Sample records for allogeneic bone marrow-derived

  1. Cocaine-contaminated allogeneic bone marrow transplantation.

    PubMed

    Keung, Y K; Morgan, D; Cobos, E

    2001-01-01

    Should a person with history of drug addiction be categorically denied as a bone marrow donor? The answer to the question is controversial. We report a case of allogeneic bone marrow transplantation for refractory acute myeloid leukemia preceded by essential thrombocythemia. The donor used cocaine and marijuana the night before the bone marrow harvest. Copyright 2001 S. Karger AG, Basel

  2. Development of donor-derived thymic lymphomas after allogeneic bone marrow transplantation in AKR/J mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yasumizu, R.; Hiai, H.; Sugiura, K.

    1988-09-15

    The transplantation of bone marrow cells from BALB/c (but not C57BL/6 and C3H/HeN) mice was observed to lead to the development of thymic lymphomas (leukemias) in AKR/J mice. Two leukemic cell lines, CAK1.3 and CAK4.4, were established from the primary culture of two thymic lymphoma, and surface phenotypes of these cell lines found to be H-2d and Thy-1.2+, indicating that these lymphoma cells are derived from BALB/c donor bone marrow cells. Further analyses of surface markers revealed that CAK1.3 is L3T4+ Lyt2+ IL2R-, whereas CAK4.4 is L3T4- Lyt2- IL2R+. Both CAK1.3 and CAK4.4 were transplantable into BALB/c but not AKR/Jmore » mice, further indicating that these cells are of BALB/c bone marrow donor origin. The cells were found to produce XC+-ecotropic viruses, but xenotropic and mink cell focus-forming viruses were undetectable. Inasmuch as thymic lymphomas are derived from bone marrow cells of leukemia-resistant BALB/c strain of mice under the allogeneic environment of leukemia-prone AKR/J mice, this animal model may serve as a useful tool not only for the analysis of leukemic relapse after bone marrow transplantation but also for elucidation of the mechanism of leukemogenesis.« less

  3. A study of 23 unicameral bone cysts of the calcaneus: open chip allogeneic bone graft versus percutaneous injection of bone powder with autogenous bone marrow.

    PubMed

    Park, Il-Hyung; Micic, Ivan Dragoljub; Jeon, In-Ho

    2008-02-01

    The treatment of unicameral bone cyst varies from percutaneous needle biopsy, aspiration and local injection of steroid, autologous bone marrow, or demineralized bone matrix to curettage and open bone-grafting. The purpose of this study was to compare the results of open chip allogeneic bone graft versus percutaneous injection of demineralized bone powder with autogenous bone marrow in management of calcaneal cysts. Twenty-three calcaneal unicameral cysts in 20 patients were treated. Lyophilized irradiated chip allogeneic bone (CAB) and autogenous bone marrow were used for treatment of 13 cysts in 11 patients, and 10 cysts in 9 patients were treated with percutaneous injection of irradiated allogeneic demineralized bone powder (DBP) and autogenous bone marrow. There were 11 males and 9 female patients with mean age of 17 years. The patients were followed for an average of 49.4 months. Complete healing was achieved in 9 cysts treated with chip allogeneic bone and in 5 cysts treated with powdered bone. Four cysts treated with CAB and 3 cysts treated with DBP healed with a defect. Two cysts treated with powdered bone and autogenous bone marrow were classified as persistent. No infections or pathological fractures were observed during the followup period. Percutaneous injection of a mixture of allogeneic bone powder with autogenous bone marrow is a minimal invasive method and could be an effective alternative in the treatment of unicameral calcaneal bone cysts. The postoperative morbidity was low, the hospital stay was brief, and patient's comfort for unrestricted activity was enhanced.

  4. Mouse bone marrow-derived mesenchymal stem cells inhibit leukemia/lymphoma cell proliferation in vitro and in a mouse model of allogeneic bone marrow transplant

    PubMed Central

    SONG, NINGXIA; GAO, LEI; QIU, HUIYING; HUANG, CHONGMEI; CHENG, HUI; ZHOU, HONG; LV, SHUQING; CHEN, LI; WANG, JIANMIN

    2015-01-01

    The allogeneic hematopoietic stem cell (HSC) transplantation of mesenchymal stem cells (MSCs) contributes to the reconstitution of hematopoiesis by ameliorating acute graft-versus-host disease (aGVHD). However, the role of MSCs in graft-versus-leukemia remains to be determined. In the present study, we co-cultured C57BL/6 mouse bone marrow (BM)-derived MSCs with A20 murine B lymphoma, FBL3 murine erythroleukemia and P388 murine acute lymphocytic leukemia cells. Cell proliferation, apoptosis, cell cycle progression and the amount of cytokine secretion were then measured using a Cell Counting kit-8, Annexin V/propidium iodide staining, flow cytometry and ELISA, respectively. We also established a model of allogeneic bone marrow transplantation (BMT) using BALB/c mice. Following the administration of A20 cells and MSCs, we recorded the symptoms and the survival of the mice for 4 weeks, assessed the T cell subsets present in peripheral blood, and, after the mice were sacrifice, we determined the infiltration of MSCs into the organs by histological staining. Our results revealed that the MSCs inhibited the proliferation of the mouse lymphoma and leukemia cells in vitro, leading to cell cycle arrest and reducing the secretion of interleukin (IL)-10. In our model of allogeneic BMT, the intravenous injection of MSCs into the mice injected wth A20 cells decreased the incidence of lymphoma, improved survival, increased the fraction of CD3+CD8+ T cells, decreased the fraction of CD3+CD4+ T cells and CD4+CD25+ T cells in peripheral blood, and ameliorated the manifestation of aGVHD. The results from the present study indicate that MSCs may be safe and effective when used in allogeneic BMT for the treatment of hemotological malignancies. PMID:25901937

  5. Mouse bone marrow-derived mesenchymal stem cells inhibit leukemia/lymphoma cell proliferation in vitro and in a mouse model of allogeneic bone marrow transplant.

    PubMed

    Song, Ningxia; Gao, Lei; Qiu, Huiying; Huang, Chongmei; Cheng, Hui; Zhou, Hong; Lv, Shuqing; Chen, Li; Wang, Jianmin

    2015-07-01

    The allogeneic hematopoietic stem cell (HSC) transplantation of mesenchymal stem cells (MSCs) contributes to the reconstitution of hematopoiesis by ameliorating acute graft‑versus‑host disease (aGVHD). However, the role of MSCs in graft‑versus‑leukemia remains to be determined. In the present study, we co‑cultured C57BL/6 mouse bone marrow (BM)‑derived MSCs with A20 murine B lymphoma, FBL3 murine erythroleukemia and P388 murine acute lymphocytic leukemia cells. Cell proliferation, apoptosis, cell cycle progression and the amount of cytokine secretion were then measured using a Cell Counting kit‑8, Annexin V/propidium iodide staining, flow cytometry and ELISA, respectively. We also established a model of allogeneic bone marrow transplantation (BMT) using BALB/c mice. Following the administration of A20 cells and MSCs, we recorded the symptoms and the survival of the mice for 4 weeks, assessed the T cell subsets present in peripheral blood, and, after the mice were sacrifice, we determined the infiltration of MSCs into the organs by histological staining. Our results revealed that the MSCs inhibited the proliferation of the mouse lymphoma and leukemia cells in vitro, leading to cell cycle arrest and reducing the secretion of interleukin (IL)‑10. In our model of allogeneic BMT, the intravenous injection of MSCs into the mice injected wth A20 cells decreased the incidence of lymphoma, improved survival, increased the fraction of CD3+CD8+ T cells, decreased the fraction of CD3+CD4+ T cells and CD4+CD25+ T cells in peripheral blood, and ameliorated the manifestation of aGVHD. The results from the present study indicate that MSCs may be safe and effective when used in allogeneic BMT for the treatment of hemotological malignancies.

  6. Isolated extra-medullary relapse of acute leukemia following allogeneic bone marrow transplantation.

    PubMed

    Firas, Al Sabty; Demeckova, E; Bojtarova, E; Czako, B; Hrubisko, M; Mistrik, M

    2008-01-01

    Isolated extramedullary relapse (IEMR) of acute leukemia (AL) after allogeneic bone marrow transplantation (BMT) is a rare occurrence. It is seen more commonly after BMT than after conventional chemotherapy (CHT) alone. We describe the natural history and response to treatment in four patients with IEMR following allogeneic BMT. The results indicate a stronger graft-versus-leukemia (GVL) effect in the marrow than in the peripheral tissues (Fig. 4, Ref. 13). Full Text (Free, PDF) www.bmj.sk.

  7. Bone marrow transplant

    MedlinePlus

    Transplant - bone marrow; Stem cell transplant; Hematopoietic stem cell transplant; Reduced intensity nonmyeloablative transplant; Mini transplant; Allogenic bone marrow transplant; Autologous bone marrow transplant; Umbilical ...

  8. Long-Term Results of Cartilage Repair after Allogeneic Transplantation of Cartilaginous Aggregates Formed from Bone Marrow-Derived Cells for Large Osteochondral Defects in Rabbit Knees.

    PubMed

    Yoshioka, Tomokazu; Mishima, Hajime; Sakai, Shinsuke; Uemura, Toshimasa

    2013-10-01

    The purpose of this study was to evaluate the long-term results of cartilage repair after allogeneic transplantation of cartilaginous aggregates formed from bone marrow-derived cells. Bone marrow cells were harvested from 12-day-old rabbits. The cells were subjected to a monolayer culture, and the spindle-shaped cells attached to the flask surface were defined as bone marrow-derived mesenchymal cells. After the monolayer culture, a 3-dimensional cartilaginous aggregate was formed using a bioreactor with chondrogenesis. We created osteochondral defects, measuring 5 mm in diameter and 4 mm in depth, at the femoral trochlea of 10-week-old rabbits. Two groups were established, the transplanted group in which the cartilaginous aggregate was transplanted into the defect, and the control group in which the defect was left untreated. Twenty-six and 52 weeks after surgery, the rabbits were sacrificed and their tissue repair status was evaluated macroscopically (International Cartilage Repair Society [ICRS] score) and histologically (O'Driscoll score). The ICRS scores were as follows: at week 26, 7.2 ± 0.5 and 7.6 ± 0.8; at week 52, 7.6 ± 1.1 and 9.7 ± 0.7, for the transplanted and control groups, respectively. O'Driscoll scores were as follows: at week 26, 12.6 ± 1.9 and 10.1 ± 1.9; at week 52, 9.6 ± 3.0 and 14.0 ± 1.4, each for transplanted and control groups, respectively. No significant differences were observed between the groups. This study demonstrates that allogeneic transplantation of cartilaginous aggregates formed from bone marrow-derived cells produces comparable long-term results based on macroscopic and histological outcome measures when compared with osteochondral defects that are left untreated.

  9. Bone marrow transplant - discharge

    MedlinePlus

    Transplant - bone marrow - discharge; Stem cell transplant - discharge; Hematopoietic stem cell transplant - discharge; Reduced intensity; Non-myeloablative transplant - discharge; Mini transplant - discharge; Allogenic bone marrow transplant - discharge; ...

  10. Rapid and automated processing of bone marrow grafts without Ficoll density gradient for transplantation of cryopreserved autologous or ABO-incompatible allogeneic bone marrow.

    PubMed

    Schanz, U; Gmür, J

    1992-12-01

    The growing number of BMTs has increased interest in safe and standardized in vitro bone marrow processing techniques. We describe our experience with a rapid automated method for the isolation of mononuclear cells (MNC) from large volumes of bone marrow using a Fenwal CS-3000 cell separator without employing density gradient materials. Forty bone marrow harvests with a mean volume of 1650 +/- 307 ml were processed. A mean of 75 +/- 34% (50 percentile range 54-94%) of the original MNCs were recovered in a volume of 200 ml with only 4 +/- 2% of the starting red blood cells (RBC). Removal of granulocytes, immature myeloid precursors and platelets proved to be sufficient to permit safe cryopreservation and successful autologous BMT (n = 25). Allogeneic BMT (n = 14, including three major ABO-incompatible) could be performed without additional manipulation. In both groups of patients timely and stable engraftment comparable to historical controls receiving Ficoll gradient processed autologous (n = 17) or unprocessed allogeneic BMT (n = 54) was observed. Moreover, 70 +/- 14% of the RBC could be recovered from the grafts. They were used for autologous RBC support of donors, rendering unnecessary autologous blood pre-donations.

  11. Comparison of allogeneic platelet lysate and fetal bovine serum for in vitro expansion of equine bone marrow-derived mesenchymal stem cells.

    PubMed

    Seo, Jong-pil; Tsuzuki, Nao; Haneda, Shingo; Yamada, Kazutaka; Furuoka, Hidefumi; Tabata, Yasuhiko; Sasaki, Naoki

    2013-10-01

    Mesenchymal stem cells (MSCs) are promising candidates for cell-based therapy and tissue engineering approaches. Fetal bovine serum (FBS) is commonly used for in vitro MSC expansion; however, the use of FBS may be associated with ethical, scientific, and safety issues. This study aimed to compare the ability of allogeneic platelet lysate (PL) and FBS to cause equine bone marrow-derived MSC expansion. MSCs were isolated from bone marrow aspirate in media supplemented with either PL or FBS, and cell proliferation properties and characteristics were examined. There were no significant differences in MSC yield, colony-forming unit-fibroblast (CFU-F) assay, and population doubling time between PL and FBS cultures. In addition, both PL-MSCs and FBS-MSCs showed similar results in term of ALP staining, osteogenic differentiation, and RT-PCR, although there were subtle differences in morphology, growth pattern, and adhesive properties. These results suggest that PL is a suitable alternative to FBS for use in equine MSC expansion, without the problems related to FBS use. Published by Elsevier India Pvt Ltd.

  12. Successful liver allografts in mice by combination with allogeneic bone marrow transplantation.

    PubMed Central

    Nakamura, T; Good, R A; Yasumizu, R; Inoue, S; Oo, M M; Hamashima, Y; Ikehara, S

    1986-01-01

    Successful liver allografts were established by combination with allogeneic bone marrow transplantation. When liver tissue of BALB/c (H-2d) or C57BL/6J (H-2b) mice was minced and grafted under the kidney capsules of C3H/HeN (H-2k) mice, it was rejected. However, when C3H/HeN mice were irradiated and reconstituted with T-cell-depleted BALB/c or BALB/c nu/nu bone marrow cells, or with fetal liver cells of BALB/c mice, they accepted both donor (stem-cell)-type (BALB/c) and host (thymus)-type (C3H/HeN) liver tissue. Assays for both mixed-lymphocyte reaction and induction of cytotoxic T lymphocytes revealed that the newly developed T cells were tolerant of both donor (stem-cell)-type and host (thymus)-type major histocompatibility complex determinants. We propose that liver allografts combined with bone marrow transplantation should be considered as a viable therapy for patients with liver disease such as liver cirrhosis and hepatoma. Images PMID:3520575

  13. Allogeneic Transplantation: Peripheral Blood versus Bone Marrow

    PubMed Central

    Bensinger, William I.

    2013-01-01

    Purpose of Review Peripheral Blood Stem Cells (PBSC) have been widely adopted as a source of stem cells for allogeneic transplantation although controversy remains regarding their role compared to the use of bone marrow (BM). Recent Findings Ten year follow-up has been reported from several large randomized trials and a recently completed trial using unrelated donor stem cells have been reported. In addition, two meta-analyses have been reported from the findings of a number of randomized studies. Several studies indicate that PBSC confer survival advantages over BM with matched sibling donors for most disease categories except where the risks of disease recurrence within the first year are low, but with the extra risk of more chronic GVHD. Using PBSC from unrelated donors does not appear to be more beneficial than BM, but with early follow-up. New strategies for rapid mobilization of PBSC from normal donors using plerixafor have been reported. Early studies suggest that filgrastim stimulated BM may confer some of the advantages of PBSC without the risks of chronic GVHD. Summary PBSC are a preferred source of stem cells for many types of allogeneic transplant where matched related donors are available. Whether the same benefits accrue from unrelated donors will require further follow-up. PMID:22185938

  14. The Application of Bone Marrow Transplantation to the Treatment of Genetic Diseases

    NASA Astrophysics Data System (ADS)

    Parkman, Robertson

    1986-06-01

    Genetic diseases can be treated by transplantation of either normal allogeneic bone marrow or, potentially, autologous bone marrow into which the normal gene has been inserted in vitro (gene therapy). Histocompatible allogeneic bone marrow transplantation is used for the treatment of genetic diseases whose clinical expression is restricted to lymphoid or hematopoietic cells. The therapeutic role of bone marrow transplantation in the treatment of generalized genetic diseases, especially those affecting the central nervous system, is under investigation. The response of a generalized genetic disease to allogeneic bone marrow transplantation may be predicted by experiments in vitro. Gene therapy can be used only when the gene responsible for the disease has been characterized. Success of gene therapy for a specific genetic disease may be predicted by its clinical response to allogeneic bone marrow transplantation.

  15. The role of bone marrow-derived cells during the bone healing process in the GFP mouse bone marrow transplantation model.

    PubMed

    Tsujigiwa, Hidetsugu; Hirata, Yasuhisa; Katase, Naoki; Buery, Rosario Rivera; Tamamura, Ryo; Ito, Satoshi; Takagi, Shin; Iida, Seiji; Nagatsuka, Hitoshi

    2013-03-01

    Bone healing is a complex and multistep process in which the origin of the cells participating in bone repair is still unknown. The involvement of bone marrow-derived cells in tissue repair has been the subject of recent studies. In the present study, bone marrow-derived cells in bone healing were traced using the GFP bone marrow transplantation model. Bone marrow cells from C57BL/6-Tg (CAG-EGFP) were transplanted into C57BL/6 J wild mice. After transplantation, bone injury was created using a 1.0-mm drill. Bone healing was histologically assessed at 3, 7, 14, and 28 postoperative days. Immunohistochemistry for GFP; double-fluorescent immunohistochemistry for GFP-F4/80, GFP-CD34, and GFP-osteocalcin; and double-staining for GFP and tartrate-resistant acid phosphatase were performed. Bone marrow transplantation successfully replaced the hematopoietic cells into GFP-positive donor cells. Immunohistochemical analyses revealed that osteoblasts or osteocytes in the repair stage were GFP-negative, whereas osteoclasts in the repair and remodeling stages and hematopoietic cells were GFP-positive. The results indicated that bone marrow-derived cells might not differentiate into osteoblasts. The role of bone marrow-derived cells might be limited to adjustment of the microenvironment by differentiating into inflammatory cells, osteoclasts, or endothelial cells in immature blood vessels.

  16. Adult bone marrow-derived stem cells for organ regeneration and repair.

    PubMed

    Tögel, Florian; Westenfelder, Christof

    2007-12-01

    Stem cells have been recognized as a potential tool for the development of innovative therapeutic strategies. There are in general two types of stem cells, embryonic and adult stem cells. While embryonic stem cell therapy has been riddled with problems of allogeneic rejection and ethical concerns, adult stem cells have long been used in the treatment of hematological malignancies. With the recognition of additional, potentially therapeutic characteristics, bone marrow-derived stem cells have become a tool in regenerative medicine. The bone marrow is an ideal source of stem cells because it is easily accessible and harbors two types of stem cells. Hematopoietic stem cells give rise to all blood cell types and have been shown to exhibit plasticity, while multipotent marrow stromal cells are the source of osteocytes, chondrocytes, and fat cells and have been shown to support and generate a large number of different cell types. This review describes the general characteristics of these stem cell populations and their current and potential future applications in regenerative medicine. 2007 Wiley-Liss, Inc

  17. High-dose etoposide (VP-16)-containing preparatory regimens in allogeneic and autologous bone marrow transplantation for hematologic malignancies.

    PubMed

    Blume, K G; Forman, S J

    1992-12-01

    High-dose etoposide has been added to total body irradiation, cyclophosphamide, carmustine, or busulfan in preparatory regimens for allogeneic or autologous bone marrow transplantation for patients with leukemia, Hodgkin's disease, lymphoma, or multiple myeloma. The treatment results are encouraging, indicating that etoposide may be a valuable addition to the previously established regimens. Etoposide should be incorporated into collaborative, prospective trials to define its ultimate role in bone marrow transplantation.

  18. Mixed donor chimerism in non-malignant haematological diseases after allogeneic bone marrow transplantation.

    PubMed

    Shamshad, Ghassan Umair; Ahmed, Suhaib; Bhatti, Farhat Abbas; Ali, Nadir

    2012-12-01

    To determine the frequency of mixed donor chimerism in patients of non-malignant haematological diseases after allogeneic bone marrow transplant. A cross-sectional, observational study. Department of Haematology, Armed Forces Institute of Pathology (AFIP), Rawalpindi, from July 2010 to June 2011. Donor chimerism was assessed in patients of aplastic anaemia and beta-thalassaemia major who underwent allogeneic bone marrow transplantation (BMT). Peripheral blood samples were used to assess chimerism status by analysis of short tandem repeats (STR). In patients where pre-transplant blood sample was not available, swab of buccal mucosa was used for pre-transplant STR profile. A standard set of primers for STR markers were used and the amplified DNA was resolved by gel electrophoresis and stained with silver nitrate. The percentage of donor origin DNA was estimated by densitometer. Out of 84 patients, 52 (62%) were males, while 32 (38%) were females. In patients of beta-thalassaemia major, 31 (62%) developed mixed donor chimerism (MC), 13 (26%) developed complete donor chimerism (CC) and 6 (12%) had graft failure. In aplastic anaemia, 17 patients (50%) achieved MC, 13 (38.2%) had CC and 4 (11.8%) developed graft failure. The combined frequency of mixed donor chimerism for both the diseases was 58.3%. D3S1358 was the most informative STR marker in these patients. Majority of the studied patients developed mixed donor chimerism following bone marrow transplantation, whereas only a minor percentage of the patients had graft failure. Analysis of D3S1358 was the most informative in assessing donor chimerism in patients who underwent BMT.

  19. Anti-bacterial immunity to Listeria monocytogenes in allogeneic bone marrow chimera in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onoe, K.; Good, R.A.; Yamamoto, K.

    1986-06-01

    Protection and delayed-type hypersensitivity (DTH) to the facultative intracellular bacterium Listeria monocytogenes (L.m.) were studied in allogeneic and syngeneic bone marrow chimeras. Lethally irradiated AKR (H-2k) mice were successfully reconstituted with marrow cells from C57BL/10 (B10) (H-2b), B10 H-2-recombinant strains or syngeneic mice. Irradiated AKR mice reconstituted with marrow cells from H-2-compatible B10.BR mice, (BR----AKR), as well as syngeneic marrow cells, (AKR----AKR), showed a normal level of responsiveness to the challenge stimulation with the listeria antigens when DTH was evaluated by footpad reactions. These mice also showed vigorous activities in acquired resistance to the L.m. By contrast, chimeric mice thatmore » had total or partial histoincompatibility at the H-2 determinants between donor and recipient, (B10----AKR), (B10.AQR----AKR), (B10.A(4R)----AKR), or (B10.A(5R)----AKR), were almost completely unresponsive in DTH and antibacterial immunity. However, when (B10----AKR) H-2-incompatible chimeras had been immunized with killed L.m. before challenge with live L.m., these mice manifested considerable DTH and resistance to L.m. These observations suggest that compatibility at the entire MHC between donor and recipient is required for bone marrow chimeras to be able to manifest DTH and protection against L.m. after a short-term immunization schedule. However, this requirement is overcome by a preceding or more prolonged period of immunization with L.m. antigens. These antigens, together with marrow-derived antigen-presenting cells, can then stimulate and expand cell populations that are restricted to the MHC (H-2) products of the donor type.« less

  20. Sinusitis in patients undergoing allogeneic bone marrow transplantation - a review.

    PubMed

    Drozd-Sokolowska, Joanna Ewa; Sokolowski, Jacek; Wiktor-Jedrzejczak, Wieslaw; Niemczyk, Kazimierz

    Sinusitis is a common morbidity in general population, however little is known about its occurrence in severely immunocompromised patients undergoing allogeneic hematopoietic stem cell transplantation. The aim of the study was to analyze the literature concerning sinusitis in patients undergoing allogeneic bone marrow transplantation. An electronic database search was performed with the objective of identifying all original trials examining sinusitis in allogeneic hematopoietic stem cell transplant recipients. The search was limited to English-language publications. Twenty five studies, published between 1985 and 2015 were identified, none of them being a randomized clinical trial. They reported on 31-955 patients, discussing different issues i.e. value of pretransplant sinonasal evaluation and its impact on post-transplant morbidity and mortality, treatment, risk factors analysis. Results from analyzed studies yielded inconsistent results. Nevertheless, some recommendations for good practice could be made. First, it seems advisable to screen all patients undergoing allogeneic hematopoietic stem cell transplantation with Computed Tomography (CT) prior to procedure. Second, patients with symptoms of sinusitis should be treated before hematopoietic stem cell transplantation (HSCT), preferably with conservative medical approach. Third, patients who have undergone hematopoietic stem cell transplantation should be monitored closely for sinusitis, especially in the early period after transplantation. Copyright © 2016 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  1. Bone marrow-derived cells contribute to regeneration of injured prostate epithelium and stroma.

    PubMed

    Nakata, Wataru; Nakai, Yasutomo; Yoshida, Takahiro; Sato, Mototaka; Hatano, Koji; Nagahara, Akira; Fujita, Kazutoshi; Uemura, Motohide; Nonomura, Norio

    2015-06-01

    Recent studies have reported that bone marrow-derived cells (BMDCs), which are recruited to sites of tissue injury and inflammation, can differentiate into epithelial cells, such as liver, lung, gastrointestinal tract, and skin cells. We investigated the role of BMDCs in contributing to regeneration of injured prostate epithelium. Using chimera rats that received allogenic bone marrow grafts from green fluorescent protein (GFP) transgenic rats after lethal whole-body irradiation, we investigated the existence of epithelial marker-positive BMDCs in injured prostate tissue caused by transurethral injection of lipopolysaccharide. Prostate tissues were harvested 2 weeks after transurethral lipopolysaccharide injection. Immunofluorescence staining showed that some cells in the stroma co-expressed GFP and pan-cytokeratin, which suggested the existence of epithelial marker-positive BMDCs. To confirm the existence of such cells, we collected bone marrow-derived non-hematopoietic cells (GFP+/CD45- cells) from the prostate by fluorescence-activated cell sorter analysis and analyzed the characteristics of the GFP+/CD45- cells. The number of cells in this population significantly increased from 0.042% to 0.492% compared with normal prostate tissue. We found by immunofluorescent analysis and RT-PCR that GFP+/CD45- cells expressed cytokeratin, which suggested that these cells have some features of epithelial cells. In the prostate obtained from the chimera rats 34 weeks after lipopolysaccharide injection, GFP- and cytokeratin-positive cells were observed in the prostate gland, which suggested that some of the cells in the prostate gland regenerated after prostate inflammation derived from bone marrow. BMDCs might be able to differentiate into prostate epithelial cells after prostatic injury. © 2015 Wiley Periodicals, Inc.

  2. Long-term survival of donor bone marrow multipotent mesenchymal stromal cells implanted into the periosteum of patients with allogeneic graft failure.

    PubMed

    Kuzmina, L A; Petinati, N A; Sats, N V; Drize, N J; Risinskaya, N V; Sudarikov, A B; Vasilieva, V A; Drokov, M Y; Michalzova, E D; Parovichnikova, E N; Savchenko, V G

    2016-09-01

    The present study involved three patients with graft failure following allogeneic hematopoietic stem cell transplantation (allo-HSCT). We obtained multipotent mesenchymal stromal cells (MSCs) from the original hematopoietic cell donors and implanted these cells in the periosteum to treat long-term bone marrow aplasia. The results showed that in all patients endogenous blood formation was recovered 2 weeks after MSC administration. Donor MSCs were found in recipient bone marrow three and 5 months following MSC implantation. Thus, our findings indicate that functional donor MSCs can persist in patient bone marrow.

  3. Bone marrow transplant – children - discharge

    MedlinePlus

    Transplant - bone marrow - children - discharge; Stem cell transplant - children - discharge; Hematopoietic stem cell transplant -children - discharge; Reduced intensity, non-myeloablative transplant - children - discharge; Mini transplant - children - discharge; Allogenic bone ...

  4. Epithelial architectural destruction is necessary for bone marrow derived cell contribution to regenerating prostate epithelium.

    PubMed

    Palapattu, Ganesh S; Meeker, Alan; Harris, Timothy; Collector, Michael I; Sharkis, Saul J; DeMarzo, Angelo M; Warlick, Christopher; Drake, Charles G; Nelson, William G

    2006-08-01

    Using various nonphysiological tissue injury/repair models numerous studies have demonstrated the capacity of bone marrow derived cells to contribute to the repopulation of epithelial tissues following damage. To investigate whether this phenomenon might also occur during periods of physiological tissue degeneration/regeneration we compared the ability of bone marrow derived cells to rejuvenate the prostate gland in mice that were castrated and then later treated with dihydrotestosterone vs mice with prostate epithelium that had been damaged by lytic virus infection. Using allogenic bone marrow grafts from female donor transgenic mice expressing green fluorescent protein transplanted into lethally irradiated males we were able to assess the contributions of bone marrow derived cells to recovery of the prostatic epithelium in 2 distinct systems, including 1) surgical castration followed 1 week later by dihydrotestosterone replacement and 2) intraprostatic viral injection. Eight to 10-week-old male C57/Bl6 mice were distributed among bone marrow donor-->recipient/prostate injury groups, including 5 with C57/Bl6-->C57/Bl6/no injury, 3 with green fluorescent protein-->C57/Bl6/no injury, 3 with green fluorescent protein-->C57/Bl6/vehicle injection, 4 with green fluorescent protein-->C57/Bl6/virus injection and 3 each with green fluorescent protein-->C57/Bl6/castration without and with dihydrotestosterone, respectively. Prostate tissues were harvested 3 weeks after dihydrotestosterone replacement or 14 days following intraprostatic viral injection. Prostate tissue immunofluorescence was performed with antibodies against the epithelial marker cytokeratin 5/8, the hematopoietic marker CD45 and green fluorescent protein. Mice that sustained prostate injury from vaccinia virus infection with concomitant severe inflammation and glandular disruption showed evidence of bone marrow derived cell reconstitution of prostate epithelium, that is approximately 4% of all green

  5. Eosinophilic folliculitis: an important differential diagnosis after allogeneic bone-marrow transplant.

    PubMed

    Fraser, S J; Benton, E C; Roddie, P H; Krajewski, A S; Goodlad, J R

    2009-04-01

    Eosinophilic folliculitis (EF) is a descriptive histopathological term applied to a heterogeneous group of disorders. In EF, the characteristic histopathological features are eosinophilic spongiosis and pustulosis involving the infundibular region of the hair follicle. EF may be seen in association with bacterial and fungal infection, drug reactions and haematological disorders. However, in those conditions, the histopathological changes are rarely restricted to the infundibula but in most cases include a moderate to dense perifollicular or even diffuse dermal infiltrate of lymphocytes, or eosinophilic or neutrophilic granulocytes. We present two cases of EF after mini-allogeneic bone-marrow transplantation (BMT) in order to highlight this rare and perhaps under-recognized clinical association.

  6. Differential growth of allogeneic bone marrow and leukemia cells in irradiated guinea pigs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhan, A,K.; Kumar, V.; Bennett, M.

    1979-11-01

    Growth of normal bone marrow and L/sub 2/C leukemia cell grafts was studied in lethally irradiated strain 2 and strain 13 guinea pigs. Allogeneic bone marrow cells proliferated as well as syngeneic cells in both strain 2 and 13 animals. This observation indicates that Ia disparities are not relevant to marrow graft rejection in the guinea pig. Both Ia positive and Ia negative L/sub 2/C leukemia cells of strain 2 origin grew well in the spleen of irradiated strain 2 animals. However, irradiated strain 13 animals showed resistance to the growth of both leukemia cell lines. F/sub 1/ hybrids (2more » x 13) also showed resistance to the growth of the leukemia cells. These observations suggest the existence of an effector system capable of mediating natural resistance to L/sub 2/C cells in unimmunized strain 13 and F/sub 1/ guinea pigs. The nature of antigens recognized by these radiation resistant effector cells are not entirely clear. However, Ia antigens, or tumor-associated antigens dependent upon Ia antigens for immunogenicity, do not seem to be the primary targets in this phenomenon.« less

  7. Tolerance to MHC class II disparate allografts through genetic modification of bone marrow

    PubMed Central

    Jindra, Peter T.; Tripathi, Sudipta; Tian, Chaorui; Iacomini, John; Bagley, Jessamyn

    2012-01-01

    Induction of molecular chimerism through genetic modification of bone marrow is a powerful tool for the induction of tolerance. Here we demonstrate for the first time that expression of an allogeneic MHC class II gene in autologous bone marrow cells, resulting in a state of molecular chimerism, induces tolerance to MHC class II mismatched skin grafts, a stringent test of transplant tolerance. Reconstitution of recipients with syngeneic bone marrow transduced with retrovirus encoding H-2I-Ab (I-Ab) resulted the long-term expression of the retroviral gene product on the surface of MHC class II-expressing bone marrow derived cell types. Mechanistically, tolerance was maintained by the presence of regulatory T cells, which prevented proliferation and cytokine production by alloreactive host T cells. Thus, the introduction of MHC class II genes into bone marrow derived cells through genetic engineering results in tolerance. These results have the potential to extend the clinical applicability of molecular chimerism for tolerance induction. PMID:22833118

  8. Developing an algorithm of informative markers for evaluation of chimerism after allogeneic bone marrow transplantation.

    PubMed

    Sellathamby, S; Balasubramanian, P; Sivalingam, S; Shaji, R V; Mathews, V; George, B; Viswabandya, A; Srivastava, A; Chandy, M

    2006-04-01

    Analysis of chimerism by polymerase chain reaction amplification of STR or VNTR has become a routine procedure for the evaluation of engraftment after allogeneic stem cell transplantation. Knowledge of the frequency of different STR or VNTR alleles in unrelated individuals in a population is useful for forensic work. In the context of HLA identical sibling bone marrow transplantation the informativeness of these markers needs to be evaluated. We evaluated five STRs (THO1, VWA, FES, ACTBP2, and F13A1) and 1 VNTR (APOB) for informativeness in stem cell transplants from HLA identical sibling donors. All four markers used individually allowed us to discriminate 20-56% of the patient donor pairs. Using a combination of all these markers along with a polymorphic marker in the beta-globin gene and the sex chromosome specific amelogenin marker, we were able to discriminate 99% of the patient donor pairs. We have established an algorithm for evaluating chimerism following HLA identical sibling donor transplants in the Indian population using molecular markers in 310 patients. Analysis of heterozygote frequencies in different populations is similar suggesting that this algorithm can be used universally for transplant centers to evaluate chimerism following allogeneic bone marrow transplantation.

  9. Allogenic fetal liver cells have a distinct competitive engraftment advantage over adult bone marrow cells when infused into fetal as compared with adult severe combined immunodeficient recipients.

    PubMed

    Taylor, Patricia A; McElmurry, Ronald T; Lees, Christopher J; Harrison, David E; Blazar, Bruce R

    2002-03-01

    In utero transplantation (IUT) is becoming a viable option for the treatment of various immune and metabolic disorders diagnosed early in gestation. In this study, donor fetal liver cells had a 10-fold competitive engraftment advantage relative to adult bone marrow in allogeneic fetal severe combined immunodeficient (SCID) recipients compared with adult recipients. In contrast, adult bone marrow cells engrafted slightly better than fetal liver cells in allogeneic adult SCID transplant recipients. By using different ratios of fetal and adult cell mixtures, fetal liver cells repopulated 8.2 times better than adult bone marrow cells in fetal recipients, but only 0.8 times as well in adult recipients. Fetal SCID recipients were more permissive to an allogeneic donor graft than adult recipients. These data indicate that the recipient microenvironment may regulate the engraftment efficiency of a given stem cell source and suggest that the use of cord blood should be tested in clinical IUT.

  10. Efficient natural defense mechanisms against Listeria monocytogenes in T and B cell-deficient allogeneic bone marrow radiation chimeras. Preactivated macrophages are the main effector cells in an early phase after bone marrow transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roesler, J.; Groettrup, E.B.; Baccarini, M.

    1989-09-01

    Radiation chimeras in the early phase after bone marrow transplantation are a good model to study the efficiency of the body's nonspecific defense system represented by macrophages (M phi), polymorphonuclear cells (PMN), and NK cells. These cell types are present in large numbers in spleen and liver at that time, whereas the specific immune system represented by T and B cells is functionally deficient. We previously reported enhanced activities in vitro of M phi (and PMN) from recipient animals in an early phase after allogeneic bone marrow transfer. We here demonstrate that these activities result in enhanced spontaneous resistance againstmore » Listeria monocytogenes in vivo: CFU of L. monocytogenes in spleen and liver 48 h after infection were about 1 or 2 to 4 log steps less than in untreated control mice of donor or host haplotype. This enhanced resistance decreased over the 4-mo period after marrow transfer. Preactivated M phi were identified as the most important effector cells. Isolated from spleen and peritoneal cavity, they performed enhanced killing of phagocytosed Listeria. Such preactivated M phi occurred in recipient animals after transfer of allogeneic but not of syngeneic bone marrow. The precise mechanism of M phi activation in the allogeneic radiation chimera in the complete absence of any detectable T cell function is not clear at present. However, these preactivated M phi display an important protective effect against L. monocytogenes: chimeras could eliminate Listeria without acquisition of positive delayed-type sensitivity when infected with 10(3) bacteria. An inoculum of 5 . 10(3) L. monocytogenes resulted either in prolonged survival compared with normal mice of the recipient haplotype or in definitive survival accompanied by a positive delayed-type sensitivity.« less

  11. Identification of resident and inflammatory bone marrow derived cells in the sclera by bone marrow and haematopoietic stem cell transplantation

    PubMed Central

    Hisatomi, Toshio; Sonoda, Koh‐hei; Ishikawa, Fumihiko; Qiao, Hong; Nakamura, Takahiro; Fukata, Mitsuhiro; Nakazawa, Toru; Noda, Kousuke; Miyahara, Shinsuke; Harada, Mine; Kinoshita, Shigeru; Hafezi‐Moghadam, Ali; Ishibashi, Tatsuro; Miller, Joan W

    2007-01-01

    Aims To characterise bone marrow derived cells in the sclera under normal and inflammatory conditions, we examined their differentiation after transplantation from two different sources, bone marrow and haematopoietic stem cells (HSC). Methods Bone marrow and HSC from green fluorescent protein (GFP) transgenic mice were transplanted into irradiated wild‐type mice. At 1 month after transplantation, mice were sacrificed and their sclera examined by histology, immunohistochemistry (CD11b, CD11c, CD45), and transmission and scanning electron microscopy. To investigate bone marrow derived cell recruitment under inflammatory conditions, experimental autoimmune uveitis (EAU) was induced in transplanted mice. Results GFP positive cells were distributed in the entire sclera and comprised 22.4 (2.8)% (bone marrow) and 28.4 (10.9)% (HSC) of the total cells in the limbal zone and 18.1 (6.7)% (bone marrow) and 26.3 (3.4)% (HSC) in the peripapillary zone. Immunohistochemistry showed that GFP (+) CD11c (+), GFP (+) CD11b (+) cells migrated in the sclera after bone marrow and HSC transplantation. Transmission and scanning electron microscopy revealed antigen presenting cells among the scleral fibroblasts. In EAU mice, vast infiltration of GFP (+) cells developed into the sclera. Conclusion We have provided direct and novel evidence for the migration of bone marrow and HSC cells into the sclera differentiating into macrophages and dendritic cells. Vast infiltration of bone marrow and HSC cells was found to be part of the inflammatory process in EAU. PMID:17035278

  12. BKV infection and hemorrhagic cystitis after allogeneic bone marrow transplant.

    PubMed

    Fioriti, D; Degener, A M; Mischitelli, M; Videtta, M; Arancio, A; Sica, S; Sora, F; Pietropaolo, V

    2005-01-01

    Hemorrhagic cystitis (HC) is a well-known complication after allogeneic bone marrow transplant (BMT) and can be related to adenovirus or human polyomavirus BK (BKV) infections. In this study a group of 20 patients after allogeneic BMT has been examined. BMT urine samples were analysed for the presence of Adenovirus and BKV DNAby means of polymerase chain reaction (PCR). 5/20 BMT patients developed HC after BMT. The presence of BKV DNA in urine samples was evident in 3/15 patients without HC and in 5/5 patients with HC. In 2/5 HC-patients the BKV DNA was not found after therapy with Cidofovir and Ribavirin. The search for adenovirus DNA in all samples was negative. The analysis of BKV non-coding control region (NCCR) isolated from urine samples revealed a structure very similar to the archetype in all samples. The RFLP (Restriction Fragment Length Polymorphism assay) showed the presence of BKV subtypes I and IV, with the prevalence of subtype I (4/5). This study supports the hypothesis that HC is mainly related to BKV rather than to adenovirus infection in BMT patients. Moreover, since BKV subtype I was predominant, it is reasonable to hypothesize that a specific BKV subtype could be associated with the development of HC.

  13. Intravenous transplantation of allogeneic bone marrow mesenchymal stem cells and its directional migration to the necrotic femoral head.

    PubMed

    Li, Zhang-hua; Liao, Wen; Cui, Xi-long; Zhao, Qiang; Liu, Ming; Chen, You-hao; Liu, Tian-shu; Liu, Nong-le; Wang, Fang; Yi, Yang; Shao, Ning-sheng

    2011-01-09

    In this study, we investigated the feasibility and safety of intravenous transplantation of allogeneic bone marrow mesenchymal stem cells (MSCs) for femoral head repair, and observed the migration and distribution of MSCs in hosts. MSCs were labeled with green fluorescent protein (GFP) in vitro and injected into nude mice via vena caudalis, and the distribution of MSCs was dynamically monitored at 0, 6, 24, 48, 72 and 96 h after transplantation. Two weeks after the establishment of a rabbit model of femoral head necrosis, GFP labeled MSCs were injected into these rabbits via ear vein, immunological rejection and graft versus host disease were observed and necrotic and normal femoral heads, bone marrows, lungs, and livers were harvested at 2, 4 and 6 w after transplantation. The sections of these tissues were observed under fluorescent microscope. More than 70 % MSCs were successfully labeled with GFP at 72 h after labeling. MSCs were uniformly distributed in multiple organs and tissues including brain, lungs, heart, kidneys, intestine and bilateral hip joints of nude mice. In rabbits, at 6 w after intravenous transplantation, GFP labeled MSCs were noted in the lungs, liver, bone marrow and normal and necrotic femoral heads of rabbits, and the number of MSCs in bone marrow was higher than that in the, femoral head, liver and lungs. Furthermore, the number of MSCs peaked at 6 w after transplantation. Moreover, no immunological rejection and graft versus host disease were found after transplantation in rabbits. Our results revealed intravenously implanted MSCs could migrate into the femoral head of hosts, and especially migrate directionally and survive in the necrotic femoral heads. Thus, it is feasible and safe to treat femoral head necrosis by intravenous transplantation of allogeneic MSCs.

  14. Busulfan-conditioned bone marrow transplantation results in high-level allogeneic chimerism in mice made tolerant by in utero hematopoietic cell transplantation.

    PubMed

    Ashizuka, Shuichi; Peranteau, William H; Hayashi, Satoshi; Flake, Alan W

    2006-03-01

    In utero hematopoietic cell transplantation (IUHCT) is a non-ablative approach that achieves mixed allogeneic chimerism and donor-specific tolerance. However, clinical application of IUHCT has been limited by minimal engraftment. We have previously demonstrated in the murine model that low-level allogeneic chimerism achieved by IUHCT can be enhanced to near-complete donor chimerism by postnatal minimally myeloablative total body irradiation (TBI) followed by same-donor bone marrow transplantation. Because of concerns of toxicity related to even low-dose TBI in early life, we wondered if a potentially less toxic strategy utilizing a single myelosuppressive agent, Busulfan (BU), would provide similar enhancement of engraftment. In this study, mixed chimerism was created by IUHCT in a fully allogeneic strain combination. After birth, chimeric mice were conditioned with BU followed by transplantation of bone marrow cells congenic to the prenatal donor. We demonstrate that: 1) low-level chimerism after IUHCT can be converted to high-level chimerism by this protocol; 2) enhancement of chimerism is BU dose-dependent; and 3) BU reduces the proliferative potential of hematopoietic progenitor cells thus conferring a competitive advantage to the non-BU-treated postnatal donor cells. This study confirms the potential of IUHCT for facilitation of minimally toxic postnatal regimens to achieve therapeutic levels of allogeneic engraftment.

  15. Local delivery of allogeneic bone marrow and adipose tissue-derived mesenchymal stromal cells for cutaneous wound healing in a porcine model.

    PubMed

    Hanson, Summer E; Kleinbeck, Kyle R; Cantu, David; Kim, Jaeyhup; Bentz, Michael L; Faucher, Lee D; Kao, W John; Hematti, Peiman

    2016-02-01

    Wound healing remains a major challenge in modern medicine. Bone marrow- (BM) and adipose tissue- (AT) derived mesenchymal stromal/stem cells (MSCs) are of great interest for tissue reconstruction due to their unique immunological properties and regenerative potential. The purpose of this study was to characterize BM and AT-MSCs and evaluate their effect when administered in a porcine wound model. MSCs were derived from male Göttingen Minipigs and characterized according to established criteria. Allogeneic BM- or AT-MSCs were administered intradermally (1 x 10(6) cells) into partial-thickness wounds created on female animals, and covered with Vaseline® gauze or fibrin in a randomized pattern. Animals were euthanized at 7, 10, 14 and 21 days. Tissues were analyzed visually for healing and by microscopic examination for epidermal development and remodelling. Polymerase chain reaction (PCR) was used to detect the presence of male DNA in the specimens. All wounds were healed by 14 days. MSC-injected wounds were associated with improved appearance and faster re-epithelialization compared to saline controls. Evaluation of rete ridge depth and architecture showed that MSC treatment promoted a faster rate of epidermal maturation. Male DNA was detected in all samples at days 7 and 10, suggesting the presence of MSCs. We showed the safety, feasibility and potential efficacy of local injection of allogeneic BM- and AT-MSCs for treatment of wounds in a preclinical model. Our data in this large animal model support the potential use of BM- and AT-MSC for treatment of cutaneous wounds through modulation of healing and epithelialization. Copyright © 2013 John Wiley & Sons, Ltd.

  16. Immune transfer studies in canine allogeneic marrow graft donor-recipient pairs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grosse-Wilde, H.; Krumbacher, K.; Schuening, F.D.

    1986-07-01

    Transfer of immunity occurring with bone marrow grafting was studied using the dog as a preclinical model. Allogeneic bone marrow transplantation (BMT) was performed between DLA-identical beagle litter-mates. The donors were immunized with tetanus toxoid (TT) or sheep red blood cells (SRBC), and their humoral response was monitored by hemagglutination. The recipients of bone marrow from TT-immunized donors showed a marked increase of antibody titer one week posttransplantation, while in the recipients of marrow from SRBC immunized donors the antibody titers were considerably lower. Within the following 60 days the antibody titers in both groups diminished gradually to pregrafting levels.more » Control experiments in which cell-free plasma from donors immunized with TT and SRBC respectively was transfused indicated that the initial rise of specific antibody titers after marrow grafting is likely to be due to a passive transfer of humoral immunity. A single challenge of these marrow graft recipients with the respective antigen 15-18 weeks posttransplantation led to a secondary type of humoral immune response. It could be demonstrated that transfer of memory against TT or SRBC was independent from the actual antibody titer and the time of vaccination of the donor. One dog was immunized with TT after serving as marrow donor. When the donor had shown an antibody response, a peripheral blood leukocytes (PBL) transfusion was given to his chimera. Subsequent challenge of the latter resulted in a secondary type of specific antibody response. This indicates that specific cellular-bound immunological memory can be transferred after BMT from the donor to his allogeneic bone marrow chimera by transfusion of peripheral blood leukocytes. The data may be of importance in clinical BMT to protect patients during the phase of reduced immune reactivity by transfer of memory cells.« less

  17. Patterns of hemopoietic reconstitution in nonobese diabetic mice: dichotomy of allogeneic resistance versus competitive advantage of disease-resistant marrow.

    PubMed

    Kaufman, C L; Li, H; Ildstad, S T

    1997-03-01

    Complete replacement of the immune system via allogeneic bone marrow transplantation is sufficient to prevent diabetes in the nonobese diabetic (NOD) mouse model. In the present study we examined whether mixed allogeneic reconstitution would be sufficient to interrupt the autoimmune process with respect to occurrence of overt diabetes, as well as preexisting autoimmune insulitis. NOD mice were lethally irradiated and reconstituted with a mixture of NOD and B10.BR marrow. A relative resistance to allogeneic bone marrow engraftment was noted in NOD recipients of the mixed bone marrow inoculum, compared with disease-resistant controls. Moreover, unlike disease-resistant controls, all animals that initially repopulated as mixed donor/host chimeras became predominantly allogeneic by 4 mo, suggesting a competitive advantage for long term engraftment for disease-resistant marrow. All but one mouse in the group that engrafted with allogeneic marrow remained free of diabetes for the entire follow-up period (n = 22). Moreover, in all animals examined, virtually all islets were free of insulitis. In contrast, 74% of NOD mice that received similar conditioning and failed to engraft with donor marrow developed acute diabetes and intra-islet insulitis was present in all animals examined. These data suggest that NOD mice exhibit a relative resistance to engraftment compared with disease-resistant recipients. Conversely, animals that initially repopulated as a mixture of syngeneic and donor marrow become converted to virtually all donor by 4 mo. These data provide additional support that a defective stem cell is responsible for autoimmune diabetes in this experimental model.

  18. Granulocyte-mobilized bone marrow.

    PubMed

    Arcese, William; De Angelis, Gottardo; Cerretti, Raffaella

    2012-11-01

    In the last few years, mobilized peripheral blood has overcome bone marrow as a graft source, but, despite the evidence of a more rapid engraftment, the incidence of chronic graft-versus-host disease is significantly higher with, consequently, more transplant-related mortality on the long follow-up. Overall, the posttransplant outcome of mobilized peripheral blood recipients is similar to that of patients who are bone marrow grafted. More recently, the use of bone marrow after granulocyte colony-stimulating factor (G-CSF) donor priming has been introduced in the transplant practice. Herein, we review biological acquisitions and clinical results on the use of G-CSF-primed bone marrow as a source of hematopoietic stem cells (HSC) for allogeneic stem cell transplantation. G-CSF the increases the HSC compartment and exerts an intense immunoregulatory effect on marrow T-cells resulting in the shift from Th1 to Th2 phenotype with higher production of anti-inflammatory cytokines. The potential advantages of these biological effects have been translated in the clinical practice by using G-CSF primed unmanipulated bone marrow in the setting of transplant from human leukocyte antigen (HLA)-haploidentical donor with highly encouraging results. For patients lacking an HLA-identical sibling, the transplant of G-CSF primed unmanipulated bone marrow from a haploidentical donor combined with an intense in-vivo immunosuppression is a valid alternative achieving results that are well comparable with those reported for umbilical cord blood, HLA-matched unrelated peripheral blood/bone marrow or T-cell-depleted haploidentical transplant.

  19. Recurrence of chronic active Epstein-Barr virus infection from donor cells after achieving complete response through allogeneic bone marrow transplantation.

    PubMed

    Arai, Ayako; Imadome, Ken-ichi; Wang, Ludan; Wu, Nan; Kurosu, Tetsuya; Wake, Atsushi; Yamamoto, Hisashi; Ota, Yasunori; Harigai, Masayoshi; Fujiwara, Shigeyoshi; Miura, Osamu

    2012-01-01

    We report the case of a 35-year-old woman with chronic active Epstein-Barr virus (EBV) infection (CAEBV). She underwent allogeneic bone marrow transplantation (BMT) from an unrelated male donor and achieved a complete response. However, her CAEBV relapsed one year after BMT. EBV-infected cells proliferated clonally and revealed a 46XY karyotype. In addition, the infecting EBV strain differed from that detected before BMT. These findings indicated that her disease had developed from donor cells. This is the first report of donor cell-derived CAEBV that recurred after transplantation, suggesting that host factors may be responsible for the development of this disease.

  20. Hematopoietic Stem Cells in Neural-crest Derived Bone Marrow.

    PubMed

    Jiang, Nan; Chen, Mo; Yang, Guodong; Xiang, Lusai; He, Ling; Hei, Thomas K; Chotkowski, Gregory; Tarnow, Dennis P; Finkel, Myron; Ding, Lei; Zhou, Yanheng; Mao, Jeremy J

    2016-12-21

    Hematopoietic stem cells (HSCs) in the endosteum of mesoderm-derived appendicular bones have been extensively studied. Neural crest-derived bones differ from appendicular bones in developmental origin, mode of bone formation and pathological bone resorption. Whether neural crest-derived bones harbor HSCs is elusive. Here, we discovered HSC-like cells in postnatal murine mandible, and benchmarked them with donor-matched, mesoderm-derived femur/tibia HSCs, including clonogenic assay and long-term culture. Mandibular CD34 negative, LSK cells proliferated similarly to appendicular HSCs, and differentiated into all hematopoietic lineages. Mandibular HSCs showed a consistent deficiency in lymphoid differentiation, including significantly fewer CD229 + fractions, PreProB, ProB, PreB and B220 + slgM cells. Remarkably, mandibular HSCs reconstituted irradiated hematopoietic bone marrow in vivo, just as appendicular HSCs. Genomic profiling of osteoblasts from mandibular and femur/tibia bone marrow revealed deficiencies in several HSC niche regulators among mandibular osteoblasts including Cxcl12. Neural crest derived bone harbors HSCs that function similarly to appendicular HSCs but are deficient in the lymphoid lineage. Thus, lymphoid deficiency of mandibular HSCs may be accounted by putative niche regulating genes. HSCs in craniofacial bones have functional implications in homeostasis, osteoclastogenesis, immune functions, tumor metastasis and infections such as osteonecrosis of the jaw.

  1. Insulin-secreting adipose-derived mesenchymal stromal cells with bone marrow-derived hematopoietic stem cells from autologous and allogenic sources for type 1 diabetes mellitus.

    PubMed

    Thakkar, Umang G; Trivedi, Hargovind L; Vanikar, Aruna V; Dave, Shruti D

    2015-07-01

    Stem cell therapy (SCT) is now the up-coming therapeutic modality for treatment of type 1 diabetes mellitus (T1DM). Our study was a prospective, open-labeled, two-armed trial for 10 T1DM patients in each arm of allogenic and autologous adipose-derived insulin-secreting mesenchymal stromal cells (IS-AD-MSC)+bone marrow-derived hematopoietic stem cell (BM-HSC) infusion. Group 1 received autologous SCT: nine male patients and one female patient; mean age, 20.2 years, disease duration 8.1 years; group 2 received allogenic SCT: six male patients and four female patients, mean age, 19.7 years and disease duration, 7.9 years. Glycosylated hemoglobin (HbA1c) was 10.99%; serum (S.) C-peptide, 0.22 ng/mL and insulin requirement, 63.9 IU/day in group 1; HbA1c was 11.93%, S.C-peptide, 0.028 ng/mL and insulin requirement, 57.55 IU/day in group 2. SCs were infused into the portal+thymic circulation and subcutaneous tissue under non-myelo-ablative conditioning. Patients were monitored for blood sugar, S.C-peptide, glutamic acid decarboxylase antibodies and HbA1c at 3-month intervals. Group 1 received mean SCs 103.14 mL with 2.65 ± 0.8 × 10(4) ISCs/kg body wt, CD34+ 0.81% and CD45-/90+/73+, 81.55%. Group 2 received mean SCs 95.33 mL with 2.07 ± 0.67 × 10(4) ISCs/kg body wt, CD34+ 0.32% and CD45-/90+/73+ 54.04%. No untoward effect was observed with sustained improvement in HbA1c and S.C-peptide in both groups with a decrease in glutamic acid decarboxylase antibodies and reduction in mean insulin requirement. SCT is a safe and viable treatment option for T1DM. Autologous IS-AD-MSC+ BM-HSC co-infusion offers better long-term control of hyperglycemia as compared with allogenic SCT. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  2. Targeting Deacetylases to Improve Outcomes after Allogeneic Bone Marrow Transplantation

    PubMed Central

    Reddy, Pavan

    2013-01-01

    Graft-versus-host disease (GVHD) is the major complication of allogeneic bone marrow transplantation (BMT). GVHD is a complex immunologically mediated biological process. Recent data have shown that histone deacetylase inhibitors (HDACis) have potent anti-inflammatory effects. We have been studying the role of acetylation through inhibition of histone deacetylases (HDACs) in modulating immunity, specifically, GVHD. HDAC inhibition regulates GVHD, at least in part, through suppression of the function of host antigen presenting cells such as dendritic cells (DCs). HDACis reduce DC responses by enhancing the expression of indoleamine 2,3 dioxygenase (IDO) in a STAT-3–dependent manner. They also alter the function of other immune cells such as T regulatory cells and NK cells, which also play important roles in the biology of GVHD. Based on these observations, a clinical trial has been launched to evaluate its impact on clinical GVHD. The clinical features, biology of GVHD, the experimental studies with HDACis, and preliminary observations from humans are discussed. PMID:23874019

  3. The skeletal cell-derived molecule sclerostin drives bone marrow adipogenesis.

    PubMed

    Fairfield, Heather; Falank, Carolyne; Harris, Elizabeth; Demambro, Victoria; McDonald, Michelle; Pettitt, Jessica A; Mohanty, Sindhu T; Croucher, Peter; Kramer, Ina; Kneissel, Michaela; Rosen, Clifford J; Reagan, Michaela R

    2018-02-01

    The bone marrow niche is a dynamic and complex microenvironment that can both regulate, and be regulated by the bone matrix. Within the bone marrow (BM), mesenchymal stromal cell (MSC) precursors reside in a multi-potent state and retain the capacity to differentiate down osteoblastic, adipogenic, or chondrogenic lineages in response to numerous biochemical cues. These signals can be altered in various pathological states including, but not limited to, osteoporotic-induced fracture, systemic adiposity, and the presence of bone-homing cancers. Herein we provide evidence that signals from the bone matrix (osteocytes) determine marrow adiposity by regulating adipogenesis in the bone marrow. Specifically, we found that physiologically relevant levels of Sclerostin (SOST), which is a Wnt-inhibitory molecule secreted from bone matrix-embedded osteocytes, can induce adipogenesis in 3T3-L1 cells, mouse ear- and BM-derived MSCs, and human BM-derived MSCs. We demonstrate that the mechanism of SOST induction of adipogenesis is through inhibition of Wnt signaling in pre-adipocytes. We also demonstrate that a decrease of sclerostin in vivo, via both genetic and pharmaceutical methods, significantly decreases bone marrow adipose tissue (BMAT) formation. Overall, this work demonstrates a direct role for SOST in regulating fate determination of BM-adipocyte progenitors. This provides a novel mechanism for which BMAT is governed by the local bone microenvironment, which may prove relevant in the pathogenesis of certain diseases involving marrow adipose. Importantly, with anti-sclerostin therapy at the forefront of osteoporosis treatment and a greater recognition of the role of BMAT in disease, these data are likely to have important clinical implications. © 2017 Wiley Periodicals, Inc.

  4. Early relapse of Burkitt lymphoma heralded by a bone marrow necrosis and numb chin syndrome successfully treated with allogeneic stem cell transplantation.

    PubMed

    Cerny, Jan; Devitt, Katherine; Yu, Hongbo; Ramanathan, Muthalagu; Woda, Bruce; Nath, Rajneesh

    2014-01-01

    The optimal salvage therapy for patients with relapsed Burkitt lymphoma is unknown. Bone marrow necrosis is an underreported (<1% of bone marrow failures). Numb chin syndrome is another rare syndrome associated with aggressive malignancies. Survival of these syndromes is dictated by the underlying disease and is usually dismal. Our 35-year-old patient experienced an early relapse of Burkitt lymphoma accompanied by syndromes, achieved second complete remission and underwent allogeneic stem cell transplantation. He remains alive and well >2 years after the transplant. To our knowledge, this is the longest reported survival of the two syndromes in the setting of BL relapse.

  5. Allogeneic adipose-derived stem cells regenerate bone in a critical-sized ulna segmental defect

    PubMed Central

    Wen, Congji; Yan, Hai; Fu, Shibo; Qian, Yunliang

    2016-01-01

    Adipose-derived stem cells (ASCs) with multilineage potential can be induced into osteoblasts, adipocytes and chondrocytes. ASCs as seed cell are widely used in the field of tissue engineering, but most studies either use autologous cells as the source or an immunodeficient animal as the host. In our present study, we explored the feasibility of applying allogeneic ASCs and demineralized bone matrix (DBM) scaffolds for repairing tubular bone defects without using immunosuppressive therapy. Allogeneic ASCs were expanded and seeded on DBM scaffolds and induced to differentiate along the osteogenic lineage. Eight Sprague–Dawley (SD) rats were used in this study and bilateral critical-sized defects (8 mm) of the ulna were created and divided into two groups: with ASC-DBM constructs or DBM alone. The systemic immune response and the extent of bone healing were evaluated post-operatively. Twenty-four weeks after implantation, digital radiography (DR) testing showed that new bones had formed in the experimental group. By contrast, no bone tissue formation was observed in the control group. This study demonstrated that allogeneic ASCs could promote bone regeneration and repair tubular bone defects combined with DBM by histologically typical bone without systemic immune response PMID:25819682

  6. [Bone marrow transplantation].

    PubMed

    Masaoka, T

    1984-10-01

    One hundred seventy-one of cases bone marrow transplantation (BMT), including 132 allogeneic, 16 syngeneic and 23 autologous, were recorded in Japan during the period from September 1975 through March 1984. The number of BMT cases increase showed a rapid chronological i.e., 16 cases in 1980, 27 in 1981, 39 in 1982 and 57 in 1983. All cases were treated in clean rooms, and many of them received intensive gut decontamination using Vancomycin.

  7. Early relapse of Burkitt lymphoma heralded by a bone marrow necrosis and numb chin syndrome successfully treated with allogeneic stem cell transplantation

    PubMed Central

    Cerny, Jan; Devitt, Katherine; Yu, Hongbo; Ramanathan, Muthalagu; Woda, Bruce; Nath, Rajneesh

    2014-01-01

    The optimal salvage therapy for patients with relapsed Burkitt lymphoma is unknown. Bone marrow necrosis is an underreported (<1% of bone marrow failures). Numb chin syndrome is another rare syndrome associated with aggressive malignancies. Survival of these syndromes is dictated by the underlying disease and is usually dismal. Our 35-year-old patient experienced an early relapse of Burkitt lymphoma accompanied by syndromes, achieved second complete remission and underwent allogeneic stem cell transplantation. He remains alive and well >2 years after the transplant. To our knowledge, this is the longest reported survival of the two syndromes in the setting of BL relapse. PMID:25068102

  8. Following damage, the majority of bone marrow-derived airway cells express an epithelial marker.

    PubMed

    MacPherson, Heather; Keir, Pamela A; Edwards, Carol J; Webb, Sheila; Dorin, Julia R

    2006-12-19

    Adult-derived bone marrow stem cells are capable of reconstituting the haematopoietic system. However there is ongoing debate in the literature as to whether bone marrow derived cells have the ability to populate other tissues and express tissue specific markers. The airway has been an organ of major interest and was one of the first where this was demonstrated. We have previously demonstrated that the mouse airway can be repopulated by side population bone marrow transplanted cells. Here we investigate the frequency and phenotypic nature of these bone marrow derived cells. Female mice were engrafted with male whole bone marrow or side population (SP) cells and subjected to detergent-induced damage after 3 months. Donor cells were identified by Y chromosome fluorescence in situ hybridisation and their phenotype was assessed by immunohistochemistry on the same sections. Slides were visualised by a combination of widefield and deconvolved microscopy and whole cells were analysed on cytospin preparations. The frequencies of engraftment of male cells in the airway of mice that show this (9/10), range from 1.0-1.6% with whole marrow and 0.6-1.5% with SP cells. Undamaged controls have only between 0.1 and 0.2% male cells in the trachea. By widefield microscopy analysis we find 60.2% (53/88) of male donor derived cells express cytokeratins as a marker of epithelial cells. These results were reinforced using deconvolved microscopy and scored by two independent investigators. In addition cytospin analysis of cells dissociated from the damaged trachea of engrafted mice also reveals donor derived Y chromosome positive cells that are immunopositive for cytokeratin. Using cytokeratin and the universal haematopoietic marker CD45 immunohistochemistry, we find the donor derived cells fall into four phenotypic classes. We do not detect cytokeratin positive cells in whole bone marrow using cytokeratin immunostaining and we do not detect any cytokeratin mRNA in SP or bone marrow

  9. Infusion of freshly isolated autologous bone marrow derived mononuclear cells prevents endotoxin-induced lung injury in an ex-vivo perfused swine model

    PubMed Central

    2013-01-01

    Introduction The acute respiratory distress syndrome (ARDS), affects up to 150,000 patients per year in the United States. We and other groups have demonstrated that bone marrow derived mesenchymal stromal stem cells prevent ARDS induced by systemic and local administration of endotoxin (lipopolysaccharide (LPS)) in mice. Methods A study was undertaken to determine the effects of the diverse populations of bone marrow derived cells on the pathophysiology of ARDS, using a unique ex-vivo swine preparation, in which only the ventilated lung and the liver are perfused with autologous blood. Six experimental groups were designated as: 1) endotoxin alone, 2) endotoxin + total fresh whole bone marrow nuclear cells (BMC), 3) endotoxin + non-hematopoietic bone marrow cells (CD45 neg), 4) endotoxin + hematopoietic bone marrow cells (CD45 positive), 5) endotoxin + buffy coat and 6) endotoxin + in vitro expanded swine CD45 negative adherent allogeneic bone marrow cells (cultured CD45neg). We measured at different levels the biological consequences of the infusion of the different subsets of cells. The measured parameters were: pulmonary vascular resistance (PVR), gas exchange (PO2), lung edema (lung wet/dry weight), gene expression and serum concentrations of the pro-inflammatory cytokines IL-1β, TNF-α and IL-6. Results Infusion of freshly purified autologous total BMCs, as well as non-hematopoietic CD45(-) bone marrow cells significantly reduced endotoxin-induced pulmonary hypertension and hypoxemia and reduced the lung edema. Also, in the groups that received BMCs and cultured CD45neg we observed a decrease in the levels of IL-1β and TNF-α in plasma. Infusion of hematopoietic CD45(+) bone marrow cells or peripheral blood buffy coat cells did not protect against LPS-induced lung injury. Conclusions We conclude that infusion of freshly isolated autologous whole bone marrow cells and the subset of non-hematopoietic cells can suppress the acute humoral and physiologic

  10. Treatment of active unicameral bone cysts with percutaneous injection of demineralized bone matrix and autogenous bone marrow.

    PubMed

    Rougraff, Bruce T; Kling, Thomas J

    2002-06-01

    The treatment of unicameral bone cysts varies from open bone-grafting procedures to percutaneous injection of corticosteroids or bone marrow. The purpose of this study was to evaluate the feasibility and effectiveness of percutaneous injection of a mixture of demineralized bone matrix and autogenous bone marrow for the treatment of simple bone cysts. Twenty-three patients with an active unicameral bone cyst were treated with trephination and injection of allogeneic demineralized bone matrix and autogenous bone marrow. The patients were followed for an average of fifty months (range, thirty to eighty-one months), at which time pain, function, and radiographic signs of resolution of the cyst were assessed. The average time until the patients had pain relief was five weeks, and the average time until the patients returned to full, unrestricted activities was six weeks. Bone-healing at the site of the injection was first seen radiographically at three to six months. No patient had a pathologic fracture during this early bone-healing stage. Cortical remodeling was seen radiographically by six to nine months, and after one year the response was usually complete, changing very little from then on. Five patients required a second injection because of recurrence of the cyst, and all five had a clinically and radiographically quiescent cyst after an average of thirty-six additional months of follow-up. Seven of the twenty-three patients had incomplete healing manifested by small, persistent radiolucent areas within the original cyst. None of these cysts increased in size or resulted in pain or fracture. Percutaneous injection of allogeneic demineralized bone matrix and autogenous bone marrow is an effective treatment for unicameral bone cysts.

  11. Cigarette Smoke Inhibits Recruitment of Bone-Marrow-Derived Stem cells to The Uterus

    PubMed Central

    Zhou, Yuping; Gan, Ye; Taylor, Hugh S.

    2011-01-01

    Cigarette smoking leads to female infertility and a decreased incidence of endometriosis. Bone marrow derived stem cells are recruited to uterine endometrium and endometriosis. The effect of cigarette smoking on stem cell recruitment to any organ is uncharacterized. We hypothesized that bone marrow-derived mesenchymal stem cell recruitment to the uterus and differentiation would be diminished by cigarette smoke. We used human mesenchymal stem cells (hMSC) in vitro and a mouse model of cigarette smoke exposure. After myeloablation female C57BL/6J received bone marrow cells from males. Mice were exposed to room air or smoke from unfiltered cigarettes. Immunofluorescence and Y-FISH was performed on uterine sections. In vitro hMSCs were treated with 8-Br-cAMP to induce endometrial cell differentiation with or without cigarette smoke extract (CSE) and decidualization assessed morphologically and by prolactin expression. After 4 weeks the total number of Y-chromosome cells in the uterus was reduced by 68% in the smoke exposed mice. Both leukocytes and bone marrow derived endometrial cells were reduced by 60% and 73%, respectively. Differentiation of bone marrow derived cell to endometrial epithelial cells was reduced by 84%. hMSC treated with CSE failed to show cytological characteristics of decidualization. mRNA levels of the decidualization marker prolactin were decreased by 90% in CSE treated cells. Smoking inhibits both recruitment of bone marrow derived stem cells to uterus and stem cell differentiation. Inhibition of stem cells recruitment may be a general mechanism by which smoking leads to long term organ damage through inability to repair or regenerate multiple tissues. PMID:20955787

  12. Following damage, the majority of bone marrow-derived airway cells express an epithelial marker

    PubMed Central

    MacPherson, Heather; Keir, Pamela A; Edwards, Carol J; Webb, Sheila; Dorin, Julia R

    2006-01-01

    Background Adult-derived bone marrow stem cells are capable of reconstituting the haematopoietic system. However there is ongoing debate in the literature as to whether bone marrow derived cells have the ability to populate other tissues and express tissue specific markers. The airway has been an organ of major interest and was one of the first where this was demonstrated. We have previously demonstrated that the mouse airway can be repopulated by side population bone marrow transplanted cells. Here we investigate the frequency and phenotypic nature of these bone marrow derived cells. Methods Female mice were engrafted with male whole bone marrow or side population (SP) cells and subjected to detergent-induced damage after 3 months. Donor cells were identified by Y chromosome fluorescence in situ hybridisation and their phenotype was assessed by immunohistochemistry on the same sections. Slides were visualised by a combination of widefield and deconvolved microscopy and whole cells were analysed on cytospin preparations. Results The frequencies of engraftment of male cells in the airway of mice that show this (9/10), range from 1.0 – 1.6% with whole marrow and 0.6 – 1.5% with SP cells. Undamaged controls have only between 0.1 and 0.2% male cells in the trachea. By widefield microscopy analysis we find 60.2% (53/88) of male donor derived cells express cytokeratins as a marker of epithelial cells. These results were reinforced using deconvolved microscopy and scored by two independent investigators. In addition cytospin analysis of cells dissociated from the damaged trachea of engrafted mice also reveals donor derived Y chromosome positive cells that are immunopositive for cytokeratin. Using cytokeratin and the universal haematopoietic marker CD45 immunohistochemistry, we find the donor derived cells fall into four phenotypic classes. We do not detect cytokeratin positive cells in whole bone marrow using cytokeratin immunostaining and we do not detect any

  13. Bioactive lipid coating of bone allografts directs engraftment and fate determination of bone marrow-derived cells in rat GFP chimeras

    PubMed Central

    Das, Anusuya; Segar, Claire E.; Chu, Yihsuan; Wang, Tiffany W.; Lin, Yong; Yang, Chunxi; Du, Xeujun; Ogle, Roy C.; Cui, Quanjun; Botchwey, Edward A.

    2015-01-01

    Bone grafting procedures are performed to treat wounds incurred during wartime trauma, accidents, and tumor resections. Endogenous mechanisms of repair are often insufficient to ensure integration between host and donor bone and subsequent restoration of function. We investigated the role that bone marrow-derived cells play in bone regeneration and sought to increase their contributions by functionalizing bone allografts with bioactive lipid coatings. Polymer-coated allografts were used to locally deliver the immunomodulatory small molecule FTY720 in tibial defects created in rat bone marrow chimeras containing genetically-labeled bone marrow for monitoring cell origin and fate. Donor bone marrow contributed significantly to both myeloid and osteogenic cells in remodeling tissue surrounding allografts. FTY720 coatings altered the phenotype of immune cells two weeks post-injury, which was associated with increased vascularization and bone formation surrounding allografts. Consequently, degradable polymer coating strategies that deliver small molecule growth factors such as FTY720 represent a novel therapeutic strategy for harnessing endogenous bone marrow-derived progenitors and enhancing healing in load-bearing bone defects. PMID:26125501

  14. Bioactive lipid coating of bone allografts directs engraftment and fate determination of bone marrow-derived cells in rat GFP chimeras.

    PubMed

    Das, Anusuya; Segar, Claire E; Chu, Yihsuan; Wang, Tiffany W; Lin, Yong; Yang, Chunxi; Du, Xeujun; Ogle, Roy C; Cui, Quanjun; Botchwey, Edward A

    2015-09-01

    Bone grafting procedures are performed to treat wounds incurred during wartime trauma, accidents, and tumor resections. Endogenous mechanisms of repair are often insufficient to ensure integration between host and donor bone and subsequent restoration of function. We investigated the role that bone marrow-derived cells play in bone regeneration and sought to increase their contributions by functionalizing bone allografts with bioactive lipid coatings. Polymer-coated allografts were used to locally deliver the immunomodulatory small molecule FTY720 in tibial defects created in rat bone marrow chimeras containing genetically-labeled bone marrow for monitoring cell origin and fate. Donor bone marrow contributed significantly to both myeloid and osteogenic cells in remodeling tissue surrounding allografts. FTY720 coatings altered the phenotype of immune cells two weeks post-injury, which was associated with increased vascularization and bone formation surrounding allografts. Consequently, degradable polymer coating strategies that deliver small molecule growth factors such as FTY720 represent a novel therapeutic strategy for harnessing endogenous bone marrow-derived progenitors and enhancing healing in load-bearing bone defects. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Human bone marrow-derived mesenchymal cells differentiate and mature into endocrine pancreatic lineage in vivo.

    PubMed

    Phadnis, Smruti M; Joglekar, Mugdha V; Dalvi, Maithili P; Muthyala, Sudhakar; Nair, Prabha D; Ghaskadbi, Surendra M; Bhonde, Ramesh R; Hardikar, Anandwardhan A

    2011-03-01

    The scarcity of human islets for transplantation remains a major limitation of cell replacement therapy for diabetes. Bone marrow-derived progenitor cells are of interest because they can be isolated, expanded and offered for such therapy under autologous/allogeneic settings. We characterized and compared human bone marrow-derived mesenchymal cells (hBMC) obtained from (second trimester), young (1-24 years) and adult (34-81 years) donors. We propose a novel protocol that involves assessment of paracrine factors from regenerating pancreas in differentiation and maturation of hBMC into endocrine pancreatic lineage in vivo. We observed that donor age was inversely related to growth potential of hBMC. Following in vitro expansion and exposure to specific growth factors involved in pancreatic development, hBMC migrated and formed islet-like cell aggregates (ICA). ICA show increased abundance of pancreatic transcription factors (Ngn3, Brn4, Nkx6.1, Pax6 and Isl1). Although efficient differentiation was not achieved in vitro, we observed significant maturation and secretion of human c-peptide (insulin) upon transplantation into pancreactomized and Streptozotocin (STZ)-induced diabetic mice. Transplanted ICA responded to glucose and maintained normoglycemia in diabetic mice. Our data demonstrate that hBMC have tremendous in vitro expansion potential and can be differentiated into multiple lineages, including the endocrine pancreatic lineage. Paracrine factors secreted from regenerating pancreas help in efficient differentiation and maturation of hBMC, possibly via recruiting chromatin modulators, to generate glucose-responsive insulin-secreting cells.

  16. Use of G-CSF-stimulated marrow in allogeneic hematopoietic stem cell transplantation settings: a comprehensive review.

    PubMed

    Chang, Ying-Jun; Huang, Xiao-Jun

    2011-01-01

    In recent years, several researchers have unraveled the previously unrecognized effects of granulocyte colony-stimulating factor (G-CSF) on hematopoiesis and the immune cell functions of bone marrow in healthy donors. In human leukocyte antigen-matched or haploidentical transplant settings, available data have established the safety of using G-CSF-stimulated bone marrow grafts, as well as the ability of this source to produce rapid and sustained engraftment. Interestingly, G-CSF-primed bone marrow transplants could capture the advantages of blood stem cell transplants, without the increased risk of chronic graft-versus-host disease that is associated with blood stem cell transplants. This review summarizes the growing body of evidence that supports the use of G-CSF-stimulated bone marrow grafts as an alternative stem cell source in allogeneic hematopoietic stem cell transplantation. © 2010 John Wiley & Sons A/S.

  17. Characterization of bone marrow-derived mesenchymal stem cells in aging.

    PubMed

    Baker, Natasha; Boyette, Lisa B; Tuan, Rocky S

    2015-01-01

    Adult mesenchymal stem cells are a resource for autologous and allogeneic cell therapies for immune-modulation and regenerative medicine. However, patients most in need of such therapies are often of advanced age. Therefore, the effects of the aged milieu on these cells and their intrinsic aging in vivo are important considerations. Furthermore, these cells may require expansion in vitro before use as well as for future research. Their aging in vitro is thus also an important consideration. Here, we focus on bone marrow mesenchymal stem cells (BMSCs), which are unique compared to other stem cells due to their support of hematopoietic cells in addition to contributing to bone formation. BMSCs may be sensitive to age-related diseases and could perpetuate degenerative diseases in which bone remodeling is a contributory factor. Here, we review (1) the characterization of BMSCs, (2) the characterization of in vivo-aged BMSCs, (3) the characterization of in vitro-aged BMSCs, and (4) potential approaches to optimize the performance of aged BMSCs. This article is part of a Special Issue entitled "Stem Cells and Bone". Copyright © 2014 Elsevier Inc. All rights reserved.

  18. The chemokine receptor CXCR6 contributes to recruitment of bone marrow-derived fibroblast precursors in renal fibrosis.

    PubMed

    Xia, Yunfeng; Yan, Jingyin; Jin, Xiaogao; Entman, Mark L; Wang, Yanlin

    2014-08-01

    Bone marrow-derived fibroblasts in circulation are of hematopoietic origin, and they proliferate, differentiate into myofibroblasts, and express the chemokine receptor CXCR6. As chemokines mediate the trafficking of circulating cells to sites of injury, we studied the role of CXCR6 in mouse models of renal injury. Significantly, the kidney of CXCR6 knockout mice accumulated fewer bone marrow-derived fibroblasts in response to injury, expressed less profibrotic chemokines and cytokines, displayed fewer myofibroblasts, and expressed less α-smooth muscle actin in the obstructed kidneys compared with wild-type (WT) mice. CXCR6 deficiency inhibited total collagen deposition and suppressed the expression of collagen I and fibronectin in the obstructed kidneys. Furthermore, WT mice engrafted with CXCR6(-/-) bone marrow cells displayed fewer bone marrow-derived fibroblasts in the kidneys with obstructive injury and showed less severe renal fibrosis compared with WT mice engrafted with CXCR6(+/+) bone marrow cells. Transplant of WT bone marrow into CXCR6(-/-) recipients restored recruitment of myeloid fibroblasts and susceptibility to fibrosis. Hematopoietic fibroblasts migrate into injured kidney and proliferate and differentiate into myofibroblasts. Thus, CXCR6, together with other chemokines and their receptors, may have important roles in the recruitment of bone marrow-derived fibroblast precursors into the kidney and contribute to the pathogenesis of renal fibrosis.

  19. Repetitious appearance and disappearance of different kinds of clonal cytogenetic abnormalities after allogeneic bone marrow transplantation.

    PubMed

    Lin, Y W; Hamahata, K; Watanabe, K; Adachi, S; Akiyama, Y; Kubota, M; Nakahata, T

    2001-07-01

    We report a childhood case that showed the repeated appearance and disappearance of various kinds of cytogenetic abnormalities (CA) for 5.5 years after allogeneic bone marrow transplantation (BMT). The patient underwent allogeneic BMT from an HLA-matched unrelated donor during the second complete remission of acute lymphoblastic leukemia. The conditioning regimen for BMT consisted of etoposide, cyclophosphamide, anti-human thymocyte immunoglobulin, and total body irradiation. There were no leukemic relapses or secondary acute myeloid leukemia/myelodysplastic syndrome (AML/MDS) since the BMT. The CA occurred from residual recipient cells, which were damaged by chemotherapy or radiation prior to BMT. Although previous studies about post-BMT CA had reported the continuous emergence of identical clones, the present case showed the appearance of one different type of clone after another. Although the appearance of different types of CA may mean that these clones did not obtain any growth advantages, it may be a sign of genomic instability, which is probably a risk factor for the development of secondary AML/MDS.

  20. Bone Marrow CD11c+ Cell-Derived Amphiregulin Promotes Pulmonary Fibrosis

    PubMed Central

    Ding, Lin; Liu, Tianju; Wu, Zhe; Hu, Biao; Nakashima, Taku; Ullenbruch, Matthew; De Los Santos, Francina Gonzalez; Phan, Sem H.

    2016-01-01

    Amphiregulin (AREG), an epidermal growth factor receptor ligand, is implicated in tissue repair and fibrosis but its cellular source and role in regeneration vs. fibrosis remain unclear. In this study we hypothesize that AREG induced in bone marrow derived CD11c+ cells is essential for pulmonary fibrosis. Thus the objectives were to evaluate the importance and role of AREG in pulmonary fibrosis, identify the cellular source of AREG induction and analyze its regulation of fibroblast function and activation. The results showed that lung AREG expression was significantly induced in bleomycin-induced pulmonary fibrosis. AREG deficiency in knockout (KO) mice significantly diminished pulmonary fibrosis. Analysis of AREG expression in major lung cell types revealed induction in fibrotic lungs predominantly occurred in CD11c+ cells. Moreover depletion of bone marrow derived CD11c+ cells suppressed both induction of lung AREG expression and pulmonary fibrosis. Conversely, adoptive transfer of bone marrow-derived CD11c+ cells from BLM-treated donor mice exacerbated pulmonary fibrosis but not if the donor cells were made AREG-deficient prior to transfer. CD11c+ cell conditioned media or co-culture stimulated fibroblast proliferation, activation and myofibroblast differentiation in an AREG dependent manner. Furthermore recombinant AREG induced telomerase reverse transcriptase (TERT) which appeared to be essential for the proliferative effect. Finally AREG significantly enhanced fibroblast motility, which was associated with increased expression of α6 integrin. These findings suggested that induced AREG specifically in recruited bone marrow-derived CD11c+ cells promoted bleomycin induced pulmonary fibrosis by activation of fibroblast TERT dependent proliferation, motility and indirectly, myofibroblast differentiation. PMID:27206766

  1. Bone Marrow CD11c+ Cell-Derived Amphiregulin Promotes Pulmonary Fibrosis.

    PubMed

    Ding, Lin; Liu, Tianju; Wu, Zhe; Hu, Biao; Nakashima, Taku; Ullenbruch, Matthew; Gonzalez De Los Santos, Francina; Phan, Sem H

    2016-07-01

    Amphiregulin (AREG), an epidermal growth factor receptor ligand, is implicated in tissue repair and fibrosis, but its cellular source and role in regeneration versus fibrosis remain unclear. In this study, we hypothesize that AREG induced in bone marrow-derived CD11c(+) cells is essential for pulmonary fibrosis. Thus, the objectives were to evaluate the importance and role of AREG in pulmonary fibrosis, identify the cellular source of AREG induction, and analyze its regulation of fibroblast function and activation. The results showed that lung AREG expression was significantly induced in bleomycin-induced pulmonary fibrosis. AREG deficiency in knockout mice significantly diminished pulmonary fibrosis. Analysis of AREG expression in major lung cell types revealed induction in fibrotic lungs predominantly occurred in CD11c(+) cells. Moreover, depletion of bone marrow-derived CD11c(+) cells suppressed both induction of lung AREG expression and pulmonary fibrosis. Conversely, adoptive transfer of bone marrow-derived CD11c(+) cells from bleomycin-treated donor mice exacerbated pulmonary fibrosis, but not if the donor cells were made AREG deficient prior to transfer. CD11c(+) cell-conditioned media or coculture stimulated fibroblast proliferation, activation, and myofibroblast differentiation in an AREG-dependent manner. Furthermore, recombinant AREG induced telomerase reverse transcriptase, which appeared to be essential for the proliferative effect. Finally, AREG significantly enhanced fibroblast motility, which was associated with increased expression of α6 integrin. These findings suggested that induced AREG specifically in recruited bone marrow-derived CD11c(+) cells promoted bleomycin-induced pulmonary fibrosis by activation of fibroblast telomerase reverse transcriptase-dependent proliferation, motility, and indirectly, myofibroblast differentiation. Copyright © 2016 by The American Association of Immunologists, Inc.

  2. Platelets secrete stromal cell-derived factor 1alpha and recruit bone marrow-derived progenitor cells to arterial thrombi in vivo.

    PubMed

    Massberg, Steffen; Konrad, Ildiko; Schürzinger, Katrin; Lorenz, Michael; Schneider, Simon; Zohlnhoefer, Dietlind; Hoppe, Katharina; Schiemann, Matthias; Kennerknecht, Elisabeth; Sauer, Susanne; Schulz, Christian; Kerstan, Sandra; Rudelius, Martina; Seidl, Stefan; Sorge, Falko; Langer, Harald; Peluso, Mario; Goyal, Pankaj; Vestweber, Dietmar; Emambokus, Nikla R; Busch, Dirk H; Frampton, Jon; Gawaz, Meinrad

    2006-05-15

    The accumulation of smooth muscle and endothelial cells is essential for remodeling and repair of injured blood vessel walls. Bone marrow-derived progenitor cells have been implicated in vascular repair and remodeling; however, the mechanisms underlying their recruitment to the site of injury remain elusive. Here, using real-time in vivo fluorescence microscopy, we show that platelets provide the critical signal that recruits CD34+ bone marrow cells and c-Kit+ Sca-1+ Lin- bone marrow-derived progenitor cells to sites of vascular injury. Correspondingly, specific inhibition of platelet adhesion virtually abrogated the accumulation of both CD34+ and c-Kit+ Sca-1+ Lin- bone marrow-derived progenitor cells at sites of endothelial disruption. Binding of bone marrow cells to platelets involves both P-selectin and GPIIb integrin on platelets. Unexpectedly, we found that activated platelets secrete the chemokine SDF-1alpha, thereby supporting further primary adhesion and migration of progenitor cells. These findings establish the platelet as a major player in the initiation of vascular remodeling, a process of fundamental importance for vascular repair and pathological remodeling after vascular injury.

  3. Enhancement of the repair of dog alveolar cleft by an autologous iliac bone, bone marrow-derived mesenchymal stem cell, and platelet-rich fibrin mixture.

    PubMed

    Yuanzheng, Chen; Yan, Gao; Ting, Li; Yanjie, Fu; Peng, Wu; Nan, Bai

    2015-05-01

    Autologous bone graft has been regarded as the criterion standard for the repair of alveolar cleft. However, the most prominent issue in alveolar cleft treatment is the high absorption rate of the bone graft. The authors' objective was to investigate the effects of an autologous iliac bone, bone marrow-derived mesenchymal stem cell, and platelet-rich fibrin mixture on the repair of dog alveolar cleft. Twenty beagle dogs with unilateral alveolar clefts created by surgery were divided randomly into four groups: group A underwent repair with an autologous iliac bone, bone marrow-derived mesenchymal stem cell, and platelet-rich fibrin mixture; group B underwent repair with autologous iliac bone and bone marrow-derived mesenchymal stem cells; group C underwent repair with autologous iliac bone and platelet-rich fibrin; and group D underwent repair with autologous iliac bone as the control. One day and 6 months after transplantation, the transplant volumes and bone mineral density were assessed by quantitative computed tomography. All of the transplants were harvested for hematoxylin and eosin staining 6 months later. Bone marrow-derived mesenchymal stem cells and platelet-rich fibrin transplants formed the greatest amounts of new bone among the four groups. The new bone formed an extensive union with the underlying maxilla in groups A, B, and C. Transplants with the bone marrow-derived mesenchymal stem cells, platelet-rich fibrin, and their mixture retained the majority of their initial volume, whereas the transplants in the control group showed the highest absorption rate. Bone mineral density of transplants with the bone marrow-derived mesenchymal stem cells, platelet-rich fibrin, and their mixture 6 months later was significantly higher than in the control group (p < 0.05), and was the highest in bone marrow-derived mesenchymal stem cells and platelet-rich fibrin mixed transplants. Hematoxylin and eosin staining showed that the structure of new bones formed the best

  4. The chemokine receptor CXCR6 contributes to recruitment of bone marrow-derived fibroblast precursors in renal fibrosis

    PubMed Central

    Xia, Yunfeng; Yan, Jingyin; Jin, Xiaogao; Entman, Mark L.; Wang, Yanlin

    2014-01-01

    Bone marrow-derived fibroblasts in circulation are of hematopoietic origin, proliferate, differentiate into myofibroblasts, and express the chemokine receptor CXCR6. Since chemokines mediate the trafficking of circulating cells to sites of injury, we studied the role of CXCR6 in mouse models of renal injury. Significantly fewer bone marrow-derived fibroblasts accumulated in the kidney of CXCR6 knockout mice in response to injury, expressed less profibrotic chemokines and cytokines, displayed fewer myofibroblasts, and expressed less α-smooth muscle actin in the obstructed kidneys compared with wild-type mice. CXCR6 deficiency inhibited total collagen deposition and suppressed expression of collagen I and fibronectin in the obstructed kidneys. Furthermore, wild type mice engrafted with CXCR6−/− bone marrow cells displayed fewer bone marrow-derived fibroblasts in the kidneys with obstructive injury and showed less severe renal fibrosis compared with wild-type mice engrafted with CXCR6+/+ bone marrow cells. Transplant of wild type bone marrow into CXCR6−/− recipients restored recruitment of myeloid fibroblasts and susceptibility to fibrosis. Hematopoietic fibroblasts migrate into injured kidney and proliferate and differentiate into myofibroblasts. Thus, CXCR6, together with other chemokines and their receptors, may play important roles in the recruitment of bone marrow-derived fibroblast precursors into the kidney and contribute to the pathogenesis of renal fibrosis. PMID:24646857

  5. Adeno Associated Viral-mediated intraosseus labeling of bone marrow derived cells for CNS tracking

    PubMed Central

    Selenica, Maj-Linda B.; Reid, Patrick; Pena, Gabriela; Alvarez, Jennifer; Hunt, Jerry B.; Nash, Kevin R.; Morgan, Dave; Gordon, Marcia N.; Lee, Daniel C.

    2016-01-01

    Inflammation, including microglial activation in the CNS, is an important hallmark in many neurodegenerative diseases. Microglial stimuli not only impact the brain microenvironment by production and release of cytokines and chemokines, but also influence the activity of bone marrow derived cells and blood born macrophage populations. In many diseases including brain disorders and spinal cord injury, researchers have tried to harbor the neuroprotective and repair properties of these subpopulations. Hematopoietic bone marrow derived cells (BMDCs) are of great interest, especially during gene therapy because certain hematopoietic cell subpopulations traffic to the sites of injury and inflammation. The aim of this study was to develop a method of labeling endogenous bone marrow derived cells through intraosseus impregnation of recombinant adeno-associated virus (rAAV) or lentivirus. We utilized rAAV serotype 9 (rAAV-9) or lentivirus for gene delivery of green florescence protein (GFP) to the mouse bone marrow cells. Flow cytometry showed that both viruses were able to efficiently transduce mouse bone marrow cells in vivo. However, the rAAV9–GFP viral construct transduced BMDCs more efficiently than the lentivirus (11.2% vs. 6.8%), as indicated by cellular GFP expression. We also demonstrate that GFP labeled cells correspond to bone marrow cells of myeloid origin using CD11b as a marker. Additionally, we characterized the ability of bone marrow derived, GFP labeled cells to extravasate into the brain parenchyma upon acute and subchronic neuroinflammatory stimuli in the mouse CNS. Viral mediated over expression of chemokine (C-C motif) ligand 2 (CCL2) or intracranial injection of lipopolysaccharide (LPS) recruited GFP labeled BMDCs from the periphery into the brain parenchyma compared to vehicle treated mice. Altogether our findings demonstrate a useful method of labeling endogenous BMDCs via viral transduction and the ability to track subpopulations throughout the

  6. Emerging paradigms and questions on pro-angiogenic bone marrow-derived myelomonocytic cells.

    PubMed

    Laurent, Julien; Touvrey, Cédric; Botta, Francesca; Kuonen, François; Ruegg, Curzio

    2011-01-01

    Cancer-related inflammation has emerged in recent years as a major event contributing to tumor angiogenesis, tumor progression and metastasis formation. Bone marrow-derived and inflammatory cells promote tumor angiogenesis by providing endothelial progenitor cells that differentiate into mature endothelial cells, and by secreting pro-angiogenic factors and remodeling the extracellular matrix to stimulate angiogenesis though paracrine mechanisms. Several bone marrow-derived myelonomocytic cells, including monocytes and macrophages, have been identified and characterized by several laboratories in recent years. While the central role of these cells in promoting tumor angiogenesis, tumor progression and metastasis is nowadays well established, many questions remain open and new ones are emerging. These include the relationship between their phenotype and function, the mechanisms of pro-angiogenic programming, their contribution to resistance to anti-angiogenic treatments and to metastasis and their potential clinical use as biomarkers of angiogenesis and anti-angiogenic therapies. Here, we will review phenotypical and functional aspects of bone marrow-derived myelonomocytic cells and discuss some of the current outstanding questions.

  7. Engraftment Efficiency after Intra-Bone Marrow versus Intravenous Transplantation of Bone Marrow Cells in a Canine Nonmyeloablative Dog Leukocyte Antigen-Identical Transplantation Model.

    PubMed

    Lange, Sandra; Steder, Anne; Killian, Doreen; Knuebel, Gudrun; Sekora, Anett; Vogel, Heike; Lindner, Iris; Dunkelmann, Simone; Prall, Friedrich; Murua Escobar, Hugo; Freund, Mathias; Junghanss, Christian

    2017-02-01

    An intra-bone marrow (IBM) hematopoietic stem cell transplantation (HSCT) is assumed to optimize the homing process and therefore to improve engraftment as well as hematopoietic recovery compared with conventional i.v. HSCT. This study investigated the feasibility and efficacy of IBM HSCT after nonmyeloablative conditioning in an allogeneic canine HSCT model. Two study cohorts received IBM HSCT of either density gradient (IBM-I, n = 7) or buffy coat (IBM-II, n = 6) enriched bone marrow cells. An historical i.v. HSCT cohort served as control. Before allogeneic HSCT experiments were performed, we investigated the feasibility of IBM HSCT by using technetium-99m marked autologous grafts. Scintigraphic analyses confirmed that most IBM-injected autologous cells remained at the injection sites, independent of the applied volume. In addition, cell migration to other bones occurred. The enrichment process led to different allogeneic graft volumes (IBM-I, 2 × 5 mL; IBM-II, 2 × 25 mL) and significantly lower counts of total nucleated cells in IBM-I grafts compared with IBM-II grafts (1.6 × 10 8 /kg versus 3.8 × 10 8 /kg). After allogeneic HSCT, dogs of the IBM-I group showed a delayed engraftment with lower levels of donor chimerism when compared with IBM-II or to i.v. HSCT. Dogs of the IBM-II group tended to reveal slightly faster early leukocyte engraftment kinetics than intravenously transplanted animals. However, thrombocytopenia was significantly prolonged in both IBM groups when compared with i.v. HSCT. In conclusion, IBM HSCT is feasible in a nonmyeloablative HSCT setting but failed to significantly improve engraftment kinetics and hematopoietic recovery in comparison with conventional i.v. HSCT. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  8. A method to generate enhanced GFP+ chimeric mice to study the role of bone marrow-derived cells in the eye.

    PubMed

    Singh, Vivek; Jaini, Ritika; Torricelli, André A M; Tuohy, Vincent K; Wilson, Steven E

    2013-11-01

    GFP-chimeric mice are important tools to study the role of bone marrow-derived cells in eye physiology. A method is described to generate GFP-chimeric mice using whole-body, sub-lethal radiation (600 rad) of wild-type C57BL/6 recipients followed by tail vein injection of bone marrow cells derived from GFP+ (GFP-transgenic C57/BL/6-Tg(UBC-GFP)30 Scha/J) mice. This method yields stable GFP+ chimeras with greater than 95% chimerism (range 95-99%), achieved within one month of bone marrow transfer confirmed by microscopy and fluorescence-assisted cell sorting (FACS) analysis, with lower mortality after irradiation than prior methods. To demonstrate the efficacy of GFP+ bone marrow chimeric mice, the role of circulating GFP+ bone marrow-derived cells in myofibroblast generation after irregular photo-therapeutic keratectomy (PTK) was analyzed. Many SMA+ myofibroblasts that were generated at one month after PTK were derived from GFP+ bone marrow-derived cells. The GFP+ bone marrow chimeric mouse provides an excellent model for studying the role of bone marrow-derived cells in corneal wound healing, glaucoma surgery, optic nerve head pathology and retinal pathophysiology and wound healing. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Transplantation of allogenic bone marrow in canine cyclic neutropenia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dale, D.C.; Graw, R.G. Jr.

    Transplantation of normal bone marrow cells to a gray collie dog with cyclic neutropenia resulted in normal granulocytopoiesis. The finding suggests that cyclic neutropenia occurs because the hematopoietic stem cells are defective. Because of the similarity of human and canine cyclic neutropenia, it also suggests that the human disease may be curable by marrow transplantation. One day before transplantation, the recipient received 1000 rads gamma irradiation from opposing /sup 60/Co sources at 9 rad/min. (CH)

  10. Bone marrow-derived SP cells can contribute to the respiratory tract of mice in vivo.

    PubMed

    Macpherson, Heather; Keir, Pamela; Webb, Sheila; Samuel, Kay; Boyle, Shelagh; Bickmore, Wendy; Forrester, Lesley; Dorin, Julia

    2005-06-01

    Recent work has indicated that adult bone marrow-derived cells have the ability to contribute to both the haematopoietic system and other organs. Haematopoietic reconstitution by whole bone marrow and selected but not fully characterised cell populations have resulted in reports indicating high-level repopulation of lung epithelia. The well-characterised cells from the side population have a robust ability for haematopoietic reconstitution. We have used freshly isolated side population cells derived from ROSA26 adult bone marrow and demonstrate that despite being unable to contribute to embryos following blastocyst injection, or air liquid interface cultures or denuded tracheal xenografts, they could contribute to the tracheal epithelium in vivo. Epithelial damage is reported to be important in encouraging the recruitment of marrow-derived stem cells into non-haematopoietic organs. Here we demonstrate that mice engrafted with side population cells have donor-derived cells present in the epithelial lining of the trachea following damage and repair. Donor-derived cells were found at a frequency of 0.83%. Widefield and confocal microscopy revealed donor cells that expressed cytokeratins, indicative of cells of an epithelial nature. These results imply that SP haematopoietic stem cells from the bone marrow do not have the ability to contribute to airway epithelia themselves but require factors present in vivo to allow them to acquire characteristics of this tissue.

  11. Columnar metaplasia in a surgical mouse model of gastro-esophageal reflux disease is not derived from bone marrow-derived cell.

    PubMed

    Aikou, Susumu; Aida, Junko; Takubo, Kaiyo; Yamagata, Yukinori; Seto, Yasuyuki; Kaminishi, Michio; Nomura, Sachiyo

    2013-09-01

    The incidence of esophageal adenocarcinoma has increased in the last 25 years. Columnar metaplasia in Barrett's mucosa is assumed to be a precancerous lesion for esophageal adenocarcinoma. However, the induction process of Barrett's mucosa is still unknown. To analyze the induction of esophageal columnar metaplasia, we established a mouse gastro-esophageal reflux disease (GERD) model with associated development of columnar metaplasia in the esophagus. C57BL/6 mice received side-to-side anastomosis of the esophagogastric junction with the jejunum, and mice were killed 10, 20, and 40 weeks after operation. To analyze the contribution of bone marrow-derived cells to columnar metaplasia in this surgical GERD model, some mice were transplanted with GFP-marked bone marrow after the operation. Seventy-three percent of the mice (16/22) showed thickened mucosa in esophagus and 41% of mice (9/22) developed columnar metaplasia 40 weeks after the operation with a mortality rate of 4%. Bone marrow-derived cells were not detected in columnar metaplastic epithelia. However, scattered epithelial cells in the thickened squamous epithelia in regions of esophagitis did show bone marrow derivation. The results demonstrate that reflux induced by esophago-jejunostomy in mice leads to the development of columnar metaplasia in the esophagus. However, bone marrow-derived cells do not contribute directly to columnar metaplasia in this mouse model. © 2013 Japanese Cancer Association.

  12. Radiation protocols determine acute graft-versus-host disease incidence after allogeneic bone marrow transplantation in murine models.

    PubMed

    Schwarte, Sebastian; Bremer, Michael; Fruehauf, Joerg; Sorge, Yanina; Skubich, Susanne; Hoffmann, Matthias W

    2007-09-01

    Effects of radiation sources used for total body irradiation (TBI) on Graft-versus-Host Disease (GvHD) induction were examined. In a T cell receptor (TCR) transgenic mouse model, single fraction TBI was performed with different radiation devices ((60)Cobalt; (137)Cesium; 6 MV linear accelerator), dose rates (0.85; 1.5; 2.9; 5 Gy/min) and total doses before allogeneic bone marrow transplantation (BMT). Recipients were observed for 120 days. Different tissues were examined histologically. Acute GvHD was induced by a dose rate of 0.85 Gy/min ((60)Cobalt) and a total dose of 9 Gy and injection of 5 x 10(5) lymph node cells plus 5 x 10(6) bone marrow cells. Similar results were obtained using 6 MV linear accelerator- (linac-) photons with a dose rate of 1.5 Gy/min and 0.85 Gy/min, a total dose of 9.5 Gy and injection of same cell numbers. TBI with (137)Cesium (dose rate: 2.5 Gy/min) did not lead reproducibly to lethal acute GvHD. Experimental TBI in murine models may induce different immunological responses, depending on total energy, total single dose and dose rate. GvHD might also be induced by TBI with low dose rates.

  13. Can bone marrow differentiate into renal cells?

    PubMed

    Imai, Enyu; Ito, Takahito

    2002-10-01

    A considerable plasticity of adult stem cells has been confirmed in a wide variety of tissues. In particular, the pluripotency of bone marrow-derived stem cells may influence the regeneration of injured tissues and may provide novel avenues in regenerative medicine. Bone marrow contains at least hematopoietic and mesenchymal stem cells, and both can differentiate into a wide range of differentiated cells. Side population (SP) cells, which are originally defined in bone marrow cells by high efflux of DNA-binding dye, seem to be a new class of multipotent stem cells. Irrespective of the approach used to obtain stem cells, the fates of marrow-derived cells following bone marrow transplantation can be traced by labeling donor cells with green fluorescence protein or by identifying donor Y chromosome in female recipients. So far, bone marrow-derived cells have been reported to differentiate into renal cells, including mesangial cells, endothelial cells, podocytes, and tubular cells in the kidney, although controversy exists. Further studies are required to address this issue. Cell therapy will be promising when we learn to control stem cells such as bone marrow-derived stem cells, embryonic stem cells, and resident stem cells in the kidney. Identification of factors that support stem cells or promote their differentiation should provide a relevant step towards cell therapy.

  14. Treatment of Knee Osteoarthritis With Allogeneic Bone Marrow Mesenchymal Stem Cells: A Randomized Controlled Trial.

    PubMed

    Vega, Aurelio; Martín-Ferrero, Miguel Angel; Del Canto, Francisco; Alberca, Mercedes; García, Veronica; Munar, Anna; Orozco, Lluis; Soler, Robert; Fuertes, Juan Jose; Huguet, Marina; Sánchez, Ana; García-Sancho, Javier

    2015-08-01

    Osteoarthritis is the most prevalent joint disease and a common cause of joint pain, functional loss, and disability. Conventional treatments demonstrate only modest clinical benefits without lesion reversal. Autologous mesenchymal stromal cell (MSC) treatments have shown feasibility, safety, and strong indications for clinical efficacy. We performed a randomized, active control trial to assess the feasibility and safety of treating osteoarthritis with allogeneic MSCs, and we obtain information regarding the efficacy of this treatment. We randomized 30 patients with chronic knee pain unresponsive to conservative treatments and showing radiological evidence of osteoarthritis into 2 groups of 15 patients. The test group was treated with allogeneic bone marrow MSCs by intra-articular injection of 40 × 10(6) cells. The control group received intra-articular hyaluronic acid (60 mg, single dose). Clinical outcomes were followed for 1 year and included evaluations of pain, disability, and quality of life. Articular cartilage quality was assessed by quantitative magnetic resonance imaging T2 mapping. Feasibility and safety were confirmed and indications of clinical efficacy were identified. The MSC-treated patients displayed significant improvement in algofunctional indices versus the active controls treated with hyaluronic acid. Quantification of cartilage quality by T2 relaxation measurements showed a significant decrease in poor cartilage areas, with cartilage quality improvements in MSC-treated patients. Allogeneic MSC therapy may be a valid alternative for the treatment of chronic knee osteoarthritis that is more logistically convenient than autologous MSC treatment. The intervention is simple, does not require surgery, provides pain relief, and significantly improves cartilage quality.

  15. Transplantation of autologous bone marrow-derived mesenchymal stem cells for traumatic brain injury☆

    PubMed Central

    Jiang, Jindou; Bu, Xingyao; Liu, Meng; Cheng, Peixun

    2012-01-01

    Results from the present study demonstrated that transplantation of autologous bone marrow-derived mesenchymal stem cells into the lesion site in rat brain significantly ameliorated brain tissue pathological changes and brain edema, attenuated glial cell proliferation, and increased brain-derived neurotrophic factor expression. In addition, the number of cells double-labeled for 5-bromodeoxyuridine/glial fibrillary acidic protein and cells expressing nestin increased. Finally, blood vessels were newly generated, and the rats exhibited improved motor and cognitive functions. These results suggested that transplantation of autologous bone marrow-derived mesenchymal stem cells promoted brain remodeling and improved neurological functions following traumatic brain injury. PMID:25806058

  16. Immune Humanization of Immunodeficient Mice Using Diagnostic Bone Marrow Aspirates from Carcinoma Patients

    PubMed Central

    Werner-Klein, Melanie; Proske, Judith; Werno, Christian; Schneider, Katharina; Hofmann, Hans-Stefan; Rack, Brigitte; Buchholz, Stefan; Ganzer, Roman; Blana, Andreas; Seelbach-Göbel, Birgit; Nitsche, Ulrich

    2014-01-01

    Tumor xenografts in immunodeficient mice, while routinely used in cancer research, preclude studying interactions of immune and cancer cells or, if humanized by allogeneic immune cells, are of limited use for tumor-immunological questions. Here, we explore a novel way to generate cancer models with an autologous humanized immune system. We demonstrate that hematopoietic stem and progenitor cells (HSPCs) from bone marrow aspirates of non-metastasized carcinoma patients, which are taken at specialized centers for diagnostic purposes, can be used to generate a human immune system in NOD-scid IL2rγ(null) (NSG) and HLA-I expressing NSG mice (NSG-HLA-A2/HHD) comprising both, lymphoid and myeloid cell lineages. Using NSG-HLA-A2/HHD mice, we show that responsive and self-tolerant human T cells develop and human antigen presenting cells can activate human T cells. As critical factors we identified the low potential of bone marrow HSPCs to engraft, generally low HSPC numbers in patient-derived bone marrow samples, cryopreservation and routes of cell administration. We provide here an optimized protocol that uses a minimum number of HSPCs, preselects high-quality bone marrow samples defined by the number of initially isolated leukocytes and intra-femoral or intra-venous injection. In conclusion, the use of diagnostic bone marrow aspirates from non-metastasized carcinoma patients for the immunological humanization of immunodeficient mice is feasible and opens the chance for individualized analyses of anti-tumoral T cell responses. PMID:24830425

  17. G-CSF treatment after myocardial infarction: impact on bone marrow-derived vs cardiac progenitor cells.

    PubMed

    Brunner, Stefan; Huber, Bruno C; Fischer, Rebekka; Groebner, Michael; Hacker, Marcus; David, Robert; Zaruba, Marc-Michael; Vallaster, Marcus; Rischpler, Christoph; Wilke, Andrea; Gerbitz, Armin; Franz, Wolfgang-Michael

    2008-06-01

    Besides its classical function in the field of autologous and allogenic stem cell transplantation, granulocyte colony-stimulating factor (G-CSF) was shown to have protective effects after myocardial infarction (MI) by mobilization of bone marrow-derived progenitor cells (BMCs) and in addition by activation of multiple signaling pathways. In the present study, we focused on the impact of G-CSF on migration of BMCs and the impact on resident cardiac cells after MI. Mice (C57BL/6J) were sublethally irradiated, and BM from green fluorescent protein (GFP)-transgenic mice was transplanted. Coronary artery ligation was performed 10 weeks later. G-CSF (100 microg/kg) was daily injected for 6 days. Subpopulations of enhanced GFP(+) cells in peripheral blood, bone marrow, and heart were characterized by flow cytometry. Growth factor expression in the heart was analyzed by quantitative real-time polymerase chain reaction. Perfusion was investigated in vivo by gated single photon emission computed tomography (SPECT). G-CSF-treated animals revealed a reduced migration of c-kit(+) and CXCR-4(+) BMCs associated with decreased expression levels of the corresponding growth factors, namely stem cell factor and stromal-derived factor-1 alpha in ischemic myocardium. In contrast, the number of resident cardiac Sca-1(+) cells was significantly increased. However, SPECT-perfusion showed no differences in infarct size between G-CSF-treated and control animals 6 days after MI. Our study shows that G-CSF treatment after MI reduces migration capacity of BMCs into ischemic tissue, but increases the number of resident cardiac cells. To optimize homing capacity a combination of G-CSF with other agents may optimize cytokine therapy after MI.

  18. Direct comparison of progenitor cells derived from adipose, muscle, and bone marrow from wild-type or craniosynostotic rabbits

    PubMed Central

    GM, Cooper; EL, Lensie; JJ, Cray; MR, Bykowski; GE, DeCesare; MA, Smalley; MP, Mooney; PG, Campbell; JE, Losee

    2010-01-01

    Background Reports have identified cells capable of osteogenic differentiation in bone marrow, muscle, and adipose tissues, but there are few direct comparisons of these different cell-types. Also, few have investigated the potential connection between a tissue-specific pathology and cells derived from seemingly unrelated tissues. Here, we compare cells isolated from wild-type rabbits or rabbits with nonsyndromic craniosynostosis, defined as the premature fusion of one or more of the cranial sutures. Methods Cells were derived from bone marrow, adipose, and muscle of 10 day-old wild-type rabbits (WT; n=17) or from age-matched rabbits with familial nonsyndromic craniosynostosis (CS; n=18). Cells were stimulated with bone morphogenetic protein 4 (BMP4) and alkaline phosphatase expression and cell proliferation were assessed. Results In WT rabbits, cells derived from muscle had more alkaline phosphatase activity than cells derived from either adipose or bone marrow. The cells derived from CS rabbit bone marrow and muscle were significantly more osteogenic than WT. Adipose-derived cells demonstrated no significant differences. While muscle-derived cells were most osteogenic in WT rabbits, bone marrow-derived cells were most osteogenic in CS rabbits. Conclusions Results suggest that cells from different tissues have different potentials for differentiation. Furthermore, cells derived from rabbits with craniosynostosis were different from wild-type derived cells. Interestingly, cells derived from the craniosynostotic rabbits were not uniformly more responsive compared with wild-type cells, suggesting that specific tissue-derived cells may react differently in individuals with craniosynostosis. PMID:20871482

  19. Extended Culture of Bone Marrow with Granulocyte Macrophage-Colony Stimulating Factor Generates Immunosuppressive Cells

    PubMed Central

    Na, Hye Young; Sohn, Moah; Ryu, Seul Hye; Choi, Wanho; In, Hyunju; Shin, Hyun Soo

    2018-01-01

    Bone marrow-derived dendritic cells (BM-DCs) are generated from bone marrow (BM) cells cultured with granulocyte macrophage-colony stimulating factor (GM-CSF) for a week. In this study we investigated the effect of duration on the BM culture with GM-CSF. Within several months, the cells in the BM culture gradually expressed homogeneous levels of CD11c and major histocompatibility complex II on surface, and they became unable to stimulate allogeneic naïve T cells in mixed lymphocyte reaction (MLR). In addition, when the BM culture were sustained for 32 wk or longer, the BM cells acquired ability to suppress the proliferation of allogeneic T cells in MLR as well as the response of ovalbumin-specific OT-I transgenic T cells in antigen-dependent manner. We found that, except for programmed death-ligand 1, most cell surface molecules were expressed lower in the BM cells cultured with GM-CSF for the extended duration. These results indicate that BM cells in the extended culture with GM-CSF undergo 2 distinct steps of functional change; first, they lose the immunostimulatory capacity; and next, they gain the immunosuppressive ability. PMID:29736292

  20. A case series of CAEBV of children and young adults treated with reduced-intensity conditioning and allogeneic bone marrow transplantation: a single-center study.

    PubMed

    Watanabe, Yuko; Sasahara, Yoji; Satoh, Miki; Looi, Chung Yeng; Katayama, Saori; Suzuki, Tasuku; Suzuki, Nobu; Ouchi, Meri; Horino, Satoshi; Moriya, Kunihiko; Nanjyo, Yuka; Onuma, Masaei; Kitazawa, Hiroshi; Irie, Masahiro; Niizuma, Hidetaka; Uchiyama, Toru; Rikiishi, Takeshi; Kumaki, Satoru; Minegishi, Masayoshi; Wada, Taizo; Yachie, Akihiro; Tsuchiya, Shigeru; Kure, Shigeo

    2013-09-01

    Epstein-Barr virus (EBV)-infected T or NK cells cause chronic active EBV infection (CAEBV). Allogeneic hematopoietic stem cell transplantation (HSCT) is curative treatment for CAEBV patients. However, chemotherapy prior to HSCT and optimal conditioning regimen for allogeneic HSCT are still controversial. We retrospectively analyzed five patients with CAEBV treated with reduced-intensity conditioning (RIC) consisted of fludarabine, cyclophosphamide, and low-dose total-body irradiation followed by allogeneic bone marrow transplantation in a single institute. Only one of five patients received chemotherapy prior to transplantation. We analyzed EBV-infected cells in a patient whose EBV load increased after HSCT by T-cell repertoire assay, separation of T-cell subpopulations, in situ hybridization and microsatellite analysis. All five patients achieved engraftment, complete chimera, and eradication of EBV load. All patients have been alive without any serious regimen-related toxicity for more than 16 months following HSCT. However, one patient transplanted from HLA-matched sibling donor developed clonal proliferation of CD4+ Vβ3+ T cells caused by monoclonal EBV infection on day 99 after transplantation. Further analysis revealed that the CD4+ Vβ3+ T cells selectively harbored EBV genome, and these infected cells were derived from donor T cells. Allogeneic HSCT with RIC is a safe and effective treatment for better overall survival and less regimen-related toxicity in patients with CAEBV. Our first pediatric case reported in the literature suggests that we should consider the possibility of persistent EBV infection in donor T cells as well as the relapse in recipient cells if EBV load increases after allogeneic HSCT. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. CD13-positive bone marrow-derived myeloid cells promote angiogenesis, tumor growth, and metastasis.

    PubMed

    Dondossola, Eleonora; Rangel, Roberto; Guzman-Rojas, Liliana; Barbu, Elena M; Hosoya, Hitomi; St John, Lisa S; Molldrem, Jeffrey J; Corti, Angelo; Sidman, Richard L; Arap, Wadih; Pasqualini, Renata

    2013-12-17

    Angiogenesis is fundamental to tumorigenesis and an attractive target for therapeutic intervention against cancer. We have recently demonstrated that CD13 (aminopeptidase N) expressed by nonmalignant host cells of unspecified types regulate tumor blood vessel development. Here, we compare CD13 wild-type and null bone marrow-transplanted tumor-bearing mice to show that host CD13(+) bone marrow-derived cells promote cancer progression via their effect on angiogenesis. Furthermore, we have identified CD11b(+)CD13(+) myeloid cells as the immune subpopulation directly regulating tumor blood vessel development. Finally, we show that these cells are specifically localized within the tumor microenvironment and produce proangiogenic soluble factors. Thus, CD11b(+)CD13(+) myeloid cells constitute a population of bone marrow-derived cells that promote tumor progression and metastasis and are potential candidates for the development of targeted antiangiogenic drugs.

  2. Alterations of the bone marrow stromal microenvironment in adult patients with acute myeloid and lymphoblastic leukemias before and after allogeneic hematopoietic stem cell transplantation.

    PubMed

    Shipounova, Irina N; Petinati, Nataliya A; Bigildeev, Alexey E; Drize, Nina J; Sorokina, Tamara V; Kuzmina, Larisa A; Parovichnikova, Elena N; Savchenko, Valeri G

    2017-02-01

    Bone marrow (BM) derived adult multipotent mesenchymal stromal cells (MMSCs) and fibroblast colony-forming units (CFU-Fs) of 20 patients with acute myeloid leukemia (AML) and 15 patients with acute lymphoblastic leukemia (ALL) before and during 1 year after receiving allogeneic hematopoietic stem cell transplantation (allo-HSCT) were studied. The growth characteristics of MMSCs of all patients before allo-HSCT were not altered; however, relative expression level (REL) of some genes in MMSCs, but not in CFU-Fs, from AML and ALL patients significantly changed. After allo-HSCT, CFU-F concentration and MMSC production were significantly decreased for 1 year; REL of several genes in MMSCs and CFU-F-derived colonies were also significantly downregulated. Thus, chemotherapy that was used for induction of remission did not impair the function of stromal precursors, but gene expression levels were altered. Allo-HSCT conditioning regimens significantly damaged MMSCs and CFU-Fs, and the effect lasted for at least 1 year.

  3. Bone marrow aspiration

    MedlinePlus

    Iliac crest tap; Sternal tap; Leukemia - bone marrow aspiration; Aplastic anemia - bone marrow aspiration; Myelodysplastic syndrome - bone marrow aspiration; Thrombocytopenia - bone marrow aspiration; Myelofibrosis - bone marrow aspiration

  4. The healing effect of bone marrow-derived stem cells in acute radiation syndrome.

    PubMed

    Mortazavi, Seyed Mohammad Javad; Shekoohi-Shooli, Fatemeh; Aghamir, Seyed Mahmood Reza; Mehrabani, Davood; Dehghanian, Amirreza; Zare, Shahrokh; Mosleh-Shirazi, Mohammad Amin

    2016-01-01

    To determine the effect of bone marrow-derived mesenchymal stem cells (BMSCs) on regeneration of bone marrow and intestinal tissue and survival rate in experimental mice with acute radiation syndrome (ARS). Forty mice were randomly divided into two equal groups of A receiving no BMSC transplantation and B receiving BMSCs. BMSCs were isolated from the bone marrow and cultured in DMEM media. Both groups were irradiated with 10 Gy (dose rate 0.28 Gy/ min) (60)CO during 35 minutes with a field size of 35×35 for all the body area. Twenty-four hours after γ irradiation, 150×10(3) cells of passage 5 in 150 µl medium were injected intravenously into the tail. Animals were euthanized one and two weeks after cell transplantation. They were evaluated histologically for any changes in bone marrow and intestinal tissues. The survival rate in mice were also determined. A significant increase for bone marrow cell count and survival rate were observed in group B in comparison to group A. Histological findings denoted to a healing in sample tissues. BMSCs could significantly reduce the side effects of ARS and increase the survival rate and healing in injured tissue. As such their transplantation may open a window in treatment of patients with ARS.

  5. [Allogeneic haematopoietic cell transplantation for indolent lymphomas: Guidelines from the Francophone Society Bone Marrow Transplantation and Cellular Therapy (SFGM-TC)].

    PubMed

    Gauthier, Jordan; Chantepie, Sylvain; Bouabdallah, Krimo; Jost, Edgar; Nguyen, Stéphanie; Gac, Anne-Claire; Damaj, Gandhi; Duléry, Rémy; Michallet, Mauricette; Delage, Jérémy; Lewalle, Philippe; Morschhauser, Franck; Salles, Gilles; Yakoub-Agha, Ibrahim; Cornillon, Jérôme

    2017-12-01

    Despite great improvements in the outcome of patients with lymphoma, some may still relapse or present with primary refractory disease. In these situations, allogeneic hematopoietic cell transplantation is a potentially curative option, this is true particularly the case of relapse after autologous stem cell transplantation. Recently, novel agents such as anti-PD1 and BTK inhibitors have started to challenge the use of allogeneic hematopoietic cell transplantation for relapsed or refractory lymphoma. During the 2016 annual workshop of the Francophone Society of Bone Marrow Transplantation and Cellular Therapy (SFGM-TC), we performed a comprehensive review of the literature published in the last 10 years and established guidelines to clarify the indications and transplant modalities in this setting. This paper specifically reports on our conclusions regarding indolent lymphomas, mainly follicular lymphoma and chronic lymphocytic leukemia. Copyright © 2017 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  6. Dexamethasone Enhances Osteogenic Differentiation of Bone Marrow- and Muscle-Derived Stromal Cells and Augments Ectopic Bone Formation Induced by Bone Morphogenetic Protein-2

    PubMed Central

    Yuasa, Masato; Yamada, Tsuyoshi; Taniyama, Takashi; Masaoka, Tomokazu; Xuetao, Wei; Yoshii, Toshitaka; Horie, Masaki; Yasuda, Hiroaki; Uemura, Toshimasa; Okawa, Atsushi; Sotome, Shinichi

    2015-01-01

    We evaluated whether dexamethasone augments the osteogenic capability of bone marrow-derived stromal cells (BMSCs) and muscle tissue-derived stromal cells (MuSCs), both of which are thought to contribute to ectopic bone formation induced by bone morphogenetic protein-2 (BMP-2), and determined the underlying mechanisms. Rat BMSCs and MuSCs were cultured in growth media with or without 10-7 M dexamethasone and then differentiated under osteogenic conditions with dexamethasone and BMP-2. The effects of dexamethasone on cell proliferation and osteogenic differentiation, and also on ectopic bone formation induced by BMP-2, were analyzed. Dexamethasone affected not only the proliferation rate but also the subpopulation composition of BMSCs and MuSCs, and subsequently augmented their osteogenic capacity during osteogenic differentiation. During osteogenic induction by BMP-2, dexamethasone also markedly affected cell proliferation in both BMSCs and MuSCs. In an in vivo ectopic bone formation model, bone formation in muscle-implanted scaffolds containing dexamethasone and BMP-2 was more than two fold higher than that in scaffolds containing BMP-2 alone. Our results suggest that dexamethasone potently enhances the osteogenic capability of BMP-2 and may thus decrease the quantity of BMP-2 required for clinical application, thereby reducing the complications caused by excessive doses of BMP-2. Highlights: 1. Dexamethasone induced selective proliferation of bone marrow- and muscle-derived cells with higher differentiation potential. 2. Dexamethasone enhanced the osteogenic capability of bone marrow- and muscle-derived cells by altering the subpopulation composition. 3. Dexamethasone augmented ectopic bone formation induced by bone morphogenetic protein-2. PMID:25659106

  7. Saprochaete clavata invasive infection in a patient with severe aplastic anemia: Efficacy of voriconazole and liposomal amphotericin B with adjuvant granulocyte transfusions before neutrophil recovery following allogeneic bone marrow transplantation.

    PubMed

    Favre, Simon; Rougeron, Amandine; Levoir, Laure; Pérard, Baptiste; Milpied, Noël; Accoceberry, Isabelle; Gabriel, Frédéric; Vigouroux, Stéphane

    2016-03-01

    We report a case of a 27-year old man with severe aplastic anemia who developed a Saprochaete clavata (Geotrichum clavatum) disseminated invasive infection shortly prior a scheduled allogeneic bone marrow transplantation. Treatment with a combination of voriconazole, liposomal amphotericin B and adjuvant granulocyte transfusions was successful before neutrophil recovery.

  8. Conditioning with Fludarabine-Busulfan versus Busulfan-Cyclophosphamide Is Associated with Lower aGVHD and Higher Survival but More Extensive and Long Standing Bone Marrow Damage

    PubMed Central

    Ye, YongBin; Wang, Jing; Huang, YuXian; Weng, GuangYang; Zhang, MingWan

    2016-01-01

    Acute graft-versus-host disease (aGVHD) is a major complication of allogeneic hematopoietic stem cell transplantation (allo-HSCT) and a major cause of nonrelapse mortality after allo-HSCT. A conditioning regimen plays a pivotal role in the development of aGVHD. To provide a platform for studying aGVHD and evaluating the impact of different conditioning regimens, we established a murine aGVHD model that simulates the clinical situation and can be conditioned with Busulfan-Cyclophosphamide (Bu-Cy) and Fludarabine-Busulfan (Flu-Bu). In our study, BALB/c mice were conditioned with Bu-Cy or Flu-Bu and transplanted with 2 × 107 bone marrow cells and 2 × 107 splenocytes from either allogeneic (C57BL/6) or syngeneic (BALB/c) donors. The allogeneic recipients conditioned with Bu-Cy had shorter survivals (P < 0.05), more severe clinical manifestations, and higher hepatic and intestinal pathology scores, associated with increased INF-γ expression and diminished IL-4 expression in serum, compared to allogeneic recipients conditioned with Flu-Bu. Moreover, higher donor-derived T-cell infiltration and severely impaired B-cell development were seen in the bone marrow of mice, exhibiting aGVHD and conditioned with Flu-Bu. Our study showed that the conditioning regimen with Bu-Cy resulted in more severe aGVHD while the Flu-Bu regimen was associated with more extensive and long standing bone marrow damage. PMID:27843940

  9. A composite demineralized bone matrix--self assembling peptide scaffold for enhancing cell and growth factor activity in bone marrow.

    PubMed

    Hou, Tianyong; Li, Zhiqiang; Luo, Fei; Xie, Zhao; Wu, Xuehui; Xing, Junchao; Dong, Shiwu; Xu, Jianzhong

    2014-07-01

    The need for suitable bone grafts is high; however, there are limitations to all current graft sources, such as limited availability, the invasive harvest procedure, insufficient osteoinductive properties, poor biocompatibility, ethical problems, and degradation properties. The lack of osteoinductive properties is a common problem. As an allogenic bone graft, demineralized bone matrix (DBM) can overcome issues such as limited sources and comorbidities caused by invasive harvest; however, DBM is not sufficiently osteoinductive. Bone marrow has been known to magnify osteoinductive components for bone reconstruction because it contains osteogenic cells and factors. Mesenchymal stem cells (MSCs) derived from bone marrow are the gold standard for cell seeding in tissue-engineered biomaterials for bone repair, and these cells have demonstrated beneficial effects. However, the associated high cost and the complicated procedures limit the use of tissue-engineered bone constructs. To easily enrich more osteogenic cells and factors to DBM by selective cell retention technology, DBM is modified by a nanoscale self-assembling peptide (SAP) to form a composite DBM/SAP scaffold. By decreasing the pore size and increasing the charge interaction, DBM/SAP scaffolds possess a much higher enriching yield for osteogenic cells and factors compared with DBM alone scaffolds. At the same time, SAP can build a cellular microenvironment for cell adhesion, proliferation, and differentiation that promotes bone reconstruction. As a result, a suitable bone graft fabricated by DBM/SAP scaffolds and bone marrow represents a new strategy and product for bone transplantation in the clinic. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Human gingiva-derived mesenchymal stem cells are superior to bone marrow-derived mesenchymal stem cells for cell therapy in regenerative medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomar, Geetanjali B.; Srivastava, Rupesh K.; Gupta, Navita

    2010-03-12

    Mesenchymal stem cells (MSCs) are capable of self-renewal and differentiation into multiple cell lineages. Presently, bone marrow is considered as a prime source of MSCs; however, there are some drawbacks and limitations in use of these MSCs for cell therapy. In this study, we demonstrate that human gingival tissue-derived MSCs have several advantages over bone marrow-derived MSCs. Gingival MSCs are easy to isolate, homogenous and proliferate faster than bone marrow MSCs without any growth factor. Importantly, gingival MSCs display stable morphology and do not loose MSC characteristic at higher passages. In addition, gingival MSCs maintain normal karyotype and telomerase activitymore » in long-term cultures, and are not tumorigenic. Thus, we reveal that human gingiva is a better source of MSCs than bone marrow, and large number of functionally competent clinical grade MSCs can be generated in short duration for cell therapy in regenerative medicine and tissue engineering.« less

  11. Silk fibroin/chitosan thin film promotes osteogenic and adipogenic differentiation of rat bone marrow-derived mesenchymal stem cells.

    PubMed

    Li, Da-Wei; He, Jin; He, Feng-Li; Liu, Ya-Li; Liu, Yang-Yang; Ye, Ya-Jing; Deng, Xudong; Yin, Da-Chuan

    2018-04-01

    As a biodegradable polymer thin film, silk fibroin/chitosan composite film overcomes the defects of pure silk fibroin and chitosan films, respectively, and shows remarkable biocompatibility, appropriate hydrophilicity and mechanical properties. Silk fibroin/chitosan thin film can be used not only as metal implant coating for bone injury repair, but also as tissue engineering scaffold for skin, cornea, adipose, and other soft tissue injury repair. However, the biocompatibility of silk fibroin/chitosan thin film for mesenchymal stem cells, a kind of important seed cell of tissue engineering and regenerative medicine, is rarely reported. In this study, silk fibroin/chitosan film was prepared by solvent casting method, and the rat bone marrow-derived mesenchymal stem cells were cultured on the silk fibroin/chitosan thin film. Osteogenic and adipogenic differentiation of rat bone marrow-derived mesenchymal stem cells were induced, respectively. The proliferation ability, osteogenic and adipogenic differentiation abilities of rat bone marrow-derived mesenchymal stem cells were systematically compared between silk fibroin/chitosan thin film and polystyrene tissue culture plates. The results showed that silk fibroin/chitosan thin film not only provided a comparable environment for the growth and proliferation of rat bone marrow-derived mesenchymal stem cells but also promoted their osteogenic and adipogenic differentiation. This work provided information of rat bone marrow-derived mesenchymal stem cells behavior on silk fibroin/chitosan thin film and extended the application of silk fibroin/chitosan thin film. Based on the results, we suggested that the silk fibroin/chitosan thin film could be a promising material for tissue engineering of bone, cartilage, adipose, and skin.

  12. Long-Term Results of Cartilage Repair after Allogeneic Transplantation of Cartilaginous Aggregates Formed from Bone Marrow–Derived Cells for Large Osteochondral Defects in Rabbit Knees

    PubMed Central

    Mishima, Hajime; Sakai, Shinsuke; Uemura, Toshimasa

    2013-01-01

    Objective: The purpose of this study was to evaluate the long-term results of cartilage repair after allogeneic transplantation of cartilaginous aggregates formed from bone marrow–derived cells. Methods: Bone marrow cells were harvested from 12-day-old rabbits. The cells were subjected to a monolayer culture, and the spindle-shaped cells attached to the flask surface were defined as bone marrow–derived mesenchymal cells. After the monolayer culture, a 3-dimensional cartilaginous aggregate was formed using a bioreactor with chondrogenesis. We created osteochondral defects, measuring 5 mm in diameter and 4 mm in depth, at the femoral trochlea of 10-week-old rabbits. Two groups were established, the transplanted group in which the cartilaginous aggregate was transplanted into the defect, and the control group in which the defect was left untreated. Twenty-six and 52 weeks after surgery, the rabbits were sacrificed and their tissue repair status was evaluated macroscopically (International Cartilage Repair Society [ICRS] score) and histologically (O’Driscoll score). Results: The ICRS scores were as follows: at week 26, 7.2 ± 0.5 and 7.6 ± 0.8; at week 52, 7.6 ± 1.1 and 9.7 ± 0.7, for the transplanted and control groups, respectively. O’Driscoll scores were as follows: at week 26, 12.6 ± 1.9 and 10.1 ± 1.9; at week 52, 9.6 ± 3.0 and 14.0 ± 1.4, each for transplanted and control groups, respectively. No significant differences were observed between the groups. Conclusions: This study demonstrates that allogeneic transplantation of cartilaginous aggregates formed from bone marrow–derived cells produces comparable long-term results based on macroscopic and histological outcome measures when compared with osteochondral defects that are left untreated. PMID:26069678

  13. FoxO4 inhibits atherosclerosis through its function in bone marrow derived cells

    PubMed Central

    Zhu, Min; Zhang, Qing-Jun; Wang, Lin; Li, Hao; Liu, Zhi-Ping

    2011-01-01

    Objectives FoxO proteins are transcription factors involved in varieties of cellular processes, including immune cell homeostasis, cytokine production, anti-oxidative stress, and cell proliferation and differentiation. Although these processes are implicated in the development of atherosclerosis, very little is known about the role of FoxO proteins in the context of atherosclerosis. Our objectives were to determine whether and how inactivation of Foxo4, a member of the FoxO family, in vivo promotes atherosclerosis. Methods and Results Apolipoprotein E-deficient (apoE−/−) mice were crossbred with animals lacking Foxo4 (Foxo4−/−). After 10 weeks on a high fat diet (HFD), Foxo4−/−apoE−/− mice showed elevated atherosclerosis and increased amount of macrophages and T cells in the plaque compared to apoE−/− mice. Bone marrow transplantations of chimeric C57B/6 mice reconstituted with either wild-type or Foxo4−/− bone marrows indicate that Foxo4-deficiency in bone marrow derived cells sufficiently promoted atherosclerosis. Foxo4-null macrophages produced elevated inflammatory cytokine IL-6 and levels of reactive oxygen species (ROS) in response to lipopolysaccharides in vitro. Serum levels of IL-6 were upregulated in HFD-fed Foxo4−/−apoE−/− mice compared to those of apoE−/− mice. Conclusions FoxO4 inhibits atherosclerosis through bone marrow derived cells, possibly by inhibition of ROS and inflammatory cytokines that promote monocyte recruitment and/or retention. PMID:22005198

  14. Telomerase deficiency in bone marrow-derived cells attenuates angiotensin II-induced abdominal aortic aneurysm formation.

    PubMed

    Findeisen, Hannes M; Gizard, Florence; Zhao, Yue; Cohn, Dianne; Heywood, Elizabeth B; Jones, Karrie L; Lovett, David H; Howatt, Deborah A; Daugherty, Alan; Bruemmer, Dennis

    2011-02-01

    Abdominal aortic aneurysms (AAA) are an age-related vascular disease and an important cause of morbidity and mortality. In this study, we sought to determine whether the catalytic component of telomerase, telomerase reverse transcriptase (TERT), modulates angiotensin (Ang) II-induced AAA formation. Low-density lipoprotein receptor-deficient (LDLr-/-) mice were lethally irradiated and reconstituted with bone marrow-derived cells from TERT-deficient (TERT-/-) mice or littermate wild-type mice. Mice were placed on a diet enriched in cholesterol, and AAA formation was quantified after 4 weeks of Ang II infusion. Repopulation of LDLr-/- mice with TERT-/- bone marrow-derived cells attenuated Ang II-induced AAA formation. TERT-deficient recipient mice revealed modest telomere attrition in circulating leukocytes at the study end point without any overt effect of the donor genotype on white blood cell counts. In mice repopulated with TERT-/- bone marrow, aortic matrix metalloproteinase-2 (MMP-2) activity was reduced, and TERT-/- macrophages exhibited decreased expression and activity of MMP-2 in response to stimulation with Ang II. Finally, we demonstrated in transient transfection studies that TERT overexpression activates the MMP-2 promoter in macrophages. TERT deficiency in bone marrow-derived macrophages attenuates Ang II-induced AAA formation in LDLr-/- mice and decreases MMP-2 expression. These results point to a previously unrecognized role of TERT in the pathogenesis of AAA.

  15. Improved bone marrow stromal cell adhesion on micropatterned titanium surfaces.

    PubMed

    Iskandar, Maria E; Cipriano, Aaron F; Lock, Jaclyn; Gott, Shannon C; Rao, Masaru P; Liu, Huinan

    2012-01-01

    Implant longevity is desired for all bone replacements and fixatives. Titanium (Ti) implants fail due to lack of juxtaposed bone formation, resulting in implant loosening. Implant surface modifications have shown to affect the interactions between the implant and bone. In clinical applications, it is crucial to improve osseointegration and implant fixation at the implant and bone interface. Moreover, bone marrow derived cells play a significant role for implant and tissue integration. Therefore, the objective of this study is to investigate how surface micropatterning on Ti influences its interactions with bone marrow derived cells containing mesenchymal and hematopoietic stem cells. Bone marrow derived mesenchymal stem cells (BMSC) have the capability of differentiating into osteoblasts that contribute to bone growth, and therefore implant/bone integration. Hematopoietic stem cell derivatives are precursor cells that contribute to inflammatory response. By using all three cells naturally contained within bone marrow, we mimic the physiological environment to which an implant is exposed. Primary rat bone marrow derived cells were seeded onto Ti with surfaces composed of arrays of grooves of equal width and spacing ranging from 0.5 to 50 µm, fabricated using a novel plasma-based dry etching technique. Results demonstrated enhanced total cell adhesion on smaller micrometer-scale Ti patterns compared with larger micrometer-scale Ti patterns, after 24-hr culture. Further studies are needed to determine bone marrow derived cell proliferation and osteogenic differentiation potential on micropatterned Ti, and eventually nanopatterned Ti.

  16. A human bone marrow mesodermal-derived cell population with hemogenic potential.

    PubMed

    Mokhtari, Saloomeh; Colletti, Evan; Yin, Weihong; Sanada, Chad; Lamar, Zanetta; Simmons, Paul J; Walker, Steven; Bishop, Colin; Atala, Anthony; Zanjani, Esmail D; Porada, Christopher D; Almeida-Porada, Graça

    2018-02-02

    The presence, within the human bone marrow, of cells with both endothelial and hemogenic potential has been controversial. Herein, we identify, within the human fetal bone marrow, prior to establishment of hematopoiesis, a unique APLNR+, Stro-1+ cell population, co-expressing markers of early mesodermal precursors and/or hemogenic endothelium. In adult marrow, cells expressing similar markers are also found, but at very low frequency. These adult-derived cells can be extensively culture expanded in vitro without loss of potential, they preserve a biased hemogenic transcriptional profile, and, upon in vitro induction with OCT4, assume a hematopoietic phenotype. In vivo, these cells, upon transplantation into a fetal microenvironment, contribute to the vasculature, and generate hematopoietic cells that provide multilineage repopulation upon serial transplantation. The identification of this human somatic cell population provides novel insights into human ontogenetic hematovascular potential, which could lead to a better understanding of, and new target therapies for, malignant and nonmalignant hematologic disorders.

  17. Allogeneic bone marrow transplantation in multiple myeloma.

    PubMed

    Tura, S; Cavo, M

    1992-04-01

    The use of high-dose chemoradiotherapy with allogeneic hemopoietic stem cell support for the treatment of MM began about a decade ago. Because this procedure has been performed increasingly and because larger numbers of patients are being followed for longer periods of time, the proper role of allogeneic BMT in this setting is becoming clearer. Data available thus far indicate that such an approach results in a complete remission rate of at least 50% to 60%, and even higher if applied as consolidation treatment in the remission phase, a transplant-related mortality reported as 40% to 50% and a long-term survival plateau at around 40%. The 40% 5-year probability of relapse-free survival is considerably higher than that observed following autologous BMT and may result from an allogeneic graft-versus-tumor effect (graft versus myeloma) similar to the well-recognized graft-versus-leukemia effect. Although follow-up is still too short to clearly identify the likelihood of cure for MM allotransplant recipients, a certain number of them are currently long-term, disease-free survivors and--we hope--cured. These promising results and the incurability of MM with conventional chemotherapy should, therefore, encourage further application of allogeneic BMT to selected patients with unfavorable prognostic features. Continued efforts to reduce the morbidity and mortality related to the procedure, as well as to design effective pretransplant regimens with lower extramedullary toxicity and to identify those patients most likely to benefit from BMT, will improve the value of allogeneic BMT in MM.

  18. Allogeneic cell transplant expands bone marrow distribution by colonizing previously abandoned areas: an FDG PET/CT analysis.

    PubMed

    Fiz, Francesco; Marini, Cecilia; Campi, Cristina; Massone, Anna Maria; Podestà, Marina; Bottoni, Gianluca; Piva, Roberta; Bongioanni, Francesca; Bacigalupo, Andrea; Piana, Michele; Sambuceti, Gianmario; Frassoni, Francesco

    2015-06-25

    Mechanisms of hematopoietic reconstitution after bone marrow (BM) transplantation remain largely unknown. We applied a computational quantification software application to hybrid 18F-fluorodeoxyglucose positron emission tomography (PET)/computed tomography (CT) images to assess activity and distribution of the hematopoietic system throughout the whole skeleton of recently transplanted patients. Thirty-four patients underwent PET/CT 30 days after either adult stem cell transplantation (allogeneic cell transplantation [ACT]; n = 18) or cord blood transplantation (CBT; n = 16). Our software automatically recognized compact bone volume and trabecular bone volume (IBV) in CT slices. Within IBV, coregistered PET data were extracted to identify the active BM (ABM) from the inactive tissue. Patients were compared with 34 matched controls chosen among a published normalcy database. Whole body ABM increased in ACT and CBT when compared with controls (12.4 ± 3 and 12.8 ± 6.8 vs 8.1 ± 2.6 mL/kg of ideal body weight [IBW], P < .001). In long bones, ABM increased three- and sixfold in CBT and ACT, respectively, compared with controls (0.9 ± 0.9 and 1.7 ± 2.5 vs 0.3 ± 0.3 mL/kg IBW, P < .01). These data document an unexpected distribution of transplanted BM into previously abandoned BM sites. © 2015 by The American Society of Hematology.

  19. Pleuroparenchymal fibroelastosis as a series of airway complications associated with chronic graft-versus-host disease following allogeneic bone marrow transplantation.

    PubMed

    Fujikura, Yuji; Kanoh, Soichiro; Kouzaki, Yuji; Hara, Yu; Matsubara, Osamu; Kawana, Akihiko

    2014-01-01

    We herein report the case of a 31-year-old woman who presented with bilateral upper lobe volume loss and pleural irregularities with hilar retraction. She had undergone allogeneic bone marrow transplantation (BMT) for the treatment of acute lymphoblastic leukemia nine years earlier. A surgical lung biopsy showed pleural thickening and subpleural alveolar collapse and fibrosis, consistent with a diagnosis of pleuroparenchymal fibroelastosis (PPFE). Antecedent sicca syndrome and the absence of other causes of fibroelastosis suggested that these abnormalities were associated with chronic graft-versus-host disease (cGVHD). PPFE as a late, noninfectious complication is rare; however, the present case suggests a new class of BMT-related pulmonary complications associated with cGVHD.

  20. Acute mobilization and migration of bone marrow-derived stem cells following anterior cruciate ligament rupture.

    PubMed

    Maerz, T; Fleischer, M; Newton, M D; Davidson, A; Salisbury, M; Altman, P; Kurdziel, M D; Anderson, K; Bedi, A; Baker, K C

    2017-08-01

    Little is known regarding acute local and systemic processes following anterior cruciate ligament (ACL) rupture. No study has elucidated whether bone marrow-derived mesenchymal stem cells (MSCs) are mobilized into circulation and recruited to the injured joint. In Part 1, Lewis rats were randomized to noninvasive ACL rupture (Rupture) or non-injured (Control) (n = 6/group). After 72 h, whole blood MSC concentration was assessed using flow cytometry. Synovial fluid and serum were assayed for stromal cell-derived factor (SDF)-1α and cartilage degeneration biomarkers, respectively. In Part 2, 12 additional rats were randomized and intravenously-injected with fluorescently-labeled allogenic MSCs. Cell tracking was performed using longitudinal, in vivo and ex vivo near-infrared (NIR) imaging and histology. Synovium SDF-1α and interleukin (IL)-17A immunostaining was performed. Serum was assayed for SDF-1α and 29 other cytokines. In Part 1, there was a significant increase in MSC concentration and synovial fluid SDF-1α in Rupture. No differences in cartilage biomarkers were observed. In Part 2, Rupture had significantly higher NIR signal at 24, 48, and 72 h, indicating active recruitment of MSCs to the injured joint. Ex vivo cell tracking demonstrated MSC localization in the synovium and myotendinous junction (MTJ) of the quadriceps. Injured synovia exhibited increased synovitis grade and higher degree of IL-17A and SDF-1α immunostaining. ACL rupture induced peripheral blood mobilization of MSCs and migration of intravenously-injected allogenic MSCs to the injured joint, where they localized in the synovium and quadriceps MTJ. Copyright © 2017 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  1. Generation and Identification of GM-CSF Derived Alveolar-like Macrophages and Dendritic Cells From Mouse Bone Marrow

    PubMed Central

    Dong, Yifei; Arif, Arif A.; Poon, Grace F. T.; Hardman, Blair; Dosanjh, Manisha; Johnson, Pauline

    2016-01-01

    Macrophages and dendritic cells (DCs) are innate immune cells found in tissues and lymphoid organs that play a key role in the defense against pathogens. However, they are difficult to isolate in sufficient numbers to study them in detail, therefore, in vitro models have been developed. In vitro cultures of bone marrow-derived macrophages and dendritic cells are well-established and valuable methods for immunological studies. Here, a method for culturing and identifying both DCs and macrophages from a single culture of primary mouse bone marrow cells using the cytokine granulocyte macrophage colony-stimulating factor (GM-CSF) is described. This protocol is based on the established procedure first developed by Lutz et al. in 1999 for bone marrow-derived DCs. The culture is heterogeneous, and MHCII and fluoresceinated hyaluronan (FL-HA) are used to distinguish macrophages from immature and mature DCs. These GM-CSF derived macrophages provide a convenient source of in vitro derived macrophages that closely resemble alveolar macrophages in both phenotype and function. PMID:27404290

  2. Essential requirement of I-A region-identical host bone marrow or bone marrow-derived cells for tumor neutralization by primed L3T4+ T cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozawa, H.; Iwaguchi, T.; Kataoka, T.

    1987-12-01

    The antitumor activity of Meth A-hyperimmunized BALB/c mouse spleen cells (Meth A-Im-SPL) was assayed by the Winn test in H-2 incompatible bone marrow chimeras in closed colony CD-1 (nu/nu), inbred DDD/1(nu/nu) (H-2s), or inbred BALB/c(nu/nu) (H-2d) mice as recipients. We found that Meth A-Im-SPL suppressed Meth A growth in the chimera nude mice which were reconstituted with bone marrow cells of the H-2d haplotype (i.e., BALB/c, DBA/2 and B10.D2), but not in the chimeras which were reconstituted with bone marrow cells of the H-2a, H-2b, or H-2k haplotype (i.e., B10.A, B10, and B10.BR). These results suggested that H-2 restriction occurredmore » between Meth A-Im-SPL and bone marrow or bone marrow-derived cells in tumor neutralization. Furthermore, Meth A-Im-SPL did not suppress Meth 1 tumors (antigenically distinct from Meth A tumors) in the presence or absence of mitomycin C-treated Meth A in a Winn assay. These results suggested that there is tumor specificity in the effector phase as well as in the induction phase. The phenotype of the effectors in the Meth A-Im-SPL was Thy-1.2+ and L3T4+, because Meth A-Im-SPL lost their antitumor activity with pretreatment with anti-Thy-1.2 monoclonal antibody (mAb) and complement or anti-L3T4 mAb and complement, but not with anti-Lyt-2.2 mAb and complement or complement alone. Positively purified L3T4+ T cells from Meth A-Im-SPL (Meth A-Im-L3T4), obtained by the panning method, suppressed the tumor growth in the chimera nude mice which were reconstituted with bone marrow cells of B10.KEA2 mice (that were I-A region-identical with Meth A-Im-L3T4 cells but not others in H-2) as well as B10.D2 cells (that were fully identical with Meth A-Im-L3T4 cells in H-2). We conclude that Meth A-Im-SPL (L3T4+) neutralized the tumors in collaboration with I-A region-identical host bone marrow or bone marrow-derived cells, and the neutralization was not accompanied by the bystander effect.« less

  3. Enhanced adipogenic differentiation of bovine bone marrow-derived mesenchymal stem cells

    USDA-ARS?s Scientific Manuscript database

    Until now, the isolation and characterization of bovine bone marrow-derived mesenchymal stem cells (bBM-MSCs) have not been established, which prompted us to optimize the differentiation protocol for bBM-MSCs. In this study, bBM-MSCs were freshly isolated from three 6-month-old cattle and used for p...

  4. High glucose induces bone marrow-derived mesenchymal stem cell senescence by upregulating autophagy.

    PubMed

    Chang, Tzu-Ching; Hsu, Min-Fen; Wu, Kenneth K

    2015-01-01

    Hyperglycemia was reported to cause bone marrow hematopoietic niche dysfunction, and high glucose (HG) in the cultured medium induces MSC senescence. The underlying mechanism is unclear. Here, we investigated the role of HG-induced autophagy in bone-marrow-derived mesenchymal stem cell (BMSC) senescence. HG (25 mM) increased expression of Beclin-1, Atg 5, 7 and 12, generation of LC3-II and autophagosome formation which was correlated with development of cell senescence. Pretreatment of HG-MSC with 3-methyladenine (3-MA) prevented senescence but increased apoptosis. N-acetylcysteine (NAC) was effective in abrogating HG-induced autophagy accompanied by prevention of senescence. Diphenyleneiodonium (DPI), an inhibitor of NADPH oxidase, blocked autophagy and senescence in a manner comparable to NAC. 3-MA, NAC and DPI inhibited HG-induced interleukin-6 production in BMSCs. These results suggest that hyperglycemia induces MSC senescence and local inflammation via a novel oxidant-mediated autophagy which contributes to bone marrow niche dysfunction and hematopoietic impairment.

  5. Alkylating chemotherapeutic agents cyclophosphamide and melphalan cause functional injury to human bone marrow-derived mesenchymal stem cells.

    PubMed

    Kemp, Kevin; Morse, Ruth; Sanders, Kelly; Hows, Jill; Donaldson, Craig

    2011-07-01

    The adverse effects of melphalan and cyclophosphamide on hematopoietic stem cells are well-known; however, the effects on the mesenchymal stem cells (MSCs) residing in the bone marrow are less well characterised. Examining the effects of chemotherapeutic agents on patient MSCs in vivo is difficult due to variability in patients and differences in the drug combinations used, both of which could have implications on MSC function. As drugs are not commonly used as single agents during high-dose chemotherapy (HDC) regimens, there is a lack of data comparing the short- or long-term effects these drugs have on patients post treatment. To help address these problems, the effects of the alkylating chemotherapeutic agents cyclophosphamide and melphalan on human bone marrow MSCs were evaluated in vitro. Within this study, the exposure of MSCs to the chemotherapeutic agents cyclophosphamide or melphalan had strong negative effects on MSC expansion and CD44 expression. In addition, changes were seen in the ability of MSCs to support hematopoietic cell migration and repopulation. These observations therefore highlight potential disadvantages in the use of autologous MSCs in chemotherapeutically pre-treated patients for future therapeutic strategies. Furthermore, this study suggests that if the damage caused by chemotherapeutic agents to marrow MSCs is substantial, it would be logical to use cultured allogeneic MSCs therapeutically to assist or repair the marrow microenvironment after HDC.

  6. [Allogeneic haematopoietic cell transplantation for diffuse large B cell lymphoma: Guidelines from the Francophone Society of Bone Marrow Transplantation and Cellular Therapy (SFGM-TC)].

    PubMed

    Gauthier, Jordan; Chantepie, Sylvain; Bouabdallah, Krimo; Jost, Edgar; Nguyen, Stéphanie; Gac, Anne-Claire; Damaj, Gandhi; Duléry, Rémy; Michallet, Mauricette; Delage, Jérémy; Lewalle, Philippe; Morschhauser, Franck; Salles, Gilles; Yakoub-Agha, Ibrahim; Cornillon, Jérôme

    2017-12-01

    Despite great improvements in the outcome of patients with lymphoma, some may still relapse or present with primary refractory disease. In these situations, allogeneic hematopoietic cell transplantation is a potentially curative option, this is true particularly in the case of after autologous stem cell transplantation if remission can be achieved. Recently, novel agents such as anti-PD1 and BTK inhibitors have started to challenge the use of allogeneic hematopoietic cell transplantation for relapsed or refractory lymphoma. During the 2016 annual workshop of the Francophone Society of Bone Marrow Transplantation and Cellular Therapy (SFGM-TC), we performed a comprehensive review of the literature published in the last 10 years and established guidelines to clarify the indications and transplant modalities in this setting. This section specifically reports on our conclusions regarding diffuse large B cell lymphoma. Copyright © 2017. Published by Elsevier Masson SAS.

  7. Genetic testing and counseling of a recipient after bone marrow transplant from a sibling harboring a germline BRCA1 pathogenic mutation.

    PubMed

    Škerl, Petra; Krajc, Mateja; Blatnik, Ana; Novaković, Srdjan

    2017-07-01

    Allogenic bone marrow transplant recipients represent a unique challenge, when they are referred for genetic testing and counseling. When performing genetic testing, it is extremely important to ensure that the detected DNA mutations originate from the patients own DNA, and therefore the most appropriate and reliable biological sample for DNA isolation must be obtained. The aim of the present study was to present the germline testing and counseling approach utilized in a rare case of a chimeric woman who received an allogenic bone marrow transplant from a sibling with a germline BRCA1 pathogenic mutation. According to our results, hairs with follicles are a reliable and ready source of DNA in a patient whose blood is of allogenic bone marrow transplant donor origin. Compared with a fibroblast culture, which is more difficult to obtain, the hair follicles are much more accessible and hair sampling is less invasive for the patient. Genetic testing based on the other sources of DNA, such as buccal swabs, is questionable due to the known risk of donor DNA contamination.

  8. Mint3 in bone marrow-derived cells promotes lung metastasis in breast cancer model mice.

    PubMed

    Hara, Toshiro; Murakami, Yoshinori; Seiki, Motoharu; Sakamoto, Takeharu

    2017-08-26

    Breast cancer is one of the most common cancers in women in the world. Although breast cancer is well treatable at the early stage, patients with distant metastases show a poor prognosis. Data from recent studies using transplantation models indicate that Mint3/APBA3 might promote breast cancer malignancy. However, whether Mint3 indeed contributes to tumor development, progression, or metastasis in vivo remains unclear. To address this, here we examined whether Mint3 depletion affects tumor malignancy in MMTV-PyMT breast cancer model mice. In MMTV-PyMT mice, Mint3 depletion did not affect tumor onset and tumor growth, but attenuated lung metastases. Experimental lung metastasis of breast cancer Met-1 cells derived from MMTV-PyMT mice also decreased in Mint3-depleted mice, indicating that host Mint3 expression affected lung metastasis of MMTV-PyMT-derived breast cancer cells. Further bone marrow transplant experiments revealed that Mint3 in bone marrow-derived cells promoted lung metastasis in MMTV-PyMT mice. Thus, targeting Mint3 in bone marrow-derived cells might be a good strategy for preventing metastasis and improving the prognosis of breast cancer patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Review of Preclinical and Clinical Studies of Bone Marrow-Derived Cell Therapies for Intracerebral Hemorrhage

    PubMed Central

    de Carvalho, Felipe Gonçalves; de Freitas, Gabriel Rodriguez

    2016-01-01

    Stroke is the second leading cause of mortality worldwide, causing millions of deaths annually, and is also a major cause of disability-adjusted life years. Hemorrhagic stroke accounts for approximately 10 to 27% of all cases and has a fatality rate of about 50% in the first 30 days, with limited treatment possibilities. In the past two decades, the therapeutic potential of bone marrow-derived cells (particularly mesenchymal stem cells and mononuclear cells) has been intensively investigated in preclinical models of different neurological diseases, including models of intracerebral hemorrhage and subarachnoid hemorrhage. More recently, clinical studies, most of them small, unblinded, and nonrandomized, have suggested that the therapy with bone marrow-derived cells is safe and feasible in patients with ischemic or hemorrhagic stroke. This review discusses the available evidence on the use of bone marrow-derived cells to treat hemorrhagic strokes. Distinctive properties of animal studies are analyzed, including study design, cell dose, administration route, therapeutic time window, and possible mechanisms of action. Furthermore, clinical trials are also reviewed and discussed, with the objective of improving future studies in the field. PMID:27698671

  10. In vivo investigation of tissue-engineered periosteum for the repair of allogeneic critical size bone defects in rabbits.

    PubMed

    Zhao, Lin; Zhao, Junli; Yu, Jiajia; Sun, Rui; Zhang, Xiaofeng; Hu, Shuhua

    2017-04-01

    The aim of the study was to evaluate the efficacy of tissue-engineered periosteum (TEP) in repairing allogenic bone defects in the long term. TEP was biofabricated with osteoinduced rabbit bone marrow mesenchymal stem cells and porcine small intestinal submucosa (SIS). A total of 24 critical sized defects were created bilaterally in radii of 12 New Zealand White rabbits. TEP/SIS was implanted into the defect site. Bone defect repair was evaluated with radiographic and histological examination at 4, 8 and 12 weeks. Bone defects were structurally reconstructed in the TEP group with mature cortical bone and medullary canals, however this was not observed in the SIS group at 12 weeks. The TEP approach can effectively restore allogenic critical sized defects, and achieve maturity of long-bone structure in 12 weeks in rabbit models.

  11. Antithetical effects of hemicellulase-treated Agaricus blazei on the maturation of murine bone-marrow-derived dendritic cells

    PubMed Central

    Kawamura, Masaki; Kasai, Hirotake; He, Limin; Deng, Xuewen; Yamashita, Atsuya; Terunuma, Hiroshi; Horiuchi, Isao; Tanabe, Fuminori; Ito, Masahiko

    2005-01-01

    We report the effects of hemicellulase-treated Agaricus blazei (ABH) on the maturation of bone-marrow-derived dendritic cells (BMDCs). ABH activated immature BMDCs, inducing up-regulation of surface molecules, such as CD40, CD80 and major histocompatibility complex class I antigens, as well as inducing allogeneic T-cell proliferation and T helper type 1 cell development. However, unlike lipopolysaccharide (LPS), ABH did not stimulate the BMDCs to produce proinflammatory cytokines, such as interleukin-12 (IL-12) p40, tumour necrosis factor-α, or IL-1β. In addition, ABH suppressed LPS-induced DC responses. Pretreatment of DCs with ABH markedly reduced the levels of LPS-induced cytokine secretion, while only slightly decreasing up-regulation of the surface molecules involved in maturation. ABH also had a significant impact on peptidoglycan-induced or CpG oligodeoxynucleotide-induced IL-12p40 production in DCs. The inhibition of LPS-induced responses was not associated with a cytotoxic effect of ABH nor with an anti-inflammatory effect of IL-10. However, ABH decreased NF-κB-induced reporter gene expression in LPS-stimulated J774.1 cells. Interestingly, DCs preincubated with ABH and then stimulated with LPS augmented T helper type 1 responses in culture with allogeneic T cells as compared to LPS-stimulated but non-ABH-pretreated DCs. These observations suggest that ABH regulates DC-mediated responses. PMID:15720441

  12. In vivo competitive studies between normal and common gamma chain-defective bone marrow cells: implications for gene therapy.

    PubMed

    Otsu, M; Sugamura, K; Candotti, F

    2000-09-20

    Corrective gene transfer into hematopoietic stem cells (HSCs) is being investigated as therapy for X-linked severe combined immunodeficiency (XSCID) and it is hoped that selective advantage of gene-corrected HSCs will help in achieving full immune reconstitution after treatment. Lines of evidence from the results of allogeneic bone marrow transplantation in patients with XSCID support this hypothesis that, however, has not been rigorously tested in an experimental system. We studied the competition kinetics between normal and XSCID bone marrow (BM) cells using a murine bone marrow transplantation (BMT) model. For easy chimerism determination, we used genetic marking with retrovirus-mediated expression of the enhanced green fluorescent protein (EGFP). We found that XSCID BM cells were able to compete with normal BM cells for engraftment of myeloid lineages in a dose-dependent manner, whereas we observed selective repopulation of T, B, and NK cells deriving from normal BM cells. This was true despite the evidence of competitive engraftment of XSCID lineage marker-negative/c-Kit-positive (Lin-/c-Kit+) cells in the bone marrow of treated animals. From these results we extrapolate that genetic correction of XSCID HSCs will result in selective advantage of gene-corrected lymphoid lineages with consequent restoration of lymphocyte populations and high probability of clinical benefit.

  13. Bone Marrow Adipose Tissue and Skeletal Health.

    PubMed

    Muruganandan, Shanmugam; Govindarajan, Rajgopal; Sinal, Christopher J

    2018-05-31

    To summarize and discuss recent progress and novel signaling mechanisms relevant to bone marrow adipocyte formation and its physiological/pathophysiological implications for bone remodeling. Skeletal remodeling is a coordinated process entailing removal of old bone and formation of new bone. Several bone loss disorders such as osteoporosis are commonly associated with increased bone marrow adipose tissue. Experimental and clinical evidence supports that a reduction in osteoblastogenesis from mesenchymal stem cells at the expense of adipogenesis, as well as the deleterious effects of adipocyte-derived signaling, contributes to the etiology of osteoporosis as well as bone loss associated with aging, diabetes mellitus, post-menopause, and chronic drug therapy. However, this view is challenged by findings indicating that, in some contexts, bone marrow adipose tissue may have a beneficial impact on skeletal health. Further research is needed to better define the role of marrow adipocytes in bone physiology/pathophysiology and to determine the therapeutic potential of manipulating mesenchymal stem cell differentiation.

  14. High Mobility Group Box 1 Promotes Angiogenesis from Bone Marrow-derived Endothelial Progenitor Cells after Myocardial Infarction.

    PubMed

    Nakamura, Yuichi; Suzuki, Satoshi; Shimizu, Takeshi; Miyata, Makiko; Shishido, Tetsuro; Ikeda, Kazuhiko; Saitoh, Shu-Ichi; Kubota, Isao; Takeishi, Yasuchika

    2015-01-01

    High mobility group box 1 (HMGB1) is a DNA-binding protein secreted into the extracellular space from necrotic cells that acts as a cytokine. We examined the role of HMGB1 in angiogenesis from bone marrow-derived cells in the heart using transgenic mice exhibiting the cardiac-specific overexpression of HMGB1 (HMGB1-TG). HMGB1-TG mice and wild-type littermate (WT) mice were lethally irradiated and injected with bone marrow cells from green fluorescent protein mice through the tail vein. After bone marrow transplantation, the left anterior descending artery was ligated to induce myocardial infarction (MI). Flow cytometry revealed that the levels of circulating endothelial progenitor cells (EPCs) mobilized from the bone marrow increased after MI in the HMGB-TG mice versus the WT mice. In addition, the size of MI was smaller in the HMGB1-TG mice than in the WT mice, and immunofluorescence staining demonstrated that the number of engrafted vascular endothelial cells derived from bone marrow in the border zones of the MI areas was increased in the HMGB1-TG mice compared to that observed in the WT mice. Moreover, the levels of cardiac vascular endothelial growth factor after MI were higher in the HMGB1-TG mice than in the WT mice. The present study demonstrated that HMGB1 promotes angiogenesis and reduces the MI size by enhancing the mobilization and differentiation of bone marrow cells to EPCs as well as their migration to the border zones of the MI areas and engraftment as vascular endothelial cells in new capillaries or arterioles in the infarcted heart.

  15. Role of whole bone marrow, whole bone marrow cultured cells, and mesenchymal stem cells in chronic wound healing.

    PubMed

    Rodriguez-Menocal, Luis; Shareef, Shahjahan; Salgado, Marcela; Shabbir, Arsalan; Van Badiavas, Evangelos

    2015-03-13

    Recent evidence has shown that bone marrow cells play critical roles during the inflammatory, proliferative and remodeling phases of cutaneous wound healing. Among the bone marrow cells delivered to wounds are stem cells, which can differentiate into multiple tissue-forming cell lineages to effect, healing. Gaining insight into which lineages are most important in accelerating wound healing would be quite valuable in designing therapeutic approaches for difficult to heal wounds. In this report we compared the effect of different bone marrow preparations on established in vitro wound healing assays. The preparations examined were whole bone marrow (WBM), whole bone marrow (long term initiating/hematopoietic based) cultured cells (BMC), and bone marrow derived mesenchymal stem cells (BM-MSC). We also applied these bone marrow preparations in two murine models of radiation induced delayed wound healing to determine which had a greater effect on healing. Angiogenesis assays demonstrated that tube formation was stimulated by both WBM and BMC, with WBM having the greatest effect. Scratch wound assays showed higher fibroblast migration at 24, 48, and 72 hours in presence of WBM as compared to BM-MSC. WBM also appeared to stimulate a greater healing response than BMC and BM-MSC in a radiation induced delayed wound healing animal model. These studies promise to help elucidate the role of stem cells during repair of chronic wounds and reveal which cells present in bone marrow might contribute most to the wound healing process.

  16. Bone Marrow Mesenchymal Stromal Cells to Treat Complications Following Allogeneic Stem Cell Transplantation

    PubMed Central

    Battiwalla, Minoo

    2014-01-01

    Allogeneic hematopoietic stem cell transplantation (HSCT) is a technologically complicated procedure that represents the only cure for many hematologic malignancies. However, HSCT is often complicated by life-threatening toxicities related to the chemo-radiation conditioning regimen, poor engraftment of donor HSCs, the hyperinflammatory syndrome of graft-versus-host disease (GVHD), infection risks from immunosuppression, and end-organ damage. Bone marrow stromal cells (MSCs), also known as “mesenchymal stromal cells,” not only play a nurturing role in the hematopoietic microenvironment but also can differentiate into other cell types of mesenchymal origin. MSCs are poorly immunogenic, and they can modulate immunological responses through interactions with a wide range of innate and adaptive immune cells to reduce inflammation. They are easily expanded ex vivo and after infusion, home to sites of injury and inflammation to promote tissue repair. Despite promising early trial results in HSCT with significant responses that have translated into survival benefits, there have been significant barriers to successful commercialization as an off-the-shelf therapy. Current efforts with MSCs in the HSCT setting are geared toward determining the factors determining potency, understanding the precise mechanisms of action in human HSCT, knowing their kinetics and fate, optimizing dose and schedule, incorporating biomarkers as response surrogates, addressing concerns about safety, optimizing clinical trial design, and negotiating the uncharted regulatory landscape for licensable cellular therapy. PMID:24410434

  17. Bone marrow-derived CD13+ cells sustain tumor progression

    PubMed Central

    Dondossola, Eleonora; Corti, Angelo; Sidman, Richard L; Arap, Wadih; Pasqualini, Renata

    2014-01-01

    Non-malignant cells found within neoplastic lesions express alanyl (membrane) aminopeptidase (ANPEP, best known as CD13), and CD13-null mice exhibit limited tumor growth and angiogenesis. We have recently demonstrated that a subset of bone marrow-derived CD11b+CD13+ myeloid cells accumulate within neoplastic lesions in several murine models of transplantable cancer to promote angiogenesis. If these findings were confirmed in clinical settings, CD11b+CD13+ myeloid cells could become a non-malignant target for the development of novel anticancer regimens. PMID:25339996

  18. Development and characterization of a lung-protective method of bone marrow transplantation in the mouse.

    PubMed

    Janssen, William J; Muldrow, Alaina; Kearns, Mark T; Barthel, Lea; Henson, Peter M

    2010-05-31

    Allogeneic bone marrow transplantation is a common method used to study the contribution of myeloid and lymphoid cell populations in murine models of disease. The method requires lethal doses of radiation to ablate the bone marrow. Unintended consequences of radiation include organ injury and inflammatory cell activation. The goal of our study was to determine the degree to which bone marrow transplantation alters lungs and to develop a system to protect the lungs during radiation. C57BL/6 mice were subjected to total body irradiation with 900cGy and then transplanted with bone marrow from green fluorescent protein (GFP) expressing mice. Resultant chimeras exhibited a significant decline in alveolar macrophage numbers within 72h, modest influx of neutrophils in the lungs at 14days, and repopulation of the lungs by alveolar macrophages of bone marrow origin by 28days. Neutrophil influx and alveolar macrophage turnover were prevented when 1cm thick lead shields were used to protect the lungs during radiation, such that 8weeks after transplantation less than 30% of alveolar macrophages were of donor origin. Lung-shielded mice achieved a high level of bone marrow engraftment with greater than 95% of circulating leukocytes expressing GFP. In addition, their response to intratracheal lipopolysaccharide was similar to non-transplanted mice. We describe a model whereby lead shields protect resident cell populations in the lungs from radiation during bone marrow transplantation but permit full bone marrow engraftment. This system may be applicable to other organ systems in which protection from radiation during bone marrow transplantation is desired.

  19. Expression of receptors for atrial natriuretic peptide on the murine bone marrow-derived stromal cells.

    PubMed

    Agui, T; Yamada, T; Legros, G; Nakajima, T; Clark, M; Peschel, C; Matsumoto, K

    1992-05-01

    Atrial natriuretic peptide (ANP) receptors were identified on both murine bone marrow-derived stromal cell lines A-3 and ALC and primary cultured cells using [125I]ANP binding assays and Northern blot analyses. The binding of [125I] ANP to the stromal cells was rapid, saturable, and of high affinity. The dissociation constants between ANP and its receptors on these cells showed no difference among cell types, while maximal binding capacity values were different among cell types. Competitive inhibition of [125I]ANP binding with C-atrial natriuretic factor, specific for ANP clearance receptor (ANPR-C), revealed that most of [125I]ANP-binding sites corresponded to ANPR-C. Northern blotting data corroborated that bone marrow-derived stromal cells expressed ANPR-C. However, in ALC cells, ANP biological receptors (either ANPR-A or ANPR-B), the mol wt of which is approximately 130K, were detected, and cGMP was accumulated after stimulation with ANP. On the other hand, in another stromal cell clone, A-3 cells, the expression of biological receptor was not detected in the affinity cross-linking and competitive inhibition experiments using [125I]ANP. However, A-3 cells accumulated cGMP by responding to ANPR-B-specific ligand, C-type natriuretic peptide. These results suggest that ALC cells equally express ANPR-A and ANPR-B, while A-3 cells express ANPR-B dominantly. Although the physiological roles of these receptors in the bone marrow is still not resolved, ANP is expected to play a role in the regulation of stromal cell functions in bone marrow.

  20. Bone marrow derived stem cells in joint and bone diseases: a concise review.

    PubMed

    Marmotti, Antonio; de Girolamo, Laura; Bonasia, Davide Edoardo; Bruzzone, Matteo; Mattia, Silvia; Rossi, Roberto; Montaruli, Angela; Dettoni, Federico; Castoldi, Filippo; Peretti, Giuseppe

    2014-09-01

    Stem cells have huge applications in the field of tissue engineering and regenerative medicine. Their use is currently not restricted to the life-threatening diseases but also extended to disorders involving the structural tissues, which may not jeopardize the patients' life, but certainly influence their quality of life. In fact, a particularly popular line of research is represented by the regeneration of bone and cartilage tissues to treat various orthopaedic disorders. Most of these pioneering research lines that aim to create new treatments for diseases that currently have limited therapies are still in the bench of the researchers. However, in recent years, several clinical trials have been started with satisfactory and encouraging results. This article aims to review the concept of stem cells and their characterization in terms of site of residence, differentiation potential and therapeutic prospective. In fact, while only the bone marrow was initially considered as a "reservoir" of this cell population, later, adipose tissue and muscle tissue have provided a considerable amount of cells available for multiple differentiation. In reality, recently, the so-called "stem cell niche" was identified as the perivascular space, recognizing these cells as almost ubiquitous. In the field of bone and joint diseases, their potential to differentiate into multiple cell lines makes their application ideally immediate through three main modalities: (1) cells selected by withdrawal from bone marrow, subsequent culture in the laboratory, and ultimately transplant at the site of injury; (2) bone marrow aspirate, concentrated and directly implanted into the injury site; (3) systemic mobilization of stem cells and other bone marrow precursors by the use of growth factors. The use of this cell population in joint and bone disease will be addressed and discussed, analysing both the clinical outcomes but also the basic research background, which has justified their use for the

  1. Human regulatory T cells do not suppress the antitumor immunity in the bone marrow: a role for bone marrow stromal cells in neutralizing regulatory T cells.

    PubMed

    Guichelaar, Teun; Emmelot, Maarten E; Rozemuller, Henk; Martini, Bianka; Groen, Richard W J; Storm, Gert; Lokhorst, Henk M; Martens, Anton C; Mutis, Tuna

    2013-03-15

    Regulatory T cells (Tregs) are potent tools to prevent graft-versus-host disease (GVHD) induced after allogeneic stem cell transplantation or donor lymphocyte infusions. Toward clinical application of Tregs for GVHD treatment, we investigated the impact of Tregs on the therapeutic graft-versus-tumor (GVT) effect against human multiple myeloma tumors with various immunogenicities, progression rates, and localizations in a humanized murine model. Immunodeficient Rag2(-/-)γc(-/-) mice, bearing various human multiple myeloma tumors, were treated with human peripheral blood mononuclear cell (PBMC) alone or together with autologous ex vivo cultured Tregs. Mice were analyzed for the in vivo engraftment, homing of T-cell subsets, development of GVHD and GVT. In additional in vitro assays, Tregs that were cultured together with bone marrow stromal cells were analyzed for phenotype and functions. Treatment with PBMC alone induced variable degrees of antitumor response, depending on the immunogenicity and the growth rate of the tumor. Coinfusion of Tregs did not impair the antitumor response against tumors residing within the bone marrow, irrespective of their immunogenicity or growth rates. In contrast, Tregs readily inhibited the antitumor effect against tumors growing outside the bone marrow. Exploring this remarkable phenomenon, we discovered that bone marrow stroma neutralizes the suppressive activity of Tregs in part via production of interleukin (IL)-1β/IL-6. We furthermore found in vitro and in vivo evidence of conversion of Tregs into IL-17-producing T cells in the bone marrow environment. These results provide new insights into the Treg immunobiology and indicate the conditional benefits of future Treg-based therapies.

  2. Bone Marrow Diseases

    MedlinePlus

    Bone marrow is the spongy tissue inside some of your bones, such as your hip and thigh bones. It contains stem cells. The stem cells can ... the platelets that help with blood clotting. With bone marrow disease, there are problems with the stem ...

  3. Bone Marrow Transplantation

    MedlinePlus

    Bone marrow is the spongy tissue inside some of your bones, such as your hip and thigh bones. It contains immature cells, called stem cells. The ... platelets, which help the blood to clot. A bone marrow transplant is a procedure that replaces a ...

  4. Equine allogeneic bone marrow-derived mesenchymal stromal cells elicit antibody responses in vivo.

    PubMed

    Pezzanite, Lynn M; Fortier, Lisa A; Antczak, Douglas F; Cassano, Jennifer M; Brosnahan, Margaret M; Miller, Donald; Schnabel, Lauren V

    2015-04-12

    This study tested the hypothesis that Major Histocompatibility Complex (MHC) incompatible equine mesenchymal stromal cells (MSCs) would induce cytotoxic antibodies to donor MHC antigens in recipient horses after intradermal injection. No studies to date have explored recipient antibody responses to allogeneic donor MSC transplantation in the horse. This information is critical because the horse is a valuable species for assessing the safety and efficacy of MSC treatment prior to human clinical application. Six MHC heterozygote horses were identified as non-ELA-A2 haplotype by microsatellite typing and used as allogeneic MHC-mismatched MSC recipients. MHC homozygote horses of known ELA-A2 haplotype were used as MSC and peripheral blood leukocyte (PBL) donors. One MHC homozygote horse of the ELA-A2 haplotype was the recipient of ELA-A2 donor MSCs as an MHC-matched control. Donor MSCs, which were previously isolated and immunophenotyped, were thawed and culture expanded to achieve between 30x10(6) and 50x10(6) cells for intradermal injection into the recipient's neck. Recipient serum was collected and tested for the presence of anti-donor antibodies prior to MSC injection and every 7 days after MSC injection for the duration of the 8-week study using the standard two-stage lymphocyte microcytotoxicity dye-exclusion test. In addition to anti-ELA-A2 antibodies, recipient serum was examined for the presence of cross-reactive antibodies including anti-ELA-A3 and anti-RBC antibodies. All MHC-mismatched recipient horses produced anti-ELA-A2 antibodies following injection of ELA-A2 MSCs and developed a wheal at the injection site that persisted for the duration of the experiment. Anti-ELA-A2 antibody responses were varied both in terms of strength and timing. Four recipient horses had high-titered anti-ELA-A2 antibody responses resulting in greater than 80% donor PBL death in the microcytotoxicity assays and one of these horses also developed antibodies that cross

  5. Rotating three-dimensional dynamic culture of adult human bone marrow-derived cells for tissue engineering of hyaline cartilage.

    PubMed

    Sakai, Shinsuke; Mishima, Hajime; Ishii, Tomoo; Akaogi, Hiroshi; Yoshioka, Tomokazu; Ohyabu, Yoshimi; Chang, Fei; Ochiai, Naoyuki; Uemura, Toshimasa

    2009-04-01

    The method of constructing cartilage tissue from bone marrow-derived cells in vitro is considered a valuable technique for hyaline cartilage regenerative medicine. Using a rotating wall vessel (RWV) bioreactor developed in a NASA space experiment, we attempted to efficiently construct hyaline cartilage tissue from human bone marrow-derived cells without using a scaffold. Bone marrow aspirates were obtained from the iliac crest of nine patients during orthopedic operation. After their proliferation in monolayer culture, the adherent cells were cultured in the RWV bioreactor with chondrogenic medium for 2 weeks. Cells from the same source were cultured in pellet culture as controls. Histological and immunohistological evaluations (collagen type I and II) and quantification of glycosaminoglycan were performed on formed tissues and compared. The engineered constructs obtained using the RWV bioreactor showed strong features of hyaline cartilage in terms of their morphology as determined by histological and immunohistological evaluations. The glycosaminoglycan contents per microg DNA of the tissues were 10.01 +/- 3.49 microg/microg DNA in the case of the RWV bioreactor and 6.27 +/- 3.41 microg/microg DNA in the case of the pellet culture, and their difference was significant. The RWV bioreactor could provide an excellent environment for three-dimensional cartilage tissue architecture that can promote the chondrogenic differentiation of adult human bone marrow-derived cells.

  6. Is fatty acid composition of human bone marrow significant to bone health?

    PubMed

    Pino, Ana María; Rodríguez, J Pablo

    2017-12-16

    The bone marrow adipose tissue (BMAT) is a conserved component of the marrow microenvironment, providing storage and release of energy and stabilizing the marrow extent. Also, it is recognized both the amount and quality of BMAT are relevant to preserve the functional relationships between BMAT, bone, and blood cell production. In this article we ponder the information supporting the tenet that the quality of BMAT is relevant to bone health. In the human adult the distribution of BMAT is heterogeneous over the entire skeleton, and both BMAT accumulation and bone loss come about with aging in healthy populations. But some pathological conditions which increase BMAT formation lead to bone impairment and fragility. Analysis in vivo of the relative content of saturated and unsaturated fatty acids (FA) in BMAT indicates site-related bone marrow fat composition and an association between increased unsaturation index (UI) and bone health. With aging some impairment ensues in the regulation of bone marrow cells and systemic signals leading to local chronic inflammation. Most of the bone loss diseases which evolve altered BMAT composition have as common factors aging and/or chronic inflammation. Both saturated and unsaturated FAs originate lipid species which are active mediators in the inflammation process. Increased free saturated FAs may lead to lipotoxicity of bone marrow cells. The pro-inflammatory, anti-inflammatory or resolving actions of compounds derived from long chain poly unsaturated FAs (PUFA) on bone cells is varied, and depending on the metabolism of the parent n:3 or n:6 PUFAs series. Taking together the evidence substantiate that marrow adipocyte function is fundamental for an efficient link between systemic and marrow fatty acids to accomplish specific energy or regulatory needs of skeletal and marrow cells. Further, they reveal marrow requirements of PUFAs. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Human bone marrow-derived MSCs can home to orthotopic breast cancer tumors and promote bone metastasis

    PubMed Central

    Goldstein, Robert H; Reagan, Michaela R; Anderson, Kristen; Kaplan, David L; Rosenblatt, Michael

    2010-01-01

    American women have a nearly 25% lifetime risk of developing breast cancer, with 20–40% of these patients developing life-threatening metastases. Over 70% of patients presenting with metastases have skeletal involvement, which signals progression to an incurable stage. Tumor-stroma cell interactions are only superficially understood, specifically regarding the ability of stromal cells to affect metastasis. In vivo models show that exogenously supplied hBMSCs (human bone-marrow derived stem cells) migrate to breast cancer tumors, but no reports have shown endogenous hBMSC migration from the bone to primary tumors. Here we present a model of in vivo hBMSC migration from a physiologic human bone environment to human breast tumors. Further, hBMSCs alter tumor growth and bone metastasis frequency. hBMSCs may home to certain breast tumors based on tumor-derived TGF-β1. Moreover, at the primary tumor IL-17B/IL-17BR signaling may mediate interactions between hBMSCs and breast cancer cells (BCCs). PMID:21159629

  8. Haemopoietic stem cell transplantation in Australia and New Zealand, 1992-2001: progress report from the Australasian Bone Marrow Transplant Recipient Registry.

    PubMed

    Nivison-Smith, I; Bradstock, K F; Dodds, A J; Hawkins, P A; Szer, J

    2005-01-01

    Bone marrow and blood stem cell transplantation is now used as curative therapy for a range of haematological malignancies and other conditions. The Australasian Bone Marrow Transplant Recipient Registry (ABMTRR) has recorded transplant activity in Australia since 1992; transplant centres in New Zealand have corresponded with the Registry since 1998. To describe allogeneic and autologous bone marrow and blood stem cell transplantation activity and outcomes in Australia and New Zealand from 1992 to 2001. Each haemopoietic stem cell transplant centre in Australia and New Zealand contributes information to the Registry via a single information form compiled when a transplant is performed. An annual follow-up request is then sent from the Registry to the contributing centre at the anniversary of each individual transplant. Haemopoietic stem cell transplants in Australia have increased in number from 478 in 1992 to 937 in 2001, whereas in New Zealand the number has grown from 91 in 1998 to 105 in 2001, mainly as a result of an increase in autologous blood stem cell transplants. The number of hospitals contributing to the ABMTRR has grown from 20 in 1992 to 37 in 2001. The most common indication for autologous transplantation in 2001 was non-Hodgkin's lymphoma, whereas for allogeneic transplants it was acute myeloid leukaemia. The 9-year actuarial disease-free survival probability for patients aged 16 and above between 1992 and 2000 was 37% for autologous, 39% for allogeneic related donor and 30% for allogeneic unrelated donor transplants. Recurrence of the underlying disease was the main cause of death post-transplant after both allogeneic (26.3% of deaths in the first year and 68.0% of deaths in the second year) and autologous transplants (59.0% and 86.2%). Treatment-related mortality was 16.9% after allogeneic transplantation and 2.1% after autologous transplantation in 2000. The ABMTRR provides a comprehensive source of information on the use of bone marrow

  9. Generation of dendritic cells from human bone marrow mononuclear cells: advantages for clinical application in comparison to peripheral blood monocyte derived cells.

    PubMed

    Bai, L; Feuerer, M; Beckhove, P; Umansky, V; Schirrmacher, V

    2002-02-01

    Dendritic cells (DCs) currently used for vaccination in clinical studies to induce immunity against malignant cells are normally generated from peripheral blood-derived monocytes. Here we studied conditions for the generation of DCs from unseparated human bone marrow (BM) mononuclear cells and compared them functionally with DCs from blood. The two types of DCs, from bone marrow (BM-DC) and peripheral blood (BL-DC), were generated in parallel from the same normal healthy donors by culturing in serum-free X-VIVO 20 medium containing GM-CSF and IL-4, and then the phenotypes and functions were compared. BM-DC generation occurred in 14 days and involved proliferative expansion from CD34 stem cells and differentiation while BL-DC generation occurred in 7 days from CD14 monocytes and involved only differentiation. A 7- to 25-fold higher number of DCs could be obtained from BM than from blood. BM-DC had similar phenotypes as BL-DC. The capacity to stimulate MLR reactivity in allogeneic T lymphocytes was higher with BM-DC than that with BL-DC. Also, the capacity to stimulate autologous memory T cell responses to tetanus toxoid (TT) or tuberculin (PPD) was higher with BM-DC than with BL-DC. These results suggest that BM-DC as produced here may be a very economic and useful source of professional antigen-presenting cells for anti-tumor immunotherapeutic protocols.

  10. Analysis of sepsis in allogeneic bone marrow transplant recipients: a single-center study.

    PubMed

    Mitsui, Hideki; Karasuno, Takahiro; Santo, Taisuke; Fukushima, Kentaro; Matsunaga, Hitomi; Nakamura, Hiroyuki; Hiraoka, Akira

    2003-09-01

    We reviewed the records of 235 consecutive recipients of allogeneic bone marrow transplantation (allo-BMT) at our center between February 1983 and October 2000. Sepsis occurred in 25 patients (10.6%) at a median of 10 days (range, 1-280 days) after BMT. Five of the 25 patients (20%) died of sepsis. Pathogens isolated from blood culture were gram-positive cocci in 19 patients, gram-negative rods in 7, fungi in 2, and others in 1 patient. Two pathogens were detected concomitantly in 4 patients. Univariate analysis revealed that risk factors for sepsis were selective gut decontamination using lomefloxacin hydrochloride and nystatin, an unrelated donor, HLA mismatched BMT, and stomatitis. Multivariate logistic regression analysis revealed that an unrelated donor was the only significant independent risk factor, with a relative risk of 5.432. In 12 of 25 patients with sepsis, the pathogens of sepsis were sensitive to antibiotics used for gut decontamination. Selective gut decontamination significantly increased the incidence of sepsis, especially that with gram-positive cocci, but not the mortality rate of sepsis, compared with total gut decontamination using vancomycin. We also found a significant relationship between pathogens isolated from blood culture and those isolated from surveillance cultures of stool, urine, and gargled water in the period before sepsis occurred. The present study revealed an independent risk factor for sepsis (unrelated donor), the feasibility of selective gut decontamination, and the importance of surveillance culture.

  11. Gene expression profile in mesenchymal stem cells derived from dental tissues and bone marrow

    PubMed Central

    Kim, Su-Hwan; Kim, Young-Sung; Lee, Su-Yeon; Kim, Kyoung-Hwa; Lee, Yong-Moo; Kim, Won-Kyung

    2011-01-01

    Purpose The aim of this study is to compare the gene expression profile in mesenchymal stem cells derived from dental tissues and bone marrow for characterization of dental stem cells. Methods We employed GeneChip analysis to the expression levels of approximately 32,321 kinds of transcripts in 5 samples of bone-marrow-derived mesenchymal stem cells (BMSCs) (n=1), periodontal ligament stem cells (PDLSCs) (n=2), and dental pulp stem cells (DPSCs) (n=2). Each cell was sorted by a FACS Vantage Sorter using immunocytochemical staining of the early mesenchymal stem cell surface marker STRO-1 before the microarray analysis. Results We identified 379 up-regulated and 133 down-regulated transcripts in BMSCs, 68 up-regulated and 64 down-regulated transcripts in PDLSCs, and 218 up-regulated and 231 down-regulated transcripts in DPSCs. In addition, anatomical structure development and anatomical structure morphogenesis gene ontology (GO) terms were over-represented in all three different mesenchymal stem cells and GO terms related to blood vessels, and neurons were over-represented only in DPSCs. Conclusions This study demonstrated the genome-wide gene expression patterns of STRO-1+ mesenchymal stem cells derived from dental tissues and bone marrow. The differences among the expression profiles of BMSCs, PDLSCs, and DPSCs were shown, and 999 candidate genes were found to be definitely up- or down-regulated. In addition, GOstat analyses of regulated gene products provided over-represented GO classes. These data provide a first step for discovering molecules key to the characteristics of dental stem cells. PMID:21954424

  12. Fluid shear stress stimulates prostaglandin and nitric oxide release in bone marrow-derived preosteoclast-like cells

    NASA Technical Reports Server (NTRS)

    McAllister, T. N.; Du, T.; Frangos, J. A.

    2000-01-01

    Bone is a porous tissue that is continuously perfused by interstitial fluid. Fluid flow, driven by both vascular pressure and mechanical loading, may generate significant shear stresses through the canaliculi as well as along the bone lining at the endosteal surface. Both osteoblasts and osteocytes produce signaling factors such as prostaglandins and nitric in response to fluid shear stress (FSS); however, these humoral agents appear to have more profound affects on osteoclast activity at the endosteal surface. We hypothesized that osteoclasts and preosteoclasts may also be mechanosensitive and that osteoclast-mediated autocrine signaling may be important in bone remodeling. In this study, we investigated the effect of FSS on nitric oxide (NO), prostaglandin E(2) (PGE(2)), and prostacyclin (PGI(2)) release by neonatal rat bone marrow-derived preosteoclast-like cells. These cells were tartrate-resistant acid phosphatase (TRAP) positive, weakly nonspecific esterase (NSE) positive, and capable of fusing into calcitonin-responsive, bone-resorbing, multinucleated cells. Bone marrow-derived preosteoclast-like cells exposed for 6 h to a well-defined FSS of 16 dynes/cm(2) produced NO at a rate of 7.5 nmol/mg protein/h, which was 10-fold that of static controls. This response was completely abolished by 100 microM N(G)-amino-L-arginine (L-NAA). Flow also stimulated PGE(2) production (3.9 microg/mg protein/h) and PGI(2) production (220 pg/mg protein/h). L-NAA attenuated flow-induced PGE(2) production by 30%, suggesting that NO may partially modulate PGE(2) production. This is the first report demonstrating that marrow derived cells are sensitive to FSS and that autocrine signaling in these cells may play an important role in load-induced remodeling and signal transduction in bone. Copyright 2000 Academic Press.

  13. Utility and safety of Hickman catheters for venous access after bone marrow transplantation.

    PubMed

    Kumagai, T; Sakamaki, H; Tanikawa, S; Akiyama, H; Maeda, Y; Sasaki, T; Tsuzuki, S; Takamoto, S; Takahashi, K; Onozawa, Y

    1998-03-01

    Hickman catheters are useful for vascular access after bone marrow transportation because they can handle large volume and allow for easy transfusions and blood drawing through wide double lumens making it easier to case for patients under sterile conditions in a clean room. However, the safety of Hickman catheters as compared to Silastic catheters in marrow transplants has never been discussed. We therefore retrospectively reviewed the complications of two catheters in 71 allogeneic bone marrow transplant recipients between September 1986 and August 1994. The complication and infection rates of Hickman catheters were 0.21 and 0.09 per 100 device-life days, and rate of temperature >38 degrees C during leukocytopenia (<1,000 white blood cells) was 0.18. These rates were not different from those of Silastic catheters suggesting that Hickman catheters are safe and acceptable in marrow transplantation. The benefits and drawbacks of Hickman catheters relevant to catheter choice were also discussed.

  14. Enrichment of human bone marrow aspirates for low-density mononuclear cells using a haemonetics discontinuous blood cell separator.

    PubMed

    Raijmakers, R; de Witte, T; Koekman, E; Wessels, J; Haanen, C

    1986-01-01

    Isopycnic density floatation centrifugation has been proven to be a suitable technique to enrich bone marrow aspirates for clonogenic cells on a small scale. We have tested a Haemonetics semicontinuous blood cell separator in order to process large volumes of bone marrow with minimal bone marrow manipulation. The efficacy of isopycnic density floatation was tested in a one and a two-step procedure. Both procedures showed a recovery of about 20% of the nucleated cells and 1-2% of the erythrocytes. The enrichment of clonogenic cells in the one-step procedure appeared superior to the two-step enrichment, first separating buffy coat cells. The recovery of clonogenic cells was 70 and 50%, respectively. Repopulation capacity of the low-density cell fraction containing the clonogenic cells was excellent after autologous reinfusion (6 cases) and allogeneic bone marrow transplantation (3 cases). Fast enrichment of large volumes of bone marrow aspirates with low-density cells containing the clonogenic cells by isopycnic density floatation centrifugation can be done safely using a Haemonetics blood cell separator.

  15. Potential benefits of allogeneic bone marrow mesenchymal stem cells for wound healing

    PubMed Central

    Badiavas, Alexander R.; Badiavas, Evangelos V.

    2011-01-01

    Introduction It is becoming increasingly evident that select adult stem cells have the capacity to participate in repair and regeneration of damaged and/or diseased tissues. Mesenchymal stem cells have been among the most studied adult stem cells for the treatment of a variety of conditions including wound healing. Areas covered Mesenchymal stem cell features potentially beneficial to cutaneous wound healing applications are reviewed. Expert opinion Given their potential for in vitro expansion and immune modulatory effects, both autologous and allogeneic mesenchymal stem cells appear to be well suited as wound healing therapies. Allogeneic mesenchymal stem cells derived from young healthy donors could have particular advantage over autologous sources where age and systemic disease can be significant factors. PMID:21854302

  16. An Autologous Bone Marrow Mesenchymal Stem Cell–Derived Extracellular Matrix Scaffold Applied with Bone Marrow Stimulation for Cartilage Repair

    PubMed Central

    Tang, Cheng; Jin, Chengzhe; Du, Xiaotao; Yan, Chao; Min, Byoung-Hyun; Xu, Yan

    2014-01-01

    Purpose: It is well known that implanting a bioactive scaffold into a cartilage defect site can enhance cartilage repair after bone marrow stimulation (BMS). However, most of the current scaffolds are derived from xenogenous tissue and/or artificial polymers. The implantation of these scaffolds adds risks of pathogen transmission, undesirable inflammation, and other immunological reactions, as well as ethical issues in clinical practice. The current study was undertaken to evaluate the effectiveness of implanting autologous bone marrow mesenchymal stem cell–derived extracellular matrix (aBMSC-dECM) scaffolds after BMS for cartilage repair. Methods: Full osteochondral defects were performed on the trochlear groove of both knees in 24 rabbits. One group underwent BMS only in the right knee (the BMS group), and the other group was treated by implantation of the aBMSC-dECM scaffold after BMS in the left knee (the aBMSC-dECM scaffold group). Results: Better repair of cartilage defects was observed in the aBMSC-dECM scaffold group than in the BMS group according to gross observation, histological assessments, immunohistochemistry, and chemical assay. The glycosaminoglycan and DNA content, the distribution of proteoglycan, and the distribution and arrangement of type II and I collagen fibers in the repaired tissue in the aBMSC-dECM scaffold group at 12 weeks after surgery were similar to that surrounding normal hyaline cartilage. Conclusions: Implanting aBMSC-dECM scaffolds can enhance the therapeutic effect of BMS on articular cartilage repair, and this combination treatment is a potential method for successful articular cartilage repair. PMID:24666429

  17. Association between Activated Partial Thromboplastin Time and the Amount of Infused Heparin at Bone Marrow Transplantation.

    PubMed

    Kusuda, Machiko; Kimura, Shun-Ichi; Misaki, Yukiko; Yoshimura, Kazuki; Gomyo, Ayumi; Hayakawa, Jin; Tamaki, Masaharu; Akahoshi, Yu; Ugai, Tomotaka; Kameda, Kazuaki; Wada, Hidenori; Ishihara, Yuko; Kawamura, Koji; Sakamoto, Kana; Sato, Miki; Terasako-Saito, Kiriko; Kikuchi, Misato; Nakasone, Hideki; Kako, Shinichi; Tanihara, Aki; Kanda, Yoshinobu

    2018-03-27

    The actual heparin concentration of harvested allogeneic bone marrow varies among harvest centers. We monitor the activated partial thromboplastin time (APTT) of the patient during bone marrow infusion and administer prophylactic protamine according to the APTT. We retrospectively reviewed the charts of consecutive patients who underwent bone marrow transplantation without bone marrow processing at our center between April 2007 and March 2016 (n = 94). APTT was monitored during marrow transfusion in 52 patients. We analyzed the relationship between the APTT ratio and several parameters related to heparin administration. As a result, the weight-based heparin administration rate (U/kg/hour) seemed to be more closely related to the APTT ratio (r = .38, P = .005) than to the total amount of heparin. There was no significant correlation between the APTT ratio and renal or liver function. Bleeding complications during and early after infusion were seen in 3 of 52 patients, and included intracranial, nasal, and punctured-skin bleeding. The APTT ratio during transfusion was over 5.88 in the former 2 patients and 2.14 in the latter. All of these patients recovered without sequelae. In conclusion, slow bone marrow infusion is recommended to decrease the weight-based heparin administration rate when the heparin concentration per patient body weight is high. Copyright © 2018 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  18. Novel daidzein analogs enhance osteogenic activity of bone marrow-derived mesenchymal stem cells and adipose-derived stromal/stem cells through estrogen receptor dependent and independent mechanisms

    USDA-ARS?s Scientific Manuscript database

    Osteoporosis is a disease characterized by low bone mineral density (BMD) and increased risk of fractures. Studies have demonstrated the use of phytoestrogens, or plant-derived estrogens, such as genistein anddaidzein, to effectively increase osteogenic activity of bone marrow-derived mesenchymal s...

  19. Blood and Bone Marrow Donation

    MedlinePlus

    ... who's waiting for a stem cell transplant. Risks Bone marrow donation The most serious risk associated with ... or her health insurance. What you can expect Bone marrow donation Collecting stem cells from bone marrow ...

  20. What Is a Bone Marrow Transplant?

    MedlinePlus

    ... Print this page My Cart What is a bone marrow transplant? A bone marrow transplant is a ... blood.” – Edmund Waller, MD, PHD What is a bone marrow transplant? A bone marrow transplant is a ...

  1. Neonatal bone marrow transplantation of ADA-deficient SCID mice results in immunologic reconstitution despite low levels of engraftment and an absence of selective donor T lymphoid expansion.

    PubMed

    Carbonaro, Denise A; Jin, Xiangyang; Cotoi, Daniel; Mi, Tiejuan; Yu, Xiao-Jin; Skelton, Dianne C; Dorey, Frederick; Kellems, Rodney E; Blackburn, Michael R; Kohn, Donald B

    2008-06-15

    Adenosine deaminase (ADA)-deficient severe combined immune deficiency (SCID) may be treated by allogeneic hematopoietic stem cell transplantation without prior cytoreductive conditioning, although the mechanism of immune reconstitution is unclear. We studied this process in a murine gene knockout model of ADA-deficient SCID. Newborn ADA-deficient pups received transplants of intravenous infusion of normal congenic bone marrow, without prior cytoreductive conditioning, which resulted in long-term survival, multisystem correction, and nearly normal lymphocyte numbers and mitogenic proliferative responses. Only 1% to 3% of lymphocytes and myeloid cells were of donor origin without a selective expansion of donor-derived lymphocytes; immune reconstitution was by endogenous, host-derived ADA-deficient lymphocytes. Preconditioning of neonates with 100 to 400 cGy of total body irradiation before normal donor marrow transplant increased the levels of engrafted donor cells in a radiation dose-dependent manner, but the chimerism levels were similar for lymphoid and myeloid cells. The absence of selective reconstitution by donor T lymphocytes in the ADA-deficient mice indicates that restoration of immune function occurred by rescue of endogenous ADA-deficient lymphocytes through cross-correction from the engrafted ADA-replete donor cells. Thus, ADA-deficient SCID is unique in its responses to nonmyeloablative bone marrow transplantation, which has implications for clinical bone marrow transplantation or gene therapy.

  2. Allogeneic versus autologous derived cell sources for use in engineered bone-ligament-bone grafts in sheep anterior cruciate ligament repair.

    PubMed

    Mahalingam, Vasudevan D; Behbahani-Nejad, Nilofar; Horine, Storm V; Olsen, Tyler J; Smietana, Michael J; Wojtys, Edward M; Wellik, Deneen M; Arruda, Ellen M; Larkin, Lisa M

    2015-03-01

    The use of autografts versus allografts for anterior cruciate ligament (ACL) reconstruction is controversial. The current popular options for ACL reconstruction are patellar tendon or hamstring autografts, yet advances in allograft technologies have made allogeneic grafts a favorable option for repair tissue. Despite this, the mismatched biomechanical properties and risk of osteoarthritis resulting from the current graft technologies have prompted the investigation of new tissue sources for ACL reconstruction. Previous work by our lab has demonstrated that tissue-engineered bone-ligament-bone (BLB) constructs generated from an allogeneic cell source develop structural and functional properties similar to those of native ACL and vascular and neural structures that exceed those of autologous patellar tendon grafts. In this study, we investigated the effectiveness of our tissue-engineered ligament constructs fabricated from autologous versus allogeneic cell sources. Our preliminary results demonstrate that 6 months postimplantation, our tissue-engineered auto- and allogeneic BLB grafts show similar histological and mechanical outcomes indicating that the autologous grafts are a viable option for ACL reconstruction. These data indicate that our tissue-engineered autologous ligament graft could be used in clinical situations where immune rejection and disease transmission may preclude allograft use.

  3. HLA matching in unrelated donor bone marrow transplantation.

    PubMed

    Charron, D J

    1996-11-01

    The availability of an HLA-matched sibling donor in only 30% to 35% of patients requiring allogeneic bone marrow transplantation (BMT) has led to the proposal of unrelated donors as an alternative source of bone marrow. The greater HLA incompatibility, which, although present, was undetected until recently in many unrelated donor BMT cases, has resulted in a higher rate of posttransplant complications and impaired acturial survival when compared with HLA-matched sibling BMT. Molecular HLA typing enables us to evaluate the impact of incompatibility at each locus in the outcome of unrelated donor BMT. The overall retrospective data would recommend that HLA-A, -B and -C allelic molecular matching should be implemented in addition to HLA-DR allelic matching. Further retrospective analysis is needed in order to assess which incompatibility or combinations are better tolerated than others. Only the definitive knowledge at the sequence level of the donor and the recipient HLA allelic diversity involved in controlling the allogeneic immune response will allow us to understand the precise biologic rationale of the graft-versus-host disease. Knowledge and control of the HLA incompatibilities should allow us to offset the detrimental effects of histoincompatibility while developing strategies to take advantage of the beneficial graft-versus-leukemia effect. Also the role of minor histocompatibility antigens remains largely unknown and will require careful evaluation before minor antigens can be used as a selection criterion in BMT. Carefully designed prospective studies will enable us to test the impact of each HLA locus. HLA typing and BMT represent a successful example of productive cooperation between basic and clinical sciences that should be pursued for the improvement of the clinical outcome of unrelated donor BMT.

  4. Long-term in vitro correction of alpha-L-iduronidase deficiency (Hurler syndrome) in human bone marrow.

    PubMed Central

    Fairbairn, L J; Lashford, L S; Spooncer, E; McDermott, R H; Lebens, G; Arrand, J E; Arrand, J R; Bellantuono, I; Holt, R; Hatton, C E; Cooper, A; Besley, G T; Wraith, J E; Anson, D S; Hopwood, J J; Dexter, T M

    1996-01-01

    Allogeneic bone marrow transplantation is the most effective treatment for Hurler syndrome but, since this therapy is not available to all patients, we have considered an alternative approach based on transfer and expression of the normal gene in autologous bone marrow. A retroviral vector carrying the full-length cDNA for alpha-L-iduronidase has been constructed and used to transduce bone marrow from patients with this disorder. Various gene-transfer protocols have been assessed including the effect of intensive schedules of exposure of bone marrow to viral supernatant and the influence of growth factors. With these protocols, we have demonstrated successful gene transfer into primitive CD34+ cells and subsequent enzyme expression in their maturing progeny. Also, by using long-term bone marrow cultures, we have demonstrated high levels of enzyme expression sustained for several months. The efficiency of gene transfer has been assessed by PCR analysis of hemopoietic colonies as 25-56%. No advantage has been demonstrated for the addition of growth factors or intensive viral exposure schedules. The enzyme is secreted into the medium and functional localization has been demonstrated by reversal of the phenotypic effects of lysosomal storage in macrophages. This work suggests that retroviral gene transfer into human bone marrow may offer the prospect for gene therapy of Hurler syndrome in young patients without a matched sibling donor. Images Fig. 2 Fig. 4 Fig. 7 Fig. 8 PMID:8700879

  5. Aspiration and Biopsy: Bone Marrow

    MedlinePlus

    ... Print What It Is Bone marrow aspirations and biopsies are performed to examine bone marrow, the spongy liquid part of the bone where blood cells are ... you might also feel the pressure of the biopsy needle pushing in. Some ... sharp cramp as the liquid bone marrow is withdrawn for the aspiration or ...

  6. ECM microenvironment unlocks brown adipogenic potential of adult human bone marrow-derived MSCs.

    PubMed

    Lee, Michelle H; Goralczyk, Anna G; Kriszt, Rókus; Ang, Xiu Min; Badowski, Cedric; Li, Ying; Summers, Scott A; Toh, Sue-Anne; Yassin, M Shabeer; Shabbir, Asim; Sheppard, Allan; Raghunath, Michael

    2016-02-17

    Key to realizing the diagnostic and therapeutic potential of human brown/brite adipocytes is the identification of a renewable, easily accessible and safe tissue source of progenitor cells, and an efficacious in vitro differentiation protocol. We show that macromolecular crowding (MMC) facilitates brown adipocyte differentiation in adult human bone marrow mesenchymal stem cells (bmMSCs), as evidenced by substantially upregulating uncoupling protein 1 (UCP1) and uncoupled respiration. Moreover, MMC also induced 'browning' in bmMSC-derived white adipocytes. Mechanistically, MMC creates a 3D extracellular matrix architecture enshrouding maturing adipocytes in a collagen IV cocoon that is engaged by paxillin-positive focal adhesions also at the apical side of cells, without contact to the stiff support structure. This leads to an enhanced matrix-cell signaling, reflected by increased phosphorylation of ATF2, a key transcription factor in UCP1 regulation. Thus, tuning the dimensionality of the microenvironment in vitro can unlock a strong brown potential dormant in bone marrow.

  7. Feasibility of autologous bone marrow mesenchymal stem cell-derived extracellular matrix scaffold for cartilage tissue engineering.

    PubMed

    Tang, Cheng; Xu, Yan; Jin, Chengzhe; Min, Byoung-Hyun; Li, Zhiyong; Pei, Xuan; Wang, Liming

    2013-12-01

    Extracellular matrix (ECM) materials are widely used in cartilage tissue engineering. However, the current ECM materials are unsatisfactory for clinical practice as most of them are derived from allogenous or xenogenous tissue. This study was designed to develop a novel autologous ECM scaffold for cartilage tissue engineering. The autologous bone marrow mesenchymal stem cell-derived ECM (aBMSC-dECM) membrane was collected and fabricated into a three-dimensional porous scaffold via cross-linking and freeze-drying techniques. Articular chondrocytes were seeded into the aBMSC-dECM scaffold and atelocollagen scaffold, respectively. An in vitro culture and an in vivo implantation in nude mice model were performed to evaluate the influence on engineered cartilage. The current results showed that the aBMSC-dECM scaffold had a good microstructure and biocompatibility. After 4 weeks in vitro culture, the engineered cartilage in the aBMSC-dECM scaffold group formed thicker cartilage tissue with more homogeneous structure and higher expressions of cartilaginous gene and protein compared with the atelocollagen scaffold group. Furthermore, the engineered cartilage based on the aBMSC-dECM scaffold showed better cartilage formation in terms of volume and homogeneity, cartilage matrix content, and compressive modulus after 3 weeks in vivo implantation. These results indicated that the aBMSC-dECM scaffold could be a successful novel candidate scaffold for cartilage tissue engineering. © 2013 Wiley Periodicals, Inc. and International Center for Artificial Organs and Transplantation.

  8. Sustained and full fetal hemoglobin production after failure of bone marrow transplant in a patient homozygous for beta 0-thalassemia: a clinical remission despite genetic disease and transplant rejection.

    PubMed

    Paciaroni, Katia; Gallucci, Cristiano; De Angelis, Gioia; Alfieri, Cecilia; Roveda, Andrea; Lucarelli, Guido

    2009-06-01

    An adult patient affected by beta(0)-thalassemia major underwent allogeneic bone marrow transplant (BMT) from a matched related donor. Forty days after transplant, allogeneic engraftment failure and autologous beta(0)-thalassemic bone marrow recovery were documented. Red blood cell transfusions were required until 118 days post-transplant. Thereafter, the haemoglobin (Hb) levels stabilized over 11.8 gr/dl throughout the ongoing 34-month follow-up, abolishing the need for transfusion support. The Hb electrophoresis showed 100% Hb Fetal (HbF). This unexplained case suggests full HbF production may occur in an adult patient with beta(0)-thalassemia major.

  9. Dynamic of distribution of human bone marrow-derived mesenchymal stem cells after transplantation into adult unconditioned mice.

    PubMed

    Allers, Carolina; Sierralta, Walter D; Neubauer, Sonia; Rivera, Francisco; Minguell, José J; Conget, Paulette A

    2004-08-27

    The use of mesenchymal stem cells (MSC) for cell therapy relies on their capacity to engraft and survive long-term in the appropriate target tissue(s). Animal models have demonstrated that the syngeneic or xenogeneic transplantation of MSC results in donor engraftment into the bone marrow and other tissues of conditioned recipients. However, there are no reliable data showing the fate of human MSC infused into conditioned or unconditioned adult recipients. In the present study, the authors investigated, by using imaging, polymerase chain reaction (PCR), and in situ hybridization, the biodistribution of human bone marrow-derived MSC after intravenous infusion into unconditioned adult nude mice. As assessed by imaging (gamma camera), PCR, and in situ hybridization analysis, the authors' results demonstrate the presence of human MSC in bone marrow, spleen, and mesenchymal tissues of recipient mice. These results suggest that human MSC transplantation into unconditioned recipients represents an option for providing cellular therapy and avoids the complications associated with drugs or radiation conditioning.

  10. Migration and Differentiation of GFP-transplanted Bone Marrow-derived Cells into Experimentally Induced Periodontal Polyp in Mice.

    PubMed

    Matsuda, Saeka; Shoumura, Masahito; Osuga, Naoto; Tsujigiwa, Hidetsugu; Nakano, Keisuke; Okafuji, Norimasa; Ochiai, Takanaga; Hasegawa, Hiromasa; Kawakami, Toshiyuki

    2016-01-01

    Perforation of floor of the dental pulp is often encountered during root canal treatment in routine clinical practice of dental caries. If perforation were large, granulation tissue would grow to form periodontal polyp. Granulation tissue consists of proliferating cells however their origin is not clear. It was shown that the cells in granulation tissue are mainly from migration of undifferentiated mesenchymal cells of the bone marrow. Hence, this study utilized GFP bone marrow transplantation mouse model. The floor of the pulp chamber in maxillary first molar was perforated using ½ dental round bur. Morphological assessment was carried out by micro CT and microscopy and GFP cell mechanism was further assessed by immunohistochemistry using double fluorescent staining with GFP-S100A4; GFP-Runx2 and GFP-CD31. Results of micro CT revealed alveolar bone resorption and widening of periodontal ligament. Histopathological examination showed proliferation of fibroblasts with some round cells and blood vessels in the granulation tissue. At 2 weeks, the outermost layer of the granulation tissue was lined by squamous cells with distinct intercellular bridges. At 4 weeks, the granulation tissue became larger than the perforation and the outermost layer was lined by relatively typical stratified squamous epithelium. Double immunofluorescent staining of GFP and Runx2 revealed that both proteins were expressed in spindle-shaped cells. Double immunofluorescent staining of GFP and CD31 revealed that both proteins were expressed in vascular endothelial cells in morphologically distinct vessels. The results suggest that fibroblasts, periodontal ligament fibroblasts and blood vessels in granulation tissue were derived from transplanted-bone marrow cells. Thus, essential growth of granulation tissue in periodontal polyp was caused by the migration of undifferentiated mesenchymal cells derived from bone marrow, which differentiated into fibroblasts and later on differentiated into

  11. Role of bone marrow-derived CD11c+ dendritic cells in systolic overload-induced left ventricular inflammation, fibrosis and hypertrophy.

    PubMed

    Wang, Huan; Kwak, Dongmin; Fassett, John; Liu, Xiaohong; Yao, Wu; Weng, Xinyu; Xu, Xin; Xu, Yawei; Bache, Robert J; Mueller, Daniel L; Chen, Yingjie

    2017-05-01

    Inflammatory responses play an important role in the development of left ventricular (LV) hypertrophy and dysfunction. Recent studies demonstrated that increased T-cell infiltration and T-cell activation contribute to LV hypertrophy and dysfunction. Dendritic cells (DCs) are professional antigen-presenting cells that orchestrate immune responses, especially by modulating T-cell function. In this study, we investigated the role of bone marrow-derived CD11c + DCs in transverse aortic constriction (TAC)-induced LV fibrosis and hypertrophy in mice. We observed that TAC increased the number of CD11c + cells and the percentage of CD11c + MHCII + (major histocompatibility complex class II molecule positive) DCs in the LV, spleen and peripheral blood in mice. Using bone marrow chimeras and an inducible CD11c + DC ablation model, we found that depletion of bone marrow-derived CD11c + DCs significantly attenuated LV fibrosis and hypertrophy in mice exposed to 24 weeks of moderate TAC. CD11c + DC ablation significantly reduced TAC-induced myocardial inflammation as indicated by reduced myocardial CD45 + cells, CD11b + cells, CD8 + T cells and activated effector CD8 + CD44 + T cells in LV tissues. Moreover, pulsing of autologous DCs with LV homogenates from TAC mice promoted T-cell proliferation. These data indicate that bone marrow-derived CD11c + DCs play a maladaptive role in hemodynamic overload-induced cardiac inflammation, hypertrophy and fibrosis through the presentation of cardiac self-antigens to T cells.

  12. Directing bone marrow-derived stromal cell function with mechanics.

    PubMed

    Potier, E; Noailly, J; Ito, K

    2010-03-22

    Because bone marrow-derived stromal cells (BMSCs) are able to generate many cell types, they are envisioned as source of regenerative cells to repair numerous tissues, including bone, cartilage, and ligaments. Success of BMSC-based therapies, however, relies on a number of methodological improvements, among which better understanding and control of the BMSC differentiation pathways. Since many years, the biochemical environment is known to govern BMSC differentiation, but more recent evidences show that the biomechanical environment is also directing cell functions. Using in vitro systems that aim to reproduce selected components of the in vivo mechanical environment, it was demonstrated that mechanical loadings can affect BMSC proliferation and improve the osteogenic, chondrogenic, or myogenic phenotype of BMSCs. These effects, however, seem to be modulated by parameters other than mechanics, such as substrate nature or soluble biochemical environment. This paper reviews and discusses recent experimental data showing that despite some knowledge limitation, mechanical stimulation already constitutes an additional and efficient tool to drive BMSC differentiation. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  13. [Allogeneic hematopoietic cell transplantation for Hodgkin's disease, mantle cell lymphoma and other rare entities: Guidelines from the Francophone Society of Bone Marrow Transplantation and Cellular Therapy (SFGM-TC)].

    PubMed

    Gauthier, Jordan; Chantepie, Sylvain; Bouabdallah, Krimo; Jost, Edgar; Nguyen, Stéphanie; Gac, Anne-Claire; Damaj, Gandhi; Duléry, Rémy; Michallet, Mauricette; Delage, Jérémy; Lewalle, Philippe; Morschhauser, Franck; Salles, Gilles; Yakoub-Agha, Ibrahim; Cornillon, Jérôme

    2017-12-01

    Despite great improvements in the outcome of patients with lymphoma, some may still relapse or present with primary refractory disease. In these situations, allogeneic haematopoietic cell transplantation is a potentially curative option, in particular in the case of relapse after autologous stem cell transplantation. Recently, novel agents such as anti-PD1 and BTK inhibitors have started to challenge the use of allogeneic haematopoietic cell transplantation for relapsed or refractory lymphoma. During the 2016 annual workshop of the Francophone Society of Bone Marrow Transplantation and Cellular Therapy (SFGM-TC), we performed a comprehensive review of the literature published in the last 10 years and established guidelines to clarify the indications and transplant modalities in this setting. This manuscript specifically reports on our conclusions regarding Hodgkin's lymphoma as well as rarer entities, such as T cell lymphomas. Copyright © 2017 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  14. In utero transplantation of human bone marrow-derived multipotent mesenchymal stem cells in mice.

    PubMed

    Chou, Shiu-Huey; Kuo, Tom K; Liu, Ming; Lee, Oscar K

    2006-03-01

    Mesenchymal stem cells (MSCs) are multipotent cells that can be isolated from human bone marrow and possess the potential to differentiate into progenies of embryonic mesoderm. However, current evidence is based predominantly on in vitro experiments. We used a murine model of in utero transplantation (IUT) to study the engraftment capabilities of human MSCs. MSCs were obtained from bone marrow by negative immunoselection and limiting dilution, and were characterized by flow cytometry and by in vitro differentiation into osteoblasts, chondrocytes, and adipocytes. MSCs were transplanted into fetal mice at a gestational age of 14 days. Engraftment of human MSCs was determined by flow cytometry, polymerase chain reaction, and fluorescence in situ hybridization (FISH). MSCs engrafted into tissues originating from all three germ layers and persisted for up to 4 months or more after delivery, as evidenced by the expression of the human-specific beta-2 microglobulin gene and by FISH for donor-derived cells. Donor-derived CD45+ cells were detectable in the peripheral blood of recipients, suggesting the participation of MSCs in hematopoiesis at the fetal stage. This model can further serve to evaluate possible applications of MSCs. Copyright 2006 Orthopaedic Research Society.

  15. Bone Marrow Graft in Man after Conditioning by Antilymphocytic Serum*

    PubMed Central

    Mathé, G.; Amiel, J. L.; Schwarzenberg, L.; Choay, J.; Trolard, P.; Schneider, M.; Hayat, M.; Schlumberger, J. R.; Jasmin, Cl.

    1970-01-01

    Allogeneic bone marrow grafts carried out after previous administration of antilymphocytic serum alone were attempted in 16 patients. Of these, six had acute myeloblastic leukaemia, four acute lymphoblastic leukaemia, and one a blast cell crisis in polycythaemia vera. Ten of these patients were in an overt phase of the disease and resistant to chemotherapy, while nine had complete agranulocytosis. In five of these patients erythrocyte and leucocyte antigenic markers demonstrated the establishment of the graft. One patient had thalassaemia major, and four others had aplasia of the bone marrow, in one case due to chloramphenicol poisoning and in another to virus hepatitis. The grafts were successful in the last two patients and transformed their clinical condition. No signs of early acute secondary disease were noted in any of the patients, either when the donor had been given antilymphocytic serum or when he was untreated. The grafts had no adoptive immunotherapeutic effect on the acute leukaemia. These observations have clearly shown that antilymphocytic serum has an immunosuppressive effect in man when it is used alone. PMID:4909449

  16. Macrophage function in murine allogeneic bone marrow radiation chimeras in the early phase after transplantation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roesler, J.; Baccarini, M.; Vogt, B.

    1989-08-01

    We tested several of the functions of macrophages (M phi) in the early phase after allogeneic bone marrow transfer to get information about this important aspect of the nonspecific immune system in the T-cell-deficient recipient. On days 3-5 after transfer, the number of M phi was reduced in the spleen, liver, lungs, and peritoneal cavity (Pe). The phagocytosis of sheep red blood cells (SRBC) by these M phi was normal or even enhanced, as in the case of Pe-M phi. Already on days 8-12 after transfer, the number of M phi in spleen and liver exceeded that of controls, whereasmore » the number was still reduced in lungs and Pe. We examined their ability to kill P815 tumor cells, to produce tumor necrosis factor-alpha (TNF alpha), to phagocytose SRBC, to produce reactive oxygen intermediates (ROI) in vitro and to kill Listeria monocytogenes in vivo. Most functions were normal and often even enhanced, depending on the organ origin, but the ability of Pe-M phi to produce ROI was reduced. Proliferative response to macrophage colony-stimulating factor (M-CSF) and killing of YAC-1 tumor cells revealed a high frequency of macrophage precursor cells in the spleen and liver and a high natural killer (NK) activity in the liver. Altogether, enhanced nonspecific immune function, especially preactivated M phi, may enable chimeras to survive attacks by opportunistic pathogens.« less

  17. Muscle-specific kinase-antibody-positive myasthenia gravis after autologous bone marrow transplantation.

    PubMed

    Grover, Kavita Mohindra; Sripathi, Naganand; Elias, Stanton Bernard

    2012-03-01

    A 44-year-old man presented with oculobulbar weakness approximately 5 years after autologous bone marrow transplantation (BMT). His workup led to the diagnosis of muscle-specific kinase-antibody-related myasthenia gravis (MG). There has been only one case report of muscle-specific kinase-antibody-positive MG after BMT, which was allogeneic. We report the first case of autologous BMT-associated MG with muscle-specific kinase antibody. The pathogenic mechanisms of immune dysregulation leading to MG after BMT are discussed.

  18. Neonatal bone marrow transplantation of ADA-deficient SCID mice results in immunologic reconstitution despite low levels of engraftment and an absence of selective donor T lymphoid expansion

    PubMed Central

    Carbonaro, Denise A.; Jin, Xiangyang; Cotoi, Daniel; Mi, Tiejuan; Yu, Xiao-Jin; Skelton, Dianne C.; Dorey, Frederick; Kellems, Rodney E.; Blackburn, Michael R.

    2008-01-01

    Adenosine deaminase (ADA)–deficient severe combined immune deficiency (SCID) may be treated by allogeneic hematopoietic stem cell transplantation without prior cytoreductive conditioning, although the mechanism of immune reconstitution is unclear. We studied this process in a murine gene knockout model of ADA-deficient SCID. Newborn ADA-deficient pups received transplants of intravenous infusion of normal congenic bone marrow, without prior cytoreductive conditioning, which resulted in long-term survival, multisystem correction, and nearly normal lymphocyte numbers and mitogenic proliferative responses. Only 1% to 3% of lymphocytes and myeloid cells were of donor origin without a selective expansion of donor-derived lymphocytes; immune reconstitution was by endogenous, host-derived ADA-deficient lymphocytes. Preconditioning of neonates with 100 to 400 cGy of total body irradiation before normal donor marrow transplant increased the levels of engrafted donor cells in a radiation dose–dependent manner, but the chimerism levels were similar for lymphoid and myeloid cells. The absence of selective reconstitution by donor T lymphocytes in the ADA-deficient mice indicates that restoration of immune function occurred by rescue of endogenous ADA-deficient lymphocytes through cross-correction from the engrafted ADA-replete donor cells. Thus, ADA-deficient SCID is unique in its responses to nonmyeloablative bone marrow transplantation, which has implications for clinical bone marrow transplantation or gene therapy. PMID:18356486

  19. Pathogenesis of chronic rhinosinusitis in patients affected by β-thalassemia major and sickle cell anaemia post allogenic bone marrow transplant.

    PubMed

    Martino, F; Di Mauro, R; Paciaroni, K; Gaziev, J; Alfieri, C; Greco, L; Floris, R; Di Girolamo, S; Di Girolamo, M

    2018-03-01

    Sickle cell anemia (SCA) and β -thalassemia major are well-recognized beta-globin gene disorders of red blood cells associated to mortality and morbidity included bone morbidities due to ineffective erythropoiesis and bone marrow expansion, which affect every part of the skeleton. While there are an abundance of described disease manifestations of the head and neck, the manner of paranasal sinuses involvement and its relations to β-thalassemia and SCA process was not studied yet. Therefore, the aim of this study was to investigate a possible increased risk of rhinosinusitis and the real pathogenetic mechanism of it, comparing these two hematological diseases using msCT, gold standard for paranasal sinuses evaluation. A retrospective analysis of 90 patients affected by β-thalassemia major or SCA (respectively 59 and 31) underwent allogeneic bone marrow transplantation (BMT), and 44 control subjects was performed. Both patient categories and control group have been subjected to hematological and radiological evaluation using 64-multidetector-row CT scanner without contrast injection. Statistical analysis reveals that patients of the two study groups exhibit a significantly increased risk of sinusitis in comparison with the normal controls (RR: 3.55 for β-thalassemic pediatric subjects; RR: 3.35 for SCA pediatric subjects). A significant difference (p < 0,5) was found between the β -thalassemic patients on the one side, and SCA and control group on the other side, with regard to the evaluation of the typical anatomic alteration of maxillary sinus: β-thalassemic children had significant increase in the bone thickness of anterior and lateral sinus walls and significant reduction in volume and density compared to SCA patients and control group, with normal conditions of these parameters. In these hematological patients, there is an increased incidence of sinonasal infections due their therapy-induced immunosuppression post transplantation. In

  20. Neural cells derived from adult bone marrow and umbilical cord blood.

    PubMed

    Sanchez-Ramos, Juan R

    2002-09-15

    Under experimental conditions, tissue-specific stem cells have been shown to give rise to cell lineages not normally found in the organ or tissue of residence. Neural stem cells from fetal brain have been shown to give rise to blood cell lines and conversely, bone marrow stromal cells have been reported to generate skeletal and cardiac muscle, oval hepatocytes, as well as glia and neuron-like cells. This article reviews studies in which cells from postnatal bone marrow or umbilical cord blood were induced to proliferate and differentiate into glia and neurons, cellular lineages that are not their normal destiny. The review encompasses in vitro and in vivo studies with focus on experimental variables, such as the source and characterization of cells, cell-tracking methods, and markers of neural differentiation. The existence of stem/progenitor cells with previously unappreciated proliferation and differentiation potential in postnatal bone marrow and in umbilical cord blood opens up the possibility of using stem cells found in these tissues to treat degenerative, post-traumatic and hereditary diseases of the central nervous system. Copyright 2002 Wiley-Liss, Inc.

  1. Bone-marrow-derived mesenchymal stem cells inhibit gastric aspiration lung injury and inflammation in rats.

    PubMed

    Zhou, Jing; Jiang, Liyan; Long, Xuan; Fu, Cuiping; Wang, Xiangdong; Wu, Xiaodan; Liu, Zilong; Zhu, Fen; Shi, Jindong; Li, Shanqun

    2016-09-01

    Gastric aspiration lung injury is one of the most common clinical events. This study investigated the effects of bone-marrow-derived mesenchymal stem cells (BMSCs) on combined acid plus small non-acidified particle (CASP)-induced aspiration lung injury. Enhanced green fluorescent protein (EGFP(+) ) or EGFP(-) BMSCs or 15d-PGJ2 were injected via the tail vein into rats immediately after CASP-induced aspiration lung injury. Pathological changes in lung tissues, blood gas analysis, the wet/dry weight ratio (W/D) of the lung, levels of total proteins and number of total cells and neutrophils in bronchoalveolar lavage fluid (BALF) were determined. The cytokine levels were measured using ELISA. Protein expression was determined by Western blot. Bone-marrow-derived mesenchymal stem cells treatment significantly reduced alveolar oedema, exudation and lung inflammation; increased the arterial partial pressure of oxygen; and decreased the W/D of the lung, the levels of total proteins and the number of total cells and neutrophils in BALF in the rats with CASP-induced lung injury. Bone-marrow-derived mesenchymal stem cells treatment decreased the levels of tumour necrosis factor-α and Cytokine-induced neutrophil chemoattractant (CINC)-1 and the expression of p-p65 and increased the levels of interleukin-10 and 15d-PGJ2 and the expression of peroxisome proliferator-activated receptor (PPAR)-γ in the lung tissue in CASP-induced rats. Tumour necrosis factor-α stimulated BMSCs to secrete 15d-PGJ2 . A tracking experiment showed that EGFP(+) BMSCs were able to migrate to local lung tissues. Treatment with 15d-PGJ2 also significantly inhibited CASP-induced lung inflammation and the production of pro-inflammatory cytokines. Our results show that BMSCs can protect lung tissues from gastric aspiration injury and inhibit lung inflammation in rats. A beneficial effect might be achieved through BMSC-derived 15d-PGJ2 activation of the PPAR-γ receptor, reducing the production of

  2. Major Histocompatibility Mismatch and Donor Choice for Second Allogeneic Bone Marrow Transplantation.

    PubMed

    Imus, Philip H; Blackford, Amanda L; Bettinotti, Maria; Iglehart, Brian; Dietrich, August; Tucker, Noah; Symons, Heather; Cooke, Kenneth R; Luznik, Leo; Fuchs, Ephraim J; Brodsky, Robert A; Matsui, William H; Huff, Carol Ann; Gladstone, Douglas; Ambinder, Richard F; Borrello, Ivan M; Swinnen, Lode J; Jones, Richard J; Bolaños-Meade, Javier

    2017-11-01

    Large alternative donor pools provide the potential for selecting a different donor for a second allogeneic (allo) bone or marrow transplant (BMT). As HLA disparity may contribute to the graft-versus-tumor effect, utilizing new mismatched haplotype donors may potentially improve the antitumor activity for relapsed hematologic malignancies despite a previous alloBMT. Data from patients who received a second alloBMT for relapsed hematologic malignancies at Johns Hopkins were analyzed. Outcomes were compared between patients who received a second allograft with the same MHC composition and those who received an allograft with a new mismatched haplotype. Loss of heterozygosity analysis was performed for patients with acute myeloid leukemia (AML) whose first allograft was haploidentical. Between 2005 and 2015, 40 patients received a second BMT for a relapsed hematologic malignancy. The median follow-up is 750 (range, 26 to 2950) days. The median overall survival (OS) in the cohort is 928 days (95% confidence interval [CI], 602 to not reached [NR]); median event-free survival (EFS) for the cohort is 500 days (95% CI, 355 to NR). The 4-year OS is 40% (95% CI, 25% to 64%), and the 4-year EFS is 36% (95% CI, 24% to 55%). The cumulative incidence of nonrelapsed mortality by 2 years was 27% (95% CI, 13% to 42%). The cumulative incidence of grade 3 to 4 acute graft-versus-host disease (GVHD) at 100 days was 15% (95% CI, 4% to 26%); the cumulative incidence of extensive chronic GVHD at 2 years was 22% (95% CI, 9% to 36%). The median survival was 552 days (95% CI, 376 to 2950+) in the group who underwent transplantation with a second allograft that did not harbor a new mismatched haplotype, while it was not reached in the group whose allograft contained a new mismatched haplotype (hazard ratio [HR], .36; 95% CI, .14 to .9; P = .02). EFS was also longer in the group who received an allograft containing a new mismatched haplotype, (NR versus 401 days; HR, .50; 95% CI, .22 to 1

  3. Establishment of donor Chimerism Using Allogeneic Bone Marrow with AMP Cell Co-infusion

    DTIC Science & Technology

    2017-09-01

    the ideal solution. Combined mixed allogeneic chimerism induction and kidney transplantation has been shown to induce robust tolerance to the kidney ...induction to kidney allografts in non-human primates and humans despite the transience of donor chimerism. However, evidence indicates that durable mixed...chimerism may be required for tolerance induction to tissues or organs other than kidney . Amnion-derived multipotent progenitor (AMP) cells possess

  4. In patients with chronic aplastic anemia, bone marrow-derived MSCs regulate the Treg/Th17 balance by influencing the Notch/RBP-J/FOXP3/RORγt pathway.

    PubMed

    Li, Hongbo; Wang, Lin; Pang, Yan; Jiang, Zujun; Liu, Zenghui; Xiao, Haowen; Chen, Haijia; Ge, Xiaohu; Lan, Hai; Xiao, Yang

    2017-02-14

    The standard treatment for aplastic anemia (AA) in young patients is a matched sibling hematopoietic stem cell transplant. Transfusion of a chronic AA patient with allogeneic bone marrow-derived mesenchymal stromal cells (BMMSCs) is currently being developed as a cell-based therapy, and the safety and efficacy of such transfusions are being continuously improved. Nevertheless, the mechanisms by which BMMSCs exert their therapeutic effects remain to be elucidated. In this study, mesenchymal stromal cells (MSCs) obtained from bone marrow donors were concentrated and intravenously injected into 15 chronic AA patients who had been refractory to prior immunosuppressive therapy. We showed that BMMSCs modulate the levels of Th1, Th2, Th17 and Treg cells, as well as their related cytokines in chronic AA patients. Furthermore, the percentages of Th1 and Th17 cells among the H-MSCs decreased significantly, while the percentage Treg cells increased. The Notch/RBP-J/FOXP3/RORγt pathway was involved in modulating the Treg/Th17 balance after MSCs were transfused in vitro. Additionally, the role played by transfused MSCs in regulating the Treg/Th17 balance via the Notch/RBP-J/FOXP3/RORγt pathway was further confirmed in an AA mouse model. In summary, in humans with chronic AA, BMMSCs regulate the Treg/Th17 balance by affecting the Notch/RBP-J/FOXP3/RORγt pathway.

  5. Assessment of alveolar bone marrow fat content using 15 T MRI.

    PubMed

    Cortes, Arthur Rodriguez Gonzalez; Cohen, Ouri; Zhao, Ming; Aoki, Eduardo Massaharu; Ribeiro, Rodrigo Alves; Abu Nada, Lina; Costa, Claudio; Arita, Emiko Saito; Tamimi, Faleh; Ackerman, Jerome L

    2018-03-01

    Bone marrow fat is inversely correlated with bone mineral density. The aim of this study is to present a method to quantify alveolar bone marrow fat content using a 15 T magnetic resonance imaging (MRI) scanner. A 15 T MRI scanner with a 13-mm inner diameter loop-gap radiofrequency coil was used to scan seven 3-mm diameter alveolar bone biopsy specimens. A 3-D gradient-echo relaxation time (T1)-weighted pulse sequence was chosen to obtain images. All images were obtained with a voxel size (58 µm 3 ) sufficient to resolve trabecular spaces. Automated volume of the bone marrow fat content and derived bone volume fraction (BV/TV) were calculated. Results were compared with actual BV/TV obtained from micro-computed tomography (CT) scans. Mean fat tissue volume was 20.1 ± 11%. There was a significantly strong inverse correlation between fat tissue volume and BV/TV (r = -0.68; P = .045). Furthermore, there was a strong agreement between BV/TV derived from MRI and obtained with micro-CT (interclass correlation coefficient = 0.92; P = .001). Bone marrow fat of small alveolar bone biopsy specimens can be quantified with sufficient spatial resolution using an ultra-high-field MRI scanner and a T1-weighted pulse sequence. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Functional paralysis of GM-CSF-derived bone marrow cells productively infected with ectromelia virus.

    PubMed

    Szulc-Dąbrowska, Lidia; Struzik, Justyna; Ostrowska, Agnieszka; Guzera, Maciej; Toka, Felix N; Bossowska-Nowicka, Magdalena; Gieryńska, Małgorzata M; Winnicka, Anna; Nowak, Zuzanna; Niemiałtowski, Marek G

    2017-01-01

    Ectromelia virus (ECTV) is an orthopoxvirus responsible for mousepox, a lethal disease of certain strains of mice that is similar to smallpox in humans, caused by variola virus (VARV). ECTV, similar to VARV, exhibits a narrow host range and has co-evolved with its natural host. Consequently, ECTV employs sophisticated and host-specific strategies to control the immune cells that are important for induction of antiviral immune response. In the present study we investigated the influence of ECTV infection on immune functions of murine GM-CSF-derived bone marrow cells (GM-BM), comprised of conventional dendritic cells (cDCs) and macrophages. Our results showed for the first time that ECTV is able to replicate productively in GM-BM and severely impaired their innate and adaptive immune functions. Infected GM-BM exhibited dramatic changes in morphology and increased apoptosis during the late stages of infection. Moreover, GM-BM cells were unable to uptake and process antigen, reach full maturity and mount a proinflammatory response. Inhibition of cytokine/chemokine response may result from the alteration of nuclear translocation of NF-κB, IRF3 and IRF7 transcription factors and down-regulation of many genes involved in TLR, RLR, NLR and type I IFN signaling pathways. Consequently, GM-BM show inability to stimulate proliferation of purified allogeneic CD4+ T cells in a primary mixed leukocyte reaction (MLR). Taken together, our data clearly indicate that ECTV induces immunosuppressive mechanisms in GM-BM leading to their functional paralysis, thus compromising their ability to initiate downstream T-cell activation events.

  7. Quantitative MRI and spectroscopy of bone marrow

    PubMed Central

    Ruschke, Stefan; Dieckmeyer, Michael; Diefenbach, Maximilian; Franz, Daniela; Gersing, Alexandra S.; Krug, Roland; Baum, Thomas

    2017-01-01

    Bone marrow is one of the largest organs in the human body, enclosing adipocytes, hematopoietic stem cells, which are responsible for blood cell production, and mesenchymal stem cells, which are responsible for the production of adipocytes and bone cells. Magnetic resonance imaging (MRI) is the ideal imaging modality to monitor bone marrow changes in healthy and pathological states, thanks to its inherent rich soft‐tissue contrast. Quantitative bone marrow MRI and magnetic resonance spectroscopy (MRS) techniques have been also developed in order to quantify changes in bone marrow water–fat composition, cellularity and perfusion in different pathologies, and to assist in understanding the role of bone marrow in the pathophysiology of systemic diseases (e.g. osteoporosis). The present review summarizes a large selection of studies published until March 2017 in proton‐based quantitative MRI and MRS of bone marrow. Some basic knowledge about bone marrow anatomy and physiology is first reviewed. The most important technical aspects of quantitative MR methods measuring bone marrow water–fat composition, fatty acid composition, perfusion, and diffusion are then described. Finally, previous MR studies are reviewed on the application of quantitative MR techniques in both healthy aging and diseased bone marrow affected by osteoporosis, fractures, metabolic diseases, multiple myeloma, and bone metastases. Level of Evidence: 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:332–353. PMID:28570033

  8. Mesenchymal Stem Cell Benefits Observed in Bone Marrow Failure and Acquired Aplastic Anemia

    PubMed Central

    Gonzaga, Vivian Fonseca; Lisboa, Gustavo Sabino; Frare, Eduardo Osório

    2017-01-01

    Acquired aplastic anemia (AA) is a type of bone marrow failure (BMF) syndrome characterized by partial or total bone marrow (BM) destruction resulting in peripheral blood (PB) pancytopenia, which is the reduction in the number of red blood cells (RBC) and white blood cells (WBC), as well as platelets (PLT). The first-line treatment option of AA is given by hematopoietic stem cell (HSCs) transplant and/or immunosuppressive (IS) drug administration. Some patients did not respond to the treatment and remain pancytopenic following IS drugs. The studies are in progress to test the efficacy of adoptive cellular therapies as mesenchymal stem cells (MSCs), which confer low immunogenicity and are reliable allogeneic transplants in refractory severe aplastic anemia (SAA) cases. Moreover, bone marrow stromal cells (BMSC) constitute an essential component of the hematopoietic niche, responsible for stimulating and enhancing the proliferation of HSCs by secreting regulatory molecules and cytokines, providing stimulus to natural BM microenvironment for hematopoiesis. This review summarizes scientific evidences of the hematopoiesis improvements after MSC transplant, observed in acquired AA/BMF animal models as well as in patients with acquired AA. Additionally, we discuss the direct and indirect contribution of MSCs to the pathogenesis of acquired AA. PMID:29333168

  9. Systemically Transplanted Bone Marrow-derived Cells Contribute to Dental Pulp Regeneration in a Chimeric Mouse Model.

    PubMed

    Xu, Wenan; Jiang, Shan; Chen, Qiuyue; Ye, Yanyan; Chen, Jiajing; Heng, Boon Chin; Jiang, Qianli; Wu, Buling; Ding, Zihai; Zhang, Chengfei

    2016-02-01

    Migratory cells via blood circulation or cells adjacent to the root apex may potentially participate in dental pulp tissue regeneration or renewal. This study investigated whether systemically transplanted bone marrow cells can contribute to pulp regeneration in a chimeric mouse model. A chimeric mouse model was created through the injection of bone marrow cells from green fluorescent protein (GFP) transgenic C57BL/6 mice into the tail veins of recipient wild-type C57BL/6 mice that had been irradiated with a lethal dose of 8.5 Gy from a high-frequency linear accelerator. These mice were subjected to pulpectomy and pulp revascularization. At 1, 4, and 8 weeks after surgery, in vivo animal imaging and histologic analyses were conducted. In vivo animal imaging showed that the green biofluorescence signal from the transplanted GFP+ cells increased significantly and was maintained at a high level during the first 4 weeks after surgery. Immunofluorescence analyses of tooth specimens collected at 8 weeks postsurgery showed the presence of nestin+/GFP+, α smooth muscle actin (α-SMA)/GFP+, and NeuN/GFP+ cells within the regenerated pulplike tissue. These data confirm that transplanted bone marrow-derived cells can contribute to dental pulp regeneration. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  10. Short exposure of maturing, bone marrow-derived dendritic cells to norepinephrine: impact on kinetics of cytokine production and Th development.

    PubMed

    Maestroni, Georges J M

    2002-08-01

    The information gathered by dendritic cells (DC) during the innate immune response to a pathogen is determinant for the type of adaptive response. Here we show that short-term (3 h) exposure of bone marrow-derived DC to norepinephrine (NE), at the beginning of lipopolysaccharide (LPS) or keyhole limpet hemocyanin (KLH) stimulation hampers IL-12 production and increases IL-10 release. The NE effect was mediated by both beta- and alpha2-adrenergic receptors. The capacity of NE-exposed DC to produce IL-12 upon CD40 cross-linking as well as to stimulate allogeneic T-helper (Th) lymphocytes was reduced. Adoptive transfer of NE-exposed DC induced a Th2 slanted response in vivo. Thus, a brief NE exposure of antigen-stimulated DC seems to limit their Th1 polarizing properties. Noteworthy, the ganglionic blocker pentolinium administered in mice before skin sensitization with fluoroscein isothiocyanate (FITC) could increase the Th1-type response in the draining lymph nodes. Our results suggest that the extent of Th differentiation in the response to an antigen might be influenced by the local sympathetic nervous activity in the early phase of dendritic cell stimulation.

  11. G-CSF-primed autologous and allogeneic bone marrow for transplantation in clinical oncology. Cell content and immunological characteristics

    NASA Astrophysics Data System (ADS)

    Grivtsova, L. Yu; Melkova, K. N.; Kupryshkina, N. A.; Vorotnikov, I. K.; Grigoryeva, T. A.; Selchuk, V. Yu; Grebennikova, O. P.; Titova, G. V.; Tupitsyn, N. N.

    2018-01-01

    60 samples of G-CSF-primed bone marrow (39 cancer patients and 21 healthy donors) to be used for transplantation to cancer patients were analyzed and compared by main characteristics with historical control and 13 bone marrow samples from control patient with mastopathy. Basing on morphological and multicolor flow cytometry findings certain characteristics of G-CSF-primed bone marrow were discovered, such as a significant increase in blast count in cancer patients as compared to donors and control patients (p<0.037), a higher neutrophil maturation index (p<0.001) and a lower percentage of mature lymphocytes (p<0.008) as compared to the control group. Among lymphocyte populations G-CSF-priming was associated with a significant increase in the total of mature CD3+ T-cells and CD8+ T-killers (p<0.0001) and a decrease in CD56+CD3- and/or CD16+CD3- NK-cells (p<0.006) both in cancer patients and healthy donors in comparison with the controls.

  12. Analysis of results of acute graft-versus-host disease prophylaxis with donor multipotent mesenchymal stromal cells in patients with hemoblastoses after allogeneic bone marrow transplantation.

    PubMed

    Shipounova, I N; Petinati, N A; Bigildeev, A E; Zezina, E A; Drize, N I; Kuzmina, L A; Parovichnikova, E N; Savchenko, V G

    2014-12-01

    Allogeneic bone marrow transplantation (allo-BMT) is currently the only way to cure many hematoproliferative disorders. However, allo-BMT use is limited by severe complications, the foremost being graft-versus-host disease (GVHD). Due to the lack of efficiency of the existing methods of GVHD prophylaxis, new methods are being actively explored, including the use of donors' multipotent mesenchymal stromal cells (MMSC). In this work, we analyzed the results of acute GVHD (aGVHD) prophylaxis by means of MMSC injections after allo-BMT in patients with hematological malignancies. The study included 77 patients. They were randomized into two groups - those receiving standard prophylaxis of aGVHD and those who were additionally infused with MMSC derived from the bone marrow of hematopoietic stem cell donors. We found that the infusion of MMSC halves the incidence of aGVHD and increases the overall survival of patients. Four of 39 MMSC samples were ineffective for preventing aGVHD. Analysis of individual donor characteristics (gender, age, body mass index) and the MMSC properties of these donors (growth parameters, level of expression of 30 genes involved in proliferation, differentiation, and immunomodulation) revealed no significant difference between the MMSC that were effective or ineffective for preventing aGVHD. We used multiple logistic regression to establish a combination of features that characterize the most suitable MMSC samples for the prevention of aGVHD. A model predicting MMSC sample success for aGVHD prophylaxis was constructed. Significant model parameters were increased relative expression of the FGFR1 gene in combination with reduced expression levels of the PPARG and IGF1 genes. Depending on the chosen margin for probability of successful application of MMSC, this model correctly predicts the outcome of the use of MMSC in 82-94% of cases. The proposed model of prospective evaluation of the effectiveness of MMSC samples will enable prevention of the

  13. Prevention of crescentic glomerulonephritis in SCG/Kj mice by bone marrow transplantation.

    PubMed

    Cherry; Engelman, R W; Wang, B Y; Kinjoh, K; El-Badri, N S; Good, R A

    1998-07-01

    Transplantation of MHC-compatible, T-cell-depleted, bone marrow cells has successfully treated autoimmunities, immunodeficiencies, malignancies, and developmental deficiencies of the hematopoietic system. Recombinant inbred SCG/Kj mice develop spontaneous crescentic glomerulonephritis, systemic vasculitis, and a lymphoproliferative disorder early in life. To determine whether the precipitous autoimmune disease of SCG/Kj mice could be treated by bone marrow transplantation, 30 SCG/Kj mice were engrafted with T-cell-depleted, bone marrow (TCDM) from allogeneic, MHC-compatible, autoimmune-resistant C3H/He donors, and 30 SCG/Kj mice served as controls and received TCDM from syngeneic, SCG/Kj donors. A significant survival advantage was evident from SCG/Kj mice engrafted with C3H/He TCDM (p < 0.005), and an 89% extension of median survival compared to recipients of SCG/Kj TCDM. Within 28 weeks post-transplantation, 62% of mice engrafted with SCG/Kj TCDM had died with clinical signs of fatal crescentic glomerulonephritis. This result compared with only 10% of mice engrafted with C3H/He TCDM. Mice engrafted with SCG/Kj TCDM developed significantly greater titers of autoantibodies to ss-DNA, ds-DNA, and myeloperoxidase (ANCA) (p < 0.001), had shorter latencies to the development of, and a greater incidence of proteinuria, hematuria, and peripheral lymphadenopathy, and a greater mean grade of glomerular lesion (p < 0.001), than mice engrafted with C3H/He TCDM. These findings indicate that the genetic defect of the SCG/Kj strain of mice resides within the hematopoietic stem cells and provokes the speculation that bone marrow transplantation might be a useful means of treating progressive crescentic glomerulonephritis in humans.

  14. Increased formation of autophagosomes in ectromelia virus-infected primary culture of murine bone marrow-derived macrophages.

    PubMed

    Martyniszyn, L; Szulc-Dąbrowska, L; Boratyńska-Jasińska, A; Niemiałtowski, M

    2013-01-01

    Induction of autophagy by ectromelia virus (ECTV) in primary cultures of bone marrow-derived macrophages (BMDMs) was investigated. The results showed that ECTV infection of BMDMs resulted in increased formation of autophagosomes, increased level of LC3-II protein present in aggregates and extensive cytoplasmic vacuolization. These data indicate an increased autophagic activity in BMDMs during ECTV infection.

  15. Bone Marrow Aspirate Concentrate-Enhanced Marrow Stimulation of Chondral Defects

    PubMed Central

    Eichler, Hermann; Orth, Patrick

    2017-01-01

    Mesenchymal stem cells (MSCs) from bone marrow play a critical role in osteochondral repair. A bone marrow clot forms within the cartilage defect either as a result of marrow stimulation or during the course of the spontaneous repair of osteochondral defects. Mobilized pluripotent MSCs from the subchondral bone migrate into the defect filled with the clot, differentiate into chondrocytes and osteoblasts, and form a repair tissue over time. The additional application of a bone marrow aspirate (BMA) to the procedure of marrow stimulation is thought to enhance cartilage repair as it may provide both an additional cell population capable of chondrogenesis and a source of growth factors stimulating cartilage repair. Moreover, the BMA clot provides a three-dimensional environment, possibly further supporting chondrogenesis and protecting the subchondral bone from structural alterations. The purpose of this review is to bridge the gap in our understanding between the basic science knowledge on MSCs and BMA and the clinical and technical aspects of marrow stimulation-based cartilage repair by examining available data on the role and mechanisms of MSCs and BMA in osteochondral repair. Implications of findings from both translational and clinical studies using BMA concentrate-enhanced marrow stimulation are discussed. PMID:28607559

  16. Automated processing of human bone marrow can result in a population of mononuclear cells capable of achieving engraftment following transplantation.

    PubMed

    Areman, E M; Cullis, H; Spitzer, T; Sacher, R A

    1991-10-01

    A concentrate of mononuclear bone marrow cells is often desired for ex vivo treatment with pharmacologic agents, monoclonal antibodies, cytokines, and other agents prior to transplantation. A method has been developed for automated separation of mononuclear cells from large volumes of harvested bone marrow. A programmable instrument originally designed for clinical ex vivo cell separation and the plasma-pheresis of patients and blood donors was adapted to permit rapid preparation, in a closed sterile system, of a bone marrow product enriched with mononuclear cells. A mean (+/- SEM) of 53 +/- 30 percent of the original mononuclear cells was recovered in a volume of 125 +/- 42 mL containing 82 +/- 12 percent mononuclear cells. This technique removed 95 +/- 9 percent of the red cells in the original marrow. No density gradient materials or sedimenting agents were employed in this process. Of 36 marrows processed by this technique, 19 autologous (6 of which were purged with 4-hydroperoxycyclophosphamide) and 7 allogeneic marrows have been transplanted, with all evaluable patients achieving a neutrophil count of 0.5 x 10(9) per L in a mean (+/- SEM) of 21 +/- 6 days.

  17. HEMATOPOIETIC PROGENITOR CELL CONTENT OF VERTEBRAL BODY MARROW USED FOR COMBINED SOLID ORGAN AND BONE MARROW TRANSPLANTATION

    PubMed Central

    Rybka, Witold B.; Fontes, Paulo A.; Rao, Abdul S.; Winkelstein, Alan; Ricordi, Camillo; Ball, Edward D.; Starzl, Thomas E.

    2010-01-01

    While cadaveric vertebral bodies (VB) have long been proposed as a suitable source of bone marrow (BM) for transplantation (BMT), they have rarely been used for this purpose. We have infused VB BM immediately following whole organ (WO) transplantation to augment donor cell chimerism. We quantified the hematopoietic progenitor cell (HPC) content of VB BM as well as BM obtained from the iliac crests (IC) of normal allogeneic donors (ALLO) and from patients with malignancy undergoing autologous marrow harvest (AUTO). Patients undergoing WOIBM transplantation also had AUTO BM harvested in the event that subsequent lymphohematopoietic reconstitution was required. Twenty-four VB BM, 24 IC BM-ALLO, 31 IC AUTO, and 24 IC WO-AUTO were harvested. VB BM was tested 12 to 72 hr after procurement and infused after completion ofWO grafting. IC BM was tested and then used or cryopreserved immediately. HPC were quantified by clonal assay measuring CFU-GM, BFU-E, and CFU-GEMM, and by flow cytometry for CD34+ progenitor cells. On an average, 9 VB were processed during each harvest, and despite an extended processing time the number of viable nucleated cells obtained was significantly higher than that from IC. Furthermore, by HPC content, VB BM was equivalent to IC BM, which is routinely used for BMT. We conclude that VB BM is a clinically valuable source of BM for allogeneic transplantation. PMID:7701582

  18. Selection, proliferation and differentiation of bone marrow-derived liver stem cells with a culture system containing cholestatic serum in vitro.

    PubMed

    Cai, Yun-Feng; Zhen, Zuo-Jun; Min, Jun; Fang, Tian-Ling; Chu, Zhong-Hua; Chen, Ji-Sheng

    2004-11-15

    To explore the feasibility of direct separation, selective proliferation and differentiation of the bone marrow-derived liver stem cells (BDLSC) from bone marrow cells with a culture system containing cholestatic serum in vitro. Whole bone marrow cells of rats cultured in routine medium were replaced with conditioning selection media containing 20 mL/L, 50 mL/L, 70 mL/L, and 100 mL/L cholestatic sera, respectively, after they attached to the plates. The optimal concentration of cholestatic serum was determined according to the outcome of the selected cultures. Then the selected BDLSC were induced to proliferate and differentiate with the addition of hepatocyte growth factor (HGF). The morphology and phenotypic markers of BDLSC were characterized using immunohistochemistry, RT-PCR and electron microscopy. The metabolic functions of differentiated cells were also determined by glycogen staining and urea assay. Bone marrow cells formed fibroblast-like but not hepatocyte-like colonies in the presence of 20 mL/L cholestatic serum. In 70 mL/L cholestatic serum, BDLSC colonies could be selected but could not maintain good growth status. In 100 mL/L cholestatic serum, all of the bone marrow cells were unable to survive. A 50 mL/L cholestatic serum was the optimal concentration for the selection of BDLSC at which BDLSC could survive while the other populations of the bone marrow cells could not. The selected BDLSC proliferated and differentiated after HGF was added. Hepatocyte-like colony-forming units (H-CFU) then were formed. H-CFU expressed markers of embryonic hepatocytes (AFP, albumin and cytokeratin 8/18), biliary cells (cytokeratin 19), hepatocyte functional proteins (transthyretin and cytochrome P450-2b1), and hepatocyte nuclear factors (HNF-1alpha and HNF-3beta). They also had glycogen storage and urea synthesis functions, two of the critical features of hepatocytes. The selected medium containing cholestatic serum can select BDLSC from whole bone marrow cells. It

  19. Effects of a cloned cell line with NK activity on bone marrow transplants, tumour development and metastasis in vivo

    NASA Astrophysics Data System (ADS)

    Warner, John F.; Dennert, Gunther

    1982-11-01

    Natural killer (NK) cells cloned in vitro have been transferred into NK-deficient hosts. These cells have been shown to have a role in the rejection of allogeneic bone marrow grafts, resistance to both radiation-induced thymic leukaemia and challenge with melanoma tumour cells. It appears that NK cells have an important role in immune surveillance.

  20. Bone marrow induced osteogenesis in hydroxyapatite and calcium carbonate implants.

    PubMed

    Vuola, J; Göransson, H; Böhling, T; Asko-Seljavaara, S

    1996-09-01

    In this experimental study, blocks of natural coral (calcium carbonate) and its structurally similar derivate in the form of hydroxyapatite (calcium phosphate) were implanted in rat latissimus dorsi muscle with autogenous bone marrow to compare their bone-forming capability. A block without marrow placed in the opposite latissimus muscle served as a control. The animals were killed at 3, 6 and 12 weeks and, in the hydroxyapatite group, also at 24 weeks. The sections were analysed histologically and histomorphometrically. Bone was found only in implants containing bone marrow. Bone formation was significantly (p < 0.05) higher in coral than in hydroxyapatite implants at 3 weeks (10.8% versus 4.8%) and at 12 weeks (13.7% versus 6.3%, bone/total original block area). At 12 weeks all the coral implants had lost their original structure, and the cross-sectional area of the block had diminished to 40% of the original area.

  1. Bone marrow biopsy

    MedlinePlus

    ... aspiration removes a small amount of marrow in liquid form for examination. ... and a syringe is used to withdraw the liquid bone marrow. If this is done, the needle will be removed and repositioned. Or, another needle may be used for the biopsy.

  2. Incorporation of Bone Marrow Cells in Pancreatic Pseudoislets Improves Posttransplant Vascularization and Endocrine Function

    PubMed Central

    Wittig, Christine; Laschke, Matthias W.; Scheuer, Claudia; Menger, Michael D.

    2013-01-01

    Failure of revascularization is known to be the major reason for the poor outcome of pancreatic islet transplantation. In this study, we analyzed whether pseudoislets composed of islet cells and bone marrow cells can improve vascularization and function of islet transplants. Pancreatic islets isolated from Syrian golden hamsters were dispersed into single cells for the generation of pseudoislets containing 4×103 cells. To create bone marrow cell-enriched pseudoislets 2×103 islet cells were co-cultured with 2×103 bone marrow cells. Pseudoislets and bone marrow cell-enriched pseudoislets were transplanted syngeneically into skinfold chambers to study graft vascularization by intravital fluorescence microscopy. Native islet transplants served as controls. Bone marrow cell-enriched pseudoislets showed a significantly improved vascularization compared to native islets and pseudoislets. Moreover, bone marrow cell-enriched pseudoislets but not pseudoislets normalized blood glucose levels after transplantation of 1000 islet equivalents under the kidney capsule of streptozotocin-induced diabetic animals, although the bone marrow cell-enriched pseudoislets contained only 50% of islet cells compared to pseudoislets and native islets. Fluorescence microscopy of bone marrow cell-enriched pseudoislets composed of bone marrow cells from GFP-expressing mice showed a distinct fraction of cells expressing both GFP and insulin, indicating a differentiation of bone marrow-derived cells to an insulin-producing cell-type. Thus, enrichment of pseudoislets by bone marrow cells enhances vascularization after transplantation and increases the amount of insulin-producing tissue. Accordingly, bone marrow cell-enriched pseudoislets may represent a novel approach to increase the success rate of islet transplantation. PMID:23875013

  3. Bone-marrow transplant - series (image)

    MedlinePlus

    Bone-marrow transplants are performed for: deficiencies in red blood cells (aplastic anemia) and white blood cells (leukemia or ... Bone-marrow transplants prolong the life of patients who might otherwise die. As with all major organ transplants, however, ...

  4. Deficiency of bone marrow beta3-integrin enhances non-functional neovascularization.

    PubMed

    Watson, Alan R; Pitchford, Simon C; Reynolds, Louise E; Direkze, Natalie; Brittan, Mairi; Alison, Malcolm R; Rankin, Sara; Wright, Nicholas A; Hodivala-Dilke, Kairbaan M

    2010-03-01

    studies demonstrate a role for BM beta3-integrin in VEGF-induced mobilization of bone marrow-derived cells to the peripheral circulation and for the functionality of those vessels in which BM-derived cells become incorporated.

  5. Removing the cells from adult bone marrow derived stem cell therapy does not eliminate cardioprotection.

    PubMed

    Yasin, Mohammed

    2013-04-01

    The debate as to whether adult stem cell therapy is regenerative or not continues. The non-regenerative benefits of adult bone marrow-derived stem cell therapy were investigated by testing whether the supernatant derived from unfractionated bone marrow mononuclear cells might be cardioprotective in an animal model of myocardial ischaemia-reperfusion injury. Regional myocardial reperfusion injury was acquired by 25 min reversible left anterior descending coronary artery (LAD) occlusion followed by 2 h reperfusion, in anaesthetized Wistar male rats. Unfractionated bone marrow mononuclear cells (BMMNC) isolated from sibling Wistar male rat whole bone marrow were phenotyped by fluorescence activated cell sorting flowcytometry for the haematopoietic stem cell surface markers c-kit, CD34, CD45 and CD133. Animals subjected to regional myocardial reperfusion injury received either 10 million BMMNC or BMMNC supernatant (BMS); both were collected in 0.5 ml phosphate-buffered saline and delivered by intravenous bolus at the onset of reperfusion. The left ventricular region distal to the LAD occlusion point was excised for measurement of myocardial infarct size and proteomic analysis, which was used to identify whether there were any differences in myocardial proteins associated with intravenous injection of either BMMNC or BMS. BMMNC were phenotyped to be c-kit(+) (7 ± 1%), CD34(+) (7 ± 1%), CD45(+) (54 ± 6%), CD133(+) (15 ± 1%). The supernatant reduced myocardial infarct size (BMS 34 ± 2%, n = 15 vs control 57 ± 2%, n = 7, P < 0.0001), which was comparable to the reduction in infarct size afforded by the injection of cells (BMMNC 33 ± 3% vs control 57 ± 2%, n = 10, P < 0.0001). Proteomics of hearts treated with either BMS or BMMNC demonstrated higher expression of (i) anti-apoptotic signal transduction protein: 14-3-3-epsilon (1.5-fold); (ii) anti-oxidants: peroxiredoxin-6 (2.1-fold); (iii) heat shock proteins: alpha B-crystallin (1.7-fold), heat shock protein 72 (2

  6. Different Procoagulant Activity of Therapeutic Mesenchymal Stromal Cells Derived from Bone Marrow and Placental Decidua.

    PubMed

    Moll, Guido; Ignatowicz, Lech; Catar, Rusan; Luecht, Christian; Sadeghi, Behnam; Hamad, Osama; Jungebluth, Philipp; Dragun, Duska; Schmidtchen, Artur; Ringdén, Olle

    2015-10-01

    While therapeutic mesenchymal stromal/stem cells (MSCs) have usually been obtained from bone marrow, perinatal tissues have emerged as promising new sources of cells for stromal cell therapy. In this study, we present a first safety follow-up on our clinical experience with placenta-derived decidual stromal cells (DSCs), used as supportive immunomodulatory and regenerative therapy for patients with severe complications after allogeneic hematopoietic stem cell transplantation (HSCT). We found that DSCs are smaller, almost half the volume of MSCs, which may favor microvascular passage. DSCs also show different hemocompatibility, with increased triggering of the clotting cascade after exposure to human blood and plasma in vitro. After infusion of DSCs in HSCT patients, we observed a weak activation of the fibrinolytic system, but the other blood activation markers remained stable, excluding major adverse events. Expression profiling identified differential levels of key factors implicated in regulation of hemostasis, such as a lack of prostacyclin synthase and increased tissue factor expression in DSCs, suggesting that these cells have intrinsic blood-activating properties. The stronger triggering of the clotting cascade by DSCs could be antagonized by optimizing the cell graft reconstitution before infusion, for example, by use of low-dose heparin anticoagulant in the cell infusion buffer. We conclude that DSCs are smaller and have stronger hemostatic properties than MSCs, thus triggering stronger activation of the clotting system, which can be antagonized by optimizing the cell graft preparation before infusion. Our results highlight the importance of hemocompatibility safety testing for every novel cell therapy product before clinical use, when applied using systemic delivery.

  7. Expansion of donor-derived hematopoietic stem cells with PIGA mutation associated with late graft failure after allogeneic stem cell transplantation.

    PubMed

    Mochizuki, Kanako; Sugimori, Chiharu; Qi, Zhirong; Lu, Xuzhang; Takami, Akiyoshi; Ishiyama, Ken; Kondo, Yukio; Yamazaki, Hirohito; Okumura, Hirokazu; Nakao, Shinji

    2008-09-01

    A small population of CD55(-)CD59(-) blood cells was detected in a patient who developed donor-type late graft failure after allogeneic stem cell transplantation (SCT) for treatment of aplastic anemia (AA). Chimerism and PIGA gene analyses showed the paroxysmal nocturnal hemoglobinuria (PNH)-type granulocytes to be of a donor-derived stem cell with a thymine insertion in PIGA exon 2. A sensitive mutation-specific polymerase chain reaction (PCR)-based analysis detected the mutation exclusively in DNA derived from the donor bone marrow (BM) cells. The patient responded to immunosuppressive therapy and achieved transfusion independence. The small population of PNH-type cells was undetectable in any of the 50 SCT recipients showing stable engraftment. The de novo development of donor cell-derived AA with a small population of PNH-type cells in this patient supports the concept that glycosyl phosphatidylinositol-anchored protein-deficient stem cells have a survival advantage in the setting of immune-mediated BM injury.

  8. Modular flow chamber for engineering bone marrow architecture and function.

    PubMed

    Di Buduo, Christian A; Soprano, Paolo M; Tozzi, Lorenzo; Marconi, Stefania; Auricchio, Ferdinando; Kaplan, David L; Balduini, Alessandra

    2017-11-01

    The bone marrow is a soft, spongy, gelatinous tissue found in the hollow cavities of flat and long bones that support hematopoiesis in order to maintain the physiologic turnover of all blood cells. Silk fibroin, derived from Bombyx mori silkworm cocoons, is a promising biomaterial for bone marrow engineering, because of its tunable architecture and mechanical properties, the capacity of incorporating labile compounds without loss of bioactivity and demonstrated ability to support blood cell formation. In this study, we developed a bone marrow scaffold consisting of a modular flow chamber made of polydimethylsiloxane, holding a silk sponge, prepared with salt leaching methods and functionalized with extracellular matrix components. The silk sponge was able to support efficient platelet formation when megakaryocytes were seeded in the system. Perfusion of the chamber allowed the recovery of functional platelets based on multiple activation tests. Further, inhibition of AKT signaling molecule, which has been shown to be crucial in regulating physiologic platelet formation, significantly reduced the number of collected platelets, suggesting the applicability of this tissue model for evaluation of the effects of bone marrow exposure to compounds that may affect platelet formation. In conclusion, we have bioengineered a novel modular system that, along with multi-porous silk sponges, can provide a useful technology for reproducing a simplified bone marrow scaffold for blood cell production ex vivo. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Radionuclide imaging of bone marrow disorders

    PubMed Central

    Agool, Ali; Glaudemans, Andor W. J. M.; Boersma, Hendrikus H.; Dierckx, Rudi A. J. O.; Vellenga, Edo

    2010-01-01

    Noninvasive imaging techniques have been used in the past for visualization the functional activity of the bone marrow compartment. Imaging with radiolabelled compounds may allow different bone marrow disorders to be distinguished. These imaging techniques, almost all of which use radionuclide-labelled tracers, such as 99mTc-nanocolloid, 99mTc-sulphur colloid, 111In-chloride, and radiolabelled white blood cells, have been used in nuclear medicine for several decades. With these techniques three separate compartments can be recognized including the reticuloendothelial system, the erythroid compartment and the myeloid compartment. Recent developments in research and the clinical use of PET tracers have made possible the analysis of additional properties such as cellular metabolism and proliferative activity, using 18F-FDG and 18F-FLT. These tracers may lead to better quantification and targeting of different cell systems in the bone marrow. In this review the imaging of different bone marrow targets with radionuclides including PET tracers in various bone marrow diseases are discussed. PMID:20625724

  10. Generation of clinical grade human bone marrow stromal cells for use in bone regeneration

    PubMed Central

    Robey, Pamela G.; Kuznetsov, Sergei A.; Ren, Jiaqiang; Klein, Harvey G.; Sabatino, Marianna; Stroncek, David F.

    2014-01-01

    In current orthopaedic practice, there is a need to increase the ability to reconstruct large segments of bone lost due to trauma, resection of tumors and skeletal deformities, or when normal regenerative processes have failed such as in non-unions and avascular necrosis. Bone marrow stromal cells (BMSCs, also known as bone marrow-derived mesenchymal stem cells), when used in conjunction with appropriate carriers, represent a means by which to achieve bone regeneration in such cases. While much has been done at the bench and in pre-clinical studies, moving towards clinical application requires the generation of clinical grade cells. What is described herein is an FDA-approved cell manufacturing procedure for the ex vivo expansion of high quality, biologically active human BMSCs. PMID:25064527

  11. A clinical and molecular study of a Bedouin family with dysmegakaryopoiesis, mild anemia, and neutropenia cured by bone marrow transplantation.

    PubMed

    Tamary, H; Yaniv, I; Stein, J; Dgany, O; Shalev, Z; Shechter, T; Resnitzky, P; Shaft, D; Zoldan, M; Kornreich, L; Levy, R; Cohen, A; Moser, R A; Kapelushnik, J; Shalev, H

    2003-09-01

    Familial thrombocytopenia is a relatively rare and heterogeneous group of clinical and genetic syndromes of unknown etiology. Recently, mutations in a few hematopoietic transcription factors were implicated in dysmegakaryopoiesis with and without dyserythropoietic anemia. The aim of the present study was to describe the clinical and hematologic picture of members of a Bedouin family with severe congenital thrombocytopenia associated with neutropenia and anemia and to determine the possible involvement of hematopoietic transcription factor genes in their disease. Four members of a Bedouin family presented with severe bleeding tendency, including intracranial hemorrhage in three. Three of the four were successfully treated with allogenic human leukocyte antigen (HLA)-matched bone marrow transplants. Measurements of serum erythropoietin and thrombopoietin levels, bone marrow electron microscopy, and megakaryocytic colony were grown for each patient in addition to DNA amplification and single-strand conformation polymorphism of each exon of the NF-E2, Fli-1, FOG-1, and Gfi-1b in genes. Bone marrow studies revealed dysmegakaryopoiesis and mild dyserythropoiesis. A low number of bone marrow megakaryocyte colony-forming units was found, as well as a slightly elevated serum thrombopoietin level. No mutation was identified in any of the transcription factor genes examined. A unique autosomal recessive bone marrow disorder with prominent involvement of megakaryocytes is described. Defects were not identified in transcription factors affecting the common myeloid progenitor.

  12. Histopathological Comparison between Bone Marrow- and Periodontium-derived Stem Cells for Bone Regeneration in Rabbit Calvaria.

    PubMed

    Kadkhoda, Z; Safarpour, A; Azmoodeh, F; Adibi, S; Khoshzaban, A; Bahrami, N

    2016-01-01

    Periodontitis is an important oral disease. Stem cell therapy has found its way in treatment of many diseases. To evaluate the regenerative potential of periodontal ligament-derived stem cells (PDLSCs) and osteoblast differentiated from PDLSC in comparison with bone marrow-derived mesenchymal stem cells (BM-MSCs) and pre-osteoblasts in calvarial defects. After proving the existence of surface markers by flow cytometry, BM-MSCs were differentiated into osteoblasts. 5 defects were made on rabbit calvaria. 3 of them were first covered with collagen membrane and then with BM-MSCs, PDLSCs, and pre-osteoblasts. The 4(th) defect was filled with collagen membrane and the 5(th) one was served as control. After 4 weeks, histological (quantitative) and histomorphological (qualitative) surveys were performed. Both cell lineages were positive for CD-90 cell marker, which was specifically related to stem cells. Alizarin red staining was done for showing mineral material. RT-PCR set up for the expression of Cbfa1 gene, BMP4 gene, and PGLAP gene, confirmed osteoblast differentiation. The findings indicated that although PDLSCs and pre-osteoblasts could be used for bone regeneration, the rate of regeneration in BM-MSCs-treated cavities was more significant (p<0.0001). The obtained results are probably attributable to the effective micro-environmental signals caused by different bone types and the rate of cell maturation.

  13. Destiny of autologous bone marrow-derived stromal cells implanted in the vocal fold.

    PubMed

    Kanemaru, Shin-ichi; Nakamura, Tatsuo; Yamashita, Masaru; Magrufov, Akhmar; Kita, Tomoko; Tamaki, Hisanobu; Tamura, Yoshihiro; Iguchi, Fuku-ichiro; Kim, Tae Soo; Kishimoto, Masanao; Omori, Koichi; Ito, Juichi

    2005-12-01

    The aim of this study was to investigate the destiny of implanted autologous bone marrow-derived stromal cells (BSCs) containing mesenchymal stem cells. We previously reported the successful regeneration of an injured vocal fold through implantation of BSCs in a canine model. However, the fate of the implanted BSCs was not examined. In this study, implanted BSCs were traced in order to determine the type of tissues resulting at the injected site of the vocal fold. After harvest of bone marrow from the femurs of green fluorescent transgenic mice, adherent cells were cultured and selectively amplified. By means of a fluorescence-activated cell sorter, it was confirmed that some cells were strongly positive for mesenchymal stem cell markers, including CD29, CD44, CD49e, and Sca-1. These cells were then injected into the injured vocal fold of a nude rat. Immunohistologic examination of the resected vocal folds was performed 8 weeks after treatment. The implanted cells were alive in the host tissues and showed positive expression for keratin and desmin, markers for epithelial tissue and muscle, respectively. The implanted BSCs differentiated into more than one tissue type in vivo. Cell-based tissue engineering using BSCs may improve the quality of the healing process in vocal fold injuries.

  14. Allogeneic Umbilical Cord-Derived Mesenchymal Stem Cells as a Potential Source for Cartilage and Bone Regeneration: An In Vitro Study

    PubMed Central

    Mattia, S.; Castoldi, F.; Barbero, A.; Bonasia, D. E.; Bruzzone, M.; Dettoni, F.; Scurati, R.

    2017-01-01

    Umbilical cord (UC) may represent an attractive cell source for allogeneic mesenchymal stem cell (MSC) therapy. The aim of this in vitro study is to investigate the chondrogenic and osteogenic potential of UC-MSCs grown onto tridimensional scaffolds, to identify a possible clinical relevance for an allogeneic use in cartilage and bone reconstructive surgery. Chondrogenic differentiation on scaffolds was confirmed at 4 weeks by the expression of sox-9 and type II collagen; low oxygen tension improved the expression of these chondrogenic markers. A similar trend was observed in pellet culture in terms of matrix (proteoglycan) production. Osteogenic differentiation on bone-graft-substitute was also confirmed after 30 days of culture by the expression of osteocalcin and RunX-2. Cells grown in the hypertrophic medium showed at 5 weeks safranin o-positive stain and an increased CbFa1 expression, confirming the ability of these cells to undergo hypertrophy. These results suggest that the UC-MSCs isolated from minced umbilical cords may represent a valuable allogeneic cell population, which might have a potential for orthopaedic tissue engineering such as the on-demand cell delivery using chondrogenic, osteogenic, and endochondral scaffold. This study may have a clinical relevance as a future hypothetical option for allogeneic single-stage cartilage repair and bone regeneration. PMID:29358953

  15. Allogeneic Umbilical Cord-Derived Mesenchymal Stem Cells as a Potential Source for Cartilage and Bone Regeneration: An In Vitro Study.

    PubMed

    Marmotti, A; Mattia, S; Castoldi, F; Barbero, A; Mangiavini, L; Bonasia, D E; Bruzzone, M; Dettoni, F; Scurati, R; Peretti, G M

    2017-01-01

    Umbilical cord (UC) may represent an attractive cell source for allogeneic mesenchymal stem cell (MSC) therapy. The aim of this in vitro study is to investigate the chondrogenic and osteogenic potential of UC-MSCs grown onto tridimensional scaffolds, to identify a possible clinical relevance for an allogeneic use in cartilage and bone reconstructive surgery. Chondrogenic differentiation on scaffolds was confirmed at 4 weeks by the expression of sox-9 and type II collagen; low oxygen tension improved the expression of these chondrogenic markers. A similar trend was observed in pellet culture in terms of matrix (proteoglycan) production. Osteogenic differentiation on bone-graft-substitute was also confirmed after 30 days of culture by the expression of osteocalcin and RunX-2. Cells grown in the hypertrophic medium showed at 5 weeks safranin o-positive stain and an increased CbFa1 expression, confirming the ability of these cells to undergo hypertrophy. These results suggest that the UC-MSCs isolated from minced umbilical cords may represent a valuable allogeneic cell population, which might have a potential for orthopaedic tissue engineering such as the on-demand cell delivery using chondrogenic, osteogenic, and endochondral scaffold. This study may have a clinical relevance as a future hypothetical option for allogeneic single-stage cartilage repair and bone regeneration.

  16. Bone marrow-derived cells homing for self-repair of periodontal tissues: a histological characterization and expression analysis

    PubMed Central

    Wang, Yan; Zhou, Lili; Li, Chen; Xie, Han; Lu, Yuwang; Wu, Ying; Liu, Hongwei

    2015-01-01

    Periodontitis, a disease leads to the formation of periodontal defect, can result in tooth loss if left untreated. The therapies to repair/regenerate periodontal tissues have attracted lots of attention these years. Bone marrow-derived cells (BMDCs), a group of cells containing heterogeneous stem/progenitor cells, are capable of homing to injured tissues and participating in tissue repair/regeneration. The amplification of autologous BMDCs’ potential in homing for self-repair/regeneration, therefore, might be considered as an alternative therapy except for traditional cell transplantation. However, the knowledge of the BMDCs’ homing and participation in periodontal repair/regeneration is still known little. For the purpose of directly observing BMDCs’ involvement in periodontal repair, chimeric mouse models were established to make their bone marrow cells reconstituted with cells expressing green enhanced fluorescence protein (EGFP) in this study. One month after bone marrow transplantation, periodontal defects were made on the mesial side of bilateral maxillary first molars in chimeric mice. The green fluorescence protein-positive (GFP+) BMDCS in periodontal defect regions were examined by bioluminescent imaging and immunofluorescence staining. GFP+ BMDCs were found to aggregate in the periodontal defect regions and emerge in newly-formed bones or fibers. Some of them also co-expressed markers of fibroblasts, osteoblasts or vascular endothelial cells. These results indicated that BMDCs might contribute to the formation of new fibers, bones and blood vessels during periodontal repair. In conclusion, we speculated that autologous BMDCs were capable of negotiating into the surgical sites created by periodontal operation and participating in tissue repair. PMID:26722424

  17. Human bone marrow harbors cells with neural crest-associated characteristics like human adipose and dermis tissues

    PubMed Central

    Coste, Cécile; Neirinckx, Virginie; Sharma, Anil; Agirman, Gulistan; Rogister, Bernard; Foguenne, Jacques; Lallemend, François

    2017-01-01

    Adult neural crest stem-derived cells (NCSC) are of extraordinary high plasticity and promising candidates for use in regenerative medicine. Several locations such as skin, adipose tissue, dental pulp or bone marrow have been described in rodent, as sources of NCSC. However, very little information is available concerning their correspondence in human tissues, and more precisely for human bone marrow. The main objective of this study was therefore to characterize NCSC from adult human bone marrow. In this purpose, we compared human bone marrow stromal cells to human adipose tissue and dermis, already described for containing NCSC. We performed comparative analyses in terms of gene and protein expression as well as functional characterizations. It appeared that human bone marrow, similarly to adipose tissue and dermis, contains NESTIN+ / SOX9+ / TWIST+ / SLUG+ / P75NTR+ / BRN3A+/ MSI1+/ SNAIL1+ cells and were able to differentiate into melanocytes, Schwann cells and neurons. Moreover, when injected into chicken embryos, all those cells were able to migrate and follow endogenous neural crest migration pathways. Altogether, the phenotypic characterization and migration abilities strongly suggest the presence of neural crest-derived cells in human adult bone marrow. PMID:28683107

  18. Validation of osteogenic properties of Cytochalasin D by high-resolution RNA-sequencing in mesenchymal stem cells derived from bone marrow and adipose tissues.

    PubMed

    Samsonraj, Rebekah; Paradise, Christopher R; Dudakovic, Amel; Sen, Buer; Nair, Asha A; Dietz, Allan B; Deyle, David R; Cool, Simon M; Rubin, Janet; van Wijnen, Andre

    2018-06-08

    Differentiation of mesenchymal stromal/stem cells (MSCs) involves a series of molecular signals and gene transcription events required for attaining cell lineage commitment. Modulation of the actin cytoskeleton using cytochalasin D (CytoD) drives osteogenesis at early time points in bone marrow-derived MSCs, and also initiates a robust osteogenic differentiation program in adipose-derived MSCs. To understand the molecular basis for these pronounced effects on osteogenic differentiation, we investigated global changes in gene expression in CytoD-treated murine and human MSCs by high-resolution RNA-sequencing (RNA-seq) analysis. A three-way bioinformatic comparison between human adipose-derived, human bone marrow-derived and mouse bone marrow-derived MSCs revealed significant upregulation of genes linked to extracellular matrix organization, cell adhesion and bone metabolism. As anticipated, the activation of these differentiation related genes is accompanied by a downregulation of nuclear and cell cycle-related genes presumably reflecting cytostatic effects of CytoD. We also identified eight novel CytoD activated genes - VGLL4, ARHGAP24, KLHL24, RCBTB2, BDH2, SCARF2, ACAD10, HEPH - which are commonly upregulated across the two species and tissue sources of our MSC samples. We selected the Hippo-pathway related VGLL4 gene, which encodes the transcriptional co-factor Vestigial-like 4, for further study because this pathway is linked to osteogenesis. VGLL4 siRNA depletion reduces mineralization of adipose-derived MSCs during CytoD-induced osteogenic differentiation. Together, our RNA-seq analyses suggest that while the stimulatory effects of CytoD on osteogenesis are pleiotropic and depend on the biological state of the cell type, a small group of genes including VGLL4 may contribute to MSC commitment towards the bone lineage.

  19. Empirical antibacterial therapy in febrile, granulocytopenic bone marrow transplant patients.

    PubMed Central

    Peterson, P K; McGlave, P; Ramsay, N K; Rhame, F; Goldman, A I; Kersey, J

    1984-01-01

    Fifty febrile, granulocytopenic allogeneic bone marrow transplant patients receiving prophylactic trimethoprim-sulfamethoxazole were randomized to one of two empirical antibiotic regimens to determine whether a shortened course of empirical therapy was beneficial. Of the 50 patients, 25 received empirical tobramycin and ticarcillin for only 3 days, and 25 were maintained on empirical tobramycin and ticarcillin until they were afebrile and no longer granulocytopenic. Although the incidence of bacterial infections in the two groups was not statistically significantly different, almost twice as many bacterial infections were observed in the group that received the short course of empirical therapy. Furthermore, because of the high incidence of bacterial infection and clinical concerns about occult bacterial sepsis, within 2 weeks of the randomization the overall use of parenteral antibacterial agents was similar in both groups. The incidence of invasive fungal disease and the use of amphotericin B therapy were similar in both groups. The results of this study suggest that little clinical benefit is likely to be seen in bone marrow transplant patients treated with short-course empirical tobramycin and ticarcillin, despite the administration of prophylactic trimethoprim-sulfamethoxazole, and emphasize the need for new strategies to prevent infections with gram-positive and trimethoprim-sulfamethoxazole-resistant gram-negative bacteria in these patients. PMID:6385835

  20. Bone Marrow Test: MedlinePlus Lab Test Information

    MedlinePlus

    ... this page: https://medlineplus.gov/labtests/bonemarrowtest.html Bone Marrow Test To use the sharing features on this page, please enable JavaScript. What Are Bone Marrow Tests? Bone marrow is a soft, spongy ...

  1. The active principle region of Buyang Huanwu decoction induced differentiation of bone marrow-derived mesenchymal stem cells into neural-like cells

    PubMed Central

    Zheng, Jinghui; Wan, Yi; Chi, Jianhuai; Shen, Dekai; Wu, Tingting; Li, Weimin; Du, Pengcheng

    2012-01-01

    The present study induced in vitro-cultured passage 4 bone marrow-derived mesenchymal stem cells to differentiate into neural-like cells with a mixture of alkaloid, polysaccharide, aglycone, glycoside, essential oils, and effective components of Buyang Huanwu decoction (active principle region of decoction for invigorating yang for recuperation). After 28 days, nestin and neuron-specific enolase were expressed in the cytoplasm. Reverse transcription-PCR and western blot analyses showed that nestin and neuron-specific enolase mRNA and protein expression was greater in the active principle region group compared with the original formula group. Results demonstrated that the active principle region of Buyang Huanwu decoction induced greater differentiation of rat bone marrow-derived mesenchymal stem cells into neural-like cells in vitro than the original Buyang Huanwu decoction formula. PMID:25806066

  2. Immune reconstitution in patients with Fanconi anemia after allogeneic bone marrow transplantation.

    PubMed

    Perlingeiro Beltrame, Miriam; Malvezzi, Mariester; Bonfim, Carmem; Covas, Dimas Tadeu; Orfao, Alberto; Pasquini, Ricardo

    2014-07-01

    Fanconi anemia is an autosomal recessive or X-linked genetic disorder characterized by bone marrow (BM) failure/aplasia. Failure of hematopoiesis results in depletion of the BM stem cell reservoir, which leads to severe anemia, neutropenia and thrombocytopenia, frequently requiring therapeutic interventions, including hematopoietic stem cell transplantation (HSCT). Successful BM transplantation (BMT) requires reconstitution of normal immunity. In the present study, we performed a detailed analysis of the distribution of peripheral blood subsets of T, B and natural killer (NK) lymphocytes in 23 patients with Fanconi anemia before and after BMT on days +30, +60, +100, +180, +270 and +360. In parallel, we evaluated the effect of related versus unrelated donor marrow as well as the presence of graft-versus-host disease (GVHD). After transplantation, we found different kinetics of recovery for the distinct major subsets of lymphocytes. NK cells were the first to recover, followed by cytotoxic CD8(+) T cells and B cells, and finally CD4(+) helper T cells. Early lymphocyte recovery was at the expense of memory cells, potentially derived from the graft, whereas recent thymic emigrant (CD31(+) CD45RA(+)) and naive CD4(+) or CD8(+) T cells rose only at 6 months after HSCT, in the presence of immunosuppressive GVHD prophylactic agents. Only slight differences were observed in the early recovery of cytotoxic CD8(+) T cells among those cases receiving a graft from a related donor versus an unrelated donor. Patients with GVHD displayed a markedly delayed recovery of NK cells and B cells as well as of regulatory T cells and both early thymic emigrant and total CD4(+) T cells. Our results support the utility of post-transplant monitoring of a peripheral blood lymphocyte subset for improved follow-up of patients with Fanconi anemia undergoing BMT. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  3. Relative importance of the bone marrow and spleen in the production and dissemination of B lymphocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosse, C.; Cole, S.B.; Appleton, C.

    1978-04-01

    The relative importance of the bone marrow and spleen in the production of B lymphocytes was investigated in guinea pigs by the combined use of (/sup 3/H)TdR radioautography and fluorescent microscopy after the staining of B cells by FITC-F (ab')/sub 2/-goat-anti-guinea pig Ig. Large and small lymphoid cells possess sIg in the marrow and spleen but B cell turnover in the marrow exceeds that in the spleen. That newly generated bone marrow B cells are not derived from an extramyeloid bursa equivalent was demonstrated by the absence of (/sup 3/H)TdR labeled B cells in tibial marrow 72 hr after (/supmore » 3/H)TdR was administered systemically, while the circulation to the hind limbs was occluded. Pulse and chase studies with (/sup 3/H)TdR showed that large marrow B cells are derived from sIg-negative, proliferating precursors resident in the bone marrow and not from the enlargement of activated small B lymphocytes. The acquisition of (/sup 3/H)TdR by splenic B cells lagged behind that observed in the marrow. Three days after topical labeling of tibial and femoral bone marrow with (/sup 3/H)TdR, a substantial proportion of splenic B cells were replaced by cells that had seeded there from the labeled marrow. The studies unequivocally identify the bone marrow as the organ of primary importance in B cell generation, and indicate that in the guinea pig rapidly renewed B lymphocytes of the spleen are replaced by lymphocytes recently generated in bone marrow. The rate of replacement of B lymphocytes in the lymph node by cells newly generated in the bone marrow takes place at a slower tempo than in the spleen.« less

  4. Long-term cryopreservation of bone marrow for autologous transplantation.

    PubMed

    Attarian, H; Feng, Z; Buckner, C D; MacLeod, B; Rowley, S D

    1996-03-01

    Little is known about the effect of long-term cryopreservation on the viability of hematopoietic stem cells (HSC) or on the success of autologous bone marrow transplantation. Although progenitor cell assays such as culture of CFU-GM after thawing can be predictive of engraftment, the most rigorous assay for the cryosurvival of HSC is engraftment after reinfusion of stem cells. We retrospectively evaluated the engraftment data for 36 patients with hematologic malignancies or solid tumors treated at the Fred Hutchinson Cancer Research Center between 1981 and 1993 who received bone marrows stored for 2 years or more. The median duration of cryopreservation for this study group was 2.7 years (range 2.0-7.8). Ninety-seven percent of patients in the study group achieved a granulocyte count of > or = 0.5 x 1.0(9)/1 at a median of 19 days (range 10-115) vs 86% of control group (selected by diagnosis and date of storage) at a median of 20 days (P = 0.14). Seventy percent of patients in the study group achieved a platelet count > or = 20 x 10(9)/1 at a median of 27 days (range 9-69) vs 74% of control group at a median of 23 days (P = 0.47). Also, samples of 28 marrows cryopreserved for a median of 4.4 years (range 2.0-7.8) were cultured to determine if a loss of hematopoietic progenitors relative to duration of storage could be detected. The storage length was not predictive for the quantity of colonies formed (P = 0.57 for BFU-E-derived colonies; P = 0.65 for CFU-GM-derived colonies). We found no consistent detrimental effect of long-term cryopreservation on the success rate of autologous bone marrow transplantation. This report confirms previous reports that marrow cells cryopreserved for several years are capable of engrafting. Therefore, bone marrow cells may be stored at an early appropriate time before the side-effects of multiple cycles of chemotherapy and radiotherapy on hematopoietic tissues are incurred.

  5. Characterizing and Targeting Bone Marrow-Derived Inflammatory Cells in Driving the Malignancy and Progression of Childhood Astrocytic Brain Tumors

    DTIC Science & Technology

    2016-11-01

    importance of myeloid derived ID2/VEGFR2 signaling in low-grade to high-grade glioma transformation . 15. SUBJECT TERMS Glioma, Pediatric, bone-marrow...derived-cells, endothelial, mesenchymal, myeloid, hematopoietic, differentiation, malignant, transformation , VEGFR2, ID2. 16. SECURITY CLASSIFICATION OF...subsequent recruitment, in order to suppress the malignant transformation of gliomas. In this project, we have initiated the study of BMDCs with RCAS and

  6. The dynamics of adult haematopoiesis in the bone and bone marrow environment.

    PubMed

    Ho, Miriel S H; Medcalf, Robert L; Livesey, Stephen A; Traianedes, Kathy

    2015-08-01

    This review explores the dynamic relationship between bone and bone marrow in the genesis and regulation of adult haematopoiesis and will provide an overview of the haematopoietic hierarchical system. This will include the haematopoietic stem cell (HSC) and its niches, as well as discuss emerging evidence of the reciprocal interplay between bone and bone marrow, and support of the pleiotropic role played by bone cells in the regulation of HSC proliferation, differentiation and function. In addition, this review will present demineralized bone matrix as a unique acellular matrix platform that permits the generation of ectopic de novo bone and bone marrow and provides a means of investigating the temporal sequence of bone and bone marrow regeneration. It is anticipated that the utilization of this matrix-based approach will help researchers in gaining deeper insights into the major events leading to adult haematopoiesis in the bone marrow. Furthermore, this model may potentially offer new avenues to manipulate the HSC niche and hence influence the functional output of the haematopoietic system. © 2015 John Wiley & Sons Ltd.

  7. [Preliminary result of allogenic bone and autogeneic-iliac bone in comminuted fracture reparation in rabbits].

    PubMed

    Wang, Zhi-qiang; Li, Qi-jia; Wang, Qi

    2002-11-01

    To observe the difference of the fracture reparation using autogeneic-iliac bone and allogenic bone. Comminuted fracture of humerus in two sides were made in rabbits. Autogeneic-iliac bone was implanted in one side, while allogenic bone of equal capacity was implanted in the other side. General observation, X-ray, and HE histologic section were done when the rabbits were put to death in different stages. One week after implantation, the graft had been enclosed by connective tissue without infiltration of the inflammatory cells. At the 2nd week, the graft had been enclosed in osteoplastic granulation tissue, and the cartilage callus had formed. At the 3rd week, there had been broken sequestrum among the callus; the cartilage had actively formed the bone; and the medulla had been making. At the 4th week, the sequestrum had disappeared, and the mature callus had appeared; the osteoblasts had arranged in a line around the edge of the mature callus. At the 5th week, the callus was strong, compact and approached mature bones. At the 6th week, there had been the compact lamellar structures and the complete haversian's systems. There was no significant difference between callus of two sides by using image quantitative analysis in the 3rd, 4th week (P > 0.05). The allogenic bone has good histocompatibility and bone conduction effect, and can be used for bone transplantation substitute with autogenous-iliac bone.

  8. Induction of IgA B cell differentiation of bone marrow-derived B cells by Peyer's patch autoreactive helper T cells.

    PubMed

    Kihira, T; Kawanishi, H

    1995-08-01

    The objective of this study was to demonstrate in vitro that bone marrow-derived pro/pre-B cells bearing mu mRNA can switch their Ig heavy-chain isotype to that of alpha mRNA-expressing B cells after contact with Peyer's patches-derived activated autoreactive CD4+ T cells. Bone marrow-derived pro/pre-B cells and activated autoreactive Peyer's patch, mesenteric lymph node, or spleen CD4+ T cells were co-cultured in the presence of recombinant (r) IL-2, rIL-7, and Con A for 3 days. The mixed cultured cells were isolated for preparation of total RNA. Dot/slot hybridization, using murine C mu (pu3741) and C alpha (P alpha J558) Ig heavy-chain cDNA probes, detected C mu and C alpha Ig heavy-chain mRNA transcripts. The magnitude of each mRNA expression was measured demsitometrically. In addition, the secreted class-specific Ig contents from the co-cultured supernatants were measured. The results indicate that activated autoreactive Peyer's patch and mesenteric lymph node CD4+ T cells provide a specific Ig heavy-chain switch from mu to alpha (Peyer's patch CD4+ T cells > mesenteric lymph node CD4+ T cells) in bone marrow-derived pro/pre-B cells and also assist to develop IgA-secreting plasma cells. The alpha heavy-chain switch and IgA production do not occur in the presence of activated autoreactive spleen CD4+ T cells. These results support the view that autoreactive gut Peyer's patch CD4+ T cells, at least, regulate IgA B cell heavy-chain switching and terminal differentiation during gut mucosal B cell development.

  9. Monoclonal antibody-purged bone marrow transplantation therapy for multiple myeloma.

    PubMed

    Anderson, K C; Andersen, J; Soiffer, R; Freedman, A S; Rabinowe, S N; Robertson, M J; Spector, N; Blake, K; Murray, C; Freeman, A

    1993-10-15

    Forty patients with plasma cell dyscrasias underwent high-dose chemoradiotherapy and either anti-B-cell monoclonal antibody (MoAb)-treated autologous, anti-T-cell MoAb-treated HLA-matched sibling allogeneic or syngeneic bone marrow transplantation (BMT). The majority of patients had advanced Durie-Salmon stage myeloma at diagnosis, all were pretreated with chemotherapy, and 17 had received prior radiotherapy. At the time of BMT, all patients demonstrated good performance status with Karnofsky score of 80% or greater and had less than 10% marrow tumor cells; 34 patients had residual monoclonal marrow plasma cells and 38 patients had paraprotein. Following high-dose chemoradiotherapy, there were 18 complete responses (CR), 18 partial responses, one non-responder, and three toxic deaths. Granulocytes greater than 500/microL and untransfused platelets greater than 20,000/microL were noted at a median of 23 (range, 12 to 46) and 25 (range, 10 to 175) days posttransplant (PT), respectively, in 24 of the 26 patients who underwent autografting. In the 14 patients who received allogeneic or syngeneic grafts, granulocytes greater than 500/microL and untransfused platelets greater than 20,000/microL were noted at a median of 19 (range, 12 to 24) and 16 (range, 5 to 32) days PT, respectively. With 24 months median follow-up for survival after autologous BMT, 16 of 26 patients are alive free from progression at 2+ to 55+ months PT; of these, 5 patients remain in CR at 6+ to 55+ months PT. With 24 months median follow-up for survival after allogeneic and syngeneic BMT, 8 of 14 patients are alive free from progression at 8+ to 34+ months PT; of these, 5 patients remain in CR at 8+ to 34+ months PT. This therapy has achieved high response rates and prolonged progression-free survival in some patients and proven to have acceptable toxicity. However, relapses post-BMT, coupled with slow engraftment post-BMT in heavily pretreated patients, suggest that such treatment strategies

  10. Fingerprinting of HLA class I genes for improved selection of unrelated bone marrow donors.

    PubMed

    Martinelli, G; Farabegoli, P; Buzzi, M; Panzica, G; Zaccaria, A; Bandini, G; Calori, E; Testoni, N; Rosti, G; Conte, R; Remiddi, C; Salvucci, M; De Vivo, A; Tura, S

    1996-02-01

    The degree of matching of HLA genes between the selected donor and recipient is an important aspect of the selection of unrelated donors for allogeneic bone marrow transplantation (UBMT). The most sensitive methods currently used are serological typing of HLA class I genes, mixed lymphocyte culture (MLC), IEF and molecular genotyping of HLA class II genes by direct sequencing of PCR products. Serological typing of class I antigenes (A, B and C) fails to detect minor differences demonstrated by direct sequencing of DNA polymorphic regions. Molecular genotyping of HLA class I genes by DNA analysis is costly and work-intensive. To improve compatibility between donor and recipient, we have set up a new rapid and non-radioisotopic application of the 'fingerprinting PCR' technique for the analysis of the polymorphic second exon of the HLA class I A, B and C genes. This technique is based on the formation of specific patterns (PCR fingerprints) of homoduplexes and heteroduplexes between heterologous amplified DNA sequences. After an electrophoretic run on non-denaturing polyacrylamide gel, different HLA class I types give allele-specific banding patterns. HLA class I matching is performed, after the gel has been soaked in ethidium bromide or silver-stained, by visual comparison of patients' fingerprints with those of donors. Identity can be confirmed by mixing donor and recipient DNAs in an amplification cross-match. To assess the technique, 10 normal samples, 22 related allogeneic bone marrow transplanted pairs and 10 unrelated HLA-A and HLA-B serologically matched patient-donor pairs were analysed for HLA class I polymorphic regions. In all the related pairs and in 1/10 unrelated pairs, matched donor-recipient patterns were identified. This new application of PCR fingerprinting may confirm the HLA class I serological selection of unrelated marrow donors.

  11. Translational Control in Bone Marrow Failure

    DTIC Science & Technology

    2015-05-01

    HCLS1 associated protein X-1 (HAX1), cause hereditary forms of neutropenia . Previously, competing hypotheses have posited that mutant forms of...derived induced pluripotent stem cell (iPSC) model of ELANE-associated neutropenia . During the second year of this project, in order to facilitate...pathology. 3 2. KEY WORDS neutropenia bone marrow failure neutrophil elastase ELANE HAX1 alternate translation induced pluripotent stem cells (iPSC

  12. Comparative study of adipose-derived stem cells and bone marrow-derived stem cells in similar microenvironmental conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guneta, Vipra; Tan, Nguan Soon; KK Research Centre, KK Women's and Children Hospital, 100 Bukit Timah Road, Singapore 229899

    Mesenchymal stem cells (MSCs), which were first isolated from the bone marrow, are now being extracted from various other tissues in the body, including the adipose tissue. The current study presents systematic evidence of how the adipose tissue-derived stem cells (ASCs) and bone marrow-derived mesenchymal stem cells (Bm-MSCs) behave when cultured in specific pro-adipogenic microenvironments. The cells were first characterized and identified as MSCs in terms of their morphology, phenotypic expression, self-renewal capabilities and multi-lineage potential. Subsequently, the proliferation and gene expression profiles of the cell populations cultured on two-dimensional (2D) adipose tissue extracellular matrix (ECM)-coated tissue culture plastic (TCP)more » and in three-dimensional (3D) AlgiMatrix® microenvironments were analyzed. Overall, it was found that adipogenesis was triggered in both cell populations due to the presence of adipose tissue ECM. However, in 3D microenvironments, ASCs and Bm-MSCs were predisposed to the adipogenic and osteogenic lineages respectively. Overall, findings from this study will contribute to ongoing efforts in adipose tissue engineering as well as provide new insights into the role of the ECM and cues provided by the immediate microenvironment for stem cell differentiation. - Highlights: • Native adipose tissue ECM coated on 2D TCP triggers adipogenesis in both ASCs and Bm-MSCs. • A 3D microenvironment with similar stiffness to adipose tissue induces adipogenic differentiation of ASCs. • ASCs cultured in 3D alginate scaffolds exhibit predisposition to adipogenesis. • Bm-MSCs cultured in 3D alginate scaffolds exhibit predisposition to osteogenesis. • The native microenvironment of the cells affects their differentiation behaviour in vitro.« less

  13. Copper-64 Labeled Liposomes for Imaging Bone Marrow

    PubMed Central

    Lee, Sang-gyu; Gangangari, Kishore; Kalidindi, Teja Muralidhar; Punzalan, Blesida; Larson, Steven M.; Pillarsetty, Naga Vara Kishore

    2016-01-01

    Introduction Bone marrow is the soft tissue compartment inside the bones made up of hematopoietic cells, adipocytes, stromal cells, phagocytic cells, stem cells, and sinusoids. While [18F]-FLT has been utilized to image proliferative marrow, to date, there are no reports of particle based positron emission tomography (PET) imaging agents for imaging bone marrow. We have developed copper-64 labeled liposomal formulation that selectively targets bone marrow and therefore serves as an efficient PET probe for imaging bone marrow. Methods Optimized liposomal formulations were prepared with succinyl PE, DSPC, cholesterol, and mPEG-DSPE (69:39:1:10:0.1) with diameters of 90 and 140 nm, and were doped with DOTA-Bn-DSPE for stable 64Cu incorporation into liposomes. Results PET imaging and biodistribution studies with 64Cu-labeled liposomes indicate that accumulation in bone marrow was as high as 15.18 ± 3.69 %ID/g for 90 nm liposomes and 7.01 ± 0.92 %ID/g for 140 nm liposomes at 24 h post-administration. In vivo biodistribution studies in tumor-bearing mice indicate that the uptake of 90 nm particles is approximately 0.89 ± 0.48 %ID/g in tumor and 14.22 ± 8.07 %ID/g in bone marrow, but respective values for Doxil® like liposomes are 0.83 ± 0.49 %ID/g and 2.23 ± 1.00 %ID/g. Conclusion Our results indicate that our novel PET labeled liposomes target bone marrow with very high efficiency and therefore can function as efficient bone marrow imaging agents. PMID:27694056

  14. Meeting report of the 2016 bone marrow adiposity meeting.

    PubMed

    van der Eerden, Bram; van Wijnen, André

    2017-10-02

    There is considerable interest in the physiology and pathology, as well as the cellular and molecular biology, of bone marrow adipose tissue (BMAT). Because bone marrow adiposity is linked not only to systemic energy metabolism, but also to both bone marrow and musculoskeletal disorders, this biologic compartment has become of major interest to investigators from diverse disciplines. Bone marrow adiposity represents a virtual multi-tissue endocrine organ, which encompasses cells from multiple developmental lineages (e.g., mesenchymal, myeloid, lymphoid) and occupies all the non-osseous and non-cartilaginous space within long bones. A number of research groups are now focusing on bone marrow adiposity to understand a range of clinical afflictions associated with bone marrow disorders and to consider mechanisms-based strategies for future therapies.

  15. The use of bone marrow stromal cells (bone marrow-derived multipotent mesenchymal stromal cells) for alveolar bone tissue engineering: basic science to clinical translation.

    PubMed

    Kagami, Hideaki; Agata, Hideki; Inoue, Minoru; Asahina, Izumi; Tojo, Arinobu; Yamashita, Naohide; Imai, Kohzoh

    2014-06-01

    Bone tissue engineering is a promising field of regenerative medicine in which cultured cells, scaffolds, and osteogenic inductive signals are used to regenerate bone. Human bone marrow stromal cells (BMSCs) are the most commonly used cell source for bone tissue engineering. Although it is known that cell culture and induction protocols significantly affect the in vivo bone forming ability of BMSCs, the responsible factors of clinical outcome are poorly understood. The results from recent studies using human BMSCs have shown that factors such as passage number and length of osteogenic induction significantly affect ectopic bone formation, although such differences hardly affected the alkaline phosphatase activity or gene expression of osteogenic markers. Application of basic fibroblast growth factor helped to maintain the in vivo osteogenic ability of BMSCs. Importantly, responsiveness of those factors should be tested under clinical circumstances to improve the bone tissue engineering further. In this review, clinical application of bone tissue engineering was reviewed with putative underlying mechanisms.

  16. Question of bone marrow stromal fibroblast traffic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maloney, M.A.; Lamela, R.A.; Patt, H.M.

    Bone marrow stromal fibroblasts (CFU-F) normally do not exchange bone marrow sites in vivo. Restitution of the CFU-F after radiation damage is primarily recovery by the local fibroblasts from potentially lethal damage. Migration of stromal fibroblasts from shielded sites to an irradiated site makes a minimal contribution, if any, to CFU-F recovery. Determination of the relative contribution of donor stromal cells in bone marrow transplants by karyotyping the proliferating bone marrow stromal cells in vitro may not reflect the relative distribution of fibroblasts in the marrow. If there is residual damage to the host stromal fibroblasts from treatment before transplantation,more » these cells may not be able to proliferate in vitro. Therefore, an occasional transplanted fibroblast may contribute most of the metaphase figures scored for karyotype.« less

  17. Autologous bone marrow purging with LAK cells.

    PubMed

    Giuliodori, L; Moretti, L; Stramigioli, S; Luchetti, F; Annibali, G M; Baldi, A

    1993-12-01

    In this study we will demonstrate that LAK cells, in vitro, can lyse hematologic neoplastic cells with a minor toxicity of the staminal autologous marrow cells. In fact, after bone marrow and LAK co-culture at a ratio of 1/1 for 8 hours, the inhibition on the GEMM colonies resulted to be 20% less compared to the untreated marrow. These data made LAK an inviting agent for marrow purging in autologous bone marrow transplantation.

  18. Unicameral bone cysts treated by injection of bone marrow or methylprednisolone.

    PubMed

    Chang, C H; Stanton, R P; Glutting, J

    2002-04-01

    In 79 consecutive patients with unicameral bone cysts we compared the results of aspiration and injection of bone marrow with those of aspiration and injection of steroid. All were treated by the same protocol. The only difference was the substance injected into the cysts. The mean radiological follow-up to detect activity in the cyst was 44 months (12 to 108). Of the 79 patients, 14 received a total of 27 injections of bone marrow and 65 a total of 99 injections of steroid. Repeated injections were required in 57% of patients after bone marrow had been used and in 49% after steroid. No complications were noted in either group. In this series no advantage could be shown for the use of autogenous injection of bone marrow compared with injection of steroid in the management of unicameral bone cysts.

  19. Extracellular vesicles from bone marrow-derived mesenchymal stem cells protect against murine hepatic ischemia/reperfusion injury.

    PubMed

    Haga, Hiroaki; Yan, Irene K; Borrelli, David A; Matsuda, Akiko; Parasramka, Mansi; Shukla, Neha; Lee, David D; Patel, Tushar

    2017-06-01

    Hepatic ischemia/reperfusion injury (IRI) and associated inflammation contributes to liver dysfunction and complications after liver surgery and transplantation. Mesenchymal stem cells (MSCs) have been reported to reduce hepatic IRI because of their reparative immunomodulatory effects in injured tissues. Recent studies have highlighted beneficial effects of extracellular vesicles from mesenchymal stem cells (MSC-EV) on tissue injury. The effects of systemically administered mouse bone marrow-derived MSC-EV were evaluated in an experimental murine model of hepatic IRI induced by cross-clamping the hepatic artery and portal vein for 90 minutes followed by reperfusion for periods of up to 6 hours. Compared with controls, intravenous administration of MSC-EV 30 minutes prior to IRI dramatically reduced the extent of tissue necrosis, decreased caspase 3-positive and apoptotic cells, and reduced serum aminotransferase levels. MSC-EV increased hepatic messenger RNA (mRNA) expression of NACHT, LRR, and PYD domains-containing protein 12, and the chemokine (C-X-C motif) ligand 1, and reduced mRNA expression of several inflammatory cytokines such as interleukin 6 during IRI. MSC-EV increased cell viability and suppressed both oxidative injury and nuclear factor kappa B activity in murine hepatocytes in vitro. In conclusion, the administration of extracellular vesicles derived from bone marrow-derived MSCs may ameliorate hepatic IRI by reducing hepatic injury through modulation of the inflammatory response.Liver Transplantation 23 791-803 2017 AASLD. © 2017 by the American Association for the Study of Liver Diseases.

  20. Bone Marrow Failure Secondary to Cytokinesis Failure

    DTIC Science & Technology

    2015-12-01

    SUPPLEMENTARY NOTES 14. ABSTRACT Fanconi anemia (FA) is a human genetic disease characterized by a progressive bone marrow failure and heightened...Fanconi anemia (FA) is the most commonly inherited bone marrow failure syndrome. FA patients develop bone marrow failure during the first decade of...experiments proposed in specific aims 1- 3 (Tasks 1-3). Task 1: To determine whether HSCs from Fanconi anemia mouse models have increased cytokinesis

  1. Meeting report of the 2016 bone marrow adiposity meeting

    PubMed Central

    van der Eerden, Bram; van Wijnen, André

    2017-01-01

    Abstract There is considerable interest in the physiology and pathology, as well as the cellular and molecular biology, of bone marrow adipose tissue (BMAT). Because bone marrow adiposity is linked not only to systemic energy metabolism, but also to both bone marrow and musculoskeletal disorders, this biologic compartment has become of major interest to investigators from diverse disciplines. Bone marrow adiposity represents a virtual multi-tissue endocrine organ, which encompasses cells from multiple developmental lineages (e.g., mesenchymal, myeloid, lymphoid) and occupies all the non-osseous and non-cartilaginous space within long bones. A number of research groups are now focusing on bone marrow adiposity to understand a range of clinical afflictions associated with bone marrow disorders and to consider mechanisms-based strategies for future therapies. PMID:28410005

  2. Impaired CXCR4 Expression and Cell Engraftment of Bone Marrow-derived Cells from Aged Atherogenic Mice

    PubMed Central

    Xu, Qiyuan; Wang, Jian’An; He, Jinlin; Zhou, Mingsheng; Adi, Jennipher; Webster, Keith A; Yu, Hong

    2011-01-01

    Objectives Reduced numbers and activity of circulating progenitor cells are associated with aging and have been linked with coronary artery disease. To determine the impact of aging and atherosclerotic disease on the chemotaxic activity of bone marrow derived cells (BMCs), we examined CXCR4 surface expression on BMCs from aged and atherosclerotic mice. Methods CXCR4 expression and cellular mobility were compared between BMCs of young (6-week old) ApoE null mice (ApoE−/−) and aged ApoE−/− mice that had been fed with a high-fat, high-cholesterol diet for 6-months. Results Age and atherosclerosis correlated with significantly lower surface expression of CXCR4 that was less inducible by calcium. The impaired calcium response was associated with defective calcium influx and was partially recovered by treatment with the calcium ionophore ionomycin. ApoE−/− mice fed high fat diet for 6-months had defective CXCR4 expression and SDF-1 regulation that is equivalent to that of 24-month old wild type mice. BMCs from aged, atherogenic ApoE−/− mice also displayed defective homing to SDF-1, and the animals had lower serum and bone marrow levels of SDF-1. Conclusion Evolution of atherosclerosis in ApoE−/− mice is paralleled by progressive loss of mobility of BMCs with reductions of CXCR4 expression, and reduced levels of SDF-1 in both serum and bone marrow. These changes mute the homing capability of BMCs and may contribute to the progression of atherosclerosis in this model. PMID:21855069

  3. Crosstalk between bone marrow-derived mesenchymal stem cells and regulatory T cells through a glucocorticoid-induced leucine zipper/developmental endothelial locus-1-dependent mechanism.

    PubMed

    Yang, Nianlan; Baban, Babak; Isales, Carlos M; Shi, Xing-Ming

    2015-09-01

    Bone marrow is a reservoir for regulatory T (T(reg)) cells, but how T(reg) cells are regulated in that environment remains poorly understood. We show that expression of glucocorticoid (GC)-induced leucine zipper (GILZ) in bone marrow mesenchymal lineage cells or bone marrow-derived mesenchymal stem cells (BMSCs) increases the production of T(reg) cells via a mechanism involving the up-regulation of developmental endothelial locus-1 (Del-1), an endogenous leukocyte-endothelial adhesion inhibitor. We found that the expression of Del-1 is increased ∼4-fold in the bone tissues of GILZ transgenic (Tg) mice, and this increase is coupled with a significant increase in the production of IL-10 (2.80 vs. 0.83) and decrease in the production of IL-6 (0.80 vs. 2.33) and IL-12 (0.25 vs. 1.67). We also show that GILZ-expressing BMSCs present antigen in a way that favors T(reg) cells. These results indicate that GILZ plays a critical role mediating the crosstalk between BMSCs and T(reg) in the bone marrow microenvironment. These data, together with our previous findings that overexpression of GILZ in BMSCs antagonizes TNF-α-elicited inflammatory responses, suggest that GILZ plays important roles in bone-immune cell communication and BMSC immune suppressive functions. © FASEB.

  4. An Animal Model of Chronic Aplastic Bone Marrow Failure Following Pesticide Exposure in Mice

    PubMed Central

    Chatterjee, Sumanta; Chaklader, Malay; Basak, Pratima; Das, Prosun; Das, Madhurima; Pereira, Jacintha Archana; Dutta, Ranjan Kumar; Chaudhuri, Samaresh; Law, Sujata

    2010-01-01

    The wide use of pesticides for agriculture, domestic and industrial purposes and evaluation of their subsequent effect is of major concern for public health. Human exposure to these contaminants especially bone marrow with its rapidly renewing cell population is one of the most sensitive tissues to these toxic agents represents a risk for the immune system leading to the onset of different pathologies. In this experimental protocol we have developed a mouse model of pesticide(s) induced hypoplastic/aplastic marrow failure to study quantitative changes in the bone marrow hematopoietic stem cell (BMHSC) population through flowcytometric analysis, defects in the stromal microenvironment through short term adherent cell colony (STACC) forming assay and immune functional capacity of the bone marrow derived cells through cell mediated immune (CMI) parameter study. A time course dependent analysis for consecutive 90 days were performed to monitor the associated changes in the marrow’s physiology after 30th, 60th and 90th days of chronic pesticide exposure. The peripheral blood showed maximum lowering of the blood cell count after 90 days which actually reflected the bone marrow scenario. Severe depression of BMHSC population, immune profile of the bone marrow derived cells and reduction of adherent cell colonies pointed towards an essentially empty and hypoplastic marrow condition that resembled the disease aplastic anemia. The changes were accompanied by splenomegaly and splenic erythroid hyperplasia. In conclusion, this animal model allowed us a better understanding of clinico-biological findings of the disease aplastic anemia following toxic exposure to the pesticide(s) used for agricultural and industrial purposes. PMID:24855541

  5. Hyaluronan Enhances Bone Marrow Cell Therapy for Myocardial Repair After Infarction

    PubMed Central

    Chen, Chien-Hsi; Wang, Shoei-Shen; Wei, Erika IH; Chu, Ting-Yu; Hsieh, Patrick CH

    2013-01-01

    Hyaluronan (HA) has been shown to play an important role during early heart development and promote angiogenesis under various physiological and pathological conditions. In recent years, stem cell therapy, which may reduce cardiomyocyte apoptosis, increase neovascularization, and prevent cardiac fibrosis, has emerged as a promising approach to treat myocardial infarction (MI). However, effective delivery of stem cells for cardiac therapy remains a major challenge. In this study, we tested whether transplanting a combination of HA and allogeneic bone marrow mononuclear cells (MNCs) promotes cell therapy efficacy and thus improves cardiac performance after MI in rats. We showed that HA provided a favorable microenvironment for cell adhesion, proliferation, and vascular differentiation in MNC culture. Following MI in rats, compared with the injection of HA alone or MNC alone, injection of both HA and MNCs significantly reduced inflammatory cell infiltration, cardiomyocyte apoptosis, and infarct size and also improved cell retention, angiogenesis, and arteriogenesis, and thus the overall cardiac performance. Ultimately, HA/MNC treatment improved vasculature engraftment of transplanted cells in the infarcted region. Together, our results indicate that combining the biocompatible material HA with bone marrow stem cells exerts a therapeutic effect on heart repair and may further provide potential treatment for ischemic diseases. PMID:23295948

  6. Advances in Bone Marrow Stem Cell Therapy for Retinal Dysfunction

    PubMed Central

    Park, Susanna S.; Moisseiev, Elad; Bauer, Gerhard; Anderson, Johnathon D.; Grant, Maria B.; Zam, Azhar; Zawadzki, Robert J.; Werner, John S.; Nolta, Jan A.

    2016-01-01

    The most common cause of untreatable vision loss is dysfunction of the retina. Conditions, such as age-related macular degeneration, diabetic retinopathy and glaucoma remain leading causes of untreatable blindness worldwide. Various stem cell approaches are being explored for treatment of retinal regeneration. The rationale for using bone marrow stem cells to treat retinal dysfunction is based on preclinical evidence showing that bone marrow stem cells can rescue degenerating and ischemic retina. These stem cells have primarily paracrine trophic effects although some cells can directly incorporate into damaged tissue. Since the paracrine trophic effects can have regenerative effects on multiple cells in the retina, the use of this cell therapy is not limited to a particular retinal condition. Autologous bone marrow-derived stem cells are being explored in early clinical trials as therapy for various retinal conditions. These bone marrow stem cells include mesenchymal stem cells, mononuclear cells and CD34+ cells. Autologous therapy requires no systemic immunosuppression or donor matching. Intravitreal delivery of CD34+ cells and mononuclear cells appears to be tolerated and is being explored since some of these cells can home into the damaged retina after intravitreal administration. The safety of intravitreal delivery of mesenchymal stem cells has not been well established. This review provides an update of the current evidence in support of the use of bone marrow stem cells as treatment for retinal dysfunction. The potential limitations and complications of using certain forms of bone marrow stem cells as therapy are discussed. Future directions of research include methods to optimize the therapeutic potential of these stem cells, non-cellular alternatives using extracellular vesicles, and in vivo high-resolution retinal imaging to detect cellular changes in the retina following cell therapy. PMID:27784628

  7. Neuroprotective effects of intravitreally transplanted adipose tissue and bone marrow-derived mesenchymal stem cells in an experimental ocular hypertension model.

    PubMed

    Emre, Esra; Yüksel, Nurşen; Duruksu, Gökhan; Pirhan, Dilara; Subaşi, Cansu; Erman, Gülay; Karaöz, Erdal

    2015-05-01

    The purpose of this study was to investigate the neuroprotective effects of bone marrow bone marrow-derived and adipose tissue-derived mesenchymal stromal cells (MSCs) that were intravitreally transplanted in an experimental ocular hypertension (OHT) model. An OHT rat model was generated by means of intracameral injection of hyaluronic acid into the anterior chamber. MSCs labeled with green fluorescence protein were transplanted intravitreally 1 week after OHT induction. At the end of the second and fourth weeks, retinal ganglion cells were visualized with the use of a flat-mount retina method and were evaluated by means of immunofluorescence staining against green fluorescence protein, vimentin, CD105, and cytokines (interleukin [IL]-1Ra, prostaglandin E2 receptor, IL-6, transforming growth factor-β1, interferon-γ and tumor necrosis factor-α). The retinal ganglion cell numbers per area were significantly improved in stem cell-treated OHT groups compared with that in the non-treated OHT group (P < 0.05). The results of immunohistochemical analyses indicated that a limited number of stem cells had integrated into the ganglion cell layer and the inner nuclear layer. The number of cells expressing proinflammatory cytokines (interferon-γ and tumor necrosis factor-α) decreased in the MSC-transferred group compared with that in the OHT group after 4 weeks (P < 0.01). On the other hand, IL-1Ra and prostaglandin E2 receptor expressions were increased in the rat bone marrow-derived MSC group but were more significant in the rat adipose tissue-derived MSC group (P < 0.01). After intravitreal transplantation, MSCs showed a neuroprotective effect in the rat OHT model. Therefore, MSCs promise an alternative therapy approach for functional recovery in the treatment of glaucoma. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  8. A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow.

    PubMed

    Wynn, Robert F; Hart, Claire A; Corradi-Perini, Carla; O'Neill, Liam; Evans, Caroline A; Wraith, J Ed; Fairbairn, Leslie J; Bellantuono, Ilaria

    2004-11-01

    Homing of bone marrow stromal cells (MSCs) to bone and bone marrow after transplantation, important for the correction of conditions such as metabolic storage disorders, can occur but with poor efficiency. Substantial improvements in engraftment will be required in order to derive a clinical benefit from MSC transplantation. Chemokines are the most important factors controlling cellular migration. Stromal-derived factor-1 (SDF-1) has been shown to be critical in promoting the migration of cells to the bone marrow, via its specific receptor CXCR4. The aim of our study was to investigate CXCR4 expression on MSCs and its role in mediating migration to bone marrow. We show that CXCR4, although present at the surface of a small subset of MSCs, is important for mediating specific migration of these cells to bone marrow.

  9. Comparison of bone healing and outcomes between allogenous bone chip and hydroxyapatite chip grafts in open wedge high tibial osteotomy.

    PubMed

    Lee, O-Sung; Lee, Kyung Jae; Lee, Yong Seuk

    2017-11-03

    Allogenous bone chips and hydroxyapatite (HA) chips have been known as good options for filling an inevitable void after open wedge high tibial osteotomy (OWHTO). However, there are concerns regarding bone healing after the use of these grafts. The purpose of this study was to compare the bone healing represented by the osteoconductivity and absorbability between allogenous bone chips and HA chips in OWHTO. The outcomes of bone healing of 53 patients who received an allogenous bone chip graft and 41 patients who received an HA chip graft were retrospectively evaluated, and the results were compared between the two groups. Osteoconductivity and absorbability were serially evaluated for the assessment of bone healing at 6 weeks, 3 months, 6 months, and 1 year postoperatively. The osteoconductivity of the allogenous bone chips was greater than that of the HA chips at 6 weeks postoperatively (p < 0.05). However, there were no statistically significant differences from 3 months to 1 year postoperatively. The absorbability showed no statistically significant differences 6 weeks and 3 months after OWHTO; however, the allogenous bone chip group showed a greater absorbability at 6 months and 1 year postoperatively (42.8 ± 14.2 vs. 34.6 ± 13.8, p = 0.006 at 6 months postoperatively; 54.6 ± 14.4 vs. 43.0 ± 14.0, p < 0.001 at 1 year postoperatively). However, the two graft materials showed similar results of HKA angle, WBL ratio, posterior tibial slope.

  10. Mobilization of Endogenous Bone Marrow Derived Endothelial Progenitor Cells and Therapeutic Potential of Parathyroid Hormone after Ischemic Stroke in Mice

    PubMed Central

    Wang, Li-Li; Chen, Dongdong; Lee, Jinhwan; Gu, Xiaohuan; Alaaeddine, Ghina; Li, Jimei; Wei, Ling; Yu, Shan Ping

    2014-01-01

    Stroke is a major neurovascular disorder threatening human life and health. Very limited clinical treatments are currently available for stroke patients. Stem cell transplantation has shown promising potential as a regenerative treatment after ischemic stroke. The present investigation explores a new concept of mobilizing endogenous stem cells/progenitor cells from the bone marrow using a parathyroid hormone (PTH) therapy after ischemic stroke in adult mice. PTH 1-34 (80 µg/kg, i.p.) was administered 1 hour after focal ischemia and then daily for 6 consecutive days. After 6 days of PTH treatment, there was a significant increase in bone marrow derived CD-34/Fetal liver kinase-1 (Flk-1) positive endothelial progenitor cells (EPCs) in the peripheral blood. PTH treatment significantly increased the expression of trophic/regenerative factors including VEGF, SDF-1, BDNF and Tie-1 in the brain peri-infarct region. Angiogenesis, assessed by co-labeled Glut-1 and BrdU vessels, was significantly increased in PTH-treated ischemic brain compared to vehicle controls. PTH treatment also promoted neuroblast migration from the subventricular zone (SVZ) and increased the number of newly formed neurons in the peri-infarct cortex. PTH-treated mice showed significantly better sensorimotor functional recovery compared to stroke controls. Our data suggests that PTH therapy improves endogenous repair mechanisms after ischemic stroke with functional benefits. Mobilizing endogenous bone marrow-derived stem cells/progenitor cells using PTH and other mobilizers appears an effective and feasible regenerative treatment after ischemic stroke. PMID:24503654

  11. Parathyroid Hormone Directs Bone Marrow Mesenchymal Cell Fate.

    PubMed

    Fan, Yi; Hanai, Jun-Ichi; Le, Phuong T; Bi, Ruiye; Maridas, David; DeMambro, Victoria; Figueroa, Carolina A; Kir, Serkan; Zhou, Xuedong; Mannstadt, Michael; Baron, Roland; Bronson, Roderick T; Horowitz, Mark C; Wu, Joy Y; Bilezikian, John P; Dempster, David W; Rosen, Clifford J; Lanske, Beate

    2017-03-07

    Intermittent PTH administration builds bone mass and prevents fractures, but its mechanism of action is unclear. We genetically deleted the PTH/PTHrP receptor (PTH1R) in mesenchymal stem cells using Prx1Cre and found low bone formation, increased bone resorption, and high bone marrow adipose tissue (BMAT). Bone marrow adipocytes traced to Prx1 and expressed classic adipogenic markers and high receptor activator of nuclear factor kappa B ligand (Rankl) expression. RANKL levels were also elevated in bone marrow supernatant and serum, but undetectable in other adipose depots. By cell sorting, Pref1 + RANKL + marrow progenitors were twice as great in mutant versus control marrow. Intermittent PTH administration to control mice reduced BMAT significantly. A similar finding was noted in male osteoporotic patients. Thus, marrow adipocytes exhibit osteogenic and adipogenic characteristics, are uniquely responsive to PTH, and secrete RANKL. These studies reveal an important mechanism for PTH's therapeutic action through its ability to direct mesenchymal cell fate. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Hydroxyapatite/regenerated silk fibroin scaffold-enhanced osteoinductivity and osteoconductivity of bone marrow-derived mesenchymal stromal cells.

    PubMed

    Jiang, Jia; Hao, Wei; Li, Yuzhuo; Yao, Jinrong; Shao, Zhengzhong; Li, Hong; Yang, Jianjun; Chen, Shiyi

    2013-04-01

    A novel hydroxyapatite/regenerated silk fibroin scaffold was prepared and investigated for its potential to enhance both osteoinductivity and osteoconductivity of bone marrow-derived mesenchymal stromal cells in vitro. Approx. 12.4 ± 0.06 % (w/w) hydroxyapatite was deposited onto the scaffold, and cell viability and DNA content were significantly increased (18.5 ± 0.6 and 33 ± 1.2 %, respectively) compared with the hydroxyapatite scaffold after 14 days. Furthermore, alkaline phosphatase activity in the novel scaffold increased 41 ± 2.5 % after 14 days compared with the hydroxyapatite scaffold. The data indicate that this novel hydroxyapatite/regenerated silk fibroin scaffold has a positive effect on osteoinductivity and osteoconductivity, and may be useful for bone tissue engineering.

  13. [Use of alternative donors for allogeneic haematopoietic cell transplantation in lymphoid neoplasms: Guidelines from the Francophone Society of Bone Marrow Transplantation and Cellular Therapy (SFGM-TC)].

    PubMed

    Gauthier, Jordan; Chantepie, Sylvain; Bouabdallah, Krimo; Jost, Edgar; Nguyen, Stéphanie; Gac, Anne-Claire; Damaj, Gandhi; Duléry, Rémy; Michallet, Mauricette; Delage, Jérémy; Lewalle, Philippe; Morschhauser, Franck; Salles, Gilles; Yakoub-Agha, Ibrahim; Cornillon, Jérôme

    2017-12-01

    Despite great improvements in the outcome of patients with lymphoma, some may still relapse or present with primary refractory disease. In these situations, allogeneic haematopoietic cell transplantation (allo-HCT) is a potentially curative option, in particular in the case of relapse after autologous stem cell transplantation. Recently, novel agents such as anti-PD1 and BTK inhibitors have started to challenge the use of allo-HCT for relapsed or refractory lymphoma. During the 2016 annual workshop of the Francophone Society of Bone Marrow Transplantation and Cellular Therapy (SFGM-TC), we performed a comprehensive review of the literature published in the last 10 years and established guidelines to clarify the indications and transplant modalities in this setting. This manuscript reports on general considerations regarding allo-HCT for lymphoma and elaborates on the use of alternative donors in this setting. Copyright © 2017 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  14. VEGF induces neuroglial differentiation in bone marrow-derived stem cells and promotes microglia conversion following mobilization with GM-CSF.

    PubMed

    Avraham-Lubin, Bat-Chen R; Goldenberg-Cohen, Nitza; Sadikov, Tamilla; Askenasy, Nadir

    2012-12-01

    Evaluation of potential tropic effects of vascular endothelial growth factor (VEGF) on the incorporation and differentiation of bone-marrow-derived stem cells (BMSCs) in a murine model of anterior ischemic optic neuropathy (AION). In the first approach, small-sized subset of BMCs were isolated from GFP donors mice by counterflow centrifugal elutriation and depleted of hematopoietic lineages (Fr25lin(-)). These cells were injected into a peripheral vein (1 × 10(6) in 0.2 ml) or inoculated intravitreally (2 × 10(5)) to syngeneic mice, with or without intravitreal injection of 5 μg/2μL VEGF, simultaneously with AION induction. In a second approach, hematopoietic cells were substituted by myelablative transplant of syngeseic GFP + bone marrow cells. After 3 months, progenitors were mobilized with granulocyte-macrophage colony-stimulating factor (GM-CSF) followed by VEGF inoculation into the vitreous body and AION induction . Engraftment and phenotype were examined by immunohistochemistry and FISH at 4 and 24 weeks post-transplantation, and VEGF receptors were determined by real time PCR. VEGF had no quantitative effect on incorporation of elutriated cells in the injured retina, yet it induced early expression of neuroal markers in cells incorporated in the RGC layer and promoted durable gliosis, most prominent perivascular astrocytes. These effects were mediated by VEGF-R1/Flt-1, which is constitutively expresses in the elutriated fraction of stem cells. Mobilization with GM-CSF limited the differentiation of bone marrow progenitors to microglia, which was also fostered by VEGF. VEGF signaling mediated by Flt-1 induces early neural and sustained astrocytic differentiation of stem cells elutriated from adult bone-marrow, with significant contribution to stabilization retinal architecture following ischemic injury.

  15. Space microgravity drives transdifferentiation of human bone marrow-derived mesenchymal stem cells from osteogenesis to adipogenesis.

    PubMed

    Zhang, Cui; Li, Liang; Jiang, Yuanda; Wang, Cuicui; Geng, Baoming; Wang, Yanqiu; Chen, Jianling; Liu, Fei; Qiu, Peng; Zhai, Guangjie; Chen, Ping; Quan, Renfu; Wang, Jinfu

    2018-03-13

    Bone formation is linked with osteogenic differentiation of mesenchymal stem cells (MSCs) in the bone marrow. Microgravity in spaceflight is known to reduce bone formation. In this study, we used a real microgravity environment of the SJ-10 Recoverable Scientific Satellite to examine the effects of space microgravity on the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (hMSCs). hMSCs were induced toward osteogenic differentiation for 2 and 7 d in a cell culture device mounted on the SJ-10 Satellite. The satellite returned to Earth after going through space experiments in orbit for 12 d, and cell samples were harvested and analyzed for differentiation potentials. The results showed that space microgravity inhibited osteogenic differentiation and resulted in adipogenic differentiation, even under osteogenic induction conditions. Under space microgravity, the expression of 10 genes specific for osteogenesis decreased, including collagen family members, alkaline phosphatase ( ALP), and runt-related transcription factor 2 ( RUNX2), whereas the expression of 4 genes specific for adipogenesis increased, including adipsin ( CFD), leptin ( LEP), CCAAT/enhancer binding protein β ( CEBPB), and peroxisome proliferator-activated receptor-γ ( PPARG). In the analysis of signaling pathways specific for osteogenesis, we found that the expression and activity of RUNX2 was inhibited, expression of bone morphogenetic protein-2 ( BMP2) and activity of SMAD1/5/9 were decreased, and activity of focal adhesion kinase (FAK) and ERK-1/2 declined significantly under space microgravity. These data indicate that space microgravity plays a dual role by decreasing RUNX2 expression and activity through the BMP2/SMAD and integrin/FAK/ERK pathways. In addition, we found that space microgravity increased p38 MAPK and protein kinase B (AKT) activities, which are important for the promotion of adipogenic differentiation of hMSCs. Space microgravity significantly

  16. Lung transplantation after allogeneic marrow transplantation in pediatric patients: the Memorial Sloan-Kettering experience.

    PubMed

    Heath, J A; Kurland, G; Spray, T L; Kernan, N A; Small, T N; Brochstein, J A; Gillio, A P; Boklan, J; O'Reilly, R J; Boulad, F

    2001-12-27

    Chronic lung disease and pulmonary failure are complications that can occur after bone marrow transplantation (BMT) and are associated with severe morbidity and mortality. We report on four patients who developed chronic, progressive, and irreversible lung disease 1 to 3 years after allogeneic BMT in childhood. These patients had chronic graft-versus-host disease (n=3) or radiation-related pulmonary fibrosis (n=1). Three patients underwent double lung transplants and one patient underwent a single lung transplant 2 to 14 years after BMT. All four patients tolerated the lung transplantation procedure well and showed significant clinical improvement with normalization of pulmonary function tests by 1 year posttransplant. One patient died from infectious complications 3 years after lung transplantation, and one patient died after chronic rejection of the transplanted lungs 6 years posttransplant. Two patients remain alive without significant respiratory impairment 2 and 7 years after lung transplantation. We conclude that lung transplantation offers a viable therapeutic option for patients who develop respiratory failure secondary to BMT.

  17. Notch-dependent T-lineage commitment occurs at extrathymic sites following bone marrow transplantation

    PubMed Central

    Maillard, Ivan; Schwarz, Benjamin A.; Sambandam, Arivazhagan; Fang, Terry; Shestova, Olga; Xu, Lanwei; Bhandoola, Avinash; Pear, Warren S.

    2006-01-01

    Early T-lineage progenitors (ETPs) arise after colonization of the thymus by multipotent bone marrow progenitors. ETPs likely serve as physiologic progenitors of T-cell development in adult mice, although alternative T-cell differentiation pathways may exist. While we were investigating mechanisms of T-cell reconstitution after bone marrow transplantation (BMT), we found that efficient donor-derived thymopoiesis occurred before the pool of ETPs had been replenished. Simultaneously, T lineage–restricted progenitors were generated at extrathymic sites, both in the spleen and in peripheral lymph nodes, but not in the bone marrow or liver. The generation of these T lineage–committed cells occurred through a Notch-dependent differentiation process. Multipotent bone marrow progenitors efficiently gave rise to extrathymic T lineage–committed cells, whereas common lymphoid progenitors did not. Our data show plasticity of T-lineage commitment sites in the post-BMT environment and indicate that Notch-driven extrathymic Tlineage commitment from multipotent progenitors may contribute to early T-lineage reconstitution after BMT. PMID:16397133

  18. Fracture induced mobilization and incorporation of bone marrow-derived endothelial progenitor cells for bone healing.

    PubMed

    Matsumoto, Tomoyuki; Mifune, Yutaka; Kawamoto, Atsuhiko; Kuroda, Ryosuke; Shoji, Taro; Iwasaki, Hiroto; Suzuki, Takahiro; Oyamada, Akira; Horii, Miki; Yokoyama, Ayumi; Nishimura, Hiromi; Lee, Sang Yang; Miwa, Masahiko; Doita, Minoru; Kurosaka, Masahiro; Asahara, Takayuki

    2008-04-01

    We recently reported that systemic administration of peripheral blood (PB) CD34+ cells, an endothelial progenitor cell (EPC)-enriched population, contributed to fracture healing via vasculogenesis/angiogenesis. However, pathophysiological role of EPCs in fracture healing process has not been fully clarified. Therefore, we investigated the hypothesis whether mobilization and incorporation of bone marrow (BM)-derived EPCs may play a pivotal role in appropriate fracture healing. Serial examinations of Laser doppler perfusion imaging and histological capillary density revealed that neovascularization activity at the fracture site peaked at day 7 post-fracture, the early phase of endochondral ossifification. Fluorescence-activated cell sorting (FACS) analysis demonstrated that the frequency of BM cKit+Sca1+Lineage- (Lin-) cells and PB Sca1+Lin- cells, which are EPC-enriched fractions, significantly increased post-fracture. The Sca1+ EPC-derived vasuculogenesis at the fracture site was confirmed by double immunohistochemistry for CD31 and Sca1. BM transplantation from transgenic donors expressing LacZ transcriptionally regulated by endothelial cell-specific Tie-2 promoter into wild type also provided direct evidence that EPCs contributing to enhanced neovascularization at the fracture site were specifically derived from BM. Animal model of systemic administration of PB Sca1+Lin- Green Fluorescent Protein (GFP)+ cells further confirmed incorporation of the mobilized EPCs into the fracture site for fracture healing. These findings indicate that fracture may induce mobilization of EPCs from BM to PB and recruitment of the mobilized EPCs into fracture sites, thereby augment neovascularization during the process of bone healing. EPCs may play an essential role in fracture healing by promoting a favorable environment through neovascularization in damaged skeletal tissue. (c) 2008 Wiley-Liss, Inc.

  19. β3-Adrenergic Regulation of EPC Features Through Manipulation of the Bone Marrow MSC Niche.

    PubMed

    Vafaei, Rana; Nassiri, Seyed Mahdi; Siavashi, Vahid

    2017-12-01

    Mesenchymal stem cells (MSCs) reside in a specific niche in the bone marrow, however, biological features of this niche are still not fully understood. Given the interactions of MSCs with endothelial cells in different tissues, bone marrow MSC niche may influence the biological features of endothelial progenitor cells (EPCs). To understand the role of the sympathetic nervous system in regulation of the MSC niche, we examined whether the manipulation of the MSC niche via β3-adrenergic signals will affect EPC features. A selective β3 agonist (BRL37344) or a β3 antagonist (SR59230A) was administered in mice for 2 weeks to determine the potential effects of these regimens on the population of CD133 + stem cells in the bone marrow. Then, bone marrow-derived MSCs and EPCs were harvested and expanded from the mice to examine the effect of changes in the MSC niche on EPC features. Improved MSC colony forming potency with increased bone marrow stromal cell-derived factor 1 (SDF-1) (also known as C-X-C motif chemokine 12 [CXCL12]) expression was shown as a result of intensification of the bone marrow adrenergic signals through BRL37344 injection. On the other hand, the blockage of these signals limited the expression level of SDF-1 and resulted in bone marrow enrichment of CD133 + cells. Manipulation of the MSC niche and decreased SDF-1 expression via SR59230A injection also prompted EPCs to form more colonies with augmented proliferation and differentiation capacity. Overall, our results indicate that the β3-adrenergic signals regulate the MSC niche, thereby resulting in modulation of EPC biological features. J. Cell. Biochem. 118: 4753-4761, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. PET/CT versus bone marrow biopsy in the initial evaluation of bone marrow infiltration in various pediatric malignancies.

    PubMed

    Zapata, Claudia P; Cuglievan, Branko; Zapata, Catalina M; Olavarrieta, Raquel; Raskin, Scott; Desai, Kavita; De Angulo, Guillermo

    2018-02-01

    Accurate staging is essential in the prognosis and management of pediatric malignancies. Current protocols require screening for marrow infiltration with bone marrow biopsy (BMB) as the gold standard. Positron emission tomography-computed tomography (PET-CT) is commonly used to complete the staging process and can also be used to evaluate marrow infiltration. To compare PET-CT and BMB in the initial evaluation of bone marrow infiltration in pediatric cancers. We retrospectively reviewed new cases of EWS, rhabdomyosarcoma, neuroblastoma, and lymphoma diagnosed between January 2009 and October 2014. Each case had undergone both PET-CT and BMB within 4 weeks without treatment in the interval between screening modalities. We reviewed 69 cases. Bone marrow infiltration was demonstrated in 34 cases by PET-CT and in 18 cases by BMB. The sensitivity and negative predictive value of PET-CT were both 100%. Interestingly, the cases in which infiltration was not detected on BMB had an abnormal marrow signal on PET-CT focal or distant to iliac crest. PET-CT has a high sensitivity when assessing marrow infiltration in pediatric malignancies. Advances in radiologic modalities may obviate the use of invasive, painful, and costly procedures like BMB. Furthermore, biopsy results are limited by insufficient tissue or the degree of marrow infiltration (diffuse vs. focal disease). PET-CT can improve the precision of biopsy when used as a guiding tool. This study proposes the use of PET-CT as first-line screening for bone marrow infiltration to improve the accuracy of staging in new diagnoses. © 2017 Wiley Periodicals, Inc.

  1. Paternity after bone marrow transplantation following conditioning with total body irradiation.

    PubMed

    Pakkala, S; Lukka, M; Helminen, P; Koskimies, S; Ruutu, T

    1994-04-01

    A 28-year-old man with chronic myeloid leukaemia received an allogeneic bone marrow transplant after conditioning with daunorubicin, cyclophosphamide and fractionated total body irradiation (TBI). Four years later his wife gave birth to a healthy child. Although the patient was azospermic serologic HLA testing suggested that the patient was the father of the child. DNA fingerprinting as well as analysis of three variable number of tandem repeats (VNTR) loci D1S80 (MCT118), D17S30 (YNZ22) and the apolipoprotein B hypervariable region (apo B 3') gave unequivocal results showing that the patient was the father. Fathering a child after TBI-containing regimen has been very rare and this is the first case where the paternity has been proven with DNA methodology.

  2. A new and efficient culture method for porcine bone marrow-derived M1- and M2-polarized macrophages.

    PubMed

    Gao, Jiye; Scheenstra, Maaike R; van Dijk, Albert; Veldhuizen, Edwin J A; Haagsman, Henk P

    2018-06-01

    Macrophages play an important role in the innate immune system as part of the mononuclear phagocyte system (MPS). They have a pro-inflammatory signature (M1-polarized macrophages) or anti-inflammatory signature (M2-polarized macrophages) based on expression of surface receptors and secretion of cytokines. However, very little is known about the culture of macrophages from pigs and more specific about the M1 and M2 polarization in vitro. Porcine monocytes or mononuclear bone marrow cells were used to culture M1- and M2-polarized macrophages in the presence of GM-CSF and M-CSF, respectively. Surface receptor expression was measured with flow cytometry and ELISA was used to quantify cytokine secretion in response to LPS and PAM 3 CSK 4 stimulation. Human monocyte-derived macrophages were used as control. Porcine M1- and M2-polarized macrophages were cultured best using porcine GM-CSF and murine M-CSF, respectively. Cultures from bone marrow cells resulted in a higher yield M1- and M2-polarized macrophages which were better comparable to human monocyte-derived macrophages than cultures from porcine monocytes. Porcine M1-polarized macrophages displayed the characteristic fried egg shape morphology, lower CD163 expression and low IL-10 production. Porcine M2-polarized macrophages contained the spindle-like morphology, higher CD163 expression and high IL-10 production. Porcine M1- and M2-polarized macrophages can be most efficiently cultured from mononuclear bone marrow cells using porcine GM-CSF and murine M-CSF. The new culture method facilitates more refined studies of porcine macrophages in vitro, important for both porcine and human health since pigs are increasingly used as model for translational research. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  3. A feasibility study for in vitro evaluation of fixation between prosthesis and bone with bone marrow-derived mesenchymal stem cells.

    PubMed

    Morita, Yusuke; Yamasaki, Kenichi; Hattori, Koji

    2010-10-01

    It is difficult to quantitatively evaluate adhesive strength between an implant and the neighboring bone using animal experiments, because the degree of fixation of an implant depends on differences between individuals and the clearance between the material and the bone resulting from surgical technique. A system was designed in which rat bone marrow cells were used to quantitatively evaluate the adhesion between titanium alloy plates and bone plates in vitro. Three kinds of surface treatment were used: a sand-blasted surface, a titanium-sprayed surface and a titanium-sprayed surface coated with hydroxyapatite. Bone marrow cells obtained from rat femora were seeded on the titanium alloy plates, and the cells were cultured between the titanium alloy plates and the bone plates sliced from porcine ilium for 2 weeks. After cultivation, adhesive strength was measured using a tensile test, after which DNA amount and Alkaline phosphatase activity were measured. The seeded cells accelerated adhesion of the titanium alloy plate to the bone plate. Adhesive strength of the titanium-sprayed surface was lower than that of the sand-blasted surface because of lower initial contact area, although there was no difference in Alkaline phosphatase activity between two surface treatments. A hydroxyapatite coating enhanced adhesive strength between the titanium alloy palate and the bone plate, as well as enhancing osteogenic differentiation of bone marrow cells. It is believed that this novel experimental method can be used to simultaneously evaluate the osteogenic differentiation and the adhesive strength of an implant during in vitro cultivation. 2010 Elsevier Ltd. All rights reserved.

  4. Inherited Bone Marrow Failure Syndromes (IBMFS)

    Cancer.gov

    The NCI IBMFS Cohort Study consists of affected individuals and their immediate families in North America who have an inherited bone marrow failure syndrome (IBMFS)-either one that has been specifically identified and defined, or bone marrow failure that appears to be inherited but has not yet been clearly identified as having a genetic basis.

  5. Frequency and natural history of inherited bone marrow failure syndromes: the Israeli Inherited Bone Marrow Failure Registry.

    PubMed

    Tamary, Hannah; Nishri, Daniella; Yacobovich, Joanne; Zilber, Rama; Dgany, Orly; Krasnov, Tanya; Aviner, Shraga; Stepensky, Polina; Ravel-Vilk, Shoshana; Bitan, Menachem; Kaplinsky, Chaim; Ben Barak, Ayelet; Elhasid, Ronit; Kapelusnik, Joseph; Koren, Ariel; Levin, Carina; Attias, Dina; Laor, Ruth; Yaniv, Isaac; Rosenberg, Philip S; Alter, Blanche P

    2010-08-01

    Inherited bone marrow failure syndromes are rare genetic disorders characterized by bone marrow failure, congenital anomalies, and cancer predisposition. Available single disease registries provide reliable information regarding natural history, efficacy and side effects of treatments, and contribute to the discovery of the causative genes. However, these registries could not shed light on the true incidence of the various syndromes. We, therefore, established an Israeli national registry in order to investigate the relative frequency of each of these syndromes and their complications. Patients were registered by their hematologists in all 16 medical centers in Israel. We included patients with Fanconi anemia, severe congenital neutropenia, Diamond-Blackfan anemia, congenital amegakaryocytic thrombocytopenia, dyskeratosis congenita, Shwachman-Diamond syndrome, and thrombocytopenia with absent radii. One hundred and twenty-seven patients diagnosed between 1966 and 2007 were registered. Fifty-two percent were found to have Fanconi anemia, 17% severe congenital neutropenia, 14% Diamond-Blackfan anemia, 6% congenital amegakaryocytic thrombocytopenia, 5% dyskeratosis congenita, 2% Shwachman-Diamond syndrome, and 2% thrombocytopenia with absent radii. No specific diagnosis was made in only 2 patients. Of the thirty patients (24%) developing severe bone marrow failure, 80% had Fanconi anemia. Seven of 9 patients with leukemia had Fanconi anemia, as did all 6 with solid tumors. Thirty-four patients died from their disease; 25 (74%) had Fanconi anemia and 6 (17%) had severe congenital neutropenia. This is the first comprehensive population-based study evaluating the incidence and complications of the different inherited bone marrow failure syndromes. By far the most common disease was Fanconi anemia, followed by severe congenital neutropenia and Diamond-Blackfan anemia. Fanconi anemia carried the worst prognosis, with severe bone marrow failure and cancer susceptibility

  6. Angioinvasive pulmonary aspergillosis after allogeneic bone marrow transplantation: clinical and high-resolution computed tomography findings in 12 cases.

    PubMed

    Gasparetto, Emerson L; Souza, Carolina A; Tazoniero, Priscilla; Davaus, Taisa; Escuissato, Dante L; Marchiori, Edson

    2007-02-01

    The aim of this study was to present the clinical and high-resolution CT scan findings of angioinvasive pulmonary aspergillosis (APA) in 12 patients who underwent allogeneic bone marrow transplantation (BMT). The CT scans were reviewed by three chest radiologists who assessed the pattern and distribution of findings by consent. There were 7 (58%) female and 5 (42%) male patients, with aging between 5 and 50 years (average of 26 years). All patients were submitted to BMT for the treatment of hematological conditions. The diagnosis of APA was defined between 5 and 373 days after BMT, with average of 111 days. Three cases (25%) were diagnosed in the neutropenic phase after the BMT, five (42%) in the early phase and four patients in the late phase post-BMT. Regarding high-resolution CT (HRCT) scan findings, nodules were found in 75% of the cases (9/12), most of the cases with more than 10 lesions (7/9) and of centrilobular localization (6/9). Consolidations were identified in seven patients (58%), being single in six, and commonly presenting ill defined borders (n=3) and subsegmental localization (n=5). Ground glass attenuation was found in six patients (50%). The halo sign was observed in nine cases (75%). Cavitations were seen in two air-space consolidations and one large nodule (2.5 cm). Patients submitted to BMT presenting respiratory symptoms and nodules or consolidations with halo sign at HRCT scan need to have the diagnosis of angioinvasive pulmonary aspergillosis included in all the post BMT phases.

  7. [Basic biological characteristics of mesenchymal stem cells derived from bone marrow and human umbilical cord].

    PubMed

    Han, Zhen-Xia; Shi, Qing; Wang, Da-Kun; Li, Dong; Lyu, Ming

    2013-10-01

    Bone marrow (BM) and umbilical cord (UC) are the major sources of mesenchymal stem cells for therapeutics. This study was aimed to compare the basic biologic characteristics of bone marrow-derived and umbilical cord derived-mesenchymal stem cells (BM-MSC and UC-MSC) and their immunosuppressive capability in vitro. The BM-MSC and UC-MSC were cultured and amplified under same culture condition. The growth kinetics, phenotypic characteristics and immunosuppressive effects of UC-MSC were compared with those of BM-MSC.Gene chip was used to compare the genes differentially expressed between UC-MSC and BM-MSC. The results showed that UC-MSC shared most of the characteristics of BM-MSC, including morphology and immunophenotype. UC-MSC could be ready expanded for 30 passages without visible changes. However, BM-MSC grew slowly, and the mean doubling time increased notably after passage 6. Both UC-MSC and BM-MSC could inhibit phytohemagglutinin-stimulated peripheral blood mononuclear cell proliferation, in which BM-MSC mediated more inhibitory effect. Compared with UC-MSC, BM-MSC expressed more genes associated with immune response. Meanwhile, the categories of up-regulated genes in UC-MSC were concentrated in organ development and growth. It is concluded that the higher proliferation capacity, low human leukocyte antigen-ABC expression and immunosuppression make UC-MSC an excellent alternative to BM-MSC for cell therapy. The differences between BM-MSC and UC-MSC gene expressions can be explained by their ontogeny and different microenvironment in origin tissue. These differences can affect their efficacy in different therapeutic applications.

  8. A STUDY OF PREDICTED BONE MARROW DISTRIBUTION ON CALCULATED MARROW DOSE FROM EXTERNAL RADIATION EXPOSURES USING TWO SETS OF IMAGE DATA FOR THE SAME INDIVIDUAL

    PubMed Central

    Caracappa, Peter F.; Chao, T. C. Ephraim; Xu, X. George

    2010-01-01

    Red bone marrow is among the tissues of the human body that are most sensitive to ionizing radiation, but red bone marrow cannot be distinguished from yellow bone marrow by normal radiographic means. When using a computational model of the body constructed from computed tomography (CT) images for radiation dose, assumptions must be applied to calculate the dose to the red bone marrow. This paper presents an analysis of two methods of calculating red bone marrow distribution: 1) a homogeneous mixture of red and yellow bone marrow throughout the skeleton, and 2) International Commission on Radiological Protection cellularity factors applied to each bone segment. A computational dose model was constructed from the CT image set of the Visible Human Project and compared to the VIP-Man model, which was derived from color photographs of the same individual. These two data sets for the same individual provide the unique opportunity to compare the methods applied to the CT-based model against the observed distribution of red bone marrow for that individual. The mass of red bone marrow in each bone segment was calculated using both methods. The effect of the different red bone marrow distributions was analyzed by calculating the red bone marrow dose using the EGS4 Monte Carlo code for parallel beams of monoenergetic photons over an energy range of 30 keV to 6 MeV, cylindrical (simplified CT) sources centered about the head and abdomen over an energy range of 30 keV to 1 MeV, and a whole-body electron irradiation treatment protocol for 3.9 MeV electrons. Applying the method with cellularity factors improves the average difference in the estimation of mass in each bone segment as compared to the mass in VIP-Man by 45% over the homogenous mixture method. Red bone marrow doses calculated by the two methods are similar for parallel photon beams at high energy (above about 200 keV), but differ by as much as 40% at lower energies. The calculated red bone marrow doses differ

  9. A study of predicted bone marrow distribution on calculated marrow dose from external radiation exposures using two sets of image data for the same individual.

    PubMed

    Caracappa, Peter F; Chao, T C Ephraim; Xu, X George

    2009-06-01

    Red bone marrow is among the tissues of the human body that are most sensitive to ionizing radiation, but red bone marrow cannot be distinguished from yellow bone marrow by normal radiographic means. When using a computational model of the body constructed from computed tomography (CT) images for radiation dose, assumptions must be applied to calculate the dose to the red bone marrow. This paper presents an analysis of two methods of calculating red bone marrow distribution: 1) a homogeneous mixture of red and yellow bone marrow throughout the skeleton, and 2) International Commission on Radiological Protection cellularity factors applied to each bone segment. A computational dose model was constructed from the CT image set of the Visible Human Project and compared to the VIP-Man model, which was derived from color photographs of the same individual. These two data sets for the same individual provide the unique opportunity to compare the methods applied to the CT-based model against the observed distribution of red bone marrow for that individual. The mass of red bone marrow in each bone segment was calculated using both methods. The effect of the different red bone marrow distributions was analyzed by calculating the red bone marrow dose using the EGS4 Monte Carlo code for parallel beams of monoenergetic photons over an energy range of 30 keV to 6 MeV, cylindrical (simplified CT) sources centered about the head and abdomen over an energy range of 30 keV to 1 MeV, and a whole-body electron irradiation treatment protocol for 3.9 MeV electrons. Applying the method with cellularity factors improves the average difference in the estimation of mass in each bone segment as compared to the mass in VIP-Man by 45% over the homogenous mixture method. Red bone marrow doses calculated by the two methods are similar for parallel photon beams at high energy (above about 200 keV), but differ by as much as 40% at lower energies. The calculated red bone marrow doses differ

  10. Generation of an iPS cell line from bone marrow derived mesenchymal stromal cells from an elderly patient.

    PubMed

    Megges, Matthias; Geissler, Sven; Duda, Georg N; Adjaye, James

    2015-11-01

    An induced pluripotent stem cell line was generated from primary human bone marrow derived mesenchymal stromal cells of a 74 year old donor using retroviruses harboring OCT4, SOX2, KLF4 and c-MYC in combination with the following inhibitors TGFβ receptor-SB 431542, MEK-PD325901, and p53-Pifithrin α. Pluripotency was confirmed both in vitro and in vivo. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Intra-discal injection of autologous, hypoxic cultured bone marrow-derived mesenchymal stem cells in five patients with chronic lower back pain: a long-term safety and feasibility study.

    PubMed

    Elabd, Christian; Centeno, Christopher J; Schultz, John R; Lutz, Gregory; Ichim, Thomas; Silva, Francisco J

    2016-09-01

    Chronic low back pain due to disc degeneration represents a major social and economic burden worldwide. The current standard of care is limited to symptomatic relief and no current approved therapy promotes disc regeneration. Bone marrow-derived mesenchymal stem cells (MSCs) are easily accessible and well characterized. These MSCs are multipotent and exhibit great tissue regenerative potential including bone, cartilage, and fibrous tissue regeneration. The use of this cell-based biologic for treating protruding disc herniation and/or intervertebral disc degeneration is a promising therapeutic strategy, due to their known regenerative, immuno-modulatory and anti-inflammatory properties. Five patients diagnosed with degenerative disc disease received an intra-discal injection of autologous, hypoxic cultured, bone marrow-derived mesenchymal stem cells (15.1-51.6 million cells) as part of a previous study. These patients were re-consented to participate in this study in order to assess long-term safety and feasibility of intra-discal injection of autologous, hypoxic cultured, bone marrow-derived mesenchymal stem cells 4-6 years post mesenchymal stem cell infusion. The follow-up study consisted of a physical examination, a low back MRI, and a quality of life questionnaire. Patients' lower back MRI showed absence of neoplasms or abnormalities surrounding the treated region. Based on the physical examination and the quality of life questionnaire, no adverse events were reported due to the procedure or to the stem cell treatment 4-6 years post autologous, hypoxic cultured mesenchymal stem cell infusion. All patients self-reported overall improvement, as well as improvement in strength, post stem cell treatment, and four out of five patients reported improvement in mobility. This early human clinical data suggests the safety and feasibility of the clinical use of hypoxic cultured bone marrow-derived mesenchymal stem cells for the treatment of lower back pain due to

  12. Reduced cellularity of bone marrow in multiple sclerosis with decreased MSC expansion potential and premature ageing in vitro.

    PubMed

    Redondo, Juliana; Sarkar, Pamela; Kemp, Kevin; Virgo, Paul F; Pawade, Joya; Norton, Aimie; Emery, David C; Guttridge, Martin G; Marks, David I; Wilkins, Alastair; Scolding, Neil J; Rice, Claire M

    2017-05-01

    Autologous bone-marrow-derived cells are currently employed in clinical studies of cell-based therapy in multiple sclerosis (MS) although the bone marrow microenvironment and marrow-derived cells isolated from patients with MS have not been extensively characterised. To examine the bone marrow microenvironment and assess the proliferative potential of multipotent mesenchymal stromal cells (MSCs) in progressive MS. Comparative phenotypic analysis of bone marrow and marrow-derived MSCs isolated from patients with progressive MS and control subjects was undertaken. In MS marrow, there was an interstitial infiltrate of inflammatory cells with lymphoid (predominantly T-cell) nodules although total cellularity was reduced. Controlling for age, MSCs isolated from patients with MS had reduced in vitro expansion potential as determined by population doubling time, colony-forming unit assay, and expression of β-galactosidase. MS MSCs expressed reduced levels of Stro-1 and displayed accelerated shortening of telomere terminal restriction fragments (TRF) in vitro. Our results are consistent with reduced proliferative capacity and ex vivo premature ageing of bone-marrow-derived cells, particularly MSCs, in MS. They have significant implication for MSC-based therapies for MS and suggest that accelerated cellular ageing and senescence may contribute to the pathophysiology of progressive MS. The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: Funding for this study was provided by the Medical Research Council, UK (grant no. MR/K004166/1). The ACTiMuS study is sup-ported by the Silverman Family Foundation, Multiple Sclerosis Trust, Rosetree’s Trust, Catholic Bishops of England and Wales and Friends of Frenchay and SIAMMS-II by the Sir Halley Stewart Trust. C.M.R., P.S., and K.K. received support from the Burden Neurological Institute.

  13. Good, Bad, or Ugly: the Biological Roles of Bone Marrow Fat.

    PubMed

    Singh, Lakshman; Tyagi, Sonia; Myers, Damian; Duque, Gustavo

    2018-04-01

    Bone marrow fat expresses mixed characteristics, which could correspond to white, brown, and beige types of fat. Marrow fat could act as either energy storing and adipokine secreting white fat or as a source of energy for hematopoiesis and bone metabolism, thus acting as brown fat. However, there is also a negative interaction between marrow fat and other elements of the bone marrow milieu, which is known as lipotoxicity. In this review, we will describe the good and bad roles of marrow fat in the bone, while focusing on the specific components of the negative effect of marrow fat on bone metabolism. Lipotoxicity in the bone is exerted by bone marrow fat through the secretion of adipokines and free fatty acids (FFA) (predominantly palmitate). High levels of FFA found in the bone marrow of aged and osteoporotic bone are associated with decreased osteoblastogenesis and bone formation, decreased hematopoiesis, and increased osteoclastogenesis. In addition, FFA such as palmitate and stearate induce apoptosis and dysfunctional autophagy in the osteoblasts, thus affecting their differentiation and function. Regulation of marrow fat could become a therapeutic target for osteoporosis. Inhibition of the synthesis of FFA by marrow fat could facilitate osteoblastogenesis and bone formation while affecting osteoclastogenesis. However, further studies testing this hypothesis are still required.

  14. Bone marrow-derived mesenchymal stem cells propagate immunosuppressive/anti-inflammatory macrophages in cell-to-cell contact-independent and -dependent manners under hypoxic culture.

    PubMed

    Takizawa, Naoki; Okubo, Naoto; Kamo, Masaharu; Chosa, Naoyuki; Mikami, Toshinari; Suzuki, Keita; Yokota, Seiji; Ibi, Miho; Ohtsuka, Masato; Taira, Masayuki; Yaegashi, Takashi; Ishisaki, Akira; Kyakumoto, Seiko

    2017-09-15

    Immunosuppressive/anti-inflammatory macrophage (Mφ), M2-Mφ that expressed the typical M2-Mφs marker, CD206, and anti-inflammatory cytokine, interleukin (IL)-10, is beneficial and expected tool for the cytotherapy against inflammatory diseases. Here, we demonstrated that bone marrow-derived lineage-positive (Lin+) blood cells proliferated and differentiated into M2-Mφs by cooperation with the bone marrow-derived mesenchymal stem cells (MSCs) under hypoxic condition: MSCs not only promoted proliferation of undifferentiated M2-Mφs, pre-M2-Mφs, in the Lin+ fraction via a proliferative effect of the MSCs-secreted macrophage colony-stimulating factor, but also promoted M2-Mφ polarization of the pre-M2-Mφs through cell-to-cell contact with the pre-M2-Mφs. Intriguingly, an inhibitor for intercellular adhesion molecule (ICAM)-1 receptor/lymphocyte function-associated antigen (LFA)-1, Rwj50271, partially suppressed expression of CD206 in the Lin+ blood cells but an inhibitor for VCAM-1 receptor/VLA-4, BIO5192, did not, suggesting that the cell-to-cell adhesion through LFA-1 on pre-M2-Mφs and ICAM-1 on MSCs was supposed to promoted the M2-Mφ polarization. Thus, the co-culture system consisting of bone marrow-derived Lin+ blood cells and MSCs under hypoxic condition was a beneficial supplier of a number of M2-Mφs, which could be clinically applicable to inflammatory diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Development of a rapid culture method to induce adipocyte differentiation of human bone marrow-derived mesenchymal stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ninomiya, Yuichi; Sugahara-Yamashita, Yzumi; Nakachi, Yutaka

    2010-04-02

    Human mesenchymal stem cells (hMSCs) derived from bone marrow are multipotent stem cells that can regenerate mesenchymal tissues such as adipose, bone or muscle. It is thought that hMSCs can be utilized as a cell resource for tissue engineering and as human models to study cell differentiation mechanisms, such as adipogenesis, osteoblastogenesis and so on. Since it takes 2-3 weeks for hMSCs to differentiate into adipocytes using conventional culture methods, the development of methods to induce faster differentiation into adipocytes is required. In this study we optimized the culture conditions for adipocyte induction to achieve a shorter cultivation time formore » the induction of adipocyte differentiation in bone marrow-derived hMSCs. Briefly, we used a cocktail of dexamethasone, insulin, methylisobutylxanthine (DIM) plus a peroxisome proliferator-activated receptor {gamma} agonist, rosiglitazone (DIMRo) as a new adipogenic differentiation medium. We successfully shortened the period of cultivation to 7-8 days from 2-3 weeks. We also found that rosiglitazone alone was unable to induce adipocyte differentiation from hMSCs in vitro. However, rosiglitazone appears to enhance hMSC adipogenesis in the presence of other hormones and/or compounds, such as DIM. Furthermore, the inhibitory activity of TGF-{beta}1 on adipogenesis could be investigated using DIMRo-treated hMSCs. We conclude that our rapid new culture method is very useful in measuring the effect of molecules that affect adipogenesis in hMSCs.« less

  16. Allogeneic Mesenchymal Stem Cells in Combination with Hyaluronic Acid for the Treatment of Osteoarthritis in Rabbits.

    PubMed

    Chiang, En-Rung; Ma, Hsiao-Li; Wang, Jung-Pan; Liu, Chien-Lin; Chen, Tain-Hsiung; Hung, Shih-Chieh

    2016-01-01

    Mesenchymal stem cell (MSC)-based therapies may aid in the repair of articular cartilage defects. The purpose of this study was to investigate the effects of intraarticular injection of allogeneic MSCs in an in vivo anterior cruciate ligament transection (ACLT) model of osteoarthritis in rabbits. Allogeneic bone marrow-derived MSCs were isolated and cultured under hypoxia (1% O2). After 8 weeks following ACLT, MSCs suspended in hyaluronic acid (HA) were injected into the knees, and the contralateral knees were injected with HA alone. Additional controls consisted of a sham operation group as well as an untreated osteoarthritis group. The tissues were analyzed by macroscopic examination as well as histologic and immunohistochemical methods at 6 and 12 weeks post-transplantation. At 6 and 12 weeks, the joint surface showed less cartilage loss and surface abrasion after MSC injection as compared to the tissues receiving HA injection alone. Significantly better histological scores and cartilage content were observed with the MSC transplantation. Furthermore, engraftment of allogenic MSCs were evident in surface cartilage. Thus, injection of the allogeneic MSCs reduced the progression of osteoarthritis in vivo.

  17. Chagas disease in bone marrow transplantation: an approach to preemptive therapy.

    PubMed

    Altclas, J; Sinagra, A; Dictar, M; Luna, C; Verón, M T; De Rissio, A M; García, M M; Salgueira, C; Riarte, A

    2005-07-01

    The efficacy of preemptive therapy was evaluated in bone marrow transplantation (BMT) recipients associated with Chagas disease (CD). The criterion to include patients in the protocol was the serological reactivity for CD in recipients and/or donors before transplant. After BMT, the monitoring was performed using the direct Strout method (SM), which detects clinical levels of Trypanosome cruzi parasitemia, and CD conventional serological tests. Monitoring took place during 60 days in ABMT and throughout the immunosuppressive period in allogeneic BMT. Reactivation of CD was diagnosed by detecting T. cruzi parasites in blood or tissues. In primary T. cruzi infection, an additional diagnostic criterion was the serological conversion. A total of 25 CD-BMT patients were included. Two ABMT and four allogeneic BMT recipients showed CD recurrences diagnosed by SM. One patient also showed skin lesions with T. cruzi amastigotes. Benznidazole treatment (Roche Lab), an antiparasitic drug, was prescribed at a dose of 5 mg/kg/day during 4-8 weeks with recovery of patients. Primary T. cruzi infection was not observed. This report proves the relevance of monitoring CD in BMT patients and demonstrates that preemptive therapy was able to abrogate the development of clinical and systemic disease.

  18. Bone marrow-derived monocyte infusion improves hepatic fibrosis by decreasing osteopontin, TGF-β1, IL-13 and oxidative stress.

    PubMed

    de Souza, Veruska Cintia Alexandrino; Pereira, Thiago Almeida; Teixeira, Valéria Wanderley; Carvalho, Helotonio; de Castro, Maria Carolina Accioly Brelaz; D'assunção, Carolline Guimarães; de Barros, Andréia Ferreira; Carvalho, Camila Lima; de Lorena, Virgínia Maria Barros; Costa, Vláudia Maria Assis; Teixeira, Álvaro Aguiar Coelho; Figueiredo, Regina Celia Bressan Queiroz; de Oliveira, Sheilla Andrade

    2017-07-28

    To evaluate the therapeutic effects of bone marrow-derived CD11b + CD14 + monocytes in a murine model of chronic liver damage. Chronic liver damage was induced in C57BL/6 mice by administration of carbon tetrachloride and ethanol for 6 mo. Bone marrow-derived monocytes isolated by immunomagnetic separation were used for therapy. The cell transplantation effects were evaluated by morphometry, biochemical assessment, immunohistochemistry and enzyme-linked immunosorbent assay. CD11b + CD14 + monocyte therapy significantly reduced liver fibrosis and increased hepatic glutathione levels. Levels of pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin (IL)-6 and IL-1β, in addition to pro-fibrotic factors, such as IL-13, transforming growth factor-β1 and tissue inhibitor of metalloproteinase-1 also decreased, while IL-10 and matrix metalloproteinase-9 increased in the monocyte-treated group. CD11b + CD14 + monocyte transplantation caused significant changes in the hepatic expression of α-smooth muscle actin and osteopontin. Monocyte therapy is capable of bringing about improvement of liver fibrosis by reducing oxidative stress and inflammation, as well as increasing anti-fibrogenic factors.

  19. The emerging role of bone marrow adipose tissue in bone health and dysfunction.

    PubMed

    Ambrosi, Thomas H; Schulz, Tim J

    2017-12-01

    Replacement of red hematopoietic bone marrow with yellow adipocyte-rich marrow is a conserved physiological process among mammals. The extent of this conversion is influenced by a wide array of pathological and non-pathological conditions. Of particular interest is the observation that some marrow adipocyte-inducing factors seem to oppose each other, for instance obesity and caloric restriction. Intriguingly, several important molecular characteristics of bone marrow adipose tissue (BMAT) are distinct from the classical depots of white and brown fat tissue. This depot of fat has recently emerged as an active part of the bone marrow niche that exerts paracrine and endocrine functions thereby controlling osteogenesis and hematopoiesis. While some functions of BMAT may be beneficial for metabolic adaptation and bone homeostasis, respectively, most findings assign bone fat a detrimental role during regenerative processes, such as hematopoiesis and osteogenesis. Thus, an improved understanding of the biological mechanisms leading to formation of BMAT, its molecular characteristics, and its physiological role in the bone marrow niche is warranted. Here we review the current understanding of BMAT biology and its potential implications for health and the development of pathological conditions.

  20. Contribution of different bone marrow-derived cell types in endometrial regeneration using an irradiated murine model.

    PubMed

    Gil-Sanchis, Claudia; Cervelló, Irene; Khurana, Satish; Faus, Amparo; Verfaillie, Catherine; Simón, Carlos

    2015-06-01

    To study the involvement of seven types of bone marrow-derived cells (BMDCs) in the endometrial regeneration in mice after total body irradiation. Prospective experimental animal study. University research laboratories. β-Actin-green fluorescent protein (GFP) transgenic C57BL/6-Tg (CAG-EGFP) and C57BL/6J female mice. The BMDCs were isolated from CAG-EGFP mice: unfractionated bone marrow cells, hematopoietic progenitor cells, endothelial progenitor cells (EPCs), and mesenchymal stem cells (MSCs). In addition three murine GFP(+) cell lines were used: mouse Oct4 negative BMDC multipotent adult progenitor cells (mOct4(-)BM-MAPCs), BMDC hypoblast-like stem cells (mOct4(+) BM-HypoSCs), and MSCs. All cell types were injected through the tail vein of 9 Gy-irradiated C57BL/6J female mice. Flow cytometry, cell culture, bone marrow transplantation assays, histologic evaluation, immunohistochemistry, proliferation, apoptosis, and statistical analysis. After 12 weeks, histologic analysis revealed that uteri of mice with mOct4(-)BM-MAPCs and MSC line were significantly smaller than uteri of mice with uncultured BMDCs or mOct4(+) BM-HypoSCs. The percentage of engrafted GFP(+) cells ranged from 0.13%-4.78%. Expression of Ki-67 was lower in all uteri from BMDCs treated mice than in the control, whereas TUNEL(+) cells were increased in the EPCs and mOct4(+)BM-HypoSCs groups. Low number of some BMDCs can be found in regenerating endometrium, including stromal, endotelial, and epithelial compartments. Freshly isolated MSCs and EPCs together with mOct4(+) BM-HypoSCs induced the greatest degree of regeneration, whereas culture isolated MSCs and mOct4(-)BM-MAPCs transplantation may have an inhibitory effect on endometrial regeneration. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  1. Avascular necrosis of bone after allogeneic hematopoietic cell transplantation in children and adolescents.

    PubMed

    Li, Xiaxin; Brazauskas, Ruta; Wang, Zhiwei; Al-Seraihy, Amal; Baker, K Scott; Cahn, Jean-Yves; Frangoul, Haydar A; Gajewski, James L; Hale, Gregory A; Hsu, Jack W; Kamble, Rammurti T; Lazarus, Hillard M; Marks, David I; Maziarz, Richard T; Savani, Bipin N; Shah, Ami J; Shah, Nirali; Sorror, Mohamed L; Wood, William A; Majhail, Navneet S

    2014-04-01

    We conducted a nested case-control study within a cohort of 6244 patients to assess risk factors for avascular necrosis (AVN) of bone in children and adolescents after allogeneic transplantation. Eligible patients were ≤21 years of age, received their first allogeneic transplant between 1990 and 2008 in the United States, and had survived ≥ 6 months from transplantation. Overall, 160 patients with AVN and 478 control subjects matched by year of transplant, length of follow-up and transplant center were identified. Patients and control subjects were confirmed via central review of radiology, pathology, and/or surgical procedure reports. Median time from transplant to diagnosis of AVN was 14 months. On conditional logistic regression, increasing age at transplant (≥5 years), female gender, and chronic graft-versus-host disease (GVHD) were significantly associated with increased risks of AVN. Compared with patients receiving myeloablative regimens for malignant diseases, lower risks of AVN were seen in patients with nonmalignant diseases and those who had received reduced-intensity conditioning regimens for malignant diseases. Children at high risk for AVN include those within the age group where rapid bone growth occurs as well as those who experience exposure to myeloablative conditioning regimens and immunosuppression after hematopoietic cell transplantation for the treatment of GVHD. More research is needed to determine whether screening strategies specifically for patients at high risk for developing AVN with early interventions may mitigate the morbidity associated with this complication. Copyright © 2014 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  2. Demonstration of early functional compromise of bone marrow derived hematopoietic progenitor cells during bovine neonatal pancytopenia through in vitro culture of bone marrow biopsies.

    PubMed

    Laming, Eleanor; Melzi, Eleonora; Scholes, Sandra F E; Connelly, Maira; Bell, Charlotte R; Ballingall, Keith T; Dagleish, Mark P; Rocchi, Mara S; Willoughby, Kim

    2012-10-30

    Bovine neonatal pancytopenia (BNP) is a syndrome characterised by thrombocytopenia associated with marked bone marrow destruction in calves, widely reported since 2007 in several European countries and since 2011 in New Zealand. The disease is epidemiologically associated with the use of an inactivated bovine virus diarrhoea (BVD) vaccine and is currently considered to be caused by absorption of colostral antibody produced by some vaccinated cows ("BNP dams"). Alloantibodies capable of binding to the leukocyte surface have been detected in BNP dams and antibodies recognising bovine MHC class I and β-2-microglobulin have been detected in vaccinated cattle. In this study, calves were challenged with pooled colostrum collected from BNP dams or from non-BNP dams and their bone marrow hematopoietic progenitor cells (HPC) cultured in vitro from sternal biopsies taken at 24 hours and 6 days post-challenge. Clonogenic assay demonstrated that CFU-GEMM (colony forming unit-granulocyte/erythroid/macrophage/megakaryocyte; pluripotential progenitor cell) colony development was compromised from HPCs harvested as early as 24 hour post-challenge. By 6 days post challenge, HPCs harvested from challenged calves failed to develop CFU-E (erythroid) colonies and the development of both CFU-GEMM and CFU-GM (granulocyte/macrophage) was markedly reduced. This study suggests that the bone marrow pathology and clinical signs associated with BNP are related to an insult which compromises the pluripotential progenitor cell within the first 24 hours of life but that this does not initially include all cell types.

  3. Comparison of Immunological Characteristics of Mesenchymal Stem Cells Derived from Human Embryonic Stem Cells and Bone Marrow

    PubMed Central

    Fu, Xin; Chen, Yao; Xie, Fang-Nan; Dong, Ping; Liu, Wen-bo; Cao, Yilin

    2015-01-01

    Mesenchymal stem cell (MSC) has great potential for both regenerative medicine and immunotherapy due to its multipotency and immunomodulatory property. The derivation of MSCs from human tissues involves an invasive procedure and the obtained MSCs often suffer from inconsistent quality. To overcome these issues, the approaches of deriving a highly potent and replenishable population of MSCs from human embryonic stem cells (hESCs) were established. However, few studies compared the immunological characteristics of MSCs derived from hESCs with tissue-derived MSCs or demonstrated differences and the underlying mechanisms. Here, we differentiated H9 hESCs into MSC-like cells (H9-MSCs) through an embryoid body outgrowth method and compared the immunological characteristics of H9-MSCs with bone marrow-derived MSCs (BMSCs). Both sources of derived cells exhibited typical MSC morphologies and surface marker expressions, as well as multipotency to differentiate into osteogenic and adipogenic lineages. A immunological characterization study showed that H9-MSCs and BMSCs had similar immunoprivileged properties without triggering allogeneic lymphocyte proliferation as well as equivalent immunosuppressive effects on T-cell proliferation induced by either cellular or mitogenic stimuli. Flow cytometry analysis revealed a lower expression of human major histocompatability complex class II molecule human lymphocyte antigen (HLA)-DR and a higher expression of coinhibitory molecule B7-H1 in H9-MSCs than in BMSCs. Interferon gamma (IFN-γ) is a proinflammatory cytokine that can induce the expression of HLA class II molecules in many cell types. Our results showed that pretreatment of H9-MSCs and BMSCs with IFN-γ did not change their immunogenicity and immunosuppressive abilities, but increased the difference between H9-MSCs and BMSCs for their expression of HLA-DR. Further detection of expression of molecules involved in IFN-γ signaling pathways suggested that the lower expression of

  4. Donor-derived myelodysplastic syndrome and acute leukaemia after allogeneic haematopoietic stem cell transplantation: incidence, natural history and treatment response.

    PubMed

    Dietz, Andrew C; DeFor, Todd E; Brunstein, Claudio G; Wagner, John E

    2014-07-01

    Donor-derived myelodysplastic syndrome/acute leukaemia (DD-MDS/AL) is a rare life-threatening complication of allogeneic haematopoietic stem cell (HSC) transplantation. However, it is unknown whether the risk differs by HSC source. Therefore, we evaluated the incidence of DD-MDS/AL in 2390 engrafted patients. With a median follow-up of 7·1 years (1-20·8), the incidence of DD-MDS/AL was 0·53% (95% confidence interval (CI), 0·01-1·41%], 0·56% (95%CI, 0·01-1·36%) and 0·56% (95%CI, 0·01-1·10%) in recipients of bone marrow (n = 1117), peripheral blood (n = 489) and umbilical cord blood (UCB, n = 784), respectively. While follow-up is shorter in recipients of UCB and peripheral blood, incidence of DD-MDS/AL is, thus far, similar between HSC sources. © 2014 John Wiley & Sons Ltd.

  5. Genetic response and morphologic characterization of chicken bone-marrow derived dendritic cells during infection with high and low pathogenic avian influenza viruses

    USDA-ARS?s Scientific Manuscript database

    Dendritic cells (DC) are professional antigen-presenting cells of the immune system that function to initiate primary immune responses. Progenitors of DCs are derived from haematopoietic stem cells in the bone marrow (BM) that migrate in non-lymphoid tissues to develop into immature DCs. Here, they ...

  6. Pressure and shear stress in trabecular bone marrow during whole bone loading.

    PubMed

    Metzger, Thomas A; Schwaner, Stephen A; LaNeve, Anthony J; Kreipke, Tyler C; Niebur, Glen L

    2015-09-18

    Skeletal adaptation to mechanical loading is controlled by mechanobiological signaling. Osteocytes are highly responsive to applied strains, and are the key mechanosensory cells in bone. However, many cells residing in the marrow also respond to mechanical cues such as hydrostatic pressure and shear stress, and hence could play a role in skeletal adaptation. Trabecular bone encapsulates marrow, forming a poroelastic solid. According to the mechanical theory, deformation of the pores induces motion in the fluid-like marrow, resulting in pressure and velocity gradients. The latter results in shear stress acting between the components of the marrow. To characterize the mechanical environment of trabecular bone marrow in situ, pore pressure within the trabecular compartment of whole porcine femurs was measured with miniature pressure transducers during stress-relaxation and cyclic loading. Pressure gradients ranging from 0.013 to 0.46 kPa/mm were measured during loading. This range was consistent with calculated pressure gradients from continuum scale poroelastic models with the same permeability. Micro-scale computational fluid dynamics models created from computed tomography images were used to calculate the micromechanical stress in the marrow using the measured pressure differentials as boundary conditions. The volume averaged shear stress in the marrow ranged from 1.67 to 24.55 Pa during cyclic loading, which exceeds the mechanostimulatory threshold for mesenchymal lineage cells. Thus, the loading of bone through activities of daily living may be an essential component of bone marrow health and mechanobiology. Additional studies of cell-level interactions during loading in healthy and disease conditions will provide further incite into marrow mechanobiology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Present status of bone marrow transplantation in Japan.

    PubMed

    Masaoka, T; Shibata, H; Nakamura, H; Inoue, T

    1985-06-01

    One hundred and seventy three bone marrow transplantations (BMT) including 133 allogeneic, 17 syngeneic and 23 autologous BMT were recorded in Japan during the period between September, 1975 and March, 1984. The number of cases of BMT increased rapidly over the years, i.e., 16 cases in 1980, 27 in 1981, 39 in 1982 and 57 in 1983. All cases were treated in clean rooms, many of them receiving intensive gut decontamination containing vancomycin. In 110 cases with acute leukemia, the main causes of death were interstitial pneumonitis, relapse of leukemia, infection and GvHD. Favorable factors determined from 180-day survival were remission, no infection, low dose rate and fractionated total body irradiation (TBI), ABO minor mismatch and positive graft versus host reaction. Long-term survival of patients who received BMT during remission and were without infection amounted to 70% of acute lymphocytic leukemia (ALL) and 40% of acute myelogenous leukemia (AML) patients. Cyclosporin A (Cy-A) administered in 21 cases was compared with methotrexate (MTX) given in 20 cases. A statistically significant decrease of stomatitis was observed, while no difference in GvHD or survival was seen. There were seven cases giving a more than good response out of 11 cases treated with cyclosporin because methotrexate or immuran was ineffective or could not be administered due to toxicity. Such data suggest that allogeneic BMT is acceptable as a very promising form of treatment for acute leukemia in Japan.

  8. Successful bone marrow transplantation in a boy with X-linked lymphoproliferative syndrome and acute severe infectious mononucleosis.

    PubMed

    Pracher, E; Panzer-Grümayer, E R; Zoubek, A; Peters, C; Gadner, H

    1994-05-01

    We report a 5.9-year-old boy with X-linked lymphoproliferative syndrome (XLP) who presented with acute severe infectious mononucleosis. Clinical symptoms rapidly improved after chemotherapy with etoposide. Allogeneic bone marrow transplantation (BMT) was performed after conditioning with etoposide, busulfan and cyclophosphamide. After successful hematopoietic recovery we were able to demonstrate seroconversion from an impaired antibody response to Epstein-Barr virus (EBV) to a normal antibody-producing state in an immunocompetent child. The only post-transplant complication was mild acute graft-versus-host disease (GVHD). Three years after BMT, the boy is healthy and shows no signs of immunodeficiency. This is the first report on successful allogeneic BMT in the severe course of acute infectious mononucleosis in a patient with XLP. We speculate that the application of etoposide contributed to the positive outcome in this patient.

  9. [Bone marrow stromal damage mediated by immune response activity].

    PubMed

    Vojinović, J; Kamenov, B; Najman, S; Branković, Lj; Dimitrijević, H

    1994-01-01

    The aim of this work was to estimate influence of activated immune response on hematopoiesis in vitro, using the experimental model of BCG immunized BALB/c mice and in patients with chronic immunoactivation: long-lasting infections, autoimmunity or malignancy. We correlated changes in long term bone marrow cultures (Dexter) and NBT reduction with appearance of anemia in patients and experimental model of immunization by BCG. Increased spontaneous NBT reduction pointed out role of macrophage activation in bone marrow stroma damage. Long-term bone marrow cultures showed reduced number of hematopoietic cells, with predomination of fibroblasts and loss of fat cells. This results correlated with anemia and leucocytosis with stimulated myelopoiesis in peripheral blood. Activation of immune response, or acting of any agent that directly changes extracellular matrix and cellularity of bone marrow, may result in microenviroment bone marrow damage that modify hematopoiesis.

  10. Bone Marrow Regeneration Promoted by Biophysically Sorted Osteoprogenitors From Mesenchymal Stromal Cells

    PubMed Central

    Poon, Zhiyong; Lee, Wong Cheng; Guan, Guofeng; Nyan, Lin Myint; Lim, Chwee Teck; Han, Jongyoon

    2015-01-01

    Human tissue repair deficiencies can be supplemented through strategies to isolate, expand in vitro, and reimplant regenerative cells that supplant damaged cells or stimulate endogenous repair mechanisms. Bone marrow-derived mesenchymal stromal cells (MSCs), a subset of which is described as mesenchymal stem cells, are leading candidates for cell-mediated bone repair and wound healing, with hundreds of ongoing clinical trials worldwide. An outstanding key challenge for successful clinical translation of MSCs is the capacity to produce large quantities of cells in vitro with uniform and relevant therapeutic properties. By leveraging biophysical traits of MSC subpopulations and label-free microfluidic cell sorting, we hypothesized and experimentally verified that MSCs of large diameter within expanded MSC cultures were osteoprogenitors that exhibited significantly greater efficacy over other MSC subpopulations in bone marrow repair. Systemic administration of osteoprogenitor MSCs significantly improved survival rates (>80%) as compared with other MSC subpopulations (0%) for preclinical murine bone marrow injury models. Osteoprogenitor MSCs also exerted potent therapeutic effects as “cell factories” that secreted high levels of regenerative factors such as interleukin-6 (IL-6), interleukin-8 (IL-8), vascular endothelial growth factor A, bone morphogenetic protein 2, epidermal growth factor, fibroblast growth factor 1, and angiopoietin-1; this resulted in increased cell proliferation, vessel formation, and reduced apoptosis in bone marrow. This MSC subpopulation mediated rescue of damaged marrow tissue via restoration of the hematopoiesis-supporting stroma, as well as subsequent hematopoiesis. Together, the capabilities described herein for label-freeisolation of regenerative osteoprogenitor MSCs can markedly improve the efficacy of MSC-based therapies. PMID:25411477

  11. An abnormal bone marrow microenvironment contributes to hematopoietic dysfunction in Fanconi anemia.

    PubMed

    Zhou, Yuan; He, Yongzheng; Xing, Wen; Zhang, Peng; Shi, Hui; Chen, Shi; Shi, Jun; Bai, Jie; Rhodes, Steven D; Zhang, Fengqui; Yuan, Jin; Yang, Xianlin; Zhu, Xiaofan; Li, Yan; Hanenberg, Helmut; Xu, Mingjiang; Robertson, Kent A; Yuan, Weiping; Nalepa, Grzegorz; Cheng, Tao; Clapp, D Wade; Yang, Feng-Chun

    2017-06-01

    Fanconi anemia is a complex heterogeneous genetic disorder with a high incidence of bone marrow failure, clonal evolution to acute myeloid leukemia and mesenchymal-derived congenital anomalies. Increasing evidence in Fanconi anemia and other genetic disorders points towards an interdependence of skeletal and hematopoietic development, yet the impact of the marrow microenvironment in the pathogenesis of the bone marrow failure in Fanconi anemia remains unclear. Here we demonstrated that mice with double knockout of both Fancc and Fancg genes had decreased bone formation at least partially due to impaired osteoblast differentiation from mesenchymal stem/progenitor cells. Mesenchymal stem/progenitor cells from the double knockout mice showed impaired hematopoietic supportive activity. Mesenchymal stem/progenitor cells of patients with Fanconi anemia exhibited similar cellular deficits, including increased senescence, reduced proliferation, impaired osteoblast differentiation and defective hematopoietic stem/progenitor cell supportive activity. Collectively, these studies provide unique insights into the physiological significance of mesenchymal stem/progenitor cells in supporting the marrow microenvironment, which is potentially of broad relevance in hematopoietic stem cell transplantation. Copyright© Ferrata Storti Foundation.

  12. An abnormal bone marrow microenvironment contributes to hematopoietic dysfunction in Fanconi anemia

    PubMed Central

    Zhou, Yuan; He, Yongzheng; Xing, Wen; Zhang, Peng; Shi, Hui; Chen, Shi; Shi, Jun; Bai, Jie; Rhodes, Steven D.; Zhang, Fengqui; Yuan, Jin; Yang, Xianlin; Zhu, Xiaofan; Li, Yan; Hanenberg, Helmut; Xu, Mingjiang; Robertson, Kent A.; Yuan, Weiping; Nalepa, Grzegorz; Cheng, Tao; Clapp, D. Wade; Yang, Feng-Chun

    2017-01-01

    Fanconi anemia is a complex heterogeneous genetic disorder with a high incidence of bone marrow failure, clonal evolution to acute myeloid leukemia and mesenchymal-derived congenital anomalies. Increasing evidence in Fanconi anemia and other genetic disorders points towards an interdependence of skeletal and hematopoietic development, yet the impact of the marrow microenvironment in the pathogenesis of the bone marrow failure in Fanconi anemia remains unclear. Here we demonstrated that mice with double knockout of both Fancc and Fancg genes had decreased bone formation at least partially due to impaired osteoblast differentiation from mesenchymal stem/progenitor cells. Mesenchymal stem/progenitor cells from the double knockout mice showed impaired hematopoietic supportive activity. Mesenchymal stem/progenitor cells of patients with Fanconi anemia exhibited similar cellular deficits, including increased senescence, reduced proliferation, impaired osteoblast differentiation and defective hematopoietic stem/progenitor cell supportive activity. Collectively, these studies provide unique insights into the physiological significance of mesenchymal stem/progenitor cells in supporting the marrow microenvironment, which is potentially of broad relevance in hematopoietic stem cell transplantation. PMID:28341737

  13. Bone marrow-resident NK cells prime monocytes for regulatory function during infection

    PubMed Central

    Askenase, Michael H.; Han, Seong-Ji; Byrd, Allyson L.; da Fonseca, Denise Morais; Bouladoux, Nicolas; Wilhelm, Christoph; Konkel, Joanne E.; Hand, Timothy W.; Lacerda-Queiroz, Norinne; Su, Xin-Zhuan; Trinchieri, Giorgio; Grainger, John R.; Belkaid, Yasmine

    2015-01-01

    SUMMARY Tissue-infiltrating Ly6Chi monocytes play diverse roles in immunity, ranging from pathogen killing to immune regulation. How and where this diversity of function is imposed remains poorly understood. Here we show that during acute gastrointestinal infection, priming of monocytes for regulatory function preceded systemic inflammation and was initiated prior to bone marrow egress. Notably, natural killer (NK) cell-derived IFN-γ promoted a regulatory program in monocyte progenitors during development. Early bone marrow NK cell activation was controlled by systemic interleukin-12 (IL-12) produced by Batf3-dependent dendritic cells (DC) in the mucosal-associated lymphoid tissue (MALT). This work challenges the paradigm that monocyte function is dominantly imposed by local signals following tissue recruitment, and instead proposes a sequential model of differentiation in which monocytes are pre-emptively educated during development in the bone marrow to promote their tissue-specific function. PMID:26070484

  14. Comparative Efficacy of Intracoronary Allogeneic Mesenchymal Stem Cells and Cardiosphere-Derived Cells in Swine with Hibernating Myocardium

    PubMed Central

    Weil, Brian R.; Suzuki, Gen; Leiker, Merced M.; Fallavollita, James A.; Canty, John M.

    2015-01-01

    Rationale Allogeneic bone marrow-derived mesenchymal stem cells (MSCs) and cardiosphere-derived cells (CDCs) have each entered clinical trials but a direct comparison of these cell types has not been performed in a large animal model of hibernating myocardium. Objective Using completely blinded methodology, compare the efficacy of global intracoronary allogeneic MSCs (icMSCs, ~35×106) and CDCs (icCDCs, ~35×106) vs. vehicle in cyclosporine-immunosuppressed swine with a chronic LAD stenosis (n=26). Methods and Results Studies began 3-months after instrumentation when wall-thickening (%WT) was reduced (LAD%WT 38±11% (mean ± SD) vs. 83±26% in remote, p<0.01) and similar among groups. Four-weeks after treatment, LAD%WT increased similarly following icCDCs and icMSCs, while it remained depressed in vehicle-treated controls (icMSCs: 51±13%; icCDCs: 51±17%; vehicle: 34±3%, treatments p<0.05 vs. vehicle). There was no change in myocardial perfusion. Both icMSCs and icCDCs increased LAD myocyte nuclear density (icMSCs: 1601±279 nuclei/mm2, icCDCs: 1569±294 nuclei/mm2, vehicle: 973±181 nuclei/mm2, treatments p<0.05 vs. vehicle) and reduced myocyte diameter (icMSCs: 16.4±1.5 μm, icCDCs: 16.8±1.2 μm, vehicle: 20.2±3.7 μm, treatments p<0.05 vs. vehicle) to the same extent. Similar changes in myocyte nuclear density and diameter were observed in the remote region of cell-treated animals. Cell fate analysis using Y-FISH demonstrated rare cells from sex-mismatched donors. Conclusions Allogeneic icMSCs and icCDCs exhibit comparable therapeutic efficacy in a large animal model of hibernating myocardium. Both cell types produced equivalent increases in regional function and stimulated myocyte regeneration in ischemic and remote myocardium. The activation of endogenous myocyte proliferation and regression of myocyte cellular hypertrophy support a common mechanism of cardiac repair. PMID:26271689

  15. Turnover of bone marrow-derived cells in the irradiated mouse cornea

    PubMed Central

    Chinnery, Holly R; Humphries, Timothy; Clare, Adam; Dixon, Ariane E; Howes, Kristen; Moran, Caitlin B; Scott, Danielle; Zakrzewski, Marianna; Pearlman, Eric; McMenamin, Paul G

    2008-01-01

    In light of an increasing awareness of the presence of bone marrow (BM)-derived macrophages in the normal cornea and their uncertain role in corneal diseases, it is important that the turnover rate of these resident immune cells be established. The baseline density and distribution of macrophages in the corneal stroma was investigated in Cx3cr1gfp transgenic mice in which all monocyte-derived cells express enhanced green fluorescent protein (eGFP). To quantify turnover, BM-derived cells from transgenic eGFP mice were transplanted into whole-body irradiated wild-type recipients. Additionally, wild-type BM-derived cells were injected into irradiated Cx3cr1+/gfp recipients, creating reverse chimeras. At 2, 4 and 8 weeks post-reconstitution, the number of eGFP+ cells in each corneal whole mount was calculated using epifluorescence microscopy, immunofluorescence staining and confocal microscopy. The total density of myeloid-derived cells in the normal Cx3cr1+/gfp cornea was 366 cells/mm2. In BM chimeras 2 weeks post-reconstitution, 24% of the myeloid-derived cells had been replenished and were predominantly located in the anterior stroma. By 8 weeks post-reconstitution 75% of the myeloid-derived cells had been replaced and these cells were distributed uniformly throughout the stroma. All donor eGFP+ cells expressed low to moderate levels of CD45 and CD11b, with approximately 25% coexpressing major histocompatibility complex class II, a phenotype characteristic of previous descriptions of corneal stromal macrophages. In conclusion, 75% of the myeloid-derived cells in the mouse corneal stroma are replenished after 8 weeks. These data provide a strong basis for functional investigations of the role of resident stromal macrophages versus non-haematopoietic cells using BM chimeric mice in models of corneal inflammation. PMID:18540963

  16. Percutaneous osteoplasty with a bone marrow nail for fractures of long bones: experimental study.

    PubMed

    Nakata, Kouhei; Kawai, Nobuyuki; Sato, Morio; Cao, Guang; Sahara, Shinya; Tanihata, Hirohiko; Takasaka, Isao; Minamiguchi, Hiroyuki; Nakai, Tomoki

    2010-09-01

    To develop percutaneous osteoplasty with the use of a bone marrow nail for fixation of long-bone fractures, and to evaluate its feasibility and safety in vivo and in vitro. Six long bones in three healthy swine were used in the in vivo study. Acrylic cement was injected through an 11-gauge bone biopsy needle and a catheter into a covered metallic stent placed within the long bone, creating a bone marrow nail. In the in vitro study, we determined the bending, tug, and compression strengths of the acrylic cement nails 9 cm long and 8 mm in diameter (N = 10). The bending strength of the artificially fractured bones (N = 6) restored with the bone marrow nail and cement augmentation was then compared with that of normal long bones (N = 6). Percutaneous osteoplasty with a bone marrow nail was successfully achieved within 1 hour for all swine. After osteoplasty, all swine regained the ability to run until they were euthanized. Blood tests and pathologic findings showed no adverse effects. The mean bending, tug, and compression strengths of the nail were 91.4 N/mm(2) (range, 75.0-114.1 N/mm(2)), 20.9 N/mm(2) (range, 6.6-30.4 N/mm(2)), and 103.0 N/mm(2) (range, 96.3-110.0 N/mm(2)), respectively. The bending strength ratio of artificially fractured bones restored with bone marrow nail and cement augmentation to normal long bone was 0.32. Percutaneous osteoplasty with use of a bone marrow nail and cement augmentation appears to have potential in treating fractures of non-weight-bearing long bones. Copyright 2010 SIR. Published by Elsevier Inc. All rights reserved.

  17. Bone marrow concentrate promotes bone regeneration with a suboptimal-dose of rhBMP-2.

    PubMed

    Egashira, Kazuhiro; Sumita, Yoshinori; Zhong, Weijian; I, Takashi; Ohba, Seigo; Nagai, Kazuhiro; Asahina, Izumi

    2018-01-01

    Bone marrow concentrate (BMC), which is enriched in mononuclear cells (MNCs) and platelets, has recently attracted the attention of clinicians as a new optional means for bone engineering. We previously reported that the osteoinductive effect of bone morphogenetic protein-2 (BMP-2) could be enhanced synergistically by co-transplantation of peripheral blood (PB)-derived platelet-rich plasma (PRP). This study aims to investigate whether BMC can effectively promote bone formation induced by low-dose BMP-2, thereby reducing the undesirable side-effects of BMP-2, compared to PRP. Human BMC was obtained from bone marrow aspirates using an automated blood separator. The BMC was then seeded onto β-TCP granules pre-adsorbed with a suboptimal-dose (minimum concentration to induce bone formation at 2 weeks in mice) of recombinant human (rh) BMP-2. These specimens were transplanted subcutaneously to the dorsal skin of immunodeficient-mice and the induction of ectopic bone formation was assessed 2 and 4 weeks post-transplantation. Transplantations of five other groups [PB, PRP, platelet-poor plasma (PPP), bone marrow aspirate (BM), and BM-PPP] were employed as experimental controls. Then, to clarify the effects on vertical bone augmentation, specimens from the six groups were transplanted for on-lay placement on the craniums of mice. The results indicated that BMC, which contained an approximately 2.5-fold increase in the number of MNCs compared to PRP, could accelerate ectopic bone formation until 2 weeks post-transplantation. On the cranium, the BMC group promoted bone augmentation with a suboptimal-dose of rhBMP-2 compared to other groups. Particularly in the BMC specimens harvested at 4 weeks, we observed newly formed bone surrounding the TCP granules at sites far from the calvarial bone. In conclusion, the addition of BMC could reduce the amount of rhBMP-2 by one-half via its synergistic effect on early-phase osteoinduction. We propose here that BMC transplantation

  18. Bone marrow concentrate promotes bone regeneration with a suboptimal-dose of rhBMP-2

    PubMed Central

    Egashira, Kazuhiro; Zhong, Weijian; I, Takashi; Ohba, Seigo; Nagai, Kazuhiro; Asahina, Izumi

    2018-01-01

    Bone marrow concentrate (BMC), which is enriched in mononuclear cells (MNCs) and platelets, has recently attracted the attention of clinicians as a new optional means for bone engineering. We previously reported that the osteoinductive effect of bone morphogenetic protein-2 (BMP-2) could be enhanced synergistically by co-transplantation of peripheral blood (PB)-derived platelet-rich plasma (PRP). This study aims to investigate whether BMC can effectively promote bone formation induced by low-dose BMP-2, thereby reducing the undesirable side-effects of BMP-2, compared to PRP. Human BMC was obtained from bone marrow aspirates using an automated blood separator. The BMC was then seeded onto β-TCP granules pre-adsorbed with a suboptimal-dose (minimum concentration to induce bone formation at 2 weeks in mice) of recombinant human (rh) BMP-2. These specimens were transplanted subcutaneously to the dorsal skin of immunodeficient-mice and the induction of ectopic bone formation was assessed 2 and 4 weeks post-transplantation. Transplantations of five other groups [PB, PRP, platelet-poor plasma (PPP), bone marrow aspirate (BM), and BM-PPP] were employed as experimental controls. Then, to clarify the effects on vertical bone augmentation, specimens from the six groups were transplanted for on-lay placement on the craniums of mice. The results indicated that BMC, which contained an approximately 2.5-fold increase in the number of MNCs compared to PRP, could accelerate ectopic bone formation until 2 weeks post-transplantation. On the cranium, the BMC group promoted bone augmentation with a suboptimal-dose of rhBMP-2 compared to other groups. Particularly in the BMC specimens harvested at 4 weeks, we observed newly formed bone surrounding the TCP granules at sites far from the calvarial bone. In conclusion, the addition of BMC could reduce the amount of rhBMP-2 by one-half via its synergistic effect on early-phase osteoinduction. We propose here that BMC transplantation

  19. A survey of recommendations given to patients going home after bone marrow transplant.

    PubMed Central

    Brandt, L; Broadbent, V

    1994-01-01

    A postal questionnaire was sent to 11 UK Children's Cancer Study Group bone marrow transplant centres asking them for details of their instructions to patients on discharge after either allogeneic or auto transplant; nine centres responded. There was no recommendation on which they all agreed. Though all centres gave prophylactic septrin, the times of starting and stopping treatment varied considerably. Three centres recommended lifelong penicillin after total body irradiation, one treated for two years and five gave no such prophylaxis. Four of nine centres gave routine acyclovir for herpes simplex prophylaxis. Most centres suggested prophylaxis against varicella after contact exposure for one year. However, three gave zoster immune globulin alone, one gave this together with acyclovir, and five gave acyclovir alone. No two centres recommended the same dose of acyclovir. Vaccinations were allowed from 6-18 months after transplant. One centre required documentation of recovery of immune function first. Four centres recommended a child stay off school for six months; others had 'common sense' approaches. Only one centre did not allow family holidays for the first six months but many imposed restrictions on these holidays. Dietary restrictions varied greatly between centres. It is concluded that there is a need for unified and scientifically justified guidelines after transplant for paediatric bone marrow transplant patients. PMID:7726614

  20. Comparison of the effect of bone marrow cells infusion through the portal vein and inferior vena cava combined with short-term rapamycin on allogeneic islet grafts in diabetic rats.

    PubMed

    Gao, Qingzhen; Wang, Xiaoping; Zhang, Ruibin; Wang, Pu; Jing, Yongsheng; Ren, Wanjun; Zhu, Bin

    2016-07-01

    The study aimed to compare the impact of allogeneic bone marrow cells (BMCs) infusion through the inferior vena cava (IVC) and portal vein (PV) combined with rapamycin on allogeneic islet grafts in diabetic rats. Recipient diabetic Wistar rats were infused with islets from Sprague-Dawley rats through the PV. PKH26-labeled BMCs of Sprague-Dawley rats were infused to recipients through the PV or IVC, followed by administration of rapamycin for 4 days. Blood glucose level was measured to evaluate the survival time of the islets. Lymphocytes separated from blood, BMCs, thymus, liver, spleen and lymph node were analyzed by flow cytometry. The peripheral blood smear, BMCs smear and frozen sections of tissues were observed by a fluorescence microscope. The survival time of the islets was significantly prolonged by the BMCs infusion combined with rapamycin. The rats receiving BMCs infusion through the PV induced a significantly longer survival time of the islets, and increased mixed chimeras of allogeneic BMCs in the thymus, liver, spleen and lymph node compared with the rats receiving BMCs infusion through the IVC. The amount of the mixed chimeras on day 14 was lower than that on day 7 after islet transplantation. Furthermore, PV transplantation had significantly more mixed chimera than IVC transplantation in all analyzed organs or tissues. BMCs infusion combined with rapamycin prolongs the islets survival and induces mixed chimeras of BMCs. PV infusion of BMCs might be a more effective strategy than IVC infusion of BMCs. © 2015 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.

  1. Nonmyeloablative Conditioning with Busulfan before Matched Littermate Bone Marrow Transplantation Results in Reversal of the Disease Phenotype in Canine Leukocyte Adhesion Deficiency

    PubMed Central

    Sokolic, Robert A.; Bauer, Thomas R.; Gu, Yu-Chen; Hai, Mehreen; Tuschong, Laura M.; Burkholder, Tanya; Colenda, Lyn; Bacher, John; Starost, Matthew F.; Hickstein, Dennis D.

    2005-01-01

    Leukocyte adhesion deficiency (LAD)–1, a primary immunodeficiency disease caused by molecular defects in the leukocyte integrin CD18 molecule, is characterized by recurrent, life-threatening bacterial infections. Myeloablative hematopoietic stem cell transplantation is the only curative treatment for LAD-1. Recently, canine LAD (CLAD) has been shown to be a valuable animal model for the preclinical testing of nonmyeloablative transplantation regimens for the treatment of children with LAD-1. To develop new allogeneic transplantation approaches for LAD-1, we assessed a nonmyeloablative conditioning regimen consisting of busulfan as a single agent before matched littermate allogeneic bone marrow transplantation in CLAD. Three CLAD dogs received busulfan 10 mg/kg intravenously before infusion of matched littermate bone marrow, and all dogs received posttransplantation immunosuppression with cyclosporin A and mycophenolate mofetil. Initially, all 3 dogs became mixed chimeras, and levels of donor chimerism sufficient to reverse the CLAD phenotype persisted in 2 animals. The third dog maintained donor microchimerism with an attenuated CLAD phenotype. These 3 dogs have all been followed up for at least 1 year after transplantation. These results indicate that a nonmyeloablative conditioning regimen with chemotherapy alone is capable of generating stable mixed chimerism and reversal of the disease phenotype in CLAD. PMID:16182176

  2. Allogeneic bone marrow transplantation for children with acute lymphoblastic leukemia in second remission or relapse.

    PubMed

    Lin, K H; Jou, S T; Chen, R L; Lin, D T; Lui, L T; Lin, K S

    1994-01-01

    Most children with acute lymphoblastic leukemia (ALL) are successfully treated by chemotherapy. For those patients, who relapse on therapy, bone marrow transplantation (BMT) is considered most appropriate after a subsequent remission is achieved. Three boys with ALL aged from 9 to 13 years met these criteria and received BMT from their HLA-compatible sisters after marrow ablation with total body irradiation 12 Gy plus high dose cytosine arabinoside 3 gm/m2/12h x 12 doses and graft-versus-host disease (GVHD) prophylaxis with cyclosporine plus short course methotrexate from March 10, 1989 to May 23, 1992. Filgrastim (rhG-CSF) was used to hasten the recovery of granulocyte in one patient. All three patients got full engraftment and two had grade 1 acute GVHD. None of them developed chronic GVHD. Two patients have disease-free survival over 51 and 12 months respectively post BMT without further chemotherapy. One patient died of recurrent refractory leukemia 5 months after BMT. The toxicity of this conditioning regimen included photophobia, conjunctivitis and erythematous skin rashes. One patient who received filgrastim from day 1 to 21 developed severe bone pain. However, this patient had faster recovery of granulocyte count than the other two patients. The preliminary results of this work favors BMT for children with recurrent ALL whose ultimate survival is usually poor when treated with chemotherapy. Further efforts are necessary to investigate new methods for reducing leukemic relapse in ALL patients undergoing BMT.

  3. Isolation and characterization of mesenchymal progenitors derived from the bone marrow of goats native from northeastern Brazil.

    PubMed

    Silva Filho, Osmar Ferreira da; Argôlo Neto, Napoleão Martins; Carvalho, Maria Acelina Martins de; Carvalho, Yulla Klinger de; Diniz, Anaemilia das Neves; Moura, Laécio da Silva; Ambrósio, Carlos Eduardo; Monteiro, Janaína Munuera; Almeida, Hatawa Melo de; Miglino, Maria Angélica; Alves, Jacyara de Jesus Rosa Pereira; Macedo, Kássio Vieira; Rocha, Andressa Rego da; Feitosa, Matheus Levi Tajra; Alves, Flávio Ribeiro

    2014-08-01

    To characterize bone marrow progenitors cells grown in vitro, using native goats from northeastern Brazil as animal model. Ten northeastern Brazil native goats of both genders were used from the Piauí Federal University Agricultural Science Center's (UFPI) - Goat Farming Sector. Bone marrow aspirates where taken from the tibial ridge and seeded on culture plates for isolation, expansion and Flow Cytometry (expression markers - Oct-3/4, PCNA, Ck-Pan, Vimentina, Nanog). Progenitor cells showed colonies characterized by the presence of cell pellets with fibroblastoid morphology. Cell confluence was taken after 14 days culture and the non-adherent mononuclear cell progressive reduction. After the first passage, 94.36% cell viability was observed, starting from 4.6 x 106 cell/mL initially seeded. Cells that went through flow cytometry showed positive expression for Oct-3/4, PCNA, Ck-Pan, Vimentina, and Nanog. Bone marrow progenitor isolated of native goats from northeastern Brazil showed expression markers also seen in embryonic stem cells (Oct-3/4, Nanog), markers of cell proliferation (PCNA) and markers for mesenchymal cells (Vimentina and Ck-pan), which associated to morphological and culture growth features, suggest the existence of a mesenchymal stem cell (MSC) population in the goat bone marrow stromal cells studied.

  4. Reversible posterior leucoencephalopathy syndrome associated with bone marrow transplantation.

    PubMed

    Teive, H A; Brandi, I V; Camargo, C H; Bittencourt, M A; Bonfim, C M; Friedrich, M L; de Medeiros, C R; Werneck, L C; Pasquini, R

    2001-09-01

    Reversible posterior leucoencephalopathy syndrome (RPLS) has previously been described in patients who have renal insufficiency, eclampsia, hypertensive encephalopathy and patients receiving immunosuppressive therapy. The mechanism by which immunosuppressive agents can cause this syndrome is not clear, but it is probably related with cytotoxic effects of these agents on the vascular endothelium. We report eight patients who received cyclosporine A (CSA) after allogeneic bone marrow transplantation or as treatment for severe aplastic anemia (SSA) who developed posterior leucoencephalopathy. The most common signs and symptoms were seizures and headache. Neurological dysfunction occurred preceded by or concomitant with high blood pressure and some degree of acute renal failure in six patients. Computerized tomography studies showed low-density white matter lesions involving the posterior areas of cerebral hemispheres. Symptoms and neuroimaging abnormalities were reversible and improvement occurred in all patients when given lower doses of CSA or when the drug was withdrawn. RPLS may be considered an expression of CSA neurotoxicity.

  5. Transplantation of bone marrow derived cells promotes pancreatic islet repair in diabetic mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao Xiaodong; Song Lujun; Shen Kuntang

    2008-06-20

    The transplantation of bone marrow (BM) derived cells to initiate pancreatic regeneration is an attractive but as-yet unrealized strategy. Presently, BM derived cells from green fluorescent protein transgenic mice were transplanted into diabetic mice. Repair of diabetic islets was evidenced by reduction of hyperglycemia, increase in number of islets, and altered pancreatic histology. Cells in the pancreata of recipient mice co-expressed BrdU and insulin. Double staining revealed {beta} cells were in the process of proliferation. BrdU{sup +} insulin{sup -} PDX-1{sup +} cells, Ngn3{sup +} cells and insulin{sup +} glucagon{sup +} cells, which showed stem cells, were also found during {beta}-cellmore » regeneration. The majority of transplanted cells were mobilized to the islet and ductal regions. In recipient pancreas, transplanted cells simultaneously expressed CD34 but did not express insulin, PDX-1, Ngn3, Nkx2.2, Nkx6.1, Pax4, Pax6, and CD45. It is concluded that BM derived cells especially CD34{sup +} cells can promote repair of pancreatic islets. Moreover, both proliferation of {beta} cells and differentiation of pancreatic stem cells contribute to the regeneration of {beta} cells.« less

  6. Erythropoietin induces bone marrow and plasma fibroblast growth factor 23 during acute kidney injury.

    PubMed

    Toro, Luis; Barrientos, Víctor; León, Pablo; Rojas, Macarena; Gonzalez, Magdalena; González-Ibáñez, Alvaro; Illanes, Sebastián; Sugikawa, Keigo; Abarzúa, Néstor; Bascuñán, César; Arcos, Katherine; Fuentealba, Carlos; Tong, Ana María; Elorza, Alvaro A; Pinto, María Eugenia; Alzamora, Rodrigo; Romero, Carlos; Michea, Luis

    2018-05-01

    It is accepted that osteoblasts/osteocytes are the major source for circulating fibroblast growth factor 23 (FGF23). However, erythropoietic cells of bone marrow also express FGF23. The modulation of FGF23 expression in bone marrow and potential contribution to circulating FGF23 has not been well studied. Moreover, recent studies show that plasma FGF23 may increase early during acute kidney injury (AKI). Erythropoietin, a kidney-derived hormone that targets erythropoietic cells, increases in AKI. Here we tested whether an acute increase of plasma erythropoietin induces FGF23 expression in erythropoietic cells of bone marrow thereby contributing to the increase of circulating FGF23 in AKI. We found that erythroid progenitor cells of bone marrow express FGF23. Erythropoietin increased FGF23 expression in vivo and in bone marrow cell cultures via the homodimeric erythropoietin receptor. In experimental AKI secondary to hemorrhagic shock or sepsis in rodents, there was a rapid increase of plasma erythropoietin, and an induction of bone marrow FGF23 expression together with a rapid increase of circulating FGF23. Blockade of the erythropoietin receptor fully prevented the induction of bone marrow FGF23 and partially suppressed the increase of circulating FGF23. Finally, there was an early increase of both circulating FGF23 and erythropoietin in a cohort of patients with severe sepsis who developed AKI within 48 hours of admission. Thus, increases in plasma erythropoietin and erythropoietin receptor activation are mechanisms implicated in the increase of plasma FGF23 in AKI. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  7. Analysis of bone marrow plasma cells in patients with solitary bone plasmacytoma.

    PubMed

    Bhaskar, Archana; Gupta, Ritu; Sharma, Atul; Kumar, Lalit; Jain, Paresh

    Local radiotherapy is the treatment of choice for solitary bone plasmacytoma (SBP) and the role of adjuvant systemic chemotherapy in preventing progression to multiple myeloma (MM) is controversial. The purpose of this study was to examine the presence of systemic disease in the form of neoplastic plasma cells (PC) in bone marrow of patients with SBP. Flow cytometric immunophenotyping of PC was carried out on bone marrow aspirate of 7 patients using monoclonal antibodies: CD19 FITC, CD45 FITC, CD20 FITC, CD52 PE, CD117 PE, CD56 PE, CD38 PerCP-Cy5.5, CD138 APC, anti-kappa (κ) FITC and anti-lambda (λ) PE. The neoplastic as well as normal PC were identified in bone marrow aspirate of all the patients at the time of diagnosis; the neoplastic PC ranged from 0.1%to 0.7% of all BM cells and 33.5% to 89.7% of total BMPC. The κ:λ ratio was normal in all the samples ranging from 0.5% to 1.6%. The present work shows the presence of systemic disease in the form of neoplastic PC in bone marrow of patients with SBP. Prospective studies would be required to study if the levels of neoplastic PC in the bone marrow may help us identify patients who are likely to progress to overt MM and benefit from systemic chemotherapy.

  8. Regeneration of hyaline-like cartilage in situ with SOX9 stimulation of bone marrow-derived mesenchymal stem cells.

    PubMed

    Zhang, Xiaowei; Wu, Shili; Naccarato, Ty; Prakash-Damani, Manan; Chou, Yuan; Chu, Cong-Qiu; Zhu, Yong

    2017-01-01

    Microfracture, a common procedure for treatment of cartilage injury, induces fibrocartilage repair by recruiting bone marrow derived mesenchymal stem cells (MSC) to the site of cartilage injury. However, fibrocartilage is inferior biomechanically to hyaline cartilage. SRY-type high-mobility group box-9 (SOX9) is a master regulator of chondrogenesis by promoting proliferation and differentiation of MSC into chondrocytes. In this study we aimed to test the therapeutic potential of cell penetrating recombinant SOX9 protein in regeneration of hyaline cartilage in situ at the site of cartilage injury. We generated a recombinant SOX9 protein which was fused with super positively charged green fluorescence protein (GFP) (scSOX9) to facilitate cell penetration. scSOX9 was able to induce chondrogenesis of bone marrow derived MSC in vitro. In a rabbit cartilage injury model, scSOX9 in combination with microfracture significantly improved quality of repaired cartilage as shown by macroscopic appearance. Histological analysis revealed that the reparative tissue induced by microfracture with scSOX9 had features of hyaline cartilage; and collagen type II to type I ratio was similar to that in normal cartilage. This short term in vivo study demonstrated that when administered at the site of microfracture, scSOX9 was able to induce reparative tissue with features of hyaline cartilage.

  9. Regeneration of hyaline-like cartilage in situ with SOX9 stimulation of bone marrow-derived mesenchymal stem cells

    PubMed Central

    Naccarato, Ty; Prakash-Damani, Manan; Chou, Yuan; Zhu, Yong

    2017-01-01

    Microfracture, a common procedure for treatment of cartilage injury, induces fibrocartilage repair by recruiting bone marrow derived mesenchymal stem cells (MSC) to the site of cartilage injury. However, fibrocartilage is inferior biomechanically to hyaline cartilage. SRY-type high-mobility group box-9 (SOX9) is a master regulator of chondrogenesis by promoting proliferation and differentiation of MSC into chondrocytes. In this study we aimed to test the therapeutic potential of cell penetrating recombinant SOX9 protein in regeneration of hyaline cartilage in situ at the site of cartilage injury. We generated a recombinant SOX9 protein which was fused with super positively charged green fluorescence protein (GFP) (scSOX9) to facilitate cell penetration. scSOX9 was able to induce chondrogenesis of bone marrow derived MSC in vitro. In a rabbit cartilage injury model, scSOX9 in combination with microfracture significantly improved quality of repaired cartilage as shown by macroscopic appearance. Histological analysis revealed that the reparative tissue induced by microfracture with scSOX9 had features of hyaline cartilage; and collagen type II to type I ratio was similar to that in normal cartilage. This short term in vivo study demonstrated that when administered at the site of microfracture, scSOX9 was able to induce reparative tissue with features of hyaline cartilage. PMID:28666028

  10. Hypoxia-induced mitogenic factor (HIMF/FIZZ1/RELM alpha) recruits bone marrow-derived cells to the murine pulmonary vasculature.

    PubMed

    Angelini, Daniel J; Su, Qingning; Kolosova, Irina A; Fan, Chunling; Skinner, John T; Yamaji-Kegan, Kazuyo; Collector, Michael; Sharkis, Saul J; Johns, Roger A

    2010-06-22

    Pulmonary hypertension (PH) is a disease of multiple etiologies with several common pathological features, including inflammation and pulmonary vascular remodeling. Recent evidence has suggested a potential role for the recruitment of bone marrow-derived (BMD) progenitor cells to this remodeling process. We recently demonstrated that hypoxia-induced mitogenic factor (HIMF/FIZZ1/RELM alpha) is chemotactic to murine bone marrow cells in vitro and involved in pulmonary vascular remodeling in vivo. We used a mouse bone marrow transplant model in which lethally irradiated mice were rescued with bone marrow transplanted from green fluorescent protein (GFP)(+) transgenic mice to determine the role of HIMF in recruiting BMD cells to the lung vasculature during PH development. Exposure to chronic hypoxia and pulmonary gene transfer of HIMF were used to induce PH. Both models resulted in markedly increased numbers of BMD cells in and around the pulmonary vasculature; in several neomuscularized small (approximately 20 microm) capillary-like vessels, an entirely new medial wall was made up of these cells. We found these GFP(+) BMD cells to be positive for stem cell antigen-1 and c-kit, but negative for CD31 and CD34. Several of the GFP(+) cells that localized to the pulmonary vasculature were alpha-smooth muscle actin(+) and localized to the media layer of the vessels. This finding suggests that these cells are of mesenchymal origin and differentiate toward myofibroblast and vascular smooth muscle. Structural location in the media of small vessels suggests a functional role in the lung vasculature. To examine a potential mechanism for HIMF-dependent recruitment of mesenchymal stem cells to the pulmonary vasculature, we performed a cell migration assay using cultured human mesenchymal stem cells (HMSCs). The addition of recombinant HIMF induced migration of HMSCs in a phosphoinosotide-3-kinase-dependent manner. These results demonstrate HIMF-dependent recruitment of BMD

  11. Effects of Iron Overload on the Bone Marrow Microenvironment in Mice

    PubMed Central

    Zhao, Mingfeng; Li, Deguan; Chai, Xiao; Cao, Xiaoli; Meng, Juanxia; Chen, Jie; Xiao, Xia; Li, Qing; Mu, Juan; Shen, Jichun; Meng, Aimin

    2015-01-01

    Objective Using a mouse model, Iron Overload (IO) induced bone marrow microenvironment injury was investigated, focusing on the involvement of reactive oxygen species (ROS). Methods Mice were intraperitoneally injected with iron dextran (12.5, 25, or 50mg) every three days for two, four, and six week durations. Deferasirox(DFX)125mg/ml and N-acetyl-L-cysteine (NAC) 40mM were co-administered. Then, bone marrow derived mesenchymal stem cells (BM-MSCs) were isolated and assessed for proliferation and differentiation ability, as well as related gene changes. Immunohistochemical analysis assessed the expression of haematopoietic chemokines. Supporting functions of BM-MSCs were studied by co-culture system. Results In IO condition (25mg/ml for 4 weeks), BM-MSCs exhibited proliferation deficiencies and unbalanced osteogenic/adipogenic differentiation. The IO BM-MSCs showed a longer double time (2.07±0.14 days) than control (1.03±0.07 days) (P<0.05). The immunohistochemical analysis demonstrated that chemokine stromal cell-derived factor-1, stem cell factor -1, and vascular endothelial growth factor-1 expression were decreased. The co-cultured system demonstrated that bone marrow mononuclear cells (BMMNCs) co-cultured with IO BM-MSCs had decreased colony forming unit (CFU) count (p<0.01), which indicates IO could lead to decreased hematopoietic supporting functions of BM-MSCs. This effect was associated with elevated phosphatidylinositol 3 kinase (PI3K) and reduced of Forkhead box protein O3 (FOXO3) mRNA expression, which could induce the generation of ROS. Results also demonstrated that NAC or DFX treatment could partially attenuate cell injury and inhibit signaling pathway striggered by IO. Conclusion These results demonstrated that IO can impair the bone marrow microenvironment, including the quantity and quality of BM-MSCs. PMID:25774923

  12. Bone marrow-derived CD13+ cells sustain tumor progression: A potential non-malignant target for anticancer therapy.

    PubMed

    Dondossola, Eleonora; Corti, Angelo; Sidman, Richard L; Arap, Wadih; Pasqualini, Renata

    2014-01-01

    Non-malignant cells found within neoplastic lesions express alanyl (membrane) aminopeptidase (ANPEP, best known as CD13), and CD13-null mice exhibit limited tumor growth and angiogenesis. We have recently demonstrated that a subset of bone marrow-derived CD11b + CD13 + myeloid cells accumulate within neoplastic lesions in several murine models of transplantable cancer to promote angiogenesis. If these findings were confirmed in clinical settings, CD11b + CD13 + myeloid cells could become a non-malignant target for the development of novel anticancer regimens.

  13. Survival of irradiated recipient mice after transplantation of bone marrow from young, old and "early aging" mice.

    PubMed

    Guest, Ian; Ilic, Zoran; Scrable, Heidi; Sell, Stewart

    2015-12-01

    Bone marrow transplantation is used to examine survival, hematopoietic stem cell function and pathology in recipients of young and old wild type bone marrow derived stem cells (BMDSCs) as well as cells from p53-based models of premature aging. There is no difference in the long term survival of recipients of 8 week-old p53+/m donor cells compared to recipients of 8 week-old wild-type (WT) donor cells (70 weeks) or of recipients of 16-18 weeks-old donor cells from either p53+/m or WT mice. There is shorter survival in recipients of older versus younger WT donor bone marrow, but the difference is only significant when comparing 8 and 18 week-old donors. In the p44-based model, short term survival/engraftment is significantly reduced in recipients of 11 month-old p44 donor cells compared to 4 week-old p44 or wild type donor cells of either age; mid-life survival at 40 weeks is also significantly less in recipients of p44 cells. BMDSCs are readily detectable within recipient bone marrow, lymph node, intestinal villi and liver sinusoids, but not in epithelial derived cells. These results indicate that recipients of young BMDSCs may survive longer than recipients of old bone marrow, but the difference is marginal at best.

  14. Immortalized porcine mesenchymal cells derived from nasal mucosa, lungs, lymph nodes, spleen and bone marrow retain their stemness properties and trigger the expression of siglec-1 in co-cultured blood monocytic cells

    PubMed Central

    Garba, Abubakar; Desmarets, Lowiese M. B.; Acar, Delphine D.; Devriendt, Bert; Nauwynck, Hans J.

    2017-01-01

    Mesenchymal stromal cells have been isolated from different sources. They are multipotent cells capable of differentiating into many different cell types, including osteocytes, chondrocytes and adipocytes. They possess a therapeutic potential in the management of immune disorders and the repair of damaged tissues. Previous work in our laboratory showed an increase of the percentages of CD172a+, CD14+, CD163+, Siglec-1+, CD4+ and CD8+ hematopoietic cells, when co-cultured with immortalized mesenchymal cells derived from bone marrow. The present work aimed to demonstrate the stemness properties of SV40-immortalized mesenchymal cells derived from nasal mucosa, lungs, spleen, lymph nodes and red bone marrow and their immunomodulatory effect on blood monocytes. Mesenchymal cells from nasal mucosa, lungs, spleen, lymph nodes and red bone marrow were isolated and successfully immortalized using simian virus 40 large T antigen (SV40LT) and later, co-cultured with blood monocytes, in order to examine their differentiation stage (expression of Siglec-1). Flow cytometric analysis revealed that the five mesenchymal cell lines were positive for mesenchymal cell markers CD105, CD44, CD90 and CD29, but lacked the expression of myeloid cell markers CD16 and CD11b. Growth analysis of the cells demonstrated that bone marrow derived-mesenchymal cells proliferated faster compared with those derived from the other tissues. All five mesenchymal cell lines co-cultured with blood monocytes for 1, 2 and 7 days triggered the expression of siglec-1 in the monocytes. In contrast, no siglec-1+ cells were observed in monocyte cultures without mesenchymal cell lines. Mesenchymal cells isolated from nasal mucosa, lungs, spleen, lymph nodes and bone marrow were successfully immortalized and these cell lines retained their stemness properties and displayed immunomodulatory effects on blood monocytes. PMID:29036224

  15. Immortalized porcine mesenchymal cells derived from nasal mucosa, lungs, lymph nodes, spleen and bone marrow retain their stemness properties and trigger the expression of siglec-1 in co-cultured blood monocytic cells.

    PubMed

    Garba, Abubakar; Desmarets, Lowiese M B; Acar, Delphine D; Devriendt, Bert; Nauwynck, Hans J

    2017-01-01

    Mesenchymal stromal cells have been isolated from different sources. They are multipotent cells capable of differentiating into many different cell types, including osteocytes, chondrocytes and adipocytes. They possess a therapeutic potential in the management of immune disorders and the repair of damaged tissues. Previous work in our laboratory showed an increase of the percentages of CD172a+, CD14+, CD163+, Siglec-1+, CD4+ and CD8+ hematopoietic cells, when co-cultured with immortalized mesenchymal cells derived from bone marrow. The present work aimed to demonstrate the stemness properties of SV40-immortalized mesenchymal cells derived from nasal mucosa, lungs, spleen, lymph nodes and red bone marrow and their immunomodulatory effect on blood monocytes. Mesenchymal cells from nasal mucosa, lungs, spleen, lymph nodes and red bone marrow were isolated and successfully immortalized using simian virus 40 large T antigen (SV40LT) and later, co-cultured with blood monocytes, in order to examine their differentiation stage (expression of Siglec-1). Flow cytometric analysis revealed that the five mesenchymal cell lines were positive for mesenchymal cell markers CD105, CD44, CD90 and CD29, but lacked the expression of myeloid cell markers CD16 and CD11b. Growth analysis of the cells demonstrated that bone marrow derived-mesenchymal cells proliferated faster compared with those derived from the other tissues. All five mesenchymal cell lines co-cultured with blood monocytes for 1, 2 and 7 days triggered the expression of siglec-1 in the monocytes. In contrast, no siglec-1+ cells were observed in monocyte cultures without mesenchymal cell lines. Mesenchymal cells isolated from nasal mucosa, lungs, spleen, lymph nodes and bone marrow were successfully immortalized and these cell lines retained their stemness properties and displayed immunomodulatory effects on blood monocytes.

  16. Busulphan/cyclophosphamide conditioning for bone marrow transplantation may lead to failure of hair regrowth.

    PubMed

    Baker, B W; Wilson, C L; Davis, A L; Spearing, R L; Hart, D N; Heaton, D C; Beard, M E

    1991-01-01

    Following the introduction of bulsulphan and cyclophosphamide (BUCY) conditioning in our unit in 1987, a number of patients noted incomplete scalp hair regrowth following bone marrow transplantation (BMT). Between August 1987 and May 1989, 22 patients had undergone allogeneic or autologous BMT in our unit and we recalled for detailed assessment the 14 who were alive and well at least 6 months post grafting. Six patients had experienced incomplete hair regrowth of varying severity 7-27 months following BMT. All those affected had received BUCY conditioning and the four most severely affected were allogeneic BMT recipients. No patient had received any post-BMT chemotherapy or radiation. None of the patients had evidence of graft-versus-host disease. No laboratory test abnormalities distinguished the affected from the unaffected patients. Despite the relatively small number of patients, our results suggest that BUCY has caused permanent damage to the hair follicles of the affected patients. Prolonged alopecia may markedly impair the quality of life for long-term survivors of BMT and this unexpected complication also has significant medicolegal implications.

  17. Wild Type Bone Marrow Transplant Partially Reverses Neuroinflammation in Progranulin-Deficient Mice

    PubMed Central

    Yang, Yue; Aloi, Macarena S.; Cudaback, Eiron; Josephsen, Samuel R.; Rice, Samantha J.; Jorstad, Nikolas L.; Keene, C. Dirk; Montine, Thomas J.

    2014-01-01

    Frontotemporal dementia (FTD) is a neurodegenerative disease with devastating changes in behavioral performance and social function. Mutations in the progranulin gene (GRN) are one of the most common causes of inherited FTD due to reduced progranulin expression or activity, including in brain where it is expressed primarily by neurons and microglia. Thus, efforts aimed at enhancing progranulin levels might be a promising therapeutic strategy. Bone marrow-derived cells are able to engraft in the brain and adopt a microglial phenotype under myeloablative irradiation conditioning. This ability makes bone marrow (BM)-derived cells a potential cellular vehicle for transferring therapeutic molecules to the central nervous system. Here, we utilized BM cells from Grn+/+ (wild type or wt) mice labeled with green fluorescence protein for delivery of progranulin to progranulin deficient (Grn−/−) mice. Our results showed that wt bone marrow transplantation (BMT) partially reconstituted progranulin in the periphery and in cerebral cortex of Grn−/− mice. We demonstrated a pro-inflammatory effect in vivo and in ex vivo preparations of cerebral cortex of Grn−/− mice that was partially to fully reversed five months after BMT. Our findings suggest that BMT can be administered as a stem cell-based approach to prevent or to treat neurodegenerative diseases. PMID:25199051

  18. [EXPERIMENTAL STUDY ON CHITOSAN/ALLOGENEIC BONE POWDER COMPOSITE POROUS SCAFFOLD TO REPAIR BONE DEFECTS IN RATS].

    PubMed

    Kang, Xiangang; Zhao, Zhiyuan; Wu, Xuzhi; Shen, Qingxin; Wang, Zhiqiang; Kang, Yue; Xing, Zhenguang; Zhang, Tao

    2016-03-01

    To explore the feasibility of chitosan/allogeneic bone powder composite porous scaffold as scaffold material of bone tissue engineering in repairing bone defect. The composite porous scaffolds were prepared with chitosan and decalcified allogeneic bone powder at a ratio of 1 : 5 by vacuum freeze-drying technique. Chitosan scaffold served as control. Ethanol alternative method was used to measure its porosity, and scanning electron microscopy (SEM) to measure pore size. The hole of 3.5 mm in diameter was made on the bilateral femoral condyles of 40 adult Sprague Dawley rats. The composite porous scaffolds and chitosan scaffolds were implanted into the hole of the left femoral condyle (experimental group) and the hole of the right femoral condyle (control group), respectively. At 2, 4, 8, and 12 weeks after implantation, the tissues were harvested for gross observation, histological observation, and immunohistochemical staining. The composite porous scaffold prepared by vacuum freeze-drying technique had yellowish color, and brittle and easily broken texture; pore size was mostly 200-300 μm; and the porosity was 76.8% ± 1.1%, showing no significant difference when compared with the porosity of pure chitosan scaffold (78.4% ± 1.4%) (t = -2.10, P = 0.09). The gross observation and histological observation showed that the defect area was filled with new bone with time, and new bone of the experimental group was significantly more than that of the control group. At 4, 8, and 12 weeks after implantation, the bone forming area of the experimental group was significantly larger than that of the control group (P < 0.05). The immunohistochemical staining results showed that osteoprotegerin (OPG) positive expression was found in the experimental group at different time points, and the positive expression level was significantly higher than that in the control group (P < 0.05). Chitosan/allogeneic bone powder composite porous scaffold has suitable porosity and good

  19. Bone marrow-on-a-chip replicates hematopoietic niche physiology in vitro.

    PubMed

    Torisawa, Yu-suke; Spina, Catherine S; Mammoto, Tadanori; Mammoto, Akiko; Weaver, James C; Tat, Tracy; Collins, James J; Ingber, Donald E

    2014-06-01

    Current in vitro hematopoiesis models fail to demonstrate the cellular diversity and complex functions of living bone marrow; hence, most translational studies relevant to the hematologic system are conducted in live animals. Here we describe a method for fabricating 'bone marrow-on-a-chip' that permits culture of living marrow with a functional hematopoietic niche in vitro by first engineering new bone in vivo, removing it whole and perfusing it with culture medium in a microfluidic device. The engineered bone marrow (eBM) retains hematopoietic stem and progenitor cells in normal in vivo-like proportions for at least 1 week in culture. eBM models organ-level marrow toxicity responses and protective effects of radiation countermeasure drugs, whereas conventional bone marrow culture methods do not. This biomimetic microdevice offers a new approach for analysis of drug responses and toxicities in bone marrow as well as for study of hematopoiesis and hematologic diseases in vitro.

  20. SBDS Protein Expression Patterns in the Bone Marrow

    PubMed Central

    Wong, Trisha E.; Calicchio, Monica L.; Fleming, Mark D.; Shimamura, Akiko; Harris, Marian H.

    2010-01-01

    Shwachman Diamond Syndrome (SDS) is an inherited bone marrow failure syndrome caused by biallelic SBDS gene mutations. Here we examined SBDS protein levels in human bone marrow. SBDS protein expression was high in neutrophil progenitors, megakaryocytes, plasma cells and osteoblasts. In contrast, SBDS protein levels were low in all hematopoietic cell lineages from patients harboring the common SBDS mutations. We conclude that SBDS protein levels vary widely between specific marrow lineages. Uniformly low SBDS protein expression levels distinguish the majority of SDS patients from controls or other marrow failure syndromes. PMID:20658628

  1. Myeloma-derived macrophage inhibitory factor regulates bone marrow stromal cell-derived IL-6 via c-MYC.

    PubMed

    Piddock, Rachel E; Marlein, Christopher R; Abdul-Aziz, Amina; Shafat, Manar S; Auger, Martin J; Bowles, Kristian M; Rushworth, Stuart A

    2018-05-16

    Multiple myeloma (MM) remains an incurable malignancy despite the recent advancements in its treatment. The protective effects of the niche in which it develops has been well documented; however, little has been done to investigate the MM cell's ability to 're-program' cells within its environment to benefit disease progression. Here, we show that MM-derived macrophage migratory inhibitory factor (MIF) stimulates bone marrow stromal cells to produce the disease critical cytokines IL-6 and IL-8, prior to any cell-cell contact. Furthermore, we provide evidence that this IL-6/8 production is mediated by the transcription factor cMYC. Pharmacological inhibition of cMYC in vivo using JQ1 led to significantly decreased levels of serum IL-6-a highly positive prognostic marker in MM patients. Our presented findings show that MM-derived MIF causes BMSC secretion of IL-6 and IL-8 via BMSC cMYC. Furthermore, we show that the cMYC inhibitor JQ1 can reduce BMSC secreted IL-6 in vivo, irrespective of tumor burden. These data provide evidence for the clinical evaluation of both MIF and cMYC inhibitors in the treatment of MM.

  2. Bone marrow adipocytes promote tumor growth in bone via FABP4-dependent mechanisms.

    PubMed

    Herroon, Mackenzie K; Rajagurubandara, Erandi; Hardaway, Aimalie L; Powell, Katelyn; Turchick, Audrey; Feldmann, Daniel; Podgorski, Izabela

    2013-11-01

    Incidence of skeletal metastases and death from prostate cancer greatly increases with age and obesity, conditions which increase marrow adiposity. Bone marrow adipocytes are metabolically active components of bone metastatic niche that modulate the function of neighboring cells; yet the mechanisms of their involvement in tumor behavior in bone have not been explored. In this study, using experimental models of intraosseous tumor growth and diet-induced obesity, we demonstrate the promoting effects of marrow fat on growth and progression of skeletal prostate tumors. We reveal that exposure to lipids supplied by marrow adipocytes induces expression of lipid chaperone FABP4, pro-inflammatory interleukin IL-1β, and oxidative stress protein HMOX-1 in metastatic tumor cells and stimulates their growth and invasiveness. We show that FABP4 is highly overexpressed in prostate skeletal tumors from obese mice and in bone metastasis samples from prostate cancer patients. In addition, we provide results suggestive of bi-directional interaction between FABP4 and PPARγ pathways that may be driving aggressive tumor cell behavior in bone. Together, our data provide evidence for functional relationship between bone marrow adiposity and metastatic prostate cancers and unravel the FABP4/IL-1β axis as a potential therapeutic target for this presently incurable disease.

  3. Bone marrow adipocytes promote tumor growth in bone via FABP4-dependent mechanisms

    PubMed Central

    Herroon, Mackenzie K.; Rajagurubandara, Erandi; Hardaway, Aimalie L.; Powell, Katelyn; Turchick, Audrey; Feldmann, Daniel; Podgorski, Izabela

    2013-01-01

    Incidence of skeletal metastases and death from prostate cancer greatly increases with age and obesity, conditions which increase marrow adiposity. Bone marrow adipocytes are metabolically active components of bone metastatic niche that modulate the function of neighboring cells; yet the mechanisms of their involvement in tumor behavior in bone have not been explored. In this study, using experimental models of intraosseous tumor growth and diet-induced obesity, we demonstrate the promoting effects of marrow fat on growth and progression of skeletal prostate tumors. We reveal that exposure to lipids supplied by marrow adipocytes induces expression of lipid chaperone FABP4, pro-inflammatory interleukin IL-1β, and oxidative stress protein HMOX-1 in metastatic tumor cells and stimulates their growth and invasiveness. We show that FABP4 is highly overexpressed in prostate skeletal tumors from obese mice and in bone metastasis samples from prostate cancer patients. In addition, we provide results suggestive of bi-directional interaction between FABP4 and PPARγ pathways that may be driving aggressive tumor cell behavior in bone. Together, our data provide evidence for functional relationship between bone marrow adiposity and metastatic prostate cancers and unravel the FABP4/IL-1β axis as a potential therapeutic target for this presently incurable disease. PMID:24240026

  4. Comparison of cellular responses of mesenchymal stem cells derived from bone marrow and synovium on combined silk scaffolds.

    PubMed

    Liu, Haifeng; Wei, Xing; Ding, Xili; Li, Xiaoming; Zhou, Gang; Li, Ping; Fan, Yubo

    2015-01-01

    As a brand new member in mesenchymal stem cells (MSCs) families, synovium-derived mesenchymal stem cells (SMSCs) have been increasingly regarded as a promising therapeutic cell species for musculoskeletal regeneration. However, there are few reports mentioning ligamentogenesis of SMSCs and especially null for their engineering use towards ligament regeneration. The aim of this study was to investigate and compare the cellular responses of MSCs derived from bone marrow and synovium on combined silk scaffolds that can be used to determine the cell source most appropriate for tissue-engineered ligament. Rabbit SMSCs and bone marrow-derived mesenchymal stem cells (BMSCs) were isolated and cultured in vitro for two weeks after seeding on the combined silk scaffolds. Samples were studied and compared for their cellular morphology, proliferation, collagen production, gene, and protein expression of ligament-related extracellular matrix (ECM) markers. In addition, the two cell types were transfected with green fluorescent protein to evaluate their fate after implantation in an intraarticular environment of the knee joint. After 14 days of culturing, SMSCs showed a significant increase in proliferation as compared with BMSCs. The transcript and protein expression levels of ligament-related ECM markers in SMSCs were significantly higher than those in BMSCs. Moreover, 6 weeks postoperatively, more viable cells were presented in SMSC-loaded constructs than in BMSC-loaded constructs. Therefore, based on the cellular response in vitro and in vivo, SMSCs may represent a more suitable cell source than BMSCs for further study and development of tissue-engineered ligament. © 2014 Wiley Periodicals, Inc.

  5. Pulmonary toxoplasmosis after allogeneic bone marrow transplantation: case report and review.

    PubMed

    Saad, R; Vincent, J F; Cimon, B; de Gentile, L; Francois, S; Bouachour, G; Ifrah, N

    1996-07-01

    We report an isolated case of toxoplasma pneumonitis in a 27-year-old man. This acute infection occurred after induction chemotherapy for AMLo relapsing 3 years post-allogeneic BMT. The detection of Toxoplasma gondii in the bronchoalvolar lavage (BAL), by culture in fibroblast cell line MRC5 enabled us to make the diagnosis. Pyrimethamine and sulfadiazine were effective.

  6. Bone Marrow Diseases - Multiple Languages

    MedlinePlus

    ... Marrow Biopsy - العربية (Arabic) Bilingual PDF Health Information Translations Chinese, Simplified (Mandarin dialect) (简体中文) Expand Section Bone ... Chinese, Simplified (Mandarin dialect)) Bilingual PDF Health Information Translations Chinese, Traditional (Cantonese dialect) (繁體中文) Expand Section Bone ...

  7. MR-Based Assessment of Bone Marrow Fat in Osteoporosis, Diabetes, and Obesity

    PubMed Central

    Cordes, Christian; Baum, Thomas; Dieckmeyer, Michael; Ruschke, Stefan; Diefenbach, Maximilian N.; Hauner, Hans; Kirschke, Jan S.; Karampinos, Dimitrios C.

    2016-01-01

    Bone consists of the mineralized component (i.e., cortex and trabeculae) and the non-mineralized component (i.e., bone marrow). Most of the routine clinical bone imaging uses X-ray-based techniques and focuses on the mineralized component. However, bone marrow adiposity has been also shown to have a strong linkage with bone health. Specifically, multiple previous studies have demonstrated a negative association between bone marrow fat fraction (BMFF) and bone mineral density. Magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) are ideal imaging techniques for non-invasively investigating the properties of bone marrow fat. In the present work, we first review the most important MRI and MRS methods for assessing properties of bone marrow fat, including methodologies for measuring BMFF and bone marrow fatty acid composition parameters. Previous MRI and MRS studies measuring BMFF and fat unsaturation in the context of osteoporosis are then reviewed. Finally, previous studies investigating the relationship between bone marrow fat, other fat depots, and bone health in patients with obesity and type 2 diabetes are presented. In summary, MRI and MRS are powerful non-invasive techniques for measuring properties of bone marrow fat in osteoporosis, obesity, and type 2 diabetes and can assist in future studies investigating the pathophysiology of bone changes in the above clinical scenarios. PMID:27445977

  8. Identification, characterization and isolation of a common progenitor for osteoclasts, macrophages and dendritic cells from murine bone marrow and periphery

    PubMed Central

    Jacome-Galarza, Christian E.; Lee, Sun-Kyeong; Lorenzo, Joseph A.; LeonardoAguila, Hector

    2012-01-01

    Osteoclasts are specialized bone resorbing cells that derive from monocyte precursors. We have identified three populations of cells with high osteoclastogenic potential in murine bone marrow, which expressed the phenotype: B220−CD3−CD11b−/low CD115+ and either CD117hi, CD117intermediate or CD117low. We have evaluated these populations for their ability to also generate macrophages and dendritic cells. At a single cell level, the population expressing higher CD117 levels was able to generate bone-resorbing osteoclasts, phagocytic macrophages and antigen-presenting dendritic cells in vitro with efficiencies of over 90 percent, indicating that there exists a common developmental pathway for these cell types. Cells with osteoclastogenic potential also exist in blood and peripheral hematopoietic organs. Their functional meaning and/or their relationship with bone marrow progenitors is not well established. Hence, we characterized murine peripheral cell populations for their ability to form osteoclasts, macrophages and dendritic cells in vitro. The spleen and peripheral blood monocyte progenitors share phenotypic markers with bone marrow progenitors, but differ in their expression of CD11b, which was low in bone marrow but high in periphery. We propose that circulating monocyte progenitors are derived from a common bone marrow osteoclasts/macrophage/dendritic cell progenitor (OcMDC), which we have now characterized at a clonal level. However, the lineage relationship between the bone marrow and peripheral monocyte progenitors has yet to be defined. PMID:23165930

  9. Redox Regulation in Bone Marrow Failure

    DTIC Science & Technology

    2012-06-01

    Fanconi anemia mutation for hematopoietic senescence. J Cell Sci, 2007. 120(Pt 9): p. 1572-83. 2. Aylon, Y. and M. Oren, Living with p53, dying of p53...aplastic anemia patients with a p38 MAPK inhibitor can restore defective hematopoietic activity, suggesting the critical role of p38 in bone marrow...hematopoietic stem cells, and eventually leading to bone marrow failure [7, 8] [9] [10]. On the other hand, treating aplastic anemia patients with a p38

  10. Bone marrow uptake of 99mTc-MIBI in patients with multiple myeloma.

    PubMed

    Fonti, R; Del Vecchio, S; Zannetti, A; De Renzo, A; Di Gennaro, F; Catalano, L; Califano, C; Pace, L; Rotoli, B; Salvatore, M

    2001-02-01

    In a previous study, we showed the ability of technetium-99m methoxyisobutylisonitrile (99mTc-MIBI) scan to identify active disease in patients with multiple myeloma (Eur J Nucl Med 1998; 25: 714-720). In particular, a semiquantitative score of the extension and intensity of bone marrow uptake was derived and correlated with both the clinical status of the disease and plasma cell bone marrow infiltration. In order to estimate quantitatively 99mTc-MIBI bone marrow uptake and to verify the intracellular localization of the tracer, bone marrow samples obtained from 24 multiple myeloma patients, three patients with monoclonal gammopathy of undetermined significance (MGUS) and two healthy donors were studied for in vitro uptake. After centrifugation over Ficoll-Hypaque gradient, cell suspensions were incubated with 99mTc-MIBI and the uptake was expressed as the percentage of radioactivity specifically retained within the cells. The cellular localization of the tracer was assessed by micro-autoradiography. Twenty-two out of 27 patients underwent 99mTc-MIBI scan within a week of bone marrow sampling. Whole-body images were obtained 10 min after intravenous injection of 555 MBq of the tracer; the extension and intensity of 99mTc-MIBI uptake were graded using the semiquantitative score. A statistically significant correlation was found between in vitro uptake of 99mTc-MIBI and both plasma cell infiltration (Pearson's coefficient of correlation r=0.69, P<0.0001) and in vivo score (Spearman rank correlation coefficient r=0.60, P<0.01). No specific tracer uptake was found in bone marrow samples obtained from the two healthy donors. Micro-autoradiography showed localization of 99mTc-MIBI inside the plasma cells infiltrating the bone marrow. Therefore, our findings show that the degree of tracer uptake both in vitro and in vivo is related to the percentage of infiltrating plasma cells which accumulate the tracer in their inner compartments.

  11. Can lung function measurements be used to predict which patients will be at risk of developing interstitial pneumonitis after bone marrow transplantation?

    PubMed

    Milburn, H J; Prentice, H G; du Bois, R M

    1992-06-01

    Lung function often deteriorates after bone marrow transplantation for haematological malignancies. Whether pulmonary function measurements are useful for monitoring patients' progress after transplantation and for alerting clinicians to the development of pneumonitis is uncertain. Serial pulmonary function measurements were made in 39 patients with a haematological malignancy, and the values from 18 recipients of T cell depleted allogeneic (n = 17) or autologous (n = 1) bone marrow transplants who developed interstitial pneumonitis were compared retrospectively with values from 21 recipients of allogeneic (n = 17) or autologous (n = 4) transplants who did not develop pneumonitis. Lung function was measured at the onset of a further 18 episodes of pneumonitis. Measurements made before transplantation showed no difference in forced expiratory volume in one second (FEV1), transfer factor for carbon monoxide (TLCO), or total lung capacity between the two groups, but the forced vital capacity (FVC) was slightly higher in those who developed pneumonitis (mean (SD)% predicted 104 (12)) than in those who did not (93 (17%)). Six weeks and three months after transplantation all pulmonary function measurements had fallen slightly in both groups but TLCO had fallen considerably more in those who later developed pneumonitis, being 71% (SD 11%) and 77% (7%) of pretransplant values in patients who later developed pneumonitis compared with 109% (38%) and 96% (26%) in those who did not. All lung function measurements were significantly lower at the onset of pneumonitis than three months after transplantation, even in patients with no abnormal signs and a normal chest radiograph. Serial measurements of gas transfer before and after bone marrow transplantation may be useful for predicting which patients will be at risk of developing pneumonitis and may help to diagnose pneumonitis in breathless patients with no abnormal signs.

  12. Autologous bone marrow transplantation in relapsed adult acute leukemia.

    PubMed

    Dicke, K A; Zander, A R; Spitzer, G; Verma, D S; Peters, L J; Vellekoop, L; Thomson, S; Stewart, D; Hester, J P; McCredie, K B

    1979-01-01

    From March, 1976 to February, 1979, 28 cases of adult acute leukemia of which 24 were evaluable were treated in irreversible relapse with high dose chemotherapy (piperazinedione) and supra-lethal total body irradiation (TBI) in conjunction with autologous bone marrow transplantation (ABMT). The marrow cells grafted were collected and stored in liquid nitrogen at the time of remission. In 12 patients the marrow cells were fractionated using discontinuous albumin gradients in an attempt to separate normal cells from residual leukemic cells. Twelve patients achieved complete remission (CR); in 9 additional patients signs of engraftment were evident but death occurred before achievement of CR. Seven of 12 AML patients, which were treated with bone marrow transplantation as first treatment of their relapse, achieved CR. Four of 5 patients with ALL, whose bone marrows were collected during first remission, reached CR. The median CR duration was 4+ months and the median survival of the patients reaching CR was 6+ months. Autologous bone marrow transplantation offers a good chance of CR (66%), when marrow is collected during first remission and used as first treatment for AML in third relapse and ALL in second relapse.

  13. Autologous bone marrow transplantation in relapsed adult acute leukemia.

    PubMed

    Dicke, K A; Zander, A R; Spitzer, G; Verma, D S; Peters, L; Vellekoop, L; Thomson, S; Stewart, D; McCredie, K B

    1980-01-01

    From March, 1976 to February, 1979, 28 cases of adult acute leukemia of which 24 were evaluable were treated in irreversible relapse with high dose chemotherapy (piperazinedione) and supra-lethal total body irradiation (TBI) in conjunction with autologous bone marrow transplantation (ABMT). The marrow cells grafted were collected and stored in liquid nitrogen at the time of remission. In 12 patients the marrow cells were fractionated using discontinuous albumin gradients in an attempt to separate normal cells from residual leukemic cells. Twelve patients achieved complete remission (CR); in 9 additional patients signs of engraftment were evident but death occurred before achievement of CR. Seven of 12 AML patients, which were treated with bone marrow transplantation as first treatment of their relapse, achieved CR. Four of 5 patients with ALL, whose bone marrows were collected during first remission, reached CR. The median CR duration was 4+ months and the median survival of the patients reaching CR was 6+ months. Autologous bone marrow transplantation offers a good chance of CR (66%) when marrow is collected during first remission and used as first treatment for AML in third relapse and ALL in second relapse.

  14. Distinct bone marrow blood vessels differentially regulate haematopoiesis.

    PubMed

    Itkin, Tomer; Gur-Cohen, Shiri; Spencer, Joel A; Schajnovitz, Amir; Ramasamy, Saravana K; Kusumbe, Anjali P; Ledergor, Guy; Jung, Yookyung; Milo, Idan; Poulos, Michael G; Kalinkovich, Alexander; Ludin, Aya; Kollet, Orit; Shakhar, Guy; Butler, Jason M; Rafii, Shahin; Adams, Ralf H; Scadden, David T; Lin, Charles P; Lapidot, Tsvee

    2016-04-21

    Bone marrow endothelial cells (BMECs) form a network of blood vessels that regulate both leukocyte trafficking and haematopoietic stem and progenitor cell (HSPC) maintenance. However, it is not clear how BMECs balance these dual roles, and whether these events occur at the same vascular site. We found that mammalian bone marrow stem cell maintenance and leukocyte trafficking are regulated by distinct blood vessel types with different permeability properties. Less permeable arterial blood vessels maintain haematopoietic stem cells in a low reactive oxygen species (ROS) state, whereas the more permeable sinusoids promote HSPC activation and are the exclusive site for immature and mature leukocyte trafficking to and from the bone marrow. A functional consequence of high permeability of blood vessels is that exposure to blood plasma increases bone marrow HSPC ROS levels, augmenting their migration and differentiation, while compromising their long-term repopulation and survival. These findings may have relevance for clinical haematopoietic stem cell transplantation and mobilization protocols.

  15. Bone marrow fat: linking adipocyte-induced inflammation with skeletal metastases

    PubMed Central

    Hardaway, Aimalie L.; Herroon, Mackenzie K.; Rajagurubandara, Erandi

    2014-01-01

    Adipocytes are important but underappreciated components of bone marrow microenvironment, and their numbers greatly increase with age, obesity, and associated metabolic pathologies. Age and obesity are also significant risk factors for development of metastatic prostate cancer. Adipocytes are metabolically active cells that secrete adipokines, growth factors, and inflammatory mediators; influence behavior and function of neighboring cells; and have a potential to disturb local milleu and dysregulate normal bone homeostasis. Increased marrow adiposity has been linked to bone marrow inflammation and osteoporosis of the bone, but its effects on growth and progression of prostate tumors that have metastasized to the skeleton are currently not known. This review focuses on fat-bone relationship in a context of normal bone homeostasis and metastatic tumor growth in bone. We discuss effects of marrow fat cells on bone metabolism, hematopoiesis, and inflammation. Special attention is given to CCL2- and COX-2-driven pathways and their potential as therapeutic targets for bone metastatic disease. PMID:24398857

  16. Rapid isolation of bone marrow mesenchymal stromal cells using integrated centrifuge-based technology.

    PubMed

    Meppelink, Amanda M; Wang, Xing-Hua; Bradica, Gino; Barron, Kathryn; Hiltz, Kathleen; Liu, Xiang-Hong; Goldman, Scott M; Vacanti, Joseph P; Keating, Armand; Hoganson, David M

    2016-06-01

    The use of bone marrow-derived mesenchymal stromal cells (MSCs) in cell-based therapies is currently being developed for a number of diseases. Thus far, the clinical results have been inconclusive and variable, in part because of the variety of cell isolation procedures and culture conditions used in each study. A new isolation technique that streamlines the method of concentration and demands less time and attention could provide clinical and economic advantages compared with current methodologies. In this study, we evaluated the concentrating capability of an integrated centrifuge-based technology compared with standard Ficoll isolation. MSCs were concentrated from bone marrow aspirate using the new device and the Ficoll method. The isolation capabilities of the device and the growth characteristics, secretome production, and differentiation capacity of the derived cells were determined. The new MSC isolation device concentrated the bone marrow in 90 seconds and resulted in a mononuclear cell yield 10-fold higher and with a twofold increase in cell retention compared with Ficoll. The cells isolated using the device were shown to exhibit similar morphology and functional activity as assessed by growth curves and secretome production compared to the Ficoll-isolated cells. The surface marker and trilineage differentiation profile of the device-isolated cells was consistent with the known profile of MSCs. The faster time to isolation and greater cell yield of the integrated centrifuge-based technology may make this an improved approach for MSC isolation from bone marrow aspirates. Copyright © 2016 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  17. [Assessment of therapeutic results for simple bone cyst with percutaneous injection of autogenous bone marrow].

    PubMed

    Wang, Enbo; Zhao, Qun; Zhang, Lijun

    2006-09-01

    To evaluate the therapeutic results of percutaneous injection of autogenous bone marrow for simple bone cyst and to analyze the prognostic factors of the treatment. From March 2000 to June 2005, 31 patients with simple bone cysts were treated by percutaneous injection of autogenous bone marrow. Of 31 patients, there were 18 males and 13 females, aged 5 years and 7 months to 15 years. The locations were proximal humerus in 18 cases, proximal femur in 7 cases and other sites in 6 cases. Two cases were treated with repeated injections. The operative process included percutaneous aspiration of fluid in the bone cysts and injection of autogenous bone marrow aspirated from posterior superior iliac spine. The mean volume of marrow injected was 40 ml (30-70 ml). No complications were noted during treatment. Thirty patients were followed for an average of 2.2 years (1-5 years) with 2 cases out of follow-up. After one injection of bone marrow, 9 cysts (29.0%) were healed up completely, 7 cysts (22.6%) basically healed up, 13 cysts (41.9%) healed up partially and 2 (6.5%) had no response. The satisfactory and effective rates were 67.7% and 93.5% respectively. There was significant difference between active stage group and resting stage group(P<0.05). There were no statistically significant difference in therapeutic results between groups of different ages, lesion sites or bone marrow hyperplasia(P>0.05). Percutaneous injection of autogenous bone marrow is a safe and effective method to treat simple bone cyst, but repeated injections is necessary for some patients. The therapeutic results are better in cysts at resting stage than those at active stage.

  18. Evaluation of mRNA expression levels and electrophysiological function of neuron-like cells derived from canine bone marrow stromal cells.

    PubMed

    Nakano, Rei; Edamura, Kazuya; Sugiya, Hiroshi; Narita, Takanori; Okabayashi, Ken; Moritomo, Tadaaki; Teshima, Kenji; Asano, Kazushi; Nakayama, Tomohiro

    2013-10-01

    To investigate the in vitro differentiation of canine bone marrow stromal cells (BMSCs) into functional, mature neurons. Bone marrow from 6 adult dogs. BMSCs were isolated from bone marrow and chemically induced to develop into neurons. The morphology of the BMSCs during neuronal induction was monitored, and immunocytochemical analyses for neuron markers were performed after the induction. Real-time PCR methods were used to evaluate the mRNA expression levels of markers for neural stem or progenitor cells, neurons, and ion channels, and western blotting was used to assess the expression of neuronal proteins before and after neuronal induction. The electrophysiological properties of the neuron-like cells induced from canine BMSCs were evaluated with fluorescent dye to monitor Ca(2)+ influx. Canine BMSCs developed a neuron-like morphology after neuronal induction. Immunocytochemical analysis revealed that these neuron-like cells were positive for neuron markers. After induction, the cells' mRNA expression levels of almost all neuron and ion channel markers increased, and the protein expression levels of nestin and neurofilament-L increased significantly. However, the neuron-like cells derived from canine BMSCs did not have the Ca(2)+ influx characteristic of spiking neurons. Although canine BMSCs had neuron-like morphological and biochemical properties after induction, they did not develop the electrophysiological characteristics of neurons. Thus, these results have suggested that canine BMSCs could have the capacity to differentiate into a neuronal lineage, but the differentiation protocol used may have been insufficient to induce development into functional neurons.

  19. Persistent injury-associated anemia: the role of the bone marrow microenvironment.

    PubMed

    Millar, Jessica K; Kannan, Kolenkode B; Loftus, Tyler J; Alamo, Ines G; Plazas, Jessica; Efron, Philip A; Mohr, Alicia M

    2017-06-15

    The regulation of erythropoiesis involves hematopoietic progenitor cells, bone marrow stroma, and the microenvironment. Following severe injury, a hypercatecholamine state develops that is associated with increased mobilization of hematopoietic progenitor cells to peripheral blood and decreased growth of bone marrow erythroid progenitor cells that manifests clinically as a persistent injury-associated anemia. Changes within the bone marrow microenvironment influence the development of erythroid progenitor cells. Therefore, we sought to determine the effects of lung contusion, hemorrhagic shock, and chronic stress on the hematopoietic cytokine response. Bone marrow was obtained from male Sprague-Dawley rats (n = 6/group) killed 7 d after lung contusion followed by hemorrhagic shock (LCHS) or LCHS followed by daily chronic restraint stress (LCHS/CS). End point polymerase chain reaction was performed for interleukin-1β, interleukin-10, stem cell factor, transforming growth factor-β, high-mobility group box-1 (HMGB-1), and B-cell lymphoma-extra large. Seven days following LCHS and LCHS/CS, bone marrow expression of prohematopoietic cytokines (interleukin-1β, interleukin-10, stem cell factor, and transforming growth factor-β) was significantly decreased, and bone marrow expression of HMGB-1 was significantly increased. B-cell lymphoma-extra large bone marrow expression was not affected by LCHS or LCHS/CS (naïve: 44 ± 12, LCHS: 44 ± 12, LCHS/CS: 37 ± 1, all P > 0.05). The bone marrow microenvironment was significantly altered following severe trauma in a rodent model. Prohematopoietic cytokines were downregulated, and the proinflammatory cytokine HMGB-1 had increased bone marrow expression. Modulation of the bone marrow microenvironment may represent a therapeutic strategy following severe trauma to alleviate persistent injury-associated anemia. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Bone marrow osteoblast vulnerability to chemotherapy

    PubMed Central

    Gencheva, Marieta; Hare, Ian; Kurian, Susan; Fortney, Jim; Piktel, Debbie; Wysolmerski, Robert; Gibson, Laura F.

    2013-01-01

    Osteoblasts are a major component of the bone marrow microenvironment which provide support for hematopoietic cell development. Functional disruption of any element of the bone marrow niche, including osteoblasts, can potentially impair hematopoiesis. We have studied the effect of two widely used drugs with different mechanisms of action, etoposide (VP16) and melphalan, on murine osteoblasts at distinct stages of maturation. VP16 and melphalan delayed maturation of preosteoblasts and altered CXCL12 protein levels, a key regulator of hematopoietic cell homing to the bone marrow. Sublethal concentrations of VP16 and melphalan also decreased the levels of several transcripts which contribute to the composition of the extracellular matrix (ECM) including osteopontin (OPN), osteocalcin (OCN) and collagen 1A1 (Col1a1). The impact of chemotherapy on message and protein levels for some targets was not always aligned, suggesting differential responses at the transcription and translation or protein stability levels. Since one of the main functions of a mature osteoblast is to synthesize ECM of a defined composition, disruption of the ratio of its components may be one mechanism by which chemotherapy affects the ability of osteoblasts to support hematopoietic recovery coincident with altered marrow architecture. Collectively, these observations suggest that the osteoblast compartment of the marrow hematopoietic niche is vulnerable to functional dysregulation by damage imposed by agents frequently used in clinical settings. Understanding the mechanistic underpinning of chemotherapy-induced changes on the hematopoietic support capacity of the marrow microenvironment may contribute to improved strategies to optimize patient recovery post-transplantation. PMID:23551534

  1. [Endogenous pyrogen formation by bone marrow cells].

    PubMed

    Efremov, O M; Sorokin, A V; El'kina, O A

    1978-01-01

    The cells of the rabbit bone marrow produced endogenous pyrogen in response to stimulation with bacterial lipopolysaccharide. Incubation of the cells in medium No 199 containing a 15% homologous serum is optimal for the release of pyrogen. It is supposed that the cells of the bone marrow take part in the formation of endgenous pyrogen and in the mechanism of pyrexia in the organism.

  2. Secretome within the bone marrow microenvironment: A basis for mesenchymal stem cell treatment and role in cancer dormancy.

    PubMed

    Eltoukhy, Hussam S; Sinha, Garima; Moore, Caitlyn; Gergues, Marina; Rameshwar, Pranela

    2018-05-31

    The secretome produced by cells within the bone marrow is significant to homeostasis. The bone marrow, a well-studied organ, has multiple niches with distinct roles for supporting stem cell functions. Thus, an understanding of mediators involved in the regulation of stem cells could serve as a model for clinical problems and solutions such as tissue repair and regeneration. The exosome secretome of bone marrow stem cells is a developing area of research with respect to the regenerative potential by bone marrow cell, particularly the mesenchymal stem cells. The bone marrow niche regulates endogenous processes such as hematopoiesis but could also support the survival of tumors such as facilitating the cancer stem cells to exist in dormancy for decades. The bone marrow-derived secretome will be critical to future development of therapeutic strategies for oncologic diseases, in addition to regenerative medicine. This article discusses the importance for parallel studies to determine how the same secretome may compromise safety during the use of stem cells in regenerative medicine. Copyright © 2018 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  3. Karyotype of cryopreserved bone marrow cells.

    PubMed

    Chauffaille, M L L F; Pinheiro, R F; Stefano, J T; Kerbauy, J

    2003-07-01

    The analysis of chromosomal abnormalities is important for the study of hematological neoplastic disorders since it facilitates classification of the disease. The ability to perform chromosome analysis of cryopreserved malignant marrow or peripheral blast cells is important for retrospective studies. In the present study, we compared the karyotype of fresh bone marrow cells (20 metaphases) to that of cells stored with a simplified cryopreservation method, evaluated the effect of the use of granulocyte-macrophage colony-stimulating factor (GM-CSF) as an in vitro mitotic index stimulator, and compared the cell viability and chromosome morphology of fresh and cryopreserved cells whenever possible (sufficient metaphases for analysis). Twenty-five bone marrow samples from 24 patients with hematological disorders such as acute myeloid leukemia, acute lymphoblastic leukemia, myelodysplastic syndrome, chronic myeloid leukemia, megaloblastic anemia and lymphoma (8, 3, 3, 8, 1, and 1 patients, respectively) were selected at diagnosis, at relapse or during routine follow-up and one sample was obtained from a bone marrow donor after informed consent. Average cell viability before and after freezing was 98.8 and 78.5%, respectively (P < 0.05). Cytogenetic analysis was successful in 76% of fresh cell cultures, as opposed to 52% of cryopreserved samples (P < 0.05). GM-CSF had no proliferative effect before or after freezing. The morphological aspects of the chromosomes in fresh and cryopreserved cells were subjectively the same. The present study shows that cytogenetic analysis of cryopreserved bone marrow cells can be a reliable alternative when fresh cell analysis cannot be done, notwithstanding the reduced viability and lower percent of successful analysis that are associated with freezing.

  4. Subclinical pulmonary function defects following autologous and allogeneic bone marrow transplantation: relationship to total body irradiation and graft-versus-host disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tait, R.C.; Burnett, A.K.; Robertson, A.G.

    1991-06-01

    Pulmonary function results pre- and post-transplant, to a maximum of 4 years, were analyzed in 98 patients with haematological disorders undergoing allogeneic (N = 53) or autologous bone marrow transplantation (N = 45) between 1982 and 1988. All received similar total body irradiation based regimens ranging from 9.5 Gy as a single fraction to 14.4 Gy fractionated. FEV1/FVC as a measure of airway obstruction showed little deterioration except in patients experiencing graft-versus-host disease in whom statistically significant obstructive ventilatory defects were evident by 6 months post-transplant (p less than 0.01). These defects appeared to be permanent. Restrictive ventilatory defects, asmore » measured by reduction in TLC, and defects in diffusing capacity (DLCO and KCO) were also maximal at 6 months post-transplant (p less than 0.01). Both were related, at least in part, to the presence of GVHD (p less than 0.01) or use of single fraction TBI with absorbed lung dose of 8.0 Gy (p less than 0.05). Fractionated TBI resulted in less marked restricted ventilation and impaired gas exchange, which reverted to normal by 2 years, even when the lung dose was increased from 11.0 Gy to between 12.0 and 13.5 Gy. After exclusion of patients with GVHD (30% allografts) there was no significant difference in pulmonary function abnormalities between autograft and allograft recipients.« less

  5. [Hypoplastic acute promyelocytic leukemia with continuous hypocellular bone marrow after remission].

    PubMed

    Nakamura, Toshiki; Makiyama, Junya; Matsuura, Ayumi; Kurohama, Hirokazu; Kitanosono, Hideaki; Ito, Masahiro; Yoshida, Shinichiro; Miyazaki, Yasushi

    2018-01-01

    An 87-year old female presented with unsteady gait and occasional subcutaneous hematomas. Blood examination findings revealed pancytopenia and mild coagulopathy. Both the histopathological evaluation of bone marrow smears and bone marrow biopsy revealed a hypocellular bone marrow. However, APL cells were observed and PML-RARA fusion gene was detected. On the basis of these findings, the patient was diagnosed with hypoplastic acute promyelocytic leukemia. She received ATRA treatment and achieved complete remission (CR) 29 days from the commencement of therapy. After the first CR, she received two courses of ATO as a consolidation therapy. Following the latter treatments, she maintained CR, but a hypoplastic bone marrow was still observed. Hypoplastic AML is defined as AML with a low bone marrow cellularity. It is clinically important to distinguish it from aplastic anemia and hypoplastic MDS. It has been suggested that both cytogenetic and morphological diagnosis are imperative to the differential diagnosis of hypocellular bone marrow.

  6. Osteogenic Performance of Donor-Matched Human Adipose and Bone Marrow Mesenchymal Cells Under Dynamic Culture

    PubMed Central

    Wu, Wei; Le, Andrew V.; Mendez, Julio J.; Chang, Julie; Niklason, Laura E.

    2015-01-01

    Adipose-derived mesenchymal cells (ACs) and bone marrow-derived mesenchymal cells (BMCs) have been widely used for bone regeneration and can be seeded on a variety of rigid scaffolds. However, to date, a direct comparison of mesenchymal cells (MC) harvested from different tissues from the same donor and cultured in identical osteogenic conditions has not been investigated. Indeed, it is unclear whether marrow-derived or fat-derived MC possess intrinsic differences in bone-forming capabilities, since within-patient comparisons have not been previously done. This study aims at comparing ACs and BMCs from three donors ranging in age from neonatal to adult. Matched cells from each donor were studied in three distinct bioreactor settings, to determine the best method to create a viable osseous engineered construct. Human ACs and BMCs were isolated from each donor, cultured, and seeded on decellularized porcine bone (DCB) constructs. The constructs were then subjected to either static or dynamic (stirring or perfusion) bioreactor culture conditions for 7–21 days. Afterward, the constructs were analyzed for cell adhesion and distribution and osteogenic differentiation. ACs demonstrated higher seeding efficiency than BMCs. However, static and dynamic culture significantly increased BMCs proliferation more than ACs. In all conditions, BMCs demonstrated stronger osteogenic activity as compared with ACs, through higher alkaline phosphatase activity and gene expression for various bony markers. Conversely, ACs expressed more collagen I, which is a nonspecific matrix molecule in most connective tissues. Overall, dynamic bioreactor culture conditions enhanced osteogenic gene expression in both ACs and BMCs. Scaffolds seeded with BMCs in dynamic stirring culture conditions exhibit the greatest osteogenic proliferation and function in vitro, proving that marrow-derived MC have superior bone-forming potential as compared with adipose-derived cells. PMID:25668104

  7. Tenogenesis of bone marrow-, adipose-, and tendon-derived stem cells in a dynamic bioreactor.

    PubMed

    Youngstrom, Daniel W; LaDow, Jade E; Barrett, Jennifer G

    2016-11-01

    Tendons are frequently damaged and fail to regenerate, leading to pain, loss of function, and reduced quality of life. Mesenchymal stem cells (MSCs) possess clinically useful tissue-regenerative properties and have been exploited for use in tendon tissue engineering and cell therapy. However, MSCs exhibit phenotypic heterogeneity based on the donor tissue used, and the efficacy of cell-based treatment modalities may be improved by optimizing cell source based on relative differentiation capacity. Equine MSCs were isolated from bone marrow (BM), adipose (AD), and tendon (TN), expanded in monolayer prior to seeding on decellularized tendon scaffolds (DTS), and cell-laden constructs were placed in a bioreactor designed to mimic the biophysical environment of the tendon. It was hypothesized that TN MSCs would differentiate toward a tendon cell phenotype better than BM and AD MSCs in response to a conditioning period involving cyclic mechanical stimulation for 1 hour per day at 3% strain and 0.33 Hz. All cell types integrated into DTS adopted an elongated morphology similar to tenocytes, expressed tendon marker genes, and improved tissue mechanical properties after 11 days. TN MSCs expressed the greatest levels of scleraxis, collagen type-I, and cartilage oligomeric matrix protein. Major histocompatibility class-II protein mRNA expression was not detected in any of the MSC types, suggesting low immunogenicity for allogeneic transplantation. The results suggest that TN MSCs are the ideal cell type for regenerative medicine therapies for tendinopathies, exhibiting the most mature tendon-like phenotype in vitro. When TN MSCs are unavailable, BM or AD MSCs may serve as robust alternatives.

  8. Survival of irradiated recipient mice after transplantation of bone marrow from young, old and “early aging” mice

    PubMed Central

    Guest, Ian; Ilic, Zoran; Sell, Stewart

    2015-01-01

    Bone marrow transplantation is used to examine survival, hematopoietic stem cell function and pathology in recipients of young and old wild type bone marrow derived stem cells (BMDSCs) as well as cells from p53-based models of premature aging. There is no difference in the long term survival of recipients of 8 week-old p53+/m donor cells compared to recipients of 8 week-old wild-type (WT) donor cells (70 weeks) or of recipients of 16–18 weeks-old donor cells from either p53+/m or WT mice. There is shorter survival in recipients of older versus younger WT donor bone marrow, but the difference is only significant when comparing 8 and 18 week-old donors. In the p44-based model, short term survival/engraftment is significantly reduced in recipients of 11 month-old p44 donor cells compared to 4 week-old p44 or wild type donor cells of either age; mid-life survival at 40 weeks is also significantly less in recipients of p44 cells. BMDSCs are readily detectable within recipient bone marrow, lymph node, intestinal villi and liver sinusoids, but not in epithelial derived cells. These results indicate that recipients of young BMDSCs may survive longer than recipients of old bone marrow, but the difference is marginal at best. PMID:26796640

  9. Bone marrow invasion in multiple myeloma and metastatic disease.

    PubMed

    Vilanova, J C; Luna, A

    2016-04-01

    Magnetic resonance imaging (MRI) of the spine is the imaging study of choice for the management of bone marrow disease. MRI sequences enable us to integrate structural and functional information for detecting, staging, and monitoring the response the treatment of multiple myeloma and bone metastases in the spine. Whole-body MRI has been incorporated into different guidelines as the technique of choice for managing multiple myeloma and metastatic bone disease. Normal physiological changes in the yellow and red bone marrow represent a challenge in analyses to differentiate clinically significant findings from those that are not clinically significant. This article describes the findings for normal bone marrow, variants, and invasive processes in multiple myeloma and bone metastases. Copyright © 2015 SERAM. Published by Elsevier España, S.L.U. All rights reserved.

  10. Prolonged neutropenia due to antihuman neutrophil antigen 2 (CD177) antibody after bone marrow transplantation.

    PubMed

    Wada, Taizo; Miyamoto, Satoshi; Okamoto, Hiroyuki; Matsuda, Yusuke; Toma, Tomoko; Imai, Kohsuke; Takagi, Masatoshi; Morio, Tomohiro; Yachie, Akihiro

    2017-07-01

    We describe a patient who presented with prolonged neutropenia due to anti-human neutrophil antigen (HNA)-2 (CD177) antibody after allogeneic bone marrow transplantation. A granulocyte immunofluorescence test showed bimodal expression of antineutrophil antibody that resulted from specific binding of anti-HNA-2 to CD177 + neutrophils from healthy donors. The patient did not respond to granulocyte colony stimulating factor, which is able to upregulate CD177 expression on neutrophils. The low percentage of CD177 + cells in the few remaining neutrophils supports the possibility of elimination of CD177-upregulated neutrophils. These findings might explain an inferior response to neutrophil growth factors in neutropenia secondary to anti-HNA-2 antibody. © 2016 Wiley Periodicals, Inc.

  11. Mycobacterium tuberculosis Contaminant Risk on Bone Marrow Aspiration Material from Iliac Bone Patients with Active Tuberculous Spondylitis.

    PubMed

    Rahyussalim, Ahmad Jabir; Kurniawati, Tri; Rukmana, Andriansjah

    2016-01-01

    There was a concern on Mycobacterium tuberculosis spreading to the bone marrow, when it was applied on tuberculous spine infection. This research aimed to study the probability of using autologous bone marrow as a source of mesenchymal stem cell for patients with tuberculous spondylitis. As many as nine patients with tuberculous spondylitis were used as samples. During the procedure, the vertebral lesion material and iliac bone marrow aspirates were obtained for acid fast staining, bacteria culture, and PCR (polymerase chain reaction) tests for Mycobacterium tuberculosis at the Clinical Microbiology Laboratory of Faculty of Medicine Universitas Indonesia. This research showed that there was a relationship between diagnostic confirmation of tuberculous spondylitis based on the PCR test and bacterial culture on the solid vertebral lesion material with the PCR test and bacterial culture from the bone marrow aspirates. If the diagnostic confirmation concluded positive results, then there was a higher probability that there would be a positive result for the bone marrow aspirates, so that it was not recommended to use autologous bone marrow as a source of mesenchymal stem cell for patients with tuberculous spondylitis unless the PCR and culture examination of the bone marrow showed a negative result.

  12. Platelet transfusion refractoriness attributable to HLA antibodies produced by donor-derived cells after allogeneic bone marrow transplantation from one HLA-antigen-mismatched mother.

    PubMed

    Hatakeyama, Naoki; Hori, Tsukasa; Yamamoto, Masaki; Inazawa, Natsuko; Iesato, Kotoe; Miyazaki, Toru; Ikeda, Hisami; Tsutsumi, Hiroyuki; Suzuki, Nobuhiro

    2011-12-01

    PTR is a serious problem in patients being treated for hematologic disorders. Two patients with acute leukemia developed PTR after allogeneic BMT from one HLA-antigen-mismatched mother attributable to HLA antibodies, which could not be detected in their serum before BMT. HLA antibodies, whose specificity resembled that of each patient, were detected in each donor's serum. Each donor had probably been immunized during pregnancy by their partner's HLA antigens expressed by the fetus, consequently, transplanted donor-derived cells provoked HLA antibodies in each recipient early after BMT, and those HLA antibodies induced PTR. If the mothers are selected as donors for their children, they should be tested for the presence of HLA antibodies. © 2010 John Wiley & Sons A/S.

  13. A novel strontium(II)-modified calcium phosphate bone cement stimulates human-bone-marrow-derived mesenchymal stem cell proliferation and osteogenic differentiation in vitro.

    PubMed

    Schumacher, M; Lode, A; Helth, A; Gelinsky, M

    2013-12-01

    In the present study, the in vitro effects of novel strontium-modified calcium phosphate bone cements (SrCPCs), prepared using two different approaches on human-bone-marrow-derived mesenchymal stem cells (hMSCs), were evaluated. Strontium ions, known to stimulate bone formation and therefore already used in systemic osteoporosis therapy, were incorporated into a hydroxyapatite-forming calcium phosphate bone cement via two simple approaches: incorporation of strontium carbonate crystals and substitution of Ca(2+) by Sr(2+) ions during cement setting. All modified cements released 0.03-0.07 mM Sr(2+) under in vitro conditions, concentrations that were shown not to impair the proliferation or osteogenic differentiation of hMSCs. Furthermore, strontium modification led to a reduced medium acidification and Ca(2+) depletion in comparison to the standard calcium phosphate cement. In indirect and direct cell culture experiments with the novel SrCPCs significantly enhanced cell proliferation and differentiation were observed. In conclusion, the SrCPCs described here could be beneficial for the local treatment of defects, especially in the osteoporotic bone. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Thymocytes may persist and differentiate without any input from bone marrow progenitors

    PubMed Central

    Peaudecerf, Laetitia; Lemos, Sara; Galgano, Alessia; Krenn, Gerald; Vasseur, Florence; Di Santo, James P.; Ezine, Sophie

    2012-01-01

    Thymus transplants can correct deficiencies of the thymus epithelium caused by the complete DiGeorge syndrome or FOXN1 mutations. However, thymus transplants were never used to correct T cell–intrinsic deficiencies because it is generally believed that thymocytes have short intrinsic lifespans. This notion is based on thymus transplantation experiments where it was shown that thymus-resident cells were rapidly replaced by progenitors originating in the bone marrow. In contrast, here we show that neonatal thymi transplanted into interleukin 7 receptor–deficient hosts harbor populations with extensive capacity to self-renew, and maintain continuous thymocyte generation and export. These thymus transplants reconstitute the full diversity of peripheral T cell repertoires one month after surgery, which is the earliest time point studied. Moreover, transplantation experiments performed across major histocompatibility barriers show that allogeneic transplanted thymi are not rejected, and allogeneic cells do not induce graft-versus-host disease; transplants induced partial or total protection to infection. These results challenge the current dogma that thymocytes cannot self-renew, and indicate a potential use of neonatal thymus transplants to correct T cell–intrinsic deficiencies. Finally, as found with mature T cells, they show that thymocyte survival is determined by the competition between incoming progenitors and resident cells. PMID:22778388

  15. Three-Dimensional Arrangement of Human Bone Marrow Microvessels Revealed by Immunohistology in Undecalcified Sections

    PubMed Central

    Wilhelmi, Verena; Seiler, Anja; Lampp, Katrin; Neff, Andreas; Guthe, Michael; Lobachev, Oleg

    2016-01-01

    The arrangement of microvessels in human bone marrow is so far unknown. We combined monoclonal antibodies against CD34 and against CD141 to visualise all microvessel endothelia in 21 serial sections of about 1 cm2 size derived from a human iliac crest. The specimen was not decalcified and embedded in Technovit® 9100. In different regions of interest, the microvasculature was reconstructed in three dimensions using automatic methods. The three-dimensional models were subject to a rigid semiautomatic and manual quality control. In iliac crest bone marrow, the adipose tissue harbours irregularly distributed haematopoietic areas. These are fed by networks of large sinuses, which are loosely connected to networks of small capillaries prevailing in areas of pure adipose tissue. Our findings are compatible with the hypothesis that capillaries and sinuses in human iliac crest bone marrow are partially arranged in parallel. PMID:27997569

  16. Successful pregnancy after total body irradiation and bone marrow transplantation for acute leukaemia.

    PubMed

    Giri, N; Vowels, M R; Barr, A L; Mameghan, H

    1992-07-01

    We report successful pregnancies in two young women (aged 24 and 20 years) following allogeneic bone marrow transplantation (BMT) for acute non-lymphoblastic leukaemia. Conditioning therapy consisted of cyclophosphamide (120 mg/kg) and total body irradiation (TBI, 12 Gy) in 2 Gy fractions once daily for 6 days or twice daily for 3 days. Graft-versus-host disease prophylaxis was with methotrexate alone. Both women were amenorrhoeic after BMT and gonadal testing indicated hypergonadotrophic hypogonadism. Both women had normal pregnancies (2 years and 5 years after BMT) resulting in normal healthy infants. Previously successful pregnancy has been reported after TBI in three women in whom the TBI dose was less than 8 Gy. Our cases illustrate that normal outcome of pregnancy is possible at even higher doses of TBI.

  17. T-cell acute leukaemia exhibits dynamic interactions with bone marrow microenvironments.

    PubMed

    Hawkins, Edwin D; Duarte, Delfim; Akinduro, Olufolake; Khorshed, Reema A; Passaro, Diana; Nowicka, Malgorzata; Straszkowski, Lenny; Scott, Mark K; Rothery, Steve; Ruivo, Nicola; Foster, Katie; Waibel, Michaela; Johnstone, Ricky W; Harrison, Simon J; Westerman, David A; Quach, Hang; Gribben, John; Robinson, Mark D; Purton, Louise E; Bonnet, Dominique; Lo Celso, Cristina

    2016-10-27

    It is widely accepted that complex interactions between cancer cells and their surrounding microenvironment contribute to disease development, chemo-resistance and disease relapse. In light of this observed interdependency, novel therapeutic interventions that target specific cancer stroma cell lineages and their interactions are being sought. Here we studied a mouse model of human T-cell acute lymphoblastic leukaemia (T-ALL) and used intravital microscopy to monitor the progression of disease within the bone marrow at both the tissue-wide and single-cell level over time, from bone marrow seeding to development/selection of chemo-resistance. We observed highly dynamic cellular interactions and promiscuous distribution of leukaemia cells that migrated across the bone marrow, without showing any preferential association with bone marrow sub-compartments. Unexpectedly, this behaviour was maintained throughout disease development, from the earliest bone marrow seeding to response and resistance to chemotherapy. Our results reveal that T-ALL cells do not depend on specific bone marrow microenvironments for propagation of disease, nor for the selection of chemo-resistant clones, suggesting that a stochastic mechanism underlies these processes. Yet, although T-ALL infiltration and progression are independent of the stroma, accumulated disease burden leads to rapid, selective remodelling of the endosteal space, resulting in a complete loss of mature osteoblastic cells while perivascular cells are maintained. This outcome leads to a shift in the balance of endogenous bone marrow stroma, towards a composition associated with less efficient haematopoietic stem cell function. This novel, dynamic analysis of T-ALL interactions with the bone marrow microenvironment in vivo, supported by evidence from human T-ALL samples, highlights that future therapeutic interventions should target the migration and promiscuous interactions of cancer cells with the surrounding microenvironment

  18. Erythropoietic bone marrow in the pigeon: Development of its distribution and volume during growth and pneumatization of bones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schepelmann, K.

    1990-01-01

    During postnatal development of the pigeon, a large portion of the skeleton becomes pneumatized, displacing the hemopoietic bone marrow. The consequences of pneumatization on distribution and quantity of bone marrow as well as the availability of other sites for hemopoiesis have been investigated. Hemopoietic marrow of differently aged pigeons divided into five groups from 1 week posthatching (p.h.) up to 6 months p.h. was labeled with Fe-59 and examined by serial whole-body sections. Autoradiography and morphometry as well as scintillation counts of single bones and organs were also carried out. No sign of a reactivation of embryonic sites of erythropoiesismore » was found. Bone marrow weight and its proportion of whole-body weight increased during the first 4 weeks p.h. from 0.54% to 2.44% and decreased in the following months to about 1.0%. The developing bone marrow showed a progressive distribution during the first months of life, eventually being distributed proportionally over the entire skeleton, except for the skull. At the age of 6 months p.h. bone marrow had been displaced, its volume decreasing in correlation to increasing pneumaticity and conversion to fatty marrow. This generates the characteristic pattern of bone marrow distribution in adult pigeons, which shows hemopoietic bone marrow in ulna, radius, femur, tibiotarsus, scapula, furcula, and the caudal vertebrae.« less

  19. Bone marrow mesenchymal stem cell-derived extracellular vesicles improve the survival of transplanted fat grafts

    PubMed Central

    Huang, He; Feng, Shaoqing; Zhang, Wenjie; Li, Wei; Xu, Peng; Wang, Xiangsheng; Ai, Ai

    2017-01-01

    Autologous fat grafting is a promising surgical technique for soft tissue augmentation, reconstruction and rejuvenation. However, it is limited by the low survival rate of the transplanted fat, due to the slow revascularization of such grafts. Previous studies have demonstrated that bone marrow mesenchymal stem cell-derived extracellular vesicles (BMSC-EVs) are proangiogenic. The present study aimed to investigate whether BMSC-EVs could improve the survival of transplanted fat grafts. Extracellular vesicles were isolated from the supernatant of cultured rat bone marrow mesenchymal stem cells, and characterized by flow cytometry and scanning electron microscopy. Their proangiogenic potential was measured in vitro using tube formation and cell migration assays. Subsequently, human fat tissue grafts, alongside various concentrations of BMSC-EVs, were subcutaneously injected into nude mice. A total of 12 weeks following transplantation, the mice were sacrificed and the grafts were harvested. The grafts from the experimental group had a higher survival rate and an increased number of vessels compared with grafts from the control group, as demonstrated by tissue volume, weight and histological analyses. Reverse transcription-quantitative polymerase chain reaction analysis indicated that the expression levels of proangiogenic factors were increased in the experimental group compared with in the control group, thus suggesting that BMSC-EVs may promote neovascularization by stimulating the secretion of proangiogenic factors. The present study is the first, to the best of our knowledge, to demonstrate that supplementation of fat grafts with BMSC-EVs improves the long-term retention and quality of transplanted fat. PMID:28713978

  20. INF-γ encoding plasmid administration triggers bone loss and disrupts bone marrow microenvironment.

    PubMed

    Agas, Dimitrios; Gusmão Silva, Guilherme; Laus, Fulvio; Marchegiani, Andrea; Capitani, Melania; Vullo, Cecilia; Catone, Giuseppe; Lacava, Giovanna; Concetti, Antonio; Marchetti, Luigi; Sabbieti, Maria Giovanna

    2017-02-01

    IFN-γ is a pleotropic cytokine produced in the bone microenvironment. Although IFN-γ is known to play a critical role on bone remodeling, its function is not fully elucidated. Consistently, outcomes on the effects of IFN-γ recombinant protein on bone loss are contradictory among reports. In our work we explored, for the first time, the role of IFN-γ encoding plasmid (pIFN-γ) in a mouse model of osteopenia induced by ovariectomy and in the sham-operated counterpart to estimate its effects in skeletal homeostasis. Ovariectomy produced a dramatic decrease of bone mineral density (BMD). pINF-γ injected mice showed a pathologic bone and bone marrow phenotype; the disrupted cortical and trabecular bone microarchitecture was accompanied by an increased release of pro-inflammatory cytokine by bone marrow cells. Moreover, mesenchymal stem cells' (MSCs) commitment to osteoblast was found impaired, as evidenced by the decline of osterix-positive (Osx + ) cells within the mid-diaphyseal area of femurs. For instance, a reduction and redistribution of CXCL12 cells have been found, in accordance with bone marrow morphological alterations. As similar effects were observed both in sham-operated and in ovariectomized mice, our studies proved that an increased IFN-γ synthesis in bone marrow might be sufficient to induce inflammatory and catabolic responses even in the absence of pathologic predisposing substrates. In addition, the obtained data might raise questions about pIFN-γ's safety when it is used as vaccine adjuvant. © 2017 Society for Endocrinology.

  1. [Bone marrow transplantation in aplastic anemia. Experience at a Mexican institution. Bone marrow transplantation group of the Salvador Zubirán National Institute of Nutrition].

    PubMed

    León-Rodríguez, E; Sosa Sánchez, R; Gómez, E; Ochoa Sosa, C

    1993-01-01

    During the period of May 1986 through February 1991, nine allogeneic bone marrow transplants (BMT) on eight severe aplastic anemia (SAA) patients were performed at the Instituto Nacional de la Nutrición Salvador Zubirán in Mexico City. Mean age at BMT was 18 years (age interval 12-30); seven were men; all patients had a clinical history of multiple blood transfusions; six individuals were infected at the time of the transplant. The conditioning regimens were: cyclophosphamide (Cy) in three patients; Cy+ total nodal radiation in five; and total nodal radiation only in the second transplant of one patient. Graft versus host disease (GVHD) prophylaxis was attempted with methotrexate plus cyclosporin A (CsA) in six patients, methylprednisolone plus CsA in two, and prednisone + CsA in the patient retransplanted. All procedures were carried out under single reverse isolation without gut decontamination. Seven of the nine procedures grafted (two cases died on days +8 and +25 due to infection). In the surviving, the median time for reaching > 1.0 white blood cells x 10(9)/L was 22 days (time interval 11-31); > 0.5 neutrophils x 10(9)/L in 27 days (time interval 15-42) and the same lapse to reach > 50 platelets x 10(9)/L. Length of hospital stay was 42 days (time interval 15-61). Acute GVHD was seen in one of the seven patients surviving the period of bone marrow aplasia (14%). Of six long term survivors (including one patient with a second transplant) chronic GVHD was present in four (67%): chronic GVHD was fatal in one individual but was well controlled in three.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. [Pathological diagnosis of pediatric Burkitt lymphoma involving bone marrow].

    PubMed

    Sun, Qi; Chen, Zhenping; Liu, Enbin; Li, Zhanqi; Yang, Qingying; Sun, Fujun; Ma, Yue; Zhang, Hongju; Zhang, Peihong; Ru, Kun

    2015-02-01

    To investigate pathologic and differential diagnostic features of pediatric Burkitt lymphoma (BL). A total of 20 cases of pediatric BL were retrospectively reviewed for their clinical and pathologic profiles. Bone marrow aspiration specimens were available in all cases and bone marrow biopsies were available for immunohistochemical study in 18 cases. Flow cytometry study was available in 16 cases. MYC translocation by FISH method was performed in 11 cases. Atypical lymphocytes with cytoplasmic vacuoles were found in bone marrow smears in all 20 cases and peripheral blood films in all 19 available cases. The bone marrow biopsies showed infiltration by uniform medium-sized atypical lymphocytes with multiple small nucleoli but without the starry-sky pattern in all 18 cases. Immunohistochemistry showed the following results in all 18 cases: positive for CD20, PAX-5, CD10, CD34 and TdT, but negative for bcl-2 and CD3 with Ki-67 > 95%.Flow cytometry showed CD19+CD20+CD10+FMC7+CD22+TdT-CD3- in 16 cases, including κ+ in 8 cases, λ+ in 7 cases, and κ-λ- in 1 case. MYC gene rearrangement by FISH was observed in 10 of the 11 cases. The histopathology of BL is distinct, including atypical lymphocytes with cytoplasmic vacuoles in bone marrow aspirate, lack of starry-sky patternin bone marrow biopsy. Generally, the diagnosis should be made with a combined immunophenotype and FISH approach. Pediatric BL must be distinguished from DLBCL and B-cell lymphoma, unclassifiable, which has intermediate features between DLBCL and Burkitt lymphoma.

  3. Anti-inflammatory and anti-allergic effect of Agaricus blazei extract in bone marrow-derived mast cells.

    PubMed

    Song, Hyuk-Hwan; Chae, Hee-Sung; Oh, Sei-Ryang; Lee, Hyeong-Kyu; Chin, Young-Won

    2012-01-01

    In this study, the anti-inflammatory and anti-allergic effects of the chloroform-soluble extract of Agaricus blazei in mouse bone marrow-derived mast cells (BMMCs) were investigated. The chloroform-soluble extract inhibited IL-6 production in PMA plus A23187-stimulated BMMCs, and down-regulated the phosphorylation of Akt. In addition, this extract demonstrated inhibition of the degranulation of β-hexosaminidase and the production of IL-6, prostaglandin D(2) and leukotriene C(4) in PMA plus A23187-induced BMMCs. In conclusion, the chloroform-soluble extract of Agaricus blazei exerted anti-inflammatory and anti-allergic activities mediated by influencing IL-6, prostaglandin D(2), leukotriene C(4), and the phosphorylation of Akt.

  4. Interleukin-3 Does Not Affect the Differentiation of Mast Cells Derived from Human Bone Marrow Progenitors

    PubMed Central

    Shimizu, Yuji; Matsumoto, Kenji; Okayama, Yoshimichi; Kentaro, Sakai; Maeno, Toshitaka; Suga, Tatsuo; Miura, Toru; Takai, Shinji; Kurabayashi, Masahiko; Saito, Hirohisa

    2008-01-01

    Although IL-3 is commonly used for culture of human progenitor-derived mast cells together with Stem cell factor (SCF) and IL-6, the effect of IL-3 on human mast cell differentiation has not been well elucidated. Human bone marrow CD34+ progenitors were cultured for up to 12 weeks in the presence of rhSCF and rhIL-6 either with rhIL-3 (IL-3 (+)) or without rhIL-3 (IL-3 (−)) for the initial 1-week of culture. Total cell number increased at 2 weeks in IL-3 (+), as compared to IL-3 (−), but changes in the appearance of mast cells were delayed. When IL-3 was present for the initial 1-week culture, granules looked more mature with IL-3 than without IL-3. However, tryptase and chymase contents, and surface antigen expression (CD18, CD51, CD54, and CD117) were not altered by IL-3. Surface expression and mRNA level of FcεRIα and histamine release by crosslinking of FcεRIα did not differ from one preparation to the next. GeneChip analysis revealed that no significant differences were observed between IL-3 (+) and IL-3 (−) cells either when inactivated or activated by aggregation of FcεRIα. These findings indicate that initial incubation of human bone marrow CD34+ progenitors with IL-3 does not affect the differentiation of mast cells. PMID:18214796

  5. Comparison of collagen matrix treatment impregnated with platelet rich plasma vs bone marrow.

    PubMed

    Minamimura, Ai; Ichioka, Shigeru; Sano, Hitomi; Sekiya, Naomi

    2014-02-01

    This study has reported the efficacy of an autologous bone marrow-impregnated collagen matrix experimentally and clinically. Then, it reflected that platelet rich plasma (PRP) was as good a source of growth factors as bone marrow and available in a less invasive procedure. This study aimed to compare the efficacy of a PRP-impregnated collagen matrix with that of a bone marrow-impregnated collagen matrix by quantifying wound size and capillary density using genetically diabetic db/db mice. Bone marrow cells were obtained from femurs of ddy mice. Then, a small amount of collagen matrix was immersed in bone marrow suspension. This is called a bone marrow-impregnated collagen matrix. PRP was obtained from healthy human blood and a small amount of collagen matrix was immersed in PRP. This is called a PRP-impregnated collagen matrix. A bone marrow-impregnated collagen matrix and PRP-impregnated collagen matrix were applied to excisional skin wounds on a genetically healing-impaired mouse (n = 6) and wounds were evaluated 6 days after the procedure. Wounds were divided into two groups: PRP (n = 6), in which a PRP-impregnated collagen matrix was applied; and bone marrow (n = 6), in which collagen immersed in a bone marrow suspension was applied. There was no significant difference between the PRP and bone-marrow groups in the rate of vascular density increase or wound size decrease. The present study suggested that the PRP-impregnated collagen matrix promotes repair processes at least as strongly as the bone marrow-impregnated collagen matrix. Given lower invasiveness, the PRP-impregnated collagen matrix would have advantages in clinical use.

  6. Bone marrow and umbilical cord blood human mesenchymal stem cells: state of the art.

    PubMed

    Malgieri, Arianna; Kantzari, Eugenia; Patrizi, Maria Patrizia; Gambardella, Stefano

    2010-09-07

    Mesenchymal stem cells (MSCs) are multipotent adult stem cells present in all tissues, as part of the perivascular population. As multipotent cells, MSCs can differentiate into different tissues originating from mesoderm ranging from bone and cartilage, to cardiac muscle. MSCs are an excellent candidate for cell therapy because they are easily accessible, their isolation is straightforward, they can be bio-preserved with minimal loss of potency, and they have shown no adverse reactions to allogeneic versus autologous MSCs transplants. Therefore, MSCs are being explored to regenerate damaged tissue and treat inflammation, resulting from cardiovascular disease and myo-cardial infarction (MI), brain and spinal cord injury, stroke, diabetes, cartilage and bone injury, Crohn's disease and graft versus host disease (GvHD). Most of the application and clinical trials involve MSCs from bone marrow (BMMSCs). Transplantation of MSCs from bone marrow is considered safe and has been widely tested in clinical trials of cardiovascular, neurological, and immunological disease with encouraging results. There are examples of MSCs utilization in the repair of kidney, muscle and lung. The cells were also found to promote angiogenesis, and were used in chronic skin wound treatment. Recent studies involve also mesenchymal stem cell transplant from umbilical cord (UCMSCt). One of these demonstrate that UCMSCt may improve symptoms and biochemical values in patients with severe refractory systemic lupus erythematosus (SLE), and therefore this source of MSCs need deeper studies and require more attention. However, also if there are 79 registered clinical trial sites for evaluating MSC therapy throughout the world, it is still a long way to go before using these cells as a routinely applied therapy in clinics.

  7. Heterogeneity of proangiogenic features in mesenchymal stem cells derived from bone marrow, adipose tissue, umbilical cord, and placenta.

    PubMed

    Du, Wen Jing; Chi, Ying; Yang, Zhou Xin; Li, Zong Jin; Cui, Jun Jie; Song, Bao Quan; Li, Xue; Yang, Shao Guang; Han, Zhi Bo; Han, Zhong Chao

    2016-11-10

    Mesenchymal stem cells (MSCs) have been widely proven effective for therapeutic angiogenesis in ischemia animal models as well as clinical vascular diseases. Because of the invasive method, limited resources, and aging problems of adult tissue-derived MSCs, more perinatal tissue-derived MSCs have been isolated and studied as promising substitutable MSCs for cell transplantation. However, fewer studies have comparatively studied the angiogenic efficacy of MSCs derived from different tissues sources. Here, we evaluated whether the in-situ environment would affect the angiogenic potential of MSCs. We harvested MSCs from adult bone marrow (BMSCs), adipose tissue (AMSCs), perinatal umbilical cord (UMSCs), and placental chorionic villi (PMSCs), and studied their "MSC identity" by flow cytometry and in-vitro trilineage differentiation assay. Then we comparatively studied their endothelial differentiation capabilities and paracrine actions side by side in vitro. Our data showed that UMSCs and PMSCs fitted well with the minimum standard of MSCs as well as BMSCs and AMSCs. Interestingly, we found that MSCs regardless of their tissue origins could develop similar endothelial-relevant functions in vitro, including producing eNOS and uptaking ac-LDL during endothelial differentiation in spite of their feeble expression of endothelial-related genes and proteins. Additionally, we surprisingly found that BMSCs and PMSCs could directly form tubular structures in vitro on Matrigel and their conditioned medium showed significant proangiogenic bioactivities on endothelial cells in vitro compared with those of AMSCs and UMSCs. Besides, several angiogenic genes were upregulated in BMSCs and PMSCs in comparison with AMSCs and UMSCs. Moreover, enzyme-linked immunosorbent assay further confirmed that BMSCs secreted much more VEGF, and PMSCs secreted much more HGF and PGE2. Our study demonstrated the heterogeneous proangiogenic properties of MSCs derived from different tissue origins, and

  8. Reduction of Acute Rejection by Bone Marrow Mesenchymal Stem Cells during Rat Small Bowel Transplantation

    PubMed Central

    Zhang, Wen; Wu, Ben-Juan; Fu, Nan-Nan; Zheng, Wei-Ping; Don, Chong; Shen, Zhong-Yang

    2014-01-01

    Background Bone marrow mesenchymal stem cells (BMMSCs) have shown immunosuppressive activity in transplantation. This study was designed to determine whether BMMSCs could improve outcomes of small bowel transplantation in rats. Methods Heterotopic small bowel transplantation was performed from Brown Norway to Lewis rats, followed by infusion of BMMSCs through the superficial dorsal veins of the penis. Controls included rats infused with normal saline (allogeneic control), isogeneically transplanted rats (BN-BN) and nontransplanted animals. The animals were sacrificed after 1, 5, 7 or 10 days. Small bowel histology and apoptosis, cytokine concentrations in serum and intestinal grafts, and numbers of T regulatory (Treg) cells were assessed at each time point. Results Acute cellular rejection occurred soon after transplantation and became aggravated over time in the allogeneic control rats, with increase in apoptosis, inflammatory response, and T helper (Th)1/Th2 and Th17/Treg-related cytokines. BMMSCs significantly attenuated acute cellular rejection, reduced apoptosis and suppressed the concentrations of interleukin (IL)-2, IL-6, IL-17, IL-23, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ while upregulating IL-10 and transforming growth factor (TGF)-β expression and increasing Treg levels. Conclusion BMMSCs improve the outcomes of allogeneic small bowel transplantation by attenuating the inflammatory response and acute cellular rejection. Treatment with BMMSCs may overcome acute cellular rejection in small bowel transplantation. PMID:25500836

  9. Generation of a Bone Organ by Human Adipose-Derived Stromal Cells Through Endochondral Ossification.

    PubMed

    Osinga, Rik; Di Maggio, Nunzia; Todorov, Atanas; Allafi, Nima; Barbero, Andrea; Laurent, Frédéric; Schaefer, Dirk Johannes; Martin, Ivan; Scherberich, Arnaud

    2016-08-01

    : Recapitulation of endochondral ossification (ECO) (i.e., generation of marrow-containing ossicles through a cartilage intermediate) has relevance to develop human organotypic models for bone or hematopoietic cells and to engineer grafts for bone regeneration. Unlike bone marrow-derived stromal cells (also known as bone marrow-derived mesenchymal stromal/stem cells), adipose-derived stromal cells (ASC) have so far failed to form a bone organ by ECO. The goal of the present study was to assess whether priming human ASC to a defined stage of chondrogenesis in vitro allows their autonomous ECO upon ectopic implantation. ASC were cultured either as micromass pellets or into collagen sponges in chondrogenic medium containing transforming growth factor-β3 and bone morphogenetic protein-6 for 4 weeks (early hypertrophic templates) or for two additional weeks in medium supplemented with β-glycerophosphate, l-thyroxin, and interleukin1-β to induce hypertrophic maturation (late hypertrophic templates). Constructs were implanted in vivo and analyzed after 8 weeks. In vitro, ASC deposited cartilaginous matrix positive for glycosaminoglycans, type II collagen, and Indian hedgehog. Hypertrophic maturation induced upregulation of type X collagen, bone sialoprotein, and matrix metalloproteinase13 (MMP13). In vivo, both early and late hypertrophic templates underwent cartilage remodeling, as assessed by MMP13- and tartrate-resistant acid phosphatase-positive staining, and developed bone ossicles, including bone marrow elements, although to variable degrees of efficiency. In situ hybridization for human-specific sequences and staining with a human specific anti-CD146 antibody demonstrated the direct contribution of ASC to bone and stromal tissue formation. In conclusion, despite their debated skeletal progenitor nature, human ASC can generate bone organs through ECO when suitably primed in vitro. Recapitulation of endochondral ossification (ECO) (i.e., generation of marrow

  10. Influence of bone marrow on osseointegration in long bones: an experimental study in sheep.

    PubMed

    Morelli, Fabrizio; Lang, Niklaus P; Bengazi, Franco; Baffone, Davide; Vila Morales, C Dadonim; Botticelli, Daniele

    2015-03-01

    To evaluate the influence of yellow bone marrow on osseointegration of titanium oral implants using a long bone model. The two tibiae of eight sheep were used as experimental sites. Two osteotomies for implant installation were prepared in each tibia. At the control sites, no further treatments were performed while, at the test sites, bone marrow was removed from the osteotomy site with a curette to an extent that exceeded the implant dimensions. As a result, the apical portion of the implants at the control sites was in contact with bone marrow while, at the test sites, it was in contact with the blood clot. After 2 months, the same procedures were performed in the contralateral side. After another month, the animal was sacrificed. Ground sections were obtained for histological analysis. After 1 month of healing, no differences between test and control sites were found in the apical extension of osseointegration and the percentage of new bone-to-implant contact. However, after 3 months of healing, a higher percentage of new bone-to-implant contact was found at the test compared to the control sites in the marrow compartment. The apical extension of osseointegration, however, was similar to that found at the 1-month healing period both for test and control sites. Osseointegration appeared to be favored by the presence of a blood clot when compared to the presence of yellow fatty bone marrow. Moreover, the contact with cortical bone appeared to be a prerequisite for the osseointegration process in the long bone model. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Carbon nanotubes functionalized with fibroblast growth factor accelerate proliferation of bone marrow-derived stromal cells and bone formation

    NASA Astrophysics Data System (ADS)

    Hirata, Eri; Ménard-Moyon, Cécilia; Venturelli, Enrica; Takita, Hiroko; Watari, Fumio; Bianco, Alberto; Yokoyama, Atsuro

    2013-11-01

    Multi-walled carbon nanotubes (MWCNTs) were functionalized with fibroblast growth factor (FGF) and the advantages of their use as scaffolds for bone augmentation were evaluated in vitro and in vivo. The activity of FGF was assessed by measuring the effect on the proliferation of rat bone marrow stromal cells (RBMSCs). The presence of FGF enhanced the proliferation of RBMSCs and the FGF covalently conjugated to the nanotubes (FGF-CNT) showed the same effect as FGF alone. In addition, FGF-CNT coated sponges were implanted between the parietal bone and the periosteum of rats and the formation of new bone was investigated. At day 14 after implantation, a larger amount of newly formed bone was clearly observed in most pores of FGF-CNT coated sponges. These findings indicated that MWCNTs accelerated new bone formation in response to FGF, as well as the integration of particles into new bone during its formation. Scaffolds coated with FGF-CNT could be considered as promising novel substituting materials for bone regeneration in future tissue engineering applications.

  12. Bone marrow-derived stromal cells are more beneficial cell sources for tooth regeneration compared with adipose-derived stromal cells.

    PubMed

    Ye, Lanfeng; Chen, Lin; Feng, Fan; Cui, Junhui; Li, Kaide; Li, Zhiyong; Liu, Lei

    2015-10-01

    Tooth loss is presently a global epidemic and tooth regeneration is thought to be a feasible and ideal treatment approach. Choice of cell source is a primary concern in tooth regeneration. In this study, the odontogenic differentiation potential of two non-dental-derived stem cells, adipose-derived stromal cells (ADSCs) and bone marrow-derived stromal cells (BMSCs), were evaluated both in vitro and in vivo. ADSCs and BMSCs were induced in vitro in the presence of tooth germ cell-conditioned medium (TGC-CM) prior to implantation into the omentum majus of rats, in combination with inactivated dentin matrix (IDM). Real-time quantitative polymerase chain reaction (RT-qPCR) was used to detect the mRNA expression levels of odontogenic-related genes. Immunofluorescence and immunohistochemical assays were used to detect the protein levels of odontogenic-specific genes, such as DSP and DMP-1 both in vitro and in vivo. The results suggest that both ADSCs and BMSCs have odontogenic differentiation potential. However, the odontogenic potential of BMSCs was greater compared with ADSCs, showing that BMSCs are a more appropriate cell source for tooth regeneration. © 2015 International Federation for Cell Biology.

  13. Pelvic reconstruction with allogeneic bone graft after tumor resection

    PubMed Central

    Wang, Wei; Bi, Wen Zhi; Yang, Jing; Han, Gang; Jia, Jin Peng

    2013-01-01

    OBJECTIVES : Pelvic reconstruction after tumor resection is challenging. METHODS: A retrospective study had been preformed to compare the outcomes among patients who received pelvic reconstructive surgery with allogeneic bone graft after en bloc resection of pelvic tumors and patients who received en bloc resection only. RESULTS: Patients without reconstruction had significantly lower functional scores at 3 months (10 vs. 15, P = 0.001) and 6 months after surgery (18.5 vs. 22, P = 0.0024), a shorter duration of hospitalization (16 day vs. 40 days, P < 0.001), and lower hospitalization costs (97,500 vs. 193,000 RMB, P < 0.001) than those who received pelvic reconstruction. Functional scores were similar at 12 months after surgery (21.5 vs. 23, P = 0.365) with no difference in the rate of complications between the two groups (P > 0.05). CONCLUSIONS : Pelvic reconstruction with allogeneic bone graft after surgical management of pelvic tumors is associated with satisfactory surgical and functional outcomes. Further clinical studies are required to explore how to select the best reconstruction method. Level of Evidence IV, Case Series. PMID:24453659

  14. Bone-marrow densitometry: Assessment of marrow space of human vertebrae by single energy high resolution-quantitative computed tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peña, Jaime A.; Damm, Timo; Bastgen, Jan

    Purpose: Accurate noninvasive assessment of vertebral bone marrow fat fraction is important for diagnostic assessment of a variety of disorders and therapies known to affect marrow composition. Moreover, it provides a means to correct fat-induced bias of single energy quantitative computed tomography (QCT) based bone mineral density (BMD) measurements. The authors developed new segmentation and calibration methods to obtain quantitative surrogate measures of marrow-fat density in the axial skeleton. Methods: The authors developed and tested two high resolution-QCT (HR-QCT) based methods which permit segmentation of bone voids in between trabeculae hypothesizing that they are representative of bone marrow space. Themore » methods permit calculation of marrow content in units of mineral equivalent marrow density (MeMD). The first method is based on global thresholding and peeling (GTP) to define a volume of interest away from the transition between trabecular bone and marrow. The second method, morphological filtering (MF), uses spherical elements of different radii (0.1–1.2 mm) and automatically places them in between trabeculae to identify regions with large trabecular interspace, the bone-void space. To determine their performance, data were compared ex vivo to high-resolution peripheral CT (HR-pQCT) images as the gold-standard. The performance of the methods was tested on a set of excised human vertebrae with intact bone marrow tissue representative of an elderly population with low BMD. Results: 86% (GTP) and 87% (MF) of the voxels identified as true marrow space on HR-pQCT images were correctly identified on HR-QCT images and thus these volumes of interest can be considered to be representative of true marrow space. Within this volume, MeMD was estimated with residual errors of 4.8 mg/cm{sup 3} corresponding to accuracy errors in fat fraction on the order of 5% both for GTP and MF methods. Conclusions: The GTP and MF methods on HR-QCT images permit

  15. Noradrenergic and cholinergic innervation of the bone marrow.

    PubMed

    Artico, Marco; Bosco, Sandro; Cavallotti, Carlo; Agostinelli, Enzo; Giuliani-Piccari, Gabriella; Sciorio, Salvatore; Cocco, Lucio; Vitale, Marco

    2002-07-01

    Bone marrow is supplied by sensory and autonomic innervation. Although it is well established that hematopoiesis is regulated by cytokines and cell-to-cell contacts, the role played by neuromediators on the proliferation, differentiation and release of hematopoietic cells is still controversial. We studied the innervation of rat femur bone marrow by means of fluorescence histochemistry and immunohistochemistry. Glyoxylic acid-induced fluorescence was used to demonstrate catecholaminergic nerve fibers. The immunoperoxidase method with nickel amplification was applied to detect the distribution of nerve fibers using antibodies against the general neuronal marker PGP 9.5 (neuron-specific cytoplasmic protein), while the cholinacetyltransferase immunoreactivity was studied by immunohistochemistry. Our results show the presence of an extensive network of innervation in the rat bone marrow, providing a morphological basis for the neural modulation of hemopoiesis.

  16. [MRI characteristic of proximal femur bone marrow edema syndrome].

    PubMed

    Wu, Xi-Yuan

    2014-07-01

    To study the MRI features of proximal femur bone marrow edema syndrome for further improve the understanding of the disease. MRI imaging of 10 patients with proximal femur bone marrow edema syndrome was retrospectively reviewed,including 6 males and 4 females with an average age of 41.5 years old ranging from 36 to 57. The courses of diseases ranged from 1 week to 3 months. Among them, 9 cases had clinical manifestations of sudden hip pain, 7 cases had limited ability of walking and hip movement;all patients had no obvious injury history, non of the female patients was pregnant. All patients were followed up from 3 to 12 months, the following-up were topped after MRI when the symptoms disappeared for 3 months. The MRI demonstrated diffuse bone marrow edema involving the femoral head, neck and the inter-trochanteric region, 13 hips of 10 patients with bone marrow edema included 6 cases in grade 1, 5 cases in grade 2,2 cases in grade 3; 9 hips with hip hydrarthrosis included 6 hips in grade I ,1 hip in grade II, 2 hips in grade III. After treatment for 3 to 12 months the hip symptoms of the patients disappeared and MRI images were normal. MRI is useful in defining the location and extent of proximal femur bone marrow edema syndrome.

  17. Beneficial Effects of Autologous Bone Marrow-Derived Mesenchymal Stem Cells in Naturally Occurring Tendinopathy

    PubMed Central

    Smith, Roger Kenneth Whealands; Werling, Natalie Jayne; Dakin, Stephanie Georgina; Alam, Rafiqul; Goodship, Allen E.; Dudhia, Jayesh

    2013-01-01

    Tendon injuries are a common age-related degenerative condition where current treatment strategies fail to restore functionality and normal quality of life. This disease also occurs naturally in horses, with many similarities to human tendinopathy making it an ideal large animal model for human disease. Regenerative approaches are increasingly used to improve outcome involving mesenchymal stem cells (MSCs), supported by clinical data where injection of autologous bone marrow derived MSCs (BM-MSCs) suspended in marrow supernatant into injured tendons has halved the re-injury rate in racehorses. We hypothesized that stem cell therapy induces a matrix more closely resembling normal tendon than the fibrous scar tissue formed by natural repair. Twelve horses with career-ending naturally-occurring superficial digital flexor tendon injury were allocated randomly to treatment and control groups. 1X107 autologous BM-MSCs suspended in 2 ml of marrow supernatant were implanted into the damaged tendon of the treated group. The control group received the same volume of saline. Following a 6 month exercise programme horses were euthanized and tendons assessed for structural stiffness by non-destructive mechanical testing and for morphological and molecular composition. BM-MSC treated tendons exhibited statistically significant improvements in key parameters compared to saline-injected control tendons towards that of normal tendons and those in the contralateral limbs. Specifically, treated tendons had lower structural stiffness (p<0.05) although no significant difference in calculated modulus of elasticity, lower (improved) histological scoring of organisation (p<0.003) and crimp pattern (p<0.05), lower cellularity (p<0.007), DNA content (p<0.05), vascularity (p<0.03), water content (p<0.05), GAG content (p<0.05), and MMP-13 activity (p<0.02). Treatment with autologous MSCs in marrow supernatant therefore provides significant benefits compared to untreated tendon repair in

  18. Second allogeneic stem cell transplant for aplastic anaemia: a retrospective study by the Severe Aplastic Anaemia Working Party of the European Society for Blood and Marrow Transplantation.

    PubMed

    Cesaro, Simone; Peffault de Latour, Regis; Tridello, Gloria; Pillon, Marta; Carlson, Kristina; Fagioli, Franca; Jouet, Jean-Pierre; Koh, Mickey B C; Panizzolo, Irene Sara; Kyrcz-Krzemien, Slawomira; Maertens, Johan; Rambaldi, Alessandro; Strahm, Brigitte; Blaise, Didier; Maschan, Alexei; Marsh, Judith; Dufour, Carlo

    2015-11-01

    We analysed the outcome of a second allogeneic haematopoietic stem cell transplant (alloHSCT) in 162 patients reported to the European Society for Blood and Marrow Transplantation between 1998 and 2009. Donor origin was a sibling in 110 and an unrelated donor in 52 transplants, respectively. The stem cell source was bone marrow in 31% and peripheral blood in 69% of transplants. The same donor as for the first alloHSCT was used in 81% of transplants whereas a change in the choice of stem cell source was reported in 56% of patients, mainly from bone marrow to peripheral blood. Neutrophil and platelet engraftment occurred in 85% and 72% of patients, after a median time of 15 and 17 days, respectively. Grade II-IV acute graft-versus-host disease (GVHD) and chronic GVHD occurred in 21% and 37% of patients, respectively. Graft failure (GF) occurred in 42 patients (26%). After a median follow-up of 3·5 years, the 5-year overall survival (OS) was 60·7%. In multivariate analysis, the only factor significantly associated with a better outcome was a Karnofsky/Lansky score ≥80 (higher OS). We conclude that a second alloHSCT is feasible rescue option for GF in SAA, with a successful outcome in 60% of cases. © 2015 John Wiley & Sons Ltd.

  19. Concise Review: Bone Marrow Mononuclear Cells for the Treatment of Ischemic Syndromes: Medicinal Product or Cell Transplantation?

    PubMed Central

    Rico, Laura; Herrera, Concha

    2012-01-01

    In November of 2011, the Committee for Advanced Therapies (CAT) of the European Medicines Agency (EMA) published two scientific recommendations regarding the classification of autologous bone marrow-derived mononuclear cells (BM-MNCs) and autologous bone marrow-derived CD133+ cells as advanced therapy medicinal products (ATMPs), specifically tissue-engineered products, when intended for regeneration in ischemic heart tissue on the basis that they are not used for the same essential function (hematological restoration) that they fulfill in the donor. In vitro and in vivo evidence demonstrates that bone marrow cells are physiologically involved in adult neovascularization and tissue repair, making their therapeutic use for these purposes a simple exploitation of their own essential functions. Therefore, from a scientific/legal point of view, nonsubstantially manipulated BM-MNCs and CD133+ cells are not an ATMP, because they have a physiological role in the processes of postnatal neovascularization and, when used therapeutically for vascular restoration in ischemic tissues, they are carrying out one of their essential physiological functions (the legal definition recognizes that cells can have several essential functions). The consequences of classifying BM-MNCs and CD133+ cells as medicinal products instead of cellular transplantation, like bone marrow transplantation, in terms of costs and time for these products to be introduced into clinical practice, make this an issue of crucial importance. Therefore, the recommendations of EMA/CAT could be reviewed in collaboration with scientific societies, in light of organizational and economic consequences as well as scientific knowledge recently acquired about the mechanisms of postnatal neovascularization and the function of bone marrow in the regeneration of remote tissues. PMID:23197819

  20. Recommendations for the standardization of bone marrow disease assessment and reporting in children with neuroblastoma on behalf of the International Neuroblastoma Response Criteria Bone Marrow Working Group.

    PubMed

    Burchill, Susan A; Beiske, Klaus; Shimada, Hiroyuki; Ambros, Peter F; Seeger, Robert; Tytgat, Godelieve A M; Brock, Penelope R; Haber, Michelle; Park, Julie R; Berthold, Frank

    2017-04-01

    The current study was conducted to expedite international standardized reporting of bone marrow disease in children with neuroblastoma and to improve equivalence of care. A multidisciplinary International Neuroblastoma Response Criteria Bone Marrow Working Group was convened by the US National Cancer Institute in January 2012 with representation from Europe, North America, and Australia. Practical transferable recommendations to standardize the reporting of bone marrow disease were developed. To the authors' knowledge, the current study is the first to comprehensively present consensus criteria for the collection, analysis, and reporting of the percentage area of bone marrow parenchyma occupied by tumor cells in trephine-biopsies. The quantitative analysis of neuroblastoma content in bone marrow aspirates by immunocytology and reverse transcriptase-quantitative polymerase chain reaction are revised. The inclusion of paired-like homeobox 2b (PHOX2B) for immunohistochemistry and reverse transcriptase-quantitative polymerase chain reaction is recommended. Recommendations for recording bone marrow response are provided. The authors endorse the quantitative assessment of neuroblastoma cell content in bilateral core needle biopsies-trephines and aspirates in all children with neuroblastoma, with the exception of infants, in whom the evaluation of aspirates alone is advised. It is interesting to note that 5% disease is accepted as an internationally achievable level for disease assessment. The quantitative assessment of neuroblastoma cells is recommended to provide data from which evidence-based numerical criteria for the reporting of bone marrow response can be realized. This is particularly important in the minimal disease setting and when neuroblastoma detection in bone marrow is intermittent, where clinical impact has yet to be validated. The wide adoption of these harmonized criteria will enhance the ability to compare outcomes from different trials and facilitate

  1. Failure to generate bone marrow adipocytes does not protect mice from ovariectomy-induced osteopenia.

    PubMed

    Iwaniec, Urszula T; Turner, Russell T

    2013-03-01

    A reciprocal association between bone marrow fat and bone mass has been reported in ovariectomized rodents, suggesting that bone marrow adipogenesis has a negative effect on bone growth and turnover balance. Mice with loss of function mutations in kit receptor (kit(W/W-v)) have no bone marrow adipocytes in tibia or lumbar vertebra. We therefore tested the hypothesis that marrow fat contributes to the development of osteopenia by comparing the skeletal response to ovariectomy (ovx) in growing wild type (WT) and bone marrow adipocyte-deficient kit(W/W-v) mice. Mice were ovx at 4 weeks of age and sacrificed 4 or 10 weeks post-surgery. Body composition was measured at necropsy by dual-energy X-ray absorptiometry. Cortical (tibia) and cancellous (tibia and lumbar vertebra) bone architecture were evaluated by microcomputed tomography. Bone marrow adipocyte size and density, osteoblast- and osteoclast-lined bone perimeters, and bone formation were determined by histomorphometry. Ovx resulted in an increase in total body fat mass at 10 weeks post-ovx in both genotypes, but the response was attenuated in the in kit(W/W-v) mice. Adipocytes were present in bone marrow of tibia and lumbar vertebra in WT mice and bone marrow adiposity increased following ovx. In contrast, marrow adipocytes were not detected in either intact or ovx kit(W/W-v) mice. However, ovx in WT and kit(W/W-v) mice resulted in statistically indistinguishable changes in cortical and cancellous bone mass, cortical and cancellous bone formation rate, and cancellous osteoblast and osteoclast-lined bone perimeters. In conclusion, our findings do not support a causal role for increased bone marrow fat as a mediator of ovx-induced osteopenia in mice. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Mechanical Loading Attenuates Radiation-Induced Bone Loss in Bone Marrow Transplanted Mice.

    PubMed

    Govey, Peter M; Zhang, Yue; Donahue, Henry J

    2016-01-01

    Exposure of bone to ionizing radiation, as occurs during radiotherapy for some localized malignancies and blood or bone marrow cancers, as well as during space travel, incites dose-dependent bone morbidity and increased fracture risk. Rapid trabecular and endosteal bone loss reflects acutely increased osteoclastic resorption as well as decreased bone formation due to depletion of osteoprogenitors. Because of this dysregulation of bone turnover, bone's capacity to respond to a mechanical loading stimulus in the aftermath of irradiation is unknown. We employed a mouse model of total body irradiation and bone marrow transplantation simulating treatment of hematologic cancers, hypothesizing that compression loading would attenuate bone loss. Furthermore, we hypothesized that loading would upregulate donor cell presence in loaded tibias due to increased engraftment and proliferation. We lethally irradiated 16 female C57Bl/6J mice at age 16 wks with 10.75 Gy, then IV-injected 20 million GFP(+) total bone marrow cells. That same day, we initiated 3 wks compression loading (1200 cycles 5x/wk, 10 N) in the right tibia of 10 of these mice while 6 mice were irradiated, non-mechanically-loaded controls. As anticipated, before-and-after microCT scans demonstrated loss of trabecular bone (-48.2% Tb.BV/TV) and cortical thickness (-8.3%) at 3 wks following irradiation. However, loaded bones lost 31% less Tb.BV/TV and 8% less cortical thickness (both p<0.001). Loaded bones also had significant increases in trabecular thickness and tissue mineral densities from baseline. Mechanical loading did not affect donor cell engraftment. Importantly, these results demonstrate that both cortical and trabecular bone exposed to high-dose therapeutic radiation remain capable of an anabolic response to mechanical loading. These findings inform our management of bone health in cases of radiation exposure.

  3. Evaluating effects of L-carnitine on human bone-marrow-derived mesenchymal stem cells.

    PubMed

    Fujisawa, Koichi; Takami, Taro; Fukui, Yumi; Quintanilha, Luiz Fernando; Matsumoto, Toshihiko; Yamamoto, Naoki; Sakaida, Isao

    2017-05-01

    Mesenchymal stem cells (MSCs) are multipotent cells showing potential for use in regenerative medicine. Culture techniques that are more stable and methods for the more efficient production of MSCs with therapeutic efficacy are needed. We evaluate the effects of growing bone marrow (Bm)-derived MSCs in the presence of L-carnitine, which is believed to promote lipid metabolism and to suppress apoptosis. The presence of L-carnitine decreased the degree of drug-induced apoptosis and suppressed adipogenic differentiation. Metabolomic analysis by means of the exhaustive investigation of metabolic products showed that, in addition to increased β-oxidation and the expression of all carnitine derivatives other than deoxycarnitine (an intermediate in carnitine synthesis), polysaturated and polyunsaturated acids were down-regulated. An integrated analysis incorporating both serial analysis of gene expression and metabolomics revealed increases in cell survival, suggesting the utility of carnitine. The addition of carnitine elevated the oxygen consumption rate by BmMSCs that had been cultured for only a few generations and those that had become senescent following repeated replication indicating that mitochondrial activation occurred. Our exhaustive analysis of the effects of various carnitine metabolites thus suggests that the addition of L-carnitine to BmMSCs during expansion enables efficient cell production.

  4. Molecular cloning and chromosomal mapping of bone marrow stromal cell surface gene, BST2, that may be involved in pre-B-cell growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishikawa, Jun; Kaisho, Tsuneyasu; Tomizawa, Hitoshi

    1995-04-10

    Bone marrow stromal cells regulate B-cell growth and development through their surface molecules and cytokines. In this study, we generated a mAb, RS38, that recognized a novel human membrane protein, BST-2, expressed on bone marrow stromal cell lines and synovial cell lines. We cloned a cDNA encoding BST-2 from a rheumatoid arthritis-derived synovial cell line. BST-2 is a 30- to 36-kDa type II transmembrane protein, consisting of 180 amino acids. The BST-2 gene (HGMW-approved symbol BST2) is located on chromosome 19p13.2. BST-2 is expressed not only on certain bone marrow stromal cell lines but also on various normal tissues, althoughmore » its expression pattern is different from that of another bone marrow stromal cell surface molecule, BST-1. BST-2 surface expression on fibroblast cell lines facilitated the stromal cell-dependent growth of a murine bone marrow-derived pre-B-cell line, DW34. The results suggest that BST-2 may be involved in pre-B-cell growth. 45 refs., 7 figs., 2 tabs.« less

  5. Mechanical Loading Attenuates Radiation-Induced Bone Loss in Bone Marrow Transplanted Mice

    PubMed Central

    Govey, Peter M.; Zhang, Yue; Donahue, Henry J.

    2016-01-01

    Exposure of bone to ionizing radiation, as occurs during radiotherapy for some localized malignancies and blood or bone marrow cancers, as well as during space travel, incites dose-dependent bone morbidity and increased fracture risk. Rapid trabecular and endosteal bone loss reflects acutely increased osteoclastic resorption as well as decreased bone formation due to depletion of osteoprogenitors. Because of this dysregulation of bone turnover, bone’s capacity to respond to a mechanical loading stimulus in the aftermath of irradiation is unknown. We employed a mouse model of total body irradiation and bone marrow transplantation simulating treatment of hematologic cancers, hypothesizing that compression loading would attenuate bone loss. Furthermore, we hypothesized that loading would upregulate donor cell presence in loaded tibias due to increased engraftment and proliferation. We lethally irradiated 16 female C57Bl/6J mice at age 16 wks with 10.75 Gy, then IV-injected 20 million GFP(+) total bone marrow cells. That same day, we initiated 3 wks compression loading (1200 cycles 5x/wk, 10 N) in the right tibia of 10 of these mice while 6 mice were irradiated, non-mechanically-loaded controls. As anticipated, before-and-after microCT scans demonstrated loss of trabecular bone (-48.2% Tb.BV/TV) and cortical thickness (-8.3%) at 3 wks following irradiation. However, loaded bones lost 31% less Tb.BV/TV and 8% less cortical thickness (both p<0.001). Loaded bones also had significant increases in trabecular thickness and tissue mineral densities from baseline. Mechanical loading did not affect donor cell engraftment. Importantly, these results demonstrate that both cortical and trabecular bone exposed to high-dose therapeutic radiation remain capable of an anabolic response to mechanical loading. These findings inform our management of bone health in cases of radiation exposure. PMID:27936104

  6. Bone marrow-derived dendritic cells under influence of experimental breast cancer and physical activity

    PubMed Central

    Abdalla, Douglas R.; Gomes, Bruno B. M.; Murta, Eddie F. C.; Michelin, Márcia A.

    2017-01-01

    Immune cells are required in the immune response against tumours, although sometimes without success. The present study aimed to investigate dendritic cell (DC) maturation in animals with induced immunosuppression that were subjected to physical activity (PA). Immunosuppression was induced using 7,12-dimethyl-benzanthracene (DMBA). A total of 56 Balb/c mice were divided into four groups, including the control group, non-DMBA administered/PA group (GII), DMBA administered/non-PA group (GIII) and the DMBA administered/PA group (GIV). Bone marrow was removed from the leg bones following sacrifice. Bone marrow-derived DCs were stimulated to differentiate by granulocyte-macrophage colony-stimulating factor, interleukin (IL)-4 and tumour necrosis factor-α, after which the phenotype was assessed by flow cytometry and the cytokine profile was assessed using ELISAs. PA significantly increased the percentage of DCs in GII (55.38±2.63%) and GIV (50.1±3.1%) mice, as compared with GI (34.61±1.28%) and GIII (36.25±1.85%) mice (P<0.05). In addition, GIV mice showed a significantly higher level of cluster of differentiation (CD) 80+/CD86+ DCs (76.38±6.31%), as compared with GI (54.03±6.52%) and GIII (52.07±5.74%) mice (P<0.05). Furthermore, GIV mice showed a significantly higher level of CD80+/major histocompatibility complex class II double labelling (P<0.05), as compared with GIV (95.35±1.22%) and GIII (76.15±5.53%) mice. The expression of interferon-γ was significantly increased in GIV mice [5.89 (5.2–7.12)], as compared with GIII mice [2.75 (1.33–4.4)] (P<0.05). Similarly, the expression of IL-12 was markedly increased in GIV mice [1.27 (0.26–2.57)] compared with GIII mice [0.73 (0.44–1.47)], although the difference was not significant (P=0.063). The results of the present study suggested that PA was able to promote the maturation of DCs and their secretion of anti-tumour cytokines. Therefore, PA may emerge as a tool in immunotherapy. PMID:28454269

  7. Bone marrow-derived dendritic cells under influence of experimental breast cancer and physical activity.

    PubMed

    Abdalla, Douglas R; Gomes, Bruno B M; Murta, Eddie F C; Michelin, Márcia A

    2017-03-01

    Immune cells are required in the immune response against tumours, although sometimes without success. The present study aimed to investigate dendritic cell (DC) maturation in animals with induced immunosuppression that were subjected to physical activity (PA). Immunosuppression was induced using 7,12-dimethyl-benzanthracene (DMBA). A total of 56 Balb/c mice were divided into four groups, including the control group, non-DMBA administered/PA group (GII), DMBA administered/non-PA group (GIII) and the DMBA administered/PA group (GIV). Bone marrow was removed from the leg bones following sacrifice. Bone marrow-derived DCs were stimulated to differentiate by granulocyte-macrophage colony-stimulating factor, interleukin (IL)-4 and tumour necrosis factor-α, after which the phenotype was assessed by flow cytometry and the cytokine profile was assessed using ELISAs. PA significantly increased the percentage of DCs in GII (55.38±2.63%) and GIV (50.1±3.1%) mice, as compared with GI (34.61±1.28%) and GIII (36.25±1.85%) mice (P<0.05). In addition, GIV mice showed a significantly higher level of cluster of differentiation (CD) 80 + /CD86 + DCs (76.38±6.31%), as compared with GI (54.03±6.52%) and GIII (52.07±5.74%) mice (P<0.05). Furthermore, GIV mice showed a significantly higher level of CD80 + /major histocompatibility complex class II double labelling (P<0.05), as compared with GIV (95.35±1.22%) and GIII (76.15±5.53%) mice. The expression of interferon-γ was significantly increased in GIV mice [5.89 (5.2-7.12)], as compared with GIII mice [2.75 (1.33-4.4)] (P<0.05). Similarly, the expression of IL-12 was markedly increased in GIV mice [1.27 (0.26-2.57)] compared with GIII mice [0.73 (0.44-1.47)], although the difference was not significant (P=0.063). The results of the present study suggested that PA was able to promote the maturation of DCs and their secretion of anti-tumour cytokines. Therefore, PA may emerge as a tool in immunotherapy.

  8. Peripheral-Blood Stem Cells versus Bone Marrow from Unrelated Donors

    PubMed Central

    Anasetti, Claudio; Logan, Brent R.; Lee, Stephanie J.; Waller, Edmund K.; Weisdorf, Daniel J.; Wingard, John R.; Cutler, Corey S.; Westervelt, Peter; Woolfrey, Ann; Couban, Stephen; Ehninger, Gerhard; Johnston, Laura; Maziarz, Richard T.; Pulsipher, Michael A.; Porter, David L.; Mineishi, Shin; McCarty, John M.; Khan, Shakila P.; Anderlini, Paolo; Bensinger, William I.; Leitman, Susan F.; Rowley, Scott D.; Bredeson, Christopher; Carter, Shelly L.; Horowitz, Mary M.; Confer, Dennis L.

    2012-01-01

    BACKGROUND Randomized trials have shown that the transplantation of filgrastim-mobilized peripheral-blood stem cells from HLA-identical siblings accelerates engraftment but increases the risks of acute and chronic graft-versus-host disease (GVHD), as compared with the transplantation of bone marrow. Some studies have also shown that peripheral-blood stem cells are associated with a decreased rate of relapse and improved survival among recipients with high-risk leukemia. METHODS We conducted a phase 3, multicenter, randomized trial of transplantation of peripheral-blood stem cells versus bone marrow from unrelated donors to compare 2-year survival probabilities with the use of an intention-to-treat analysis. Between March 2004 and September 2009, we enrolled 551 patients at 48 centers. Patients were randomly assigned in a 1:1 ratio to peripheral-blood stem-cell or bone marrow transplantation, stratified according to transplantation center and disease risk. The median follow-up of surviving patients was 36 months (interquartile range, 30 to 37). RESULTS The overall survival rate at 2 years in the peripheral-blood group was 51% (95% confidence interval [CI], 45 to 57), as compared with 46% (95% CI, 40 to 52) in the bone marrow group (P = 0.29), with an absolute difference of 5 percentage points (95% CI, −3 to 14). The overall incidence of graft failure in the peripheral-blood group was 3% (95% CI, 1 to 5), versus 9% (95% CI, 6 to 13) in the bone marrow group (P = 0.002). The incidence of chronic GVHD at 2 years in the peripheral-blood group was 53% (95% CI, 45 to 61), as compared with 41% (95% CI, 34 to 48) in the bone marrow group (P = 0.01). There were no significant between-group differences in the incidence of acute GVHD or relapse. CONCLUSIONS We did not detect significant survival differences between peripheral-blood stem-cell and bone marrow transplantation from unrelated donors. Exploratory analyses of secondary end points indicated that peripheral

  9. Peripheral-blood stem cells versus bone marrow from unrelated donors.

    PubMed

    Anasetti, Claudio; Logan, Brent R; Lee, Stephanie J; Waller, Edmund K; Weisdorf, Daniel J; Wingard, John R; Cutler, Corey S; Westervelt, Peter; Woolfrey, Ann; Couban, Stephen; Ehninger, Gerhard; Johnston, Laura; Maziarz, Richard T; Pulsipher, Michael A; Porter, David L; Mineishi, Shin; McCarty, John M; Khan, Shakila P; Anderlini, Paolo; Bensinger, William I; Leitman, Susan F; Rowley, Scott D; Bredeson, Christopher; Carter, Shelly L; Horowitz, Mary M; Confer, Dennis L

    2012-10-18

    Randomized trials have shown that the transplantation of filgrastim-mobilized peripheral-blood stem cells from HLA-identical siblings accelerates engraftment but increases the risks of acute and chronic graft-versus-host disease (GVHD), as compared with the transplantation of bone marrow. Some studies have also shown that peripheral-blood stem cells are associated with a decreased rate of relapse and improved survival among recipients with high-risk leukemia. We conducted a phase 3, multicenter, randomized trial of transplantation of peripheral-blood stem cells versus bone marrow from unrelated donors to compare 2-year survival probabilities with the use of an intention-to-treat analysis. Between March 2004 and September 2009, we enrolled 551 patients at 48 centers. Patients were randomly assigned in a 1:1 ratio to peripheral-blood stem-cell or bone marrow transplantation, stratified according to transplantation center and disease risk. The median follow-up of surviving patients was 36 months (interquartile range, 30 to 37). The overall survival rate at 2 years in the peripheral-blood group was 51% (95% confidence interval [CI], 45 to 57), as compared with 46% (95% CI, 40 to 52) in the bone marrow group (P=0.29), with an absolute difference of 5 percentage points (95% CI, -3 to 14). The overall incidence of graft failure in the peripheral-blood group was 3% (95% CI, 1 to 5), versus 9% (95% CI, 6 to 13) in the bone marrow group (P=0.002). The incidence of chronic GVHD at 2 years in the peripheral-blood group was 53% (95% CI, 45 to 61), as compared with 41% (95% CI, 34 to 48) in the bone marrow group (P=0.01). There were no significant between-group differences in the incidence of acute GVHD or relapse. We did not detect significant survival differences between peripheral-blood stem-cell and bone marrow transplantation from unrelated donors. Exploratory analyses of secondary end points indicated that peripheral-blood stem cells may reduce the risk of graft failure

  10. Influence of bone marrow-derived mesenchymal stem cells pre-implantation differentiation approach on periodontal regeneration in vivo.

    PubMed

    Cai, Xinjie; Yang, Fang; Yan, Xiangzhen; Yang, Wanxun; Yu, Na; Oortgiesen, Daniel A W; Wang, Yining; Jansen, John A; Walboomers, X Frank

    2015-04-01

    The implantation of bone marrow-derived mesenchymal stem cells (MSCs) has previously been shown successful to achieve periodontal regeneration. However, the preferred pre-implantation differentiation strategy (e.g. maintenance of stemness, osteogenic or chondrogenic induction) to obtain optimal periodontal regeneration is still unknown. This in vivo study explored which differentiation approach is most suitable for periodontal regeneration. Mesenchymal stem cells were obtained from Fischer rats and seeded onto poly(lactic-co-glycolic acid)/poly(ɛ-caprolactone) electrospun scaffolds, and then pre-cultured under different in vitro conditions: (i) retention of multilineage differentiation potential; (ii) osteogenic differentiation approach; and (iii) chondrogenic differentiation approach. Subsequently, the cell-scaffold constructs were implanted into experimental periodontal defects of Fischer rats, with empty scaffolds as controls. After 6 weeks of implantation, histomorphometrical analyses were applied to evaluate the regenerated periodontal tissues. The chondrogenic differentiation approach showed regeneration of alveolar bone and ligament tissues. The retention of multilineage differentiation potential supported only ligament regeneration, while the osteogenic differentiation approach boosted alveolar bone regeneration. Chondrogenic differentiation of MSCs before implantation is a useful strategy for regeneration of alveolar bone and periodontal ligament, in the currently used rat model. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Generation of high-yield insulin producing cells from human bone marrow mesenchymal stem cells.

    PubMed

    Jafarian, Arefeh; Taghikhani, Mohammad; Abroun, Saeid; Pourpak, Zahra; Allahverdi, Amir; Soleimani, Masoud

    2014-07-01

    Allogenic islet transplantation is a most efficient approach for treatment of diabetes mellitus. However, the scarcity of islets and long term need for an immunosuppressant limits its application. Recently, cell replacement therapies that generate of unlimited sources of β cells have been developed to overcome these limitations. In this study we have described a stage specific differentiation protocol for the generation of insulin producing islet-like clusters from human bone marrow mesenchymal stem cells (hBM-MSCs). This specific stepwise protocol induced differentiation of hMSCs into definitive endoderm, pancreatic endoderm and pancreatic endocrine cells that expressed of sox17, foxa2, pdx1, ngn3, nkx2.2, insulin, glucagon, somatostatin, pancreatic polypeptide, and glut2 transcripts respectively. In addition, immunocytochemical analysis confirmed protein expression of the above mentioned genes. Western blot analysis discriminated insulin from proinsulin in the final differentiated cells. In derived insulin producing cells (IPCs), secreted insulin and C-peptide was in a glucose dependent manner. We have developed a protocol that generates effective high-yield human IPCs from hBM-MSCs in vitro. These finding suggest that functional IPCs generated by this procedure can be used as a cell-based approach for insulin dependent diabetes mellitus.

  12. Gillick, bone marrow and teenagers.

    PubMed

    Cherkassky, Lisa

    2015-09-01

    The Human Tissue Authority can authorise a bone marrow harvest on a child of any age if a person with parental responsibility consents to the procedure. Older children have the legal capacity to consent to medical procedures under Gillick, but it is unclear if Gillick can be applied to non-therapeutic medical procedures. The relevant donation guidelines state that the High Court shall be consulted in the event of a disagreement, but what is in the best interests of the teenage donor under s.1 of the Children Act 1989? There are no legal authorities on child bone marrow harvests in the United Kingdom. This article considers the best interests of the older saviour sibling and questions whether, for the purposes of welfare, the speculative benefits could outweigh the physical burdens. © The Author(s) 2015.

  13. Effects of Spaceflight on Cells of Bone Marrow Origin

    PubMed Central

    Özçivici, Engin

    2013-01-01

    Once only a subject for science fiction novels, plans for establishing habitation on space stations, the Moon, and distant planets now appear among the short-term goals of space agencies. This article reviews studies that present biomedical issues that appear to challenge humankind for long-term spaceflights. With particularly focus on cells of bone marrow origin, studies involving changes in bone, immune, and red blood cell populations and their functions due to extended weightlessness were reviewed. Furthermore, effects of mechanical disuse on primitive stem cells that reside in the bone marrow were also included in this review. Novel biomedical solutions using space biotechnology will be required in order to achieve the goal of space exploration without compromising the functions of bone marrow, as spaceflight appears to disrupt homeostasis for all given cell types. Conflict of interest:None declared. PMID:24385745

  14. Different culture media affect growth characteristics, surface marker distribution and chondrogenic differentiation of human bone marrow-derived mesenchymal stromal cells.

    PubMed

    Hagmann, Sebastien; Moradi, Babak; Frank, Sebastian; Dreher, Thomas; Kämmerer, Peer Wolfgang; Richter, Wiltrud; Gotterbarm, Tobias

    2013-07-30

    Bone marrow-derived mesenchymal stromal cells (BM-MSCs) play an important role in modern tissue engineering, while distinct variations of culture media compositions and supplements have been reported. Because MSCs are heterogeneous regarding their regenerative potential and their surface markers, these parameters were compared in four widely used culture media compositions. MSCs were isolated from bone marrow and expanded in four established cell culture media. MSC yield/1000 MNCs, passage time and growth index were observed. In P4, typical MSC surface markers were analysed by fluorescence cytometry. Additionally, chondrogenic, adipogenic and osteogenic differentiation potential were evaluated. Growth index and P0 cell yield varied importantly between the media. The different expansion media had a significant influence on the expression of CD10, CD90, CD105, CD140b CD146 and STRO-1. While no significant differences were observed regarding osteogenic and adipogenic differentiation, chondrogenic differentiation was superior in medium A as reflected by GAG/DNA content. The choice of expansion medium can have a significant influence on growth, differentiation potential and surface marker expression of mesenchymal stromal cells, which is of fundamental importance for tissue engineering procedures.

  15. Ectopic bone regeneration by human bone marrow mononucleated cells, undifferentiated and osteogenically differentiated bone marrow mesenchymal stem cells in beta-tricalcium phosphate scaffolds.

    PubMed

    Ye, Xinhai; Yin, Xiaofan; Yang, Dawei; Tan, Jian; Liu, Guangpeng

    2012-07-01

    Tissue engineering approaches using the combination of porous ceramics and bone marrow mesenchymal stem cells (BMSCs) represent a promising bone substitute for repairing large bone defects. Nevertheless, optimal conditions for constructing tissue-engineered bone have yet to be determined. It remains unclear if transplantation of predifferentiated BMSCs is superior to undifferentiated BMSCs or freshly isolated bone marrow mononucleated cells (BMNCs) in terms of new bone formation in vivo. The aim of this study was to investigate the effect of in vitro osteogenic differentiation (β-glycerophosphate, dexamethasone, and l-ascorbic acid) of human BMSCs on the capability to form tissue-engineered bone in unloaded conditions after subcutaneous implantation in nude mice. After isolation from human bone marrow aspirates, BMNCs were divided into three parts: one part was seeded onto porous beta-tricalcium phosphate ceramics immediately and transplanted in a heterotopic nude mice model; two parts were expanded in vitro to passage 2 before cell seeding and in vivo transplantation, either under osteogenic conditions or not. Animals were sacrificed for micro-CT and histological evaluation at 4, 8, 12, 16, and 20 weeks postimplantation. The results showed that BMSCs differentiated into osteo-progenitor cells after induction, as evidenced by the altered cell morphology and elevated alkaline phosphatase activity and calcium deposition, but their clonogenicity, proliferating rate, and seeding efficacy were not significantly affected by osteogenic differentiation, compared with undifferentiated cells. Extensive new bone formed in the pores of all the scaffolds seeded with predifferentiated BMSCs at 4 weeks after implantation, and maintained for 20 weeks. On the contrary, scaffolds containing undifferentiated BMSCs revealed limited bone formation only in 1 out of 6 cases at 8 weeks, and maintained for 4 weeks. For scaffolds with BMNCs, woven bone was observed sporadically only in one

  16. A patient with familial bone marrow failure and an inversion of chromosome 8.

    PubMed

    Buchbinder, David Kyle; Zadeh, Touran; Nugent, Diane

    2011-12-01

    Familial bone marrow failure has been associated with a variety of chromosomal aberrations. Chromosome 8 abnormalities have been described in association with neoplastic and hematologic disorders; however, to our knowledge, inversion of the long arm of chromosome 8 has not been described in the context of familial bone marrow failure. We describe a 9-year-old female with familial bone marrow failure and an inversion of chromosome 8 [inv (8) (q22, q24.3)]. Given the importance of considering the genetic determinants of familial bone marrow failure, the potential role of chromosome 8 abnormalities in the development of marrow failure is discussed.

  17. Autoimmune Encephalitis Following Bone Marrow Transplantation.

    PubMed

    Rathore, Geetanjali S; Leung, Kathryn S; Muscal, Eyal

    2015-09-01

    Neurological complications, especially encephalopathy and seizures, are commonly seen in bone marrow transplant patients. Infections, chemotoxicity, graft versus host disease, or secondary central nervous system malignancies are the most common underlying etiologies. There is increased awareness that autoimmune encephalitis may cause neurological dysfunction in immunocompetent children. The potential role of such a mechanism in children undergoing bone marrow transplantation is unknown. We report a boy who developed autoimmune encephalitis with voltage-gated potassium channel-associated and thyroid autoantibodies subsequent to transplantation. A 7-year-old boy presented with a change in behavior, poor attention, cognitive deficits, and abnormal movements 15 months after undergoing transplantation for idiopathic aplastic anemia. He had clinical and subclinical seizures and brain magnetic resonance imaging hyperintensities bilaterally in the uncal regions. His evaluation revealed high titers of voltage-gated potassium channel, leucine-rich glioma-inactivated 1 protein, and thyroglobulin antibodies suggestive of autoimmune limbic encephalitis. He showed significant improvement in behavior and neuropsychological testing and has remained seizure-free on levetiracetam after immunotherapy with corticosteroids and intravenous immunoglobulin. Systemic autoimmune manifestations in bone marrow transplant patients have been well-documented, but autoimmune encephalitis after transplantation has yet to be described in children. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Age-associated metabolic dysregulation in bone marrow-derived macrophages stimulated with lipopolysaccharide

    NASA Astrophysics Data System (ADS)

    Fei, Fan; Lee, Keith M.; McCarry, Brian E.; Bowdish, Dawn M. E.

    2016-03-01

    Macrophages are major contributors to age-associated inflammation. Metabolic processes such as oxidative phosphorylation, glycolysis and the urea cycle regulate inflammatory responses by macrophages. Metabolic profiles changes with age; therefore, we hypothesized that dysregulation of metabolic processes could contribute to macrophage hyporesponsiveness to LPS. We examined the intracellular metabolome of bone marrow-derived macrophages from young (6-8 wk) and old (18-22 mo) mice following lipopolysaccharide (LPS) stimulation and tolerance. We discovered known and novel metabolites that were associated with the LPS response of macrophages from young mice, which were not inducible in macrophages from old mice. Macrophages from old mice were largely non-responsive towards LPS stimulation, and we did not observe a shift from oxidative phosphorylation to glycolysis. The critical regulatory metabolites succinate, γ-aminobutyric acid, arginine, ornithine and adenosine were increased in LPS-stimulated macrophages from young mice, but not macrophages from old mice. A shift between glycolysis and oxidative phosphorylation was not observed during LPS tolerance in macrophages from either young or old mice. Metabolic bottlenecks may be one of the mechanisms that contribute to the dysregulation of LPS responses with age.

  19. Myelopotentiating effect of curcumin in tumor-bearing host: Role of bone marrow resident macrophages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vishvakarma, Naveen Kumar; Kumar, Anjani; Kumar, Ajay

    2012-08-15

    The present investigation was undertaken to study if curcumin, which is recognized for its potential as an antineoplastic and immunopotentiating agent, can also influence the process of myelopoiesis in a tumor-bearing host. Administration of curcumin to tumor-bearing host augmented count of bone marrow cell (BMC) accompanied by an up-regulated BMC survival and a declined induction of apoptosis. Curcumin administration modulated expression of cell survival regulatory molecules: Bcl2, p53, caspase-activated DNase (CAD) and p53-upregulated modulator of apoptosis (PUMA) along with enhanced expression of genes of receptors for M-CSF and GM-CSF in BMC. The BMC harvested from curcumin-administered hosts showed an up-regulatedmore » colony forming ability with predominant differentiation into bone marrow-derived macrophages (BMDM), responsive for activation to tumoricidal state. The number of F4/80 positive bone marrow resident macrophages (BMM), showing an augmented expression of M-CSF, was also augmented in the bone marrow of curcumin-administered host. In vitro reconstitution experiments indicated that only BMM of curcumin-administered hosts, but not in vitro curcumin-exposed BMM, augmented BMC survival. It suggests that curcumin-dependent modulation of BMM is of indirect nature. Such prosurvival action of curcumin is associated with altered T{sub H1}/T{sub H2} cytokine balance in serum. Augmented level of serum-borne IFN-γ was found to mediate modulation of BMM to produce enhanced amount of monokines (IL-1, IL-6, TNF-α), which are suggested to augment the BMC survival. Taken together the present investigation indicates that curcumin can potentiate myelopoiesis in a tumor-bearing host, which may have implications in its therapeutic utility. Highlights: ► Curcumin augments myelopoiesis in tumor-bearing host. ► Bone marrow resident macrophages mediate curcumin-dependent augmented myelopoiesis. ► Serum borne cytokine are implicated in modulation of bone marrow

  20. Mature adipocytes in bone marrow protect myeloma cells against chemotherapy through autophagy activation

    USDA-ARS?s Scientific Manuscript database

    A major problem in patients with multiple myeloma is chemotherapy resistance, which develops in myeloma cells upon interaction with bone marrow stromal cells. However, few studies have determined the role of bone marrow adipocytes, a major component of stromal cells in the bone marrow, in myeloma ch...

  1. Graft-versus-Host Disease-Associated Vulvovaginal Symptoms after Bone Marrow Transplantation.

    PubMed

    Chung, Christopher P; Sargent, Rachel E; Chung, Nadia T; Lacey, James V; Wakabayashi, Mark T

    2016-02-01

    We conducted a retrospective review to assess the prevalence of graft-versus-host disease (GVHD)-associated gynecologic conditions among bone marrow transplantation (BMT) patients at City of Hope Medical Center. We calculated the associations among the estimated risks of various gynecologic complications, including vaginal stenosis, by performing chi-square tests and t-test statistics. Between 2010 and 2014, 180 patients were referred to the gynecologic clinic after their BMT. One hundred twenty-four patients (69%) had GVHD; among these patients, 51 (41%) experienced dyspareunia and 43 (35%) had vaginal stenosis. GVHD patients were significantly more likely to have vaginal stenosis (P < .0001), more likely to have used a vaginal dilator (P = .0008), and less likely to have urinary incontinence (UI) than those without GVHD (P < .001). There was no difference in developing pelvic organ prolapse (POP) in patients with or without GVHD (P = .4373). GVHD was a common complication after allogenic BMT. Patients with BMT were more likely to have vulvovaginal symptoms, such as dyspareunia and pelvic pain. Patients with GVHD are at high risk for vaginal stenosis requiring the use of a vaginal dilator. However, they are at low risk for developing UI and POP. Copyright © 2016 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  2. Prefabricated bone flap: an experimental study comparing deep-frozen and lyophilized-demineralized allogenic bones and tissue expression of transforming growth factor β.

    PubMed

    Rodrigues, Leandro; dos Reis, Luciene Machado; Denadai, Rafael; Raposo-Amaral, Cassio Eduardo; Alonso, Nivaldo; Ferreira, Marcus Castro; Jorgetti, Vanda

    2013-11-01

    Extensive bone defects are still a challenge for reconstructive surgery. Allogenic bones can be an alternative with no donor area morbidity and unlimited amount of tissue. Better results can be achieved after allogenic bone preparation and adding a vascular supply, which can be done along with flap prefabrication. The purpose of this study was to evaluate demineralized/lyophilized and deep-frozen allogenic bones used for flap prefabrication and the tissue expression of transforming growth factor β (TGF-β) in these bone fragments. Fifty-six Wistar rat bone diaphyses were prepared and distributed in 4 groups: demineralized/lyophilized (experimental group 1 and control group 2) and deep freezing (experimental group 3 and control group 4). Two bone segments (one of each group) were implanted in rats to prefabricate flaps using superficial epigastric vessels (experimental groups) or only transferred as grafts (control groups). These fragments remained in their respective inguinal regions until the death that occurred at 2, 4, and 6 weeks after the operation. Semiquantitative histologic (tetracycline marking, cortical resorption, number of giant cells, and vascularization) and histomorphometrical quantitative (osteoid thickness, cortical thickness, and fibrosis thickness) analyses were performed. Transforming growth factor β immunohistochemistry staining was also performed. Group 1 fragments presented an osteoid matrix on their external surface in all periods. Cartilage formation and mineralization areas were also noticed. These findings were not observed in group 3 fragments. Group 1 had more mineralization and double tetracycline marks, which were almost not seen in group 3. Cortical resorption and the number of giant cells were greater in group 3 in all periods. Vascularization and fibrosis thickness were similar in both experimental groups. Group 1 had more intense TGF-β staining within 2 weeks of study. Nevertheless, from 4 weeks onward, group 3 presented

  3. Isolation, culture and chondrogenic differentiation of canine adipose tissue- and bone marrow-derived mesenchymal stem cells--a comparative study.

    PubMed

    Reich, Christine M; Raabe, Oksana; Wenisch, Sabine; Bridger, Philip S; Kramer, Martin; Arnhold, Stefan

    2012-06-01

    In the dog, mesenchymal stem cells (MSCs) have been shown to reside in the bone marrow (bone marrow-derived mesenchymal stem cells: BM-MSCs) as well as in the adipose tissue (adipose tissue-derived stem cells: ADSCs). Potential application fields for these multipotent MSCs in small animal practice are joint diseases as MSCs of both sources have shown to possess chondrogenic differentiation ability. However, it is not clear whether the chondrogenic differentiation potential of cells of these two distinct tissues is truly equal. Therefore, we compared MSCs of both origins in this study in terms of their chondrogenic differentiation ability and suitability for clinical application. BM-MSCs harvested from the femoral neck and ADSCs from intra-abdominal fat tissue were examined for their morphology, population doubling time (PDT) and CD90 surface antigen expression. RT-PCR served to assess expression of pluripotency marker Oct4 and early differentiation marker genes. Chondrogenic differentiation ability was compared and validated using histochemistry, transmission electron microscopy (TEM) and quantitative RT-PCR. Both cell populations presented a highly similar morphology and marker expression in an undifferentiated stage except that freshly isolated ADSCs demonstrated a significantly faster PDT than BM-MSCs. In contrast, BM-MSCs revealed a morphological superior cartilage formation by the production of a more abundant and structured hyaline matrix and higher expression of lineage specific genes under the applied standard differentiation protocol. However, further investigations are necessary in order to find out if chondrogenic differentiation can be improved in canine ADSCs using different protocols and/or supplements.

  4. Primary Hyperparathyroidism: The Influence of Bone Marrow Adipose Tissue on Bone Loss and of Osteocalcin on Insulin Resistance

    PubMed Central

    Mendonça, Maira L.; Batista, Sérgio L.; Nogueira-Barbosa, Marcello H.; Salmon, Carlos E.G.; de Paula, Francisco J.A.

    2016-01-01

    OBJECTIVES: Bone marrow adipose tissue has been associated with low bone mineral density. However, no data exist regarding marrow adipose tissue in primary hyperparathyroidism, a disorder associated with bone loss in conditions of high bone turnover. The objective of the present study was to investigate the relationship between marrow adipose tissue, bone mass and parathyroid hormone. The influence of osteocalcin on the homeostasis model assessment of insulin resistance was also evaluated. METHODS: This was a cross-sectional study conducted at a university hospital, involving 18 patients with primary hyperparathyroidism (PHPT) and 21 controls (CG). Bone mass was assessed by dual-energy x-ray absorptiometry and marrow adipose tissue was assessed by 1H magnetic resonance spectroscopy. The biochemical evaluation included the determination of parathyroid hormone, osteocalcin, glucose and insulin levels. RESULTS: A negative association was found between the bone mass at the 1/3 radius and parathyroid hormone levels (r = -0.69; p<0.01). Marrow adipose tissue was not significantly increased in patients (CG = 32.8±11.2% vs PHPT = 38.6±12%). The serum levels of osteocalcin were higher in patients (CG = 8.6±3.6 ng/mL vs PHPT = 36.5±38.4 ng/mL; p<0.005), but no associations were observed between osteocalcin and insulin or between insulin and both marrow adipose tissue and bone mass. CONCLUSION: These results suggest that the increment of adipogenesis in the bone marrow microenvironment under conditions of high bone turnover due to primary hyperparathyroidism is limited. Despite the increased serum levels of osteocalcin due to primary hyperparathyroidism, these patients tend to have impaired insulin sensitivity. PMID:27626477

  5. Pulmonary Embolization of Fat and Bone Marrow in Cynomolgus Macaques (Macaca fascicularis)

    PubMed Central

    Fong, Derek L.; Murnane, Robert D.; Hotchkiss, Charlotte E.; Green, Damian J.; Hukkanen, Renee R.

    2011-01-01

    Fat embolization (FE), the introduction of bone marrow elements into circulation, is a known complication of bone fractures. Although FE has been described in other animal models, this study represents the first reported cases of FE and bone marrow embolism in nonhuman primates. Histopathologic findings from cynomolgus macaques (Macaca fascicularis) indicated that in all 5 cases, fat and bone marrow embolization occurred subsequent to multiple bone marrow biopsies. In the most severe case, extensive embolization was associated pulmonary damage consistent with acute respiratory distress syndrome. Fat embolism syndrome (FES) is an infrequent clinical outcome of FE and is triggered by systemic biochemical and mechanical responses to fat in circulation. Although clinical criteria diagnostic of FES were not investigated at the time of death, this severe case may represent the fulminant form of FES, which occurs within 12 h after trauma. Bone marrow biopsy as an etiology of FES has been reported only once in humans. In addition, the association of embolization with bone marrow biopsies suggests that nonhuman primates may be a useful animal model of FE. FE and FES represent important research confounders and FES should be considered as a differential diagnosis for clinical complications subsequent to skeletal trauma. PMID:21819686

  6. Pulmonary embolization of fat and bone marrow in cynomolgus Macaques (Macaca fascicularis).

    PubMed

    Fong, Derek L; Murnane, Robert D; Hotchkiss, Charlotte E; Green, Damian J; Hukkanen, Renee R

    2011-02-01

    Fat embolization (FE), the introduction of bone marrow elements into circulation, is a known complication of bone fractures. Although FE has been described in other animal models, this study represents the first reported cases of FE and bone marrow embolism in nonhuman primates. Histopathologic findings from cynomolgus macaques (Macaca fascicularis) indicated that in all 5 cases, fat and bone marrow embolization occurred subsequent to multiple bone marrow biopsies. In the most severe case, extensive embolization was associated pulmonary damage consistent with acute respiratory distress syndrome. Fat embolism syndrome (FES) is an infrequent clinical outcome of FE and is triggered by systemic biochemical and mechanical responses to fat in circulation. Although clinical criteria diagnostic of FES were not investigated at the time of death, this severe case may represent the fulminant form of FES, which occurs within 12 h after trauma. Bone marrow biopsy as an etiology of FES has been reported only once in humans. In addition, the association of embolization with bone marrow biopsies suggests that nonhuman primates may be a useful animal model of FE. FE and FES represent important research confounders and FES should be considered as a differential diagnosis for clinical complications subsequent to skeletal trauma.

  7. High-fidelity organic preservation of bone marrow in ca. 10 Ma amphibians

    NASA Astrophysics Data System (ADS)

    McNamara, Maria E.; Orr, Patrick J.; Kearns, Stuart L.; Alcalá, Luis; Anadón, Pere; Peñalver-Mollá, Enrique

    2006-08-01

    Bone marrow in ca. 10 Ma frogs and salamanders from the Miocene of Libros, Spain, represents the first fossilized example of this extremely decay-prone tissue. The bone marrow, preserved in three dimensions as an organic residue, retains the original texture and red and yellow color of hematopoietic and fatty marrow, respectively; moldic osteoclasts and vascular structures are also present. We attribute exceptional preservation of the fossilized bone marrow to cryptic preservation: the bones of the amphibians formed protective microenvironments, and inhibited microbial infiltration. Specimens in which bone marrow is preserved vary in their completeness and articulation and in the extent to which the body outline is preserved as a thin film of organically preserved bacteria. Cryptic preservation of these labile tissues is thus to a large extent independent of, and cannot be predicted by, the taphonomic history of the remainder of the specimen.

  8. Comparison of fibrin clots derived from peripheral blood and bone marrow.

    PubMed

    Shoji, Takeshi; Nakasa, Tomoyuki; Yoshizuka, Masaaki; Yamasaki, Takuma; Yasunaga, Yuji; Adachi, Nobuo; Ochi, Mitsuo

    2017-03-01

    Autologous fibrin clots derived from peripheral blood (pb-fibrin clot) and bone marrow (bm-fibrin clot) are thought to be effective for tissue regeneration. However, there is no report detailing the amount of growth factors in pb-/bm-fibrin clot. In this study we evaluated the amount of growth factors in human pb-/bm-fibrin clot, and prove the validity of fibrin clot for clinical use. Human pb-/bm-fibrin clots were obtained during surgery. In the first experiment, enzyme-linked immunosorbent assay (ELISA) was performed for detecting the amount of vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), insulin-like growth factor-1 (IGF-1), fibroblast growth factor basic (bFGF), hepatocyte growth factor (HGF), transforming growth factor-beta (TGF-β), platelet derived-growth factors-AB (PDGF-AB), and stromal cell-derived factor-1 (SDF-1). In the second experiment, the efficacy of fibrin clot on the osteogenic differentiation and fibroblast proliferation was evaluated. Pb-/bm-fibrin clots were incubated in human osteoblast derived from mesenchymal stromal cells (MSCs) or human skin fibroblast. Alizarin red staining and real-time PCR (COL1A1, RUNX2) were performed for the detection of osteogenic potential. Cell-growth assay (WST-8) and real-time PCR (COL1A1) were also performed for the detection of the potential of fibroblast proliferation. ELISA analysis revealed that the amount of VEGF, HGF, bFGF, IGF-1, and SDF-1 of bm-fibrin clot group is higher than that of pb-fibrin clot group with statistical differences. Besides, we confirmed that bm-fibrin clot has much potential for the osteogenic differentiation and fibroblast proliferation. The positive outcomes confirm the efficacy of pb-/bm-fibrin clot, and bm-fibrin clot was proved to have much potential for tissue regeneration compared with pb-fibrin clot. The current study showed the potential of a strategy for regenerative medicine using bm-fibrin clot.

  9. Development of a 3D bone marrow adipose tissue model.

    PubMed

    Fairfield, Heather; Falank, Carolyne; Farrell, Mariah; Vary, Calvin; Boucher, Joshua M; Driscoll, Heather; Liaw, Lucy; Rosen, Clifford J; Reagan, Michaela R

    2018-01-26

    Over the past twenty years, evidence has accumulated that biochemically and spatially defined networks of extracellular matrix, cellular components, and interactions dictate cellular differentiation, proliferation, and function in a variety of tissue and diseases. Modeling in vivo systems in vitro has been undeniably necessary, but when simplified 2D conditions rather than 3D in vitro models are used, the reliability and usefulness of the data derived from these models decreases. Thus, there is a pressing need to develop and validate reliable in vitro models to reproduce specific tissue-like structures and mimic functions and responses of cells in a more realistic manner for both drug screening/disease modeling and tissue regeneration applications. In adipose biology and cancer research, these models serve as physiologically relevant 3D platforms to bridge the divide between 2D cultures and in vivo models, bringing about more reliable and translationally useful data to accelerate benchtop to bedside research. Currently, no model has been developed for bone marrow adipose tissue (BMAT), a novel adipose depot that has previously been overlooked as "filler tissue" but has more recently been recognized as endocrine-signaling and systemically relevant. Herein we describe the development of the first 3D, BMAT model derived from either human or mouse bone marrow (BM) mesenchymal stromal cells (MSCs). We found that BMAT models can be stably cultured for at least 3 months in vitro, and that myeloma cells (5TGM1, OPM2 and MM1S cells) can be cultured on these for at least 2 weeks. Upon tumor cell co-culture, delipidation occurred in BMAT adipocytes, suggesting a bidirectional relationship between these two important cell types in the malignant BM niche. Overall, our studies suggest that 3D BMAT represents a "healthier," more realistic tissue model that may be useful for elucidating the effects of MAT on tumor cells, and tumor cells on MAT, to identify novel therapeutic

  10. Bone marrow adipocytes as negative regulators of the hematopoietic microenvironment

    PubMed Central

    Naveiras, Olaia; Nardi, Valentina; Wenzel, Pamela L.; Fahey, Frederic; Daley, George Q.

    2009-01-01

    Osteoblasts and endothelium constitute functional niches that support hematopoietic stem cells (HSC) in mammalian bone marrow (BM) 1,2,3 . Adult BM also contains adipocytes, whose numbers correlate inversely with the hematopoietic activity of the marrow. Fatty infiltration of hematopoietic red marrow follows irradiation or chemotherapy and is a diagnostic feature in biopsies from patients with marrow aplasia 4. To explore whether adipocytes influence hematopoiesis or simply fill marrow space, we compared the hematopoietic activity of distinct regions of the mouse skeleton that differ in adiposity. By flow cytometry, colony forming activity, and competitive repopulation assay, HSCs and short-term progenitors are reduced in frequency in the adipocyte-rich vertebrae of the mouse tail relative to the adipocyte-free vertebrae of the thorax. In lipoatrophic A-ZIP/F1 “fatless” mice, which are genetically incapable of forming adipocytes8, and in mice treated with the PPARγ inhibitor Bisphenol-A-DiGlycidyl-Ether (BADGE), which inhibits adipogenesis9, post-irradiation marrow engraftment is accelerated relative to wild type or untreated mice. These data implicate adipocytes as predominantly negative regulators of the bone marrow microenvironment, and suggest that antagonizingmarrow adipogenesis may enhance hematopoietic recovery in clinical bone marrow transplantation. PMID:19516257

  11. Cell-specific paracrine actions of IL-6 family cytokines from bone, marrow and muscle that control bone formation and resorption.

    PubMed

    Sims, Natalie A

    2016-10-01

    Bone renews itself and changes shape throughout life to account for the changing needs of the body; this requires co-ordinated activities of bone resorbing cells (osteoclasts), bone forming cells (osteoblasts) and bone's internal cellular network (osteocytes). This review focuses on paracrine signaling by the IL-6 family of cytokines between bone cells, bone marrow, and skeletal muscle in normal physiology and in pathological states where their levels may be locally or systemically elevated. These functions include the support of osteoclast formation by osteoblast lineage cells in response to interleukin 6 (IL-6), interleukin 11 (IL-11), oncostatin M (OSM) and cardiotrophin 1 (CT-1). In addition it will discuss how bone-resorbing osteoclasts promote osteoblast activity by secreting CT-1, which acts as a "coupling factor" on osteocytes, osteoblasts, and their precursors to promote bone formation. OSM, produced by osteoblast lineage cells and macrophages, stimulates bone formation via osteocytes. IL-6 family cytokines also mediate actions of other bone formation stimuli like parathyroid hormone (PTH) and mechanical loading. CT-1, OSM and LIF suppress marrow adipogenesis by shifting commitment of pluripotent precursors towards osteoblast differentiation. Ciliary neurotrophic factor (CNTF) is released as a myokine from skeletal muscle and suppresses osteoblast differentiation and bone formation on the periosteum (outer bone surface in apposition to muscle). Finally, IL-6 acts directly on marrow-derived osteoclasts to stimulate release of "osteotransmitters" that act through the cortical osteocyte network to stimulate bone formation on the periosteum. Each will be discussed as illustrations of how the extended family of IL-6 cytokines acts within the skeleton in physiology and may be altered in pathological conditions or by targeted therapies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Matrix directed adipogenesis and neurogenesis of mesenchymal stem cells derived from adipose tissue and bone marrow.

    PubMed

    Lee, Junmin; Abdeen, Amr A; Tang, Xin; Saif, Taher A; Kilian, Kristopher A

    2016-09-15

    Mesenchymal stem cells (MSCs) can differentiate into multiple lineages through guidance from the biophysical and biochemical properties of the extracellular matrix. In this work we conduct a combinatorial study of matrix properties that influence adipogenesis and neurogenesis including: adhesion proteins, stiffness, and cell geometry, for mesenchymal stem cells derived from adipose tissue (AT-MSCs) and bone marrow (BM-MSCs). We uncover distinct differences in integrin expression, the magnitude of traction stress, and lineage specification to adipocytes and neuron-like cells between cell sources. In the absence of media supplements, adipogenesis in AT-MSCs is not significantly influenced by matrix properties, while the converse is true in BM-MSCs. Both cell types show changes in the expression of neurogenesis markers as matrix cues are varied. When cultured on laminin conjugated microislands of the same adhesive area, BM-MSCs display elevated adipogenesis markers, while AT-MSCs display elevated neurogenesis markers; integrin analysis suggests neurogenesis in AT-MSCs is guided by adhesion through integrin αvβ3. Overall, the properties of the extracellular matrix guides MSC adhesion and lineage specification to different degrees and outcomes, in spite of their similarities in general characteristics. This work will help guide the selection of MSCs and matrix components for applications where high fidelity of differentiation outcome is desired. Mesenchymal stem cells (MSCs) are an attractive cell type for stem cell therapies; however, in order for these cells to be useful in medicine, we need to understand how they respond to the physical and chemical environments of tissue. Here, we explore how two promising sources of MSCs-those derived from bone marrow and from adipose tissue-respond to the compliance and composition of tissue using model extracellular matrices. Our results demonstrate a source-specific propensity to undergo adipogenesis and neurogenesis, and

  13. Hematopoietic stem cell transplantation in Europe 1998.

    PubMed

    Gratwohl, A; Passweg, J; Baldomero, H; Hermans, J; Urbano-Ispizua, A

    2000-01-01

    Transplantation of hematopoietic stem cells from blood or bone marrow has become accepted therapy for many diseases. Numbers of transplants have increased significantly and stem cell source, donor type and indications have changed during this decade. Information on these changes is essential for interpretation of current data, patient counseling and health care planning. Since 1990, members of the European Group for Blood and Marrow Transplantation and teams known to perform blood or marrow transplants have been invited annually to report their transplant numbers by indication, donor type and stem cell source. Data from these surveys have been used to present data for 1998, to assess current status and to give numbers of transplants per participating country, coefficients of variation between countries for individual indications and changes in indication, stem cell source and donor type over the past decade. In 1998, a total of 20 892 transplants were performed by 528 teams in 31 European countries. Of these transplants 18 400 were first transplants, 5308 (29%) were allogenic, and 13 092 (71%) were autologous. Of the autologous transplants, 809 (6%) were bone marrow derived, and 12 283 (94%) were from peripheral blood stems cells. Of the allogeneic transplants, 3372 (64%) were bone marrow derived, and 1936 (36%) were peripheral blood stem cell transplants. In 1990, the respective figures were 2137 allogeneic (50%) and 2097 (50%) autologous transplants, all exclusively bone marrow derived. Main indications in 1998 were leukemias with 6015 transplants (33%), 68% thereof allogeneic transplants; lymphomas with 7492 transplants (41%), 94% thereof autologous transplants; solid tumors with 4025 transplants (22%), 99% thereof autologous transplants; non-malignant disorders with 868 transplants (5%), 80% thereof allogeneic transplants. Absolute numbers of transplants per year did increase from 4234 in 1990 to 20 892 in 1998. Increase is higher for autologous, than for

  14. Primary bone marrow oedema syndromes.

    PubMed

    Patel, Sanjeev

    2014-05-01

    MRI scanning in patients with rheumatological conditions often shows bone marrow oedema, which can be secondary to inflammatory, degenerative, infective or malignant conditions but can also be primary. The latter condition is of uncertain aetiology and it is also uncertain whether it represents a stage in the progression to osteonecrosis in some patients. Patients with primary bone marrow oedema usually have lower limb pain, commonly the hip, knee, ankle or feet. The diagnosis is one of exclusion with the presence of typical MRI findings. Treatment is usually conservative and includes analgesics and staying off the affected limb. The natural history is that of gradual resolution of symptoms over a number of months. Evidence for medical treatment is limited, but open-label studies suggest bisphosphonates may help in the resolution of pain and improve radiological findings. Surgical decompression is usually used as a last resort.

  15. Bone marrow involvement is rare in superficial gastric mucosa-associated lymphoid tissue lymphoma.

    PubMed

    Park, Jae Yong; Kim, Sang Gyun; Kim, Joo Sung; Jung, Hyun Chae

    2016-01-01

    The initial staging work-up of gastric mucosa-associated lymphoid tissue (MALT) lymphoma includes bone marrow examination. Since gastric MALT lymphoma is mostly detected in early stages with the national cancer screening programme in Korea, bone marrow is rarely involved. To investigate the incidence of bone marrow involvement in gastric MALT lymphomas and the role of bone marrow examination for an initial staging work-up. Patients diagnosed with gastric MALT lymphoma at Seoul National University Hospital from January 2005 to July 2014 were enrolled. Clinical databases of the patients were retrospectively reviewed. Out of 105 patients, 91 (86.7%) were classified as stage IE1. Among these patients, 78 patients with Helicobacter pylori infection underwent eradication therapy, and complete remission was achieved in 74 cases (94.9%). Twelve out of 13 patients (92.3%) without H. pylori infection underwent radiotherapy or surgery and all achieved complete remission. Bone marrow involvement was proven in only one patient (1.0%). Bone marrow involvement was rare in patients with only superficial gastric MALT lymphoma without extragastric invasion. Further studies are warranted to identify the risk factors of bone marrow involvement in gastric MALT lymphoma. Copyright © 2015 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  16. Small Molecule Protection of Bone Marrow Hematopoietic Stem Cells

    DTIC Science & Technology

    2017-12-01

    using isogenic (mutant/complemented) human cell line pairs from patients with Fanconi anemia (FA), a heritable human bone marrow failure (BMF) syndrome ...small molecules could be therapeutically useful in reducing the risk of BMF in diseases such as Fanconi anemia, and perhaps after radiation exposure...damage-repair, DNA damage response, Fanconi anemia and associated bone marrow failure syndromes and environmental and molecular toxicology will all be

  17. [Regulatory problems regarding bone marrow transplantation from non-consanguinous donors].

    PubMed

    Moratti, A

    1999-01-01

    The paper reports the normative rules and the Italian Ministry of Health administrative instructions concerning the bone marrow unrelated donor (MUD) search in the Italian Bone Marrow Donor Registry (IBMDR) and in international registries from the preliminary activation to a MUD bone marrow transplant (BMT), when a volunteer donor, perfectly compatible with a recipient lacking a HLA identical sibling, is found. The article describes all the expenses pertinent to the different stages of search and the documents necessary to obtain the reimbursement of these expenses. A very recent Ministry Decree establishing that all the search costs will be charged to the competent local sanitary authority is added.

  18. Platelets secrete stromal cell–derived factor 1α and recruit bone marrow–derived progenitor cells to arterial thrombi in vivo

    PubMed Central

    Massberg, Steffen; Konrad, Ildiko; Schürzinger, Katrin; Lorenz, Michael; Schneider, Simon; Zohlnhoefer, Dietlind; Hoppe, Katharina; Schiemann, Matthias; Kennerknecht, Elisabeth; Sauer, Susanne; Schulz, Christian; Kerstan, Sandra; Rudelius, Martina; Seidl, Stefan; Sorge, Falko; Langer, Harald; Peluso, Mario; Goyal, Pankaj; Vestweber, Dietmar; Emambokus, Nikla R.; Busch, Dirk H.; Frampton, Jon; Gawaz, Meinrad

    2006-01-01

    The accumulation of smooth muscle and endothelial cells is essential for remodeling and repair of injured blood vessel walls. Bone marrow–derived progenitor cells have been implicated in vascular repair and remodeling; however, the mechanisms underlying their recruitment to the site of injury remain elusive. Here, using real-time in vivo fluorescence microscopy, we show that platelets provide the critical signal that recruits CD34+ bone marrow cells and c-Kit+ Sca-1+ Lin− bone marrow–derived progenitor cells to sites of vascular injury. Correspondingly, specific inhibition of platelet adhesion virtually abrogated the accumulation of both CD34+ and c-Kit+ Sca-1+ Lin− bone marrow–derived progenitor cells at sites of endothelial disruption. Binding of bone marrow cells to platelets involves both P-selectin and GPIIb integrin on platelets. Unexpectedly, we found that activated platelets secrete the chemokine SDF-1α, thereby supporting further primary adhesion and migration of progenitor cells. These findings establish the platelet as a major player in the initiation of vascular remodeling, a process of fundamental importance for vascular repair and pathological remodeling after vascular injury. PMID:16618794

  19. Bone marrow blood vessel ossification and "microvascular dead space" in rat and human long bone.

    PubMed

    Prisby, Rhonda D

    2014-07-01

    Severe calcification of the bone microvascular network was observed in rats, whereby the bone marrow blood vessels appeared ossified. This study sought to characterize the magnitude of ossification in relation to patent blood vessels and adipocyte content in femoral diaphyses. Additionally, this study confirmed the presence of ossified vessels in patients with arteriosclerotic vascular disease and peripheral vascular disease and cellulitis. Young (4-6 month; n=8) and old (22-24 month; n=8) male Fischer-344 rats were perfused with barium sulfate to visualize patent bone marrow blood vessels. Femoral shafts were processed for bone histomorphometry to quantify ossified (Goldner's Trichrome) and calcified (Alizarin Red) vessels. Adipocyte content was also determined. Additional femora (n=5/age group) were scanned via μCT to quantify microvascular ossification. Bone marrow blood vessels from the rats and the human patients were also isolated and examined via microscopy. Ossified vessels (rats and humans) had osteocyte lacunae on the vessel surfaces and "normal" vessels were transitioning into bone. The volume of ossified vessels was 4800% higher (p<0.05) in the old vs. young rats. Calcified and ossified vessel volumes per tissue volume and calcified vessel volume per patent vessel volume were augmented (p<0.05) 262%, 375% and 263%, respectively, in the old vs. young rats. Ossified and patent vessel number was higher (171%) and lower (40%), respectively, in the old vs. young rats. Finally, adipocyte volume per patent vessel volume was higher (86%) with age. This study is the first to report ossification of bone marrow blood vessels in rats and humans. Ossification presumably results in "microvascular dead space" in regard to loss of patency and vasomotor function as opposed to necrosis. Progression of bone microvascular ossification may provide the common link associated with age-related changes in bone and bone marrow. The clinical implications may be evident in the

  20. Viridans streptococcal shock syndrome during bone marrow transplantation.

    PubMed

    Martino, R; Manteiga, R; Sánchez, I; Brunet, S; Sureda, A; Badell, I; Argilés, B; Subirá, M; Bordes, R; Domingo-Albós, A

    1995-01-01

    Of 320 patients receiving a marrow transplant at the Hospital de Sant Pau between 1986 and 1992, 12% developed viridans streptococcal bacteremia during severe neutropenia. Five of these patients (13%) developed a rapidly progressive fatal shock syndrome characterized by bilateral pulmonary infiltrates, acute respiratory failure (ARDS) and septic shock early in the transplantation course (6 or 7 days posttransplantation). All patients were transplanted for acute leukemia in remission, and 2 received an allogeneic and 3 an autologous transplant. Four of these subjects were younger than 15 years of age and all had received cyclophosphamide and total body irradiation as conditioning regimen for marrow transplantation. All 5 patients died, and postmortem examinations revealed diffuse pulmonary lesions characteristic of the ARDS. These observations contribute to defining the clinical and pathologic characteristics of this serious complication of intensive anticancer treatment.

  1. Cardiac Nerve Growth Factor Overexpression Induces Bone Marrow-derived Progenitor Cells Mobilization and Homing to the Infarcted Heart.

    PubMed

    Meloni, Marco; Cesselli, Daniela; Caporali, Andrea; Mangialardi, Giuseppe; Avolio, Elisa; Reni, Carlotta; Fortunato, Orazio; Martini, Stefania; Madeddu, Paolo; Valgimigli, Marco; Nikolaev, Evgeni; Kaczmarek, Leszek; Angelini, Gianni D; Beltrami, Antonio P; Emanueli, Costanza

    2015-12-01

    Reparative response by bone marrow (BM)-derived progenitor cells (PCs) to ischemia is a multistep process that comprises the detachment from the BM endosteal niche through activation of osteoclasts and proteolytic enzymes (such as matrix metalloproteinases (MMPs)), mobilization to the circulation, and homing to the injured tissue. We previously showed that intramyocardial nerve growth factor gene transfer (NGF-GT) promotes cardiac repair following myocardial infarction (MI) in mice. Here, we investigate the impact of cardiac NGF-GT on postinfarction BM-derived PCs mobilization and homing at different time points after adenovirus-mediated NGF-GT in mice. Immunohistochemistry and flow cytometry newly illustrate the temporal profile of osteoclast and activation of MMP9, PCs expansion in the BM, and liberation/homing to the injured myocardium. NGF-GT amplified these responses and increased the BM levels of active osteoclasts and MMP9, which were not observed in MMP9-deficient mice. Taken together, our results suggest a novel role for NGF in BM-derived PCs mobilization/homing following MI.

  2. Bone marrow derived stem cell therapy for type 2 diabetes mellitus.

    PubMed

    Wehbe, Tarek; Chahine, Nassim Abi; Sissi, Salam; Abou-Joaude, Isabelle; Chalhoub, Louis

    2016-01-01

    In this study, 6 patients with type 2 diabetes (T2D) underwent autologous bone marrow mononuclear stem cell (BM-MNSC) infusion into the celiac and superior mesenteric arteries without pretreatment with any myeloablative or immune-suppressive therapy. Five of 6 (83%) showed normalization of their fasting glucose and the glycosylated hemoglobin (HbA1C) with significant reduction of their medication requirements. The HbA1C dropped on average 2.2 points. The three patients with diabetic complications showed improvement or stabilization and most patients reported improved energy and stamina. The durations of response varied between 6 months and 2 years. No patients had any significant adverse effects.

  3. Management of unicameral bone cyst by using freeze dried radiation sterilized bone allograft impregnate with autogenous bone marrow.

    PubMed

    Datta, N K; Das, K P; Alam, M S; Kaiser, M S

    2014-07-01

    Unicameral bone cyst is a common benign bone tumor and most frequent cause of the pathological fracture in children. We have started a prospective study for that treatment of unicameral bone cyst by using freeze dried radiation sterilized bone allograft impregnated with autogenous bone marrow in the department of Orthopaedics, Bangabandhu Sheikh Mujib Medical University (BSMMU) during May 1999 to April 2012. Aim of this study was to see Freeze dried radiation sterilized bone allograft impregnate with autogenous bone marrow a satisfactory graft material in the treatment of unicameral bone cyst as well as factors such as patients age, sex, cyst size and site of lesion influence on cyst healing. A total 35 patients of unicameral bone cyst were operated. In this study out of 35 patients, male were 22(62.86%) and female were 13(37.14). Male Female ratio 22:13(1.70:1) Age of the patients ranging from 2 years 6 month to 20 years, mean age 12.18 years more common 11 years to 20 years 29(82.86%) patients. Common bones sites involvements are proximal end of Humerus 20(57.14%), proximal end of Femur 7(20 %), proximal end of Tibia 3(8.57%), Calcanium 2(5.71%), proximal end of Ulna 1(2.86%), shaft of Radius 1(2.86%) and Phalanx 1(2.86%). Final clinical outcome of unicameral bone cyst treated by thorough curettage of cavity and tightly filled with freeze dried radiation sterilized bone allograft impregnate with autogenous bone marrow in which healed (success rate) 88.57% (31) and recurrence rate is 11.43% (4). P value is <0.001. Follow up period was 6 month to 11 years. From our study it was realized that freeze dried radiation sterilized bone allograft impregnated with autogenous bone marrow is useful graft material for healing of the lesional area as well as restoring structural integrity for the treatment of unicameral bone cyst.

  4. Obesity-driven disruption of haematopoiesis and the bone marrow niche.

    PubMed

    Adler, Benjamin J; Kaushansky, Kenneth; Rubin, Clinton T

    2014-12-01

    Obesity markedly increases susceptibility to a range of diseases and simultaneously undermines the viability and fate selection of haematopoietic stem cells (HSCs), and thus the kinetics of leukocyte production that is critical to innate and adaptive immunity. Considering that blood cell production and the differentiation of HSCs and their progeny is orchestrated, in part, by complex interacting signals emanating from the bone marrow microenvironment, it is not surprising that conditions that disturb bone marrow structure inevitably disrupt both the numbers and lineage-fates of these key blood cell progenitors. In addition to the increased adipose burden in visceral and subcutaneous compartments, obesity causes a marked increase in the size and number of adipocytes encroaching into the bone marrow space, almost certainly disturbing HSC interactions with neighbouring cells, which include osteoblasts, osteoclasts, mesenchymal cells and endothelial cells. As the global obesity pandemic grows, the short-term and long-term consequences of increased bone marrow adiposity on HSC lineage selection and immune function remain uncertain. This Review discusses the differentiation and function of haematopoietic cell populations, the principal physicochemical components of the bone marrow niche, and how this environment influences HSCs and haematopoiesis in general. The effect of adipocytes and adiposity on HSC and progenitor cell populations is also discussed, with the goal of understanding how obesity might compromise the core haematopoietic system.

  5. Mesenchymal Progenitors Residing Close to the Bone Surface Are Functionally Distinct from Those in the Central Bone Marrow

    PubMed Central

    Siclari, Valerie A.; Zhu, Ji; Akiyama, Kentaro; Liu, Fei; Zhang, Xianrong; Chandra, Abhishek; Nah-Cederquist, Hyun-Duck; Shi, Songtao; Qin, Ling

    2013-01-01

    Long bone is an anatomically complicated tissue with trabecular-rich metaphyses at two ends and cortical-rich diaphysis at the center. The traditional flushing method only isolates mesenchymal progenitor cells from the central region of long bones and these cells are distant from the bone surface. We propose that mesenchymal progenitors residing in endosteal bone marrow that is close to the sites of bone formation, such as trabecular bone and endosteum, behave differently from those in the central bone marrow. In this report, we separately isolated endosteal bone marrow using a unique enzymatic digestion approach and demonstrated that it contained a much higher frequency of mesenchymal progenitors than the central bone marrow. Endosteal mesenchymal progenitors express traditional mesenchymal stem cell markers and are capable of multi-lineage differentiation. However, we found that mesenchymal progenitors isolated from different anatomical regions of the marrow did exhibit important functional differences. Compared to their central marrow counterparts, endosteal mesenchymal progenitors have superior proliferative ability with reduced expression of cell cycle inhibitors. They showed greater immunosuppressive activity in culture and in a mouse model of inflammatory bowel disease. Aging is a major contributing factor for trabecular bone loss. We found that old mice have a dramatically decreased number of endosteal mesenchymal progenitors compared to young mice. Parathyroid hormone (PTH) treatment potently stimulates bone formation. A single PTH injection greatly increased the number of endosteal mesenchymal progenitors, particularly those located at the metaphyseal bone, but had no effect on their central counterparts. In summary, endosteal mesenchymal progenitors are more metabolically active and relevant to physiological bone formation than central mesenchymal progenitors. Hence, they represent a biologically important target for future mesenchymal stem cell studies

  6. Monte Carlo simulation of age-dependent radiation dose from alpha- and beta-emitting radionuclides to critical trabecular bone and bone marrow targets

    NASA Astrophysics Data System (ADS)

    Dant, James T.; Richardson, Richard B.; Nie, Linda H.

    2013-05-01

    Alpha (α) particles and low-energy beta (β) particles present minimal risk for external exposure. While these particles can induce leukemia and bone cancer due to internal exposure, they can also be beneficial for targeted radiation therapies. In this paper, a trabecular bone model is presented to investigate the radiation dose from bone- and marrow-seeking α and β emitters to different critical compartments (targets) of trabecular bone for different age groups. Two main issues are addressed with Monte Carlo simulations. The first is the absorption fractions (AFs) from bone and marrow to critical targets within the bone for different age groups. The other issue is the application of 223Ra for the radiotherapy treatment of bone metastases. Both a static model and a simulated bone remodeling process are established for trabecular bone. The results show significantly lower AFs from radionuclide sources in the bone volume to the peripheral marrow and the haematopoietic marrow for adults than for newborns and children. The AFs from sources on the bone surface and in the bone marrow to peripheral marrow and haematopoietic marrow also varies for adults and children depending on the energy of the particles. Regarding the use of 223Ra as a radionuclide for the radiotherapy of bone metastases, the simulations show a significantly higher dose from 223Ra and its progeny in forming bone to the target compartment of bone metastases than that from two other more commonly used β-emitting radiopharmaceuticals, 153Sm and 89Sr. There is also a slightly lower dose from 223Ra in forming bone to haematopoietic marrow than that from 153Sm and 89Sr. These results indicate a higher therapy efficiency and lower marrow toxicity from 223Ra and its progeny. In conclusion, age-related changes in bone dimension and cellularity seem to significantly affect the internal dose from α and β emitters in the bone and marrow to critical targets, and 223Ra may be a more efficient

  7. CMV monitoring after peripheral blood stem cell and bone marrow transplantation by pp65 antigen and quantitative PCR.

    PubMed

    Schulenburg, A; Watkins-Riedel, T; Greinix, H T; Rabitsch, W; Loidolt, H; Keil, F; Mitterbauer, M; Kalhs, P

    2001-10-01

    We prospectively monitored 74 consecutive allogeneic and 50 autologous patients after bone marrow/stem cell transplantation from May 1999 to October 2000 at our institution with quantitative CMV PCR and pp65 antigen assay once weekly from conditioning therapy to days 120 and 80 after transplantation, respectively. Written informed consent was obtained from every patient. CMV prophylaxis consisted of acyclovir during transplant. Additionally all patients received only platelet products from CMV-negative donors. In the case of CMV infection preemptive therapy with gancyclovir was applied. In the case of CMV disease high-dose immunoglobulin was given as well. In the allogeneic setting 16 out of 74 (22%) patients developed a positive PCR. Seven episodes of a positive pp65 antigen assay occurred in six allograft recipients. In the autologous setting no positive assay was found during the whole observation period. Additionally, in 6/16 patients a lymphoproliferative assay was performed during CMV infection. Two patients showed a positive (15 and 5.4) and four a negative (2,1.6,1,1.8) stimulation index.

  8. Enhancement of Tendon–Bone Healing for Anterior Cruciate Ligament (ACL) Reconstruction Using Bone Marrow-Derived Mesenchymal Stem Cells Infected with BMP-2

    PubMed Central

    Dong, Yu; Zhang, Qingguo; Li, Yunxia; Jiang, Jia; Chen, Shiyi

    2012-01-01

    At present, due to the growing attention focused on the issue of tendon–bone healing, we carried out an animal study of the use of genetic intervention combined with cell transplantation for the promotion of this process. Here, the efficacy of bone marrow stromal cells infected with bone morphogenetic protein-2 (BMP-2) on tendon–bone healing was determined. A eukaryotic expression vector containing the BMP-2 gene was constructed and bone marrow-derived mesenchymal stem cells (bMSCs) were infected with a lentivirus. Next, we examined the viability of the infected cells and the mRNA and protein levels of BMP-2-infected bMSCs. Gastrocnemius tendons, gastrocnemius tendons wrapped by bMSCs infected with the control virus (bMSCs+Lv-Control), and gastrocnemius tendons wrapped by bMSCs infected with the recombinant BMP-2 virus (bMSCs+Lv-BMP-2) were used to reconstruct the anterior cruciate ligament (ACL) in New Zealand white rabbits. Specimens from each group were harvested four and eight weeks postoperatively and evaluated using biomechanical and histological methods. The bMSCs were infected with the lentivirus at an efficiency close to 100%. The BMP-2 mRNA and protein levels in bMSCs were significantly increased after lentiviral infection. The bMSCs and BMP-2-infected bMSCs on the gastrocnemius tendon improved the biomechanical properties of the graft in the bone tunnel; specifically, bMSCs infected with BMP-2 had a positive effect on tendon–bone healing. In the four-week and eight-week groups, bMSCs+Lv-BMP-2 group exhibited significantly higher maximum loads of 29.3 ± 7.4 N and 45.5 ± 11.9 N, respectively, compared with the control group (19.9 ± 6.4 N and 21.9 ± 4.9 N) (P = 0.041 and P = 0.001, respectively). In the eight-week groups, the stiffness of the bMSCs+Lv-BMP-2 group (32.5 ± 7.3) was significantly higher than that of the bMSCs+Lv-Control group (22.8 ± 7.4) or control groups (12.4 ± 6.0) (p = 0.036 and 0.001, respectively). Based on the histological

  9. Erythrocyte depletion from bone marrow: performance evaluation after 50 clinical-scale depletions with Spectra Optia BMC.

    PubMed

    Kim-Wanner, Soo-Zin; Bug, Gesine; Steinmann, Juliane; Ajib, Salem; Sorg, Nadine; Poppe, Carolin; Bunos, Milica; Wingenfeld, Eva; Hümmer, Christiane; Luxembourg, Beate; Seifried, Erhard; Bonig, Halvard

    2017-08-11

    Red blood cell (RBC) depletion is a standard graft manipulation technique for ABO-incompatible bone marrow (BM) transplants. The BM processing module for Spectra Optia, "BMC", was previously introduced. We here report the largest series to date of routine quality data after performing 50 clinical-scale RBC-depletions. Fifty successive RBC-depletions from autologous (n = 5) and allogeneic (n = 45) BM transplants were performed with the Spectra Optia BMC apheresis suite. Product quality was assessed before and after processing for volume, RBC and leukocyte content; RBC-depletion and stem cell (CD34+ cells) recovery was calculated there from. Clinical engraftment data were collected from 26/45 allogeneic recipients. Median RBC removal was 98.2% (range 90.8-99.1%), median CD34+ cell recovery was 93.6%, minimum recovery being 72%, total product volume was reduced to 7.5% (range 4.7-23.0%). Products engrafted with expected probability and kinetics. Performance indicators were stable over time. Spectra Optia BMC is a robust and efficient technology for RBC-depletion and volume reduction of BM, providing near-complete RBC removal and excellent CD34+ cell recovery.

  10. Engineering bone grafts with enhanced bone marrow and native scaffolds.

    PubMed

    Hung, Ben P; Salter, Erin K; Temple, Josh; Mundinger, Gerhard S; Brown, Emile N; Brazio, Philip; Rodriguez, Eduardo D; Grayson, Warren L

    2013-01-01

    The translation of tissue engineering approaches to the clinic has been hampered by the inability to find suitable multipotent cell sources requiring minimal in vitro expansion. Enhanced bone marrow (eBM), which is obtained by reaming long bone medullary canals and isolating the solid marrow putty, has large quantities of stem cells and demonstrates significant potential to regenerate bone tissues. eBM, however, cannot impart immediate load-bearing mechanical integrity or maintain the gross anatomical structure to guide bone healing. Yet, its putty-like consistency creates a challenge for obtaining the uniform seeding necessary to effectively combine it with porous scaffolds. In this study, we examined the potential for combining eBM with mechanically strong, osteoinductive trabecular bone scaffolds for bone regeneration by creating channels into scaffolds for seeding the eBM. eBM was extracted from the femurs of adult Yorkshire pigs using a Synthes reamer-irrigator-aspirator device, analyzed histologically, and digested to extract cells and characterize their differentiation potential. To evaluate bone tissue formation, eBM was seeded into the channels in collagen-coated or noncoated scaffolds, cultured in osteogenic conditions for 4 weeks, harvested and assessed for tissue distribution and bone formation. Our data demonstrates that eBM is a heterogenous tissue containing multipotent cell populations. Furthermore, coating scaffolds with a collagen hydrogel significantly enhanced cellular migration, promoted uniform tissue development and increased bone mineral deposition. These findings suggest the potential for generating customized autologous bone grafts for treating critical-sized bone defects by combining a readily available eBM cell source with decellularized trabecular bone scaffolds. © 2013 S. Karger AG, Basel

  11. Human herpes virus-6 infection in marrow graft recipients: role in pathogenesis of graft-versus-host disease. Newcastle upon Tyne Bone Marrow Transport Group.

    PubMed

    Appleton, A L; Sviland, L; Peiris, J S; Taylor, C E; Wilkes, J; Green, M A; Pearson, A D; Kelly, P J; Malcolm, A J; Proctor, S J

    1995-12-01

    To investigate the hypothesis that target organ infection with human herpes virus-6 (HHV-6) exacerbates the clinical severity of GVHD, skin and rectal biopsies from 34 allogeneic bone marrow transplant (BMT) recipients and 23 comparative autologous recipients were studied. Biopsies and heparinised blood samples were obtained from all patients prior to and at regular intervals after BMT, and whenever GVHD was suspected. HHV-6 antigen was detected in cryostat sections by immunohistochemistry, and HHV-6 DNA in peripheral blood leucocytes (PBL) and biopsies by nested PCR. Twenty-eight (90%) of the 31 patients who engrafted developed clinical GVHD, which was mild in five, moderately severe in nine and severe in 14. Overall, HHV-6 DNA was detected in PBl in 74% of autologous recipients and 76% of allogeneic recipients, and in biopsy tissue in 48% of autos and 71% of allos. However, HHV-6 DNA was detected in skin and/or rectal biopsies more frequently in allogeneic recipients with severe GVHD (92%) than in those with either moderate (55%) or mild GVHD (22%), suggesting an association (P = 0.004) between HHV-6 DNA in biopsy tissue and GVHD severity. A significant linear trend (P = 0.03) was identified between detection of HHV-6 DNA in biopsy tissue obtained prior to or concomitant with the onset of GVHD and increased GVHD severity, suggesting that HHV-6 was causally linked to GVHD rather than reactivated as a consequence of GVHD therapy. Thus this study supports a role for HHV-6 in the initiation and/or exacerbation of GVHD, and suggests that the presence of HHV-6 DNA in the skin or rectum may be a factor in determining GVHD severity. If confirmed, these findings may have implications for the management of allogeneic BMT recipients.

  12. Inflammatory Cytokines Induce a Unique Mineralizing Phenotype in Mesenchymal Stem Cells Derived from Human Bone Marrow*

    PubMed Central

    Ferreira, Elisabeth; Porter, Ryan M.; Wehling, Nathalie; O'Sullivan, Regina P.; Liu, Fangjun; Boskey, Adele; Estok, Daniel M.; Harris, Mitchell B.; Vrahas, Mark S.; Evans, Christopher H.; Wells, James W.

    2013-01-01

    Bone marrow contains mesenchymal stem cells (MSCs) that can differentiate along multiple mesenchymal lineages. In this capacity they are thought to be important in the intrinsic turnover and repair of connective tissues while also serving as a basis for tissue engineering and regenerative medicine. However, little is known of the biological responses of human MSCs to inflammatory conditions. When cultured with IL-1β, marrow-derived MSCs from 8 of 10 human subjects deposited copious hydroxyapatite, in which authenticity was confirmed by Fourier transform infrared spectroscopy. Transmission electron microscopy revealed the production of fine needles of hydroxyapatite in conjunction with matrix vesicles. Alkaline phosphatase activity did not increase in response to inflammatory mediators, but PPi production fell, reflecting lower ectonucleotide pyrophosphatase activity in cells and matrix vesicles. Because PPi is the major physiological inhibitor of mineralization, its decline generated permissive conditions for hydroxyapatite formation. This is in contrast to MSCs treated with dexamethasone, where PPi levels did not fall and mineralization was fuelled by a large and rapid increase in alkaline phosphatase activity. Bone sialoprotein was the only osteoblast marker strongly induced by IL-1β; thus these cells do not become osteoblasts despite depositing abundant mineral. RT-PCR did not detect transcripts indicative of alternative mesenchymal lineages, including chondrocytes, myoblasts, adipocytes, ligament, tendon, or vascular smooth muscle cells. IL-1β phosphorylated multiple MAPKs and activated nuclear factor-κB (NF-κB). Certain inhibitors of MAPK and PI3K, but not NF-κB, prevented mineralization. The findings are of importance to soft tissue mineralization, tissue engineering, and regenerative medicine. PMID:23970554

  13. Reduced adiposity in ob/ob mice following total body irradiation and bone marrow transplantation.

    PubMed

    Ablamunits, Vitaly; Weisberg, Stuart P; Lemieux, Jacob E; Combs, Terry P; Klebanov, Simon

    2007-06-01

    The objective of this study was to assess long-term metabolic consequences of total body irradiation (TBI) and bone marrow transplantation. Severe obesity develops due to both hypertrophy and hyperplasia of adipocytes. We hypothesized that TBI would arrest adipose tissue growth and would affect insulin resistance (IR). We exposed 2-month-old female ob/ob mice to 8 Grays of TBI followed by bone marrow transplantation and tested the animals for body weight (BW) gain, body composition, blood glucose, and insulin sensitivity. Two months after TBI, irradiated mice stopped gaining BW, whereas non-treated mice continued to grow. At the age of 9.5 months, body mass of irradiated mice was 60.6 +/- 1.4 grams, which was only 61% of that in non-treated ob/ob controls (99.4 +/- 1.6 grams). Body composition measurements by DXA showed that decreased BW was primarily due to an impaired fat accumulation. This could not result from the production of leptin by bone marrow-derived adipocyte progenitors because inhibition of the obese phenotype was identical in recipients of both B6 and ob/ob bone marrow. Inability of the irradiated mice to accumulate fat was associated with hepatomegaly, lower levels of monocyte chemoattractant protein-1 expression in adipose tissue, and increased IR. Our data argue in favor of the hypothesis that inability of adipose tissue to expand may increase IR. This mouse model may be valuable for studies of late-onset radiation-induced IR in humans.

  14. The Effect of Different Bone Marrow Stimulation Techniques on Human Talar Subchondral Bone: A Micro-Computed Tomography Evaluation.

    PubMed

    Gianakos, Arianna L; Yasui, Youichi; Fraser, Ethan J; Ross, Keir A; Prado, Marcelo P; Fortier, Lisa A; Kennedy, John G

    2016-10-01

    To evaluate morphological alterations, microarchitectural disturbances, and the extent of bone marrow access to the subchondral bone marrow compartment using micro-computed tomography analysis in different bone marrow stimulation (BMS) techniques. Nine zones in a 3 × 3 grid pattern were assigned to 5 cadaveric talar dome articular surfaces. A 1.00-mm microfracture awl (s.MFX), a 2.00-mm standard microfracture awl (l.MFX), or a 1.25-mm Kirschner wire (K-wire) drill hole was used to penetrate the subchondral bone in each grid zone. Subchondral bone holes and adjacent tissue areas were assessed by micro-computed tomography to analyze adjacent bone area destruction and communicating channels to the bone marrow. Grades 1 to 3 were assigned, where 1 = minimal compression/sclerosis; 2 = moderate compression/sclerosis; 3 = severe compression/sclerosis. Bone volume/total tissue volume, bone surface area/bone volume, trabecular thickness, and trabecular number were calculated in the region of interest. Visual assessment revealed that the s.MFX had significantly more grade 1 holes (P < .001) and that the l.MFX had significantly more poor/grade 3 holes (P = .002). Bone marrow channel assessment showed a statistically significant increase in the number of channels in the s.MFX when compared with both K-wire and l.MFX holes (P < .001). Bone volume fraction for the s.MFX was significantly less than that of the l.MFX (P = .029). BMS techniques using instruments with larger diameters resulted in increased trabecular compaction and sclerosis in areas adjacent to the defect. K-wire and l.MFX techniques resulted in less open communicating bone marrow channels, denoting a reduction in bone marrow access. The results of this study indicate that BMS using larger diameter devices results in greater microarchitecture disturbances. The current study suggests that the choice of a BMS technique should be carefully considered as the results indicate that smaller diameter hole sizes may

  15. Long Noncoding RNAs: New Players in the Osteogenic Differentiation of Bone Marrow- and Adipose-Derived Mesenchymal Stem Cells.

    PubMed

    Yang, Qiaolin; Jia, Lingfei; Li, Xiaobei; Guo, Runzhi; Huang, Yiping; Zheng, Yunfei; Li, Weiran

    2018-06-01

    Mesenchymal stem cells (MSCs) are an important population of multipotent stem cells that differentiate into multiple lineages and display great potential in bone regeneration and repair. Although the role of protein-coding genes in the osteogenic differentiation of MSCs has been extensively studied, the functions of noncoding RNAs in the osteogenic differentiation of MSCs are unclear. The recent application of next-generation sequencing to MSC transcriptomes has revealed that long noncoding RNAs (lncRNAs) are associated with the osteogenic differentiation of MSCs. LncRNAs are a class of non-coding transcripts of more than 200 nucleotides in length. Noncoding RNAs are thought to play a key role in osteoblast differentiation through various regulatory mechanisms including chromatin modification, transcription factor binding, competent endogenous mechanism, and other post-transcriptional mechanisms. Here, we review the roles of lncRNAs in the osteogenic differentiation of bone marrow- and adipose-derived stem cells and provide a theoretical foundation for future research.

  16. Adenovirus is a key pathogen in hemorrhagic cystitis associated with bone marrow transplantation.

    PubMed

    Akiyama, H; Kurosu, T; Sakashita, C; Inoue, T; Mori Si; Ohashi, K; Tanikawa, S; Sakamaki, H; Onozawa, Y; Chen, Q; Zheng, H; Kitamura, T

    2001-05-01

    Late-onset hemorrhagic cystitis (HC) is a well-known complication of bone marrow transplantation (BMT) that is mainly attributed to infection with BK virus (BKV) and adenovirus (AdV). From 1986 through 1998, 282 patients underwent BMT, and 45 of them developed HC. Urine samples tested positive for AdV in 26 patients, of which 22 showed virus type 11. Among patients who underwent allogeneic BMT, logistic regression analysis revealed acute graft-versus-host disease (grade, > or = 2) to be the most significant predictive factor for HC (P < .0001). In addition, a total of 193 urine samples regularly obtained from 26 consecutive patients who underwent allogeneic BMT were examined for BKV, JC virus (JCV), and AdV by means of polymerase chain reaction. Of patients without HC, approximately 30% of the specimens tested positive for BKV (58 samples) and JCV (55 samples), whereas 5 (3%) tested positive for AdV. Of the 3 samples obtained from patients with HC, the numbers of positive results for BKV, JCV, and AdV were 3, 1, and 1, respectively; the numbers of positive results increased to 14 of 17, 9 of 17, and 10 of 17, respectively, when we added another 14 samples obtained from 14 patients with HC (P < .0001, P = .026, and P < .0001, respectively). In conclusion, there was significant correlation between AdV and HC in the patients we studied.

  17. Bone Marrow Lipids in Rats Exposed to Total-Body Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snyder, Fred; Cress, Edgar A.

    1963-05-01

    ABS>Thin-layer chromatography was used to demonstrate that bone marrow lipids of rats were primarily triglycerides; gas-liquid chromatography of the fraction revealed that palmitic and oleic acids account for more than 80% of the fatty acids. Minor lipid components present in the control and irradiated marrow are glyceryl ethers, cholesterol, fatty acids, and phospholipids. Cholesterol esters were not found. Total-body irradiation (800 r) increases the femur marrow triglyceride fraction approximately six times by 1 week after irradiation, and it remains elevated for many weeks. The relationship between dose and increase in marrow triglycerides appears to fit the equation y = bxmore » a. The water and lipid content of bone marrow bear a reciprocal relation to each other, while both water and residue are significantly reduced in the irradiated femur marrow.« less

  18. Consequences of irradiation on bone and marrow phenotypes, and its relation to disruption of hematopoietic precursors

    PubMed Central

    Green, Danielle E.; Rubin, Clinton T.

    2014-01-01

    The rising levels of radiation exposure, specifically for medical treatments and accidental exposures, have added great concern for the long term risks of bone fractures. Both the bone marrow and bone architecture are devastated following radiation exposure. Even sub-lethal doses cause a deficit to the bone marrow microenvironment, including a decline in hematopoietic cells, and this deficit occurs in a dose dependent fashion. Certain cell phenotypes though are more susceptible to radiation damage, with mesenchymal stem cells being more resilient than the hematopoietic stem cells. The decline in total bone marrow hematopoietic cells is accompanied with elevated adipocytes into the marrow cavity, thereby inhibiting hematopoiesis and recovery of the bone marrow microenvironment. Poor bone marrow is also associated with a decline in bone architectural quality. Therefore, the ability to maintain the bone marrow microenvironment would hinder much of the trabecular bone loss caused by radiation exposure, ultimately decreasing some comorbidities in patients exposed to radiation. PMID:24607941

  19. Pasteurella multocida toxin activates human monocyte-derived and murine bone marrow-derived dendritic cells in vitro but suppresses antibody production in vivo.

    PubMed

    Bagley, Kenneth C; Abdelwahab, Sayed F; Tuskan, Robert G; Lewis, George K

    2005-01-01

    Pasteurella multocida toxin (PMT) is a potent mitogen for fibroblasts and osteoblastic cells. PMT activates phospholipase C-beta through G(q)alpha, and the activation of this pathway is responsible for its mitogenic activity. Here, we investigated the effects of PMT on human monocyte-derived dendritic cells (MDDC) in vitro and show a novel activity for PMT. In this regard, PMT activates MDDC to mature in a dose-dependent manner through the activation of phospholipase C and subsequent mobilization of calcium. This activation was accompanied by enhanced stimulation of naive alloreactive T cells and dominant inhibition of interleukin-12 production in the presence of saturating concentrations of lipopolysaccharide. Surprisingly, although PMT mimics the activating effects of cholera toxin on human MDDC and mouse bone marrow-derived dendritic cells, we found that PMT is not a mucosal adjuvant and that it suppresses the adjuvant effects of cholera toxin in mice. Together, these results indicate discordant effects for PMT in vitro compared to those in vivo.

  20. Bone marrow with diffuse tumor infiltration in patients with lymphoproliferative diseases: dynamic gadolinium-enhanced MR imaging.

    PubMed

    Rahmouni, Alain; Montazel, Jean-Luc; Divine, Marine; Lepage, Eric; Belhadj, Karim; Gaulard, Philippe; Bouanane, Mohamed; Golli, Mondher; Kobeiter, Hicham

    2003-12-01

    To evaluate gadolinium enhancement of bone marrow in patients with lymphoproliferative diseases and diffuse bone marrow involvement. Dynamic contrast material-enhanced magnetic resonance (MR) imaging of the thoracolumbar spine was performed in 42 patients with histologically proved diffuse bone marrow involvement and newly diagnosed myeloma (n = 31), non-Hodgkin lymphoma (n = 8), or Hodgkin disease (n = 3). The maximum percentage of enhancement (Emax), enhancement slope, and enhancement washout were determined from enhancement time curves (ETCs). A three-grade system for scoring bone marrow involvement was based on the percentage of neoplastic cells in bone marrow samples. Quantitative ETC values for the 42 patients were compared with ETC values for healthy subjects and with grades of bone marrow involvement by using mean t test comparisons. Receiver operating characteristic (ROC) analysis was conducted by comparing Emax values between patients with and those without bone marrow involvement. Baseline and follow-up MR imaging findings were compared in nine patients. Significant differences in Emax (P <.001), slope (P <.001), and washout (P =.005) were found between subjects with normal bone marrow and patients with diffuse bone marrow involvement. ROC analysis results showed Emax values to have a diagnostic accuracy of 99%. Emax, slope, and washout values increased with increasing bone marrow involvement grade. The mean Emax increased from 339% to 737%. Contrast enhancement decreased after treatment in all six patients who responded to treatment but not in two of three patients who did not respond to treatment. Dynamic contrast-enhanced MR images can demonstrate increased bone marrow enhancement in patients with lymphoproliferative diseases and marrow involvement.

  1. Investigating the Abscopal Effects of Radioablation on Shielded Bone Marrow in Rodent Models Using Multimodality Imaging.

    PubMed

    Afshar, Solmaz F; Zawaski, Janice A; Inoue, Taeko; Rendon, David A; Zieske, Arthur W; Punia, Jyotinder N; Sabek, Omaima M; Gaber, M Waleed

    2017-07-01

    The abscopal effect is the response to radiation at sites that are distant from the irradiated site of an organism, and it is thought to play a role in bone marrow (BM) recovery by initiating responses in the unirradiated bone marrow. Understanding the mechanism of this effect has applications in treating BM failure (BMF) and BM transplantation (BMT), and improving survival of nuclear disaster victims. Here, we investigated the use of multimodality imaging as a translational tool to longitudinally assess bone marrow recovery. We used positron emission tomography/computed tomography (PET/CT), magnetic resonance imaging (MRI) and optical imaging to quantify bone marrow activity, vascular response and marrow repopulation in fully and partially irradiated rodent models. We further measured the effects of radiation on serum cytokine levels, hematopoietic cell counts and histology. PET/CT imaging revealed a radiation-induced increase in proliferation in the shielded bone marrow (SBM) compared to exposed bone marrow (EBM) and sham controls. T 2 -weighted MRI showed radiation-induced hemorrhaging in the EBM and unirradiated SBM. In the EBM and SBM groups, we found alterations in serum cytokine and hormone levels and in hematopoietic cell population proportions, and histological evidence of osteoblast activation at the bone marrow interface. Importantly, we generated a BMT mouse model using fluorescent-labeled bone marrow donor cells and performed fluorescent imaging to reveal the migration of bone marrow cells from shielded to radioablated sites. Our study validates the use of multimodality imaging to monitor bone marrow recovery and provides evidence for the abscopal response in promoting bone marrow recovery after irradiation.

  2. Evidence of bone marrow downregulation in brain-dead rats.

    PubMed

    Menegat, Laura; Simas, Rafael; Caliman, Julia M; Zanoni, Fernando L; Jacysyn, Jacqueline F; da Silva, Luiz Fernando F; Borelli, Primavera; Moreira, Luiz Felipe P; Sannomiya, Paulina

    2017-06-01

    Experimental findings support the evidence of a persistent leucopenia triggered by brain death (BD). This study aimed to investigate leucocyte behaviour in bone marrow and blood after BD in rats. BD was induced using intracranial balloon catheter inflation. Sham-operated (SH) rats were trepanned only. Thereafter bone marrow cells were harvested every six hours from the femoral cavity and used for total and differential counts. They were analysed further by flow cytometry to characterize lymphocyte subsets, granulocyte adhesion molecules expression and apoptosis/necrosis [annexin V/propidium iodide (PI) protocol]. BD rats exhibited a reduction in bone marrow cells due to a reduction in lymphocytes (40%) and segmented cells (45%). Bone marrow lymphocyte subsets were similar in BD and SH rats (CD3, P = 0.1; CD4, P = 0.4; CD3/CD4, P = 0.4; CD5, P = 0.4, CD3/CD5, P = 0.2; CD8, P = 0.8). Expression of L-selectin and beta 2 -integrins on granulocytes did not differ (CD11a, P = 0.9; CD11b/c, P = 0.7; CD62L, P = 0.1). There were no differences in the percentage of apoptosis and necrosis (Annexin V, P = 0.73; PI, P = 0.21; Annexin V/PI, P = 0.29). In conclusion, data presented suggest that the downregulation of the bone marrow is triggered by brain death itself, and it is not related to changes in lymphocyte subsets, granulocyte adhesion molecules expression or apoptosis and necrosis. © 2017 The Authors. International Journal of Experimental Pathology © 2017 International Journal of Experimental Pathology.

  3. Stimulation of Mucosal Mast Cell Growth in Normal and Nude Rat Bone Marrow Cultures

    NASA Astrophysics Data System (ADS)

    Haig, David M.; McMenamin, Christine; Gunneberg, Christian; Woodbury, Richard; Jarrett, Ellen E. E.

    1983-07-01

    Mast cells with the morphological and biochemical properties of mucosal mast cells (MMC) appear and proliferate to form the predominant cell type in rat bone marrow cultures stimulated with factors from antigen- or mitogen-activated lymphocytes. Conditioned media causing a selective proliferation of MMC were derived from mesenteric lymph node cells of Nippostrongylus brasiliensis-infected rats restimulated in vitro with specific antigen or from normal or infected rat mesenteric lymph node cells stimulated with concanavalin A. MMC growth factor is not produced by T-cell-depleted mesenteric lymph node cells or by the mesenteric lymph node cells of athymic rats. By contrast, MMC precursors are present in the bone marrow of athymic rats and are normally receptive to the growth factor produced by the lymphocytes of thymus-intact rats. The thymus dependence of MMC hyperplasia is thus based on the requirement of a thymus-independent precursor for a T-cell-derived growth promoter.

  4. Agent-Based Deterministic Modeling of the Bone Marrow Homeostasis.

    PubMed

    Kurhekar, Manish; Deshpande, Umesh

    2016-01-01

    Modeling of stem cells not only describes but also predicts how a stem cell's environment can control its fate. The first stem cell populations discovered were hematopoietic stem cells (HSCs). In this paper, we present a deterministic model of bone marrow (that hosts HSCs) that is consistent with several of the qualitative biological observations. This model incorporates stem cell death (apoptosis) after a certain number of cell divisions and also demonstrates that a single HSC can potentially populate the entire bone marrow. It also demonstrates that there is a production of sufficient number of differentiated cells (RBCs, WBCs, etc.). We prove that our model of bone marrow is biologically consistent and it overcomes the biological feasibility limitations of previously reported models. The major contribution of our model is the flexibility it allows in choosing model parameters which permits several different simulations to be carried out in silico without affecting the homeostatic properties of the model. We have also performed agent-based simulation of the model of bone marrow system proposed in this paper. We have also included parameter details and the results obtained from the simulation. The program of the agent-based simulation of the proposed model is made available on a publicly accessible website.

  5. Targeting eradication of malignant cells derived from human bone marrow mesenchymal stromal cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yingbin; School of Life Science, Southwest University, Chongqing 400715; Cai, Shaoxi, E-mail: sxcai@cqu.edu.cn

    2010-12-10

    Human bone marrow mesenchymal stromal cells (hBMSC) have been shown to participate in malignant transformation. However, hampered by the low frequency of malignant transformation of hBMSC, we do not yet know how to prevent malignant transformation of implanted hBMSC. In this study, in order to establish a model for the eradication of hBMSC-derived malignant cells, a gene fusion consisting of a human telomerase (hTERT) promoter modified with both c-Myc and myeloid zinc finger protein2 (MZF-2) binding elements and followed by the E. coli cytosine deaminase (CD) and luciferase genes was stably transferred into hBMSC via lentiviral transduction; n-phosphonacelyl-L-aspartic acid (PALA)more » selection was used to generate malignant cell colonies derived from transduced hBMSC after treatment with the carcinogenic reagent BPDE. Cells that were amplified after PALA selection were used for transplantation and 5-FC pro-drug cytotoxicity tests. The results showed that PALA-resistant malignant cells could be generated from hBMSC co-induced with lentiviral transduction and treatment with Benzo(a)pyrene Diol Epoxide (BPDE); the modification of c-Myc and MZF-2 binding elements could remarkably enhance the transcriptional activities of the hTERT promoter in malignant cells, whereas transcriptional activity was depressed in normal hBMSC; malignant cells stably expressing CD under the control of the modified hTERT promoter could be eliminated by 5-FC administration. This study has provided a method for targeted eradication of malignant cells derived from hBMSC.« less

  6. Bone marrow (stem cell) donation

    MedlinePlus

    ... medlineplus.gov/ency/patientinstructions/000839.htm Bone marrow (stem cell) donation To use the sharing features on this page, please enable ... cells are more likely to help patients than stem cells from older people. People who register must either: Use a cotton swab to take a sample of ...

  7. Computational modelling of the mechanics of trabecular bone and marrow using fluid structure interaction techniques.

    PubMed

    Birmingham, E; Grogan, J A; Niebur, G L; McNamara, L M; McHugh, P E

    2013-04-01

    Bone marrow found within the porous structure of trabecular bone provides a specialized environment for numerous cell types, including mesenchymal stem cells (MSCs). Studies have sought to characterize the mechanical environment imposed on MSCs, however, a particular challenge is that marrow displays the characteristics of a fluid, while surrounded by bone that is subject to deformation, and previous experimental and computational studies have been unable to fully capture the resulting complex mechanical environment. The objective of this study was to develop a fluid structure interaction (FSI) model of trabecular bone and marrow to predict the mechanical environment of MSCs in vivo and to examine how this environment changes during osteoporosis. An idealized repeating unit was used to compare FSI techniques to a computational fluid dynamics only approach. These techniques were used to determine the effect of lower bone mass and different marrow viscosities, representative of osteoporosis, on the shear stress generated within bone marrow. Results report that shear stresses generated within bone marrow under physiological loading conditions are within the range known to stimulate a mechanobiological response in MSCs in vitro. Additionally, lower bone mass leads to an increase in the shear stress generated within the marrow, while a decrease in bone marrow viscosity reduces this generated shear stress.

  8. Bone marrow lesions and subchondral bone pathology of the knee.

    PubMed

    Kon, Elizaveta; Ronga, Mario; Filardo, Giuseppe; Farr, Jack; Madry, Henning; Milano, Giuseppe; Andriolo, Luca; Shabshin, Nogah

    2016-06-01

    Bone marrow lesions (BMLs) around the knee are a common magnetic resonance imaging (MRI) finding. However, despite the growing interest on BMLs in multiple pathological conditions, they remain controversial not only for the still unknown role in the etiopathological processes, but also in terms of clinical impact and treatment. The differential diagnosis includes a wide range of conditions: traumatic contusion and fractures, cyst formation and erosions, hematopoietic and infiltrated marrow, developmental chondroses, disuse and overuse, transient bone marrow oedema syndrome and, lastly, subchondral insufficiency fractures and true osteonecrosis. Regardless the heterogeneous spectrum of these pathologies, a key factor for patient management is the distinction between reversible and irreversible conditions. To this regard, MRI plays a major role, leading to the correct diagnosis based on recognizable typical patterns that have to be considered together with coexistent abnormalities, age, and clinical history. Several treatment options have been proposed, from conservative to surgical approaches. In this manuscript the main lesion patterns and their management have been analysed to provide the most updated evidence for the differential diagnosis and the most effective treatment.

  9. The role of Hibiscus sabdariffa L. (Roselle) in maintenance of ex vivo murine bone marrow-derived hematopoietic stem cells.

    PubMed

    Abdul Hamid, Zariyantey; Lin Lin, Winnie Hii; Abdalla, Basma Jibril; Bee Yuen, Ong; Latif, Elda Surhaida; Mohamed, Jamaludin; Rajab, Nor Fadilah; Paik Wah, Chow; Wak Harto, Muhd Khairul Akmal; Budin, Siti Balkis

    2014-01-01

    Hematopoietic stem cells- (HSCs-) based therapy requires ex vivo expansion of HSCs prior to therapeutic use. However, ex vivo culture was reported to promote excessive production of reactive oxygen species (ROS), exposing HSCs to oxidative damage. Efforts to overcome this limitation include the use of antioxidants. In this study, the role of Hibiscus sabdariffa L. (Roselle) in maintenance of cultured murine bone marrow-derived HSCs was investigated. Aqueous extract of Roselle was added at varying concentrations (0-1000 ng/mL) for 24 hours to the freshly isolated murine bone marrow cells (BMCs) cultures. Effects of Roselle on cell viability, reactive oxygen species (ROS) production, glutathione (GSH) level, superoxide dismutase (SOD) activity, and DNA damage were investigated. Roselle enhanced the survival (P < 0.05) of BMCs at 500 and 1000 ng/mL, increased survival of Sca-1(+) cells (HSCs) at 500 ng/mL, and maintained HSCs phenotype as shown from nonremarkable changes of surface marker antigen (Sca-1) expression in all experimental groups. Roselle increased (P < 0.05) the GSH level and SOD activity but the level of reactive oxygen species (ROS) was unaffected. Moreover, Roselle showed significant cellular genoprotective potency against H2O2-induced DNA damage. Conclusively, Roselle shows novel property as potential supplement and genoprotectant against oxidative damage to cultured HSCs.

  10. The Role of Hibiscus sabdariffa L. (Roselle) in Maintenance of Ex Vivo Murine Bone Marrow-Derived Hematopoietic Stem Cells

    PubMed Central

    Abdul Hamid, Zariyantey; Lin Lin, Winnie Hii; Abdalla, Basma Jibril; Bee Yuen, Ong; Latif, Elda Surhaida; Mohamed, Jamaludin; Rajab, Nor Fadilah; Paik Wah, Chow; Budin, Siti Balkis

    2014-01-01

    Hematopoietic stem cells- (HSCs-) based therapy requires ex vivo expansion of HSCs prior to therapeutic use. However, ex vivo culture was reported to promote excessive production of reactive oxygen species (ROS), exposing HSCs to oxidative damage. Efforts to overcome this limitation include the use of antioxidants. In this study, the role of Hibiscus sabdariffa L. (Roselle) in maintenance of cultured murine bone marrow-derived HSCs was investigated. Aqueous extract of Roselle was added at varying concentrations (0–1000 ng/mL) for 24 hours to the freshly isolated murine bone marrow cells (BMCs) cultures. Effects of Roselle on cell viability, reactive oxygen species (ROS) production, glutathione (GSH) level, superoxide dismutase (SOD) activity, and DNA damage were investigated. Roselle enhanced the survival (P < 0.05) of BMCs at 500 and 1000 ng/mL, increased survival of Sca-1+ cells (HSCs) at 500 ng/mL, and maintained HSCs phenotype as shown from nonremarkable changes of surface marker antigen (Sca-1) expression in all experimental groups. Roselle increased (P < 0.05) the GSH level and SOD activity but the level of reactive oxygen species (ROS) was unaffected. Moreover, Roselle showed significant cellular genoprotective potency against H2O2-induced DNA damage. Conclusively, Roselle shows novel property as potential supplement and genoprotectant against oxidative damage to cultured HSCs. PMID:25405216

  11. Concentration of adipogenic and proinflammatory cytokines in the bone marrow supernatant fluid of osteoporotic women.

    PubMed

    Pino, Ana María; Ríos, Susana; Astudillo, Pablo; Fernández, Mireya; Figueroa, Paula; Seitz, Germán; Rodríguez, J Pablo

    2010-03-01

    Osteoporosis is characterized by low bone mass, microarchitectural deterioration of bone tissue leading to increased bone fragility, and a resulting susceptibility to fractures. Distinctive environmental bone marrow conditions appear to support the development and maintenance of the unbalance between bone resorption and bone formation; these complex bone marrow circumstances would be reflected in the fluid surrounding bone marrow cells. The content of regulatory molecules in the extracellular fluid from the human bone marrow is practically unknown. Since the content of cytokines such as adiponectin, leptin, osteoprogeterin (OPG), soluble receptor activator of nuclear factor kappaB ligand (s-RANKL), tumor necrosis factor alpha, and interleukin 6 (IL-6) may elicit conditions promoting or sustaining osteoporosis, in this work we compared the concentrations of the above-mentioned cytokines and also the level of the soluble receptors for both IL-6 and leptin in the extracellular fluid from the bone marrow of nonosteoporotic and osteoporotic human donors. A supernatant fluid (bone marrow supernatant fluid [BMSF]) was obtained after spinning the aspirated bone marrow samples; donors were classified as nonosteoporotic or osteoporotic after dual-energy X-ray absorptiometry (DXA) measuring. Specific commercially available kits were used for all measurements. The cytokines' concentration in BMSF showed differently among nonosteoporotic and osteoporotic women; this last group was characterized by higher content of proinflammatory and adipogenic cytokines. Also, osteoporotic BMSF differentiated by decreased leptin bioavailability, suggesting that insufficient leptin action may distinguish the osteoporotic bone marrow. Copyright 2010 American Society for Bone and Mineral Research.

  12. Unicameral bone cysts: a comparison of injection of steroid and grafting with autologous bone marrow.

    PubMed

    Cho, H S; Oh, J H; Kim, H-S; Kang, H G; Lee, S H

    2007-02-01

    Open surgery is rarely justified for the initial treatment of a unicameral bone cyst, but there is some debate concerning the relative effectiveness of closed methods. This study compared the results of steroid injection with those of autologous bone marrow grafting for the treatment of unicameral bone cysts. Between 1990 and 2001, 30 patients were treated by steroid injection and 28 by grafting with autologous bone marrow. The overall success rates were 86.7% and 92.0%, respectively (p>0.05). The success rate after the initial procedure was 23.3% in the steroid group and 52.0% in those receiving autologous bone marrow (p<0.05), and the respective cumulative success rates after second injections were 63.3% and 80.0% (p>0.05). The mean number of procedures required was 2.19 (1 to 5) and 1.57 (1 to 3) (p<0.05), the mean interval to healing was 12.5 months (4 to 32) and 14.3 months (7 to 36) (p>0.05), and the rate of recurrence after the initial procedure was 41.7% and 13.3% in the steroid and in the autologous bone marrow groups, respectively (p<0.05). Although the overall rates of success of both methods were similar, the steroid group had higher recurrence after a single procedure and required more injections to achieve healing.

  13. The effects of imidacloprid combined with endosulfan on IgE-mediated mouse bone marrow-derived mast cell degranulation and anaphylaxis.

    PubMed

    Shi, Lin-Bo; Xu, Hua-Ping; Wu, Yu-Jie; Li, Xin; Gao, Jin-Yan; Chen, Hong-Bing

    2018-06-01

    Low levels of endosulfan are known to stimulate mast cells to release allergic mediators, while imidacloprid can inhibit IgE-mediated mast cell degranulation. However, little information about the effects of both pesticides together on mast cell degranulation is available. To measure the effects, IgE-activated mouse bone marrow-derived mast cells (BMMCs) were treated with imidacloprid and endosulfan, individually, and simultaneously at equi-molar concentrations in tenfold steps ranging from 10 -4 to 10 -11  M, followed by measuring several allergy-related parameters expressed in BMMCs: the mediator production and influx of Ca 2+ , the phosphorylation content of NF-κB in the FcεRI signaling pathway. Then, the effects of the mixtures on IgE-induced passive systemic anaphylaxis (PSA) of BALB/c was detectded. This study clearly showed that the application of equi-molar mixtures of both pesticides with 10 -4 -10 -5  M significantly inhibited the IgE-mediated mouse bone marrow-derived mast cells degranulation in vitro and 10 -4  M of them decreased IgE-mediated PSA in vivo, as the application of imidacloprid at the same concentration alone did. Morever endosulfan alone had no remarkable stimulatory effects on any of the factors measured. In conclusion, simultaneous application of equi-molar concentrations of both pesticides generally showed highly similar responses compared to the responses to imidacloprid alone, suggesting that the effects of the mixture could be solely attributed to the effects of imidacloprid. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Class I and class II major histocompatibility molecules play a role in bone marrow-derived macrophage development

    NASA Technical Reports Server (NTRS)

    Armstrong, J. W.; Simske, S. J.; Beharka, A. A.; Balch, S.; Luttges, M. W.; Chapes, S. K.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    Class I and class II major histocompatibility complex (MHC) molecules play significant roles in T cell development and immune function. We show that MHCI- and MHCII-deficient mice have low numbers of macrophage precursors and circulating monocytes, as well as abnormal bone marrow cell colony-stimulating factor type 1 secretion and bone composition. We suggest that MHCI and MHCII molecules play a significant role in macrophage development.

  15. Activation of the germ-cell potential of human bone marrow-derived cells by a chemical carcinogen

    PubMed Central

    Liu, Chunfang; Ma, Zhan; Xu, Songtao; Hou, Jun; Hu, Yao; Yu, Yinglu; Liu, Ruilai; Chen, Zhihong; Lu, Yuan

    2014-01-01

    Embryonic/germ cell traits are common in malignant tumors and are thought to be involved in malignant tumor behaviors. The reasons why tumors show strong embryonic/germline traits (displaced germ cells or gametogenic programming reactivation) are controversial. Here, we show that a chemical carcinogen, 3-methyl-cholanthrene (3-MCA), can trigger the germ-cell potential of human bone marrow-derived cells (hBMDCs). 3-MCA promoted the generation of germ cell-like cells from induced hBMDCs that had undergone malignant transformation, whereas similar results were not observed in the parallel hBMDC culture at the same time point. The malignant transformed hBMDCs spontaneously and more efficiently generated into germ cell-like cells even at the single-cell level. The germ cell-like cells from induced hBMDCs were similar to natural germ cells in many aspects, including morphology, gene expression, proliferation, migration, further development, and teratocarcinoma formation. Therefore, our results demonstrate that a chemical carcinogen can reactivate the germline phenotypes of human somatic tissue-derived cells, which might provide a novel idea to tumor biology and therapy. PMID:24998261

  16. Intrasinusoidal pattern of bone marrow infiltration by hepatosplenic T-cell lymphoma.

    PubMed

    Butler, Liesl Ann; Juneja, Surender

    2018-04-01

    Hepatosplenic T-cell lymphoma is a rare, aggressive form of extranodal lymphoma, which frequently involves the bone marrow. An intrasinusoidal pattern of infiltration is characteristic of the disease and is often best appreciated on immunohistochemical staining. Bone marrow biopsy can be a useful diagnostic tool.

  17. Bone Marrow Synoptic Reporting for Hematologic Neoplasms: Guideline From the College of American Pathologists Pathology and Laboratory Quality Center.

    PubMed

    Sever, Cordelia; Abbott, Charles L; de Baca, Monica E; Khoury, Joseph D; Perkins, Sherrie L; Reichard, Kaaren Kemp; Taylor, Ann; Terebelo, Howard R; Colasacco, Carol; Rumble, R Bryan; Thomas, Nicole E

    2016-09-01

    -There is ample evidence from the solid tumor literature that synoptic reporting improves accuracy and completeness of relevant data. No evidence-based guidelines currently exist for synoptic reporting for bone marrow samples. -To develop evidence-based recommendations to standardize the basic components of a synoptic report template for bone marrow samples. -The College of American Pathologists Pathology and Laboratory Quality Center convened a panel of experts in hematopathology to develop recommendations. A systematic evidence review was conducted to address 5 key questions. Recommendations were derived from strength of evidence, open comment feedback, and expert panel consensus. -Nine guideline statements were established to provide pathology laboratories with a framework by which to develop synoptic reporting templates for bone marrow samples. The guideline calls for specific data groups in the synoptic section of the pathology report; provides a list of evidence-based parameters for key, pertinent elements; and addresses ancillary testing. -A framework for bone marrow synoptic reporting will improve completeness of the final report in a manner that is clear, succinct, and consistent among institutions.

  18. Hospital-based allogenic bone bank--10-year experience.

    PubMed

    Hou, C-H; Yang, R-S; Hou, S-M

    2005-01-01

    Bone banking in a hospital provides resources of allogenic bone grafts. However, they may transmit infection from donor to recipient. We found few reports discussing the infection rate and monitoring processes associated with bone banks. The discard rate using the screening test was 18.5% (309/1674) in this series. The leading cause was hepatitis B antigen (HBsAg) positive donor serum (67%), followed by Venereal Disease Research Laboratory (VDRL) positive donor serum (15%), and anti-hepatitis C virus (HCV) positive donor serum (12%). The overall infection rate in the recipients was 1.3% (17/1365). Among 1353 implanted allografts, 22 cases (1.6%) had a positive swab culture result after thawing. Only four out of these 22 cases (18.2%) developed infection. However, the wound cultures of the infected recipients were different from the swab culture of thawing allografts except in one case. Among the 1331 recipients with sterile allograft bones, 13 (1%) were found to have infection. In conclusion, our bone bank operates under a strict monitoring system which results in a low infection rate. The recipient's status, the aseptic technique and environment during operation is likely to be more critical in prevention of allograft-related infection.

  19. CD146/MCAM defines functionality of human bone marrow stromal stem cell populations.

    PubMed

    Harkness, Linda; Zaher, Walid; Ditzel, Nicholas; Isa, Adiba; Kassem, Moustapha

    2016-01-11

    Identification of surface markers for prospective isolation of functionally homogenous populations of human skeletal (stromal, mesenchymal) stem cells (hMSCs) is highly relevant for cell therapy protocols. Thus, we examined the possible use of CD146 to subtype a heterogeneous hMSC population. Using flow cytometry and cell sorting, we isolated two distinct hMSC-CD146(+) and hMSC-CD146(-) cell populations from the telomerized human bone marrow-derived stromal cell line (hMSC-TERT). Cells were examined for differences in their size, shape and texture by using high-content analysis and additionally for their ability to differentiate toward osteogenesis in vitro and form bone in vivo, and their migrational ability in vivo and in vitro was investigated. In vitro, the two cell populations exhibited similar growth rate and differentiation capacity to osteoblasts and adipocytes on the basis of gene expression and protein production of lineage-specific markers. In vivo, hMSC-CD146(+) and hMSC-CD146(-) cells formed bone and bone marrow organ when implanted subcutaneously in immune-deficient mice. Bone was enriched in hMSC-CD146(-) cells (12.6 % versus 8.1 %) and bone marrow elements enriched in implants containing hMSC-CD146(+) cells (0.5 % versus 0.05 %). hMSC-CD146(+) cells exhibited greater chemotactic attraction in a transwell migration assay and, when injected intravenously into immune-deficient mice following closed femoral fracture, exhibited wider tissue distribution and significantly increased migration ability as demonstrated by bioluminescence imaging. Our studies demonstrate that CD146 defines a subpopulation of hMSCs capable of bone formation and in vivo trans-endothelial migration and thus represents a population of hMSCs suitable for use in clinical protocols of bone tissue regeneration.

  20. Establishment of Donor Chimerism Using Allogeneic Bone Marrow with AMP Cell Co-infusion

    DTIC Science & Technology

    2016-09-01

    specific immunosuppression. Induction of tolerance to the CTA is the ideal solution. Combined mixed allogeneic chimerism induction and kidney ...transplantation has been shown to induce robust tolerance to the kidney allograft despite transient mixed chimerism in non-human primates and humans...solution. Mixed chimerism induction via hematopoietic cell transplantation (HCT) has been shown to facilitate tolerance induction to kidney allografts

  1. Lithium attenuates lead induced toxicity on mouse non-adherent bone marrow cells.

    PubMed

    Banijamali, Mahsan; Rabbani-Chadegani, Azra; Shahhoseini, Maryam

    2016-07-01

    Lead is a poisonous heavy metal that occurs in all parts of environment and causes serious health problems in humans. The aim of the present study was to investigate the possible protective effect of lithium against lead nitrate induced toxicity in non-adherent bone marrow stem cells. Trypan blue and MTT assays represented that exposure of the cells to different concentrations of lead nitrate decreased viability in a dose dependent manner, whereas, pretreatment of the cells with lithium protected the cells against lead toxicity. Lead reduced the number and differentiation status of bone marrow-derived precursors when cultured in the presence of colony stimulating factor (CSF), while the effect was attenuated by lithium. The cells treated with lead nitrate exhibited cell shrinkage, DNA fragmentation, anion superoxide production, but lithium prevented lead action. Moreover, apoptotic indexes such as PARP cleavage and release of HMGB1 induced by lead, were protected by lithium, suggesting anti-apoptotic effect of lithium. Immunoblot analysis of histone H3K9 acetylation indicated that lithium overcame lead effect on acetylation. In conclusion, lithium efficiently reduces lead toxicity suggesting new insight into lithium action which may contribute to increased cell survival. It also provides a potentially new therapeutic strategy for lithium and a cost-effective approach to minimize destructive effects of lead on bone marrow stem cells. Copyright © 2016 Elsevier GmbH. All rights reserved.

  2. Genomic analysis of bone marrow failure and myelodysplastic syndromes reveals phenotypic and diagnostic complexity

    PubMed Central

    Zhang, Michael Y.; Keel, Siobán B.; Walsh, Tom; Lee, Ming K.; Gulsuner, Suleyman; Watts, Amanda C.; Pritchard, Colin C.; Salipante, Stephen J.; Jeng, Michael R.; Hofmann, Inga; Williams, David A.; Fleming, Mark D.; Abkowitz, Janis L.; King, Mary-Claire; Shimamura, Akiko

    2015-01-01

    Accurate and timely diagnosis of inherited bone marrow failure and inherited myelodysplastic syndromes is essential to guide clinical management. Distinguishing inherited from acquired bone marrow failure/myelodysplastic syndrome poses a significant clinical challenge. At present, diagnostic genetic testing for inherited bone marrow failure/myelodysplastic syndrome is performed gene-by-gene, guided by clinical and laboratory evaluation. We hypothesized that standard clinically-directed genetic testing misses patients with cryptic or atypical presentations of inherited bone marrow failure/myelodysplastic syndrome. In order to screen simultaneously for mutations of all classes in bone marrow failure/myelodysplastic syndrome genes, we developed and validated a panel of 85 genes for targeted capture and multiplexed massively parallel sequencing. In patients with clinical diagnoses of Fanconi anemia, genomic analysis resolved subtype assignment, including those of patients with inconclusive complementation test results. Eight out of 71 patients with idiopathic bone marrow failure or myelodysplastic syndrome were found to harbor damaging germline mutations in GATA2, RUNX1, DKC1, or LIG4. All 8 of these patients lacked classical clinical stigmata or laboratory findings of these syndromes and only 4 had a family history suggestive of inherited disease. These results reflect the extensive genetic heterogeneity and phenotypic complexity of bone marrow failure/myelodysplastic syndrome phenotypes. This study supports the integration of broad unbiased genetic screening into the diagnostic workup of children and young adults with bone marrow failure and myelodysplastic syndromes. PMID:25239263

  3. Bone marrow analysis of immune cells and apoptosis in patients with systemic lupus erythematosus.

    PubMed

    Park, J W; Moon, S Y; Lee, J H; Park, J K; Lee, D S; Jung, K C; Song, Y W; Lee, E B

    2014-09-01

    To examine the immune cell profile in the bone marrow of systemic lupus erythematosus (SLE) patients and to assess its clinical relevance. Sixteen bone marrow samples from 14 SLE patients were compared with seven healthy control samples. The numbers of immune cells and apoptotic cells in the bone marrow were examined by immunohistochemistry. The association between immune cell subsets and clinical features was investigated. CD4+ T cells, macrophages and plasma cells were more common in the bone marrow of SLE patients than in healthy controls (p=0.001, p=0.004 and p<0.001, respectively). Greater numbers of CD4+ T cells and macrophages were associated with high-grade bone marrow damage. The percentage of apoptotic cells in bone marrow of SLE patients was significantly higher than that in controls (p<0.001) and was positively correlated with the number of plasmacytoid dendritic cells (p=0.013). Increased number of plasma cells along with high interleukin-6 expression was correlated with anti-double stranded DNA antibody levels and the SLE disease activity index (p=0.031 and 0.013, respectively). Bone marrow from SLE patients showed a distinct immune cell profile and increased apoptosis. This, coupled with a correlation with disease activity, suggests that the bone marrow may play a critical role in the pathogenesis of SLE. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  4. Multipotent human stromal cells isolated from cord blood, term placenta and adult bone marrow show distinct differences in gene expression pattern

    PubMed Central

    Matigian, Nicholas; Brooke, Gary; Zaibak, Faten; Rossetti, Tony; Kollar, Katarina; Pelekanos, Rebecca; Heazlewood, Celena; Mackay-Sim, Alan; Wells, Christine A.; Atkinson, Kerry

    2014-01-01

    Multipotent mesenchymal stromal cells derived from human placenta (pMSCs), and unrestricted somatic stem cells (USSCs) derived from cord blood share many properties with human bone marrow-derived mesenchymal stromal cells (bmMSCs) and are currently in clinical trials for a wide range of clinical settings. Here we present gene expression profiles of human cord blood-derived unrestricted somatic stem cells (USSCs), human placental-derived mesenchymal stem cells (hpMSCs), and human bone marrow-derived mesenchymal stromal cells (bmMSCs), all derived from four different donors. The microarray data are available on the ArrayExpress database (www.ebi.ac.uk/arrayexpress) under accession number E-TABM-880. Additionally, the data has been integrated into a public portal, www.stemformatics.org. Our data provide a resource for understanding the differences in MSCs derived from different tissues. PMID:26484151

  5. Histomorhological and clinical evaluation of maxillary alveolar ridge reconstruction after craniofacial trauma by applying combination of allogeneic and autogenous bone graft.

    PubMed

    De Ponte, Francesco Saverio; Falzea, Roberto; Runci, Michele; Siniscalchi, Enrico Nastro; Lauritano, Floriana; Bramanti, Ennio; Cervino, Gabriele; Cicciu, Marco

    2017-02-01

    A variety of techniques and materials for the rehabilitation and reconstruction of traumatized maxillary ridges prior to dental implants placement have been described in literature. Autogenous bone grafting is considered ideal by many researchers and it still remains the most predictable and documented method. The aim of this report is to underline the effectiveness of using allogeneic bone graft for managing maxillofacial trauma. A case of a 30-year-old male with severely atrophic maxillary ridge as a consequence of complex craniofacial injury is presented here. Augmentation procedure in two stages was performed using allogeneic and autogenous bone grafts in different areas of the osseous defect. Four months after grafting, during the implants placement surgery, samples of both sectors were withdrawn and submitted to histological evaluation. On the examination of the specimens, treated by hematoxylin and eosin staining, the morphology of integrated allogeneic bone grafts was revealed to be similar to the autologous bone. Our clinical experience shows how the allogeneic bone graft presented normal bone tissue architecture and is highly vascularized, and it can be used for reconstruction of severe trauma of the maxilla. Copyright © 2017 Daping Hospital and the Research Institute of Surgery of the Third Military Medical University. Production and hosting by Elsevier B.V. All rights reserved.

  6. Trained nurses can obtain satisfactory bone marrow aspirates and trephine biopsies.

    PubMed Central

    Lawson, S; Aston, S; Baker, L; Fegan, C D; Milligan, D W

    1999-01-01

    AIMS: To assess the feasibility of training nurse practitioners to perform bone marrow aspiration and trephine biopsy, and to compare the quality of these samples with those obtained by medical staff. METHODS: A retrospective audit was undertaken of nurse practitioner and medical staff performance in bone marrow procedures in a busy haematology day unit. RESULTS: Nurse practitioners fared favourably in comparison with medical staff in performing bone marrow trephine biopsies, with mean biopsy lengths of 11 mm and 10.7 mm respectively. However, only 78% of the smears obtained by the nurses were judged technically satisfactory, compared with 91% prepared by doctors. This discrepancy was thought to be due largely to the quality of slide spreading. CONCLUSIONS: With motivated staff and a structured educational and training programme it is possible for nurse practitioners to perform the techniques of bone marrow aspiration and biopsy, and obtain specimens of satisfactory quality, thus improving efficiency of the haematology day unit and increasing quality of patient care. Images PMID:10396248

  7. Bone Marrow Blood Vessel Ossification and “Microvascular Dead Space” in Rat and Human Long Bone

    PubMed Central

    Prisby, Rhonda D.

    2014-01-01

    Severe calcification of the bone microvascular network was observed in rats, whereby the bone marrow blood vessels appeared ossified. This study sought to characterize the magnitude of ossification in relation to patent blood vessels and adipocyte content in femoral diaphyses. Additionally, this study confirmed the presence of ossified vessels in patients with arteriosclerotic vascular disease and peripheral vascular disease and cellulitis. Young (4–6 mon; n=8) and old (22–24 mon; n=8) male Fischer-344 rats were perfused with barium sulfate to visualize patent bone marrow blood vessels. Femoral shafts were processed for bone histomorphometry to quantify ossified (Goldner’s Trichrome) and calcified (Alizarin Red) vessels. Adipocyte content was also determined. Additional femora (n=5/age group) were scanned via µCT to quantify microvascular ossification. Bone marrow blood vessels from rats and the human patients were also isolated and examined via microscopy. Ossified vessels (rats and humans) had osteocyte lacunae on the vessel surfaces and “normal” vessels were transitioning into bone. The volume of ossified vessels was 4800% higher (p <0.05) in old vs. young rats. Calcified and ossified vessel volumes per tissue volume and calcified vessel volume per patent vessel volume were augmented (p <0.05) 262%, 375% and 263%, respectively, in old vs. young rats. Ossified and patent vessel number was higher (171%) and lower (40%), respectively, in old vs. young rats. Finally, adipocyte volume per patent vessel volume was higher (86%) with age. This study is the first to report ossification of bone marrow blood vessels in rats and humans. Ossification presumably results in “microvascular dead space” in regards to loss of patency and vasomotor function as opposed to necrosis. The progression of bone microvascular ossification may provide the common link associated with age-related changes in bone and bone marrow. The clinical implications may be evident in the

  8. PPARγ antagonist attenuates mouse immune-mediated bone marrow failure by inhibition of T cell function

    PubMed Central

    Sato, Kazuya; Feng, Xingmin; Chen, Jichun; Li, Jungang; Muranski, Pawel; Desierto, Marie J.; Keyvanfar, Keyvan; Malide, Daniela; Kajigaya, Sachiko; Young, Neal S.

    2016-01-01

    Acquired aplastic anemia is an immune-mediated disease, in which T cells target hematopoietic cells; at presentation, the bone marrow is replaced by fat. It was reported that bone marrow adipocytes were negative regulators of hematopoietic microenvironment. To examine the role of adipocytes in bone marrow failure, we investigated peroxisomal proliferator-activated receptor gamma, a key transcription factor in adipogenesis, utilizing an antagonist of this factor called bisphenol-A-diglycidyl-ether. While bisphenol-A-diglycidyl-ether inhibited adipogenesis as expected, it also suppressed T cell infiltration of bone marrow, reduced plasma inflammatory cytokines, decreased expression of multiple inflammasome genes, and ameliorated marrow failure. In vitro, bisphenol-A-diglycidyl-ether suppressed activation and proliferation, and reduced phospholipase C gamma 1 and nuclear factor of activated T-cells 1 expression, as well as inhibiting calcium flux in T cells. The in vivo effect of bisphenol-A-diglycidyl-ether on T cells was confirmed in a second immune-mediated bone marrow failure model, using different strains and non-major histocompatibility antigen mismatched: bisphenol-A-diglycidyl-ether ameliorated marrow failure by inhibition of T cell infiltration of bone marrow. Our data indicate that peroxisomal proliferator-activated receptor gamma antagonists may attenuate murine immune-mediated bone marrow failure, at least in part, by suppression of T cell activation, which might hold implications in the application of peroxisomal proliferator-activated receptor gamma antagonists in immune-mediated pathophysiologies, both in the laboratory and in the clinic. Genetically “fatless” mice developed bone marrow failure with accumulation of marrow adipocytes in our model, even in the absence of body fat, suggesting different mechanisms of systematic and marrow adipogenesis and physiologic versus pathophysiologic fat accumulation. PMID:26589913

  9. [Indications and follow-up for autologous hematopoietic stem cell transplantation in autoimmune and autoinflammatory diseases: Guidelines from the Francophone Society of Bone Marrow Transplantation and Cellular Therapy (SFGM-TC)].

    PubMed

    Pugnet, Grégory; Castilla-Llorente, Christina; Puyade, Mathieu; Terriou, Louis; Badoglio, Manuela; Deligny, Christophe; Guillaume-Jugnot, Perrine; Labeyrie, Céline; Benzidia, Ilham; Faivre, Hélène; Lansiaux, Pauline; Marjanovic, Zora; Bourhis, Jean-Henri; Faucher, Catherine; Furst, Sabine; Huynh, Anne; Martin, Thierry; Vermersch, Patrick; Yakoub-Agha, Ibrahim; Farge, Dominique

    2017-12-01

    The Francophone Society of Bone Marrow Transplantation and Cellular Therapy (SFGM-TC) organized the 7th allogeneic hematopoietic stem cell transplantation clinical practices harmonization workshop series in September 2017 in Lille, France and updated recommendations for indications and follow-up in autologous hematopoietic stem cell transplantation in autoimmune and autoinflammatory diseases, previously published under the auspices of SFGM-TC. Copyright © 2017 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  10. Bone marrow monosomy 7: hematologic and clinical manifestations in childhood and adolescence.

    PubMed

    Hutter, J J; Hecht, F; Kaiser-McCaw, B; Hays, T; Baranko, P; Cohen, J; Durie, B

    1984-01-01

    The hematologic manifestations and clinical course are described for six children and adolescents with bone marrow monosomy 7. One child with secondary acute myelogenous leukemia had monosomy 7 plus a marker chromosome; the remaining patients had marrow monosomy 7 as the only karyotypic abnormality. The hematologic abnormalities were diverse, but the majority of patients had a smoldering preleukemic or myeloproliferative phase. Leukemic blasts were either undifferentiated or demonstrated evidence of myeloid differentiation. All patients responded poorly to antileukemic therapy. Bone marrow monosomy 7 was observed in one patient with severe marrow hypoplasia. Antileukemic therapy in another patient with greater than 30 per cent marrow blasts was associated with the development of a bone marrow myeloproliferative disorder with persistence of the monosomy 7 karyotype. We speculate that monosomy 7 may be a specific marker for a pluripotent hematopoietic stem cell abnormality that is associated with either blastic leukemia or a myeloproliferative disorder.

  11. Unicameral bone cysts: comparison of percutaneous curettage, steroid, and autologous bone marrow injections.

    PubMed

    Canavese, Federico; Wright, James G; Cole, William G; Hopyan, Sevan

    2011-01-01

    The purpose of this study was to compare the outcome of percutaneous curettage with intralesional injection of methylprednisolone and bone marrow for unicameral bone cysts (UBCs). This was a retrospective review of 46 children and adolescents with UBC treated with autologous bone marrow injection, methylprednisolone acetate injection or percutaneous curettage alone. Inclusion criteria were a radiological diagnosis of UBC and at least 24 months follow-up from the last procedure. Healing was determined using Neer/Cole 4-grades rating scale. The 3 treatment groups were comparable with regard to age, sex, location of the cyst, and the number of procedures undertaken. At 2 years follow-up, the proportion of patients with satisfactory healing (Neer/Cole grades I and II) was greatest among those who underwent percutaneous curettage (70%) compared with bone marrow injection (21%) and methylprednisolone acetate injection (41%) (P = 0.03). We found no association between healing and age (P = 0.80) nor between healing and sex (P = 0.61). These results suggest that mechanical disruption of the cyst membrane may be helpful in healing of cysts and that this technique may be preferred to simple intralesional injections. Level III.

  12. Understanding deregulated cellular and molecular dynamics in the haematopoietic stem cell niche to develop novel therapeutics for bone marrow fibrosis.

    PubMed

    Gleitz, Hélène Fe; Kramann, Rafael; Schneider, Rebekka K

    2018-06-01

    Bone marrow fibrosis is the continuous replacement of blood-forming cells in the bone marrow with excessive scar tissue, leading to failure of the body to produce blood cells and ultimately to death. Myofibroblasts are fibrosis-driving cells and are well characterized in solid organ fibrosis, but their role and cellular origin in bone marrow fibrosis have remained obscure. Recent work has demonstrated that Gli1 + and leptin receptor + mesenchymal stromal cells are progenitors of fibrosis-causing myofibroblasts in the bone marrow. Genetic ablation or pharmacological inhibition of Gli1 + mesenchymal stromal cells ameliorated fibrosis in mouse models of myelofibrosis. Conditional deletion of the platelet-derived growth factor (PDGF) receptor-α (PDGFRA) gene (Pdgfra) and inhibition of PDGFRA by imatinib in leptin receptor + stromal cells suppressed their expansion and ameliorated bone marrow fibrosis. Understanding the cellular and molecular mechanisms in the haematopoietic stem cell niche that govern the mesenchymal stromal cell-to-myofibroblast transition and myofibroblast expansion will be critical to understand the pathogenesis of bone marrow fibrosis in both malignant and non-malignant conditions, and will guide the development of novel therapeutics. In this review, we summarize recent discoveries of mesenchymal stromal cells as part of the haematopoietic niche and as myofibroblast precursors, and discuss potential therapeutic strategies in the specific targeting of fibrotic transformation in bone marrow fibrosis. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.

  13. Gamma Radiation Induces Micronucleated Reticulocytes in 3-D Bone Marrow Bioreactors in Vitro

    PubMed Central

    Sun, Hongliang; Dertinger, Stephen D.; Hyrien, Ollivier; David Wu, J. H.; Chen, Yuhchyau

    2009-01-01

    Radiation injury to the bone marrow is potentially lethal due to the potent DNA-damaging effects on cells of the hematopoietic system, including bone marrow stem cell, progenitor, and the precursor cell populations. Investigation of radiation genotoxic effects on bone marrow progenitor/precursor cells has been challenged by the lack of optimal in vitro surrogate organ culture systems, and the overall difficulty to sustain lineage-specific proliferation and differentiation of hematopoiesis in vitro. We report the investigation of radiation genotoxic effects in bone marrow cultures of C57Bl/6 mice established in 3-D bioreactors, which sustain long-term bone marrow cultures. For these studies, genotoxicity is measured by the induction of micronucleated reticulocytes (MN-RET). The kinetics and dose-response relationship of MN-RET induction in response to gamma-radiation of bioreactor-maintained bone marrow cultures are presented. Our data showed that 3-D long-term bone marrow cultures had sustained erythropoiesis capable of generating reticulocytes up to 8 weeks. The peak time-interval of viable cell output and percentage of reticulocytes increased steadily and reached the initial peak between the 14th to 21st days after inoculations. This was followed by a rebound or staying relatively constant until week 8. The percentage of MN-RET reached the maximum between 24 and 32 hours post 1 Gy gamma-ray. There was a near linear MN-RET induction by gamma radiation from 0 Gy to 1.0 Gy, followed by an attenuated increase to 1.5 – 2.0 Gy. The MN-RET response showed a downtrend beyond 2 Gy. Our data suggest that bone marrow culture in the 3-D bioreactor may be a useful organ culture system for the investigation of radiation genotoxic effect in vitro. PMID:19786117

  14. Assessment of bone marrow plasma cell infiltrates in multiple myeloma: the added value of CD138 immunohistochemistry

    PubMed Central

    Al-Quran, Samer Z.; Yang, Lijun; Magill, James M.; Braylan, Raul C.; Douglas-Nikitin, Vonda K.

    2012-01-01

    Summary Assessment of bone marrow involvement by malignant plasma cells is an important element in the diagnosis and follow-up of patients with multiple myeloma and other plasma cell dyscrasias. Microscope-based differential counts of bone marrow aspirates are used as the primary method to evaluate bone marrow plasma cell percentages. However, multiple myeloma is often a focal process, a fact that impacts the accuracy and reliability of the results of bone marrow plasma cell percentages obtained by differential counts of bone marrow aspirate smears. Moreover, the interobserver and intraobserver reproducibility of counting bone marrow plasma cells microscopically has not been adequately tested. CD138 allows excellent assessment of plasma cell numbers and distribution in bone marrow biopsies. We compared estimates of plasma cell percentages in bone marrow aspirates and in hematoxylin-eosin– and CD138-stained bone marrow biopsy sections (CD138 sections) in 79 bone marrows from patients with multiple myeloma. There was a notable discrepancy in bone marrow plasma cell percentages using the different methods of observation. In particular, there was a relatively poor concordance of plasma cell percentage estimation between aspirate smears and CD138 sections. Estimates of plasma cell percentage using CD138 sections demonstrated the highest interobserver concordance. This observation was supported by computer-assisted image analysis. In addition, CD138 expression highlighted patterns of plasma cell infiltration indicative of neoplasia even in the absence of plasmacytosis. We conclude that examination of CD138 sections should be considered for routine use in the estimation of plasma cell load in the bone marrow. PMID:17714757

  15. Body/bone-marrow differential-temperature sensor

    NASA Technical Reports Server (NTRS)

    Anselmo, V. J.; Berdahl, C. M.

    1978-01-01

    Differential-temperature sensor developed to compare bone-marrow and body temperature in leukemia patients uses single stable amplifier to monitor temperature difference recorded by thermocouples. Errors are reduced by referencing temperatures to each other, not to separate calibration points.

  16. Isolation and hepatocyte differentiation of mesenchymal stem cells from porcine bone marrow--"surgical waste" as a novel MSC source.

    PubMed

    Brückner, S; Tautenhahn, H-M; Winkler, S; Stock, P; Jonas, S; Dollinger, M; Christ, B

    2013-06-01

    Mesenchymal stem cells (MSC) isolated from bone marrow and differentiated into hepatocyte-like cells have increasingly gained attention for clinical cell therapy of liver diseases because of their high regenerative capacity. They are available from bone marrow aspirates of the os coxae after puncture of the crista iliaca or from bone marrow "surgical waste" gained from amputations or knee and hip operations. Thus, the aim of the study was to demonstrate whether these pBM-MSC (porcine bone marrow-derived mesenchymal stem cells) displayed mesenchymal features and hepatocyte differentiation potential. MSC were isolated either from crista iliaca punctures or after sampling and collagenase digestion of bone marrow from the os femoris. Mesenchymal features were assessed by flow cytometry for specific surface antigens and their ability to differentiate into at least 3 lineages. Functional properties, such as urea or glycogen synthesis and cytochrome P450 activity, as well as the cell morphology were examined during hepatocyte differentiation. pBM-MSC from both sources lacked the hematopoietic markers CD14 and CD45 but expressed the typical mesenchymal markers CD44, CD29, CD90, and CD105. Both cell types could differentiate into adipocyte, osteocyte, and hepatocyte lineages. After hepatocyte differentiation, CD105 expression decreased significantly and cells changed morphology from fibroblastoid into polygonal, displaying significantly increased glycogen storage, urea synthesis, and cytochrome activity. pBM-MSC from various sources were identical in respect to their mesenchymal features and their hepatocyte differentiation potential. Hence, long bones might be a particularly useful resource to isolate bone marrow mesenchymal stem cells for transplantation. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Anti-thymocyte globulin as graft-versus-host disease prevention in the setting of allogeneic peripheral blood stem cell transplantation: a review from the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation

    PubMed Central

    Baron, Frédéric; Mohty, Mohamad; Blaise, Didier; Socié, Gérard; Labopin, Myriam; Esteve, Jordi; Ciceri, Fabio; Giebel, Sebastian; Gorin, Norbert Claude; Savani, Bipin N; Schmid, Christoph; Nagler, Arnon

    2017-01-01

    Allogeneic hematopoietic stem cell transplantation is increasingly used as treatment for patients with life-threatening blood diseases. Its curative potential is largely based on immune-mediated graft-versus-leukemia effects caused by donor T cells contained in the graft. Unfortunately, donor T cells are also the cause of graft-versus-host disease. The vast majority of human leukocyte antigen-matched allogeneic hematopoietic stem cell transplants are nowadays carried out with peripheral blood stem cells as the stem cell source. In comparison with bone marrows, peripheral blood stem cells contain more hematopoietic stem/progenitor cells but also one log more T cells. Consequently, the use of peripheral blood stem cells instead of bone marrow has been associated with faster hematologic recovery and a lower risk of relapse in patients with advanced disease, but also with a higher incidence of chronic graft-versus-host disease. These observations have been the basis for several studies aimed at assessing the impact of immunoregulation with anti-thymocyte globulin on transplantation outcomes in patients given human leukocyte antigen-matched peripheral blood stem cells from related or unrelated donors. After a brief introduction on anti-thymocyte globulin, this article reviews recent studies assessing the impact of anti-thymocyte globulin on transplantation outcomes in patients given peripheral blood stem cells from human leukocyte antigen-matched related or unrelated donors as well as in recipients of grafts from human leukocyte antigen haploidentical donors. PMID:27927772

  18. Human bone marrow-derived clonal mesenchymal stem cells inhibit inflammation and reduce acute pancreatitis in rats.

    PubMed

    Jung, Kyung Hee; Song, Sun U; Yi, Tacghee; Jeon, Myung-Shin; Hong, Sang-Won; Zheng, Hong-Mei; Lee, Hee-Seung; Choi, Myung-Joo; Lee, Don-Haeng; Hong, Soon-Sun

    2011-03-01

    Acute pancreatitis (AP) has a high mortality rate; repetitive AP induces chronic AP and pancreatic adenocarcinoma. Mesenchymal stem cells (MSCs) have immunoregulatory effects and reduce inflammation. We developed a protocol to isolate human bone marrow-derived clonal MSCs (hcMSCs) from bone marrow aspirate and investigated the effects of these cells in rat models of mild and severe AP. Mild AP was induced in Sprague-Dawley rats by 3 intraperitoneal injections of cerulein (100 μg/kg), given at 2-hour intervals; severe AP was induced by intraparenchymal injection of 3% sodium taurocholate solution. hcMSCs were labeled with CM-1,1'-dioctadecyl-3,3,3'-tetramethylindo-carbocyanine perchloride and administered to rats through the tail vein. hcMSCs underwent self-renewal and had multipotent differentiation capacities and immunoregulatory functions. Greater numbers of infused hcMSCs were detected in pancreas of rats with mild and severe AP than of control rats. Infused hcMSCs reduced acinar-cell degeneration, pancreatic edema, and inflammatory cell infiltration in each model of pancreatitis. The hcMSCs reduced expression of inflammation mediators and cytokines in rats with mild and severe AP. hcMSCs suppressed the mixed lymphocyte reaction and increased expression of Foxp3(+) (a marker of regulatory T cells) in cultured rat lymph node cells. Rats with mild or severe AP that were given infusions of hcMSCs had reduced numbers of CD3(+) T cells and increased expression of Foxp3(+) in pancreas tissues. hcMSCs reduced inflammation and damage to pancreatic tissue in a rat model of AP; they reduced levels of cytokines and induced numbers of Foxp3(+) regulatory T cells. hcMSCs might be developed as a cell therapy for pancreatitis. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.

  19. Bone Marrow Stem Cells in Clinical Application: Harnessing Paracrine Roles and Niche Mechanisms

    NASA Astrophysics Data System (ADS)

    Backly, Rania M. El; Cancedda, Ranieri

    The being of any individual throughout life is a dynamic process relying on the capacity to retain processes of self-renewal and differentiation, both of which are hallmarks of stem cells. Although limited in the adult human organism, regeneration and repair do take place in virtue of the presence of adult stem cells. In the bone marrow, two major populations of stem cells govern the dynamic equilibrium of both hemopoiesis and skeletal homeostasis; the hematopoietic and the mesenchymal stem cells. Recent cell based clinical trials utilizing bone marrow-derived stem cells as therapeutic agents have revealed promising results, while others have failed to display as such. It is therefore imperative to strive to understand the mechanisms by which these cells function in vivo, how their properties can be maintained ex-vivo, and to explore further their recently highlighted immunomodulatory and trophic effects.

  20. Maintenance of Host Leukocytes in Peripheral Immune Compartments Following Lethal Irradiation and Bone Marrow Reconstitution: Implications for Graft Versus Host Disease

    PubMed Central

    Staley, Elizabeth M.; Tanner, Scott M.; Daft, Joseph G.; Stanus, Andrea L.; Martin, Steven M.; Lorenz, Robin G.

    2013-01-01

    Bone marrow reconstitution is utilized as a tool for disease treatment and as a research technique to elucidate the function of bone marrow derived cells. Clinically successful engraftment is indicated by the development of a functioning immune repertoire. In research, reconstitution is considered successful if >85% of splenic leukocytes are of donor origins. Previous work suggests that splenic reconstitution may not be indicative of reconstitution in the mucosa. We sought to evaluate mucosal reconstitution in animals following a standard bone marrow eradication and reconstitution technique. Bone marrow was harvested from adult B6.SJL donor mice (CD45.1) and injected via either the retro-orbital or intraperitoneal route into lethally irradiated B6 (CD45.2) adult or neonatal recipients respectively. Expression of CD45 by flow cytometry was used to calculate reconstitution with respect to immune compartment and cell type. In reconstituted adult animals 93.2±1.5% of splenic leukocytes expressed the donor CD45.1 antigen thus meeting the standard definition of reconstitution, however only 58.6±13.6% of intestinal lamina propria lymphocytes and 52.4±16.0% of intestinal intraepithelial lymphocytes were of donor origin, confirming splenic reconstitution fails to represent peripheral immune reconstitution. T-cells in the gastrointestinal tract are the most poorly reconstituted, while B-cells appear to be almost universally replaced by donor cells. The inadequate mucosal reconstitution was not corrected by evaluating later timepoints or by performing the bone marrow transfer during the neonatal period. This demonstration that substantial host T-cells remain in the intestinal mucosa after a “successful” bone marrow transplantation should cause a re-evaluation of data from research bone marrow chimera experiments, as well as the mechanisms for complications after clinical bone marrow transplantation. PMID:23334064

  1. Maintenance of host leukocytes in peripheral immune compartments following lethal irradiation and bone marrow reconstitution: implications for graft versus host disease.

    PubMed

    Staley, Elizabeth M; Tanner, Scott M; Daft, Joseph G; Stanus, Andrea L; Martin, Steven M; Lorenz, Robin G

    2013-03-01

    Bone marrow reconstitution is utilized as a tool for disease treatment and as a research technique to elucidate the function of bone marrow derived cells. Clinically successful engraftment is indicated by the development of a functioning immune repertoire. In research, reconstitution is considered successful if >85% of splenic leukocytes are of donor origins. Previous work suggests that splenic reconstitution may not be indicative of reconstitution in the mucosa. We sought to evaluate mucosal reconstitution in animals following a standard bone marrow eradication and reconstitution technique. Bone marrow was harvested from adult B6.SJL donor mice (CD45.1) and injected via either the retro-orbital or intraperitoneal route into lethally irradiated B6 (CD45.2) adult or neonatal recipients respectively. The expression of CD45 by flow cytometry was used to calculate reconstitution with respect to immune compartment and cell type. In reconstituted adult animals 93.2±1.5% of splenic leukocytes expressed the donor CD45.1 antigen thus meeting the standard definition of reconstitution, however only 58.6±13.6% of intestinal lamina propria lymphocytes and 52.4±16.0% of intestinal intraepithelial lymphocytes were of donor origin, confirming splenic reconstitution fails to represent peripheral immune reconstitution. T-cells in the gastrointestinal tract are the most poorly reconstituted, while B-cells appear to be almost universally replaced by donor cells. The inadequate mucosal reconstitution was not corrected by evaluating later time points or by performing the bone marrow transfer during the neonatal period. This demonstration that substantial host T-cells remain in the intestinal mucosa after a "successful" bone marrow transplantation should cause a re-evaluation of data from research bone marrow chimera experiments, as well as the mechanisms for complications after clinical bone marrow transplantation. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. [Study of migration and distribution of bone marrow cells transplanted animals with B16 melanoma ].

    PubMed

    Poveshchenko, A F; Solovieva, A O; Zubareva, K E; Strunkin, D N; Gricyk, O B; Poveshchenko, O V; Shurlygina, A V; Konenkov, V I

    2017-01-01

    Purpose. Reveal features migration and distribution of syngeneic bone marrow cells (BMC) and subpopulations (MSC) after transplantation into the recipient carrier B16 melanoma bodies. Methods. We used mouse male and female C57BL/6 mice. Induction of Tumor Growth: B16 melanoma cells implanted subcutaneously into right hind paw of female C57BL/6 mice at a dose of 2.5 x 105 cells / mouse. migration study in vivo distribution and BMC and MSC was performed using genetic markers - Y-chromosome specific sequence line male C57Bl/6 syngeneic intravenous transplantation in females using the polymerase chain reaction (PCR) in real time on Authorized Termal Cycler - Light Cycler 480 II / 96 (Roche). Introduction suspension of unseparated bone marrow cells, mesenchymal stem cells from donor to recipient male mice (syngeneic recipient female C57BL/6), followed by isolation of recipients of organs was performed at regular intervals, then of organ recipients isolated DNA. Results. It was shown that bone marrow cells positive for Y-chromosome in migrate lymphoid (lymph nodes, spleen, bone marrow) or in non-lymphoid organs (liver, heart, brain, skin) syngeneic recipients. In addition to the migration of cells from the bone marrow to other organs, there is a way back migration of cells from the circulation to the bone marrow. B16 melanoma stimulates the migration of transplanted MSCs and BMC in bone marrow. It is found that tumor growth enhanced migration of transplanted bone marrow cells, including populations of MSCs in the bone marrow. In the early stages of tumor formation MSC migration activity higher than the BMC. In the later stages of tumor formation undivided population of bone marrow cells migrate to the intense swelling compared with a population of MSCs. Conclusion. The possibility of using bone marrow MSCs for targeted therapy of tumor diseases, because migration of MSCs in tumor tissue can be used to effectively deliver anticancer drugs.

  3. Bone marrow cell migration to the heart in a chimeric mouse model of acute chagasic disease.

    PubMed

    Irion, Camila Iansen; Paredes, Bruno Diaz; Brasil, Guilherme Visconde; Cunha, Sandro Torrentes da; Paula, Luis Felipe; Carvalho, Alysson Roncally; Carvalho, Antonio Carlos Campos de; Carvalho, Adriana Bastos; Goldenberg, Regina Coeli Dos Santos

    2017-08-01

    Chagas disease is a public health problem caused by infection with the protozoan Trypanosoma cruzi. There is currently no effective therapy for Chagas disease. Although there is some evidence for the beneficial effect of bone marrow-derived cells in chagasic disease, the mechanisms underlying their effects in the heart are unknown. Reports have suggested that bone marrow cells are recruited to the chagasic heart; however, studies using chimeric mouse models of chagasic cardiomyopathy are rare. The aim of this study was to investigate the migration of bone marrow cells to the heart after T. cruzi infection in a model of chagasic disease in chimeric mice. To obtain chimerical mice, wild-type (WT) C57BL6 mice were exposed to full body irradiation (7 Gy), causing bone marrow ablation. Then, bone marrow cells from green fluorescent protein (GFP)-transgenic mice were infused into the mice. Graft effectiveness was confirmed by flow cytometry. Experimental mice were divided into four groups: (i) infected chimeric (iChim) mice; (ii) infected WT (iWT) mice, both of which received 3 × 104 trypomastigotes of the Brazil strain; (iii) non-infected chimeric (Chim) mice; and (iv) non-infected WT mice. At one-month post-infection, iChim and iWT mice showed first degree atrioventricular block with decreased heart rate and treadmill exercise parameters compared to those in the non-infected groups. iChim mice showed an increase in parasitaemia, myocarditis, and the presence of amastigote nests in the heart tissue compared to iWT mice. Flow cytometry analysis did not detect haematopoietic progenitor cells in the hearts of infected mice. Furthermore, GFP+ cardiomyocytes were not detected in the tissues of chimeric mice.

  4. Primary BK virus (BKV) infection due to possible BKV transmission during bone marrow transplantation is not the major cause of hemorrhagic cystitis in transplanted children.

    PubMed

    Bogdanovic, G; Priftakis, P; Taemmeraes, B; Gustafsson, A; Flaegstad, T; Winiarski, J; Dalianis, T

    1998-11-01

    In allogeneic bone marrow transplanted (BMT) patients BK virus (BKV) reactivation has been associated with haemorrhagic cystitis (HC). However, it is far from obvious which patients will develop HC, since BKV, a human polyomavirus, is ubiquitious and infects children at an early age. To investigate if a primary BKV infection, as such or possibly due to transmission of BKV by the marrow graft during BMT, was correlated to the development of HC, 45 children were followed for possible BKV seroconversion and development of HC at different time points after BMT. Serum samples were collected from the 45 allogeneic BMT children and their donors before transplantation, and from the patients at 3, 6 and 12 months after BMT. These sera were analysed for the presence of specific antibodies towards BKV by hemagglutination inhibition (HAI) and by IgG- and IgM-class specific enzyme linked immunosorbent (ELISA) assays. Twelve of the 45 BMT children had a documented episode of HC or hematuria. All patients and 98% of the donors were HAI positive before BMT, while with ELISA 87% of the patients and 84% of the donors were positive. Moreover, most HC and hematuria children (11/12) were seropositive with both assays before BMT, making it impossible to investigate possible BKV transmission through the bone marrow graft during BMT by serology. Still, serological changes such as ELISA seroconversion, IgM antibodies and/or HAI titer increases were significantly (p=0.016) more common in patients with HC (58%) than without HC (24%), but these changes occured mainly after HC symptomatology had already resolved. However, there was a near significant difference (p=0.053) in BKV seroprevalence by ELISA among the donors of patients with HC or hematuria (67%) as compared to the donors (91%) of patients without HC.

  5. A simple and efficient method for deriving neurospheres from bone marrow stromal cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang Qin; Mu Jun; Li Qi

    2008-08-08

    Bone marrow stromal cells (MSCs) can be differentiated into neuronal and glial-like cell types under appropriate experimental conditions. However, previously reported methods are complicated and involve the use of toxic reagents. Here, we present a simplified and nontoxic method for efficient conversion of rat MSCs into neurospheres that express the neuroectodermal marker nestin. These neurospheres can proliferate and differentiate into neuron, astrocyte, and oligodendrocyte phenotypes. We thus propose that MSCs are an emerging model cell for the treatment of a variety of neurological diseases.

  6. [Preventative and therapeutic relapse strategies after allogeneic hematopoietic stem cell transplantation: Guidelines from the Francophone society of bone marrow transplantation and cellular therapy (SFGM-TC)].

    PubMed

    Yafour, Nabil; Beckerich, Florence; Bulabois, Claude Eric; Chevallier, Patrice; Daguindau, Étienne; Dumesnil, Cécile; Guillaume, Thierry; Huynh, Anne; Levrat, Stavroula Masouridi; Menard, Anne-Lise; Michallet, Mauricette; Pautas, Cécile; Poiré, Xavier; Ravinet, Aurelie; Yakoub-Agha, Ibrahim; Bazarbachi, Ali

    2017-12-01

    Disease relapse remains the first cause of mortality of hematological malignancies after allogeneic hematopoietic stem cell transplantation (allo-HCT). The risk of recurrence is elevated in patients with high-risk cytogenetic or molecular abnormalities, as well as when allo-HCT is performed in patients with refractory disease or with persistent molecular or radiological (PET-CT scan) residual disease. Within the frame of the 7th annual workshops of the francophone society for bone marrow transplantation and cellular therapy, the working group reviewed the literature in order to elaborate unified guidelines for the prevention and treatment of relapse after allo-HCT. For high risk AML and MDS, a post transplant maintenance strategy is possible, using hypomethylating agents or TKI anti-FLT3 when the target is present. For Philadelphia positive ALL, there was a consensus for the use of post-transplant TKI maintenance. For lymphomas, there are no strong data on the use of post-transplant maintenance, and hence a preemptive strategy is recommended based on modulation of immunosuppression, close follow-up of donor chimerism, and donor lymphocytes infusion. For multiple myeloma, even though the indication of allo-HCT is controversial, our recommendation is post transplant maintenance using bortezomib, due to its a good toxicity profile without increasing the risk of GVHD. Copyright © 2017 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  7. Establishment and characterization of mouse bone marrow-derived mast cell hybridomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawahara, Takeshi, E-mail: tkawafb@shinshu-u.ac.jp

    2012-11-01

    Interleukin (IL)-3-dependent mouse bone marrow-derived mast cells (BMMCs) are an important model for studying the function of mucosal-type mast cells. In the present study, BMMCs were successfully immortalized by cell fusion using a hypoxanthine-aminopterin-thymidine medium-sensitive variant of P815 mouse mastocytoma (P815-6TgR) as a partner cell line. The established mouse mast cell hybridomas (MMCHs) expressed {alpha}, {beta}, and {gamma} subunits of high-affinity immunoglobulin E (IgE) receptor (Fc{epsilon}RI) and possessed cytoplasmic granules devoid of or partially filled with electron-dense material. Four independent MMCH clones continuously proliferated without supplemental exogenous IL-3 and showed a degranulation response on stimulation with IgE+antigen. Furthermore, histamine synthesismore » and release by degranulation were confirmed in MMCH-D5, a MMCH clone that showed the strongest degranulation response. MMCH-D5 exhibited elevated levels of IL-3, IL-4, IL-13, granulocyte-macrophage colony-stimulating factor, tumor necrosis factor (TNF)-{alpha}, and cyclooxygenase 2, and production of prostaglandin D{sub 2} and leukotriene C{sub 4} in response to IgE-induced stimulation. MMCH clones also expressed Toll-like receptors (TLRs) 1, 2, 4, and 6 and showed elevated levels of TNF-{alpha} expression in response to stimulation with TLR2 and TLR4 ligands. The MMCHs established using this method should be suitable for studies on Fc{epsilon}RI- and TLR-mediated effector functions of mast cells.« less

  8. Development, regulation, metabolism and function of bone marrow adipose tissues.

    PubMed

    Li, Ziru; Hardij, Julie; Bagchi, Devika P; Scheller, Erica L; MacDougald, Ormond A

    2018-05-01

    Most adipocytes exist in discrete depots throughout the body, notably in well-defined white and brown adipose tissues. However, adipocytes also reside within specialized niches, of which the most abundant is within bone marrow. Whereas bone marrow adipose tissue (BMAT) shares many properties in common with white adipose tissue, the distinct functions of BMAT are reflected by its development, regulation, protein secretion, and lipid composition. In addition to its potential role as a local energy reservoir, BMAT also secretes proteins, including adiponectin, RANK ligand, dipeptidyl peptidase-4, and stem cell factor, which contribute to local marrow niche functions and which may also influence global metabolism. The characteristics of BMAT are also distinct depending on whether marrow adipocytes are contained within yellow or red marrow, as these can be thought of as 'constitutive' and 'regulated', respectively. The rBMAT for instance can be expanded or depleted by myriad factors, including age, nutrition, endocrine status and pharmaceuticals. Herein we review the site specificity, age-related development, regulation and metabolic characteristics of BMAT under various metabolic conditions, including the functional interactions with bone and hematopoietic cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Denosumab is effective in the treatment of bone marrow oedema syndrome.

    PubMed

    Rolvien, Tim; Schmidt, Tobias; Butscheidt, Sebastian; Amling, Michael; Barvencik, Florian

    2017-04-01

    Bone marrow oedema (BMO) syndrome describes a painful condition with increase of interstitial fluid within bone and is often lately diagnosed due to unspecific symptoms. The underlying causes are diverse while it is widely assumed that in cases of BMO local bone resorption is increased. Denosumab, a human monoclonal antibody that binds to the receptor activator of nuclear factor kappa-B ligand (RANKL) inhibits osteoclastic bone resorption and is commonly administered in the treatment of osteoporosis. Besides one previous case report, its clinical effectiveness in the treatment of bone marrow oedema has not been elucidated. We treated 14 patients with primary (idiopathic) bone marrow oedema of the lower extremity with single dose denosumab application. Mean time between onset of pain and therapy was 155days. MRI scans were performed for initial diagnosis, and 6-12 weeks after denosumab injection. Vitamin D and calcium homeostasis were strived to be balanced before initiation of therapy. Furthermore bone status was analysed using Dual-energy X-ray absorptiometry (DXA) and extended bone turnover serum markers. After 6-12 weeks, BMO dissolved partly or completely in 93%, while a complete recovery was observed in 50% of the individuals. Visual analogue scale (VAS) evaluation revealed a significant decrease in pain level. Furthermore, bone turnover decreased significantly after treatment. No adverse reactions were reported. In conclusion, our retrospective analysis shows that denosumab is highly effective in the treatment of bone marrow oedema and therefore represents an alternative treatment option. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. The role of bone marrow mesenchymal stromal cell derivatives in skin wound healing in diabetic mice.

    PubMed

    de Mayo, Tomas; Conget, Paulette; Becerra-Bayona, Silvia; Sossa, Claudia L; Galvis, Virgilio; Arango-Rodríguez, Martha L

    2017-01-01

    Mesenchymal stromal cells (MSCs) have shown to be a promising tool in cell therapies to treat different conditions. Several pre-clinical and clinical studies have proved that the transplantation of MSCs improves wound healing. Here, we compare the beneficial effects of mouse bone marrow-derived allogeneic MSCs (allo-mBM-MSCs) and their acelullar derivatives (allo-acd-mMSCs) on skin wound healing in Non-Obese Diabetic (NOD) mice. One dose of allo-mBM-MSCs (1×106 cells) or one dose of allo-acd-mMSCs (1X) were intradermally injected around wounds in 8-10 week old female NOD mice. Wound healing was evaluated macroscopically (wound closure) every two days, and microscopically (reepithelialization, dermoepidermal junction, skin appendage regeneration, leukocyte infiltration, vascularization, granulation tissue formation, and density of collagen fibers in the dermis) after 16 days of MSC injection. In addition, we measured growth factors and specific proteins that were present in the allo-acd-mMSCs. Results showed significant differences in the wound healing kinetics of lesions that received allo-acd-mMSCs compared to lesions that received vehicle or allo-mBM-MSCs. In particular, mice treated with allo-acd-mMSCs reached significantly higher percentages of wound closure at day 4, 6 and 8, relative to the allo-mBM-MSCs and vehicle groups (p < 0.05), while wound closure percentages could not be statistically distinguished between the allo-mBM-MSCs and vehicle groups. Also, allo-acd-mMSCs had a greater influence in the skin would healing process. Specifically, they caused a less pronounced inflammatory severe response (p < 0.0001), more granulation tissue formation at an advanced stage (p < 0.0001), and higher density of collagen fibers (p < 0.05) compared to the other groups. Nevertheless, at day 16, both allo-mBM-MSCs and allo-acd-mMSCs revealed a higher effect on the recovery of the quality skin (continuous epidermis; regular dermoepidermal junction and skin appendages

  11. An Unexpected Complication of Bone Marrow Aspiration and Trephine Biopsy: Arteriovenous Fistula

    PubMed Central

    Berber, Ilhami; Erkurt, Mehmet Ali; Kuku, Irfan; Kaya, Emin; Kutlu, Ramazan; Koroglu, Mustafa; Yigit, Ali; Unlu, Serkan

    2014-01-01

    Objective To report a case of arteriovenous fistula (AVF) following bone marrow aspiration and trephine biopsy. Clinical Presentation and Intervention A 76-year-old man was diagnosed with acute myeloblastic leukemia. Pain and hematoma were detected in his left leg and hip 4 days after bone marrow aspiration and trephine biopsy. A pelvic arteriography was performed, and a diagnosis of AVF was made. Conclusion This case shows that clinicians should be aware of AVF, especially in cases with refractory bleeding after bone marrow aspiration and trephine biopsy despite normal blood coagulation parameters. PMID:24481007

  12. Bone Marrow Aspirate Concentrate in Animal Long Bone Healing: An Analysis of Basic Science Evidence.

    PubMed

    Gianakos, Arianna; Ni, Amelia; Zambrana, Lester; Kennedy, John G; Lane, Joseph M

    2016-01-01

    Long bone fractures that fail to heal or show a delay in healing can lead to increased morbidity. Bone marrow aspirate concentrate (BMAC) containing bone mesenchymal stem cells (BMSCs) has been suggested as an autologous biologic adjunct to aid long bone healing. The purpose of this study was to systematically review the basic science in vivo evidence for the use of BMAC with BMSCs in the treatment of segmental defects in animal long bones. The PubMed/MEDLINE and EMBASE databases were screened in July 14-25, 2014. The following search criteria were used: [("bmac" OR "bone marrow aspirate concentrate" OR "bmc" OR "bone marrow concentrate" OR "mesenchymal stem cells") AND ("bone" OR "osteogenesis" OR "fracture healing" OR "nonunion" OR "delayed union")]. Three authors extracted data and analyzed for trends. Quality of evidence score was given to each study. Results are presented as Hedge G standardized effect sizes with 95% confidence intervals. The search yielded 35 articles for inclusion. Of studies reporting statistics, 100% showed significant increase in bone formation in the BMAC group on radiograph. Ninety percent reported significant improvement in earlier bone healing on histologic/histomorphometric assessment. Eighty-one percent reported a significant increase in bone area on micro-computed tomography. Seventy-eight percent showed a higher torsional stiffness for the BMAC-treated defects. In the in vivo studies evaluated, BMAC confer beneficial effects on the healing of segmental defects in animal long bone models when compared with a control. Proof-of-concept has been established for BMAC in the treatment of animal segmental bone defects.

  13. Does size difference in allogeneic cancellous bone granules loaded with differentiated autologous cultured osteoblasts affect osteogenic potential?

    PubMed

    Lee, Sang-Uk; Chung, Yang-Guk; Kim, Seok-Jung; Oh, Il-Hoan; Kim, Yong-Sik; Ju, Sung-Hun

    2014-02-01

    We study the efficacy of bone regeneration by using two differently sized allogeneic cancellous bone granules loaded with autologous cultured osteoblasts in a rabbit model. Critical-sized bone defects of the radial shaft were made in 40 New Zealand White rabbits. Small allogeneic bone granules (150-300 μm in diameter) loaded with cultured differentiated autologous osteoblasts were implanted into one forearm (SBG group) and large bone granules (500-710 μm) loaded with osteoblasts were implanted into the forearm of the other side (LBG group). Radiographic evaluations were performed at 3, 6, 9 and 12 weeks and histology and micro-CT image analysis were carried out at 6 and 12 weeks post-implantation. On radiographic evaluation, the LBG group showed a higher bone quantity index at 3 and 6 weeks post-implantation (P < 0.05) but statistical significance was lost at 9 and 12 weeks. The progression of biological processes of the SBG group was faster than that of the LBG group. On micro-CT image analysis, the LBG group revealed a higher total bone volume and surface area than the SBG group at 6 weeks (P < 0.05) but the difference decreased at 12 weeks and was without statistical significance. Histological evaluation also revealed faster progression of new bone formation and maturation in the SBG group. Thus, the two differently sized allogeneic bone granules loaded with co-cultured autologous osteoblasts show no differences in the amount of bone regeneration, although the SBG group exhibits faster progression of bone regeneration and remodeling. This method might therefore provide benefits, such as a short healing time and easy application in an injectable form, in a clinical setting.

  14. Impaired Endothelial Progenitor Cell Mobilization and Dysfunctional Bone Marrow Stroma in Diabetes Mellitus

    PubMed Central

    Rafii, Shahin; Jaspers, Janneke E.; White, Ian A.; Hooper, Andrea T.; Doevendans, Pieter A.; Verhaar, Marianne C.

    2013-01-01

    Background Circulating Endothelial Progenitor Cell (EPC) levels are reduced in diabetes mellitus. This may be a consequence of impaired mobilization of EPC from the bone marrow. We hypothesized that under diabetic conditions, mobilization of EPC from the bone marrow to the circulation is impaired –at least partly– due to dysfunction of the bone marrow stromal compartment. Methods Diabetes was induced in mice by streptozotocin injection. Circulating Sca-1+Flk-1+ EPC were characterized and quantified by flow cytometry at baseline and after mobilization with G-CSF/SCF injections. In vivo hemangiogenic recovery was tested by 5-FU challenge. Interaction within the bone marrow environment between CD34+ hematopoietic progenitor cells (HPC) and supporting stroma was assessed by co-cultures. To study progenitor cell–endothelial cell interaction under normoglycemic and hyperglycemic conditions, a co-culture model using E4Orf1-transfected human endothelial cells was employed. Results In diabetic mice, bone marrow EPC levels were unaffected. However, circulating EPC levels in blood were lower at baseline and mobilization was attenuated. Diabetic mice failed to recover and repopulate from 5-FU injection. In vitro, primary cultured bone marrow stroma from diabetic mice was impaired in its capacity to support human CFU-forming HPC. Finally, hyperglycemia hampered the HPC supportive function of endothelial cells in vitro. Conclusion EPC mobilization is impaired under experimental diabetic conditions and our data suggest that diabetes induces alterations in the progenitor cell supportive capacity of the bone marrow stroma, which could be partially responsible for the attenuated EPC mobilization and reduced EPC levels observed in diabetic patients. PMID:23555959

  15. Impaired endothelial progenitor cell mobilization and dysfunctional bone marrow stroma in diabetes mellitus.

    PubMed

    Westerweel, Peter E; Teraa, Martin; Rafii, Shahin; Jaspers, Janneke E; White, Ian A; Hooper, Andrea T; Doevendans, Pieter A; Verhaar, Marianne C

    2013-01-01

    Circulating Endothelial Progenitor Cell (EPC) levels are reduced in diabetes mellitus. This may be a consequence of impaired mobilization of EPC from the bone marrow. We hypothesized that under diabetic conditions, mobilization of EPC from the bone marrow to the circulation is impaired -at least partly- due to dysfunction of the bone marrow stromal compartment. Diabetes was induced in mice by streptozotocin injection. Circulating Sca-1(+)Flk-1(+) EPC were characterized and quantified by flow cytometry at baseline and after mobilization with G-CSF/SCF injections. In vivo hemangiogenic recovery was tested by 5-FU challenge. Interaction within the bone marrow environment between CD34(+) hematopoietic progenitor cells (HPC) and supporting stroma was assessed by co-cultures. To study progenitor cell-endothelial cell interaction under normoglycemic and hyperglycemic conditions, a co-culture model using E4Orf1-transfected human endothelial cells was employed. In diabetic mice, bone marrow EPC levels were unaffected. However, circulating EPC levels in blood were lower at baseline and mobilization was attenuated. Diabetic mice failed to recover and repopulate from 5-FU injection. In vitro, primary cultured bone marrow stroma from diabetic mice was impaired in its capacity to support human CFU-forming HPC. Finally, hyperglycemia hampered the HPC supportive function of endothelial cells in vitro. EPC mobilization is impaired under experimental diabetic conditions and our data suggest that diabetes induces alterations in the progenitor cell supportive capacity of the bone marrow stroma, which could be partially responsible for the attenuated EPC mobilization and reduced EPC levels observed in diabetic patients.

  16. Early loss of subchondral bone following microfracture is counteracted by bone marrow aspirate in a translational model of osteochondral repair

    PubMed Central

    Gao, Liang; Orth, Patrick; Müller-Brandt, Kathrin; Goebel, Lars K. H.; Cucchiarini, Magali; Madry, Henning

    2017-01-01

    Microfracture of cartilage defects may induce alterations of the subchondral bone in the mid- and long-term, yet very little is known about their onset. Possibly, these changes may be avoided by an enhanced microfracture technique with additional application of bone marrow aspirate. In this study, full-thickness chondral defects in the knee joints of minipigs were either treated with (1) debridement down to the subchondral bone plate alone, (2) debridement with microfracture, or (3) microfracture with additional application of bone marrow aspirate. At 4 weeks after microfracture, the loss of subchondral bone below the defects largely exceeded the original microfracture holes. Of note, a significant increase of osteoclast density was identified in defects treated with microfracture alone compared with debridement only. Both changes were significantly counteracted by the adjunct treatment with bone marrow. Debridement and microfracture without or with bone marrow were equivalent regarding the early cartilage repair. These data suggest that microfracture induced a substantial early resorption of the subchondral bone and also highlight the potential value of bone marrow aspirate as an adjunct to counteract these alterations. Clinical studies are warranted to further elucidate early events of osteochondral repair and the effect of enhanced microfracture techniques. PMID:28345610

  17. An Association between BK Virus Replication in Bone Marrow and Cytopenia in Kidney-Transplant Recipients

    PubMed Central

    Pambrun, Emilie; Mengelle, Catherine; Fillola, Geneviève; Laharrague, Patrick; Esposito, Laure; Cardeau-Desangles, Isabelle; Del Bello, Arnaud; Izopet, Jacques; Rostaing, Lionel; Kamar, Nassim

    2014-01-01

    The human polyomavirus BK (BKV) is associated with severe complications, such as ureteric stenosis and polyomavirus-associated nephropathy (PVAN), which often occur in kidney-transplant patients. However, it is unknown if BKV can replicate within bone marrow. The aim of this study was to search for BKV replication within the bone marrow of kidney-transplant patients presenting with a hematological disorder. Seventy-two kidney-transplant patients underwent bone-marrow aspiration for cytopenia. At least one virus was detected in the bone marrow of 25/72 patients (35%), that is, parvovirus B19 alone (n = 8), parvovirus plus Epstein-Barr virus (EBV) (n = 3), cytomegalovirus (n = 4), EBV (n = 2), BKV alone (n = 7), and BKV plus EBV (n = 1). Three of the eight patients who had BKV replication within the bone marrow had no detectable BKV replication in the blood. Neutropenia was observed in all patients with BKV replication in the bone marrow, and blockade of granulocyte maturation was observed. Hematological disorders disappeared in all patients after doses of immunosuppressants were reduced. In conclusion, an association between BKV replication in bone marrow and hematological disorders, especially neutropenia, was observed. Further studies are needed to confirm these findings. PMID:24868448

  18. T2 vertebral bone marrow changes after space flight

    NASA Technical Reports Server (NTRS)

    LeBlanc, A.; Lin, C.; Evans, H.; Shackelford, L.; Martin, C.; Hedrick, T.

    1999-01-01

    Bone biopsies indicate that during immobilization bone marrow adipose tissue increases while the functional cellular fraction decreases. One objective of our Spacelab flight experiment was to determine, using in vivo volume-localized magnetic resonance spectroscopy (VLMRS), whether bone marrow composition was altered by space flight. Four crew members of a 17 day Spacelab mission participated in the experiment. The apparent cellular fraction and transverse relaxation time (T2) were determined twice before launch and at several times after flight. Immediately after flight, no significant change in the cellular fraction was found. However, the T2 of the cellular, but not the fat component increased following flight, although to a variable extent, in all crew members with a time course for return to baseline lasting several months. The T2 of seven control subjects showed no significant change. Although these observations may have several explanations, it is speculated that the observed T2 changes might reflect increased marrow osteoblastic activity during recovery from space flight.

  19. Arctigenin suppresses receptor activator of nuclear factor κB ligand (RANKL)-mediated osteoclast differentiation in bone marrow-derived macrophages.

    PubMed

    Kim, A-Ram; Kim, Hyuk Soon; Lee, Jeong Min; Choi, Jung Ho; Kim, Se Na; Kim, Do Kyun; Kim, Ji Hyung; Mun, Se Hwan; Kim, Jie Wan; Jeon, Hyun Soo; Kim, Young Mi; Choi, Wahn Soo

    2012-05-05

    Osteoclasts, multinucleated bone-resorbing cells, are closely associated with bone diseases such as rheumatoid arthritis and osteoporosis. Osteoclasts are derived from hematopoietic precursor cells, and their differentiation is mediated by two cytokines, including macrophage colony stimulating factor and receptor activator of nuclear factor κB ligand (RANKL). Previous studies have shown that arctigenin exhibits an anti-inflammatory effect. However, the effect of arctigenin on osteoclast differentiation is yet to be elucidated. In this study, we found that arctigenin inhibited RANKL-mediated osteoclast differentiation in bone marrow macrophages in a dose-dependent manner and suppressed RANKL-mediated bone resorption. Additionally, the expression of typical marker proteins, such as NFATc1, c-Fos, TRAF6, c-Src, and cathepsin K, were significantly inhibited. Arctigenin inhibited the phosphorylation of Erk1/2, but not p38 and JNK, in a dose-dependent manner. Arctigenin also dramatically suppressed immunoreceptor tyrosine-based activation motif-mediated costimulatory signaling molecules, including Syk and PLCγ2, and Gab2. Notably, arctigenin inhibited the activation of Syk through RANKL stimulation. Furthermore, arctigenin prevented osteoclast differentiation in the calvarial bone of mice following stimulation with lipopolysaccharide. Our results show that arctigenin inhibits osteoclast differentiation in vitro and in vivo. Therefore, arctigenin may be useful for treating rheumatoid arthritis and osteoporosis. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Periodontal regeneration using engineered bone marrow mesenchymal stromal cells.

    PubMed

    Yang, Yi; Rossi, Fabio M V; Putnins, Edward E

    2010-11-01

    Regeneration of lost periodontium is a challenge in that both hard (alveolar bone, cementum) and soft (periodontal ligament) connective tissues need to be restored to their original architecture. Bone marrow mesenchymal stromal cells (BM-MSCs) appear to be an attractive candidate for connective tissue regeneration. We hypothesized that BM-MSCs are able to sense biological cues from the local microenvironment and organize appropriately to contribute to the regeneration of both soft and hard periodontal connective tissues. To test this hypothesis, we transplanted GFP(+) rat BM-MSCs expanded ex vivo on microcarrier gelatin beads into a surgically created rat periodontal defect. After three weeks, evidence of regeneration of bone, cementum and periodontal ligament was observed in both transplanted and control animals. However, the animals that received BM-MSCs regenerated significantly greater new bone. In addition, the animals that had received the cells and beads transplant had significantly more appropriately orientated periodontal ligament fibers, indicative of functional restoration. Finally, donor-derived BM-MSCs were found integrated in newly formed bone, cementum and periodontal ligament, suggesting that they can directly contribute to the regeneration of cells of these tissues. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Identification of stable reference genes for gene expression analysis of three-dimensional cultivated human bone marrow-derived mesenchymal stromal cells for bone tissue engineering.

    PubMed

    Rauh, Juliane; Jacobi, Angela; Stiehler, Maik

    2015-02-01

    The principles of tissue engineering (TE) are widely used for bone regeneration concepts. Three-dimensional (3D) cultivation of autologous human mesenchymal stromal cells (MSCs) on porous scaffolds is the basic prerequisite to generate newly formed bone tissue. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) is a specific and sensitive analytical tool for the measurement of mRNA-levels in cells or tissues. For an accurate quantification of gene expression levels, stably expressed reference genes (RGs) are essential to obtain reliable results. Since the 3D environment can affect a cell's morphology, proliferation, and gene expression profile compared with two-dimensional (2D) cultivation, there is a need to identify robust RGs for the quantification of gene expression. So far, this issue has not been adequately investigated. The aim of this study was to identify the most stably expressed RGs for gene expression analysis of 3D-cultivated human bone marrow-derived MSCs (BM-MSCs). For this, we analyzed the gene expression levels of n=31 RGs in 3D-cultivated human BM-MSCs from six different donors compared with conventional 2D cultivation using qRT-PCR. MSCs isolated from bone marrow aspirates were cultivated on human cancellous bone cube scaffolds for 14 days. Osteogenic differentiation was assessed by cell-specific alkaline phosphatase (ALP) activity and expression of osteogenic marker genes. Expression levels of potential reference and target genes were quantified using commercially available TaqMan(®) assays. mRNA expression stability of RGs was determined by calculating the coefficient of variation (CV) and using the algorithms of geNorm and NormFinder. Using both algorithms, we identified TATA box binding protein (TBP), transferrin receptor (p90, CD71) (TFRC), and hypoxanthine phosphoribosyltransferase 1 (HPRT1) as the most stably expressed RGs in 3D-cultivated BM-MSCs. Notably, genes that are routinely used as RGs, for example, beta actin

  2. Identification of Stable Reference Genes for Gene Expression Analysis of Three-Dimensional Cultivated Human Bone Marrow-Derived Mesenchymal Stromal Cells for Bone Tissue Engineering

    PubMed Central

    Rauh, Juliane; Jacobi, Angela

    2015-01-01

    The principles of tissue engineering (TE) are widely used for bone regeneration concepts. Three-dimensional (3D) cultivation of autologous human mesenchymal stromal cells (MSCs) on porous scaffolds is the basic prerequisite to generate newly formed bone tissue. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) is a specific and sensitive analytical tool for the measurement of mRNA-levels in cells or tissues. For an accurate quantification of gene expression levels, stably expressed reference genes (RGs) are essential to obtain reliable results. Since the 3D environment can affect a cell's morphology, proliferation, and gene expression profile compared with two-dimensional (2D) cultivation, there is a need to identify robust RGs for the quantification of gene expression. So far, this issue has not been adequately investigated. The aim of this study was to identify the most stably expressed RGs for gene expression analysis of 3D-cultivated human bone marrow-derived MSCs (BM-MSCs). For this, we analyzed the gene expression levels of n=31 RGs in 3D-cultivated human BM-MSCs from six different donors compared with conventional 2D cultivation using qRT-PCR. MSCs isolated from bone marrow aspirates were cultivated on human cancellous bone cube scaffolds for 14 days. Osteogenic differentiation was assessed by cell-specific alkaline phosphatase (ALP) activity and expression of osteogenic marker genes. Expression levels of potential reference and target genes were quantified using commercially available TaqMan® assays. mRNA expression stability of RGs was determined by calculating the coefficient of variation (CV) and using the algorithms of geNorm and NormFinder. Using both algorithms, we identified TATA box binding protein (TBP), transferrin receptor (p90, CD71) (TFRC), and hypoxanthine phosphoribosyltransferase 1 (HPRT1) as the most stably expressed RGs in 3D-cultivated BM-MSCs. Notably, genes that are routinely used as RGs, for example, beta actin

  3. Bone marrow support of the heart in pressure overload is lost with aging.

    PubMed

    Sopko, Nikolai A; Turturice, Benjamin A; Becker, Mitchell E; Brown, Chase R; Dong, Feng; Popović, Zoran B; Penn, Marc S

    2010-12-21

    Exogenous stem cell delivery is under investigation to prevent and treat cardiac dysfunction. It is less studied as to the extent endogenous bone marrow derived stem cells contribute to cardiac homeostais in response to stress and the affects of aging on this stress response. To determine the role of bone marrow (BM) derived stem cells on cardiac homeostasis in response to pressure overload (PO) and how this response is altered by aging. Young (8 weeks) and old (>40 weeks) C57/b6 mice underwent homo- and heterochronic BM transplantation prior to transverse aortic constriction (TAC). We found that older BM is associated with decreased cardiac function following TAC. This decreased function is associated with decrease in BM cell engraftment, increased myocyte apoptosis, decreased myocyte hypertrophy, increased myocardial fibrosis and decreased cardiac function. Additionally, there is a decrease in activation of resident cells within the heart in response to PO in old mice. Interestingly, these effects are not due to alterations in vascular density or inflammation in response to PO or differences in ex vivo stem cell migration between young and old mice. BM derived stem cells are activated in response to cardiac PO, and the recruitment of BM derived cells are involved in cardiac myocyte hypertrophy and maintenance of function in response to PO which is lost with aging.

  4. Major Histocompatibilty Complex-Restricted Adaptive Immune Responses to CT26 Colon Cancer Cell Line in Mixed Allogeneic Chimera.

    PubMed

    Lee, K W; Choi, B; Kim, Y M; Cho, C W; Park, H; Moon, J I; Choi, G-S; Park, J B; Kim, S J

    2017-06-01

    Although the induction of mixed allogeneic chimera shows promising clinical tolerance results in organ transplantation, its clinical relevance as an anti-cancer therapy is yet unknown. We introduced a mixed allogenic chimera setting with the use of a murine colon cancer cell line, CT26, by performing double bone marrow transplantation. We analyzed donor- and recipient-restricted anti-cancer T-cell responses, and phenotypes of subpopulations of T cells. The protocol involves challenging 1 × 10 5 cells of CT26 cells intra-hepatically on day 50 after bone marrow transplantation, and, by use of CT26 lysates and an H-2L d -restricted AH1 pentamer, flow cytometric analysis was performed to detect the generation of cancer-specific CD4 + and CD8 + T cells at various time points. We found that immunocompetence against tumors depends heavily on cancer-specific CD8 + T-cell responses in a major histocompatibility complex-restricted manner; the evidence was further supported by the increase of interferon-γ-secreting CD4 + T cells. Moreover, we demonstrated that during the effector immune response to CT26 cancer challenge, there was a presence of central memory cells (CD62L hi CCR7 + ) as well as effector memory cells (CD62L lo CCR7 - ). Moreover, mixed allogeneic chimeras (BALB/c to C56BL/6 or vice versa) showed similar or heightened immune responses to CT26 cells compared with that of wild-type mice. Our results suggest that the responses of primary immunocompetency and of pre-existing memory T cells against allogeneic cancer are sustained and preserved long-term in a mixed allogeneic chimeric environment. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Lead effects on development and function of bone marrow-derived dendritic cells promote Th2 immune responses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao Donghong; Mondal, Tapan K.; Lawrence, David A.

    2007-07-01

    Although lead (Pb) has significant effects on the development and function of macrophages, B cells, and T cells and has been suggested to promote allergic asthma in mice and humans, Pb modulation of bone marrow (BM)-derived dendritic cells (DCs) and the resultant DC effects on Th1 and Th2 development have not been examined. Accordingly, we cultured BM cells with murine granulocyte macrophage-colony stimulating factor (mGM-CSF) {+-} PbCl{sub 2}. At day 10, culture supernatant (SN) and non-adherent cells were harvested for analysis. Additionally, day 10 non-adherent BM-DCs were harvested and recultured with mGM-CSF + LPS {+-} Pb for 2 days. Themore » day 10 Pb exposure significantly inhibited BM-DC generation, based on CD11c expression. Although fewer DCs were generated with Pb, the existing Pb-exposed DCs had significantly greater MHC-II expression than did the non-Pb-exposed DCs. However, these differences diminished upon LPS stimulation. After LPS stimulation, CD80, CD86, CD40, CD54, and MHC-II were all up-regulated on both Pb-DCs and DCs, but Pb-DCs expressed significantly less CD80 than did DCs. The CD86:CD80 ratio suggests a Pb-DC potential for Th2 cell development. After LPS stimulation, IL-6, IL-10, IL-12 (p70), and TNF-{alpha} levels significantly increased with both Pb-DCs and DCs, but Pb-DCs produced significantly less cytokines than did DCs, except for IL-10, which further supports Pb-DC preferential skewing toward type-2 immunity. In vitro studies confirm that Pb-DCs have the ability to polarize antigen-specific T cells to Th2 cells. Pb-DCs also enhanced allogeneic and autologous T cell proliferation in vitro, and in vivo studies suggested that Pb-DCs inhibited Th1 effects on humoral and cell-mediated immunity. The Pb effect was mainly on DCs, rather than on T cells, and Pb's modification of DC function appears to be the main cause of Pb's promotion of type-2-related immunity, which may relate to Pb's enhanced activation of the Erk/MAP kinase pathway.« less

  6. Assessment of the Role of Noni (Morinda citrifolia) Juice for Inducing Osteoblast Differentiation in Isolated Rat Bone Marrow Derived Mesenchymal Stem Cells

    PubMed Central

    Hussain, Sharmila; Tamizhselvi, Ramasamy; George, Leema; Manickam, Venkatraman

    2016-01-01

    Background and Objectives Morinda citrifolia (Noni), an important traditional medicinal plant still used in patients with bone fractures or dislocation to promote connective tissue repair and to reduce inflammation. However, the effects of Noni on bone metabolism and whether it influences the osteogenic differentiation is yet to be clarified. In this study, we investigated the effect of Morinda citrifolia (Noni) juice on the proliferation rate of rat bone marrow derived mesenchymal stem cells (BMSC) and the osteoblastic differentiation as shown by alkaline phosphatase (ALP), Runt-related transcription factor 2 (Runx2) and osteocalcin (OCN) mRNA expression in vitro. Methods and Results Treatment with 200 μg/ml Noni juice enhanced the proliferation rate of the BMSC and also upregulated the osteogenic differentiation marker genes ALP and OCN, and Runx2 measured by RTPCR. Consistent with these results collagen scaffolds implanted in vivo, which were loaded with BMSC pre-exposed to Noni, showed increased bone density measured by computed tomography and histological analysis revealed neo-angiogenesis for bone formation. Conclusions These results suggest that Noni stimulates osteoblastogenesis and can be used as adjuvant natural medicine for bone diseases such as osteoporosis. PMID:27572713

  7. Assessment of the Role of Noni (Morinda citrifolia) Juice for Inducing Osteoblast Differentiation in Isolated Rat Bone Marrow Derived Mesenchymal Stem Cells.

    PubMed

    Hussain, Sharmila; Tamizhselvi, Ramasamy; George, Leema; Manickam, Venkatraman

    2016-11-30

    Morinda citrifolia (Noni), an important traditional medicinal plant still used in patients with bone fractures or dislocation to promote connective tissue repair and to reduce inflammation. However, the effects of Noni on bone metabolism and whether it influences the osteogenic differentiation is yet to be clarified. In this study, we investigated the effect of Morinda citrifolia (Noni) juice on the proliferation rate of rat bone marrow derived mesenchymal stem cells (BMSC) and the osteoblastic differentiation as shown by alkaline phosphatase (ALP), Runt-related transcription factor 2 (Runx2) and osteocalcin (OCN) mRNA expression in vitro . Treatment with 200 μg/ml Noni juice enhanced the proliferation rate of the BMSC and also upregulated the osteogenic differentiation marker genes ALP and OCN, and Runx2 measured by RTPCR. Consistent with these results collagen scaffolds implanted in vivo , which were loaded with BMSC pre-exposed to Noni, showed increased bone density measured by computed tomography and histological analysis revealed neo-angiogenesis for bone formation. These results suggest that Noni stimulates osteoblastogenesis and can be used as adjuvant natural medicine for bone diseases such as osteoporosis.

  8. Reliability analysis of instrument design of noninvasive bone marrow disease detector

    NASA Astrophysics Data System (ADS)

    Su, Yu; Li, Ting; Sun, Yunlong

    2016-02-01

    Bone marrow is an important hematopoietic organ, and bone marrow lesions (BMLs) may cause a variety of complications with high death rate and short survival time. Early detection and follow up care are particularly important. But the current diagnosis methods rely on bone marrow biopsy/puncture, with significant limitations such as invasion, complex operation, high risk, and discontinuous. It is highly in need of a non-invasive, safe, easily operated, and continuous monitoring technology. So we proposed to design a device aimed for detecting bone marrow lesions, which was based on near infrared spectrum technology. Then we fully tested its reliabilities, including the sensitivity, specificity, signal-to-noise ratio (SNR), stability, and etc. Here, we reported this sequence of reliability test experiments, the experimental results, and the following data analysis. This instrument was shown to be very sensitive, with distinguishable concentration less than 0.002 and with good linearity, stability and high SNR. Finally, these reliability-test data supported the promising clinical diagnosis and surgery guidance of our novel instrument in detection of BMLs.

  9. Curative bone marrow transplantation in erythropoietic protoporphyria after reversal of severe cholestasis.

    PubMed

    Wahlin, Staffan; Aschan, Johan; Björnstedt, Mikael; Broomé, Ulrika; Harper, Pauline

    2007-01-01

    We report the case of a middle-age patient presenting with severe progressive protoporphyric cholestasis. To halt further progression of liver disease, medical treatment was given aimed at different mechanisms possibly causing cholestasis in erythropoietic protoporphyria. Within eighty days, liver biochemistry completely normalized and liver histology markedly improved. Bone marrow transplantation was performed to prevent relapse of cholestatic liver disease by correcting the main site of protoporphyrin overproduction. Thirty-three months after cholestatic presentation and ten months after bone marrow transplantation, liver and porphyrin biochemistry remains normal. The patient is in excellent condition and photosensitivity is absent. The theoretical role of each treatment used to successfully reverse cholestasis and the role of bone marrow transplantation in erythropoietic protoporphyria are discussed. Medical treatment can resolve hepatic abnormalities in protoporphyric cholestasis. Bone marrow transplantation achieves phenotypic reversal and may offer protection from future protoporphyric liver disease.

  10. Characterization of bone marrow derived mesenchymal stem cells in suspension

    PubMed Central

    2012-01-01

    Introduction Bone marrow mesenchymal stem cells (BMMSCs) are a heterogeneous population of postnatal precursor cells with the capacity of adhering to culture dishes generating colony-forming unit-fibroblasts (CFU-F). Here we identify a new subset of BMMSCs that fail to adhere to plastic culture dishes and remain in culture suspension (S-BMMSCs). Methods To catch S-BMMSCs, we used BMMSCs-produced extracellular cell matrix (ECM)-coated dishes. Isolated S-BMMSCs were analyzed by in vitro stem cell analysis approaches, including flow cytometry, inductive multiple differentiation, western blot and in vivo implantation to assess the bone regeneration ability of S-BMMSCs. Furthermore, we performed systemic S-BMMSCs transplantation to treat systemic lupus erythematosus (SLE)-like MRL/lpr mice. Results S-BMMSCs are capable of adhering to ECM-coated dishes and showing mesenchymal stem cell characteristics with distinction from hematopoietic cells as evidenced by co-expression of CD73 or Oct-4 with CD34, forming a single colony cluster on ECM, and failure to differentiate into hematopoietic cell lineage. Moreover, we found that culture-expanded S-BMMSCs exhibited significantly increased immunomodulatory capacities in vitro and an efficacious treatment for SLE-like MRL/lpr mice by rebalancing regulatory T cells (Tregs) and T helper 17 cells (Th17) through high NO production. Conclusions These data suggest that it is feasible to improve immunotherapy by identifying a new subset BMMSCs. PMID:23083975

  11. Bone marrow-derived cultured mast cells and peritoneal mast cells as targets of a growth activity secreted by BALB/3T3 fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jozaki, K.; Kuriu, A.; Hirota, S.

    1991-03-01

    When fibroblast cell lines were cultured in contact with bone marrow-derived cultured mast cells (CMC), both NIH/3T3 and BALB/3T3 cell lines supported the proliferation of CMC. In contrast, when contact between fibroblasts and CMC was prohibited by Biopore membranes or soft agar, only BALB/3T3 fibroblasts supported CMC proliferation, suggesting that BALB/3T3 but not NIH/3T3 cells secreted a significant amount of a mast cell growth activity. Moreover, the BALB/3T3-derived growth activity induced the incorporation of (3H)thymidine by CMC and the clonal growth of peritoneal mast cells in methylcellulose. The mast cell growth activity appeared to be different from interleukin 3 (IL-3)more » and interleukin 4 (IL-4), because mRNAs for these interleukins were not detectable in BALB/3T3 fibroblasts. Although mast cells are genetically deficient in tissues of W/Wv mice, CMC did develop when bone marrow cells of W/Wv mice were cultured with pokeweed mitogen-stimulated spleen cell-conditioned medium. Because BALB/3T3 fibroblast-conditioned medium (BALB-FCM) did not induce the incorporation of (3H)thymidine by W/Wv CMC, the growth activity in BALB-FCM appeared to be a ligand for the receptor encoded by the W (c-kit) locus. Because CMC and peritoneal mast cells are obtained as homogeneous suspensions rather easily, these cells may be potentially useful as targets for the fibroblast-derived mast cell growth activity.« less

  12. Association of bone marrow edema with temporomandibular joint (TMJ) osteoarthritis and internal derangements.

    PubMed

    Wahaj, Aiyesha; Hafeez, Kashif; Zafar, Muhammad Sohail

    2017-01-01

    This study reviewed the dental literature in order to determine the association of bone marrow edema with osteoarthritis and temporomandibular joint (TMJ) internal derangement disorders. A literature search was performed using electronic databases PubMed/Medline (National Library of Medicine, Bethesda, Maryland) and Cochrane for articles published during the last 15 years (January 2000-December 2014). A predetermined inclusion and exclusion criteria were used for filtering the scientific papers. Research articles fulfilling the basic inclusion criteria were included in the review. The reviewed studies showed that bone marrow edema is found in painful joints with osteoarthritis in a majority of cases. A few cases with no pain or significant degenerative changes are reported to have a bone marrow edema pattern as well. Bone marrow edema, increased fluid level, and pain are associated with osteoarthritis in the majority of patients reporting TMJ arthritis. Degenerative and disc displacement conditions are multifactorial and require further investigations. Magnetic resonance imaging can be employed to detect bone marrow edema even in the absence of pain and clinical symptoms in the patients of internal derangements.

  13. A study of bone marrow and subcutaneous fatty acid composition in subjects of varying bone mineral density.

    PubMed

    Griffith, James F; Yeung, David K W; Ahuja, Anil T; Choy, Carol W Y; Mei, Wong Yin; Lam, Sherlock S L; Lam, T P; Chen, Zhen-Yu; Leung, Ping C

    2009-06-01

    Osteoporosis is associated with an increase in marrow fat. Fats, particularly polyunsaturated fats, either in co-cultures or diet, have been shown to significantly influence bone remodeling. Whether the increase in marrow fat seen in osteoporosis is also associated with a change in fatty acid composition is not known. This study was undertaken to investigate the fatty acid composition in subjects of varying bone mineral density (BMD). Samples of marrow fat and subcutaneous fat from 126 subjects (98 females, 34 males, mean age 69.7+/-10.5 years) undergoing orthopedic surgery were analyzed for fatty acid composition by gas chromatography. These results were correlated with BMD assessed by DXA. A total of 22 fatty acids were identified in marrow and subcutaneous fat. Significant differences in fatty acid composition existed between marrow and subcutaneous fat as well as between marrow fat samples obtained from the proximal femur and proximal tibia. Other than cis-7-hexadecenoic acid [C16:1 (n=9)] and docosanoic acid [C22:0], no difference in marrow fatty acid composition was evident between subject groups of varying BMD (normal, low bone mass, and osteoporosis). In conclusion, there exists a wide range of individual fatty acids in marrow fat. Marrow fatty acid composition differs from that of subcutaneous fat and varies between predominantly erythropoetic and fatty marrow sites. Other than cis-7-hexadecenoic acid [C16:1 (n=9)] and docosanoic acid [C22:0], no difference in marrow fatty acid composition was evident between subjects of varying BMD.

  14. Comparison of methodologies in determining bone marrow fat percentage under different environmental conditions.

    PubMed

    Murden, David; Hunnam, Jaimie; De Groef, Bert; Rawlin, Grant; McCowan, Christina

    2017-01-01

    The use of bone marrow fat percentage has been recommended in assessing body condition at the time of death in wild and domestic ruminants, but few studies have looked at the effects of time and exposure on animal bone marrow. We investigated the utility of bone marrow fat extraction as a tool for establishing antemortem body condition in postmortem specimens from sheep and cattle, particularly after exposure to high heat, and compared different techniques of fat extraction for this purpose. Femora were collected from healthy and "skinny" sheep and cattle. The bones were either frozen or subjected to 40°C heat; heated bones were either wrapped in plastic to minimize desiccation or were left unwrapped. Marrow fat percentage was determined at different time intervals by oven-drying, or by solvent extraction using hexane in manual equipment or a Soxhlet apparatus. Extraction was performed, where possible, on both wet and dried tissue. Multiple samples were tested from each bone. Bone marrow fat analysis using a manual, hexane-based extraction technique was found to be a moderately sensitive method of assessing antemortem body condition of cattle up to 6 d after death. Multiple replicates should be analyzed where possible. Samples from "skinny" sheep showed a different response to heat from those of "healthy" sheep; "skinny" samples were so reduced in quantity by day 6 (the first sampling day) that no individual testing could be performed. Further work is required to understand the response of sheep marrow.

  15. The Analysis of the Adverse Reaction of Traditional Chinese Medicine Tumor Bone Marrow Suppression

    NASA Astrophysics Data System (ADS)

    Wei, Zhenzhen; Fang, Xiaoyan; Miao, Mingsan

    2018-01-01

    With the rapid increase of cancer patients, chemotherapy is the main method for the clinical treatment of cancer, but also in the treatment of the adverse reactions--bone marrow suppression is often a serious infection caused by patients after chemotherapy and the important cause of mortality. Chinese medicine has obvious advantages in the prevention and treatment of bone marrow depression after chemotherapy. According to tumor bone marrow suppression after chemotherapy of etiology and pathogenesis of traditional Chinese medicine and China national knowledge internet nearly 10 years of traditional Chinese medicine in the prevention and control of the status of clinical and laboratory research of tumor bone marrow suppression, the author analyzed and summarized its characteristics, so as to provide the basis for treating bone marrow suppression of drug research and development, and promote small adverse reactions of the development and utilization of natural medicine and its preparations.

  16. Donor-Matched Comparison of Chondrogenic Potential of Equine Bone Marrow- and Synovial Fluid-Derived Mesenchymal Stem Cells: Implications for Cartilage Tissue Regeneration

    PubMed Central

    Zayed, Mohammed; Caniglia, Christopher; Misk, Nabil; Dhar, Madhu S.

    2017-01-01

    Mesenchymal stem cells (MSCs) have been demonstrated to be useful for cartilage tissue regeneration. Bone marrow (BM) and synovial fluid (SF) are promising sources for MSCs to be used in cartilage regeneration. In order to improve the clinical outcomes, it is recommended that prior to clinical use, the cellular properties and, specifically, their chondrogenic potential must be investigated. The purpose of this study is to compare and better understand the in vitro chondrogenic potential of equine bone marrow-derived mesenchymal stem cells (BMMSCs) and synovial fluid-derived mesenchymal stem cells (SFMSCs) populated from the same equine donor. BM- and SF-derived MSCs cultures were generated from five equine donors, and the MSCs were evaluated in vitro for their morphology, proliferation, trilineage differentiation, and immunophenotyping. Differences in their chondrogenic potentials were further evaluated quantitatively using glycosaminoglycan (GAG) content and via immunofluorescence of chondrogenic differentiation protein markers, SRY-type HMG box9, Aggrecan, and collagen II. The BMMSCs and SFMSCs were similar in cellular morphology, viability, and immunophenotype, but, varied in their chondrogenic potential, and expression of the key chondrogenic proteins. The SFMSCs exhibited a significant increase in GAG content compared to the BMMSCs (P < 0.0001) in three donors, suggesting increased levels of chondrogenesis. The expression of the key chondrogenic proteins correlated positively with the GAG content, suggesting that the differentiation process is dependent on the expression of the target proteins in these three donors. Our findings suggest that even though SFMSCs were hypothesized to be more chondrogenic relative to BMMSCs, there was considerable donor-to-donor variation in the primary cultures of MSCs which can significantly affect their downstream application. PMID:28149840

  17. Selective Shielding of Bone Marrow: An Approach to Protecting Humans from External Gamma Radiation.

    PubMed

    Waterman, Gideon; Kase, Kenneth; Orion, Itzhak; Broisman, Andrey; Milstein, Oren

    2017-09-01

    The current feasibility of protecting emergency responders through bone marrow selective shielding is highlighted in the recent OECD/NEA report on severe accident management. Until recently, there was no effective personal protection from externally penetrating gamma radiation. In Chernobyl, first-responders wore makeshift lead sheeting, whereas in Fukushima protective equipment from gamma radiation was not available. Older protective solutions that use thin layers of shielding over large body surfaces are ineffective for energetic gamma radiation. Acute exposures may result in Acute Radiation Syndrome where the survival-limiting factor up to 10 Gy uniform, homogeneous exposure is irreversible bone marrow damage. Protracted, lower exposures may result in malignancies of which bone marrow is especially susceptible, being compounded by leukemia's short latency time. This highlights the importance of shielding bone marrow for preventing both deterministic and stochastic effects. Due to the extraordinary regenerative potential of hematopoietic stem cells, to effectively prevent the deterministic effects of bone marrow exposure, it is sufficient to protect only a small fraction of this tissue. This biological principle allows for a new class of equipment providing unprecedented attenuation of radiation to select marrow-rich regions, deferring the hematopoietic sub-syndrome of Acute Radiation Syndrome to much higher doses. As approximately half of the body's active bone marrow resides within the pelvis region, shielding this area holds great promise for preventing the deterministic effects of bone marrow exposure and concomitantly reducing stochastic effects. The efficacy of a device that selectively shields this region and other radiosensitive organs in the abdominal area is shown here.

  18. Bone marrow-on-a-chip: Long-term culture of human haematopoietic stem cells in a three-dimensional microfluidic environment.

    PubMed

    Sieber, Stefan; Wirth, Lorenz; Cavak, Nino; Koenigsmark, Marielle; Marx, Uwe; Lauster, Roland; Rosowski, Mark

    2018-02-01

    Multipotent haematopoietic stem and progenitor cells (HSPCs) are the source for all blood cell types. The bone marrow stem cell niche in which the HSPCs are maintained is known to be vital for their maintenance. Unfortunately, to date, no in vitro model exists that accurately mimics the aspects of the bone marrow niche and simultaneously allows the long-term culture of HSPCs. In this study, a novel three-dimensional coculture model is presented, based on a hydroxyapatite coated zirconium oxide scaffold, comprising of human mesenchymal stromal cells (MSCs) and cord blood derived HSPCs, enabling successful HSPC culture for a time span of 28 days within the microfluidic multiorgan chip. The HSPCs were found to stay in their primitive state (CD34 + CD38 - ) and capable of granulocyte, erythrocyte, macrophage, megakaryocyte colony formation. Furthermore, a microenvironment was formed bearing molecular and structural similarity to the in vivo bone marrow niche containing extracellular matrix and signalling molecules known to play an important role in HSPC homeostasis. Here, a novel human in vitro bone marrow model is presented for the first time, capable of long-term culture of primitive HSPCs in a microfluidic environment. Copyright © 2017 John Wiley & Sons, Ltd.

  19. Interacting resident epicardium-derived fibroblasts and recruited bone marrow cells form myocardial infarction scar.

    PubMed

    Ruiz-Villalba, Adrián; Simón, Ana M; Pogontke, Cristina; Castillo, María I; Abizanda, Gloria; Pelacho, Beatriz; Sánchez-Domínguez, Rebeca; Segovia, José C; Prósper, Felipe; Pérez-Pomares, José M

    2015-05-19

    Although efforts continue to find new therapies to regenerate infarcted heart tissue, knowledge of the cellular and molecular mechanisms involved remains poor. This study sought to identify the origin of cardiac fibroblasts (CFs) in the infarcted heart to better understand the pathophysiology of ventricular remodeling following myocardial infarction (MI). Permanent genetic tracing of epicardium-derived cell (EPDC) and bone marrow-derived blood cell (BMC) lineages was established using Cre/LoxP technology. In vivo gene and protein expression studies, as well as in vitro cell culture assays, were developed to characterize EPDC and BMC interaction and properties. EPDCs, which colonize the cardiac interstitium during embryogenesis, massively differentiate into CFs after MI. This response is disease-specific, because angiotensin II-induced pressure overload does not trigger significant EPDC fibroblastic differentiation. The expansion of epicardial-derived CFs follows BMC infiltration into the infarct site; the number of EPDCs equals that of BMCs 1 week post-infarction. BMC-EPDC interaction leads to cell polarization, packing, massive collagen deposition, and scar formation. Moreover, epicardium-derived CFs display stromal properties with respect to BMCs, contributing to the sustained recruitment of circulating cells to the damaged zone and the cardiac persistence of hematopoietic progenitors/stem cells after MI. EPDCs, but not BMCs, are the main origin of CFs in the ischemic heart. Adult resident EPDC contribution to the CF compartment is time- and disease-dependent. Our findings are relevant to the understanding of post-MI ventricular remodeling and may contribute to the development of new therapies to treat this disease. Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  20. Effects of hibernation on bone marrow transcriptome in thirteen-lined ground squirrels.

    PubMed

    Cooper, Scott T; Sell, Shawn S; Fahrenkrog, Molly; Wilkinson, Kory; Howard, David R; Bergen, Hannah; Cruz, Estefania; Cash, Steve E; Andrews, Matthew T; Hampton, Marshall

    2016-07-01

    Mammalian hibernators adapt to prolonged periods of immobility, hypometabolism, hypothermia, and oxidative stress, each capable of reducing bone marrow activity. In this study bone marrow transcriptomes were compared among thirteen-lined ground squirrels collected in July, winter torpor, and winter interbout arousal (IBA). The results were consistent with a suppression of acquired immune responses, and a shift to innate immune responses during hibernation through higher complement expression. Consistent with the increase in adipocytes found in bone marrow of hibernators, expression of genes associated with white adipose tissue are higher during hibernation. Genes that should strengthen the bone by increasing extracellular matrix were higher during hibernation, especially the collagen genes. Finally, expression of heat shock proteins were lower, and cold-response genes were higher, during hibernation. No differential expression of hematopoietic genes involved in erythrocyte or megakaryocyte production was observed. This global view of the changes in the bone marrow transcriptome over both short term (torpor vs. IBA) and long term (torpor vs. July) hypothermia can explain several observations made about circulating blood cells and the structure and strength of the bone during hibernation. Copyright © 2016 the American Physiological Society.