simple visually guided actions with 3- and 7-month-old infants. Saccades in older infants were executed within body-centered spatial coordinates that account for intervening eye movements, whereas younger infants responded according to the target's retinocentric locations without…

  20. The Role of Visual Experience on the Representation and Updating of Novel Haptic Scenes

    ERIC Educational Resources Information Center

    Pasqualotto, Achille; Newell, Fiona N.

    2007-01-01

    We investigated the role of visual experience on the spatial representation and updating of haptic scenes by comparing recognition performance across sighted, congenitally and late blind participants. We first established that spatial updating occurs in sighted individuals to haptic scenes of novel objects. All participants were required to…

  1. Human short-term spatial memory: precision predicts capacity.

    PubMed

    Banta Lavenex, Pamela; Boujon, Valérie; Ndarugendamwo, Angélique; Lavenex, Pierre

    2015-03-01

    Here, we aimed to determine the capacity of human short-term memory for allocentric spatial information in a real-world setting. Young adults were tested on their ability to learn, on a trial-unique basis, and remember over a 1-min interval the location(s) of 1, 3, 5, or 7 illuminating pads, among 23 pads distributed in a 4m×4m arena surrounded by curtains on three sides. Participants had to walk to and touch the pads with their foot to illuminate the goal locations. In contrast to the predictions from classical slot models of working memory capacity limited to a fixed number of items, i.e., Miller's magical number 7 or Cowan's magical number 4, we found that the number of visited locations to find the goals was consistently about 1.6 times the number of goals, whereas the number of correct choices before erring and the number of errorless trials varied with memory load even when memory load was below the hypothetical memory capacity. In contrast to resource models of visual working memory, we found no evidence that memory resources were evenly distributed among unlimited numbers of items to be remembered. Instead, we found that memory for even one individual location was imprecise, and that memory performance for one location could be used to predict memory performance for multiple locations. Our findings are consistent with a theoretical model suggesting that the precision of the memory for individual locations might determine the capacity of human short-term memory for spatial information.

  2. Progress in knowledge representation research

    NASA Technical Reports Server (NTRS)

    Lum, Henry

    1985-01-01

    Brief descriptions are given of research being carried out in the field of knowledge representation. Dynamic simulation and modelling of planning systems with real-time sensor inputs; development of domain-independent knowledge representation tools which can be used in the development of application-specific expert and planning systems; and development of a space-borne very high speed integrated circuit processor are among the projects discussed.

  3. Losing Sight of the Bigger Picture: Peripheral Field Loss Compresses Representations of Space

    PubMed Central

    Fortenbaugh, Francesca C.; Hicks, John C.; Hao, Lei; Turano, Kathleen A.

    2009-01-01

    Three experiments examine how the peripheral visual field (PVF) mediates the development of spatial representations. In Experiment 1 participants learned and were tested on statue locations in a virtual environment while their field-of-view (FOV) was restricted to 40°, 20°, 10°, or 0° (diam). As FOV decreased, overall placement errors, estimated distances, and angular offsets increased. Experiment 2 showed large compressions but no effect of FOV for perceptual estimates of statue locations. Experiment 3 showed an association between FOV size and proprioception influence. These results suggest the PVF provides important global spatial information used in the development of spatial representations. PMID:17692884

  4. Spatial Displays and Spatial Instruments

    NASA Technical Reports Server (NTRS)

    Ellis, Stephen R. (Editor); Kaiser, Mary K. (Editor); Grunwald, Arthur J. (Editor)

    1989-01-01

    The conference proceedings topics are divided into two main areas: (1) issues of spatial and picture perception raised by graphical electronic displays of spatial information; and (2) design questions raised by the practical experience of designers actually defining new spatial instruments for use in new aircraft and spacecraft. Each topic is considered from both a theoretical and an applied direction. Emphasis is placed on discussion of phenomena and determination of design principles.

  5. Novel palmprint representations for palmprint recognition

    NASA Astrophysics Data System (ADS)

    Li, Hengjian; Dong, Jiwen; Li, Jinping; Wang, Lei

    2015-02-01

    In this paper, we propose a novel palmprint recognition algorithm. Firstly, the palmprint images are represented by the anisotropic filter. The filters are built on Gaussian functions along one direction, and on second derivative of Gaussian functions in the orthogonal direction. Also, this choice is motivated by the optimal joint spatial and frequency localization of the Gaussian kernel. Therefore,they can better approximate the edge or line of palmprint images. A palmprint image is processed with a bank of anisotropic filters at different scales and rotations for robust palmprint features extraction. Once these features are extracted, subspace analysis is then applied to the feature vectors for dimension reduction as well as class separability. Experimental results on a public palmprint database show that the accuracy could be improved by the proposed novel representations, compared with Gabor.

  6. Motor adaptation and generalization of reaching movements using motor primitives based on spatial coordinates

    PubMed Central

    Sejnowski, Terrence J.

    2014-01-01

    The brain processes sensory and motor information in a wide range of coordinate systems, ranging from retinal coordinates in vision to body-centered coordinates in areas that control musculature. Here we focus on the coordinate system used in the motor cortex to guide actions and examine physiological and psychophysical evidence for an allocentric reference frame based on spatial coordinates. When the equations of motion governing reaching dynamics are expressed as spatial vectors, each term is a vector cross product between a limb-segment position and a velocity or acceleration. We extend this computational framework to motor adaptation, in which the cross-product terms form adaptive bases for canceling imposed perturbations. Coefficients of the velocity- and acceleration-dependent cross products are assumed to undergo plastic changes to compensate the force-field or visuomotor perturbations. Consistent with experimental findings, each of the cross products had a distinct reference frame, which predicted how an acquired remapping generalized to untrained location in the workspace. In response to force field or visual rotation, mainly the coefficients of the velocity- or acceleration-dependent cross products adapted, leading to transfer in an intrinsic or extrinsic reference frame, respectively. The model further predicted that remapping of visuomotor rotation should under- or overgeneralize in a distal or proximal workspace. The cross-product bases can explain the distinct patterns of generalization in visuomotor and force-field adaptation in a unified way, showing that kinematic and dynamic motor adaptation need not arise through separate neural substrates. PMID:25429111

  7. Motor adaptation and generalization of reaching movements using motor primitives based on spatial coordinates.

    PubMed

    Tanaka, Hirokazu; Sejnowski, Terrence J

    2015-02-15

    The brain processes sensory and motor information in a wide range of coordinate systems, ranging from retinal coordinates in vision to body-centered coordinates in areas that control musculature. Here we focus on the coordinate system used in the motor cortex to guide actions and examine physiological and psychophysical evidence for an allocentric reference frame based on spatial coordinates. When the equations of motion governing reaching dynamics are expressed as spatial vectors, each term is a vector cross product between a limb-segment position and a velocity or acceleration. We extend this computational framework to motor adaptation, in which the cross-product terms form adaptive bases for canceling imposed perturbations. Coefficients of the velocity- and acceleration-dependent cross products are assumed to undergo plastic changes to compensate the force-field or visuomotor perturbations. Consistent with experimental findings, each of the cross products had a distinct reference frame, which predicted how an acquired remapping generalized to untrained location in the workspace. In response to force field or visual rotation, mainly the coefficients of the velocity- or acceleration-dependent cross products adapted, leading to transfer in an intrinsic or extrinsic reference frame, respectively. The model further predicted that remapping of visuomotor rotation should under- or overgeneralize in a distal or proximal workspace. The cross-product bases can explain the distinct patterns of generalization in visuomotor and force-field adaptation in a unified way, showing that kinematic and dynamic motor adaptation need not arise through separate neural substrates.

  8. Motion-dependent representation of space in area MT+

    PubMed Central

    Fischer, Jason; Whitney, David

    2013-01-01

    Summary How is visual space represented in cortical area MT+? At a relatively coarse scale, the organization of MT+ is debated: Retinotopic, spatiotopic, or mixed representations have been proposed. However, none of these entirely explains perceptual localization of objects at a fine spatial scale—a scale relevant for tasks like navigating or manipulating objects. For example, perceived positions of objects are strongly modulated by visual motion: stationary flashes appear shifted in the direction of nearby motion. Does spatial coding in MT+ reflect these shifts in perceived position? We performed an fMRI experiment employing this “flash-drag effect”, and found that flashes presented near motion produced patterns of activity similar to physically shifted flashes in the absence of motion. This reveals a motion-dependent change in the neural representation of object position in human MT+, a process that could help compensate for perceptual and motor delays in localizing objects in dynamic scenes. PMID:23664618

  9. Action video game players form more detailed representation of objects.

    PubMed

    Sungur, Hande; Boduroglu, Aysecan

    2012-02-01

    Previous research has clearly demonstrated action video game improvements in visual and spatial attention. The present study investigated action video game related changes in the resolution of representations for both dynamic and stationary objects by comparing video game players (VGP) and non-video game players (NVGP). In a color wheel task (adapted from Zhang & Luck, 2008) where viewers were asked to freely recall the color of briefly presented objects, we found that VGPs were more accurate than NVGPs. Furthermore, in the Multiple Identity Tracking task (Horowitz et al., 2007), we found that VGPs were able to track not only more objects but also maintain identity of tracked objects better than NVGPs. Finally, we demonstrated that VGPs had greater attentional breadth and higher spatial representation resolution.

  10. Qualitative Representation and Reasoning with Uncertainty in Space and Time

    NASA Astrophysics Data System (ADS)

    El-Geresy, Baher A.; Abdelmoty, Alia I.

    Imprecision, indeterminacy and vagueness are all terms which have been studied recently in studies of representations of entities in space and time. The interest has arisen from the fact that in many cases, precise information about objects in space are not available. In this paper a study of spatial uncertainty is presented and extended to temporal uncertainty. Different types and modes of uncertainty are identified. A unified framework is presented for the representation and reasoning over uncertain qualitative domains. The method addresses some of the main limitations of the current approaches. It is shown to apply to different types of entities with arbitrary complexity with total or partial uncertainty. The approach is part of a comprehensive research program aimed at developing a unified complete theory for qualitative spatial and temporal domains.

  11. Number games, magnitude representation, and basic number skills in preschoolers.

    PubMed

    Whyte, Jemma Catherine; Bull, Rebecca

    2008-03-01

    The effect of 3 intervention board games (linear number, linear color, and nonlinear number) on young children's (mean age = 3.8 years) counting abilities, number naming, magnitude comprehension, accuracy in number-to-position estimation tasks, and best-fit numerical magnitude representations was examined. Pre- and posttest performance was compared following four 25-min intervention sessions. The linear number board game significantly improved children's performance in all posttest measures and facilitated a shift from a logarithmic to a linear representation of numerical magnitude, emphasizing the importance of spatial cues in estimation. Exposure to the number card games involving nonsymbolic magnitude judgments and association of symbolic and nonsymbolic quantities, but without any linear spatial cues, improved some aspects of children's basic number skills but not numerical estimation precision.

  12. Fine-grained representation learning in convolutional autoencoders

    NASA Astrophysics Data System (ADS)

    Luo, Chang; Wang, Jie

    2016-03-01

    Convolutional autoencoders (CAEs) have been widely used as unsupervised feature extractors for high-resolution images. As a key component in CAEs, pooling is a biologically inspired operation to achieve scale and shift invariances, and the pooled representation directly affects the CAEs' performance. Fine-grained pooling, which uses small and dense pooling regions, encodes fine-grained visual cues and enhances local characteristics. However, it tends to be sensitive to spatial rearrangements. In most previous works, pooled features were obtained by empirically modulating parameters in CAEs. We see the CAE as a whole and propose a fine-grained representation learning law to extract better fine-grained features. This representation learning law suggests two directions for improvement. First, we probabilistically evaluate the discrimination-invariance tradeoff with fine-grained granularity in the pooled feature maps, and suggest the proper filter scale in the convolutional layer and appropriate whitening parameters in preprocessing step. Second, pooling approaches are combined with the sparsity degree in pooling regions, and we propose the preferable pooling approach. Experimental results on two independent benchmark datasets demonstrate that our representation learning law could guide CAEs to extract better fine-grained features and performs better in multiclass classification task. This paper also provides guidance for selecting appropriate parameters to obtain better fine-grained representation in other convolutional neural networks.

  13. Importance of perceptual representation in the visual control of action

    NASA Astrophysics Data System (ADS)

    Loomis, Jack M.; Beall, Andrew C.; Kelly, Jonathan W.; Macuga, Kristen L.

    2005-03-01

    In recent years, many experiments have demonstrated that optic flow is sufficient for visually controlled action, with the suggestion that perceptual representations of 3-D space are superfluous. In contrast, recent research in our lab indicates that some visually controlled actions, including some thought to be based on optic flow, are indeed mediated by perceptual representations. For example, we have demonstrated that people are able to perform complex spatial behaviors, like walking, driving, and object interception, in virtual environments which are rendered visible solely by cyclopean stimulation (random-dot cinematograms). In such situations, the absence of any retinal optic flow that is correlated with the objects and surfaces within the virtual environment means that people are using stereo-based perceptual representations to perform the behavior. The fact that people can perform such behaviors without training suggests that the perceptual representations are likely the same as those used when retinal optic flow is present. Other research indicates that optic flow, whether retinal or a more abstract property of the perceptual representation, is not the basis for postural control, because postural instability is related to perceived relative motion between self and the visual surroundings rather than to optic flow, even in the abstract sense.

  14. Crossed-Brain Representation of Verbal and Nonverbal Functions

    PubMed Central

    Matute, Esmeralda; Ardila, Alfredo; Rosselli, Monica; Molina Del Rio, Jahaziel; López Elizalde, Ramiro; López, Manuel; Ontiveros, Angel

    2015-01-01

    A 74-year-old, left-handed man presented with a rapidly evolving loss of strength in his right leg associated with difficulty in walking. MR images disclosed an extensive left hemisphere tumor. A neuropsychological examination revealed that language was broadly normal but that the patient presented with severe nonlinguistic abnormalities, including hemineglect (both somatic and spatial), constructional defects, and general spatial disturbances; symptoms were usually associated with right hemisphere pathologies. No ideomotor apraxia was found. The implications of crossed-brain representations of verbal and nonverbal functions are analyzed. PMID:25802778

  15. Formal representation of 3D structural geological models

    NASA Astrophysics Data System (ADS)

    Wang, Zhangang; Qu, Honggang; Wu, Zixing; Yang, Hongjun; Du, Qunle

    2016-05-01

    The development and widespread application of geological modeling methods has increased demands for the integration and sharing services of three dimensional (3D) geological data. However, theoretical research in the field of geological information sciences is limited despite the widespread use of Geographic Information Systems (GIS) in geology. In particular, fundamental research on the formal representations and standardized spatial descriptions of 3D structural models is required. This is necessary for accurate understanding and further applications of geological data in 3D space. In this paper, we propose a formal representation method for 3D structural models using the theory of point set topology, which produces a mathematical definition for the major types of geological objects. The spatial relationships between geologic boundaries, structures, and units are explained in detail using the 9-intersection model. Reasonable conditions for describing the topological space of 3D structural models are also provided. The results from this study can be used as potential support for the standardized representation and spatial quality evaluation of 3D structural models, as well as for specific needs related to model-based management, query, and analysis.

  16. Five challenges for spatial epidemic models

    PubMed Central

    Riley, Steven; Eames, Ken; Isham, Valerie; Mollison, Denis; Trapman, Pieter

    2015-01-01

    Infectious disease incidence data are increasingly available at the level of the individual and include high-resolution spatial components. Therefore, we are now better able to challenge models that explicitly represent space. Here, we consider five topics within spatial disease dynamics: the construction of network models; characterising threshold behaviour; modelling long-distance interactions; the appropriate scale for interventions; and the representation of population heterogeneity. PMID:25843387

  17. Assessing value representation in animals.

    PubMed

    San-Galli, Aurore; Bouret, Sebastien

    2015-01-01

    Among all factors modulating our motivation to perform a given action, the ability to represent its outcome is clearly the most determining. Representation of outcomes, rewards in particular, and how they guide behavior, have sparked much research. Both practically and theoretically, understanding the relationship between the representation of outcome value and the organization of goal directed behavior implies that these two processes can be assessed independently. Most of animal studies essentially used instrumental actions as a proxy for the expected goal-value. The purpose of this article is to consider alternative measures of expected outcome value in animals, which are critical to understand the behavioral and neurobiological mechanisms relating the representation of the expected outcome to the organization of the behavior oriented towards its obtention. This would be critical in the field of decision making or social interactions, where the value of multiple items must often be compared and/or shared among individuals to determine the course of actions.

  18. Representational issues in machine learning

    SciTech Connect

    Liepins, G.E.; Hilliard, M.R.

    1986-10-25

    Classifier systems are numeric machine learning systems. They are machine counterparts to the natural genetic process and learn by reproduction, crossover, and mutation. Much publicity has been attended to their ability to demonstrate significant learning from a random start and without human intervention. Less well publicized is the considerable care that must be given to the choices of parameter settings and representation. Without the proper ''nurturing environment'' genetic algorithms are apt to learn very little. This infusion of human intelligence is often discounted, but the choice of appropriate representation forms the core of much of the current genetic algorithm research. This paper will address some of the representational issues from the perspective of two current experiments, one with scheduling and the other with a simulated robot. 10 refs., 7 figs.

  19. Chronic enhancement of CREB activity in the hippocampus interferes with the retrieval of spatial information

    PubMed Central

    Viosca, Jose; Malleret, Gaël; Bourtchouladze, Rusiko; Benito, Eva; Vronskava, Svetlana; Kandel, Eric R.; Barco, Angel

    2009-01-01

    The activation of cAMP-responsive element-binding protein (CREB)-dependent gene expression is thought to be critical for the formation of different types of long-term memory. To explore the consequences of chronic enhancement of CREB function on spatial memory in mammals, we examined spatial navigation in bitransgenic mice that express in a regulated and restricted manner a constitutively active form of CREB, VP16-CREB, in forebrain neurons. We found that chronic enhancement of CREB activity delayed the acquisition of an allocentric strategy to solve the hidden platform task. The ability to turn on and off transgene expression allowed us to dissect the role of CREB in dissociable memory processes. In mice in which transgene expression was turned on during memory acquisition, turning off the transgene re-established the access to the memory trace, whereas in mice in which transgene expression was turned off during acquisition, turning on the transgene impaired memory expression in a reversible manner, indicating that CREB enhancement specifically interfered with the retrieval of spatial information. The defects on spatial navigation in mice with chronic enhancement of CREB function were not corrected by conditions that increased further CREB-dependent activation of hippocampal memory systems, such as housing in an enriched environment. These results along with previous findings in CREB-deficient mutants indicate that the relationship of CREB-mediated plasticity to spatial memory is an inverted-U function, and that optimal learning in the water maze requires accurate regulation of this pathway. PMID:19237642

  20. Cross-modal influences on representational momentum and representational gravity.

    PubMed

    Hubbard, Timothy L; Courtney, Jon R

    2010-01-01

    Effects of cross-modal information on representational momentum and on representational gravity (ie on displacement of remembered location in the direction of target motion or in the direction of gravitational attraction, respectively) were examined. In experiment 1, ascending or descending visual motion (in the picture plane) was paired with ascending or descending auditory motion (in frequency space); motion was congruent (both ascending, both descending) or incongruent (one ascending, one descending). Memory for visual location or auditory pitch was probed. Congruence resulted in larger forward displacement for auditory pitch, but did not influence forward displacement for visual location. In experiment 2, horizontal visual motion was paired with ascending, descending, or no auditory motion. Memory for visual location was displaced downward with descending or no auditory motion, and downward displacement was larger for visual motion paired with descending auditory motion than for visual motion paired with ascending auditory motion. Effects of cross-modal information on displacement suggest representational momentum and representational gravity reflect high-level processing.

  1. The Statistics of Visual Representation

    NASA Technical Reports Server (NTRS)

    Jobson, Daniel J.; Rahman, Zia-Ur; Woodell, Glenn A.

    2002-01-01

    The experience of retinex image processing has prompted us to reconsider fundamental aspects of imaging and image processing. Foremost is the idea that a good visual representation requires a non-linear transformation of the recorded (approximately linear) image data. Further, this transformation appears to converge on a specific distribution. Here we investigate the connection between numerical and visual phenomena. Specifically the questions explored are: (1) Is there a well-defined consistent statistical character associated with good visual representations? (2) Does there exist an ideal visual image? And (3) what are its statistical properties?

  2. Medieval theories of mental representation.

    PubMed

    Kemp, S

    1998-11-01

    Throughout most of the Middle ages, it was generally held that stored mental representations of perceived objects or events preserved the forms or species of such objects. This belief was consistent with a metaphor used by Plato. It was also consistent with the medieval belief that a number of cognitive processes took place in the ventricles of the brain and with the phenomenology of afterimages and imagination itself. In the 14th century, William of Ockham challenged this belief by claiming that mental representations are not stored but instead constructed in the basis of past learned experiences.

  3. Encoding Modality and Spatial Memory Retrieval

    ERIC Educational Resources Information Center

    Tlauka, Michael; Clark, C. Richard; Liu, Ping; Conway, Marie

    2009-01-01

    This study examined the temporal characteristics of event-related brain electrical activity associated with the processing of spatial memories derived from linguistic and tactile information. Participants learned a map by (1) reading a text description of the map, (2) touching a wooden topological representation of the map (hidden from view), or…

  4. Flexible Visual Processing of Spatial Relationships

    ERIC Educational Resources Information Center

    Franconeri, Steven L.; Scimeca, Jason M.; Roth, Jessica C.; Helseth, Sarah A.; Kahn, Lauren E.

    2012-01-01

    Visual processing breaks the world into parts and objects, allowing us not only to examine the pieces individually, but also to perceive the relationships among them. There is work exploring how we perceive spatial relationships within structures with existing representations, such as faces, common objects, or prototypical scenes. But strikingly,…

  5. A complex network representation of wind flows

    NASA Astrophysics Data System (ADS)

    Gelbrecht, Maximilian; Boers, Niklas; Kurths, Jürgen

    2017-03-01

    Climate networks have proven to be a valuable method to investigate spatial connectivity patterns of the climate system. However, so far such networks have mostly been applied to scalar observables. In this study, we propose a new method for constructing networks from atmospheric wind fields on two-dimensional isobaric surfaces. By connecting nodes along a spatial environment based on the local wind flow, we derive a network representation of the low-level circulation that captures its most important characteristics. In our approach, network links are placed according to a suitable statistical null model that takes into account the direction and magnitude of the flow. We compare a simulation-based (numerically costly) and a semi-analytical (numerically cheaper) approach to determine the statistical significance of possible connections, and find that both methods yield qualitatively similar results. As an application, we choose the regional climate system of South America and focus on the monsoon season in austral summer. Monsoon systems are generally characterized by substantial changes in the large-scale wind directions, and therefore provide ideal applications for the proposed wind networks. Based on these networks, we are able to reveal the key features of the low-level circulation of the South American Monsoon System, including the South American Low-Level Jet. Networks of the dry and the wet season are compared with each other and their differences are consistent with the literature on South American climate.

  6. Rotation-independent representations for haptic movements.

    PubMed

    Shioiri, Satoshi; Yamazaki, Takanori; Matsumiya, Kazumichi; Kuriki, Ichiro

    2013-01-01

    The existence of a common mechanism for visual and haptic representations has been reported in object perception. In contrast, representations of movements might be more specific to modalities. Referring to the vertical axis is natural for visual representations whereas a fixed reference axis might be inappropriate for haptic movements and thus also inappropriate for its representations in the brain. The present study found that visual and haptic movement representations are processed independently. A psychophysical experiment examining mental rotation revealed the well-known effect of rotation angle for visual representations whereas no such effect was found for haptic representations. We also found no interference between processes for visual and haptic movements in an experiment where different stimuli were presented simultaneously through visual and haptic modalities. These results strongly suggest that (1) there are separate representations of visual and haptic movements, and (2) the haptic process has a rotation-independent representation.

  7. Integrated contextual representation for objects' identities and their locations.

    PubMed

    Gronau, Nurit; Neta, Maital; Bar, Moshe

    2008-03-01

    Visual context plays a prominent role in everyday perception. Contextual information can facilitate recognition of objects within scenes by providing predictions about objects that are most likely to appear in a specific setting, along with the locations that are most likely to contain objects in the scene. Is such identity-related ("semantic") and location-related ("spatial") contextual knowledge represented separately or jointly as a bound representation? We conducted a functional magnetic resonance imaging (fMRI) priming experiment whereby semantic and spatial contextual relations between prime and target object pictures were independently manipulated. This method allowed us to determine whether the two contextual factors affect object recognition with or without interacting, supporting a unified versus independent representations, respectively. Results revealed a Semantic x Spatial interaction in reaction times for target object recognition. Namely, significant semantic priming was obtained when targets were positioned in expected (congruent), but not in unexpected (incongruent), locations. fMRI results showed corresponding interactive effects in brain regions associated with semantic processing (inferior prefrontal cortex), visual contextual processing (parahippocampal cortex), and object-related processing (lateral occipital complex). In addition, activation in fronto-parietal areas suggests that attention and memory-related processes might also contribute to the contextual effects observed. These findings indicate that object recognition benefits from associative representations that integrate information about objects' identities and their locations, and directly modulate activation in object-processing cortical regions. Such context frames are useful in maintaining a coherent and meaningful representation of the visual world, and in providing a platform from which predictions can be generated to facilitate perception and action.

  8. Lie antialgebras: cohomology and representations

    SciTech Connect

    Ovsienko, V.

    2008-11-18

    We describe the main algebraic and geometric properties of the class of algebras introduced in [1]. We discuss their origins in symplectic geometry and associative algebra, and the notions of cohomology and representations. We formulate classification theorems and give a number of examples.

  9. Representational Momentum in Older Adults

    ERIC Educational Resources Information Center

    Piotrowski, Andrea S.; Jakobson, Lorna S.

    2011-01-01

    Humans have a tendency to perceive motion even in static images that simply "imply" movement. This tendency is so strong that our memory for actions depicted in static images is distorted in the direction of implied motion--a phenomenon known as representational momentum (RM). In the present study, we created an RM display depicting a pattern of…

  10. Correct Representation of Conformational Equilibria.

    ERIC Educational Resources Information Center

    Fulop, F.; And Others

    1983-01-01

    In representing conformational equilibria of compounds having only one chiral center, erroneous formulas showing different antipodes on the two sides of the equilibrium are rare. In contrast, with compounds having two or more chiral centers especially with saturated heterocycles, this erroneous representation occurs frequently in the chemical…

  11. Mental Representations of Social Status

    ERIC Educational Resources Information Center

    Chiao, Joan Y.; Bordeaux, Andrew R.; Ambady, Nalni

    2004-01-01

    How do people think about social status? We investigated the nature of social status and number representations using a semantic distance latency test. In Study 1, 21 college students compared words connoting different social status as well as numbers, which served as a control task. Participants were faster at comparing occupations and numbers…

  12. Representational learning for sonar ATR

    NASA Astrophysics Data System (ADS)

    Isaacs, Jason C.

    2014-06-01

    Learned representations have been shown to give hopeful results for solving a multitude of novel learning tasks, even though these tasks may be unknown when the model is being trained. A few notable examples include the techniques of topic models, deep belief networks, deep Boltzmann machines, and local discriminative Gaussians, all inspired by human learning. This self-learning of new concepts via rich generative models has emerged as a promising area of research in machine learning. Although there has been recent progress, existing computational models are still far from being able to represent, identify and learn the wide variety of possible patterns and struc- ture in real-world data. An important issue for further consideration is the use of unsupervised representations for novel underwater target recognition applications. This work will discuss and demonstrate the use of latent Dirichlet allocation and autoencoders for learning unsupervised representations of objects in sonar imagery. The objective is to make these representations more abstract and invariant to noise in the training distribution and improve performance.

  13. Toward a brain-based componential semantic representation.

    PubMed

    Binder, Jeffrey R; Conant, Lisa L; Humphries, Colin J; Fernandino, Leonardo; Simons, Stephen B; Aguilar, Mario; Desai, Rutvik H

    2016-01-01

    Componential theories of lexical semantics assume that concepts can be represented by sets of features or attributes that are in some sense primitive or basic components of meaning. The binary features used in classical category and prototype theories are problematic in that these features are themselves complex concepts, leaving open the question of what constitutes a primitive feature. The present availability of brain imaging tools has enhanced interest in how concepts are represented in brains, and accumulating evidence supports the claim that these representations are at least partly "embodied" in the perception, action, and other modal neural systems through which concepts are experienced. In this study we explore the possibility of devising a componential model of semantic representation based entirely on such functional divisions in the human brain. We propose a basic set of approximately 65 experiential attributes based on neurobiological considerations, comprising sensory, motor, spatial, temporal, affective, social, and cognitive experiences. We provide normative data on the salience of each attribute for a large set of English nouns, verbs, and adjectives, and show how these attribute vectors distinguish a priori conceptual categories and capture semantic similarity. Robust quantitative differences between concrete object categories were observed across a large number of attribute dimensions. A within- versus between-category similarity metric showed much greater separation between categories than representations derived from distributional (latent semantic) analysis of text. Cluster analyses were used to explore the similarity structure in the data independent of a priori labels, revealing several novel category distinctions. We discuss how such a representation might deal with various longstanding problems in semantic theory, such as feature selection and weighting, representation of abstract concepts, effects of context on semantic retrieval, and

  14. Asymptotic and Fredholm representations of discrete groups

    NASA Astrophysics Data System (ADS)

    Manuilov, V. M.; Mishchenko, A. S.

    1998-10-01

    A C^*-algebra servicing the theory of asymptotic representations and its embedding into the Calkin algebra that induces an isomorphism of K_1-groups is constructed. As a consequence, it is shown that all vector bundles over the classifying space B\\pi that can be obtained by means of asymptotic representations of a discrete group \\pi can also be obtained by means of representations of the group \\pi \\times {\\mathbb Z} into the Calkin algebra. A generalization of the concept of Fredholm representation is also suggested, and it is shown that an asymptotic representation can be regarded as an asymptotic Fredholm representation.

  15. The hippocampus is not a geometric module: processing environment geometry during reorientation

    PubMed Central

    Sutton, Jennifer E.; Newcombe, Nora S.

    2014-01-01

    The hippocampus has long been known to play a role in allocentric spatial coding, but its specific involvement in reorientation, or the recalibration of a disrupted egocentric spatial representation using allocentric spatial information, has received less attention. Initially, the cognitive literature on reorientation focused on a “geometric module” sensitive to the shape formed by extended surfaces in the environment, and the neuroscience literature followed with proposals that particular MTL regions might be the seat of such a module. However, with behavioral evidence mounting that a modular cognitive architecture is unlikely, recent work has begun to directly address the issue of the neural underpinnings of reorientation. In this review, we describe the reorientation paradigm, initial proposals for the role of the MTL when people reorient, our recent work on the neural bases of reorientation, and finally, how this new information regarding neural mechanism helps to re-interpret and clarify the original behavioral reorientation data. PMID:25140145

  16. A Principal Components Analysis of Dynamic Spatial Memory Biases

    ERIC Educational Resources Information Center

    Motes, Michael A.; Hubbard, Timothy L.; Courtney, Jon R.; Rypma, Bart

    2008-01-01

    Research has shown that spatial memory for moving targets is often biased in the direction of implied momentum and implied gravity, suggesting that representations of the subjective experiences of these physical principles contribute to such biases. The present study examined the association between these spatial memory biases. Observers viewed…

  17. Data handling and representation of freeform surfaces

    NASA Astrophysics Data System (ADS)

    Steinkopf, Ralf; Dick, Lars; Kopf, Tino; Gebhardt, Andreas; Risse, Stefan; Eberhardt, Ramona

    2011-10-01

    Freeform surfaces enable innovative optics. They are not limited by axis symmetry and hence they are almost free in design. They are used to reduce the installation space and enhance the performance of optical elements. State of the art optical design tools are computing with powerful algorithms to simulate freeform surfaces. Even new mathematical approaches are under development /1/. In consequence, new optical designs /2/ are pushing the development of manufacturing processes consequently and novel types of datasets have to proceed through the process chain /3/. The complexity of these data is the huge challenge for the data handling. Because of the asymmetrical and 3-dimensional surfaces of freeforms, large data volumes have to be created, trimmed, extended and fitted. All these processes must be performed without losing the accuracy of the original design data. Additionally, manifold types of geometries results in different kinds of mathematical representations of freeform surfaces and furthermore the used CAD/CAM tools are dealing with a set of spatial transport formats. These are all reasons why manufacture-oriented approaches for the freeform data handling are not yet sufficiently developed. This paper suggests a classification of freeform surfaces based on the manufacturing methods which are offered by diamond machining. The different manufacturing technologies, ranging from servo-turning to shaping, require a differentiated approach for the data handling process. The usage of analytical descriptions in form of splines and polynomials as well as the application of discrete descriptions like point clouds is shown in relation to the previously made classification. Advantages and disadvantages of freeform representations are discussed. Aspects of the data handling in between different process steps are pointed out and suitable exchange formats for freeform data are proposed. The described approach offers the possibility for efficient data handling from optical

  18. Spatial Inferences in Narrative Comprehension: the Role of Verbal and Spatial Working Memory.

    PubMed

    Irrazabal, Natalia; Burin, Debora

    2016-03-14

    During the comprehension of narrative texts, readers keep a mental representation of the location of protagonists and objects; a breach in spatial coherence is detected by longer online reading times (consistency effect). We addressed whether these spatial inferences involve verbal or spatial working memory in two experiments, combining the consistency paradigm with selective verbal and spatial working memory concurrent tasks. The first experiment found longer reading times with a concurrent spatial task under imagery instructions (t33 = 2.87, p = .021). The second experiment, under comprehension reading instructions, found effects of verbal interference on reading times and accuracy. With a verbal secondary task, reading times for the target sentence were shorter (t45 = 3.60, p = .004) and the error rate was significantly higher (t47 = 2.95, p = .005) than without interference. This pattern of results suggests that spatial inferences in narrative comprehension rely mainly on verbal resources, and spatial working memory resources are recruited when imagery is required.

  19. Transition representations of quantum evolution with application to scattering resonances

    SciTech Connect

    Strauss, Y.

    2011-03-15

    A Lyapunov operator is a self-adjoint quantum observable whose expectation value varies monotonically as time increases and may serve as a marker for the flow of time in a quantum system. In this paper it is shown that the existence of a certain type of Lyapunov operator leads to representations of the quantum dynamics, termed transition representations, in which an evolving quantum state {psi}(t) is decomposed into a sum {psi}(t) ={psi}{sup b}(t) +{psi}{sup f}(t) of a backward asymptotic component and a forward asymptotic component such that the evolution process is represented as a transition from {psi}{sup b}(t) to {psi}{sup f}(t). When applied to the evolution of scattering resonances, such transition representations separate the process of decay of a scattering resonance from the evolution of outgoing waves corresponding to the probability 'released' by the resonance and carried away to spatial infinity. This separation property clearly exhibits the spatial probability distribution profile of a resonance. Moreover, it leads to the definition of exact resonance states as elements of the physical Hilbert space corresponding to the scattering problem. These resonance states evolve naturally according to a semigroup law of evolution.

  20. Uncovering representations of sleep-associated hippocampal ensemble spike activity

    NASA Astrophysics Data System (ADS)

    Chen, Zhe; Grosmark, Andres D.; Penagos, Hector; Wilson, Matthew A.

    2016-08-01

    Pyramidal neurons in the rodent hippocampus exhibit spatial tuning during spatial navigation, and they are reactivated in specific temporal order during sharp-wave ripples observed in quiet wakefulness or slow wave sleep. However, analyzing representations of sleep-associated hippocampal ensemble spike activity remains a great challenge. In contrast to wake, during sleep there is a complete absence of animal behavior, and the ensemble spike activity is sparse (low occurrence) and fragmental in time. To examine important issues encountered in sleep data analysis, we constructed synthetic sleep-like hippocampal spike data (short epochs, sparse and sporadic firing, compressed timescale) for detailed investigations. Based upon two Bayesian population-decoding methods (one receptive field-based, and the other not), we systematically investigated their representation power and detection reliability. Notably, the receptive-field-free decoding method was found to be well-tuned for hippocampal ensemble spike data in slow wave sleep (SWS), even in the absence of prior behavioral measure or ground truth. Our results showed that in addition to the sample length, bin size, and firing rate, number of active hippocampal pyramidal neurons are critical for reliable representation of the space as well as for detection of spatiotemporal reactivated patterns in SWS or quiet wakefulness.

  1. Online Hierarchical Sparse Representation of Multifeature for Robust Object Tracking

    PubMed Central

    Qu, Shiru

    2016-01-01

    Object tracking based on sparse representation has given promising tracking results in recent years. However, the trackers under the framework of sparse representation always overemphasize the sparse representation and ignore the correlation of visual information. In addition, the sparse coding methods only encode the local region independently and ignore the spatial neighborhood information of the image. In this paper, we propose a robust tracking algorithm. Firstly, multiple complementary features are used to describe the object appearance; the appearance model of the tracked target is modeled by instantaneous and stable appearance features simultaneously. A two-stage sparse-coded method which takes the spatial neighborhood information of the image patch and the computation burden into consideration is used to compute the reconstructed object appearance. Then, the reliability of each tracker is measured by the tracking likelihood function of transient and reconstructed appearance models. Finally, the most reliable tracker is obtained by a well established particle filter framework; the training set and the template library are incrementally updated based on the current tracking results. Experiment results on different challenging video sequences show that the proposed algorithm performs well with superior tracking accuracy and robustness. PMID:27630710

  2. Artistic representations: clues to efficient coding in human vision.

    PubMed

    Graham, Daniel J; Meng, Ming

    2011-07-01

    In what ways is mammalian vision--and in particular, human vision--efficiently adapted to its ecology? We suggest that human visual artwork, which is made for the human eye, holds clues that could help answer this question. Paintings are readily perceived as representations of natural objects and scenes, yet statistical relationships between natural images and paintings are nontrivial. Although spatial frequency content is generally similar for art and natural images, paintings cannot reproduce the dynamic range of luminance in scenes. Through a variety of image manipulations designed to alter image intensity distributions and spatial contrast, we here investigate the notion that artists' representational strategies can efficiently capture salient features of natural images, and in particular, of faces. We report that humans perform near flawless discrimination of faces and nonfaces in both paintings and natural images, even for stimulus presentation durations of 12 ms. In addition, contrast negation and up-down inversion have minimal to no effect on performance for both image types, whereas 1/f noise addition significantly affects discrimination performance for art more than for natural images. Together, these results suggest artists create representations that are highly efficient for transmitting perceptual information to the human brain.

  3. Uncovering representations of sleep-associated hippocampal ensemble spike activity

    PubMed Central

    Chen, Zhe; Grosmark, Andres D.; Penagos, Hector; Wilson, Matthew A.

    2016-01-01

    Pyramidal neurons in the rodent hippocampus exhibit spatial tuning during spatial navigation, and they are reactivated in specific temporal order during sharp-wave ripples observed in quiet wakefulness or slow wave sleep. However, analyzing representations of sleep-associated hippocampal ensemble spike activity remains a great challenge. In contrast to wake, during sleep there is a complete absence of animal behavior, and the ensemble spike activity is sparse (low occurrence) and fragmental in time. To examine important issues encountered in sleep data analysis, we constructed synthetic sleep-like hippocampal spike data (short epochs, sparse and sporadic firing, compressed timescale) for detailed investigations. Based upon two Bayesian population-decoding methods (one receptive field-based, and the other not), we systematically investigated their representation power and detection reliability. Notably, the receptive-field-free decoding method was found to be well-tuned for hippocampal ensemble spike data in slow wave sleep (SWS), even in the absence of prior behavioral measure or ground truth. Our results showed that in addition to the sample length, bin size, and firing rate, number of active hippocampal pyramidal neurons are critical for reliable representation of the space as well as for detection of spatiotemporal reactivated patterns in SWS or quiet wakefulness. PMID:27573200

  4. Graph Representation for Configurational Properties of Crystalline Solids

    NASA Astrophysics Data System (ADS)

    Yuge, Koretaka

    2017-02-01

    We propose representation of configurational physical quantities and microscopic structures for multicomponent system on lattice, by extending a concept of generalized Ising model (GIM) to graph theory. We construct graph Laplacian (and adjacency matrix) composed of symmetry-equivalent neighboring edges, whose landscape of spectrum explicitly represents GIM description of structures as well as low-dimensional topological information in terms of graph. The proposed representation indicates the importance of linear combination of graph to further investigate the role of spatial constraint on equilibrium properties in classical systems. We demonstrate that spectrum for such linear combination of graph can find out additional characteristic microscopic structures compared with GIM-based descriptions for given set of figures on the same low-dimensional configuration space, coming from the proposed representation explicitly having more structural information for, e.g., higher-order closed links of selected element. Statistical interdependence for density of microscopic states including graph representation for structures is also examined, which exhibits similar behavior that has been seen for GIM description of the microscopic structures.

  5. Robust and efficient anomaly detection using heterogeneous representations

    NASA Astrophysics Data System (ADS)

    Hu, Xing; Hu, Shiqiang; Xie, Jinhua; Zheng, Shiyou

    2015-05-01

    Various approaches have been proposed for video anomaly detection. Yet these approaches typically suffer from one or more limitations: they often characterize the pattern using its internal information, but ignore its external relationship which is important for local anomaly detection. Moreover, the high-dimensionality and the lack of robustness of pattern representation may lead to problems, including overfitting, increased computational cost and memory requirements, and high false alarm rate. We propose a video anomaly detection framework which relies on a heterogeneous representation to account for both the pattern's internal information and external relationship. The internal information is characterized by slow features learned by slow feature analysis from low-level representations, and the external relationship is characterized by the spatial contextual distances. The heterogeneous representation is compact, robust, efficient, and discriminative for anomaly detection. Moreover, both the pattern's internal information and external relationship can be taken into account in the proposed framework. Extensive experiments demonstrate the robustness and efficiency of our approach by comparison with the state-of-the-art approaches on the widely used benchmark datasets.

  6. Spatial constancy mechanisms in motor control

    PubMed Central

    Medendorp, W. Pieter

    2011-01-01

    The success of the human species in interacting with the environment depends on the ability to maintain spatial stability despite the continuous changes in sensory and motor inputs owing to movements of eyes, head and body. In this paper, I will review recent advances in the understanding of how the brain deals with the dynamic flow of sensory and motor information in order to maintain spatial constancy of movement goals. The first part summarizes studies in the saccadic system, showing that spatial constancy is governed by a dynamic feed-forward process, by gaze-centred remapping of target representations in anticipation of and across eye movements. The subsequent sections relate to other oculomotor behaviour, such as eye–head gaze shifts, smooth pursuit and vergence eye movements, and their implications for feed-forward mechanisms for spatial constancy. Work that studied the geometric complexities in spatial constancy and saccadic guidance across head and body movements, distinguishing between self-generated and passively induced motion, indicates that both feed-forward and sensory feedback processing play a role in spatial updating of movement goals. The paper ends with a discussion of the behavioural mechanisms of spatial constancy for arm motor control and their physiological implications for the brain. Taken together, the emerging picture is that the brain computes an evolving representation of three-dimensional action space, whose internal metric is updated in a nonlinear way, by optimally integrating noisy and ambiguous afferent and efferent signals. PMID:21242137

  7. Representations of mad cow disease.

    PubMed

    Washer, Peter

    2006-01-01

    This paper examines the reporting of the story of Bovine Spongiform Encephalopathy (BSE) and its human derivative variant Creutzfeld-Jacob Disease (vCJD) in the British newspapers. Three 'snapshots' of newspaper coverage are sampled and analysed between the period 1986 and 1996 focusing on how representations of the disease evolved over the 10-year period. Social representations theory is used to elucidate how this new disease threat was conceptualised in the newspaper reporting and how it was explained to the UK public. This paper examines who or what was said to be at risk from the new disease, and whether some individuals or groups held to blame for the diseases' putative origins, the appearance of vCJD in human beings, and its spread.

  8. Time representations in social science

    PubMed Central

    Schulz, Yvan

    2012-01-01

    Time has long been a major topic of study in social science, as in other sciences or in philosophy. Social scientists have tended to focus on collective representations of time, and on the ways in which these representations shape our everyday experiences. This contribution addresses work from such disciplines as anthropology, sociology and history. It focuses on several of the main theories that have preoccupied specialists in social science, such as the alleged “acceleration” of life and overgrowth of the present in contemporary Western societies, or the distinction between so-called linear and circular conceptions of time. The presentation of these theories is accompanied by some of the critiques they have provoked, in order to enable the reader to form her or his own opinion of them. PMID:23393420

  9. Mental representations of social status.

    PubMed

    Chiao, Joan Y; Bordeaux, Andrew R; Ambady, Nalini

    2004-09-01

    How do people think about social status? We investigated the nature of social status and number representations using a semantic distance latency test. In Study 1, 21 college students compared words connoting different social status as well as numbers, which served as a control task. Participants were faster at comparing occupations and numbers that were semantically farther apart relative to those more closely related. In Study 2, we examined the semantic distance effect for a social status category, for which participants have as much knowledge of, as with numbers. We asked 15 US Navy Midshipmen to compare the social status associated with different ranks in the Navy as well as compare number magnitudes. Participants were fastest when comparing ranks far in status relative to ranks close in status. These findings reveal that humans have mental representations of social status that share properties with that of number.

  10. Berry phase in Heisenberg representation

    NASA Technical Reports Server (NTRS)

    Andreev, V. A.; Klimov, Andrei B.; Lerner, Peter B.

    1994-01-01

    We define the Berry phase for the Heisenberg operators. This definition is motivated by the calculation of the phase shifts by different techniques. These techniques are: the solution of the Heisenberg equations of motion, the solution of the Schrodinger equation in coherent-state representation, and the direct computation of the evolution operator. Our definition of the Berry phase in the Heisenberg representation is consistent with the underlying supersymmetry of the model in the following sense. The structural blocks of the Hamiltonians of supersymmetrical quantum mechanics ('superpairs') are connected by transformations which conserve the similarity in structure of the energy levels of superpairs. These transformations include transformation of phase of the creation-annihilation operators, which are generated by adiabatic cyclic evolution of the parameters of the system.

  11. Knowledge representation in fuzzy logic

    NASA Technical Reports Server (NTRS)

    Zadeh, Lotfi A.

    1989-01-01

    The author presents a summary of the basic concepts and techniques underlying the application of fuzzy logic to knowledge representation. He then describes a number of examples relating to its use as a computational system for dealing with uncertainty and imprecision in the context of knowledge, meaning, and inference. It is noted that one of the basic aims of fuzzy logic is to provide a computational framework for knowledge representation and inference in an environment of uncertainty and imprecision. In such environments, fuzzy logic is effective when the solutions need not be precise and/or it is acceptable for a conclusion to have a dispositional rather than categorical validity. The importance of fuzzy logic derives from the fact that there are many real-world applications which fit these conditions, especially in the realm of knowledge-based systems for decision-making and control.

  12. Time representations in social science.

    PubMed

    Schulz, Yvan

    2012-12-01

    Time has long been a major topic of study in social science, as in other sciences or in philosophy. Social scientists have tended to focus on collective representations of time, and on the ways in which these representations shape our everyday experiences. This contribution addresses work from such disciplines as anthropology, sociology and history. It focuses on several of the main theories that have preoccupied specialists in social science, such as the alleged "acceleration" of life and overgrowth of the present in contemporary Western societies, or the distinction between so-called linear and circular conceptions of time. The presentation of these theories is accompanied by some of the critiques they have provoked, in order to enable the reader to form her or his own opinion of them.

  13. SAR Image Complex Pixel Representations

    SciTech Connect

    Doerry, Armin W.

    2015-03-01

    Complex pixel values for Synthetic Aperture Radar (SAR) images of uniform distributed clutter can be represented as either real/imaginary (also known as I/Q) values, or as Magnitude/Phase values. Generally, these component values are integers with limited number of bits. For clutter energy well below full-scale, Magnitude/Phase offers lower quantization noise than I/Q representation. Further improvement can be had with companding of the Magnitude value.

  14. Temporal Representation in Semantic Graphs

    SciTech Connect

    Levandoski, J J; Abdulla, G M

    2007-08-07

    A wide range of knowledge discovery and analysis applications, ranging from business to biological, make use of semantic graphs when modeling relationships and concepts. Most of the semantic graphs used in these applications are assumed to be static pieces of information, meaning temporal evolution of concepts and relationships are not taken into account. Guided by the need for more advanced semantic graph queries involving temporal concepts, this paper surveys the existing work involving temporal representations in semantic graphs.

  15. Cooperativity and 3-D Representation

    DTIC Science & Technology

    1993-02-28

    image, to simplified mechanisms for understandingshadows and shading and to renewed interest in " isophot " models of shading. Visual searchstudies have...reversals of contrast. One such representation is the isophots of the images, the lines of equal luminance. They capture the flow field of the brightness...shading as an oriented field of isophots (or at least short oriented segments) is still at an exploratory stage. We will digitize live scenes in our

  16. Computing Visible-Surface Representations,

    DTIC Science & Technology

    1985-03-01

    Terzopoulos N00014-75-C-0643 9. PERFORMING ORGANIZATION NAME AMC ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK Artificial Inteligence Laboratory AREA A...Massachusetts Institute of lechnolog,. Support lbr the laboratory’s Artificial Intelligence research is provided in part by the Advanced Rtccarcl Proj...dynamically maintaining visible surface representations. Whether the intention is to model human vision or to design competent artificial vision systems

  17. 48 CFR 1480.803 - Representation process.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... enterprise to an IA CO in the IEE representation at 1452.280-4 in response to a specific solicitation under the Buy Indian Act. (c) The CO may ask the appropriate Regional Solicitor to review the enterprise's representation. (d) The IEE representation does not relieve the CO of the obligation for determining...

  18. Imitation and the Dialectic of Representation.

    ERIC Educational Resources Information Center

    Zelazo, Philip David; Lourenco, Stella Felix

    2003-01-01

    Describes a theory of the understanding and use of representations, drawing heavily on Paul Ricoeur's and James Mark Baldwin's theories. Presents this theory as construing representation as intrinsically mimetic, characterizing the development of representational understanding as internalization, and emphasizing the importance of self-reflection…

  19. Methods and Strategies: The Science Representation Continuum

    ERIC Educational Resources Information Center

    Olson, Joanne K.

    2008-01-01

    Research indicates that people more easily understand abstractions when they are preceded by concrete representations (Lawson 2002). This article describes how educators can use science representations to help students form lasting understandings of abstract concepts. A spectrum illustrating some commonly used representation types and their level…

  20. 75 FR 32273 - Representation Election Procedure

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-08

    ... 29 CFR Parts 1202 and 1206 RIN 3140-ZA00 Representation Election Procedure AGENCY: National Mediation... delaying the effective date of its rule regarding representation election procedures from June 10, 2010 to... Representation Election Procedure Rule have been made. The NMB will notify participants if there are any...

  1. Promoting Decimal Number Sense and Representational Fluency

    ERIC Educational Resources Information Center

    Suh, Jennifer M.; Johnston, Chris; Jamieson, Spencer; Mills, Michelle

    2008-01-01

    The abstract nature of mathematics requires the communication of mathematical ideas through multiple representations, such as words, symbols, pictures, objects, or actions. Building representational fluency involves using mathematical representations flexibly and being able to interpret and translate among these different models and mathematical…

  2. Neural Representations of Physics Concepts.

    PubMed

    Mason, Robert A; Just, Marcel Adam

    2016-06-01

    We used functional MRI (fMRI) to assess neural representations of physics concepts (momentum, energy, etc.) in juniors, seniors, and graduate students majoring in physics or engineering. Our goal was to identify the underlying neural dimensions of these representations. Using factor analysis to reduce the number of dimensions of activation, we obtained four physics-related factors that were mapped to sets of voxels. The four factors were interpretable as causal motion visualization, periodicity, algebraic form, and energy flow. The individual concepts were identifiable from their fMRI signatures with a mean rank accuracy of .75 using a machine-learning (multivoxel) classifier. Furthermore, there was commonality in participants' neural representation of physics; a classifier trained on data from all but one participant identified the concepts in the left-out participant (mean accuracy = .71 across all nine participant samples). The findings indicate that abstract scientific concepts acquired in an educational setting evoke activation patterns that are identifiable and common, indicating that science education builds abstract knowledge using inherent, repurposed brain systems.

  3. Topographic NMF for data representation.

    PubMed

    Xiao, Yanhui; Zhu, Zhenfeng; Zhao, Yao; Wei, Yunchao; Wei, Shikui; Li, Xuelong

    2014-10-01

    Nonnegative matrix factorization (NMF) is a useful technique to explore a parts-based representation by decomposing the original data matrix into a few parts-based basis vectors and encodings with nonnegative constraints. It has been widely used in image processing and pattern recognition tasks due to its psychological and physiological interpretation of natural data whose representation may be parts-based in human brain. However, the nonnegative constraint for matrix factorization is generally not sufficient to produce representations that are robust to local transformations. To overcome this problem, in this paper, we proposed a topographic NMF (TNMF), which imposes a topographic constraint on the encoding factor as a regularizer during matrix factorization. In essence, the topographic constraint is a two-layered network, which contains the square nonlinearity in the first layer and the square-root nonlinearity in the second layer. By pooling together the structure-correlated features belonging to the same hidden topic, the TNMF will force the encodings to be organized in a topographical map. Thus, the feature invariance can be promoted. Some experiments carried out on three standard datasets validate the effectiveness of our method in comparison to the state-of-the-art approaches.

  4. Symbol Systems and Pictorial Representations

    NASA Astrophysics Data System (ADS)

    Diederich, Joachim; Wright, Susan

    All problem-solvers are subject to the same ultimate constraints -- limitations on space, time, and materials (Minsky, 1985). He introduces two principles: (1) Economics: Every intelligence must develop symbol-systems for representing objects, causes and goals, and (2) Sparseness: Every evolving intelligence will eventually encounter certain very special ideas -- e.g., about arithmetic, causal reasoning, and economics -- because these particular ideas are very much simpler than other ideas with similar uses. An extra-terrestrial intelligence (ETI) would have developed symbol systems to express these ideas and would have the capacity of multi-modal processing. Vakoch (1998) states that ...``ETI may rely significantly on other sensory modalities (than vision). Particularly useful representations would be ones that may be intelligible through more than one sensory modality. For instance, the information used to create a three-dimensional representation of an object might be intelligible to ETI heavily reliant on either visual or tactile sensory processes.'' The cross-modal representations Vakoch (1998) describes and the symbol systems Minsky (1985) proposes are called ``metaphors'' when combined. Metaphors allow for highly efficient communication. Metaphors are compact, condensed ways of expressing an idea: words, sounds, gestures or images are used in novel ways to refer to something they do not literally denote. Due to the importance of Minsky's ``economics'' principle, it is therefore possible that a message heavily relies on metaphors.

  5. Representations of metabolic knowledge: Pathways

    SciTech Connect

    Karp, P.D.; Paley, S.M.

    1994-12-31

    The automatic generation of drawings of metabolic pathways is a challenging problem that depends intimately on exactly what information has been recorded for each pathway, and on how that information is encoded. The chief contributions of the paper are a minimized representation for biochemical pathways called the predecessor list, and inference procedures for converting the predecessor list into a pathway-graph representation that can serve as input to a pathway-drawing algorithm. The predecessor list has several advantages over the pathway graph, including its compactness and its lack of redundancy. The conversion between the two representations can be formulated as both a constraint-satisfaction problem and a logical inference problem, whose goal is to assign directions to reactions, and to determine which are the main chemical compounds in the reaction. We describe a set of production rules that solves this inference problem. We also present heuristics for inferring whether the exterior compounds that are substrates of reactions at the periphery of a pathway are side or main compounds. These techniques were evaluated on 18 metabolic pathways from the EcoCyc knowledge base.

  6. Representation

    DTIC Science & Technology

    2006-09-01

    absolutely nothing, for others familiarity or even a sense of kinship while others feel pangs of contemptuousness. The psychologist Carl Jung ...noticed this about people.1 Of the Christian cross, Jung noted that it carried a much different significance (p.81) if found after one’s name in a book...signifying their death as opposed to its placement on a building. Jung researched early Christianity and discovered that the crossbeam of its Latin

  7. Assessing Spatial Cognition in Stereoscopic Environments

    NASA Astrophysics Data System (ADS)

    Price, Aaron; Lee, H.

    2008-05-01

    Nineteen middle-school aged students visiting a planetarium were presented with three visuospatial tasks in both 2D (paper) and stereoscopic environments. The students' performance on tasks was evaluated in order to determine the impact of stereoscopic presentation upon accuracy and task completion time. Results show that accuracy did not differ between the two representational environments while completion time was greater for the stereoscopic environment. Post task interviews show that spatial and temporal discontiguity increased the cognitive load. Additionally, the interviews showed that students continued to visualize in two dimensions while using the stereoscopic representations.

  8. Research on knowledge representation, machine learning, and knowledge acquisition

    NASA Technical Reports Server (NTRS)

    Buchanan, Bruce G.

    1987-01-01

    Research in knowledge representation, machine learning, and knowledge acquisition performed at Knowledge Systems Lab. is summarized. The major goal of the research was to develop flexible, effective methods for representing the qualitative knowledge necessary for solving large problems that require symbolic reasoning as well as numerical computation. The research focused on integrating different representation methods to describe different kinds of knowledge more effectively than any one method can alone. In particular, emphasis was placed on representing and using spatial information about three dimensional objects and constraints on the arrangement of these objects in space. Another major theme is the development of robust machine learning programs that can be integrated with a variety of intelligent systems. To achieve this goal, learning methods were designed, implemented and experimented within several different problem solving environments.

  9. Robot Control Based On Spatial-Operator Algebra

    NASA Technical Reports Server (NTRS)

    Rodriguez, Guillermo; Kreutz, Kenneth K.; Jain, Abhinandan

    1992-01-01

    Method for mathematical modeling and control of robotic manipulators based on spatial-operator algebra providing concise representation and simple, high-level theoretical frame-work for solution of kinematical and dynamical problems involving complicated temporal and spatial relationships. Recursive algorithms derived immediately from abstract spatial-operator expressions by inspection. Transition from abstract formulation through abstract solution to detailed implementation of specific algorithms to compute solution greatly simplified. Complicated dynamical problems like two cooperating robot arms solved more easily.

  10. Reasoning with inaccurate spatial knowledge. [for Planetary Rover

    NASA Technical Reports Server (NTRS)

    Doshi, Rajkumar S.; White, James E.; Lam, Raymond; Atkinson, David J.

    1988-01-01

    This paper describes work in progress on spatial planning for a semiautonomous mobile robot vehicle. The overall objective is to design a semiautonomous rover to plan routes in unknown, natural terrains. The approach to spatial planning involves deduction of common-sense spatial knowledge using geographical information, natural terrain representations, and assimilation of new and possibly conflicting terrain information. This report describes the ongoing research and implementation.

  11. Negotiated Representational Mediators: How Young Children Decide What to Include in Their Science Representations

    ERIC Educational Resources Information Center

    Danish, Joshua A.; Enyedy, Noel

    2007-01-01

    In this paper, we synthesize two bodies of work related to students' representational activities: the notions of meta-representational competence and representation as a form of practice. We report on video analyses of kindergarten and first-grade students as they create representations of pollination in a science classroom, as well as summarize…

  12. Military Representation: The Theoretical and Practical Implications of Population Representation in the American Armed Forces

    DTIC Science & Technology

    1979-10-01

    REPRESENTATION AND SOCIAL EQUITY: PAST AND PRESENT EXPERIENCES.. ............... 103 Equity in the Military Melting Pot Black Representation in the...Vietnam The Vietnam-Era Draft in Retrospect Military Representation and Social Equity under the AVF Measures of Social Equity Implications CHAPTER V...MILITARY REPRESENTATION AND SOCIAL EQUITY: THE POLICY MAZE ........ ..................... ... 183 Benefits vs. Burdens of Military Service

  13. Spatial aggregation: Language and applications

    SciTech Connect

    Bailey-Kellogg, C.; Zhao, F.; Yip, K.

    1996-12-31

    Spatial aggregation is a framework for organizing computations around image-like, analogue representations of physical processes in data interpretation and control tasks. It conceptualizes common computational structures in a class of implemented problem solvers for difficult scientific and engineering problems. It comprises a mechanism, a language, and a programming style. The spatial aggregation mechanism transforms a numerical input field to successively higher-level descriptions by applying a small, identical set of operators to each layer given a metric, neighborhood relation and equivalence relation. This paper describes the spatial aggregation language and its applications. The spatial aggregation language provides two abstract data types - neighborhood graph and field - and a set of interface operators for constructing the transformations of the field, together with a library of component implementations from which a user can mix-and-match and specialize for a particular application. The language allows users to isolate and express important computational ideas in different problem domains while hiding low-level details. We illustrate the use of the language with examples ranging from trajectory grouping in dynamics interpretation to region growing in image analysis. Programs for these different task domains can be written in a modular, concise fashion in the spatial aggregation language.

  14. Representation or context as a cognitive strategy in colour constancy?

    PubMed

    Lin, Ta-Wei; Sun, Chun-Wang

    2008-01-01

    If an identification task with colour constancy as its objective is carried out under drastically changing illumination, do people rely mainly on colour information or do they rely on other sources of information? This question suggested two hypotheses for testing: (i) context hypothesis: people rely mainly on colour information (spectral reflectance or illumination chromaticity) to achieve colour constancy; (ii) representation hypothesis: people rely mainly on all other clues associated with colour to achieve colour constancy, including form information (any shape elements) and space information (spatial coordinates or spatial correlation). Experiment 1 showed that form information was readily associated with colour information to produce implicit representation. This gave the best colour-constancy performance (95.72%) and the fastest processing speed, so it probably used a top-down process. However, it was also prone to error owing to assumptions. Space information was not readily associated with colour information so colour-constancy performance was halved (48.73%) and processing time doubled. When the subject was deprived of both information sources and only given colour information, this resulted in the longest reaction times and the worst colour-constancy performance (41.38%). These results clearly support the representation hypothesis rather than the context hypothesis. When all three clues were available at the same time, the order of preference was: symbol, location, then colour. Experiment 2 showed that when form information was the main clue, colour-constancy performance was conceptually driven and processed more quickly; this supports the representation hypothesis. However, when form information was not used, colour constancy was data-driven, processed more slowly, and achieved an inferior identification rate overall; this supports the context hypothesis.

  15. Learning semantic histopathological representation for basal cell carcinoma classification

    NASA Astrophysics Data System (ADS)

    Gutiérrez, Ricardo; Rueda, Andrea; Romero, Eduardo

    2013-03-01

    Diagnosis of a histopathology glass slide is a complex process that involves accurate recognition of several structures, their function in the tissue and their relation with other structures. The way in which the pathologist represents the image content and the relations between those objects yields a better and accurate diagnoses. Therefore, an appropriate semantic representation of the image content will be useful in several analysis tasks such as cancer classification, tissue retrieval and histopahological image analysis, among others. Nevertheless, to automatically recognize those structures and extract their inner semantic meaning are still very challenging tasks. In this paper we introduce a new semantic representation that allows to describe histopathological concepts suitable for classification. The approach herein identify local concepts using a dictionary learning approach, i.e., the algorithm learns the most representative atoms from a set of random sampled patches, and then models the spatial relations among them by counting the co-occurrence between atoms, while penalizing the spatial distance. The proposed approach was compared with a bag-of-features representation in a tissue classification task. For this purpose, 240 histological microscopical fields of view, 24 per tissue class, were collected. Those images fed a Support Vector Machine classifier per class, using 120 images as train set and the remaining ones for testing, maintaining the same proportion of each concept in the train and test sets. The obtained classification results, averaged from 100 random partitions of training and test sets, shows that our approach is more sensitive in average than the bag-of-features representation in almost 6%.

  16. Factors influencing incidental representation of previously unknown conservation features in marine protected areas.

    PubMed

    Bridge, Tom C L; Grech, Alana M; Pressey, Robert L

    2016-02-01

    Spatially explicit information on species distributions for conservation planning is invariably incomplete; therefore, the use of surrogates is required to represent broad-scale patterns of biodiversity. Despite significant interest in the effectiveness of surrogates for predicting spatial distributions of biodiversity, few researchers have explored questions involving the ability of surrogates to incidentally represent unknown features of conservation interest. We used the Great Barrier Reef marine reserve network to examine factors affecting incidental representation of conservation features that were unknown at the time the reserve network was established. We used spatially explicit information on the distribution of 39 seabed habitats and biological assemblages and the conservation planning software Marxan to examine how incidental representation was affected by the spatial characteristics of the features; the conservation objectives (the minimum proportion of each feature included in no-take areas); the spatial configuration of no-take areas; and the opportunity cost of conservation. Cost was closely and inversely correlated to incidental representation. However, incidental representation was achieved, even in a region with only coarse-scale environmental data, by adopting a precautionary approach that explicitly considered the potential for unknown features. Our results indicate that incidental representation is enhanced by partitioning selection units along biophysical gradients to account for unknown within-feature variability and ensuring that no-take areas are well distributed throughout the region; by setting high conservation objectives that (in this case >33%) maximize the chances of capturing unknown features incidentally; and by carefully considering the designation of cost to planning units when using decision-support tools for reserve design. The lessons learned from incidental representation in the Great Barrier Reef have implications for

  17. Aging affects spatial reconstruction more than spatial pattern separation performance even after extended practice.

    PubMed

    Clark, Rachel; Tahan, Asli C; Watson, Patrick D; Severson, Joan; Cohen, Neal J; Voss, Michelle

    2017-03-21

    Although the hippocampus experiences age-related anatomical and functional deterioration, the effects of aging vary across hippocampal-dependent cognitive processes. In particular, whether or not the hippocampus is known to be required for a spatial memory process is not an accurate predictor on its own of whether aging will affect performance. Therefore, the primary objective of this study was to compare the effects of healthy aging on a test of spatial pattern separation and a test of spatial relational processing, which are two aspects of spatial memory that uniquely emphasize the use of multiple hippocampal-dependent processes. Spatial pattern separation supports spatial memory by preserving unique representations for distinct locations. Spatial relational processing forms relational representations of objects to locations or between objects and other objects in space. To test our primary objective, 30 young (18-30 years; 21F) and 30 older participants (60-80 years; 21F) all completed a spatial pattern separation task and a task designed to require spatial relational processing through spatial reconstruction. To ensure aging effects were not due to inadequate time to develop optimal strategies or become comfortable with the testing devices, a subset of participants had extended practice across three sessions on each task. Results showed that older adults performed more poorly than young on the spatial reconstruction task that emphasized the use of spatial relational processing, and that age effects persisted even after controlling for pattern separation performance. Further, older adults performed more poorly on spatial reconstruction than young adults even after three testing sessions each separated by 7-10 days, suggesting effects of aging are resistant to extended practice and likely reflect genuine decline in hippocampal memory abilities.

  18. Auditory spatial processing in the human cortex.

    PubMed

    Salminen, Nelli H; Tiitinen, Hannu; May, Patrick J C

    2012-12-01

    The auditory system codes spatial locations in a way that deviates from the spatial representations found in other modalities. This difference is especially striking in the cortex, where neurons form topographical maps of visual and tactile space but where auditory space is represented through a population rate code. In this hemifield code, sound source location is represented in the activity of two widely tuned opponent populations, one tuned to the right and the other to the left side of auditory space. Scientists are only beginning to uncover how this coding strategy adapts to various spatial processing demands. This review presents the current understanding of auditory spatial processing in the cortex. To this end, the authors consider how various implementations of the hemifield code may exist within the auditory cortex and how these may be modulated by the stimulation and task context. As a result, a coherent set of neural strategies for auditory spatial processing emerges.

  19. Alternative Approach to Nuclear Data Representation

    SciTech Connect

    Pruet, J; Brown, D; Beck, B; McNabb, D P

    2005-07-27

    This paper considers an approach for representing nuclear data that is qualitatively different from the approach currently adopted by the nuclear science community. Specifically, they examine a representation in which complicated data is described through collections of distinct and self contained simple data structures. This structure-based representation is compared with the ENDF and ENDL formats, which can be roughly characterized as dictionary-based representations. A pilot data representation for replacing the format currently used at LLNL is presented. Examples are given as is a discussion of promises and shortcomings associated with moving from traditional dictionary-based formats to a structure-rich or class-like representation.

  20. Global Ensemble Texture Representations are Critical to Rapid Scene Perception.

    PubMed

    Brady, Timothy F; Shafer-Skelton, Anna; Alvarez, George A

    2017-03-06

    Traditionally, recognizing the objects within a scene has been treated as a prerequisite to recognizing the scene itself. However, research now suggests that the ability to rapidly recognize visual scenes could be supported by global properties of the scene itself rather than the objects within the scene. Here, we argue for a particular instantiation of this view: That scenes are recognized by treating them as a global texture and processing the pattern of orientations and spatial frequencies across different areas of the scene without recognizing any objects. To test this model, we asked whether there is a link between how proficient individuals are at rapid scene perception and how proficiently they represent simple spatial patterns of orientation information (global ensemble texture). We find a significant and selective correlation between these tasks, suggesting a link between scene perception and spatial ensemble tasks but not nonspatial summary statistics In a second and third experiment, we additionally show that global ensemble texture information is not only associated with scene recognition, but that preserving only global ensemble texture information from scenes is sufficient to support rapid scene perception; however, preserving the same information is not sufficient for object recognition. Thus, global ensemble texture alone is sufficient to allow activation of scene representations but not object representations. Together, these results provide evidence for a view of scene recognition based on global ensemble texture rather than a view based purely on objects or on nonspatially localized global properties. (PsycINFO Database Record

  1. Attention modulates spatial priority maps in the human occipital, parietal and frontal cortices

    PubMed Central

    Sprague, Thomas C.; Serences, John T.

    2014-01-01

    Computational theories propose that attention modulates the topographical landscape of spatial ‘priority’ maps in regions of visual cortex so that the location of an important object is associated with higher activation levels. While single-unit recording studies have demonstrated attention-related increases in the gain of neural responses and changes in the size of spatial receptive fields, the net effect of these modulations on the topography of region-level priority maps has not been investigated. Here, we used fMRI and a multivariate encoding model to reconstruct spatial representations of attended and ignored stimuli using activation patterns across entire visual areas. These reconstructed spatial representations reveal the influence of attention on the amplitude and size of stimulus representations within putative priority maps across the visual hierarchy. Our results suggest that attention increases the amplitude of stimulus representations in these spatial maps, particularly in higher visual areas, but does not substantively change their size. PMID:24212672

  2. Multiscale 3-D shape representation and segmentation using spherical wavelets.

    PubMed

    Nain, Delphine; Haker, Steven; Bobick, Aaron; Tannenbaum, Allen

    2007-04-01

    This paper presents a novel multiscale shape representation and segmentation algorithm based on the spherical wavelet transform. This work is motivated by the need to compactly and accurately encode variations at multiple scales in the shape representation in order to drive the segmentation and shape analysis of deep brain structures, such as the caudate nucleus or the hippocampus. Our proposed shape representation can be optimized to compactly encode shape variations in a population at the needed scale and spatial locations, enabling the construction of more descriptive, nonglobal, nonuniform shape probability priors to be included in the segmentation and shape analysis framework. In particular, this representation addresses the shortcomings of techniques that learn a global shape prior at a single scale of analysis and cannot represent fine, local variations in a population of shapes in the presence of a limited dataset. Specifically, our technique defines a multiscale parametric model of surfaces belonging to the same population using a compact set of spherical wavelets targeted to that population. We further refine the shape representation by separating into groups wavelet coefficients that describe independent global and/or local biological variations in the population, using spectral graph partitioning. We then learn a prior probability distribution induced over each group to explicitly encode these variations at different scales and spatial locations. Based on this representation, we derive a parametric active surface evolution using the multiscale prior coefficients as parameters for our optimization procedure to naturally include the prior for segmentation. Additionally, the optimization method can be applied in a coarse-to-fine manner. We apply our algorithm to two different brain structures, the caudate nucleus and the hippocampus, of interest in the study of schizophrenia. We show: 1) a reconstruction task of a test set to validate the expressiveness of

  3. Representation learning: a review and new perspectives.

    PubMed

    Bengio, Yoshua; Courville, Aaron; Vincent, Pascal

    2013-08-01

    The success of machine learning algorithms generally depends on data representation, and we hypothesize that this is because different representations can entangle and hide more or less the different explanatory factors of variation behind the data. Although specific domain knowledge can be used to help design representations, learning with generic priors can also be used, and the quest for AI is motivating the design of more powerful representation-learning algorithms implementing such priors. This paper reviews recent work in the area of unsupervised feature learning and deep learning, covering advances in probabilistic models, autoencoders, manifold learning, and deep networks. This motivates longer term unanswered questions about the appropriate objectives for learning good representations, for computing representations (i.e., inference), and the geometrical connections between representation learning, density estimation, and manifold learning.

  4. Is space representation distorted in neglect?

    PubMed

    Karnath, H O; Ferber, S

    1999-01-01

    It has been argued that neglect of contralateral stimuli following brain damage might be associated with either a compressed or an anisometric neural representation of space along the earth-horizontal axis. Two different models have been put forward. One model proposes a uniform compression of subjective space, while the other envisages an expansion on one side of space and a compression on the other. We tested these models by determining neglect patients' perception of spatial distances in the horizontal plane. The models differ concerning the expected degree of under- vs overestimation of distances in the left and right hemispace. In the first experiment, patients were asked to position ten red LEDs equidistantly along a semicircle, which was located horizontally in front of them at eye level. A second experiment compared the patients' subjective perception of short, medium and long distances extending into left and right hemispace. We found no evidence for any compression or expansion, nor for anisometry along the earth-horizontal axis. These findings argue against a distortion of subjective space along the horizontal axis in patients with neglect which could account for their failure to orient towards and to explore the contralesional parts of space.

  5. Representation of numerosity in posterior parietal cortex

    PubMed Central

    Roitman, Jamie D.; Brannon, Elizabeth M.; Platt, Michael L.

    2012-01-01

    Humans and animals appear to share a similar representation of number as an analog magnitude on an internal, subjective scale. Neurological and neurophysiological data suggest that posterior parietal cortex (PPC) is a critical component of the circuits that form the basis of numerical abilities in humans. Patients with parietal lesions are impaired in their ability to access the deep meaning of numbers. Acalculiac patients with inferior parietal damage often have difficulty performing arithmetic (2 + 4?) or number bisection (what is between 3 and 5?) tasks, but are able to recite multiplication tables and read or write numerals. Functional imaging studies of neurologically intact humans performing subtraction, number comparison, and non-verbal magnitude comparison tasks show activity in areas within the intraparietal sulcus (IPS). Taken together, clinical cases and imaging studies support a critical role for parietal cortex in the mental manipulation of numerical quantities. Further, responses of single PPC neurons in non-human primates are sensitive to the numerosity of visual stimuli independent of low-level stimulus qualities. When monkeys are trained to make explicit judgments about the numerical value of such stimuli, PPC neurons encode their cardinal numerical value; without such training PPC neurons appear to encode numerical magnitude in an analog fashion. Here we suggest that the spatial and integrative properties of PPC neurons contribute to their critical role in numerical cognition. PMID:22666194

  6. Pointing with the left and right hands in congenitally blind children.

    PubMed

    Ittyerah, Miriam; Gaunet, Florence; Rossetti, Yves

    2007-07-01

    Congenitally blind and blindfolded sighted children at ages of 6, 8, 10 and 12 years performed a pointing task with their left and right index fingers at an array of three targets on a touch screen to immediate (0 s) and delayed (4 s) instructions. Accuracy was greater for immediate than delayed pointing and there was an effect of delay for the orientation of the main axis of the pointing distribution in both groups, indicating distinct spatial representations with development such as ego- and allocentric frames of reference, respectively. The pointing responses of the blind covered less surface area indicating better overall accuracy as compared to the sighted blindfolded. The hands differed for four of the six precision and accuracy parameters. The right hand performed better and seemed relatively contextually oriented, whereas the responses of the left hand were closer to the body and egocentrically oriented. The elongation of the scatter of the pointing responses was greater for the boys and more allocentrically oriented, indicating gender differences in spatial representation. The study provides a first evidence of ego- and allocentric spatial frames of reference in congenitally blind children and an ability to point at targets with the left and right hands in the total absence of vision.

  7. Self-locomotion and spatial language and spatial cognition: insights from typical and atypical development.

    PubMed

    Oudgenoeg-Paz, Ora; Rivière, James

    2014-01-01

    Various studies have shown that occurrence of locomotion in infancy is correlated with the development of spatial cognitive competencies. Recent evidence suggests that locomotor experience might also be important for the development of spatial language. Together these findings suggest that locomotor experience might play a crucial role in the development of linguistic-cognitive spatial skills. However, some studies indicate that, despite their total deprivation of locomotor experience, young children with spinal muscular atrophy (SMA) have the capacity to acquire and use rich spatial representations including good spatial language. Nonetheless, we have to be cautious about what the striking performances displayed by SMA children can reveal on the link between motor and spatial development, as the dynamics of brain development in atypically developing children are different from typically developing children.

  8. Self-locomotion and spatial language and spatial cognition: insights from typical and atypical development

    PubMed Central

    Oudgenoeg-Paz, Ora; Rivière, James

    2014-01-01

    Various studies have shown that occurrence of locomotion in infancy is correlated with the development of spatial cognitive competencies. Recent evidence suggests that locomotor experience might also be important for the development of spatial language. Together these findings suggest that locomotor experience might play a crucial role in the development of linguistic-cognitive spatial skills. However, some studies indicate that, despite their total deprivation of locomotor experience, young children with spinal muscular atrophy (SMA) have the capacity to acquire and use rich spatial representations including good spatial language. Nonetheless, we have to be cautious about what the striking performances displayed by SMA children can reveal on the link between motor and spatial development, as the dynamics of brain development in atypically developing children are different from typically developing children. PMID:24917836

  9. Solving Large-scale Spatial Optimization Problems in Water Resources Management through Spatial Evolutionary Algorithms

    NASA Astrophysics Data System (ADS)

    Wang, J.; Cai, X.

    2007-12-01

    A water resources system can be defined as a large-scale spatial system, within which distributed ecological system interacts with the stream network and ground water system. Water resources management, the causative factors and hence the solutions to be developed have a significant spatial dimension. This motivates a modeling analysis of water resources management within a spatial analytical framework, where data is usually geo- referenced and in the form of a map. One of the important functions of Geographic information systems (GIS) is to identify spatial patterns of environmental variables. The role of spatial patterns in water resources management has been well established in the literature particularly regarding how to design better spatial patterns for satisfying the designated objectives of water resources management. Evolutionary algorithms (EA) have been demonstrated to be successful in solving complex optimization models for water resources management due to its flexibility to incorporate complex simulation models in the optimal search procedure. The idea of combining GIS and EA motivates the development and application of spatial evolutionary algorithms (SEA). SEA assimilates spatial information into EA, and even changes the representation and operators of EA. In an EA used for water resources management, the mathematical optimization model should be modified to account the spatial patterns; however, spatial patterns are usually implicit, and it is difficult to impose appropriate patterns to spatial data. Also it is difficult to express complex spatial patterns by explicit constraints included in the EA. The GIS can help identify the spatial linkages and correlations based on the spatial knowledge of the problem. These linkages are incorporated in the fitness function for the preference of the compatible vegetation distribution. Unlike a regular GA for spatial models, the SEA employs a special hierarchical hyper-population and spatial genetic operators

  10. The Influence of Visual Experience on the Ability to Form Spatial Mental Models Based on Route and Survey Descriptions

    ERIC Educational Resources Information Center

    Noordzij, Matthijs L.; Zuidhoek, Sander; Postma, Albert

    2006-01-01

    The purpose of the present study is twofold: the first objective is to evaluate the importance of visual experience for the ability to form a spatial representation (spatial mental model) of fairly elaborate spatial descriptions. Secondly, we examine whether blind people exhibit the same preferences (i.e. level of performance on spatial tasks) as…

  11. Representation and re-presentation in litigation science.

    PubMed

    Jasanoff, Sheila

    2008-01-01

    Federal appellate courts have devised several criteria to help judges distinguish between reliable and unreliable scientific evidence. The best known are the U.S. Supreme Court's criteria offered in 1993 in Daubert v. Merrell Dow Pharmaceuticals, Inc. This article focuses on another criterion, offered by the Ninth Circuit Court of Appeals, that instructs judges to assign lower credibility to "litigation science" than to science generated before litigation. In this article I argue that the criterion-based approach to judicial screening of scientific evidence is deeply flawed. That approach buys into the faulty premise that there are external criteria, lying outside the legal process, by which judges can distinguish between good and bad science. It erroneously assumes that judges can ascertain the appropriate criteria and objectively apply them to challenged evidence before litigation unfolds, and before methodological disputes are sorted out during that process. Judicial screening does not take into account the dynamics of litigation itself, including gaming by the parties and framing by judges, as constitutive factors in the production and representation of knowledge. What is admitted through judicial screening, in other words, is not precisely what a jury would see anyway. Courts are sites of repeated re-representations of scientific knowledge. In sum, the screening approach fails to take account of the wealth of existing scholarship on the production and validation of scientific facts. An unreflective application of that approach thus puts courts at risk of relying upon a "junk science" of the nature of scientific knowledge.

  12. The effect of viewpoint on body representation in the extrastriate body area.

    PubMed

    Chan, Annie W-Y; Peelen, Marius V; Downing, Paul E

    2004-10-25

    Functional neuroimaging has revealed several brain regions that are selective for the visual appearance of others, in particular the face. More recent evidence points to a lateral temporal region that responds to the visual appearance of the human body (extrastriate body area or EBA). We tested whether this region distinguishes between egocentric and allocentric views of the self and other people. EBA activity increased significantly for allocentric relative to egocentric views in the right hemisphere, but was not influenced by identity. Whole-brain analyses revealed several regions that were influenced by viewpoint or identity. Modulation of EBA activity by viewpoint was modest relative to modulation by stimulus class. We propose that the EBA plays a relatively early role in social vision.

  13. Unitary Representations of Gauge Groups

    NASA Astrophysics Data System (ADS)

    Huerfano, Ruth Stella

    I generalize to the case of gauge groups over non-trivial principal bundles representations that I. M. Gelfand, M. I. Graev and A. M. Versik constructed for current groups. The gauge group of the principal G-bundle P over M, (G a Lie group with an euclidean structure, M a compact, connected and oriented manifold), as the smooth sections of the associated group bundle is presented and studied in chapter I. Chapter II describes the symmetric algebra associated to a Hilbert space, its Hilbert structure, a convenient exponential and a total set that later play a key role in the construction of the representation. Chapter III is concerned with the calculus needed to make the space of Lie algebra valued 1-forms a Gaussian L^2-space. This is accomplished by studying general projective systems of finitely measurable spaces and the corresponding systems of sigma -additive measures, all of these leading to the description of a promeasure, a concept modeled after Bourbaki and classical measure theory. In the case of a locally convex vector space E, the corresponding Fourier transform, family of characters and the existence of a promeasure for every quadratic form on E^' are established, so the Gaussian L^2-space associated to a real Hilbert space is constructed. Chapter III finishes by exhibiting the explicit Hilbert space isomorphism between the Gaussian L ^2-space associated to a real Hilbert space and the complexification of its symmetric algebra. In chapter IV taking as a Hilbert space H the L^2-space of the Lie algebra valued 1-forms on P, the gauge group acts on the motion group of H defining in an straight forward fashion the representation desired.

  14. The conceptual representation of number.

    PubMed

    Patson, Nikole D; George, Gerret; Warren, Tessa

    2014-01-01

    The experiments reported here investigated the format of plural conceptual representations using a picture-matching paradigm. In Experiment 1, participants read sentences that ended with a singular noun phrase (NP), a two-quantified plural NP, or a plural definite description [The parents handed the child the (two) crayon/s] and then saw a picture of one or multiple referents for the NP. Judgement times to confirm that there was overlap between the pictured object(s) and a noun in the sentence showed an interaction between the NP's number and NP-picture match. For singular NPs and two-quantified NPs, participants were reliably faster to respond "yes" to a picture that had the exact number of objects specified by the NP, but for plural definite descriptions, the effect of the number of pictured items was not reliable. Experiment 2 extended this finding to conceptual plurals. Participants read sentences biased toward either a collective (Together the men carried a box-box is interpreted as singular) or distributed (Each of the men carried a box-box is likely interpreted as plural) reading. Experiment 2 showed the same interaction between NP conceptual plurality and NP-picture match as that in Experiment 1. These results suggest that: (a) our default conceptual representations for plural definite descriptions are no more similar to images of small sets of multiple items than to images of singular items; and (b) the difference between singular and plural conceptual representations is unlikely to be simply the presence or absence of a plural feature. The results are consistent with theories in which plurality is unmarked, such that some plural NPs can refer to singular referents [e.g., Sauerland, U., Anderssen, J., & Yatsushiro, J. (2005). The plural is semantically unmarked. In S. Kepser & M. Reis (Eds.), Linguistic evidence (pp. 413-434). Berlin: de Gruyter].

  15. Multiple External Representations: Bridges or Barriers to Climate Literacy?

    NASA Astrophysics Data System (ADS)

    Holzer, M. A.

    2012-12-01

    The continuous barrage of science related headlines and other media sources warn us of the need to heed the imperative for a science literate society. Climate change, genetics, evolution are a few of the charged and complex scientific topics requiring public understanding of the science to fully grasp the enormous reach of these topics in our daily lives. For instance, our global climate is changing as evidenced by the analysis of Earth observing satellite data, in-situ data, and proxy data records. How we as a global society decide to address the needs associated with a changing climate are contingent upon having a population that understands how the climate system functions, and can therefore make informed decisions on how to mitigate the effects of climate change. Communication in science relies heavily on the use of multiple representations to support the claims presented. However, these multiple representations require spatial and temporal skills to interpret information portrayed in them, and how a person engages with complex text and the multiple representations varies with the level of expertise one has with the content area. For example, a climatologist will likely identify anomalous data more quickly than a novice when presented with a graph of temperature change over time. These representations are used throughout textbooks as well as popular reading materials such as newspapers and magazines without much consideration for how a reader engages with complex text, diagrams, images, and graphs. If the ability to read and interact with scientific text found in popular literature is perceived as a worthy goal of scientific literacy, then it is imperative that readers understand the relationship between multiple representations and the text while interacting with the science literature they are reading. For example, in climate related articles multiple representations not only support the content, but they are part of the content not to be overlooked by a

  16. Argumentation-Based Collaborative Inquiry in Science Through Representational Work: Impact on Primary Students' Representational Fluency

    NASA Astrophysics Data System (ADS)

    Nichols, Kim; Gillies, Robyn; Hedberg, John

    2016-06-01

    This study explored the impact of argumentation-promoting collaborative inquiry and representational work in science on primary students' representational fluency. Two hundred sixty-six year 6 students received instruction on natural disasters with a focus on collaborative inquiry. Students in the Comparison condition received only this instruction. Students in the Explanation condition were also instructed with a focus on explanations using representations. Students in the Argumentation condition received similar instruction to the Comparison and Explanation conditions but were also instructed with a focus on argumentation using representations. Conceptual understanding and representational competencies (interpreting, explaining and constructing representations) were measured prior to and immediately following the instruction. A small group collaborative representational task was video recorded at the end of the instruction and coded for modes of knowledge-building discourse; knowledge-sharing and knowledge-construction. Higher measures of conceptual understanding, representational competencies and knowledge-construction discourse were taken together as representational fluency. Students in all conditions showed significant improvement in conceptual understanding, interpreting representations and explaining representations. Students in the Comparison and Argumentation conditions also showed significantly improved scores in constructing representations. When compared to the other conditions, the Explanation group had the highest scores in conceptual understanding and also interpreting and explaining representations. While the Argumentation group had the highest scores for constructing representations, their scores for conceptual understanding as well as interpreting and explaining representations were also high. There was no difference between the groups in knowledge-sharing discourse; however, the Argumentation group displayed the highest incidence of knowledge

  17. Visual representation of scientific information.

    PubMed

    Wong, Bang

    2011-02-15

    Great technological advances have enabled researchers to generate an enormous amount of data. Data analysis is replacing data generation as the rate-limiting step in scientific research. With this wealth of information, we have an opportunity to understand the molecular causes of human diseases. However, the unprecedented scale, resolution, and variety of data pose new analytical challenges. Visual representation of data offers insights that can lead to new understanding, whether the purpose is analysis or communication. This presentation shows how art, design, and traditional illustration can enable scientific discovery. Examples will be drawn from the Broad Institute's Data Visualization Initiative, aimed at establishing processes for creating informative visualization models.

  18. QED in the worldline representation

    NASA Astrophysics Data System (ADS)

    Schubert, Christian

    2007-06-01

    Simultaneously with inventing the modern relativistic formalism of quantum electrodynamics, Feynman presented also a first-quantized representation of QED in terms of worldline path integrals. Although this alternative formulation has been studied over the years by many authors, only during the last fifteen years it has acquired some popularity as a computational tool. I will shortly review here three very different techniques which have been developed during the last few years for the evaluation of worldline path integrals, namely (i) the "string-inspired formalism", based on the use of worldline Green functions, (ii) the numerical "worldline Monte Carlo formalism", and (iii) the semiclassical "worldline instanton" approach.

  19. Particles, Cutoffs and Inequivalent Representations

    NASA Astrophysics Data System (ADS)

    Egg, Matthias; Lam, Vincent; Oldofredi, Andrea

    2017-03-01

    We critically review the recent debate between Doreen Fraser and David Wallace on the interpretation of quantum field theory, with the aim of identifying where the core of the disagreement lies. We show that, despite appearances, their conflict does not concern the existence of particles or the occurrence of unitarily inequivalent representations. Instead, the dispute ultimately turns on the very definition of what a quantum field theory is. We further illustrate the fundamental differences between the two approaches by comparing them both to the Bohmian program in quantum field theory.

  20. Efficient Type Representation in TAL

    NASA Technical Reports Server (NTRS)

    Chen, Juan

    2009-01-01

    Certifying compilers generate proofs for low-level code that guarantee safety properties of the code. Type information is an essential part of safety proofs. But the size of type information remains a concern for certifying compilers in practice. This paper demonstrates type representation techniques in a large-scale compiler that achieves both concise type information and efficient type checking. In our 200,000-line certifying compiler, the size of type information is about 36% of the size of pure code and data for our benchmarks, the best result to the best of our knowledge. The type checking time is about 2% of the compilation time.

  1. Virtual Human Analogs to Rodent Spatial Pattern Separation and Completion Memory Tasks

    ERIC Educational Resources Information Center

    Paleja, Meera; Girard, Todd A.; Christensen, Bruce K.

    2011-01-01

    Spatial pattern separation (SPS) and spatial pattern completion (SPC) have played an increasingly important role in computational and rodent literatures as processes underlying associative memory. SPS and SPC are complementary processes, allowing the formation of unique representations and the reconstruction of complete spatial environments based…

  2. [The Unified Health System in the users' social representation: an analysis of its structure].

    PubMed

    Gomes, Antonio Marcos Tosoli; de Oliveira, Denize Cristina; de Sá, Celso Pereira

    2011-01-01

    The objective of this study was to analyze the representational structure of a group of users of the Unified Health System (SUS) in the city of Rio de Janeiro, Brazil, concerning the system. A qualitative research, grounded on the theory of the central nucleus of the social representations, was developed with 104 users of five health care facilities. Data were collected through the free evocation to the inducer term SUS, and analyzed by the software EVOC 2000. The structure of the representation disclosed four dimensions: conceptual, evaluative, spatial, and finalistic. They presented, respectively, the following lexicons in their central nucleus: health, well attended, hospital and attendance. Negative elements of contrast were found amidst the positive representation of the system and the presence of all four dimensions was observed in the periphery, with predominance of the finalistic one. The conclusion is that the system presents itself to the citizens in a pragmatic way and that its implementation is still necessary.

  3. On volume-source representations based on the representation theorem

    NASA Astrophysics Data System (ADS)

    Ichihara, Mie; Kusakabe, Tetsuya; Kame, Nobuki; Kumagai, Hiroyuki

    2016-01-01

    We discuss different ways to characterize a moment tensor associated with an actual volume change of ΔV C , which has been represented in terms of either the stress glut or the corresponding stress-free volume change ΔV T . Eshelby's virtual operation provides a conceptual model relating ΔV C to ΔV T and the stress glut, where non-elastic processes such as phase transitions allow ΔV T to be introduced and subsequent elastic deformation of - ΔV T is assumed to produce the stress glut. While it is true that ΔV T correctly represents the moment tensor of an actual volume source with volume change ΔV C , an explanation as to why such an operation relating ΔV C to ΔV T exists has not previously been given. This study presents a comprehensive explanation of the relationship between ΔV C and ΔV T based on the representation theorem. The displacement field is represented using Green's function, which consists of two integrals over the source surface: one for displacement and the other for traction. Both integrals are necessary for representing volumetric sources, whereas the representation of seismic faults includes only the first term, as the second integral over the two adjacent fault surfaces, across which the traction balances, always vanishes. Therefore, in a seismological framework, the contribution from the second term should be included as an additional surface displacement. We show that the seismic moment tensor of a volume source is directly obtained from the actual state of the displacement and stress at the source without considering any virtual non-elastic operations. A purely mathematical procedure based on the representation theorem enables us to specify the additional imaginary displacement necessary for representing a volume source only by the displacement term, which links ΔV C to ΔV T . It also specifies the additional imaginary stress necessary for representing a moment tensor solely by the traction term, which gives the "stress glut." The

  4. Conceptual Representations of Perceptual Knowledge

    PubMed Central

    Smith, Edward E.; Myers, Nicholas; Sethi, Umrao; Pantazatos, Spiro; Yanagihara, Ted; Hirsch, Joy

    2012-01-01

    Many neuroimaging studies of semantic memory have argued that knowledge of an object’s perceptual properties are represented in a modality-specific manner. These studies often base their argument on finding activation in the left-hemisphere fusiform gyrus - a region assumed to be involved in perceptual processing - when the participant is verifying verbal statements about objects and properties. In this paper we report an extension of one of these influential papers—Kan, Barsalou, Solomon, Minor, and Thompson-Schill (2003)—and present evidence for an amodal component in the representation and processing of perceptual knowledge. Participants were required to verify object-property statements (e.g., “cat- whiskers?”; “bear-wings?”) while they were being scanned by fMRI. We replicated Kan et al’s activation in the left fusiform gyrus, but also found activation in regions of left inferior frontal gyrus (IFG) and middle-temporal gyrus, areas known to reflect amodal processes or representations. Further, only activations in the left IFG, an amodal area, were correlated with measures of behavioral performance. PMID:22994286

  5. The mental representation of bilingualism.

    PubMed

    Riehl, Claudia Maria

    2010-09-01

    This article addresses the question of how different languages are represented in our memory and how bilingual speakers access these languages in language production. The first section discusses diverse approaches to language storage. It introduces a model that considers connections between different levels of language representation, i.e., conceptual and lexical features, morpho-syntactic information, and phonological patterns. The second section is concerned with access to different languages: the focus here is on language production and models of interactive activation. The next section focuses on control mechanisms that are capable of inhibiting one language while the other is spoken. These theoretical assumptions are illustrated by authentic speech production data that provide insights into the cognitive workings of bilingual speakers. Finally, differences in mental representation due to age of acquisition or language proficiency are discussed and explained by dissimilarities in memory types and neural processes of knowledge activation. Copyright © 2010 John Wiley & Sons, Ltd. For further resources related to this article, please visit the WIREs website.

  6. Spatial language and the psychological reality of schematization.

    PubMed

    Holmes, Kevin J; Wolff, Phillip

    2013-05-01

    Although the representations underlying spatial language are often assumed to be schematic in nature, empirical evidence for a schematic format of representation is lacking. In this research, we investigate the psychological reality of such a format, using simulated motion during scene processing--previously linked to schematization--as a diagnostic. One group of participants wrote a verbal description of a scene and then completed a change detection task assessing simulated motion, while another group completed only the latter task. We expected that effects of simulated motion would be stronger following language use than not, and specifically following the use of spatial, relative to non-spatial, language. Both predictions were supported. Further, the effect of language was scene independent, suggesting that language may encourage a general mode of schematic construal. The study and its findings illustrate a novel approach to examining the perceptual properties of mental representations.

  7. Snow complexity representation and GCM climate

    NASA Astrophysics Data System (ADS)

    Dutra, Emanuel; Viterbo, Pedro; Miranda, Pedro M. A.; Balsamo, Gianpaolo

    2010-05-01

    Accurate simulations of the snow cover strongly impact on the quality of weather and climate predictions as the solar radiation absorption at land-atmosphere interface is modified by a factor up to 4 in response to snow presence (albedo effect). In Northern latitudes and Mountainous regions snow acts also as an important energy and water reservoir and a correct representation of snow mass and snow density is crucial for temperature predictions at all time-scales, with direct consequences for soil hydrology (thermal insulation effect). Three different complexity snow schemes implemented in the ECMWF land surface scheme HTESSEL are tested within the EC-EARTH framework. The snow schemes are: 1) OLD, the original HTESSEL single bulk layer snow scheme (same as in the ERA-40 and ERA-Interim reanalysis); 2) OPER, a new snow scheme in operations since September 2009, with a liquid water reservoir and revised formulations of snow density, fractional cover and snow albedo; and 3) ML3, a multi-layer version of OPER. All three snow schemes in HTESSEL are energy- and mass- balance models. The multi-layer snow scheme, ML3, was validated in offline mode covering several spatial and temporal scales: (i) site simulations for several observation locations from the Snow Models intercomparison project-2 (SnowMip2) and (ii) global simulations driven by the meteorological forcing from the Global Soil Wetness Project-2 (GSWP2) and the ECMWF ERA-Interim re-analysis. On point locations ML3 improve snow mass simulations, while on a global scale the impacts are residual pointing to the need of coupled atmosphere simulations. The 3 schemes are compared in the framework of the atmospheric model of EC-EARTH, based on the current seasonal forecast system of ECMWF. The standard configuration runs at T159 horizontal spectral resolution with 62 vertical levels. Three member ensembles of 30 years (1979-2008) simulations, with prescribed SSTs and sea ice, were performed for each of the snow schemes

  8. Local spatial frequency analysis for computer vision

    NASA Technical Reports Server (NTRS)

    Krumm, John; Shafer, Steven A.

    1990-01-01

    A sense of vision is a prerequisite for a robot to function in an unstructured environment. However, real-world scenes contain many interacting phenomena that lead to complex images which are difficult to interpret automatically. Typical computer vision research proceeds by analyzing various effects in isolation (e.g., shading, texture, stereo, defocus), usually on images devoid of realistic complicating factors. This leads to specialized algorithms which fail on real-world images. Part of this failure is due to the dichotomy of useful representations for these phenomena. Some effects are best described in the spatial domain, while others are more naturally expressed in frequency. In order to resolve this dichotomy, we present the combined space/frequency representation which, for each point in an image, shows the spatial frequencies at that point. Within this common representation, we develop a set of simple, natural theories describing phenomena such as texture, shape, aliasing and lens parameters. We show these theories lead to algorithms for shape from texture and for dealiasing image data. The space/frequency representation should be a key aid in untangling the complex interaction of phenomena in images, allowing automatic understanding of real-world scenes.

  9. Representation and Re-Presentation in Litigation Science

    PubMed Central

    Jasanoff, Sheila

    2008-01-01

    Federal appellate courts have devised several criteria to help judges distinguish between reliable and unreliable scientific evidence. The best known are the U.S. Supreme Court’s criteria offered in 1993 in Daubert v. Merrell Dow Pharmaceuticals, Inc. This article focuses on another criterion, offered by the Ninth Circuit Court of Appeals, that instructs judges to assign lower credibility to “litigation science” than to science generated before litigation. In this article I argue that the criterion-based approach to judicial screening of scientific evidence is deeply flawed. That approach buys into the faulty premise that there are external criteria, lying outside the legal process, by which judges can distinguish between good and bad science. It erroneously assumes that judges can ascertain the appropriate criteria and objectively apply them to challenged evidence before litigation unfolds, and before methodological disputes are sorted out during that process. Judicial screening does not take into account the dynamics of litigation itself, including gaming by the parties and framing by judges, as constitutive factors in the production and representation of knowledge. What is admitted through judicial screening, in other words, is not precisely what a jury would see anyway. Courts are sites of repeated re-representations of scientific knowledge. In sum, the screening approach fails to take account of the wealth of existing scholarship on the production and validation of scientific facts. An unreflective application of that approach thus puts courts at risk of relying upon a “junk science” of the nature of scientific knowledge. PMID:18197311

  10. Formation of spatial thinking skills through different training methods.

    PubMed

    Kornkasem, Sorachai; Black, John B

    2015-09-01

    Spatial training can be durable and transferable if the training involves cognitive process-based tasks. The current study explored different spatial training methods and investigated the sequences of process-based mental simulation that was facilitated by various structures of external spatial representation, 3D technology, spatial cues, and/or technical languages. A total of 115 Columbia University's students were conducted through three experiments using a between-subjects design to examine the effects of spatial training methods on spatial ability performance. The conditions for training environments included 3D-virtual and 3D-physical interactions with abstract (nonsense-geometric) and concrete (everyday-object) contents. Overall, learners in the treatment conditions improved in their spatial skills significantly more than those in the control conditions. Particularly, 3D-direct-manipulation conditions in the third experiment added promising results about the specific sequences during spatial thinking formation processes.

  11. Real-world scene representations in high-level visual cortex: it's the spaces more than the places.

    PubMed

    Kravitz, Dwight J; Peng, Cynthia S; Baker, Chris I

    2011-05-18

    Real-world scenes are incredibly complex and heterogeneous, yet we are able to identify and categorize them effortlessly. In humans, the ventral temporal parahippocampal place area (PPA) has been implicated in scene processing, but scene information is contained in many visual areas, leaving their specific contributions unclear. Although early theories of PPA emphasized its role in spatial processing, more recent reports of its function have emphasized semantic or contextual processing. Here, using functional imaging, we reconstructed the organization of scene representations across human ventral visual cortex by analyzing the distributed response to 96 diverse real-world scenes. We found that, although individual scenes could be decoded in both PPA and early visual cortex (EVC), the structure of representations in these regions was vastly different. In both regions, spatial rather than semantic factors defined the structure of representations. However, in PPA, representations were defined primarily by the spatial factor of expanse (open, closed) and in EVC primarily by distance (near, far). Furthermore, independent behavioral ratings of expanse and distance correlated strongly with representations in PPA and peripheral EVC, respectively. In neither region was content (manmade, natural) a major contributor to the overall organization. Furthermore, the response of PPA could not be used to decode the high-level semantic category of scenes even when spatial factors were held constant, nor could category be decoded across different distances. These findings demonstrate, contrary to recent reports, that the response PPA primarily reflects spatial, not categorical or contextual, aspects of real-world scenes.

  12. Update on "What" and "Where" in Spatial Language: A New Division of Labor for Spatial Terms.

    PubMed

    Landau, Barbara

    2017-03-01

    In this article, I revisit Landau and Jackendoff's () paper, "What and where in spatial language and spatial cognition," proposing a friendly amendment and reformulation. The original paper emphasized the distinct geometries that are engaged when objects are represented as members of object kinds (named by count nouns), versus when they are represented as figure and ground in spatial expressions (i.e., play the role of arguments of spatial prepositions). We provided empirical and theoretical arguments for the link between these distinct representations in spatial language and their accompanying nonlinguistic neural representations, emphasizing the "what" and "where" systems of the visual system. In the present paper, I propose a second division of labor between two classes of spatial prepositions in English that appear to be quite distinct. One class includes prepositions such as in and on, whose core meanings engage force-dynamic, functional relationships between objects, with geometry only a marginal player. The second class includes prepositions such as above/below and right/left, whose core meanings engage geometry, with force-dynamic relationships a passing or irrelevant variable. The insight that objects' force-dynamic relationships matter to spatial terms' uses is not new; but thinking of these terms as a distinct set within spatial language has theoretical and empirical consequences that are new. I propose three such consequences, rooted in the fact that geometric knowledge is highly constrained and early-emerging in life, while force-dynamic knowledge of objects and their interactions is relatively unconstrained and needs to be learned piecemeal over a lengthy timeline. First, the two classes will engage different learning problems, with different developmental trajectories for both first and second language learners; second, the classes will naturally lead to different degrees of cross-linguistic variation; and third, they may be rooted in different

  13. Representation of the Alpine snowpack in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Terzago, Silvia; Palazzi, Elisa; von Hardenberg, Jost; Provenzale, Antonello

    2016-04-01

    Global Climate Models (GCMs) still have too coarse spatial resolution to adequately reproduce the small-scale variability of precipitation and snowpack in orographically complex areas but increasingly higher resolutions are currently being introduced for the next generation of models. As a preliminary step a comparative assessment of the performances of the current, state-of-art GCMs in the representation of the snowpack characteristics is needed. Our study investigates how the GCMs participating in the Coupled Models Intercomparison Project phase 5 (CMIP5) represent the snow water equivalent and snow depth climatology over the Greater Alpine Region (4-19°E, 43-49°N) during the historical period 1980-2005. We compare the CMIP5 model outputs to the available satellite and reanalysis products, including Global Monthly EASE-Grid Snow Water Equivalent Climatology, Climate Forecast System Reanalysis, Modern Era-Retrospective analysis for Research and Applications, ERA-Interim/Land and 20th Century reanalyses, highlighting common features and discrepancies. We also explore the models spread in the representation of the snow seasonal cycle and its projected changes for the XXI century in RCP4.5 and RCP8.5 scenarios, discussing the results in the frame of the latest literature studies. The present analysis aims at providing a comprehensive picture of the current uncertainties in the representation of snowpack by the major gridded snow datasets derived from remote sensing, reanalyses and model simulations, in condition of complex orography.

  14. Braid group representation on quantum computation

    SciTech Connect

    Aziz, Ryan Kasyfil; Muchtadi-Alamsyah, Intan

    2015-09-30

    There are many studies about topological representation of quantum computation recently. One of diagram representation of quantum computation is by using ZX-Calculus. In this paper we will make a diagrammatical scheme of Dense Coding. We also proved that ZX-Calculus diagram of maximally entangle state satisfies Yang-Baxter Equation and therefore, we can construct a Braid Group representation of set of maximally entangle state.

  15. Attitude Error Representations for Kalman Filtering

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis; Bauer, Frank H. (Technical Monitor)

    2002-01-01

    The quaternion has the lowest dimensionality possible for a globally nonsingular attitude representation. The quaternion must obey a unit norm constraint, though, which has led to the development of an extended Kalman filter using a quaternion for the global attitude estimate and a three-component representation for attitude errors. We consider various attitude error representations for this Multiplicative Extended Kalman Filter and its second-order extension.

  16. The Husimi representation and the Vlasov equation

    SciTech Connect

    LEplattenier, P.; Suraud, E.; Reinhard, P.G.

    1995-12-01

    We investigate the {ital h} expansion of the Time-Dependent Hartree Fock equation in the Wigner and Husimi representations. Both lead formally to the Vlasov equation in lowest order. The Husimi representation delivers a more stable expansion in particular when the self-interaction in the mean field is considered. The test particle solution of the Vlasov equation turns out to be closely related to the Husimi representation. Copyright {copyright} 1995 Academic Press, Inc.

  17. Issues in Interaction Language Specification and Representation.

    DTIC Science & Technology

    1983-11-01

    A16~ REPRESENTATION(J) VIRGINIA POLYTECHNIC INST AND STATE UNIV BLACKSBURG COMPUTER S. D N JOHNSON ET AL. NOV 83 UNCLASSIFIED CSIE-83-15 NBOB14 81 K...8217, ___ 4 ~ISSUES IN INTERACTION LANGUAGE SPECIFICATION AND REPRESENTATION Deborah H. Johnson H. Rex Hartson .4 This document has been approved...ISSUES IN INTERACTION LANGUAGE SPECIFICATION AND REPRESENTATION Deborah H. Johnson H. Rex Hartson TECHNICAL REPORT Prepared for Engineering Psychology

  18. [Social and cultural representations in epilepsy awareness].

    PubMed

    Arborio, Sophie

    2015-01-01

    Representations relating to epilepsy have evolved over the centuries, but the manifestations of epilepsy awaken archaic images linked to death, violence and disgust. Indeed, the generalised epileptic seizure symbolises a rupture with the surrounding environment, "informs it", through the loss of social codes which it causes. The social and cultural context, as well as medical knowledge, influences the representations of the disease. As a result, popular knowledge is founded on the social and cultural representations of a given era, in a given society.

  19. Precedence relationship representations of mechanical assembly sequences

    NASA Technical Reports Server (NTRS)

    Homendemello, L. S.; Sanderson, A. C.

    1989-01-01

    Two types of precedence relationship representations for mechanical assembly sequences are presented: precedence relationships between the establishment of one connection between two parts and the establishment of another connection, and precedence relationships between the establishment of one connection and states of the assembly process. Precedence relationship representations have the advantage of being very compact. The problem with these representations was how to guarantee their correctness and completeness. Two theorems are presented each of which leads to the generation of one type of precedence relationship representation guaranteeing its correctness and completeness for a class of assemblies.

  20. Theory of spatially and spectrally partially coherent pulses.

    PubMed

    Lajunen, Hanna; Vahimaa, Pasi; Tervo, Jani

    2005-08-01

    A coherent-mode representation for spatially and spectrally partially coherent pulses is derived both in the space-frequency domain and in the space-time domain. It is shown that both the cross-spectral density and the mutual coherence function of partially coherent pulses can be expressed as a sum of spatially and spectrally and temporally completely coherent modes. The concept of the effective degree of coherence for nonstationary fields is introduced. As an application of the theory, the propagation of Gaussian Schell-model pulsed beams in the space-frequency domain is considered and their coherent-mode representation is presented.