Science.gov

Sample records for allochthonous dissolved organic

  1. Fate of Allochthonous Dissolved Organic Carbon in Lakes: A Quantitative Approach

    PubMed Central

    Hanson, Paul C.; Hamilton, David P.; Stanley, Emily H.; Preston, Nicholas; Langman, Owen C.; Kara, Emily L.

    2011-01-01

    Inputs of dissolved organic carbon (DOC) to lakes derived from the surrounding landscape can be stored, mineralized or passed to downstream ecosystems. The balance among these OC fates depends on a suite of physical, chemical, and biological processes within the lake, as well as the degree of recalcintrance of the allochthonous DOC load. The relative importance of these processes has not been well quantified due to the complex nature of lakes, as well as challenges in scaling DOC degradation experiments under controlled conditions to the whole lake scale. We used a coupled hydrodynamic-water quality model to simulate broad ranges in lake area and DOC, two characteristics important to processing allochthonous carbon through their influences on lake temperature, mixing depth and hydrology. We calibrated the model to four lakes from the North Temperate Lakes Long Term Ecological Research site, and simulated an additional 12 ‘hypothetical’ lakes to fill the gradients in lake size and DOC concentration. For each lake, we tested several mineralization rates (range: 0.001 d−1 to 0.010 d−1) representative of the range found in the literature. We found that mineralization rates at the ecosystem scale were roughly half the values from laboratory experiments, due to relatively cool water temperatures and other lake-specific factors that influence water temperature and hydrologic residence time. Results from simulations indicated that the fate of allochthonous DOC was controlled primarily by the mineralization rate and the hydrologic residence time. Lakes with residence times <1 year exported approximately 60% of the DOC, whereas lakes with residence times >6 years mineralized approximately 60% of the DOC. DOC fate in lakes can be determined with a few relatively easily measured factors, such as lake morphometry, residence time, and temperature, assuming we know the recalcitrance of the DOC. PMID:21779347

  2. Understanding the Photoreactivity of Dissolved Organic Carbon in Natural Waters: The Role of the Triplet Excited-State of Allochthonous and Autochthonous DOC

    NASA Astrophysics Data System (ADS)

    Cottrell, B. A.; Timko, S. A.; Robinson, A. K.; Weiden, L. M.; Cooper, W.

    2012-12-01

    The photochemical reactivity of DOC in sunlit waters is a major factor for the in situ processing of DOC itself and trace contaminants in streams, lakes and the ocean. There is an increasing interest in the use of wetlands to mitigate contaminant removal. Laser flash photolysis is used to determine the reaction rate constants of dissolved organic carbon (DOC) with emerging contaminants in natural waters. DOC, produced by the decomposition of plant and microbial material, is one of the most complex naturally occurring mixtures. DOC plays a major role in the global carbon cycle, the sequestration and transport of trace chemicals and contaminants, and the biogeochemistry of natural waters. Hydrolysis, direct photolysis and reactions with singlet oxygen and the hydroxyl radical account for up to 25% of the photo reactivity of natural organic matter. The remaining 75% is attributed to reactions with the triplet-excited state of DOC (3DOC*). In this study, 1H NMR is used to characterize DOC from the Black River (NC), the San Joaquin Wetlands (Irvine, CA), and coastal seawater (Crystal Cove, CA). These sites encompass both allochthonous and autochthonous organic matter from catchment, wetlands, and marine waters. We then determine the reaction rate constants of known triplet state reactants and pharmaceuticals with the 3DOC* in the natural waters and with the DOC isolated by solid phase extraction. Studies of 3DOC* could provide a measure of DOC reactivity, essential in the design of constructed wetlands for contaminant removal.

  3. Temporal evolution of organic carbon concentrations in Swiss lakes: trends of allochthonous and autochthonous organic carbon.

    PubMed

    Rodríguez-Murillo, J C; Filella, M

    2015-07-01

    Evaluation of time series of organic carbon (OC) concentrations in lakes is useful for monitoring some of the effects of global change on lakes and their catchments. Isolating the evolution of autochthonous and allochthonous lake OC might be a useful way to differentiate between drivers of soil and photosynthetic OC related changes. However, there are no temporal series for autochthonous and allochthonous lake OC. In this study, a new approach has been developed to construct time series of these two categories of OC from existing dissolved organic carbon (DOC) data. First, temporal series (longer than ten years) of OC have been compiled for seven big Swiss lakes and another 27 smaller ones and evaluated by using appropriate non-parametric statistical methods. Subsequently, the new approach has been applied to construct time series of autochthonous and allochthonous lake OC in the seven big lakes. Doing this was possible because long term series of DOC concentrations at different depths are available for these lakes. Organic carbon concentrations generally increase in big lakes and decrease in smaller ones, although only in some cases are these trends statistically significant. The magnitude of the observed changes is generally small in big lakes (<1% annual change) and larger in smaller lakes. Autochthonous DOC concentrations in big lakes increase or decrease depending on the lake and the station but allochthonous DOC concentrations generally increase. This pattern is consistent with an increase in the OC input from the lakes' catchments and/or an increase in the refractoriness of the OC in question, and with a temporal evolution of autochthonous DOC depending on the degree of recovery from past eutrophication of each particular lake. In small lakes, OC dynamics are mainly driven by decreasing biological productivity, which in many, but not all cases, outweighs the probable increase of allochthonous OC. PMID:25782080

  4. Photochemical reactivities of dissolved organic matter (DOM) in a sub-alpine lake revealed by EEM-PARAFAC: An insight into the fate of allochthonous DOM in alpine lakes affected by climate change.

    PubMed

    Du, Yingxun; Zhang, Yuanyuan; Chen, Feizhou; Chang, Yuguang; Liu, Zhengwen

    2016-10-15

    Due to climate change, tree line advance is occurring in many alpine regions. Within the next 50 to 100years, alpine lake catchments are expected to develop increased vegetation cover similar to that of sub-alpine lake catchments which currently exist below the tree line. Such changes in vegetation could trigger increased allochthonous DOM inputs to alpine lakes. To understand the fate of allochthonous DOM in alpine lakes impacted by climate change, the photochemical reactivity of DOM in sub-alpine Lake Tiancai (located 200m below the tree line) was investigated by excitation emission matrix fluorescence combined with parallel factor analysis (EEM-PARAFAC) and UV-Vis spectra analysis. With photo-exposure, a decrease in apparent DOM molecular weight was observed and 32% DOM was photomineralized to CO2. Interestingly, the aromaticity of DOM increased after photodegradation, as evidenced by increases in both the specific UV absorbance at 254nm (SUVA254) and the humification index (HIX). Five EEM-PARAFAC components were identified, including four terrestrially-derived substances (C1, C2, C3 and C4; allochthonous) and one tryptophan-like substance (C5; autochthonous). Generally, allochthonous DOM represented by C2 and C3 exhibited greater photoreactivity than autochthonous DOM represented by C5. C4 was identified as a possible photoproduct with relatively high aromaticity and photorefractive tendencies and contributed to the observed increase in SUVA254 and HIX. UV light facilitated the photodegradation of DOM and had the greatest effect on the removal of C3. This study provides information on the transformation of EEM-PARAFAC components in a sub-alpine lake, which is important in understanding the fate of increased allochthonous DOM inputs to alpine lakes impacted by climate change. PMID:27300561

  5. Allochthonous Addition of Meteoritic Organics to the Lunar Regolith

    NASA Technical Reports Server (NTRS)

    Thomas-Keprta, K. L.; Clemett, S.; Ross, D. K.; Le, L.; Rahman, Z.; McKay, D. S.; Gibson, E. K.; Gonzalez, C.

    2013-01-01

    Preparation of lunar samples 74220,861 was discussed in detail in [3, 4]. Our analysis sequence was as follows: optical microscopy, UV fluorescence imaging, -Raman, FESEM-EDX imaging and mapping, FETEMEDX imaging and mapping of a Focused Ion Beam (FIB) extracted section, and NanoSIMs analysis. We observed fluffytextured C-rich regions of interest (ROI) on three different volcanic glass beads. Each ROI was several m2 in size and fluoresced when exposed to UV. Using FESEM/EDX, the largest ROI measured 36 m and was located on an edge of a plateau located on the uppermost surface of the bead. The ROI was covered on one edge by a siliceous filament emanating from the plateau surface indicating it was attached to the bead while on the Moon. EDX mapping of the ROI shows it is composed primarily of heterogeneously distributed C. Embedded with the carbonaceous phase are localized concentrations of Si, Fe, Al and Ti indicating the presence of glass and/or minerals grains. -Raman showed strong D- and G-bands and their associated second order bands; intensity and location of these bands indicates the carbonaceous matter is structurally disorganized. A TEM thin section was extracted from the surface of a glass bead using FIB microscopy. High resolution TEM imaging and selected area electron diffraction demonstrate the carbonaceous layer to be amorphous; it lacked any long or short range order characteristic of micro- or nanocrystalline graphite. Additionally TEM imaging also revealed the presence of submicron mineral grains, typically < 50 nm in size, dispersed within the carbonaceous layer. NanoSIMs data will be presented and discussed at the meeting. Given the noted similarities between the carbonaceous matter present on 74220 glass beads and meteoritic kerogen, we suggest the allochthonous addition of meteoritic organics as the most probable source for the C-rich ROIs.

  6. Mineralization of allochthonous organic carbon in lake sediments, from lake to landscape scale

    NASA Astrophysics Data System (ADS)

    Gudasz, C.; Ask, J.; Tranvik, L. J.; Karlsson, J.

    2012-04-01

    Lake sediments are well-recognized sites for the processing as well as sequestration of organic carbon. In particular boreal lake sediments have been recognized as important sites for the sequestration of organic carbon, comparable to soils or living biomass. Lakes in the boreal zone import large amounts of terrestrially derived organic carbon. Part of this organic carbon reaches the sediment surface through flocculation and sedimentation. The microbial processing of organic carbon represents one of the main factors that regulate the balance between sequestration of organic carbon and emission of green house gasses in boreal lake sediments. Recently, it has been shown a strong constrained microbial processing of allochthonous organic carbon in boreal lake sediments. However, a clear picture about the extent of the allochthonous organic carbon influence on the mineralization of sediment organic carbon in lakes and its significance at a large scale is currently lacking. We conducted a study, which explored the effect of allochthonous organic carbon on sediment organic carbon mineralization along a gradient of lakes characterized by increasing terrestrial organic carbon influence. We show a strong negative effect on sediment mineralization in lakes with increasing allochthonous organic carbon influence, which applies to a large number of lakes in the boreal zone.

  7. Effects of light and autochthonous carbon additions on microbial turnover of allochthonous organic carbon and community composition.

    PubMed

    Attermeyer, Katrin; Tittel, Jörg; Allgaier, Martin; Frindte, Katharina; Wurzbacher, Christian; Hilt, Sabine; Kamjunke, Norbert; Grossart, Hans-Peter

    2015-02-01

    The fate of allochthonous dissolved organic carbon (DOC) in aquatic systems is primarily controlled by the turnover of heterotrophic bacteria. However, the roles that abiotic and biotic factors such as light and DOC release by aquatic primary producers play in the microbial decomposition of allochthonous DOC is not well understood. We therefore tested if light and autochthonous DOC additions would increase allochthonous DOC decomposition rates and change bacterial growth efficiencies and community composition (BCC). We established continuous growth cultures with different inocula of natural bacterial communities and alder leaf leachates (DOCleaf) with and without light exposure before amendment. Furthermore, we incubated DOCleaf together with autochthonous DOC from lysed phytoplankton cultures (DOCphyto). Our results revealed that pretreatments of DOCleaf with light resulted in a doubling of bacterial growth efficiency (BGE), whereas additions of DOCphyto or combined additions of DOCphyto and light had no effect on BGE. The change in BGE was not accompanied by shifts in the phylogenetic structure of the BCC, but BCC was influenced by the DOC source. Our results highlight that a doubling of BGE is not necessarily accompanied by a shift in BCC and that BCC is more strongly affected by resource properties. PMID:25515425

  8. Allochthonous subsidies of organic matter across a lake-river-fjord landscape in the Chilean Patagonia: Implications for marine zooplankton in inner fjord areas

    NASA Astrophysics Data System (ADS)

    Vargas, Cristian A.; Martinez, Rodrigo A.; San Martin, Valeska; Aguayo, Mauricio; Silva, Nelson; Torres, Rodrigo

    2011-03-01

    Ecosystems can act as both sources and sinks of allochthonous nutrients and organic matter. In this sense, fjord ecosystems are a typical interface and buffer zone between freshwater systems, glaciated continents, and the coastal ocean. In order to evaluate the potential sources and composition of organic matter across fjord ecosystems, we characterized particulate organic matter along a lake-river-fjord corridor in the Chilean Patagonia using stable isotope (δ 13C) and lipid (fatty acid composition) biomarker analyses. Furthermore, estimates of zooplankton carbon ingestion rates and measurements of δ 13C and δ 15N in zooplankton (copepods) were used to evaluate the implications of allochthonous subsidies for copepods inhabiting inner fjord areas. Our results showed that riverine freshwater flows contributed an important amount of dissolved silicon but, scarce nitrate and phosphate to the brackish surface layer of the fjord ecosystem. Isotopic signatures of particulate organic matter from lakes and rivers were distinct from their counterparts in oceanic influenced stations. Terrestrial allochthonous sources could support around 68-86% of the particulate organic carbon in the river plume and glacier melting areas, whereas fatty acid concentrations were maximal in the surface waters of the Pascua and Baker river plumes. Estimates of carbon ingestion rates and δ 13C in copepods from the river plume areas indicated that terrestrial carbon could account for a significant percentage of the copepod body carbon (20-50%) during periods of food limitation. Particulate organic matter from the Pascua River showed a greater allochthonous contribution of terrigenous/vascular plant sources. Rivers may provide fjord ecosystems with allochthonous contributions from different sources because of the distinct vegetation coverage and land use along each river's watershed. These observations have significant implications for the management of local riverine areas in the context of

  9. Microbial primary production on an Arctic glacier is insignificant in comparison with allochthonous organic carbon input.

    PubMed

    Stibal, Marek; Tranter, Martyn; Benning, Liane G; Rehák, Josef

    2008-08-01

    Cryoconite holes are unique freshwater environments on glacier surfaces, formed when solar-heated dark debris melts down into the ice. Active photoautotrophic microorganisms are abundant within the holes and fix inorganic carbon due to the availability of liquid water and solar radiation. Cryoconite holes are potentially important sources of organic carbon to the glacial ecosystem, but the relative magnitudes of autochthonous microbial primary production and wind-borne allochthonous organic matter brought are unknown. Here, we compare an estimate of annual microbial primary production in 2006 on Werenskioldbreen, a Svalbard glacier, with the organic carbon content of cryoconite debris. There is a great disparity between annual primary production (4.3 mug C g(-1) year(-1)) and the high content of organic carbon within the debris (1.7-4.5%, equivalent to 8500-22 000 mug C g(-1) debris). Long-term accumulation of autochthonous organic matter is considered unlikely due to ablation dynamics and the surface hydrology of the glacier. Rather, it is more likely that the majority of the organic matter on Werenskioldbreen is allochthonous. Hence, although glacier surfaces can be a significant source of organic carbon for glacial environments on Svalbard, they may be reservoirs rather than oases of high productivity. PMID:18430008

  10. Dissolved trace element concentrations in the East River-Long Island Sound system: relative importance of autochthonous versus allochthonous sources.

    PubMed

    Buck, Nathaniel J; Gobler, Christopher J; Sañudo-Wilhelmy, Sergio A

    2005-05-15

    Dissolved trace metal (Ag, Cd, Cu, Fe, Ni, Pb, and Zn), inorganic nutrient (NO3, NH4, PO4, H4SiO4), and DOC concentrations were measured at 43 stations during low (July 2000) and high (April 2001) river discharge conditions in surface waters of Long Island Sound (LIS). To evaluate the impact of fluvial sources to the total metal budget of the sound, samples were collected from major tributaries discharging into LIS (Thames, Quinnipiac, Housatonic, Connecticut, and East Rivers). To compare LIS with other coastal embayments, samples were also collected from five LIS coastal embayments (Manhassett Bay, Huntington Harbor, Oyster Bay, Hempstead Harbor, and Port Jefferson Harbor), which are monitored by the U.S. National Status and Trends Program. Metal and nutrient distributions identified two biogeochemical regimes within LIS: an area of relatively high nutrient and metal concentrations in the East River/Narrows region in western LIS and an area in the eastern region of the sound that had comparatively lower concentrations. Mass balance estimates indicated that, during low flow conditions, the East River was the dominant allochthonous source of most trace metals (Ag, Cd, Cu, Ni, Zn) and inorganic nutrients (NO3 and PO4); during high flow conditions, the most influential source of these constituents was the Connecticut River. Mass balance estimates also evidenced a large autochthonous source of Cu, Ni, and Zn, as their spatial distributions displayed elevated concentrations away from point sources such as the East River. Principal component analysis suggested that metal and nutrient distributions in the LIS system were influenced by different seasonal processes: remobilization from contaminated sediments, anthropogenic inputs from sewage discharges and phytoplankton scavenging during the spring freshet, and benthic remobilization during summer conditions. PMID:15952355

  11. Functional and Structural Responses of Hyporheic Biofilms to Varying Sources of Dissolved Organic Matter

    PubMed Central

    Wagner, Karoline; Bengtsson, Mia M.; Besemer, Katharina; Sieczko, Anna; Burns, Nancy R.; Herberg, Erik R.

    2014-01-01

    Headwater streams are tightly connected with the terrestrial milieu from which they receive deliveries of organic matter, often through the hyporheic zone, the transition between groundwater and streamwater. Dissolved organic matter (DOM) from terrestrial sources (that is, allochthonous) enters the hyporheic zone, where it may mix with DOM from in situ production (that is, autochthonous) and where most of the microbial activity takes place. Allochthonous DOM is typically considered resistant to microbial metabolism compared to autochthonous DOM. The composition and functioning of microbial biofilm communities in the hyporheic zone may therefore be controlled by the relative availability of allochthonous and autochthonous DOM, which can have implications for organic matter processing in stream ecosystems. Experimenting with hyporheic biofilms exposed to model allochthonous and autochthonous DOM and using 454 pyrosequencing of the 16S rRNA (targeting the “active” community composition) and of the 16S rRNA gene (targeting the “bulk” community composition), we found that allochthonous DOM may drive shifts in community composition whereas autochthonous DOM seems to affect community composition only transiently. Our results suggest that priority effects based on resource-driven stochasticity shape the community composition in the hyporheic zone. Furthermore, measurements of extracellular enzymatic activities suggest that the additions of allochthonous and autochthonous DOM had no clear effect on the function of the hyporheic biofilms, indicative of functional redundancy. Our findings unravel possible microbial mechanisms that underlie the buffering capacity of the hyporheic zone and that may confer stability to stream ecosystems. PMID:25063654

  12. Functional and structural responses of hyporheic biofilms to varying sources of dissolved organic matter.

    PubMed

    Wagner, Karoline; Bengtsson, Mia M; Besemer, Katharina; Sieczko, Anna; Burns, Nancy R; Herberg, Erik R; Battin, Tom J

    2014-10-01

    Headwater streams are tightly connected with the terrestrial milieu from which they receive deliveries of organic matter, often through the hyporheic zone, the transition between groundwater and streamwater. Dissolved organic matter (DOM) from terrestrial sources (that is, allochthonous) enters the hyporheic zone, where it may mix with DOM from in situ production (that is, autochthonous) and where most of the microbial activity takes place. Allochthonous DOM is typically considered resistant to microbial metabolism compared to autochthonous DOM. The composition and functioning of microbial biofilm communities in the hyporheic zone may therefore be controlled by the relative availability of allochthonous and autochthonous DOM, which can have implications for organic matter processing in stream ecosystems. Experimenting with hyporheic biofilms exposed to model allochthonous and autochthonous DOM and using 454 pyrosequencing of the 16S rRNA (targeting the "active" community composition) and of the 16S rRNA gene (targeting the "bulk" community composition), we found that allochthonous DOM may drive shifts in community composition whereas autochthonous DOM seems to affect community composition only transiently. Our results suggest that priority effects based on resource-driven stochasticity shape the community composition in the hyporheic zone. Furthermore, measurements of extracellular enzymatic activities suggest that the additions of allochthonous and autochthonous DOM had no clear effect on the function of the hyporheic biofilms, indicative of functional redundancy. Our findings unravel possible microbial mechanisms that underlie the buffering capacity of the hyporheic zone and that may confer stability to stream ecosystems. PMID:25063654

  13. Dissolved organic carbon and chromophoric dissolved organic matter properties of rivers in the USA

    USGS Publications Warehouse

    Spencer, Robert G.M.; Butler, Kenna D.; Aiken, George R.

    2012-01-01

    Dissolved organic carbon (DOC) concentration and chromophoric dissolved organic matter (CDOM) parameters were measured over a range of discharge in 30 U.S. rivers, covering a diverse assortment of fluvial ecosystems in terms of watershed size and landscape drained. Relationships between CDOM absorption at a range of wavelengths (a254, a350, a440) and DOC in the 30 watersheds were found to correlate strongly and positively for the majority of U.S. rivers. However, four rivers (Colorado, Colombia, Rio Grande and St. Lawrence) exhibited statistically weak relationships between CDOM absorption and DOC. These four rivers are atypical, as they either drain from the Great Lakes or experience significant impoundment of water within their watersheds, and they exhibited values for dissolved organic matter (DOM) parameters indicative of autochthonous or anthropogenic sources or photochemically degraded allochthonous DOM and thus a decoupling between CDOM and DOC. CDOM quality parameters in the 30 rivers were found to be strongly correlated to DOM compositional metrics derived via XAD fractionation, highlighting the potential for examining DOM biochemical quality from CDOM measurements. This study establishes the ability to derive DOC concentration from CDOM absorption for the majority of U.S. rivers, describes characteristics of riverine systems where such an approach is not valid, and emphasizes the possibility of examining DOM composition and thus biogeochemical function via CDOM parameters. Therefore, the usefulness of CDOM measurements, both laboratory-based analyses and in situ instrumentation, for improving spatial and temporal resolution of DOC fluxes and DOM dynamics in future studies is considerable in a range of biogeochemical studies.

  14. Dissolved organic carbon and chromophoric dissolved organic matter properties of rivers in the USA

    NASA Astrophysics Data System (ADS)

    Spencer, Robert G. M.; Butler, Kenna D.; Aiken, George R.

    2012-09-01

    Dissolved organic carbon (DOC) concentration and chromophoric dissolved organic matter (CDOM) parameters were measured over a range of discharge in 30 U.S. rivers, covering a diverse assortment of fluvial ecosystems in terms of watershed size and landscape drained. Relationships between CDOM absorption at a range of wavelengths (a254, a350, a440) and DOC in the 30 watersheds were found to correlate strongly and positively for the majority of U.S. rivers. However, four rivers (Colorado, Colombia, Rio Grande and St. Lawrence) exhibited statistically weak relationships between CDOM absorption and DOC. These four rivers are atypical, as they either drain from the Great Lakes or experience significant impoundment of water within their watersheds, and they exhibited values for dissolved organic matter (DOM) parameters indicative of autochthonous or anthropogenic sources or photochemically degraded allochthonous DOM and thus a decoupling between CDOM and DOC. CDOM quality parameters in the 30 rivers were found to be strongly correlated to DOM compositional metrics derived via XAD fractionation, highlighting the potential for examining DOM biochemical quality from CDOM measurements. This study establishes the ability to derive DOC concentration from CDOM absorption for the majority of U.S. rivers, describes characteristics of riverine systems where such an approach is not valid, and emphasizes the possibility of examining DOM composition and thus biogeochemical function via CDOM parameters. Therefore, the usefulness of CDOM measurements, both laboratory-based analyses and in situ instrumentation, for improving spatial and temporal resolution of DOC fluxes and DOM dynamics in future studies is considerable in a range of biogeochemical studies.

  15. Relationships between land cover and dissolved organic matter change along the river to lake transition

    USGS Publications Warehouse

    Larson, James H.; Frost, Paul C.; Xenopoulos, Marguerite A.; Williams, Clayton J.; Morales-Williams, Ana M.; Vallazza, Jonathan M.; Nelson, J. C.; Richardson, William B.

    2014-01-01

    Dissolved organic matter (DOM) influences the physical, chemical, and biological properties of aquatic ecosystems. We hypothesized that controls over spatial variation in DOM quantity and composition (measured with DOM optical properties) differ based on the source of DOM to aquatic ecosystems. DOM quantity and composition should be better predicted by land cover in aquatic habitats with allochthonous DOM and related more strongly to nutrients in aquatic habitats with autochthonous DOM. Three habitat types [rivers (R), rivermouths (RM), and the nearshore zone (L)] associated with 23 tributaries of the Laurentian Great Lakes were sampled to test this prediction. Evidence from optical indices suggests that DOM in these habitats generally ranged from allochthonous (R sites) to a mix of allochthonous-like and autochthonous-like (L sites). Contrary to expectations, DOM properties such as the fluorescence index, humification index, and spectral slope ratio were only weakly related to land cover or nutrient data (Bayesian R 2 values were indistinguishable from zero). Strongly supported models in all habitat types linked DOM quantity (that is, dissolved organic carbon concentration [DOC]) to both land cover and nutrients (Bayesian R2 values ranging from 0.55 to 0.72). Strongly supported models predicting DOC changed with habitat type: The most important predictor in R sites was wetlands whereas the most important predictor at L sites was croplands. These results suggest that as the DOM pool becomes more autochthonous-like, croplands become a more important driver of spatial variation in DOC and wetlands become less important.

  16. Phytoplankton variation and its relation to nutrients and allochthonous organic matter in a coastal lagoon on the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Aké-Castillo, José A.; Vázquez, Gabriela

    2008-07-01

    In tropical and subtropical zones, coastal lagoons are surrounded by mangrove communities which are a source of high quantity organic matter that enters the aquatic system through litter fall. This organic matter decomposes, becoming a source of nutrients and other substances such as tannins, fulvic acids and humic acids that may affect the composition and productivity of phytoplankton communities. Sontecomapan is a coastal lagoon located in the southern Gulf of Mexico, which receives abundant litter fall from mangrove. To study the phytoplankton composition and its variation in this lagoon from October 2002 to October 2003, we evaluated the concentrations of dissolved folin phenol active substances (FPAS) as a measure of plant organic matter, salinity, temperature, pH, O 2, N-NH 4+, N-NO 3-, P-PO 43-, Si-SiO 2, and phytoplanktonic cell density in different mangrove influence zones including the three main rivers that feed the lagoon. Nutrients concentrations depended on freshwater from rivers, however these varied seasonally. Concentrations of P-PO 43-, N-NH 4+ and FPAS were the highest in the dry season, when maximum mangrove litter fall is reported. Variation of these nutrients seemed to depend on the internal biogeochemical processes of the lagoon. Blooms of diatoms ( Skeletonema spp., Cyclotella spp. and Chaetoceros holsaticus) and dinoflagellates ( Peridinium aff. quinquecorne, Prorocentrum cordatum) occurred seasonally and in the different mangrove influence zones. The high cell densities in these zones and the occurrence of certain species and its ordination along gradient of FPAS in a canonical correspondence analysis, suggest that plant organic matter (i.e. mangrove influence) may contribute to phytoplankton dynamics in Sontecomapan lagoon.

  17. Chemical and optical changes in freshwater dissolved organic matter exposed to solar radiation

    USGS Publications Warehouse

    Osburn, C.L.; Morris, D.P.; Thorn, K.A.; Moeller, R.E.

    2001-01-01

    We studied the chemical and optical changes in the dissolved organic matter (DOM) from two freshwater lakes and a Sphagnum bog after exposure to solar radiation. Stable carbon isotopes and solid-state 13C-NMR spectra of DOM were used together with optical and chemical data to interpret results from experimental exposures of DOM to sunlight and from seasonal observations of two lakes in northeastern Pennsylvania. Solar photochemical oxidation of humic-rich bog DOM to smaller LMW compounds and to DIC was inferred from losses of UV absorbance, optical indices of molecular weight and changes in DOM chemistry. Experimentally, we observed a 1.2??? enrichment in ??13C and a 47% loss in aromatic C functionality in bog DOM samples exposed to solar UVR. Similar results were observed in the surface waters of both lakes. In late summer hypolimnetic water in humic Lake Lacawac, we observed 3 to 4.5??? enrichments in ??13C and a 30% increase in aromatic C relative to early spring values during spring mixing. These changes coincided with increases in molecular weight and UV absorbance. Anaerobic conditions of the hypolimnion in Lake Lacawac suggest that microbial metabolism may be turning over allochthonous C introduced during spring mixing, as well as autochthonous C. This metabolic activity produces HMW DOM during the summer, which is photochemically labile and isotopically distinct from allochthonous DOM or autochthonous DOM. These results suggest both photooxidation of allochthonous DOM in the epilimnion and autotrophic production of DOM by bacteria in the hypolimnion cause seasonal trends in the UV absorbance of lakes.

  18. Absorption and fluorescence characteristics of chromophoric dissolved organic matter in the Yangtze Estuary.

    PubMed

    Sun, Qiyuan; Wang, Chao; Wang, Peifang; Hou, Jun; Ao, Yanhui

    2014-03-01

    The Yangtze Estuary is heavily influenced by coast-continent geochemical processes and anthropogenic activity; thus, the source and distribution of chromophoric dissolved organic matter (CDOM) in the estuary are strongly impacted by these processes. Here, a series of samples were collected from across the Yangtze Estuary to investigate the source and spatial dynamics of CDOM and its components throughout the system. Three indices (a(355), spectral slope, and fluorescence) were then calculated and interpreted. The results indicated that the distribution of CDOM was dominated by allochthonous input, conservative mixing, and phase transfer. The contribution of biogenic CDOM to total CDOM increased with salinity, and three individual CDOM components were identified upon fluorescence excitation emission matrix spectroscopy and parallel factor analysis of the water samples: C1, corresponding to humic substance-like CDOM, C2, corresponding to tryptophan-like CDOM, and C3, corresponding to tyrosine-like CDOM. C1 primarily originated from a terrestrial source, C2 had widespread origins, none of which played a dominant role, and C3 mainly originated from allochthonous input in the medium salinity area. Unexpectedly, no marine humic-like component was found in the surface water of the Yangtze Estuary, possibly because turbidity decreased the depth of sunlight penetration, limiting production of this component. PMID:24243263

  19. Development of a combined isotopic and mass-balance approach to determine dissolved organic carbon sources in eutrophic reservoirs.

    PubMed

    Pierson-Wickmann, Anne-Catherine; Gruau, Gérard; Jardé, Emilie; Gaury, Nicolas; Brient, Luc; Lengronne, Marion; Crocq, André; Helle, Daniel; Lambert, Thibault

    2011-04-01

    A combined mass-balance and stable isotope approach was set up to identify and quantify dissolved organic carbon (DOC) sources in a DOC-rich (9mgL(-1)) eutrophic reservoir located in Western France and used for drinking water supply (so-called Rophemel reservoir). The mass-balance approach consisted in measuring the flux of allochthonous DOC on a daily basis, and in comparing it with the effective (measured) DOC concentration of the reservoir. The isotopic approach consisted, for its part, in measuring the carbon isotope ratios (δ(13)C values) of both allochthonous and autochthonous DOC sources, and comparing these values with the δ(13)C values of the reservoir DOC. Results from both approaches were consistent pointing out for a DOC of 100% allochthonous origin. In particular, the δ(13)C values of the DOC recovered in the reservoir (-28.5±0.2‰; n=22) during the algal bloom season (May-September) showed no trace of an autochthonous contribution (δ(13)C in algae=-30.1±0.3‰; n=2) being indistinguishable from the δ(13)C values of allochthonous DOC from inflowing rivers (-28.6±0.1‰; n=8). These results demonstrate that eutrophication is not responsible for the high DOC concentrations observed in the Rophemel reservoir and that limiting eutrophication of this reservoir will not reduce the potential formation of disinfection by-products during water treatment. The methodology developed in this study based on a complementary isotopic and mass-balance approach provides a powerful tool, suitable to identify and quantify DOC sources in eutrophic, DOC-contaminated reservoirs. PMID:21190712

  20. Isolation and chemical characterization of dissolved and colloidal organic matter

    USGS Publications Warehouse

    Aiken, G.; Leenheer, J.

    1993-01-01

    Commonly used techniques for the concentration and isolation of organic matter from water, such as preparative chromatography, ultrafiltration and reverse osmosis, and the methods used to analyze the organic matter obtained by these methods are reviewed. The development of methods to obtain organic matter that is associated with fractions of the dissolved organic carbon other than humic substances, such as organic bases, hydrophilic organic acids and colloidal organic matter are discussed. Methods specifically used to study dissolved organic nitrogen and dissolved organic phosphorous are also discussed. -from Authors

  1. Climate-driven terrestrial inputs in ultraoligotrophic mountain streams of Andean Patagonia revealed through chromophoric and fluorescent dissolved organic matter.

    PubMed

    Garcia, Roberto D; Reissig, Mariana; Queimaliños, Claudia P; Garcia, Patricia E; Dieguez, Maria C

    2015-07-15

    Fluvial networks transport a substantial fraction of the terrestrial production, contributing to the global carbon cycle and being shaped by hydrologic, natural and anthropogenic factors. In this investigation, four Andean Patagonian oligotrophic streams connecting a forested catchment (~125km(2)) and draining to a double-basin large and deep lake (Lake Moreno complex, Northwestern Patagonia), were surveyed to analyze the dynamics of the allochthonous subsidy. The results of a 30month survey showed that the catchment supplies nutrients and dissolved organic matter (DOM) to the streams. The eruption of the Puyehue-Cordón Caulle at the beginning of the study overlapped with seasonal precipitation events. The largest terrestrial input was timed with precipitation which increased particulate materials, nutrients and DOM through enhanced runoff. Baseline suspended solids and nutrients were very low in all the streams (suspended solids: ~1mg/L; total nitrogen: ~0.02mg/L; total phosphorus: ~5μg/L), increasing several fold with runoff. Baseline dissolved organic carbon concentrations (DOC) ranged between 0.15 and 1mg/L peaking up to three-fold. Chromophoric and fluorescent analyses characterized the DOM as of large molecular weight and high aromaticity. Parallel factor modeling (PARAFAC) of DOM fluorescence matrices revealed three components of terrestrial origin, with certain degree of microbial processing: C1 and C2 (terrestrial humic-like compounds) and C3 (protein-like and pigment derived compounds). Seasonal changes in MOD quality represent different breakdown stages of the allochthonous DOM. Our survey allowed us to record and discuss the effects of the Puyehue-Cordón Caulle eruption, showing that due to the high slopes, high current and discharge of the streams the volcanic material was rapidly exported to the Moreno Lake complex. Overall, this survey underscores the magnitude and timing of the allochthonous input revealing the terrestrial subsidy to food webs in

  2. Allochthonous Carbon--a Major Driver of Bacterioplankton Production in the Subarctic Northern Baltic Sea.

    PubMed

    Figueroa, D; Rowe, O F; Paczkowska, J; Legrand, C; Andersson, A

    2016-05-01

    Heterotrophic bacteria are, in many aquatic systems, reliant on autochthonous organic carbon as their energy source. One exception is low-productive humic lakes, where allochthonous dissolved organic matter (ADOM) is the major driver. We hypothesized that bacterial production (BP) is similarly regulated in subarctic estuaries that receive large amounts of riverine material. BP and potential explanatory factors were measured during May-August 2011 in the subarctic Råne Estuary, northern Sweden. The highest BP was observed in spring, concomitant with the spring river-flush and the lowest rates occurred during summer when primary production (PP) peaked. PLS correlations showed that ∼60% of the BP variation was explained by different ADOM components, measured as humic substances, dissolved organic carbon (DOC) and coloured dissolved organic matter (CDOM). On average, BP was threefold higher than PP. The bioavailability of allochthonous dissolved organic carbon (ADOC) exhibited large spatial and temporal variation; however, the average value was low, ∼2%. Bioassay analysis showed that BP in the near-shore area was potentially carbon limited early in the season, while BP at seaward stations was more commonly limited by nitrogen-phosphorus. Nevertheless, the bioassay indicated that ADOC could contribute significantly to the in situ BP, ∼60%. We conclude that ADOM is a regulator of BP in the studied estuary. Thus, projected climate-induced increases in river discharge suggest that BP will increase in subarctic coastal areas during the coming century. PMID:26677860

  3. Relating dissolved organic matter fluorescence to functional properties

    NASA Astrophysics Data System (ADS)

    Tipping, E.; Baker, A.; Thacker, S.; Gondar, D.

    2007-12-01

    The fluorescence excitation emission matrix properties of dissolved organic matter from three rivers and one lake in NW England are analysed. Sites are sampled in duplicate and for some sites seasonally to cover variations in dissolved organic matter composition, river flow, and carbon isotopic (13C, 14C) variability. Results are compared to the functional properties of the dissolved organic matter, the functional assays provide quantitative information on light absorption, fluorescence, photochemical fading, pH buffering, copper binding, benzo[a]pyrene binding, hydrophilicity and adsorption to alumina. Fluorescence characterization of the dissolved organic matter samples demonstrates that peak C fluorescence emission wavelength, the ratio of peak T to peak C fluorescence intensity, and the fluorescence : absorbance ratio best differentiate different dissolved organic matter samples. These parameters correspond to dissolved organic matter aromaticity, the ratio of labile to recalcitrant organic matter, and dissolved organic matter molecular weight. Peak C fluorescence emission wavelength, the ratio of peak T to peak C fluorescence intensity, and the fluorescence : absorbance ratio fluorescence parameters also have strong correlations with several of the functional assays, in particular the extinction coefficients, benzo(a)pyrene binding and alumina adsorption, and buffering capacity. In many cases, regression equations with a correlation coefficient >0.9 are obtained, suggesting that dissolved organic matter functional character can be predicted from DOM fluorescence properties. For one site, the relationship between dissolved organic matter source, fluorescence, function and carbon isotopic composition is discussed.

  4. Atmospheric fluxes of organic matter to the Mediterranean Sea: contribution to the elemental C: N: P ratios of surface dissolved organic matter

    NASA Astrophysics Data System (ADS)

    Djaoudi, Kahina; Barani, Aude; Hélias-Nunige, Sandra; Van Wambeke, France; Pulido-Villena, Elvira

    2016-04-01

    It has become increasingly apparent that atmospheric transport plays an important role in the supply of macro- and micro-nutrients to the surface ocean. This atmospheric input is especially important in oligotrophic regions where the vertical supply from the subsurface is low particularly during the stratification period. Compared to its inorganic counterpart, the organic fraction of atmospheric deposition and its impact on surface ocean biogeochemistry has been poorly explored. In the ocean, carbon export to depth (and therefore, its long term storage with presumed consequences on climate) occurs both through particle sedimentation and through the transfer of dissolved organic matter (DOM) via diffusion or convection. DOM export from the surface ocean represents up to 50% of total organic carbon flux to the deep ocean in oligotrophic regions such as the Mediterranean Sea. The efficiency of this C export pathway depends, among others, on the elemental C: N: P ratios of surface DOM which might be affected by the relative contribution of microbial processes and allochthonous sources. This work reports a one-year time-series (April 2015-April 2016) of simultaneous measurements of (1) total (dry + wet) atmospheric fluxes of organic carbon, organic nitrogen, and organic phosphorus and (2) concentration of dissolved organic carbon, dissolved organic nitrogen, and dissolved organic phosphate at the surface layer (0-200 m) in the NW Mediterranean Sea. Atmospheric and oceanic surveys were conducted at the Frioul and ANTARES sites, respectively, operated by the long-term observation network MOOSE (Mediterranean Oceanic Observation System for the Environment).

  5. Transient Dissolved Organic Carbon Through Soils

    NASA Astrophysics Data System (ADS)

    Mei, Y.; Hornberger, G. M.; Kaplan, L. A.; Newbold, J. D.; Aufdenkampe, A. K.; Tsang, Y.

    2009-12-01

    Dissolved organic carbon (DOC) is an important constituent of soil solution that plays a role in many chemical and biological processes in soils; it is also an important energy source for bacteria in the soil ecosystem. Hydrology has a significant control on the transport and fate of dissolved organic carbon in the soil but mechanisms that affect said transport are not well understood. In particular, dynamic information on DOC transport through forest soils on short time scales (one or two precipitation event) is lacking at present. DOC is a very complex mix of organic compounds. A key to quantifying DOC dynamics is to establish useful approximations for behavior of this complex mixture. Biodegradable dissolved organic carbon (BDOC) is an important part of DOC. It is reported that between 12 and 44% of DOC released from the forest floor can be decomposed in solutions by indigenous microbes. In our study, we considered how DOC, BDOC, and flow interact in soil columns. In-situ soil cores with two different lengths were installed under a mixed deciduous canopy. The effects of artificial rain on DOC and BDOC transport were examined by dripping nano pure water amended with bromide on the top of soil cores and sampling the water collected at the bottom of the cores for DOC and BDOC. We used plug-flow biofilm reactors to measure the BDOC concentration. It is likely that reduced rates of decomposition in dry soils will cause microbial products of DOC to accumulate; hence DOC concentration should be high at the first flush of rain and decline as the event proceeds. The experimental results show the expected pattern, that is, the first samples we collected always had the highest DOC and BDOC concentrations. The concentrations tend to decline through the simulated precipitation event. Application of a second “storm” forty minutes after the cessation of the first application of water resulted in effluent DOC concentration increasing a small amount initially and then

  6. Composition of dissolved organic matter in groundwater

    NASA Astrophysics Data System (ADS)

    Longnecker, Krista; Kujawinski, Elizabeth B.

    2011-05-01

    Groundwater constitutes a globally important source of freshwater for drinking water and other agricultural and industrial purposes, and is a prominent source of freshwater flowing into the coastal ocean. Therefore, understanding the chemical components of groundwater is relevant to both coastal and inland communities. We used electrospray ionization coupled with Fourier-transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) to examine dissolved organic compounds in groundwater prior to and after passage through a sediment-filled column containing microorganisms. The data revealed that an unexpectedly high proportion of organic compounds contained nitrogen and sulfur, possibly due to transport of surface waters from septic systems and rain events. We matched 292 chemical features, based on measured mass:charge ( m/z) values, to compounds stored in the Kyoto Encyclopedia of Genes and Genomes (KEGG). A subset of these compounds (88) had only one structural isomer in KEGG, thus supporting tentative identification. Most identified elemental formulas were linked with metabolic pathways that produce polyketides or with secondary metabolites produced by plants. The presence of polyketides in groundwater is notable because of their anti-bacterial and anti-cancer properties. However, their relative abundance must be quantified with appropriate analyses to assess any implications for public health.

  7. Temperature Dependence of Photodegradation of Dissolved Organic Matter to Dissolved Inorganic Carbon and Particulate Organic Carbon

    PubMed Central

    Porcal, Petr; Dillon, Peter J.; Molot, Lewis A.

    2015-01-01

    Photochemical transformation of dissolved organic matter (DOM) has been studied for more than two decades. Usually, laboratory or “in-situ” experiments are used to determine photodegradation variables. A common problem with these experiments is that the photodegradation experiments are done at higher than ambient temperature. Five laboratory experiments were done to determine the effect of temperature on photochemical degradation of DOM. Experimental results showed strong dependence of photodegradation on temperature. Mathematical modeling of processes revealed that two different pathways engaged in photochemical transformation of DOM to dissolved inorganic carbon (DIC) strongly depend on temperature. Direct oxidation of DOM to DIC dominated at low temperatures while conversion of DOM to intermediate particulate organic carbon (POC) prior to oxidation to DIC dominated at high temperatures. It is necessary to consider this strong dependence when the results of laboratory experiments are interpreted in regard to natural processes. Photodegradation experiments done at higher than ambient temperature will necessitate correction of rate constants. PMID:26106898

  8. Sources, behaviors and degradation of dissolved organic matter in the East China Sea

    NASA Astrophysics Data System (ADS)

    Chen, Yan; Yang, Gui-Peng; Liu, Li; Zhang, Peng-Yan; Leng, Wei-Song

    2016-03-01

    Concentrations of dissolved organic carbon (DOC), dissolved inorganic nitrogen (DIN), dissolved organic nitrogen (DON) and its major compound classes-total hydrolysable amino acids (THAA) were measured at 4 cross-shelf transects of the East China Sea in July 2011. Surface concentrations of DOC, DIN, DON and THAA at the nearshore stations were mostly in excess of those found at the offshore sites, indicating either substantial autochthonous production or allochthonous inputs from the Changjiang River. The vertical distributions of DOC, DON and THAA showed similar trends with higher values in the surface layer, whereas the elevated concentrations of DIN were observed in the bottom layer. Major constituents of THAA presented in the study area were glycine, serine, alanine, glutamic acid, aspartic acid and valine. The mole percentages of neutral amino acids increased from surface water to bottom water, whereas acidic and hydroxy amino acids decreased with the water depth. Concentrations of DOC and THAA were negatively correlated to the ΔDIN values (the difference between the real concentration and theoretical concentration), respectively, indicating the coupling relation between dissolved organic matter (DOM) remineralization and nutrient regeneration in the water column. The C/N ratios in the water column exhibited different characteristics with elevated values appearing in the surface and bottom layers. Box and whisker plots showed that both degradation index (DI) values and THAA yields displayed a decreasing trend from the surface layer to the bottom layer, implying increasing degradation with the water depth. Our data revealed that glycine and alanine increased in relative abundance with decreasing DI, while tyrosine, valine, phenylalanine and isoleucine increased with increasing DI.

  9. Molecular characterization of dissolved organic matter associated with the Greenland ice sheet

    NASA Astrophysics Data System (ADS)

    Bhatia, Maya P.; Das, Sarah B.; Longnecker, Krista; Charette, Matthew A.; Kujawinski, Elizabeth B.

    2010-07-01

    Subsurface microbial oxidation of overridden soils and vegetation beneath glaciers and ice sheets may affect global carbon budgets on glacial-interglacial timescales. The likelihood and magnitude of this process depends on the chemical nature and reactivity of the subglacial organic carbon stores. We examined the composition of carbon pools associated with different regions of the Greenland ice sheet (subglacial, supraglacial, proglacial) in order to elucidate the type of dissolved organic matter (DOM) present in the subglacial discharge over a melt season. Electrospray ionization (ESI) Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry coupled to multivariate statistics permitted unprecedented molecular level characterization of this material and revealed that carbon pools associated with discrete glacial regions are comprised of different compound classes. Specifically, a larger proportion of protein-like compounds were observed in the supraglacial samples and in the early melt season (spring) subglacial discharge. In contrast, the late melt season (summer) subglacial discharge contained a greater fraction of lignin-like and other material presumably derived from underlying vegetation and soil. These results suggest (1) that the majority of supraglacial DOM originates from autochthonous microbial processes on the ice sheet surface, (2) that the subglacial DOM contains allochthonous carbon derived from overridden soils and vegetation as well as autochthonous carbon derived from in situ microbial metabolism, and (3) that the relative contribution of allochthonous and autochthonous material in subglacial discharge varies during the melt season. These conclusions are consistent with the hypothesis that, given sufficient time (e.g., overwinter storage), resident subglacial microbial communities may oxidize terrestrial material beneath the Greenland ice sheet.

  10. Carbon dynamics and their link to dissolved organic matter quality across contrasting stream ecosystems.

    PubMed

    Bodmer, Pascal; Heinz, Marlen; Pusch, Martin; Singer, Gabriel; Premke, Katrin

    2016-05-15

    Streams represent active components of the carbon cycle as emitters of carbon dioxide (CO2) and methane to the atmosphere at a global scale. However, the mechanisms and governing factors of these emissions are still largely unknown, especially concerning the effect of land use. We compared dissolved and gaseous carbon dynamics in streams bordered by contrasting types of land use, specifically agriculture and forest. Carbon dioxide and methane partial pressures (pCO2 and pCH4, respectively) in the water body and carbon emissions via both gases were studied for 24h during four field expeditions. pCH4 did not differ between the two system types. pCO2 was constantly oversaturated in all streams and significantly higher in agricultural streams (annual mean 4282ppm) compared to forest streams (annual mean 2189ppm) during all seasons. However, emissions of CO2 were not significantly different between the stream types due to significantly higher gas transfer velocity in forest compared to agricultural streams. pCO2 was significantly positively correlated to the concentrations of dissolved organic carbon, dissolved nitrogen and soluble reactive phosphorus in the water. Furthermore, pCO2 was correlated to optical parameters of dissolved organic matter (DOM) quality, e.g., it increased with indicators of molecular size and an allochthonous fluorescent component identified by Parallel Factor Analysis (PARAFAC). This study demonstrates that different forms of land use may trigger a cascade of effects on the carbon production and emission of streams linked to changes in DOM quality. PMID:26938320

  11. Bioavailability and characterization of dissolved organic nitrogen and dissolved organic phosphorus in wastewater effluents.

    PubMed

    Qin, Chao; Liu, Haizhou; Liu, Lei; Smith, Scott; Sedlak, David L; Gu, April Z

    2015-04-01

    There is still a great knowledge gap in the understanding of characteristics and bioavailability of dissolved organic nitrogen (DON) and dissolved organic phosphorus (DOP) in wastewater effluents, which surmise implications related to both discharge regulation and treatment practice. In this study, we simultaneously investigated the characteristics and bioavailability of both DON and DOP, with separated hydrophilic versus hydrophobic fractions, in highly-treated wastewater effluents for the first time. The tertiary effluents from two wastewater treatment plants were separated into two fractions by XAD-8 resin coupled with anion exchange resin based on the hydrophobicity. Results showed that the majority of DON was present in hydrophilic forms while more DOP existed in hydrophobic forms. Hydrophilic DON contributed to 64.0%-72.2% of whole DON, while hydrophobic DOP accounted for 61.4%-80.7% of total DOP for the two plants evaluated. The effluents and their fractions were then subject to bioavailability assay based on 14-day algae growth. The results indicated that majority (~73-75%) of the effluent DOP, particularly the hydrophobic fraction with lower C/P ratio was more likely to be bioavailable for algal growth. The bioavailable fraction of DON varied widely (28%-61%) for the two plants studied and the hydrophilic fraction with lower C/N ratio seemed to exhibit higher bioavailability than the hydrophobic portion. The differences in bioavailable DON and DOP distributions of effluents from those two plants could be attributed to different receiving effluent compositions and wastewater treatment processes. In addition, fluorescence excitation-emission matrices (EEMs) combined with parallel factor analysis (PARAFAC) were used to characterize the dissolved organic matter (DOM) in wastewater effluent, which provided insights into the nature of organic matter in wastewater samples with different characteristics and originating sources. PMID:25527968

  12. Black Carbon in Estuarine and Coastal Ocean Dissolved Organic Matter

    NASA Technical Reports Server (NTRS)

    Mannino, Antonio; Harvey, H. Rodger

    2003-01-01

    Analysis of high-molecular-weight dissolved organic matter (DOM) from two estuaries in the northwest Atlantic Ocean reveals that black carbon (BC) is a significant component of previously uncharacterized DOM, suggesting that river-estuary systems are important exporters of recalcitrant dissolved organic carbon to the ocean.

  13. Origin, enzymatic response and fate of dissolved organic matter during flood and non-flood conditions in a river-floodplain system of the Danube (Austria).

    PubMed

    Sieczko, Anna; Peduzzi, Peter

    2014-01-01

    Spectroscopic techniques and extracellular enzyme activity measurements were combined with assessments of bacterial secondary production (BSP) to elucidate flood-pulse-linked differences in carbon (C) sources and related microbial processes in a river-floodplain system near Vienna (Austria). Surface connection with the main channel significantly influenced the quantity and quality of dissolved organic matter (DOM) in floodplain backwaters. The highest values of dissolved organic carbon (DOC) and chromophoric DOM (CDOM) were observed during the peak of the flood, when DOC increased from 1.36 to 4.37 mg l(-1) and CDOM from 2.94 to 14.32 m(-1). The flood introduced DOC which consisted of more allochthonously-derived, aromatic compounds. Bacterial enzymatic activity, as a proxy to track the response to changes in DOM, indicated elevated utilization of imported allochthonous material. Based on the enzyme measurements, new parameters were calculated: metabolic effort and enzymatic indices (EEA 1 and EEA 2). During connection, bacterial glucosidase and protease activity were dominant, whereas during disconnected phases a switch to lignin degradation (phenol oxidase) occurred. The enzymatic activity analysis revealed that flooding mobilized reactive DOM, which then supported bacterial metabolism. No significant differences in overall BSP between the two phases were detected, indicating that heterogeneous sources of C sufficiently support BSP. The study demonstrates that floods are important for delivering DOM, which, despite its allochthonous origin, is reactive and can be effectively utilized by aquatic bacteria in this river-floodplain systems. The presence of active floodplains, characterized by hydrological connectivity with the main channel, creates the opportunity to process allochthonous DOC. This has potential consequences for carbon flux, enhancing C sequestration and mineralization processes in this river-floodplain system. PMID:24415892

  14. Dissolved organic matter and lake metabolism. Technical progress report, 1 July 1979-30 June 1980

    SciTech Connect

    Wetzel, R.G.

    1980-01-01

    Progress in research to evaluate the impact of utilization of fossil fuels on surface water is reported. Analyses of regulatory mechanisms of growth and rates of carbon cycling center on evaluation of quantitative control interactions among the microflora of the pelagial zones of several lakes of progressively greater eutrophy, littoral photosynthetic producer-decomposer complex, and allochthonous inorganic-organic influxes and their biotic processing. The underlying thesis is that quantification of the dynamic carbon fluxes among these components and their rate control mechanisms by physical and chemical factors are fundamental to elucidation of the rate functions of lake eutrophication. A major portion of the research has been directed towards the fate and nutrient mechanisms regulating qualitative and quantitative utilization and losses of organic carbon synthesized within lakes and their drainage basins. It has become increasingly apparent that the wetland and littoral flora, and attendant epiphytic and benthic microflora, have major regulatory controls on biogeochemical cycling of whole lake systems. A major effort on factors regulating the metabolism of littoral macrophytes and attached algae has been coupled to integrated studies on their decomposition and the fate of detrital dissolved and particulate organic matter. These organic products are being coupled to influences on enzymatic activity and inorganic nutrient cycling.

  15. Enhanced bacterial decomposition with increasing addition of autochthonous to allochthonous carbon without any effect on bacterial community composition

    NASA Astrophysics Data System (ADS)

    Attermeyer, K.; Hornick, T.; Kayler, Z. E.; Bahr, A.; Zwirnmann, E.; Grossart, H.-P.; Premke, K.

    2014-03-01

    Dissolved organic carbon (DOC) concentrations - mainly of terrestrial origin - are increasing worldwide in inland waters. Heterotrophic bacteria are the main consumers of DOC and thus determine DOC temporal dynamics and availability for higher trophic levels. Our aim was to study bacterial carbon (C) turnover with respect to DOC quantity and chemical quality using both allochthonous and autochthonous DOC sources. We incubated a natural bacterial community with allochthonous C (13C-labeled beech leachate) and increased concentrations and pulses (intermittent occurrence of organic matter input) of autochthonous C (phytoplankton lysate). We then determined bacterial C consumption, activities, and community composition together with the C flow through bacteria using stable C isotopes. The chemical analysis of single sources revealed differences in aromaticity and low- and high-molecular-weight substance fractions (LMWS and HMWS, respectively) between allochthonous and autochthonous C sources. Both DOC sources (allochthonous and autochthonous DOC) were metabolized at a high bacterial growth efficiency (BGE) around 50%. In treatments with mixed sources, rising concentrations of added autochthonous DOC resulted in a further, significant increase in bacterial DOC consumption of up to 68% when nutrients were not limiting. This rise was accompanied by a decrease in the humic substance (HS) fraction and an increase in bacterial biomass. Changes in DOC concentration and consumption in mixed treatments did not affect bacterial community composition (BCC), but BCC differed in single vs. mixed incubations. Our study highlights that DOC quantity affects bacterial C consumption but not BCC in nutrient-rich aquatic systems. BCC shifted when a mixture of allochthonous and autochthonous C was provided simultaneously to the bacterial community. Our results indicate that chemical quality rather than source of DOC per se (allochthonous vs. autochthonous) determines bacterial DOC turnover.

  16. Kinetics of desorption of organic compounds from dissolved organic matter.

    PubMed

    Kopinke, Frank-Dieter; Ramus, Ksenia; Poerschmann, Juergen; Georgi, Anett

    2011-12-01

    This study presents a new experimental technique for measuring rates of desorption of organic compounds from dissolved organic matter (DOM) such as humic substances. The method is based on a fast solid-phase extraction of the freely dissolved fraction of a solute when the solution is flushed through a polymer-coated capillary. The extraction interferes with the solute-DOM sorption equilibrium and drives the desorption process. Solutes which remain sorbed to DOM pass through the extraction capillary and can be analyzed afterward. This technique allows a time resolution for the desorption kinetics from subseconds up to minutes. It is applicable to the study of interaction kinetics between a wide variety of hydrophobic solutes and polyelectrolytes. Due to its simplicity it is accessible for many environmental laboratories. The time-resolved in-tube solid-phase microextraction (TR-IT-SPME) was applied to two humic acids and a surfactant as sorbents together with pyrene, phenanthrene and 1,2-dimethylcyclohexane as solutes. The results give evidence for a two-phase desorption kinetics: a fast desorption step with a half-life of less than 1 s and a slow desorption step with a half-life of more than 1 min. For aliphatic solutes, the fast-desorbing fraction largely dominates, whereas for polycyclic aromatic hydrocarbons such as pyrene, the slowly desorbing, stronger-bound fraction is also important. PMID:22035249

  17. Seasonal characterization and identification of dissolved organic matter (DOM) in the Pearl River, China.

    PubMed

    Zheng, Liuchun; Song, Zhaofeng; Meng, Peipei; Fang, Zhanqiang

    2016-04-01

    Dissolved organic matter (DOM) is considered to be one of active organic carbon components in river water, and its characteristics would affect quality of drinking water if such a river is used for the purpose. DOM in the Pearl River around metropolitan Guangzhou and its six fractions obtained by sequential resins separation and their percentage distribution of total organic carbon (TOC), the UV absorbance at 254 nm (UV254), and the specific ultraviolet absorbance (SUVA254) were determined. Meanwhile, fluorescence spectroscopy and Fourier transform infrared (FTIR) spectroscopy were used to examine the biodegradable and structural characteristics of DOM. The results showed that the values of TOC, UV254, and SUVA254 changed with season. Especially, SUVA254 was lower than 3 L (mg m)(-1), indicating that the hydrophilic fractions were the major components of the DOM. Furthermore, fluorescence spectroscopy revealed the dominant presence of humic-like, fulvic-like, and protein-like fluorophores. Fluorescence index (FI) in four seasons was associated with allochthonous DOM sources and biological DOM. FTIR spectroscopy suggested the feature of DOM with some specific groups (e.g., carbohydrate C-O, amid C═O). PMID:26711291

  18. Habitat management affects soil chemistry and allochthonous organic inputs mediating microbial structure and exo-enzyme activity in Wadden Sea salt-marsh soils

    NASA Astrophysics Data System (ADS)

    Mueller, Peter; Granse, Dirk; Thi Do, Hai; Weingartner, Magdalena; Nolte, Stefanie; Hoth, Stefan; Jensen, Kai

    2016-04-01

    The Wadden Sea (WS) region is Europe's largest wetland and home to approximately 20% of its salt marsh area. Mainland salt marshes of the WS are anthropogenically influenced systems and have traditionally been used for livestock grazing in wide parts. After foundation of WS National Parks in the late 1980s and early 1990s, artificial drainage has been abandoned; however, livestock grazing is still common in many areas of the National Parks and is under ongoing discussion as a habitat-management practice. While studies so far focused on effects of livestock grazing on biodiversity, little is known about how biogeochemical processes, element cycling, and particularly carbon sequestration are affected. Here, we present data from a recent field study focusing on grazing effects on soil properties, microbial exo-enzyme activity, microbial abundance and structure. Exo-enzyme activity was studied conducting digestive enzyme assays for various enzymes involved in C- and N cycling. Microbial abundance and structure was assessed measuring specific gene abundance of fungi and bacteria using quantitative PCR. Soil compaction induced by grazing led to higher bulk density and decreases in soil redox (∆ >100 mV). Soil pH was significantly lower in grazed parts. Further, the proportion of allochthonous organic matter (marine input) was significantly smaller in grazed vs. ungrazed sites, likely caused by a higher sediment trapping capacity of the taller vegetation in the ungrazed sites. Grazing induced changes in bulk density, pH and redox resulted in reduced activity of enzymes involved in microbial C acquisition; however, there was no grazing effect on enzymes involved in N acquisition. While changes in pH, bulk density or redox did not affect microbial abundance and structure, the relative amount of marine organic matter significantly reduced the relative abundance of fungi (F:B ratio). We conclude that livestock grazing directly affects microbial exo-enzyme activity, thus

  19. Dissolved Organic Matter and Emerging Contaminants in Urban Stream Ecosystems

    NASA Astrophysics Data System (ADS)

    Kaushal, S. S.; Findlay, S.; Groffman, P.; Belt, K.; Delaney, K.; Sides, A.; Walbridge, M.; Mayer, P.

    2009-05-01

    We investigated the effects of urbanization on the sources, bioavailability and forms of natural and anthropogenic organic matter found in streams located in Maryland, U.S.A. We found that the abundance, biaoavailability, and enzymatic breakdown of dissolved organic carbon (DOC), dissolved organic nitrogen (DON), and dissolved organic phosphorus (DOP) increased in streams with increasing watershed urbanization suggesting that organic nutrients may represent a growing form of nutrient loading to coastal waters associated with land use change. Organic carbon, nitrogen, and phosphorus in urban streams were elevated several-fold compared to forest and agricultural streams. Enzymatic activities of stream microbes in organic matter decomposition were also significantly altered across watershed land use. Chemical characterization suggested that organic matter in urban streams originated from a variety of sources including terrestrial, sewage, and in-stream transformation. In addition, a characterization of emerging organic contaminants (polyaromatic cyclic hydrocarbons, organochlorine pesticides, and polybrominated diphenyl ether flame retardents), showed that organic contaminants and dissolved organic matter increase with watershed urbanization and fluctuate substantially with changing climatic conditions. Elucidating the emerging influence of urbanization on sources, transport, and in-stream transformation of organic nutrients and contaminants will be critical in unraveling the changing role of organic matter in urban degraded and restored stream ecosystems.

  20. Chromophoric Dissolved Organic Matter across a Marine Distributed Biological Observatory in the Pacific Arctic Region

    NASA Astrophysics Data System (ADS)

    Berman, S. L.; Frey, K. E.; Shake, K. L.; Cooper, L. W.; Grebmeier, J. M.

    2014-12-01

    Dissolved organic matter (DOM) plays an important role in marine ecosystems as both a carbon source for the microbial food web (and thus a source of CO2 to the atmosphere) and as a light inhibitor in marine environments. The presence of chromophoric dissolved organic matter (CDOM; the optically active portion of total DOM) can have significant controlling effects on transmittance of sunlight through the water column and therefore on primary production as well as the heat balance of the upper ocean. However, CDOM is also susceptible to photochemical degradation, which decreases the flux of solar radiation that is absorbed. Knowledge of the current spatial and temporal distribution of CDOM in marine environments is thus critical for understanding how ongoing and future changes in climate may impact these biological, biogeochemical, and physical processes. We describe the quantity and quality of CDOM along five key productive transects across a developing Distributed Biological Observatory (DBO) in the Pacific Arctic region. The samples were collected onboard the CCGS Sir Wilfred Laurier in July 2013 and 2014. Monitoring of the variability of CDOM along transects of high productivity can provide important insights into biological and biogeochemical cycling across the region. Our analyses include overall concentrations of CDOM, as well as proxy information such as molecular weight, lability, and source (i.e., autochthonous vs. allochthonous) of organic matter. We utilize these field observations to compare with satellite-derived CDOM concentrations determined from the Aqua MODIS satellite platform, which ultimately provides a spatially and temporally continuous synoptic view of CDOM concentrations throughout the region. Examining the current relationships among CDOM, sea ice variability, biological productivity, and biogeochemical cycling in the Pacific Arctic region will likely provide key insights for how ecosystems throughout the region will respond in future

  1. Increasing addition of autochthonous to allochthonous carbon in nutrient-rich aquatic systems stimulates carbon consumption but does not alter bacterial community composition

    NASA Astrophysics Data System (ADS)

    Attermeyer, K.; Hornick, T.; Kayler, Z. E.; Bahr, A.; Zwirnmann, E.; Grossart, H.-P.; Premke, K.

    2013-08-01

    Dissolved organic carbon (DOC) concentrations - mainly of terrestrial origin - are increasing worldwide in inland waters. The biodegradability of the DOC varies depending on quantity and chemical quality. Heterotrophic bacteria are the main consumers of DOC and thus determine DOC temporal dynamics and availability for higher trophic levels. It is therefore crucial to understand the processes controlling the bacterial turnover of additional allochthonous and autochthonous DOC in aquatic systems. Our aim was to study bacterial carbon (C) turnover with respect to DOC quantity and chemical quality using both allochthonous and autochthonous DOC sources. We incubated a natural bacterial community with allochthonous C (13C-labeled beech leachate) and increased concentrations and pulses (intermittent occurrence of organic matter input) of autochthonous C (algae lysate). We then determined bacterial carbon consumption, activities, and community composition together with the carbon flow through bacteria using stable C isotopes. The chemical analysis of single sources revealed differences in aromaticity and fractions of low and high molecular weight substances (LMWS and HMWS, respectively) between allochthonous and autochthonous C sources. In parallel to these differences in chemical composition, we observed a higher availability of allochthonous C as evidenced by increased DOC consumption and bacterial growth efficiencies (BGE) when solely allochthonous C was provided. In treatments with mixed sources, rising concentrations of added autochthonous DOC resulted in a further, significant increase in bacterial DOC consumption from 52 to 68% when nutrients were not limiting. This rise was accompanied by a decrease in the humic substances (HS) fraction and an increase in bacterial biomass. Stable C isotope analyses of phospholipid fatty acids (PLFA) and respired dissolved inorganic carbon (DIC) supported a preferential assimilation of autochthonous C and respiration of the

  2. Dissolved organic carbon in the deep Southern Ocean: Local versus distant controls

    NASA Astrophysics Data System (ADS)

    Bercovici, Sarah K.; Hansell, Dennis A.

    2016-02-01

    The global ocean contains a massive reservoir (662 ± 32 Pg C) of dissolved organic carbon (DOC), and its dynamics, particularly in the deepest zones, are only slowly being understood. DOC in the deep ocean is ubiquitously low in concentration (~35 to 48 µmol kg-1) and aged (4000 to 6000 years), persisting for multiple meridional overturning circulations. Deep waters relatively enriched in DOC form in the North Atlantic, migrate to the Southern Ocean to mix with waters from Antarctic shelves and the deep Pacific and Indian Oceans, in turn forming the voluminous waters of the Circumpolar Deep Water. Here we seek evidence for local (autochthonous) versus distant (allochthonous) processes in determining the distribution of DOC in the deep Southern Ocean. Prior analyses on DOC in the deep Southern Ocean have conflicted, describing both conservative and nonconservative traits: the deep DOC field has been reported as uniform in distribution, yet local inputs have been suggested as quantitatively important. We use multiple approaches (multiple linear regression, mass transport, and mass balance calculations) with data from Climate Variability and Predictability Repeat Hydrography sections to evaluate the system. We find that DOC concentrations in the deep Southern Ocean largely reflect the conservative mixing of the several deep waters entering the system from the north. Mass balance suggests that the relatively depleted DOC radiocarbon content in the deep Southern Ocean is a conserved property as well. These analyses advance our understanding of the controls on the DOC reservoir of the Southern Ocean.

  3. Removal of dissolved organic matter by anion exchange: Effect of dissolved organic matter properties

    USGS Publications Warehouse

    Boyer, T.H.; Singer, P.C.; Aiken, G.R.

    2008-01-01

    Ten isolates of aquatic dissolved organic matter (DOM) were evaluated to determine the effect that chemical properties of the DOM, such as charge density, aromaticity, and molecular weight, have on DOM removal by anion exchange. The DOM isolates were characterized asterrestrial, microbial, or intermediate humic substances or transphilic acids. All anion exchange experiments were conducted using a magnetic ion exchange (MIEX) resin. The charge density of the DOM isolates, determined by direct potentiometric titration, was fundamental to quantifying the stoichiometry of the anion exchange mechanism. The results clearly show that all DOM isolates were removed by anion exchange; however, differences among the DOM isolates did influence their removal by MIEX resin. In particular, MIEX resin had the greatest affinity for DOM with high charge density and the least affinity for DOM with low charge density and low aromaticity. This work illustrates that the chemical characteristics of DOM and solution conditions must be considered when evaluating anion exchange treatment for the removal of DOM. ?? 2008 American Chemical Society.

  4. Do soils loose phosphorus with dissolved organic matter?

    NASA Astrophysics Data System (ADS)

    Kaiser, K.; Brödlin, D.; Hagedorn, F.

    2014-12-01

    During ecosystem development and soil formation, primary mineral sources of phosphorus are becoming increasingly depleted. Inorganic phosphorus forms tend to be bound strongly to or within secondary minerals, thus, are hardly available to plants and are not leached from soil. What about organic forms of phosphorus? Since rarely studied, little is known on the composition, mobility, and bioavailability of dissolved organic phosphorus. There is some evidence that plant-derived compounds, such as phytate, bind strongly to minerals as well, while microbial compounds, such as nucleotides and nucleic acids, may represent more mobile fractions of soil phosphorus. In some weakly developed, shallow soils, leaching losses of phosphorus seem to be governed by mobile organic forms. Consequently, much of the phosphorus losses observed during initial stages of ecosystem development may be due to the leaching of dissolved organic matter. However, the potentially mobile microbial compounds are enzymatically hydrolysable. Forest ecosystems on developed soils already depleted in easily available inorganic phosphorus are characterized by rapid recycling of organic phosphors. That can reduce the production of soluble forms of organic phosphorus as well as increase the enzymatic hydrolysis and subsequent plant uptake of phosphorus bound within dissolved organic matter. This work aims at giving an outlook to the potential role of dissolved organic matter in the cycling of phosphorus within developing forest ecosystems, based on literature evidence and first results of ongoing research.

  5. Linkage between the temporal and spatial variability of dissolved organic matter and whole-stream metabolism

    NASA Astrophysics Data System (ADS)

    Halbedel, S.; Büttner, O.; Weitere, M.

    2013-08-01

    Dissolved organic matter (DOM) is an important resource for microbes, thus affecting whole-stream metabolism. However, the factors influencing its chemical composition and thereby also its bio-availability are complex and not thoroughly understood. It was hypothesized that whole-stream metabolism is linked to DOM composition and that the coupling of both is influenced by seasonality and different land-use types. We tested this hypothesis in a comparative study on two pristine forestry streams and two non-forestry streams. The investigated streams were located in the Harz Mountains (central Europe, Germany). The metabolic rate was measured with a classical two-station oxygen change technique and the variability of DOM with fluorescence spectroscopy. All streams were clearly net heterotrophic, whereby non-forestry streams showed a higher primary production, which was correlated to irradiance and phosphorus concentration. We detected three CDOM components (C1, C2, C3) using parallel factor (PARAFAC) analysis. We compared the excitation and emission maxima of these components with the literature and correlated the PARAFAC components with each other and with fluorescence indices. The correlations suggest that two PARAFAC components are derived from allochthonous sources (C1, C3) and one is derived autochthonously (C2). The chromophoric DOM matrix was dominated by signals of humic-like substances with a highly complex structure, followed by humic-like, fulfic acids, low-molecular-weight substances, and with minor amounts of amino acids and proteins. The ratios of these PARAFAC components (C1 : C2, C1 : C3, C3 : C2) differed with respect to stream types (forestry versus non-forestry). We demonstrated a significant correlation between gross primary production (GPP) and signals of autochthonously derived, low-molecular-weight humic-like substances. A positive correlation between P / R (i.e. GPP/daily community respiration) and the fluorescence index FI suggests that the

  6. Effects of dissolved organic matter from a eutrophic lake on the freely dissolved concentrations of emerging organic contaminants.

    PubMed

    Xiao, Yi-Hua; Huang, Qing-Hui; Vähätalo, Anssi V; Li, Fei-Peng; Chen, Ling

    2014-08-01

    The authors studied the effects of dissolved organic matter (DOM) on the bioavailability of bisphenol A (BPA) and chloramphenicol by measuring the freely dissolved concentrations of the contaminants in solutions containing DOM that had been isolated from a mesocosm in a eutrophic lake. The abundance and aromaticity of the chromophoric DOM increased over the 25-d mesocosm experiment. The BPA freely dissolved concentration was 72.3% lower and the chloramphenicol freely dissolved concentration was 56.2% lower using DOM collected on day 25 than using DOM collected on day 1 of the mesocosm experiment. The freely dissolved concentrations negatively correlated with the ultraviolent absorption coefficient at 254 nm and positively correlated with the spectral slope of chromophoric DOM, suggesting that the bioavailability of these emerging organic contaminants depends on the characteristics of the DOM present. The DOM-water partition coefficients (log KOC ) for the emerging organic contaminants positively correlated with the aromaticity of the DOM, measured as humic acid-like fluorescent components C1 (excitation/emission=250[313]/412 nm) and C2 (excitation/emission=268[379]/456 nm). The authors conclude that the bioavailability of emerging organic contaminants in eutrophic lakes can be affected by changes in the DOM. PMID:24839192

  7. Effluent dissolved organic nitrogen and dissolved phosphorus removal by enhanced coagulation and microfiltration.

    PubMed

    Arnaldos, Marina; Pagilla, Krishna

    2010-10-01

    Plants aiming to achieve very low effluent nutrient levels (<3 mg N/L for N, and <0.1 mg P/L for P) need to consider removal of effluent fractions hitherto not taken into account. Two of these fractions are dissolved organic nitrogen (DON) and dissolved non-reactive phosphorus (DNRP) (mainly composed of organic phosphorus). In this research, enhanced coagulation using alum (at doses commonly employed in tertiary phosphorus removal) followed by microfiltration (using 0.22 μm pore size filters) was investigated for simultaneous effluent DON and dissolved phosphorus (DP) fractions removal. At an approximate dose of 3.2 mg Al(III)/L, corresponding to 1.5 Al(III)/initial DON-N and 3.8 Al(III)/initial DP-P molar ratios, maximum simultaneous removal of DON and DP was achieved (69% for DON and 72% for DP). At this dose, residual DON and DP concentrations were found to be 0.3 mg N/L and 0.25 mg P/L, respectively. Analysis of the trends of removal revealed that the DNRP removal pattern was similar to that commonly reported for dissolved reactive phosphorus. Since this study involved intensive analytical work, a secondary objective was to develop a simple and accurate measurement protocol for determining dissolved N and P species at very low levels in wastewater effluents. The protocol developed in this study, involving simultaneous digestion for DON and DNRP species, was found to be very reliable and accurate based on the results. PMID:20643469

  8. Unimodal response of fish yield to dissolved organic carbon.

    PubMed

    Finstad, Anders G; Helland, Ingeborg P; Ugedal, Ola; Hesthagen, Trygve; Hessen, Dag O

    2014-01-01

    Here, we demonstrate a contrasting effect of terrestrial coloured dissolved organic material on the secondary production of boreal nutrient poor lakes. Using fish yield from standardised brown trout gill-net catches as a proxy, we show a unimodal response of lake secondary productivity to dissolved organic carbon (DOC). This suggests a trade-off between positive and negative effects, where the initial increase may hinge upon several factors such as energy subsidising, screening of UV-radiation or P and N load being associated with organic carbon. The subsequent decline in production with further increase in DOC is likely associated with light limitations of primary production. We also show that shallow lakes switch from positive to negative effects at higher carbon loads than deeper lakes. These results underpin the major role of organic carbon for structuring productivity of boreal lake ecosystems. PMID:24165396

  9. Iron traps terrestrially derived dissolved organic matter at redox interfaces

    PubMed Central

    Riedel, Thomas; Zak, Dominik; Biester, Harald; Dittmar, Thorsten

    2013-01-01

    Reactive iron and organic carbon are intimately associated in soils and sediments. However, to date, the organic compounds involved are uncharacterized on the molecular level. At redox interfaces in peatlands, where the biogeochemical cycles of iron and dissolved organic matter (DOM) are coupled, this issue can readily be studied. We found that precipitation of iron hydroxides at the oxic surface layer of two rewetted fens removed a large fraction of DOM via coagulation. On aeration of anoxic fen pore waters, >90% of dissolved iron and 27 ± 7% (mean ± SD) of dissolved organic carbon were rapidly (within 24 h) removed. Using ultra-high-resolution MS, we show that vascular plant-derived aromatic and pyrogenic compounds were preferentially retained, whereas the majority of carboxyl-rich aliphatic acids remained in solution. We propose that redox interfaces, which are ubiquitous in marine and terrestrial settings, are selective yet intermediate barriers that limit the flux of land-derived DOM to oceanic waters. PMID:23733946

  10. Photochemical flocculation of terrestrial dissolved organic matter and iron

    NASA Astrophysics Data System (ADS)

    Helms, John R.; Mao, Jingdong; Schmidt-Rohr, Klaus; Abdulla, Hussain; Mopper, Kenneth

    2013-11-01

    Dissolved organic matter (DOM) rich water samples (Great Dismal Swamp, Virginia) were 0.1-μm filtered and UV-irradiated in a solar simulator for 30 days. During the irradiation, pH increased, particulate organic matter (POM) and particulate iron formed. After 30 days, 7% of the dissolved organic carbon (DOC) was converted to POC while 75% was remineralized. Approximately 87% of the iron was removed from the dissolved phase after 30 days, but iron did not flocculate until a major fraction of DOM was removed by photochemical degradation and flocculation (>10 days); thus, during the initial 10 days, there were sufficient organic ligands present or the pH was low enough to keep iron in solution. Nuclear magnetic resonance and Fourier transform infrared spectroscopies indicated that photochemically flocculated POM was more aliphatic than the residual non-flocculated DOM. Photochemically flocculated POM was also enriched in amide functionality, while carbohydrate-like material was resistant to both photochemical degradation and flocculation. Abiotic photochemical flocculation likely removes a significant fraction of terrestrial DOM from the upper water column between headwaters and the ocean, but has previously been ignored. Preliminary evidence suggests that this process may significantly impact the transport of DOM and POM in ocean margin environments including estuaries.

  11. Iron traps terrestrially derived dissolved organic matter at redox interfaces.

    PubMed

    Riedel, Thomas; Zak, Dominik; Biester, Harald; Dittmar, Thorsten

    2013-06-18

    Reactive iron and organic carbon are intimately associated in soils and sediments. However, to date, the organic compounds involved are uncharacterized on the molecular level. At redox interfaces in peatlands, where the biogeochemical cycles of iron and dissolved organic matter (DOM) are coupled, this issue can readily be studied. We found that precipitation of iron hydroxides at the oxic surface layer of two rewetted fens removed a large fraction of DOM via coagulation. On aeration of anoxic fen pore waters, >90% of dissolved iron and 27 ± 7% (mean ± SD) of dissolved organic carbon were rapidly (within 24 h) removed. Using ultra-high-resolution MS, we show that vascular plant-derived aromatic and pyrogenic compounds were preferentially retained, whereas the majority of carboxyl-rich aliphatic acids remained in solution. We propose that redox interfaces, which are ubiquitous in marine and terrestrial settings, are selective yet intermediate barriers that limit the flux of land-derived DOM to oceanic waters. PMID:23733946

  12. Analysing Submarine Groundwater Discharge (SGD)-borne Dissolved Organic Matter (DOM) in a karstic aquifer, Co. Galway, Ireland.

    NASA Astrophysics Data System (ADS)

    Kelly, Tara; Rocha, Carlos

    2014-05-01

    Submarine Groundwater Discharge (SGD) constitutes an "invisible" link between land and sea, transporting allochthonous and autochthonous dissolved organic matter (DOM), nutrients and metals to the ocean via the subterranean estuary. The latter acts as a powerful bioreactor where groundwater, in transit from land to sea, mixes with seawater leading to active modulation of both DOM content and chemical makeup of SGD. DOM in freshwater systems is a key component of the global carbon cycle. Climate change may hence increase the concentration of allochthonous carbon entering the oceans as terrestrial DOC is released from soils at higher temperatures, and transported via SGD. Presently, little is known about the effects of SGD-borne DOM on coastal carbon cycling. SGD therefore represents a dynamic reservoir and analysis is critical to forecast future environmental management programmes, both on a local and global scale. Labile DOM plays a crucial role in microbial remineralisation processes, and as it breaks down it contributes to the groundwater nutrient pool. Locally, this could add to eutrophication. However, if refractory carbon is present, it will be recalcitrant to mineralisation in transit and at the subterranean estuary. This putative additional input will thus imply the contribution of SGD to oceanic carbon storage. This study is focused on Kinvara Bay (Galway, western Ireland), the focal point for waters discharging from the Gort-Kinvara karstic aquifer. This aquifer represents the ideal study location for evaluation of SGD contribution to the coastal DOM pool, as SGD is focused in the bay, surface drainage is very limited, and groundwater travels across a large catchment area with a short residence time, minimising DOM modification in transit. DOM samples collected in the field have been analysed using Three-Dimensional Excitation Emission Matrix Fluorescence (3D-EEMF) and High Temperature Catalytic Oxidation. PARAFAC is subsequently used as a tool to

  13. Evaluating the distribution of terrestrial dissolved organic matter in a complex coastal ecosystem using fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Yamashita, Youhei; Boyer, Joseph N.; Jaffé, Rudolf

    2013-09-01

    The coastal zone of the Florida Keys features the only living coral reef in the continental United States and as such represents a unique regional environmental resource. Anthropogenic pressures combined with climate disturbances such as hurricanes can affect the biogeochemistry of the region and threaten the health of this unique ecosystem. As such, water quality monitoring has historically been implemented in the Florida Keys, and six spatially distinct zones have been identified. In these studies however, dissolved organic matter (DOM) has only been studied as a quantitative parameter, and DOM composition can be a valuable biogeochemical parameter in assessing environmental change in coastal regions. Here we report the first data of its kind on the application of optical properties of DOM, in particular excitation emission matrix fluorescence with parallel factor analysis (EEM-PARAFAC), throughout these six Florida Keys regions in an attempt to assess spatial differences in DOM sources. Our data suggests that while DOM in the Florida Keys can be influenced by distant terrestrial environments such as the Everglades, spatial differences in DOM distribution were also controlled in part by local surface runoff/fringe mangroves, contributions from seasgrass communities, as well as the reefs and waters from the Florida Current. Application of principal component analysis (PCA) of the relative abundance of EEM-PARAFAC components allowed for a clear distinction between the sources of DOM (allochthonous vs. autochthonous), between different autochthonous sources and/or the diagenetic status of DOM, and further clarified contribution of terrestrial DOM in zones where levels of DOM were low in abundance. The combination between EEM-PARAFAC and PCA proved to be ideally suited to discern DOM composition and source differences in coastal zones with complex hydrology and multiple DOM sources.

  14. Dissolved Organic Matter Composition and Microbial Diversity In The Lake Tahoe Basin, Sierra Nevada, California.

    NASA Astrophysics Data System (ADS)

    Aluwihare, L.; Goldberg, S. J.; Ball, G. I.; Mendoza, W. G.; Simpson, A.; Kharbush, J.; Nelson, C. E.

    2014-12-01

    Dissolved organic matter (DOM) inputs into high elevation lakes of the Sierra Nevada, California are seasonally segregated, and this enables an examination of the dominant compositional features and microbial responses associated with allochthonous versus autochthonous DOM inputs. Furthermore, because lakes within this watershed have very different hydraulic residence times, extending from days (e.g., Upper Angora Lake) to centuries (Lake Tahoe), the Tahoe Basin represents an ideal experimental system in which to characterize long-lived DOM. We used a variety of analytical tools, including elemental, stable isotope and radiocarbon measurements, nuclear magnetic resonance (NMR) spectroscopy, comprehensive 2D gas chromatography coupled to time of flight (TOF) mass spectrometry and fluorescence measurements, to characterize solid phase extracted (SPE) DOM, and in some cases, whole DOM. Our data show that DOM with typical terrestrial characteristics is quickly removed in lakes with >annual water residence time, leaving behind SPE DOM that is extremely N-rich, with a functional group distribution that is consistent with protein. Furthermore, our radiocarbon measurements estimate a 100-200 year residence time for the N-rich DOM accumulating in Lake Tahoe. All of the analytical techniques distinguish samples based on lake water residence time, which indicates that the lacustrine reactor plays an important role in determining the composition of DOM that accumulates on long timescales. We also examined temporal variations in the microbial community of Lake Tahoe to identify taxa that may be involved in processing DOM from distinct sources. Our results confirm the importance of DOM as a currency for carbon and nitrogen exchange between different compartments of the terrestrial ecosystem and argue for its inclusion in models that examine the response of lake ecosystems to global change.

  15. Rates of dissolved organic carbon (DOC) production and bacterial activity in the eastern North Atlantic Subtropical Gyre during summer

    NASA Astrophysics Data System (ADS)

    Teira, E.; Pazó, M. J.; Quevedo, M.; Fuentes, M. V.; Niell, F. X.; Fernández, E.

    2003-04-01

    Rates of particulate organic carbon production, dissolved organic carbon production (DOC) and bacterial production were measured at 8 stations located in the eastern North Atlantic Subtropical Gyre during August 1998. Euphotic-depth-integrated particulate organic carbon (POC) production rate was on average 27 mg C m-2 h-1. The corresponding averaged integrated DOC production rate was 5 mg C m-2 h-1, i.e., about 20 % of total primary production. No statistically significant relationship was found between the rates of DOC and POC production, suggesting that other processes besides phytoplankton exudation, such as cell lysis or protist grazing, could substantially contribute to the release of DOC. Euphotic-depth-integrated bacterial biomass and production were, on average, 214 mg C m-2 and 1.4 mg C m-2 h-1, respectively. The lack of correlation between the rates of DOC release and bacterial activity, and a bacterial carbon demand (BCD, calculated by using an estimated bacterial growth efficiency ranging from 11 to 18%) in excess of DOC production suggest the existence of additional organic carbon sources (both allochthonous and/or autochthonous reservoirs), apart from in situ phytoplankton-derived DOC production, for the maintenance of bacterial activity in this region during summer.

  16. The availability of dissolved organic phosphorus compounds to marine phytoplankton

    NASA Astrophysics Data System (ADS)

    Hua-Sheng, Hong; Hai-Li, Wang; Bang-Qin, Huang

    1995-06-01

    The availability of three dissolved organic phosphorus (DOP) compounds as nutrient sources for experimental culture of three algae was studied. Results indicated that these compounds could be utilized by algae, and that dissolved inorganic phosphorus (DIP) was first to be uptaken when various forms of phosphorus (DIP and DOP) co-existed. Dicrateria zhanjiangensis' uptake of sodium glycerophosphate was faster than that of D-ribose-5-phosphate. The increase of sodium glycerophosphate had little effect on the maximum uptake rate( V max) of Chlorella sp., but increased the semisaturation constant( K s) remarkably; the photosynthesis rates(PR) of Dicrateria zhanjiangensis and Chlorella sp. were rarely affected by using various forms of phosphorus in the culture experiments. The possible DOP pathways utilized by algae are discussed.

  17. Why dissolved organic matter (DOM) enhances photodegradation of methylmercury

    SciTech Connect

    Qian, Yun; Yin, Xiangping Lisa; Brooks, Scott C; Liang, Liyuan; Gu, Baohua

    2014-01-01

    Methylmercury (MeHg) is known to degrade photochemically, but it remains unclear what roles naturally dissolved organic matter (DOM) and complexing organic ligands play in MeHg photodegradation. Here we investigate the rates and mechanisms of MeHg photodegradation using DOM samples with varying oxidation states and origins as well as organic ligands with known molecular structures. All DOM and organic ligands increased MeHg photodegradation under solar irradiation, but the first-order rate constants varied depending on the oxidation state of DOM and the type and concentration of the ligands. Compounds containing both thiols and aromatics (e.g., thiosalicylate and reduced DOM) increased MeHg degradation rates far greater than those containing only aromatic or thiol functional groups (e.g., salicylate or glutathione). Our results suggest that, among other factors, the synergistic effects of thiolate and aromatic moieties in DOM greatly enhance MeHg photodegradation.

  18. Photochemical degradation of dissolved organic matter and dissolved lignin phenols from the Congo River

    NASA Astrophysics Data System (ADS)

    Spencer, Robert G. M.; Stubbins, Aron; Hernes, Peter J.; Baker, Andy; Mopper, Kenneth; Aufdenkampe, Anthony K.; Dyda, Rachael Y.; Mwamba, Vincent L.; Mangangu, Arthur M.; Wabakanghanzi, Jose N.; Six, Johan

    2009-09-01

    Photochemical degradation of Congo River dissolved organic matter (DOM) was investigated to examine the fate of terrigenous DOM derived from tropical ecosystems. Tropical riverine DOM receives greater exposure to solar radiation, particularly in large river plumes discharging directly into the open ocean. Initial Congo River DOM exhibited dissolved organic carbon (DOC) concentration and compositional characteristics typical of organic rich blackwater systems. During a 57 day irradiation experiment, Congo River DOM was shown to be highly photoreactive with a decrease in DOC, chromophoric DOM (CDOM), lignin phenol concentrations (Σ8) and carbon-normalized yields (Λ8), equivalent to losses of ˜45, 85-95, >95 and >95% of initial values, respectively, and a +3.1 ‰ enrichment of the δ13C-DOC signature. The loss of Λ8 and enrichment of δ13C-DOC during irradiation was strongly correlated (r = 0.99, p < 0.01) indicating tight coupling between these biomarkers. Furthermore, the loss of CDOM absorbance was correlated to the loss of Λ8 (e.g., a355 versus Λ8; r = 0.98, p < 0.01) and δ13C-DOC (e.g., a355 versus δ13C; r = 0.97, p < 0.01), highlighting the potential of CDOM absorbance measurements for delineating the photochemical degradation of lignin and thus terrigenous DOM. It is apparent that these commonly used measurements for examination of terrigenous DOM in the oceans have a higher rate of photochemical decay than the bulk DOC pool. Further process-based studies are required to determine the selective removal rates of these biomarkers for advancement of our understanding of the fate of this material in the ocean.

  19. Dissolved oxygen as an indicator of bioavailable dissolved organic carbon in groundwater

    USGS Publications Warehouse

    Chapelle, Francis H.; Bradley, Paul M.; McMahon, Peter B.; Kaiser, Karl; Benner, Ron

    2012-01-01

    Concentrations of dissolved oxygen (DO) plotted vs. dissolved organic carbon (DOC) in groundwater samples taken from a coastal plain aquifer of South Carolina (SC) showed a statistically significant hyperbolic relationship. In contrast, DO-DOC plots of groundwater samples taken from the eastern San Joaquin Valley of California (CA) showed a random scatter. It was hypothesized that differences in the bioavailability of naturally occurring DOC might contribute to these observations. This hypothesis was examined by comparing nine different biochemical indicators of DOC bioavailability in groundwater sampled from these two systems. Concentrations of DOC, total hydrolysable neutral sugars (THNS), total hydrolysable amino acids (THAA), mole% glycine of THAA, initial bacterial cell counts, bacterial growth rates, and carbon dioxide production/consumption were greater in SC samples relative to CA samples. In contrast, the mole% glucose of THNS and the aromaticity (SUVA254) of DOC was greater in CA samples. Each of these indicator parameters were observed to change with depth in the SC system in a manner consistent with active biodegradation. These results are uniformly consistent with the hypothesis that the bioavailability of DOC is greater in SC relative to CA groundwater samples. This, in turn, suggests that the presence/absence of a hyperbolic DO-DOC relationship may be a qualitative indicator of relative DOC bioavailability in groundwater systems.

  20. Metabolomics confirms that dissolved organic carbon mitigates copper toxicity.

    PubMed

    Taylor, Nadine S; Kirwan, Jennifer A; Yan, Norman D; Viant, Mark R; Gunn, John M; McGeer, James C

    2016-03-01

    Reductions in atmospheric emissions from the metal smelters in Sudbury, Canada, produced major improvements in acid and metal contamination of local lakes and indirectly increased dissolved organic carbon (DOC) concentrations. Metal toxicity, however, has remained a persistent problem for aquatic biota. Integrating high-throughput, nontargeted mass spectrometry metabolomics with conventional toxicological measures elucidated the mediating effects of dissolved organic matter (DOM) on the toxicity of Cu to Daphnia pulex-pulicaria, a hybrid isolated from these soft water lakes. Two generations of daphniids were exposed to Cu (0-20 μg/L) at increasing levels of natural DOM (0-4 mg DOC/L). Added DOM reduced Cu toxicity monotonically with median lethal concentration values increasing from 2.3 μg/L Cu without DOM to 22.7 μg/L Cu at 4 mg DOC/L. Reproductive output similarly benefited, increasing with DOM, yet falling with increases in Cu. Second generation reproduction was more impaired than the first generation. Dissolved organic matter had a greater influence than Cu on the metabolic status of the daphniids. Putative identification of metabolite peaks indicated that DOM elevation increased the metabolic energy status of the first generation animals, but this benefit was reduced in the second generation, although evidence of increased oxidative stress was detected. These results indicate that Sudbury's terrestrial ecosystems should be managed to increase aquatic DOM supply to enable daphniid colonists to both survive and foster stable populations. Environ Toxicol Chem 2016;35:635-644. © 2015 SETAC. PMID:26274843

  1. Bacterial biomarkers thermally released from dissolved organic matter

    USGS Publications Warehouse

    Greenwood, P.F.; Leenheer, J.A.; McIntyre, C.; Berwick, L.; Franzmann, P.D.

    2006-01-01

    Hopane biomarker products were detected using microscale sealed vessel (MSSV) pyrolysis gas chromatography-mass spectrometry (GC-MS) analysis of dissolved organic matter from natural aquatic systems colonised by bacterial populations. MSSV pyrolysis can reduce the polyhydroxylated alkyl side chain of bacteriohopanepolyols, yielding saturated hopane products which are more amenable to GC-MS detection than their functionalised precursors. This example demonstrates how the thermal conditions of MSSV pyrolysis can reduce the biologically-inherited structural functionality of naturally occurring organic matter such that additional structural fragments can be detected using GC methods. This approach complements traditional analytical pyrolysis methods by providing additional speciation information useful for establishing the structures and source inputs of recent or extant organic material. ?? 2006.

  2. Utilizing Colored Dissolved Organic Matter to Derive Dissolved Black Carbon Export by Arctic Rivers

    NASA Astrophysics Data System (ADS)

    Stubbins, Aron; Spencer, Robert; Mann, Paul; Holmes, R.; McClelland, James; Niggemann, Jutta; Dittmar, Thorsten

    2015-10-01

    Wildfires have produced black carbon (BC) since land plants emerged. Condensed aromatic compounds, a form of BC, have accumulated to become a major component of the soil carbon pool. Condensed aromatics leach from soils into rivers, where they are termed dissolved black carbon (DBC). The transport of DBC by rivers to the sea is a major term in the global carbon and BC cycles. To estimate Arctic river DBC export, 25 samples collected from the six largest Arctic rivers (Kolyma, Lena, Mackenzie, Ob’, Yenisey and Yukon) were analyzed for dissolved organic carbon (DOC), colored dissolved organic matter (CDOM), and DBC. A simple, linear regression between DOC and DBC indicated that DBC accounted for 8.9 ± 0.3% DOC exported by Arctic rivers. To improve upon this estimate, an optical proxy for DBC was developed based upon the linear correlation between DBC concentrations and CDOM light absorption coefficients at 254 nm (a254). Relatively easy to measure a254 values were determined for 410 Arctic river samples between 2004 and 2010. Each of these a254 values was converted to a DBC concentration based upon the linear correlation, providing an extended record of DBC concentration. The extended DBC record was coupled with daily discharge data from the six rivers to estimate riverine DBC loads using the LOADEST modeling program. The six rivers studied cover 53% of the pan-Arctic watershed and exported 1.5 ± 0.1 million tons of DBC per year. Scaling up to the full area of the pan-Arctic watershed, we estimate that Arctic rivers carry 2.8 ± 0.3 million tons of DBC from land to the Arctic Ocean each year. This equates to ~8% of Arctic river DOC export, slightly less than indicated by the simpler DBC vs DOC correlation-based estimate. Riverine discharge is predicted to increase in a warmer Arctic. DBC export was positively correlated with river runoff, suggesting that the export of soil BC to the Arctic Ocean is likely to increase as the Arctic warms.

  3. Ocean metabolism and dissolved organic matter: How do small dissolved molecules persist in the ocean?

    NASA Astrophysics Data System (ADS)

    Benner, Ronald

    2010-05-01

    The ocean reservoir of dissolved organic matter (DOM) is among the largest global reservoirs (~700 Pg C) of reactive organic carbon. Marine primary production (~50 Pg C/yr) by photosynthetic microalgae and cyanobacteria is the major source of organic matter to the ocean and the principal substrate supporting marine food webs. The direct release of DOM from phytoplankton and other organisms as well as a variety of other processes, such as predation and viral lysis, contribute to the ocean DOM reservoir. Continental runoff and atmospheric deposition are relatively minor sources of DOM to the ocean, but some components of this material appear to be resistant to decomposition and to have a long residence time in the ocean. Concentrations of DOM are highest in surface waters and decrease with depth, a pattern that reflects the sources and diagenesis of DOM in the upper ocean. Most (70-80%) marine DOM exists as small molecules of low molecular weight (<1 kDalton). Surprisingly, high-molecular-weight (>1 kDalton) DOM is relatively enriched in major biochemicals, such as combined neutral sugars and amino acids, and is more bioavailable than low-molecular-weight DOM. The observed relationships among the size, composition, and reactivity of DOM have led to the size-reactivity continuum model, which postulates that diagenetic processes lead to the production of smaller molecules that are structurally altered and resistant to microbial degradation. The radiocarbon content of these small dissolved molecules also indicates these are the most highly aged components of DOM. Chemical signatures of bacteria are abundant in DOM and increase during diagenesis, indicating bacteria are an important source of slowly cycling biochemicals. Recent analyses of DOM isolates by ultrahigh-resolution mass spectrometry have revealed an incredibly diverse mixture of molecules. Carboxyl-rich alicyclic molecules are abundant in DOM, and they appear to be derived from diagenetically

  4. The composition and degradability of upland dissolved organic matter

    NASA Astrophysics Data System (ADS)

    Moody, Catherine; Worrall, Fred; Clay, Gareth

    2016-04-01

    In order to assess controls on the degradability of DOM in stream water, samples of dissolved organic matter (DOM) and particulate organic matter (POM) were collected every month for a period of 24 months from an upland, peat-covered catchment in northern England. Each month the degradability of the DOM was assessed by exposing river water to light for up to 24 hours, and the change in the dissolved organic carbon (DOC) concentration in the water was measured. To provide context for the analysis of DOM and its degradability, samples of peat, vegetation, and litter were also taken from the same catchment and analysed. The organic matter samples were analysed by several methods including: elemental analysis (CHN and O), bomb calorimetry, thermogravimetric analysis, pyrolysis GC/MS, ICP-OES, stable isotope analysis (13C and 15N) and 13C solid state nuclear magnetic resonance (NMR). The water samples were analysed for pH, conductivity, absorbance at 400nm, anions, cations, particulate organic carbon (POC) and DOC concentrations. River flow conditions and meteorology were also recorded at the site and included in the analysis of the composition and degradability of DOM. The results of multiple regression models showed that the rates of DOC degradation were affected by the N-alkyl, O-alkyl, aldehyde and aromatic relative intensities, gross heat, OR and C:N. Of these, the N-alkyl relative intensity had the greatest influence, and this in turn was found to be dependent on the rainfall and soil temperature in the week before sampling.

  5. Global effects of agriculture on fluvial dissolved organic matter

    PubMed Central

    Graeber, Daniel; Boëchat, Iola G.; Encina-Montoya, Francisco; Esse, Carlos; Gelbrecht, Jörg; Goyenola, Guillermo; Gücker, Björn; Heinz, Marlen; Kronvang, Brian; Meerhoff, Mariana; Nimptsch, Jorge; Pusch, Martin T.; Silva, Ricky C. S.; von Schiller, Daniel; Zwirnmann, Elke

    2015-01-01

    Agricultural land covers approximately 40% of Earth’s land surface and affects hydromorphological, biogeochemical and ecological characteristics of fluvial networks. In the northern temperate region, agriculture also strongly affects the amount and molecular composition of dissolved organic matter (DOM), which constitutes the main vector of carbon transport from soils to fluvial networks and to the sea, and is involved in a large variety of biogeochemical processes. Here, we provide first evidence about the wider occurrence of agricultural impacts on the concentration and composition of fluvial DOM across climate zones of the northern and southern hemispheres. Both extensive and intensive farming altered fluvial DOM towards a more microbial and less plant-derived composition. Moreover, intensive farming significantly increased dissolved organic nitrogen (DON) concentrations. The DOM composition change and DON concentration increase differed among climate zones and could be related to the intensity of current and historical nitrogen fertilizer use. As a result of agriculture intensification, increased DON concentrations and a more microbial-like DOM composition likely will enhance the reactivity of catchment DOM emissions, thereby fuelling the biogeochemical processing in fluvial networks, and resulting in higher ecosystem productivity and CO2 outgassing. PMID:26541809

  6. Precipitates in landfill leachate mediated by dissolved organic matters.

    PubMed

    Li, Zhenze; Xue, Qiang; Liu, Lei; Li, Jiangshan

    2015-04-28

    Clogging of landfill leachate collection system is so ubiquitous that it causes problems to landfills. Although precipitations of calcite and other minerals have been widely observed, the mechanism of precipitation remains obscure. We examined the clog composition, dissolved organic matters, leachate chemical compositions and the correlation of these variables in view of the precipitation process. It is shown that Dissolved Organic Carbon (DOC) inhibits precipitation of landfill leachate. Using the advanced NICA-Donnan model, the analysis of aqueous chemical reactions between Mg-Ca-DOC-CO2 suggests a good agreement with experimental observations. Calcite and dolomite are both found to be oversaturated in most of the landfill leachate samples. DOC is found to preferentially bind with Mg than Ca, leading to more likely precipitation of Calcite than dolomite from landfill leachate. The NICA-Donnan model gives a reasonable estimation of dolomite saturation index in a wide range of DOC. Modeling confirms the major precipitation mechanism in terms of alkaline earth metal carbonate. Uncertainties in model parameters are discussed with particular focus on DOC composition, functional group types and density concentration and the influential factors. PMID:25661175

  7. Groundwater-transported dissolved organic nitrogen exports from coastal watersheds

    USGS Publications Warehouse

    Kroeger, K.D.; Cole, Marci L.; Valiela, I.

    2006-01-01

    We analyzed groundwater-transported nitrogen (N) exports from 41 watershed segments that comprised 10 Cape Cod, Massachusetts watersheds to test the hypotheses that chemical form of N exports is related to land use and to length of flow paths through watersheds. In the absence of human habitation, these glacial outwash-plain watersheds exported largely dissolved organic N (DON) but at relatively low annual rate. Addition of people to watersheds increased rates of both total dissolved N (TDN) and DON export through groundwater. Percent of TDN as DON in groundwater was negatively related to path length of groundwater through aquifers, but %DON was not significantly related to population density on the watersheds. DON was often the dominant form of N exported from the watersheds, even at high population densities. Our results suggest that natural sources are not entirely responsible for organic N exports from watersheds, but, instead, a substantial portion of anthropogenic N introduced to watersheds is exported as DON. This finding is in disagreement with previous results, which suggest that anthropogenic N is exported from watersheds largely as NO 3- and that DON exported from watersheds is from natural sources. ?? 2006, by the American Society of Limnology and Oceanography, Inc.

  8. Global effects of agriculture on fluvial dissolved organic matter

    NASA Astrophysics Data System (ADS)

    Graeber, Daniel; Boëchat, Iola G.; Encina-Montoya, Francisco; Esse, Carlos; Gelbrecht, Jörg; Goyenola, Guillermo; Gücker, Björn; Heinz, Marlen; Kronvang, Brian; Meerhoff, Mariana; Nimptsch, Jorge; Pusch, Martin T.; Silva, Ricky C. S.; von Schiller, Daniel; Zwirnmann, Elke

    2015-11-01

    Agricultural land covers approximately 40% of Earth’s land surface and affects hydromorphological, biogeochemical and ecological characteristics of fluvial networks. In the northern temperate region, agriculture also strongly affects the amount and molecular composition of dissolved organic matter (DOM), which constitutes the main vector of carbon transport from soils to fluvial networks and to the sea, and is involved in a large variety of biogeochemical processes. Here, we provide first evidence about the wider occurrence of agricultural impacts on the concentration and composition of fluvial DOM across climate zones of the northern and southern hemispheres. Both extensive and intensive farming altered fluvial DOM towards a more microbial and less plant-derived composition. Moreover, intensive farming significantly increased dissolved organic nitrogen (DON) concentrations. The DOM composition change and DON concentration increase differed among climate zones and could be related to the intensity of current and historical nitrogen fertilizer use. As a result of agriculture intensification, increased DON concentrations and a more microbial-like DOM composition likely will enhance the reactivity of catchment DOM emissions, thereby fuelling the biogeochemical processing in fluvial networks, and resulting in higher ecosystem productivity and CO2 outgassing.

  9. Photochemical and Nonphotochemical Transformations of Cysteine with Dissolved Organic Matter.

    PubMed

    Chu, Chiheng; Erickson, Paul R; Lundeen, Rachel A; Stamatelatos, Dimitrios; Alaimo, Peter J; Latch, Douglas E; McNeill, Kristopher

    2016-06-21

    Cysteine (Cys) plays numerous key roles in the biogeochemistry of natural waters. Despite its importance, a full assessment of Cys abiotic transformation kinetics, products and pathways under environmental conditions has not been conducted. This study is a mechanistic evaluation of the photochemical and nonphotochemical (dark) transformations of Cys in solutions containing chromophoric dissolved organic matter (CDOM). The results show that Cys underwent abiotic transformations under both dark and irradiated conditions. Under dark conditions, the transformation rates of Cys were moderate and were highly pH- and temperature-dependent. Under UVA or natural sunlight irradiations, Cys transformation rates were enhanced by up to two orders of magnitude compared to rates under dark conditions. Product analysis indicated cystine and cysteine sulfinic acid were the major photooxidation products. In addition, this study provides an assessment of the contributions of singlet oxygen, hydroxyl radical, hydrogen peroxide, and triplet dissolved organic matter to the CDOM-sensitized photochemical oxidation of Cys. The results suggest that another unknown pathway was dominant in the CDOM-sensitized photodegradation of Cys, which will require further study to identify. PMID:27172378

  10. Molecular-level dynamics of refractory dissolved organic matter

    NASA Astrophysics Data System (ADS)

    Niggemann, J.; Gerdts, G.; Dittmar, T.

    2012-04-01

    Refractory dissolved organic matter (DOM) accounts for most of the global oceanic organic carbon inventory. Processes leading to its formation and factors determining its stability are still largely unknown. We hypothesize that refractory DOM carries a universal molecular signature. Characterizing spatial and temporal variability in this universal signature is a key to understanding dynamics of refractory DOM. We present results from a long-term study of the DOM geo-metabolome in the open North Sea. Geo-metabolomics considers the entity of DOM as a population of compounds, each characterized by a specific function and reactivity in the cycling of energy and elements. Ten-thousands of molecular formulae were identified in DOM by ultrahigh resolution mass spectrometry analysis (FT-ICR-MS, Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry). The DOM pool in the North Sea was influenced by a complex interplay of processes that produced, transformed and degraded dissolved molecules. We identified a stable fraction in North Sea DOM with a molecular composition similar to deep ocean DOM. Molecular-level changes in this stable fraction provide novel information on dynamics and interactions of refractory DOM.

  11. Contaminant-mediated photobleaching of wetland chromophoric dissolved organic matter.

    PubMed

    Langlois, Maureen C; Weavers, Linda K; Chin, Yu-Ping

    2014-09-20

    Photolytic transformation of organic contaminants in wetlands can be mediated by chromophoric dissolved organic matter (CDOM), which in turn can lose its reactivity from photobleaching. We collected water from a small agricultural wetland (Ohio), Kawai Nui Marsh (Hawaii), the Everglades (Florida), and Okefenokee Swamp (Georgia) to assess the effect of photobleaching on the photofate of two herbicides, acetochlor and isoproturon. Analyte-spiked water samples were irradiated using a solar simulator and monitored for changes in CDOM light absorbance and dissolved oxygen. Photobleaching did not significantly impact the indirect photolysis rates of either herbicide over 24 hours of irradiation. Surprisingly, the opposite effect was observed with isoproturon, which accelerated DOM photobleaching. This phenomenon was more pronounced in higher-CDOM waters, and we believe that the redox pathway between triplet-state CDOM and isoproturon may be responsible for our observations. By contrast, acetochlor indirect photolysis was dependent on reaction with the hydroxyl radical and did not accelerate photobleaching of wetland water as much as isoproturon. Finally, herbicide indirect photolysis rate constants did not correlate strongly to any one chemical or optical property of the sampled waters. PMID:24828085

  12. Dissolved organic nitrogen in precipitation: Collection, analysis and atmospheric flux

    SciTech Connect

    Scudlark, J.R.; Church, T.M.; Russell, K.M.; Montag, J.A.; Maben, J.R.; Keene, W.C.; Galloway, J.N.

    1995-12-31

    Recent studies have documented the importance of atmosphere inorganic nitrogen deposition to coastal waters. However, due to the limited number of field measurements and concerns about the reliability of measurement techniques, the aeolian flux of organic N is very uncertain. Coordinated studies have been initiated at Lewes, DE and Charlottesville, VA to evaluate collection and analysis techniques for dissolved organic nitrogen (DON) in precipitation and to provide preliminary estimate of DON wet fluxes. Sampling was conducted both manually and employing an automated wet-only collector (ACM) on a daily basis. A total of 37 events were analyzed from October 1993 through December 1994. Side-by-side comparisons of standard white HDPE buckets and stainless steel and glass collection vessels indicate sampling artifacts associate with plastic buckets. DON in precipitation appears to be highly labile, with significant losses observed in some samples within 12 hours. Analytical methods evaluated include persulfate wet chemical oxidation, UV photo-oxidation and a modified high temperature instrumental (ANTEK 7000) technique. Based on preliminary results, the volume-weighted average concentration of DON in precipitation at the mid-Atlantic coast is 9.1 {micro}moles/1. On an annual basis, DON compromises 23% of the total dissolved nitrogen in precipitation, varying from 0--64% on an event basis. From an ecological perspective, DON wet flux represents a quantitatively important exogenous source of N to coastal waters such as Chesapeake Bay.

  13. Global effects of agriculture on fluvial dissolved organic matter.

    PubMed

    Graeber, Daniel; Boëchat, Iola G; Encina-Montoya, Francisco; Esse, Carlos; Gelbrecht, Jörg; Goyenola, Guillermo; Gücker, Björn; Heinz, Marlen; Kronvang, Brian; Meerhoff, Mariana; Nimptsch, Jorge; Pusch, Martin T; Silva, Ricky C S; von Schiller, Daniel; Zwirnmann, Elke

    2015-01-01

    Agricultural land covers approximately 40% of Earth's land surface and affects hydromorphological, biogeochemical and ecological characteristics of fluvial networks. In the northern temperate region, agriculture also strongly affects the amount and molecular composition of dissolved organic matter (DOM), which constitutes the main vector of carbon transport from soils to fluvial networks and to the sea, and is involved in a large variety of biogeochemical processes. Here, we provide first evidence about the wider occurrence of agricultural impacts on the concentration and composition of fluvial DOM across climate zones of the northern and southern hemispheres. Both extensive and intensive farming altered fluvial DOM towards a more microbial and less plant-derived composition. Moreover, intensive farming significantly increased dissolved organic nitrogen (DON) concentrations. The DOM composition change and DON concentration increase differed among climate zones and could be related to the intensity of current and historical nitrogen fertilizer use. As a result of agriculture intensification, increased DON concentrations and a more microbial-like DOM composition likely will enhance the reactivity of catchment DOM emissions, thereby fuelling the biogeochemical processing in fluvial networks, and resulting in higher ecosystem productivity and CO2 outgassing. PMID:26541809

  14. Release of biodegradable dissolved organic matter from ancient sedimentary rocks

    NASA Astrophysics Data System (ADS)

    Schillawski, Sarah; Petsch, Steven

    2008-09-01

    Sedimentary rocks contain the largest mass of organic carbon on Earth, yet these reservoirs are not well integrated into modern carbon budgets. Here we describe the release of dissolved organic matter (DOM) from OM-rich sedimentary rocks under simulated weathering conditions. Results from column experiments demonstrate slow, sustained release of DOM from ancient sedimentary rocks under simulated weathering conditions. 1H-NMR analysis of shale-derived DOM reveals a highly aliphatic, carbohydrate-poor material distinct from other natural DOM pools. Shale-derived DOM is rapidly assimilated and biodegraded by aerobic heterotrophic bacteria. Consequently, no compositional signature of shale-derived DOM other than 14C-depletion is likely to persist in rivers or other surface reservoirs. Combined, these efforts show that dissolution provides a mechanism for the conversion of refractory kerogen into labile biomass, linking rock weathering with sedimentary OM oxidation and the delivery of aged OM to rivers and ocean margins.

  15. Nature and transformation of dissolved organic matter in treatment wetlands

    USGS Publications Warehouse

    Barber, L.B.; Leenheer, J.A.; Noyes, T.I.; Stiles, E.A.

    2001-01-01

    This investigation into the occurrence, character, and transformation of dissolved organic matter (DOM) in treatment wetlands in the western United States shows that (i) the nature of DOM in the source water has a major influence on transformations that occur during treatment, (ii) the climate factors have a secondary effect on transformations, (iii) the wetlands receiving treated wastewater can produce a net increase in DOM, and (iv) the hierarchical analytical approach used in this study can measure the subtle DOM transformations that occur. As wastewater treatment plant effluent passes through treatment wetlands, the DOM undergoes transformation to become more aromatic and oxygenated. Autochthonous sources are contributed to the DOM, the nature of which is governed by the developmental stage of the wetland system as well as vegetation patterns. Concentrations of specific wastewaterderived organic contaminants such as linear alkylbenzene sulfonate, caffeine, and ethylenediaminetetraacetic acid were significantly attenuated by wetland treatment and were not contributed by internal loading.

  16. Dilution limits dissolved organic carbon utilization in the deep ocean

    NASA Astrophysics Data System (ADS)

    Arrieta, Jesús M.; Mayol, Eva; Hansman, Roberta L.; Herndl, Gerhard J.; Dittmar, Thorsten; Duarte, Carlos M.

    2015-04-01

    Oceanic dissolved organic carbon (DOC) is the second largest reservoir of organic carbon in the biosphere. About 72% of the global DOC inventory is stored in deep oceanic layers for years to centuries, supporting the current view that it consists of materials resistant to microbial degradation. An alternative hypothesis is that deep-water DOC consists of many different, intrinsically labile compounds at concentrations too low to compensate for the metabolic costs associated to their utilization. Here, we present experimental evidence showing that low concentrations rather than recalcitrance preclude consumption of a substantial fraction of DOC, leading to slow microbial growth in the deep ocean. These findings demonstrate an alternative mechanism for the long-term storage of labile DOC in the deep ocean, which has been hitherto largely ignored.

  17. Possible method for dissolved organic carbon speciation in forest soils

    NASA Astrophysics Data System (ADS)

    Drabek, O.; Tejnecký, V.; Ash, C.; Hubova, P.; Boruvka, L.

    2013-12-01

    Dissolved organic carbon (DOC) is a natural part of dissolved organic matter and it plays an important role in the biogeochemistry of soil processes. Low Molecular Mass Organic Acids (LMMOA) are an essential part of DOC. These acids play a key role in chemical processes that affect the entire soil environment. Knowing the amount of DOC and the speciation of LMMOA is required for realistic equilibrium modelling of soil chemical processes and transport mechanisms. There have been a number of proposed methods for the quantitative analysis of DOC and for speciation of LMMOA. The first aim of this contribution is to introduce and test a modified spectroscopic method for the determination of water-extractable organic carbon (WEOC) from forest soils. In general this method is based on the oxidization of WEOC by chromium-sulphuric acid. The presented method can be used as an economical alternative to the classical, more financially demanding elemental analysis. However, the main aim is to test the reliability of the method for LMMOA speciation. Ion exchange chromatography (IC) with hydroxide elution has proven to be a useful tool for the determination of LMMOA in many different water-based samples. However, the influence of multivalent cations (often present in environmental samples) on IC results has not yet been sufficiently studied. In order to assess the influence of Al, Fe, Mn, Mg and Ca on the amount of LMMOA determined by IC, an extensive set of model solutions was prepared and immediately analysed by means of IC. Moreover, the influence of pH on determined amounts of LMMOA in model solutions and representative soil aqueous extracts was investigated. These experimental results were compared to expected values and also to results provided by the chemical equilibrium model - PHREEQC. Based on the above listed research, some modifications to the common IC method for LMMOA speciation are presented.

  18. Spatial variation of dissolved organic matter composition and characteristics in an urbanized watershed

    NASA Astrophysics Data System (ADS)

    Hsieh, C.; Li, M.

    2013-12-01

    Dissolved organic matter (DOM) is a chemically complex mixture of organic polymers that plays an important role in river ecosystems and originates from various sources. Some DOMs are autochthonous originating through phytoplankton and microbial activity in situ. On the other hand, some DOMs are allochthonous which are transported to river from the surrounding watershed by natural or anthropogenic activities. The studies of DOM in river are usually conducted at the watershed scale; however, factors of local spatial scale affecting DOM composition also need to take into consideration for the study of DOM in an urbanized watershed. Through increasing urbanization, changes in a watershed occur not only in land use patterns but also in river channel characteristics. The objective of this study is to investigate effects of different river channel characteristics and patterns on changes in DOM source and composition. In this study, we chose three tributaries of Tamsui river in Taiwan according to its land use pattern and river channel characteristics. At each sub-basin, river water samples were sampled from three study sites. River water DOM was measured by using optical measurements of UV absorption and fluorescence spectroscopy. Water samples were also collected for laboratory analysis of different water quality parameters. From our study sites, they are from three sub-basins which are in the similar physical environments but with different river channel types: the highly channelized Keelung river, the less channelized Xindian river, and less channelized Dahan river with five human-made wetlands. From the upstream to the urbanized downstream, composition of DOM showed variation among different sampled sites. In all three sub-basins, the trends of 5-day biochemical oxygen demand (BOD5) and suspended solids (SS) are also different. The changes in DOM source and composition as well as different water quality parmaters occur at the local spatial-scale depended on their

  19. Seasonal changes in estuarine dissolved organic matter due to variable flushing time and wind-driven mixing events

    NASA Astrophysics Data System (ADS)

    Dixon, Jennifer L.; Osburn, Christopher L.; Paerl, Hans W.; Peierls, Benjamin L.

    2014-12-01

    This study examined the seasonality of dissolved organic matter (DOM) sources and transformations within the Neuse River estuary (NRE) in eastern North Carolina between March 2010 and February 2011. During this time, monthly surface and bottom water samples were collected along the longitudinal axis of the NRE, ranging from freshwater to mesohaline segments. The monthly mean of all surface and bottom measurements made on collected samples was used to clarify larger physical mixing controls in the estuary as a whole. By comparing monthly mean trends in DOM and chromophoric dissolved organic matter (CDOM) properties in surface and bottom waters during varying hydrological conditions, we found that DOM and CDOM quality in the NRE is controlled by a combination of discharge, wind speed, and wind direction. The quality of DOM was assessed using C:N ratios, specific ultraviolet absorption at 254 nm (SUVA254), the absorption spectral slope ratio (SR), and the humification (HIX) and biological (BIX) indices from fluorescence. The NRE reflects allochthonous sources when discharge and flushing time are elevated at which times SUVA254 and HIX increased relative to base flow. During periods of reduced discharge and long flushing times in the estuary, extensive autochthonous production modifies the quality of the DOM pool in the NRE. This was evidenced by falling C:N values, and higher BIX and SR values. Lastly, a combination of increased wind speed and shifts in wind direction resulted in benthic resuspension events of degraded, planktonic OM. Thus, the mean DOM characteristics in this shallow micro-tidal estuary can be rapidly altered during episodic mixing events on timescales of a few weeks.

  20. Determining sources of dissolved organic carbon and disinfection byproduct precursors to the McKenzie River, Oregon

    USGS Publications Warehouse

    Kraus, T.E.C.; Anderson, C.A.; Morgenstern, K.; Downing, B.D.; Pellerin, B.A.; Bergamaschi, B.A.

    2010-01-01

    This study was conducted to determine the main sources of dissolved organic carbon (DOC) and disinfection byproduct (DBP) precursors to the McKenzie River, Oregon (USA). Water samples collected from the mainstem, tributaries, and reservoir outflows were analyzed for DOC concentration and DBP formation potentials (trihalomethanes [THMFPs] and haloacetic acids [HAAFPs]). In addition, optical properties (absorbance and fluorescence) of dissolved organic matter (DOM) were measured to provide insight into DOM composition and assess whether optical properties are useful proxies for DOC and DBP precursor concentrations. Optical properties indicative of composition suggest that DOM in the McKenzie River mainstem was primarily allochthonous - derived from soils and plant material in the upstream watershed. Downstream tributaries had higher DOC concentrations than mainstem sites (1.6 ?? 0.4 vs. 0.7 ?? 0.3 mg L-1) but comprised <5% of mainstem flows and had minimal effect on overall DBP precursor loads. Water exiting two large upstream reservoirs also had higher DOC concentrations than the mainstem site upstream of the reservoirs, but optical data did not support in situ algal production as a source of the added DOC during the study. Results suggest that the first major rain event in the fall contributes DOM with high DBP precursor content. Although there was interference in the absorbance spectra in downstream tributary samples, fluorescence data were strongly correlated to DOC concentration (R 2 = 0.98), THMFP (R2 = 0.98), and HAAFP (R2 = 0.96). These results highlight the value of using optical measurements for identifying the concentration and sources of DBP precursors in watersheds, which will help drinking water utilities improve source water monitoring and management programs. Copyright ?? 2010 by the American Society of Agronomy.

  1. Dissolved Organic Matter Transformations: Implications for Catchment-Scale Processes

    NASA Astrophysics Data System (ADS)

    Robinson, A.; Hernes, P.; Montanez, I.; Eustis, B.

    2006-12-01

    Particulate and dissolved phase lignin parameters are used to understand sources and dynamics of terrigenous organic matter (OM) in freshwater and marine systems. Impacts of catchment properties, such as soil type and mineralogy, vegetation distribution and hydrologic conditions on terrestrial dissolved and particulate biomarker compositions have not been addressed. Our experimental approach deciphers relative contributions of these parameters on bulk DOM compositions. Carbon-normalized lignin yields (Λ8) are one means to assess contributions of lignin phenols to bulk organic carbon. Ratios of syringyl (S), vanillyl (V) and cinnamyl (C) lignin phenols distinguish angiosperm and gymnosperm woody and nonwoody tissues. Ratios of acids:aldehydes (ad:ac) within vanillyl groups indicate diagenetic alteration of OM. Interpretation of these ratios relies on the fundamental assumption that each lignin compound behaves similarly, despite differences in solubility and sorption. Fractionation due to leaching impacts C:V, ac:al and (Λ8). C:V ranges from 1/2 to 4 times original plant compositions, increasing proportions of DOM ascribed to nonwoody tissues. Shifts in C:V and S:V due to leaching, suggest that source ratios from plant materials may not be appropriate endmembers for dissolved phases. An ~2-fold increase in ac:al ratios between litters and leachates suggest that dissolved phases are more diagenetically altered than litters, although this is simply due to solubilization. Λ8 values, tracking lignin and bulk carbon solubility differences, indicate greater loss of bulk OM relative to lignin for most plant litters. During sorption of leachates to mineral soils, lignin compositional trends are more variable compared to leaching data. Sorption of angiosperm leachates resulted in significant enrichment of S phenols on soils, which would increase the inferred contribution of angiosperms obtained for mixtures. C:V fractionation during sorption decreased in 3 of 4 plant

  2. Latitudinal Gradients in Degradation of Marine Dissolved Organic Carbon

    PubMed Central

    Arnosti, Carol; Steen, Andrew D.; Ziervogel, Kai; Ghobrial, Sherif; Jeffrey, Wade H.

    2011-01-01

    Heterotrophic microbial communities cycle nearly half of net primary productivity in the ocean, and play a particularly important role in transformations of dissolved organic carbon (DOC). The specific means by which these communities mediate the transformations of organic carbon are largely unknown, since the vast majority of marine bacteria have not been isolated in culture, and most measurements of DOC degradation rates have focused on uptake and metabolism of either bulk DOC or of simple model compounds (e.g. specific amino acids or sugars). Genomic investigations provide information about the potential capabilities of organisms and communities but not the extent to which such potential is expressed. We tested directly the capabilities of heterotrophic microbial communities in surface ocean waters at 32 stations spanning latitudes from 76°S to 79°N to hydrolyze a range of high molecular weight organic substrates and thereby initiate organic matter degradation. These data demonstrate the existence of a latitudinal gradient in the range of complex substrates available to heterotrophic microbial communities, paralleling the global gradient in bacterial species richness. As changing climate increasingly affects the marine environment, changes in the spectrum of substrates accessible by microbial communities may lead to shifts in the location and rate at which marine DOC is respired. Since the inventory of DOC in the ocean is comparable in magnitude to the atmospheric CO2 reservoir, such a change could profoundly affect the global carbon cycle. PMID:22216139

  3. Dynamics of dissolved organic matter in fjord ecosystems: Contributions of terrestrial dissolved organic matter in the deep layer

    NASA Astrophysics Data System (ADS)

    Yamashita, Youhei; McCallister, S. Leigh; Koch, Boris P.; Gonsior, Michael; Jaffé, Rudolf

    2015-06-01

    Annually, rivers and inland water systems deliver a significant amount of terrestrial organic matter (OM) to the adjacent coastal ocean in both particulate and dissolved forms; however, the metabolic and biogeochemical transformations of OM during its seaward transport remains one of the least understood components of the global carbon cycle. This transfer of terrestrial carbon to marine ecosystems is crucial in maintaining trophic dynamics in coastal areas and critical in global carbon cycling. Although coastal regions have been proposed as important sinks for exported terrestrial materials, most of the global carbon cycling data, have not included fjords in their budgets. Here we present distributional patterns on the quantity and quality of dissolved OM in Fiordland National Park, New Zealand. Specifically, we describe carbon dynamics under diverse environmental settings based on dissolved organic carbon (DOC) depth profiles, oxygen concentrations, optical properties (fluorescence) and stable carbon isotopes. We illustrate a distinct change in the character of DOC in deep waters compared to surface and mid-depth waters. Our results suggest that, both, microbial reworking of terrestrially derived plant detritus and subsequent desorption of DOC from its particulate counterpart (as verified in a desorption experiment) are the main sources of the humic-like enriched DOC in the deep basins of the studied fjords. While it has been suggested that short transit times and protection of OM by mineral sorption may ultimately result in significant terrestrial carbon burial and preservation in fjords, our data suggests the existence of an additional source of terrestrial OM in the form of DOC generated in deep, fjord water.

  4. Use of Passive Samplers to Measure Dissolved Organic Contaminants in a Temperate Estuary

    EPA Science Inventory

    Measuring dissolved concentrations of organic contaminants can be challenging given their low solubilities and high particle association. However, to perform accurate risk assessments of these chemicals, knowing the dissolved concentration is critical since it is considered to b...

  5. THE ROLE OF NITROGEN IN CHROMOPHORIC AND FLUORESCENT DISSOLVED ORGANIC MATTER FORMATION

    EPA Science Inventory

    Microbial and photochemical processes affect chromophoric dissolved organic matter (CDOM) dynamics in the ocean. Some evidence suggests that dissolved nitrogen plays a role in CDOM formation, although this has received little systematic attention in marine ecosystems. Coastal sea...

  6. Hydrological conditions regulate dissolved organic matter quality in an intermittent headwater stream. From drought to storm analysis.

    PubMed

    Guarch-Ribot, Alba; Butturini, Andrea

    2016-11-15

    Storms and droughts are an essential driver for the dissolved organic matter (DOM) concentration in headwater streams. However, the relationship between DOM quality and discharge (Q) has not been addressed in depth and the impact of other hydro-climatic or biogeochemical drivers has not been explored. In this study DOM quality variability was explored at seasonal and storm event scales during an intensive 2.5-year-long sampling in a Mediterranean stream characterized by a severe summer drought. DOM quality was described in terms of absorbance and fluorescence properties. Most of the DOM properties were strongly related to discharge revealing the input of allochthonous, degraded, aromatic, humic and increased-molecular-size DOM under high flow conditions. However, these relationships disappeared or reversed during drying and rewetting periods. Each DOM response at the storm event scale (DOM-Q hysteresis) was outlined with two descriptors that summarised its trend (dilution/flushing/chemostasis) and shape (linear/nonlinear response). Multiple linear regression and commonality analysis showed that, in addition to the magnitude of storm episodes, antecedent hydrological conditions, namely pre-event basal flow and the magnitude of the previous storm event, played a significant role in regulating the trends and shapes of DOM-Q hysteresis. PMID:27470016

  7. Assessing dissolved organic matter dynamics and source strengths in a subtropical estuary: Application of stable carbon isotopes and optical properties

    NASA Astrophysics Data System (ADS)

    Ya, Chao; Anderson, William; Jaffé, Rudolf

    2015-01-01

    The dynamics of dissolved organic matter (DOM) in subtropical coastal bays are complex. For example, variations in DOM characteristics and sources in Florida Bay are believed to be mainly driven by both hydrology and associated runoff of terrestrial DOM, and by primary productivity mostly from seagrass sources. However, confirmation and quantification of different DOM sources are still incomplete and needed for carbon budget assessments. Optical parameters based on excitation emission matrix fluorescence coupled with parallel factor analysis (EEM-PARAFAC) that had previously been tentatively assigned to both terrestrial and seasgrass sources. These correlated linearly with determined δ13C values, confirming an allochthonous, hydrologically-driven terrestrial source for the humic-like fluorescent components, while autochthonous DOM reflected by the protein-like fluorescence is mainly derived through primary productivity of seagrass communities. This study demonstrated the feasibility of combining optical signatures and stable isotopes in advancing the understanding of DOM dynamics in estuarine systems. Using stable carbon isotopic signatures of DOM, and applying a simple two end-member mixing model, the relative contributions of these two sources to the DOM pool in the bay were estimated. Results indicate that the highest proportion of DOM (ca. 72%) during the dry season was seagrass-derived, but clear variations were observed on both spatial and temporal scales. Limitations to the application of optical properties for the quantitative estimation of DOM sources in such coastal systems are discussed.

  8. GROUNDWATER TRANSPORT OF HYDROPHOBIC ORGANIC COMPOUNDS IN THE PRESENCE OF DISSOLVED ORGANIC MATTER

    EPA Science Inventory

    The effects of dissolved organic matter (DOM) on the transport of hydrophobic organic compounds in soil columns were investigated. Three compounds (naphthalene, phenanthrene and DDT) that spanned three orders of magnitude in water solubility were used. Instead of humic matter, mo...

  9. Mathematical modeling of wastewater-derived biodegradable dissolved organic nitrogen.

    PubMed

    Simsek, Halis

    2016-11-01

    Wastewater-derived dissolved organic nitrogen (DON) typically constitutes the majority of total dissolved nitrogen (TDN) discharged to surface waters from advanced wastewater treatment plants (WWTPs). When considering the stringent regulations on nitrogen discharge limits in sensitive receiving waters, DON becomes problematic and needs to be reduced. Biodegradable DON (BDON) is a portion of DON that is biologically degradable by bacteria when the optimum environmental conditions are met. BDON in a two-stage trickling filter WWTP was estimated using artificial intelligence techniques, such as adaptive neuro-fuzzy inference systems, multilayer perceptron, radial basis neural networks (RBNN), and generalized regression neural networks. Nitrite, nitrate, ammonium, TDN, and DON data were used as input neurons. Wastewater samples were collected from four different locations in the plant. Model performances were evaluated using root mean square error, mean absolute error, mean bias error, and coefficient of determination statistics. Modeling results showed that the R(2) values were higher than 0.85 in all four models for all wastewater samples, except only R(2) in the final effluent sample for RBNN modeling was low (0.52). Overall, it was found that all four computing techniques could be employed successfully to predict BDON. PMID:27019968

  10. Catchment scale molecular composition of hydrologically mobilized dissolved organic matter

    NASA Astrophysics Data System (ADS)

    Raeke, Julia; Lechtenfeld, Oliver J.; Oosterwoud, Marieke R.; Bornmann, Katrin; Tittel, Jörg; Reemtsma, Thorsten

    2016-04-01

    Increasing concentrations of dissolved organic matter (DOM) in rivers of temperate catchments in Europe and North Amerika impose new technical challenges for drinking water production. The driving factors for this decadal increase in DOM concentration are not conclusive and changes in annual temperatures, precipitation and atmospheric deposition are intensely discussed. It is known that the majority of DOM is released by few but large hydrologic events, mobilizing DOM from riparian wetlands for export by rivers and streams. The mechanisms of this mobilization and the resulting molecular composition of the released DOM may be used to infer long-term changes in the biogeochemistry of the respective catchment. Event-based samples collected over two years from streams in three temperate catchments in the German mid-range mountains were analyzed after solid-phase extraction of DOM for their molecular composition by ultra-high resolution mass spectrometry (FT-ICR MS). Hydrologic conditions, land use and water chemistry parameters were used to complement the molecular analysis. The molecular composition of the riverine DOM was strongly dependent on the magnitude of the hydrologic events, with unsaturated, oxygen-enriched compounds being preferentially mobilized by large events. This pattern is consistent with an increase in dissolved iron and aluminum concentrations. In contrast, the relative proportions of nitrogen and sulfur bearing compounds increased with an increased agricultural land use but were less affected by the mobilization events. Co-precipitation experiments with colloidal aluminum showed that unsaturated and oxygen-rich compounds are preferentially removed from the dissolved phase. The precipitated compounds thus had similar chemical characteristics as compared to the mobilized DOM from heavy rain events. Radiocarbon analyses also indicated that this precipitated fraction of DOM was of comparably young radiocarbon age. DOM radiocarbon from field samples

  11. Yucca Mountain Area Saturated Zone Dissolved Organic Carbon Isotopic Data

    SciTech Connect

    Thomas, James; Decker, David; Patterson, Gary; Peterman, Zell; Mihevc, Todd; Larsen, Jessica; Hershey, Ronald

    2007-06-25

    Groundwater samples in the Yucca Mountain area were collected for chemical and isotopic analyses and measurements of water temperature, pH, specific conductivity, and alkalinity were obtained at the well or spring at the time of sampling. For this project, groundwater samples were analyzed for major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC). The U.S. Geological Survey (USGS) performed all the fieldwork on this project including measurement of water chemistry field parameters and sample collection. The major ions dissolved in the groundwater, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) were analyzed by the USGS. All preparation and processing of samples for DOC carbon isotopic analyses and geochemical modeling were performed by the Desert Research Institute (DRI). Analysis of the DOC carbon dioxide gas produced at DRI to obtain carbon-13 and carbon-14 values was conducted at the University of Arizona Accelerator Facility (a NSHE Yucca Mountain project QA qualified contract facility). The major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of DIC were used in geochemical modeling (NETPATH) to determine groundwater sources, flow paths, mixing, and ages. The carbon isotopes of DOC were used to calculate groundwater ages that are independent of DIC model corrected carbon-14 ages. The DIC model corrected carbon-14 calculated ages were used to evaluate groundwater travel times for mixtures of water including water beneath Yucca Mountain. When possible, groundwater travel times were calculated for groundwater flow from beneath Yucca Mountain to down gradient sample sites. DOC carbon-14 groundwater ages were also calculated for groundwaters in the Yucca Mountain area. When possible, groundwater travel times were estimated for groundwater flow from beneath Yucca Mountain to down gradient groundwater sample sites using the DOC calculated

  12. Spatial variation in the origin and reactivity of dissolved organic matter in Oregon-Washington coastal waters

    NASA Astrophysics Data System (ADS)

    Lu, YueHan; Edmonds, Jennifer W.; Yamashita, Youhei; Zhou, Bin; Jaegge, Andrea; Baxley, Matthew

    2015-01-01

    Combining stable carbon isotopic signatures (δ13C-DOC) and optical properties of dissolved organic matter (DOM), we examined spatial variability in the sources and reactivity of DOM from Oregon-Washington coastal waters, with a particular focus on evaluating whether these measurements may reliably trace terrigenous DOM in coastal oceans. We sampled four stations on the continental shelf and four stations on the continental slope near the mouth of the Columbia River, with sampling depths ranging from 0 to 1,678 m. Nitrate and phosphate concentrations were largely controlled by organic matter (OM) regeneration although the river plume may have led to excess nitrates in relation to phosphates near the river mouth and/or the surface. Four fluorescence components (C1 to C4) were identified by using excitation emission matrices-parallel factor analysis. C1 and C2 were assigned as humic-like components which represented degraded DOM rather than OM of allochthonous or autochthonous origin. C3 and C4 were both labile, protein-like components representing autochthonous contributions, while C4 was more sensitive to diagenesis. In the shallow water layer (salinity ≤32.5 and depth ≤50 m), the variation in absorption properties (SUVA254 and ɛ280), fluorescence index, freshness index ( β/ α), percent fluorescence of C3, and δ13C-DOC revealed that the Columbia River plume exported DOM that was characterized by greater aromaticity, higher molecular weight, and being more decomposed than marine, autochthonous DOM. However, these signatures of terrigenous DOM disappeared rapidly with increasing depth and offshore distance. In the intermediate and deep water layers (salinity >32.5), the DOM indices were most driven by diagenesis, with changes in percent fluorescence components indicating increasing accumulation of humic DOM relative to protein-like DOM with depth. Principal component analysis that collectively assessed the DOM indices suggests that diagenesis was the primary

  13. Radiocarbon in dissolved organic carbon of the Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Druffel, E. R. M.; Griffin, S.; Coppola, A. I.; Walker, B. D.

    2016-05-01

    Marine dissolved organic carbon (DOC) is produced in the surface ocean though its radiocarbon (14C) age in the deep ocean is thousands of years old. Here we show that ≥10% of the DOC in the deep North Atlantic is of postbomb origin and that the 14C age of the prebomb DOC is ≥4900 14C year, ~900 14C year older than previous estimates. We report 14C ages of DOC in the deep South Atlantic that are intermediate between values in the North Atlantic and the Southern Ocean. Finally, we conclude that prebomb DOC 14C ages are older and a portion of deep DOC is more dynamic than previously reported.

  14. Dissolved Organic Carbon in the North Atlantic Meridional Overturning Circulation.

    PubMed

    Fontela, Marcos; García-Ibáñez, Maribel I; Hansell, Dennis A; Mercier, Herlé; Pérez, Fiz F

    2016-01-01

    The quantitative role of the Atlantic Meridional Overturning Circulation (AMOC) in dissolved organic carbon (DOC) export is evaluated by combining DOC measurements with observed water mass transports. In the eastern subpolar North Atlantic, both upper and lower limbs of the AMOC transport high-DOC waters. Deep water formation that connects the two limbs of the AMOC results in a high downward export of non-refractory DOC (197 Tg-C·yr(-1)). Subsequent remineralization in the lower limb of the AMOC, between subpolar and subtropical latitudes, consumes 72% of the DOC exported by the whole Atlantic Ocean. The contribution of DOC to the carbon sequestration in the North Atlantic Ocean (62 Tg-C·yr(-1)) is considerable and represents almost a third of the atmospheric CO2 uptake in the region. PMID:27240625

  15. [Dissolved organic matter (DOM) dynamics in karst aquifer systems].

    PubMed

    Yao, Xin; Zou, Sheng-Zhang; Xia, Ri-Yuan; Xu, Dan-Dan; Yao, Min

    2014-05-01

    Dissolved organic matter (DOM) and nutrients have a unique way of producing, decomposing and storing in southwest karst water systems. To understand the biogeochemical cycle of DOM in karst aquifer systems, we investigated the behavioral changes of DOM fluorescence components in Zhaidi karst river system. Two humic-like components (C1 and C2), and one autochthonous tyrosine-like component (C4) were identified using the parallel factor analysis (PARAFAC) model. Compared with the traditional physical and chemical indicators, spatial heterogeneity of DOM was more obvious, which can reflect the subtle changes in groundwater system. Traditional indicators mainly reflect the regional characteristics of karst river system, while DOM fluorescence components reflect the attribute gaps of sampling types. PMID:25055664

  16. Dissolved Organic Carbon in the North Atlantic Meridional Overturning Circulation

    PubMed Central

    Fontela, Marcos; García-Ibáñez, Maribel I.; Hansell, Dennis A.; Mercier, Herlé; Pérez, Fiz F.

    2016-01-01

    The quantitative role of the Atlantic Meridional Overturning Circulation (AMOC) in dissolved organic carbon (DOC) export is evaluated by combining DOC measurements with observed water mass transports. In the eastern subpolar North Atlantic, both upper and lower limbs of the AMOC transport high-DOC waters. Deep water formation that connects the two limbs of the AMOC results in a high downward export of non-refractory DOC (197 Tg-C·yr−1). Subsequent remineralization in the lower limb of the AMOC, between subpolar and subtropical latitudes, consumes 72% of the DOC exported by the whole Atlantic Ocean. The contribution of DOC to the carbon sequestration in the North Atlantic Ocean (62 Tg-C·yr−1) is considerable and represents almost a third of the atmospheric CO2 uptake in the region. PMID:27240625

  17. Dissolved Organic Carbon in the North Atlantic Meridional Overturning Circulation

    NASA Astrophysics Data System (ADS)

    Fontela, Marcos; García-Ibáñez, Maribel I.; Hansell, Dennis A.; Mercier, Herlé; Pérez, Fiz F.

    2016-05-01

    The quantitative role of the Atlantic Meridional Overturning Circulation (AMOC) in dissolved organic carbon (DOC) export is evaluated by combining DOC measurements with observed water mass transports. In the eastern subpolar North Atlantic, both upper and lower limbs of the AMOC transport high-DOC waters. Deep water formation that connects the two limbs of the AMOC results in a high downward export of non-refractory DOC (197 Tg-C·yr‑1). Subsequent remineralization in the lower limb of the AMOC, between subpolar and subtropical latitudes, consumes 72% of the DOC exported by the whole Atlantic Ocean. The contribution of DOC to the carbon sequestration in the North Atlantic Ocean (62 Tg-C·yr‑1) is considerable and represents almost a third of the atmospheric CO2 uptake in the region.

  18. Characterization of dissolved organic matter in drinking water sources impacted by multiple tributaries.

    PubMed

    Rosario-Ortiz, Fernando L; Snyder, Shane A; Suffet, I H

    2007-10-01

    The characterization of dissolved organic matter (DOM) in drinking water sources is important as this material contributes to the formation of disinfection by-products (DBPs) and affects how water treatment unit operations are optimized. Drinking water utilities often draw water from sources impacted by multiple tributaries, with possible shifts in DOM concentrations and reactivity over time, depending on specific environmental conditions. In this study, results are presented on the characterization of DOM under varying ambient conditions from the four main tributaries of Lake Mead, a large reservoir in the southwest United States. The tributaries include the Las Vegas Wash (LVW), Muddy River (MR), Virgin River (VR) and the upper Colorado River (UCR). One additional sample was collected at the outflow of the reservoir (lower Colorado River (LCR)). The DOM was characterized by both bulk parameters (specific ultraviolet absorbance (SUVA)) and specific physicochemical properties, i.e. size, polarity and fluorescence. The analyses were performed emphasizing limited changes in its natural configuration by eliminating analytical preparation steps, excluding sample filtration (0.45 microm filter). Results indicate that each tributary had a different molecular weight distribution, as well as fluorescence properties, which helped in the identification of the relative source of DOM (allochthonous versus autochthonous). The largest apparent molecular weight distribution was observed for DOM samples collected at the MR site, which is fed mostly by groundwater seepage. The smallest apparent molecular weight was observed for DOM collected at the LCR site, suggesting that retention in the reservoir resulted in a decrease in molecular weight as a probable result of photo oxidation and microbial processes. Fluorescence analysis aided the differentiation of DOM by clearly identifying waters that were affected by microbial activity (LVW, UCR, and LCR), either by wastewater influence

  19. Dissolved organic carbon (DOC) in Arctic ground ice

    NASA Astrophysics Data System (ADS)

    Fritz, M.; Opel, T.; Tanski, G.; Herzschuh, U.; Meyer, H.; Eulenburg, A.; Lantuit, H.

    2015-01-01

    Thermal permafrost degradation and coastal erosion in the Arctic remobilize substantial amounts of organic carbon (OC) and nutrients which have been accumulated in late Pleistocene and Holocene unconsolidated deposits. Their vulnerability to thaw subsidence, collapsing coastlines and irreversible landscape change is largely due to the presence of large amounts of massive ground ice such as ice wedges. However, ground ice has not, until now, been considered to be a source of dissolved organic carbon (DOC), dissolved inorganic carbon (DIC) and other elements, which are important for ecosystems and carbon cycling. Here we show, using geochemical data from a large number of different ice bodies throughout the Arctic, that ice wedges have the greatest potential for DOC storage with a maximum of 28.6 mg L-1 (mean: 9.6 mg L-1). Variation in DOC concentration is positively correlated with and explained by the concentrations and relative amounts of typically terrestrial cations such as Mg2+ and K+. DOC sequestration into ground ice was more effective during the late Pleistocene than during the Holocene, which can be explained by rapid sediment and OC accumulation, the prevalence of more easily degradable vegetation and immediate incorporation into permafrost. We assume that pristine snowmelt is able to leach considerable amounts of well-preserved and highly bioavailable DOC as well as other elements from surface sediments, which are rapidly stored in ground ice, especially in ice wedges, even before further degradation. In the Yedoma region ice wedges represent a significant DOC (45.2 Tg) and DIC (33.6 Tg) pool in permafrost areas and a fresh-water reservoir of 4172 km3. This study underlines the need to discriminate between particulate OC and DOC to assess the availability and vulnerability of the permafrost carbon pool for ecosystems and climate feedback upon mobilization.

  20. Dissolved organic carbon (DOC) in Arctic ground ice

    NASA Astrophysics Data System (ADS)

    Fritz, M.; Opel, T.; Tanski, G.; Herzschuh, U.; Meyer, H.; Eulenburg, A.; Lantuit, H.

    2015-04-01

    Thermal permafrost degradation and coastal erosion in the Arctic remobilize substantial amounts of organic carbon (OC) and nutrients which have accumulated in late Pleistocene and Holocene unconsolidated deposits. Permafrost vulnerability to thaw subsidence, collapsing coastlines and irreversible landscape change are largely due to the presence of large amounts of massive ground ice such as ice wedges. However, ground ice has not, until now, been considered to be a source of dissolved organic carbon (DOC), dissolved inorganic carbon (DIC) and other elements which are important for ecosystems and carbon cycling. Here we show, using biogeochemical data from a large number of different ice bodies throughout the Arctic, that ice wedges have the greatest potential for DOC storage, with a maximum of 28.6 mg L-1 (mean: 9.6 mg L-1). Variation in DOC concentration is positively correlated with and explained by the concentrations and relative amounts of typically terrestrial cations such as Mg2+ and K+. DOC sequestration into ground ice was more effective during the late Pleistocene than during the Holocene, which can be explained by rapid sediment and OC accumulation, the prevalence of more easily degradable vegetation and immediate incorporation into permafrost. We assume that pristine snowmelt is able to leach considerable amounts of well-preserved and highly bioavailable DOC as well as other elements from surface sediments, which are rapidly frozen and stored in ground ice, especially in ice wedges, even before further degradation. We found that ice wedges in the Yedoma region represent a significant DOC (45.2 Tg) and DIC (33.6 Tg) pool in permafrost areas and a freshwater reservoir of 4200 km2. This study underlines the need to discriminate between particulate OC and DOC to assess the availability and vulnerability of the permafrost carbon pool for ecosystems and climate feedback upon mobilization.

  1. Estimating the Age Distribution of Oceanic Dissolved Organic Carbon

    NASA Astrophysics Data System (ADS)

    Follett, C. L.; Forney, D. C.; Repeta, D.; Rothman, D.

    2010-12-01

    Dissolved organic carbon (DOC) is a large, ubiquitous component of open ocean water at all depths and impacts atmospheric carbon dioxide levels at both short and long timescales. It is currently believed that oceanic DOC contains a multi-thousand-year-old refractory deep-water component which is mixed with a young labile component in surface waters. Unfortunately, the only evidence for this comes from a few isolated depth profiles of both DOC concentration and bulk radiocarbon. Although the profile data is consistent with a two-component mixing model, directly separating the two components has proven to be a challenge. We explore the validity of the two component mixing model by directly estimating the age distribution of oceanic DOC. The two-component model suggests that the age distribution is composed of two distinct peaks. In order to obtain an estimate of the age distribution we first record changes in both concentration and percent radiocarbon as a sample is oxidized under ultra-violet radiation [1]. We formulate a mathematical model relating the age distribution to these changes, assuming that they result from components of different radiocarbon age and UV-reactivity. This allows us to numerically invert the data and estimate the age distribution. We apply our procedure to DOC samples collected from three distinct depths (50, 500, and 2000 meters) in the north-central Pacific Ocean. [1] S.R. Beaupre, E.R.M. Druffel, and S. Griffin. A low-blank photochemical extraction system for concentration and isotopic analyses of marine dissolved organic carbon. Limnol. Oceanogr. Methods, 5:174-184, 2007.

  2. Molecular characterization of dissolved organic matter (DOM): a critical review.

    PubMed

    Nebbioso, Antonio; Piccolo, Alessandro

    2013-01-01

    Advances in water chemistry in the last decade have improved our knowledge about the genesis, composition, and structure of dissolved organic matter, and its effect on the environment. Improvements in analytical technology, for example Fourier-transform ion cyclotron (FT-ICR) mass spectrometry (MS), homo and hetero-correlated multidimensional nuclear magnetic resonance (NMR) spectroscopy, and excitation emission matrix fluorimetry (EEMF) with parallel factor (PARAFAC) analysis for UV-fluorescence spectroscopy have resulted in these advances. Improved purification methods, for example ultrafiltration and reverse osmosis, have enabled facile desalting and concentration of freshly collected DOM samples, thereby complementing the analytical process. Although its molecular weight (MW) remains undefined, DOM is described as a complex mixture of low-MW substances and larger-MW biomolecules, for example proteins, polysaccharides, and exocellular macromolecules. There is a general consensus that marine DOM originates from terrestrial and marine sources. A combination of diagenetic and microbial processes contributes to its origin, resulting in refractory organic matter which acts as carbon sink in the ocean. Ocean DOM is derived partially from humified products of plants decay dissolved in fresh water and transported to the ocean, and partially from proteinaceous and polysaccharide material from phytoplankton metabolism, which undergoes in-situ microbial processes, becoming refractory. Some of the DOM interacts with radiation and is, therefore, defined as chromophoric DOM (CDOM). CDOM is classified as terrestrial, marine, anthropogenic, or mixed, depending on its origin. Terrestrial CDOM reaches the oceans via estuaries, whereas autochthonous CDOM is formed in sea water by microbial activity; anthropogenic CDOM is a result of human activity. CDOM also affects the quality of water, by shielding it from solar radiation, and constitutes a carbon sink pool. Evidence in support

  3. Export Fluxes of Dissolved Organic Carbon From the Yukon River

    NASA Astrophysics Data System (ADS)

    Guo, L.; Cai, Y.; Belzile, C.; MacDonald, R.

    2005-12-01

    Quantitative determination of export fluxes of carbon species through Arctic rivers is required to constrain the carbon budget in the Arctic Ocean and to understand the biogeochemical consequence of climate change in Northern drainage basins. In order to quantify the annual riverine export flux from the Yukon River, monthly or bimonthly water samples were collected at Pilot Station from July 2004 to July 2005 and analyzed for concentrations of dissolved organic carbon (DOC), particulate organic carbon (POC) and dissolved inorganic carbon (DIC). Concentration of DOC varied from 182 to 1683 uM (average 441 uM), with the highest concentration during river ice opening and the lowest in April under the ice. In contrast, DIC concentration increased from ice opening in May (1178 uM) to winter frozen season (2128 uM), with an average of 1588 uM. In addition to the DOC maximum during ice opening, an elevated DOC concentration was observed during the early stage of river ice formation, suggesting the rejection of DOC from ice during its formation. There was a positive correlation of DOC with freshwater flow rate whereas DIC correlated negatively with flow, indicating a hydrological control on both components but different source terms and transport mechanisms. Integrated annual export flux during 2004/2005 was 2.78x1012 g-C/y for DOC and 4.53x1012 g-C/y for DIC. Within the annual fluxes, only 5% of DOC and 17% of DIC were exported during the winter period when the river was frozen over. Long-term observations of DOC and DIC together with their molecular and isotopic signatures are needed to understand how the Yukon River Basin responds to a changing climate.

  4. Dissolved organic carbon and its potential predictors in eutrophic lakes.

    PubMed

    Toming, Kaire; Kutser, Tiit; Tuvikene, Lea; Viik, Malle; Nõges, Tiina

    2016-10-01

    Understanding of the true role of lakes in the global carbon cycle requires reliable estimates of dissolved organic carbon (DOC) and there is a strong need to develop remote sensing methods for mapping lake carbon content at larger regional and global scales. Part of DOC is optically inactive. Therefore, lake DOC content cannot be mapped directly. The objectives of the current study were to estimate the relationships of DOC and other water and environmental variables in order to find the best proxy for remote sensing mapping of lake DOC. The Boosted Regression Trees approach was used to clarify in which relative proportions different water and environmental variables determine DOC. In a studied large and shallow eutrophic lake the concentrations of DOC and coloured dissolved organic matter (CDOM) were rather high while the seasonal and interannual variability of DOC concentrations was small. The relationships between DOC and other water and environmental variables varied seasonally and interannually and it was challenging to find proxies for describing seasonal cycle of DOC. Chlorophyll a (Chl a), total suspended matter and Secchi depth were correlated with DOC and therefore are possible proxies for remote sensing of seasonal changes of DOC in ice free period, while for long term interannual changes transparency-related variables are relevant as DOC proxies. CDOM did not appear to be a good predictor of the seasonality of DOC concentration in Lake Võrtsjärv since the CDOM-DOC coupling varied seasonally. However, combining the data from Võrtsjärv with the published data from six other eutrophic lakes in the world showed that CDOM was the most powerful predictor of DOC and can be used in remote sensing of DOC concentrations in eutrophic lakes. PMID:27318445

  5. Elevated dissolved organic carbon biodegradability from thawing and collapsing permafrost

    NASA Astrophysics Data System (ADS)

    Abbott, Benjamin W.; Larouche, Julia R.; Jones, Jeremy B.; Bowden, William B.; Balser, Andrew W.

    2014-10-01

    As high latitudes warm, a portion of the large organic carbon pool stored in permafrost will become available for transport to aquatic ecosystems as dissolved organic carbon (DOC). If permafrost DOC is biodegradable, much will be mineralized to the atmosphere in freshwater systems before reaching the ocean, accelerating carbon transfer from permafrost to the atmosphere, whereas if recalcitrant, it will reach marine ecosystems where it may persist over long time periods. We measured biodegradable DOC (BDOC) in water flowing from collapsing permafrost (thermokarst) on the North Slope of Alaska and tested the role of DOC chemical composition and nutrient concentration in determining biodegradability. DOC from collapsing permafrost was some of the most biodegradable reported in natural systems. However, elevated BDOC only persisted during active permafrost degradation, with a return to predisturbance levels once thermokarst features stabilized. Biodegradability was correlated with background nutrient concentration, but nutrient addition did not increase overall BDOC, suggesting that chemical composition may be a more important control on DOC processing. Despite its high biodegradability, permafrost DOC showed evidence of substantial previous microbial processing, and we present four hypotheses explaining this incongruity. Because thermokarst features form preferentially on river banks and lake shores and can remain active for decades, thermokarst may be the dominant short-term mechanism delivering sediment, nutrients, and biodegradable organic matter to aquatic systems as the Arctic warms.

  6. Effects of Dissolved Organic Matter Source on Wetland Bacterial Metabolism

    NASA Astrophysics Data System (ADS)

    Ward, A. K.

    2005-05-01

    Wetlands are rich environments for organic matter production from a variety of wetland plant types. Investigations of the Talladega Wetland Ecosystem (TWE) in the southeastern U.S. show that bacterioplankton productivity is driven by dissolved organic carbon derived from wetland plants. The TWE is formed from a small coastal plain stream that has been dammed by beaver activity and resides in a forested catchment. In this study, bacterioplankton communities sampled from the wetland were amended with leachate from two different plants common in the TWE, the soft rush, Juncus effusus, and hazel alder, Alnus serrulata, and compared to unamended controls. The bacterioplankton response was examined by measuring bacterial carbon productivity and by an array of fluorescent microscope techniques used to distinguish metabolically active and non-active cells. Both plant leachates elicited rapid and significant increases in productivity and numbers of metabolically active bacterial cells. However, the timeframe of response, the magnitude of response, and the bacterial morphotypes varied depending on the leachate source. This study suggests that wetland bacterial communities contain different sub-component populations that may generally occur in low numbers, but that can adapt and respond rapidly to different sources of organic matter native to the wetland.

  7. Response of Dissolved Organic Matter to Warming and Nitrogen Addition

    NASA Astrophysics Data System (ADS)

    Choi, J. H.; Nguyen, H.

    2014-12-01

    Dissolved Organic Matter (DOM) is a ubiquitous mixture of soluble organic components. Since DOM is produced from the terrestrial leachate of various soil types, soil may influence the chemistry and biology of freshwater through the input of leachate and run-off. The increased temperature by climate change could dramatically change the DOM characteristics of soils through enhanced decomposition rate and losses of carbon from soil organic matter. In addition, the increase in the N-deposition affects DOM leaching from soils by changing the carbon cycling and decomposition rate of soil decay. In this study, we conducted growth chamber experiments using two types of soil (wetland and forest) under the conditions of temperature increase and N-deposition in order to investigate how warming and nitrogen addition influence the characteristics of the DOM leaching from different soil types. This leachate controls the quantity and quality of DOM in surface water systems. After 10 months of incubation, the dissolved organic carbon (DOC) concentrations decreased for almost samples in the range of 7.6 to 87.3% (ANOVA, p<0.05). The specific UV absorption (SUVA) values also decreased for almost samples after the first 3 months and then increased gradually afterward in range of 3.3 to 108.4%. Both time and the interaction between time and the temperature had the statistically significant effects on the SUVA values (MANOVA, p<0.05). Humification index (HIX) showed the significant increase trends during the duration of incubation and temperature for almost the samples (ANOVA, p<0.05). Higher decreases in the DOC values and increases in HIX were observed at higher temperatures, whereas the opposite trend was observed for samples with N-addition. The PARAFAC results showed that three fluorescence components: terrestrial humic (C1), microbial humic-like (C2), and protein-like (C3), constituted the fluorescence matrices of soil samples. During the experiment, labile DOM from the soils was

  8. Changes in dissolved organic matter during stream drying and rewetting

    NASA Astrophysics Data System (ADS)

    von Schiller, D.; Acuña, V.; Graeber, D.; Martí, E.; Ribot, M.; Sabater, S.; Timoner, X.; Tockner, K.

    2012-04-01

    Dissolved organic matter (DOM) is a complex mixture of organic compounds, which represents an essential source of carbon (C) and nutrients in aquatic ecosystems. In addition, DOM can play a key ecological role by modifying the optical properties of waters, mediating the availability of metals and influencing trophic food web structure. While the effects of drying and rewetting on DOM dynamics in terrestrial soils is a well studied subject, less is known about its effects in aquatic ecosystems, especially in streams. This is an important gap of knowledge since temporary streams that naturally cease to flow are found worldwide. Moreover, many streams with perennial flow are currently facing flow intermittency due to the effects of water extraction or changes in land-use and climate. The aim of this study was to evaluate the effects of stream flow intermittency on the spatial and temporal variability of DOM. The study was performed in a 300-m long reach of the Fuirosos stream (Catalonia, NE Spain) during the drying (June to July) and rewetting (October to November) phases. We sampled at several points along the study reach every 3 to 4 days. We assessed DOM amount by measuring the concentration of dissolved organic C and nitrogen (N). We characterized DOM composition using spectroscopic measurements, size-exclusion chromatography and C:N stoichiometry. Results showed two markedly distinct biogeochemical shifts between the drying and the rewetting phases. During the transition from continuous to fragmented flow we observed an increase in the magnitude and spatial variability of DOM concentrations and DOM was dominated by compounds from aquatic origin. After flow recovery, we also observed a pronounced increase in DOM concentration, but during this hydrologic phase DOM was dominated by compounds of terrestrial origin. Taken together, these results emphasize the relevance of flow intermittency in regulating stream DOM dynamics not only in terms of its availability but

  9. Annual Cycling of Dissolved Organic Matter in an Alpine Stream

    NASA Astrophysics Data System (ADS)

    Gabor, R. S.; McLoughlin, R.; McKnight, D. M.

    2009-12-01

    Boulder Creek, an alpine stream in the Colorado Front Range, runs through glacially-scoured landscapes and various alpine ecosystems from its headwaters at around 12,500 ft to the city of Boulder at around 6,000 ft. The flow in the lower potions of the creek is controlled by Barker Reservoir. As part of the Boulder Creek Critical Zone Observatory, water samples were collected from several sites along Boulder Creek at regular time intervals since May 2008. The concentration and quality of the Dissolved Organic Matter (DOM) in these samples was analyzed to understand the response to seasonal changes and variations in flow rates. Filtered samples were fractionated to isolate the humic material and both whole water and fulvic acid fractions were analyzed for dissolved organic carbon concentration as well as with fluorescence and UV-VIS spectroscopy. DOM concentration reached a maximum just before peak stream flow, likely due to dilution from the reservoir release. Near the end of summer, as flow slowed down and the dilution impact was minimized, the concentration began to rise again. In addition, the fluorescence index (FI), which can represent variations in DOM source, indicated a much higher microbial source during early snowmelt, likely due to microbial communities growing beneath the ice in the reservoir and lack of terrestrial runoff during the winter. The FI showed a slowly increasing terrestrial input throughout the summer as snowmelt and runoff from the watershed entered the stream. During late summer and fall the FI shifted back to a predominately microbial signal, indicative of less runoff and a greater percentage of DOM created in situ. In addition to stream measurements, surface soil samples along several transects were collected from a section of the watershed, as well as deeper samples from soil pits on both north-facing and south-facing slopes. DOM from these samples was leached with potassium sulfate and analyzed using the same techniques as the stream

  10. Role of dissolved organic matter in ice photochemistry.

    PubMed

    Grannas, Amanda M; Pagano, Lisa P; Pierce, Brittany C; Bobby, Rachel; Fede, Alexis

    2014-09-16

    In this study, we provide evidence that dissolved organic matter (DOM) plays an important role in indirect photolysis processes in ice, producing reactive oxygen species (ROS) and leading to the efficient photodegradation of a probe hydrophobic organic pollutant, aldrin. Rates of DOM-mediated aldrin loss are between 2 and 56 times faster in ice than in liquid water (depending on DOM source and concentration), likely due to a freeze-concentration effect that occurs when the water freezes, providing a mechanism to concentrate reactive components into smaller, liquid-like regions within or on the ice. Rates of DOM-mediated aldrin loss are also temperature dependent, with higher rates of loss as temperature decreases. This also illustrates the importance of the freeze-concentration effect in altering reaction kinetics for processes occurring in environmental ices. All DOM source types studied were able to mediate aldrin loss, including commercially available fulvic and humic acids and an authentic Arctic snow DOM sample isolated by solid phase extraction, indicating the ubiquity of DOM in indirect photochemistry in environmental ices. PMID:25157605

  11. Quenching of excited triplet states by dissolved natural organic matter.

    PubMed

    Wenk, Jannis; Eustis, Soren N; McNeill, Kristopher; Canonica, Silvio

    2013-11-19

    Excited triplet states of aromatic ketones and quinones are used as proxies to assess the reactivity of excited triplet states of the dissolved organic matter ((3)DOM*) in natural waters. (3)DOM* are crucial transients in environmental photochemistry responsible for contaminant transformation, production of reactive oxygen species, and potentially photobleaching of DOM. In recent photochemical studies aimed at clarifying the role of DOM as an inhibitor of triplet-induced oxidations of organic contaminants, aromatic ketones have been used in the presence of DOM, and the question of a possible interaction between their excited triplet states and DOM has emerged. To clarify this issue, time-resolved laser spectroscopy was applied to measure the excited triplet state quenching of four different model triplet photosensitizers induced by a suite of DOM from various aquatic and terrestrial sources. While no quenching for the anionic triplet sensitizers 4-carboxybenzophenone (CBBP) and 9,10-anthraquinone-2,6-disulfonic acid (2,6-AQDS) was detected, second-order quenching rate constants with DOM for the triplets of 2-acetonaphthone (2AN) and 3-methoxyacetophenone (3MAP) in the range of 1.30-3.85 × 10(7) L mol(C)(-1) s(-1) were determined. On the basis of the average molecular weight of DOM molecules, the quenching for these uncharged excited triplet molecules is nearly diffusion-controlled, but significant quenching (>10%) in aerated water is not expected to occur below DOM concentrations of 22-72 mg(C) L(-1). PMID:24083647

  12. Benthic bacterial biomass supported by streamwater dissolved organic matter.

    PubMed

    Bott, T L; Kaplan, L A; Kuserk, F T

    1984-12-01

    Bacterial biomass in surface sediments of a headwater stream was measured as a function of dissolved organic carbon (DOC) flux and temperature. Bacterial biomass was estimated using epifluorescence microscopic counts (EMC) and ATP determinations during exposure to streamwater containing 1,788μg DOC/liter and after transfer to groundwater containing 693μg DOC/liter. Numbers of bacteria and ATP concentrations averaged 1.36×10(9) cells and 1,064 ng per gram dry sediment, respectively, under initial DOC exposure. After transfer to low DOC water, biomass estimates dropped by 53 and 55% from EMC and ATP, respectively. The decline to a new steady state occurred within 4 days from ATP assays and within 11 days from EMC measures. A 4°C difference during these exposures had little effect on generation times. The experiment indicated that 27.59 mg/hour of natural DOC supported a steady state bacterial biomass of approximately 10μg C/g dry weight of sediment (from EMC determinations). Steady state bacterial biomass estimates on sediments that were previously muffled to remove organic matter were approximately 20-fold lower. The ratio of GTP∶ATP indicated differences in physiological condition or community composition between natural and muffled sediments. PMID:24221176

  13. CHROMOPHORIC DISSOLVED ORGANIC MATTER (CDOM) DERIVED FROM DECOMPOSITION OF VARIOUS VASCULAR PLANT AND ALGAL SOURCES

    EPA Science Inventory

    Chromophoric dissolved organic (CDOM) in aquatic environments is derived from the microbial decomposition of terrestrial and microbial organic matter. Here we present results of studies of the spectral properties and photoreactivity of the CDOM derived from several organic matter...

  14. CHEMISTRY OF DISSOLVED ORGANIC CARBON AND ORGANIC ACIDS IN TWO STREAMS DRAINING FORESTED WATERSHEDS

    EPA Science Inventory

    The concentration, major fractions, and contribution of dissolved organic carbon (DOG) to stream chemistry were examined in two paired streams draining upland catchments in eastern Maine. oncentrations of DOC in East and West Bear Brooks were 183 +/- 73 and 169 +/- 70 umol CL-1 (...

  15. Which insect species numerically respond to allochthonous inputs?

    NASA Astrophysics Data System (ADS)

    Sugiura, Shinji; Ikeda, Hiroshi

    2013-08-01

    Herons (Ardeidae) frequently breed in inland forests and provide organic material in the form of carcasses of prey (that they drop) and chicks (that die) to the forest floor. Such allochthonous inputs of organic materials are known to increase arthropod populations in forests. However, the exact species that show numerical responses to allochthonous inputs in heron breeding colonies remains unclear. Very few studies have clarified which factors determine numerical responses in individual species. We used pitfall and baited traps to compare the densities of arthropods between forest patches in heron breeding colonies (five sites) and areas outside of colonies (five sites) in central Japan. The density of all arthropods was not significantly different between colonies and non-colony areas. However, significant differences between colonies and non-colony areas were found in four arthropod groups. Earwigs (Dermaptera: Anisolabididae), hister beetles (Coleoptera: Histeridae), and carrion beetles (Coleoptera: Silphidae) were more abundant in colonies, while ants (Hymenoptera: Formicidae) were less abundant in colonies. We detected numerical responses to heron breeding in two earwig, one histerid, five silphid, and one ant species. Chick and prey carcasses from herons may have directly led to increases in consumer populations such as earwigs, histerids, and silphids in colonies, while microenvironmental changes caused by heron breeding may have reduced ant abundance. In the Silphidae, five species showed numerical responses to allochthonous inputs, and the other two species did not. Numerical responses in individual species may have been determined by life history traits such as reproductive behaviour.

  16. Which insect species numerically respond to allochthonous inputs?

    PubMed

    Sugiura, Shinji; Ikeda, Hiroshi

    2013-08-01

    Herons (Ardeidae) frequently breed in inland forests and provide organic material in the form of carcasses of prey (that they drop) and chicks (that die) to the forest floor. Such allochthonous inputs of organic materials are known to increase arthropod populations in forests. However, the exact species that show numerical responses to allochthonous inputs in heron breeding colonies remains unclear. Very few studies have clarified which factors determine numerical responses in individual species. We used pitfall and baited traps to compare the densities of arthropods between forest patches in heron breeding colonies (five sites) and areas outside of colonies (five sites) in central Japan. The density of all arthropods was not significantly different between colonies and non-colony areas. However, significant differences between colonies and non-colony areas were found in four arthropod groups. Earwigs (Dermaptera: Anisolabididae), hister beetles (Coleoptera: Histeridae), and carrion beetles (Coleoptera: Silphidae) were more abundant in colonies, while ants (Hymenoptera: Formicidae) were less abundant in colonies. We detected numerical responses to heron breeding in two earwig, one histerid, five silphid, and one ant species. Chick and prey carcasses from herons may have directly led to increases in consumer populations such as earwigs, histerids, and silphids in colonies, while microenvironmental changes caused by heron breeding may have reduced ant abundance. In the Silphidae, five species showed numerical responses to allochthonous inputs, and the other two species did not. Numerical responses in individual species may have been determined by life history traits such as reproductive behaviour. PMID:23780624

  17. Colored dissolved organic matter in Tampa Bay, Florida

    USGS Publications Warehouse

    Chen, Z.; Hu, C.; Conmy, R.N.; Muller-Karger, F.; Swarzenski, P.

    2007-01-01

    Absorption and fluorescence of colored dissolved organic matter (CDOM) and concentrations of dissolved organic carbon (DOC), chlorophyll and total suspended solids in Tampa Bay and its adjacent rivers were examined in June and October of 2004. Except in Old Tampa Bay (OTB), the spatial distribution of CDOM showed a conservative relationship with salinity in June, 2004 (aCDOM(400) = − 0.19 × salinity + 6.78, R2 = 0.98, n = 17, salinity range = 1.1–32.5) with little variations in absorption spectral slope and fluorescence efficiency. This indicates that CDOM distribution was dominated by mixing. In October, 2004, CDOM distribution was nonconservative with an average absorption coefficient (aCDOM(400), ∼ 7.76 m-1) about seven times higher than that in June (∼ 1.11 m-1). The nonconservative behavior was caused largely by CDOM removal at intermediate salinities (e.g., aCDOM(400) removal > 15% at salinity ∼ 13.0), which likely resulted from photobleaching due to stronger stratification. The spatial and seasonal distributions of CDOM in Tampa Bay showed that the two largest rivers, the Alafia River (AR) and Hillsborough River (HR) were dominant CDOM sources to most of the bay. In OTB, however, CDOM showed distinctive differences: lower absorption coefficient, higher absorption spectral slopes, and lower ratios of CDOM absorption to DOC and higher fluorescence efficiency. These differences may have stemmed from (1) changes in CDOM composition by more intensive photobleaching due to the longer residence time of water mass in OTB; (2) other sources of CDOM than the HR/AR inputs, such as local creeks, streams, groundwater, and/or bottom re-suspension. Average CDOM absorption in Tampa Bay at 443 nm, aCDOM(443), was about five times higher in June and about ten times higher in October than phytoplankton pigment absorption, aph(443), indicating that blue light attenuation in the water column was dominated by CDOM rather than by phytoplankton absorption throughout the

  18. Characterization Of Dissolved Organic Mattter In The Florida Keys Ecosystem

    NASA Astrophysics Data System (ADS)

    Adams, D. G.; Shank, G. C.

    2009-12-01

    Over the past few decades, Scleractinian coral populations in the Florida Keys have increasingly experienced mortality due to bleaching events as well as microbial mediated illnesses such as black band and white band disease. Such pathologies seem to be most correlated with elevated sea surface temperatures, increased UV exposures, and shifts in the microbial community living on the coral itself. Recent studies indicate that corals’ exposure to UV in the Florida Keys is primarily controlled by the concentration of CDOM (Chromophoric Dissolved Organic Matter) in the water column. Further, microbial community alterations may be linked to changes in concentration and chemical composition of the larger DOM (Dissolved Organic Matter) pool. Our research characterized the spatial and temporal properties of DOM in Florida Bay and along the Keys ecosystems using DOC analyses, in-situ water column optical measurements, and spectral analyses including absorbance and fluorescence measurements. We analyzed DOM characteristics along transects running from the mouth of the Shark River at the southwest base of the Everglades, through Florida Bay, and along near-shore Keys coastal waters. Two 12 hour time-series samplings were also performed at the Seven-Mile Bridge, the primary Florida Bay discharge channel to the lower Keys region. Photo-bleaching experiments showed that the chemical characteristics of the DOM pool are altered by exposure to solar radiation. Results also show that DOC (~0.8-5.8 mg C/L) and CDOM (~0.5-16.5 absorbance coefficient at 305nm) concentrations exhibit seasonal fluctuations in our study region. EEM analyses suggest seasonal transitions between primarily marine (summer) and terrestrial (winter) sources along the Keys. We are currently combining EEM-PARAFAC analysis with in-situ optical measurements to model changes in the spectral properties of DOM in the water column. Additionally, we are using stable δ13C isotopic analysis to further characterize DOM

  19. Photolytic processing of secondary organic aerosols dissolved in cloud droplets.

    PubMed

    Bateman, Adam P; Nizkorodov, Sergey A; Laskin, Julia; Laskin, Alexander

    2011-07-14

    The effect of UV irradiation on the molecular composition of aqueous extracts of secondary organic aerosol (SOA) was investigated. SOA was prepared by the dark reaction of ozone and d-limonene at 0.05-1 ppm precursor concentrations and collected with a particle-into-liquid sampler (PILS). The PILS extracts were photolyzed by 300-400 nm radiation for up to 24 h. Water-soluble SOA constituents were analyzed using high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) at different stages of photolysis for all SOA precursor concentrations. Exposure to UV radiation increased the average O/C ratio and decreased the average double bond equivalent (DBE) of the dissolved SOA compounds. Oligomeric compounds were significantly decreased by photolysis relative to the monomeric compounds. Direct pH measurements showed that acidic compounds increased in abundance upon photolysis. Methanol reactivity analysis revealed significant photodissociation of molecules containing carbonyl groups and the formation of carboxylic acids. Aldehydes, such as limononaldehyde, were almost completely removed. The removal of carbonyls was further confirmed by the UV/Vis absorption spectroscopy of the SOA extracts where the absorbance in the carbonyl n→π* band decreased significantly upon photolysis. The effective quantum yield (the number of carbonyls destroyed per photon absorbed) was estimated as ∼0.03. The total concentration of peroxides did not change significantly during photolysis as quantified with an iodometric test. Although organic peroxides were photolyzed, the likely end products of photolysis were smaller peroxides, including hydrogen peroxide, resulting in a no net change in the peroxide content. Photolysis of dry limonene SOA deposited on substrates was investigated in a separate set of experiments. The observed effects on the average O/C and DBE were similar to the aqueous photolysis, but the extent of chemical change was smaller in dry SOA. Our results suggest

  20. The soil organic carbon content of anthropogenically altered organic soils effects the dissolved organic matter quality, but not the dissolved organic carbon concentrations

    NASA Astrophysics Data System (ADS)

    Frank, Stefan; Tiemeyer, Bärbel; Bechtold, Michel; Lücke, Andreas; Bol, Roland

    2016-04-01

    Dissolved organic carbon (DOC) is an important link between terrestrial and aquatic ecosystems. This is especially true for peatlands which usually show high concentrations of DOC due to the high stocks of soil organic carbon (SOC). Most previous studies found that DOC concentrations in the soil solution depend on the SOC content. Thus, one would expect low DOC concentrations in peatlands which have anthropogenically been altered by mixing with sand. Here, we want to show the effect of SOC and groundwater level on the quantity and quality of the dissolved organic matter (DOM). Three sampling sites were installed in a strongly disturbed bog. Two sites differ in SOC (Site A: 48%, Site B: 9%) but show the same mean annual groundwater level of 15 and 18 cm below ground, respectively. The SOC content of site C (11%) is similar to Site B, but the groundwater level is much lower (-31 cm) than at the other two sites. All sites have a similar depth of the organic horizon (30 cm) and the same land-use (low-intensity sheep grazing). Over two years, the soil solution was sampled bi-weekly in three depths (15, 30 and 60 cm) and three replicates. All samples were analyzed for DOC and selected samples for dissolved organic nitrogen (DON) and delta-13C and delta-15N. Despite differences in SOC and groundwater level, DOC concentrations did not differ significantly (A: 192 ± 62 mg/L, B: 163 ± 55 mg/L and C: 191 ± 97 mg/L). At all sites, DOC concentrations exceed typical values for peatlands by far and emphasize the relevance even of strongly disturbed organic soils for DOC losses. Individual DOC concentrations were controlled by the temperature and the groundwater level over the preceding weeks. Differences in DOM quality were clearer. At site B with a low SOC content, the DOC:DON ratio of the soil solution equals the soil's C:N ratio, but the DOC:DON ratio is much higher than the C:N ratio at site A. In all cases, the DOC:DON ratio strongly correlates with delta-13C. There is no

  1. Molecular simulation of a model of dissolved organic matter

    SciTech Connect

    Sutton, Rebecca; Sposito, Garrison; Diallo, Mamadou S.; Schulten,Hans-Rolf

    2004-11-08

    A series of atomistic simulations was performed to assess the ability of the Schulten dissolved organic matter (DOM) molecule, a well-established model humic molecule, to reproduce the physical and chemical behavior of natural humic substances. The unhydrated DOM molecule had a bulk density value appropriate to humic matter, but its Hildebrand solubility parameter was lower than the range of current experimental estimates. Under hydrated conditions, the DOM molecule went through conformational adjustments that resulted in disruption of intramolecular hydrogen bonds (H-bonds), although few water molecules penetrated the organic interior. The radius of gyration of the hydrated DOM molecule was similar to those measured for aquatic humic substances. To simulate humic materials under aqueous conditions with varying pH levels, carboxyl groups were deprotonated, and hydrated Na{sup +} or Ca{sup 2+} were added to balance the resulting negative charge. Because of intrusion of the cation hydrates, the model metal- humic structures were more porous, had greater solvent-accessible surface areas, and formed more H-bonds with water than the protonated, hydrated DOM molecule. Relative to Na{sup +}, Ca{sup 2+} was both more strongly bound to carboxylate groups and more fully hydrated. This difference was attributed to the higher charge of the divalent cation. The Ca-DOM hydrate, however, featured fewer H-bonds than the Na-DOM hydrate, perhaps because of the reduced orientational freedom of organic moieties and water molecules imposed by Ca{sup 2+}. The present work is, to our knowledge, the first rigorous computational exploration regarding the behavior of a model humic molecule under a range of physical conditions typical of soil and water systems.

  2. Dissolved inorganic and organic selenium in the Orca Basin

    NASA Astrophysics Data System (ADS)

    Takayanagi, Kazufumi; Wong, George T. F.

    1985-02-01

    The vertical distributions of Se (IV), Se (VI) and dissolved organic Se have been determined in the oxic and non-sulfide-bearing anoxic zones of the Orca Basin. In the oxic waters, the concentration of Se (IV) increases with depth gradually from 0.25 nmole/kg at the surface to a maximum of 0.46 nmole/kg at 750 m and then decreases with depth to a relatively constant concentration of 0.39 nmole/ kg below 1,230 m. The concentration of Se (VI) is rather uniform in the top 250 m at about 0.24 nmole/ kg. Below 250 m it increases with depth to 0.50 nmole/kg at 1.230 m, and it stays relatively constant below this depth. The concentration of organic Se increases from 0.50 nmole/kg at the surface to 1.39 nmole/kg at 78 m. A pronounced broad maximum of organic Se exists between 78 and 250 m. The concentration decreases with depth below 250 m, dropping sharply between 250 and 380 m and more gradually at greater depths. It becomes undetectable at 1,230 m. Organic Se is the dominant species above 250 m. Se (IV) is the most abundant between 250 and 1,000 m while Se (VI) becomes the dominant species below 1,000 m. The distributions of these three species can be explained by the biological uptake of Se in the surface waters and the multi-step regeneration of Se from biogenic particles at greater depths. In suboxic waters at the oxic-anoxic interface, the concentration of Se (IV) increases while that of Se (VI) decreases reflecting a change in redox conditions in the environment. In the anoxic brine, the concentration of Se (IV) is around 0.25 nmole/kg while Se (VI) is undetectable. The concentration of organic Se increases sharply in the suboxic waters and reaches 2.6 nmole/kg in the anoxic brines probably as a result of the decomposition of organic matter and/or a diffusive flux from the underlying sediment.

  3. Dissolved Organic Carbon in the Yukon River Basin

    NASA Astrophysics Data System (ADS)

    Aiken, G.; Striegl, R.; Schuster, P.

    2003-12-01

    A critical question in carbon cycling is how climate change could alter the fate and chemical nature of dissolved organic carbon (DOC) released from watersheds and transported to rivers, lakes, estuaries and coastal waters. The spatial and temporal variability of DOC in surface waters associated with the Yukon River Basin is being studied to better define the processes controlling DOC in this system. The Yukon River Basin, a large and diverse ecosystem in northwestern Canada and central Alaska, is experiencing increasing temperatures, partial melting of permafrost, drying of upland soils and changing wetland environments. However, little is known about DOC transported in the system. Specific ultraviolet absorbance (SUVA) measurements, in combination with DOC and DOC fractionation analyses, were used to determine both the amount and nature of DOC in the Yukon River and major tributaries. DOC transported in the Yukon River and its tributaries was seasonally dependent. For example, DOC concentrations in the Yukon River at Steven's Village ranged from 2 to 17 mg C/L during 2003, and SUVA ranged from 2.0 to 3.5 L/mg C m, indicating a large variation in amount and nature of organic matter in the river. Lowest DOC concentrations and SUVA values were observed in winter under low flow conditions. Greatest DOC concentrations were measured on samples collected during the spring on the leading part of the hydrograph. These samples were also found to have the greatest SUVA values indicating that the organic matter transported during this period was more aromatic than DOC transported under low flow conditions. High SUVA values are indicative of greater amounts of organic material originating in soils and wetlands of the watershed. The amount and nature of organic matter transported by the tributaries appeared to be related to relief and wetland contribution to the watershed of the tributary. Based on DOC and SUVA data, the Yukon River tributaries can be classified as dark water

  4. Chemical composition of dissolved organic matter draining permafrost soils

    NASA Astrophysics Data System (ADS)

    Ward, Collin P.; Cory, Rose M.

    2015-10-01

    Northern circumpolar permafrost soils contain roughly twice the amount of carbon stored in the atmosphere today, but the majority of this soil organic carbon is perennially frozen. Climate warming in the arctic is thawing permafrost soils and mobilizing previously frozen dissolved organic matter (DOM) from deeper soil layers to nearby surface waters. Previous studies have reported that ancient DOM draining deeper layers of permafrost soils was more susceptible to degradation by aquatic bacteria compared to modern DOM draining the shallow active layer of permafrost soils, and have suggested that DOM chemical composition may be an important control for the lability of DOM to bacterial degradation. However, the compositional features that distinguish DOM drained from different depths in permafrost soils are poorly characterized. Thus, the objective of this study was to characterize the chemical composition of DOM drained from different depths in permafrost soils, and relate these compositional differences to its susceptibility to biological degradation. DOM was leached from the shallow organic mat and the deeper permafrost layer of soils within the Imnavait Creek watershed on the North Slope of Alaska. DOM draining both soil layers was characterized in triplicate by coupling ultra-high resolution mass spectrometry, 13C solid-state NMR, and optical spectroscopy methods with multi-variate statistical analyses. Reproducibility of replicate mass spectra was high, and compositional differences resulting from interfering species or isolation effects were significantly smaller than differences between DOM drained from each soil layer. All analyses indicated that DOM leached from the shallower organic mat contained higher molecular weight, more oxidized, and more unsaturated aromatic species compared to DOM leached from the deeper permafrost layer. Bacterial production rates and bacterial efficiencies were significantly higher for permafrost compared to organic mat DOM

  5. Dissolved organic matter reduces algal accumulation of methylmercury

    USGS Publications Warehouse

    Luengen, Allison C.; Fisher, Nicholas S.; Bergamaschi, Brian A.

    2012-01-01

    Dissolved organic matter (DOM) significantly decreased accumulation of methylmercury (MeHg) by the diatom Cyclotella meneghiniana in laboratory experiments. Live diatom cells accumulated two to four times more MeHg than dead cells, indicating that accumulation may be partially an energy-requiring process. Methylmercury enrichment in diatoms relative to ambient water was measured by a volume concentration factor (VCF). Without added DOM, the maximum VCF was 32 x 104, and the average VCF (from 10 to 72 h) over all experiments was 12.6 x 104. At very low (1.5 mg/L) added DOM, VCFs dropped by approximately half. At very high (20 mg/L) added DOM, VCFs dropped 10-fold. Presumably, MeHg was bound to a variety of reduced sulfur sites on the DOM, making it unavailable for uptake. Diatoms accumulated significantly more MeHg when exposed to transphilic DOM extracts than hydrophobic ones. However, algal lysate, a labile type of DOM created by resuspending a marine diatom in freshwater, behaved similarly to a refractory DOM isolate from San Francisco Bay. Addition of 67 μM L-cysteine resulted in the largest drop in VCFs, to 0.28 x 104. Although the DOM composition influenced the availability of MeHg to some extent, total DOM concentration was the most important factor in determining algal bioaccumulation of MeHg.

  6. [Effects of dissolved organic matter on copper absorption by ryegrass].

    PubMed

    Tang, Chao; Wang, Bin; Liu, Man-Qiang; Hu, Feng; Li, Hui-Xin; Jiao, Jia-Guo

    2012-08-01

    In this study, dissolved organic matter (DOM) was extracted from earthworm casts and from the cattle manure with which the earthworms were fed, and a water culture experiment was conducted to study the effects of the DOM on the copper (Cu2+) absorption by ryegrass in the presence of different concentration Cu2+ (0, 5 and 10 mg x L(-1)). With the increasing concentration of Cu2+ in the medium, there was a gradual decrease in the dry mass of ryegrass shoots and roots and in the root length, surface area, volume, and tip number. In the presence of medium Cu2+, DOM increased the biomass of shoots and roots and the root length, surface area, volume, and tip number significantly. DOM reduced the Cu2+ concentration in roots, promoted the Cu2+ translocation from roots to shoots, and significantly increased the Cu2+ accumulation in shoots. The DOM from earthworm casts had better effects than that from cattle manure, and high concentration DOM had better effects than low concentration DOM. PMID:23189712

  7. Variations in dissolved organic carbon concentrations across peatland hillslopes

    NASA Astrophysics Data System (ADS)

    Boothroyd, I. M.; Worrall, F.; Allott, T. E. H.

    2015-11-01

    Peatlands are important terrestrial carbon stores and dissolved organic carbon (DOC) is one of the most important contributors to carbon budgets in peatland systems. Many studies have investigated factors affecting DOC concentration in peatland systems, yet hillslope position has been thus far overlooked as a variable that could influence DOC cycling. This study investigates the importance of hillslope position with regard to DOC cycling. Two upland peat hillslopes were studied in the Peak District, UK, to determine what impact, if any, hillslope position had upon DOC concentration. Hillslope position was found to be a significant factor affecting variation in soil pore water DOC concentration, with bottom-slope positions having significantly lower DOC concentrations than up-slope because of dilution of DOC as water moves down-slope and is flushed out of the system via lateral throughflow. Water table drawdown on steeper mid-slopes increased DOC concentrations through increased DOC production and extended residence times allowing a build-up of humic-rich DOC compounds. Hillslope position did not significantly affect DOC concentrations in surface runoff water because of the dilution of near-surface soil pore water by precipitation inputs, while stream water had similar water chemistry properties to soil pore water under low-flow conditions.

  8. Black Carbon in Estuarine and Coastal Ocean Dissolved Organic Matter

    NASA Technical Reports Server (NTRS)

    Mannino, Antonio; Harvey, H. Rodger

    2003-01-01

    Black carbon (BC) in ultrafiltered high-molecular-weight DOM (UDOM) was measured in surface waters of Delaware Bay, Chesapeake Bay and the adjacent Atlantic Ocean (USA) to ascertain the importance of riverine and estuarine DOM as a source of BC to the ocean. BC comprised 5-72% of UDOM-C (27+/-l7%) and on average 8.9+/-6.5% of dissolved organic carbon (DOC) with higher values in the turbid region of the Delaware Estuary and lower yields in the river and coastal ocean. The spatial and seasonal distributions of BC along the salinity gradient of Delaware Bay suggest that the higher levels of BC in surface water UDOM originated from localized sources, possibly from atmospheric deposition or released from resuspended sediments. Black carbon comprised 4 to 7% of the DOC in the coastal Atlantic Ocean, revealing that river-estuary systems are important exporters of colloidal BC to the ocean. The annual flux of BC from Delaware Bay UDOM to the Atlantic Ocean was estimated at 2.4x10(exp 10) g BC yr(exp -1). The global river flux of BC through DOM to the ocean could be on the order of 5.5x1O(exp 12)g BC yr (exp -1). These results support the hypothesis that the DOC pool is the intermediate reservoir in which BC ages prior to sedimentary deposition.

  9. Hidden cycle of dissolved organic carbon in the deep ocean

    PubMed Central

    Follett, Christopher L.; Repeta, Daniel J.; Rothman, Daniel H.; Xu, Li; Santinelli, Chiara

    2014-01-01

    Marine dissolved organic carbon (DOC) is a large (660 Pg C) reactive carbon reservoir that mediates the oceanic microbial food web and interacts with climate on both short and long timescales. Carbon isotopic content provides information on the DOC source via δ13C and age via Δ14C. Bulk isotope measurements suggest a microbially sourced DOC reservoir with two distinct components of differing radiocarbon age. However, such measurements cannot determine internal dynamics and fluxes. Here we analyze serial oxidation experiments to quantify the isotopic diversity of DOC at an oligotrophic site in the central Pacific Ocean. Our results show diversity in both stable and radio isotopes at all depths, confirming DOC cycling hidden within bulk analyses. We confirm the presence of isotopically enriched, modern DOC cocycling with an isotopically depleted older fraction in the upper ocean. However, our results show that up to 30% of the deep DOC reservoir is modern and supported by a 1 Pg/y carbon flux, which is 10 times higher than inferred from bulk isotope measurements. Isotopically depleted material turns over at an apparent time scale of 30,000 y, which is far slower than indicated by bulk isotope measurements. These results are consistent with global DOC measurements and explain both the fluctuations in deep DOC concentration and the anomalous radiocarbon values of DOC in the Southern Ocean. Collectively these results provide an unprecedented view of the ways in which DOC moves through the marine carbon cycle. PMID:25385632

  10. Chemical Characterization of Dissolved Organic Matter in Hiroshima Bay, Japan

    NASA Astrophysics Data System (ADS)

    Fukushima, T.; Ishibashi, T.; Imai, A.

    2001-07-01

    The concentrations of dissolved organic carbon (DOC) and hydrophilic DOC (Hil-DOC) in Hiroshima Bay showed clear seasonal changes (high in summer and low in winter), suggesting the autochthonous production of Hil-DOC. The percentages of hydrophobic DOC (Hob-DOC) fractionated by XAD-8 resin were 33% for the bay waters and 41% for the river waters, whereas those of labile DOC (which decomposed during an incubation period of 100 days) were 20% and 24%, respectively. The increment of DOC to Chlorophyll a was calculated to be (0·014 mgl -1)/(μgl -1). The mixing experiments suggested a negligible deposition of DOC at the estuaries of inflowing rivers. The Hob-DOC went through the bay with negligible changes in concentration in both summer and winter, but its chemical characteristics, e.g. spectrophotometric properties and mean molecular weight, differed from those of riverine origin. In contrast, both labile and refractory components of Hil-DOC were produced mainly in the inner part of the bay during summer, and although a significant percentage of the labile component was subjected to biodegradation during transport to the outer part of the bay, its chemical characteristics did not change dramatically.

  11. Photochemical Degradation of Persistent Organic Pollutants: A Study of Ice Photochemistry Mediated by Dissolved Organic Matter

    NASA Astrophysics Data System (ADS)

    Bobby, R.; Pagano, L.; Grannas, A. M.

    2012-12-01

    It is well established that ice is a reactive medium in the environment and that active photochemistry occurs in frozen systems. Snow and ice contain a number of absorbing species including nitrate, peroxide and organic matter. Upon irradiation, they can generate a variety of reactive intermediates such as hydroxyl radical and singlet oxygen. It has been shown that dissolved organic matter is a ubiquitous component of snow and ice and plays an important role in overall light absorption properties of the sample. Additionally, the reactive intermediates produced can further react with contaminants present and alter their fate in the environment. Unfortunately, the role of dissolved organic matter in ice photochemistry has received little attention. Here we present results from laboratory-based studies aimed at elucidating the role of dissolved organic matter photochemistry on contaminant degradation in ice. Aqueous samples of our target pollutant, aldrin (20 μg/L), in liquid and frozen phases, were irradiated under Q-Panel 340 lamps to simulate the UV radiation profile of natural sunlight. Results indicated that frozen samples degraded more quickly than liquid samples and that the addition of dissolved organic matter increases the aldrin degradation rate significantly. Both terrestrial (Suwannee River, U.S.) and microbial sources (Pony Lake, Antarctica) of DOM were able to sensitize aldrin loss in ice. Scavengers of singlet oxygen, such as furfuryl alcohol and β-carotene, were also added to DOM solutions. Based on the type of organic matter present, the scavengers had different effects on the photochemical degradation of aldrin. Our results indicate that natural organic matter present in ice is an important component of ice photochemical processes.

  12. Tracking fluorescent dissolved organic matter in multistage rivers using EEM-PARAFAC analysis: implications of the secondary tributary remediation for watershed management.

    PubMed

    Nie, Zeyu; Wu, Xiaodong; Huang, Haomin; Fang, Xiaomin; Xu, Chen; Wu, Jianyu; Liang, Xinqiang; Shi, Jiyan

    2016-05-01

    Profound understanding of behaviors of organic matter from sources to multistage rivers assists watershed management for improving water quality of river networks in rural areas. Ninety-one water samples were collected from the three orders of receiving rivers in a typical combined polluted subcatchment (diffuse agricultural pollutants and domestic sewage) located in China. Then, the fluorescent dissolved organic matter (FDOM) information for these samples was determined by the excitation-emission matrix coupled with parallel factor analysis (EEM-PARAFAC). Consequently, two typical humic-like (C1 and C2) and other two protein-like (C3 and C4) components were separated. Their fluorescence peaks were located at λ ex/em = 255(360)/455, <250(320)/395, 275/335, and <250/305 nm, which resembled the traditional peaks of A + C, A + M, T, and B, respectively. In addition, C1 and C2 accounted for the dominant contributions to FDOM (>60 %). Principal component analysis (PCA) further demonstrated that, except for the autochthonous produced C4, the allochthonous components (C1 and C2) had the same terrestrial origins, but C3 might possess the separate anthropogenic and biological sources. Moreover, the spatial heterogeneity of contamination levels was noticeable in multistage rivers, and the allochthonous FDOM was gradually homogenized along the migration directions. Interestingly, the average content of the first three PARAFAC components in secondary tributaries and source pollutants had significantly higher levels than that in subsequent receiving rivers, thus suggesting that the supervision and remediation for secondary tributaries would play a prominent role in watershed management works. PMID:26805924

  13. Ocean Warming–Acidification Synergism Undermines Dissolved Organic Matter Assembly

    PubMed Central

    Chen, Chi-Shuo; Anaya, Jesse M.; Chen, Eric Y-T; Farr, Erik; Chin, Wei-Chun

    2015-01-01

    Understanding the influence of synergisms on natural processes is a critical step toward determining the full-extent of anthropogenic stressors. As carbon emissions continue unabated, two major stressors—warming and acidification—threaten marine systems on several scales. Here, we report that a moderate temperature increase (from 30°C to 32°C) is sufficient to slow— even hinder—the ability of dissolved organic matter, a major carbon pool, to self-assemble to form marine microgels, which contribute to the particulate organic matter pool. Moreover, acidification lowers the temperature threshold at which we observe our results. These findings carry implications for the marine carbon cycle, as self-assembled marine microgels generate an estimated global seawater budget of ~1016 g C. We used laser scattering spectroscopy to test the influence of temperature and pH on spontaneous marine gel assembly. The results of independent experiments revealed that at a particular point, both pH and temperature block microgel formation (32°C, pH 8.2), and disperse existing gels (35°C). We then tested the hypothesis that temperature and pH have a synergistic influence on marine gel dispersion. We found that the dispersion temperature decreases concurrently with pH: from 32°C at pH 8.2, to 28°C at pH 7.5. If our laboratory observations can be extrapolated to complex marine environments, our results suggest that a warming–acidification synergism can decrease carbon and nutrient fluxes, disturbing marine trophic and trace element cycles, at rates faster than projected. PMID:25714090

  14. Dissolved Organic Carbon In Precipitation At A Coastal Rural Site

    NASA Astrophysics Data System (ADS)

    Liptzin, D.; Daley, M.; Sive, B. C.; Talbot, R. W.; McDowell, W. H.

    2013-12-01

    Dissolved organic carbon (DOC) is a ubiquitous component of precipitation. This DOC is a complex mixture of compounds from biogenic and anthropogenic sources. The amount and chemistry of the DOC in precipitation has been studied for a variety of reasons: as a source of acidity, as a source of C to marine and terrestrial ecosystems, or to track the fate of individual compounds or pollutants. In most cases, past studies have focused on particular compounds or a limited number of precipitation events. Very little is known about the temporal trends in DOC or the relationship between DOC and other constituents of precipitation. We collected precipitation events for more than five years at a rural coastal site in New Hampshire. We evaluated the seasonal patterns and compared the DOC concentrations to other typical measures of the wet atmospheric deposition (ammonium, nitrate, sulfate, and chloride). In addition, we compared the DOC in precipitation to the concentrations of various organic constituents of the atmosphere. The volume weighted mean C concentration was 0.75 mg C/L with concentrations in the summer significantly higher than in the other three seasons. The DOC concentration was most strongly associated with ammonium concentrations (r=0.81), but was also significantly related to nitrate (r=0.50) and sulfate (r=0.63) concentrations. There was no significant association between DOC and chloride concentrations. Preliminary regression tree analysis suggests that the DOC concentration in precipitation was best predicted by the atmospheric concentration of methyl vinyl ketone, an oxidation product of isoprene. These results suggest that both terrestrial biogenic and anthropogenic sources may be important precursors to the C removed from the atmosphere during precipitation events.

  15. Photolytic processing of secondary organic aerosols dissolved in cloud droplets

    SciTech Connect

    Bateman, Adam P; Nizkorodov, Serguei; Laskin, Julia; Laskin, Alexander

    2011-05-26

    The effect of UV irradiation on the molecular composition of aqueous extracts of secondary organic aerosol (SOA) was investigated. SOA was prepared by the dark reaction of ozone and d-limonene at 0.05 - 1 ppm precursor concentrations and collected with a particle-into-liquid sampler (PILS). The PILS extracts were photolyzed by 300 - 400 nm radiation for up to 24 hours. Water-soluble SOA constituents were analyzed using high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) at different stages of photolysis for all SOA precursor concentrations. Exposure to UV radiation increased the average O/C ratio and decreased the average double bond equivalent (DBE) of the dissolved SOA compounds. Oligomeric compounds were significantly reduced by photolysis relative to the monomeric compounds. Direct pH measurements showed that compounds containing carboxylic acids increased upon photolysis. Methanol reactivity analysis revealed significant photodissociation of molecules containing carbonyl groups and formation of carboxylic acids. Aldehydes, such as limononaldehyde, were almost completely removed. The removal of carbonylswas confirmed by the UV-Vis absorption spectroscopy of the SOA extracts where the absorbance in the carbonyl n→π* band decreased significantly upon photolysis. The effective quantum yield (the number of carbonyls destroyed per photon absorbed) was estimated as ~ 0.03. The concentration of peroxides did not change significantly during photolysis as quantified with an iodometric test. Although organic peroxides were photolyzed, the likely end products of photolysis were smaller peroxides, including hydrogen peroxide, resulting in a no net change in the peroxide content.

  16. Dissolved organic carbon losses from tile drained agroecosystems.

    PubMed

    Ruark, Matthew D; Brouder, Sylvie M; Turco, Ronald F

    2009-01-01

    Artificial subsurface drainage is commonly used in midwestern agriculture and drainage losses of dissolved organic carbon (DOC) from such systems are an under-quantified portion of the terrestrial carbon (C) cycle. The objectives of this study were to determine the effect of common agricultural management practices on DOC losses from subsurface tile drains and to assess patterns of loss as a function of year, time of year, and drainflow. Daily drainflow was collected across six water years (1999-2004) from a restored prairie grass system and cropping systems which include continuous corn (Zea mays L.) and corn-soybean [Glycine max (L.) Merr.] rotations fertilized with urea-ammonium-nitrate (UAN) or swine (Sus scrofa) manure lagoon effluent. The DOC concentrations in tile drainflow were low, typically <2 mg L(-1). Yearly DOC losses, which ranged from 1.78 to 8.61 kg ha(-1), were not affected by management practices and were small compared to organic C inputs. Spring application of lagoon effluent increased yearly flow-weighted (FW)-DOC concentrations relative to other cropping systems in three of the years and increased monthly FW-DOC concentrations when drainflow occurred within 1 mo of application. Drainflow was significantly and positively correlated with DOC loss. Drainflow also affected DOC concentrations as greater 6-yr cumulative drainflow was associated with lower 6-yr FW-DOC concentrations and greater daily drainflow was associated with higher daily DOC concentrations. Our results indicate that lagoon effluent application and fertilizer N rates do not affect long-term losses of DOC from tile drains and that drainflow is the main driver of DOC losses. PMID:19398518

  17. Dissolved organic matter sources in large Arctic rivers

    NASA Astrophysics Data System (ADS)

    Amon, Rainer; Walker, Sally; Prokushkin, Anatoly; Guggenberger, Georg

    2013-04-01

    The composition of dissolved organic carbon (DOC) of the six largest Arctic rivers was studied between 2003 and 2007 as part of the PARTNERS Project. Samples were collected over seasonal cycles relatively close to the river mouths. Here we report the lignin phenol and p-hydroxybenzene composition along with optical properties of Arctic river DOC in order to identify major sources of carbon. Arctic river DOC represents an important carbon conduit linking the large pools of organic carbon in the Arctic/Subarctic watersheds to the Arctic Ocean. Most of the annual lignin discharge (>75%) occurs during the two month of spring freshet with extremely high lignin concentrations and a lignin phenol composition indicative of fresh vegetation from boreal forests. The three large Siberian rivers, Lena, Yenisei, and Ob, which also have the highest proportion of forests within their watersheds, contribute about 90% of the total lignin discharge to the Arctic Ocean. The composition of river DOC is also characterized by elevated levels of p-hydroxybenzenes, particularly during the low flow season, which indicates a larger contribution from mosses and peat bogs. The lignin composition was strongly related to the average 14C-age of DOC supporting the abundance of young, boreal-vegetation-derived leachates during spring flood, and older, soil-, peat-, and wetland-derived DOC during groundwater dominated low flow conditions, particularly in the Ob and Yukon Rivers. We observed significant differences in DOC concentration and composition between the rivers over the seasonal cycles with the Mackenzie River being the most unique, the Lena River being similar to the Yenisei, and the Yukon being most similar to the Ob. The observed relationship between the lignin phenol composition and watershed characteristics suggests that DOC discharge from these rivers could increase in a warmer climate under otherwise undisturbed conditions.

  18. Fluxes of dissolved organic carbon from Chesapeake Bay sediments

    SciTech Connect

    Burdige, D.J.; Homstead, J. )

    1994-08-01

    Benthic fluxes of dissolved organic carbon (DOC) were measured over an annual cycle at two contrasting sites in Chesapeake Bay. At an organic-rich, sulfidic site in the mesohaline portion of the Bay (site M) DOC fluxes from the sediments ranged from 1.4 to 2.9 mmol/m[sup 2]/d. Measured benthic DOC fluxes at site M corresponded to [approximately]3-13% of the depth-integrated benthic C remineralization rates ([Sigma]OCR), and agreed well with calculated diffusive DOC fluxes based on porewater DOC profiles. This agreement suggests that DOC fluxes from site M sediments were likely controlled by molecular diffusion. The second site that was studied is a heavily bioturbated site in the southern Bay (site S). The activity of macrobenthos did not appear to enhance DOC fluxes from these sediments, since measured benthic DOC fluxes (>0.5 mmol/m[sup 2]/d) were lower than those at site M. The ratios of benthic DOC fluxes to [Sigma]OCR values at site S were also slightly smaller than those observed at site M. Benthic DOC fluxes from Chesapeake Bay sediments do not appear to significantly affect the transport of DOC through this estuary, although uncertainties in the reactivity of DOC in estuaries makes this conclusion somewhat tentative at this time. However, when these results are used to make a lower limit estimate of the globally integrated benthic DOC flux from marine sediments, a value similar to that previously calculated by Burdige et al. is obtained. This observation further supports suggestions in this paper about the importance of benthic DOC fluxes in the oceanic C cycle.

  19. Dissolved Organic Carbon in Groundwater Overlain by Irrigated Sugarcane.

    PubMed

    Thayalakumaran, Thabo; Lenahan, Matthew J; Bristow, Keith L

    2015-01-01

    Elevated dissolved organic carbon (DOC) has been detected in groundwater beneath irrigated sugarcane on the Burdekin coastal plain of tropical northeast Australia. The maximum value of 82 mg/L is to our knowledge the highest DOC reported for groundwater beneath irrigated cropping systems. More than half of the groundwater sampled in January 2004 (n = 46) exhibited DOC concentrations greater than 30 mg/L. DOC was progressively lower in October 2004 and January 2005, with a total decrease greater than 90% indicating varying load(s) to the aquifer. It was hypothesized that the elevated DOC found in this groundwater system is sourced at or near the soil surface and supplied to the aquifer via vertical recharge following above average rainfall. Possible sources of DOC include organic-rich sugar mill by-products applied as fertilizer and/or sugarcane sap released during harvest. CFC-12 vertical flow rates supported the hypothesis that elevated DOC (>40 mg/L) in the groundwater results from recharge events in which annual precipitation exceeds 1500 mm/year (average = 960 mm/year). Occurrence of elevated DOC concentrations, absence of electron acceptors (O2 and NO3 (-) ) and both Fe(2+) and Mn(2+) greater than 1 mg/L in shallow groundwater suggest that the DOC compounds are chemically labile. The consequence of high concentrations of labile DOC may be positive (e.g., denitrification) or negative (e.g., enhanced metal mobility and biofouling), and highlights the need to account for a wider range of water quality parameters when considering the impacts of land use on the ecology of receiving waters and/or suitability of groundwater for irrigated agriculture. PMID:25213667

  20. Chemodiversity of dissolved organic matter in the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Gonsior, Michael; Valle, Juliana; Schmitt-Kopplin, Philippe; Hertkorn, Norbert; Bastviken, David; Luek, Jenna; Harir, Mourad; Bastos, Wanderley; Enrich-Prast, Alex

    2016-07-01

    Regions in the Amazon Basin have been associated with specific biogeochemical processes, but a detailed chemical classification of the abundant and ubiquitous dissolved organic matter (DOM), beyond specific indicator compounds and bulk measurements, has not yet been established. We sampled water from different locations in the Negro, Madeira/Jamari and Tapajós River areas to characterize the molecular DOM composition and distribution. Ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) combined with excitation emission matrix (EEM) fluorescence spectroscopy and parallel factor analysis (PARAFAC) revealed a large proportion of ubiquitous DOM but also unique area-specific molecular signatures. Unique to the DOM of the Rio Negro area was the large abundance of high molecular weight, diverse hydrogen-deficient and highly oxidized molecular ions deviating from known lignin or tannin compositions, indicating substantial oxidative processing of these ultimately plant-derived polyphenols indicative of these black waters. In contrast, unique signatures in the Madeira/Jamari area were defined by presumably labile sulfur- and nitrogen-containing molecules in this white water river system. Waters from the Tapajós main stem did not show any substantial unique molecular signatures relative to those present in the Rio Madeira and Rio Negro, which implied a lower organic molecular complexity in this clear water tributary, even after mixing with the main stem of the Amazon River. Beside ubiquitous DOM at average H / C and O / C elemental ratios, a distinct and significant unique DOM pool prevailed in the black, white and clear water areas that were also highly correlated with EEM-PARAFAC components and define the frameworks for primary production and other aspects of aquatic life.

  1. The influence of dissolved organic matter (DOM) on sodium regulation and nitrogenous waste excretion in the zebrafish (Danio rerio).

    PubMed

    Al-Reasi, Hassan A; Smith, Scott D; Wood, Chris M

    2016-08-01

    Dissolved organic matter (DOM) is both ubiquitous and diverse in composition in natural waters, but its effects on the branchial physiology of aquatic organisms have received little attention relative to other variables (e.g. pH, hardness, salinity, alkalinity). Here, we investigated the effects of four chemically distinct DOM isolates (three natural, one commercial, ranging from autochthonous to highly allochthonous, all at ∼6 mg C l(-1)) on the physiology of gill ionoregulation and nitrogenous waste excretion in zebrafish acclimated to either circumneutral (7.0-8.0) or acidic pH (5.0). Overall, lower pH tended to increase net branchial ammonia excretion, net K(+) loss and [(3)H]PEG-4000 clearance rates (indicators of transcellular and paracellular permeability, respectively). However, unidirectional Na(+) efflux, urea excretion and drinking rates were unaffected. DOM sources tended to stimulate unidirectional Na(+) influx rate and exerted subtle effects on the concentration-dependent kinetics of Na(+) uptake, increasing maximum transport capacity. All DOM sources reduced passive Na(+) efflux rates regardless of pH, but exerted negligible effects on nitrogenous waste excretion, drinking rate, net K(+) loss or [(3)H]PEG-4000 clearance, so the mechanism of Na(+) loss reduction remains unclear. Overall, these actions appear beneficial to ionoregulatory homeostasis in zebrafish, and some may be related to physico-chemical properties of the DOM sources. They are very different from those seen in a recent parallel study on Daphnia magna using the same DOM isolates, indicating that DOM actions may be both species and DOM specific. PMID:27207642

  2. Relationships between molecular weight and fluorescence properties for size-fractionated dissolved organic matter from fresh and aged sources.

    PubMed

    Cuss, C W; Guéguen, C

    2015-01-01

    Relationships between the molecular weight (MW) and fluorescence properties of dissolved organic matter (DOM) are important considerations for studies seeking to connect these properties to water treatment processes. Relationships between the size and fluorescence properties of nine allochthonous DOM sources (i.e. leaf leachates, grass, and headwaters) were measured using asymmetrical flow field-flow fractionation (AF4) with on-line absorbance and fluorescence detectors. Correlations between optical properties and MW were readily apparent using parallel factor analysis (PARAFAC) coupled to self-organizing maps (SOM): protein/polyphenol-like fluorescence (peaks B and T) was highest at lower molecular weights (<0.5 kDa), fulvic/humic-like fluorescence (peaks A, C, and M) was highest at mid-weights (0.5-1 kDa), and humic-like fluorescence (Peaks A + C) was highest at larger molecular weights (>1 kDa). Proportions of peaks B, T, and A + C were significantly correlated with MW (p < 0.001). The first principal component (PC1, 42% of variation in fluorescence properties) was a significant predictor of sample MW (R² = 0.63, p < 0.05), while scores on PC2 (27% of total variance) traced a source-based gradient from deciduous leachates/headwaters through to coniferous leachates/headwaters. PC3 (13% of var.) was also correlated with MW (p < 0.005). A secondary peak in peak T fluorescence was associated with larger size fractions in aged sources, and scores on PC1 also traced a path from the leachates of fresher leaves, through more humified leaves, to headwaters. Findings are consistent with the hypothesis that the structure of aged DOM arises through supramolecular assembly. PMID:25462755

  3. Dissolved organic matter dynamics in streams of intermittent flow - linkages with ecohydrologic processes from pool to catchment in northern Australia

    NASA Astrophysics Data System (ADS)

    Grierson, Pauline; Siebers, Andre; Skrzypek, Grzegorz; Fellman, Jason; Pettit, Neil; Dogramaci, Shawan

    2015-04-01

    Changes in both the frequency and intensity of flood-drought cycles of intermittent streams, either through changing climate or anthropogenic management, may have significant impacts on stream functioning. However, little is known about how and to what extent the quantity and composition of dissolved organic matter (DOM) changes during inter-flood periods and how this relates to stream hydrology, particularly of intermittent rivers. We hypothesised that with increasing time since flooding, controls on stream biogeochemical processes transition from predominantly hydrological to more local scale environmental factors. We also argue that in strongly seasonal and oligotrophic regions, such as those of the tropical northwest of Australia, groundwater inputs of old DOC may increase the bioavailability of stream organic matter. We used δ18O and δ2H values of surface water and groundwater in the alluvium (AW) together with DOM fluorescence excitation-emission spectroscopy and radiocarbon dating to (i) characterise DOM and (ii) assess the relative importance of autochthonous versus allochthonous sources among pools according to how connected they are to groundwater. Our findings show that as streams increase in size and accumulate aromatic DOC from terrestrial plant material, percent bioavailability decreases concomitant with the modernization of the DOC pool. Therefore, rapid biotic uptake of old, bioavailable DOC originating in groundwater springs and the accumulation of modern, terrestrially derived DOC work in opposite directions affecting the dynamics of DOC along fluvial networks. The metabolism of old DOC in small streams is a direct link between terrestrial and aquatic ecosystems but also provides a biogeochemical link between non-contemporary carbon fixation and modern river productivity. Recognition of the hydrologic complexity of dryland rivers is clearly necessary for more effective catchment-scale management strategies that balance an increasing demand for

  4. Effect of bacteria and dissolved organics on mineral dissolution kinetics:

    NASA Astrophysics Data System (ADS)

    Pokrovsky, Oleg; Shirokova, Liudmila; Benezeth, Pascale; Zabelina, Svetlana

    2010-05-01

    Quantification of the effect of microorganisms and associated organic ligands on mineral dissolution rate is one among the last remaining challenges in modeling of water-rock interactions under earth surface and subsurface environments. This is especially true for deep underground settings within the context of CO2 capture, sequestration and storage. First, elevated CO2 pressures create numerous experimental difficulties for performing robust flow-through experiments at a given saturation state. Second, reactivity of main rock-forming minerals in abiotic systems at pCO2 >> 1 atm and circumneutral pH is still poorly constrained. And third, most of microbial habitats of the subsurface biosphere are not suitable for routine culturing in the laboratory, many of them are anaerobic and even strictly anaerobic, and many bacteria and archae cultures can live only in the consortium of microorganisms which is very hard to maintain at a controlled and stable biomass concentration. For experimental modeling of bio-mineral interactions in the laboratory, two other main conceptual challenges exist. Typical concentration of dissolved organic carbon that serves as a main nutrient for heterotrophic bacteria in underground waters rarely exceeds 3-5 mg/L. Typical concentration of DOC in nutrient media used for bacteria culturing is between 100 and 10,000 mg/L. Therefore, performing mineral-bacteria interactions in the laboratory under environmentally-sound conditions requires significant dilution of the nutrient media or the use of flow-through reactors. Concerning the effect of organic ligands and bacterial excudates on rock-forming mineral dissolution, at the present time, mostly empirical (phenomenological) approach can be used. Indeed, the pioneering studies of Stumm and co-workers have established a firm basis for modeling the catalyzing and inhibiting effects of ligands on metal oxide dissolution rate. This approach, very efficient for studying the interaction of organic and

  5. FACTORS INFLUENCING PHOTOREACTIONS OF DISSOLVED ORGANIC MATTER IN A COASTAL RIVER OF THE SOUTHEASTERN UNITED STATES

    EPA Science Inventory

    Photoreactions of dissolved organic matter can affect the oxidizing capacity, nutrient dynamics, trace gas exchange, and color of surface waters. This study focuses on factors that affect the photoreactions of the colored dissolved organic matter (CDOM) in the Satilla River, a co...

  6. DISSOLVED ORGANIC CARBON (DOC) CONCENTRATIONS IN SMALL STREAMS OF THE GEORGIA PIEDMONT

    EPA Science Inventory

    Dissolved organic matter (DOM) supports microbial activity and contributes to transport of N and P in streams. We have studied the impact of land uses on dissolved organic carbon (DOC) concentrations in 17 Georgia Piedmont headwater streams since January 2001. We classified the w...

  7. Bioavailable and biodegradable dissolved organic nitrogen in activated sludge and trickling filter wastewater treatment plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was carried out to understand the fate of biodegradable dissolved organic nitrogen (BDON) and bioavailable dissolved organic nitrogen (ABDON) along the treatment trains of a wastewater treatment facility (WWTF) equipped with an activated sludge (AS) system and a WWTF equipped with a two-stag...

  8. Contribution of root vs. leaf litter to dissolved organic carbon leaching through soil.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Very little is known about dissolved organic matter (DOM) originating from fine roots in forest soils in comparison to DOM originating from leaf litter. To compare the fate of root- versus leaf-derived dissolved organic carbon (DOC), we added 14C-labeled root litter at depths of 10 cm, a “shallow r...

  9. Soil dissolved organic matter export to coastal temperate rainforest streams

    NASA Astrophysics Data System (ADS)

    Edwards, R. T.; D'Amore, D. V.; Hood, E.; Johnson, A.

    2006-12-01

    The north coastal temperate rainforest is a dynamic area of biogeochemical exchange between terrestrial and aquatic ecosystems. Wetlands and poorly drained soils dominate the landscape, where wetlands alone comprise 30% of the watersheds. The region is experiencing warming with potentially profound impacts on soil processes, forest structure, stream productivity, and the large and valuable salmon fishery. There are few data on stream chemistry, biological productivity, or discharge among soils and streams in the region. To predict the impact of climate change, management practices or land use on streams we need better baseline data on soil-stream interactions in temperate rainforest watersheds. We measured weekly export of dissolved organic matter from 3 dominant soil vegetation communities (peat bogs, forested wetlands and mineral soil uplands) during spring through fall of 2006. Three replicate sites for each soil type were gauged with weirs and fluxes of major forms of carbon, nitrogen and phosphorus measured. Discharge dominated the seasonal flux dynamics but major differences in export and area-specific export emphasized differences in soil-specific transformations on nutrient export potential. Export per unit soil area varied from 0.01 to 25 kg C/ha/day. Peat bogs exported 2-5 times as much per unit area as the other two soils. Forested wetlands were intermediate between bogs and uplands in export per unit area. Mean daily carbon fluxes from gauged subcatchments ranged from 0.01 to 75 kg C/day. Because they are larger than bogs, forested wetlands exported the greatest amount of DOC at our study locations, with uplands exporting intermediate amounts during spring floods. Uplands and bogs exported far less than forested wetlands during normal flow conditions. Total nitrogen fluxes were dominated by organic forms and seasonal trends closely followed the patterns observed for DOC. Although wetlands of either type export more organic matter per unit area, the

  10. Selective Sorption of Dissolved Organic Carbon Compounds by Temperate Soils

    SciTech Connect

    Jagadamma, Sindhu; Mayes, Melanie; Phillips, Jana Randolph

    2012-01-01

    Physico-chemical sorption of dissolved organic carbon (DOC) on soil minerals is one of the major processes of organic carbon (OC) stabilization in soils, especially in deeper layers. The attachment of C on soil solids is related to the reactivity of the soil minerals and the chemistry of the sorbate functional groups, but the sorption studies conducted without controlling microbial activity may overestimate the sorption potential of soil. This study was conducted to examine the sorptive characteristics of a diverse functional groups of simple OC compounds (D-glucose, L-alanine, oxalic acid, salicylic acid, and sinapyl alcohol) on temperate climate soil orders (Mollisols, Ultisols and Alfisols) with and without biological degradative processes. Equilibrium batch experiments were conducted using 0-100 mg C L-1 at a solid-solution ratio of 1:60 for 48 hrs and the sorption parameters were calculated by Langmuir model fitting. The amount of added compounds that remained in the solution phase was detected by high performance liquid chromatography (HPLC) and total organic C (TOC) analysis. Soil sterilization was performed by -irradiation technique and experiments were repeated to determine the contribution of microbial degradation to apparent sorption. Overall, Ultisols did not show a marked preference for apparent sorption of any of the model compounds, as indicated by a narrower range of maximum sorption capacity (Smax) of 173-527 mg kg soil-1 across compounds. Mollisols exhibited a strong preference for apparent sorption of oxalic acid (Smax of 5290 mg kg soil-1) and sinapyl alcohol (Smax of 2031 mg kg soil-1) over the other compounds. The propensity for sorption of oxalic acid is mainly attributed to the precipitation of insoluble Ca-oxalate due to the calcareous nature of most Mollisol subsoils and its preference for sinapyl alcohol could be linked to the polymerization of this lignin monomer on 2:2 mineral dominated soils. The reactivity of Alfisols to DOC was in

  11. Determining Passive Sampler Partition Coefficients for Dissolved-phase Organic Contaminants

    EPA Science Inventory

    Passive samplers are used for environmental and analytical purposes to measure dissolved nonionic organic contaminants (NOCs) by absorption from a contaminated medium into a clean phase, usually in the form of a synthetic organic film. Recently developed passive sampler techniqu...

  12. Adsorption of dissolved natural organic matter by modified activated carbons.

    PubMed

    Cheng, Wei; Dastgheib, Seyed A; Karanfil, Tanju

    2005-06-01

    Adsorption of dissolved natural organic matter (DOM) by virgin and modified granular activated carbons (GACs) was studied. DOM samples were obtained from two water treatment plants before (i.e., raw water) and after coagulation/flocculation/sedimentation processes (i.e., treated water). A granular activated carbon (GAC) was modified by high temperature helium or ammonia treatment, or iron impregnation followed by high temperature ammonia treatment. Two activated carbon fibers (ACFs) were also used, with no modification, to examine the effect of carbon porosity on DOM adsorption. Size exclusion chromatography (SEC) and specific ultraviolet absorbance (SUVA(254)) were employed to characterize the DOMs before and after adsorption. Iron-impregnated (HDFe) and ammonia-treated (HDN) activated carbons showed significantly higher DOM uptakes than the virgin GAC. The enhanced DOM uptake by HDFe was due to the presence of iron species on the carbon surface. The higher uptake of HDN was attributed to the enlarged carbon pores and basic surface created during ammonia treatment. The SEC and SUVA(254) results showed no specific selectivity in the removal of different DOM components as a result of carbon modification. The removal of DOM from both raw and treated waters was negligible by ACF10, having 96% of its surface area in pores smaller than 1 nm. Small molecular weight (MW) DOM components were preferentially removed by ACF20H, having 33% of its surface area in 1--3 nm pores. DOM components with MWs larger than 1600, 2000, and 2700 Da of Charleston raw, Charleston-treated, and Spartanburg-treated waters, respectively, were excluded from the pores of ACF20H. In contrast to carbon fibers, DOM components from entire MW range were removed from waters by virgin and modified GACs. PMID:15927230

  13. Concurrent photolytic degradation of aqueous methylmercury and dissolved organic matter.

    PubMed

    Fleck, Jacob A; Gill, Gary; Bergamaschi, Brian A; Kraus, Tamara E C; Downing, Bryan D; Alpers, Charles N

    2014-06-15

    Monomethyl mercury (MeHg) is a potent neurotoxin that threatens ecosystem viability and human health. In aquatic systems, the photolytic degradation of MeHg (photodemethylation) is an important component of the MeHg cycle. Dissolved organic matter (DOM) is also affected by exposure to solar radiation (light exposure) leading to changes in DOM composition that can affect its role in overall mercury (Hg) cycling. This study investigated changes in MeHg concentration, DOM concentration, and the optical signature of DOM caused by light exposure in a controlled field-based experiment using water samples collected from wetlands and rice fields. Filtered water from all sites showed a marked loss in MeHg concentration after light exposure. The rate of photodemethylation was 7.5×10(-3)m(2)mol(-1) (s.d. 3.5×10(-3)) across all sites despite marked differences in DOM concentration and composition. Light exposure also caused changes in the optical signature of the DOM despite there being no change in DOM concentration, indicating specific structures within the DOM were affected by light exposure at different rates. MeHg concentrations were related to optical signatures of labile DOM whereas the percent loss of MeHg was related to optical signatures of less labile, humic DOM. Relationships between the loss of MeHg and specific areas of the DOM optical signature indicated that aromatic and quinoid structures within the DOM were the likely contributors to MeHg degradation, perhaps within the sphere of the Hg-DOM bond. Because MeHg photodegradation rates are relatively constant across freshwater habitats with natural Hg-DOM ratios, physical characteristics such as shading and hydrologic residence time largely determine the relative importance of photolytic processes on the MeHg budget in these mixed vegetated and open-water systems. PMID:23642571

  14. Microbial dissolved organic phosphorus utilization in the Hudson River Estuary

    SciTech Connect

    Ammerman, J.W. ); Angel, D.L. )

    1990-01-09

    The Hudson River Estuary has large inputs of phosphorus and other nutrients from sewage discharge. Concentrations of soluble reactive phosphorus (SRP) reach at least 4 uM during the summer low-flow period. Biological utilization of phosphorus and other nutrients is usually minimal because of the high turbidity and short residence time of the water. Therefore SRP is normally a conservative tracer of salinity, with maximum concentrations found off Manhattan and decreasing to the north. Despite this abundance of SRP, some components of the dissolved organic phosphorus (DOP) appear to be rapidly cycled by microbes. The objective of this study was to measure this DIP cycling during both the high- and low-flow periods. We measured the concentrations of SRP and DOP, the SRP turnover rate, algal and bacterial biomass, and the substrate turnover rates of two microbial cell-surface phosphatases, alkaline phosphatase (AP) and 5[prime] - nucleotidase (5PN). SRP concentrations ranged from about 0.5-4 uM, DOP was usually less than 1 uM. SRP and AP turnover were slow (generally < 5%/h), but 5PN substrate turnover was high with a median rate of 100%/h. Furthermore, over 30% of the phosphate hydrolyzed by 5PN was immediately taken up. If the nucleotide-P concentration is conservatively assumed to be 5 nM, than the rate of phosphate utilization from DOP is nearly equal to that from SRP. That is paradoxical considering the large SRP concentration, but suggests that much of this SRP may be biologically unavailable due to complexation with iron or other processes.

  15. Concurrent photolytic degradation of aqueous methylmercury and dissolved organic matter

    USGS Publications Warehouse

    Fleck, Jacob A.; Gill, Gary W.; Bergamaschi, Brian A.; Kraus, Tamara E.C.; Downing, Bryan D.; Alpers, Charles N.

    2014-01-01

    Monomethyl mercury (MeHg) is a potent neurotoxin that threatens ecosystem viability and human health. In aquatic systems, the photolytic degradation of MeHg (photodemethylation) is an important component of the MeHg cycle. Dissolved organic matter (DOM) is also affected by exposure to solar radiation (light exposure) leading to changes in DOM composition that can affect its role in overall mercury (Hg) cycling. This study investigated changes in MeHg concentration, DOM concentration, and the optical signature of DOM caused by light exposure in a controlled field-based experiment using water samples collected from wetlands and rice fields. Filtered water from all sites showed a marked loss in MeHg concentration after light exposure. The rate of photodemethylation was 7.5 × 10-3 m2 mol-1 (s.d. 3.5 × 10-3) across all sites despite marked differences in DOM concentration and composition. Light exposure also caused changes in the optical signature of the DOM despite there being no change in DOM concentration, indicating specific structures within the DOM were affected by light exposure at different rates. MeHg concentrations were related to optical signatures of labile DOM whereas the percent loss of MeHg was related to optical signatures of less labile, humic DOM. Relationships between the loss of MeHg and specific areas of the DOM optical signature indicated that aromatic and quinoid structures within the DOM were the likely contributors to MeHg degradation, perhaps within the sphere of the Hg-DOM bond. Because MeHg photodegradation rates are relatively constant across freshwater habitats with natural Hg–DOM ratios, physical characteristics such as shading and hydrologic residence time largely determine the relative importance of photolytic processes on the MeHg budget in these mixed vegetated and open-water systems.

  16. Biogeochemical Processes That Produce Dissolved Organic Matter From Wheat Straw

    USGS Publications Warehouse

    Wershaw, Robert L.; Rutherford, David W.; Leenheer, Jerry A.; Kennedy, Kay R.; Cox, Larry G.; Koci, Donald R.

    2003-01-01

    The chemical reactions that lead to the formation of dissolved organic matter (DOM) in natural waters are poorly understood. Studies on the formation of DOM generally are complicated because almost all DOM isolates have been derived from mixtures of plant species composed of a wide variety of different types of precursor compounds for DOM formation. This report describes a study of DOM derived mainly from bales of wheat straw that had been left in a field for several years. During this period of time, black water from the decomposing wheat straw accumulated in pools in the field. The nuclear magnetic resonance and infrared spectra of the black water DOM indicate that it is composed almost entirely of lignin and carbohydrate polymeric units. Analysis by high-performance size-exclusion chromatography with multi-angle laser-light scattering detection indicates that the number average molecular weight of the DOM is 124,000 daltons. The results presented in this report indicate that the black water DOM is composed of hemicellulose chains cross-linked to lignin oligomers. These types of structures have been shown to exist in the hemicellulose matrix of plant cell walls. The cross-linked lignin-hemicellulose complexes apparently were released from partially degraded wheat-straw cell walls with little alteration. In solution in the black water, these lignin-hemicellulose polymers fold into compact globular particles in which the nonpolar parts of the polymer form the interiors of the particles and the polar groups are on the exterior surfaces of the particles. The tightly folded, compact conformation of these particles probably renders them relatively resistant to microbial degradation. This should be especially the case for the aromatic lignin structures that will be buried in the interiors of the particles.

  17. Dissolved organic matter kinetically controls mercury bioavailability to bacteria.

    PubMed

    Chiasson-Gould, Sophie A; Blais, Jules M; Poulain, Alexandre J

    2014-03-18

    Predicting the bioavailability of inorganic mercury (Hg) to bacteria that produce the potent bioaccumulative neurotoxin monomethylmercury remains one of the greatest challenges in predicting the environmental fate and transport of Hg. Dissolved organic matter (DOM) affects mercury methylation due to its influence on cell physiology (as a potential nutrient) and its influence on Hg(II) speciation in solution (as a complexing agent), therefore controlling Hg bioavailability. We assessed the role of DOM on Hg(II) bioavailability to a gram-negative bacterium bioreporter under oxic pseudo- and nonequilibrium conditions, using defined media and field samples spanning a wide range of DOM levels. Our results showed that Hg(II) was considerably more bioavailable under nonequilibrium conditions than when DOM was absent or when Hg(II) and DOM had reached pseudoequilibrium (24 h) prior to cell exposure. Under these enhanced uptake conditions, Hg(II) bioavailability followed a bell shaped curve as DOM concentrations increased, both for defined media and natural water samples, consistent with bioaccumulation results in a companion paper (this issue) observed for amphipods. Experiments also suggest that DOM may not only provide shuttle molecules facilitating Hg uptake, but also alter cell wall properties to facilitate the first steps toward Hg(II) internalization. We propose the existence of a short-lived yet critical time window (<24 h) during which DOM facilitates the entry of newly deposited Hg(II) into aquatic food webs, suggesting that the bulk of mercury incorporation in aquatic food webs would occur within hours following its deposition from the atmosphere. PMID:24524696

  18. Selective Sorption of Dissolved Organic Carbon Compounds by Temperate Soils

    PubMed Central

    Jagadamma, Sindhu; Mayes, Melanie A.; Phillips, Jana R.

    2012-01-01

    Background Physico-chemical sorption onto soil minerals is one of the major processes of dissolved organic carbon (OC) stabilization in deeper soils. The interaction of DOC on soil solids is related to the reactivity of soil minerals, the chemistry of sorbate functional groups, and the stability of sorbate to microbial degradation. This study was conducted to examine the sorption of diverse OC compounds (D-glucose, L-alanine, oxalic acid, salicylic acid, and sinapyl alcohol) on temperate climate soil orders (Mollisols, Ultisols and Alfisols). Methodology Equilibrium batch experiments were conducted using 0–100 mg C L−1 at a solid-solution ratio of 1∶60 for 48 hrs on natural soils and on soils sterilized by γ-irradiation. The maximum sorption capacity, Qmax and binding coefficient, k were calculated by fitting to the Langmuir model. Results Ultisols appeared to sorb more glucose, alanine, and salicylic acid than did Alfisols or Mollisols and the isotherms followed a non-linear pattern (higher k). Sterile experiments revealed that glucose and alanine were both readily degraded and/or incorporated into microbial biomass because the observed Qmax under sterile conditions decreased by 22–46% for glucose and 17–77% for alanine as compared to non-sterile conditions. Mollisols, in contrast, more readily reacted with oxalic acid (Qmax of 886 mg kg−1) and sinapyl alcohol (Qmax of 2031 mg kg−1), and no degradation was observed. The reactivity of Alfisols to DOC was intermediate to that of Ultisols and Mollisols, and degradation followed similar patterns as for Ultisols. Conclusion This study demonstrated that three common temperate soil orders experienced differential sorption and degradation of simple OC compounds, indicating that sorbate chemistry plays a significant role in the sorptive stabilization of DOC. PMID:23209742

  19. Importance of allochthonous material in benthic macrofaunal community functioning in estuarine salt marshes

    NASA Astrophysics Data System (ADS)

    Kon, Koetsu; Hoshino, Yukihiro; Kanou, Kouki; Okazaki, Daisuke; Nakayama, Satoko; Kohno, Hiroshi

    2012-01-01

    Allochthonous input provides important food and spatial resources for estuarine benthic fauna. While it is known that autochthonous materials are important for fauna occupying small marshes, here, we present the significance of allochthonous materials for benthic fauna inhabiting a large salt marsh. To assess the effects of allochthonous input on benthic macrofaunal communities in estuarine salt marshes, we determined the source of substrate sediments and food resource utilisation patterns of benthic invertebrates in 2 temperate estuaries (the Tama River and the Obitsu River estuarine outlets into Tokyo Bay) by using stable carbon and nitrogen isotope analyses. In the Tama River estuary, which has small patches of marsh vegetation upstream of the river mouth, there was an input of sedimentary organic matter from autochthonous sources (i.e. common reed and microphytobenthos). In the Obitsu River estuary salt marsh, which is situated immediately upstream of the river mouth and is well connected to the sea, sediment consists of allochthonous sources (i.e. imported phytoplankton), along with microphytobenthos. Isotope analysis indicated that most benthic invertebrates in the Tama River estuary depend on benthic microalgae (autochthonous) as a food resource, whereas the macrofauna in the Obitsu River estuary are supported by drift macroalgae (allochthonous), in addition to microphytobenthos or phytoplankton. Our results indicated that allochthonous material provides a food resource and potential habitat for benthic macrofauna in extensive salt marshes that have a strong connection to the sea but is not substantial in smaller marshes with limited connectivity to coastal water.

  20. [Three-dimensional Fluorescence Spectral Characteristics of Different Molecular Weight Fractionations of Dissolved Organic Matter in the Water-level Fluctuation Zones of Three Gorges Reservoir Areas].

    PubMed

    Chen, Xue-shuang; Jiang, Tao; Lu, Song; Wei, Shi-qiang; Wang, Ding-yong; Yan, Jin-long

    2016-03-15

    The study of the molecular weight (MW) fractions of dissolved organic matter (DOM) in aquatic environment is of interests because the size plays an important role in deciding the biogeochemical characteristics of DOM. Thus, using ultrafiltration ( UF) technique combined with three-dimensional fluorescence spectroscopy, DOM samples from four sampling sites in typical water-level fluctuation zones of Three Gorge Reservoir areas were selected to investigate the differences of properties and sources of different DOM MW fractions. The results showed that in these areas, the distribution of MW fractions was highly dispersive, but the approximately equal contributions from colloidal (Mr 1 x 10³-0.22 µm) and true dissolved fraction (Mr < 1 x 10³) to the total DOC concentration were found. Four fluorescence signals (humic-like A and C; protein-like B and T) were observed in all MW fractions including bulk DOM, which showed the same distribution trend: true dissolved > low MW (Mr 1 x 10³-10 x 10³) > medium MW (Mr 10 x 10³-30 x 10³) > high MW (Mr 30 x 10³-0.22 µm). Additionally, with decreasing MW fraction, fluorescence index (FI) and freshness index (BIX) increased suggesting enhanced signals of autochthonous inputs, whereas humification index ( HIX) decreased indicating lowe humification degree. It strongly suggested that terrestrial input mainly affected the composition and property of higher MW fractions of DOM, as compared to lower MW and true dissolved fractions that were controlled by autochthonous sources such as microbial and alga activities, instead of allochthonous sources. Meanwhile, the riparian different land-use types also affected obviously on the characteristics of DOM. Therefore, higher diversity of land-use types, and also higher complexity of ecosystem and landscapes, induced higher heterogeneity of fluorescence components in different MW fraction of DOM. PMID:27337878

  1. Dissolved organic carbon reduces the toxicity of aluminum to three tropical freshwater organisms.

    PubMed

    Trenfield, Melanie A; Markich, Scott J; Ng, Jack C; Noller, Barry; van Dam, Rick A

    2012-02-01

    The influence of dissolved organic carbon (DOC) on the toxicity of aluminum (Al) at pH 5 (relevant to acid mine drainage conditions), to the tropical green hydra (Hydra viridissima), green alga (Chlorella sp.), and cladoceran (Moinodaphnia macleayi) was assessed. Two DOC sources, a natural in situ DOC in soft billabong water (SBW) and Suwannee River fulvic acid (SRFA) standard, were compared. The order of sensitivity of the test organisms to dissolved Al (0.1 µm fraction) was Hydra viridissima > Moinodaphnia macleayi > Chlorella sp. with DOC reducing dissolved Al toxicity most for Hydra viridissima. However, colloidal or precipitated Al may contribute indirectly to the toxicity for M. macleayi and Chlorella sp. The toxicity of dissolved Al was up to six times lower in test waters containing 10 mg L(-1) DOC (in the form of SRFA), relative to toxicity observed at 1 mg L(-1) DOC. In contrast, the toxicity of Al was up to two times lower in SBW containing 10 mg L(-1) DOC, relative to water containing 1 mg L(-1) DOC. The increased ability of SRFA in reducing Al toxicity was linked to its greater affinity for complexing Al compared with the in situ DOC. This has important implications for studies that use commercial standards of humic substances to predict Al toxicity in local environments. Speciation modeling demonstrated that Al(3+) and AlOH(2+) provided a strong relationship with toxicity. An empirical relationship is provided for each organism that can be used to predict Al toxicity at a given Al and DOC concentration. PMID:22105345

  2. Dissolved organic carbon pools and export from the coastal ocean

    NASA Astrophysics Data System (ADS)

    Barrón, Cristina; Duarte, Carlos M.

    2015-10-01

    The distribution of dissolved organic carbon (DOC) concentration across coastal waters was characterized based on the compilation of 3510 individual estimates of DOC in coastal waters worldwide. We estimated the DOC concentration in the coastal waters that directly exchange with open ocean waters in two different ways, as the DOC concentration at the edge of the shelf break and as the DOC concentration in coastal waters with salinity close to the average salinity in the open ocean. Using these estimates of DOC concentration in the coastal waters that directly exchange with open ocean waters, the mean DOC concentration in the open ocean and the estimated volume of water annually exchanged between coastal and open ocean, we estimated a median ± SE (and average ± SE) global DOC export from coastal to open ocean waters ranging from 4.4 ± 1.0 Pg C yr-1 to 27.0 ± 1.8 Pg C yr-1 (7.0 ± 5.8 Pg C yr-1 to 29.0 ± 8.0 Pg C yr-1) depending on the global hydrological exchange. These values correspond to a median and mean median (and average) range between 14.7 ± 3.3 to 90.0 ± 6.0 (23.3 ± 19.3 to 96.7 ± 26.7) Gg C yr-1 per km of shelf break, which is consistent with the range between 1.4 to 66.1 Gg C yr-1 per km of shelf break of available regional estimates of DOC export. The estimated global DOC export from coastal to open ocean waters is also consistent with independent estimates of the net metabolic balance of the coastal ocean. The DOC export from the coastal to the open ocean is likely to be a sizeable flux and is likely to be an important term in the carbon budget of the open ocean, potentially providing an important subsidy to support heterotrophic activity in the open ocean.

  3. Composition of dissolved organic nitrogen in rivers associated with wetlands.

    PubMed

    Watanabe, Akira; Tsutsuki, Kiyoshi; Inoue, Yudzuru; Maie, Nagamitsu; Melling, Lulie; Jaffé, Rudolf

    2014-09-15

    As basic information for assessing reactivity and functionality of wetland-associated dissolved organic matter (DOM) based on their composition and structural properties, chemical characteristics of N in ultrafiltered DOM (UDON; >1 kD) isolated from wetland-associated rivers in three climates (cool-temperate, Hokkaido, Japan; sub-tropical, Florida, USA; tropical, Sarawak, Malaysia) were investigated. The UDON was isolated during dry and wet seasons, or during spring, summer, and autumn. The proportion of UDON present as humic substances, which was estimated as the DAX-8 adsorbed fraction, ranged from 47 to 91%, with larger values in the Sarawak than at the other sites. The yield of hydrolyzable amino acid N ranged 1.24 to 7.01 mg g(-1), which correlated positively to the total N content of UDOM and tended to be larger in the order of Florida>Hokkaido>Sarawak samples. X-ray photoelectron N1s spectra of UDON showed a strong negative correlation between the relative abundances of amide/peptide N and primary amine N. The relative abundances of amide/peptide N and primary amine N in the Sarawak samples were smaller (70-76%) and larger (20-23%) respectively compared to those (80-88% and 4-9%) in the Florida and Hokkaido samples. Assuming terminal amino groups and amide N of peptides as major constituents of primary amine N and amide/peptide N, respectively, the average molecular weight of peptides was smaller in the Sarawak samples than that in the Florida and Hokkaido samples. Seasonal variations in UDON composition were scarce in the Sarawak and Florida samples, whereas the distribution of humic substance-N and nonhumic substance-N and compositions of amino acids and N functional groups showed a clear seasonality in the Hokkaido samples. While aromatic N increased from spring to autumn, contributions from fresh proteinaceous materials were also enhanced during autumn, resulting in the highest N content of UDOM for this season. PMID:24946034

  4. Analytical Determinations of the Phenolic Content of Dissolved Organic Matter

    NASA Astrophysics Data System (ADS)

    Pagano, T.; Kenny, J. E.

    2010-12-01

    Indicators suggest that the amount of dissolved organic matter (DOM) in natural waters is increasing. Climate Change has been proposed as a potential contributor to the trend, and under this mechanism, the phenolic content of DOM may also be increasing. We have explored the possibility of assessing the phenolic character of DOM using fluorescence spectroscopy as a more convenient alternative to wet chemistry methods. In this work, parallel factor analysis (PARAFAC) was applied to fluorescence excitation emission matrices (EEMs) of humic samples in an attempt to analyze their phenolic content. The PARAFAC results were correlated with phenol concentrations derived from the Folin-Ciocalteau reagent-based method. The reagent-based method showed that the phenolic content of five International Humic Substance Society (IHSS) DOM samples vary from approximately 5 to 22 ppm Tannic Acid Equivalents (TAE) in phenol concentration. A five-component PARAFAC fit was applied to the EEMs of the IHSS sample dataset and it was determined by PARAFAC score correlations with phenol concentrations from the reagent-based method that components C1 (R2=0.78), C4 (R2=0.82), and C5 (R2=0.88) have the highest probability of containing phenolic groups. Furthermore, when the scores of components C4 and C5 were summed, the correlation improved (R2=0.99). Likewise, when the scores of C1, C4, and C5 were summed, their correlations were stronger than their individual parts (R2=0.89). Since the reagent-based method is providing an indicator of “total phenol” amount, regardless of the exact molecular structure of C1, C4, and C5, it seems reasonable that each of these components individually contributes a portion to the summed “total phenol” profile, and that the sum of their phenol-related spectral parts represents a larger portion of the “total phenol” index. However, when the sum of all five components were plotted against the reagent-based phenol concentrations, due to the considerable

  5. Geochemistry and Reactivity of Exported Congo Riverine Dissolved Organic Matter

    NASA Astrophysics Data System (ADS)

    Spencer, R. G.; Stubbins, A. P.; Hernes, P. J.; Aufdenkampe, A. K.; Gulliver, P.; Mopper, K.; Baker, A.; Dyda, R. Y.; Six, J. W.

    2008-12-01

    The Congo River basin drains the second largest area of rainforest in the world and is also the second largest river in terms of catchment size (3,680,000 km2) and freshwater discharge (42,000 m3 s- 1). Congo riverine dissolved organic carbon (DOC) export is estimated at 12.4 Tg DOC yr -1 or approximately 5 % of global riverine DOC export to the ocean. The sheer scale of this export makes further study of this system imperative for increased quantification and understanding of the terrestrial-ocean linkages in the global C cycle. Samples were collected in January and February 2008 from the Congo river- system and analyzed for a suite of compositional and degradation related measurements and its reactivity investigated. Our initial analyses of Congo riverine DOM yielded 14C ages of modern origin (fraction modern of 14C = 107.14 ± 0.50)) as expected for a large tropical river with a highly productive basin. Lignin phenol concentrations (Σ8 = 76.6 μgL-1) and compositions (Λ8 = 0.72 mg (100 mg OC)-1) are also indicative of fresh vascular plant derived DOM inputs, as are the 13C- DOC values (approximately -28.9), UV-vis spectral slope and slope ratio values and the fluorescence EEM data. Congo riverine DOM was shown to be highly photoreactive with fractional losses of DOC, colored DOM (CDOM) and lignin phenols equivalent to approximately 45 %, 95 % and 95 % respectively during the course of a 57 day irradiation experiment. CDOM spectral slope ratio values trended towards open ocean values during the irradiation (S275-295:S350-400 changed from 0.81 to 1.38). These spectral shifts have previously been shown to be indicative of a reduction in DOM aromaticity and average molecular weight. Lignin phenol data also trends towards typical carbon-normalized yield values of those observed previously in surface marine waters upon irradiation from 0.72 mg (100 mg OC)-1) at the start of the irradiation to 0.03 mg (100 mg OC)-1) after 57 days. Lignin phenols also showed increases

  6. Influence of dissolved organic substances in groundwater on sorption behavior of americium and neptunium

    SciTech Connect

    Boggs, S. Jr.; Seitz, M.G.

    1984-01-01

    Groundwaters typically contain dissolved organic carbon consisting largely of high molecular weight compounds of humic and fulvic acids. To evaluate whether these dissolved organic substances can enhance the tranport of radionuclides through the groundwater system, experiments were conducted to examine the sorption of americium and neptunium onto crushed basalt in the presence of dissolved humic- and fulvic-acid organic carbon introduced into synthetic groundwater. The partitioning experiments with synthetic groundwater show that increasing the concentration of either humic or fulvic acid in the water has a significant inhibiting effect on sorption of both americium and neptunium. At 22/sup 0/C, adsorption of these radionuclides, as measured by distribution ratios (the ratio of nuclide sorbed onto the solid to nuclide in solution at the end of the experiment), decreased by 25% to 50% by addition of as little as 1 mg/L dissolved organic carbon and by one to two orders of magnitude by addition of 100 to 200 mg/L dissolved organic carbon. Distribution ratios measured in solutions reacted at 90/sup 0/C similarly decreased with the addition of dissolved organic carbon but generally ranged from one to two orders of magnitude higher than those determined in the 22/sup 0/C experiment. These results suggest that organic carbon dissolved in deep groundwaters may significantly enhance the mobility of radionuclides of americium and neptunium. 23 references, 5 figures, 11 tables.

  7. Natural versus wastewater derived dissolved organic carbon: implications for the environmental fate of organic micropollutants.

    PubMed

    Neale, Peta A; Antony, Alice; Gernjak, Wolfgang; Leslie, Greg; Escher, Beate I

    2011-08-01

    The interaction of organic micropollutants with dissolved organic carbon (DOC) can influence their transport, degradation and bioavailability. While this has been well established for natural organic carbon, very little is known regarding the influence of DOC on the fate of micropollutants during wastewater treatment and water recycling. Dissolved organic carbon-water partition coefficients (K(DOC)) for wastewater derived and reference DOC were measured for a range of micropollutants using a depletion method with polydimethylsiloxane disks. For micropollutants with an octanol-water partition coefficient (log K(OW)) greater than 4 there was a significant difference in K(DOC) between reference and wastewater derived DOC, with partitioning to wastewater derived DOC over 1000 times lower for the most hydrophobic micropollutants. The interaction of nonylphenol with wastewater derived DOC from different stages of a wastewater and advanced water treatment train was studied, but little difference in K(DOC) was observed. Organic carbon characterisation revealed that reference and wastewater derived DOC had very different properties due to their different origins. Consequently, the reduced sorption capacity of wastewater derived DOC may be related to their microbial origin which led to reduced aromaticity and lower molecular weight. This study suggests that for hydrophobic micropollutants (log K(OW) > 4) a higher concentration of freely dissolved and thus bioavailable micropollutants is expected in the presence of wastewater derived DOC than predicted using K(DOC) values quantified using reference DOC. The implication is that naturally derived DOC may not be an appropriate surrogate for wastewater derived DOC as a matrix for assessing the fate of micropollutants in engineered systems. PMID:21703657

  8. Influence of dissolved organic materials on turbid water optical properties and remote-sensing reflectance

    NASA Technical Reports Server (NTRS)

    Witte, W. G.; Whitlock, C. H.; Harriss, R. C.; Usry, J. W.; Poole, L. R.; Houghton, W. M.; Morris, W. D.; Gurganus, E. A.

    1982-01-01

    The effects of dissolved organic materials on turbid-water optical properties are assessed, by means of field measurements and laboratory simulations in which upwelled reflectance, attenuation, absorption, and backscatter spectral properties at wavelengths from 450 to 800 nm are examined in relation to water chemistry. The data show that dissolved organic materials decrease upwelled reflectance from turbid waters, and that the decrease in reflectance is a nonlinear function of concentration with the largest gradients at low carbon concentrations, depending on wavelength. Upwelled reflectance is found to be highly correlated with two backscatter-absorption parameters used in some optical models, which are nonlinear with dissolved organic material concentration change.

  9. Trophic complexity in aqueous systems: bacterial species richness and protistan predation regulate dissolved organic carbon and dissolved total nitrogen removal.

    PubMed

    Saleem, Muhammad; Fetzer, Ingo; Harms, Hauke; Chatzinotas, Antonis

    2016-02-24

    Loading of water bodies with dissolved organic carbon (DOC) and dissolved total nitrogen (DTN) affects their integrity and functioning. Microbial interactions mitigate the negative effects of high nutrient loads in these ecosystems. Despite numerous studies on how biodiversity mediates ecosystem functions, whether and how diversity and complexity of microbial food webs (horizontal, vertical) and the underlying ecological mechanisms influence nutrient removal has barely been investigated. Using microbial microcosms accommodating systematic combinations of prey (bacteria) and predator (protists) species, we showed that increasing bacterial richness improved the extent and reliability of DOC and DTN removal. Bacterial diversity drove nutrient removal either due to species foraging physiology or functional redundancy, whereas protistan diversity affected nutrient removal through bacterial prey resource partitioning and changing nutrient balance in the system. Our results demonstrate that prey-predator diversity and trophic interactions interactively determine nutrient contents, thus implying the vital role of microbial trophic complexity as a biological buffer against DOC and DTN. PMID:26888033

  10. Influence of dissolved organic matter on dissolved vanadium speciation in the Churchill River estuary (Manitoba, Canada).

    PubMed

    Shi, Yong Xiang; Mangal, Vaughn; Guéguen, Céline

    2016-07-01

    Diffusive gradients in thin films (DGT) devices were used to investigate the temporal and spatial changes in vanadium (V) speciation in the Churchill estuary system (Manitoba). Thirty-six DGT sets and 95 discrete water samples were collected at 8 river and 3 estuary sites during spring freshet and summer base flow. Dissolved V concentration in the Churchill River at summer base flow was approximately 5 times higher than those during the spring high flow (27.3 ± 18.9 nM vs 4.8 ± 3.5 nM). DGT-labile V showed an opposite trend with greater values found during the spring high flow (2.6 ± 1.8 nM vs 1.4 ± 0.3 nM). Parallel factor analysis (PARAFAC) conducted on 95 excitation-emission matrix spectra validated four humic-like (C1C4) and one protein-like (C5) fluorescent components. Significant positive relationship was found between protein-like DOM and DGT-labile V (r = 0.53, p < 0.05), indicating that protein-like DOM possibly affected the DGT-labile V concentration in Churchill River. Sediment leachates were enriched in DGT-labile V and protein-like DOM, which can be readily released when river sediment began to thaw during spring freshet. PMID:27065459

  11. Characteristics and transformations of dissolved organic nitrogen in municipal biological nitrogen removal wastewater treatment plants

    NASA Astrophysics Data System (ADS)

    Huo, Shouliang; Xi, Beidou; Yu, Honglei; Qin, Yanwen; Zan, Fengyu; Zhang, Jingtian

    2013-12-01

    Dissolved organic nitrogen (DON) represents most of the dissolved nitrogen in the effluent of biological nitrogen removal (BNR) wastewater treatment plants (WWTPs). The characteristics of wastewater-derived DON in two different WWTPs were investigated by several different methods. The major removals of DON and biodegradable dissolved organic nitrogen (BDON) along the treatment train were observed in the anaerobic process. Dissolved combined amino acids (DCAA) and dissolved free amino acids (DFAA) in the effluent accounted approximately for less than 4% and 1% of the effluent DON, respectively. Approximately half of wastewater-derived DON was capable of passing through a 1 kDa ultrafilter, and low MW DON cannot effectively be removed by BNR processes. More than 80% of effluent DON was composed of hydrophilic compounds, which stimulate algal growth. The study provided important information for future upgrading of WWTPs or the selection of DON removal systems to meet more demanding nitrogen discharge limits.

  12. Data on natural organic substances in dissolved, colloidal, suspended-silt and -clay, and bed-sediment phases in the Mississippi River and some of its tributaries, 1987-90

    USGS Publications Warehouse

    Leenheer, J.A.; Noyes, T.I.; Brown, P.A.

    1994-01-01

    The Mississippi River and some of its tributaries were sampled for natural organic substances dissolved in water and in suspended and bed sediments during seven sampling cruises from 1987-90. The sampling cruises were made during different seasons, in the free-flowing reaches of the river from St. Louis, Missouri, to New Orleans, Louisiana. The first three cruises were made during low-water conditions, and the last four cruises during high-water conditions. The purpose for sampling and characterizing natural organic substances in the various phases in the river was to provide an understanding of how these substances facilitate contaminant transport and transformations in the Mississippi River. Significant conclusions of this study were: (1) Natural organic substances appear to stabilize ' certain colloids against aggregation; therefore, these colloids remain in suspension and can act as transport agents that are not affected by sedimentation. Bacteria were found to be a significant fraction of organic colloids. (2) A new class of organic contaminants (polyethylene glycols) derived from nonionic surfactant residues was discovered dissolved with natural organic substances in water. These polyethylene glycols have the potential to affect both organic and inorganic contaminant transport in water. (3) The entire dissolved organic-matter component under varying hydrologic and seasonal conditions was characterized. (4) A method was developed to characterize organic matter in sediment by solid-state, 13C-nuclear magnetic resonance spectrometry. (5) The organic matter in suspended sediments was characterized by a variety of spectral and nonspectral methods. The protein component (significant in trace-metal binding) and lipid component (significant in organic-contaminant binding) were found to be major constituents in natural organic matter in suspended sediment. (6) Pools are reservoirs acting as traps of sedimentary organic matter of allochthonous origin and export

  13. Methane hydrate-bearing seeps as a source of aged dissolved organic carbon to the oceans

    USGS Publications Warehouse

    Pohlman, J.W.; Bauer, J.E.; Waite, W.F.; Osburn, C.L.; Chapman, N.R.

    2011-01-01

    Marine sediments contain about 500-10,000 Gt of methane carbon, primarily in gas hydrate. This reservoir is comparable in size to the amount of organic carbon in land biota, terrestrial soils, the atmosphere and sea water combined, but it releases relatively little methane to the ocean and atmosphere. Sedimentary microbes convert most of the dissolved methane to carbon dioxide. Here we show that a significant additional product associated with microbial methane consumption is methane-derived dissolved organic carbon. We use ??14 C and ??13 C measurements and isotopic mass-balance calculations to evaluate the contribution of methane-derived carbon to seawater dissolved organic carbon overlying gas hydrate-bearing seeps in the northeastern Pacific Ocean. We show that carbon derived from fossil methane accounts for up to 28% of the dissolved organic carbon. This methane-derived material is much older, and more depleted in 13 C, than background dissolved organic carbon. We suggest that fossil methane-derived carbon may contribute significantly to the estimated 4,000-6,000 year age of dissolved organic carbon in the deep ocean, and provide reduced organic matter and energy to deep-ocean microbial communities. ?? 2011 Macmillan Publishers Limited. All rights reserved.

  14. Sources and Fates of Dissolved Organic Matter in the Mid-Atlantic Bight

    SciTech Connect

    Hopkinson, C. S.

    2000-08-16

    The objectives of the research program were to identify and determine the relative importance of various sources of dissolved organic matter to the continental shelf, and to estimate the net carbon balance for the Middle Atlantic Bight.

  15. Impact of solids retention time on dissolved organic nitrogen and its biodegradability in treated wastewater

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dissolved organic nitrogen (DON) and its biodegradability in treated wastewater have recently gained attention because DON potentially causes oxygen depletion and/or eutrophication in receiving waters. Laboratory scale chemostat experiments were conducted at 9 different solids retention times (SRTs)...

  16. CHANGES IN SPECTRAL AND PHOTOCHEMICAL PROPERTIES OF COLORED DISSOLVED ORGANIC MATTER IN A COASTAL ESTUARY

    EPA Science Inventory

    Colored dissolved organic matter (CDOM) is the primary determinant of UV penetration and exposure in freshwater and coastal environments. CDOM is photochemically reactive and its photoreactions can lead to reductions in UV absorbance and increased UV exposure in aquatic ecosystem...

  17. Influence of carbonization methods on the aromaticity of pyrogenic dissolved organic carbon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dissolved organic carbon (DOC) components of soil amendments such as biochar will influence the fundamental soil chemistry including the metal speciation, nutrient availability, and microbial activity. Quantitative correlation is necessary between (i) pyrogenic DOC components of varying aromaticity...

  18. CHROMOPHORIC DISSOLVED ORGANIC MATTER (CDOM) SOURCE CHARACTERIZATION IN THE LOUISIANA BIGHT

    EPA Science Inventory

    Chromophoric dissolved organic matter (CDOM) in the Mississippi plume region may have several distinct sources: riverine (terrestrial soils), wetland (terrestrial plants), biological production (phytoplankton, zooplankton, microbial), and sediments. Complex mixing, photodegradati...

  19. DISSOLVED ORGANIC CARBON TRENDS RESULTING FROM CHANGES IN ATMOSPHERIC DEPOSITION CHEMISTRY

    EPA Science Inventory

    Several hypotheses have been proposed to explain recent, widespread increases in concentrations of dissolved organic carbon (DOC) in the surface waters of glaciated landscapes across eastern North America and northern and central Europe. Some invoke anthropogenic forcing through ...

  20. Sulfamethazine sorption to soil: vegetative management, pH, and dissolved organic matter effects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Elucidating veterinary antibiotic (VA) interactions with soil is important for assessing and mitigating possible environmental hazards. Objectives of this study were to investigate the effects of vegetative management, soil physical and chemical properties, and manure-derived dissolved organic matte...

  1. Photobleaching Kinetics of Chromophoric Dissolved Organic Matter Derived from Mangrove Leaf Litter and Floating Sargassum Colonies

    EPA Science Inventory

    We examined the photoreactivity of chromophoric dissolved organic matter (CDOM) derived from Rhizophora mangle (red mangrove) leaf litter and floating Sargassum colonies as these marine plants can be important contributors to coastal and open ocean CDOM pools, respectively. Mangr...

  2. PHOTOCHEMICALLY-INDUCED TRANSFORMATIONS OF DISSOLVED ORGANIC MATTER IN RIVERINE WATERS

    EPA Science Inventory

    We demonstrated that exposure of riverine water to natural sunlight initiated degradation and corresponding alteration to the stable carbon isotope ratio and biochemical composition of the associated dissolved organic carbon (DOC). Water samples were collected from two distinct ...

  3. Northern Gulf of Mexico estuarine coloured dissolved organic matter derived from MODIS data

    EPA Science Inventory

    Coloured dissolved organic matter (CDOM) is relevant for water quality management and may become an important measure to complement future water quality assessment programmes. An approach to derive CDOM using the Moderate Resolution Imaging Spectroradiometer (MODIS) was developed...

  4. Chromatographic methods for the isolation, separation and characterisation of dissolved organic matter.

    PubMed

    Sandron, Sara; Rojas, Alfonso; Wilson, Richard; Davies, Noel W; Haddad, Paul R; Shellie, Robert A; Nesterenko, Pavel N; Kelleher, Brian P; Paull, Brett

    2015-09-01

    This review presents an overview of the separation techniques applied to the complex challenge of dissolved organic matter characterisation. The review discusses methods for isolation of dissolved organic matter from natural waters, and the range of separation techniques used to further fractionate this complex material. The review covers both liquid and gas chromatographic techniques, in their various modes, and electrophoretic based approaches. For each, the challenges that the separation and fractionation of such an immensely complex sample poses is critically reviewed. PMID:26290053

  5. Mechanisms of dissolved organic carbon cycling in an ocean margin. Final technical report

    SciTech Connect

    Benner, R.

    1997-11-24

    Dissolved organic carbon (DOC) is the largest reservoir of organic carbon in the ocean, and the objectives of this project were to investigate the mechanisms and pathways of DOC formation and consumption in seawater. Carbohydrates are the most abundant form of DOC, and this project included measurements of dissolved carbohydrates as well as DOC to help delineate the cycling of DOC. Many of the methods and approaches for investigating DOC production were developed as part of this project.

  6. PHOTOCHEMICAL ALTERATION OF DISSOLVED ORGANIC MATTER: EFFECTS ON THE CONCENTRATION AND ACIDITIES OF IONIZABLE SITES IN DISSOLVED ORGANIC MATTER IN THE SATILLA RIVER OF GEORGIA, USA

    EPA Science Inventory

    The acid-base properties of humic substances, the major component of dissolved organic matter (DOM), area major control on the alkalinity, or acid neutralizing capacity of freshwater systems. Alkalinity is one of the fundamental parameters measured in aquatic sciences, and is an ...

  7. Utilizing chromophoric dissolved organic matter measurements to derive export and reactivity of dissolved organic carbon exported to the Arctic Ocean: A case study of the Yukon River, Alaska

    USGS Publications Warehouse

    Spencer, R.G.M.; Aiken, G.R.; Butler, K.D.; Dornblaser, M.M.; Striegl, R.G.; Hernes, P.J.

    2009-01-01

    The quality and quantity of dissolved organic matter (DOM) exported by Arctic rivers is known to vary with hydrology and this exported material plays a fundamental role in the biogeochemical cycling of carbon at high latitudes. We highlight the potential of optical measurements to examine DOM quality across the hydrograph in Arctic rivers. Furthermore, we establish chromophoric DOM (CDOM) relationships to dissolved organic carbon (DOC) and lignin phenols in the Yukon River and model DOC and lignin loads from CDOM measurements, the former in excellent agreement with long-term DOC monitoring data. Intensive sampling across the historically under-sampled spring flush period highlights the importance of this time for total export of DOC and particularly lignin. Calculated riverine DOC loads to the Arctic Ocean show an increase from previous estimates, especially when new higher discharge data are incorporated. Increased DOC loads indicate decreased residence times for terrigenous DOM in the Arctic Ocean with important implications for the reactivity and export of this material to the Atlantic Ocean. Citation: Spencer, R. G. M., G. R. Aiken, K. D. Butler, M. M. Dornblaser, R. G. Striegl, and P. J. Hernes (2009), Utilizing chromophoric dissolved organic matter measurements to derive export and reactivity of dissolved organic carbon exported to the Arctic Ocean: A case study of the Yukon River, Alaska, Geophys. Res. Lett., 36, L06401, doi:10.1029/ 2008GL036831. Copyright 2009 by the American Geophysical Union.

  8. Dissolved organic matter in anoxic pore waters from Mangrove Lake, Bermuda

    USGS Publications Warehouse

    Orem, W.H.; Hatcher, P.G.; Spiker, E. C.; Szeverenyi, N.M.; Maciel, G.E.

    1986-01-01

    Dissolved organic matter and dissolved inorganic chemical species in anoxic pore water from Mangrove Lake, Bermuda sediments were studied to evaluate the role of pore water in the early diagenesis of organic matter. Dissolved sulphate, titration alkalinity, phosphate, and ammonia concentration versus depth profiles were typical of many nearshore clastic sediments and indicated sulphate reduction in the upper 100 cm of sediment. The dissolved organic matter in the pore water was made up predominantly of large molecules, was concentrated from large quantities of pore water by using ultrafiltration and was extensively tudied by using elemental and stable carbon isotope analysis and high-resolution, solid state 13C nuclear magnetic resonance and infrared spectroscopy. The results indicate that this material has a predominantly polysaccharide-like structure and in addition contains a large amount of oxygen-containing functional groups (e.g., carboxyl groups). The 13C nulcear magnetic resonance spectra of the high-molecular-weight dissolved organic matter resemble those of the organic matter in the surface sediments of Mangrove Lake. We propose that this high-molecular-weight organic matter in pore waters represents the partially degraded, labile organic components of the sedimentary organic matter and that pore waters serve as a conduit for removal of these labile organic components from the sediments. The more refractory components are, thus, selectively preserved in the sediments as humic substances (primarily humin). ?? 1986.

  9. Chemical characterization of dissolved organic compounds from coastal sea surface microlayers (Baltic Sea, Germany).

    PubMed

    van Pinxteren, Manuela; Müller, Conny; Iinuma, Yoshiteru; Stolle, Christian; Herrmann, Hartmut

    2012-10-01

    The physicochemical properties of the sea surface microlayer (SML), i.e. the boundary layer between the air and the sea, and its impact on air-sea exchange processes have been investigated for decades. However, a detailed description about these processes remains incomplete. In order to obtain a better chemical characterization of the SML, in a case study three pairs of SML and corresponding bulk water samples were taken in the southern Baltic Sea. The samples were analyzed for dissolved organic carbon and dissolved total nitrogen, as well as for several organic nitrogen containing compounds and carbohydrates, namely aliphatic amines, dissolved free amino acids, dissolved free monosaccharides, sugar alcohols, and monosaccharide anhydrates. Therefore, reasonable analytical procedures with respect to desalting and enrichment were established. All aliphatic amines and the majority of the investigated amino acids (11 out of 18) were found in the samples with average concentrations between 53 ng L(-1) and 1574 ng L(-1). The concentrations of carbohydrates were slightly higher, averaging 2900 ng L(-1). Calculation of the enrichment factor (EF) between the sea surface microlayer and the bulk water showed that dissolved total nitrogen was more enriched (EF: 1.1 and 1.2) in the SML than dissolved organic carbon (EF: 1.0 and 1.1). The nitrogen containing organic compounds were generally found to be enriched in the SML (EF: 1.9-9.2), whereas dissolved carbohydrates were not enriched or even depleted (EF: 0.7-1.2). Although the investigated compounds contributed on average only 0.3% to the dissolved organic carbon and 0.4% to the total dissolved nitrogen fraction, these results underline the importance of single compound analysis to determine SML structure, function, and its potential for a transfer of compounds into the atmosphere. PMID:22475414

  10. Tracking the monthly changes of dissolved organic matter composition in a newly constructed reservoir and its tributaries during the initial impounding period.

    PubMed

    Chen, Meilian; He, Wei; Choi, Ilhwan; Hur, Jin

    2016-01-01

    Understanding the roles of inland reservoirs becomes increasingly important with respect to global carbon cycling as well as water resource management due to the unprecedented demand for construction in recent decades. In this study, the dissolved organic matter (DOM) quantity and quality in a newly constructed dam reservoir and its tributaries were monitored monthly during the initial impounding period (July to November 2014) using a size exclusion chromatography (SEC) with online organic carbon detector (OCD). The highest values were observed in the month of August with the highest precipitation for the bulk dissolved organic carbon (DOC), specific UV absorbance (SUVA), and most of the assigned size fractions (except for biopolymers) in the tributaries, indicating that allochthonous sources of DOM were dominant in the feeding stream waters of the reservoir. The bulk DOC and high molecular weight humic substance fraction (∼1 kDa) were generally co-varied with the monthly precipitation in the tributaries, while building blocks (350-500 Da), and low molecular weight (LMW) acids and neutrals showed different trends. In a dam site, the smaller molecular fractions became more abundant during the dry season (September to November), presumably due to the in-reservoir processes such as photo- and bio-degradation. Our results also revealed that storms mobilized a large amount of highly aromatic soil-derived DOM to the reservoir. A depth profile at the dam site showed the water is well mixed up to a depth of ∼20 m. The SEC-OCD data coupled with non-metric multidimensional scaling provided a clear visualization of the spatiotemporal variations in DOM composition, which shed new light on the DOM composition formed in a newly constructed dam reservoir and also on the strategies for future water treatment options. PMID:26358212

  11. Seqestration of dissolved organic carbon in the deep sea

    SciTech Connect

    Daniel J. Repeta

    2006-03-01

    There are 600 GT of dissolved organic carbon (DOC) sequestered in seawater. The marine inventory of DOC is set by its concentration in the deep sea, which is nearly constant at 35+2µM C, irrespective of sample location or depth. Isotopic measurements show deep sea DOC to be depleted in radiocarbon, with an apparent radiocarbon age of between 4000ybp (Atlantic) and 6000ybp (Pacific). From the radiocarbon data, we can infer that deep sea DOC is inert and does not cycle on less than millennial time scales. However, high precision DOC measurements show deep sea concentrations are variable at the + 1-2µM DOC level, suggesting a fraction of deep sea DOC, equivalent to 15-30Gt C, is cycling on short time scales, acting as a sink for new, atmospheric carbon. This project is designed to identify and quantify the biological and physical processes that sequester DOM in the deep sea by making compound specific radiocarbon measurements on sugars and proteins extracted from deep sea DOC. Our Hawaii surface seawater sample has a DIC Δ14C value of 72 + 7 ‰ and shows the influence of bomb radiocarbon on surface water DIC values. HMWDOC Δ14C is 10 ‰, significantly depleted in radiocarbon relative to DIC. Purification of HMWDOC by reverse phase HPLC yields seven neutral sugars with radiocarbon values of 47 – 67‰. Assuming the radiocarbon determinations of individual sugars in HMWDOC serve as replicates, then the average Δ14C for neutral sugars in HMWDOC is 57 + 6 ‰(1 SD, n=11), only slightly depleted in 14C relative to DIC. There has been a sharp decrease in radiocarbon values for DIC in the North Pacific Ocean over the past few decades. If neutral sugars cycle more slowly than DIC, we would expect them to have correspondingly higher radiocarbon values. Previous studies have modeled upper ocean DOC as a two component mixture of newly synthesized DOC with a radiocarbon value equal to DIC, and an old component with a radiocarbon value equal to deep sea DO14C. In order to

  12. [Photobleaching of dissolved organic matter (DOM) from confluence of two rivers under natural solar radiation: a case study of Fujiang River-Jialingjiang River].

    PubMed

    Gao, Jie; Jiang, Tao; Yan, Jin-long; Wei, Shi-qiang; Wang, Ding-yong; Lu, Song; Li, Lu-lu

    2014-09-01

    Three-dimensional fluorescence spectroscopy combined with ultraviolet-visible absorption spectra was used to investigate the photobleaching process of dissolved organic matter (DOM) sampled from Fujiang River (FJ), Jialingjiang River (JLJ) and the confluence (FJ-JLJ) under natural solar radiation. The results indicated that obvious photochemical degradation of colored dissolved organic matter (CDOM) concentration [ α(280) ] and all fluorescence peaks intensity (A, C, M and T) occurred under natural solar radiation, and the degradation degree was in order of JLJ > FJ-JLJ > FJ. Photobleaching properties of DOM samples from different locations showed significant differences, which could be partially explained by the sampling sites surroundings including various landuse types, and dilution effect of river confluence. Light-induced bleaching activity of JLJ samples, which was mainly terrestrial input from forest system, was the highest as compared to the lowest activity of FJ samples, which was predominated by urban inputs. Samples from confluence were in the middle. Additionally, the spectrum slope(S) and absorbance ratio (A250/A350) were increased, while the humification index(HIX) was decreased with increasing irradiation time, which can be used as important indicators for photobleaching properties changes during the process. More importantly, the predominantly allochthonous (terrigenous) characteristics of DOM almost showed a tendency of transferring to autochthonous (authigenic) characteristics due to photobleaching. Especially, IT/Ic firstly decreased and then increased significantly in the process. Thus the photodegradation process may exaggerate DOM autochthonous contribution, and further interfere with the assessment of anthropogenic impacted-water quality by using IT/Ic. In addition, mechanisms of light-induced DOM degradation process consistently showed by absorption and fluorescence spectrum parameters suggested the validation of analyzing DOM geochemical

  13. [Ultraviolet-visible (UV-Vis) and fluorescence spectral characteristics of soil dissolved organic matter (DOM) in typical agricultural watershed of Three Gorges Reservoir Region].

    PubMed

    Wang, Qi-Lei; Jiang, Tao; Zhao, Zheng; Mu, Zhi-Jian; Wei, Shi-Qiang; Yan, Jin-Long; Liang, Jian

    2015-03-01

    As an important geo-factor to decide the environmental fate of pollutants in watershed, soil dissolved organic matter (DOM) sampled from a typical agricultural watershed in the Three Gorges Reservoir area was investigated using ultraviolet-visible (UV-Vis) and fluorescence spectroscopies, to analyze and discuss the effect of different land uses including forest, cropland, vegetable field and residence, on soil DOM geochemical characteristics. The results showed that significant differences in DOM samples amongst different land uses were observed, and DOM from forest had the highest aromaticity and humification degree, followed by DOM from cropland. Although DOM from vegetable field and residence showed the highest dissolved organic carbon (DOC) concentration (average values 0.81 g x kg(-1) and 0.89 g x kg(-1), respectively), but the aromaticity was lower indicating lower humification, which further suggested that the non-chromophoric component in these DOM samples contributed significantly to total DOM compositions. Additionally, in all DOM samples that were independent of land uses, fluorescence index (FI) values were between 1.4 (terrigenous) and 1.9 (authigenic) , evidently indicating both the allochthonous and autochthonous sources contributed to DOM characteristics. Meanwhile, r(T/C) values in most of samples were higher than 2.0, suggesting that soil DOM in this agricultural watershed was heavily affected by anthropogenic activities such as agricultural cultivation, especially, vegetable field was a good example. Additionally, sensitivities of different special spectral parameters for reflecting the differences of DOM characteristics amongst different land uses were not identical. For example, neither spectral slope ratio (S(R)) nor humification index (HIX) could clearly unveil the various geochemical characteristics of soil DOM from different sources. Thus, simple and single special spectral parameter cannot comprehensively provide the detailed information

  14. THERMODYNAMIC MODELING OF LIQUID AEROSOLS CONTAINING DISSOLVED ORGANICS AND ELECTROLYTES

    EPA Science Inventory

    Many tropospheric aerosols contain large fractions of soluble organic material, believed to derive from the oxidation of precursors such alpha-pinene. The chemical composition of aerosol organic matter is complex and not yet fully understood.

    The key properties of solu...

  15. Abiotic effects on effluent dissolved organic nitrogen along an estuarine transect.

    PubMed

    Funkey, Carolina P; Latour, Robert J; Bronk, Deborah A

    2015-03-01

    Biological nutrient removal is a process commonly used in water resource recovery facilities to reduce dissolved inorganic nitrogen (DIN) concentrations in effluent; this process is less effective at removing all of the effluent dissolved organic nitrogen (EDON). The goal of this study was to investigate the fate of EDON after it undergoes the disinfection process and enters receiving waters. The authors quantified the abiotic effects of effluent exposure to sunlight, increased salinity, and a combination of the two factors. Effluent dissolved organic nitrogen showed significant breakdown during the disinfection process (UV and chlorine) and when exposed to sunlight and increasing salinity. Approximately 7% of the EDON was transformed to DIN and dissolved primary amines after exposure to 9 hours of sunlight and a salinity increase from 0 to 33. The production of DIN and primary amines should be taken into account when considering sources of labile nitrogen to aquatic ecosystems. PMID:25842537

  16. Leaching of Particulate and Dissolved Organic Carbon from Compost Applied to Bioretention Systems

    NASA Astrophysics Data System (ADS)

    Iqbal, Hamid; Flury, Markus; Mullane, Jessica; Baig, Muhammad

    2015-04-01

    Compost is used in bioretention systems to improve soil quality, to promote plant growth, and to remove metal contaminants from stormwater. However, compost itself, particularly when applied freshly, can be a source of contamination of the stormwater. To test the potential contamination caused by compost when applied to bioretention systems, we continuously leached a compost column with water under unsaturated conditions and characterized dissolved and particulate organic matter in the leachate. Freshly applied, mature compost leached up to 400 mg/L of dissolved organic carbon and 2,000 mg/L of suspended particulate organic carbon. It required a cumulative water flux of 4,000 mm until concentrations of dissolved and particulate organic carbon declined to levels typical for surface waters. Although, dissolved and particulate organic carbon are not contaminants per se, they can facilitate the movement of metals, thereby enhancing the mobility of toxic metals present in stormwater. Therefore, we recommended that compost is washed before it is applied to bioretention systems. Keywords compost; leachate; alkali extract; dissolved organic carbon; flux

  17. Effects of sulfate deposition on pore water dissolved organic carbon, nutrients, and microbial enzyme activities in a northern peatland

    EPA Science Inventory

    Export of dissolved organic carbon from lakes and streams has increased throughout Europe and North America over the past several decades. One possible cause is altered deposition chemistry; specifically, decreasing sulfate inputs leading to changes in ionic strength and dissolve...

  18. DISTRIBUTION AND COMPOSITION OF DISSOLVED AND PARTICULATE ORGANIC CARBON IN NORTHERN SAN FRANCISCO BAY DURING LOW FRESHWATER FLOW CONDITIONS

    EPA Science Inventory

    The distribution of organic matter was studied in northern San Francisco Bay monthly through spring and summer 1996 along the salinity gradient from the Sacramento River to Central Bay. Dissolved constituents included monosaccharides (MONO), total carbohydrates (TCHO), dissolved ...

  19. Algal extracellular release in river-floodplain dissolved organic matter: response of extracellular enzymatic activity during a post-flood period

    PubMed Central

    Sieczko, Anna; Maschek, Maria; Peduzzi, Peter

    2015-01-01

    River-floodplain systems are susceptible to rapid hydrological events. Changing hydrological connectivity of the floodplain generates a broad range of conditions, from lentic to lotic. This creates a mixture of allochthonously and autochthonously derived dissolved organic matter (DOM). Autochthonous DOM, including photosynthetic extracellular release (PER), is an important source supporting bacterial secondary production (BSP). Nonetheless, no details are available regarding microbial extracellular enzymatic activity (EEA) as a response to PER under variable hydrological settings in river-floodplain systems. To investigate the relationship between bacterial and phytoplankton components, we therefore used EEA as a tool to track the microbial response to non-chromophoric, but reactive and ecologically important DOM. The study was conducted in three floodplain subsystems with distinct hydrological regimes (Danube Floodplain National Park, Austria). The focus was on the post-flood period. Enhanced %PER (up to 48% of primary production) in a hydrologically isolated subsystem was strongly correlated with β-glucosidase, which was related to BSP. This shows that—in disconnected floodplain backwaters with high terrestrial input—BSP can also be driven by autochthonous carbon sources (PER). In a semi-isolated section, in the presence of fresh labile material from primary producers, enhanced activity of phenol oxidase was observed. In frequently flooded river-floodplain systems, BSP was mainly driven by enzymatic degradation of particulate primary production. Our research demonstrates that EEA measurements are an excellent tool to describe the coupling between bacteria and phytoplankton, which cannot be deciphered when focusing solely on chromophoric DOM. PMID:25741326

  20. Algal extracellular release in river-floodplain dissolved organic matter: response of extracellular enzymatic activity during a post-flood period.

    PubMed

    Sieczko, Anna; Maschek, Maria; Peduzzi, Peter

    2015-01-01

    River-floodplain systems are susceptible to rapid hydrological events. Changing hydrological connectivity of the floodplain generates a broad range of conditions, from lentic to lotic. This creates a mixture of allochthonously and autochthonously derived dissolved organic matter (DOM). Autochthonous DOM, including photosynthetic extracellular release (PER), is an important source supporting bacterial secondary production (BSP). Nonetheless, no details are available regarding microbial extracellular enzymatic activity (EEA) as a response to PER under variable hydrological settings in river-floodplain systems. To investigate the relationship between bacterial and phytoplankton components, we therefore used EEA as a tool to track the microbial response to non-chromophoric, but reactive and ecologically important DOM. The study was conducted in three floodplain subsystems with distinct hydrological regimes (Danube Floodplain National Park, Austria). The focus was on the post-flood period. Enhanced %PER (up to 48% of primary production) in a hydrologically isolated subsystem was strongly correlated with β-glucosidase, which was related to BSP. This shows that-in disconnected floodplain backwaters with high terrestrial input-BSP can also be driven by autochthonous carbon sources (PER). In a semi-isolated section, in the presence of fresh labile material from primary producers, enhanced activity of phenol oxidase was observed. In frequently flooded river-floodplain systems, BSP was mainly driven by enzymatic degradation of particulate primary production. Our research demonstrates that EEA measurements are an excellent tool to describe the coupling between bacteria and phytoplankton, which cannot be deciphered when focusing solely on chromophoric DOM. PMID:25741326

  1. Dissolved organic carbon in rainwater: Glassware decontamination and sample preservation and volatile organic carbon

    NASA Astrophysics Data System (ADS)

    Campos, M. L. A. M.; Nogueira, R. F. P.; Dametto, P. R.; Francisco, J. G.; Coelho, C. H.

    The efficiency of different methods for the decontamination of glassware used for the analysis of dissolved organic carbon (DOC) was tested using reported procedures as well as new ones proposed in this work. A Fenton solution bath (1.0 mmol L -1 Fe 2+ and 100 mmol L -1 H 2O 2) for 1 h or for 30 min employing UV irradiation showed to combine simplicity, low cost and high efficiency. Using the optimized cleaning procedure, the DOC for stored UV-irradiated ultra-pure water reached concentrations below the limit of detection (0.19 μmol C L -1). Filtered (0.7 μm) rain samples maintained the DOC integrity for at least 7 days when stored at 4 °C. The volatile organic carbon (VOC) fraction in the rain samples collected at two sites in São Paulo state (Brazil) ranged from 0% to 56% of their total DOC content. Although these high-VOC concentrations may be derived from the large use of ethanol fuel in Brazil, our results showed that when using the high-temperature catalytic oxidation technique, it is essential to measure DOC rather than non-purgeble organic carbon to estimate organic carbon, since rainwater composition can be quite variable, both geographically and temporally.

  2. Improved automation of dissolved organic carbon sampling for organic-rich surface waters.

    PubMed

    Grayson, Richard P; Holden, Joseph

    2016-02-01

    In-situ UV-Vis spectrophotometers offer the potential for improved estimates of dissolved organic carbon (DOC) fluxes for organic-rich systems such as peatlands because they are able to sample and log DOC proxies automatically through time at low cost. In turn, this could enable improved total carbon budget estimates for peatlands. The ability of such instruments to accurately measure DOC depends on a number of factors, not least of which is how absorbance measurements relate to DOC and the environmental conditions. Here we test the ability of a S::can Spectro::lyser™ for measuring DOC in peatland streams with routinely high DOC concentrations. Through analysis of the spectral response data collected by the instrument we have been able to accurately measure DOC up to 66 mg L(-1), which is more than double the original upper calibration limit for this particular instrument. A linear regression modelling approach resulted in an accuracy >95%. The greatest accuracy was achieved when absorbance values for several different wavelengths were used at the same time in the model. However, an accuracy >90% was achieved using absorbance values for a single wavelength to predict DOC concentration. Our calculations indicated that, for organic-rich systems, in-situ measurement with a scanning spectrophotometer can improve fluvial DOC flux estimates by 6 to 8% compared with traditional sampling methods. Thus, our techniques pave the way for improved long-term carbon budget calculations from organic-rich systems such as peatlands. PMID:26580726

  3. When dissolved is not truly dissolved--the importance of colloids in studies of metal sorption on organic matter.

    PubMed

    Schijf, Johan; Zoll, Alison M

    2011-09-01

    In controlled metal sorption experiments, the equilibrium distribution coefficient is a key variable quantifying sorbate partitioning across the solid-solution interface. Separation of metals into 'dissolved' and 'particulate' fractions is commonly achieved with syringe filtration, where the boundary is somewhat arbitrarily dictated by the limited selection of available pore sizes. Investigations involving natural organic matter, such as bacterial cells or plant tissues, are especially prone to experimental artifacts if the substrate releases abundant colloidal compounds that contribute to sorption by binding free metal cations in a pH-dependent fashion yet pass through conventional filters, causing the truly dissolved fraction to be grossly overestimated. We observed this phenomenon during a study of lanthanide sorption on a marine macroalga, Ulva lactuca, as a function of pH. At low ionic strength, distribution coefficients calculated for a 0.22-μm size cutoff falsely imply that metal sorption reverses to gradual release above pH 4.6, instead of continuing to increase. Centrifuging the filtrates in Amicon® Ultra units (30 and 3 kDa molecular weight cutoff) revealed a mounting proportion of colloid-bound metal, constituting up to 95% of the 'dissolved' (<0.22 μm) fraction near pH 8. Measurements of DOC concentrations suggest this being due to pH-dependent binding of free metal cations to a fixed pool of organic colloids. The process is well described with a simple 2-site Langmuir isotherm in 0.05, 0.5, and 5.0M NaCl. Using this model to correct the original distribution coefficients not only removed the spurious reversal at low ionic strength, but also uncovered a prominent suppressive effect on the intermediate and high ionic strength data that had initially gone undetected. Ultra-filtration may thus be an essential analytical tool for proper characterization and interpretation of metal sorption on organic matter over a wide range of experimental conditions

  4. Dissolved Organic Matter Dynamics in a Suburbanizing Watershed: The Importance of Wetlands, People, and Flowpaths

    NASA Astrophysics Data System (ADS)

    Koenig, L.; Daley, M. L.; Potter, J.; McDowell, W. H.

    2013-12-01

    Human development of a watershed often yields fundamental and quantifiable changes in water quality and inorganic nutrient cycling. The effects of suburban development on the cycling of dissolved organic matter (DOM), however, have received relatively less attention, and the understanding of local dissolved organic matter dynamics is rarely a stated goal of watershed management. In this study, we examine the effects of suburbanization on concentrations of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) as well as the optical properties of DOM using 17 study sites in the Lamprey River watershed, NH that integrate varying levels of human development and population density. We show that concentration of DOC and DON is related to wetland cover but is not correlated with population density. Further, we observed no response in DOC concentration with increased flow at the mainstem site, while DON concentration is diluted. The optical properties of dissolved organic matter, however, showed different trends. Fluorescence Index (FI) decreases with increasing wetland cover and lower population density. We show that in a coastal watershed, while DOM quantity is driven by the presence of wetlands, DOM quality changes with both wetland cover and human development. The decoupling of DOM quantity and quality in this suburbanizing watershed indicate that DOM quality may be an important yet overlooked control on watershed-scale biogeochemical cycling and nutrient export.

  5. EFFECT OF ACID TREATMENT ON DISSOLVED ORGANIC CARBON RETENTION BY A SPODIC HORIZON

    EPA Science Inventory

    Processes involving the movement of organic substances in forest soils are not well understood. This study was conducted to examine the role of acidic inputs on dissolved organic carbon (DOC) mobility, processes affecting the retention of DOV by a B horizon, and SO2-4 adsorption....

  6. FACTORS AFFECTING COLORED DISSOLVED ORGANIC MATTER IN AQUATIC ENVIRONMENTS OF THE SOUTHEASTERN UNITED STATES

    EPA Science Inventory

    The sunlight-absorbing (colored) component of dissolved organic matter (CDOM) in aquatic environments is widely distributed in freshwaters and coastal regions where it influences the fate and transport of toxic organic substances and biologically-important metals such as mercury,...

  7. Characterization of Plant-derived Dissolved Organic Matter by Multiple Spectroscopic Techniques

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dissolved organic matter (DOM) derived from fresh or early-stage decomposing soil amendment materials may play an important role in the process of organic matter accumulation. In this study, eight DOM samples from alfalfa, corn, crimson clover, hairy vetch, lupin, soybean, wheat and dairy manure wer...

  8. Effects of Low Dissolved Oxygen on Organisms Used in Freshwater Sediment Toxicity Tests

    EPA Science Inventory

    This manuscript describes the results of tests to determine the tolerance of three benthic organisms to reduced dissolved oxygen (DO). These three organisms are those recommended by EPA for use in toxicity testing of contaminated sediments. The results of the exposures indicate ...

  9. Transport of organic contaminants in subsoil horizons and effects of dissolved organic matter related to organic waste recycling practices.

    PubMed

    Chabauty, Florian; Pot, Valérie; Bourdat-Deschamps, Marjolaine; Bernet, Nathalie; Labat, Christophe; Benoit, Pierre

    2016-04-01

    Compost amendment on agricultural soil is a current practice to compensate the loss of organic matter. As a consequence, dissolved organic carbon concentration in soil leachates can be increased and potentially modify the transport of other solutes. This study aims to characterize the processes controlling the mobility of dissolved organic matter (DOM) in deep soil layers and their potential impacts on the leaching of organic contaminants (pesticides and pharmaceutical compounds) potentially present in cultivated soils receiving organic waste composts. We sampled undisturbed soil cores in the illuviated horizon (60-90 cm depth) of an Albeluvisol. Percolation experiments were made in presence and absence of DOM with two different pesticides, isoproturon and epoxiconazole, and two pharmaceutical compounds, ibuprofen and sulfamethoxazole. Two types of DOM were extracted from two different soil surface horizons: one sampled in a plot receiving a co-compost of green wastes and sewage sludge applied once every 2 years since 1998 and one sampled in an unamended plot. Results show that DOM behaved as a highly reactive solute, which was continuously generated within the soil columns during flow and increased after flow interruption. DOM significantly increased the mobility of bromide and all pollutants, but the effects differed according the hydrophobic and the ionic character of the molecules. However, no clear effects of the origin of DOM on the mobility of the different contaminants were observed. PMID:26676540

  10. Contribution of Allochthonous Carbon Subsidies to the Minho Estuary Lower Food Web

    EPA Science Inventory

    To study the contribution of autochthonous and allochthonous organic matter (OM) sources fuelling the lower food web in Minho River estuary (N-Portugal, Europe), we characterized the carbon (?13C) and nitrogen (?15N) stable isotope ratios of zooplankton and their potential OM sou...

  11. Contribution of Allochthonous Carbon to American Shad Production in the Mattaponi River, Virginia, Using Stable Isotopes

    EPA Science Inventory

    Our objective was to quantify the contribution of autochthonous, locally-produced phytoplankton, and allochthonous, terrestrial-derived organic matter (OM) to the production of young-of-year (YOY) American shad using stable isotopes...The results suggest an important link between...

  12. Anthropogenic impacts on the optical characteristics and biodegradability of dissolved and particulate organic matter in the Han River watershed, South Korea

    NASA Astrophysics Data System (ADS)

    Shirina Begum, Most; Jin, Hyojin; Yoon, Tae Kyung; Park, Ji-Hyung

    2016-04-01

    To understand how anthropogenic perturbations such as dams and pollution modify the chemical characteristics and biological transformations of riverine organic matter during transit through urbanized watersheds, we compared the optical characteristics and biodegradability of dissolved organic matter (DOM) and particulate organic matter (POM) along different reaches and urban tributary streams of the Han River watershed during short-term incubations. Laboratory incubations were conducted for 5-7 days at 20-25 oC with filtered or unfiltered water samples collected from up-, mid-, and downstream reaches with different levels of anthropogenic perturbations and three urban streams along the downstream reach that receive effluents from waste water treatment facilities in the metropolitan Seoul. Optical parameters such as ultraviolet absorbance at 254 nm, absorption coefficients at 254 nm and 350 nm, fluorescence index, humic-like fluorescence, microbial humic-like fluorescence, and protein-like fluorescence, and spectral slope at 350-400 nm were significantly correlated with increasing concentration of biodegradable dissolved organic carbon (BDOC) in filtered and unfiltered sample along the Han River up-, mid-, down-, and urban streams. The concentrations of BDOC in the urban streams were 6-12 times higher than in the filtered and unfiltered main-stem river samples, with significantly higher values in presence of POM in the unfiltered samples than in the filtered samples. In a separate 5-day incubation experiment with the unfiltered water sample from a downstream location of the Han River and its urban tributary water in isolation or mixed , the rate of concurrent biodegradation of both DOM and POM, as measured by the cumulative rate of CO2 production, was higher in the mixture than the average rate of the separately incubated samples, indicating the priming effect of mixed organic materials on the biodegradation of allochthonous organic materials from the other site

  13. An Automated Method for the Optical Characterization of Dissolved Organic Matter in a Rapidly Suburbanizing Watershed, Southeastern New Hampshire

    NASA Astrophysics Data System (ADS)

    Gettel, G. M.; McDowell, W.; Pisani, O.

    2006-12-01

    Dissolved organic matter (DOM) is exported from watersheds to downstream ecosystems where it can contribute to eutrophication problems by enhancing microbial respiration and lowering oxygen levels. DOM quality affects microbial respiration; however, little is known about how watershed processes affect the quality of DOM export. In order to document temporal and spatial variability in DOM quality at the watershed scale, we are developing a method to automate the optical characterization of DOM in the Lamprey River watershed in southeastern New Hampshire. This method employs a refrigerated autosampler and column heater associated with a Shimadzu high-pressure liquid chromatograph (HPLC) with a photo-diode array (PDA) UV absorbance detector and an in-line Horiba Jobin Yvon Fluoromax 3 fluorometer capable of 3D excitation- emission scans (EEM). One advantage of this method is that the HPLC flow-through cell in the fluorometer reduces inner-filter effects due to its small volume. Furthermore, specific UV absorbance or SUVA can also be calculated because an in-line UV PDA is used. We found that a number of fluorescence indices are related to DOC, DON, or NO3 concentrations throughout the Lamprey River watershed. For example, Fluorescence Index (F.I.), an indicator of autochthonous sources of DOM, is positively correlated with nitrate and negatively correlated with DOC concentrations (R2=0.95; p<0.01; R2=0.86; p<0.05 respectively). The highest F.I. occurred in the highest-population density sub-basin with the highest nitrate concentrations, while the lowest F.I. occurred in the lowest-population density sub-basin with highest DOC concentrations. These results indicate that nitrate may increase within-stream generation of DOC at high- population sites while DOC from low-population, low-nitrate sites is predominately allochthonous. This allows DOM characterization to be performed in conjunction with weekly and monthly monitoring of many water quality parameters and to be

  14. Optical Characterization and Spatial Distribution of Dissolved Organic Matter (DOM) in Seven Water Bodies of Mississippi, USA

    NASA Astrophysics Data System (ADS)

    Singh, S.; Dash, P.; Moorhead, R.

    2015-12-01

    Lakes and estuaries can serve as indicators of overall health of terrestrial and aquatic ecosystems. The characteristics of dissolved organic matter (DOM) in these water bodies provide insights into the biogeochemical processes undergoing at the source, during transport and in the water bodies. Land use and land cover plays not only a significant role in controlling the quantity of the exported DOM, but also influences the quality of DOM via various biogeochemical and biodegradation processes. We investigated the characteristics and spatial distribution of DOM in five major lakes - Sardis, Enid, Grenada, Okatibbee, and Ross Barnett Reservoir (RBR), an estuary, the Lower Pearl River (LPR) Estuary, and a coastal region, Grand Bay, in the state of Mississippi, USA. Water samples from the lakes and Grand Bay were collected during the summer of 2012-2014 while samples from LPR were collected during winter 2014 and spring 2015. We employed absorption and fluorescence spectroscopy including excitation emission matrix (EEM) combined with parallel factor analysis (PARAFAC) modeling techniques to determine optical properties of DOM and its characteristics in these study sites. A site-specific PARAFAC model was developed to evaluate DOM characteristics, which resulted in five diverse DOM compositions including two terrestrial humic-like, two microbial humic-like, and one protein-like DOM. The lakes and Grand Bay region showed high concentrations of microbial humic-like or protein-like DOM fluorescence signatures while the samples from LPR Estuary and the RBR showed relatively high concentration of terrestrial humic-like DOM. Moreover, we also observed strong correlations between microbial humic-like DOM (PARAFAC derived) and DOM indices such as biological/freshness and fluorescence indices (EEM based). DOM in the lakes indicated autochthonous characteristics predominantly probably because of photochemical degradation while the LPR Estuary and the RBR samples showed mainly

  15. Seasonal Changes in Estuarine Dissolved Organic Matter Due to Variations in Discharge, Flushing Times and Wind-driven Mixing Events

    NASA Astrophysics Data System (ADS)

    Dixon, Jennifer Louise

    Estuaries are highly productive habitats that transport and transform organic matter (OM), experience large changes in ionic composition and act as a transition zone between terrestrial and marine environments (Paerl et al. 1998; Markager et al. 2011; Osburn et al. 2012). OM source and matrix effects (such as salinity and pH) influence the chemical structure of DOM in estuaries and therefore affect its bioavailability, photo-reactivity, and its overall fate in these systems (Jaffe et al. 2004; Boyd et al. 2010; Pace et al. 2012; Osburn et al. 2012; Cawley et al. 2013). Within estuaries, dissolved organic matter (DOM) is a heterogeneous mixture of aromatic and aliphatic compounds, and its composition in aquatic systems varies spatially and temporally with source (Bauer and Bianchi 2011). However, the main source of DOM in estuaries, rivers and other aquatic systems, originates from vascular plant detritus, soil humus, older fossil (i.e., petrogenic) organic carbon, black carbon, marine OM and in situ production (Hedges 2002; Houghton 2007; Bauer and Bianchi 2011). Chromophoric dissolved organic matter (CDOM), the light absorbing fraction of DOM, can be characterized using optical methods such as absorption and fluorescence spectroscopy (e.g. Coble, 1996; Stedmon and Markager, 2003). By analyzing the spatial and temporal variability of DOM and CDOM within estuaries, information pertaining to OM source and fate across the freshwater-marine continuum can be obtained. These methods offer an inexpensive, non-destructive means for obtaining sensitive measurements of a diverse group of organic compounds. By using this technology to analyze the spatial and temporal variability of CDOM within estuaries, information pertaining to OM source and fate across the freshwater-marine continuum can be obtained (Fellman et al. 2011; Osburn et al. 2012; Murphy et al. 2014). Chemical biomarkers are also routinely used to identify DOM sources in coastal waters. Examples are carbon stable

  16. Predicting dissolved organic nitrogen export from a drained loblolly pine plantation

    NASA Astrophysics Data System (ADS)

    Tian, Shiying; Youssef, Mohamed A.; Skaggs, R. Wayne; Chescheir, G. M.; Amatya, Devendra M.

    2013-04-01

    Dissolved organic nitrogen (DON) export from terrestrial ecosystems influences the ecology of receiving surface waters. The soil carbon (C) and nitrogen (N) model, DRAINMOD-N II, was modified to simulate key processes associated with DON transformations and transport in the soil profile. DON production is modeled by tracking dynamic C:N ratios of dissolved organic matter originating from various organic matter pools. The Langmuir isotherm was used to quantify the assumed instantaneous equilibrium between potentially soluble organic N in solid and aqueous phases. DON transport with soil water was simulated using a numerical solution to the advection-dispersion reaction equation. The modified model was used for simulating temporal variations of DON export from three loblolly pine (Pinus taeda L.) plantations located in eastern North Carolina. Results showed that the model can accurately predict DON export dynamics during storm events with Nash-Sutcliffe efficiency (E) of 0.5, seasonal DON losses with E above 0.6, and annual DON losses with E above 0.7. In addition to the well-recognized role of hydrological processes, reasonable quantifications of the seasonal changes in the potentially soluble soil organic matter, the DON sorption to soil particles, and the dynamic C:N ratios of dissolved organic matter were found to be essential for mechanistic representation of DON export dynamics. Specifically, adapting the dynamic C:N ratios enabled the model to reasonably describe the temporal variations of correlations between DON and dissolved organic carbon in drainage water.

  17. Lithotectonic units in the Golconda allochthon, Nevada

    SciTech Connect

    Tomlinson, A.J. ); Murchey, B.L. )

    1991-02-01

    The Golconda allochthon can be divided into several regional lithotectonic units. Each consists of an imbricate thrust stack of similar, but variably deformed, depositional sequences and represents a paleogeographic-depositional province of the basin(s) that existed prior to the Sonoma orogeny. At least four lithotectonic units are recognized. (1) An eastern unit consists of Upper Mississippian( ) to Middle Pennsylvanian chert, Middle Pennsylvanian to Lower Permian argillite and calcarenite turbidites, and Permian phosphatic sandstones, calcarenites, and chert. (2) The second unit consists of Middle Pennsylvanian greenstone, Middle Pennsylvanian to Lower Permian argillite and minor chert, middle Leonardian calcarenite, upper Leonardian chert and minor phosphatic, chert- and volcanic-lithic-rich sandstone, and Upper Permian sponge spicule chert turbidites. (3) The third unit consists of Lower Mississippian basalts, Upper Mississippian to Middle Pennsylvanian clastic rocks and radiolarian chert, and Lower Permian calcarenites and calcareous sandstone. (4) The fourth unit consists of Mississippian to permian volcaniclastic rock-bearing sections. Units 1, 2 and 3 have rocks indicating they were deposited within or adjacent to the continental margin. Rocks in unit 4 have a volcanic terrane affinity. In each lithotectonic unit the youngest rocks of Leonardian or Guadalupian age are involved n the deformation and are conformable or paraconformable on older rocks indicated the shortening history in the allochthon is entirely post-deposition and represents a short-lived Permian-Triassic event.

  18. Degradation of terrigenous dissolved organic carbon in the western Arctic Ocean.

    PubMed

    Hansell, Dennis A; Kadko, David; Bates, Nicholas R

    2004-05-01

    The largest flux of terrigenous organic carbon into the ocean occurs in dissolved form by way of rivers. The fate of this material is enigmatic; there are numerous reports of conservative behavior over continental shelves, but the only knowledge we have about removal is that it occurs on long unknown time scales in the deep ocean. To investigate the removal process, we evaluated terrigenous dissolved organic carbon concentration gradients in the Beaufort Gyre of the western Arctic Ocean, which allowed us to observe the carbon's slow degradation. Using isotopic tracers of water-mass age, we determined that terrigenous dissolved organic carbon is mineralized with a half-life of 7.1 +/- 3.0 years, thus allowing only 21 to 32% of it to be exported to the North Atlantic Ocean. PMID:15131302

  19. Meridional fluxes of dissolved organic matter in the North Atlantic Ocean

    NASA Technical Reports Server (NTRS)

    Walsh, John J.; Carder, Kendall L.; Mueller-Karger, Frank E.

    1992-01-01

    Biooptical estimates of gelbstoff and a few platinum measurements of dissolved organic carbon (DOCpt) are used to construct a budget of the meridional flux of DOC and dissolved organic nitrogen (DON) across 36 deg 25 min N in the North Atlantic from previous inverse models of water and element transport. Distinct southward subsurface fluxes of dissolved organic matter within subducted shelf water, cabelled slope water, and overturned basin water are inferred. Within two cases of a positive gradient of DOCpt between terrestrial/shelf and offshore stocks, the net equatorward exports of O2 and DOCpt from the northern North Atlantic yield molar ratios of 2.1 to 9.1, compared to the expected Redfield O2/C ratio of 1.3. It is concluded that some shelf export of DOC, with a positive gradient between coastal and oceanic stocks, as well as falling particles, are required to balance carbon, nitrogen, and oxygen budgets of the North Atlantic.

  20. Spatial and temporal variation of dissolved organic matter in the Changjiang: Fluvial transport and flux estimation

    NASA Astrophysics Data System (ADS)

    Bao, Hongyan; Wu, Ying; Zhang, Jing

    2015-09-01

    The Changjiang is the most important source of freshwater and dissolved organic matter (DOM) for the East China Sea. However, knowledge regarding the sources, seasonal fluxes, and fluvial transport of terrigenous DOM (tDOM) in the Changjiang is lacking. To fill this knowledge gap, we measured dissolved organic carbon (DOC) and dissolved lignin in water samples collected in the middle and lower Changjiang under different hydrological conditions. Additional samples were collected biweekly in the lower Changjiang. Through comparisons with other rivers, we found that the DOC in the Changjiang is mainly from soil organic matter and has a higher fraction of tDOM during flood. Mass balance model results indicate that approximately 33% of the dissolved lignin discharged into the middle and lower Changjiang is removed during its transport to the lower reach during both low-discharge and flood periods. Based on a comparison of the removal rates under these two contrasting hydrological conditions and considering the lower organic carbon content and fine grain size of the Changjiang's suspended particles, we speculate that the major process for the removal of dissolved lignin is sorption, and potentially flocculation by suspended particles. Changjiang discharges 1.4 ± 0.10 Tg yr-1 and 8.6 ± 0.30 Gg yr-1 DOC and dissolved lignin to the estuary during the period of July 2010 to June 2011, respectively. Seasonal distributions of DOC and dissolved lignin fluxes are controlled by water discharge, which will be affected by future climate change and the Three Gorges Dam.

  1. Contribution of allochthonous organic carbon across the Serrano River Basin and the adjacent fjord system in Southern Chilean Patagonia: Insights from the combined use of stable isotope and fatty acid biomarkers

    NASA Astrophysics Data System (ADS)

    Lafon, Alejandra; Silva, Nelson; Vargas, Cristian A.

    2014-12-01

    Chilean Patagonia is characterized by an irregular geography involving many islands, peninsulas, channels, sounds and fjords, that prevent direct interaction between oceanic water masses and freshwater river discharges at the head of the continental fjords. In this paper, we evaluate the potential sources and composition of organic matter along the Serrano River basin and the adjacent channels and fjords in Southern Chilean Patagonia (51-52°S), as well as their importance for marine planktonic organisms. In spring of 2009, evidence of C:N ratio, δ13C, δ15N and fatty acids composition in particulate organic carbon (POC), surface sediment, soil, plankton, and vegetal tissue, as well some physical and chemical characteristics (i.e. salinity, dissolved oxygen, NO3-, NH4+, PO4-3, Si(OH)4), were measured in samples collected during the CIMAR 14 Fiordos oceanographic cruise. Significant differences in δ13C-POC were found between the terrestrial and marine environments but not within fjord stations. Along the fjord region, the high C:N ratio and depleted δ13C values in POC samples suggest that particulate organic matter (POM) in the upper level of the water column (0-10 m depth) is supported by different sources. Terrestrial organic carbon exported by rivers may constitute a significant subsidy, up to 70% based on two end-member mixing model, to the fjord ecosystem. Furthermore, terrestrial carbon might account for a significant percentage of the zooplankton body carbon, estimated both by using isotopic (∼24-61%) and fatty acid analysis (∼14-61%). Isotopic analyses in marine sediment samples suggest that POC seems to be decoupled from terrestrial-influenced surface sources at the fjord stations, and the contribution of surrounding vegetation seemingly unimportant for carbon export to the benthos. Local hydrographic and geomorphological characteristics might determine the presence of oceanographic frontal zones, which in turn might explain differences in carbon

  2. Spatial variability in chromophoric dissolved organic matter for an artificial coastal lake (Shiwha) and the upstream catchments at two different seasons.

    PubMed

    Phong, Diep Dinh; Lee, Yeonjung; Shin, Kyung-Hoon; Hur, Jin

    2014-06-01

    Selected water quality parameters and spectroscopic characteristics of dissolved organic matter (DOM) were examined during two different seasons for an artificial coastal lake (Shiwha Lake in South Korea), which are affected by seawater exchange due to the operation of a tidal power plant and external organic loadings from the upstream catchments. The coastal lake exhibited much lower concentrations of organic matter and nutrients than the upstream sources. The spectroscopic properties of the lake DOM were easily distinguished from those of the catchment sources as revealed by a lower absorption coefficient, lower degree of humification, and higher spectral slopes. The observed DOM properties suggest that the lake DOM may be dominated by smaller molecular size and less condensed structures. For the lake and the upper streams, higher absorption coefficients and fluorescence peak intensities but lower spectral slopes and humification index were found for the premonsoon versus the monsoon season. However, such seasonal differences were less pronounced for the industrial channels in the upper catchments. Three distinctive fluorophore groups including microbial humic-like, tryptophan-like, and terrestrial humic-like fluorescence were decomposed from the fluorescence excitation-emission matrix (EEM) of the DOM samples by parallel factor analysis (PARAFAC) modeling. The microbial humic-like component was the most abundant for the industrial channels, suggesting that the component may be associated with anthropogenic organic pollution. The terrestrial humic-like component was predominant for the upper streams, and its relative abundance was higher for the rainy season. Our principal component analysis (PCA) results demonstrated that exchange of seawater and seasonally variable input of allochthonous DOM plays important roles in determining the characteristics of DOM in the lake. PMID:24622988

  3. Qualitative changes of riverine dissolved organic matter at low salinities due to flocculation

    NASA Astrophysics Data System (ADS)

    Asmala, Eero; Bowers, David G.; Autio, Riitta; Kaartokallio, Hermanni; Thomas, David N.

    2014-10-01

    The flocculation of dissolved organic matter (DOM) was studied along transects through three boreal estuaries. Besides the bulk concentration parameters, a suite of DOM quality parameters were investigated, including colored DOM (CDOM), fluorescent DOM, and the molecular weight of DOM as well as associated dissolved iron concentrations. We observed significant deviations from conservative mixing at low salinities (<2) in the estuarine samples of dissolved organic carbon (DOC), UV absorption (a(CDOM254)), and humic-like fluorescence. The maximum deviation from conservative mixing for DOC concentration was -16%, at salinities between 1 and 2. An associated laboratory experiment was conducted where an artificial salinity gradient between 0 and 6 was created. The experiment confirmed the findings from the estuarine transects, since part of the DOC and dissolved iron pools were transformed to particulate fraction (>0.2 µm) and thereby removing them from the dissolved phase. We also measured flocculation of CDOM, especially in the UV region of the absorption spectrum. Protein-like fluorescence of DOM decreased, while humic-like fluorescence increased because of salt-induced flocculation. Additionally, there was a decrease in molecular weight of DOM. Consequently, the quantity and quality of the remaining DOM pool was significantly changed after influenced to flocculation. Based on these results, we constructed a mechanistic, two-component flocculation model. Our findings underline the importance of the coastal filter, where riverine organic matter is flocculated and exported to the sediments.

  4. Seasonal losses of dissolved organic carbon and total dissolved solids from rice production systems in northern California.

    PubMed

    Ruark, Matthew D; Linquist, Bruce A; Six, Johan; van Kessel, Chris; Greer, Chris A; Mutters, Randall G; Hill, James E

    2010-01-01

    Water quality concerns have arisen related to rice (Oryza sativa L.) field drain water, which has the potential to contribute large amounts of dissolved organic carbon (DOC) and total dissolved solids (TDS) to the Sacramento River. Field-scale losses of DOC or TDS have yet to be quantified. The objectives of this study were to evaluate the seasonal concentrations of DOC and TDS in rice field drain water and irrigation canals, quantify seasonal fluxes and flow-weighted (FW) concentrations of DOC and TDS, and determine the main drivers of DOC and TDS fluxes. Two rice fields with different straw management practices (incorporation vs. burning) were monitored at each of four locations in the Sacramento Valley. Fluxes of DOC ranged from 3.7 to 34.6 kg ha(-1) during the growing season (GS) and from 0 to 202 kg ha(-1) during the winter season (WS). Straw management had a significant interaction effect with season, as the greatest DOC concentrations were observed during winter flooding of straw incorporated fields. Fluxes and concentrations of TDS were not significantly affected by either straw management or season. Total seasonal water flux accounted for 90 and 88% of the variability in DOC flux during the GS and WS, respectively. Peak DOC concentrations occurred at the onset of drainflow; therefore, changes in irrigation management may reduce peak DOC concentrations and thereby DOC losses. However, the timing of peak DOC concentrations from rice fields suggest that rice field drainage water is not the cause of peak DOC concentrations in the Sacramento River. PMID:20048318

  5. Changes in dissolved organic carbon and total dissolved nitrogen fluxes across subtropical forest ecosystems at different successional stages

    NASA Astrophysics Data System (ADS)

    Yan, Junhua; Li, Kun; Wang, Wantong; Zhang, Deqiang; Zhou, Guoyi

    2015-05-01

    Lateral transports of carbon and nitrogen are important processes linking terrestrial ecosystems and aquatic systems. Most previous studies made in temperate forests found that fluxes of carbon and nitrogen by runoff water varied in different forests, but few studies have been made in subtropical forests. This study was to investigate dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) fluxes at the catchment scale along a subtropical forest succession gradient from pine forest (pioneer) to coniferous and broadleaved mixed forest (transitional) to broadleaved forest (mature). Our results showed that DOC concentration significantly decreased (p<0.001) while TDN concentration significantly increased (p<0.001) in runoff water from pioneer to mature forests, which in turn resulted in a decrease in DOC flux and an increase in TDN flux, as mean annual runoff did not vary significantly among three succession forest catchments. The mean (±standard deviation) annual DOC flux was 118.1±43.6, 88.3±16.7 and 77.2±11.7 kg ha-1 yr-1for pioneer, transitional and mature forest catchments, respectively; and the mean annual TDN flux was 9.9 ±2.7, 18.2±3.0 and 21.2 ±4.5 kg ha-1 yr-1for pioneer, transitional and mature forest catchments, respectively. The mature forest reduced DOC flux by increased soil chemical adsorption and physical protection. An increase in TDN flux from pioneer to mature forests was consistent with the previous finding that mature forest was nitrogen saturated while pioneer forest was nitrogen limited. Therefore large-scale conversion of pioneer forests to transitional or mature forests in subtropical China will reduce DOC concentration and increase TDN concentration in the down-stream water, which may have significant impact on its water quality and aquatic biological activities.

  6. The Fluorescent Properties of Dissolved Organic Matter and Assessment of Total Nitrogen in Overlying Water with Different Dissolved Oxygen Conditions.

    PubMed

    Zhang Hua; Kuan, Wang; Song, Jian; Zhang, Yong; Huang, Ming; Huang, Jian; Zhu, Jing; Huang, Shan; Wang, Meng

    2016-03-01

    This paper used excitation-emission matrix spectroscopy (EEMs) to probe the fluorescence properties of dissolved organic matter (DOM) in the overlying water with different dissolved oxygen (DO) conditions, investigating the relationship between protein-like fluorescence intensity and total nitrogen concentration. The resulting fluorescence spectra revealed three protein-like components (high-excitation wavelength tyrosine, low-excitation wavelength tyrosine, low-excitation wavelength tryptophan) and two fulvic-like components (ultraviolet fulvic-like components, visible fulvic-like components) in the overlying water. Moreover, the protein-like components were dominant in the overlying water's DOM. The fluorescence intensity of the protein-like components decreased significantly after aeration. Two of the protein-like components--the low-excitation wavelength tyrosine and the low-excitation wavelength tryptophan--were more susceptible to degradation by microorganisms within the degradable organic matter with respect to the high-excitation wavelength tyrosine. In contrast, the ultraviolet and visible fulvic-like fluorescence intensity increased along with increasing DO concentration, indicating that the fulvic-like components were part of the refractory organics. The fluorescence indices of the DOM in the overlying water were between 1.65-1.80, suggesting that the sources of the DOM were related to terrigenous sediments and microbial metabolic processes, with the primary source being the contribution from microbial metabolism. The fluorescence indices increased along with DO growth, which showed that microbial biomass and microbial activity gradually increased with increasing DO while microbial metabolism also improved, which also increased the biogenic components in the overlying water. The fluorescence intensity of the high-excitation wavelength tyrosine peak A showed a good linear relationship with the total nitrogen concentration at higher DO concentrations of 2

  7. Dissolved organic matter export from a forested watershed during Hurricane Irene

    NASA Astrophysics Data System (ADS)

    Yoon, Byungman; Raymond, Peter A.

    2012-09-01

    We incorporate high-resolution time-series data to calculate the total amount of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) transported during Hurricane Irene in Esopus Creek in New York (August 2011). During this 200-yr event the Esopus Creek experienced a 330-fold discharge increase and a 4-fold increase in concentration, resulting in the export of roughly 43% and 31% of its average annual DOC and DON fluxes, respectively, in just 5 days. The source of this large dissolved organic matter (DOM) flux also shifted during its course and showed an increased contribution of aromatic organic matter. We conclude that more frequent large events due to climate change will increase the export of terrigenous dissolved organic matter, and potentially impact the water quality and biogeochemistry of lakes and coastal systems. In addition, we show that the use of conventional models for extreme events lead to erroneous flux calculations, unless supported by high resolution data collected during the events.

  8. Spatial and temporal variations of dissolved organic matter dynamics in a disturbed Sphagnum peatland after hydrological restoration

    NASA Astrophysics Data System (ADS)

    Le Moing, Franck; Guirimand-Dufour, Audrey; Jozja, Nevila; Defarge, Christian; D'Angelo, Benoît; Binet, Stéphane; Gogo, Sébastien; Laggoun, Fatima

    2015-04-01

    Peatlands contain a third of the world soil C in spite of their relatively low global area (3% of land area). They can become sources of C because of human disturbances such as drainage. The aim of this work is to assess the effect of an hydrological restoration on a disturbed Sphagnum peatland. It concerns spatial and temporal variations of dissolved organic matter (DOM) dynamics. The investigated site was La Guette peatland (France, N 47°19'44', E 2°17'04', alt. 154m), whose hydrological conditions are influenced by a road passing through its former area. The road drain accelerates drying mechanisms, favouring thus vascular plants settlement to the detriment of specific flora of peatlands (i.e. Sphagnum). Hydrological restoration was undertaken in February 2014. It consisted in building thresholds to slow down drain runoff and to promote the soil rewetting. Two transects of piezometers were settled in independent two hydrological sub-systems: Trans-up and Trans-down. Trans-down is supposed to be influenced by the hydrological restoration, while Trans-up is not. These transects cross the peatland and follow water flow direction until the outlet. Six sampling campaigns were performed before, during and after the vegetation period. Water conductivity and pH were measured on site. Water samples were collected in the piezometers. Samples were filtered in the field at 0.45 μm. Concentrations of dissolved organic carbon (DOC), cations (Na+, K+, Ca2+, Mg2+, NH4+) and anions (Cl-, SO42-, PO43-, NO2-, NO3-) were measured. Absorbance was measured by UV-VIS spectrophotometer to assess SUVA254 and aromaticity of DOM. Three-dimensional excitation-emission matrices (EEM) were undertaken to characterise fluorescent DOM (FDOM). Humification (HIX) and biological (BIX) fluorescence indices were calculated. PARAFAC algorithm was used to treat EEMs. Precipitations and water levels were measured automatically by a weather station and automatic probes, respectively. Rain water was

  9. Dissolving efficacy of some organic solvents on gutta-percha.

    PubMed

    Magalhães, Bianca Silva; Johann, Julia Elis; Lund, Rafael Guerra; Martos, Josué; Del Pino, Francisco Augusto Burkert

    2007-01-01

    The aim of this study was to evaluate the solubility of gutta-percha in four organic solvents used in endodontics. The solubility of gutta-percha (Dentsply) was assessed in xylol, orange oil, eucalyptol, chloroform and distilled water. A hundred and fifty samples of gutta-percha were prepared using a standardized stainless steel mould and divided into five groups for immersion in the different solvents tested and in distilled water (control group) for 2, 5 and 10 minutes. The means of gutta-percha dissolution in the solvents were obtained by the difference between the pre-immersion original weight and the post-immersion weight in a digital analytical scale (Gehaka-AG2000). Data were statistically analyzed by Analysis of Variance (ANOVA) and multiple comparisons with Scheffes test (p<0.05). The best solvency capacity was obtained with xylol. Chloroform, orange oil and eucalyptol presented similar results, and distilled water did not promote alterations in the gutta-percha. PMID:18060255

  10. Results of the 2008 dissolved organic matter fluorescence intercalibration study

    NASA Astrophysics Data System (ADS)

    Murphy, K. R.; Butler, K.; Spencer, R. G.; Boehme, J.; Aiken, G.

    2009-12-01

    In 2008, 20 laboratories around the world participated in an intercalibration study of organic matter fluorescence measurements via Excitation-Emission Matrix Spectroscopy (EEMS). The goal was to assess the variability of fluorescence measurements obtained for identical samples (n = 5 natural samples, Suwanee River Fulvic Acid, quinine sulphate and four Starna Fluorescence Reference cells) by different laboratories, and to examine potential sources of this variability. Operator error was found to be a significant source of variability, with 6 laboratories submitting erroneous EEMs in an initial round. Uncorrected EEMs were significantly different from corrected EEMs, particularly at relatively low and relatively high excitation (λex) and emission (λem) wavelengths. When data from each lab were corrected according to a standard set of algorithms, the variability between EEMs for the same sample measured by different labs was wavelength dependent, with EEMs normalized to raman areas more similar at low λex and λem, and EEMs normalized to quinine sulphate equivalents more similar at higher wavelengths. The results confirm the importance of (1) applying spectral corrections prior to comparing fluorescence data acquired on different instruments, (2) full reporting of correction procedures and implementation according to an agreed standard protocol, and (3) strict implementation of quality assurance protocols prior to reporting EEMs.

  11. Aqueous leaching of organic acids and dissolved organic carbon from various biochars prepared at different temperatures.

    PubMed

    Liu, Peng; Ptacek, Carol J; Blowes, David W; Berti, William R; Landis, Richard C

    2015-03-01

    Biochar has been used as a soil amendment, as a water treatment material, and for carbon (C) sequestration. Thirty-six biochars, produced from wood, agricultural residue, and manure feedstocks at different temperatures, were evaluated for the aqueous leaching of different forms of soluble C. The release of inorganic C (alkalinity), organic acids (OAs), and total dissolved organic C (DOC) was highly variable and dependent on the feedstock and pyrolysis temperature. The pH and alkalinity increased for the majority of samples. Higher pH values were associated with high-temperature (high-T) (600 and 700°C) biochars. Statistically significant differences in alkalinity were not observed between low-temperature (low-T) (300°C) and high-T biochars, whereas alkalinity released from wood-based biochar was significantly lower than from others. Concentrations of OAs and DOC released from low-T biochars were greater than from high-T biochars. The C in the OAs represented 1 to 60% of the total DOC released, indicating the presence of other DOC forms. The C released as DOC represented up to 3% (majority <0.1%) of the total C in the biochar. Scanning electron microscopy with energy dispersive X-ray spectroscopy showed the high-T biochars had a greater proportion of micropores. Fourier transform infrared spectroscopy showed that hydroxyl, aliphatic, and quinone were the predominant functional groups of all biochars and that the abundance of other functional groups was dependent on the feedstock. The release of DOC, especially bioavailable forms such as OAs, may promote growth of organisms and heavy metal complexation and diminish the potential effectiveness of various biochars for C sequestration. PMID:26023986

  12. Complexation of trace organic contaminants with fractionated dissolved organic matter: implications for mass spectrometric quantification.

    PubMed

    Ruiz, Selene Hernandez; Wickramasekara, Samanthi; Abrell, Leif; Gao, Xiaodong; Chefetz, Benny; Chorover, Jon

    2013-04-01

    Interaction with aqueous phase dissolved organic matter (DOM) can alter the fate of trace organic contaminants of emerging concern once they enter the water cycle. In order to probe possible DOM binding mechanisms and their consequences for contaminant detection and quantification in natural waters, a set of laboratory experiments was conducted with aqueous solutions containing various operationally-defined "hydrophilic" and "hydrophobic" freshwater DOM fractions isolated by resin adsorption techniques from reference Suwannee River natural organic matter (SROM). Per unit mass of SROM carbon, hydrophobic acids (HoA) comprised the largest C fraction (0.63±0.029), followed by hydrophilic-neutrals (HiN, 0.11±0.01) and acids (HiA, 0.09±0.017). Aqueous solutions comprising 8mgL(-1) DOC of each SROM fraction were spiked with a concentration range (10-1000μgL(-1)) of bisphenol A (BPA), carbamazepine (CBZ), or ibuprofen (IBU) as model target compounds in 24mM NH4HCO3 background electrolyte at pH 7.4. Contaminant interaction with the SROM fractions was probed using fluorescence spectroscopy, and effects on quantitative analysis of the target compounds were measured using direct aqueous-injection liquid chromatography tandem mass spectrometry (LC-MS/MS). Total quenching was greater for the hydrophilic fractions of SROM and associations were principally with protein-like and fulvic acid-like constituents. Whereas LC-MS/MS recoveries indicated relatively weak interactions with most SROM factions, an important exception was the HiA fraction, which diminished recovery of CBZ and IBU by ca. 30% and 70%, respectively, indicating relatively strong molecular interactions. PMID:23276460

  13. Fluorescence spectroscopy: considerations for highly absorbing dissolved organic matter samples

    NASA Astrophysics Data System (ADS)

    Simone, B. E.; Miller, M.; McKnight, D. M.

    2009-12-01

    Fluorescence spectroscopy is a robust method for characterizing organic matter (OM). However, proper collection and correction of spectra are necessary to provide useful data. One important correction is the inner-filter correction, which primarily accounts for the inner-filter effect by adjusting for the wavelength dependent attenuation of emitted light by the solution prior to detection by the fluorometer. The most commonly used correction is based on an assumption that light is emitted at the center of the pathlength. Thus, the inner-filter effect is more pronounced in highly absorbing samples, and has the potential to skew the fluorescence spectra. For this study, the terrestrially derived Suwannee River fulvic acid (SRFA) and microbially derived Pony Lake fulvic acid (PLFA), from the International Humic Substances Society (IHSS), were diluted to incremental absorbances at a wavelength of 254 nm from 0.05 to 1.0 at pH 4 and 7. Three dimensional fluorescence spectra were measured and modeled with the Cory and McKnight (2005) parallel factor analysis (PARAFAC) model which resolves the fluorescence spectra into 13 components, including quinone-like and protein-like components. In the absence of inner-filter effects, plots of absorbance vs. loadings should be linear. Using the data from absorbance of 0.05 to 0.3, where the inner-filter affect is least pronounced, a linear regression was created and used as a baseline to predict component loadings at higher absorbance values in the absence of inner-filter effects. Results indicate that at absorbance values greater than 0.3, the commonly-used inner-filter correction is not able to remove the inner-filter effect. Therefore, in order to obtain reliable component loadings and correctly interpret the spectra, samples should be diluted to absorbance values less than 0.3 at 254 nm prior to collection of three dimensional fluorescence scans. The recommendation of a maximum absorbance of 0.3 agrees with the results of a

  14. ISOLATION OF DISSOLVED ORGANIC MATTER FROM THE SUWANNEE RIVER USING REVERSE OSMOSIS

    EPA Science Inventory

    A portable reverse osmosis (RO) system was constructed and used to concentrate dissolved organic matter (DOM) from the Suwannee River in southeastern Georgia. sing this RO system, 150-180 1/h of river water could be processed with 90% recovery of DOM. fter further cation exchange...

  15. Influence of Dissolved Organic Matter and Fe (II) on the Abiotic Reduction of Pentachloronitrobenzene

    EPA Science Inventory

    Nitroaromatic pesticides (NAPs) are hydrophobic contaminants that can accumulate in sediments by the deposition of suspended solids from surface waters. Fe(II) and dissolved organic matter (DOM), present in suboxic and anoxic zones of freshwater sediments, can transform NAPs in n...

  16. Response to Comment on “Dilution limits dissolved organic carbon utilization in the deep ocean”

    NASA Astrophysics Data System (ADS)

    Arrieta, Jesús M.; Mayol, Eva; Hansman, Roberta L.; Herndl, Gerhard J.; Dittmar, Thorsten; Duarte, Carlos M.

    2015-12-01

    Our recent finding that dilution limits dissolved organic carbon (DOC) utilization in the deep ocean has been criticized based on the common misconception that lability equates to rapid and complete utilization. Even when considering the redefinition of recalcitrant DOC recently proposed by Jiao et al., the dilution hypothesis best explains our experimental observations.

  17. Method for removing and decolorizing aqueous waste effluents containing dissolved or dispersed organic matter

    DOEpatents

    Case, F.N.; Ketchen, E.E.

    1975-10-14

    A method is provided for treating organic waste material dissolved or dispersed in an aqueous effluent, which comprises contacting the effluent with an inert particulate carbonaceous sorbent at an oxygen pressure up to 2000 psi, irradiating the resultant mixture with high energy radiation until a decolorized liquid is produced, and then separating the decolorized liquid.

  18. Organic carbon and dissolved oxygen budgets for a commerical-size, in-pond raceway system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Intensive production of Ictalurid catfish in the United States has increased over the past several years and a better understanding of the amount of organic carbon (OC) and dissolved oxygen (DO) in these culture environments is needed. Budgets for OC and DO were estimated over a production season (M...

  19. PHOTOCHEICAL PRODUCTION OF HYDROXYL RADICAL IN NATURAL WATER - THE ROLE OF IRON AND DISSOLVED ORGANIC MATTER

    EPA Science Inventory

    Photochemical hydroxyl radical (OH) production was measured in several natural waters to investigate the importance of colored dissolved organic matter (CDOM) and iron-CDOM complexes as sources of OH. High rates of OH photoproduction in highly colored, iron-rich, acidic waters a...

  20. INFLUENCE OF DISSOLVED ORGANIC MATTER ON AGROCHEMICAL PHOTOREACTIONS IN AQUATIC ENVIRONMENTS

    EPA Science Inventory

    Pioneering studies by Don Crosby and co-workers demonstrated that the sunlight-induced dissipation of agrochemicals in water often is strongly affected by natural constituents in the water such as nitrate and dissolved organic matter. In this presentation, the focus is on the rol...

  1. Production of Chromophoric Dissolved Organic Matter from Mangrove Leaf Litter and Floating Sargassum Colonies

    EPA Science Inventory

    Chromophoric dissolved organic matter (CDOM) strongly absorbs solar radiation in the blue-green and serves as the primary attenuator of water column ultraviolet radiation (UV-R). CDOM interferes with remote sensing of ocean chlorophyll and can control UV-R-induced damage to light...

  2. ESTIMATING THE POTENTIAL FOR FACILITATED TRANSPORT OF NAPROPAMIDE BY DISSOLVED ORGANIC MATTER

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dissolved organic matter (DOM) has been found to significantly affect the soil sorption/desorption of napropamide [2-(a-naphthoxy-N, N-diethylpropionamide] and to enhance its transport through soil columns. A method to qualitatively predict if DOM will enhance the transport of napropamide based on e...

  3. PHOTOCHEMICAL MINERALIZATION OF DISSOLVED ORGANIC NITROGEN TO AMMONIUM IN THE BALTIC SEA

    EPA Science Inventory

    Solar radiation-induced photochemistry can be considered as a new source of nutrients when photochemical reactions release bioavailable nitrogen from biologically non-reactive dissolved organic nitrogen (DON). Pretreatments of Baltic Sea waters in the dark indicated that >72% of ...

  4. Importance of Dissolved Organic Nitrogen to Water Quality in Narragansett Bay

    EPA Science Inventory

    This preliminary analysis of the importance of the dissolved organic nitrogen (DON) pool in Narragansett Bay is being conducted as part of a five-year study of Narragansett Bay and its watershed. This larger study includes water quality and ecological modeling components that foc...

  5. CONSTANTS FOR MERCURY BINDING BY DISSOLVED ORGANIC MATTER ISOLATES FROM THE FLORIDA EVERGLADES. (R827653)

    EPA Science Inventory

    Dissolved organic matter (DOM) has been implicated as an important complexing agent for Hg that can affect its mobility and bioavailability in aquatic ecosystems. However, binding constants for natural Hg-DOM complexes are not well known. We employed a competitive ligand appro...

  6. Comment on “Dilution limits dissolved organic carbon utilization in the deep ocean”

    NASA Astrophysics Data System (ADS)

    Jiao, Nianzhi; Legendre, Louis; Robinson, Carol; Thomas, Helmuth; Luo, Ya-Wei; Dang, Hongyue; Liu, Jihua; Zhang, Rui; Tang, Kai; Luo, Tingwei; Li, Chao; Wang, Xiaoxue; Zhang, Chuanlun

    2015-12-01

    Arrieta et al. (Reports, 17 April 2015, p. 331) propose that low concentrations of labile dissolved organic carbon (DOC) preclude prokaryotic consumption of a substantial fraction of DOC in the deep ocean and that this dilution acts as an alternative mechanism to recalcitrance for long-term DOC storage. Here, we show that the authors’ data do not support their claims.

  7. Chemical compositions of dissolved organic matter from various sources as characterized by solid-state NMR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dissolved organic matter (DOM) in surface waters plays an important role in biogeochemical and ecological processes. This study used solid-state NMR techniques to explore the molecular signatures of riverine DOM in relation to its point and nonpoint sources. DOM samples were isolated from (1) two st...

  8. Pyrolysis temperature-dependent release of dissolved organic carbon from plant, manure, and biorefinery wastes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Limited information is available to understand the chemical structure of biochar’s labile dissolved organic carbon (DOC) fraction that will change amended soil’s DOC composition. This study utilized the high sensitivity of fluorescence excitation-emission (EEM) spectrophotometry to understand the s...

  9. TREATMENT OF URBAN STORMWATER FOR DISSOLVED POLLUTANTS: A COMPARATIVE STUDY OF THREE NATURAL ORGANIC MEDIA

    EPA Science Inventory

    The feasibility of using hard and soft wood tree mulch and processed jute fiber, as filter media, for treating mixtures of dissolved pollutants (toxic organic compounds and heavy metals) in urban stormwater (SW) runoff was evaluated. Copper (Cu), cadmium (Cd), chromium (Cr+6), l...

  10. ISOTOPIC BIOGEOCHEMISTRY OF DISSOLVED ORGANIC NITROGEN: A NEW TECHNIQUE AND APPLICATION. (R825151)

    EPA Science Inventory

    We present a new technique for isolating and isotopically characterizing dissolved organic nitrogen (DON) for non-marine waters, 15N values for DON from lacustrine samples and data suggesting that this technique will be a...

  11. PRODUCTION OF HYDRATED ELECTRONS FROM PHOTOIONIZATION OF DISSOLVED ORGANIC MATTER IN NATURAL WATERS

    EPA Science Inventory

    Under UV irradiation, an important primary photochemical reaction of colored dissolved organic matter (CDOM) is electron ejection, producing hydrated electrons (e-aq). The efficiency of this process has been studied in both fresh and seawater samples with both steady-state scave...

  12. [Temporal and Spatial Distribution Characteristics of Dissolved Organic Matter and Influencing Factors in Lake Chaohu].

    PubMed

    Ye, Lin-lin; Wu, Xiao-dong; Liu, Bo; Yan, De-zhi; Zhang, Mei-qi; Zhou, Yang

    2015-09-01

    To study the temporal and spatial distribution of dissolved organic matter (DOM) and the related influencing factors of Lake Chaohu, surface water samples were collected at seventeen sites in three different regions of the Lake from April 2013 to April 2014. The concentration of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) were then analyzed. A significance difference in DON concentration was observed among the sampling sites (P <0. 01, n = 13), which was caused by the terrestrial input from the western rivers and the bioavailability of DON. The ratio of total nitrogen to total phosphorus, total dissolved nitrogen to total dissolved phosphorus, and dissolved inorganic nitrogen to soluble reactive phosphorus (DIN/SRP) declined gradually during the phytoplankton bloom period, especially the ratio of DIN/SRP dropped to 5 ± 7 in August 2013, indicating the nitrogen was limited in lake water. Moreover, the concentration of DON was decreased and a significant negative correlation was observed between DON and Chl-a (r = - 0. 265, P < 0. 05, n = 91), suggesting that DON is bioavailable, and can be utilized by phytoplankton directly or indirectly during nitrogen limitation. No significant difference in DOC concentration was observed and water temperature was the major factor related to the variation of DOC. Chl-a and nitrate concentrations can also affect the dynamics of DOC. In addition, the ratio of DOC/DON was considerably varied, the concentration of DON contributed to the variation of DOC/DON, and DON was the major component contributed to the bioavailability of DOM. PMID:26717677

  13. Investigation of organic carbon transformation in soils of dominant dissolved organic carbon source zones

    NASA Astrophysics Data System (ADS)

    Pissarello, Anna; Miltner, Anja; Oosterwoud, Marieke; Fleckenstein, Jan; Kästner, Matthias

    2014-05-01

    Over the past 20 years both a decrease in soil organic matter (SOM) and an increase in the dissolved organic carbon (DOC) concentrations in surface water bodies, including drinking water reservoirs, have been recorded in the northern hemisphere. This development has severe consequences for soil fertility and for drinking water purification. As both processes occur simultaneously, we assume that microbial SOM degradation, which transforms SOM into CO2 and DOC, is a possible source of the additional DOC in the surface water. In addition we speculate that both processes are initially triggered by physical mechanisms, resulting in a modification of the organic matter solubility equilibria and thus in higher SOM availability and DOC mobilization. The general hypothesis of the study is therefore that SOM loss and DOC increase are combined consequences of enhanced microbial degradation of SOM and that this is a result of climate variations and global change, e.g. the increase of the temperature, the alteration of the water regime (i.e. increase of the frequency of drying and rewetting cycles and a higher number of heavy rain events), but also the decrease of the atmospheric acid deposition resulting in an increase of soil pH values. The general goal of the study is the identification of the dominant processes and controlling factors involved in soil microbial carbon turnover and mobilization of DOC in soils from catchment areas that contribute DOC to the receiving waters and the downstream Rappbode reservoir, which showed a pronounced increase in DOC concentration in recent years. This reservoir is the source of drinking water for about one million people in northern Germany. Preliminary screening experiments, consisting of 65-day soil batch incubation experiments, have been conducted in order to select the parameters (and the parameter ranges) of relevance for further in-depth experiments. During the experiments, different soil systems were exposed to different

  14. A Comparison of Dissolved and Particulate Organic Material in Two Southwestern Desert River Systems

    NASA Astrophysics Data System (ADS)

    Haas, P. A.; Brooks, P.

    2001-12-01

    Desert river systems of the southwestern U.S. acquire a substantial fraction of their dissolved organic matter (DOM) from the terrestrial environment during episodic rain events. This DOM provides carbon for stream metabolism and nitrogen, which is limiting in lower order streams in this environment. The San Pedro and Rio Grande Rivers represent two endpoints of catchment scale, discharge, and land use in the southwest. The San Pedro is a protected riparian corridor (San Pedro Riparian National Conservation Area), while the middle Rio Grande is a large river with extensive agriculture, irrigation, and reservoirs. Relative abundance and spectral properties of fulvic acids isolated from filtered samples were used to determine the source of dissolved organic carbon (DOC). Total DOC and particulate organic carbon (POC) changes with respect to episodic flooding events were compared for the two river systems. The San Pedro River DOC concentrations remain low approximately 2.2 to 3.3 ppm unless a relatively large storm event occurs when concentrations may go above 5.5 ppm (1000cfs flow). In contrast typical concentrations for the Rio Grande were approximately 5 ppm during the monsoon season. Particulate organic matter (POM) appears to be a more significant source of organic matter to the San Pedro than DOM. The relative importance of terrestrial vs. aquatic and dissolved vs. particulate organic matter with respect to aquatic ecosystems will be discussed.

  15. Enhanced dissolution of cinnabar (mercuric sulfide) by dissolved organic matter isolated from the Florida Everglades

    SciTech Connect

    Ravichandran, M.; Ryan, J.N.; Aiken, G.R.; Reddy, M.M.

    1998-11-01

    Organic matter isolated from the Florida Everglades caused a dramatic increase in mercury release from cinnabar (HgS), a solid with limited solubility. Hydrophobic (a mixture of both humic and fulvic) acids dissolved more mercury than hydrophilic acids and other nonacid fractions of dissolved organic matter (DOM). Cinnabar dissolution by isolated organic matter and natural water samples was inhibited by cations such as Ca{sup 2+}. Dissolution was independent of oxygen content in experimental solutions. Dissolution experiments conducted in Dl water had no detectable dissolved mercury. The presence of various inorganic (chloride, sulfate, or sulfide) and organic ligands (salicylic acid, acetic acid, EDTA, or cysteine) did not enhance the dissolution of mercury from the mineral. Aromatic carbon content in the isolates correlated positively with enhanced cinnabar dissolution. {zeta}-potential measurements indicated sorption of negatively charged organic matter to the negatively charged cinnabar at pH 6.0. Possible mechanisms of dissolution include surface complexation of mercury and oxidation of surface sulfur species by the organic matter.

  16. The Relationship Between Dissolved Organic Matter Composition and Organic Matter Optical Properties in Freshwaters

    NASA Astrophysics Data System (ADS)

    Aiken, G.; Spencer, R. G.; Butler, K.

    2010-12-01

    Dissolved organic matter (DOM) chemistry and flux are potentially useful, albeit, underutilized, indicators of watershed characteristics, climate influences on watershed hydrology and soils, and changes associated with resource management. Source materials, watershed geochemistry, oxidative processes and hydrology exert strong influences on the nature and reactivity of DOM in aquatic systems. The molecules that comprise DOM, in turn, control a number of environmental processes important for ecosystem function including light penetration and photochemistry, microbial activity, mineral dissolution/precipitation, and the transport and reactivity of hydrophobic compounds and metals (e.g. Hg). In particular, aromatic molecules derived from higher plants exert strong controls on aquatic photochemistry, and on the transport and biogeochemistry of metals. Assessment of DOM composition and transport, therefore, can provide a basis for understanding watershed processes and biogeochemistry of rivers and streams. Here we present results of multi-year studies designed to assess the seasonal and spatial variability of DOM quantity and quality for 57 North American Rivers. DOM concentrations and composition, based on DOM fractionation on XAD resins, ultraviolet (UV)/visible absorption and fluorescence spectroscopic analyses, and specific compound analyses, varied greatly both between sites and seasonally within a given site. DOM in these rivers exhibited a wide range of concentration (<80 to >4000 µM C* L-1) and specific ultra-violet absorbance at 254 nm (SUVA254) (0.6 to 5 L *mg C-1 *m-1), an optical measurement that is an indicator of aromatic carbon content. In almost all systems, UV absorbance measured at specific wavelengths (e.g. 254 nm) correlated strongly with DOM and hydrophobic organic acid (HPOA) content (aquatic humic substances). The relationships between dissolved organic carbon (DOC) concentration and absorbance for the range of systems were quite variable due to

  17. Dissolved total hydrolyzable enantiomeric amino acids in precipitation: Implications on bacterial contributions to atmospheric organic matter

    NASA Astrophysics Data System (ADS)

    Yan, Ge; Kim, Guebuem; Kim, Jeonghyun; Jeong, Yu-Sik; Kim, Young Il

    2015-03-01

    We analyzed dissolved organic carbon (DOC), dissolved organic nitrogen (DON), and dissolved enantiomeric amino acids in precipitation samples collected at two sites in Korea over a one-year period. The average concentrations of DOC, DON, and total hydrolyzable amino acids at Seoul (an inland urban area) were lower than those at Uljin (a coastal rural area). The different bulk compositions of dissolved organic matter (DOM) at these two sites (reflected by qualitative indicators) were mainly attributed to differences in contributing sources. The D-enantiomers of four individual amino acids (aspartic acid, glutamic acid, serine, and alanine) were ubiquitously present, with average enantiomeric (D/L) ratios of 0.34, 0.26, 0.21, and 0.61 for Seoul, and 0.18, 0.11, 0.09, and 0.31 for Uljin, respectively. The much higher D/L ratios observed at Seoul than at Uljin might result from more advanced diagenetic stages as well as higher contributions from bacteria inhabiting terrestrial environments. The C- and N-normalized yields of D-alanine in DOM of our samples were found to be comparable to literature values reported for aquatic systems, where a significant portion of DOM was suggested to be of bacterial origin. Our study suggests that bacteria and their remnants might constitute an important fraction of OM in the atmosphere, contributing significantly to the quality of atmospheric OM and its post-depositional bioavailability in the surface ecosystems.

  18. Importance of within-lake processes in affecting the dynamics of dissolved organic carbon and dissolved organic and inorganic nitrogen in an Adirondack forested lake/watershed

    NASA Astrophysics Data System (ADS)

    Kang, P.-G.; Mitchell, M. J.; McHale, P. J.; Driscoll, C. T.; McHale, M. R.; Inamdar, S.; Park, J.-H.

    2015-10-01

    Lakes nested in forested watersheds play important roles in mediating the concentrations and fluxes of dissolved organic matter. We compared long-term patterns of concentrations and fluxes of dissolved organic carbon (DOC), dissolved organic nitrogen (DON), and dissolved inorganic nitrogen (DIN) in the Arbutus Lake Watershed to evaluate how a lake nested in a forested watershed affects the dynamics of DOC and DON in the Adirondack Mountains of New York State, USA. We observed no significant long-term changes of concentrations and fluxes of DOC and DON in the Lake outlet since 1983 and 1994, respectively. However, the temporal patterns of DOC and DON concentrations in the Lake inlet showed significant seasonality such as increases during the vegetation-growing season along with notable decreases in the dormant season. A comparison of mass-balances between inlet and outlet for the period from 2000 to 2009 suggested that the Lake was a sink of DOC (mean of influx minus outflux: +1140 mol C ha-1 yr-1). In contrast, the difference of discharge-weighted DON concentrations (mean of inlet minus outlet: -1.0 μmol N L-1) between inlet and outlet was much smaller than the discharge-weighted DOC concentrations (average of inlet minus outlet: +87 μmol C L-1). DON fluxes showed considerable variation among years (mean of influx minus outflux: +8 mol N ha-1 yr-1; range of differences: -15 to 27 mol N ha-1 yr-1). DON exhibited low % retention ((influx - outflux) / influx) (mean: 6.9 %, range: -34.8 to +31.2) compared to DOC (mean: 30.1 %, range: +9.2 to +44.1). The resultant increase of DON within the lake was closely linked with a net decrease of DIN through monthly Pearson correlation analysis, suggesting the importance of biotic factors in mediating a lake DON dynamics. Our results show different relative retentions of DOC compared with DON, along with a larger retention of DIN than DON, suggesting that DOC and DON might display substantially different biogeochemical

  19. Organic amendments' dissolved organic carbon influences bioavailability of agricultural soil DOC

    NASA Astrophysics Data System (ADS)

    Straathof, Angela L.; Chincarini, Riccardo; Hoffland, Ellis; Comans, Rob N. J.

    2013-04-01

    Agricultural soils benefit from additions of organic amendments because they improve soil structure, are a source of plant nutrients, and increase concentrations of soil organic carbon (SOC). The latter fuels microbial processes important for plant growth, including nutrient mineralization and the suppression of plant diseases. However, these amendment additions range in quality and quantity of C and little is known about how their properties interact with native soil C and affect turnover. The dissolved pool of SOC (DOC) may be the most important C source for these processes as it is more biologically available and thus relatively easily turned over by the soil microbial biomass. Using a rapid-batch DOC fractionation procedure, we studied the composition of different organic amendments' DOC pools and measured how their additions change the quantity and turnover of soil DOC. Fractions isolated and quantified with this procedure include humic and fulvic acids, hydrophobic neutral and hydrophilic compounds. We hypothesized that these range from biologically recalcitrant to readily available, respectively. Amendments analysed included composts of different source materials and maturation stages collected from two different compost facilities in the Netherlands. Both total DOC concentrations and proportions of the aforementioned fractions ranged highly between composts. Composts cured for >10 days had a lower proportion of hydrophilic C compounds, suggesting that these are the most bioavailable and released as CO2 via microbial activity during maturation. To measure the effects of compost DOC on soil DOC, we extracted the former and added it to a sandy soil in an incubation experiment. The amendment increased soil total DOC, CO2 production from the soil, and the pools of humic and fulvic acids as a proportion of total DOC. Turnover of C from the incubated soil was measured by substrate-induced CO2 production (an indicator of microbial activity) from a 96-well

  20. Tracing the long-term microbial production of recalcitrant fluorescent dissolved organic matter in seawater

    NASA Astrophysics Data System (ADS)

    Jørgensen, Linda; Stedmon, Colin A.; Granskog, Mats A.; Middelboe, Mathias

    2014-04-01

    The majority of dissolved organic matter (DOM) in the ocean is resistant to microbial degradation, yet its formation remains poorly understood. The fluorescent fraction of DOM can be used to trace the formation of recalcitrant DOM (RDOM). A long-term (> 1 year) experiment revealed 27-52% removal of dissolved organic carbon and a nonlinear increase in RDOM fluorescence associated with microbial turnover of semilabile DOM. This fluorescence was also produced using glucose as the only initial carbon source, suggesting that degradation of prokaryote remnants contributes to RDOM. Our results indicate that the formation of a fluorescent RDOM component depends on the bioavailability of the substrate: the less labile, the larger the production of fluorescent RDOM relative to organic carbon remineralized. The anticipated increase in microbial carbon demand due to ocean warming can potentially force microbes to degrade less labile substrates, thereby increasing RDOM production and stimulating ocean carbon storage.

  1. Complexation of Cu with dissolved organic carbon in municipal solid waste incinerator bottom ash leachates

    SciTech Connect

    Meima, J.A.; Van Zomeren, A.; Comans, R.N.J.

    1999-05-01

    The complexation of Cu with dissolved organic carbon (DOC) in leachates from fresh and 1.5-year old municipal solid waste incinerator (MSWI) bottom ash was studied using a competitive ligands-exchange solvent extraction procedure. At least two different ligands appear to be involved in the complexation of copper with DOC. The dissolved Cu appears to be 95--100% organically bound in leachates from both the fresh and the weathered bottom ash, and geochemical modeling indicates that the leaching of Cu from these ashes is primarily controlled by the availability of the organic ligands in the bottom ash. The mechanism that binds Cu to the solid phase is likely to be tenorite in the fresh bottom ash, and sorption to amorphous Fe/Al-(hydr)-oxides in the weathered bottom ash.

  2. Coupled ocean-atmosphere loss of marine refractory dissolved organic carbon

    NASA Astrophysics Data System (ADS)

    Kieber, David J.; Keene, William C.; Frossard, Amanda A.; Long, Michael S.; Maben, John R.; Russell, Lynn M.; Kinsey, Joanna D.; Tyssebotn, Inger Marie B.; Quinn, Patricia K.; Bates, Timothy S.

    2016-03-01

    The oceans hold a massive quantity of organic carbon, nearly all of which is dissolved and more than 95% is refractory, cycling through the oceans several times before complete removal. The vast reservoir of refractory dissolved organic carbon (RDOC) is a critical component of the global carbon cycle that is relevant to our understanding of fundamental marine biogeochemical processes and the role of the oceans in climate change with respect to long-term storage and sequestration of atmospheric carbon dioxide. Here we show that RDOC includes surface-active organic matter that can be incorporated into primary marine aerosol produced by bursting bubbles at the sea surface. We propose that this process will deliver RDOC from the sea surface to the atmosphere wherein its photochemical oxidation corresponds to a potentially important and hitherto unknown removal mechanism for marine RDOC.

  3. Biogeochemical characteristics of dissolved and particulate organic matter in Russian rivers entering the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Lobbes, Jörg M.; Fitznar, Hans Peter; Kattner, Gerhard

    2000-09-01

    The biogeochemical signature of riverine matter in the Russian Arctic was investigated to establish a background for tracing terrestrial organic material in the Arctic Ocean. Elemental and lignin compositions of particulate and dissolved organic matter (POM, DOM), stable carbon isotope ratios of POM and nutrient concentrations are reported for 12 Russian rivers along 4000 km of coastline. The 12 rivers account for about 43% of the freshwater supply to the Arctic Ocean. Nine rivers drain both tundra and taiga areas and three rivers only tundra. Concentrations of nitrogenous nutrients and phosphate were low, whereas silicate values were generally high with only few exceptions. The concentrations of particulate organic carbon (POC) varied between 25.5 and 291 μmol/L C, contributing 0.4-2.1% to the total suspended sediment (TSS). Dissolved organic carbon (DOC) ranging from 230 to 1006 μmol/L C was on average eight times higher than POC. The concentrations of particulate and dissolved organic nitrogen were similar (ca. 11 μmol/L N) resulting in four times higher C/N ratios in the dissolved fraction (48) compared to the particulate fraction (11). The δ 13C ratios were uniform (-25.6 to -27.4‰) and similar in taiga and tundra draining rivers. The exclusively terrestrial component lignin, determined as lignin phenols after cupric oxide oxidation, ranged from 5.6 to 37.6 nmol/L in the particulate fraction and from 34 to 319 nmol/L in the dissolved fraction. The syringyl/vanillyl (S/V) and cinnamyl/vanillyl (C/V) ratios of the particulate and dissolved lignin phenols were significantly correlated with the proportion of tundra and taiga in the drainage areas. This is true despite different formation processes and diagenetic degree of POM and DOM, as evident from acid/aldehyde ratios of vanillyl phenols [(Ad/Al)v]. Export rates were calculated from the carbon and lignin data. The 12 rivers studied transport about 10 × 10 12 g of total organic carbon per year into the

  4. CARBON LOSS AND OPTICAL PROPERTY CHANGES DURING LONG-TERM PHOTOCHEMICAL AND BIOLOGICAL DEGRADATION OF ESTUARINE DISSOLVED ORGANIC MATTER

    EPA Science Inventory

    Terrestrially derived dissolved organic matter (DOM) impacts the optical properties of coastal seawater and affects carbon cycling on a global scale. We studied sequential long-term photochemical and biological degradation of estuarine dissolved organic matter from the
    Satilla...

  5. Optical signatures of dissolved organic matter from the Endeavour and Axial vent fields

    NASA Astrophysics Data System (ADS)

    Stubbins, A.; Butterfield, D.; Rossel, P. E.; Dittmar, T.

    2011-12-01

    Recent studies have revealed that hydrothermal systems in the deep ocean are both sources and processors of dissolved organic matter (DOM). Sub-floor stores of fossil organic carbon may be exported to the deep ocean directly adding fossil C to the deep ocean dissolved organic carbon (DOC) pool and altering its apparent age. Fossil methane and carbon dioxide are also exported from vents. These C sources can then be utilized by chemotrophs and later enter the DOM pool as fossil DOC. Finally, when deep ocean waters are entrained into vent systems, the resultant heating may alter the chemical and optical properties of the DOM in these deep ocean waters. Dissolved organic matter (DOM) samples were collected from vents ranging in temperature from 10 to over 300 degrees centigrade across the Endeavour and Axial fields along the Juan de Fuca ridge. Elevated DOC and protein-like fluorescence reveal the vents to fuel the chemotrophic production of organic matter either in the adjacent water column or local sediments. High DOC and increased humic-like fluorescence in the hottest vent fluids, suggests the thermal degradation of DOM either from buried fossil sources or the entrainment of local waters enriched in DOC due to chemotrophic productivity. Natural and radio-carbon analyses are underway and will provide further insight into the ultimate source of this colored, fluorescent hydrothermal DOM.

  6. Copper-binding ability of dissolved organic matter derived from anaerobically digested biosolids

    SciTech Connect

    Han, N.; Thompson, M.L.

    1999-05-01

    The fate of metals in soils where soluble organic compound are present may be strongly influenced by the degree to which they are complexed by organic ligands. The authors undertook this study to determine the combined effect of molecular weight (MW) and hydrophobicity on the Cu-binding ability of dissolved organic compounds in biosolids (i.e., sewage sludge). Dissolved organic matter (DOM) from anaerobically digested sewage biosolids was fractionated by using a combination of MW fractionation and XAD-8 resin chromatography. The Cu-binding abilities of the DOM fractions were obtained by using a Cu{sup 2+}-ion-selective electrode (Cu-ISE) technique. The Cu-binding ability of fractionated DOM decreased significantly with increasing molecular weight, indicating that low-MW DOM had more metal-binding sites than high-MW DOM. Within each MW fraction, the hydrophilic and the hydrophobic components also exhibited differences in Cu-binding ability. For the DOM with MW 500--3,500 Da, the hydrophilic fraction showed a greater Cu-binding capacity than did the hydrophobic fraction, whereas the hydrophobic acid components were most important in binding Cu for DOM with MW > 3,500 Da. The maximum Cu-binding capacities of different biosolids-derived DOM fractions, estimated by employing a Langmuir model, ranged from 1.85 to 14.3 mmol Cu mol{sup {minus}1} dissolved organic C (DOC), which is the same order of magnitude as similar measurements of DOM from other sources.

  7. A major biopolymeric component to dissolved organic carbon in surface sea water

    NASA Astrophysics Data System (ADS)

    Aluwihare, Lihini I.; Repeta, Daniel J.; Chen, Robert F.

    1997-05-01

    Organic carbon dissolved in sea water is an important component of the global carbon cycle1. Concentrations of dissolved organic carbon (DOC) in the ocean's surface mixed layer are at least twice those in the deep sea2,3, because of the production of soluble carbon compounds by marine algae in the euphotic zone4,5. But very little is known about the chemical composition of DOC, and the connection between photosynthetic production and DOC accumulation is not well understood6,7. Here we report the chemical characterization of macromolecular DOC at several sites in the Atlantic and Pacific oceans. Neutral sugars, acetate and lipids show similar distributions, suggesting that these constituents are linked together in a common macromolecular structure. Chemical linkage patterns between the oligosaccharide portions of dissolved organic matter subjected to ultrafiltration are highly specific, with little variation between ocean basins. We show that laboratory culture experiments on the decomposition of algal exudate produce macromolecular organic matter with similar compositions and linkage characteristics. We propose that a significant fraction of DOC in sea surface water consists of structurally related and biosynthetically derived acyl oligosaccharides that persist after more labile organic matter has been degraded.

  8. INFLUENCE OF METHOD FOR REMOVAL OF SESTON ON THE DISSOLVED ORGANIC MATTER(1).

    PubMed

    Parker, B C

    1967-12-01

    Comparisons of various methods and method modifications for treating water samples to render them free of seston prior to analysis of dissolved organic matter have corroborated a number of suspected sources of error. Among the more important points arising from this study arc: 1. All cellulose ester filters must be washed to remove elutable carbon. 2. In some instances filtration to dryness may produce artifacts resulting from cell injury. 3. A significant difference in filter retention can result between 0.45 and 0.22 μ membranes. 4. Among the methods most satisfactory are wet filtration through 0.22 μ pre-washed Millipore membranes and continuous-flow centrifugation at ca. 10,000 x g and 100 cc/min flow rate, both of which have their inherent weaknesses and limitations. 5. Regular centrifugation does not remove some planktonic organisms which have considerable buoyancy, or organic substances may somehow be released by cells without producing morphological damage. The newly developed bio dialysis technique for dissolved organic matter collection consistently yielded lower values than continuous-flow centrifugation. In contrast, biodialysis yielded lower values for pond water and higher values for Scenedesmus cultures than the best filtration method. Evidence suggests that biodialysis will be useful as both a supplementary and, in some zuays, more accurate method in studies of dissolved organic matter. PMID:27065026

  9. Exchanges and photo-biogeochemical transformation of dissolved organic compounds in Eastern US tidal marsh ecosystems.

    NASA Astrophysics Data System (ADS)

    Tzortziou, Maria; Neale, Patrick; Megonigal, Patrick; Butterworth, Megan; Jaffe, Rudolf

    2010-05-01

    The role of tidal marshes as sources, sinks and/or transformers of biologically important nutrients, carbon and pollutants has been studied in various marsh-estuarine environments and geomorphological settings. Although there is no consensus on the magnitude and direction of marsh-estuary net (particulate and dissolved) organic fluxes, most previous studies suggest that salt marshes export dissolved organic carbon (DOC) to the surrounding estuarine waters. There has been less attention, however, to the influence of transformations on marsh-exported organic carbon composition or "quality". Yet, carbon composition affects a wide variety of estuarine processes, including microbial respiration and photochemistry. Our objectives in this study were to quantify the photo-reactivity and bio-availability of dissolved organic carbon compounds exported from tidal wetlands of the Chesapeake Bay and determine their effects on the optical properties of colored organic matter (CDOM). We quantified DOC bioavailability with two assays of microbial mineralization: the traditional batch incubation approach in which a suspension of DOM and microbial cells (1 µm filtrate) was incubated in bottles for 7 d, and a continuous-flow bioreactor approach in which DOC (0.2 µm filtrate) was passed through a microbial community that had been pre-established on glass beads from the same source water. Photochemical degradation was measured after a 10h exposure to filtered xenon irradiance simulating midday surface exposure. We measured decreases in CDOM absorption and fluorescence spectra, DOC concentrations, changes in molecular weight distribution, and increases in dissolved inorganic carbon (DIC) and CO2. Results provide important insights on the transformation, fate and cycling of marsh-exported organic compounds, and the role of tidal marsh systems as major regulators of short-scale biological, optical and biogeochemical variability in highly dynamic coastal margins and catchment areas.

  10. The characterization and bioavailability of dissolved organic carbon in deep subsurface and surface waters

    SciTech Connect

    Palumbo, A.V.; Jardine, P.M.; McCarthy, J.F. ); Zaidi, B.R. . Dept. of Marine Sciences)

    1990-01-01

    We characterized and compared the bioavailability of chemical fractions of dissolved organic carbon (DOC) from deep wells at the US Department of Energy Savannah River Plant (SRP) site with that from South Carolina surface waters. Experiments with three bacterial cultures (Corynebacterium sp., Pseudomonas sp., and a bacteria included isolated from the surface water) indicated that the bioavailability of the carbon in the near surface water may be limited by inorganic nutrients. Associated with well-defined organic compounds. The purpose of this preliminary investigation was to improve our understanding of the organic matter in groundwater by characterizing the natural organic matter in water recovered from different formations in the Deep Probe Subsurface Microbiology program and by determining if the natural organic carbon can support growth of bacterial populations. The characterization was directed at elucidating the properties of of dissolved or colloidal organic matter that are relevant to the transport and mobility of the organic matter (and contaminants sorbed to the organic matter) and that may also be relevant to the potential role of organic matter in groundwater as a nutrient source supporting microbial productivity in the deep subsurface. A secondary objective of this study was to determine the factors limiting microbial growth in surface waters and near surface groundwaters and to determine the response of the microbial community to a mixing of these waters.

  11. High fluvial export of dissolved organic nitrogen from a peatland catchment with elevated inorganic nitrogen deposition.

    PubMed

    Edokpa, D A; Evans, M G; Rothwell, J J

    2015-11-01

    This study investigates seasonal concentrations and fluxes of nitrogen (N) species under stormflow and baseflow conditions in the peat dominated Kinder River catchment, south Pennines, UK. This upland region has experienced decades of high atmospheric inorganic N deposition. Water samples were collected fortnightly over one year, in combination with high resolution stormflow sampling and discharge monitoring. The results reveal that dissolved organic nitrogen (DON) constitutes ~54% of the estimated annual total dissolved nitrogen (TDN) flux (14.3 kg N ha(-1) yr(-1)). DON cycling in the catchment is influenced by hydrological and biological controls, with greater concentrations under summer stormflow conditions. Dissolved organic carbon (DOC) and DON are closely coupled, with positive correlations observed during spring, summer and autumn stormflow conditions. A low annual mean DOC:DON ratio (<25) and elevated dissolved inorganic N concentrations (up to 63μmoll(-1) in summer) suggest that the Kinder catchment is at an advanced stage of N saturation. This study reveals that DON is a significant component of TDN in peatland fluvial systems that receive high atmospheric inputs of inorganic N. PMID:26119385

  12. PHOTOREACTIVITY OF CHROMOPHORIC DISSOLVED ORGANIC MATTER (CDOM) DERIVED FROM DECOMPOSITION OF VARIOUS VASCULAR PLANT AND ALGAL SOURCES

    EPA Science Inventory

    Chromophoric dissolved organic matter (CDOM) in aquatic environments is derived from the microbial decomposition of terrestrial and microbial organic matter. Here we present results of studies of the spectral properties and photoreactivity of the CDOM derived from several organi...

  13. PATTERNS AND CONTROLS OF DISSOLVED ORGANIC MATTER EXPORT BY MAJOR RIVERS: A NEW SEASONAL, SPATIALLY EXPLICIT, GLOBAL MODEL

    EPA Science Inventory

    River-derived dissolved organic matter (DOM) influences metabolism, light attenuation, and bioavailability of metals and nutrients in coastal ecosystems. Recent work suggests that DOM concentrations in surface waters vary seasonally because different organic matter pools are mobi...

  14. Application of passive sampling for measuring dissolved concentrations of organic contaminants in the water column at three marine superfund sites

    EPA Science Inventory

    At contaminated sediment sites, including U.S. EPA Superfund sites, it is critical to measure water column concentrations of freely dissolved contaminants to understand the complete exposure of aquatic organisms to hydrophobic organic contaminants (HOCs). However, historically a...

  15. Study of fouling and scaling in capacitive deionisation by using dissolved organic and inorganic salts.

    PubMed

    Mossad, Mohamed; Zou, Linda

    2013-01-15

    In this work, fouling, scaling and cleaning of the capacitive deionisation (CDI) with activated carbon electrodes were systematically investigated for the first time. Electrode fouling caused by dissolved organic matter using sodium salt of humic acid as a model foulant (measured by total organic carbon concentration, TOC) and inorganic salt (NaCl, MgCl(2), CaCl(2) and FeCl(3)) in the CDI feed solutions was investigated in a series of controlled fouling experiments. After each CDI experiment, a series of cleaning steps was performed to understand the reversibility of fouling accumulated on the electrode surface by analysing the cleaning solutions. The higher the TOC concentration in the CDI feed solution, the more the reduction of salt removal efficiency, declination in the production rate and energy consumption. Dissolved organic matter is the main cause of electrode fouling, as it blocks the activated carbon pores and reduces their electrosorption capacitance. Ca and Mg have no noticeable effect on the CDI treatment performance. However, Fe seemed to have a greater effect on CDI electrode fouling. Alkaline and acid cleaning solutions were able to restore the recovery of the CDI performance from fouling. Pre-treatment to reduce the dissolved organic matter levels is recommended to achieve sustainable treatment performance. PMID:23274796

  16. Molecular weight distribution of phosphorus fraction of aquatic dissolved organic matter.

    PubMed

    Ged, Evan C; Boyer, Treavor H

    2013-05-01

    This study characterized dissolved organic phosphorus (DOP) that is discharged from the Everglades Agricultural Area as part of the larger pool of aquatic dissolved organic matter (DOM). Whole water samples collected at the Everglades stormwater treat area 1 West (STA-1 W) were fractionated using a batch ultrafiltration method to separate organic compounds based on apparent molecular weight (AMW). Each AMW fraction of DOM was characterized for phosphorus, carbon, nitrogen, UV absorbance, and fluorescence. The DOP content of the Everglades water matrix was characteristically variable constituting 4-56% of total phosphorus (TP) and demonstrated no correlation with dissolved organic carbon (DOC). Measured values for DOP exceeded 14μgL(-1) in four out of five sampling dates making phosphorus load reductions problematic for the stormwater treatment areas (STAs), which target inorganic phosphorus and have a goal of 10μgL(-1) as TP. The molecular weight distributions revealed 40% of DOP is high molecular weight, aromatic-rich DOM. The results of this research are expected to be of interest to environmental chemists, environmental engineers, and water resources managers because DOP presents a major obstacle to achieving TP levels <10μgL(-1). PMID:23466281

  17. Cellulase activity and dissolved organic carbon release from lignocellulose macrophyte-derived in four trophic conditions.

    PubMed

    Bottino, Flávia; Cunha-Santino, Marcela Bianchessi; Bianchini, Irineu

    2016-01-01

    Considering the importance of lignocellulose macrophyte-derived for the energy flux in aquatic ecosystems and the nutrient concentrations as a function of force which influences the decomposition process, this study aims to relate the enzymatic activity and lignocellulose hydrolysis in different trophic statuses. Water samples and two macrophyte species were collected from the littoral zone of a subtropical Brazilian Reservoir. A lignocellulosic matrix was obtained using aqueous extraction of dried plant material (≈40°C). Incubations for decomposition of the lignocellulosic matrix were prepared using lignocelluloses, inoculums and filtered water simulating different trophic statuses with the same N:P ratio. The particulate organic carbon and dissolved organic carbon (POC and DOC, respectively) were quantified, the cellulase enzymatic activity was measured by releasing reducing sugars and immobilized carbon was analyzed by filtration. During the cellulose degradation indicated by the cellulase activity, the dissolved organic carbon daily rate and enzyme activity increased. It was related to a fast hydrolysable fraction of cellulose that contributed to short-term carbon immobilization (ca. 10 days). After approximately 20 days, the dissolved organic carbon and enzyme activity were inversely correlated suggesting that the respiration of microorganisms was responsible for carbon mineralization. Cellulose was an important resource in low nutrient conditions (oligotrophic). However, the detritus quality played a major role in the lignocelluloses degradation (i.e., enzyme activity) and carbon release. PMID:26991278

  18. Dynamics of Dissolved Organic Matter in Amazon Basin: Insights into Negro River Contribution

    NASA Astrophysics Data System (ADS)

    Moreira-Turcq, P.; Perez, M. P.; Benedetti, M.; Oliveira, M. A.; Lagane, C.; Seyler, P.; Oliveira, E.

    2006-12-01

    The study of global carbon cycle requires a precise knowledge of spatial and temporal distributions and exportation from continents to oceans. Organic carbon fluxes represent approximately half of the total carbon budget carried by rivers. Tropical rivers transport two third of the total organic carbon discharged into the world oceans but important gaps still exist in the knowledge of the tropical river carbon biochemistry. The Amazon River is responsible for 10% of the annual amount of organic carbon transported from rivers to oceans. The most important portion of total organic matter transported in the Amazon Basin is the dissolved fraction (between 80% and 95%). Amazonian annual flux of dissolved organic matter is directly related to hydrological variations. All rivers in the Amazon basin are characterized by monomodal hydrograms, with a low water period in october/november and a high water period in may/june. Temporal variations in Amazon dissolved organic carbon (3.0 to 9.1 mg l^{- 1}) are mainly controled by Negro River inputs. DOC and DON contributions from the Negro River can vary between 120 kgC s-1 and 520 kg C s-1, and between 5 kgN s--1 and 15 kgN s-1, during low and high water period, respectivelly. In the Negro River, during high water stages, while DOC concentrations are stable from the upstream stations to the downstream ones (about 11 mg l-1), discharge increases from 16000 to 46000 m3 s-1 and NOD can quintuple from upstream (0.071 mg l-1) to downstream (0.341 mg l-1). Then the nature of dissolved organic matter is variable (C/N ratio varied from 33 to 120 from upstream to downstream). During low water stages DOC concentrations are lower (mean DOC of 8.1 mg l-1) while DON is in the same range, discharge is about 10000 m3 s-1 at downstream stations of Negro River and the C/N ratio is lower and steadier along the River. Finaly, despite a low basin surface (12%) compared with the two other main Amazon tributaries, Solimões and Madeira Rivers, and a

  19. Elevated atmospheric CO2 fuels leaching of old dissolved organic matter at the alpine treeline

    NASA Astrophysics Data System (ADS)

    Hagedorn, Frank; van Hees, Patrick A. W.; Handa, I. Tanya; HäTtenschwiler, Stephan

    2008-06-01

    Dissolved organic matter (DOM), the mobile form of soil organic matter (SOM), plays an important role in soil C cycling and in nutrient transport. We investigated the effects of 5 years of CO2 enrichment (370 versus 570 μmol CO2 mol-1) on DOM dynamics at the alpine treeline, including the analysis of fast-cycling components such as low molecular weight organic acids (LMWOAs), dissolved organic carbon (DOC) biodegradability, and the decomposition of 14C-labeled oxalate. Concentrations of DOC in canopy throughfall were 20% higher at elevated CO2, probably driven by higher carbohydrate concentrations in leaves. In the organic soil layer, 5 years of CO2 enrichment increased water-extractable organic C by 17% and soil solution DOC at 5 cm depth by 20%. The 13C tracing of recently assimilated CO2 revealed that the input of recent plant-derived C (<15% of total DOC) was smaller than the CO2-induced increase in DOC. This strongly suggests that CO2 enrichment enhanced the mobilization of native DOC, which is supported by significant increases in dissolved organic nitrogen (DON). We mainly attribute these increases to a stimulated microbial activity as indicated by higher basal and soil respiration rates (+27%). The 14C-labeled oxalate was more rapidly mineralized from high CO2 soils. The concentrations of LMWOAs, but also those of "hydrophilic" DOC and biodegradable DOC (6% of total DOC), were, however, not affected by elevated CO2, suggesting that production and consumption of "labile" DOC were in balance. In summary, our data suggest that 5 years of CO2 enrichment speeded up the cycling of "labile" DOM and SOM in a late successional treeline ecosystem and increased the mobilization of older DOM through a stimulated microbial activity. Such a "priming effect" implies that elevated CO2 can accelerate the turnover of native SOM, and thus, it may induce increasing losses of old C from thick organic layers.

  20. Adsorption of dissolved organics in lake water by aluminum oxide. Effect of molecular weight

    USGS Publications Warehouse

    Davis, J.A.; Gloor, R.

    1981-01-01

    Dissolved organic compounds in a Swiss lake were fractionated into three molecular size classes by gel exclusion chromatography, and adsorption of each fraction on colloidal alumina was studied as a function of pH. Organic compounds with molecular weight (Mr) greater than 1000 formed strong complexes with the alumina surface, but low molecular weight compounds were weakly adsorbed. Electrophoretic mobility measurements indicated that alumina particles suspended in the original lake water were highly negatively charged because of adsorbed organic matter. Most of the adsorbed organic compounds were in the Mr range 1000 < Mr < 3000. Adsorption of these compounds during the treatment of drinking water by alum coagulation may be responsible for the preferential removal of trihalomethane precursors. Adsorption may also influence the molecular-weight distribution of dissolved organic material in lakes. surface, the present work will focus on the influence of molecular size and pH on the adsorption behavior of dissolved organic material of a Swiss lake. From a geochemical point of view, it is important to know the molecular-weight distribution of adsorbed organic matter so that we may better assess its reactivity with trace elements. The study also serves as a first step in quantifying the role of adsorption in the geochemical cycle of organic carbon in lacustrine environments. For water-treatment practice, we need to determine whether molecular weight fractionation occurs during adsorption by aluminum oxide. Such a fractionation could be significant in the light of recent reports that chloroform and other organochlorine compounds are preferentially produced by particular molecular-weight fractions (25-27). ?? 1981 American Chemical Society.

  1. Composition, removal, redox, and metal complexation properties of dissolved organic nitrogen in composting leachates.

    PubMed

    He, Xiao-Song; Xi, Bei-Dou; Zhang, Zong-Yong; Gao, Ru-Tai; Tan, Wen-Bing; Cui, Dong-Yu; Yuan, Ying

    2015-01-01

    This study investigated the composition, removal, redox, and metal complexation characteristics of dissolved organic nitrogen (DON) in composting leachates. Results showed that the leachate-derived DON comprised proteinaceous compounds and amines, and most of them were integrated into the fulvic- and humic-like substances. Neutral, basic, acidic, hydroxylic, aromatic, and sulfuric amino acids all were detected in the influent leachates. However, most of them were removed by the biological and physical processes, and only neutral amino acids were detected in the effluent. The DON was not the main contributor to the redox capability of the leachate dissolved organic matter (DOM). However, it exhibited a strong capability for metal complexation. The amines formed strong complexes with the metals Mo, Co, Cr, and Ni, while the proteinaceous matter interacted with the metals Cr and Ni. PMID:25282175

  2. Dissolved organic nitrogen removal during water treatment by aluminum sulfate and cationic polymer coagulation.

    PubMed

    Lee, Wontae; Westerhoff, Paul

    2006-12-01

    Coagulation of three surface waters was conducted with aluminum salt and/or cationic polymer to assess dissolved organic nitrogen (DON) removal. Coagulation with aluminum sulfate removed equal or slightly lower amounts of DON as compared to dissolved organic carbon (DOC). At aluminum sulfate dosages up to 5mg per mg DOC, the cationic polymer improved DON removal by an additional 15% to 20% over aluminum sulfate alone. At very high aluminum sulfate dosages (>8 mg aluminum sulfate per mg DOC), however, the cationic polymer addition negligibly increased DON removal. Molecular weight fractionation before and after coagulation experiments indicated that cationic polymer addition can increase the removal of all molecular weight fractions of DON with the highest molecular weight fraction (>10,000 Da) being preferentially removed. Results indicated that the DON added as part of the cationic polymer was almost completely removed at optimum aluminum sulfate and polymer doses. PMID:17023020

  3. Effects of dissolved organic matter size fractions on trihalomethanes formation in MBR effluents during chlorine disinfection.

    PubMed

    Ma, Defang; Gao, Baoyu; Sun, Shenglei; Wang, Yan; Yue, Qinyan; Li, Qian

    2013-05-01

    In this study, effects of dissolved organic matter (DOM) size fractions on trihalomethanes (THMs) formation in MBR effluents during chlorination were investigated by fractionating DOM into >100, 30-100, 10-30, 5-10 and <5 kDa fractions using ultrafiltration (UF) membranes based on molecular weight (MW). Fractions of MW>30 kDa constituted 87% of DOM and were the main THMs precursors, which exhibited higher specific ultraviolet absorbance (SUVA) and THMs formation potential (THMFP) and should be reduced to control THMs formation. For these fractions, THMs formation was mostly attributed to slow chlorine decay, and THMs yield coefficients were low because halogenated intermediates derived from the macromolecular DOM were difficult to decompose to produce THMs. Moreover, there was a strong linear correlation between dissolved organic carbon (DOC) concentration and THMFP (R(2)=0.981), as well as between the SUVA and specific THMFP (R(2)=0.993) in all fractions. PMID:23567728

  4. Comparison of optical properties of chromophoric dissolved organic matter (CDOM) in alpine lakes above or below the tree line: insights into sources of CDOM.

    PubMed

    Su, Yaling; Chen, Feizhou; Liu, Zhengwen

    2015-05-01

    Here we investigated absorption and fluorescence properties of chromophoric dissolved organic matter (CDOM) in 15 alpine lakes located below or above the tree line to determine its source and composition. The results indicate that the concentrations of CDOM in below-tree-line lakes are significantly higher than in above-tree-line lakes, as evidenced from the absorption coefficients of a250 and a365. The intensities of the protein-like and humic-like fluorescence in below-tree-line lakes are higher than in above-tree-line lakes as well. Three fluorescent components were identified using parallel factor analysis (PARAFAC) modelling. Component 1 is probably associated with biological degradation of terrestrial humic component. The terrestrial humic-like component 2 is only found in below-tree-line lakes. The protein-like or phenolic component 3 is dominant in above-tree-line lakes, which is probably more derived from autochthonous origin. In this study, (1) higher a250/a365 and S275-295 values indicate smaller molecular weights of CDOM in above-tree-line lakes than in below-tree-line lakes, and smaller molecular weights at the surface than at 2.0 m depth; (2) SUVA254 and FI255 results provide evidence of lower percent aromaticity of CDOM in above-tree-line lakes; and (3) FI310 and FI370 suggest a strong allochthonous origin at the surface in below-tree-line lakes, and more contribution from autochthonous biological and aquatic bacterial origin in above-tree-line lakes. PMID:25694220

  5. Importance of within-lake processes in affecting the dynamics of dissolved organic carbon and dissolved organic and inorganic nitrogen in an Adirondack forested lake/watershed

    NASA Astrophysics Data System (ADS)

    Kang, Phil-Goo; Mitchell, Myron J.; McHale, Patrick J.; Driscoll, Charles T.; Inamdar, Shreeram; Park, Ji-Hyung

    2016-05-01

    Lakes nested in forested watersheds play an important role in mediating the concentrations and fluxes of dissolved organic matter. We compared long-term patterns of concentrations and fluxes of dissolved organic carbon (DOC) and dissolved organic (DON) and inorganic nitrogen (DIN) in aquatic ecosystems of the Arbutus Lake watershed to evaluate how a lake nested in a forested watershed affects the sources (e.g., production) and sinks (e.g., retention) of DOC and DON in the Adirondack Mountains of New York, USA. We observed no significant long-term changes of DOC and DON in the lake outlet since 1983 and 1994, respectively. However, the temporal patterns of DOC and DON concentrations in the lake inlet showed significant seasonality such as increases during the vegetation-growing season along with notable decreases in the dormant season. A comparison of mass balances between inlet and outlet for the period from 2000 to 2009 suggested that the lake was a sink of DOC (mean of influx minus outflux: +1140 mol C ha-1 yr-1). In contrast, the difference of discharge-weighted DON concentrations (mean of inlet minus outlet: -1.0 µmol N L-1) between inlet and outlet was much smaller than the discharge-weighted DOC concentrations (average of inlet minus outlet: + 87 µmol C L-1). DON fluxes showed considerable variation among years (mean of influx minus outflux: +8 mol N ha-1 yr-1; range of differences: -15 to 27 mol N ha-1 yr-1). DON exhibited low percent retention ((influx-outflux)/influx) (mean: 6.9 %, range: -34.8 to +31.2) compared to DOC (mean: 30.1 %, range: +9.2 to +44.1). The resultant increase of DON within the lake was closely linked with a net decrease of DIN through monthly Pearson correlation analysis, suggesting the importance of biotic factors in mediating lake DON dynamics. Our results show different relative retentions of DOC compared with DON, along with a larger retention of DIN than DON, suggesting that DOC and DON might display substantially different

  6. Relationships between Nitrate and Dissolved Organic Nitrogen and Watershed Characteristics in a Rural Temperate Basin

    NASA Astrophysics Data System (ADS)

    Daley, M. L.; McDowell, W. H.

    2002-05-01

    Global models have been developed to predict nitrate export, a main component of dissolved inorganic nitrogen (DIN) export, based on human population density and human activity. Controls on dissolved organic nitrogen (DON) export are largely unknown. We tested several global nitrate models and examined potential sources of riverine DON in the Lamprey River basin (479 km2) located in rural southeastern New Hampshire, and 11 of its sub-catchments. Dissolved organic nitrogen dominated total N export. Export of nitrate and DON from the Lamprey was 0.53 and 1.28 kg/ha/yr respectively. Mean annual nitrate and DON concentration in the Lamprey was 0.11 and 0.30 mg/L respectively. The global nitrate models over predicted (>200% difference) nitrate export for the Lamprey and all its sub-catchments except for the smallest most populated catchment. Population density (R2>0.89, p<0.00001) and riparian percentage agriculture (R2>0.90, p<0.00001) showed strong positive relationships with nitrate concentration and export. Dissolved organic nitrogen was not related to factors that control inorganic nitrogen (human population density or percentage agriculture). Non-purgeable organic carbon (NPOC) concentration and export (R2>0.84, p<0.0001), percentage wetland (R2=0.79, p<0.001) and riparian carbon storage (R2=0.84, p<0.0001) all showed strong positive relationships with DON. We conclude from the results of this study that human population density and activity are the main factors controlling DIN export and that wetlands and riparian soils are main sources of DON.

  7. Dissolved Gases and Ice Fracturing During the Freezing of a Multicellular Organism: Lessons from Tardigrades

    PubMed Central

    Kletetschka, Gunther; Hruba, Jolana

    2015-01-01

    Abstract Three issues are critical for successful cryopreservation of multicellular material: gases dissolved in liquid, thermal conductivity of the tissue, and localization of microstructures. Here we show that heat distribution is controlled by the gas amount dissolved in liquids and that when changing the liquid into solid, the dissolved gases either form bubbles due to the absence of space in the lattice of solids and/or are migrated toward the concentrated salt and sugar solution at the cost of amount of heat required to be removed to complete a solid-state transition. These factors affect the heat distribution in the organs to be cryopreserved. We show that the gas concentration issue controls fracturing of ice when freezing. There are volumetric changes not only when changing the liquid into solid (volume increases) but also reduction of the volume when reaching lower temperatures (volume decreases). We discuss these issues parallel with observations of the cryosurvivability of multicellular organisms, tardigrades, and discuss their analogy for cryopreservation of large organs. PMID:26309797

  8. Dissolved Gases and Ice Fracturing During the Freezing of a Multicellular Organism: Lessons from Tardigrades.

    PubMed

    Kletetschka, Gunther; Hruba, Jolana

    2015-01-01

    Three issues are critical for successful cryopreservation of multicellular material: gases dissolved in liquid, thermal conductivity of the tissue, and localization of microstructures. Here we show that heat distribution is controlled by the gas amount dissolved in liquids and that when changing the liquid into solid, the dissolved gases either form bubbles due to the absence of space in the lattice of solids and/or are migrated toward the concentrated salt and sugar solution at the cost of amount of heat required to be removed to complete a solid-state transition. These factors affect the heat distribution in the organs to be cryopreserved. We show that the gas concentration issue controls fracturing of ice when freezing. There are volumetric changes not only when changing the liquid into solid (volume increases) but also reduction of the volume when reaching lower temperatures (volume decreases). We discuss these issues parallel with observations of the cryosurvivability of multicellular organisms, tardigrades, and discuss their analogy for cryopreservation of large organs. PMID:26309797

  9. Riverine Dissolved Organic Matter Degradation Modeled Through Microbial Incubations of Vascular Plant Leachates

    NASA Astrophysics Data System (ADS)

    Harfmann, J.; Hernes, P.; Chuang, C. Y.

    2015-12-01

    Dissolved organic matter (DOM) contains as much carbon as is in the atmosphere, provides the main link between terrestrial and marine carbon reservoirs, and fuels the microbial food web. The fate and removal of DOM is a result of several complex conditions and processes, including photodegradation, sorption/desorption, dominant vascular plant sources, and microbial abundance. In order to better constrain factors affecting microbial degradation, laboratory incubations were performed using Sacramento River water for microbial inoculums and vascular plant leachates. Four vascular plant sources were chosen based on their dominance in the Sacramento River Valley: gymnosperm needles from Pinus sabiniana (foothill pine), angiosperm dicot leaves from Quercus douglassi (blue oak), angiosperm monocot mixed annual grasses, and angiosperm monocot mixed Schoenoplectus acutus (tule) and Typha spp. (cattails). Three concentrations of microbial inoculum were used for each plant material, ranging from 0.2% to 10%. Degradation was monitored as a function of time using dissolved organic carbon (DOC), UV-Vis absorbance, and fluorescent dissolved organic matter (fDOM), and was compared across vascular plant type and inoculum concentration.

  10. Chemical characterization of high molecular weight dissolved organic matter in fresh and marine waters

    NASA Astrophysics Data System (ADS)

    Repeta, Daniel J.; Quan, Tracy M.; Aluwihare, Lihini I.; Accardi, AmyMarie

    2002-03-01

    The high molecular weight fraction of dissolved organic matter in a suite of lakes, rivers, seawater, and marine sediment interstitial water samples was collected by ultrafiltration and characterized by molecular level and spectroscopic techniques. Proton nuclear magnetic resonance spectra of all samples show a high degree of similarity, with major contributions from carbohydrates, bound acetate, and lipids. Molecular level analyses of neutral sugars show seven monosaccharides, rhamnose, fucose, arabinose, xylose, mannose, glucose, and galactose, to be abundant, and to occur in comparable relative amounts in each sample. Previous studies have emphasized the distinctive composition of dissolved humic substances in fresh and marine waters, and have attributed these differences to sources and transformations of organic matter unique to each environment. In contrast we find a large fraction of freshwater high molecular weight dissolved organic matter (HMWDOM; > 1kD) to be indistinguishable from marine HMWDOM in bulk and molecular-level chemical properties. Aquatic HMWDOM is similar in chemical composition to biologically derived acylated heteropolysaccharides isolated from marine algal cultures, suggesting a biological source for some fraction of persistent HMWDOM. High molecular weight DOC contributes 51 ± 26% of the total DOC, and monosaccharides 18 ± 8% of the total HMWDOC in our freshwater samples. These contributions are on average higher and more variable, but not significantly different than for surface seawater (30% and 16% respectively). Biogeochemical processes that produce, accumulate, and recycle DOM may therefore share important similarities and be broadly comparable across a range of environmental settings.

  11. Temperature and Hydrological Controls on Dissolved Organic Matter Mobilization and Transport within forest soils

    NASA Astrophysics Data System (ADS)

    Xu, N.; Saiers, J. E.

    2009-12-01

    Natural dissolved organic matter (DOM) influences nutrients cycling and contaminants mobility, provides an energy source for heterotrophic production, and regulates soil and water pH. The objectives of this laboratory study were (i) to investigate the relative influence of temperature and rainfall characteristics on the mobilization and transport of DOM (quantity and composition) in forest soils; (ii) to evaluate the possible difference between dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) dynamics; and (iii) to elucidate the importance of biotic and physico-chemical mechanisms that govern DOM mobilization and transport during rainfall events. We applied intermittent rainfalls to unsaturated topsoil columns. The experimental treatments were distinguished on the basis of rainfall intensity, rainfall frequency, temperature, soil biotic activity (i.e., sterile vs unsterile soil), and soil storage time before rainfall initiation. A mathematical model incorporating reversible linear kinetics expressions for DOC release at soil-water interfaces closely describes the DOC breakthrough-curve data. Our results show that temperature significantly affects the release rate and composition of leached DOM, while changes in rainfall intensity and frequency only affect the quantity of mobilized DOM. Effluent concentrations of DON showed broadly similar temporal patterns with DOC during rainfall events. Differences between the quantity of DOC and DON were reflected in the C:N ratios of effluent DOM. Our results also indicate the relative importance of physico-chemical mechanisms for the DOM export process.

  12. Sorption of hydrophobic pesticides on a Mediterranean soil affected by wastewater, dissolved organic matter and salts.

    PubMed

    Rodríguez-Liébana, José A; Mingorance, Ma Dolores; Peña, Aránzazu

    2011-03-01

    Irrigation with treated wastewaters as an alternative in countries with severe water shortage may influence the sorption of pesticides and their environmental effects, as wastewater contains higher concentrations of suspended and dissolved organic matter and inorganic compounds than freshwater. We have examined the sorption behaviour of three highly hydrophobic pesticides (the herbicide pendimethalin and the insecticides α-cypermethrin and deltamethrin) on a Mediterranean agricultural soil using the batch equilibration method. We considered wastewater, extracts from urban sewage sludge with different dissolved organic carbon contents, and inorganic salt solutions, using Milli Q water as a control. All pesticides were strongly retained by soil although some sorption occurred on the walls of the laboratory containers, especially when wastewater and inorganic salt solutions were used. The calculation of distribution constants by measuring pesticide concentrations in soil and solution indicated that pendimethalin sorption was not affected whereas α-cypermethrin and deltamethrin retention were significantly enhanced (ca. 5 and 2 times, respectively) when wastewater or salt solutions were employed. We therefore conclude that the increased sorption of the two pesticides caused by wastewater cannot be only the result of its dissolved organic carbon content, but also of the simultaneous presence of inorganic salts in the solution. PMID:20980092

  13. Biogeochemistry of dissolved organic matter in an anoxic intertidal creek bank

    NASA Astrophysics Data System (ADS)

    Seidel, Michael; Beck, Melanie; Riedel, Thomas; Waska, Hannelore; Suryaputra, I. G. N. A.; Schnetger, Bernhard; Niggemann, Jutta; Simon, Meinhard; Dittmar, Thorsten

    2014-09-01

    Seawater circulation in permeable coastal sediments is driven by tidal changes in hydraulic gradients. The resulting submarine groundwater discharge is a source of nutrients and dissolved organic matter (DOM) to the water column. Yet, little is known about the cycling of DOM within tidal sediments, because the molecular DOM characterization remains analytically challenging. One technique that can dissect the multitude of molecules in DOM is ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). To aim at a high resolution DOM analysis we study the seasonal turnover and marine and terrestrial sources of DOM in an intertidal creek bank of the southern North Sea down to 3 m depth and link the biogeochemical processes to FT-ICR-MS data and the analyses of inorganic porewater chemistry, δ13C of solid-phase extracted dissolved organic carbon (SPE-DOC), dissolved black carbon (DBC) and dissolved carbohydrates (DCHO). Increasing concentrations of dissolved Fe, Mn, P, total alkalinity, dissolved nitrogen, DOC and a concomitant decrease of sulfate along the seawater circulation path from the upper tidal flat to the tidal flat margin indicate continuous microbial activity. The relative increase of Si concentrations, unsaturated aliphatics, peptide molecular formulae and isotopically more 13C-enriched SPE-DOC towards the tidal flat margin suggests that remineralization processes mobilize DOM from buried algal (diatoms) and microbial biomass. Porewater in sediments <100 cm depth contains 13C-depleted SPE-DOC and highly unsaturated compounds which are probably derived from eroded peats, suggesting rapid removal of bioavailable marine DOM such as DCHO from the water column and selective enrichment of terrestrial DOM. DBC concentrations are highest in the discharging porewater close to the tidal creek suggesting that the intertidal flat is an important DBC source to the coastal ocean. Porewater DOM accumulating at the low water line is

  14. Dissolved Organic Matter Quality in a Shallow Aquifer of Bangladesh: Implications for Arsenic Mobility.

    PubMed

    Mladenov, Natalie; Zheng, Yan; Simone, Bailey; Bilinski, Theresa M; McKnight, Diane M; Nemergut, Diana; Radloff, Kathleen A; Rahman, M Moshiur; Ahmed, Kazi Matin

    2015-09-15

    In some high arsenic (As) groundwater systems, correlations are observed between dissolved organic matter (DOM) and As concentrations, but in other systems, such relationships are absent. The role of labile DOM as the main driver of microbial reductive dissolution is not sufficient to explain the variation in DOM-As relationships. Other processes that may also influence As mobility include complexation of As by dissolved humic substances, and competitive sorption and electron shuttling reactions mediated by humics. To evaluate such humic DOM influences, we characterized the optical properties of filtered surface water (n = 10) and groundwater (n = 24) samples spanning an age gradient in Araihazar, Bangladesh. Further, we analyzed large volume fulvic acid (FA) isolates (n = 6) for optical properties, C and N content, and (13)C NMR spectroscopic distribution. Old groundwater (>30 years old) contained primarily sediment-derived DOM and had significantly higher (p < 0.001) dissolved As concentration than groundwater that was younger than 5 years old. Younger groundwater had DOM spectroscopic signatures similar to surface water DOM and characteristic of a sewage pollution influence. Associations between dissolved As, iron (Fe), and FA concentration and fluorescence properties of isolated FA in this field study suggest that aromatic, terrestrially derived FAs promote As-Fe-FA complexation reactions that may enhance As mobility. PMID:26192081

  15. Microbial metabolism mediates interactions between dissolved organic matter and clay minerals in streamwater.

    PubMed

    Hunter, W R; Battin, T J

    2016-01-01

    Sorption of organic molecules to mineral surfaces is an important control upon the aquatic carbon (C) cycle. Organo-mineral interactions are known to regulate the transport and burial of C within inland waters, yet the mechanisms that underlie these processes are poorly constrained. Streamwater contains a complex and dynamic mix of dissolved organic compounds that coexists with a range of organic and inorganic particles and microorganisms. To test how microbial metabolism and organo-mineral complexation alter amino acid and organic carbon fluxes we experimented with (13)C-labelled amino acids and two common clay minerals (kaolinite and montmorillonite). The addition of (13)C-labelled amino acids stimulated increased microbial activity. Amino acids were preferentially mineralized by the microbial community, concomitant with the leaching of other (non-labelled) dissolved organic molecules that were removed from solution by clay-mediated processes. We propose that microbial processes mediate the formation of organo-mineral particles in streamwater, with potential implications for the biochemical composition of organic matter transported through and buried within fluvial environments. PMID:27481013

  16. Microbial metabolism mediates interactions between dissolved organic matter and clay minerals in streamwater

    PubMed Central

    Hunter, W. R.; Battin, T. J.

    2016-01-01

    Sorption of organic molecules to mineral surfaces is an important control upon the aquatic carbon (C) cycle. Organo-mineral interactions are known to regulate the transport and burial of C within inland waters, yet the mechanisms that underlie these processes are poorly constrained. Streamwater contains a complex and dynamic mix of dissolved organic compounds that coexists with a range of organic and inorganic particles and microorganisms. To test how microbial metabolism and organo-mineral complexation alter amino acid and organic carbon fluxes we experimented with 13C-labelled amino acids and two common clay minerals (kaolinite and montmorillonite). The addition of 13C-labelled amino acids stimulated increased microbial activity. Amino acids were preferentially mineralized by the microbial community, concomitant with the leaching of other (non-labelled) dissolved organic molecules that were removed from solution by clay-mediated processes. We propose that microbial processes mediate the formation of organo-mineral particles in streamwater, with potential implications for the biochemical composition of organic matter transported through and buried within fluvial environments. PMID:27481013

  17. Effect of biomass adaptation to biodegradation of dissolved organic carbon in water.

    PubMed

    Tihomirova, K; Briedis, A; Rubulis, J; Juhna, T

    2012-04-01

    In the present study the time of adaptation of fixed biomass for biodegradation of natural organic matter was investigated. The experiments were done in columns that are usually used for rapid determination of biodegradable dissolved organic carbon (BDOC). The biomass was adapted to samples with different concentrations of organic substances before measurements by pumping water to be investigated through the columns for several days. The time of adaptation was dependent on the initial concentration of the organic matter in the water sample. The adaptation time increased from 6 to 24 h with increase of concentration of acetate solution from 2 to 10 mg/l, thus adaptation rate decreased simultaneously from 0.28 to 0.11 min(-1). In natural water samples with the initial concentration in the range from 4.61-10.82 mg/l of dissolved organic carbon (DOC) the maximal adaptation time was less than 24 h. During the adaptation period the increase in reproducibility and decrease in the standard deviation was observed. The study showed that adaptation of column to the different concentration of organic matter in water sample is necessary in order to decrease the bias in BDOC measurements when using columns tests. PMID:21892664

  18. Microbial metabolism mediates interactions between dissolved organic matter and clay minerals in streamwater

    NASA Astrophysics Data System (ADS)

    Hunter, W. R.; Battin, T. J.

    2016-08-01

    Sorption of organic molecules to mineral surfaces is an important control upon the aquatic carbon (C) cycle. Organo-mineral interactions are known to regulate the transport and burial of C within inland waters, yet the mechanisms that underlie these processes are poorly constrained. Streamwater contains a complex and dynamic mix of dissolved organic compounds that coexists with a range of organic and inorganic particles and microorganisms. To test how microbial metabolism and organo-mineral complexation alter amino acid and organic carbon fluxes we experimented with 13C-labelled amino acids and two common clay minerals (kaolinite and montmorillonite). The addition of 13C-labelled amino acids stimulated increased microbial activity. Amino acids were preferentially mineralized by the microbial community, concomitant with the leaching of other (non-labelled) dissolved organic molecules that were removed from solution by clay-mediated processes. We propose that microbial processes mediate the formation of organo-mineral particles in streamwater, with potential implications for the biochemical composition of organic matter transported through and buried within fluvial environments.

  19. Association of dissolved mercury with dissolved organic carbon in U.S. rivers and streams: The role of watershed soil organic carbon

    NASA Astrophysics Data System (ADS)

    Stoken, Olivia M.; Riscassi, Ami L.; Scanlon, Todd M.

    2016-04-01

    Streams and rivers are important pathways for the export of atmospherically deposited mercury (Hg) from watersheds. Dissolved Hg (HgD) is strongly associated with dissolved organic carbon (DOC) in stream water, but the ratio of HgD to DOC is highly variable between watersheds. In this study, the HgD:DOC ratios from 19 watersheds were evaluated with respect to Hg wet deposition and watershed soil organic carbon (SOC) content. On a subset of sites where data were available, DOC quality measured by specific ultra violet absorbance at 254 nm, was considered as an additional factor that may influence HgD:DOC . No significant relationship was found between Hg wet deposition and HgD:DOC, but SOC content (g m-2) was able to explain 81% of the variance in the HgD:DOC ratio (ng mg-1) following the form: HgD:DOC=17.8*SOC-0.41. The inclusion of DOC quality as a secondary predictor variable explained only an additional 1% of the variance. A mathematical framework to interpret the observed power-law relationship between HgD:DOC and SOC suggests Hg supply limitation for adsorption to soils with relatively large carbon pools. With SOC as a primary factor controlling the association of HgD with DOC, SOC data sets may be utilized to predict stream HgD:DOC ratios on a more geographically widespread basis. In watersheds where DOC data are available, estimates of HgD may be readily obtained. Future Hg emissions policies must consider soil-mediated processes that affect the transport of Hg and DOC from terrestrial watersheds to streams for accurate predictions of water quality impacts.

  20. Abundance and Characterization of Dissolved Organic Carbon in Suburban Streams of Baltimore, Maryland, USA

    NASA Astrophysics Data System (ADS)

    Mora, G.; Fazekas, M.

    2014-12-01

    The contribution of streams and rivers to the carbon cycle is significant, transporting to the oceans ~1.4 Pg C/yr, with dissolved carbon corresponding to as much as 0.7 Pg C/yr. Changes in land use have the potential effect of modifying this flux, particularly in urban areas where impervious areas are common. To investigate the effect of urbanization on riverine carbon transport, we studied four first-order streams in Towson, a suburb of Baltimore, Maryland, USA. The watersheds from the studied streams exhibit different levels of urbanization as measured by the percentage of impervious areas. Samples from these four streams were taken weekly, and several chemical constituents were measured either in the field or in the laboratory. These constituents included nitrate, dissolved organic nitrogen, pH, dissolved organic carbon (DOC), total carbon, dissolved inorganic carbon (DIC), phosphate, the carbon isotopic compositions of DOC and DIC, and fluorescence intensity of the DOC. Results show that DOC concentrations were consistently below 5 mg C/L regardless of the level of imperviousness of the watershed. Similarly, carbon isotope ratios were consistent across the studied streams, with values centered around -26.4 per mil, thus suggesting a significant influx of soil-derived organic carbon originated from C3 plants that are common in the watersheds. Confirming this interpretation, fluorescence spectroscopy data suggest a humic-like origin for the DOC of the streams, thus pointing to the heterotrophic nature of the streams. The combined results suggest that the studied streams exhibit similar DOC concentrations, carbon isotopic values, and fluorescence spectra, despite their level of impervious surfaces in their watersheds.

  1. A speedometer for the Heart Mountain allochthon, Wyoming

    SciTech Connect

    Hauge, T.A. )

    1993-04-01

    Rocks overlying the HM detachment include (1) Paleozoic sedimentary rocks, detached along an Ordovician bedding-plane and displaced up to 50 or more km across rocks as young as Eocene, and (2) Eocene volcanic rocks that overlie both the detachment and the allochthonous Paleozoic rocks. Models of HM faulting interpret the volcanic rocks as: (1) mostly younger than HM faulting, having been deposited catastrophically immediately after catastrophic emplacement of numerous HMD slide-blocks ( tectonic denudation'' model); (2) mostly involved in HM faulting, having been translated and downfaulted at noncatastrophic rates during extension of a continuous HMD allochthon ( continuous-allochthon'' model); or (3) deposited catastrophically as debris avalanche(s) either coeval with or immediately following HM faulting. Calcite-fiber lineations, which are present at many localities on normal and normal-oblique faults within allochthonous Paleozoic rocks and locally within Tertiary rocks, may be a speedometer for the HM allochthon. The lineated faults truncate downward at the detachment, having accommodated extension of the upper plate as it was emplaced. The calcite fibers are commonly parallel to slickenside striae on the upper-plate faults. If the calcite fibers and slickenside striae formed during HM faulting, as seems likely, then extension of the allochthon occurred at a rate compatible with pressure-solution and redeposition of calcite.

  2. Storm event exports of dissolved organic nitrogen (DON) across multiple catchments in a glaciated forested watershed

    NASA Astrophysics Data System (ADS)

    Inamdar, Shreeram P.; Mitchell, Myron J.

    2007-06-01

    Storm event patterns of dissolved organic nitrogen (DON) were studied for multiple events across four catchments (1.6-696 ha) in a forested, glaciated watershed in western New York State. Highest concentrations of DON in the watershed were recorded for litter leachate followed by throughfall. Storm event concentrations of DON consistently peaked at or before peak discharge while dissolved organic carbon (DOC) concentrations peaked on the hydrograph recession limbs. Concentrations of DON in stream water were derived from throughfall and litter layer while the DOC expression was attributed to throughfall, litter, and the flushing of the mineral soil by a rising water table. Temporal patterns of ammonium (NH4+) concentrations during events consistently matched those of DON indicating similar sources and flow paths. A previously validated end-member mixing analysis (EMMA) for NO3- failed to predict the DON concentrations observed in streamflow. DON concentrations and DON as % of total dissolved nitrogen (TDN) differed considerably between baseflow (% DON: 6 to 19%) and storm events (% DON: 6 to 64%). DON concentrations and % DON of TDN increased with catchment size and amount of saturated/wetland areas. A wetland catchment that consistently yielded high storm-event DOC concentrations produced variable amounts of DON, indicating a decoupling of DOC and DON dynamics in the wetland. Our study suggests that storm events and watershed characteristics, especially the proportion of saturated and wetland areas, may have a greater influence on DON exports than atmospheric N deposition.

  3. Molecular evidence for a terrestrial component of organic matter dissolved in ocean water

    NASA Astrophysics Data System (ADS)

    Meyers-Schulte, Kathleen J.; Hedges, John I.

    1986-05-01

    Dissolved organic matter (DOM) in seawater represents one of the largest active carbon reservoirs on Earth1. Although mass-balance calculations suggest a substantial riverine input to the marine DOM pool2, a terrestrial organic component has not been positively identified in open-ocean water. By using lignin-derived phenols as molecular-level probes of DOM (analogous to previous studies in sediments3-5), we report here the first unambiguous evidence for the presence of terrestrially derived DOM in open ocean water. Dissolved humic substances, isolated by resin adsorption from near-surface water of the eastern equatorial Pacific, yield lignin-derived phenols in compositional patterns which resemble those obtained from Amazon River water6,7. Total phenol yields from these open-ocean humic isolates are, on average, ~10% of those from Amazon humic substances, indicating that ~10% of dissolved marine humic material (and at least 0.5% of the bulk marine DOM) is terrestrially derived.

  4. Tracing origins of sewage and organic matter using dissolved sterols in Masan and Haengam Bay, Korea

    NASA Astrophysics Data System (ADS)

    Lee, Hyo Jin; Hong, Sang Hee; Kim, Moonkoo; Ha, Sung Yong; An, Soon Mo; Shim, Won Joon

    2011-06-01

    Masan and Haengam Bays in Korea are highly polluted and semi-enclosed. Domestic and industrial effluents are directly or indirectly discharged into the bays through sewage treatment plants (STP) and creeks. In this study, 15 dissolved sterol compounds were determined in order to understand their sources and relative contribution. Freshwater samples were taken from 13 creeks and at two STP sites on a monthly basis. Total dissolved sterol concentrations ranged from 993 to 4158 ng/L. The concentrations of sterols in winter were higher than in summer. Among the sterols analyzed, cholesterol, β-sitosterol, coprostanol and cholestanone were major compounds in creek water. Seawater samples were concurrently collected at 21 stations in Masan Bay. Total sterol concentrations ranged 118-6,956 ng/L. Inner bay showed high concentrations of sterols in summer, while outer bay showed high sterol concentrations in winter. Among the sterols, cholesterol, β-sitosterol and brassicasterol were major compounds in seawater. In order to examine the contribution of urban sewage, the concentration of coprostanol and fecal sterol ratios were calculated. Most of the creek water, inner bay and near STP outlet samples were affected by sewage. Terrestrial organic matters accounted for a high proportion of dissolved organic matter origin. Fecal origins were relatively high in the inner bay areas and in the STP outlet, while sterols of marine origin were high in the outer bay areas.

  5. Low contribution of litter derived carbon to dissolved organic matter in soils

    NASA Astrophysics Data System (ADS)

    Scheibe, A.; Krantz, L.; Gleixner, G.

    2010-12-01

    This study investigates the contribution of litter derived carbon to dissolved organic matter (DOM) pool because our knowledge on sources of dissolved organic carbon (DOC) is still very controversial. Here, a labeled litter exchange experiment was started in the National Park Hainich, Germany, in November 2008. In this experiment the native litter was exchanged with 13C and 15N labeled litter of ash (Fraxinus excelsior) and beech (Fagus sylvatica). Soil water was collected biweekly with glass suction plates (1 µm pore size, UMS, Munich, Germany), installed in a depth of 5 cm. The amount and isotopic content of the DOC in natural samples was measured using a newly developed method: a high pressure liquid chromatography which was on-line coupled to isotope ratio mass spectrometry (HPLC-IRMS) via wet chemical combustion. Reference measurements proved the excellent performance of the method. Unexpected was the very low contribution of litter 13C into the dissolved carbon pool. The highest contribution with up to 5% DOC labeled by ash litter derived carbon was found in the first month of application. Furthermore we found that only 1.1% and 2.8% (mean values) of DOC was labeled by carbon of the beech and ash litter, respectively. These results suggest that litter derived carbon is of low importance for DOM formation and consequently root / rhizosphere and soil derived carbon drives the DOM loss.

  6. Linking CDOM spectral absorption to dissolved organic carbon concentrations and loadings in boreal estuaries

    NASA Astrophysics Data System (ADS)

    Asmala, Eero; Stedmon, Colin A.; Thomas, David N.

    2012-10-01

    The quantity of chromophoric dissolved organic matter (CDOM) and dissolved organic carbon (DOC) in three Finnish estuaries (Karjaanjoki, Kyrönjoki and Kiiminkijoki) was investigated, with respect to predicting DOC concentrations and loadings from spectral CDOM absorption measurements. Altogether 87 samples were collected from three estuarine transects which were studied in three seasons, covering a salinity range between 0 and 6.8, and DOC concentrations from 1572 μmol l-1 in freshwater to 222 μmol l-1 in coastal waters. CDOM absorption coefficient, aCDOM(375) values followed the trend in DOC concentrations across the salinity gradient and ranged from 1.67 to 33.4 m-1. The link between DOC and CDOM was studied using a range of wavelengths and algorithms. Wavelengths between 250 and 270 nm gave the best predictions with single linear regression. Total dissolved iron was found to influence the prediction in wavelengths above 520 nm. Despite significant seasonal and spatial differences in DOC-CDOM models, a universal relationship was tested with an independent data set and found to be robust. DOC and CDOM yields (loading/catchment area) from the catchments ranged from 1.98 to 5.44 g C m-2 yr-1, and 1.67 to 11.5 aCDOM(375) yr-1, respectively.

  7. Lipid composition in particulate and dissolved organic matter in the Delaware Estuary: Sources and diagenetic patterns

    SciTech Connect

    Mannino, A.; Harvey, H.R.

    1999-08-01

    Dissolved organic matter (DOM) was isolated from surface waters of Delaware Bay along a transect from freshwater to the coastal ocean and fractionated by tangential flow ultrafiltration into high (1--30 kDa; HDOM) and very high (30 kDa--0.2 {micro}m; VHDOM) nominal molecular mass fractions. Carbon content, stable carbon isotopes, and lipid composition were measured for each DOM fraction, and particles collected in parallel. Lipids, excluding hydrocarbons, comprised up to 0.33% of HDOM organic carbon, 1.6% of VHDOM carbon, and 10% of POC, the majority of which were fatty acids. Although lipids comprised a small fraction of HDOM, fatty acids and sterols provided valuable information on the origins of DOM. Molecular composition of particulate and dissolved lipids and bulk stable carbon isotopes demonstrated differences in organic sources along the estuarine gradient with distinct terrestrial signals in the river and turbid middle estuary and an algal signal in the lower estuary and coastal ocean. Both particulate organic matter and VHDOM samples were enriched in lipids on a carbon basis compared to the HDOM fraction, which suggests that the HDOM fraction was less labile than particulate organic matter or VHDOM. Selective degradation of labile lipids by the microbial community can account for the depletions of unsaturated fatty acids, sterols, and phytol within HDOM relative to particles.

  8. Variable C : N : P stoichiometry of dissolved organic matter cycling in the Community Earth System Model

    DOE PAGESBeta

    Letscher, R. T.; Moore, J. K.; Teng, Y. -C.; Primeau, F.

    2015-01-12

    Dissolved organic matter (DOM) plays an important role in the ocean's biological carbon pump by providing an advective/mixing pathway for ~ 20% of export production. DOM is known to have a stoichiometry depleted in nitrogen (N) and phosphorus (P) compared to the particulate organic matter pool, a fact that is often omitted from biogeochemical ocean general circulation models. However the variable C : N : P stoichiometry of DOM becomes important when quantifying carbon export from the upper ocean and linking the nutrient cycles of N and P with that of carbon. Here we utilize recent advances in DOM observationalmore » data coverage and offline tracer-modeling techniques to objectively constrain the variable production and remineralization rates of the DOM C : N : P pools in a simple biogeochemical-ocean model of DOM cycling. The optimized DOM cycling parameters are then incorporated within the Biogeochemical Elemental Cycling (BEC) component of the Community Earth System Model (CESM) and validated against the compilation of marine DOM observations. The optimized BEC simulation including variable DOM C : N : P cycling was found to better reproduce the observed DOM spatial gradients than simulations that used the canonical Redfield ratio. Global annual average export of dissolved organic C, N, and P below 100 m was found to be 2.28 Pg C yr-1 (143 Tmol C yr-1, 16.4 Tmol N yr-1, and 1 Tmol P yr-1, respectively, with an average export C : N : P stoichiometry of 225 : 19 : 1 for the semilabile (degradable) DOM pool. Dissolved organic carbon (DOC) export contributed ~ 25% of the combined organic C export to depths greater than 100 m.« less

  9. Applications of Fluorescence Spectroscopy for dissolved organic matter characterization in wastewater treatment plants

    NASA Astrophysics Data System (ADS)

    Goffin, Angélique; Guérin, Sabrina; Rocher, Vincent; Varrault, Gilles

    2016-04-01

    Dissolved organic matter (DOM) influences wastewater treatment plants efficiency (WTTP): variations in its quality and quantity can induce a foaming phenomenon and a fouling event inside biofiltration processes. Moreover, in order to manage denitrification step (control and optimization of the nitrate recirculation), it is important to be able to estimate biodegradable organic matter quantity before biological treatment. But the current methods used to characterize organic matter quality, like biological oxygen demand are laborious, time consuming and sometimes not applicable to directly monitor organic matter in situ. In the context of MOCOPEE research program (www.mocopee.com), this study aims to assess the use of optical techniques, such as UV-Visible absorbance and more specifically fluorescence spectroscopy in order to monitor and to optimize process efficiency in WWTP. Fluorescence excitation-emission matrix (EEM) spectroscopy was employed to prospect the possibility of using this technology online and in real time to characterize dissolved organic matter in different effluents of the WWTP Seine Centre (240,000 m3/day) in Paris, France. 35 sewage water influent samples were collected on 10 days at different hours. Data treatment were performed by two methods: peak picking and parallel factor analysis (PARAFAC). An evolution of DOM quality (position of excitation - emission peaks) and quantity (intensity of fluorescence) was observed between the different treatment steps (influent, primary treatment, biological treatment, effluent). Correlations were found between fluorescence indicators and different water quality key parameters in the sewage influents. We developed different multivariate linear regression models in order to predict a variety of water quality parameters by fluorescence intensity at specific excitation-emission wavelengths. For example dissolved biological oxygen demand (r2=0,900; p<0,0001) and ammonium concentration (r2=0,898; p<0

  10. Molecular insights into the microbial formation of marine dissolved organic matter: recalcitrant or labile?

    NASA Astrophysics Data System (ADS)

    Koch, B. P.; Kattner, G.; Witt, M.; Passow, U.

    2014-02-01

    The degradation of marine dissolved organic matter (DOM) is an important control variable in the global carbon cycle and dependent on the DOM composition. For our understanding of the kinetics of organic matter cycling in the ocean, it is therefore crucial to achieve a mechanistic and molecular understanding of its transformation processes. A long-term microbial experiment was performed to follow the production of non-labile DOM by marine bacteria. Two different glucose concentrations and dissolved algal exudates were used as substrates. We monitored the bacterial abundance, concentrations of dissolved and particulate organic carbon (DOC, POC), nutrients, amino acids, and transparent exopolymer particles (TEP) for two years. Ultrahigh resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS) allowed the molecular characterization of extracted DOM after 70 days and after ∼2 years of incubation. Although glucose was quickly degraded, a DOC background was generated in glucose incubations. Only 20% of the organic carbon from algal exudate was degraded within the 2 years of incubation. TEP, which are released by micro-organisms, were produced during glucose degradation but decreased within less than three weeks back to half of the maximum concentration and were below detection in all treatments after 2 years. The molecular analysis demonstrated that DOM generated during glucose degradation differed appreciably from DOM produced during the degradation of the algal exudates. Our results led to several conclusions: (i) Higher substrate levels result in a higher level of non-labile DOC which is an important prerequisite for carbon sequestration in the ocean; (ii) TEP are generated by bacteria but are also degraded rapidly, thus limiting their potential contribution to carbon sequestration; (iii) The molecular signatures of DOM derived from algal exudates or glucose after 70 days of incubation differed strongly from refractory DOM. After 2 years

  11. Multidimensional spectrofluorometry characterization of dissolved organic matter in arsenic-contaminated shallow groundwater.

    PubMed

    Huang, Shuangbing; Wang, Yanxin; Cao, Ling; Pi, Kunfu; Yu, Mei; Even, Emilie

    2012-01-01

    Multidimensional spectrofluorometry was employed to characterize dissolved organic matter (DOM) in arsenic-contaminated shallow aquifers at Jianghan Plain (JHP), central China, to better understand the effect of biogeochemical processes on arsenic mobilization. The microbial humic quinone and amino acid components identified indicate the importance of microbially mediated processes in the reduction of iron oxyhydroxides. The relationship of quinone and amino acid-like components with Fe(2+) and S(2-) helps us understand the sequential redox transformation (SRT) in the high arsenic aquifer system and the origin of bicarbonate in groundwater. Correlation between DOM components and dissolved arsenic and Fe suggests that arsenic mobilization could be linked to the microbial reduction of iron oxyhydroxides with liable DOM as electron donors as well as to the electron shuttling function served by humic quinones. PMID:22571533

  12. Noncrystalline Condensation of Densely Dissolved Optically Nonlinear Organic Compound in Polymer Matrices

    NASA Astrophysics Data System (ADS)

    Hiraga, Takashi; Tanaka, Norio; Hayamizu, Kikuko; Mito, Akihiro; Takarada, Shigeru; Yamasaki, Yuuichi; Nakamura, Michie; Hoshino, Nobuo; Moriya, Tetsuo

    1993-04-01

    Optical properties and condensed states of the densely dissolved optically nonlinear organic compound in polymer matrices were investigated by means of optical measurements, structural analysis and pressure tuning spectroscopy. In the investigation of the absorption peak wavelength, 2-methyl-4-nitroaniline (MNA) in poly(methyl methacrylate) (PMMA) exhibited characteristics intermediate between the crystal and the MNA dissolved in solvents, i.e., noncrystalline condensation. This result was consistent with those of X-ray diffraction analysis, second- and third-harmonics generation, IR absorption and 13C-NMR spectroscopies. It has also been revealed that such a system provides the most suitable measuring method of the third optical nonlinear constant for a variety of compounds.

  13. Bacterial Contribution to Dissolved Organic Matter in Eutrophic Lake Kasumigaura, Japan

    PubMed Central

    Komatsu, Kazuhiro; Kohzu, Ayato; Tomioka, Noriko; Shinohara, Ryuichiro; Satou, Takayuki; Watanabe, Fumiko Nara; Tada, Yuya; Hamasaki, Koji; Kushairi, M. R. M.; Imai, Akio

    2013-01-01

    Incubation experiments using filtered waters from Lake Kasumigaura were conducted to examine bacterial contribution to a dissolved organic carbon (DOC) pool. Bacterial abundance, bacterial production, concentrations of DOC, total dissolved amino acids (TDAA), and total dissolved neutral sugars (TDNS) were monitored during the experiments. Bacterial production during the first few days was very high (20 to 35 μg C liter−1 day−1), accounting for 40 to 70% of primary production. The total bacterial production accounted for 34 to 55% of the DOC loss during the experiment, indicating high bacterial activities in Lake Kasumigaura. The DOC degradation was only 12 to 15%, whereas the degradation of TDAA and TDNS ranged from 30 to 50%, suggesting the preferential usage of TDAA and TDNS. The contribution of bacterially derived carbon to a DOC pool in Lake Kasumigaura was estimated using d-amino acids as bacterial biomarkers and accounted for 30 to 50% of the lake DOC. These values were much higher than those estimated for the open ocean (20 to 30%). The ratio of bacterially derived carbon to bulk carbon increased slightly with time, suggesting that the bacterially derived carbon is more resistant to microbial degradation than bulk carbon. This is the first study to estimate the bacterial contribution to a DOC pool in freshwater environments. These results indicate that bacteria play even more important roles in carbon cycles in freshwater environments than in open oceans and also suggests that recent increases in recalcitrant DOC in various lakes could be attributed to bacterially derived carbon. The potential differences in bacterial contributions to dissolved organic matter (DOM) between freshwater and marine environments are discussed. PMID:24038686

  14. [Spectral characteristics of dissolved organic matter released during the metabolic process of small medusa].

    PubMed

    Guo, Dong-Hui; Yi, Yue-Yuan; Zhao, Lei; Guo, Wei-Dong

    2012-06-01

    The metabolic processes of jellyfish can produce dissolved organic matter (DOM) which will influence the functioning of the aquatic ecosystems, yet the optical properties of DOM released by jellyfish are unknown. Here we report the absorption and fluorescence properties of DOM released by a medusa species Black fordia virginica during a 24 h incubation experiment. Compared with the control group, an obvious increase in the concentrations of dissolved organic carbon (DOC), absorption coefficient (a280) and total dissolved nitrogen (TDN) was observed in incubation group. This clearly demonstrated the release of DOM, chromophoric DOM (CDOM) and dissolved nutrients by B. virginica which feed on enough of Artemia sp. before the experiment. The increase in spectral slope ratio (SR) and decrease in humification index (HIX) indicated that the released DOM was less-humified and had relatively lower molecular weight. Parallel factor analysis (PARAFAC) decomposed the fluorescence matrices of DOM into three humic-like components (C1-C3) and one protein-like component (C4). The Fmax of two components (C2: < 250, 295/386 nm; C4: 275/334 nm) with the emission wavelength < 400 nm increased significantly during the metabolic process of B. virginica. However, the Fmax of the other two components with the emission wavelength > 400 nm showed little changes. Thus, we suggested a zooplankton index (ZIX) to trace and characterize the DOM excreted by metabolic activity of zooplankton, which is calculated as the ratio of the sum of Fmax of all fluorescence components with the emission wavelength < 400 nm to the sum of Fmax of the other components with the emission wavelength > 400 nm. PMID:22870644

  15. Fluorescence characterization of cross flow ultrafiltration derived freshwater colloidal and dissolved organic matter.

    PubMed

    Liu, Ruixia; Lead, Jamie R; Baker, Andy

    2007-07-01

    3-D fluorescence excitation-emission matrix (EEM) spectrophotometry was applied to investigate the fluorescence characterization of colloidal organic matter (COM) and truly dissolved organic matter (DOM) from an urban lake and a rural river fractionated by the cross flow ultrafiltration (CFUF) process with a 1kDa membrane. Relatively high tryptophan-like fluorescence intensity is found in the urban water, although the fluorescence of both water samples is mainly dominated by humic/fulvic-like fluorophores. During CFUF processing, the fluorescence intensities of humic/fulvic-like materials in the retentate increased rapidly, but a slight increase is also observed in the permeate fluorescence intensity. Very different ultrafiltration behaviour occurred with respect to the tryptophan-like fluorophore, where both permeate and retentate fluorescence intensities increase substantially at the beginning of the CFUF process, then tend to remain constant at high concentration factor (cf) values. Comparison with tryptophan standards demonstrates that freshwater tryptophan-like fluorescence is not dissolved and 'free', but is, in part, colloidal and related to the ultrafiltration behaviour of fulvic/humic-like matter. A good linear relationship between the retentate humic/fulvic-like fluorescence intensity and organic carbon concentration further reveals that fluorescent humic/fulvic-like substances are the dominant contributors to colloidal organic carbon, mainly in the colloidal fraction. PMID:17350076

  16. Dissolved Organic Carbon Mobilisation in a Groundwater System Stressed by Pumping

    NASA Astrophysics Data System (ADS)

    Graham, P. W.; Baker, A.; Andersen, M. S.

    2015-12-01

    The concentration and flux of organic carbon in aquifers is influenced by recharge and abstraction, and surface and subsurface processing. In this study groundwater was abstracted from a shallow fractured rock aquifer and dissolved organic carbon (DOC) was measured in observation bores at different distances from the abstraction bore. Groundwater abstraction at rates exceeding the aquifers yield resulted in increased DOC concentration up to 3,500 percent of initial concentrations. Potential sources of this increased DOC were determined using optical fluorescence and absorbance analysis. Groundwater fluorescent dissolved organic material (FDOM) were found to be a combination of terrestrial-derived humic material and microbial or protein sourced material. Relative molecular weight of FDOM within four metres of the abstraction well increased during the experiment, while the relative molecular weight of FDOM between four and ten metres from the abstraction well decreased. When the aquifer is not being pumped, DOC mobilisation in the aquifer is low. We hypothesise that the physical shear stress on aquifer materials caused by intense abstraction significantly increases the temporary release of DOC from sloughing of biofilms and release of otherwise bound colloidal and sedimentary organic carbon (SOC).

  17. Dissolved Organic Carbon Mobilisation in a Groundwater System Stressed by Pumping

    PubMed Central

    Graham, P. W.; Baker, A.; Andersen, M. S.

    2015-01-01

    The concentration and flux of organic carbon in aquifers is influenced by recharge and abstraction, and surface and subsurface processing. In this study groundwater was abstracted from a shallow fractured rock aquifer and dissolved organic carbon (DOC) was measured in observation bores at different distances from the abstraction bore. Groundwater abstraction at rates exceeding the aquifers yield resulted in increased DOC concentration up to 3,500 percent of initial concentrations. Potential sources of this increased DOC were determined using optical fluorescence and absorbance analysis. Groundwater fluorescent dissolved organic material (FDOM) were found to be a combination of terrestrial-derived humic material and microbial or protein sourced material. Relative molecular weight of FDOM within four metres of the abstraction well increased during the experiment, while the relative molecular weight of FDOM between four and ten metres from the abstraction well decreased. When the aquifer is not being pumped, DOC mobilisation in the aquifer is low. We hypothesise that the physical shear stress on aquifer materials caused by intense abstraction significantly increases the temporary release of DOC from sloughing of biofilms and release of otherwise bound colloidal and sedimentary organic carbon (SOC). PMID:26691238

  18. Dissolved Organic Carbon Mobilisation in a Groundwater System Stressed by Pumping.

    PubMed

    Graham, P W; Baker, A; Andersen, M S

    2015-01-01

    The concentration and flux of organic carbon in aquifers is influenced by recharge and abstraction, and surface and subsurface processing. In this study groundwater was abstracted from a shallow fractured rock aquifer and dissolved organic carbon (DOC) was measured in observation bores at different distances from the abstraction bore. Groundwater abstraction at rates exceeding the aquifers yield resulted in increased DOC concentration up to 3,500 percent of initial concentrations. Potential sources of this increased DOC were determined using optical fluorescence and absorbance analysis. Groundwater fluorescent dissolved organic material (FDOM) were found to be a combination of terrestrial-derived humic material and microbial or protein sourced material. Relative molecular weight of FDOM within four metres of the abstraction well increased during the experiment, while the relative molecular weight of FDOM between four and ten metres from the abstraction well decreased. When the aquifer is not being pumped, DOC mobilisation in the aquifer is low. We hypothesise that the physical shear stress on aquifer materials caused by intense abstraction significantly increases the temporary release of DOC from sloughing of biofilms and release of otherwise bound colloidal and sedimentary organic carbon (SOC). PMID:26691238

  19. Water solubility enhancement of some organic pollutants and pesticides by dissolved humic and fulvic acids

    USGS Publications Warehouse

    Chiou, C.T.; Malcolm, R.L.; Brinton, T.I.; Kile, D.E.

    1986-01-01

    Water solubility enhancements by dissolved humic and fulvic acids from soil and aquatic origins and by synthetic organic polymers have been determined for selected organic pollutants and pesticides (p,p???-DDT, 2,4,5,2???,5???-PCB, 2,4,4???-PCB, 1,2,3-trichlorobenzene, and lindane). Significant solubility enhancements of relatively water-insoluble solutes by dissolved organic matter (DOM) of soil and aquatic origins may be described in terms of a partition-like interaction of the the solutes with the microscopic organic environment of the high-molecular-weight DOM species; the apparent solute solubilities increase linearly with DOM concentration and show no competitive effect between solutes. With a given DOM sample, the solute partition coefficient (Kdom) increases with a decrease of solute solubility (Sw) or with an increase of the solute's octanol-water partition coefficient (Kow). The Kdom values of solutes with soil-derived humic acid are approximately 4 times greater than with soil fulvic acid and 5-7 times greater than with aquatic humic and fulvic acids. The effectiveness of DOM in enhancing solute solubility appears to be largely controlled by the DOM molecular size and polarity. The relative inability of high-molecular-weight poly(acrylic acids) to enhance solute solubility is attributed to their high polarities and extended chain structures that do not permit the formation of a sizable intramolecular nonpolar environment.

  20. Emplacement mechanisms and trapping potential of gravity-driven allochthons

    SciTech Connect

    Pinney, R.B.

    1985-02-01

    Gravity-slide blocks of Paleozoic carbonate detached from the Snake River Range show evidence of episodic emplacement into the Salt Lake group (Mio-Pliocene) in the Palisades reservoir area near Alpine, Wyoming. The allochthons lie in a large graben system created by the Grand Valley listric normal fault, a reactivated thrust that soles into a ramp in the underlying Absaroka thrust. In the Alpine 7 1/2-min quadrangle, one of the detached blocks is 2 1/2 mi (4 km) by 1 mi (1.6 km) in map view and contains the Ferry Peak thrust as well as other Laramide structures. Structures and formations of the Alpine allochthon may be matched to those in the range to restore approximate predetachment position. Very low-angle westward translation at or near the surface moved the blocks across the Grand Valley fault into the graben. The current location and attitude of these allochthons are due to subsequent movement and rotation on the Grand Valley fault. The allochthons occur at different stratigraphic levels in the Salt Lake group, each level corresponding to the time of a specific emplacement event. Catastrophic emplacement of a fractured allochthon, a potential reservoir, into a lacustrine or other source rock depocenter creates a unique and potentially predictable type of petroleum occurrence. Paleogeographic reconstruction may explain anomalous occurrence of discrete allochthons in structurally low areas where it can be shown that a gravitational potential existed for detachment and sliding. The resulting trap would consist of allochthons encased in autochthonous source rock.

  1. PHOTOGENERATION OF SINGLET OXYGEN AND FREE RADICALS IN DISSOLVED ORGANIC MATTER ISOLATED FROM THE MISSISSIPPI AND ATCHAFALAYA RIVER PLUMES

    EPA Science Inventory

    The photoreactivity to UV light of ultrafiltered dissolved organic matter (DOM) collected during cruises along salinity transects in the Mississippi and Atchafalaya River plumes was examined by measuring photogenerated free radicals and singlet molecular oxygen (1O2) photosensiti...

  2. INTERACTIONS BETWEEN PHOTOCHEMICAL AND MICROBIAL DECOMPOSITION IN MODIFYING THE BIOLOGICAL AVAILABILITY AND OPTICAL PROPERTIES OF ESTUARINE DISSOLVED ORGANIC MATTER

    EPA Science Inventory

    Direct photodecomposition and photochemically-mediated bacterial degradation (via photochemical modification of otherwise refractory DOM into biologically labile forms) provide
    important pathways for the loss of dissolved organic matter in coastal waters. Here we report
    lab...

  3. EFFECTS OF PHOTOCHEMICAL, MICROBIAL AND SORPTION PROCESSES ON THE OPTICAL PROPERTIES AND DEGRADATION OF DISSOLVED ORGANIC MATTER FROM COASTAL WETLANDS

    EPA Science Inventory

    The dissolved organic matter (DOM) exported from rivers and intertidal marshes to coastal oceans is rich in light-absorbing, fluorescent constituents, including humic substances and other polyphenolic moieties. Interactions between microbial and photochemical processes have impor...

  4. PHOTOCHEMICALLY-INDUCED ALTERATION OF STABLE CARBON ISOTOPE RATIOS (DELTA C-13) IN TERRIGENOUS DISSOLVED ORGANIC CARBON

    EPA Science Inventory

    Exposure of riverine waters to natural sunlight initiated alterations in stable carbon isotope ratios (delta C-13) of the associated dissolved organic carbon (DOC). Water samples were collected from two compositionally distinct coastal river systems in the southeastern United Sta...

  5. SPATIAL AND TEMPORAL DISTRIBUTION OF COLOURED DISSOLVED ORGANIC MATTER (CDOM) IN NARRAGANSETT BAY, RI: IMPLICATIONS FOR PHYTOPLANKTON IN COASTAL WATERS

    EPA Science Inventory

    One indicator of health in estuarine and coastal ecosystems is the ability of local waters to transmit sunlight to planktonic, macrophytic, and other submerged vegetation for photosynthesis. The concentration of coloured dissolved organic matter (CDOM) is a primary factor affecti...

  6. Dissolved effluent organic matter: Characteristics and potential implications in wastewater treatment and reuse applications.

    PubMed

    Michael-Kordatou, I; Michael, C; Duan, X; He, X; Dionysiou, D D; Mills, M A; Fatta-Kassinos, D

    2015-06-15

    Wastewater reuse is currently considered globally as the most critical element of sustainable water management. The dissolved effluent organic matter (dEfOM) present in biologically treated urban wastewater, consists of a heterogeneous mixture of refractory organic compounds with diverse structures and varying origin, including dissolved natural organic matter, soluble microbial products, endocrine disrupting compounds, pharmaceuticals and personal care products residues, disinfection by-products, metabolites/transformation products and others, which can reach the aquatic environment through discharge and reuse applications. dEfOM constitutes the major fraction of the effluent organic matter (EfOM) and due to its chemical complexity, it is necessary to utilize a battery of complementary techniques to adequately describe its structural and functional character. dEfOM has been shown to exhibit contrasting effects towards various aquatic organisms. It decreases metal uptake, thus potentially reducing their bioavailability to exposed organisms. On the other hand, dEfOM can be adsorbed on cell membranes inducing toxic effects. This review paper evaluates the performance of various advanced treatment processes (i.e., membrane filtration and separation processes, activated carbon adsorption, ion-exchange resin process, and advanced chemical oxidation processes) in removing dEfOM from wastewater effluents. In general, the literature findings reveal that dEfOM removal by advanced treatment processes depends on the type and the amount of organic compounds present in the aqueous matrix, as well as the operational parameters and the removal mechanisms taking place during the application of each treatment technology. PMID:25917290

  7. Characterization of dissolved organic materials in surface waters within the blast zone of Mount St Helens, Washington

    USGS Publications Warehouse

    McKnight, Diane M.; Pereira, W.E.; Ceazan, M.L.; Wissmar, Robert C.

    1982-01-01

    After the May 18, 1980, eruption of Mount St Helens, the concentration of dissolved organic material in surface waters near the volcano increased significantly as a result of the destruction of the surrounding conifer forest. Low molecular weight organic compounds identified in the blast zone surface waters were derived from pyrolysis of plant and soil organic materials incorporated into pyroclastic flow, mud flow and debris avalanche deposits. A major fraction of the dissolved organic material consisted of high molecular weight, colored, organic acids that are similar in their general properties to aquatic fulvic acids found in more typical surface waters except for greater sulfur contents. The other major fraction of the dissolved organic material consisted of hydrophilic acids, which may include compounds capable of supporting heterotrophic microorganisms, and precursors in the formation of aquatic fulvic acids. The organic chemistry of blast zone surface waters will probably be greatly influenced by the May 18, 1980, eruption for many years. ?? 1982.

  8. Cu Binding to Iron Oxide-Organic Matter Coprecipitates in Solid and Dissolved Phases

    NASA Astrophysics Data System (ADS)

    Vadas, T. M.; Koenigsmark, F.

    2015-12-01

    Recent studies indicate that Cu is released from wetlands following storm events. Assymetrical field flow field fractionation (AF4) analyses as well as total and dissolved metal concentration measurements suggest iron oxide-organic matter complexes control Cu retention and release. Coprecipitation products of Fe oxide and organic matter were prepared under conditions similar to the wetland to assess Cu partitioning to and availability from solid phases that settle from solution as well as phases remaining suspended. Cu coprecipitation and sorption to organomineral precipitation solids formed at different Fe:organic carbon (OC) ratios were compared for net Cu removal and extractability. As more humic acid was present during precipitation of Fe, TEM images indicated smaller Fe oxide particles formed within an organic matrix as expected. In coprecipitation reactions, as the ratio of Fe:OC decreased, more Cu was removed from solution at pH 5.5 and below. However, in sorption reactions, there was an inhibition of Cu removal at low OC concentrations. As the pH increased from 5.5 to 7 and as solution phase OC concentration increased, more Cu remained dissolved in both coprecipitation and sorption reactions. The addition of Ca2+, glycine, histidine and citric acid or lowering the pH resulted in more extractable Cu from the coprecipitation compared with the sorption reactions. The variations in Cu extraction were likely due to a combination of a more amorphous structure in CPT products, and the relative abundance of available Fe oxide or OC binding sites. Suspended Fe oxide-organic matter coprecipitates were assessed using AF4 coupled to online TOC analysis and ICP-MS. In laboratory prepared samples, Cu was observed in a mixture of small 1-5 nm colloids of Fe oxide-organic matter precipitates, but the majority was observed in larger organic matter colloids and were not UV absorbing, suggesting more aliphatic carbon materials. In field samples, up to 60% of the dissolved Cu

  9. [Dynamics of soil microbial biomass and dissolved organic carbon and nitrogen under flooded condition].

    PubMed

    Qiu, Shaojun; Peng, Peiqin; Rong, Xiangmin; Liu, Qiang; Tang, Qi

    2006-11-01

    With reddish yellow soil (RYS) and alluvial purple soil (APS), the two typical paddy soils in the Dongting Lake floodplain of China as test soils, an incubation test was conducted at 25 degrees C to study the dynamic changes of soil microbial biomass and dissolved organic carbon and nitrogen under flooded condition. Three treatments were installed, i.e., control (CK), ammonium sulfate (N), and rice straw powder plus ammonium sulfate (S-N). The results showed that during incubation, soil microbial biomass carbon (SMBC), soil microbial biomass nitrogen (SMBN), soil dissolved organic carbon (SDOC), and soil dissolved organic nitrogen (SDON) reached their maximum initially, decreased thereafter, and tended to be stable. After amending the substrates to the two soils, the averages of SMBC to soil total carbon, SMBN to soil total nitrogen, SDOC to soil total carbon, and SDON to soil total nitrogen were 2% - 3%, 2% - 3%, 1% or so, and 5% - 6%, respectively. In the two soils, the peak values of SMBC in treatment N and those of SMBN, SDOC and SDON in treatment S-N were the highest, while those of SMBC in treatments N and S-N had no significant difference. The peak values of SMBN, SDOC and SDON in RYS were significantly different between treatments N and S-N, while no significant difference was observed between the peak values of SMBN and SDOC in APS, because the fertility of RYS was lower than that of APS. In the first 7 days of incubation, SMBC/SMBN ratio was < 10, while after 14 days of incubation, this ratio was higher in treatment N than in treatment S-N at the same time in the same soil. The SDOC/SDON ratio in all treatments was the highest at the 3rd d, and the lowest at the 28th d of incubation. PMID:17269325

  10. Effects of coral reef benthic primary producers on dissolved organic carbon and microbial activity.

    PubMed

    Haas, Andreas F; Nelson, Craig E; Wegley Kelly, Linda; Carlson, Craig A; Rohwer, Forest; Leichter, James J; Wyatt, Alex; Smith, Jennifer E

    2011-01-01

    Benthic primary producers in marine ecosystems may significantly alter biogeochemical cycling and microbial processes in their surrounding environment. To examine these interactions, we studied dissolved organic matter release by dominant benthic taxa and subsequent microbial remineralization in the lagoonal reefs of Moorea, French Polynesia. Rates of photosynthesis, respiration, and dissolved organic carbon (DOC) release were assessed for several common benthic reef organisms from the backreef habitat. We assessed microbial community response to dissolved exudates of each benthic producer by measuring bacterioplankton growth, respiration, and DOC drawdown in two-day dark dilution culture incubations. Experiments were conducted for six benthic producers: three species of macroalgae (each representing a different algal phylum: Turbinaria ornata--Ochrophyta; Amansia rhodantha--Rhodophyta; Halimeda opuntia--Chlorophyta), a mixed assemblage of turf algae, a species of crustose coralline algae (Hydrolithon reinboldii) and a dominant hermatypic coral (Porites lobata). Our results show that all five types of algae, but not the coral, exuded significant amounts of labile DOC into their surrounding environment. In general, primary producers with the highest rates of photosynthesis released the most DOC and yielded the greatest bacterioplankton growth; turf algae produced nearly twice as much DOC per unit surface area than the other benthic producers (14.0±2.8 µmol h⁻¹ dm⁻²), stimulating rapid bacterioplankton growth (0.044±0.002 log10 cells h⁻¹) and concomitant oxygen drawdown (0.16±0.05 µmol L⁻¹ h⁻¹ dm⁻²). Our results demonstrate that benthic reef algae can release a significant fraction of their photosynthetically-fixed carbon as DOC, these release rates vary by species, and this DOC is available to and consumed by reef associated microbes. These data provide compelling evidence that benthic primary producers differentially influence reef microbial

  11. Redox reactions of dissolved organic matter contribute to anaerobic sulphur cycling in peatland soils

    NASA Astrophysics Data System (ADS)

    Blodau, C.; Margit, R.; Bernhard, M.; Moore, T. R.

    2004-05-01

    Sulphate reduction rates in wetland soils typically account for a large fraction of the anaerobic electron flow, despite small pool sizes of sulphate in the pore waters. The studies objective was to test the hypothesis that recycling of sulphur occurs and that redox-reactions of dissolved organic matter (DOM) are involved in the recycling process. To examine the recycling process we used peat mesocosm from two peatlands in Ontario, Canada and subjected them to sulphur deposition and vertical water flow of about 2 mm/day. Depth profiles of DOC and sulphate concentrations were determined and vertical mass balances calculated. In addition we determined 34S sulphate profiles of pore waters. Batch experiments with addition of H2S to solutions of standard peat humic acid (Pahokee Peat, IHSS) were used to determine whether H2S was oxidized by humic acids, and what the reaction products were. Enrichment with 34S at intermediate depths, constant sulphate concentrations with depth and absence of oxygen suggested that sulphate reduction and anaerobic sulphate release concurrently occurred. In the batch experiments two apparent reactions of H2S with DOM were observed. In the fast initial reaction, H2S was oxidized mostly to elemental sulphur and secondarily to sulphate. Production of thiosulfate was not observed. In a slower reaction step H2S was further consumed and the sum of dissolved inorganic forms of sulphur in the pore water decreased. This was interpreted as H2S being incorporated into the organic substance. No systematic relationship between pH and the oxidation process was found. Overall the results suggest that dissolved organic matter is involved in an anaerobic sulphur cycle allowing for high rates of sulphate reduction in sulphate-poor peatlands.

  12. Effects of Coral Reef Benthic Primary Producers on Dissolved Organic Carbon and Microbial Activity

    PubMed Central

    Haas, Andreas F.; Nelson, Craig E.; Wegley Kelly, Linda; Carlson, Craig A.; Rohwer, Forest; Leichter, James J.; Wyatt, Alex; Smith, Jennifer E.

    2011-01-01

    Benthic primary producers in marine ecosystems may significantly alter biogeochemical cycling and microbial processes in their surrounding environment. To examine these interactions, we studied dissolved organic matter release by dominant benthic taxa and subsequent microbial remineralization in the lagoonal reefs of Moorea, French Polynesia. Rates of photosynthesis, respiration, and dissolved organic carbon (DOC) release were assessed for several common benthic reef organisms from the backreef habitat. We assessed microbial community response to dissolved exudates of each benthic producer by measuring bacterioplankton growth, respiration, and DOC drawdown in two-day dark dilution culture incubations. Experiments were conducted for six benthic producers: three species of macroalgae (each representing a different algal phylum: Turbinaria ornata – Ochrophyta; Amansia rhodantha – Rhodophyta; Halimeda opuntia – Chlorophyta), a mixed assemblage of turf algae, a species of crustose coralline algae (Hydrolithon reinboldii) and a dominant hermatypic coral (Porites lobata). Our results show that all five types of algae, but not the coral, exuded significant amounts of labile DOC into their surrounding environment. In general, primary producers with the highest rates of photosynthesis released the most DOC and yielded the greatest bacterioplankton growth; turf algae produced nearly twice as much DOC per unit surface area than the other benthic producers (14.0±2.8 µmol h−1 dm−2), stimulating rapid bacterioplankton growth (0.044±0.002 log10 cells h−1) and concomitant oxygen drawdown (0.16±0.05 µmol L−1 h−1 dm−2). Our results demonstrate that benthic reef algae can release a significant fraction of their photosynthetically-fixed carbon as DOC, these release rates vary by species, and this DOC is available to and consumed by reef associated microbes. These data provide compelling evidence that benthic primary producers differentially influence reef

  13. Origin and sources of dissolved organic matter in snow on the East Antarctic ice sheet.

    PubMed

    Antony, Runa; Grannas, Amanda M; Willoughby, Amanda S; Sleighter, Rachel L; Thamban, Meloth; Hatcher, Patrick G

    2014-06-01

    Polar ice sheets hold a significant pool of the world's carbon reserve and are an integral component of the global carbon cycle. Yet, organic carbon composition and cycling in these systems is least understood. Here, we use ultrahigh resolution mass spectrometry to elucidate, at an unprecedented level, molecular details of dissolved organic matter (DOM) in Antarctic snow. Tens of thousands of distinct molecular species are identified, providing clues to the nature and sources of organic carbon in Antarctica. We show that many of the identified supraglacial organic matter formulas are consistent with material from microbial sources, and terrestrial inputs of vascular plant-derived materials are likely more important sources of organic carbon to Antarctica than previously thought. Black carbon-like material apparently originating from biomass burning in South America is also present, while a smaller fraction originated from soil humics and appears to be photochemically or microbially modified. In addition to remote continental sources, we document signals of oceanic emissions of primary aerosols and secondary organic aerosol precursors. The new insights on the diversity of organic species in Antarctic snowpack reinforce the importance of studying organic carbon associated with the Earth's polar regions in the face of changing climate. PMID:24804819

  14. Dissolved organic matter in newly formed sea ice and surface seawater

    NASA Astrophysics Data System (ADS)

    Longnecker, Krista

    2015-12-01

    Changes in sea ice in the Arctic will have ramifications on regional and global carbon cycling. Research to date has primarily focused on the regional impacts to biological activity and global impacts on atmospheric processes. The current project considers the molecular-level composition of organic carbon within sea ice compared to the organic matter in seawater. The project revealed that the composition of organic matter within sea ice was more variable than the composition of organic matter within the surface ocean. Furthermore, sea ice samples presented two distinct patterns in the composition of organic matter with a portion of the sea ice samples containing protein-like organic matter. Yet, the samples were collected in the early winter period when little biological activity is expected. Thus, one hypothesis is that physical processes acting during the formation of sea ice selectively transferred organic matter from seawater into sea ice. The present project expands our understanding of dissolved organic matter in sea ice and surface seawater and thereby increases our knowledge of carbon cycling in polar regions.

  15. Development of gas chromatographic system for dissolved organic carbon analysis in seawater. Annual progress report

    SciTech Connect

    Chipman, D.W.; Takahashi, T.

    1992-12-01

    During the first six months of this two-year grant, we have completed the construction of the analytical portion of a prototype gas chromatograph-based system for the analysis of dissolved organic carbon in seawater. We also have begun testing the procedures to be used to cryogenically concentrate and transfer carbon dioxide from the oxidizing atmosphere of the high-temperature furnace into the reducing hydrogen carrier gas of the gas chromatograph. During the second half of the first year, we will construct the high-temperature catalytic oxidation furnace and test the entire system on laboratory-prepared aqueous solutions of various organic compounds. Also during this period, we will take part in an initial scoping study within the Cape Hatteras field area on board the R/V Gyre. This study will involve both the collection of samples of seawater for organic and inorganic carbon analysis and the measurement of surface-water pCO{sub 2}.

  16. Development of gas chromatographic system for dissolved organic carbon analysis in seawater

    SciTech Connect

    Chipman, D.W.; Takahashi, T.

    1992-12-01

    During the first six months of this two-year grant, we have completed the construction of the analytical portion of a prototype gas chromatograph-based system for the analysis of dissolved organic carbon in seawater. We also have begun testing the procedures to be used to cryogenically concentrate and transfer carbon dioxide from the oxidizing atmosphere of the high-temperature furnace into the reducing hydrogen carrier gas of the gas chromatograph. During the second half of the first year, we will construct the high-temperature catalytic oxidation furnace and test the entire system on laboratory-prepared aqueous solutions of various organic compounds. Also during this period, we will take part in an initial scoping study within the Cape Hatteras field area on board the R/V Gyre. This study will involve both the collection of samples of seawater for organic and inorganic carbon analysis and the measurement of surface-water pCO[sub 2].

  17. Dissolved and particulate organic carbon fluxes from an agricultural watershed during consecutive tropical storms

    NASA Astrophysics Data System (ADS)

    Caverly, Emma; Kaste, James M.; Hancock, Gregory S.; Chambers, Randolph M.

    2013-10-01

    Low-frequency high-magnitude hydrologic events mobilize a disproportionate amount of dissolved organic carbon (DOC) from watersheds, but few studies measure the role of extreme storms in exporting organic carbon from croplands. We use high-resolution measurements of storm runoff to quantify DOC and particulate organic carbon (POC) fluxes from an agricultural field during consecutive tropical storms that delivered 41 cm of rainfall to the Virginia Coastal Plain. Over a 2 week period, we measured exports of 22 kg DOC ha-1 and 11.3 kg POC ha-1. Ultraviolet absorbance measurements indicate that the aromatic DOC fraction systematically increased as plant-derived aliphatic carbon was depleted during the initial event. Croplands can have event-scale carbon losses that equal or exceed published estimates of annual export for perennial streams draining forested and mixed land use watersheds. We quantify aromatic DOC fractions approaching 50%, indicating that agricultural stormflow can produce a significant load of relatively photoreactive carbon.

  18. Chemical and carbon isotopic composition of dissolved organic carbon in a regional confined methanogenic aquifer

    USGS Publications Warehouse

    Aravena, R.; Wassenaar, L.I.; Spiker, E. C.

    2004-01-01

    This study demonstrates the advantage of a combined use of chemical and isotopic tools to understand the dissolved organic carbon (DOC) cycle in a regional confined methanogenic aquifer. DOC concentration and carbon isotopic data demonstrate that the soil zone is a primary carbon source of groundwater DOC in areas close to recharge zones. An in-situ DOC source linked to organic rich sediments present in the aquifer matrix is controlling the DOC pool in the central part of the groundwater flow system. DOC fractions, 13C-NMR on fulvic acids and 14C data on DOC and CH4 support the hypothesis that the in-situ DOC source is a terrestrial organic matter and discard the Ordovician bedrock as a source of DOC. ?? 2004 Taylor and Francis Ltd.

  19. Linking soils and streams: Sources and chemistry of dissolved organic matter in a small coastal watershed

    NASA Astrophysics Data System (ADS)

    Sanderman, Jonathan; Lohse, Kathleen A.; Baldock, Jeffrey A.; Amundson, Ronald

    2009-03-01

    To understand the hydrologic and biogeochemical controls on the age and recalcitrance of dissolved organic matter (DOM) found in stream waters, we combined hydrometric monitoring along a topographic gradient from ridge to channel with isotopic (13C and 14C) and spectroscopic (UV and 13C nuclear magnetic resonance) analyses of soil and stream water samples in a small coastal watershed in California. With increasing discharge, dissolved organic carbon concentrations increased from 2.2 to 10.9 mg C L-1, Δ14C values increased from -125 to +120‰, δ13C values decreased from -24 to -29‰, C:N ratios increased from 6.5 to 15.4, and specific UV adsorption increased from 1.4 to 3.8 L mg C-1 m-1. These changes in DOM composition are consistent with a shift in source from old and recalcitrant soil organic matter (OM) sources found in deep soil horizons to young and relatively fresh OM sources found in the surface horizons. Results from this study suggest upland soils of the watershed become DOM production limited as indicated by a seasonal depletion and chemical shift in soil DOM, whereas highly productive soils in the hollow act as a near-infinite DOM source. Hydrologic connectivity of this DOM-rich riparian source region to the stream ultimately constrains DOM export, and the stream DOM composition reflects the combined influence of soil biogeochemical cycling of OM and hydrologic routing of water through the landscape.

  20. Catchment influence on nitrate and dissolved organic matter in Alaskan streams across a latitudinal gradient

    NASA Astrophysics Data System (ADS)

    Harms, Tamara K.; Edmonds, Jennifer W.; Genet, Hélène; Creed, Irena F.; Aldred, David; Balser, Andrew; Jones, Jeremy B.

    2016-02-01

    Spatial patterns in carbon (C) and nitrogen (N) cycles of high-latitude catchments have been linked to climate and permafrost and used to infer potential changes in biogeochemical cycles under climate warming. However, inconsistent spatial patterns across regions indicate that factors in addition to permafrost and regional climate may shape responses of C and N cycles to climate change. We hypothesized that physical attributes of catchments modify responses of C and N cycles to climate and permafrost. We measured dissolved organic C (DOC) and nitrate (NO3-) concentrations, and composition of dissolved organic matter (DOM) in 21 streams spanning boreal to arctic Alaska, and assessed permafrost, topography, and attributes of soils and vegetation as predictors of stream chemistry. Multiple regression analyses indicated that catchment slope is a primary driver, with lower DOC and higher NO3- concentration in streams draining steeper catchments, respectively. Depth of the active layer explained additional variation in concentration of DOC and NO3-. Vegetation type explained regional variation in concentration and composition of DOM, which was characterized by optical methods. Composition of DOM was further correlated with attributes of soils, including moisture, temperature, and thickness of the organic layer. Regional patterns of DOC and NO3- concentrations in boreal to arctic Alaska were driven primarily by catchment topography and modified by permafrost, whereas composition of DOM was driven by attributes of soils and vegetation, suggesting that predicting changes to C and N cycling from permafrost-influenced regions should consider catchment setting in addition to dynamics of climate and permafrost.

  1. Associations of free-living bacteria and dissolved organic compounds in a plume of contaminated groundwater

    USGS Publications Warehouse

    Harvey, R.W.; Barber, L.B., II

    1992-01-01

    Associations of free-living bacteria (FLB) and dissolved organic contaminants in a 4-km-long plume of sewage-contaminated groundwater were investigated. Abundance of FLB in the core of the plume (as delineated by maximum specific conductance) steadily decreased in the direction of flow from a point 0.25 km downgradient from the source to the toe of the plume. At 0.25 km downgradient, FLB comprised up to 31% of the total bacterial population, but constituted < 7% of the population at 2 km downgradient. Abundance of FLB correlated strongly (r = 0.80 n = 23) with total dissolved organic carbon (DOC) in contaminated groundwater between 0.64 and 2.1 km downgradient, although distributions of individual contaminants such as di-, tri- and tetrachloroethene were highly variable, and their association with FLB less clear. Numbers of FLB in the downgradient portion of the plume which is contaminated with branched-chain alkylbenzenesulfonate (ABS) surfactants were low (< 5??108/L) in spite of relatively high levels of DOC (up to 4 mg/L). However, abundance of FLB correlated strongly with non-surfactant DOC along vertical transects through the plume. The ratio of FLB to DOC and the ratio of FLB to attached bacteria generally decreased in the direction of flow and, consequently, with the age of the organic contaminants.

  2. Differences in dissolved organic matter between reclaimed water source and drinking water source.

    PubMed

    Hu, Hong-Ying; Du, Ye; Wu, Qian-Yuan; Zhao, Xin; Tang, Xin; Chen, Zhuo

    2016-05-01

    Dissolved organic matter (DOM) significantly affects the quality of reclaimed water and drinking water. Reclaimed water potable reuse is an effective way to augment drinking water source and de facto reuse exists worldwide. Hence, when reclaimed water source (namely secondary effluent) is blended with drinking water source, understanding the difference in DOM between drinking water source (dDOM) and reclaimed water source (rDOM) is essential. In this study, composition, transformation, and potential risk of dDOM from drinking water source and rDOM from secondary effluent were compared. Generally, the DOC concentration of rDOM and dissolved organic nitrogen (DON) content in reclaimed water source were higher but rDOM exhibited a lower aromaticity. Besides, rDOM comprises a higher proportion of hydrophilic fractions and more low-molecular weight compounds, which are difficult to be removed during coagulation. Although dDOM exhibited higher specific disinfection byproducts formation potential (SDBPFP), rDOM formed more total disinfection byproducts (DBPs) during chlorination including halomethanes (THMs) and haloacetic acids (HAAs) due to high DOC concentration. Likewise, in consideration of DOC basis, rDOM contained more absolute assimilable organic carbon (AOC) despite showing a lower specific AOC (normalized AOC per unit of DOC). Besides, rDOM exhibited higher biotoxicity including genotoxicity and endocrine disruption. Therefore, rDOM presents a greater potential risk than dDOM does. Reclaimed water source needs to be treated carefully when it is blended with drinking water source. PMID:26874770

  3. Black Carbon in Estuarine (Coastal) High-molecular-weight Dissolved Organic Matter

    NASA Technical Reports Server (NTRS)

    Mannino, Antonio; Harvey, H. Rodger

    2003-01-01

    Dissolved organic matter (DOM) in the ocean constitutes one of the largest pools of organic carbon in the biosphere, yet much of its composition is uncharacterized. Observations of black carbon (BC) particles (by-products of fossil fuel combustion and biomass burning) in the atmosphere, ice, rivers, soils and marine sediments suggest that this material is ubiquitous, yet the contribution of BC to the ocean s DOM pool remains unknown. Analysis of high-molecular-weight DOM isolated from surface waters of two estuaries in the northwest Atlantic Ocean finds that BC is a significant component of DOM, suggesting that river-estuary systems are important exporters of BC to the ocean through DOM. We show that BC comprises 4-7% of the dissolved organic carbon (DOC) at coastal ocean sites, which supports the hypothesis that the DOC pool is the intermediate reservoir in which BC ages prior to sedimentary deposition. Flux calculations suggest that BC could be as important as vascular plant-derived lignin in terms of carbon inputs to the ocean. Production of BC sequesters fossil fuel- and biomass-derived carbon into a refractory carbon pool. Hence, BC may represent a significant sink for carbon to the ocean.

  4. BOREAS TGB-5 Dissolved Organic Carbon Data from NSA Beaver Ponds

    NASA Technical Reports Server (NTRS)

    Bourbonniere, Rick; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor)

    2000-01-01

    The BOReal Ecosystem-Atmosphere Study Trace Gas Biogeochemistry (BOREAS TGB-5) team collected several data sets related to carbon and trace gas fluxes and concentrations in the Northern Study Area (NSA). This data set contains concentrations of dissolved organic and inorganic carbon species from water samples collected at various NSA sites. In particular, this set covers the NSA Tower Beaver Pond Site and the NSA Gillam Road Beaver Pond Site, including data from all visits to open water sampling locations during the BOREAS field campaigns from April to September 1994. The data are provided in tabular ASCII files.

  5. Revealing Aquatic Dissolved Organic Matter Composition using Direct 1H NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Burns, D. C.; Gueguen, C.

    2009-05-01

    Dissolved organic matter (DOM) is ubiquitous in all aquatic ecosystems, and comprises a variety of chemically heterogeneous molecular structures and functional groups. DOM is often considered to be a major ligand for metals in most natural waters. However DOM reactivity is thought to be strongly dependent on its chemical structure. The purpose of this study is to evaluate the variability in molecular composition of aquatic DOM from different sources. Quantitative proton NMR spectra were obtained without any preconcentration using water suppression techniques. The reproducibility on the determination of aromatic and aliphatic proton was better than 3%. The structural information of DOM from northern rivers was compared to IHSS humic substances.

  6. Temperature dependence of the relationship between pCO2 and dissolved organic carbon in lakes

    NASA Astrophysics Data System (ADS)

    Pinho, L.; Duarte, C. M.; Marotta, H.; Enrich-Prast, A.

    2016-02-01

    The relationship between the partial pressure of carbon dioxide (pCO2) and dissolved organic carbon (DOC) concentration in Brazilian lakes, encompassing 225 samples across a wide latitudinal range in the tropics, was tested. Unlike the positive relationship reported for lake waters, which was largely based on temperate lakes, we found no significant relationship for low-latitude lakes (< 33°), despite very broad ranges in both pCO2 and DOC levels. These results suggest substantial differences in the carbon cycling of low-latitude lakes, which must be considered when upscaling limnetic carbon cycling to global scales.

  7. Relevance of dissolved organic nutrients for the Arctic Ocean nutrient budget

    NASA Astrophysics Data System (ADS)

    Torres-Valdés, Sinhué; Tsubouchi, Takamasa; Davey, Emily; Yashayaev, Igor; Bacon, Sheldon

    2016-06-01

    We ask whether dissolved organic nitrogen (DON) and phosphorus (DOP) could account for previously identified Arctic Ocean (AO) inorganic nutrient budget imbalances. We assess transports to/from the AO by calculating indicative budgets. Marked DON:DOP ratio differences between the Amerasian and Eurasian AO reflect different physical and biogeochemical pathways. DON and DOP are exported to the North Atlantic via Davis Strait potentially being enhanced in transit from Bering Strait. Fram Strait transports are balanced. Barents Sea Opening transports may provide an additional nutrient source to the Barents Sea or may be locked within the wider AO Atlantic Water circulation. Gaps in our knowledge are identified and discussed.

  8. Dissolved organic carbon and disinfection by-product precursor release from managed peat soils.

    PubMed

    Fleck, J A; Bossio, D A; Fujii, R

    2004-01-01

    A wetland restoration demonstration project examined the effects of a permanently flooded wetland on subsidence of peat soils. The project, started in 1997, was done on Twitchell Island, in the Sacramento-San Joaquin Delta of California. Conversion of agricultural land to a wetland has changed many of the biogeochemical processes controlling dissolved organic carbon (DOC) release from the peat soils, relative to the previous land use. Dissolved organic C in delta waters is a concern because it reacts with chlorine, added as a disinfectant in municipal drinking waters, to form carcinogenic disinfection byproducts (DBPs), including trihalomethanes (THMs) and haloacetic acids (HAAs). This study explores the effects of peat soil biogeochemistry on DOC and DBP release under agricultural and wetland management. Results indicate that organic matter source, extent of soil organic matter decomposition, and decomposition pathways all are factors in THM formation. The results show that historical management practices dominate the release of DOC and THM precursors. However, within-site differences indicate that recent management decisions can contribute to changes in DOC quality and THM precursor formation. Not all aromatic forms of carbon are highly reactive and certain environmental conditions produce the specific carbon structures that form THMs. Both HAA and THM precursors are elevated in the DOC released under wetland conditions. The findings of this study emphasize the need to further investigate the roles of organic matter sources, microbial decomposition pathways, and decomposition status of soil organic matter in the release of DOC and DBP precursors from delta soils under varying land-use practices. PMID:15074797

  9. Dissolved Organic Carbon and Disinfection By-Product Precursor Release from Managed Peat Soils

    USGS Publications Warehouse

    Fleck, J.A.; Bossio, D.A.; Fujii, R.

    2004-01-01

    A wetland restoration demonstration project examined the effects of a permanently flooded wetland on subsidence of peat soils. The project, started in 1997, was done on Twitchell Island, in the Sacramento-San Joaquin Delta of California. Conversion of agricultural land to a wetland has changed many of the biogeochemical processes controlling dissolved organic carbon (DOC) release from the peat soils, relative to the previous land use. Dissolved organic C in delta waters is a concern because it reacts with chlorine, added as a disinfectant in municipal drinking waters, to form carcinogenic disinfection byproducts (DBPs), including trihalomethanes (THMs) and haloacetic acids (HAAs). This study explores the effects of peat soil biogeochemistry on DOC and DBP release under agricultural and wetland management. Results indicate that organic matter source, extent of soil organic matter decomposition, and decomposition pathways all are factors in THM formation. The results show that historical management practices dominate the release of DOC and THM precursors. However, within-site differences indicate that recent management decisions can contribute to changes in DOC quality and THM precursor formation. Not all aromatic forms of carbon are highly reactive and certain environmental conditions produce the specific carbon structures that form THMs. Both HAA and THM precursors are elevated in the DOC released under wetland conditions. The findings of this study emphasize the need to further investigate the roles of organic matter sources, microbial decomposition pathways, and decomposition status of soil organic matter in the release of DOC and DBP precursors from delta soils under varying land-use practices.

  10. Detrital control on the release of dissolved organic nitrogen (DON) and dissolved inorganic nitrogen (DIN) from the forest floor under chronic N deposition.

    PubMed

    Park, Ji-Hyung; Matzner, Egbert

    2006-09-01

    The role of detrital quantity and quality in forest floor N leaching was investigated in a litter manipulation experiment at a deciduous forest under chronic N deposition. Dissolved inorganic nitrogen (DIN) comprised the bulk of nitrogen leaching from the control except a short period following autumn litterfall. The dominance of DIN was strengthened by litter exclusion, whereas the addition of glucose or fresh litter led to a small increase in dissolved organic nitrogen (DON) and either a temporary or gradual reduction in NO(3)(-) release, respectively. Changes in soluble organic C and microbial C in the forest floor implied that increased availability of C sources might have enhanced microbial immobilization of DIN, either temporarily following glucose application or over the longer term following litter addition. The results suggest that detrital quantity and quality can play a crucial role in determining the balance between DIN and DON in N-enriched forest soils. PMID:16406164

  11. Characterization of Dissolved Organic Carbon in Deep Groundwater from the Witwatersrand Basin

    NASA Astrophysics Data System (ADS)

    Pullin, M. J.; Hendrickson, S.; Simon, P.; Sherwood Lollar, B.; Wilkie, K.; Onstott, T. C.; Washton, N.; Clewett, C.

    2013-12-01

    This work describes the isolation, fractionation, and chemical analysis of dissolved organic carbon (DOC) in deep groundwater in the Witwatersrand Basin, South Africa. The groundwater was accessed through mining boreholes in gold and diamond mine shafts. Filtered water samples were collected and preserved for later analysis. In some cases, the organic carbon was also collected on DAX-8 and XAD-4 adsorption resins in situ and then transported to the surface for removal, clean-up, and lyophilization. Solid state C-13 NMR analysis of that organic carbon was conducted. Organic compounds were also isolated from the water using solid phase extraction cartridges for later analysis by GC-MS. Absorbance, fluorescence, and HPLC analyses was were used to analyze the DOC in the filtered water samples. C-14 and C-13 isotopic analysis of the organic carbon was also conducted. Identifiable components of the DOC include both organic acids and amino acids. However, initial results indicate that the majority of the subsurface DOC is a complex heterogeneous mixture with an average molecular weight of approximately 1000 Da, although this DOC is less complex than that found in soils or surface water. Finally, we will discuss possible sources of the organic carbon and its biogeochemical cycling in the subsurface.

  12. Landscape controls on dissolved nutrients, organic matter and major ions in a suburbanizing watershed

    NASA Astrophysics Data System (ADS)

    Daley, M. L.; McDowell, W. H.

    2010-12-01

    Understanding the relative importance of anthropogenic and natural landscape features that drive spatial variability in water quality is a central challenge in studying the biogeochemistry of heterogeneous landscapes. We quantified the average annual flux and concentration of dissolved inorganic nitrogen (DIN), dissolved organic nitrogen (DON), dissolved organic carbon (DOC), phosphate-P (PO4-P), sodium (Na+) and chloride (Cl-) at ~40 stream sites in three major (51 to 903 km2) NH basins. We used GIS to quantify anthropogenic (e.g. human population density, % impervious surface cover and % agriculture) and natural (e.g. % forest, % wetlands and soil C:N) landscape features for each sub-basin and then employed multiple-regression analysis to relate water quality parameters to landscape characteristics. Anthropogenic features were strong predictors of DIN flux and Na+ and Cl- concentrations, whereas wetland cover (a natural feature) was a significant, but weak predictor of DOC (r2=0.26, p<0.01) and DON (r2 = 0.14, p<0.05) flux. Anthropogenic features could not explain a significant amount of variance in DON or DOC flux. Mean PO4-P concentrations were surprisingly low (<0.015 mg P/L) when compared to the larger range in mean DIN concentrations (0.03 to 0.96 mg/L) and consequently no landscape characteristics could explain a significant amount of spatial variability in PO4-P flux or concentration. Human population density was the single best predictor of DIN flux (r2=0.76, p<0.01), and together with % impervious surface and % agriculture explained 86% (p<0.01) of the total variance. Among all sites, % road pavement was a strong predictor of stream Na+ and Cl- concentrations (r2 = 0.75 to 0.78, p<0.01) and % impervious surface was a stronger predictor (r2 = 0.86 to 0.92, p<0.01) among a subset of sites. Our results suggest that DIN and DON result from different sources in the landscape and although sources of DON and DOC are similar, DON and DOC concentrations respond

  13. Distribution and relationship of uranium and radium along an allochthonously dominated wetland gradient.

    PubMed

    Nassour, Mohammad; Weiske, Arndt; Schaller, Jörg; Brackhage, Carsten; Gert Dudel, E

    2015-02-01

    Uranium mining may pose a large threat for freshwater ecosystems, caused by elevated concentrations of metals/radionuclides in drainage water. Important pollutants of such waters are uranium (U) and radium (Ra), because of their impact due to both radio- as well as chemo-toxicity. Despite the comprehensive knowledge about specific element speciation as well as fixation processes, less is known about the retention of U and Ra at a higher level of complexity (within allochthonous ecosystems as predominant for low order streams). Consequently, we investigated the distribution and retention potential of allochthonous ecosystems regarding U and Ra as well as changing U/Ra ratios. We found U predominantly transported over long distances, whereas Ra mainly precipitates immediately after reaching the surface, i.e. in the spring area. Although high U accumulation in organic rich sediments is found, still high transport rates are detected. Low overall fixation of U within the allochthonously dominated wetland results in an U transport over long distances. Consequently, large areas are affected by U mining activities and its post-mining impact, with U being more relevant compared to Ra. PMID:25547685

  14. Photochemical Flocculation of Terrestrial Dissolved Organic Matter (tDOM) and Iron: Mechanisms and Geochemical Implications

    NASA Astrophysics Data System (ADS)

    Mopper, K.; Helms, J. R.; Mao, J.; Abdulla, H. A.; Schmidt-Rohr, K.

    2013-12-01

    Photoflocculation of DOM has received relatively little attention. No previous studies have examined the chemical composition of the flocs nor investigated the coagulation mechanisms. We observed that, after 30 days of simulated solar UV irradiation of 0.1-um filtered Great Dismal Swamp (Virginia) water, 7.1% of the DOC was converted to POC while 75% was remineralized. Approximately 87% of the iron was removed from the dissolved phase after 30 days, but iron did not flocculate until a major fraction of DOM was removed by photochemical degradation and flocculation (>10 days); thus, during the initial 10 days, there were sufficient organic ligands present and/or the pH was low enough to keep iron in solution. Although photoflocculation of iron did eventually occur, it is not clear if iron is required for the initial flocculation of DOM. Using NMR and FT-IR techniques, we found that photochemically flocculated POM was enriched in aliphatics and amide functionality relative to the residual non-flocculated DOM, while carbohydrate-like material was neither photochemical degraded nor flocculated. Based on this spectroscopic evidence, we propose several mechanisms for the formation of the flocs during irradiation. We also speculate that abiotic photochemical flocculation may remove a significant fraction of tDOM and iron from the upper water column between headwaters and the ocean, including estuaries. Fig. 1. Concentrations of dissolved (gray), particulate (black), and adsorbed (white) material as a function of irradiation time: (a) organic carbon, (b) absorption at 300 nm, (c) total iron by atomic absorption, and (d) total nitrogen. Error bars represent the combined standard deviations of the 'total,' 'dissolved,' and 'adsorbed' terms from which the 'particulate' term was calculated. Total nitrogen was not determined for the 'adsorbed' material

  15. Co-precipitation of dissolved organic matter by calcium carbonate in Pyramid Lake, Nevada

    USGS Publications Warehouse

    Leenheer, Jerry A.; Reddy, Michael M.

    2008-01-01

    Our previous research has demonstrated that dissolved organic matter (DOM) influences calcium carbonate mineral formation in surface and ground water. To better understand DOM mediation of carbonate precipitation and DOM co-precipitation and/or incorporation with carbonate minerals, we characterized the content and speciation of DOM in carbonate minerals and in the lake water of Pyramid Lake, Nevada, USA. A 400-gram block of precipitated calcium carbonate from the Pyramid Lake shore was dissolved in 8 liters of 10% acetic acid. Particulate matter not dissolved by acetic acid was removed by centrifugation. DOM from the carbonate rock was fractionated into nine portions using evaporation, dialysis, resin adsorption, and selective precipitations to remove acetic acid and inorganic constituents. The calcium carbonate rock contained 0.23% DOM by weight. This DOM was enriched in polycarboxylic proteinaceous acids and hydroxy-acids in comparison with the present lake water. DOM in lake water was composed of aliphatic, alicyclic polycarboxylic acids. These compound classes were found in previous studies to inhibit calcium carbonate precipitation. DOM fractions from the carbonate rock were 14C-age dated at about 3,100 to 3,500 years before present. The mechanism of DOM co-precipitation and/or physical incorporation in the calcium carbonate is believed to be due to formation of insoluble calcium complexes with polycarboxylic proteinaceous acids and hydroxy-acids that have moderately large stability constants at the alkaline pH of the lake. DOM co-precipitation with calcium carbonate and incorporation in precipitated carbonate minerals removes proteinaceous DOM, but nearly equivalent concentrations of neutral and acidic forms of organic nitrogen in DOM remain in solution. Calcium carbonate precipitation during lime softening pretreatment of drinking water may have practical applications for removal of proteinaceous disinfection by-product precursors.

  16. Dissolved organic phosphorus speciation in the waters of the Tamar estuary (SW England)

    NASA Astrophysics Data System (ADS)

    Monbet, Phil; McKelvie, Ian D.; Worsfold, Paul J.

    2009-02-01

    The speciation of dissolved organic phosphorus (DOP) in the temperate Tamar estuary of SW England is described. Eight stations from the riverine to marine end-members were sampled during four seasonal campaigns in 2007 and the DOP pool in the water column and sediment porewater was characterized and quantified using a flow injection manifold after sequential enzymatic hydrolysis. This enabled the enzymatically hydrolysable phosphorus (EHP) fraction and its component labile monoester phosphates, diester phosphates and a phytase-hydrolysable fraction that includes myo-inositol hexakisphosphate (phytic acid), to be determined and compared with the total DOP, dissolved reactive phosphorus (DRP) and total dissolved phosphorus (TDP) pools. The results showed that the DOP pool in the water column varied temporally and spatially within the estuary (1.1-22 μg L -1) and constituted 6-40% of TDP. The EHP fraction of DOP ranged from 1.1-15 μg L -1 and represented a significant and potentially bioavailable phosphorus fraction. Furthermore the spatial profiles of the three components of the EHP pool generally showed non-conservative behavior along the salinity gradient, with apparent internal estuarine sources. Porewater profiles followed broadly similar trends but were notably higher at the marine station throughout the year. In contrast to soil organic phosphorus profiles, the labile monoester phosphate fraction was the largest component, with diester phosphates also prevalent. Phytic acid concentrations were higher in the lower estuary, possibly due to salinity induced desorption processes. The EHP fraction is not commonly determined in aquatic systems due to the lack of a suitable measurement technique and the Tamar results reported here have important implications for phosphorus biogeochemistry, estuarine ecology and the development of efficient strategies for limiting the effects of phosphorus on water quality.

  17. The removal kinetics of dissolved organic matter and the optical clarity of groundwater

    NASA Astrophysics Data System (ADS)

    Chapelle, Francis H.; Shen, Yuan; Strom, Eric W.; Benner, Ronald

    2016-04-01

    Concentrations of dissolved organic matter (DOM) and ultraviolet/visible light absorbance decrease systematically as groundwater moves through the unsaturated zones overlying aquifers and along flowpaths within aquifers. These changes occur over distances of tens of meters (m) implying rapid removal kinetics of the chromophoric DOM that imparts color to groundwater. A one-compartment input-output model was used to derive a differential equation describing the removal of DOM from the dissolved phase due to the combined effects of biodegradation and sorption. The general solution to the equation was parameterized using a 2-year record of dissolved organic carbon (DOC) concentration changes in groundwater at a long-term observation well. Estimated rates of DOC loss were rapid and ranged from 0.093 to 0.21 micromoles per liter per day (μM d-1), and rate constants for DOC removal ranged from 0.0021 to 0.011 per day (d-1). Applying these removal rate constants to an advective-dispersion model illustrates substantial depletion of DOC over flow-path distances of 200 m or less and in timeframes of 2 years or less. These results explain the low to moderate DOC concentrations (20-75 μM; 0.26-1 mg L-1) and ultraviolet absorption coefficient values (a 254 < 5 m-1) observed in groundwater produced from 59 wells tapping eight different aquifer systems of the United States. The nearly uniform optical clarity of groundwater, therefore, results from similarly rapid DOM-removal kinetics exhibited by geologically and hydrologically dissimilar aquifers.

  18. Nitrogen solutes in an Adirondack forested watershed: Importance of dissolved organic nitrogen

    USGS Publications Warehouse

    McHale, M.R.; Mitchell, M.J.; McDonnell, Jeffery J.; Cirmo, C.P.

    2000-01-01

    Nitrogen (N) dynamics were evaluated from 1 June 1995 through 31 May 1996 within the Arbutus Lake watershed in the Adirondack Mountains of New York State, U.S.A. At the Arbutus Lake outlet dissolved organic nitrogen (DON), NO3/- and NH4/+ contributed 61%, 33%, and 6% respectively, to the total dissolved nitrogen (TDN) flux (259 mol ha-1 yr-1). At the lake inlet DON, NO3/-, and NH4/+ constituted 36%, 61%, and 3% respectively, of TDN flux (349 mol ha-1 yr-1). Differences between the factors that control DON, NO3/-, and NH4+ stream water concentrations were evaluated using two methods for estimating annual N flux at the lake inlet. Using biweekly sampling NO3/- and NH4/+ flux was 10 and 4 mol ha-1 yr-1 respectively, less than flux estimates using biweekly plus storm and snowmelt sampling. DON flux was 18 mol ha-1 yr-1 greater using only biweekly sampling. These differences are probably not of ecological significance relative to the total flux of N from the watershed (349 mol ha-1 yr-1). Dissolved organic N concentrations were positively related to discharge during both the dormant (R2 = 0.31; P<0.01) and growing season (R2= 0.09; P<0.01). There was no significant relationship between NO3/- concentration and discharge during the dormant season, but a significant negative relationship was found during the growing season (R2 = 0.29; P<0.01). Biotic controls in the growing season appeared to have had a larger impact on stream water NO3- concentrations than on DON concentrations. Arbutus Lake had a major impact on stream water N concentrations of the four landscape positions sampled, suggesting the need to quantify within lake processes to interpret N solute losses and patterns in watershed-lake systems.

  19. High molecular weight dissolved organic matter enrichment selects for methylotrophs in dilution to extinction cultures

    PubMed Central

    Sosa, Oscar A; Gifford, Scott M; Repeta, Daniel J; DeLong, Edward F

    2015-01-01

    The role of bacterioplankton in the cycling of marine dissolved organic matter (DOM) is central to the carbon and energy balance in the ocean, yet there are few model organisms available to investigate the genes, metabolic pathways, and biochemical mechanisms involved in the degradation of this globally important carbon pool. To obtain microbial isolates capable of degrading semi-labile DOM for growth, we conducted dilution to extinction cultivation experiments using seawater enriched with high molecular weight (HMW) DOM. In total, 93 isolates were obtained. Amendments using HMW DOM to increase the dissolved organic carbon concentration 4x (280 μM) or 10x (700 μM) the ocean surface water concentrations yielded positive growth in 4–6% of replicate dilutions, whereas <1% scored positive for growth in non-DOM-amended controls. The majority (71%) of isolates displayed a distinct increase in cell yields when grown in increasing concentrations of HMW DOM. Whole-genome sequencing was used to screen the culture collection for purity and to determine the phylogenetic identity of the isolates. Eleven percent of the isolates belonged to the gammaproteobacteria including Alteromonadales (the SAR92 clade) and Vibrio. Surprisingly, 85% of isolates belonged to the methylotrophic OM43 clade of betaproteobacteria, bacteria thought to metabolically specialize in degrading C1 compounds. Growth of these isolates on methanol confirmed their methylotrophic phenotype. Our results indicate that dilution to extinction cultivation enriched with natural sources of organic substrates has a potential to reveal the previously unsuspected relationships between naturally occurring organic nutrients and the microorganisms that consume them. PMID:25978545

  20. Formation of trihalomethanes of dissolved organic matter fractions in reservoir and canal waters.

    PubMed

    Musikavong, Charongpun; Srimuang, Kanjanee; Tachapattaworakul Suksaroj, Thunwadee; Suksaroj, Chaisri

    2016-07-28

    The formation of trihalomethanes (THMs) of hydrophobic organic fraction (HPO), transphilic organic fraction (TPI), and hydrophilic organic fraction (HPI) of reservoir and canal waters from the U-Tapao River Basin, Songkhla, Thailand was investigated. Water samples were collected three times from two reservoirs, upstream, midstream, and downstream of the U-Tapao canal. The HPO was the major dissolved organic matter (DOM) fraction in reservoir and canal waters. On average, the HPO accounted for 53 and 45% of the DOM in reservoir and canal waters, respectively. The TPI of 19 and 23% in reservoir and canal waters were determined, respectively. The HPI of 29% of the reservoir water and HPI of 32% of the canal water were detected. For the reservoir water, the highest trihalomethane formation potential (THMFP)/dissolved organic carbon (DOC) was determined for the HPI, followed by the TPI and HPO, respectively. The average values of the THMFP/DOC of the HPI, TPI, and HPO of the reservoir water were 78, 52, and 49 µg THMs/mg C, respectively. The highest THMFP/DOC of the canal water was detected for the HPI, followed by HPO and TPI, respectively. Average values of the THMFP/DOC of HPI of water at upstream and midstream locations of 58 µg THMs/mg C and downstream location of 113 µg THMs/mg C were determined. Average values of THMFP/DOC of HPO of water at upstream and midstream and downstream locations were 48 and 93 µg THMs/mg C, respectively. For the lowest THMFP/DOC fraction, the average values of THMFP/DOC of TPI of water at upstream and midstream and downstream locations were 35 and 73 µg THMs/mg C, respectively. PMID:27166524

  1. High molecular weight dissolved organic matter enrichment selects for methylotrophs in dilution to extinction cultures.

    PubMed

    Sosa, Oscar A; Gifford, Scott M; Repeta, Daniel J; DeLong, Edward F

    2015-12-01

    The role of bacterioplankton in the cycling of marine dissolved organic matter (DOM) is central to the carbon and energy balance in the ocean, yet there are few model organisms available to investigate the genes, metabolic pathways, and biochemical mechanisms involved in the degradation of this globally important carbon pool. To obtain microbial isolates capable of degrading semi-labile DOM for growth, we conducted dilution to extinction cultivation experiments using seawater enriched with high molecular weight (HMW) DOM. In total, 93 isolates were obtained. Amendments using HMW DOM to increase the dissolved organic carbon concentration 4x (280 μM) or 10x (700 μM) the ocean surface water concentrations yielded positive growth in 4-6% of replicate dilutions, whereas <1% scored positive for growth in non-DOM-amended controls. The majority (71%) of isolates displayed a distinct increase in cell yields when grown in increasing concentrations of HMW DOM. Whole-genome sequencing was used to screen the culture collection for purity and to determine the phylogenetic identity of the isolates. Eleven percent of the isolates belonged to the gammaproteobacteria including Alteromonadales (the SAR92 clade) and Vibrio. Surprisingly, 85% of isolates belonged to the methylotrophic OM43 clade of betaproteobacteria, bacteria thought to metabolically specialize in degrading C1 compounds. Growth of these isolates on methanol confirmed their methylotrophic phenotype. Our results indicate that dilution to extinction cultivation enriched with natural sources of organic substrates has a potential to reveal the previously unsuspected relationships between naturally occurring organic nutrients and the microorganisms that consume them. PMID:25978545

  2. Spatial and temporal variation in dissolved organic carbon composition in a peaty catchment draining a windfarm

    NASA Astrophysics Data System (ADS)

    Zheng, Ying; Waldron, Susan; Flowers, Hugh

    2015-04-01

    Peatlands are an important terrestrial carbon reserve and a principal source of dissolved organic carbon (DOC) to the fluvial environment (Wallage et al. 2006). Recently it has been observed that DOC concentrations [DOC] in surface waters have increased in Europe and North America (Monteith et al. 2007). This has been attributed primarily to reduced acid deposition. However, land use change can also release C from peat soils. A significant land use change in Scotland is hosting windfarms. Whether windfarm construction causes such impacts has been a research focus, particularly considering fluvial losses, but usually assessing if there are changes in DOC concentration rather than composition. Our study area is a peaty catchment that hosts wind turbines, has peat restoration activities and forest felling and is drained by two streams. We are using UV-visible and fluorescence spectrophotometry to assess if there are differences between the two steams or temporal changes in DOC composition. We will present data from samples collected since February 2014. The parameters we are focusing on are SUVA254, E4/E6 and E2/E4 ratios as these are indicators of DOC aromaticity, humic acid (HA): fulvic acid (FA) ratio and the proportion of humic substances in DOC (Weishaar, 2003; Spencer et al. 2007; Graham et al. 2012). To assess these we have measured UV-visible absorbance spectra from 200 nm to 800 nm. Meanwhile sample fluorescence emission and excitation matrix (EEM) will be applied with the PARAFAC model to obtain more information about the variations in humic substances in this catchment. Our current analysis indicates spatial differences not only in DOC concentration but also in composition. For example, the mainstem draining the windfarm area had a smaller [DOC] but higher E4/E6 and lower E2/E4 ratio values than the tributary draining an area of felled forestry. This may be indicative of more HAs in the mainstem DOC. Seasonal variations have also been observed. Both streams

  3. Effect of dissolved organic matter from treated effluents on sorption of atrazine and prometryn by soils

    SciTech Connect

    Seol, Y.; Lee, L.S.

    2000-01-02

    The apparent enhanced transport of soil-applied atrazine following irrigation of treated effluents has been hypothesized to be from complexation of atrazine with effluent-borne dissolved organic matter (DOM). Under long-term effluent irrigation, even small DOM-induced decreases in pesticide sorption can result in significant enhanced pesticide movement due to cumulative effects. The effect of atrazine and prometryn association with DOM extracted from municipal wastewater (MW), swine-derived lagoon wastewater (SW), and dissolved Aldrich humic acid (HA) on sorption by two soils was measured in batch equilibration studies. Individual association of pesticides to DOM, sorption of DOM to soil, and pesticide sorption by soil were also quantified. Pesticide association to DOM normalized to organic carbon (OC) ranged from 30 to 1000 L/kg OC. DOM sorption by soil ranged from 1.5 to 10 L/kg with a silt loam having a higher affinity for the DOM than the sandy loam. DOM up to 150 mg OC/L did not significantly suppress sorption by soils of either atrazine or prometryne in agreement with predictions using the independently measured binary distribution coefficients in a model that assumed linear equilibrium behavior among pesticide, soil, and DOM. A sensitivity analysis was performed using the same model to identify what combination of soil, pesticide, and DOC variables may suppress sorption, resulting in facilitated transport. Results from the sensitivity analysis are presented and the potential for effluent properties other than DOM to facilitate pesticide transport is discussed.

  4. Experimental evidence of dust-induced shaping of surface dissolved organic matter in the oligotrophic ocean

    NASA Astrophysics Data System (ADS)

    Pulido-Villena, Elvira; Djaoudi, Kahina; Barani, Aude; Charrière, Bruno; Delmont, Anne; Hélias-Nunige, Sandra; Marc, Tedetti; Wambeke France, Van

    2016-04-01

    Recent research has shown that dust deposition may impact the functioning of the microbial loop. On one hand, it enhances bacterial mineralization of dissolved organic matter (DOM), and so may limit the carbon export. On the other hand, the interaction between heterotrophic bacteria and DOM in the surface ocean can increase the residence time of DOM, promoting its export and sequestration in the deep ocean. The main goal of this study was to experimentally assess whether the bacterial response to dust deposition is prone to have an effect on the residence time of the DOM pool by modifying its bioavailability. The bacterial degradation of DOM was followed on dust-amended and control treatments during long-term incubations. Dissolved organic carbon concentration decreased by 9 μmol L-1 over the course of the experiment in both control and dust-enriched conditions, with no significant differences between treatments. However, significant differences in DOM optical properties appeared at the latest stage of the incubations suggesting an accumulation of DOM of high molecular weight in the dust-amended treatment. At the end of the incubations, the remaining water was filtered and re-used as a new culture medium for a bacterial natural assemblage. Bacterial abundance and production was lower in the treatment previously submitted to dust enrichment, suggesting a decrease in DOM lability after a dust deposition event. These preliminary results point to a new link between dust and ocean carbon cycle through the modification of the residence time of the DOM pool.

  5. Characterisation of dissolved organic matter in stormwater using high-performance size exclusion chromatography.

    PubMed

    Huang, Huiping; Chow, Christopher W K; Jin, Bo

    2016-04-01

    Understanding the complexity of dissolved organic matter (DOM) in stormwater has drawn a lot of interest, since DOM from stormwater causes not only environmental impacts, but also worsens downstream aquatic quality associated with water supply and treatability. This study introduced and employed high-performance size exclusion chromatography (HPSEC) coupled with an ultraviolet-visible (UV-vis) diode array detector to assess changes in stormwater-associated DOM characteristics. Stormwater DOM was also analysed in relation to storm event characteristics, water quality and spectroscopic analysis. Statistical tools were used to determine the correlations within DOM and water quality measurements. Results showed that dissolved organic carbon (DOC) and UV absorbance at 254 nm (UV254) as conventional DOM parameters were found to be correlated well to the changes in stormwater quality during each of the three storm events studied. Both detector wavelengths (210 and 254 nm) and their ratio (A210/A254) were found to provide additional information on the physiochemical properties of stormwater-associated DOM. This study indicated that A210/A254 is an important parameter which could be used to estimate the DOM proportions of functional groups and conjugated carbon species. This study provided also an understanding of stormwater quality constituents through assessing variability and sensitivity for various parameters, and the additional information of rainfall characteristics on runoff quality data for a better understanding of parameter correlations and influences. PMID:27090716

  6. Removal of dissolved natural organic matter from source water with alum coagulation.

    PubMed

    Wang, C S; Kang, S F; Yang, H J; Pa, S Y; Chen, H W

    2002-12-01

    In this study, the effectiveness of enhanced alum coagulation for removal of natural organic matter (NOM) at various alum dosages and pH conditions was assessed for three source waters. Results from the laboratory jar tests at various conditions were compared. Tested pH ranged from 5.0 to 8.0, with alum dosages ranging from 60-120 mg l(-1) for removal of dissolved NOM with various concentration of dissolved organic carbon (DOC) and alkalinity. Alum coagulation profiles of the three source waters were also compared. For Cheng-Kung Water Treatment Plant (high DOC, high alkalinity), laboratory tests showed 50% DOC removal with alum dosage of 70-110 mg (-1). after acidifying the raw water to pH = 6. For Tai Lake Water Treatment Plant (high DOC, low alkalinity), laboratory tests showed that the highest DOC removal (approximately 50%) was achieved at an alum dosage of 80 mg l(-1) at pH = 8 (natural condition). However, alum coagulation showed little DOC removal for source water from Kee-Lung River (low DOC, low alkalinity). Higher alkalinity in Cheng-Kung Reservoir accounts for the necessity to acidify the raw water before enhanced coagulation for optimum DOC removal. PMID:12523512

  7. Removal of fluorescence and ultraviolet absorbance of dissolved organic matter in reclaimed water by solar light.

    PubMed

    Wu, Qianyuan; Li, Chao; Wang, Wenlong; He, Tao; Hu, Hongying; Du, Ye; Wang, Ting

    2016-05-01

    Storing reclaimed water in lakes is a widely used method of accommodating changes in the consumption of reclaimed water during wastewater reclamation and reuse. Solar light serves as an important function in degrading pollutants during storage, and its effect on dissolved organic matter (DOM) was investigated in this study. Solar light significantly decreased the UV254 absorbance and fluorescence (FLU) intensity of reclaimed water. However, its effect on the dissolved organic carbon (DOC) value of reclaimed water was very limited. The decrease in the UV254 absorbance intensity and FLU excitation-emission matrix regional integration volume (FLU volume) of reclaimed water during solar light irradiation was fit with pseudo-first order reaction kinetics. The decrease of UV254 absorbance was much slower than that of the FLU volume. Ultraviolet light in solar light had a key role in decreasing the UV254 absorbance and FLU intensity during solar light irradiation. The light fluence-based removal kinetic constants of the UV254 and FLU intensity were independent of light intensity. The peaks of the UV254 absorbance and FLU intensity with an apparent molecular weight (AMW) of 100Da to 2000Da decreased after solar irradiation, whereas the DOC value of the major peaks did not significantly change. PMID:27155416

  8. Radioacarbon in dissolved organic carbon, a possible groundwater dating method: Case studies from western Canada

    SciTech Connect

    Wassenaar, L.; Aravena, R. ); Hendry, J. ); Fritz, P. )

    1991-08-01

    This paper explores the feasibility of using {sup 14}C in dissolved organic carbon (DOC) as an alternative isotopic groundwater dating method. Two hydrogeologically contrasting groundwater systems were tested; the Cretaceous age Milk River aquifer, and low-permeability, organic rich, Wisconsinan age Prairie tills in southern Alberta, Canada. Comparisons of radiocarbon data were made between DOC fractions, dissolved inorganic carbon (DIC), and several DIC geochemical age correction models along well defined flow paths. The data presented demonstrate that {sup 14}C dating of DOC fractions can indeed provide an alternative method for determining isotopic groundwater ages, under suitable conditions. However, detailed information may be required regarding (1) the geologic nature of the aquifer and its flow system, (2) the isotopically conservative behavior of DOC, (3) the initial {sup 14}C activity of DOC in recharge, and (4) the effect of bacterial redox processes on the {sup 14}C activity of DOC. In the Milk River aquifer, DOC {sup 14}C ages were successfully used to estimate groundwater residence times, as well as to further refine input parameter assumptions for the DIC method. In the Prairie tills, DOC {sup 14}C ages were used to establish a maximum age for the pore waters in an environment where the DIC method is especially problematic.

  9. Controls on the dynamics of dissolved organic matter in boreal lakes

    NASA Astrophysics Data System (ADS)

    Kothawala, Dolly; Kellerman, Anne; Catalan, Nuria; Tranvik, Lars

    2016-04-01

    The reactivity of dissolved organic matter (DOM) strongly influences the biogeochemical cycling of key nutrients including carbon and nitrogen. Dissolved organic nitrogen (DON) comprises a small, yet functionally important, fraction of total DOM in boreal lakes. This pool of DON can influence the fate of total DOM by catalyzing microbial degradation pathways, or alternatively being less reactive to photo-degradation. Upon mineralization, it may also constitute an important nutrient for planktonic primary producers. By examining the optical and detailed molecular characteristics of DOM from several hundred lakes spanning a 13 degree latitude gradient across Sweden, we found that the molecular composition of DOM was influenced primarily by the water residence time of lakes, followed by mean annual temperature, which spanned from -6.1 to 6.5 degrees C, from north to south, respectively. Land cover across Sweden is typical of the boreal zone, being comprised of primarily forest and wetland cover; however, at this large spatial scale, land cover did not influence the molecular composition of DOM. We discuss how these results provide insight into predicting the relative influence of climatic, hydrological and catchment characteristics on the fate of DOM under a changing climate. In particular, we explore how DON constituents play a pivotal role in the overall chemical diversity of DOM and how this diversity ultimately drives its reactivity or persistence through freshwaters.

  10. [Impact of dissolved organic matter on plant uptake of phenanthrene and its mechanisms].

    PubMed

    Zhan, Xin-hua; Zhou, Li-xiang; Wan, Yin-jing; Jiang, Ting-hui

    2006-09-01

    Hydroponic assays were conducted to investigate the influence of dissolved organic matter on uptake of phenanthrene by wheat as well as its mechanisms. The results showed that, under hydroponic condition, phenanthrene impairment of plant growth occurred with wheat growth inhibited rate of 18.01%. The impairment would be greatly enhanced in the presence of dissolved organic matter (DOM) derived from pig manure, and the inhibited rate increased to 24.38%. Wheat could uptake and accumulate phenanthrene in the nutrient solution, which could be escalated by DOM, as indicated by wheat root bioconcentration factor being increased to 37.63 L x kg(-1) in the presence of DOM from 2.84 L x kg(-1) in the absence of DOM. At the same time, DOM could facilitate phenanthrene translocation from plant roots to the upper. As a result, the pH value of nutrient solution could increase by more than 1 unit when the co-existence of DOM and phenanthrene occurred in solution, suggesting that H+ -phenanthrene cotransport system is involved in the uptake of phenanthrene by plants. A synergism was also found between wheat uptakes of phenanthrene and inorganic nutrients, Moreover, DOM accelerated markedly the synergism. It is concluded that DOM affects the uptake of phenanthrene by plants and the environmental behaviors of phenanthrene. PMID:17117650

  11. Transformation of dissolved organic matter in a novel groundwater recharge system with reclaimed water.

    PubMed

    Wu, Linlin; Zhao, Xuan; Zhang, Meng

    2011-12-01

    A novel process, enhanced direct injection-well recharge system (EnDir), can overcome the technical difficulties during the application of conventional surface spreading and has been developed to recharge groundwater with reclaimed water. In this study, removal and transformation of dissolved organic matter (DOM) in the system were investigated in laboratory-scale experiments. Results demonstrated that dissolved organic carbon and trihalomethane formation potential values could be reduced from 6.54 +/- 1.30 mg/L and 267.9 +/- 24.3 microg/L to 1.59 +/- 0.64 mg/L and 104.5 +/- 10.2 microg/L, respectively, as a result of DOM biodegradation in the aerobic short-term vadose soil treatment. Fluorescence spectra showed that aromatic protein-like substances and soluble microbial byproducts could be removed, to a great extent, in the soil system. Despite different removal efficiencies of DOM in different molecular weight fractions, the residual DOM was composed mainly of fulvic acid-like and humic acid-like substances, with molecular weights of 500 Da to 1 kDa. PMID:22368955

  12. Identification of Reactive and Refractory Components of Dissolved Organic Nitrogen by FT-ICR Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Cooper, W. T.; Podgorski, D. C.; Osborne, D. M.; Corbett, J.; Chanton, J.

    2010-12-01

    Dissolved organic nitrogen is an often overlooked but potentially significant bioavailable component of dissolved organic matter. Studies of bulk DON turnover have been reported, but the compositions of the reactive and refractory components of DON are largely unknown. Here we show the unique ability of atmospheric pressure photoionization (APPI) coupled to ultrahigh resolution mass spectrometry to identify the reactive and refractory components of DON. Figure 1 is an isolated 0.30 m/z window from an ultrahigh resolution APPI FT-ICR mass spectrum of DON in surface waters draining an agricultural area in South Florida. Using this optimized, negative-ion APPI strategy we have been able to identify the reactive and refractory components of DON in these nitrogen-rich waters. Similar results were observed with samples from soil porewaters in sedge-dominated fens and sphagnum-dominated bogs within the Glacial Lake Agassiz Peatlands (GLAP) of northern Minnesota. Surprisingly, microbes appear to initially use similar enzymatic pathways to degrade DON and DOC, often with little release of nitrogen. Figure 1. Isolated 0.30 m/z window at nominal mass 432 from negative-ion APPI FT-ICR mass spectrum of DOM from waters draining an agricultural area in South Florida. Peaks marked contain nitrogen.

  13. Geomorphic controls on riparian zone hydrology, carbon pools and fluxes of dissolved organic carbon

    NASA Astrophysics Data System (ADS)

    Grabs, T.; Ledesma, J.; Laudon, H.; Seibert, J.; Kohler, S. J.; Bishop, K. H.

    2014-12-01

    Near stream (riparian) zones are an important link between terrestrial and aquatic ecosystems and influence a wide range of processes including solute transport or hydrologic behavior of headwater catchments. Understanding the links between geomorphology and riparian soils, vegetation and hydrology is, thus, a prerequisite for relating small scale processes to observations at the watershed scale. Geographic information systems (GIS) have traditionally been used to study links between geomorphology and properties of terrestrial ecosystems. Applying this approach to riparian zones, however, has only recently become feasible with the availability of high-resolution digital elevation models and the new development of suitable computational methods. In this study we present links between geomorphology and riparian zone hydrology, carbon pools and fluxes of dissolved organic carbon. Geomorphometric attributes were successfully used to predict (1) riparian groundwater levels and flow pathways, (2) the size of riparian soil carbon pools, (3) the vertical variation of dissolved organic carbon (DOC) in riparian soil profiles, as well as (4) riparian carbon fluxes and turnover times.

  14. Dissolved organic matter in the Florida everglades: Implications for ecosystem restoration

    USGS Publications Warehouse

    Aiken, G.R.; Gilmour, C.C.; Krabbenhoft, D.P.; Orem, W.

    2011-01-01

    Dissolved organic matter (DOM) in the Florida Everglades controls a number of environmental processes important for ecosystem function including the absorption of light, mineral dissolution/precipitation, transport of hydrophobic compounds (e.g., pesticides), and the transport and reactivity of metals, such as mercury. Proposed attempts to return the Everglades to more natural flow conditions will result in changes to the present transport of DOM from the Everglades Agricultural Area and the northern conservation areas to Florida Bay. In part, the restoration plan calls for increasing water flow throughout the Everglades by removing some of the manmade barriers to flow in place today. The land- and water-use practices associated with the plan will likely result in changes in the quality, quantity, and reactivity of DOM throughout the greater Everglades ecosystem. The authors discuss the factors controlling DOM concentrations and chemistry, present distribution of DOM throughout the Everglades, the potential effects of DOM on key water-quality issues, and the potential utility of dissolved organic matter as an indicator of success of restoration efforts. Copyright ?? 2011 Taylor & Francis Group, LLC.

  15. Efficient removal of recalcitrant deep-ocean dissolved organic matter during hydrothermal circulation

    NASA Astrophysics Data System (ADS)

    Hawkes, Jeffrey A.; Rossel, Pamela E.; Stubbins, Aron; Butterfield, David; Connelly, Douglas P.; Achterberg, Eric P.; Koschinsky, Andrea; Chavagnac, Valérie; Hansen, Christian T.; Bach, Wolfgang; Dittmar, Thorsten

    2015-11-01

    Oceanic dissolved organic carbon (DOC) is an important carbon pool, similar in magnitude to atmospheric CO2, but the fate of its oldest forms is not well understood. Hot hydrothermal circulation may facilitate the degradation of otherwise un-reactive dissolved organic matter, playing an important role in the long-term global carbon cycle. The oldest, most recalcitrant forms of DOC, which make up most of oceanic DOC, can be recovered by solid-phase extraction. Here we present measurements of solid-phase extractable DOC from samples collected between 2009 and 2013 at seven vent sites in the Atlantic, Pacific and Southern oceans, along with magnesium concentrations, a conservative tracer of water circulation through hydrothermal systems. We find that magnesium and solid-phase extractable DOC concentrations are correlated, suggesting that solid-phase extractable DOC is almost entirely lost from solution through mineralization or deposition during circulation through hydrothermal vents with fluid temperatures of 212-401 °C. In laboratory experiments, where we heated samples to 380 °C for four days, we found a similar removal efficiency. We conclude that thermal degradation alone can account for the loss of solid-phase extractable DOC in natural hydrothermal systems, and that its maximum lifetime is constrained by the timescale of hydrothermal cycling, at about 40 million years.

  16. Dissolved Organic Matter in Arctic and Boreal Streams: Rates and Fates of Decomposition

    NASA Astrophysics Data System (ADS)

    Mutschlecner, A.; Harms, T.

    2015-12-01

    As high-latitude regions warm, new inputs of carbon from thawing permafrost may influence the carbon cycle. Some of this newly released carbon, bound up in molecules of dissolved organic matter (DOM), will be exported into streams and rivers where it may be incorporated into microbial biomass, released to the atmosphere as carbon dioxide, or exported downstream. The factors that control the fate of dissolved organic carbon (DOC) are not fully understood, nor are the seasonal and spatial dynamics of these relationships. We sampled six streams along an arctic-boreal gradient in interior Alaska, collecting water from under ice in April, during snowmelt (May), and in early summer (June). These samples were incubated in the laboratory to determine the fraction of DOC that is susceptible to microbial decomposition and the fraction released as carbon dioxide. Nitrogen and phosphorous additions were used to determine the effect of nutrient limitation on DOC processing. Percent DOC loss across sites ranged from 37-71% in April before snowmelt, 0-9% during snowmelt, and 0-53% in June. We observed no effect of nutrient addition on lability of DOC. Seasonal data are critical to predicting how the processing of DOC in streams will respond to changes in permafrost extent, as well as to changes in the timing of snowmelt and ice-off.

  17. The Photodegradation of Ibuprofen and Dissolved Organic Matter in Lake Superior and St. Louis River Water

    PubMed Central

    Moynan, Angela B.

    2012-01-01

    Abstract Ibuprofen can enter bodies of water via waste water treatment. The question was what effect does photodegradation have on ibuprofen and dissolved organic matter (DOM) in Lake Superior (oligiotrophic) and St. Louis (tannic stained) River water? Ibuprofen concentrations of 15,000, 30,000, and 60,000 μg/L were made from lake, river, and distilled water, as well as additional distilled concentrations of 7,500 and 120,000 μg/L. Half of the eighty-four trial cups were placed in an ultraviolet light cabinet and half of the set were placed in a dark cabinet for three days. After the exposure period, a UV-Vis was performed to measure change in molar mass and the summed absorbance of colored dissolved organic matter (CDOM). It appears that ibuprofen decreases in molar mass after exposure to light in distilled and lake water with 15,000 μg/L of ibuprofen. Surprisingly, the molar mass of DOM in river water increases after UV exposure. Possibly, this occurred because the river water has such a high molar mass of DOM and was not filtered. Microbial biomass could also have contributed to this increase. Ibuprofen entering bodies of water via the waste water treatment system appears to be affected by UV light exposure, but in different ways. PMID:23244688

  18. The photodegradation of ibuprofen and dissolved organic matter in Lake Superior and St. Louis River water.

    PubMed

    Moynan, Angela B; Welsh, Cynthia A

    2012-12-01

    Ibuprofen can enter bodies of water via waste water treatment. The question was what effect does photodegradation have on ibuprofen and dissolved organic matter (DOM) in Lake Superior (oligiotrophic) and St. Louis (tannic stained) River water? Ibuprofen concentrations of 15,000, 30,000, and 60,000 μg/L were made from lake, river, and distilled water, as well as additional distilled concentrations of 7,500 and 120,000 μg/L. Half of the eighty-four trial cups were placed in an ultraviolet light cabinet and half of the set were placed in a dark cabinet for three days. After the exposure period, a UV-Vis was performed to measure change in molar mass and the summed absorbance of colored dissolved organic matter (CDOM). It appears that ibuprofen decreases in molar mass after exposure to light in distilled and lake water with 15,000 μg/L of ibuprofen. Surprisingly, the molar mass of DOM in river water increases after UV exposure. Possibly, this occurred because the river water has such a high molar mass of DOM and was not filtered. Microbial biomass could also have contributed to this increase. Ibuprofen entering bodies of water via the waste water treatment system appears to be affected by UV light exposure, but in different ways. PMID:23244688

  19. [Linking optical properties of dissolved organic matter with NDMA formation potential in the Huangpu River].

    PubMed

    Dong, Qian-Qian; Zhang, Ai; Li, Yong-Mei; Chen, Ling; Huang, Qing-Hui

    2014-03-01

    Surface water samples from the Huangpu River were filtered to measure the UV absorption and fluorescence spectrum. Dissolved organic carbon (DOC), N-nitrosodimethylamine (NDMA), and its formation potential (NDMA-FP) were also analyzed to explore relationships between the properties of dissolved organic matter (DOM) and the formation potential of disinfection byproducts-NDMA in the Huangpu River. The study found that: NDMA-FP concentration increased with the increasing of DOC concentration (r = 0.487, P < 0.01), but it had negative relationships with SUVA254 and HIX (r = -0.605, P < 0.01; r = -0.396, P < 0.01). NDMA-FP concentration had positive relationships with the fluorescence intensity of protein-like substances such as low-molecular-weight (LMW) tyrosine-like and tryptophan-like substances (r = 0.421, P < 0.01; r = 0.426, P < 0.01), but had a negative relationship with humic-like substance (r = -0.422, P < 0.01). Therefore, NDMA formation potential increases with the increasing DOM content in the Huangpu River, which is significantly related with the protein-like substances, but decreases with the increasing aromaticity and humification of DOM. PMID:24881383

  20. Transformation of dissolved organic matters in swine, cow and chicken manures during composting.

    PubMed

    Wang, Ke; Li, Xiangkun; He, Chao; Chen, Chia-Lung; Bai, Jianwei; Ren, Nanqi; Wang, Jing-Yuan

    2014-09-01

    The changes of dissolved organic matters (DOMs) extracted from swine, cow and chicken manures were assessed by Fourier transform infrared, ultraviolet, gel permeation chromatography (GPC), excitation-emission-matrix fluorescence (EEM-FL), Biolog Eco and (1)H NMR during 60-day composting. Pumice was adopted to eliminate the disturbing of common organic bulking agents. The results showed chicken manure had the highest DOC, DTN (dissolved total nitrogen) and lowest DOC/DTN among the three manures; cow manure had the highest volatile solids, lowest DTN, slowest DOMs hydrolysis rate and the fastest bio-stabilization rate. (1)H NMR showed the decrease rates of OC band and saturated carbon chain were distinctly faster than that of olefinic and aromatic structures. The molecular size distribution of DOMs in the three manures was in the range of 1-10 kDa detected by GPC. Microbial carbon utilization capacity decreased in cow manure with composting time, but the contrast was observed in the chicken and swine manures. PMID:24813566

  1. The river as a chemostat: fresh perspectives on dissolved organic matter flowing down the river continuum

    USGS Publications Warehouse

    Creed, Irena F.; McKnight, Diane M.; Pellerin, Brian; Green, Mark B.; Bergamaschi, Brian; Aiken, George R.; Burns, Douglas A.; Findlay, Stuart E G; Shanley, James B.; Striegl, Rob; Aulenbach, Brent T.; Clow, David W.; Laudon, Hjalmar; McGlynn, Brian L.; McGuire, Kevin J.; Smith, Richard A.; Stackpoole, Sarah M.

    2015-01-01

    A better understanding is needed of how hydrological and biogeochemical processes control dissolved organic carbon (DOC) concentrations and dissolved organic matter (DOM) composition from headwaters downstream to large rivers. We examined a large DOM dataset from the National Water Information System of the US Geological Survey, which represents approximately 100 000 measurements of DOC concentration and DOM composition at many sites along rivers across the United States. Application of quantile regression revealed a tendency towards downstream spatial and temporal homogenization of DOC concentrations and a shift from dominance of aromatic DOM in headwaters to more aliphatic DOM downstream. The DOC concentration–discharge (C-Q) relationships at each site revealed a downstream tendency towards a slope of zero. We propose that despite complexities in river networks that have driven many revisions to the River Continuum Concept, rivers show a tendency towards chemostasis (C-Q slope of zero) because of a downstream shift from a dominance of hydrologic drivers that connect terrestrial DOM sources to streams in the headwaters towards a dominance of instream and near-stream biogeochemical processes that result in preferential losses of aromatic DOM and preferential gains of aliphatic DOM.

  2. Hydrologic Controls on Dissolved Organic Matter Mobilization and Transport within Undisturbed Soils

    NASA Astrophysics Data System (ADS)

    Xu, N.; Saiers, J.

    2007-12-01

    Dissolved organic matter (DOM) in soils plays an important role in the transport of nutrients and contaminants through the terrestrial environment. Subsurface pathways deliver a significant portion of carbon to streams that drain forested and agricultural watersheds. Although the importance of rainfall events to the DOM soil-water flux is well known, the hydrologic factors that govern this flux have not been fully examined. The primary purpose of this study is to investigate the soil and rainfall characteristics controlling the mobilization and transport of DOM in undisturbed soils. Intact soil columns including topsoil and subsoil layers were taken from the Harvard forest in Petersham, MA. Unsaturated flow conditions were maintained by applying suction to the bottom of the soil columns. The columns were irrigated by series of interrupted rainfall events using the same total volume of artificial rain water. Preliminary experiments showed continuous leaching of DOM (measured by dissolved organic carbon) with an initial peak in concentration that coincided with the passage of the wetting front. The leached DOM was also characterized by UV absorbance, fluorescence spectroscopy in the emission mode, and additional spectroscopic derived indexes such as the humification index. Ongoing column experiments are focusing on the effects of rainfall intensity, frequency, and rainfall history on DOM mobilization and transport through natural, structured soils. These investigations can elucidate the influence of factors that are associated with climate change on DOC dynamics. Results of our analyses should also provide insight into the mechanisms that govern DOM mobilization in soils.

  3. Investigating extent of dissolved organic carbon stabilization by metal based coagulant in a wetland environment

    NASA Astrophysics Data System (ADS)

    Henneberry, Y.; Mourad, D.; Kraus, T.; Bachand, P.; Fujii, R.; Horwath, W.

    2008-12-01

    This study is part of a larger project designed to investigate the feasibility of using metal-based coagulants to remove dissolved organic carbon (DOC) from island drainage water in the San Joaquin Delta and subsequently retaining the metal-DOC precipitate (floc) in wetlands constructed at the foot of levees to promote levee stability. Dissolved organic carbon is a constituent of concern as some forms of DOC can be converted to carcinogenic compounds during drinking water treatment. The focus of this work is to assess floc stability over time and to determine whether floc can be permanently sequestered as part of wetland sediment. Drainage water collected seasonally from Twitchell Island was coagulated with ferric sulfate and polyaluminum chloride at optimal and 50%-optimal dosage levels. Floc was incubated in the laboratory under anaerobic conditions for six weeks under various conditions including different DOC concentrations, microbial inoculants, and addition of nutrients. Preliminary results indicate the floc is a stable system; little to no DOC was released from the floc into the water column under incubations with native microbial inoculate. In addition, floc incubated with previously coagulated water appeared to remove additional DOC from the water column. Future work will involve field and laboratory studies using 13C labeled plant material to examine the effects of fresh plant matter and the effects of peat soil DOC on floc stability, in order to elucidate mechanisms behind carbon stabilization by metal-based floc.

  4. The contribution of macroalgae to the coastal dissolved organic matter pool

    NASA Astrophysics Data System (ADS)

    Wada, Shigeki; Hama, Takeo

    2013-09-01

    Dissolved organic matter (DOM) in coastal environments has various origins; one of the most intensely studied sources is terrestrial DOM input via rivers. On the other hand, contributions from other significant DOM sources, such as macroalgae, to the coastal DOM pool have not been extensively studied. The present study quantified the contribution of macroalgae to the DOM pool in the coastal environment using, firstly, a bag-covering experiment on a brown alga, Ecklonia cava, and identifying fluorescent DOM components by parallel factor analysis of three-dimensional excitation-emission matrix spectra. Using the fluorescent DOM as an indicator, we evaluated the horizontal distribution of macroalgal DOM in the coastal area, showing that the fluorescent DOM component had a synchronous gradient with dissolved organic carbon (DOC) concentrations along the transect line from the coast to offshore. On the basis of the correlation between DOC and fluorescent DOM, we evaluated concentrations of DOC originating from macroalgae, accounting for up to 20% of total DOC concentrations. This implies that in contrast to previous studies, macroalgae do make a measurable contribution to the coastal DOM pool.

  5. Distinct Optical Chemistry of Dissolved Organic Matter in Urban Pond Ecosystems

    PubMed Central

    McEnroe, Nicola A.; Williams, Clayton J.; Xenopoulos, Marguerite A.; Porcal, Petr; Frost, Paul C.

    2013-01-01

    Urbanization has the potential to dramatically alter the biogeochemistry of receiving freshwater ecosystems. We examined the optical chemistry of dissolved organic matter (DOM) in forty-five urban ponds across southern Ontario, Canada to examine whether optical characteristics in these relatively new ecosystems are distinct from other freshwater systems. Dissolved organic carbon (DOC) concentrations ranged from 2 to 16 mg C L-1 across the ponds with an average value of 5.3 mg C L-1. Excitation-emission matrix (EEM) spectroscopy and parallel factor analysis (PARAFAC) modelling showed urban pond DOM to be characterized by microbial-like and, less importantly, by terrestrial derived humic-like components. The relatively transparent, non-humic DOM in urban ponds was more similar to that found in open water, lake ecosystems than to rivers or wetlands. After irradiation equivalent to 1.7 days of natural solar radiation, DOC concentrations, on average, decreased by 38% and UV absorbance decreased by 25%. Irradiation decreased the relative abundances of terrestrial humic-like components and increased protein-like aspects of the DOM pool. These findings suggest that high internal production and/or prolonged exposure to sunlight exerts a distinct and significant influence on the chemistry of urban pond DOM, which likely reduces its chemical similarity with upstream sources. These properties of urban pond DOM may alter its biogeochemical role in these relatively novel aquatic ecosystems. PMID:24348908

  6. Seasonal and temporal characterization of dissolved organic matter in rainwater by proton nuclear magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Seaton, Pamela J.; Kieber, Robert J.; Willey, Joan D.; Avery, G. Brooks; Dixon, Joshua L.

    2013-02-01

    Dissolved organic carbon in rainwater was concentrated by two separate techniques and characterized by 1H-NMR. The total 1H-NMR integral of lyophilized rainwater was higher in every rain sample than that of C18 solid phase extracted samples and always contained a higher percentage integral in the region of protons bound to carbon atoms singly bound to oxygen (H-C-O), such as alcohols, polyols and carbohydrate-like compounds. C18 extracted samples had higher % integral in the alkyl region, consistent with reverse phase extraction of more hydrophobic components in rainwater. Differences in both the 1H-NMR integration and spectral pattern of lyophilized rainwater samples were especially apparent between spring and winter rains, with spring samples having higher percent carbohydrate (H-C-O) signal and winter rains having higher percent alkyl protons and a spectral pattern consistent with the presence of saturated fatty acids. Spring rains are characterized by lower % Alkyl signal coupled with higher % H-C-O than all other events while marine winter events appear in regions characterized by relatively high % Alkyl and average % H-C-O, consistent with increased abundance of fatty acids or fatty acid oxidation products. The 1H-NMR data presented in this manuscript are important because they provide spectral data relating to the source and chemical characteristics of dissolved organic carbon in rainwater as a function of season and air mass back trajectory.

  7. Headspace analysis: A new application for isotopic characterization of dissolved organic contaminants

    SciTech Connect

    Slater, G.F.; Dempster, H.S.; Lollar, B.S.; Ahad, J.

    1999-01-01

    Petroleum products and industrial solvents are among the most ubiquitous contaminants of soil and groundwater and the source of several common and hazardous volatile organic chemicals (VOCs). Volatilization is a key determinant of the fate of VOCs in the subsurface environment, impacting contaminant partitioning between the aqueous, gaseous, and nonaqueous liquid phases. This study uses stable carbon isotope analysis to investigate the isotopic effects involved in volatilization of trichloroethylene (TCE) and toluene from both free product (or pure phase) and aqueous solutions. Results indicate that, during volatilization from the aqueous phase and from free product, the isotopic composition of TCE and toluene remains unchanged within reproducibility limits. These results have two important implications for contaminant hydrogeology. First, they suggest that carbon isotopic signatures may be useful in tracing contaminant transport between the vapor, aqueous, and NAPL phases since they remain conservative during phase changes. Second, they demonstrate the utility of headspace extraction (sampling of the vapor phase or headspace above an aqueous solution) as a preparatory technique for isotopic analysis of dissolved VOCs. Headspace isotopic analysis provides a straightforward and rapid technique for {delta}{sup 13}C analysis of dissolved organic contaminants at concentrations as low as hundreds of ppb.

  8. Quantifying and correcting the impacts of freezing samples on dissolved organic matter absorbance

    NASA Astrophysics Data System (ADS)

    Griffin, C. G.; McClelland, J. W.; Frey, K. E.; Holmes, R. M.

    2012-12-01

    The use of optical measurements as proxies for organic matter concentration and composition has become increasingly popular in recent years. Absorbance of chromophoric dissolved organic matter (CDOM) can be used to estimate concentrations of dissolved organic carbon (DOC), as a qualitative assessment of dissolved organic matter (DOM) average molecular weight and is often used to calibrate satellite remote sensing of organic matter. However, there is evidence that preservation of samples can lead to significant changes in CDOM absorbance spectra. Freezing is a popular means of preservation, but can result in flocculation of DOM when samples are thawed for analysis. We hypothesize that the particles generated as a result of a freeze/thaw cycle lead to increasing absorption in visible wavelengths (400-800 nm). Yet, absorbance in the UV spectra should remain similar to original values. These hypotheses are tested on CDOM spectra collected from two large Arctic watersheds (the Mackenzie and Yukon rivers) and four smaller Texas watersheds (the Colorado, Guadalupe, Nueces and San Antonio rivers). In addition, we experiment with additional filtering and sonication to correct for flocculation from frozen samples. Preliminary data show that short wavelengths are relatively well preserved (200-300 nm). However, CDOM absorption changes unpredictably from 350-450 nm, the wavelengths most commonly used to estimate DOC. Absorption coefficients tend to be higher in these wavelengths after a freeze/thaw cycle, but the magnitude of this increase varies. Some of these impacts can be corrected for with sonication. For instance, when comparing experimental treatments to initial absorption at 365 nm from Mackenzie River samples, R2 increases from 0.60 to 0.79 for samples undergoing one freeze/thaw cycle to those that were also sonicated. Regardless of treatment, however, no spectral slopes were well preserved after a freeze/thaw cycle. These results reinforce earlier work that it is

  9. Molecular evidence for abiotic sulfurization of dissolved organic matter in marine shallow hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Gomez-Saez, Gonzalo V.; Niggemann, Jutta; Dittmar, Thorsten; Pohlabeln, Anika M.; Lang, Susan Q.; Noowong, Ann; Pichler, Thomas; Wörmer, Lars; Bühring, Solveig I.

    2016-10-01

    Shallow submarine hydrothermal systems are extreme environments with strong redox gradients at the interface of hot, reduced fluids and cold, oxygenated seawater. Hydrothermal fluids are often depleted in sulfate when compared to surrounding seawater and can contain high concentrations of hydrogen sulfide (H2S). It is well known that sulfur in its various oxidation states plays an important role in processing and transformation of organic matter. However, the formation and the reactivity of dissolved organic sulfur (DOS) in the water column at hydrothermal systems are so far not well understood. We investigated DOS dynamics and its relation to the physicochemical environment by studying the molecular composition of dissolved organic matter (DOM) in three contrasting shallow hydrothermal systems off Milos (Eastern Mediterranean), Dominica (Caribbean Sea) and Iceland (North Atlantic). We used ultra-high resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) to characterize the DOM on a molecular level. The molecular information was complemented with general geochemical data, quantitative dissolved organic carbon (DOC) and DOS analyses as well as isotopic measurements (δ2H, δ18O and F14C). In contrast to the predominantly meteoric fluids from Dominica and Iceland, hydrothermal fluids from Milos were mainly fed by recirculating seawater. The hydrothermal fluids from Milos were enriched in H2S and DOS, as indicated by high DOS/DOC ratios and by the fact that >90% of all assigned DOM formulas that were exclusively present in the fluids contained sulfur. In all three systems, DOS from hydrothermal fluids had on average lower O/C ratios (0.26-0.34) than surrounding surface seawater DOS (0.45-0.52), suggesting shallow hydrothermal systems as a source of reduced DOS, which will likely get oxidized upon contact with oxygenated seawater. Evaluation of hypothetical sulfurization reactions suggests DOM reduction and sulfurization during seawater

  10. Characterization of water dissolved organic matter under woody vegetation patches in semi-arid Mediterranean soils.

    PubMed

    Cerdán, M; Sánchez-Sánchez, A; Jordá, J D; Amat, B; Cortina, J; Ruiz-Vicedo, N; El-Khattabi, M

    2016-05-15

    Woody patches in semiarid environments favor the establishment of other plants. Facilitation may be favored by an increase in soil fertility. Dissolved organic matter (DOM), is the most active fraction of soil organic matter and may contain compounds affecting plant establishment, as allelochemicals, hormone-like substances and metal carriers. However, information on DOM contents and composition in these environments is scarce. In this paper, we study the impact of woody patches on DOM in Stipa tenacissima L. steppes and discuss its implications for community dynamics. DOM under patch- and inter-patch areas, was analyzed for elemental composition, UV-Vis indices and organic acid content. Element concentration and composition in DOM, and organic acid concentration were similar in patch- and inter-patch areas. Yet, soils under patches were richer in DOC, aromatic species and organic acids (particularly fumaric acid) than soils in inter-patch areas. Dominant species affected organic matter concentration and quality in complex ways. Thus, patches dominated by Ephedra fragilis showed higher concentrations of TOC and aromatics than those dominated by other species. Rhamnus lycioides patches showed the highest accumulation of fumaric acid, which may contribute to its successful recruitment rate and expansion in the area. Our results show substantial differences in the amount and composition of DOM and specific compounds affecting soil functionality and plant dynamics. Further studies on the effects of such changes on seedling performance are needed to increase our understanding of plant-plant interactions in semiarid environments. PMID:26930307

  11. Significant anaerobic production of fluorescent dissolved organic matter in the deep East Sea (Sea of Japan)

    NASA Astrophysics Data System (ADS)

    Kim, Jeonghyun; Kim, Guebuem

    2016-07-01

    The distribution of fluorescent dissolved organic matter (FDOM) in the East Sea (Sea of Japan) was examined by excitation-emission matrix spectroscopy with parallel factor analysis (PARAFAC). Humic-like FDOM (FDOMH) increased with depth and was significantly correlated with Apparent Oxygen Utilization (AOU), indicating that FDOMH in the deep water is mainly produced by oxidation of organic matter. In addition, a surprisingly large excess of FDOMH relative to that expected from the observed AOU was found from 1000 m to the bottom (up to 3500 m). Based on the high-resolution geographical distribution and characteristics of FDOM in the East Sea, we conclude that this excess likely originates from anaerobic FDOMH production in subsurface bottom sediments. This FDOMH flux accounts for 8-15% of the total FDOM production in the water column. Our results suggest that anaerobic activities in subsurface sediments are an important hidden source of FDOM in the ocean.

  12. Effect of dissolved organic matter source on phytotoxicity to Lemna aequinoctialis.

    PubMed

    Shoji, Ryo

    2008-05-01

    The effect of dissolved organic matter (DOM) on metal toxicity to aquatic organisms has been reported. Biotic ligand model (BLM) can account for this factor to predict metal toxicity. However, few attempts have been made to assess the effect of the DOM on metal phytotoxicity to duckweeds. The objectives of this study were to examine the effect of DOM on copper toxicity to the duckweed Lemna aequinoctialis, and to determine if DOM concentration alone, regardless of DOM source, is an acceptable input parameter for the BLM for copper. Nine different DOM isolates from nine different sites in Japan were used in this study. A significant difference was observed between the lowest and the highest copper binding capacity. Phytotoxicity for copper decreased with increasing DOM concentration. These observations support use of the copper biotic ligand model (BLM) with AFA% (active fulvic acid percent) as a regulatory tool to predict copper phytotoxicity on duckweeds. PMID:18359523

  13. Adsorption and structural fractionation of dissolved organic matter (DOM) by soil mineral surfaces

    NASA Astrophysics Data System (ADS)

    Avneri, Shani; Polubesova, Tamara; Chefetz, Benny

    2015-04-01

    Dissolved organic matter (DOM) represents a small but highly reactive fraction of the soil organic matter (SOM). One of the important processes affecting the fate of DOM in soils is its interactions with mineral phases. Adsorptive fractionation of DOM by soils and minerals has been observed previously, however detailed changes in composition of DOM due to its interactions with mineral soils were not yet elucidated. In this research the adsorption and physico-chemical fractionation of DOM by soil poor with organic matter and rich with iron oxides and clay fraction was investigated. The changes in DOM structural composition were studied using separation with polymeric resins. The following fractions were obtained: hydrophobic acid (HoA), hydrophobic neutral (HoN), hydrophilic acid (HiA), hydrophilic base (HiB), and hydrophilic neutral (HiN). Two types of DOM were studied: DOM extracted from composted biosolids (compost DOM) and DOM from Suwanee River (SRNOM). Sorption affinity of DOM to soil mineral surfaces was source and chemistry dependent. SRNOM, which was characterized by higher content of aromatic and carboxylic groups demonstrated higher affinity to the studied soil than compost DOM. For both DOM samples preferential adsorption of HoA by soil (50-85% from adsorbed carbon) was observed. Desorption of both DOM types demonstrated significant hysteresis (up to 90-100% of dissolved organic carbon was retained by the soil after 3 cycles of desorption stages). This suggests that DOM desorption behavior was affected by HoA dominant adsorption to the soil mineral fraction, and not by DOM source. Results of this study indicate that interactions of different types of DOM with mineral soil may result in similar changes in composition and properties of DOM both in the supernatant as well as in the adsorbed phase. The change in DOM composition due to its interaction with soil minerals may influence the interactions of pollutants with DOM and soil particle surfaces.

  14. The Influence of Regional Groundwater on the Dissolved Organic Matter in Costa Rican Streams

    NASA Astrophysics Data System (ADS)

    Barnett, E.; Osburn, C. L.; Oviedo-Vargas, D.; Genereux, D. P.; Oberbauer, S. F.; Dierick, D.

    2015-12-01

    The aim of this study was to better understand the role of regional groundwater in stream organic matter in two tropical watersheds in Costa Rica. Dissolved organic matter (DOM) concentration, stable C isotopes, absorbance, and fluorescence were used to distinguish DOM sources in two adjacent watersheds, the Arboleda and the Taconazo, which are similar in size, soils, rainfall, and vegetation, yet differ because the Arboleda receives a significant input of regional groundwater that is chemically distinct from the local groundwater, whereas the Taconazo does not. Characteristics of the DOM differed largely among the two streams. Fluorescence and isotope data suggested that more degraded DOM was predominant during dry periods in the Arboleda due to the influence of regional groundwater in that stream. During wet periods, fresher soil-derived DOM was predominant in both streams, similar to the quality of DOM in the Taconazo during base flow. DOM δ13C values of the Arboleda during baseflow ranged from -23 to -34‰, while in the Taconazo values ranged from -25 to -34‰. During storm flow the ranges were smaller and more similar. The Taconazo ranged from -23 to -29‰ and the Arboleda ranged from -23 to -31‰. These differences were more noticeable at baseflow and during the dry season (December to April), suggesting that the DOM from regional groundwater entering the Arboleda had less of an impact when heavily diluted by soil DOM mobilized by precipitation. In both streams, during periods of heavy precipitation, DOM concentrations were much higher than during base flow. Further, at baseflow the Arboleda showed generally lower concentrations of dissolved organic carbon (DOC) than the Taconazo, yet export of DOC from the Arboleda watershed was far higher than from the Taconazo due to the large contribution by regional groundwater to the Arboleda water export. Results from this research emphasize the role of regional groundwater in shaping the quality of the organic

  15. Variable C : N : P stoichiometry of dissolved organic matter cycling in the Community Earth System Model

    DOE PAGESBeta

    Letscher, R. T.; Moore, J. K.; Teng, Y. -C.; Primeau, F.

    2014-06-16

    Dissolved organic matter (DOM) plays an important role in the ocean's biological carbon pump by providing an advective/mixing pathway for ~ 20% of export production. DOM is known to have a stoichiometry depleted in nitrogen (N) and phosphorus (P) compared to the particulate organic matter pool, a~fact that is often omitted from biogeochemical-ocean general circulation models. However the variable C : N : P stoichiometry of DOM becomes important when quantifying carbon export from the upper ocean and linking the nutrient cycles of N and P with that of carbon. Here we utilize recent advances in DOM observational data coveragemore » and offline tracer-modeling techniques to objectively constrain the variable production and remineralization rates of the DOM C / N / P pools in a simple biogeochemical-ocean model of DOM cycling. The optimized DOM cycling parameters are then incorporated within the Biogeochemical Elemental Cycling (BEC) component of the Community Earth System Model and validated against the compilation of marine DOM observations. The optimized BEC simulation including variable DOM C : N : P cycling was found to better reproduce the observed DOM spatial gradients than simulations that used the canonical Redfield ratio. Global annual average export of dissolved organic C, N, and P below 100 m was found to be 2.28 Pg C yr-1 (143 Tmol C yr-1), 16.4 Tmol N yr-1, and 1 Tmol P yr-1, respectively with an average export C : N : P stoichiometry of 225 : 19 : 1 for the semilabile (degradable) DOM pool. DOC export contributed ~ 25% of the combined organic C export to depths greater than 100 m.« less

  16. Characterization of Dissolved Organic Matter in the Northwest River and the Formation of THM

    NASA Astrophysics Data System (ADS)

    McKeon, K.; Dias, R. F.; Minor, E.

    2001-12-01

    Given recent health and legal issues surrounding trihalomethane (THM) spikes in the Hampton Roads and Chesapeake drinking water supplies, we investigated the molecular characteristics of dissolved organic carbon (DOC) in the Northwest River / Currituck Sound system in southeastern Virginia / North Carolina with respect to trihalomethane (THM) formation. Past studies of THM-formation potential have focused on the aromatic humic and fulvic acid components of DOC (XAD resin isolates), usually comprising less than 50-percent of all dissolved organic material. Using a stirred-cell filtration unit equipped with a 500 Da nominal cut-off membrane, we isolated DOM from three sites along the Northwest River (feeds the Chesapeake Treatment Plant) down to 500 Da with a recovery of better than 90-percent. The sampling sites were selected so as to represent the potential contributions of organic material at the treatment plant intake pipe with samples taken just above the intake pipe, at the mouth of the river as it empties into Currituck Sound and at a point half-way between the intake and the Sound. The DOM fractions were characterized by HPLC using RI and UV detectors and by Curie-point pyrolysis GCMS for molecular fingerprinting. Raw, filtered (0.2um) water samples were used for THM formation analysis. Pyrolysis-GCMS fingerprints of the DOM isolates show that waters above and below the intake pipe were more similar in organic composition, while water from the Sound potentially contained more algae, due to the presence of a homologous series of fatty acids. THM formation in the raw waters was consistent with more fresh water (chloroform only) at the intake pipe and more saline water at the Sound (brominated chloroforms).

  17. Inhibition of hydroxyl radical reaction with aromatics by dissolved natural organic matter

    USGS Publications Warehouse

    Lindsey, M.E.; Tarr, M.A.

    2000-01-01

    Reaction of aromatic compounds with hydroxyl radical is inhibited by dissolved natural organic matter (NOM). The degree of inhibition is significantly greater than that expected based on a simple model in which aromatic compound molecules bound to NOM are considered to be unreactive. In this study, hydroxyl radical was produced at steady-state concentrations using Fenton chemistry (H2O2 + Fe2+ ??? Fe3+ + HO- + HO??). Suwannee River fulvic acid and humic acid were used as NOM. The most likely mechanism for the observed inhibition is that hydroxyl radical formation occurs in microenvironmental sites remote from the aromatic compounds. In addition to changes in kinetics, pyrene hydroxyl radical reaction also exhibited a mechanistic change in the presence of fulvic acid. The mechanism changed from a reaction that was apparently firstorder in pyrene to one that was apparently secondorder in pyrene, indicating that pyrene self-reaction may have become the dominant mechanism in the presence of fulvic acid. Dissolved NOM causes significant changes in the rate and mechanism of hydroxyl radical degradation of aromatic compounds. Consequently, literature rate constants measured in pure water will not be useful for predicting the degradation of pollutants in environmental systems. The kinetic and mechanistic information in this study will be useful for developing improved degradation methods involving Fenton chemistry.Reaction of aromatic compounds with hydroxyl radical is inhibited by dissolved natural organic matter (NOM). The degree of inhibition is significantly greater than that expected based on a simple model in which aromatic compounds molecules bounds to NOM are considered to be unreactive. In this study, hydroxyl radical was produced at steady-state concentrations using Fenton chemistry (H2O2 + Fe2+ ??? Fe3+ + HO- + HO??). Suwannee River fulvic acid and humic acid were used as NOM. The most likely mechanisms for the observed inhibition is that hydroxyl radical

  18. Origin, transport and fate of the dissolved organic matter produced in the watershed of the Paraíba do Sul River, Brazil.

    NASA Astrophysics Data System (ADS)

    Marques da Silva Junior, Jomar; Soares Gonçalves Serafim, Tassiana; Gomes de Almeida, Marcelo; Dittmar, Thorsten; de Rezende, Carlos Eduardo

    2015-04-01

    The Paraíba do Sul River (PSR) is an important river from Southeastern Brazil that flows through the states of São Paulo, Minas Gerais and Rio de Janeiro. The PSR is responsible for the water supply of over 14 million of the habitants. Due the human occupation and anthropic pressure, only 8% of it is original forest cover remains in the form of small fragmented patches. The remaining of the basin is mostly covered by grasses, such as pasture and sugar cane. Isotopic studies allows the monitoring of ecosystem changes and promotes specific links between ecology, land use and biogeochemical processes. We investigated the isotopic composition of the dissolved organic matter (DOM) in PSR. Our objective was to identify how extensive land use changes, from forest (C3 Plants) to pasture and sugar cane (C4 Plants), have affected river biogeochemistry of organic matter transported by PSR. Water samples were collected at 24 sites along the main channel of the PSR, 14 sites samples at the tributaries and 21 sites samples in the estuarine and marine environmental until 35km of the coast. Sampling was performed in the wet season of the 2013 and the dry season of the 2013. The fluvial and estuarine samples were processed with conventional filtration and the marine samples were processed with the cross-flow filtration. The dissolved organic matter (DOM) was isolated by solid-phase extraction (SPE) with the PPL cartridges (Styrene divinyl benzene polymer). Isotope measurements, organic carbon and nitrogen concentration were performed with a isotope-ratio mass spectrometry (Thermo Finningan). The 13C and the 15N values ranged from -20.0‰ and -29.0‰, and from -0.80 to 4.59 respectively, while the (C/N)a ratio varied between 8 and 41. The 13C were depleted in 13C at the river samples from the wet season, and in the estuary and marine areas as well. The 13C average values observed during the wet season in the PSR and in the estuarine samples are close to those

  19. Colored dissolved organic matter in shallow estuaries: relationships between carbon sources and light attenuation

    NASA Astrophysics Data System (ADS)

    Oestreich, W. K.; Ganju, N. K.; Pohlman, J. W.; Suttles, S. E.

    2016-02-01

    Light availability is of primary importance to the ecological function of shallow estuaries. For example, benthic primary production by submerged aquatic vegetation is contingent upon light penetration to the seabed. A major component that attenuates light in estuaries is colored dissolved organic matter (CDOM). CDOM is often measured via a proxy, fluorescing dissolved organic matter (fDOM), due to the ease of in situ fDOM sensor measurements. Fluorescence must be converted to CDOM absorbance for use in light attenuation calculations. However, this CDOM-fDOM relationship varies among and within estuaries. We quantified the variability in this relationship within three estuaries along the mid-Atlantic margin of the eastern United States: West Falmouth Harbor (MA), Barnegat Bay (NJ), and Chincoteague Bay (MD/VA). Land use surrounding these estuaries ranges from urban to developed, with varying sources of nutrients and organic matter. Measurements of fDOM (excitation and emission wavelengths of 365 nm (±5 nm) and 460 nm (±40 nm), respectively) and CDOM absorbance were taken along a terrestrial-to-marine gradient in all three estuaries. The ratio of the absorption coefficient at 340 nm (m-1) to fDOM (QSU) was higher in West Falmouth Harbor (1.22) than in Barnegat Bay (0.22) and Chincoteague Bay (0.17). The CDOM : fDOM absorption ratio was variable between sites within West Falmouth Harbor and Barnegat Bay, but consistent between sites within Chincoteague Bay. Stable carbon isotope analysis for constraining the source of dissolved organic matter (DOM) in West Falmouth Harbor and Barnegat Bay yielded δ13C values ranging from -19.7 to -26.1 ‰ and -20.8 to -26.7 ‰, respectively. Concentration and stable carbon isotope mixing models of DOC (dissolved organic carbon) indicate a contribution of 13C-enriched DOC in the estuaries. The most likely source of 13C-enriched DOC for the systems we investigated is Spartina cordgrass. Comparison of DOC source to CDOM : f

  20. Seasonal Variability in Dissolved Organic Matter Quantity and Composition from the Yukon River Basin

    NASA Astrophysics Data System (ADS)

    Spencer, R. G.; Aiken, G. R.; Wickland, K. P.; Striegl, R. G.; Hernes, P. J.

    2007-12-01

    The Yukon River basin (YRB) is one of the largest in North America draining an area of 855 x 103 km2 in northwestern Canada and central Alaska and is a major source of terrigenous organic matter to the eastern Bering Sea and Arctic Ocean. The Yukon is also a relatively pristine catchment draining a vast area of taiga that is exceptionally susceptible to climatic change. Dissolved organic matter (DOM) plays a fundamental role in ecosystem biogeochemistry and is ubiquitous in aquatic systems. Samples were collected over a five year period from 2001 to 2005 from a number of locations and at different points in the hydrologic regime throughout the YRB. Sample locations represented different locations on the mainstream of the Yukon River, as well as tributaries ranging from organic rich black waters draining permafrost impacted watersheds to those dominated by glacial melt waters and groundwater. Dissolved organic carbon (DOC) concentrations were observed to vary greatly from 1.5 to 26.1 mgCL-1 depending on source waters and time of year. Specific UV absorbance at 254 nm (SUVA) was also determined and ranged from to 1.3 to 4 highlighting the range in dissolved aromatic carbon content from different sources within the YRB. The hydrophobic acid (HPOA) fraction of the DOM was isolated from samples by XAD-8 resin adsorption for further investigation of DOM composition. The HPOA fraction represented 32 to 57 % of the total DOC for the range of samples studied. SUVA values from the HPOA fraction were higher than the unfractionated water samples (2.5 to 4.4) indicating a higher aromatic content for the HPOA fractions relative to the unfractionated DOM. However, the HPOA SUVA showed a good correlation to the unfractionated water samples SUVA (r2 = 0.84, p<0.01). Dissolved lignin phenols were measured on the HPOA fraction in order to trace vascular plant derived material. The ratios of different lignin phenols (e.g. syringyl to vanillyl; S:V and cinnamyl to vanillyl; C:V) can be

  1. Dissolved organic phosphorus (DOP) and its potential role for ecosystem nutrition

    NASA Astrophysics Data System (ADS)

    Brödlin, Dominik; Hagedorn, Frank; Kaiser, Klaus

    2016-04-01

    During ecosystem development and soil formation, primary mineral sources of phosphorus are becoming increasingly depleted. Inorganic phosphorus forms tend to be bound strongly to or within secondary minerals, thus, are hardly available to plants and are not leached from soil. What about organic forms of phosphorus? Since rarely studied, little is known about the fluxes of dissolved organic phosphorus (DOP) forms and their role in the P cycle. However, there is evidence that DOP is composed of some plant-derived organic phosphorus compounds, such as phytate, which are less mobile and prone to be sorbed to mineral surfaces, whereas microbial-derived compounds like nucleic acids and simple phospho-monoester may represent more mobile forms of soil phosphorus. In our study, we estimated fluxes, composition, and bioavailability of DOP along a gradient in phosphorus availability at five sites on silicate bedrock across Germany (Bad Brückenau, Conventwald, Vessertal, Mitterfels and Lüss) and at a calcareous site in Switzerland (Schänis). Soil solution was collected at 0 down to 60 to 150 cm soil depth at different intervals. Since most solutions had very low P concentrations (<0.05 mg total dissolved P/L), soil solutions had to be concentrated by freeze-drying for the enzymatic characterization of DOP. In order to test the potential bioavailability, we used an enzyme assay distinguishing between phytate-like P (phytate), diester-like P (nucleic acids), monoester-like P (glucose-6-phosphate), and pyrophosphate of bulk molybdate unreactive phosphorus (MUP). First results from the enzymatic assay indicated that monoester-like P and diester-like P were the most prominent form of the hydrolysable DOP constituents. In leachates from the organic layer, there was a high enzymatic activity for monoester-like P, indicating high recycling efficiency and rapid hydrolysis of labile DOP constituents. DOP was the dominating P form in soil solution at some of the sites, with a greater

  2. Molecular insights into the microbial formation of marine dissolved organic matter: recalcitrant or labile?

    NASA Astrophysics Data System (ADS)

    Koch, B. P.; Kattner, G.; Witt, M.; Passow, U.

    2014-08-01

    The degradation of marine dissolved organic matter (DOM) is an important control variable in the global carbon cycle. For our understanding of the kinetics of organic matter cycling in the ocean, it is crucial to achieve a mechanistic and molecular understanding of its transformation processes. A long-term microbial experiment was performed to follow the production of non-labile DOM by marine bacteria. Two different glucose concentrations and dissolved algal exudates were used as substrates. We monitored the bacterial abundance, concentrations of dissolved and particulate organic carbon (DOC, POC), nutrients, amino acids and transparent exopolymer particles (TEP) for 2 years. The molecular characterization of extracted DOM was performed by ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) after 70 days and after ∼2 years of incubation. Although glucose quickly degraded, a non-labile DOC background (5-9% of the initial DOC) was generated in the glucose incubations. Only 20% of the organic carbon from the algal exudate degraded within the 2 years of incubation. The degradation rates for the non-labile DOC background in the different treatments varied between 1 and 11 μmol DOC L-1 year-1. Transparent exopolymer particles, which are released by microorganisms, were produced during glucose degradation but decreased back to half of the maximum concentration within less than 3 weeks (degradation rate: 25 μg xanthan gum equivalents L-1 d-1) and were below detection in all treatments after 2 years. Additional glucose was added after 2 years to test whether labile substrate can promote the degradation of background DOC (co-metabolism; priming effect). A priming effect was not observed but the glucose addition led to a slight increase of background DOC. The molecular analysis demonstrated that DOM generated during glucose degradation differed appreciably from DOM transformed during the degradation of the algal exudates. Our

  3. Dissolved inorganic and organic nitrogen uptake in the coastal North Sea: A seasonal study

    NASA Astrophysics Data System (ADS)

    Moneta, Alessia; Veuger, Bart; van Rijswijk, Pieter; Meysman, Filip; Soetaert, Karline; Middelburg, Jack J.

    2014-06-01

    Nitrogen incorporation into total particulate suspended matter, hydrolysable amino acids and bacterial biomarker D-Alanine was assessed seasonally in the coastal North Sea using 15N-labeled ammonium, nitrate, nitrite and 15N- and 13C-labeled urea, glycine, leucine, phenylalanine, and two complex pools of dissolved organic matter (DOM) derived from algal and bacterial cultures (A-DOM, B-DOM). We investigated: 1) uptake rates for the various substrates and their contribution to total N uptake; 2) microbial preferences for the different N sources; 3) the coupling of C and N uptake from organic substrates; 4) the contribution of bacteria to the total microbial uptake of these substrates, and 5) the role of a complex pool of organic matter for plankton nutrition. Seasonality in the preferences for N substrates was observed, with A-DOM and B-DOM being preferred in autumn and winter whereas NH4+ was preferentially taken up in spring and summer. C and N uptake was coupled for all the organic substrates, except urea that was mainly used as a nitrogen source in summer and spring. Bacterial contribution to the uptake of A-DOM and B-DOM was, on an annual average, the lowest among the N-substrates. This suggests an important role for phytoplankton in the incorporation of complex organic matter and the importance of DOM for phytoplankton nutrition.

  4. Improved analysis of dissolved organic nitrogen in water via electrodialysis pretreatment.

    PubMed

    Zhu, Anbang; Chen, Baiyang; Zhang, Liang; Westerhoff, Paul

    2015-02-17

    This study evaluated electrodialysis (ED) for direct, accurate, and precise dissolved organic nitrogen (DON) analysis in water. Unlike conventional methods that calculate DON as the difference between total dissolved nitrogen (TDN) and dissolved inorganic nitrogen (DIN), we designed a compact ED reactor as a pretreatment tool that completely separates DIN from DON in water and then measures DON by equating DON to TDN. The experiments confirmed that the ED pretreatment process can achieve 99% removal of all three major DIN species (i.e., ammonia, nitrite, and nitrate) and an average recovery rate of 88% for an array of model DON compounds of varying characteristics (e.g., urea, amino acids, tripeptide, protein, and humic substances). Variations in nitrogen removal and recovery might be explained by a combined effect of molecular weight, acid dissociation ability (pK(a)), aromaticity, and ED reactor configurations. For model solutions with DIN/DON ratios varying from 1 to 10 mg-N/mg-N, the relative standard deviations in DON concentrations were considerably lower with ED pretreatment (<10%) than without pretreatment (47%). A survey of seven field samples, including lake water, tap water, and treated wastewater, also demonstrated the benefits of using ED pretreatment as compared with a conventional DON analysis method. Overall, this study provides evidence and mechanistic insight for a new DON detection method that uses ED pretreatment. The ED unit is robust for separating DIN and DON, and thus it may facilitate more frequent detection of DON and ultimately enhances understanding of DON issues in the environmental studies. PMID:25621718

  5. Dissolved organic nitrogen budgets for upland, forested ecosystems in New England

    USGS Publications Warehouse

    Campbell, J.L.; Hornbeck, J.W.; McDowell, W.H.; Buso, D.C.; Shanley, J.B.; Likens, G.E.

    2000-01-01

    Relatively high deposition of nitrogen (N) in the northeastern United States has caused concern because sites could become N saturated. In the past, mass-balance studies have been used to monitor the N status of sites and to investigate the impact of increased N deposition. Typically, these efforts have focused on dissolved inorganic forms of N (DIN = NH4-N + NO3-N) and have largely ignored dissolved organic nitrogen (DON) due to difficulties in its analysis. Recent advances in the measurement of total dissolved nitrogen (TDN) have facilitated measurement of DON as the residual of TDN - DIN. We calculated DON and DIN budgets using data on precipitation and streamwater chemistry collected from 9 forested watersheds at 4 sites in New England. TDN in precipitation was composed primarily of DIN. Net retention of TDN ranged from 62 to 89% (4.7 to 10 kg ha-1 yr-1) of annual inputs. DON made up the majority of TDN in stream exports, suggesting that inclusion of DON is critical to assessing N dynamics even in areas with large anthropogenic inputs of DIN. Despite the dominance of DON in streamwater, precipitation inputs of DON were approximately equal to outputs. DON concentrations in streamwater did not appear significantly influenced by seasonal biological controls, but did increase with discharge on some watersheds. Streamwater NO3-N was the only fraction of N that exhibited a seasonal pattern, with concentrations increasing during the winter months and peaking during snowmelt runoff. Concentrations of NO3-N varied considerably among watersheds and are related to DOC:DON ratios in streamwater. Annual DIN exports were negatively correlated with streamwater DOC:DON ratios, indicating that these ratios might be a useful index of N status of upland forests.

  6. Dissolved Organic Phosphorus Production during Simulated Phytoplankton Blooms in a Coastal Upwelling System

    PubMed Central

    Ruttenberg, K. C.; Dyhrman, S. T.

    2012-01-01

    Dissolved organic phosphorus (DOP) is increasingly recognized as an important phosphorus source to marine primary producers. Despite its importance, the production rate and fate of DOP is poorly understood. In this study, patterns of DOP production were evaluated by tracking the evolution of DOP during simulated phytoplankton blooms initiated with nutrient amended surface waters, relative to controls, from the Oregon (USA) coastal upwelling system. Nitrogen (N) and phosphorus (P) additions were used to decouple DOP production and hydrolysis by inducing or repressing, respectively, community alkaline phosphatase activity. In order to examine the progression of nutrient uptake and DOP production under upwelling versus relaxation conditions, two experiments were initiated with waters collected during upwelling events, and two with waters collected during relaxation events. Maximum [under (+P) conditions] and minimum [under (+N) conditions] DOP production rates were calculated and applied to in situ DOP levels to evaluate which end-member rate most closely approximates the in situ DOP production rate at the four study sites in this coastal system. Increases in DOP concentration occurred by day-5 in control treatments in all experiments. N treatments displayed increased chlorophyll a, increased alkaline phosphatase activity, and yielded lower net DOP production rates relative to controls, suggesting that DOP levels were depressed as a consequence of increased hydrolysis of bioavailable DOP substrates. Phosphorus additions resulted in a significant net production of DOP at all stations, but no increase in chlorophyll a relative to control treatments. The contrasting patterns in DOP production between treatments suggests that changes in the ambient dissolved inorganic nitrogen:dissolved inorganic phosphorus (DIN:DIP) ratio could exert profound control over DOP production rates in this system. Patterns of DOP production across the different experiments also suggest that

  7. Modeling the contribution of dissolved organic carbon to carbon sequestration during the last glacial maximum

    NASA Astrophysics Data System (ADS)

    Ma, Wentao; Tian, Jun

    2014-10-01

    Dissolved organic carbon (DOC) is a carbon reservoir that is as large as the atmospheric CO2 pool, and its contribution to the global carbon cycle is gaining attention. As DOC is a dissolved tracer, its distribution can serve to trace the mixing of water masses and the pathways of ocean circulation. Published proxy and model reconstructions have revealed that, during the last glacial maximum (LGM), the pattern of deep ocean circulation differed from that of the modern ocean, whereby additional carbon is assumed to have been sequestered in stratified LGM deep water. The aim of this study is to explore the distribution of DOC and its production/removal rate during the LGM using the Grid ENabled Integrated Earth system model (GENIE). Modeled results reveal that increased salinity of bottom waters in the Southern Ocean is associated with stronger stratification and oxygen depletion. The stratified LGM deep ocean traps more nutrients, resulting in a decrease in the DOC reservoir size that, in turn, causes a negative feedback for carbon sequestration. This finding requires an increase in DOC lifetime to compensate for the negative feedback. The upper limit of DOC lifetime is assumed to be 20,000 years. Modeled results derive an increase (decrease) in DOC reservoir by 100 Pg C leading to an atmospheric CO2 decrease (increase) of 9.1 ppm and a dissolved inorganic carbon δ13C increase (decrease) of 0.06‰. The DOC removal rate is estimated to be 39.5 Tg C year-1 in the deep sea during the LGM. The contribution of DOC to the LGM carbon cycle elucidates potential carbon sink-increasing strategies.

  8. Characterization of dissolved organic matter in fogwater by excitation-emission matrix fluorescence spectroscopy

    USGS Publications Warehouse

    Birdwell, J.E.; Valsaraj, K.T.

    2010-01-01

    Dissolved organic matter (DOM) present in fogwater samples collected in southeastern Louisiana and central-eastern China has been characterized using excitation-emission matrix fluorescence spectroscopy. The goal of the study was to illustrate the utility of fluorescence for obtaining information on the large fraction of organic carbon in fogwaters (typically >40% by weight) that defies characterization in terms of specific chemical compounds without the difficulty inherent in obtaining sufficient fogwater volume to isolate DOM for assessment using other spectroscopic and chemical analyses. Based on the findings of previous studies using other characterization methods, it was anticipated that the unidentified organic carbon fraction would have characteristic peaks associated with humic substances and fluorescent amino acids. Both humic- and protein-like fluorophores were observed in the fogwater spectra and fluorescence-derived indices for the fogwater had similar values to those of soil and sediment porewater. Greater biological character was observed in samples with higher organic carbon concentrations. Fogwaters are shown to contain a mixture of terrestrially- and microbially-derived fluorescent organic material, which is expected to be derived from an array of different sources, such as suspended soil and dust particles, biogenic emissions and organic substances generated by atmospheric processes. The fluorescence results indicate that much of the unidentified organic carbon present in fogwater can be represented by humic-like and biologically-derived substances similar to those present in other aquatic systems, though it should be noted that fluorescent signatures representative of DOM produced by atmospheric processing of organic aerosols may be contributing to or masked by humic-like fluorophores. ?? 2010.

  9. Characterization of dissolved organic matter in fogwater by excitation-emission matrix fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Birdwell, Justin E.; Valsaraj, Kalliat T.

    Dissolved organic matter (DOM) present in fogwater samples collected in southeastern Louisiana and central-eastern China has been characterized using excitation-emission matrix fluorescence spectroscopy. The goal of the study was to illustrate the utility of fluorescence for obtaining information on the large fraction of organic carbon in fogwaters (typically >40% by weight) that defies characterization in terms of specific chemical compounds without the difficulty inherent in obtaining sufficient fogwater volume to isolate DOM for assessment using other spectroscopic and chemical analyses. Based on the findings of previous studies using other characterization methods, it was anticipated that the unidentified organic carbon fraction would have characteristic peaks associated with humic substances and fluorescent amino acids. Both humic- and protein-like fluorophores were observed in the fogwater spectra and fluorescence-derived indices for the fogwater had similar values to those of soil and sediment porewater. Greater biological character was observed in samples with higher organic carbon concentrations. Fogwaters are shown to contain a mixture of terrestrially- and microbially-derived fluorescent organic material, which is expected to be derived from an array of different sources, such as suspended soil and dust particles, biogenic emissions and organic substances generated by atmospheric processes. The fluorescence results indicate that much of the unidentified organic carbon present in fogwater can be represented by humic-like and biologically-derived substances similar to those present in other aquatic systems, though it should be noted that fluorescent signatures representative of DOM produced by atmospheric processing of organic aerosols may be contributing to or masked by humic-like fluorophores.

  10. Influence of subsurface drainage on quantity and quality of dissolved organic matter export from agricultural landscapes

    NASA Astrophysics Data System (ADS)

    Dalzell, Brent J.; King, Jennifer Y.; Mulla, David J.; Finlay, Jacques C.; Sands, Gary R.

    2011-06-01

    Despite its importance for aquatic ecosystem function and watershed carbon budgets, little is known about how land use influences dissolved organic matter (DOM) export. We investigated the influence of subsurface soil drainage, widespread in the Midwestern United States, on DOM export from agricultural fields designed to drain water at either 13 mm d-1 (conventional) or 51 mm d-1 (intense). Intense drainage exported 55% (±22%) more dissolved organic carbon (DOC) per year than conventional drainage due to both increased concentration and water yield. DOC export from plots was strongly dependent on precipitation and showed considerable interannual variability. Mean DOC concentrations in drainage water were low (1.62 and 1.87 mg L-1 for conventional and intense treatments), and fluorescence index (FI) measurements showed that it had a microbial source with little evidence of terrestrially derived material, suggesting that flow through deeper, organic-poor soil horizons is important in regulating DOC export from these plots. We compared DOM in subsurface drains with downstream ditch and stream sites. Increases in DOC concentration and molecular weight accompanied by decreasing FI values at downstream sites showed that streams gain a large amount of terrestrially derived DOM during base flow transport through agricultural landscapes, probably from riparian zones. These results show that DOM compositional characteristics change with catchment area and that the relevant observation scale for DOM dynamics is likely to vary among watersheds. This study also demonstrates that land management practices can directly affect DOC via changes to water flow paths. These results are critical for improving model estimates of DOM export from agricultural landscapes as well as predicting how DOC export will respond to changing land use and climate.

  11. Dissolved organic matter and terrestrial-lotic linkages in the Central Amazon Basin of Brazil

    NASA Astrophysics Data System (ADS)

    McClain, Michael E.; Richey, Jeffrey E.; Brandes, Jay A.; Pimentel, Tania P.

    1997-09-01

    We evaluate the hypothesis that decomposition and adsorption reactions operating in upland soils of headwater catchments control the concentration and composition of dissolved and fine particulate organic matter in rivers of the Amazon basin. In two contrasting first-order catchments characteristic of the central Amazon basin, we analyzed plant, litter, soil, groundwater, and stream water chemistry. Our results indicate that clear and persistent differences exist in the concentration and elemental composition of dissolved organic matter (DOM) in stream waters and groundwaters from the two catchments, due mainly to corresponding differences in soil texture and chemistry. Within the more oxide and clay rich Oxisols underlying terra firme forest, groundwater DOM concentrations were uniformly low (120 μMC) and C/N ratios averaged 10. Conversely, within the oxide and clay deficient Spodosols underlying campinarana forest, groundwater DOM concentrations were greatly elevated (3000 μMC), and C/N ratios averaged near 60. We found that, in the terra firme/Oxisol terrain, the majority of DOM contributions to the stream derived from the riparian zone, while in the campinarana/Spodosol terrain, upland groundwater contributions could account for the concentration and composition of DOM in the stream. The implications of our findings are that in the terra firme terrains which dominate the region, upland soil profiles are not the site of definitive processes which impart compositional signatures to organic matter carried by the largest rivers of the Amazon basin, as was hypothesized. Instead, we suggest that definitive reactions are focused primarily in the river corridor.

  12. Dissolved Organic Matter Composition of Arctic Rivers: Linking Permafrost, Parent Material, and Groundwater to Riverine Carbon

    NASA Astrophysics Data System (ADS)

    O'Donnell, J. A.; Aiken, G.; Butler, K. D.; Swanson, D. K.

    2015-12-01

    Recent warming in the Arctic is modifying the chemical composition of riverine dissolved organic matter (DOM) through changes in growing season length, wildfire, and permafrost thaw. In arctic rivers, DOM composition is an important control on nutrient availability, trace metal mobilization, and greenhouse gas emissions. As a result, shifts in DOM associated with a changing arctic landscape may alter how aquatic ecosystems function in this region. Here, we examined spatial variation in DOM composition in 72 rivers in the Brooks Range and Seward Peninsula of northern Alaska. We characterized DOM using a suite of techniques, including dissolved organic carbon (DOC) concentration, absorbance spectra, fluorescence, and chemical fractionation. Watersheds were classified based on traits that influence subsurface hydrology, including parent material (volcanic deposits, loess, sand, glacial moraine, bedrock) and permafrost extent (continuous vs. discontinuous zone) and state (ice-rich vs. ice-poor). We observed considerable variability in DOM composition across rivers. DOC concentrations were lowest in rivers influenced by glacial deposits (<2 mgC L-1) and highest in rivers draining lowland tundra or extensive wetlands (>10 mgC L-1). Specific ultraviolet absorbance (SUVA254), which serves as an index of DOM aromaticity, was also variable across rivers; spring-fed mountain streams had the lowest SUVA254 values (<1.5 L mgC-1 m-1), whereas tundra and wetland-dominated streams had the highest values (>4 L mgC-1 m-1). While hydrophobic organic acids were the dominant DOM fraction in all rivers, we observed a significant increase in the proportion of hydrophilic compounds during winter flow and in groundwater-fed systems. We also observed variation in DOM composition with permafrost extent and ground ice distribution across the region. Model projections over the next century suggest a heterogeneous response of DOM to thaw, likely mediated by spatial variations in ground ice and

  13. Dissolved organic matter transport reflects hillslope to stream connectivity during snowmelt in a montane catchment

    NASA Astrophysics Data System (ADS)

    Burns, Margaret A.; Barnard, Holly R.; Gabor, Rachel S.; McKnight, Diane M.; Brooks, Paul D.

    2016-06-01

    Dissolved organic matter (DOM) transport is a key biogeochemical linkage across the terrestrial-aquatic interface in headwater catchments, and quantifying the biological and hydrological controls on DOM composition provides insight into DOM cycling at the catchment scale. We evaluated the mobility of DOM components during snowmelt in a montane, semiarid catchment. DOM composition was evaluated on a near-daily basis within the soil and the stream during snowmelt, and was compared to groundwater samples using a site-specific parallel factor analysis (PARAFAC) model derived from soil extracts. The fluorescent component loadings in the interstitial soil water and in the groundwater were significantly different and did not temporally change during snowmelt. In the stream, a transition occurred during snowmelt from fluorescent DOM with higher contributions of amino acid-like components indicative of groundwater to higher humic-like contributions indicative of soil water. Furthermore, we identified a humic-like fluorescent component in the soil water and the stream that is typically only observed in extracted water soluble organic matter from soil which may suggest hillslope to stream connectivity over very short time scales. Qualitative interpretations of changes in stream fluorescent DOM were supported by two end-member mixing analyses of conservative tracers. After normalizing fluorescent DOM loadings for dissolved organic carbon (DOC) concentration, we found that the peak in DOC concentration in the stream was driven by the nonfluorescent fraction of DOM. This study demonstrated how PARAFAC analysis can be used to refine our conceptual models of runoff generation sources, as well as provide a more detailed understanding of stream chemistry dynamics.

  14. Biochar amendment to soil changes dissolved organic matter content and composition.

    PubMed

    Smebye, Andreas; Alling, Vanja; Vogt, Rolf D; Gadmar, Tone C; Mulder, Jan; Cornelissen, Gerard; Hale, Sarah E

    2016-01-01

    Amendments of biochar, a product of pyrolysis of biomass, have been shown to increase fertility of acidic soils by enhancing soil properties such as pH, cation-exchange-capacity and water-holding-capacity. These parameters are important in the context of natural organic matter contained in soils, of which dissolved organic matter (DOM) is the mobile and most bioavailable fraction. The effect of biochar on the content and composition of DOM in soils has received little research attention. This study focuses on the effects of amendments of two different biochars to an acidic acrisol and a pH-neutral brown soil. A batch experiment showed that mixing biochar with the acrisols at a 10 wt.% dose increased the pH from 4.9 to 8.7, and this resulted in a 15-fold increase in the dissolved organic carbon concentration (from 4.5 to 69 mg L(-1)). The pH-increase followed the same trend as the release of DOM in the experiment, causing higher DOM solubility and desorption of DOM from mineral sites. The binding to biochar of several well-characterised reference DOM materials was also investigated and results showed a higher sorption of aliphatic DOM to biochar than aromatic DOM, with DOM-water partitioning coefficients (Kd-values) ranging from 0.2 to 590 L kg(-1). A size exclusion occurring in biochar's micropores, could result in a higher sorption of smaller aliphatic DOM molecules than larger aromatic ones. These findings indicate that biochar could increase the leaching of DOM from soil, as well as change the DOM composition towards molecules with a larger size and higher aromaticity. PMID:25980657

  15. Assessing the drivers of dissolved organic matter export from two contrasting lowland catchments, U.K.

    PubMed

    Yates, Christopher A; Johnes, Penny J; Spencer, Robert G M

    2016-11-01

    Two lowland catchments in the U.K. were sampled throughout 2010-11 to investigate the dominant controls on dissolved organic matter quantity and composition. The catchments had marked differences in terms of nutrient status, land cover and contrasting lithologies resulting in differences in the dominant flow pathways (groundwater vs. surface water dominated). The Upper Wylye is a chalk stream with a baseflow index of 0.98, draining a catchment dominated by intensive agricultural production. Millersford Brook is a lowland peat catchment with a baseflow index of 0.43, draining a semi-natural catchment with heather moorland and coniferous forest. Samples were collected weekly between October 2010 and September 2011 from eleven sampling locations. Samples were analysed to determine dissolved organic carbon, nitrogen and phosphorus fractions with DOM composition evaluated via the DOC:DON ratio, DOC:DOP ratio, specific UV absorption at 254nm, absorbance ratio (a250:a365) and the spectral slope parameter between 350 and 400nm (S350-400). Significant differences were observed in all determinands between the catchments, over time, and spatially along nutrient enrichment and geoclimatic gradients. Seasonal variation in preferential flow pathways mobilising groundwater-derived DOM were identified as likely controls on the delivery of DOM in the permeable chalk dominated catchment. Steeper S350-400 values and elevated a250:a365 ratios in this catchment suggest material of a lower bulk aromatic C content and molecular weight delivered during the winter months when compared to the summer. DOC:DON ratios were markedly lower in the chalk catchment than the peatland catchment, reflecting the paucity of organic matter within the mineral soils of the chalk landscape, and higher fertiliser application rates. This manuscript highlights that DOM composition varies according to catchment landscape character and hydrological function. PMID:27422728

  16. Non-conservative behavior of fluorescent dissolved organic matter (FDOM) within a subterranean estuary

    NASA Astrophysics Data System (ADS)

    Suryaputra, I. G. N. A.; Santos, I. R.; Huettel, M.; Burnett, W. C.; Dittmar, T.

    2015-11-01

    The role of submarine groundwater discharge (SGD) in releasing fluorescent dissolved organic matter (FDOM) to the coastal ocean and the possibility of using FDOM as a proxy for dissolved organic carbon (DOC) was investigated in a subterranean estuary in the northeastern Gulf of Mexico (Turkey Point, Florida). FDOM was continuously monitored for three weeks in shallow beach groundwater and in the adjacent coastal ocean. Radon (222Rn) was used as a natural groundwater tracer. FDOM and DOC correlated in groundwater and seawater samples, implying that FDOM may be a proxy of DOC in waters influenced by SGD. A mixing model using salinity as a seawater tracer revealed FDOM production in the high salinity region of the subterranean estuary. This production was probably a result of infiltration and transformation of labile marine organic matter in the beach sediments. The non-conservative FDOM behavior in this subterranean estuary differs from most surface estuaries where FDOM typically behaves conservatively. At the study site, fresh and saline SGD delivered about 1800 mg d-1 of FDOM (quinine equivalents) to the coastal ocean per meter of shoreline. About 11% of this input was related to fresh SGD, while 89% were related to saline SGD resulting from FDOM production within the shallow aquifer. If these fluxes are representative of the Florida Gulf Coast, SGD-derived FDOM fluxes would be equivalent to at least 18% of the potential regional riverine FDOM inputs. To reduce uncertainties related to the scarcity of FDOM data, further investigations of river and groundwater FDOM inputs in Florida and elsewhere are necessary.

  17. Predicting Sources of Dissolved Organic Nitrogen to an Estuary from an Agro-Urban Coastal Watershed.

    PubMed

    Osburn, Christopher L; Handsel, Lauren T; Peierls, Benjamin L; Paerl, Hans W

    2016-08-16

    Dissolved organic nitrogen (DON) is the nitrogen (N)-containing component of dissolved organic matter (DOM) and in aquatic ecosystems is part of the biologically reactive nitrogen pool that can degrade water quality in N-sensitive waters. Unlike inorganic N (nitrate and ammonium) DON is comprised of many different molecules of variable reactivity. Few methods exist to track the sources of DON in watersheds. In this study, DOM excitation-emission matrix (EEM) fluorescence of eight discrete DON sources was measured and modeled with parallel factor analysis (PARAFAC) and the resulting model ("FluorMod") was fit to 516 EEMs measured in surface waters from the main stem of the Neuse River and its tributaries, located in eastern North Carolina. PARAFAC components were positively correlated to DON concentration. Principle components analysis (PCA) was used to confirm separation of the eight sources and model validation was achieved by measurement of source samples not included in the model development with an error of <10%. Application of FluorMod to surface waters of streams within the Neuse River Basin showed that while >70% of DON was attributed to natural sources, nonpoint sources, such as soil and poultry litter leachates and street runoff, accounted for the remaining 30%. This result was consistent with changes in land use from urbanized Raleigh metropolitan area to the largely agricultural Southeastern coastal plain. Overall, the predicted fraction of nonpoint DON sources was consistent with previous reports of increased organic N inputs in this river basin, which are suspected of impacting the water quality of its estuary. PMID:27404466

  18. Dissolved pesticides, dissolved organic carbon, and water-quality characteristics in selected Idaho streams, April--December 2010

    USGS Publications Warehouse

    Reilly, Timothy J.; Smalling, Kelly L.; Wilson, Emma R.; Battaglin, William A.

    2012-01-01

    Water-quality samples were collected from April through December 2010 from four streams in Idaho and analyzed for a suite of pesticides, including fungicides, by the U.S. Geological Survey. Water samples were collected from two agricultural and two nonagricultural (control) streams approximately biweekly from the beginning of the growing season (April) through the end of the calendar year (December). Samples were analyzed for 90 pesticides using gas chromatography/mass spectrometry. Twenty-three pesticides, including 8 fungicides, 10 herbicides, 3 insecticides, and 2 pesticide degradates, were detected in 45 water samples. The most frequently detected compounds in the two agricultural streams and their detection frequencies were metolachlor, 96 percent; azoxystrobin, 79 percent; boscalid, 79 percent; atrazine, 46 percent; pendimethalin, 33 percent; and trifluralin, 33 percent. Dissolved-pesticide concentrations ranged from below instrumental limits of detection (0.5-1.0 nanograms per liter) to 771 nanograms per liter (hexazinone). The total number of pesticides detected in any given water sample ranged from 0 to 11. Only three pesticides (atrazine, fipronil, and simazine) were detected in samples from the control streams during the sampling period.

  19. The effect of drain blocking on dissolved organic carbon under the peak flow conditions

    NASA Astrophysics Data System (ADS)

    zhang, zhuoli

    2014-05-01

    There are numerous studies that have shown increasing dissolved organic carbon (DOC) concentration down stream of upland peat catchments (eg. Worrall et al., 2007; Clark et al., 2007; Gibson et al., 200). In the UK, upland peat soils are both an important water source and an important carbon store, therefore, the transportation of DOC from soil to the aquatic system remains a critical part of the impact that upland peat environments have on wider society. The majority of the DOC is delivered from the peat soil during the peak flow events (Clark et al., 2008), however, most of the storm events analysis has been developed for organo-mineral soil rather than for peat soil catchments. Worrall et al., (2007) suggested that drain blocking as a potential method for controlling DOC release from peat soil. An events analysis was conducted on the drain blocking data collected from 2008 to 2010 from Cronkley Fell (UK National grid reference NY 83800 26996). A total of 756 peak flow events were chosen to access the impact of drain blocking on DOC concentration and flux during the events. The data was analysed by the combination of principal components analysis (PCA) and end member mixing analysis (EMMA). The results showed that during the peak flow events, the effects of drain blocking was minimised by the rapid flushing of the event water: the DOC concentration on storm events increased after blocking rather than decreased; DOC flux did decrease after blocking but rather as a result of the increased volume of the event water. Worrall, F., Armstrong, A., Holden, J., 2007. Short term impact of peat drain blocking on water color, dissolved organic carbon concentration and water table depth. Journal of Hydrology 337,315-325 Clark, J.M., Lane, S.N., Chapman, P.J., Adamson, J.K., 2007. Export of dissolved organic carbon from an upland peat during storm events: Implication for flux estimates. Journal of Hydrology 347, 438-447. Aitkenhead, J.A., McDowell, W. H., 2000. Soil C: N ratio

  20. Excitation Emission Matrix Spectra (EEMS) of Chromophoric Dissolved Organic Matter Produced during Microbial Incubation

    NASA Astrophysics Data System (ADS)

    McDonald, N.; Nelson, N. B.; Parsons, R.

    2013-12-01

    The chromophoric or light-absorbing fraction of dissolved organic matter (CDOM) is present ubiquitously in natural waters and has a significant impact on ocean biogeochemistry, affecting photosynthesis and primary production as well direct and indirect photochemical reactions (Siegel et al., 2002; Nelson et al., 2007). It has been largely researched in the past few decades, however the exact chemical composition remains unknown. Instrumental methods of analysis including simultaneous excitation-emission fluorescence spectra have allowed for further insight into source and chemical composition. While certain excitation-emission peaks have been associated with ';marine' sources, they have not been exclusively linked to bacterial production of CDOM (Coble, 1996; Zepp et al., 2004). In this study, ';grazer diluted' seawater samples (70% 0.2μm filtered water; 30% whole water) were collected at the Bermuda Atlantic Time Series (BATS) site in the Sargasso Sea (31° 41' N; 64° 10' W) and incubated with an amendment of labile dissolved organic carbon (10μM C6H12O6), ammonium (1μM NH4Cl) and phosphate (0.1μM K2HPO4) to facilitate bacterial production. These substrates and concentrations have been previously shown to facilitate optimum bacterial and CDOM production (Nelson et al., 2004). Sample depths were chosen at 1m and 200m as water at these depths has been exposed to UV light (the Subtropical Mode Water at 200m has been subducted from the surface) and therefore has low initial concentrations of CDOM. After the samples were amended, they were incubated at in-situ temperatures in the dark for 72 hours, with bacteria counts, UV-Vis absorption and EEMS measurements taken at 6-8 hour intervals. Dissolved organic carbon (DOC) measurements were collected daily. For the surface water experiment specific bacteria populations were investigated using Fluorescence In-Situ Hybridization (FISH) analysis. Results showed a clear production of bacteria and production of CDOM, which

  1. Transport of dissolved organic carbon from soil to surface water: Identifying the transport pathways

    NASA Astrophysics Data System (ADS)

    Van Gaelen, Nele

    2013-04-01

    Over the last decades, increasing concentrations of dissolved organic carbon (DOC) have been found in surface waters. It has also become clear that land use is an important driver for DOC export. However, causal factors controlling this temporal and spatial variation are not clear. Efforts to model DOC export on a catchment scale are rare. In this research, we aim to determine the factors controlling variations in DOC concentration and quality in surface waters. Secondly, the importance of the different pathways (surface runoff, subsurface flow and groundwater flow) for the transport of dissolved organic matter from the soil to the surface water is investigated. Six headwater catchments (100 - 400 ha) were selected in Belgium, representing three different types of land use, namely forest, grassland and arable land. At the outlet of each catchment, a flow-proportional sampler has been collecting samples of base flow and peak discharge since January 2010. In addition, samples of groundwater, subsurface water and precipitation water were collected on a regular base in three of the catchments. Samples were analyzed for DOC, specific UV absorbance (SUVA) and dissolved silica (DSi). Elemental analysis was carried out using ICP-OES. Since 2012, precipitation water and a selection of river water samples was also analyzed for O and H isotopes. Overall, DOC concentrations were highest in forest catchments and lowest in grassland catchments. For all land use types, measured DOC concentrations were highest during peak discharge. The rise in DOC concentrations was associated with a change in DOC quality. During periods of greater discharge, higher SUVA values were measured, indicating DOC with higher aromaticity (humic and fulvic fractions) reaches the outlet. ICP and DSi results also showed a significant difference in geochemical composition of the river water if peak events are compared to base flow samples. During an event, Ca, Mg, Na, S and DSi concentrations were lowered

  2. Biochemical Composition of Dissolved Organic Matter Released During Experimental Diatom Blooms

    NASA Technical Reports Server (NTRS)

    Mannino, Antonio; Harvey, H. Rodger

    2002-01-01

    An axenic culture of Skeletonema costatum was grown to late-log phase to examine the molecular weight distribution and the biochemical composition of high molecular weight dissolved organic matter released in the absence of actively growing bacteria. A second culture was grown in a 5 m(exp 3) mesocosm and placed in darkness for a period of 51 days to examine the impact of phytoplankton bloom dynamics and microbial decomposition on dissolved (DOM) and particulate organic matter (POM) composition. DOM was separated using tangential-flow ultrafiltration into three nominal size fractions: LDOM (less than 1 kDa DOM), HDOM (1-30 kDa) and VHDOM (30 kDa-0.2 micron) and characterized. Both axenic and mesocosm diatom blooms released 28-33% of net primary production as dissolved organic carbon (DOC). In the axenic culture, HDOM and LDOM each comprised about half of the diatom-released DOC with less than l% as VHDOM. Diatoms from both experiments released carbohydrate-rich high molecular weight DOM. Much of the axenic diatom-released high molecular weight DOC could be chemically characterized (61% of HDOM and 78% of VHDOM) with carbohydrates as the primary component (45% of HDOM and 55% of VHDOM). Substantial amounts of hydrolyzable amino acids (16% of HDOM and 22% of VHDOM) and small amounts of lipids (less than 1%) were also released. Proportions of recognizable biochemical components in DOM produced in the mesocosm bloom were lower compared to the axenic culture. The presence of bacterial fatty acids and peptidoglycan-derived D-amino acids within high molecular weight fractions from the mesocosm bloom revealed that bacteria contributed a variety of macromolecules to DOM during the growth and decay of the diatom bloom. Release of significant amounts of DOC by diatoms demonstrates that DOM excretion is an important component of phytoplankton primary production. Similarities in high molecular weight DOM composition in marine waters and diatom cultures highlight the importance

  3. Linkages between the circulation and distribution of dissolved organic matter in the White Sea, Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Pavlov, Alexey K.; Stedmon, Colin A.; Semushin, Andrey V.; Martma, Tõnu; Ivanov, Boris V.; Kowalczuk, Piotr; Granskog, Mats A.

    2016-05-01

    The White Sea is a semi-enclosed Arctic marginal sea receiving a significant loading of freshwater (225-231 km3 yr-1 equaling an annual runoff yield of 2.5 m) and dissolved organic matter (DOM) from river run-off. We report discharge weighed values of stable oxygen isotope ratios (δ18O) of -14.0‰ in Northern Dvina river for the period 10 May-12 October 2012. We found a significant linear relationship between salinity (S) and δ18O (δ18O=-17.66±0.58+0.52±0.02×S; R2=0.96, N=162), which indicates a dominant contribution of river water to the freshwater budget and little influence of sea ice formation or melt. No apparent brine additions from sea-ice formation is evident in the White Sea deep waters as seen from a joint analysis of temperature (T), S, δ18O and aCDOM(350) data, confirming previous suggestions about strong tidal induced vertical mixing in winter being the likely source of the deep waters. We investigated properties and distribution of colored dissolved organic matter (CDOM) and dissolved organic carbon (DOC) in the White Sea basin and coastal areas in summer. We found contrasting DOM properties in the inflowing Barents Sea waters and White Sea waters influenced by terrestrial runoff. Values of absorption by CDOM at 350 nm (aCDOM(350)) and DOC (exceeding 10 m-1 and 550 μmol l-1, respectively) in surface waters of the White Sea basin are higher compared to other river-influenced coastal Arctic domains. Linear relationship between S and CDOM absorption, and S and DOC (DOC=959.21±52.99-25.80±1.79×S; R2=0.85; N=154) concentrations suggests conservative mixing of DOM in the White Sea. The strongest linear correlation between CDOM absorption and DOC was found in the ultraviolet (DOC=56.31±2.76+9.13±0.15×aCDOM(254); R2=0.99; N=155), which provides an easy and robust tool to trace DOC using CDOM absorption measurements as well as remote sensing algorithms. Deviations from this linear relationship in surface waters likely indicate contribution from

  4. Influence of Dissolved Organic Matter on Tetracycline Bioavailability to an Antibiotic-Resistant Bacterium.

    PubMed

    Chen, Zeyou; Zhang, Yingjie; Gao, Yanzheng; Boyd, Stephen A; Zhu, Dongqiang; Li, Hui

    2015-09-15

    Complexation of tetracycline with dissolved organic matter (DOM) in aqueous solution could alter the bioavailability of tetracycline to bacteria, thereby alleviating selective pressure for development of antibiotic resistance. In this study, an Escherichia coli whole-cell bioreporter construct with antibiotic resistance genes coupled to green fluorescence protein was exposed to tetracycline in the presence of DOM derived from humic acids. Complexation between tetracycline and DOM diminished tetracycline bioavailability to E. coli, as indicated by reduced expression of antibiotic resistance genes. Increasing DOM concentration resulted in decreasing bioavailability of tetracycline to the bioreporter. Freely dissolved tetracycline (not complexed with DOM) was identified as the major fraction responsible for the rate and magnitude of antibiotic resistance genes expressed. Furthermore, adsorption of DOM on bacterial cell surfaces inhibited tetracycline diffusion into the bioreporter cells. The magnitude of the inhibition was related to the amount of DOM adsorbed and tetracycline affinity for the DOM. These findings provide novel insights into the mechanisms by which the bioavailability of tetracycline antibiotics to bacteria is reduced by DOM present in water. Agricultural lands receiving livestock manures commonly have elevated levels of both DOM and antibiotics; the DOM could suppress the bioavailability of antibiotics, hence reducing selective pressure on bacteria for development of antibiotic resistance. PMID:26370618

  5. Determination of migration pathways of DNAPL and dissolved phase volatile organic compounds in heterogeneous aquifer systems

    SciTech Connect

    Lamb, B. ); Prucha, R.

    1993-10-01

    Before an effective ground-water extraction system can be designed, it is essential to determine the distribution of chemicals of concern in ground-water and preferential pathways for chemical migration. At the study site, determining the chemical migration pathways and spatial distribution of chemicals are complicated by the presence of halogenated volatile organic compounds (VOCs) and dense nonaqueous phase liquids (DNAPL) coupled with the heterogeneous nature of the aquifer. DNAPL is denser than ground water and therefore sinks due to gravity while the dissolved components tend to be dominated by regional ground-water advective flow. The study area is a former industrial site. The aquifer is a low permeability unit with thin lenses of sandy material. Dissolved phase chemicals preferentially migrate in these sand units. To determine pathways for the migration of chemicals both laterally and horizontally, borehole lithologic data, hydraulic data, and chemical data were synthesized into a computer database and used as input for graphical illustrations using computer aided drafting (CAD). The CAD software was also used to provide the basis for 2-D and 3-D visualization to interpret field data which aided in development of a detailed conceptual site model and in construction of a numerical ground-water flow model for the site.

  6. Systematic removal of neutral sugars within dissolved organic matter across ocean basins

    NASA Astrophysics Data System (ADS)

    Goldberg, Stuart J.; Carlson, Craig A.; Brzezinski, Mark; Nelson, Norm B.; Siegel, David A.

    2011-09-01

    Dissolved combined neutral sugars (DCNS) support heterotrophic bacterioplankton metabolism throughout the ocean, which affects ocean carbon cycling and biogeochemistry. Variability in DCNS composition also provides information about the diagenetic state of oceanic dissolved organic matter (DOM). Here, we present results of the DCNS composition in ˜600 discrete samples from ocean basin-scale sections within the North Atlantic and South Pacific Oceans; and at the Bermuda Atlantic Time-series Study site in the Sargasso Sea. As DCNS concentrations decline with water mass age the mole percentages of glucose, mannose + xylose, and galactose change in a ratio of +2.10:-1.10:-1.00 enriching the DOM pool in glucose relative to mannose + xylose, and galactose. A new proxy is presented based on the relative change in these major sugars, diagenetic distance, which allows for comparison of the diagenetic state of DOM over broad regions of the global ocean while simultaneously quantifying progress along this pathway. In all, this inter-basin comparison suggests that there is a common diagenetic pathway for oceanic DOM.

  7. Analysis of Dissolved Organic Nutrients in the Interstitial Water of Natural Biofilms.

    PubMed

    Tsuchiya, Yuki; Eda, Shima; Kiriyama, Chiho; Asada, Tomoya; Morisaki, Hisao

    2016-07-01

    In biofilms, the matrix of extracellular polymeric substances (EPSs) retains water in the interstitial region of the EPS. This interstitial water is the ambient environment for microorganisms in the biofilms. The nutrient condition in the interstitial water may affect microbial activity in the biofilms. In the present study, we measured the concentrations of dissolved organic nutrients, i.e., saccharides and proteins, contained in the interstitial water of biofilms formed on the stones. We also analyzed the molecular weight distribution, chemical species, and availability to bacteria of some saccharides in the interstitial water. Colorimetric assays showed that the concentrations of saccharides and proteins in the biofilm interstitial water were significantly higher (ca. 750 times) than those in the surrounding lake waters (p < 0.05). Chromatographic analyses demonstrated that the saccharides in the interstitial waters were mainly of low molecular-weight saccharides such as glucose and maltose, while proteins in the interstitial water were high molecular-weight proteins (over 7000 Da). Bacterial growth and production of EPS occurred simultaneously with the decrease in the low molecular-weight saccharide concentrations when a small portion of biofilm suspension was inoculated to the collected interstitial water, suggesting that the dissolved saccharides in the interstitial water support bacterial growth and formation of biofilms. PMID:26961802

  8. Synoptic Sampling of Dissolved Nitrogen Species and Organic Carbon in the Rio Grande Basin

    NASA Astrophysics Data System (ADS)

    Villinski, J. E.; Hogan, J. F.; Brooks, P. D.; Haas, P. A.; Mills, S. K.

    2002-12-01

    Synoptic sampling has been performed along the Rio Grande from the headwaters in Colorado to Fort Quitman, Texas, south of El Paso. Samples from August 2001 and January 2002 were analyzed for nitrate (NO3-), ammonium (NH_{4}$+), total dissolved nitrogen (TDN), and dissolved organic carbon (DOC). DOC concentrations increase slowly between Colorado and southern New Mexico and then approximately double in Texas. Large sources of N during both sampling periods were the urban areas around Albuquerque and El Paso, Texas and Ciudad Juarez, Mexico, and agricultural regions in the Rincon and Mesilla valleys of southern New Mexico. Nitrate-N concentrations remained high south of Albuquerque to Elephant Butte reservoir in the summer, presumably due to lack of primary production. Inorganic N concentrations generally are higher in the winter than in the summer. During the summer, ammonium concentrations were greater than 100 mg N/l only at the outlet of Elephant Butte Reservoir, and in Texas. However, winter concentrations were on average an order of magnitude greater, again with the largest ammonium values (5000 \\mug N/l) in Texas. These patterns are consistent with a reduction in biological nutrient demand during the non-growing season.

  9. Land-water movement of dissolved organic matter in watersheds: hydroclimatic controls and environmental implications

    NASA Astrophysics Data System (ADS)

    Park, J.; Mitchell, M. J.; Kang, S.; Kim, S.; Lee, J.

    2005-12-01

    Dissolved organic matter (DOM) in soils and surface waters plays a crucial role in transporting carbon, nutrients, and trace toxic contaminants through different watershed compartments. The coupling between hydrology and DOM movement from land to water has been a central theme of many hydro-biogeochemical studies at the watershed level. We compared hydroclimatic controls on the movement of DOM and some trace contaminants in two temperate watersheds having idiosyncratic seasonal patterns of precipitation and runoff. In Arbutus Watershed in the Adirondacks of New York State, stream discharge from December through April represented over 60% of the annual runoff. Stochastic snowmelt events during the winter, triggered by elevated air temperatures, resulted in concurrent increases in the stream water concentrations of DOM, H+, and total dissolved Al. In Hwang-Ryong River Watershed, which is located in the southwestern Korean Peninsula and encompasses forested, rural, and urban landscapes in sequence, frequent heavy rainfalls during the summer monsoon were targeted as a biogeochemical hot event. Preliminary results suggest that spectroscopic properties of DOM, along with concentrations of trace metals, change with an increasing influence of urban wastewater, with different hydroclimatic impacts at upstream and downstream sites. Implications of the coupling between hydrology and biogeochemical transport for watershed environmental quality will be discussed, especially in relation to watershed biogeochemical responses to climatic variability.

  10. Short-Term Dynamics of North Sea Bacterioplankton-Dissolved Organic Matter Coherence on Molecular Level

    PubMed Central

    Lucas, Judith; Koester, Irina; Wichels, Antje; Niggemann, Jutta; Dittmar, Thorsten; Callies, Ulrich; Wiltshire, Karen H.; Gerdts, Gunnar

    2016-01-01

    Remineralization and transformation of dissolved organic matter (DOM) by marine microbes shape the DOM composition and thus, have large impact on global carbon and nutrient cycling. However, information on bacterioplankton-DOM interactions on a molecular level is limited. We examined the variation of bacterial community composition (BCC) at Helgoland Roads (North Sea) in relation to variation of molecular DOM composition and various environmental parameters on short-time scales. Surface water samples were taken daily over a period of 20 days. Bacterial community and molecular DOM composition were assessed via 16S rRNA gene tag sequencing and ultrahigh resolution Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS), respectively. Environmental conditions were driven by a coastal water influx during the first half of the sampling period and the onset of a summer phytoplankton bloom toward the end of the sampling period. These phenomena led to a distinct grouping of bacterial communities and DOM composition which was particularly influenced by total dissolved nitrogen (TDN) concentration, temperature, and salinity, as revealed by distance-based linear regression analyses. Bacterioplankton-DOM interaction was demonstrated in strong correlations between specific bacterial taxa and particular DOM molecules, thus, suggesting potential specialization on particular substrates. We propose that a combination of high resolution techniques, as used in this study, may provide substantial information on substrate generalists and specialists and thus, contribute to prediction of BCC variation. PMID:27014241

  11. Linking the Molecular Signature of Heteroatomic Dissolved Organic Matter to Watershed Characteristics in World Rivers.

    PubMed

    Wagner, Sasha; Riedel, Thomas; Niggemann, Jutta; Vähätalo, Anssi V; Dittmar, Thorsten; Jaffé, Rudolf

    2015-12-01

    Large world rivers are significant sources of dissolved organic matter (DOM) to the oceans. Watershed geomorphology and land use can drive the quality and reactivity of DOM. Determining the molecular composition of riverine DOM is essential for understanding its source, mobility and fate across landscapes. In this study, DOM from the main stem of 10 global rivers covering a wide climatic range and land use features was molecularly characterized via ultrahigh-resolution Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). FT-ICR mass spectral data revealed an overall similarity in molecular components among the rivers. However, when focusing specifically on the contribution of nonoxygen heteroatomic molecular formulas (CHON, CHOS, CHOP, etc.) to the bulk molecular signature, patterns relating DOM composition and watershed land use became apparent. Greater abundances of N- and S-containing molecular formulas were identified as unique to rivers influenced by anthropogenic inputs, whereas rivers with primarily forested watersheds had DOM signatures relatively depleted in heteroatomic content. A strong correlation between cropland cover and dissolved black nitrogen was established when focusing specifically on the pyrogenic class of compounds. This study demonstrated how changes in land use directly affect downstream DOM quality and could impact C and nutrient cycling on a global scale. PMID:26153846

  12. Short-Term Dynamics of North Sea Bacterioplankton-Dissolved Organic Matter Coherence on Molecular Level.

    PubMed

    Lucas, Judith; Koester, Irina; Wichels, Antje; Niggemann, Jutta; Dittmar, Thorsten; Callies, Ulrich; Wiltshire, Karen H; Gerdts, Gunnar

    2016-01-01

    Remineralization and transformation of dissolved organic matter (DOM) by marine microbes shape the DOM composition and thus, have large impact on global carbon and nutrient cycling. However, information on bacterioplankton-DOM interactions on a molecular level is limited. We examined the variation of bacterial community composition (BCC) at Helgoland Roads (North Sea) in relation to variation of molecular DOM composition and various environmental parameters on short-time scales. Surface water samples were taken daily over a period of 20 days. Bacterial community and molecular DOM composition were assessed via 16S rRNA gene tag sequencing and ultrahigh resolution Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS), respectively. Environmental conditions were driven by a coastal water influx during the first half of the sampling period and the onset of a summer phytoplankton bloom toward the end of the sampling period. These phenomena led to a distinct grouping of bacterial communities and DOM composition which was particularly influenced by total dissolved nitrogen (TDN) concentration, temperature, and salinity, as revealed by distance-based linear regression analyses. Bacterioplankton-DOM interaction was demonstrated in strong correlations between specific bacterial taxa and particular DOM molecules, thus, suggesting potential specialization on particular substrates. We propose that a combination of high resolution techniques, as used in this study, may provide substantial information on substrate generalists and specialists and thus, contribute to prediction of BCC variation. PMID:27014241

  13. Mechanical biological treatment of organic fraction of MSW affected dissolved organic matter evolution in simulated landfill.

    PubMed

    Salati, Silvia; Scaglia, Barbara; di Gregorio, Alessandra; Carrera, Alberto; Adani, Fabrizio

    2013-08-01

    The aim of this paper was to study the evolution of DOM during 1 year of observation in simulated landfill, of aerobically treated vs. untreated organic fraction of MSW. Results obtained indicated that aerobic treatment of organic fraction of MSW permitted getting good biological stability so that, successive incubation under anaerobic condition in landfill allowed biological process to continue getting a strong reduction of soluble organic matter (DOM) that showed, also, an aromatic character. Incubation of untreated waste gave similar trend, but in this case DOM decreasing was only apparent as inhibition of biological process in landfill did not allow replacing degraded/leached DOM with new material coming from hydrolysis of fresh OM. PMID:23743423

  14. Transformations and Fates of Terrigenous Dissolved Organic Matter in River-influenced Ocean Margins

    NASA Astrophysics Data System (ADS)

    Fichot, Cedric G.

    Rivers contribute about 0.25 Pg of terrigenous dissolved organic carbon (tDOC) to the ocean each year. The fate and transformations of this material have important ramifications for the metabolic state of the ocean, air-sea CO2 exchange, and the global carbon cycle. Stable isotopic compositions and terrestrial biomarkers suggest tDOC must be efficiently mineralized in ocean margins. Nonetheless, the extent of tDOC mineralization in these environments remains unknown, as no quantitative estimate is available. The complex interplay of biogeochemical and physical processes in these systems compounded by the limited practicality of chemical proxies (organic biomarkers, isotopic compositions) make the quantification of tDOC mineralization in these dynamic systems particularly challenging. In this dissertation, new optical proxies were developed (Chapters 1 and 2) and facilitated the first quantitative assessment of tDOC mineralization in a dynamic river-influenced ocean margin (Chapter 3) and the monitoring of continental runoff distributions in the coastal ocean using remote sensing (Chapter 4). The optical properties of chromophoric dissolved organic matter (CDOM) were used as optical proxies for dissolved organic carbon concentration ([DOC]) and %tDOC. In both proxies, the CDOM spectral slope coefficient ( S275-295) was exploited for its informative properties on the chemical nature and composition of dissolved organic matter. In the first proxy, a strong relationship between S275-295 and the ratio of CDOM absorption to [DOC] facilitated accurate retrieval (+/- 4%) of [DOC] from CDOM. In the second proxy, the existence of a strong relationship between S275-295 and the DOC-normalized lignin yield facilitated the estimation of the %tDOC from S 275-295. Using the proxies, the tDOC concentration can be retrieved solely from CDOM absorption coefficients (lambda = 275-295 nm) in river-influenced ocean margins. The practicality of optical proxies facilitated the calculation

  15. Characterization of biochars and dissolved organic matter phases obtained upon hydrothermal carbonization of Elodea nuttallii.

    PubMed

    Poerschmann, J; Weiner, B; Wedwitschka, H; Zehnsdorf, A; Koehler, R; Kopinke, F-D

    2015-01-01

    The invasive aquatic plant Elodea nuttallii was subjected to hydrothermal carbonization at 200 °C and 240 °C to produce biochar. About 58% w/w of the organic carbon of the pristine plant was translocated into the solid biochar irrespectively of the operating temperature. The process water rich in dissolved organic matter proved a good substrate for biogas production. The E. nuttallii plants showed a high capability of incorporating metals into the biomass. This large inorganic fraction which was mainly transferred into the biochar (except sodium and potassium) may hamper the prospective application of biochar as soil amendment. The high ash content in biochar (∼ 40% w/w) along with its relatively low content of organic carbon (∼ 36% w/w) is associated with low higher heating values. Fatty acids were completely hydrolyzed from lipids due to hydrothermal treatment. Low molecular-weight carboxylic acids (acetic and lactic acid), phenols and phenolic acids turned out major organic breakdown products. PMID:25879182

  16. Complete and Partial Photo-oxidation of Dissolved Organic Matter Draining Permafrost Soils.

    PubMed

    Ward, Collin P; Cory, Rose M

    2016-04-01

    Photochemical degradation of dissolved organic matter (DOM) to carbon dioxide (CO2) and partially oxidized compounds is an important component of the carbon cycle in the Arctic. Thawing permafrost soils will change the chemical composition of DOM exported to arctic surface waters, but the molecular controls on DOM photodegradation remain poorly understood, making it difficult to predict how inputs of thawing permafrost DOM may alter its photodegradation. To address this knowledge gap, we quantified the susceptibility of DOM draining the shallow organic mat and the deeper permafrost layer of arctic soils to complete and partial photo-oxidation and investigated changes in the chemical composition of each DOM source following sunlight exposure. Permafrost and organic mat DOM had similar lability to photomineralization despite substantial differences in initial chemical composition. Concurrent losses of carboxyl moieties and shifts in chemical composition during photodegradation indicated that photodecarboxylation could account for 40-90% of DOM photomineralized to CO2. Permafrost DOM had a higher susceptibility to partial photo-oxidation compared to organic mat DOM, potentially due to a lower abundance of phenolic moieties with antioxidant properties. These results suggest that photodegradation will likely continue to be an important control on DOM fate in arctic freshwaters as the climate warms and permafrost soils thaw. PMID:26910810

  17. Characterization and origin of polar dissolved organic matter from the Great Salt Lake

    USGS Publications Warehouse

    Leenheer, J.A.; Noyes, T.I.; Rostad, C.E.; Davisson, M.L.

    2004-01-01

    Polar dissolved organic matter (DOM) was isolated from a surface-water sample from the Great Salt Lake by separating it from colloidal organic matter by membrane dialysis, from less-polar DOM fractions by resin sorbents, and from inorganic salts by a combination of sodium cation exchange followed by precipitation of sodium salts by acetic acid during evaporative concentration. Polar DOM was the most abundant DOM fraction, accounting for 56% of the isolated DOM. Colloidal organic matter was 14C-age dated to be about 100% modern carbon and all of the DOM fractions were 14C-age dated to be between 94 and 95% modern carbon. Average structural models of each DOM fraction were derived that incorporated quantitative elemental and infrared, 13C-NMR, and electrospray/mass spectrometric data. The polar DOM model consisted of open-chain N-acetyl hydroxy carboxylic acids likely derived from N-acetyl heteropolysaccharides that constituted the colloidal organic matter. The less polar DOM fraction models consisted of aliphatic alicyclic ring structures substituted with carboxyl, hydroxyl, ether, ester, and methyl groups. These ring structures had characteristics similar to terpenoid precursors. All DOM fractions in the Great Salt Lake are derived from algae and bacteria that dominate DOM inputs in this lake.

  18. Characterization of dissolved and particulate natural organic matter (NOM) in Neversink Reservoir, New York

    USGS Publications Warehouse

    Wershaw, Robert L.; Leenheer, Jerry A.; Cox, Larry G.

    2005-01-01

    Natural organic matter (NOM) was isolated from the water of the Neversink Reservoir, part of the New York City water supply, located in the Catskill Mountains of New York. The NOM was fractionated into the following nine different fractions by the isolation procedure: (1) coarse particulates, (2) fine-particulate organics, (3) solvent-extractable organics, (4) hydrophobic neutrals (HPON fraction), (5) dissolved colloids, (6) bases, (7) hydrophobic acids (HPOA), (8) transphilic acids + neutrals (TPI-A+N), and (9) hydrophilic acids + neutrals (HPI-A+N). Each of these fractions, with exception of the first and the third which were too small for the complete series of analyses, was characterized by elemental, carbohydrate, and amino acid analyses, and by nuclear magnetic resonance and infrared spectrometry. The data obtained from these analyses indicate (1) that the fine-particulate organics and colloids are mainly composed of peptidoglycans, and lipopolysaccharides derived from algal, bacterial, and fungal cell walls, (2) that the HPO-N fraction most likely consists of a mixture of alicyclic terpenes and carbohydrates, (3) that the HPOA fraction consists mainly of lignin components conjugated to carbohydrates, (4) that the TPI-A+N and the HPI-A+N fractions most likely represent complex mixtures of relatively low molecular weight carboxylic acids derived from terpenes, carbohydrates, and peptides, and (5) that the base fraction is composed of free amino acids, browning reaction products, and peptide fragments.

  19. Coextracted dissolved organic carbon has a suppressive effect on the acetylcholinesterase inhibition assay.

    PubMed

    Neale, Peta A; Escher, Beate I

    2013-07-01

    The acetylcholinesterase (AChE) inhibition assay is frequently applied to detect organophosphates and carbamate pesticides in different water types, including dissolved organic carbon (DOC)-rich wastewater and surface water. The aim of the present study was to quantify the effect of coextracted DOC from different water samples on the commonly used enzyme-based AChE inhibition assay. Approximately 40% to 70% of DOC is typically recovered by solid-phase extraction, and this comprises not only organic micropollutants but also natural organic matter. The inhibition of the water extracts in the assay differed greatly from the expected mixture effects based on chemical analysis of organophosphates and carbamates. Binary mixture experiments with the known AChE inhibitor parathion and the water extracts showed reduced toxicity in comparison with predictions using the mixture models of concentration addition and independent action. In addition, the extracts and reference organic matter had a suppressive effect on a constant concentration of parathion. The present study thus indicated that concentrations of DOC as low as 2 mg carbon/L can impair the AChE inhibition assay and, consequently, that only samples with a final DOC concentration of less than 2 mgC /L are suitable for this assay. To check for potential suppression in environmental samples, standard addition experiments using an AChE-inhibiting reference compound are recommended. PMID:23424099

  20. A novel molecular approach for tracing terrigenous dissolved organic matter into the deep ocean

    NASA Astrophysics Data System (ADS)

    Medeiros, Patricia M.; Seidel, Michael; Niggemann, Jutta; Spencer, Robert G. M.; Hernes, Peter J.; Yager, Patricia L.; Miller, William L.; Dittmar, Thorsten; Hansell, Dennis A.

    2016-05-01

    Marine dissolved organic matter (DOM) contains one of the largest exchangeable organic carbon pools on Earth. Riverine input represents an important source of DOM to the oceans, yet much remains to be learned about the fate of the DOM linking terrestrial to oceanic carbon cycles through rivers at the global scale. Here we use ultrahigh-resolution mass spectrometry to identify 184 molecular formulae that are indicators of riverine inputs (referred to as t-Peaks) and to track their distribution in the deep North Atlantic and North Pacific Oceans. The t-Peaks were found to be enriched in the Amazon River, to be highly correlated with known tracers of terrigenous input, and to be observed in all samples from four different rivers characterized by vastly different landscapes and vegetation coverage spanning equatorial (Amazon and Congo), subtropical (Altamaha), and Arctic (Kolyma) regions. Their distribution reveals that terrigenous organic matter is injected into the deep ocean by the global meridional overturning circulation, indicating that a fraction of the terrigenous DOM introduced by rivers contributes to the DOM pool observed in the deep ocean and to the storage of terrigenous organic carbon. This novel molecular approach can be used to further constrain the transfer of DOM from land to sea, especially considering that Fourier transform ion cyclotron resonance mass spectrometer analysis is becoming increasingly frequent in studies characterizing the molecular composition of DOM in lakes, rivers, and the ocean.

  1. Rangeomorphs, Thectardis (Porifera?) and dissolved organic carbon in the Ediacaran oceans.

    PubMed

    Sperling, E A; Peterson, K J; Laflamme, M

    2011-01-01

    The mid-Ediacaran Mistaken Point biota of Newfoundland represents the first morphologically complex organisms in the fossil record. At the classic Mistaken Point localities the biota is dominated by the enigmatic group of "fractally" branching organisms called rangeomorphs. One of the few exceptions to the rangeomorph body plan is the fossil Thectardis avalonensis, which has been reconstructed as an upright, open cone with its apex in the sediment. No biological affinity has been suggested for this fossil, but here we show that its body plan is consistent with the hydrodynamics of the sponge water-canal system. Further, given the habitat of Thectardis beneath the photic zone, and the apparent absence of an archenteron, movement, or a fractally designed body plan, we suggest that it is a sponge. The recognition of sponges in the Mistaken Point biota provides some of the earliest body fossil evidence for this group, which must have ranged through the Ediacaran based on biomarkers, molecular clocks, and their position on the metazoan tree of life, in spite of their sparse macroscopic fossil record. Should our interpretation be correct, it would imply that the paleoecology of the Mistaken Point biota was dominated by sponges and rangeomorphs, organisms that are either known or hypothesized to feed in large part on dissolved organic carbon (DOC). The biology of these two clades gives insight into the structure of the Ediacaran ocean, and indicates that a non-uniformitarian mechanism delivered labile DOC to the Mistaken Point seafloor. PMID:21044251

  2. Increases in dissolved organic carbon accelerate loss of toxic Al in Adirondack lakes recovering from acidification.

    PubMed

    Lawrence, Gregory B; Dukett, James E; Houck, Nathan; Snyder, Phil; Capone, Sue

    2013-07-01

    Increasing pH and decreasing Al in surface waters recovering from acidification have been accompanied by increasing concentrations of dissolved organic carbon (DOC) and associated organic acids that partially offset pH increases and complicate assessments of recovery from acidification. To better understand the processes of recovery, monthly chemistry from 42 lakes in the Adirondack region, NY, collected from 1994 to 2011, were used to (1) evaluate long-term changes in DOC and associated strongly acidic organic acids and (2) use the base-cation surplus (BCS) as a chemical index to assess the effects of increasing DOC concentrations on the Al chemistry of these lakes. Over the study period, the BCS increased (p < 0.01) and concentrations of toxic inorganic monomeric Al (IMAl) decreased (p < 0.01). The decreases in IMAl were greater than expected from the increases in the BCS. Higher DOC concentrations that increased organic complexation of Al resulted in a decrease in the IMAl fraction of total monomeric Al from 57% in 1994 to 23% in 2011. Increasing DOC concentrations have accelerated recovery in terms of decreasing toxic Al beyond that directly accomplished by reducing atmospheric deposition of strong mineral acids. PMID:23751119

  3. Increases in dissolved organic carbon accelerate loss of toxic Al in Adirondack lakes recovering from acidification

    USGS Publications Warehouse

    Lawrence, Gregory B.; Dukett, James E; Houck, Nathan; Snyder, Phillip; Capone, Susan B.

    2013-01-01

    Increasing pH and decreasing Al in surface waters recovering from acidification have been accompanied by increasing concentrations of dissolved organic carbon (DOC) and associated organic acids that partially offset pH increases and complicate assessments of recovery from acidification. To better understand the processes of recovery, monthly chemistry from 42 lakes in the Adirondack region, NY, collected from 1994 to 2011, were used to (1) evaluate long-term changes in DOC and associated strongly acidic organic acids and (2) use the base-cation surplus (BCS) as a chemical index to assess the effects of increasing DOC concentrations on the Al chemistry of these lakes. Over the study period, the BCS increased (p < 0.01) and concentrations of toxic inorganic monomeric Al (IMAl) decreased (p < 0.01). The decreases in IMAl were greater than expected from the increases in the BCS. Higher DOC concentrations that increased organic complexation of Al resulted in a decrease in the IMAl fraction of total monomeric Al from 57% in 1994 to 23% in 2011. Increasing DOC concentrations have accelerated recovery in terms of decreasing toxic Al beyond that directly accomplished by reducing atmospheric deposition of strong mineral acids.

  4. FOREST SOIL RESPONSE TO ACID AND SALT ADDITIONS OF SULFATE III. SOLUBILIZATION AND COMPOSITION OF DISSOLVED ORGANIC CARBON

    EPA Science Inventory

    A year-long experiment, using reconstructed spodosol and intact alfisol soil columns, was conducted to examine the effects of various simulated throughfall solutions on soil C dynamics. oil organic C solubilization, dissolved organic C fractions, and decomposition rates were stud...

  5. Temporal dynamics of dissolved combined neutral sugars and the quality of dissolved organic matter in the Northwestern Sargasso Sea

    NASA Astrophysics Data System (ADS)

    Goldberg, Stuart J.; Carlson, Craig A.; Hansell, Dennis A.; Nelson, Norm B.; Siegel, David A.

    2009-05-01

    The dynamics of dissolved combined neutral sugars (DCNS) were assessed in the upper 250 m at the Bermuda Atlantic Time-series Study (BATS) site between 2001 and 2004. Our results reveal a regular annual pattern of DCNS accumulation with concentrations increasing at a rate of 0.009-0.012 μmol C L -1 d -1 in the surface 40 m from March to July and reaching maximum mean concentrations of 2.2-3.3 μmol C L -1. Winter convective mixing (between January and March) annually exported surface-accumulated DCNS to the upper mesopelagic zone (100-250 m), as concentrations increased there by 0.3-0.6 μmol C L -1. The exported DCNS was subsequently removed over a period of weeks following restratification of the water column. Vertical and temporal trends in DCNS yield (% of DOC) supported its use as a diagenetic indicator of DOM quality. Higher DCNS yields in surface waters suggested a portion of the DOM accumulated relatively recently compared to the more recalcitrant material of the upper mesopelagic that had comparably lower yields. DCNS yields and mol% neutral sugar content, together, indicated differences in the diagenetic state of the surface-accumulated and deep pools of DOM. Seasonally accumulated, recently produced DOM with higher DCNS yields was characterized by elevated mol% of galactose and mannose+xylose levels. Conversely, more recalcitrant DOM from depths >100 m had lower DCNS yields but higher mol% of glucose. Lower DCNS yields and elevated mol% glucose were also observed in the surface waters during winter convective mixing, indicating an entrainment of a diagenetically altered DOM pool into the upper 100 m. A multivariate statistical analysis confirms the use of DCNS as an index of shifts in DOM quality at this site.

  6. Accumulation of humic-like fluorescent dissolved organic matter in the Japan Sea

    PubMed Central

    Tanaka, Kazuki; Kuma, Kenshi; Hamasaki, Koji; Yamashita, Youhei

    2014-01-01

    Major fraction of marine dissolved organic matter (DOM) is biologically recalcitrant, however, the accumulation mechanism of recalcitrant DOM has not been fully understood. Here, we examine the distributions of humic-like fluorescent DOM, factions of recalcitrant DOM, and the level of apparent oxygen utilization in the Japan Sea. We find linear relationships between these parameters for the deep water (>200 m) of the Japan Sea, suggesting that fluorescent DOM is produced in situ in the Japan Sea. Furthermore, we find that the amount of fluorescent DOM at a given apparent oxygen utilization is greater in the deep water of the Japan Sea than it is in the North Pacific, where the highest level of fluorescent DOM in the open ocean was previously observed. We conclude that the repeated renewal of the deep water contributes to the accumulation of fluorescent DOM in the interior of the Japan Sea. PMID:25028129

  7. Inefficient microbial production of refractory dissolved organic matter in the ocean.

    PubMed

    Osterholz, Helena; Niggemann, Jutta; Giebel, Helge-Ansgar; Simon, Meinhard; Dittmar, Thorsten

    2015-01-01

    Dissolved organic matter (DOM) in the oceans constitutes a major carbon pool involved in global biogeochemical cycles. More than 96% of the marine DOM resists microbial degradation for thousands of years. The composition of this refractory DOM (RDOM) exhibits a molecular signature ubiquitously detected in the deep oceans. Surprisingly efficient microbial transformation of labile into stable forms of DOM has been shown previously, implying that microorganisms apparently produce far more RDOM than needed to sustain the global pool. Here we show, by assessing the microbial formation and transformation of DOM in unprecedented molecular detail for 3 years, that most of the microbial DOM is different from RDOM in the ocean. Only <0.4% of the net community production is channelled into a form of DOM that is undistinguishable from oceanic RDOM. Our study provides a molecular background for global models on the production, turnover and accumulation of marine DOM. PMID:26084883

  8. Phytoplankton pigments and dissolved organic matter distribution in the Gulf of Riga

    NASA Astrophysics Data System (ADS)

    Babichenko, S.; Kaitala, S.; Leeben, A.; Poryvkina, L.; Seppälä, J.

    1999-12-01

    The results of field studies of phytoplankton and dissolved organic matter (DOM) in the Gulf of Riga in August-September 1993, June 1994 and April 1995 are presented. Actively excited fluorescence in UV- and visible spectral regions was used to investigate spatial distributions of DOM, Chl a, carotenoids and phycoerythrin in surface water. The fluorescent data were collected by means of laser remote sensing spectrometer (LIDAR), spectrofluorometers in underway flow-through mode and in the measurements of the water samples. Pronounced variable spatial structures of phytoplankton were observed in spring 1995 and late summer 1993, while in early summer 1994 the pigment distribution was rather homogeneous. The spatial modulation of high-resolution profiles of phytoplankton with the period 3.5-5 km was detected across the gulf in all seasons probably caused by variability of hydrophysical conditions. A negative correlation of DOM concentration in surface waters and salinity was revealed in August-September 1993 and June 1994.

  9. The source and distribution of thermogenic dissolved organic matter in the ocean

    NASA Astrophysics Data System (ADS)

    Dittmar, T.; Suryaputra, I. G. N. A.; Paeng, J.

    2009-04-01

    Thermogenic organic matter (ThOM) is abundant in the environment. ThOM is produced at elevated temperature and pressure in deep sediments and earth's crust, and it is also a residue of fossil fuel and biomass burning ("black carbon"). Because of its refractory character, it accumulates in soils and sediments and, therefore, may sequester carbon from active cycles. It was hypothesized that a significant component of marine dissolved organic matter (DOM) might be thermogenic. Here we present a detailed data set on the distribution of thermogenic DOM in major water masses of the deep and surface ocean. In addition, several potential sources of thermogenic DOM to the ocean were investigated: active seeps of brine fluids in the deep Gulf of Mexico, rivers, estuaries and submarine groundwaters. Studies on deep-sea hydrothermal vents and aerosol deposition are ongoing. All DOM samples were isolated from seawater via solid phase extraction (SPE-DOM). ThOM was quantified in the extracts as benzene-polycarboxylic acids (BPCAs) after nitric acid oxidation via high-performance liquid chromatography and di