Science.gov

Sample records for allohexaploid wheat triticum

  1. Molecular and phylogenetic characterization of the homoeologous EPSP Synthase genes of allohexaploid wheat, Triticum aestivum (L.)

    USDA-ARS?s Scientific Manuscript database

    Background: 5-Enolpyruvylshikimate-3-phosphate synthase (EPSPS) is the sixth and penultimate enzyme in the shikimate biosynthesis pathway. The EPSPS genes of allohexaploid wheat (Triticum aestivum, AABBDD) have not been well characterized. Herein, the three homoeologous copies of the wheat EPSPS gen...

  2. Molecular and phylogenetic characterization of the homoeologous EPSP Synthase genes of allohexaploid wheat, Triticum aestivum (L.).

    PubMed

    Aramrak, Attawan; Kidwell, Kimberlee K; Steber, Camille M; Burke, Ian C

    2015-10-23

    5-Enolpyruvylshikimate-3-phosphate synthase (EPSPS) is the sixth and penultimate enzyme in the shikimate biosynthesis pathway, and is the target of the herbicide glyphosate. The EPSPS genes of allohexaploid wheat (Triticum aestivum, AABBDD) have not been well characterized. Herein, the three homoeologous copies of the allohexaploid wheat EPSPS gene were cloned and characterized. Genomic and coding DNA sequences of EPSPS from the three related genomes of allohexaploid wheat were isolated using PCR and inverse PCR approaches from soft white spring "Louise'. Development of genome-specific primers allowed the mapping and expression analysis of TaEPSPS-7A1, TaEPSPS-7D1, and TaEPSPS-4A1 on chromosomes 7A, 7D, and 4A, respectively. Sequence alignments of cDNA sequences from wheat and wheat relatives served as a basis for phylogenetic analysis. The three genomic copies of wheat EPSPS differed by insertion/deletion and single nucleotide polymorphisms (SNPs), largely in intron sequences. RT-PCR analysis and cDNA cloning revealed that EPSPS is expressed from all three genomic copies. However, TaEPSPS-4A1 is expressed at much lower levels than TaEPSPS-7A1 and TaEPSPS-7D1 in wheat seedlings. Phylogenetic analysis of 1190-bp cDNA clones from wheat and wheat relatives revealed that: 1) TaEPSPS-7A1 is most similar to EPSPS from the tetraploid AB genome donor, T. turgidum (99.7 % identity); 2) TaEPSPS-7D1 most resembles EPSPS from the diploid D genome donor, Aegilops tauschii (100 % identity); and 3) TaEPSPS-4A1 resembles EPSPS from the diploid B genome relative, Ae. speltoides (97.7 % identity). Thus, EPSPS sequences in allohexaploid wheat are preserved from the most two recent ancestors. The wheat EPSPS genes are more closely related to Lolium multiflorum and Brachypodium distachyon than to Oryza sativa (rice). The three related EPSPS homoeologues of wheat exhibited conservation of the exon/intron structure and of coding region sequence, but contained significant sequence

  3. Isolation of ABA-responsive mutants in allohexaploid bread wheat (Triticum aestivum L.): Drawing connections to grain dormancy, preharvest sprouting, and drought tolerance

    USDA-ARS?s Scientific Manuscript database

    This paper describes the isolation of Wheat ABA-responsive mutants (Warm) in Chinese spring background of allohexaploid Triticum aestivum. The plant hormone abscisic acid (ABA) is required for the induction of seed dormancy, the induction of stomatal closure and drought tolerance, and is associated...

  4. Analysis of the allohexaploid bread wheat genome (Triticum aestivum) using comparative whole genome shotgun sequencing

    USDA-ARS?s Scientific Manuscript database

    The large 17 Gb allopolyploid genome of bread wheat is a major challenge for genome analysis because it is composed of three closely- related and independently maintained genomes, with genes dispersed as small “islands” separated by vast tracts of repetitive DNA. We used a novel comparative genomi...

  5. Evolution of the BBAA component of bread wheat during its history at the allohexaploid level.

    PubMed

    Zhang, Huakun; Zhu, Bo; Qi, Bao; Gou, Xiaowan; Dong, Yuzhu; Xu, Chunming; Zhang, Bangjiao; Huang, Wei; Liu, Chang; Wang, Xutong; Yang, Chunwu; Zhou, Hao; Kashkush, Khalil; Feldman, Moshe; Wendel, Jonathan F; Liu, Bao

    2014-07-01

    Subgenome integrity in bread wheat (Triticum aestivum; BBAADD) makes possible the extraction of its BBAA component to restitute a novel plant type. The availability of such a ploidy-reversed wheat (extracted tetraploid wheat [ETW]) provides a unique opportunity to address whether and to what extent the BBAA component of bread wheat has been modified in phenotype, karyotype, and gene expression during its evolutionary history at the allohexaploid level. We report here that ETW was anomalous in multiple phenotypic traits but maintained a stable karyotype. Microarray-based transcriptome profiling identified a large number of differentially expressed genes between ETW and natural tetraploid wheat (Triticum turgidum), and the ETW-downregulated genes were enriched for distinct Gene Ontology categories. Quantitative RT-PCR analysis showed that gene expression differences between ETW and a set of diverse durum wheat (T. turgidum subsp durum) cultivars were distinct from those characterizing tetraploid cultivars per se. Pyrosequencing revealed that the expression alterations may occur to either only one or both of the B and A homoeolog transcripts in ETW. A majority of the genes showed additive expression in a resynthesized allohexaploid wheat. Analysis of a synthetic allohexaploid wheat and diverse bread wheat cultivars revealed the rapid occurrence of expression changes to the BBAA subgenomes subsequent to allohexaploidization and their evolutionary persistence.

  6. Evolution of the BBAA Component of Bread Wheat during Its History at the Allohexaploid Level[C][W][OPEN

    PubMed Central

    Zhang, Huakun; Zhu, Bo; Qi, Bao; Gou, Xiaowan; Dong, Yuzhu; Xu, Chunming; Zhang, Bangjiao; Huang, Wei; Liu, Chang; Wang, Xutong; Yang, Chunwu; Zhou, Hao; Kashkush, Khalil; Feldman, Moshe; Wendel, Jonathan F.; Liu, Bao

    2014-01-01

    Subgenome integrity in bread wheat (Triticum aestivum; BBAADD) makes possible the extraction of its BBAA component to restitute a novel plant type. The availability of such a ploidy-reversed wheat (extracted tetraploid wheat [ETW]) provides a unique opportunity to address whether and to what extent the BBAA component of bread wheat has been modified in phenotype, karyotype, and gene expression during its evolutionary history at the allohexaploid level. We report here that ETW was anomalous in multiple phenotypic traits but maintained a stable karyotype. Microarray-based transcriptome profiling identified a large number of differentially expressed genes between ETW and natural tetraploid wheat (Triticum turgidum), and the ETW-downregulated genes were enriched for distinct Gene Ontology categories. Quantitative RT-PCR analysis showed that gene expression differences between ETW and a set of diverse durum wheat (T. turgidum subsp durum) cultivars were distinct from those characterizing tetraploid cultivars per se. Pyrosequencing revealed that the expression alterations may occur to either only one or both of the B and A homoeolog transcripts in ETW. A majority of the genes showed additive expression in a resynthesized allohexaploid wheat. Analysis of a synthetic allohexaploid wheat and diverse bread wheat cultivars revealed the rapid occurrence of expression changes to the BBAA subgenomes subsequent to allohexaploidization and their evolutionary persistence. PMID:24989045

  7. Chromosomal and genome-wide molecular changes associated with initial stages of allohexaploidization in wheat can be transit and incidental.

    PubMed

    Zhao, Na; Xu, Liying; Zhu, Bo; Li, Mingjiu; Zhang, Huakun; Qi, Bao; Xu, Chunming; Han, Fangpu; Liu, Bao

    2011-08-01

    Genomic instability can be induced by nascent allopolyploidization in plants. However, most previous studies have not defined to what extent the allopolyploidy-induced rapid genomic instability represents a general response, and hence important to evolution, or merely incidental events occurring stochastically in a limited number of individuals. We report here that in a newly formed allohexaploid wheat line between tetraploid wheat Triticum turgidum subsp. durum (genome BBAA) and Aegilops tauschii (genome DD) a great majority of individual plants showed chromosomal stability and exhibited a genomic constitution similar to that of the present-day Triticum aestivum (genome BBAADD). In contrast, a single individual plant was identified at S(2), which exhibited chromosomal instability in both number and structure based on multicolor genomic in situ hybridization (mc-GISH) analysis. Accordingly, this plant also manifested extensive changes at the molecular level including loss and gain of DNA segments and DNA methylation repatterning. Remarkably, the chromosomal and molecular instabilities that presumably occurred at S(0) to S(1) and (or) in the F(1) hybrid were rapidly quenched by S(2) and followed by stable transgenerational inheritance. Our results suggest that these stochastic and individual-specific rapid genomic changes, albeit interesting, probably have not played a major role in the speciation and evolution of common wheat, T. aestivum.

  8. Massive alterations of the methylation patterns around DNA transposons in the first four generations of a newly formed wheat allohexaploid.

    PubMed

    Yaakov, Beery; Kashkush, Khalil

    2011-01-01

    Rapid and reproducible genomic changes can be induced during the early stages of the life of nascent allopolyploid species. In a previous study, it was shown that following allopolyploidization, cytosine methylation changes can affect up to 11% of the wheat genome. However, the methylation patterns around transposable elements (TEs) were never studied in detail. We used transposon methylation display (TMD) to assess the methylation patterns of CCGG sites flanking three TE families (Balduin, Apollo, and Thalos) in the first four generations of a newly formed wheat allohexaploid. In addition, transposon display (TD), using a methylation-insensitive restriction enzyme, was applied to search for genomic rearrangements at the TE insertion sites. We observed that up to 54% of CCGG sites flanking the three TE families showed changes in methylation patterns in the first four generations of a newly formed wheat allohexaploid, where hypermethylation was predominant. Over 70% of the changes in TMD patterns occurred in the first two generations of the newly formed allohexaploid. Furthermore, analysis of 555 TE insertion sites by TD and 18 cases by site-specific PCR revealed a full additive pattern in the allohexaploid, an indication for lack of massive rearrangements. These data indicate that following allopolyplodization, DNA-TE insertion sites can undergo a significantly high level of methylation changes compared with methylation changes of other genomic sequences.

  9. Investigating the role of ABA signaling in wheat drought tolerance

    USDA-ARS?s Scientific Manuscript database

    Allohexaploid wheat (Triticum aestivum L.) is one of the three major cereal crops supporting human nutrition. Because wheat is often grown under dryland conditions, it is subject to losses as a result of drought stress. This study examines the role of the plant hormone ABA is wheat responses to wate...

  10. Incidence of Wheat streak mosaic virus, Triticum mosaic virus, and Wheat mosaic virus in wheat curl mites recovered from maturing winter wheat spikes

    USDA-ARS?s Scientific Manuscript database

    Wheat curl mites (WCM; Aceria tosichella) transmit Wheat streak mosaic virus (WSMV), Triticum mosaic virus (TriMV), and Wheat mosaic virus (WMoV) to wheat (Triticum aestivum L.) in the Great Plains region of the United States. These viruses can be detected in single, double, or triple combinations i...

  11. Introgression of wheat DNA markers from A, B and D genomes in early generation progeny of Aegilops cylindrica Host x Triticum aestivum L. hybrids.

    PubMed

    Schoenenberger, N; Felber, F; Savova-Bianchi, D; Guadagnuolo, R

    2005-11-01

    Introgression from allohexaploid wheat (Triticum aestivum L., AABBDD) to allotetraploid jointed goatgrass (Aegilops cylindrica Host, CCDD) can take place in areas where the two species grow in sympatry and hybridize. Wheat and Ae. cylindrica share the D genome, issued from the common diploid ancestor Aegilops tauschii Coss. It has been proposed that the A and B genome of bread wheat are secure places to insert transgenes to avoid their introgression into Ae. cylindrica because during meiosis in pentaploid hybrids, A and B genome chromosomes form univalents and tend to be eliminated whereas recombination takes place only in D genome chromosomes. Wheat random amplified polymorphic DNA (RAPD) fragments, detected in intergeneric hybrids and introgressed to the first backcross generation with Ae. cylindrica as the recurrent parent and having a euploid Ae. cylindrica chromosome number or one supernumerary chromosome, were assigned to wheat chromosomes using Chinese Spring nulli-tetrasomic wheat lines. Introgressed fragments were not limited to the D genome of wheat, but specific fragments of A and B genomes were also present in the BC1. Their presence indicates that DNA from any of the wheat genomes can introgress into Ae. cylindrica. Successfully located RAPD fragments were then converted into highly specific and easy-to-use sequence characterised amplified regions (SCARs) through sequencing and primer design. Subsequently these markers were used to characterise introgression of wheat DNA into a BC1S1 family. Implications for risk assessment of genetically modified wheat are discussed.

  12. Temporal transcriptome profiling reveals expression partitioning of homeologous genes contributing to heat and drought acclimation in wheat (Triticum aestivum L.).

    PubMed

    Liu, Zhenshan; Xin, Mingming; Qin, Jinxia; Peng, Huiru; Ni, Zhongfu; Yao, Yingyin; Sun, Qixin

    2015-06-20

    Hexaploid wheat (Triticum aestivum) is a globally important crop. Heat, drought and their combination dramatically reduce wheat yield and quality, but the molecular mechanisms underlying wheat tolerance to extreme environments, especially stress combination, are largely unknown. As an allohexaploid, wheat consists of three closely related subgenomes (A, B, and D), and was reported to show improved tolerance to stress conditions compared to tetraploid. But so far very little is known about how wheat coordinates the expression of homeologous genes to cope with various environmental constraints on the whole-genome level. To explore the transcriptional response of wheat to the individual and combined stress, we performed high-throughput transcriptome sequencing of seedlings under normal condition and subjected to drought stress (DS), heat stress (HS) and their combination (HD) for 1 h and 6 h, and presented global gene expression reprograms in response to these three stresses. Gene Ontology (GO) enrichment analysis of DS, HS and HD responsive genes revealed an overlap and complexity of functional pathways between each other. Moreover, 4,375 wheat transcription factors were identified on a whole-genome scale based on the released scaffold information by IWGSC, and 1,328 were responsive to stress treatments. Then, the regulatory network analysis of HSFs and DREBs implicated they were both involved in the regulation of DS, HS and HD response and indicated a cross-talk between heat and drought stress. Finally, approximately 68.4 % of homeologous genes were found to exhibit expression partitioning in response to DS, HS or HD, which was further confirmed by using quantitative RT-PCR and Nullisomic-Tetrasomic lines. A large proportion of wheat homeologs exhibited expression partitioning under normal and abiotic stresses, which possibly contributes to the wide adaptability and distribution of hexaploid wheat in response to various environmental constraints.

  13. Transfer of soft kernel texture from Triticum aestivum to durum wheat, Triticum turgidum ssp. durum

    USDA-ARS?s Scientific Manuscript database

    Durum wheat (Triticum turgidum ssp. durum) is a leading cereal grain whose primary use is the production of semolina and then pasta. Its rich culinary relationship to humans is related, in part, to its very hard kernel texture. This very hard texture is due to the loss of the Puroindoline genes whi...

  14. Occurrence and yield effects of wheat infected with Triticum mosaic virus

    USDA-ARS?s Scientific Manuscript database

    Triticum mosaic virus (TriMV) infects wheat (Triticum aestivum L.) in the Great Plains region of the United States. This study determined the occurrence of TriMV at three locations over three years and yield effects of wheat mechanically infected with TriMV. Wheat infection with TriMV, Wheat streak...

  15. Reconciling the evolutionary origin of bread wheat (Triticum aestivum).

    PubMed

    El Baidouri, Moaine; Murat, Florent; Veyssiere, Maeva; Molinier, Mélanie; Flores, Raphael; Burlot, Laura; Alaux, Michael; Quesneville, Hadi; Pont, Caroline; Salse, Jérôme

    2017-02-01

    The origin of bread wheat (Triticum aestivum; AABBDD) has been a subject of controversy and of intense debate in the scientific community over the last few decades. In 2015, three articles published in New Phytologist discussed the origin of hexaploid bread wheat (AABBDD) from the diploid progenitors Triticum urartu (AA), a relative of Aegilops speltoides (BB) and Triticum tauschii (DD). Access to new genomic resources since 2013 has offered the opportunity to gain novel insights into the paleohistory of modern bread wheat, allowing characterization of its origin from its diploid progenitors at unprecedented resolution. We propose a reconciled evolutionary scenario for the modern bread wheat genome based on the complementary investigation of transposable element and mutation dynamics between diploid, tetraploid and hexaploid wheat. In this scenario, the structural asymmetry observed between the A, B and D subgenomes in hexaploid bread wheat derives from the cumulative effect of diploid progenitor divergence, the hybrid origin of the D subgenome, and subgenome partitioning following the polyploidization events. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  16. RNAi mediated, stable resistance to Triticum mosaic virus in wheat

    USDA-ARS?s Scientific Manuscript database

    Triticum mosaic virus (TriMV), discovered in 2006, affects wheat production systems in the Great Plains of the United States. There are no available TriMV resistant commercial varieties. RNA interference (RNAi) was evaluated as an alternative strategy to generate resistance to TriMV. An RNAi pANDA...

  17. De Novo Transcriptome Assembly and Analyses of Gene Expression during Photomorphogenesis in Diploid Wheat Triticum monococcum

    USDA-ARS?s Scientific Manuscript database

    Triticum monococcum (2n), a close ancestor of the A-genome progenitor of cultivated hexaploid wheat, was used as a model to study components regulating photomorphogenesis in diploid wheat. Constructed were genome-wide transcriptomes of two Triticum monococcum subspecies, the wild winter wheat T. mo...

  18. Resistance to wheat streak mosaic virus and Triticum mosaic virus in wheat lines carrying Wsm1 and Wsm3

    USDA-ARS?s Scientific Manuscript database

    Wheat streak mosaic virus (WSMV) and Triticum mosaic virus (TriMV) are important viruses of wheat (Triticum aestivum L.) in the Great Plains of United States. In addition to agronomic practices to prevent damage from these viruses, temperature sensitive resistance genes Wsm1, Wsm2 and Wsm3, have bee...

  19. Nutritional properties of einkorn wheat (Triticum monococcum L.).

    PubMed

    Hidalgo, Alyssa; Brandolini, Andrea

    2014-03-15

    The hulled wheat einkorn (Triticum monococcum L. ssp. monococcum), a staple food of early farmers for many thousand years, today is cropped only in small areas of the Mediterranean region and continental Europe. Increasing attention to the nutritional quality of foods has fostered renewed interest in this low-impact crop. The reappraisal of einkorn quality evidenced that this ancient wheat has some dietary advantages over polyploid wheats. Einkorn wholemeal is poor in dietary fibre but rich in proteins, lipids (mostly unsaturated fatty acids), fructans and trace elements (including zinc and iron). The good concentration of several antioxidant compounds (carotenoids, tocols, conjugated polyphenols, alkylresorcinols and phytosterols) and low β-amylase and lipoxygenase activities (which limit antioxidant degradation during food processing) contribute to the excellent nutritional properties of its flour, superior to those of other wheats. Conversely, einkorn has relatively low bound polyphenol content and high polyphenol oxidase activity. In spite of eliciting weaker toxic reactions than other Triticum species, einkorn is not suitable for coeliacs. Current trends towards the consumption of functional foods suggest that this cereal may still play a significant role in human consumption, especially in the development of new or special foods with superior nutritional quality.

  20. Wheat Genotypes With Combined Resistance to Wheat Curl Mite, Wheat Streak Mosaic Virus, Wheat Mosaic Virus, and Triticum Mosaic Virus.

    PubMed

    Chuang, Wen-Po; Rojas, Lina Maria Aguirre; Khalaf, Luaay Kahtan; Zhang, Guorong; Fritz, Allan K; Whitfield, Anna E; Smith, C Michael

    2017-01-13

    The wheat curl mite, Aceria tosichella Keifer, (WCM) is a global pest of bread wheat that reduces yields significantly. In addition, WCM carries Wheat streak mosaic virus (WSMV, family Potyviridae, genus Tritimovirus), the most significant wheat virus in North America; High Plains wheat mosaic virus (HPWMoV, genus Emaravirus, formerly High plains virus); and Triticum mosaic virus (TriMV, family Potyviridae, genus Poacevirus). Viruses carried by WCM have reduced wheat yields throughout the U.S. Great Plains for >50 yr, with average yield losses of 2-3% and occasional yield losses of 7-10%. Acaricides are ineffective against WCM, and delayed planting of winter wheat is not feasible. Five wheat breeding lines containing Cmc4, a WCM resistance gene from Aegilops tauschii, and Wsm2, a WSMV resistance gene from wheat germplasm CO960293-2 were selected from the breeding process and assessed for phenotypic reaction to WCM feeding, population increase, and the degree of WSMV, HPWMoV, and TriMV infection. Experiments determined that all five lines are resistant to WCM biotype 1 feeding and population increase, and that two breeding lines contain resistance to WSMV, HPWMoV, and TriMV infection as well. These WCM-, WSMV-, HPWMoV-, and TriMV-resistant genotypes can be used improve management of wheat yield losses from WCM-virus complexes.

  1. Identification of the Wheat Curl Mite as the Vector of Triticum Mosaic Virus

    USDA-ARS?s Scientific Manuscript database

    Triticum mosaic virus (TriMV) is a newly discovered virus found infecting wheat (Triticum aestivum L.) in Kansas. This study was conducted to determine if the wheat curl mite (WCM, Aceria tosichella Keifer) and the bird cherry oat aphid (Rhopalosiphum padi L. ) could transmit TriMV. Using diffe...

  2. Combining ability for tolerance to pre-harvest sprouting in common wheat (Triticum aestivum L.)

    USDA-ARS?s Scientific Manuscript database

    Pre-harvest sprouting (PHS) affects wheat (Triticum aestivum L.) yield and end-use product quality leading to massive economic losses. Red wheat cultivars are typically more resistant to PHS than white wheat. The objective of this study was to identify red wheat genotypes capable of donating genes f...

  3. Analysis of Triticum boeoticum and Triticum urartu seed defensins: To the problem of the origin of polyploid wheat genomes.

    PubMed

    Odintsova, Tatyana I; Korostyleva, Tatyana V; Odintsova, Margarita S; Pukhalsky, Vitaliy A; Grishin, Eugene V; Egorov, Tsezi A

    2008-06-01

    The origin of polyploid wheat genomes has been the subject of numerous studies and is the key problem in wheat phylogeny. Different diploid species have been supposed to donate genomes to tetraploid and hexaploid wheat species. To shed light on phylogenetic relationships between the presumable A genome donors and hexaploid wheat species we have applied a new approach: the comparison of defensins from diploid Triticum species, Triticum boeoticum Boiss. and Triticum urartu Thum. ex Gandil., with previously characterized Triticum kiharae defensins [T.I. Odintsova et al., Biochimie 89 (2007) 605-612]. Defensins were isolated by acidic extraction of seeds followed by three-step chromatographic separation. Isolated defensins were identified by molecular masses using MALDI-TOF mass spectrometry and N-terminal sequencing. For the first time, we have shown that T. urartu defensins are more similar to those of the hexaploid wheat than T. boeoticum defensins, although variation among samples collected in different regions of the world was revealed. Our results clearly demonstrate that T. urartu of the Asian origin contributed the A genome to polyploid wheat species.

  4. Ecogeography, genetic diversity, and breeding value of wild emmer wheat (Triticum dicoccoides Korn ex Asch. & Graebn.) Thell.

    USDA-ARS?s Scientific Manuscript database

    Wild emmer wheat (Triticum dicoccoides Körn ex Asch. & Graebn.) Thell. is the allotetraploid (2n=4x=28; genome BBAA) progenitor of cultivated wheat. It is fully compatible with the tetraploid (BBAA) durum wheat (Triticum durum), and can be crossed with the hexaploid (2n=6x=42; BBAADD) wheat (Triticu...

  5. Methylglyoxal alleviates cadmium toxicity in wheat (Triticum aestivum L).

    PubMed

    Li, Zhong-Guang; Duan, Xiang-Qiu; Xia, Yan-Mei; Wang, Yue; Zhou, Zhi-Hao; Min, Xiong

    2017-02-01

    Methylglyoxal alleviates cadmium toxicity in wheat (Triticum aestivum L) by improving plant growth. For a long time, the reactive α, β-carbonyl ketoaldehyde methylglyoxal (CH3COCHO; MG) has been regarded as merely a toxic metabolite in plants, but, now, emerging as a signal molecule in plants. In this study, cadmium (Cd) stress decreased plant height, root length, fresh weight (FW), and dry weight (DW) in a concentration-dependent manner, indicating that Cd had toxic effects on the growth of wheat seedlings. The toxic effects of Cd were alleviated by exogenously applied MG in a dosage dependent fashion, and 700 mM MG reached significant differences, but this alleviating effect was eliminated by the treatment with N-acetyl-L-cysteine (NAC, MG scavenger), suggesting that MG could mitigate Cd toxicity in wheat. This study reported for the first time that MG could alleviate Cd toxicity in wheat, uncovering a new possible physiological function for MG, and opening a novel line of research in plant stress biology.

  6. Effects of single and double infections of winter wheat by Triticum mosaic virus and Wheat streak mosaic virus on yield determinants

    USDA-ARS?s Scientific Manuscript database

    Triticum mosaic virus (TriMV) is a recently discovered virus infecting wheat (Triticum aestivum L.) in the Great Plains region of the United States. It is transmitted by wheat curl mites (Aceria tosichella Keifer) which also transmit Wheat streak mosaic virus (WSMV) and Wheat mosaic virus. In a gree...

  7. First report of Fusarium hostae causing crown rot of wheat (Triticum spp.) in Turkey

    USDA-ARS?s Scientific Manuscript database

    Crown rot disease of wheat is caused by a complex of Fusarium species. To identify species associated with crown rot in Turkey, crowns and stems of bread wheat (Triticum aestivum L.) and durum wheat (T. durum Desf.) were collected from the Central and Southeast Anatolia, Black Sea, Aegean, Mediterr...

  8. Analysis of gene-derived SNP marker polymorphism in wheat (Triticum aestivum L.)

    USDA-ARS?s Scientific Manuscript database

    In this study, we analyzed 359 single nucleotide polymorphisms (SNPs) previously discovered in intron sequences of wheat genes to evaluate SNP marker polymorphism in common wheat (Triticum aestivum L.). These SNPs showed an average polymorphism information content (PIC) of 0.181 among 20 US wheat c...

  9. Distribution of cadmium, iron and zinc in millstreams of hard winter wheat (Triticum aestivum L.)

    USDA-ARS?s Scientific Manuscript database

    Hard winter wheat (Triticum aestivum L.) is a major crop in the Great Plains of the United 14 States, and our previous work demonstrated that wheat genotypes vary for grain cadmium 15 accumulation, with some exceeding the CODEX standard (0.2 mg kg-1). Previous reports of 16 cadmium distribution in ...

  10. Did the house mouse (Mus musculus L.) shape the evolutionary trajectory of wheat (Triticum aestivum L.)?

    USDA-ARS?s Scientific Manuscript database

    Wheat (Triticum aestivum L.) is one of the most successful domesticated plant species in the world. The majority of wheat carries mutations in the Puroindoline genes that result in a hard kernel phenotype. An explanation as to the selection of these hard-kernel mutations has not been established. He...

  11. Multiplex Real Time PCR For Detection of Wheat Streak Mosaic Virus and Triticum Mosaic Virus

    USDA-ARS?s Scientific Manuscript database

    Wheat streak mosaic virus (WSMV) and Triticum mosaic virus (TRIMV) are widespread throughout the southwestern Great Plains states. Using conventional diagnostics such as Enzyme-Linked Immunosorbent Assays (ELISA), these two viruses are commonly found together in infected wheat samples. Methods for m...

  12. Impact of Wheat streak mosaic virus and Triticum mosaic virus co-infection of wheat on transmission rates by wheat curl mites

    USDA-ARS?s Scientific Manuscript database

    Wheat streak mosaic virus (WSMV) and Triticum mosaic virus (TriMV) are transmitted by the wheat curl mite (WCM, Aceria tosichella Keifer). Previous work has shown that different mite genotypes transmit TriMV at different rates. The objective of this research was to determine if mite genotypes differ...

  13. Ractopamine uptake by alfalfa (Medicago sativa) and wheat (Triticum aestivum) from soil

    USDA-ARS?s Scientific Manuscript database

    Ractopamine is a beta adrenergic agonist used as a growth promoter in swine, cattle and turkeys. To test whether ractopamine has the potential to accumulate in plants grown in contaminated soil, a greenhouse study was conducted with alfalfa (Medicago sativa) and wheat (Triticum aestivum) grown in t...

  14. A review of the occurrence of grain softness protein-1 genes in wheat (Triticum aestivum L.)

    USDA-ARS?s Scientific Manuscript database

    Grain softness protein-1 (Gsp-1) is a small, 495-bp intronless gene found throughout the Triticeae tribe at the distal end of group 5 chromosomes. With the Puroindolines, it constitutes a key component of the Hardness locus. In the polyploid wheats, Triticum aestivum and T. turgidum, the gene is pr...

  15. Inheritance of grain polyphenol oxidase (PPO) activity in multiple wheat (Triticum aestivum L.) genetic backgrounds

    USDA-ARS?s Scientific Manuscript database

    Grain polyphenol oxidase (PPO) activity can cause discoloration of wheat (Triticum aestivum L.) food products. Five crosses (PI 117635/Antelope; Fielder/NW03681; Fielder/Antelope; NW07OR1070/Antelope; NW07OR1066/OR2050272H) were selected to study the genetic inheritance of PPO activity. STS marker...

  16. Intergenerational responses of wheat (Triticum aestivum L.) to cerium oxide nanoparticles exposure

    EPA Science Inventory

    The intergenerational impact of engineered nanomaterials in plants is a key knowledge gap in the literature. A soil microcosm study was performed to assess the effects of multi-generational exposure of wheat (Triticum aestivum L.) to cerium oxide nanoparticles (CeO2-NPs). Seeds f...

  17. Intergenerational responses of wheat (Triticum aestivum L.) to cerium oxide nanoparticles exposure

    EPA Science Inventory

    The intergenerational impact of engineered nanomaterials in plants is a key knowledge gap in the literature. A soil microcosm study was performed to assess the effects of multi-generational exposure of wheat (Triticum aestivum L.) to cerium oxide nanoparticles (CeO2-NPs). Seeds f...

  18. Genetic variation among laboratory accessions of Chinese spring wheat (Triticum aestivum L.)

    USDA-ARS?s Scientific Manuscript database

    Chinese Spring (CS) wheat (Triticum aestivum L.) is commonly used in genetic research including cytogenetic analysis, molecular mapping, and germplasm development. Aneuploid lines of alien chromosomes in CS background have been used in studies with diverse objectives. Thousands of genomic and cDNA...

  19. Intergenerational responses of wheat (Triticum aestivum L.) to ...

    EPA Pesticide Factsheets

    The intergenerational impact of engineered nanomaterials in plants is a key knowledge gap in the literature. A soil microcosm study was performed to assess the effects of multi-generational exposure of wheat (Triticum aestivum L.) to cerium oxide nanoparticles (CeO2-NPs). Seeds from plants that were exposed to 0, 125, and 500 mg CeO2-NPs/kg soil (Ce-0, Ce-125 or Ce-500, respectively) in first generation (S1) were cultivated in factorial combinations of Ce-0, Ce-125 or Ce-500 to produce second generation (S2) plants. The factorial combinations for first/second generation treatments in Ce-125 were S1-Ce-0/S2-Ce-0, S1-Ce-0/S2-Ce-125, S1-Ce-125/S2-Ce-0 and S1-Ce-125/S2-Ce-125, and in Ce-500 were S1-Ce-0/S2-Ce-0, S1-Ce-0/S2-Ce-500, S1-Ce-500/S2-Ce-0 and S1-Ce-500/S2-Ce-500. Agronomic, elemental, and isotopic data were collected in second generation plants. Results showed that plants treated during the first generation only with either Ce-125 or Ce-500 (e.g. S1-Ce-125/S2-Ce-0 or S1-Ce-500/S2-Ce-0) had reduced accumulation of Ce (61 or 50%), Fe (49 or 58%) and Mn (34 or 41%) in roots, and δ15N (11 or 8%) in grains compared to the plants not treated in both generations (i.e. S1-Ce-0/S2-Ce-0). In addition, plants treated in both generations with Ce-125 (i.e. S1-Ce-125/S2-Ce-125) produced grains that had lower Mn, Ca, K, Mg and P relative to plants treated in the second generation only (i.e. S1-Ce-0/S2-Ce-125). The findings demonstrated that first generation exposure of

  20. Intergenerational responses of wheat (Triticum aestivum L.) to ...

    EPA Pesticide Factsheets

    The intergenerational impact of engineered nanomaterials in plants is a key knowledge gap in the literature. A soil microcosm study was performed to assess the effects of multi-generational exposure of wheat (Triticum aestivum L.) to cerium oxide nanoparticles (CeO2-NPs). Seeds from plants that were exposed to 0, 125, and 500 mg CeO2-NPs/kg soil (Ce-0, Ce-125 or Ce-500, respectively) in first generation (S1) were cultivated in factorial combinations of Ce-0, Ce-125 or Ce-500 to produce second generation (S2) plants. The factorial combinations for first/second generation treatments in Ce-125 were S1-Ce-0/S2-Ce-0, S1-Ce-0/S2-Ce-125, S1-Ce-125/S2-Ce-0 and S1-Ce-125/S2-Ce-125, and in Ce-500 were S1-Ce-0/S2-Ce-0, S1-Ce-0/S2-Ce-500, S1-Ce-500/S2-Ce-0 and S1-Ce-500/S2-Ce-500. Agronomic, elemental, and isotopic data were collected in second generation plants. Results showed that plants treated during the first generation only with either Ce-125 or Ce-500 (e.g. S1-Ce-125/S2-Ce-0 or S1-Ce-500/S2-Ce-0) had reduced accumulation of Ce (61 or 50%), Fe (49 or 58%) and Mn (34 or 41%) in roots, and δ15N (11 or 8%) in grains compared to the plants not treated in both generations (i.e. S1-Ce-0/S2-Ce-0). In addition, plants treated in both generations with Ce-125 (i.e. S1-Ce-125/S2-Ce-125) produced grains that had lower Mn, Ca, K, Mg and P relative to plants treated in the second generation only (i.e. S1-Ce-0/S2-Ce-125). The findings demonstrated that first generation exposure of

  1. A Standardized Inoculation Protocol to Test Wheat Cultivars for Reaction to Head Blast caused by Magnaporthe oryzae (Triticum pathotype)

    USDA-ARS?s Scientific Manuscript database

    Wheat blast, caused by the Triticum pathotype of M. oryzae (MoT), poses a significant threat to wheat production worldwide. Because this pathotype does not occur in the U.S., it is important to prepare for its possible introduction. As part of this preparation, over 500 U.S. wheat cultivars were tes...

  2. Rmg8, a New Gene for Resistance to Triticum Isolates of Pyricularia oryzae in Hexaploid Wheat.

    PubMed

    Anh, Vu Lan; Anh, Nguyen Tuan; Tagle, Analiza Grubanzo; Vy, Trinh Thi Phuong; Inoue, Yoshihiro; Takumi, Shigeo; Chuma, Izumi; Tosa, Yukio

    2015-12-01

    Blast, caused by Pyricularia oryzae, is one of the major diseases of wheat in South America. We identified a new gene for resistance to Triticum isolates of P. oryzae in common wheat 'S-615', and designated it "resistance to Magnaporthe grisea 8" (Rmg8). Rmg8 was assigned to chromosome 2B through molecular mapping with simple-sequence repeat markers. To identify an avirulence gene corresponding to Rmg8, Triticum isolate Br48 (avirulent on S-615) was crossed with 200R29 (virulent on S-615), an F1 progeny derived from a cross between an Eleusine isolate (MZ5-1-6) and Br48. Segregation analysis of their progeny revealed that avirulence of Br48 on S-615 was conditioned by a single gene, which was designated AVR-Rmg8. AVR-Rmg8 was closely linked to AVR-Rmg7, which corresponded to Rmg7 located on chromosome 2A of tetraploid wheat.

  3. Ca2+/Cation Antiporters (CaCA): Identification, Characterization and Expression Profiling in Bread Wheat (Triticum aestivum L.)

    PubMed Central

    Taneja, Mehak; Tyagi, Shivi; Sharma, Shailesh; Upadhyay, Santosh Kumar

    2016-01-01

    The Ca2+/cation antiporters (CaCA) superfamily proteins play vital function in Ca2+ ion homeostasis, which is an important event during development and defense response. Molecular characterization of these proteins has been performed in certain plants, but they are still not characterized in Triticum aestivum (bread wheat). Herein, we identified 34 TaCaCA superfamily proteins, which were classified into TaCAX, TaCCX, TaNCL, and TaMHX protein families based on their structural organization and evolutionary relation with earlier reported proteins. Since the T. aestivum comprises an allohexaploid genome, TaCaCA genes were derived from each A, B, and D subgenome and homeologous chromosome (HC), except chromosome-group 1. Majority of genes were derived from more than one HCs in each family that were considered as homeologous genes (HGs) due to their high similarity with each other. These HGs showed comparable gene and protein structures in terms of exon/intron organization and domain architecture. Majority of TaCaCA proteins comprised two Na_Ca_ex domains. However, TaNCLs consisted of an additional EF-hand domain with calcium binding motifs. Each TaCaCA protein family consisted of about 10 transmembrane and two α-repeat regions with specifically conserved signature motifs except TaNCL, which had single α-repeat. Variable expression of most of the TaCaCA genes during various developmental stages suggested their specified role in development. However, constitutively high expression of a few genes like TaCAX1-A and TaNCL1-B indicated their role throughout the plant growth and development. The modulated expression of certain genes during biotic (fungal infections) and abiotic stresses (heat, drought, salt) suggested their role in stress response. Majority of TaCCX and TaNCL family genes were found highly affected during various abiotic stresses. However, the role of individual gene needs to be established. The present study unfolded the opportunity for detail functional

  4. Agropyron mosaic virus detected in Ohio wheat (Triticum aestivum)

    USDA-ARS?s Scientific Manuscript database

    Agropyron mosaic virus (AgMV) was identified in Ohio wheat during a 2016 field survey by RNA-Seq. AgMV was confirmed in 3 counties by reverse transcription-polymerase chain reaction, and transmitted to wheat. Isolated Ohio AgMV infected wheat, ryegrass, and rye, but not oat, maize, sorghum, or orcha...

  5. Extensive in vitro gastrointestinal digestion markedly reduces the immune-toxicity of Triticum monococcum wheat: implication for celiac disease.

    PubMed

    Gianfrani, Carmen; Camarca, Alessandra; Mazzarella, Giuseppe; Di Stasio, Luigia; Giardullo, Nicola; Ferranti, Pasquale; Picariello, Gianluca; Rotondi Aufiero, Vera; Picascia, Stefania; Troncone, Riccardo; Pogna, Norberto; Auricchio, Salvatore; Mamone, Gianfranco

    2015-09-01

    The ancient diploid Triticum monococcum is of special interest as a candidate low-toxic wheat species for celiac disease patients. Here, we investigated how an in vitro gastro-intestinal digestion, affected the immune toxic properties of gliadin from diploid compared to hexaploid wheat. Gliadins from Triticum monococcum, and Triticum aestivum cultivars were digested using either a partial proteolysis with pepsin-chymotrypsin, or an extensive degradation that used gastrointestinal enzymes including the brush border membrane enzymes. The immune stimulatory properties of the digested samples were investigated on T-cell lines and jejunal biopsies from celiac disease patients. The T-cell response profile to the Triticum monococcum gliadin was comparable to that obtained with Triticum aestivum gliadin after the partial pepsin-chymotrypsin digestion. In contrast, the extensive gastrointestinal hydrolysis drastically reduced the immune stimulatory properties of Triticum monococcum gliadin. MS-based analysis showed that several Triticum monococcum peptides, including known T-cell epitopes, were degraded during the gastrointestinal treatment, whereas many of Triticum aestivum gliadin survived the gastrointestinal digestion. The pattern of Triticum monococcum gliadin proteins is sufficiently different from those of common hexaploid wheat to determine a lower toxicity in celiac disease patients following in vitro simulation of human digestion. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Wheat Cultivar-Specific Disease Synergism and Alteration of Virus Accumulation During Co-Infection with Wheat Streak Mosaic Virus and Triticum Mosaic Virus

    USDA-ARS?s Scientific Manuscript database

    Triticum mosaic virus (TriMV), the type member of the newly proposed Poacevirus genus and Wheat streak mosaic virus (WSMV), the type member of Tritimovirus genus of the family Potyviridae, infect wheat naturally in the Great Plains and are transmitted by wheat curl mites. In this study, we examined ...

  7. Subgenome chromosome walking in wheat: A 450-kb physical contig in Triticum monococcum L. spans the Lr10 resistance locus in hexaploid wheat (Triticum aestivum L.)

    PubMed Central

    Stein, Nils; Feuillet, Catherine; Wicker, Thomas; Schlagenhauf, Edith; Keller, Beat

    2000-01-01

    For many agronomically important plant genes, only their position on a genetic map is known. In the absence of an efficient transposon tagging system, such genes have to be isolated by map-based cloning. In bread wheat Triticum aestivum, the genome is hexaploid, has a size of 1.6 × 1010 bp, and contains more than 80% of repetitive sequences. So far, this genome complexity has not allowed chromosome walking and positional cloning. Here, we demonstrate that chromosome walking using bacterial artificial chromosome (BAC) clones is possible in the diploid wheat Triticum monococcum (Am genome). BAC end sequences were mostly repetitive and could not be used for the first walking step. New probes corresponding to rare low-copy sequences were efficiently identified by low-pass DNA sequencing of the BACs. Two walking steps resulted in a physical contig of 450 kb on chromosome 1AmS. Genetic mapping of the probes derived from the BAC contig demonstrated perfect colinearity between the physical map of T. monococcum and the genetic map of bread wheat on chromosome 1AS. The contig genetically spans the Lr10 leaf rust disease resistance locus in bread wheat, with 0.13 centimorgans corresponding to 300 kb between the closest flanking markers. Comparison of the genetic to physical distances has shown large variations within 350 kb of the contig. The physical contig can now be used for the isolation of the orthologous regions in bread wheat. Thus, subgenome chromosome walking in wheat can produce large physical contigs and saturate genomic regions to support positional cloning. PMID:11078510

  8. Classification of 31 Korean Wheat (Triticum aestivum L.) Cultivars Based on the Chemical Compositions.

    PubMed

    Choi, Induck; Kang, Chon-Sik; Lee, Choon-Kee; Kim, Sun-Lim

    2016-12-01

    Whole grain wheat flour (WGWF) is the entire grain (bran, endosperm, and germ) milled to make flour. The WGWF of 31 Korean wheat (Triticum aestivum L.) cultivars were analyzed for the chemical compositions, and classified into groups by hierarchical cluster analysis (HCL). The average composition values showed a substantial variation among wheat varieties due to different wheat varieties. Wheat cv. Shinmichal1 (waxy wheat) had the highest ash, lipid, and total dietary fiber contents of 1.76, 3.14, and 15.49 g/100 g, respectively. Using HCL efficiently classified wheat cultivars into 7 clusters. Namhae, Sukang, Gobun, and Joeun contained higher protein values (12.88%) and dietary fiber (13.74 %). Regarding multi-trait crop breeding, the variation in chemical compositions found between the clusters might be attributed to wheat genotypes, which was an important factor in accumulating those chemicals in wheat grains. Thus, once wheat cultivars with agronomic characteristics were identified, those properties might be included in the breeding process to develop a new variety of wheat with the trait.

  9. Classification of 31 Korean Wheat (Triticum aestivum L.) Cultivars Based on the Chemical Compositions

    PubMed Central

    Choi, Induck; Kang, Chon-Sik; Lee, Choon-Kee; Kim, Sun-Lim

    2016-01-01

    Whole grain wheat flour (WGWF) is the entire grain (bran, endosperm, and germ) milled to make flour. The WGWF of 31 Korean wheat (Triticum aestivum L.) cultivars were analyzed for the chemical compositions, and classified into groups by hierarchical cluster analysis (HCL). The average composition values showed a substantial variation among wheat varieties due to different wheat varieties. Wheat cv. Shinmichal1 (waxy wheat) had the highest ash, lipid, and total dietary fiber contents of 1.76, 3.14, and 15.49 g/100 g, respectively. Using HCL efficiently classified wheat cultivars into 7 clusters. Namhae, Sukang, Gobun, and Joeun contained higher protein values (12.88%) and dietary fiber (13.74 %). Regarding multi-trait crop breeding, the variation in chemical compositions found between the clusters might be attributed to wheat genotypes, which was an important factor in accumulating those chemicals in wheat grains. Thus, once wheat cultivars with agronomic characteristics were identified, those properties might be included in the breeding process to develop a new variety of wheat with the trait. PMID:28078265

  10. Genetic variability in anthocyanin composition and nutritional properties of blue, purple, and red bread (Triticum aestivum L.) and durum (Triticum turgidum L. ssp. turgidum convar. durum) wheats.

    PubMed

    Ficco, Donatella B M; De Simone, Vanessa; Colecchia, Salvatore A; Pecorella, Ivano; Platani, Cristiano; Nigro, Franca; Finocchiaro, Franca; Papa, Roberto; De Vita, Pasquale

    2014-08-27

    Renewed interest in breeding for high anthocyanins in wheat (Triticum ssp.) is due to their antioxidant potential. A collection of different pigmented wheats was used to investigate the stability of anthocyanins over three crop years. The data show higher anthocyanins in blue-aleurone bread wheat (Triticum aestivum L.), followed by purple- and red-pericarp durum wheat (Triticum turgidum L. ssp. turgidum convar. durum), using cyanidin 3-O-glucoside as standard. HPLC of the anthocyanin components shows five to eight major anthocyanins for blue wheat extracts, compared to three anthocyanins for purple and red wheats. Delphinidin 3-O-rutinoside, delphinidin 3-O-glucoside, and malvidin 3-O-glucoside are predominant in blue wheat, with cyanidin 3-O-glucoside, peonidin 3-O-galactoside, and malvidin 3-O-glucoside in purple wheat. Of the total anthocyanins, 40-70% remain to be structurally identified. The findings confirm the high heritability for anthocyanins, with small genotype × year effects, which will be useful for breeding purposes, to improve the antioxidant potential of cereal-based foods.

  11. Development of transgenic wheat (Triticum aestivum L.) expressing avidin gene conferring resistance to stored product insects.

    PubMed

    Abouseadaa, Heba H; Osman, Gamal H; Ramadan, Ahmed M; Hassanein, Sameh E; Abdelsattar, Mohamed T; Morsy, Yasser B; Alameldin, Hussien F; El-Ghareeb, Doaa K; Nour-Eldin, Hanan A; Salem, Reda; Gad, Adel A; Elkhodary, Soheir E; Shehata, Maher M; Mahfouz, Hala M; Eissa, Hala F; Bahieldin, Ahmed

    2015-07-22

    Wheat is considered the most important cereal crop all over the world. The wheat weevil Sitophilus granarius is a serious insect pests in much of the wheat growing area worldwide and is responsible for significant loss of yield. Avidin proteins has been proposed to function as plant defense agents against insect pests. A synthetic avidin gene was introduced into spring wheat (Triticum aestivum L.) cv. Giza 168 using a biolistic bombardment protocol. The presence and expression of the transgene in six selected T0 transgenic wheat lines were confirmed at the molecular level. Accumulation of avidin protein was detected in transgenic plants compared to non-transgenic plants. Avidin transgene was stably integrated, transcribed and translated as indicated by Southern blot, ELISA, and dot blot analyses, with a high level of expression in transgenic wheat seeds. However, no expression was detected in untransformed wheat seeds. Functional integrity of avidin was confirmed by insect bioassay. The results of bioassay using transgenic wheat plants challenged with wheat weevil revealed 100 % mortality of the insects reared on transgenic plants after 21 days. Transgenic wheat plants had improved resistance to Sitophilus granarius.

  12. Molecular organization and comparative analysis of chromosome 5B of the wild wheat ancestor Triticum dicoccoides

    PubMed Central

    Ani Akpinar, Bala; Yuce, Meral; Lucas, Stuart; Vrána, Jan; Burešová, Veronika; Doležel, Jaroslav; Budak, Hikmet

    2015-01-01

    Wild emmer wheat, Triticum turgidum ssp. dicoccoides is the wild relative of Triticum turgidum, the progenitor of durum and bread wheat, and maintains a rich allelic diversity among its wild populations. The lack of adequate genetic and genomic resources, however, restricts its exploitation in wheat improvement. Here, we report next-generation sequencing of the flow-sorted chromosome 5B of T. dicoccoides to shed light into its genome structure, function and organization by exploring the repetitive elements, protein-encoding genes and putative microRNA and tRNA coding sequences. Comparative analyses with its counterparts in modern and wild wheats suggest clues into the B-genome evolution. Syntenic relationships of chromosome 5B with the model grasses can facilitate further efforts for fine-mapping of traits of interest. Mapping of 5B sequences onto the root transcriptomes of two additional T. dicoccoides genotypes, with contrasting drought tolerances, revealed several thousands of single nucleotide polymorphisms, of which 584 shared polymorphisms on 228 transcripts were specific to the drought-tolerant genotype. To our knowledge, this study presents the largest genomics resource currently available for T. dicoccoides, which, we believe, will encourage the exploitation of its genetic and genomic potential for wheat improvement to meet the increasing demand to feed the world. PMID:26084265

  13. Ecotoxicological effects of paracetamol on seed germination and seedling development of wheat (Triticum aestivum L.).

    PubMed

    An, Jing; Zhou, Qixing; Sun, Fuhong; Zhang, Lei

    2009-09-30

    In order to assess ecological risk of pharmaceutical compounds entering into agricultural ecosystems, toxic effects of paracetamol with therapeutic action on wheat (Triticum aestivum L.) were investigated as an example, using early growing and developmental indexes of wheat, including seed germination, shoot height and root length, peroxidase, superoxide dismutase, chlorophyll, and soluble protein in the seedlings. The results showed that wheat shoot and root elongation decreased significantly (p<0.05) with an increase in the concentration of paracetamol. Wheat roots were the most sensitive sites of the plants to paracetamol, and the median effect concentration (EC(50)) of paracetamol based on the inhibition of root elongation was 668.8 mg/L, which cannot be found in the practical environment in this phase. However, the low concentration of paracetamol inhibited the growth of wheat after a chronic exposure. After the 21-day exposure, 1.4-22.4 mg/L paracetamol treatment caused damage to the chlorophyll accumulation and soluble protein synthesis. After the 7-day exposure, the activity of peroxidase and superoxide dismutase in wheat leaves increased with an increase in the concentration of paracetamol in order to eliminate the peroxides produced and maintain the function of cells. However, the activity of peroxidase in wheat roots decreased significantly after the 14-day exposure, which indicated the antioxidative defensive system in wheat roots was damaged by paracetamol.

  14. Draft genome of the wheat A-genome progenitor Triticum urartu.

    PubMed

    Ling, Hong-Qing; Zhao, Shancen; Liu, Dongcheng; Wang, Junyi; Sun, Hua; Zhang, Chi; Fan, Huajie; Li, Dong; Dong, Lingli; Tao, Yong; Gao, Chuan; Wu, Huilan; Li, Yiwen; Cui, Yan; Guo, Xiaosen; Zheng, Shusong; Wang, Biao; Yu, Kang; Liang, Qinsi; Yang, Wenlong; Lou, Xueyuan; Chen, Jie; Feng, Mingji; Jian, Jianbo; Zhang, Xiaofei; Luo, Guangbin; Jiang, Ying; Liu, Junjie; Wang, Zhaobao; Sha, Yuhui; Zhang, Bairu; Wu, Huajun; Tang, Dingzhong; Shen, Qianhua; Xue, Pengya; Zou, Shenhao; Wang, Xiujie; Liu, Xin; Wang, Famin; Yang, Yanping; An, Xueli; Dong, Zhenying; Zhang, Kunpu; Zhang, Xiangqi; Luo, Ming-Cheng; Dvorak, Jan; Tong, Yiping; Wang, Jian; Yang, Huanming; Li, Zhensheng; Wang, Daowen; Zhang, Aimin; Wang, Jun

    2013-04-04

    Bread wheat (Triticum aestivum, AABBDD) is one of the most widely cultivated and consumed food crops in the world. However, the complex polyploid nature of its genome makes genetic and functional analyses extremely challenging. The A genome, as a basic genome of bread wheat and other polyploid wheats, for example, T. turgidum (AABB), T. timopheevii (AAGG) and T. zhukovskyi (AAGGA(m)A(m)), is central to wheat evolution, domestication and genetic improvement. The progenitor species of the A genome is the diploid wild einkorn wheat T. urartu, which resembles cultivated wheat more extensively than do Aegilops speltoides (the ancestor of the B genome) and Ae. tauschii (the donor of the D genome), especially in the morphology and development of spike and seed. Here we present the generation, assembly and analysis of a whole-genome shotgun draft sequence of the T. urartu genome. We identified protein-coding gene models, performed genome structure analyses and assessed its utility for analysing agronomically important genes and for developing molecular markers. Our T. urartu genome assembly provides a diploid reference for analysis of polyploid wheat genomes and is a valuable resource for the genetic improvement of wheat.

  15. Heading date QTL in winter wheat (Triticum aestivum L.) coincide with major developmental genes Vernalization-1 and Photoperiod-1

    USDA-ARS?s Scientific Manuscript database

    In wheat (Triticum aestivum L.), time from planting to spike emergence is influenced by genes controlling vernalization requirement and photoperiod response. Characterizing the available genetic diversity of known and novel alleles of Vernalization-1 (Vrn-1) and Photoperiod-1 (Ppd-1) in winter wheat...

  16. Repeatability of mice consumption discrimination of wheat (Triticum aestivum L.) varieties across field experiments and mouse cohorts

    USDA-ARS?s Scientific Manuscript database

    Whole grain wheat (Triticum aestivum L.) foods can provide critical nutrients for health and nutrition in the human diet. However, undesirable flavors are often suggested as a barrier to increased whole-grain consumption, yet flavor differences among wheat varieties have not been widely studied. Pot...

  17. Genome-wide genetic dissection of supernumerary spikelet and related traits in common wheat (Triticum aestivum L.)

    USDA-ARS?s Scientific Manuscript database

    In wheat (Triticum aestivum L), exotic genotypes express a broad range of spike-related traits and could be used as a source of new genes to enrich the germplasm for wheat breeding programs. In the present study, a population of 163 recombinant inbred lines derived from a cross between an elite line...

  18. Chromosome structure of Triticum longissimum relative to wheat.

    PubMed

    Naranjo, T

    1995-07-01

    Homoeologous pairing at meiotic metaphase I was analyzed in T. longissimum x T. aestivum hybrids in order to reconfirm the homoeologous relationships of T. longissimum chromosomes to wheat. Hybrids between T. longissimum and 'Chinese Spring' carrying the Ph1 gene or theph1b mutation, which showed low and high pairing levels, respectively, were used. Chromosome arms associated at metaphase I were identified by C-banding. The homoeology of chromosomes 1S (l) , 2S (l) , 3S (l) , 5S (l) and 6S (l) to wheat group 1,2, 3, 5, and 6 chromosomes, respectively, was confirmed. Chromsome arms 4S (l) S and 7S (l) S showed normal homoeologous relationships to wheat. The 4S (l) L arm carries a translocated segment from 7S (l) L relative to wheat. The 7S (l) L arm seldom paired, likely because this arm lost a relatively long segment and received a very short segment in the interchange with 4S (l) L. Available data suggest that translocation 4S (l) L/7S (l) L arose in the evolution of T. longissimum, which implies that this species was not the donor of the B genome of wheat.

  19. HMW and LMW glutenin alleles among putative tetraploid and hexaploid European spelt wheat (Triticum spelta L.) progenitors.

    PubMed

    Yan, Y; Hsam, S L K; Yu, J Z; Jiang, Y; Ohtsuka, I; Zeller, F J

    2003-11-01

    The allelic compositions of high- and low-molecular-weight subunits of glutenins (HMW-GS and LMW-GS) among European spelt ( Triticum spelta L.) and related hexaploid and tetraploid Triticum species were investigated by one- and two-dimensional polyacrylamide-gel electrophoresis (PAGE) and capillary electrophoresis (CE). A total of seven novel glutenin alleles (designated A1a*, B1d*, B1g*, B1f*, B1j*, D1a* at Glu-1 and A3h at the Glu-3 loci, respectively) in European spelt wheat were detected by SDS-PAGE, which were confirmed further by employing A-PAGE and CE methods. Particularly, two HMW-GS alleles, Glu-B1d* coding the subunits 6.1 and 22.1, and Glu-B1f* coding the subunits 13 and 22*, were found to occur in European spelt with frequencies of 32.34% and 5.11%, respectively. These two alleles were present in cultivated emmer (Triticum dicoccum), but they were not observed in bread wheat (Triticum aestivum L.). The allele Glu-B1g* coding for 13* and 19* subunits found in spelt wheat was also detected in club wheat (Triticum compactum L.). Additionally, two alleles coding for LMW-GS, Glu-A3h and Glu-B3d, occurred with high frequencies in spelt, club and cultivated emmer wheat, whereas these were not found or present with very low frequencies in bread wheat. Our results strongly support the secondary origin hypothesis, namely European spelt wheat originated from hybridization between cultivated emmer and club wheat. This is also confirmed experimentally by the artificial synthesis of spelt through crossing between old European emmer wheat, T. dicoccum and club wheat, T. compactum.

  20. Genomic Instability in Wheat Induced by Chromosome 6b(s) of Triticum Speltoides

    PubMed Central

    Kota, R. S.; Dvorak, J.

    1988-01-01

    A massive restructuring of chromosomes was observed during the production of a substitution of chromosome 6B(s) from Triticum speltoides (Tausch) Gren. ex Richter for chromosome 6B of Chinese Spring wheat (Triticum aestivum L.). Deletions, translocations, ring chromosomes, dicentric chromosomes and a paracentric inversion were observed. Chromosome rearrangements occurred in both euchromatic and heterochromatic regions. Chromosome rearrangements were not observed either in the amphiploid between Chinese Spring and T. speltoides or in Chinese Spring. No chromosome rearrangements were observed in the backcross derivatives; however, after self-pollination of a monosomic substitution (2n = 41) of chromosome 6B(s) for wheat chromosome 6B, 49 of the 138 plants carried chromosome aberrations. Chromosome rearrangements were observed in both wheat and T. speltoides chromosomes. The frequency of chromosome rearrangements was high among the B-genome chromosomes, moderate among the A-genome chromosomes, and low among the D-genome chromosomes. In the B genome, the rearrangements were nonrandom, occurring most frequently in chromosomes 1B and 5B. Chromosome rearrangements were also frequent for the 6B(s) chromosome of T. speltoides. An intriguing aspect of these observations is that they indicate that wheat genomes can be subject to uneven rates of structural chromosome differentiation in spite of being in the same nucleus. PMID:17246485

  1. Exogenous salicylic acid alleviates the toxicity of chlorpyrifos in wheat plants (Triticum aestivum).

    PubMed

    Wang, Caixia; Zhang, Qingming

    2017-03-01

    The role of exogenous salicylic acid (SA) in protecting wheat plants (Triticum aestivum) from contamination by the insecticide chlorpyrifos was investigated in this study. The wheat plants were grown in soils with different concentrations (5, 10, 20, and 40mgkg(-1)) of chlorpyrifos. When the third leaf emerged, the wheat leaves were sprayed with 1, 2, 4, 8, and 16mgL(-1) of SA once a day for 6 days. The results showed that wheat exposed to higher concentrations of chlorpyrifos (≥20mgkg(-1)) caused declines in growth and chlorophyll content and altered the activities of a series of antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX). Interestingly, treatments with different concentrations of SA mitigated the stress generated by chlorpyrifos and improved the measured parameters to varying degrees. Furthermore, a reverse transcription and quantitative PCR experiment revealed that the activities of SOD and CAT can be regulated by their target gene in wheat when treated with SA. We also found that SA is able to block the accumulation of chlorpyrifos in wheat. However, the effect of SA was related to its concentration. In this study, the application of 2mgL(-1) of SA had the greatest ameliorating effect on chlorpyrifos toxicity in wheat plants.

  2. Cysteine proteases and wheat (Triticum aestivum L) under drought: A still greatly unexplored association.

    PubMed

    Botha, Anna-Maria; Kunert, Karl J; Cullis, Christopher A

    2017-09-01

    Bread wheat (Triticum aestivum L.) provides about 19% of global dietary energy. Environmental stress, such as drought, affects wheat growth causing premature plant senescence and ultimately plant death. A plant response to drought is an increase in protease-mediated proteolysis with rapid degradation of proteins required for metabolic processes. Among the plant proteases that are increased in their activity following stress, cysteine proteases are the best characterized. Very little is known about particular wheat cysteine protease sequences, their expression and also localization. The current knowledge on wheat cysteine proteases belonging to the five clans (CA, CD, CE, CF and CP) is outlined, in particular their expression and possible function under drought. The first successes in establishing an annotated wheat genome database are further highlighted which has allowed more detailed mining of cysteine proteases. We also share our thoughts on future research directions considering the growing availability of genomic resources of this very important food crop. Finally, we also outline future application of developed knowledge in transgenic wheat plants for environmental stress protection and also as senescence markers to monitor wheat growth under environmental stress conditions. © 2017 John Wiley & Sons Ltd.

  3. Novel rust resistance in wheat (Triticum aestivum L.)

    USDA-ARS?s Scientific Manuscript database

    The Puccinia fungi that cause wheat rust diseases are among the most globally destructive agricultural pathogens. The most effective and utilized defense against rust is genetic resistance. The vast majority of rust resistance is racespecific conferred by single genes rapidly overcome by the pathoge...

  4. Genetic characterization and expression analysis of wheat (Triticum aestivum) line 07OR1074 exhibiting very low polyphenol oxidase (PPO) activity

    USDA-ARS?s Scientific Manuscript database

    Wheat (Triticum aestivum) polyphenol oxidase (PPO) contributes to the time dependent discoloration of Asian noodles. Wheat contains multiple paralogous and orthologous PPO genes , Ppo-A1, Ppo-D1, Ppo-A2, Ppo-D2, and Ppo-B2, expressed in wheat kernels, Ppo-A1, Ppo-D1, Ppo-A2, Ppo-D2, and Ppo-B2. To d...

  5. Preparation and characterization of durum wheat (Triticum durum) straw cellulose nanofibers by electrospinning.

    PubMed

    Montaño-Leyva, Beatriz; Rodriguez-Felix, Francisco; Torres-Chávez, Patricia; Ramirez-Wong, Benjamin; López-Cervantes, Jaime; Sanchez-Machado, Dalia

    2011-02-09

    Cellulose nanofibers from durum wheat straw ( Triticum durum ) were produced and characterized to study their potential as reinforcement fibers in biocomposites. Cellulose was isolated from wheat straw by chemical treatment. Nanofibers were produced via an electrospinning method using trifluoroacetic acid (TFA) as the solvent. The nanofibers were 270 ± 97 nm in diameter. Analysis of the FT-IR spectra demonstrated that the chemical treatment of the wheat straw removed hemicellulose and lignin. XRD revealed that the crystallinity of the cellulose was reduced after electrospinning, but nanofibers remained highly crystalline. The glass transition temperature (T(g) value) of the fibers was 130 °C, higher than that of cellulose (122 °C), and the degradation temperature of the fibers was 236 °C. Residual TFA was not present in the nanofibers as assessed by the FT-IR technique.

  6. Did the house mouse (Mus musculus L.) shape the evolutionary trajectory of wheat (Triticum aestivum L.)?

    PubMed Central

    Morris, C F; Fuerst, E P; Beecher, B S; Mclean, D J; James, C P; Geng, H W

    2013-01-01

    Wheat (Triticum aestivum L.) is one of the most successful domesticated plant species in the world. The majority of wheat carries mutations in the Puroindoline genes that result in a hard kernel phenotype. An evolutionary explanation, or selective advantage, for the spread and persistence of these hard kernel mutations has yet to be established. Here, we demonstrate that the house mouse (Mus musculus L.) exerts a pronounced feeding preference for soft over hard kernels. When allele frequencies ranged from 0.5 to 0.009, mouse predation increased the hard allele frequency as much as 10-fold. Studies involving a single hard kernel mixed with ∼1000 soft kernels failed to recover the mutant kernel. Nevertheless, the study clearly demonstrates that the house mouse could have played a role in the evolution of wheat, and therefore the cultural trajectory of humankind. PMID:24223281

  7. Cultivar variations in cadmium and lead accumulation and distribution among 30 wheat (Triticum aestivum L.) cultivars.

    PubMed

    Liu, Weitao; Liang, Lichen; Zhang, Xue; Zhou, Qixing

    2015-06-01

    In recent years, heavy metal pollution in agricultural soil in China has received public concern. The concept of low-accumulation cultivars (LACs) was proposed to minimize the influx of pollutants to the human food chain. Variations in Cd and Pb accumulation, distribution, and tolerance among 30 wheat (Triticum aestivum L.) cultivars were studied in a hydroponic experiment to preliminary identify LACs of Cd or Pb for further field experiments. Of the 30 wheat cultivars tested, 27 and 26 wheat cultivars showed no effect of the Cd/Pb treatments on the shoot and root biomass, respectively. The results showed that the tested wheat cultivars had considerable tolerance to Cd and Pb toxicity. Significant (p < 0.05) differences in shoot Cd concentration were observed among the tested wheat cultivars under treatments Cd1.0 and Cd1.0Pb15, ranging from 0.91 to 6.74 and from 0.87 to 5.96, with the mean of 3.83 and 2.94 mg kg(-1) DW, respectively. Significant (p < 0.05) differences in shoot Pb concentration were also observed among the tested wheat cultivars under treatments Pb15 and Cd1.0Pb15, ranging from 22.18 to 94.03 and from 18.30 to 76.88, with the mean of 50.38 and 41.20 mg kg(-1) DW, respectively. Low accumulation and internal distribution may both affect the cultivar differences in Cd and Pb accumulation in wheat shoots. Overall, wheat cultivars LF-13, LF-16, and LF-21 had lower Cd-accumulating abilities in their shoots. Wheat cultivars LF-13, LF-23, LF-26, and LF-27 showed low Pb accumulation characteristics in their shoots. An antagonistic interaction occurred between Cd and Pb in accumulation in wheat roots and shoots, which will be further studied in field experiments.

  8. [Genetics determination of wheat resistance to Puccinia graminis F. sp. tritici deriving from Aegilops cylindrica, Triticum erebuni and amphidiploid 4].

    PubMed

    Babaiants, O V; Babaiants, L T; Horash, A F; Vasil'ev, A A; Trackovetskaia, V A; Paliasn'iĭĭ, V A

    2012-01-01

    The lines of winter soft wheat developed in the Plant Breeding and Genetics Institute contain new effective introgressive Sr-genes. Line 85/06 possess SrAc1 gene, lines 47/06, 54/06, 82/06, 85/06, 87/06, 238/06, and 367/06 possess SrAc1 and SrAc2 derived from Aegilops cylindrica, line 352/06 - SrTe1 and SrTe2 from Triticum erebuni, line 12/86-04 - SrAd1 and SrAd2 from Amphidiploid 4 (Triticum dicoccoides x Triticum tauschii).

  9. Linkage Disequilibrium and Genome-Wide Association Mapping in Tetraploid Wheat (Triticum turgidum L.)

    PubMed Central

    Laidò, Giovanni; Marone, Daniela; Russo, Maria A.; Colecchia, Salvatore A.; Mastrangelo, Anna M.; De Vita, Pasquale; Papa, Roberto

    2014-01-01

    Association mapping is a powerful tool for the identification of quantitative trait loci through the exploitation of the differential decay of linkage disequilibrium (LD) between marker loci and genes of interest in natural and domesticated populations. Using a sample of 230 tetraploid wheat lines (Triticum turgidum ssp), which included naked and hulled accessions, we analysed the pattern of LD considering 26 simple sequence repeats and 970 mostly mapped diversity array technology loci. In addition, to validate the potential for association mapping in durum wheat, we evaluated the same genotypes for plant height, heading date, protein content, and thousand-kernel weight. Molecular and phenotypic data were used to: (i) investigate the genetic and phenotypic diversity; (ii) study the dynamics of LD across the durum wheat genome, by investigating the patterns of LD decay; and (iii) test the potential of our panel to identify marker–trait associations through the analysis of four quantitative traits of major agronomic importance. Moreover, we compared and validated the association mapping results with outlier detection analysis based on population divergence. Overall, in tetraploid wheat, the pattern of LD is extremely population dependent and is related to the domestication and breeding history of durum wheat. Comparing our data with several other studies in wheat, we confirm the position of many major genes and quantitative trait loci for the traits considered. Finally, the analysis of the selection signature represents a very useful complement to validate marker–trait associations. PMID:24759998

  10. Linkage disequilibrium and genome-wide association mapping in tetraploid wheat (Triticum turgidum L.).

    PubMed

    Laidò, Giovanni; Marone, Daniela; Russo, Maria A; Colecchia, Salvatore A; Mastrangelo, Anna M; De Vita, Pasquale; Papa, Roberto

    2014-01-01

    Association mapping is a powerful tool for the identification of quantitative trait loci through the exploitation of the differential decay of linkage disequilibrium (LD) between marker loci and genes of interest in natural and domesticated populations. Using a sample of 230 tetraploid wheat lines (Triticum turgidum ssp), which included naked and hulled accessions, we analysed the pattern of LD considering 26 simple sequence repeats and 970 mostly mapped diversity array technology loci. In addition, to validate the potential for association mapping in durum wheat, we evaluated the same genotypes for plant height, heading date, protein content, and thousand-kernel weight. Molecular and phenotypic data were used to: (i) investigate the genetic and phenotypic diversity; (ii) study the dynamics of LD across the durum wheat genome, by investigating the patterns of LD decay; and (iii) test the potential of our panel to identify marker-trait associations through the analysis of four quantitative traits of major agronomic importance. Moreover, we compared and validated the association mapping results with outlier detection analysis based on population divergence. Overall, in tetraploid wheat, the pattern of LD is extremely population dependent and is related to the domestication and breeding history of durum wheat. Comparing our data with several other studies in wheat, we confirm the position of many major genes and quantitative trait loci for the traits considered. Finally, the analysis of the selection signature represents a very useful complement to validate marker-trait associations.

  11. Occurrence of biogenic amines in beers produced with malted organic Emmer wheat (Triticum dicoccum).

    PubMed

    Mozzon, Massimo; Boselli, Emanuele; Obiedziński, Mieczysław W; Frega, Natale G

    2015-01-01

    Because several groups of microorganisms are able to decarboxylate amino acids, the presence of biogenic amines (BA) can be seen as an index of the microbiological quality of the brewing process. BAs were quantified for the first time in the intermediate products and craft beers produced with malted organic Emmer wheat (Triticum dicoccum) in a small size brewery in order to assess the possible presence of critical control points related to biological hazard in the brewing process. BA levels in beers produced exclusively from malted organic Emmer wheat were between 15.4 and 25.2 mg l(-1) in the samples of light beer (Lt) and between 8.9 and 15.3 mg l(-1) in double malt beers (DM) ready for consumption (the beers stored for 90 days at 1-2°C). Cadaverine and tyramine were the main BAs in the Lt and DM beers, respectively. Increased concentrations of BAs seemed to be more related to the heat treatment of the processing product during mashing and wort boiling, rather than to the fermentation process. Much lower concentrations were found in finished beers obtained from 50% malted organic Emmer wheat and 50% malted barley (up to 3.2 mg l(-1)) or from 30% malted Emmer wheat (up to 8.3 mg l(-1)). Thus, Emmer wheat malt can be a useful alternative to wheat and spelt for the production of beer with a limited content of BA, if the processing technology is kept under control.

  12. Characteristics of cadmium uptake and membrane transport in roots of intact wheat (Triticum aestivum L.) seedlings.

    PubMed

    Li, Lian-Zhen; Tu, Chen; Peijnenburg, Willie J G M; Luo, Yong-Ming

    2017-02-01

    Wheat is one of several cereals that is capable of accumulating higher amounts of Cd in plant tissues. It is important to understand the Cd(2+) transport processes in roots that result in excess Cd accumulation. Traditional destructive technologies have limited capabilities in analyzing root samples due to methodological limitations, and sometimes may result in false conclusions. The mechanisms of Cd(2+) uptake into the roots of wheat seedlings (Triticum aestivum L.) were investigated by assessing the impact of various inhibitors and channel blockers on Cd accumulation as well as the real-time net Cd(2+) flux at roots with the non-destructive scanning ion-selective electrode technique. The P-type ATPase inhibitor Na3VO4 (500 μM) had little effect on Cd uptake (p < 0.05) and the kinetics of transport in the root of wheat, suggesting that Cd(2+) uptake into wheat root cells is not directly dependent on H(+) gradients. While, the uncoupler 2,4-dinitrophenol significantly limited Cd(2+) uptake (p < 0.05) and transport kinetics in the root of wheat, suggesting the existence of metabolic mediation in the Cd(2+) uptake process by wheat. The Cd content at the whole-plant level in wheat was significantly (p < 0.05) decreased upon pretreatment with the Ca(2+) channel blockers La(3+) or Gd(3+) and Verapamil, but not in case of pretreatment with the K(+) channel blocker tetraethylammonium (TEA). In addition, the inhibitors of the Ca(2+) channel, as well as high concentrations of Ca(2+), reduced the real-time net Cd(2+) fluxes at the root surface in SIET experiments. These results indicate that Cd(2+) moves across the plasma lemma of the wheat root via Ca(2+) channels. In addition, our results suggested a role for protein synthesis in mediating Cd(2+) uptake and transport by wheat.

  13. Genome-wide characterization of JASMONATE-ZIM DOMAIN transcription repressors in wheat (Triticum aestivum L.).

    PubMed

    Wang, Yukun; Qiao, Linyi; Bai, Jianfang; Wang, Peng; Duan, Wenjing; Yuan, Shaohua; Yuan, Guoliang; Zhang, Fengting; Zhang, Liping; Zhao, Changping

    2017-02-13

    The JASMONATE-ZIM DOMAIN (JAZ) repressor family proteins are jasmonate co-receptors and transcriptional repressor in jasmonic acid (JA) signaling pathway, and they play important roles in regulating the growth and development of plants. Recently, more and more researches on JAZ gene family are reported in many plants. Although the genome sequencing of common wheat (Triticum aestivum L.) and its relatives is complete, our knowledge about this gene family remains vacant. Fourteen JAZ genes were identified in the wheat genome. Structural analysis revealed that the TaJAZ proteins in wheat were as conserved as those in other plants, but had structural characteristics. By phylogenetic analysis, all JAZ proteins from wheat and other plants were clustered into 11 sub-groups (G1-G11), and TaJAZ proteins shared a high degree of similarity with some JAZ proteins from Aegliops tauschii, Brachypodium distachyon and Oryza sativa. The Ka/Ks ratios of TaJAZ genes ranged from 0.0016 to 0.6973, suggesting that the TaJAZ family had undergone purifying selection in wheat. Gene expression patterns obtained by quantitative real-time PCR (qRT-PCR) revealed differential temporal and spatial regulation of TaJAZ genes under multifarious abiotic stress treatments of high salinity, drought, cold and phytohormone. Among these, TaJAZ7, 8 and 12 were specifically expressed in the anther tissues of the thermosensitive genic male sterile (TGMS) wheat line BS366 and normal control wheat line Jing411. Compared with the gene expression patterns in the normal wheat line Jing411, TaJAZ7, 8 and 12 had different expression patterns in abnormally dehiscent anthers of BS366 at the heading stage 6, suggesting that specific up- or down-regulation of these genes might be associated with the abnormal anther dehiscence in TGMS wheat line. This study analyzed the size and composition of the JAZ gene family in wheat, and investigated stress responsive and differential tissue-specific expression profiles of each

  14. A novel retrotransposon inserted in the dominant Vm-B1 allele confers spring growth habit in tetraploid wheat (Triticum turgidum L.)

    USDA-ARS?s Scientific Manuscript database

    Wheat is traditionally divided into winter and spring wheat that either has or lacks a vernalization requirement. In this study, a doubled haploid (DH) population derived from a cross between two spring tetraploid wheat (Triticum turgidum L.) genotypes, durum ‘Lebsock’ and Persian wheat accession PI...

  15. Evidence for cytoplasmic control of in vitro microspore embryogenesis in the anther culture of wheat (Triticum aestivum L.).

    PubMed

    Sági, L; Barnabás, B

    1989-12-01

    Anthers were cultured from two sets of seven lines of hexaploid wheat (Triticum aestivum L.) with different cytoplasms, the euplasmic nucleus donors, 'Siete Cerros 66' and 'Penjamo 62', as well as their six alloplasmic lines derived from wild relative species of the genera Triticum and Aegilops. Significant cytoplasmic and nuclear effects but no cytoplasmic-nuclear interaction were found for embryogenic anther response, with the best performance of 'Penjamo 62' in Ae. kotschyi cytoplasm. Plant regeneration was not affected significantly by the cytoplasmic background of the lines cultured. The possible genetic implications of the observed cytoplasmic and nuclear influences on the in vitro haploid induction of wheat are discussed.

  16. Toxic effect of perfluorooctanoic acid (PFOA) on germination and seedling growth of wheat (Triticum aestivum L.).

    PubMed

    Zhou, Lina; Xia, Mengjie; Wang, Li; Mao, Hui

    2016-09-01

    As a persistent organic pollutant in the environment, perfluorooctanoic acid (PFOA) has been extensively investigated. It can accumulate in food chains and in the human body. This work investigated the effect of PFOA on wheat (Triticum aestivum L.) germination and seedling growth by conducting a germination trial and a pot trial. A stimulatory effect of PFOA on seedling growth and root length of wheat was found at <0.2 mg kg(-1), while >800 mg kg(-1) PFOA inhibited germination rate, index, and root and shoot growth. In the pot trial, PFOA concentration in root was double that in the shoot. Soil and plant analyzer development (SPAD) and plant height of wheat seedling were inhibited by adding 200 mg kg(-1) PFOA. Proline content and POD activity in wheat seedlings increased as PFOA increased, while CAT activity decreased. Using logarithmic equations, proline content was selected as the most sensitive index by concentration for 50% of maximal effect (EC50). Hence, the tolerance of wheat seedlings to PFOA levels could be evaluated on the basis of the physiological index. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Impact of Triticum mosaic virus infection on hard winter wheat milling and bread baking quality.

    PubMed

    Miller, Rebecca A; Martin, T Joe; Seifers, Dallas L

    2012-03-15

    Triticum mosaic virus (TriMV) is a newly discovered wheat virus. Information regarding the effect of wheat viruses on milling and baking quality is limited. The objective of this study was to determine the impact of TriMV infection on the kernel characteristics, milling yield and bread baking quality of wheat. Commercial hard winter varieties evaluated included RonL, Danby and Jagalene. The TriMV resistance of RonL is low, while that of Danby and Jagalene is unknown. KS96HW10-3, a germplasm with high TriMV resistance, was included as a control. Plots of each variety were inoculated with TriMV at the two- to three-leaf stage. Trials were conducted at two locations in two crop years. TriMV infection had no effect on the kernel characteristics, flour yield or baking properties of KS96HW10-3. The effect of TriMV on the kernel characteristics of RonL, Danby and Jagalene was not consistent between crop years and presumably an environmental effect. The flour milling and bread baking properties of these three varieties were not significantly affected by TriMV infection. TriMV infection of wheat plants did not affect harvested wheat kernel characteristics, flour milling properties or white pan bread baking quality. Copyright © 2011 Society of Chemical Industry.

  18. Physiological and Antioxidant Responses in Wheat (Triticum aestivum) to HHCB in Soil.

    PubMed

    Chen, Cuihong; Cai, Zhang

    2015-08-01

    Seedlings of wheat (Triticum aestivum) were exposed in soil to the polycyclic musk chemical, 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta[g]-2-benzopyran (HHCB) for 21 days, to evaluate its effect upon chlorophyll (CHL), lipid peroxidation and the antioxidant system. The content of CHL in leaves was inhibited significantly after 14- and 21-days exposures, whereas it was significantly induced by a low level of HHCB after a 7-days exposure. The content of malondialdehyde (MDA) in wheat leaves increased with an increase in the concentration of HHCB in soil, indicating that oxidative stress could be induced by HHCB. Moreover, HHCB exposure induced significant antioxidant responses in wheat. The activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) in wheat leaves were induced by HHCB after 14 and 21 days of exposure. However, the changing trend of the antioxidant enzymes in wheat roots was different from that in leaves. The results suggested that the assayed parameters of T. aestivum could be used as responsive biomarkers for oxidative stress in the soil environment.

  19. Metabolite profiling of wheat grains (Triticum aestivum L.) from organic and conventional agriculture.

    PubMed

    Zörb, Christian; Langenkämper, Georg; Betsche, Thomas; Niehaus, Karsten; Barsch, Aiko

    2006-10-18

    In some European community countries up to 8% of the agricultural area is managed organically. The aim was to obtain a metabolite profile for wheat (Triticum aestivum L.) grains grown under comparable organic and conventional conditions. These conditions cannot be found in plant material originating from different farms or from products purchased in supermarkets. Wheat grains from a long-term biodynamic, bioorganic, and conventional farming system from the harvest 2003 from Switzerland were analyzed. The presented data show that using a high throughput GC-MS technique, it was possible to determine relative levels of a set of 52 different metabolites including amino acids, organic acids, sugars, sugar alcohols, sugar phosphates, and nucleotides from wheat grains. Within the metabolites from all field trials, there was at the most a 50% reduction comparing highest and lowest mean values. The statistical analysis of the data shows that the metabolite status of the wheat grain from organic and mineralic farming did not differ in concentrations of 44 metabolites. This result indicates no impact or a small impact of the different farming systems. In consequence, we did not detect extreme differences in metabolite composition and quality of wheat grains.

  20. Distribution of Cadmium, Iron, and Zinc in Millstreams of Hard Winter Wheat (Triticum aestivum L.).

    PubMed

    Guttieri, Mary J; Seabourn, Bradford W; Liu, Caixia; Baenziger, P Stephen; Waters, Brian M

    2015-12-16

    Hard winter wheat (Triticum aestivum L.) is a major crop in the Great Plains of the United States, and our previous work demonstrated that wheat genotypes vary for grain cadmium accumulation with some exceeding the CODEX standard (0.2 mg kg(-1)). Previous reports of cadmium distribution in flour milling fractions have not included high cadmium grain. This study measured the distribution of cadmium, zinc, and iron in flour and bran streams from high cadmium (0.352 mg kg(-1)) grain on a pilot mill that produced 12 flour and four bran streams. Recovery in flour was substantially greater for cadmium (50%) than for zinc (31%) or iron (22%). Cadmium, zinc, and iron in the lowest mineral concentration flour stream, representing the purest endosperm fraction, were 52, 22, and 11%, respectively, of initial grain concentration. Our results indicate that, relative to zinc and iron, a greater proportion of cadmium is stored in the endosperm, the source of white flour.

  1. Dynamics of small RNAs of virus and host origin from wheat streak mosaic virus and/or triticum mosaic virus infected susceptible and temperature-sensitive resistant wheat cultivars

    USDA-ARS?s Scientific Manuscript database

    Co-infection of wheat (Triticum aestivum L.) by Wheat streak mosaic virus (WSMV, a Tritimovirus) and Triticum mosaic virus (TriMV, a Poacevirus) of the family Potyviridae causes synergistic interaction. In this study, the effects of the synergistic interaction between WSMV and TriMV on endogenous an...

  2. Distribution of gluten proteins in bread wheat (Triticum aestivum) grain

    PubMed Central

    Tosi, Paola; Gritsch, Cristina Sanchis; He, Jibin; Shewry, Peter R.

    2011-01-01

    Background and Aims Gluten proteins are the major storage protein fraction in the mature wheat grain. They are restricted to the starchy endosperm, which forms white flour on milling, and interact during grain development to form large polymers which form a continuous proteinaceous network when flour is mixed with water to give dough. This network confers viscosity and elasticity to the dough, enabling the production of leavened products. The starchy endosperm is not a homogeneous tissue and quantitative and qualitative gradients exist for the major components: protein, starch and cell wall polysaccharides. Gradients in protein content and composition are the most evident and are of particular interest because of the major role played by the gluten proteins in determining grain processing quality. Methods Protein gradients in the starchy endosperm were investigated using antibodies for specific gluten protein types for immunolocalization in developing grains and for western blot analysis of protein extracts from flour fractions obtained by sequential abrasion (pearling) to prepare tissue layers. Key Results Differential patterns of distribution were found for the high-molecular-weight subunits of glutenin (HMW-GS) and γ-gliadins when compared with the low-molecular-weight subunits of glutenin (LMW-GS), ω- and α-gliadins. The first two types of gluten protein are more abundant in the inner endosperm layers and the latter more abundant in the subaleurone. Immunolocalization also showed that segregation of gluten proteins occurs both between and within protein bodies during protein deposition and may still be retained in the mature grain. Conclusions Quantitative and qualitative gradients in gluten protein composition are established during grain development. These gradients may be due to the origin of subaleurone cells, which unlike other starchy endosperm cells derive from the re-differentiation of aleurone cells, but could also result from the action of specific

  3. Distribution of gluten proteins in bread wheat (Triticum aestivum) grain.

    PubMed

    Tosi, Paola; Gritsch, Cristina Sanchis; He, Jibin; Shewry, Peter R

    2011-07-01

    Gluten proteins are the major storage protein fraction in the mature wheat grain. They are restricted to the starchy endosperm, which forms white flour on milling, and interact during grain development to form large polymers which form a continuous proteinaceous network when flour is mixed with water to give dough. This network confers viscosity and elasticity to the dough, enabling the production of leavened products. The starchy endosperm is not a homogeneous tissue and quantitative and qualitative gradients exist for the major components: protein, starch and cell wall polysaccharides. Gradients in protein content and composition are the most evident and are of particular interest because of the major role played by the gluten proteins in determining grain processing quality. Protein gradients in the starchy endosperm were investigated using antibodies for specific gluten protein types for immunolocalization in developing grains and for western blot analysis of protein extracts from flour fractions obtained by sequential abrasion (pearling) to prepare tissue layers. Differential patterns of distribution were found for the high-molecular-weight subunits of glutenin (HMW-GS) and γ-gliadins when compared with the low-molecular-weight subunits of glutenin (LMW-GS), ω- and α-gliadins. The first two types of gluten protein are more abundant in the inner endosperm layers and the latter more abundant in the subaleurone. Immunolocalization also showed that segregation of gluten proteins occurs both between and within protein bodies during protein deposition and may still be retained in the mature grain. Quantitative and qualitative gradients in gluten protein composition are established during grain development. These gradients may be due to the origin of subaleurone cells, which unlike other starchy endosperm cells derive from the re-differentiation of aleurone cells, but could also result from the action of specific regulatory signals produced by the maternal tissue

  4. Identification and characterization of a high kernel weight mutant induced by gamma radiation in wheat (Triticum aestivum L.).

    PubMed

    Cheng, Xuejiao; Chai, Lingling; Chen, Zhaoyan; Xu, Lu; Zhai, Huijie; Zhao, Aiju; Peng, Huiru; Yao, Yingyin; You, Mingshan; Sun, Qixin; Ni, Zhongfu

    2015-10-28

    Inducing mutations are considered to be an effective way to create novel genetic variations and hence novel agronomical traits in wheat. This study was conducted to assess the genetic differences between Shi4185 and its mutant line Fu4185, produced by gamma radiation with larger grain, and to identify quantitative trait loci (QTLs) for thousand kernel weight (TKW). Phenotypic analysis revealed that the TKW of Fu4185 was much higher than that of Shi4185 under five different environments. At the genomic level, 110 of 2019 (5.4%) simple sequence repeats (SSR) markers showed polymorphism between Shi4185 and Fu4185. Notably, 30% (33 out of 110) polymorphic SSR markers were located on the D-genome, which was higher than the percentage of polymorphisms among natural allohexaploid wheat genotypes, indicating that mutations induced by gamma radiation could be a potential resource to enrich the genetic diversity of wheat D-genome. Moreover, one QTL, QTkw.cau-5D, located on chromosome 5DL, with Fu4185 contributing favorable alleles, was detected under different environments, especially under high temperature conditions. QTkw.cau-5D is an environmental stable QTL, which may be a desired target for genetic improvement of wheat kernel weight.

  5. Effects of tetrabromobisphenol A as an emerging pollutant on wheat (Triticum aestivum) at biochemical levels.

    PubMed

    Li, Yaning; Zhou, Qixing; Li, Fengxiang; Liu, Xiaoling; Luo, Yi

    2008-12-01

    Biochemical responses of wheat (Triticum aestivum) to the stress of tetrabromobisphenol A (TBBPA) as an emerging pollutant were examined. The results indicated that reduction of the chlorophyll (CHL) content in wheat leaves could be observed. However, the changes in the CHL content with the increasing TBBPA concentration from 50 to 5000 mg kg(-1) were insignificant (p>0.05). Increased malondialdehyde levels were detected in wheat leaves after both 7-d and 12-d exposures. The changes in the activity of superoxide dismutases (SOD), peroxidases (POD) and catalases (CAT) in wheat leaves irregularly fluctuated with time as the TBBPA concentration increased. However, significant (p<0.05) decrease in the activity of POD and CAT treated with 500 and 5000 mg kg(-1) TBBPA could be observed. Our data also showed that the plant has the capacity to tolerate the oxidative stress, but the capacity would be lost with prolonged exposure and increasing TBBPA concentration. There were no dose-response effects in the changes between the activity of antioxidant enzymes (SOD, POD and CAT) and the concentration of TBBPA. The decrease in the activity of POD and CAT could be considered as good biomarkers of serious stress by TBBPA in soil environment.

  6. Exploration of small non coding RNAs in wheat (Triticum aestivum L.).

    PubMed

    Yao, Yingyin; Sun, Qixin

    2012-09-01

    Large numbers of noncoding RNA transcripts (ncRNAs) are being revealed in animals and plants, which can function at the transcriptional or posttranscriptional level to negatively regulate or control genes, repetitive sequences, viruses, and mobile elements. With the identification of microRNA and siRNAs in diverse organisms, increasing evidences indicate that these short npcRNAs play important roles in development, stress response and diseases by cleavage of target mRNA or interfere with translation of target genes. To explore the small RNA transcriptome in wheat (Triticum aestivum L.), a couple of small RNA libraries were constructed and sequenced by high throughput sequencing method. In this review, we focused on the discovery of wheat small RNAs including miRNA and some other non coding small RNAs, then have a view of miRNAs conservations and differences among wheat and other plant species. We also summarized the developmental and stress responsive expression of wheat miRNAs and these observations could serve as a foundation for future functional studies.

  7. A review of the occurrence of Grain softness protein-1 genes in wheat (Triticum aestivum L.).

    PubMed

    Morris, Craig F; Geng, Hongwei; Beecher, Brian S; Ma, Dongyun

    2013-12-01

    Grain softness protein-1 (Gsp-1) is a small, 495-bp intronless gene found throughout the Triticeae tribe at the distal end of group 5 chromosomes. With the Puroindolines, it constitutes a key component of the Hardness locus. Gsp-1 likely plays little role in grain hardness, but has direct interest due to its utility in phylogeny and its role in arabinogalactan peptides. Further role(s) remain to be identified. In the polyploid wheats, Triticum aestivum and T. turgidum, the gene is present in a homoeologous series. Since its discovery, there have been conflicting reports and data as to the number of Gsp-1 genes and the level of sequence polymorphism. Little is known about allelic variation within a species. In the simplest model, a single Gsp-1 gene is present in each wheat and Aegilops tauschii genome. The present review critically re-examines the published and some unpublished data (sequence available in the NCBI nucleotide and MIPS Wheat Genome Databases). A number of testable hypotheses are identified, and include the level of polymorphism that may represent (and define) different Gsp-1 alleles, the existence of a fourth Gsp-1 gene, and the apparent, at times, high level of naturally-occurring or artifactual gene chimeras. In summary, the present data provide firm evidence for at most, three Gsp-1 genes in wheat, although there are numerous data that suggest a more complex model.

  8. Proteomic analysis on salicylic acid-induced salt tolerance in common wheat seedlings (Triticum aestivum L.).

    PubMed

    Kang, Guozhang; Li, Gezi; Zheng, Beibei; Han, Qiaoxia; Wang, Chenyang; Zhu, Yunji; Guo, Tiancai

    2012-12-01

    The influence of salicylic acid (SA) on the salt tolerance mechanism in seedlings of common wheat (Triticum aestivum L.) was investigated using physiological measurements combined with global expression profiling (proteomics). In the present study, 0.5mM SA significantly reduced NaCl-induced growth inhibition in wheat seedlings, manifesting as increased fresh weights, dry weights, and photosynthetic pigments, but decreased lipid peroxidation. Two-week-old wheat seedlings treated with 0.5mM SA, 250 mM NaCl and 250 mM NaCl+0.5mM SA for 3 days were used for the proteomic analyses. In total, 39 proteins differentially regulated by both salt and SA were revealed by 2D PAGE, and 38 proteins were identified by MALDI-TOF/TOF MS. The identified proteins were involved in various cellular responses and metabolic processes including signal transduction, stress defense, energy, metabolism, photosynthesis, and others of unknown function. All protein spots involved in signal transduction and the defense response were significantly upregulated by SA under salt stress, suggesting that these proteins could play a role in the SA-induced salt resistance in wheat seedlings.

  9. Structural and functional analysis of chitinase gene family in wheat (Triticum aestivum).

    PubMed

    Mishra, A K; Pandey, Bharati; Tyagi, Chetna; Chakraborty, Ohika; Kumar, Amrender; Jain, A K

    2015-04-01

    Chitinases are the hydrolytic enzymes which protect plants against pathogen attack. However, the precise role of chitinases in disease resistance has not been explored in wheat. In the present study, in silico approach, including secondary structure analysis, detailed signature pattern study, cis-acting regulatory elements survey, evolutionary trends and three-dimensional molecular modeling was used for different chitinase classes of wheat (Triticum aestivum). Homology modeling of class I, II, IV and 3 chitinase proteins was performed using the template crystal structure. The model structures were further refined by molecular mechanics methods using different tools, such as Procheck, ProSA and Verify3D. Secondary structure studies revealed greater percentage of residues forming a helix conformation with specific signature pattern, similar to casein kinase II phosphorylation site, amidation site, N-myristoylation (N-MYR) site and protein kinase C phoshorylation site. The expression profile suggested that wheat chitinase gene was highly expressed in cell culture and callus. We found that wheat chitinases showed more functional similarity with rice and barley. The results provide insight into the evolution of the chitinase family, constituting a diverse array of pathogenesis-related proteins. The study also provides insight into the possible binding sites of chitinase proteins and may further enhance our knowledge of fungal resistance mechanism in plants.

  10. Diversity of fungal endophytes in recent and ancient wheat ancestors Triticum dicoccoides and Aegilops sharonensis.

    PubMed

    Ofek-Lalzar, Maya; Gur, Yonatan; Ben-Moshe, Sapir; Sharon, Or; Kosman, Evsey; Mochli, Elad; Sharon, Amir

    2016-10-01

    Endophytes have profound impacts on plants, including beneficial effects on agriculturally important traits. We hypothesized that endophytes in wild plants include beneficial endophytes that are absent or underrepresented in domesticated crops. In this work, we studied the structure of endophyte communities in wheat-related grasses, Triticum dicoccoides and Aegilops sharonensis, and compared it to an endophyte community from wheat (T. aeastivum). Endophytes were isolated by cultivation and by cultivation-independent methods. In total, 514 intergenic spacer region sequences from single cultures were analyzed. Categorization at 97% sequence similarity resulted in 67 operational taxonomic units (OTUs) that were evenly distributed between the different plant species. A narrow core community of Alternaria spp. was found in all samples, but each plant species also contained a significant portion of unique endophytes. The cultivation-independent analysis identified a larger number of OTUs than the cultivation method, half of which were singletons or doubletons. For OTUs with a relative abundance >0.5%, similar numbers were obtained by both methods. Collectively, our data show that wild grass relatives of wheat contain a wealth of taxonomically diverse fungal endophytes that are not found in modern wheat, some of which belong to taxa with known beneficial effects. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Crossability of Triticum urartu and Triticum monococcum wheats, homoeologous recombination, and description of a panel of interspecific introgression lines.

    PubMed

    Fricano, Agostino; Brandolini, Andrea; Rossini, Laura; Sourdille, Pierre; Wunder, Joerg; Effgen, Sigi; Hidalgo, Alyssa; Erba, Daniela; Piffanelli, Pietro; Salamini, Francesco

    2014-08-21

    Triticum monococcum (genome A(m)) and T. urartu (genome A(u)) are diploid wheats, with the first having been domesticated in the Neolithic Era and the second being a wild species. In a germplasm collection, rare wild T. urartu lines with the presence of T. monococcum alleles were found. This stimulated our interest to develop interspecific introgression lines of T. urartu in T. monococcum, a breeding tool currently implemented in several crop species. Moreover, the experiments reported were designed to reveal the existence in nature of A(m)/A(u) intermediate forms and to clarify whether the two species are at least marginally sexually compatible. From hand-made interspecific crosses, almost-sterile F1 plants were obtained when the seed-bearing parent was T. monococcum. A high degree of fertility was, however, evident in some advanced generations, particularly when T. urartu donors were molecularly more related to T. monococcum. Analysis of the marker populations demonstrated chromosome pairing and recombination in F1 hybrid plants. Forty-six introgression lines were developed using a line of T. monococcum with several positive agronomic traits as a recurrent parent. Microsatellite markers were tested on A(u) and A(m) genomes, ordered in a T. monococcum molecular map, and used to characterize the exotic DNA fragments present in each introgression line. In a test based on 28 interspecific introgression lines, the existence of genetic variation associated with T. urartu chromosome fragments was proven for the seed content of carotenoids, lutein, β-cryptoxanthin, and zinc. The molecular state of available introgression lines is summarized.

  12. Crossability of Triticum urartu and Triticum monococcum Wheats, Homoeologous Recombination, and Description of a Panel of Interspecific Introgression Lines

    PubMed Central

    Fricano, Agostino; Brandolini, Andrea; Rossini, Laura; Sourdille, Pierre; Wunder, Joerg; Effgen, Sigi; Hidalgo, Alyssa; Erba, Daniela; Piffanelli, Pietro; Salamini, Francesco

    2014-01-01

    Triticum monococcum (genome Am) and T. urartu (genome Au) are diploid wheats, with the first having been domesticated in the Neolithic Era and the second being a wild species. In a germplasm collection, rare wild T. urartu lines with the presence of T. monococcum alleles were found. This stimulated our interest to develop interspecific introgression lines of T. urartu in T. monococcum, a breeding tool currently implemented in several crop species. Moreover, the experiments reported were designed to reveal the existence in nature of Am/Au intermediate forms and to clarify whether the two species are at least marginally sexually compatible. From hand-made interspecific crosses, almost-sterile F1 plants were obtained when the seed-bearing parent was T. monococcum. A high degree of fertility was, however, evident in some advanced generations, particularly when T. urartu donors were molecularly more related to T. monococcum. Analysis of the marker populations demonstrated chromosome pairing and recombination in F1 hybrid plants. Forty-six introgression lines were developed using a line of T. monococcum with several positive agronomic traits as a recurrent parent. Microsatellite markers were tested on Au and Am genomes, ordered in a T. monococcum molecular map, and used to characterize the exotic DNA fragments present in each introgression line. In a test based on 28 interspecific introgression lines, the existence of genetic variation associated with T. urartu chromosome fragments was proven for the seed content of carotenoids, lutein, β-cryptoxanthin, and zinc. The molecular state of available introgression lines is summarized. PMID:25147190

  13. Effects of Earthworm (Eisenia fetida) and Wheat (Triticum aestivum) Straw Additions on Selected Properties of Petroleum-Contaminated Soils

    Treesearch

    Mac A. Callaham; Arthur J. Stewart; Clara Alarcon; Sara J. McMillen

    2002-01-01

    Current bioremediation techniques for petroleum-contaminated soils are designed to remove contaminants as quickly and efficiently as possible, but not necessarily with postremediation soil biological quality as a primary objective. To test a simple postbioremediation technique, we added earthworms (Eisenia fetida) or wheat (Triticum aestivum...

  14. Triticum mosaic virus exhibits limited population variation yet shows evidence of parallel evolution after replicated serial passage in wheat

    USDA-ARS?s Scientific Manuscript database

    An infectious cDNA clone of Triticum mosaic virus (TriMV) (genus Poacevirus; family Potyviridae) was used to establish three independent lineages in wheat to examine intra-host population diversity levels within protein 1 (P1) and coat protein (CP) cistrons over time. Genetic variation was assessed ...

  15. Use of student’s t statistic as a phenotype of relative consumption preference of wheat (Triticum aestivum L.) grain

    USDA-ARS?s Scientific Manuscript database

    Whole-grain wheat (Triticum aestivum L.) products provide essential nutrients to humans, but bran attributes may hinder consumption. Differences in grain attributes including flabor/aroma can be indentified using the house mouse (Mus musculus L.) as a model system. A potential application of this mo...

  16. Targeted mapping of Cdu1, a major locus regulating grain cadmium concentration in durum wheat (Triticum turgidum L. var durum)

    USDA-ARS?s Scientific Manuscript database

    Some durum wheat (Triticum turgidum L. var durum) cultivars have the genetic propensity to accumulate cadmium (Cd) in the grain. A major gene controlling grain Cd concentration designated as Cdu1 has been reported on 5B, but the genetic factor(s) conferring the low Cd phenotype are currently unknow...

  17. Complementary epistasis involving Sr12 explains adult plant resistance to stem rust in Thatcher wheat (Triticum aestivum L.)

    USDA-ARS?s Scientific Manuscript database

    Adult plant resistance (APR) in wheat (Triticum aestivum L.) to stem rust, caused by Puccinia graminis f. sp. tritici, is desirable because this resistance can be race non-specific. Resistance derived from cultivar Thatcher can confer high levels of APR to the virulent P. graminis f. sp. tritici rac...

  18. Development and Characterization of a New TILLING Population of Common Bread Wheat (Triticum aestivum L.)

    PubMed Central

    Chen, Liang; Huang, Linzhou; Min, Donghong; Phillips, Andy; Wang, Shiqiang; Madgwick, Pippa J.; Parry, Martin A. J.; Hu, Yin-Gang

    2012-01-01

    Mutagenesis is an important tool in crop improvement. However, the hexaploid genome of wheat (Triticum aestivum L.) presents problems in identifying desirable genetic changes based on phenotypic screening due to gene redundancy. TILLING (Targeting Induced Local Lesions IN Genomes), a powerful reverse genetic strategy that allows the detection of induced point mutations in individuals of the mutagenized populations, can address the major challenge of linking sequence information to the biological function of genes and can also identify novel variation for crop breeding. Wheat is especially well-suited for TILLING due to the high mutation densities tolerated by polyploids. However, only a few wheat TILLING populations are currently available in the world, which is far from satisfying the requirement of researchers and breeders in different growing environments. In addition, current TILLING screening protocols require costly fluorescence detection systems, limiting their use, especially in developing countries. We developed a new TILLING resource comprising 2610 M2 mutants in a common wheat cultivar ‘Jinmai 47’. Numerous phenotypes with altered morphological and agronomic traits were observed from the M2 and M3 lines in the field. To simplify the procedure and decrease costs, we use unlabeled primers and either non-denaturing polyacrylamide gels or agarose gels for mutation detection. The value of this new resource was tested using PCR with RAPD and Intron-spliced junction (ISJ) primers, and also TILLING in three selected candidate genes, in 300 and 512 mutant lines, revealing high mutation densities of 1/34 kb by RAPD/ISJ analysis and 1/47 kb by TILLING. In total, 31 novel alleles were identified in the 3 targeted genes and confirmed by sequencing. The results indicate that this mutant population represents a useful resource for the wheat research community. We hope that the use of this reverse genetics resource will provide novel allelic diversity for wheat

  19. Development and characterization of a new TILLING population of common bread wheat (Triticum aestivum L.).

    PubMed

    Chen, Liang; Huang, Linzhou; Min, Donghong; Phillips, Andy; Wang, Shiqiang; Madgwick, Pippa J; Parry, Martin A J; Hu, Yin-Gang

    2012-01-01

    Mutagenesis is an important tool in crop improvement. However, the hexaploid genome of wheat (Triticum aestivum L.) presents problems in identifying desirable genetic changes based on phenotypic screening due to gene redundancy. TILLING (Targeting Induced Local Lesions IN Genomes), a powerful reverse genetic strategy that allows the detection of induced point mutations in individuals of the mutagenized populations, can address the major challenge of linking sequence information to the biological function of genes and can also identify novel variation for crop breeding. Wheat is especially well-suited for TILLING due to the high mutation densities tolerated by polyploids. However, only a few wheat TILLING populations are currently available in the world, which is far from satisfying the requirement of researchers and breeders in different growing environments. In addition, current TILLING screening protocols require costly fluorescence detection systems, limiting their use, especially in developing countries. We developed a new TILLING resource comprising 2610 M(2) mutants in a common wheat cultivar 'Jinmai 47'. Numerous phenotypes with altered morphological and agronomic traits were observed from the M(2) and M(3) lines in the field. To simplify the procedure and decrease costs, we use unlabeled primers and either non-denaturing polyacrylamide gels or agarose gels for mutation detection. The value of this new resource was tested using PCR with RAPD and Intron-spliced junction (ISJ) primers, and also TILLING in three selected candidate genes, in 300 and 512 mutant lines, revealing high mutation densities of 1/34 kb by RAPD/ISJ analysis and 1/47 kb by TILLING. In total, 31 novel alleles were identified in the 3 targeted genes and confirmed by sequencing. The results indicate that this mutant population represents a useful resource for the wheat research community. We hope that the use of this reverse genetics resource will provide novel allelic diversity for wheat

  20. Differential regulation of alanine aminotransferase homologues by abiotic stresses in wheat (Triticum aestivum L.) seedlings.

    PubMed

    Kendziorek, Maria; Paszkowski, Andrzej; Zagdańska, Barbara

    2012-06-01

    Wheat (Triticum aestivum L.) seedlings contain four alanine aminotransferase (AlaAT) homologues. Two of them encode AlaAT enzymes, whereas two homologues act as glumate:glyoxylate aminotransferase (GGAT). To address the function of the distinct AlaAT homologues a comparative examination of the changes in transcript level together with the enzyme activity and alanine and glutamate content in wheat seedlings subjected to low oxygen availability, nitrogen and light deficiency has been studied. Shoots of wheat seedlings were more tolerant to hypoxia than the roots as judging on the basis of enzyme activity and transcript level. Hypoxia induced AlaAT1 earlier in roots than in shoots, while AlaAT2 and GGAT were unaffected. The increase in AlaAT activity lagged behind the increase in alanine content. Nitrogen deficiency has little effect on the activity of GGAT. In contrast, lower activity of AlaAT and the level of mRNA for AlaAT1 and AlaAT2 in wheat seedlings growing on a nitrogen-free medium seems to indicate that AlaAT is regulated by the availability of nitrogen. Both AlaAT and GGAT activities were present in etiolated wheat seedlings but their activity was half of that observed in light-grown seedlings. Exposure of etiolated seedlings to light caused an increase in enzyme activities and up-regulated GGAT1. It is proposed that hypoxia-induced AlaAT1 and light-induced peroxisomal GGAT1 appears to be crucial for the regulation of energy availability in plants grown under unfavourable environmental conditions. Key message In young wheat seedlings, both AlaAT and GGAT are down-regulated by nitrogen deficiency, whereas AlaAT1 is upregulated by hypoxia and GGAT1 by light.

  1. Factors Affecting the Radiosensitivity of Hexaploid Wheat to γ-Irradiation: Radiosensitivity of Hexaploid Wheat (Triticum aestivum L.)

    PubMed Central

    Zhao, Linshu; Guo, Huijun; Xie, Yongdun; Zhao, Shirong; Song, Xiyun; Han, Longzhi; Liu, Luxiang

    2016-01-01

    Understanding the radiosensitivity of plants, an important factor in crop mutation breeding programs, requires a thorough investigation of the factors that contribute to this trait. In this study, we used the highly radiosensitive wheat (Triticum aestivum L.) variety HY1 and J411, a γ-irradiation-insensitive control, which were screened from a natural population, to examine the factors affecting radiosensitivity, including free radical content and total antioxidant capacity, as well as the expression of TaKu70 and TaKu80 (DNA repair-related genes) as measured by real-time PCR. We also investigated the alternative splicing of this gene in the wild-type wheat ecotype by sequence analysis. Free radical contents and total antioxidant capacity significantly increased upon exposure of HY1 wheat to γ-irradiation in a dose-dependent manner. By contrast, in J411, the free radical contents exhibited a similar trend, but the total antioxidant capacity exhibited a downward trend upon increasing γ-irradiation. Additionally, we detected dose-dependent increases in TaKu70 and TaKu80 expression levels in γ-irradiated HY1, while in J411, TaKu70 expression levels increased, followed by a decline. We also detected alternative splicing of TaKu70 mRNA, namely, intron retention, in HY1 but not in J411. Our findings indicate that γ-irradiation induces oxidative stress and DNA damage in hexaploid wheat, resulting in growth retardation of seedlings, and they suggest that TaKu70 may play a causal role in radiosensitivity in HY1. Further studies are required to exploit these factors to improve radiosensitivity in other wheat varieties. PMID:27551965

  2. The einkorn wheat (Triticum monococcum) mutant, maintained vegetative phase, is caused by a deletion in the VRN1 gene.

    PubMed

    Shitsukawa, Naoki; Ikari, Chihiro; Shimada, Sanae; Kitagawa, Satoshi; Sakamoto, Koichi; Saito, Hiroyuki; Ryuto, Hiromichi; Fukunishi, Nobuhisa; Abe, Tomoko; Takumi, Shigeo; Nasuda, Shuhei; Murai, Koji

    2007-04-01

    The einkorn wheat (Triticum monococcum) mutant, maintained vegetative phase (mvp), was induced by nitrogen ion-beam treatment and was identified by its inability to transit from the vegetative to reproductive phase. In our previous study, we showed that WAP1 (wheat APETALA1) is a key gene in the regulatory pathway that controls phase transition from vegetative to reproductive growth in common wheat. WAP1 is an ortholog of the VRN1 gene that is responsible for vernalization insensitivity in einkorn wheat. The mvp mutation resulted from deletion of the VRN1 coding and promoter regions, demonstrating that WAP1/VRN1 is an indispensable gene for phase transition in wheat. Expression analysis of flowering-related genes in mvp plants indicated that wheat GIGANTIA (GI), CONSTANS (CO) and SUPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) genes either act upstream of or in a different pathway to WAP1/VRN1.

  3. In vitro transcripts of wild-type and fluorescent protein-tagged triticum mosaic virus (family potyviridae) are biologically active in wheat

    USDA-ARS?s Scientific Manuscript database

    Triticum mosaic virus (TriMV) (genus Poacevirus, family Potyviridae) is a recently described eriophyid mite-transmitted wheat virus. In vitro RNA transcripts generated from full-length cDNA clones of TriMV proved infectious on wheat, and the progeny virus was efficiently transmitted by wheat curl m...

  4. Wheat (Triticum aestivum) Is Susceptible to the Parasitic Angiosperm Striga hermonthica, a Major Cereal Pathogen in Africa.

    PubMed

    Vasey, R A; Scholes, J D; Press, M C

    2005-11-01

    ABSTRACT Striga hermonthica is a parasitic weed endemic to sub-Saharan Africa. It most commonly parasitizes sorghum, maize, pearl millet, and upland rice, lowering yields and affecting the welfare of over 100 million people, principally subsistence farmers. Cereal crops with complete resistance to this pathogen have not been reported. In southern and eastern Africa, where Striga spp. are endemic, 5.6 million ha of wheat are cultivated annually. Despite this, there are only isolated field reports of wheat infected with Striga spp. It is not clear whether this is due to resistance in this cereal or to environmental factors. In this article, we examined the ability of root exudates from five cultivars of wheat (Chablis, Cadenza, Hereward, Riband, and Brigadier) to trigger germination of S. hermonthica seed. A study of the development of S. hermonthica on two cultivars of wheat (Hereward and Chablis) and on a range of ancestral relatives of wheat (Triticum and Aegilops spp.) then was conducted. Last, the effect of Striga spp. on host growth and yield was examined using wheat cv. Chablis and compared with that of a highly susceptible sorghum cultivar (CSH-1). Wheat was able to support the germination, attachment, and subsequent development of Striga spp. All wheat cultivars and ancestral species of modern wheat (Triticum and Aegilops spp.) were susceptible to S. hermonthica. In addition, in wheat, infection severely lowered plant height (-24%) and biomass accumulation (-33%); a small parasite biomass elicited a large host response. In conclusion, wheat is highly susceptible to S. hermonthica and, in light of global climate change, this may have implications for wheat-producing areas of Africa.

  5. Development-associated microRNAs in grains of wheat (Triticum aestivum L.)

    PubMed Central

    2013-01-01

    Background MicroRNAs (miRNAs) are a class of regulatory small RNAs (sRNAs) that down-regulate target genes by mRNA degradation or translational repression. Numerous plant miRNAs have been identified. Evidence is increasing for their crucial roles during plant development. In the globally important crop of wheat (Triticum aestivum L.), the process by which grains are formed determines yield and end-use quality. However, little is known about miRNA-mediated developmental regulation of grain production. Here, we applied high-throughput sRNA sequencing and genome-wide mining to identify miRNAs potentially involved in the developmental regulation of wheat grains. Results Four sRNA libraries were generated and sequenced from developing grains sampled at 5, 15, 25, and 30 days after pollination (DAP). Through integrative analysis, we identified 605 miRNAs (representing 540 families) and found that 86 are possibly involved in the control of grain-filling. Additionally, 268 novel miRNAs (182 families) were identified, with 18 of them also potentially related to that maturation process. Our target predictions indicated that the 104 grain filling-associated miRNAs might target a set of wheat genes involved in various biological processes, including the metabolism of carbohydrates and proteins, transcription, cellular transport, cell organization and biogenesis, stress responses, signal transduction, and phytohormone signaling. Together, these results demonstrate that the developmental steps by which wheat grains are filled is correlated with miRNA-mediated gene regulatory networks. Conclusions We identified 605 conserved and 268 novel miRNAs from wheat grains. Of these, 104 are potentially involved in the regulation of grain-filling. Our dataset provides a useful resource for investigating miRNA-mediated regulatory mechanisms in cereal grains, and our results suggest that miRNAs contribute to this regulation during a crucial phase in determining grain yield and flour quality

  6. Genetic diversity and population structure analysis of European hexaploid bread wheat (Triticum aestivum L.) varieties.

    PubMed

    Nielsen, Nanna Hellum; Backes, Gunter; Stougaard, Jens; Andersen, Stig Uggerhøj; Jahoor, Ahmed

    2014-01-01

    Progress in plant breeding is facilitated by accurate information about genetic structure and diversity. Here, Diversity Array Technology (DArT) was used to characterize a population of 94 bread wheat (Triticum aestivum L.) varieties of mainly European origin. In total, 1,849 of 7,000 tested markers were polymorphic and could be used for population structure analysis. Two major subgroups of wheat varieties, GrI and GrII, were identified using the program STRUCTURE, and confirmed by principal component analysis (PCA). These subgroups were largely separated according to origin; GrI comprised varieties from Southern and Eastern Europe, whereas GrII contained mostly modern varieties from Western and Northern Europe. A large proportion of the markers contributing most to the genetic separation of the subgroups were located on chromosome 2D near the Reduced height 8 (Rht8) locus, and PCR-based genotyping suggested that breeding for the Rht8 allele had a major impact on subgroup separation. Consistently, analysis of linkage disequilibrium (LD) suggested that different selective pressures had acted on chromosome 2D in the two subgroups. Our data provides an overview of the allele composition of bread wheat varieties anchored to DArT markers, which will facilitate targeted combination of alleles following DArT-based QTL studies. In addition, the genetic diversity and distance data combined with specific Rht8 genotypes can now be used by breeders to guide selection of crossing parents.

  7. Genetic Diversity and Population Structure Analysis of European Hexaploid Bread Wheat (Triticum aestivum L.) Varieties

    PubMed Central

    Nielsen, Nanna Hellum; Backes, Gunter; Stougaard, Jens; Andersen, Stig Uggerhøj; Jahoor, Ahmed

    2014-01-01

    Progress in plant breeding is facilitated by accurate information about genetic structure and diversity. Here, Diversity Array Technology (DArT) was used to characterize a population of 94 bread wheat (Triticum aestivum L.) varieties of mainly European origin. In total, 1,849 of 7,000 tested markers were polymorphic and could be used for population structure analysis. Two major subgroups of wheat varieties, GrI and GrII, were identified using the program STRUCTURE, and confirmed by principal component analysis (PCA). These subgroups were largely separated according to origin; GrI comprised varieties from Southern and Eastern Europe, whereas GrII contained mostly modern varieties from Western and Northern Europe. A large proportion of the markers contributing most to the genetic separation of the subgroups were located on chromosome 2D near the Reduced height 8 (Rht8) locus, and PCR-based genotyping suggested that breeding for the Rht8 allele had a major impact on subgroup separation. Consistently, analysis of linkage disequilibrium (LD) suggested that different selective pressures had acted on chromosome 2D in the two subgroups. Our data provides an overview of the allele composition of bread wheat varieties anchored to DArT markers, which will facilitate targeted combination of alleles following DArT-based QTL studies. In addition, the genetic diversity and distance data combined with specific Rht8 genotypes can now be used by breeders to guide selection of crossing parents. PMID:24718292

  8. Acid Carboxypeptidases in Grains and Leaves of Wheat, Triticum aestivum L

    PubMed Central

    Mikola, Leena

    1986-01-01

    Extracts of resting and germinating (3 days at 20°C) wheat (Triticum aestivum L. cv Ruso) grains rapidly hydrolyzed various benzyloxycarbonyldipeptides (Z-dipeptides) at pH 4 to 6. Similar activities were present in extracts of mature flag leaves. Fractionation by chromatography on CM-cellulose and on Sephadex G-200 showed that the activities in germinating grains were due to five acid carboxypeptidases with different and complementary substrate specificities. The wheat enzymes appeared to correspond to the five acid carboxypeptidases present in germinating barley (L Mikola 1983 Biochim Biophys Acta 747: 241-252). The enzymes were designated wheat carboxypeptidases I to V and their best or most characteristic substrates and approximate molecular weights were: I, Z-Phe-Ala, 120,000; II, Z-Ala-Arg, 120,000; III, Z-Ala-Phe, 40,000; IV, Z-Pro-Ala, 165,000; and V, Z-Pro-Ala, 150,000. Resting grains contained carboxypeptidase II as a series of three isoenzymes and low activities of carboxypeptidases IV and V. During germination the activity of carboxypeptidase II decreased, those of carboxypeptidases IV and V increased, and high activities of carboxypeptidases I and III appeared. The flag leaves contained high activity of carboxypeptidase I and lower activities of carboxypeptidases II, IV, and V, whereas carboxypeptidase III was absent. PMID:16664910

  9. Acid Carboxypeptidases in Grains and Leaves of Wheat, Triticum aestivum L.

    PubMed

    Mikola, L

    1986-07-01

    Extracts of resting and germinating (3 days at 20 degrees C) wheat (Triticum aestivum L. cv Ruso) grains rapidly hydrolyzed various benzyloxycarbonyldipeptides (Z-dipeptides) at pH 4 to 6. Similar activities were present in extracts of mature flag leaves. Fractionation by chromatography on CM-cellulose and on Sephadex G-200 showed that the activities in germinating grains were due to five acid carboxypeptidases with different and complementary substrate specificities. The wheat enzymes appeared to correspond to the five acid carboxypeptidases present in germinating barley (L Mikola 1983 Biochim Biophys Acta 747: 241-252). The enzymes were designated wheat carboxypeptidases I to V and their best or most characteristic substrates and approximate molecular weights were: I, Z-Phe-Ala, 120,000; II, Z-Ala-Arg, 120,000; III, Z-Ala-Phe, 40,000; IV, Z-Pro-Ala, 165,000; and V, Z-Pro-Ala, 150,000. Resting grains contained carboxypeptidase II as a series of three isoenzymes and low activities of carboxypeptidases IV and V. During germination the activity of carboxypeptidase II decreased, those of carboxypeptidases IV and V increased, and high activities of carboxypeptidases I and III appeared. The flag leaves contained high activity of carboxypeptidase I and lower activities of carboxypeptidases II, IV, and V, whereas carboxypeptidase III was absent.

  10. Determination of zinc oxide nanoparticles toxicity in root growth in wheat (Triticum aestivum L.) seedlings.

    PubMed

    Prakash, Meppaloor G; Chung, Ill Min

    2016-09-01

    The effect of zinc oxide nanoparticles (ZnONPs) was studied in wheat (Triticum aestivum L.) seedlings under in vitro exposure conditions. To avoid precipitation of nanoparticles, the seedlings were grown in half strength semisolid Murashige and Skoog medium containing 0, 50, 100, 200, 400 and 500 mg L(-1) of ZnONPs. Analysis of zinc (Zn) content showed significant increase in roots. In vivo detection using fluorescent probe Zynpyr-1 indicated accumulation of Zn in primary and lateral root tips. All concentrations of ZnONPs significantly reduced root growth. However, significant decrease in shoot growth was observed only after exposure to 400 and 500 mg L(-1) of ZnONPs. The reactive oxygen species and lipid peroxidation levels significantly increased in roots. Significant increase in cell-wall bound peroxidase activity was observed after exposure to 500 mg L(-1) of ZnONPs. Histochemical staining with phloroglucinol-HCl showed lignification of root cells upon exposure to 500 mg L(-1) of ZnONPs. Treatment with propidium iodide indicated loss of cell viability in root tips of wheat seedlings. These results suggest that redox imbalances, lignification and cell death has resulted in reduction of root growth in wheat seedlings exposed to ZnONPs nanoparticles.

  11. Identification of Alleles of Puroindoline Genes and Their Effect on Wheat (Triticum aestivum L.) Grain Texture

    PubMed Central

    Štiasna, Klára; Vyhnánek, Tomáš; Trojan, Václav; Mrkvicová, Eva; Hřivna, Luděk; Havel, Ladislav

    2016-01-01

    Summary Grain hardness is one of the most important quality characteristics of wheat (Triticum aestivum L.). It is a significant property of wheat grains and relates to milling quality and end product quality. Grain hardness is caused by the presence of puroindoline genes (Pina and Pinb). A collection of 25 genotypes of wheat with unusual grain colour (blue aleurone, purple and white pericarp, yellow endosperm) was studied by polymerase chain reaction (PCR) for the diversity within Pina and Pinb (alleles: Pina-D1a, Pina-D1b, Pinb-D1a, Pinb- -D1b, Pinb-D1c and Pinb-D1d). The endosperm structure was determined by a non-destructive method using light transflectance meter and grain hardness by a texture analyser. Genotype Novosibirskaya 67 and isogenic ANK lines revealed hitherto unknown alleles at the locus for the annealing of primers of Pinb-D1. Allele Pinb-D1c was found to be absent from each genotype. The mealy endosperm ranged from 0 to 100% and grain hardness from 15.10 to 26.87 N per sample. PMID:27904399

  12. Proteomic Analysis Reveals Key Proteins and Phosphoproteins upon Seed Germination of Wheat (Triticum aestivum L.)

    PubMed Central

    Dong, Kun; Zhen, Shoumin; Cheng, Zhiwei; Cao, Hui; Ge, Pei; Yan, Yueming

    2015-01-01

    Wheat (Triticum aestivum L.) is one of the oldest cultivated crops and the second most important food crop in the world. Seed germination is the key developmental process in plant growth and development, and poor germination directly affects plant growth and subsequent grain yield. In this study, we performed the first dynamic proteome analysis of wheat seed germination using a two-dimensional differential gel electrophoresis (2D-DIGE)-based proteomic approach. A total of 166 differentially expressed protein (DEP) spots representing 73 unique proteins were identified, which are mainly involved in storage, stress/defense/detoxification, carbohydrate metabolism, photosynthesis, cell metabolism, and transcription/translation/transposition. The identified DEPs and their dynamic expression profiles generally correspond to three distinct seed germination phases after imbibition: storage degradation, physiological processes/morphogenesis, and photosynthesis. Some key DEPs involved in storage substance degradation and plant defense mechanisms, such as globulin 3, sucrose synthase type I, serpin, beta-amylase, and plastid ADP-glucose pyrophosphorylase (AGPase) small subunit, were found to be phosphorylated during seed germination. Particularly, the phosphorylation site Ser355 was found to be located in the enzyme active region of beta-amylase, which promotes substrate binding. Phosphorylated modification of several proteins could promote storage substance degradation and environmental stress defense during seed germination. The central metabolic pathways involved in wheat seed germination are proposed herein, providing new insights into the molecular mechanisms of cereal seed germination. PMID:26635843

  13. Proteomic Analysis Reveals Key Proteins and Phosphoproteins upon Seed Germination of Wheat (Triticum aestivum L.).

    PubMed

    Dong, Kun; Zhen, Shoumin; Cheng, Zhiwei; Cao, Hui; Ge, Pei; Yan, Yueming

    2015-01-01

    Wheat (Triticum aestivum L.) is one of the oldest cultivated crops and the second most important food crop in the world. Seed germination is the key developmental process in plant growth and development, and poor germination directly affects plant growth and subsequent grain yield. In this study, we performed the first dynamic proteome analysis of wheat seed germination using a two-dimensional differential gel electrophoresis (2D-DIGE)-based proteomic approach. A total of 166 differentially expressed protein (DEP) spots representing 73 unique proteins were identified, which are mainly involved in storage, stress/defense/detoxification, carbohydrate metabolism, photosynthesis, cell metabolism, and transcription/translation/transposition. The identified DEPs and their dynamic expression profiles generally correspond to three distinct seed germination phases after imbibition: storage degradation, physiological processes/morphogenesis, and photosynthesis. Some key DEPs involved in storage substance degradation and plant defense mechanisms, such as globulin 3, sucrose synthase type I, serpin, beta-amylase, and plastid ADP-glucose pyrophosphorylase (AGPase) small subunit, were found to be phosphorylated during seed germination. Particularly, the phosphorylation site Ser(355) was found to be located in the enzyme active region of beta-amylase, which promotes substrate binding. Phosphorylated modification of several proteins could promote storage substance degradation and environmental stress defense during seed germination. The central metabolic pathways involved in wheat seed germination are proposed herein, providing new insights into the molecular mechanisms of cereal seed germination.

  14. Identification of Alleles of Puroindoline Genes and Their Effect on Wheat (Triticum aestivum L.) Grain Texture.

    PubMed

    Presinszká, Mária; Štiasna, Klára; Vyhnánek, Tomáš; Trojan, Václav; Mrkvicová, Eva; Hřivna, Luděk; Havel, Ladislav

    2016-03-01

    Grain hardness is one of the most important quality characteristics of wheat (Triticum aestivum L.). It is a significant property of wheat grains and relates to milling quality and end product quality. Grain hardness is caused by the presence of puroindoline genes (Pina and Pinb). A collection of 25 genotypes of wheat with unusual grain colour (blue aleurone, purple and white pericarp, yellow endosperm) was studied by polymerase chain reaction (PCR) for the diversity within Pina and Pinb (alleles: Pina-D1a, Pina-D1b, Pinb-D1a, Pinb- -D1b, Pinb-D1c and Pinb-D1d). The endosperm structure was determined by a non-destructive method using light transflectance meter and grain hardness by a texture analyser. Genotype Novosibirskaya 67 and isogenic ANK lines revealed hitherto unknown alleles at the locus for the annealing of primers of Pinb-D1. Allele Pinb-D1c was found to be absent from each genotype. The mealy endosperm ranged from 0 to 100% and grain hardness from 15.10 to 26.87 N per sample.

  15. The in silico identification and characterization of a bread wheat/Triticum militinae introgression line.

    PubMed

    Abrouk, Michael; Balcárková, Barbora; Šimková, Hana; Komínkova, Eva; Martis, Mihaela M; Jakobson, Irena; Timofejeva, Ljudmilla; Rey, Elodie; Vrána, Jan; Kilian, Andrzej; Järve, Kadri; Doležel, Jaroslav; Valárik, Miroslav

    2017-02-01

    The capacity of the bread wheat (Triticum aestivum) genome to tolerate introgression from related genomes can be exploited for wheat improvement. A resistance to powdery mildew expressed by a derivative of the cross-bread wheat cv. Tähti × T. militinae (Tm) is known to be due to the incorporation of a Tm segment into the long arm of chromosome 4A. Here, a newly developed in silico method termed rearrangement identification and characterization (RICh) has been applied to characterize the introgression. A virtual gene order, assembled using the GenomeZipper approach, was obtained for the native copy of chromosome 4A; it incorporated 570 4A DArTseq markers to produce a zipper comprising 2132 loci. A comparison between the native and introgressed forms of the 4AL chromosome arm showed that the introgressed region is located at the distal part of the arm. The Tm segment, derived from chromosome 7G, harbours 131 homoeologs of the 357 genes present on the corresponding region of Chinese Spring 4AL. The estimated number of Tm genes transferred along with the disease resistance gene was 169. Characterizing the introgression's position, gene content and internal gene order should not only facilitate gene isolation, but may also be informative with respect to chromatin structure and behaviour studies. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  16. Wheat (Triticum aestivum L.)-based intercropping systems for biological pest control.

    PubMed

    Lopes, Thomas; Hatt, Séverin; Xu, Qinxuan; Chen, Julian; Liu, Yong; Francis, Frédéric

    2016-12-01

    Wheat (Triticum aestivum L.) is one of the most cultivated crops in temperate climates. As its pests are mainly controlled with insecticides that are harmful to the environment and human health, alternative practices such as intercropping have been studied for their potential to promote biological control. Based on the published literature, this study aimed to review the effect of wheat-based intercropping systems on insect pests and their natural enemies. Fifty original research papers were obtained from a systematic search of the peer-reviewed literature. Results from a vote-counting analysis indicated that, in the majority of studies, pest abundance was significantly reduced in intercropping systems compared with pure stands. However, the occurrence of their natural enemies as well as predation and parasitism rates were not significantly increased. The country where the studies took place, the type of intercropping and the crop that was studied in the association had significant effects on these results. These findings show that intercropping is a viable practice to reduce insecticide use in wheat production systems. Nevertheless, other practices could be combined with intercropping to favour natural enemies and enhance pest control. © 2016 Society of Chemical Industry.

  17. Homoeologous recombination-based transfer and molecular cytogenetic mapping of a wheat streak mosaic virus and Triticum mosaic virus resistance gene Wsm3 from Thinopyrum intermedium to wheat.

    PubMed

    Danilova, Tatiana V; Zhang, Guorong; Liu, Wenxuan; Friebe, Bernd; Gill, Bikram S

    2017-03-01

    Here, we report the production of a wheat- Thinopyrum intermedium recombinant stock conferring resistance to wheat streak mosaic virus and Triticum mosaic virus. Wheat streak mosaic caused by the wheat streak mosaic virus (WSMV) is an important disease of bread wheat (Triticum aestivum) worldwide. To date, only three genes conferring resistance to WSMV have been named and two, Wsm1 and Wsm3, were derived from the distantly related wild relative Thinopyrum intermedium. Wsm3 is only available in the form of a compensating wheat-Th. intermedium whole-arm Robertsonian translocation T7BS·7S#3L. Whole-arm alien transfers usually suffer from linkage drag, which prevents their use in cultivar improvement. Here, we report ph1b-induced homoeologous recombination to shorten the Th. intermedium segment and recover a recombinant chromosome consisting of the short arm of wheat chromosome 7B, part of the long arm of 7B, and the distal 43% of the long arm derived from the Th. intermedium chromosome arm 7S#3L. The recombinant chromosome T7BS·7BL-7S#3L confers resistance to WSMV at 18 and 24 °C and also confers resistance to Triticum mosaic virus, but only at 18 °C. Wsm3 is the only gene conferring resistance to WSMV at a high temperature level of 24 °C. We also developed a user-friendly molecular marker that will allow to monitor the transfer of Wsm3 in breeding programs. Wsm3 is presently being transferred to adapted hard red winter wheat cultivars and can be used directly in wheat improvement.

  18. Photosynthetic capacity and dry mass partitioning in dwarf and semi-dwarf wheat (Triticum aestivum L.)

    NASA Technical Reports Server (NTRS)

    Bishop, D. L.; Bugbee, B. G.

    1998-01-01

    Efficient use of space and high yields are critical for long-term food production aboard the International Space Station. The selection of a full dwarf wheat (less than 30 cm tall) with high photosynthetic and yield potential is a necessary prerequisite for growing wheat in the controlled, volume-limited environments available aboard long-term spaceflight missions. This study evaluated the photosynthetic capacity and carbon partitioning of a full-dwarf wheat cultivar, Super Dwarf, which is routinely used in spaceflight studies aboard U.S. space shuttle and NASA/Mir missions and made comparisons with other dwarf and semi-dwarf wheat cultivars utilized in other ground-based studies in plant space biology. Photosynthetic capacity of the flag leaf in two dwarf (Super Dwarf, BB-19), and three semi-dwarf (Veery-10, Yecora Rojo, IBWSN 199) wheat cultivars (Triticum aestivum L.) was assessed by measuring: net maximum photosynthetic rate, RuBP carboxylation efficiency, chlorophyll concentration and flag leaf area. Dry mass partitioning of carbohydrates to the leaves, sheaths, stems and ear was also assessed. Plants were grown under controlled environmental conditions in three replicate studies: slightly enriched CO2 (370 micromoles mol-1), high photosynthetic photon flux (1000 micromoles m-2 s-1; 58 mol m-2 d-1) for a 16 h photoperiod, 22/15 degrees C day/night temperatures, ample nutrients and water provided by one-half strength Hoagland's nutrient solution (Hoagland and Arnon, 1950). Photosynthetic capacity of the flag leaf was determined at anthesis using net CO2 exchange rate versus internal CO2 concentration curves measured under saturating light (2000 micromoles m-2 s-1) and CO2 (1000 micromoles mol-1). Dwarf wheat cultivars had greater photosynthetic capacities than the taller semi-dwarfs, they averaged 20% higher maximum net photosynthetic rates compared to the taller semi-dwarfs, but these higher rates occurred only at anthesis, had slightly greater carboxylation

  19. Photosynthetic capacity and dry mass partitioning in dwarf and semi-dwarf wheat (Triticum aestivum L.)

    NASA Technical Reports Server (NTRS)

    Bishop, D. L.; Bugbee, B. G.

    1998-01-01

    Efficient use of space and high yields are critical for long-term food production aboard the International Space Station. The selection of a full dwarf wheat (less than 30 cm tall) with high photosynthetic and yield potential is a necessary prerequisite for growing wheat in the controlled, volume-limited environments available aboard long-term spaceflight missions. This study evaluated the photosynthetic capacity and carbon partitioning of a full-dwarf wheat cultivar, Super Dwarf, which is routinely used in spaceflight studies aboard U.S. space shuttle and NASA/Mir missions and made comparisons with other dwarf and semi-dwarf wheat cultivars utilized in other ground-based studies in plant space biology. Photosynthetic capacity of the flag leaf in two dwarf (Super Dwarf, BB-19), and three semi-dwarf (Veery-10, Yecora Rojo, IBWSN 199) wheat cultivars (Triticum aestivum L.) was assessed by measuring: net maximum photosynthetic rate, RuBP carboxylation efficiency, chlorophyll concentration and flag leaf area. Dry mass partitioning of carbohydrates to the leaves, sheaths, stems and ear was also assessed. Plants were grown under controlled environmental conditions in three replicate studies: slightly enriched CO2 (370 micromoles mol-1), high photosynthetic photon flux (1000 micromoles m-2 s-1; 58 mol m-2 d-1) for a 16 h photoperiod, 22/15 degrees C day/night temperatures, ample nutrients and water provided by one-half strength Hoagland's nutrient solution (Hoagland and Arnon, 1950). Photosynthetic capacity of the flag leaf was determined at anthesis using net CO2 exchange rate versus internal CO2 concentration curves measured under saturating light (2000 micromoles m-2 s-1) and CO2 (1000 micromoles mol-1). Dwarf wheat cultivars had greater photosynthetic capacities than the taller semi-dwarfs, they averaged 20% higher maximum net photosynthetic rates compared to the taller semi-dwarfs, but these higher rates occurred only at anthesis, had slightly greater carboxylation

  20. Spelt (Triticum spelta L.) and winter wheat (Triticum aestivum L.) wholemeals have similar sterol profiles, as determined by quantitative liquid chromatography and mass spectrometry analysis.

    PubMed

    Ruibal-Mendieta, Nike L; Rozenberg, Raoul; Delacroix, Dominique L; Petitjean, Géraldine; Dekeyser, Adrien; Baccelli, Chiara; Marques, Carole; Delzenne, Nathalie M; Meurens, Marc; Habib-Jiwan, Jean-Louis; Quetin-Leclercq, Joëlle

    2004-07-28

    From a nutritional point of view, cereal lipids include valuable molecules, such as essential fatty acids, phytosterols, and fat-soluble vitamins. Spelt (Triticum spelta L.) is an alternative hulled bread cereal mostly grown in Belgium, where it is mainly intended for animal feed but should increasingly be used for human consumption. The present research focused on phytosterol quantification by LC/APCI-MS2 in saponified wholemeal extracts of 16 dehulled spelt and 5 winter wheat (Triticum aestivum L.) varieties grown in Belgium during 2001-2002 at the same location. Glycosylated sterols and free and formerly esterified sterols could be determined in saponified extracts. Results show that the mean phytosterol content is comparable in both cereals (whereas other lipids, such as oleic and linoleic acids, are increased in spelt wholemeal): spelt extract has, on average, 527.7 microg of free and esterified sterols g(-1) of wholemeal and 123.8 microg of glycosylated sterols g(-1) of wholemeal versus 528.5 and 112.6 microg x g(-1) in winter wheat (values not corrected for recoveries). This is the first report on the application and validation of an LC/MS2 method for the quantification of phytosterols in spelt and winter wheat.

  1. Liquid N and S fertilizer solutions effects on the mass, chemical, and shear strength properties of winter wheat (Triticum aestuvum) residue

    USDA-ARS?s Scientific Manuscript database

    To improve stand establishment in high crop residue situations, the utility of fertilizer to stimulate microbial decomposition of residue has been debated. Field experiments assessed winter wheat (Triticum aestivum) straw decomposition under different fertilizer rates and application timings at thre...

  2. Characterization and Expression Analysis of Phytoene Synthase from Bread Wheat (Triticum aestivum L.).

    PubMed

    Flowerika; Alok, Anshu; Kumar, Jitesh; Thakur, Neha; Pandey, Ashutosh; Pandey, Ajay Kumar; Upadhyay, Santosh Kumar; Tiwari, Siddharth

    2016-01-01

    Phytoene synthase (PSY) regulates the first committed step of the carotenoid biosynthetic pathway in plants. The present work reports identification and characterization of the three PSY genes (TaPSY1, TaPSY2 and TaPSY3) in wheat (Triticum aestivum L.). The TaPSY1, TaPSY2, and TaPSY3 genes consisted of three homoeologs on the long arm of group 7 chromosome (7L), short arm of group 5 chromosome (5S), and long arm of group 5 chromosome (5L), respectively in each subgenomes (A, B, and D) with a similarity range from 89% to 97%. The protein sequence analysis demonstrated that TaPSY1 and TaPSY3 retain most of conserved motifs for enzyme activity. Phylogenetic analysis of all TaPSY revealed an evolutionary relationship among PSY proteins of various monocot species. TaPSY derived from A and D subgenomes shared proximity to the PSY of Triticum urartu and Aegilops tauschii, respectively. The differential expression of TaPSY1, TaPSY2, and TaPSY3 in the various tissues, seed development stages, and stress treatments suggested their role in plant development, and stress condition. TaPSY3 showed higher expression in all tissues, followed by TaPSY1. The presence of multiple stress responsive cis-regulatory elements in promoter region of TaPSY3 correlated with the higher expression during drought and heat stresses has suggested their role in these conditions. The expression pattern of TaPSY3 was correlated with the accumulation of β-carotene in the seed developmental stages. Bacterial complementation assay has validated the functional activity of each TaPSY protein. Hence, TaPSY can be explored in developing genetically improved wheat crop.

  3. Silicon nanoparticles more effectively alleviated UV-B stress than silicon in wheat (Triticum aestivum) seedlings.

    PubMed

    Tripathi, Durgesh Kumar; Singh, Swati; Singh, Vijay Pratap; Prasad, Sheo Mohan; Dubey, Nawal Kishore; Chauhan, Devendra Kumar

    2017-01-01

    The role of silicon (Si) in alleviating biotic as well as abiotic stresses is well known. However, the potential of silicon nanoparticle (SiNP) in regulating abiotic stress and associated mechanisms have not yet been explored. Therefore, in the present study hydroponic experiments were conducted to investigate whether Si or SiNp are more effective in the regulation of UV-B stress. UV-B (ambient and enhanced) radiation caused adverse effect on growth of wheat (Triticum aestivum) seedlings, which was accompanied by declined photosynthetic performance and altered vital leaf structures. Levels of superoxide radical and H2O2 were enhanced by UV-B as also evident from their histochemical stainings, which was accompanied by increased lipid peroxidation (LPO) and electrolyte leakage. Activities of superoxide dismutase and ascorbate peroxidase were inhibited by UV-B while catalase and guaiacol peroxidase, and all non-enzymatic antioxidants were stimulated by UV-B. Although, nitric oxide (NO) content was increased at all tested combinations, but its maximum content was observed under SiNps together with UV-B enhanced treatment. Pre-additions of SiNp as well as Si protected wheat seedlings against UV-B by regulating oxidative stress through enhanced antioxidants. Data indicate that SiNp might have protected wheat seedlings through NO-mediated triggering of antioxidant defense system, which subsequently counterbalance reactive oxygen species-induced damage to photosynthesis. Further, SiNp appear to be more effective in reducing UV-B stress than Si, which is related to its greater availability to wheat seedlings. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. Genetic dissection of flag leaf morphology in wheat (Triticum aestivum L.) under diverse water regimes.

    PubMed

    Yang, Delong; Liu, Yuan; Cheng, Hongbo; Chang, Lei; Chen, Jingjing; Chai, Shouxi; Li, Mengfei

    2016-06-28

    Morphological traits related to flag leaves are determinant traits influencing plant architecture and yield potential in wheat (Triticum aestivum L.). However, little is known regarding their genetic controls under drought stress. One hundred and twenty F8-derived recombinant inbred lines from a cross between two common wheat cultivars Longjian 19 and Q9086 were developed to identify quantitative trait loci (QTLs) and to dissect the genetic bases underlying flag leaf width, length, area, length to width ratio and basal angle under drought stress and well-watered conditions consistent over four environments. A total of 55 additive and 51 pairs of epistatic QTLs were identified on all 21 chromosomes except 6D, among which additive loci were highly concentrated in a few of same or adjacent marker intervals in individual chromosomes. Two specific marker intervals of Xwmc694-Xwmc156 on chromosome 1B and Xbarc1072-Xwmc272 on chromosome 2B were co-located by additive QTLs for four tested traits. Twenty additive loci were repeatedly detected in more than two environments, suggestive of stable A-QTLs. A majority of QTLs involved significant additive and epistatic effects, as well as QTL × environment interactions (QEIs). Of these, 72.7 % of additive QEIs and 80 % of epistatic QEIs were related to drought stress with significant genetic effects decreasing phenotypic values. By contrast, additive and QEIs effects contributed more phenotypic variation than epistatic effects. Flag leaf morphology in wheat was predominantly controlled by additive and QEIs effects, where more QEIs effects occurred in drought stress and depressed phenotypic performances. Several QTL clusters indicated tight linkage or pleiotropy in the inheritance of these traits. Twenty stable QTLs for flag leaf morphology are potentially useful for the genetic improvement of drought tolerance in wheat through QTL pyramiding.

  5. Temperature-dependent Wsm1 and Wsm2 gene-specific blockage of viral long-distance transport provides resistance to Wheat streak mosaic virus and Triticum mosaic virus in wheat

    USDA-ARS?s Scientific Manuscript database

    Wheat streak mosaic virus (WSMV) and Triticum mosaic virus (TriMV) are economically important viral pathogens of wheat. Wheat cultivars Mace with the resistance gene Wsm1 and Snowmass with the resistance gene Wsm2 are resistant to WSMV and TriMV, and WSMV, respectively. Viral resistance in both cult...

  6. Metabolic pathways of the wheat (Triticum aestivum) endosperm amyloplast revealed by proteomics

    PubMed Central

    Dupont, Frances M

    2008-01-01

    Background By definition, amyloplasts are plastids specialized for starch production. However, a proteomic study of amyloplasts isolated from wheat (Triticum aestivum Butte 86) endosperm at 10 days after anthesis (DPA) detected enzymes from many other metabolic and biosynthetic pathways. To better understand the role of amyloplasts in food production, the data from that study were evaluated in detail and an amyloplast metabolic map was outlined. Results Analysis of 288 proteins detected in an amyloplast preparation predicted that 178 were amyloplast proteins. Criteria included homology with known plastid proteins, prediction of a plastid transit peptide for the wheat gene product or a close homolog, known plastid location of the pathway, and predicted plastid location for other members of the same pathway. Of these, 135 enzymes were arranged into 18 pathways for carbohydrate, lipid, amino acid, nucleic acid and other biosynthetic processes that are critical for grain-fill. Functions of the other proteins are also discussed. Conclusion The pathways outlined in this paper suggest that amyloplasts play a central role in endosperm metabolism. The interacting effects of genetics and environment on starch and protein production may be mediated in part by regulatory mechanisms within this organelle. PMID:18419817

  7. Ractopamine up take by alfalfa (Medicago sativa) and wheat (Triticum aestivum) from soil.

    PubMed

    Shelver, Weilin L; DeSutter, Thomas M

    2015-08-01

    Ractopamine is a beta adrenergic agonist used as a growth promoter in swine, cattle and turkeys. To test whether ractopamine has the potential to accumulate in plants grown in contaminated soil, a greenhouse study was conducted with alfalfa (Medicago sativa) and wheat (Triticum aestivum) grown in two soils having different concentrations of organic matter (1.3% and 2.1%), amended with 0, 0.5, and 10 μg/g of ractopamine. Plant growth ranged from 2.7 to 8.8 g dry weight (dw) for alfalfa, and 8.7 to 40 g dw for wheat and was generally greater in the higher organic matter content soil. The uptake of ractopamine in plant tissues ranged from non-detectable to 897 ng/g and was strongly dependent on soil ractopamine concentration across soil and plant tissue. When adjusted to the total fortified quantities, the amount of ractopamine taken up by the plant tissue was low, <0.01% for either soil.

  8. Comprehensive functional analyses of expressed sequence tags in common wheat (Triticum aestivum).

    PubMed

    Manickavelu, Alagu; Kawaura, Kanako; Oishi, Kazuko; Shin-I, Tadasu; Kohara, Yuji; Yahiaoui, Nabila; Keller, Beat; Abe, Reina; Suzuki, Ayako; Nagayama, Taishi; Yano, Kentaro; Ogihara, Yasunari

    2012-04-01

    About 1 million expressed sequence tag (EST) sequences comprising 125.3 Mb nucleotides were accreted from 51 cDNA libraries constructed from a variety of tissues and organs under a range of conditions, including abiotic stresses and pathogen challenges in common wheat (Triticum aestivum). Expressed sequence tags were assembled with stringent parameters after processing with inbuild scripts, resulting in 37,138 contigs and 215,199 singlets. In the assembled sequences, 10.6% presented no matches with existing sequences in public databases. Functional characterization of wheat unigenes by gene ontology annotation, mining transcription factors, full-length cDNA, and miRNA targeting sites were carried out. A bioinformatics strategy was developed to discover single-nucleotide polymorphisms (SNPs) within our large EST resource and reported the SNPs between and within (homoeologous) cultivars. Digital gene expression was performed to find the tissue-specific gene expression, and correspondence analysis was executed to identify common and specific gene expression by selecting four biotic stress-related libraries. The assembly and associated information cater a framework for future investigation in functional genomics.

  9. Comprehensive Functional Analyses of Expressed Sequence Tags in Common Wheat (Triticum aestivum)

    PubMed Central

    Manickavelu, Alagu; Kawaura, Kanako; Oishi, Kazuko; Shin-I, Tadasu; Kohara, Yuji; Yahiaoui, Nabila; Keller, Beat; Abe, Reina; Suzuki, Ayako; Nagayama, Taishi; Yano, Kentaro; Ogihara, Yasunari

    2012-01-01

    About 1 million expressed sequence tag (EST) sequences comprising 125.3 Mb nucleotides were accreted from 51 cDNA libraries constructed from a variety of tissues and organs under a range of conditions, including abiotic stresses and pathogen challenges in common wheat (Triticum aestivum). Expressed sequence tags were assembled with stringent parameters after processing with inbuild scripts, resulting in 37 138 contigs and 215 199 singlets. In the assembled sequences, 10.6% presented no matches with existing sequences in public databases. Functional characterization of wheat unigenes by gene ontology annotation, mining transcription factors, full-length cDNA, and miRNA targeting sites were carried out. A bioinformatics strategy was developed to discover single-nucleotide polymorphisms (SNPs) within our large EST resource and reported the SNPs between and within (homoeologous) cultivars. Digital gene expression was performed to find the tissue-specific gene expression, and correspondence analysis was executed to identify common and specific gene expression by selecting four biotic stress-related libraries. The assembly and associated information cater a framework for future investigation in functional genomics. PMID:22334568

  10. SNP-based association analysis for seedling traits in durum wheat (Triticum turgidum L. durum (Desf.)).

    PubMed

    Sabiel, Salih A I; Huang, Sisi; Hu, Xin; Ren, Xifeng; Fu, Chunjie; Peng, Junhua; Sun, Dongfa

    2017-03-01

    In the present study, 150 accessions of worldwide originated durum wheat germplasm (Triticum turgidum spp. durum) were observed for major seedling traits and their growth. The accessions were evaluated for major seedling traits under controlled conditions of hydroponics at the 13(th), 20(th), 27(th) and 34(th) day-after germination. Biomass traits were measured at the 34(th) day-after germination. Correlation analysis was conducted among the seedling traits and three field traits at maturity, plant height, grain weight and 1000-grain weight observed in four consecutive years. Associations of the measured seedling traits and SNP markers were analyzed based on the mixed linear model (MLM). The results indicated that highly significant genetic variation and robust heritability were found for the seedling and field mature traits. In total, 259 significant associations were detected for all the traits and four growth stages. The phenotypic variation explained (R2) by a single SNP marker is higher than 10% for most (84%) of the significant SNP markers. Forty-six SNP markers associated with multiple traits, indicating non-neglectable pleiotropy in seedling stage. The associated SNP markers could be helpful for genetic analysis of seedling traits, and marker-assisted breeding of new wheat varieties with strong seedling vigor.

  11. SNP-based association analysis for seedling traits in durum wheat (Triticum turgidum L. durum (Desf.))

    PubMed Central

    Sabiel, Salih A. I.; Huang, Sisi; Hu, Xin; Ren, Xifeng; Fu, Chunjie; Peng, Junhua; Sun, Dongfa

    2017-01-01

    In the present study, 150 accessions of worldwide originated durum wheat germplasm (Triticum turgidum spp. durum) were observed for major seedling traits and their growth. The accessions were evaluated for major seedling traits under controlled conditions of hydroponics at the 13th, 20th, 27th and 34th day-after germination. Biomass traits were measured at the 34th day-after germination. Correlation analysis was conducted among the seedling traits and three field traits at maturity, plant height, grain weight and 1000-grain weight observed in four consecutive years. Associations of the measured seedling traits and SNP markers were analyzed based on the mixed linear model (MLM). The results indicated that highly significant genetic variation and robust heritability were found for the seedling and field mature traits. In total, 259 significant associations were detected for all the traits and four growth stages. The phenotypic variation explained (R2) by a single SNP marker is higher than 10% for most (84%) of the significant SNP markers. Forty-six SNP markers associated with multiple traits, indicating non-neglectable pleiotropy in seedling stage. The associated SNP markers could be helpful for genetic analysis of seedling traits, and marker-assisted breeding of new wheat varieties with strong seedling vigor. PMID:28588384

  12. Association of Agronomic Traits with SNP Markers in Durum Wheat (Triticum turgidum L. durum (Desf.)).

    PubMed

    Hu, Xin; Ren, Jing; Ren, Xifeng; Huang, Sisi; Sabiel, Salih A I; Luo, Mingcheng; Nevo, Eviatar; Fu, Chunjie; Peng, Junhua; Sun, Dongfa

    2015-01-01

    Association mapping is a powerful approach to detect associations between traits of interest and genetic markers based on linkage disequilibrium (LD) in molecular plant breeding. In this study, 150 accessions of worldwide originated durum wheat germplasm (Triticum turgidum spp. durum) were genotyped using 1,366 SNP markers. The extent of LD on each chromosome was evaluated. Association of single nucleotide polymorphisms (SNP) markers with ten agronomic traits measured in four consecutive years was analyzed under a mix linear model (MLM). Two hundred and one significant association pairs were detected in the four years. Several markers were associated with one trait, and also some markers were associated with multiple traits. Some of the associated markers were in agreement with previous quantitative trait loci (QTL) analyses. The function and homology analyses of the corresponding ESTs of some SNP markers could explain many of the associations for plant height, length of main spike, number of spikelets on main spike, grain number per plant, and 1000-grain weight, etc. The SNP associations for the observed traits are generally clustered in specific chromosome regions of the wheat genome, mainly in 2A, 5A, 6A, 7A, 1B, and 6B chromosomes. This study demonstrates that association mapping can complement and enhance previous QTL analyses and provide additional information for marker-assisted selection.

  13. High performance liquid chromatography resolution of ubiquitin pathway enzymes from wheat germ. [Triticum vulgare

    SciTech Connect

    Sullivan, M.L.; Callis, J.; Vierstra, R.D. )

    1990-10-01

    The highly conserved protein ubiquitin is involved in several cellular processes in eukaryotes as a result of its covalent ligation to a variety of target proteins. Here, we describe the purification of several enzymatic activities involved in ubiquitin-protein conjugate formation and disassembly from wheat germ (Triticum vulgare) by a combination of ubiquitin affinity chromatography and anion-exchange high performance liquid chromatography. Using this procedure, ubiquitin activating enzyme (E1), several distinct ubiquitin carrier proteins (E2s) with molecular masses of 16, 20, 23, 23.5, and 25 kilodaltons, and a ubiquitin-protein hydrolase (isopeptidase) were isolated. Purified E1 formed a thiol ester linkage with {sup 125}I-ubiquitin in an ATP-dependent manner and transferred bound ubiquitin to the various purified E2s. The ubiquitin protein hydrolase fraction was sensitive to hemin, and in an ATP-independent reaction, was capable of removing the ubiquitin moiety from both ubiquitin {sup 125}I-lysozyme conjugates ({epsilon}-amino or isopeptide linkage) and the ubiquitin 52-amino acid extension protein fusion ({alpha}-amino or peptide linkage). Using this procedure, wheat germ represents an inexpensive source from which enzymes involved in the ubiquitin pathway may be isolated.

  14. Metabolic pathways of the wheat (Triticum aestivum) endosperm amyloplast revealed by proteomics.

    PubMed

    Dupont, Frances M

    2008-04-17

    By definition, amyloplasts are plastids specialized for starch production. However, a proteomic study of amyloplasts isolated from wheat (Triticum aestivum Butte 86) endosperm at 10 days after anthesis (DPA) detected enzymes from many other metabolic and biosynthetic pathways. To better understand the role of amyloplasts in food production, the data from that study were evaluated in detail and an amyloplast metabolic map was outlined. Analysis of 288 proteins detected in an amyloplast preparation predicted that 178 were amyloplast proteins. Criteria included homology with known plastid proteins, prediction of a plastid transit peptide for the wheat gene product or a close homolog, known plastid location of the pathway, and predicted plastid location for other members of the same pathway. Of these, 135 enzymes were arranged into 18 pathways for carbohydrate, lipid, amino acid, nucleic acid and other biosynthetic processes that are critical for grain-fill. Functions of the other proteins are also discussed. The pathways outlined in this paper suggest that amyloplasts play a central role in endosperm metabolism. The interacting effects of genetics and environment on starch and protein production may be mediated in part by regulatory mechanisms within this organelle.

  15. Cerium oxide nanoparticles impact yield and modify nutritional parameters in wheat (Triticum aestivum L.).

    PubMed

    Rico, Cyren M; Lee, Sang Chul; Rubenecia, Rosnah; Mukherjee, Arnab; Hong, Jie; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge L

    2014-10-08

    The implications of engineered nanomaterials on crop productivity and food quality are not yet well understood. The impact of cerium oxide nanoparticles (nCeO2) on growth and yield attributes and nutritional composition in wheat (Triticum aestivum L.) was examined. Wheat was cultivated to grain production in soil amended with 0, 125, 250, and 500 mg of nCeO2/kg (control, nCeO2-L, nCeO2-M, and nCeO2-H, respectively). At harvest, grains and tissues were analyzed for mineral, fatty acid, and amino acid content. Results showed that, relative to the control, nCeO2-H improved plant growth, shoot biomass, and grain yield by 9.0%, 12.7%, and 36.6%, respectively. Ce accumulation in roots increased at increased nCeO2 concentration but did not change across treatments in leaves, hull, and grains, indicating a lack of Ce transport to the above-ground tissues. nCeO2 modified S and Mn storage in grains. nCeO2-L modified the amino acid composition and increased linolenic acid by up to 6.17% but decreased linoleic acid by up to 1.63%, compared to the other treatments. The findings suggest the potential of nanoceria to modify crop physiology and food quality with unknown consequences for living organisms.

  16. Inheritance of grain polyphenol oxidase (PPO) activity in multiple wheat (Triticum aestivum L.) genetic backgrounds.

    PubMed

    Nilthong, Somrudee; Graybosch, R A; Baenziger, P S

    2012-12-01

    Grain polyphenol oxidase (PPO) activity can cause discoloration of wheat (Triticum aestivum L.) food products. Five crosses (PI 117635/Antelope; Fielder/NW03681; Fielder/Antelope; NW07OR1070/Antelope; NW07OR1066/OR2050272H) were selected to study the genetic inheritance of PPO activity. STS markers, PPO18, PPO29 and STS01, were used to identify lines with putative alleles at the Ppo-A1 and Ppo-D1 loci conditioning low or high PPO activity. ANOVA showed significant genotypic effects on PPO activity (P < 0.0001) in all populations. The generations and generation × genotype effects were not significant in any population. A putative third (null) genotype at Ppo-A1 (no PCR fragments for PPO18) was discovered in NW07OR1066 and NW07OR1070 derived populations, and these had the lowest mean PPO activities. Results demonstrated that both Ppo-A1 and Ppo-D1 loci affect the kernel PPO activity, but the Ppo-A1 has the major effect. In three populations, contrary results were observed to those predicted from previous work with Ppo-D1 alleles, suggesting the markers for Ppo-D1 allele might give erroneous results in some genetic backgrounds or lineages. Results suggest that selection for low or null alleles only at Ppo-A1 might allow development of low PPO wheat cultivars.

  17. Genetic Diversity, Population Structure, and Linkage Disequilibrium in Bread Wheat (Triticum aestivum L.).

    PubMed

    Tascioglu, Tulin; Metin, Ozge Karakas; Aydin, Yildiz; Sakiroglu, Muhammet; Akan, Kadir; Uncuoglu, Ahu Altinkut

    2016-08-01

    Bread wheat (Triticum aestivum L.) gene pool was analyzed with 117 microsatellite markers scattered throughout A, B, and D genomes. Ninety microsatellite markers were giving 1620 polymorphic alleles in 55 different bread wheat genotypes. These genotypes were found to be divided into three subgroups based on Bayesian model and Principal component analysis. The highest polymorphism information content value for the markers resides on A genome was estimated for wmc262 marker located on 4A chromosome with the polymorphism information content value of 0.960. The highest polymorphism information content value (0.954) among the markers known to be located on B genome was realized for wmc44 marker located on 1B chromosome. The highest polymorphism information content value for the markers specific to D genome was found in gwm174 marker located on 5D chromosome with the polymorphism information content value of 0.948. The presence of linkage disequilibrium between 81 pairwise SSR markers reside on the same chromosome was tested and very limited linkage disequilibrium was observed. The results confirmed that the most distant genotype pairs were as follows Ceyhan-99-Behoth 6, Gerek 79-Douma 40989, and Karahan-99-Douma 48114.

  18. Association of Agronomic Traits with SNP Markers in Durum Wheat (Triticum turgidum L. durum (Desf.))

    PubMed Central

    Hu, Xin; Ren, Jing; Ren, Xifeng; Huang, Sisi; Sabiel, Salih A. I.; Luo, Mingcheng; Nevo, Eviatar; Fu, Chunjie; Peng, Junhua; Sun, Dongfa

    2015-01-01

    Association mapping is a powerful approach to detect associations between traits of interest and genetic markers based on linkage disequilibrium (LD) in molecular plant breeding. In this study, 150 accessions of worldwide originated durum wheat germplasm (Triticum turgidum spp. durum) were genotyped using 1,366 SNP markers. The extent of LD on each chromosome was evaluated. Association of single nucleotide polymorphisms (SNP) markers with ten agronomic traits measured in four consecutive years was analyzed under a mix linear model (MLM). Two hundred and one significant association pairs were detected in the four years. Several markers were associated with one trait, and also some markers were associated with multiple traits. Some of the associated markers were in agreement with previous quantitative trait loci (QTL) analyses. The function and homology analyses of the corresponding ESTs of some SNP markers could explain many of the associations for plant height, length of main spike, number of spikelets on main spike, grain number per plant, and 1000-grain weight, etc. The SNP associations for the observed traits are generally clustered in specific chromosome regions of the wheat genome, mainly in 2A, 5A, 6A, 7A, 1B, and 6B chromosomes. This study demonstrates that association mapping can complement and enhance previous QTL analyses and provide additional information for marker-assisted selection. PMID:26110423

  19. Evaluation of assembly strategies using RNA-seq data associated with grain development of wheat (Triticum aestivum L.).

    PubMed

    Li, Huai-Zhu; Gao, Xiang; Li, Xiao-Yan; Chen, Qi-Jiao; Dong, Jian; Zhao, Wan-Chun

    2013-01-01

    Wheat (Triticum aestivum L.) is one of the most important crops cultivated worldwide. Identifying the complete transcriptome of wheat grain could serve as foundation for further study of wheat seed development. However, the relatively large size and the polyploid complexity of the genome have been substantial barriers to molecular genetics and transcriptome analysis of wheat. Alternatively, RNA sequencing has provided some useful information about wheat genes. However, because of the large number of short reads generated by RNA sequencing, factors that are crucial to transcriptome assembly, including software, candidate parameters and assembly strategies, need to be optimized and evaluated for wheat data. In the present study, four cDNA libraries associated with wheat grain development were constructed and sequenced. A total of 14.17 Gb of high-quality reads were obtained and used to assess different assembly strategies. The most successful approach was to filter the reads with Q30 prior to de novo assembly using Trinity, merge the assembled contigs with genes available in wheat cDNA reference data sets, and combine the resulting assembly with an assembly from a reference-based strategy. Using this approach, a relatively accurate and nearly complete transcriptome associated with wheat grain development was obtained, suggesting that this is an effective strategy for generation of a high-quality transcriptome from RNA sequencing data.

  20. Genome interplay in the grain transcriptome of hexaploid bread wheat.

    PubMed

    Pfeifer, Matthias; Kugler, Karl G; Sandve, Simen R; Zhan, Bujie; Rudi, Heidi; Hvidsten, Torgeir R; Mayer, Klaus F X; Olsen, Odd-Arne

    2014-07-18

    Allohexaploid bread wheat (Triticum aestivum L.) provides approximately 20% of calories consumed by humans. Lack of genome sequence for the three homeologous and highly similar bread wheat genomes (A, B, and D) has impeded expression analysis of the grain transcriptome. We used previously unknown genome information to analyze the cell type-specific expression of homeologous genes in the developing wheat grain and identified distinct co-expression clusters reflecting the spatiotemporal progression during endosperm development. We observed no global but cell type- and stage-dependent genome dominance, organization of the wheat genome into transcriptionally active chromosomal regions, and asymmetric expression in gene families related to baking quality. Our findings give insight into the transcriptional dynamics and genome interplay among individual grain cell types in a polyploid cereal genome.

  1. Cytoplasmic effects on DNA methylation between male sterile lines and the maintainer in wheat (Triticum aestivum L.).

    PubMed

    Ba, Qingsong; Zhang, Gaisheng; Niu, Na; Ma, Shoucai; Wang, Junwei

    2014-10-01

    Male sterile cytoplasm plays an important role in hybrid wheat, and three-line system including male sterile (A line), its maintainer (B line) and restoring (R line) has played a major role in wheat hybrid production. It is well known that DNA methylation plays an important role in gene expression regulation during biological development in wheat. However, no reports are available on DNA methylation affected by different male sterile cytoplasms in hybrid wheat. We employed a methylation-sensitive amplified polymorphism technique to characterize nuclear DNA methylation in three male sterile cytoplasms. A and B lines share the same nucleus, but have different cytoplasms which is male sterile for the A and fertile for the B. The results revealed a relationship of DNA methylation at these sites specifically with male sterile cytoplasms, as well as male sterility, since the only difference between the A lines and B line was the cytoplasm. The DNA methylation was markedly affected by male sterile cytoplasms. K-type cytoplasm affected the methylation to a much greater degree than T-type and S-type cytoplasms, as indicated by the ratio of methylated sites, ratio of fully methylated sites, and polymorphism between A lines and B line for these cytoplasms. The genetic distance between the cytoplasm and nucleus for the K-type is much greater than for the T- and S-types because the former is between Aegilops genus and Triticum genus and the latter is within Triticum genus between Triticum spelta and Triticum timopheevii species. Thus, this difference in genetic distance may be responsible for the variation in methylation that we observed.

  2. Chlorophenols induce lipid peroxidation and change antioxidant parameters in the leaves of wheat (Triticum aestivum L.).

    PubMed

    Michałowicz, Jaromir; Posmyk, Małgorzata; Duda, Wirgiliusz

    2009-04-01

    In this work, changes in superoxide dismutase (SOD), catalase (CAT) and guaiacol peroxidase (POD) activity were determined in the leaves of wheat (Triticum aestivum L.) exposed to 2,4-dichlorophenol (2,4-DCP) and pentachlorophenol (PCP). We analyzed the content of free phenols, the level of lipid peroxidation, and also the oxidation of dihydrorhodamine 123 by 2,4-DCP and PCP. Chlorophenols were spiked to soil in concentrations of 0.5 and 5.0 mg kg(-1). Plant seeds were raised in plastic pots containing soil at a temperature of 25 degrees C with a 16-h photoperiod and irradiance of 250 micromol m(-2) s(-1). The leaves were harvested on the third, sixth and twelfth days of the experiment. The inhibition of SOD activity in the leaves of wheat was observed for 2,4-DCP and PCP. 2,4-DCP and PCP induced changes in CAT activity with a stronger effect for PCP. The compounds markedly increased guaiacol POD activity during 12d of the exposition of wheat to their action. The increase in free phenol content was observed both for 2,4-DCP and PCP. Chlorophenols also induced a powerful lipid peroxidation process between the third and sixth days of the experiment. A higher concentration of chlorophenols used in our study induced greater changes in all of the investigated parameters. 2,4-DCP and PCP oxidized the fluorescent probe - dihydrorhodamine 123 - in the concentrations of 5 and 1 ppm, respectively, and the addition of magnesium ions enhanced the oxidative capacity of the examined xenobiotics.

  3. Exogenous application of putrescine at pre-anthesis enhances the thermotolerance of wheat (Triticum aestivum L.).

    PubMed

    Kumar, Ranjeet R; Sharma, Sushil K; Rai, Gyanendra K; Singh, Khushboo; Choudhury, Madhumanthi; Dhawan Gaurav; Singh, Gyaneshwar P; Goswami, Suneha; Pathak, Himanshu; Rai, Raj D

    2014-10-01

    Antioxidant enzymes, besides being involved in various developmental processes, are known to be important for environmental stress tolerance in plants. In this study, the effect of treatment of 2.5 mM putrescine (Put), heat stress (HS -42 degrees C for 2 h) and their combination on the expression and activity of antioxidant enzymes was studied at pre-anthesis in the leaves of two wheat (Triticum aestivum L.) cultivars--HDR77 (thermotolerant) and HD2329 (thermosusceptible). We observed that 2.5 mM Put before HS significantly enhanced the transcript levels of superoxide dismutase (SOD), catalase (CAT), cytoplasmic and peroxisomal ascorbate peroxidase (cAPX, pAPX) in both the cultivars. However, the activities of antioxidant enzymes (SOD, CAT, APX and GR), as well as accumulation of antioxidants (ascorbic acid and total thiol content) were higher in HDR77 than in HD2329 in response to the treatment 2.5 mM Put + HS. No significant change was observed in the proline accumulation in response to HS and combined treatment of 2.5 mM Put + HS. A decrease in the H2O2 accumulation, lipid peroxidation and increase in cell membrane stability (CMS) were observed in response to 2.5 mM Put + HS treatment, as compared to HS treatment alone in both the cultivars; HDR77 was, however, more responsive to 2.5 mM Put + HS treatment. Put (2.5 mM) treatment at pre-anthesis thus modulated the defense mechanism responsible for the thermotolerance capacity of wheat under the heat stress. Elicitors like Put, therefore, need to be further studied for temporarily manipulating the thermotolerance capacity of wheat grown under the field conditions in view of the impending global climate change.

  4. Characterization of new allele influencing flowering time in bread wheat introgressed from Triticum militinae.

    PubMed

    Ivaničová, Zuzana; Jakobson, Irena; Reis, Diana; Šafář, Jan; Milec, Zbyněk; Abrouk, Michael; Doležel, Jaroslav; Järve, Kadri; Valárik, Miroslav

    2016-09-25

    Flowering time variation was identified within a mapping population of doubled haploid lines developed from a cross between the introgressive line 8.1 and spring bread wheat cv. Tähti. The line 8.1 carried introgressions from tetraploid Triticum militinae in the cv. Tähti genetic background on chromosomes 1A, 2A, 4A, 5A, 7A, 1B and 5B. The most significant QTL for the flowering time variation was identified within the introgressed region on chromosome 5A and its largest effect was associated with the VRN-A1 locus, accounting for up to 70% of phenotypic variance. The allele of T. militinae origin was designated as VRN-A1f-like. The effect of the VRN-A1f-like allele was verified in two other mapping populations. QTL analysis identified that in cv. Tähti and cv. Mooni genetic background, VRN-A1f-like allele incurred a delay of 1.9-18.6 days in flowering time, depending on growing conditions. Sequence comparison of the VRN-A1f-like and VRN-A1a alleles from the parental lines of the mapping populations revealed major mutations in the promoter region as well as in the first intron, including insertion of a MITE element and a large deletion. The sequence variation allowed construction of specific diagnostic PCR markers for VRN-A1f-like allele determination. Identification and quantification of the effect of the VRN-A1f-like allele offers a useful tool for wheat breeding and for studying fine-scale regulation of flowering pathways in wheat. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. TLXI, a novel type of xylanase inhibitor from wheat (Triticum aestivum) belonging to the thaumatin family.

    PubMed

    Fierens, Ellen; Rombouts, Sigrid; Gebruers, Kurt; Goesaert, Hans; Brijs, Kristof; Beaugrand, Johnny; Volckaert, Guido; Van Campenhout, Steven; Proost, Paul; Courtin, Christophe M; Delcour, Jan A

    2007-05-01

    Wheat (Triticum aestivum) contains a previously unknown type of xylanase (EC 3.2.1.8) inhibitor, which is described in the present paper for the first time. Based on its >60% similarity to TLPs (thaumatin-like proteins) and the fact that it contains the Prosite PS00316 thaumatin family signature, it is referred to as TLXI (thaumatin-like xylanase inhibitor). TLXI is a basic (pI> or =9.3 in isoelectric focusing) protein with a molecular mass of approx. 18-kDa (determined by SDS/PAGE) and it occurs in wheat with varying extents of glycosylation. The TLXI gene sequence encodes a 26-amino-acid signal sequence followed by a 151-amino-acid mature protein with a calculated molecular mass of 15.6-kDa and pI of 8.38. The mature TLXI protein was expressed successfully in Pichia pastoris, resulting in a 21-kDa (determined by SDS/PAGE) recombinant protein (rTLXI). Polyclonal antibodies raised against TLXI purified from wheat react with epitopes of rTLXI as well as with those of thaumatin, demonstrating high structural similarity between these three proteins. TLXI has a unique inhibition specificity. It is a non-competitive inhibitor of a number of glycoside hydrolase family 11 xylanases, but it is inactive towards glycoside hydrolase family 10 xylanases. Progress curves show that TLXI is a slow tight-binding inhibitor, with a K(i) of approx. 60-nM. Except for zeamatin, an alpha-amylase/trypsin inhibitor from maize (Zea mays), no other enzyme inhibitor is currently known among the TLPs. TLXI thus represents a novel type of inhibitor within this group of proteins.

  6. Crop selection for advanced life support systems in the ESA MELiSSA program: Durum wheat (Triticum turgidum var durum)

    NASA Astrophysics Data System (ADS)

    Stasiak, M.; Gidzinski, D.; Jordan, M.; Dixon, M.

    2012-06-01

    As part of an ESA MELiSSA investigation into advanced life support (ALS) candidate crop cultivar selection and growth requirements, the University of Guelph's Controlled Environment Systems Research Facility (CESRF) conducted a case study on growth and development of four durum wheat cultivars (Triticum turgidum var durum) grown hydroponically under controlled conditions in a sealed environment. Cultivars tested were Canadian developed Avonlea, Commander, Eurostar and Strongfield. There were few fundamental differences in durum quality parameters between hydroponically and field grown wheat, however yields of Eurostar and Strongfield exceeded those of field trials by 41% and 87% respectively.

  7. Molecular and FISH analyses of a 53-kbp intact DNA fragment inserted by biolistics in wheat (Triticum aestivum L.) genome.

    PubMed

    Partier, A; Gay, G; Tassy, C; Beckert, M; Feuillet, C; Barret, P

    2017-06-30

    A large, 53-kbp, intact DNA fragment was inserted into the wheat ( Triticum aestivum L.) genome. FISH analyses of individual transgenic events revealed multiple insertions of intact fragments. Transferring large intact DNA fragments containing clusters of resistance genes or complete metabolic pathways into the wheat genome remains a challenge. In a previous work, we showed that the use of dephosphorylated cassettes for wheat transformation enabled the production of simple integration patterns. Here, we used the same technology to produce a cassette containing a 44-kb Arabidopsis thaliana BAC, flanked by one selection gene and one reporter gene. This 53-kb linear cassette was integrated in the bread wheat (Triticum aestivum L.) genome by biolistic transformation. Our results showed that transgenic plants harboring the entire cassette were generated. The inheritability of the cassette was demonstrated in the T1 and T2 generation. Surprisingly, FISH analysis performed on T1 progeny of independent events identified double genomic insertions of intact fragments in non-homoeologous positions. Inheritability of these double insertions was demonstrated by FISH analysis of the T1 generation. Relative conclusions that can be drawn from molecular or FISH analysis are discussed along with future prospects of the engineering of large fragments for wheat transformation or genome editing.

  8. Sampling system for wheat (Triticum aestivum L) area estimation using digital LANDSAT MSS data and aerial photographs. [Brazil

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Moreira, M. A.; Chen, S. C.; Batista, G. T.

    1984-01-01

    A procedure to estimate wheat (Triticum aestivum L) area using sampling technique based on aerial photographs and digital LANDSAT MSS data is developed. Aerial photographs covering 720 square km are visually analyzed. To estimate wheat area, a regression approach is applied using different sample sizes and various sampling units. As the size of sampling unit decreased, the percentage of sampled area required to obtain similar estimation performance also decreased. The lowest percentage of the area sampled for wheat estimation with relatively high precision and accuracy through regression estimation is 13.90% using 10 square km as the sampling unit. Wheat area estimation using only aerial photographs is less precise and accurate than those obtained by regression estimation.

  9. Cloning and characterization of two Argonaute genes in wheat (Triticum aestivum L.).

    PubMed

    Meng, Fanrong; Jia, Haiying; Ling, Na; Xue, Yinlei; Liu, Hao; Wang, Ketao; Yin, Jun; Li, Yongchun

    2013-02-04

    Argonaute proteins are key components of RNA interference (RNAi), playing important roles in RNA-directed gene silencing. Various classes of Argonaute genes have been identified from plants and might be involved in developmental regulation. However, little is known about these genes in wheat (Triticum aestivum). In this study, two full-length cDNAs of Argonaute were cloned from wheat, designated as TaAGO1b and TaAGO4. The cDNA of TaAGO1b is 3273 bp long and encodes 868 amino acids, with a predicted molecular weight of ~97.78 kDa and pI of 9.29. The 3157-bp TaAGO4 encodes 916 amino acids, with a molecular mass of 102.10 kDa and pI of 9.12. Genomics analysis showed that TaAGO1b and TaAGO4 contain 20 and 18 introns, respectively. Protein structural analysis demonstrated that typical PAZ and PIWI domains were found in both TaAGO1b and TaAGO4. From the highly conserved PIWI domains, we detected conserved Asp-Asp-His (DDH) motifs that function as a catalytic triad and have critical roles during the process of sequence-specific cleavage in the RNAi machinery. Structural modelling indicated that both TaAGOs can fold to a specific α/β structure. Moreover, the three aligned DDH residues are spatially close to each other at the "slicer" site of the PIWI domain. Expression analysis indicated that both genes are ubiquitously expressed in vegetative and reproductive organs, including the root, stem, leaf, anther, ovule, and seed. However, they are differentially expressed in germinating endosperm tissues. We were interested to learn that the two TaAGOs are also differentially expressed in developing wheat plants and that their expression patterns are variously affected by vernalization treatment. Further investigation revealed that they can be induced by cold accumulation during vernalization. Two putative wheat Argonaute genes, TaAGO1b and TaAGO4, were cloned. Phylogenetic analysis, prediction of conserved domains and catalytic motifs, and modelling of their protein

  10. Effect of wheat (Triticum aestivum L.) seed color and hardness genes on the consumption preference of the house mouse (Mus musculus L.)

    USDA-ARS?s Scientific Manuscript database

    Background: Wheat (Triticum aestivum L.) grain is a staple food and provides necessary nutrients for human health and nutrition. Yet, flavor differences among wheat varieties are not well understood. Grain flavor and consumption preference can be examined using the house mouse (Mus musculus L.) as a...

  11. Starch granule formation and protein deposition in wheat (Triticum aestivum L.) starchy endosperm cells is altered by high temperature during grain fill

    USDA-ARS?s Scientific Manuscript database

    High temperatures during wheat grain fill decrease starch and protein levels, adversely affecting wheat yield and flour quality. To determine the effect of high temperature on starchy endosperm cell development, grain (Triticum aestivum L. "Butte 86") was produced under a 24/17°C or 37/28°C day/nigh...

  12. Starch granule formation and protein deposition in wheat (Triticum aestivum L.) starchy endosperm cells are altered by high temperature during grain fill

    USDA-ARS?s Scientific Manuscript database

    High temperatures during wheat grain fill decrease starch and protein levels, adversely affecting wheat yield and flour quality. To determine the effect of high temperature on starchy endosperm cell development, grain (Triticum aestivum L. ‘Butte 86’) was produced under a 24/17°C or 37/28°C day/nigh...

  13. High temperature during grain fill alters the morphology of protein and starch deposits in the starchy endosperm cells of the developing wheat (Triticum aestivum L.) grain

    USDA-ARS?s Scientific Manuscript database

    High temperature during grain fill reduces wheat yield and alters flour quality. Starchy endosperm cell morphology was investigated in wheat (Triticum aestivum L. ‘Butte 86’) grain produced under a 24/17 °C or 37/28 °C day/night regimen imposed from anthesis to maturity to identify changes in cell s...

  14. Effect of high temperature on cell structure and gluten protein accumulation in the endosperm of the developing wheat (Triticum aestivum L.) grain

    USDA-ARS?s Scientific Manuscript database

    High temperature during grain fill is one of the more significant environmental factors that alters wheat yield and flour quality. To identify endosperm responses to high temperature, cell structure and gluten protein composition were investigated in developing wheat (Triticum aestivum L. cv. Butte ...

  15. The effect of high temperature on cell structure and gluten protein accumulation in the endosperm of the developing wheat (Triticum aestivum L.) grain

    USDA-ARS?s Scientific Manuscript database

    High temperature during grain fill is one of the more significant environmental factors that alters wheat yield and flour quality. To identify endosperm responses to high temperature, cell structure and gluten protein composition were investigated in developing wheat (Triticum aestivum L. cv. Butte ...

  16. Genome-wide association mapping for stripe rust (Puccinia striiformis F. sp. tritici) in US Pacific Northwest winter wheat (Triticum aestivum L.)

    USDA-ARS?s Scientific Manuscript database

    Stripe rust (Puccinia striiformis F. sp. tritici; also known as yellow rust) is a globally devastating disease of wheat (Triticum aestivum L.) and a major threat to wheat production in the US Pacific Northwest (PNW), therefore both adult plant and all-stage resistance have been introduced into the w...

  17. NsLTP1 and NsLTP2 isoforms in soft wheat (Triticum aestivum Cv. Centauro) and farro (Triticum dicoccon Schrank) bran.

    PubMed

    Capocchi, Antonella; Fontanini, Debora; Muccilli, Vera; Cunsolo, Vincenzo; Saviozzi, Franco; Saletti, Rosaria; Lorenzi, Roberto; Foti, Salvatore; Galleschi, Luciano

    2005-10-05

    Isoforms of nonspecific lipid-transfer protein 1 (nsLTP1) and nonspecific lipid-transfer protein 2 (nsLTP2) were investigated in bran tissues isolated from caryopses of two cereal crops quite relevant for the Italian market, the cultivar Centauro of soft wheat (Triticum aestivum) and Italian emmer or farro (Triticum dicoccon Schrank). By sequential separation of the bran extracts on cation-exchange and gel filtration chromatographies, fractions containing only proteins belonging to the nsLTP1 and nsLTP2 classes were obtained. The proteins were roughly identified by SDS-PAGE and by immunoreactions in Western blotting experiments. By MALDI-MS and RP-HPLC/ESI-MS analyses we were able to show the presence of several LTP1 and LTP2 isoforms in the investigated species. Bioinformatic searches based on the determined Mr indicated that (i) two nsLTP1s already identified in T. aestivum have Mr and number of Cys residues identical to that of a 9.6 kDa protein present both in soft wheat cv. Centauro and in farro; (ii) two isoforms of nsLTP2 detected in T. aestivum have the same Mr and number of Cys residues of two 7 kDa proteins found in Centauro; and (iii) a nsLTP1 detected in Ambrosia artemisiifolia has Mr and number of Cys residues coincident to that of a 9.9 kDa protein found both in soft wheat cv. Centauro and in farro.

  18. Accumulation of phenanthrene by roots of intact wheat (Triticum acstivnm L.) seedlings: passive or active uptake?

    PubMed Central

    2010-01-01

    Background Polycyclic aromatic hydrocarbons (PAHs) are of particular concern due to their hydrophobic, recalcitrant, persistent, potentially carcinogenic, mutagenic and toxic properties, and their ubiquitous occurrence in the environment. Most of the PAHs in the environment are present in surface soil. Plants grown in PAH-contaminated soils or water can become contaminated with PAHs because of their uptake. Therefore, they may threaten human and animal health. However, the mechanism for PAHs uptake by crop roots is little understood. It is important to understand exactly how PAHs are transported into the plant root system and into the human food chain, since it is beneficial in governing crop contamination by PAHs, remedying soils or waters polluted by PAHs with plants, and modeling potential uptake for risk assessment. Results The possibility that plant roots may take up phenanthrene (PHE), a representative of PAHs, via active process was investigated using intact wheat (Triticum acstivnm L.) seedlings in a series of hydroponic experiments. The time course for PHE uptake into wheat roots grown in Hoagland solution containing 5.62 μM PHE for 36 h could be separated into two periods: a fast uptake process during the initial 2 h and a slow uptake component thereafter. Concentration-dependent PHE uptake was characterized by a smooth, saturable curve with an apparent Km of 23.7 μM and a Vmax of 208 nmol g-1 fresh weight h-1, suggesting a carrier-mediated uptake system. Competition between PHE and naphthalene for their uptake by the roots further supported the carrier-mediated uptake system. Low temperature and 2,4-dinitrophenol (DNP) could inhibit PHE uptake equally, indicating that metabolism plays a role in PHE uptake. The inhibitions by low temperature and DNP were strengthened with increasing concentration of PHE in external solution within PHE water solubility (7.3 μM). The contribution of active uptake to total absorption was almost 40% within PHE water

  19. Accumulation of phenanthrene by roots of intact wheat (Triticum acstivnm L.) seedlings: passive or active uptake?

    PubMed

    Zhan, Xin-Hua; Ma, Heng-Liang; Zhou, Li-Xiang; Liang, Jian-Ru; Jiang, Ting-Hui; Xu, Guo-Hua

    2010-03-22

    Polycyclic aromatic hydrocarbons (PAHs) are of particular concern due to their hydrophobic, recalcitrant, persistent, potentially carcinogenic, mutagenic and toxic properties, and their ubiquitous occurrence in the environment. Most of the PAHs in the environment are present in surface soil. Plants grown in PAH-contaminated soils or water can become contaminated with PAHs because of their uptake. Therefore, they may threaten human and animal health. However, the mechanism for PAHs uptake by crop roots is little understood. It is important to understand exactly how PAHs are transported into the plant root system and into the human food chain, since it is beneficial in governing crop contamination by PAHs, remedying soils or waters polluted by PAHs with plants, and modeling potential uptake for risk assessment. The possibility that plant roots may take up phenanthrene (PHE), a representative of PAHs, via active process was investigated using intact wheat (Triticum acstivnm L.) seedlings in a series of hydroponic experiments. The time course for PHE uptake into wheat roots grown in Hoagland solution containing 5.62 microM PHE for 36 h could be separated into two periods: a fast uptake process during the initial 2 h and a slow uptake component thereafter. Concentration-dependent PHE uptake was characterized by a smooth, saturable curve with an apparent Km of 23.7 microM and a Vmax of 208 nmol g(-1) fresh weight h(-1), suggesting a carrier-mediated uptake system. Competition between PHE and naphthalene for their uptake by the roots further supported the carrier-mediated uptake system. Low temperature and 2,4-dinitrophenol (DNP) could inhibit PHE uptake equally, indicating that metabolism plays a role in PHE uptake. The inhibitions by low temperature and DNP were strengthened with increasing concentration of PHE in external solution within PHE water solubility (7.3 muM). The contribution of active uptake to total absorption was almost 40% within PHE water solubility. PHE

  20. Toxic effect of tetracycline exposure on growth, antioxidative and genetic indices of wheat (Triticum aestivum L.).

    PubMed

    Xie, Xiujie; Zhou, Qixing; Lin, Dasong; Guo, Jianmian; Bao, Yanyu

    2011-05-01

    More attention has been paid to tetracycline contamination in view of its rapid increasing concentration in the environment. Therefore, it is important to set up rapid, simple, and accurate methods for monitoring tetracycline ecotoxicity. In the present study, a hydroponics experiment was conducted to examine toxic effects of tetracycline at the concentration range of 0.5 to 300 mg L(-1) on growth, antioxidative, and genetic indices of wheat (Triticum aestivum L.). The results indicated that tetracycline at 0.5-10 mg L(-1) could stimulate seed germination, cell mitotic division, and growth of wheat seedlings and did not induce a significant increase in the activity of antioxidative enzymes. However, tetracycline at the high concentrations (10-300 mg L(-1)) could significantly inhibit these parameters in the concentration-dependent manner, including germination percentage (≥100 mg L(-1)), shoot height (≥100 mg L(-1)), root length (≥50 mg L(-1)), and mitotic index (≥50 mg L(-1)), and increased the activity of antioxidative enzymes (≥25 mg L(-1)) in the dose-dependent manner, including superoxide dismutase, catalase, and peroxidase. Tetracycline at 5 mg L(-1) and above significantly augmented chromosome aberration frequency and malondialdehyde (MDA) content. On the other hand, MDA has positive correlation with the inhibition rates of seed germination, root length, shoot length, mitotic index, and antioxidative enzyme activities. Tetracycline may have potential physiological, biochemical, and genetic toxicity to plant cells, and chromosome aberration and MDA might be sensitive bioindicators for tetracycline contamination than the other plant characteristics.

  1. New isoforms and assembly of glutamine synthetase in the leaf of wheat (Triticum aestivum L.).

    PubMed

    Wang, Xiaochun; Wei, Yihao; Shi, Lanxin; Ma, Xinming; Theg, Steven M

    2015-11-01

    Glutamine synthetase (GS; EC 6.3.1.2) plays a crucial role in the assimilation and re-assimilation of ammonia derived from a wide variety of metabolic processes during plant growth and development. Here, three developmentally regulated isoforms of GS holoenzyme in the leaf of wheat (Triticum aestivum L.) seedlings are described using native-PAGE with a transferase activity assay. The isoforms showed different mobilities in gels, with GSII>GSIII>GSI. The cytosolic GSI was composed of three subunits, GS1, GSr1, and GSr2, with the same molecular weight (39.2kDa), but different pI values. GSI appeared at leaf emergence and was active throughout the leaf lifespan. GSII and GSIII, both located in the chloroplast, were each composed of a single 42.1kDa subunit with different pI values. GSII was active mainly in green leaves, while GSIII showed brief but higher activity in green leaves grown under field conditions. LC-MS/MS experiments revealed that GSII and GSIII have the same amino acid sequence, but GSII has more modification sites. With a modified blue native electrophoresis (BNE) technique and in-gel catalytic activity analysis, only two GS isoforms were observed: one cytosolic and one chloroplastic. Mass calibrations on BNE gels showed that the cytosolic GS1 holoenzyme was ~490kDa and likely a dodecamer, and the chloroplastic GS2 holoenzyme was ~240kDa and likely a hexamer. Our experimental data suggest that the activity of GS isoforms in wheat is regulated by subcellular localization, assembly, and modification to achieve their roles during plant development.

  2. Zinc and copper uptake by plants under two transpiration rates. Part I. Wheat (Triticum aestivum L.).

    PubMed

    Tani, F H; Barrington, S

    2005-12-01

    To evaluate the environmental risk of irrigating crops with treated wastewater, an experiment was conducted using two growth chambers, each offering a different vapour pressure deficit (VPD) for high and low transpiration rates (TR), respectively. One of the two sets of 24 pots planted with 6 week old wheat (Triticum aestivum L.), was placed in each growth chamber, and irrigated in triplicates for 20 days with 8 Zn and Cu solutions (0 and 25 mg Zn/L combined with 0, 5, 15 and 30 mg Cu/L). Water losses from planted and non-planted pots served to measure evapo-transpiration and evaporation, respectively. Pots were monitored for Cu and Zn uptake by collecting three plants (shoot and grain)/pots after 0, 10 and 20 days, and roots in each pot after 20 days, and analyzing these plant parts for dry mass, and Cu and Zn levels. Transpiration rate was not affected by any Cu/Zn treatment, but Cu and Zn uptake increase with the time, irrigation solution level and higher TR, with the roots retaining most Cu and Zn, compared to the shoot followed by the grain. For the shoot and grain, Cu had a significant synergetic effect on Zn uptake, when Zn had slight but insignificant antagonistic effects on Cu uptake. For the roots, Cu and Zn had significant synergetic effect on each other. Regression equations obtained from the data indicate that Cu and Zn levels normally found in treated wastewater (0.08 mg/L) are 300 times lower than those used for the most concentrated experimental solutions (30 and 25 mg/L, respectively) and may, on a long term basis, be beneficial rather than toxic to wheat plants and do not acidify soil pH.

  3. New isoforms and assembly of glutamine synthetase in the leaf of wheat (Triticum aestivum L.)

    DOE PAGES

    Wang, Xiaochun; Wei, Yihao; Shi, Lanxin; ...

    2015-08-24

    Glutamine synthetase (GS; EC 6.3.1.2) plays a crucial role in the assimilation and re-assimilation of ammonia derived from a wide variety of metabolic processes during plant growth and development. Here, three developmentally regulated isoforms of GS holoenzyme in the leaf of wheat (Triticum aestivum L.) seedlings are described using native-PAGE with a transferase activity assay. The isoforms showed different mobilities in gels, with GSII>GSIII>GSI. The cytosolic GSI was composed of three subunits, GS1, GSr1, and GSr2, with the same molecular weight (39.2kDa), but different pI values. GSI appeared at leaf emergence and was active throughout the leaf lifespan. GSII andmore » GSIII, both located in the chloroplast, were each composed of a single 42.1kDa subunit with different pI values. GSII was active mainly in green leaves, while GSIII showed brief but higher activity in green leaves grown under field conditions. LC-MS/MS experiments revealed that GSII and GSIII have the same amino acid sequence, but GSII has more modification sites. With a modified blue native electrophoresis (BNE) technique and in-gel catalytic activity analysis, only two GS isoforms were observed: one cytosolic and one chloroplastic. Mass calibrations on BNE gels showed that the cytosolic GS1 holoenzyme was ~490kDa and likely a dodecamer, and the chloroplastic GS2 holoenzyme was ~240kDa and likely a hexamer. Lastly, our experimental data suggest that the activity of GS isoforms in wheat is regulated by subcellular localization, assembly, and modification to achieve their roles during plant development.« less

  4. Drought-induced changes in photosynthetic apparatus and antioxidant components of wheat (Triticum durum Desf.) varieties.

    PubMed

    Huseynova, Irada M; Rustamova, Samira M; Suleymanov, Saftar Y; Aliyeva, Durna R; Mammadov, Alamdar Ch; Aliyev, Jalal A

    2016-12-01

    Water deficit is a key factor influencing the yield and quality of crops. In the present study, the photosynthetic responses by means of chlorophyll fluorescence of chloroplasts, thylakoid membrane proteins, and antioxidant components were analyzed in wheat (Triticum durum Desf.) plants differing in their tolerance to drought. Two durum winter wheat varieties, Barakatli 95 (drought tolerant) and Garagylchyg 2 (drought sensitive) were grown under field well-watered and drought conditions. It was found that contents of the PS I core (CPI) with Mr of 123 kD and apoprotein P700 with Mr of 63 kD were relatively higher in Barakatli 95 variety under drought stress compared with the control plants. Synthesis of α- and β-subunits of CF1 ATP-synthase complex with Mr of 55 and 53.5 kD also slightly increased in the tolerant Barakatli 95 and decreased in the drought sensitive variety Garagylchyg 2. A decrease in the intensity of 30 kD band and a significant increase were found in the content of the 25-16 kD region in Garagylchyg 2 variety. The synthesis of 60 kD and content of low molecular mass polypeptides (21.5 and 12 kD) were increased in the tolerant genotype Barakatli 95. The intensity of peaks at 687, 695, and 742 nm considerably increases in the fluorescence spectra (77 K) of chloroplasts isolated from the sensitive variety Garagylchyg 2, and there is a stimulation of the ratio of fluorescence band intensity F687/F740. At the same time, higher level of glycine betaine was found in the drought tolerant variety compared with the control one throughout the different periods of growth.

  5. New isoforms and assembly of glutamine synthetase in the leaf of wheat (Triticum aestivum L.)

    PubMed Central

    Wang, Xiaochun; Wei, Yihao; Shi, Lanxin; Ma, Xinming; Theg, Steven M.

    2015-01-01

    Glutamine synthetase (GS; EC 6.3.1.2) plays a crucial role in the assimilation and re-assimilation of ammonia derived from a wide variety of metabolic processes during plant growth and development. Here, three developmentally regulated isoforms of GS holoenzyme in the leaf of wheat (Triticum aestivum L.) seedlings are described using native-PAGE with a transferase activity assay. The isoforms showed different mobilities in gels, with GSII>GSIII>GSI. The cytosolic GSI was composed of three subunits, GS1, GSr1, and GSr2, with the same molecular weight (39.2kDa), but different pI values. GSI appeared at leaf emergence and was active throughout the leaf lifespan. GSII and GSIII, both located in the chloroplast, were each composed of a single 42.1kDa subunit with different pI values. GSII was active mainly in green leaves, while GSIII showed brief but higher activity in green leaves grown under field conditions. LC-MS/MS experiments revealed that GSII and GSIII have the same amino acid sequence, but GSII has more modification sites. With a modified blue native electrophoresis (BNE) technique and in-gel catalytic activity analysis, only two GS isoforms were observed: one cytosolic and one chloroplastic. Mass calibrations on BNE gels showed that the cytosolic GS1 holoenzyme was ~490kDa and likely a dodecamer, and the chloroplastic GS2 holoenzyme was ~240kDa and likely a hexamer. Our experimental data suggest that the activity of GS isoforms in wheat is regulated by subcellular localization, assembly, and modification to achieve their roles during plant development. PMID:26307137

  6. Grain subproteome responses to nitrogen and sulfur supply in diploid wheat Triticum monococcum ssp. monococcum.

    PubMed

    Bonnot, Titouan; Bancel, Emmanuelle; Alvarez, David; Davanture, Marlène; Boudet, Julie; Pailloux, Marie; Zivy, Michel; Ravel, Catherine; Martre, Pierre

    2017-09-01

    Wheat grain storage proteins (GSPs) make up most of the protein content of grain and determine flour end-use value. The synthesis and accumulation of GSPs depend highly on nitrogen (N) and sulfur (S) availability and it is important to understand the underlying control mechanisms. Here we studied how the einkorn (Triticum monococcum ssp. monococcum) grain proteome responds to different amounts of N and S supply during grain development. GSP composition at grain maturity was clearly impacted by nutrition treatments, due to early changes in the rate of GSP accumulation during grain filling. Large-scale analysis of the nuclear and albumin-globulin subproteomes during this key developmental phase revealed that the abundance of 203 proteins was significantly modified by the nutrition treatments. Our results showed that the grain proteome was highly affected by perturbation in the N:S balance. S supply strongly increased the rate of accumulation of S-rich α/β-gliadin and γ-gliadin, and the abundance of several other proteins involved in glutathione metabolism. Post-anthesis N supply resulted in the activation of amino acid metabolism at the expense of carbohydrate metabolism and the activation of transport processes including nucleocytoplasmic transit. Protein accumulation networks were analyzed. Several central actors in the response were identified whose variation in abundance was related to variation in the amounts of many other proteins and are thus potentially important for GSP accumulation. This detailed analysis of grain subproteomes provides information on how wheat GSP composition can possibly be controlled in low-level fertilization condition. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  7. Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix.

    PubMed

    Dimkpa, Christian O; McLean, Joan E; Martineau, Nicole; Britt, David W; Haverkamp, Richard; Anderson, Anne J

    2013-01-15

    Hydroponic plant growth studies indicate that silver nanoparticles (Ag NPs) are phytotoxic. In this work, the phytotoxicity of commercial Ag NPs (10 nm) was evaluated in a sand growth matrix. Both NPs and soluble Ag were recovered from water extracts of the sand after growth of plants challenged with the commercial product; the surface charge of the Ag NPs in this extract was slightly reduced compared to the stock NPs. The Ag NPs reduced the length of shoots and roots of wheat in a dose-dependent manner. Furthermore, 2.5 mg/kg of the NPs increased branching in the roots of wheat (Triticum aestivum L.), thereby affecting plant biomass. Micron-sized (bulk) Ag particles (2.5 mg/kg) as well as Ag ions (63 μg Ag/kg) equivalent to the amount of soluble Ag in planted sand with Ag NPs (2.5 mg/kg) did not affect plant growth compared to control. In contrast, higher levels of Ag ions (2.5 mg/kg) reduced plant growth to a similar extent as the Ag NPs. Accumulation of Ag was detected in the shoots, indicating an uptake and transport of the metal from the Ag NPs in the sand. Transmision electron microscopy indicated that Ag NPs were present in shoots of plants with roots exposed to the Ag NPs or high levels of Ag ions. Both of these treatments caused oxidative stress in roots, as indicated by accumulation of oxidized glutathione, and induced expression of a gene encoding a metallothionein involved in detoxification by metal ion sequestration. Our findings demonstrate the potential effects of environmental contamination by Ag NPs on the metabolism and growth of food crops in a solid matrix.

  8. Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat

    PubMed Central

    Huang, Shaoxing; Sirikhachornkit, Anchalee; Su, Xiujuan; Faris, Justin; Gill, Bikram; Haselkorn, Robert; Gornicki, Piotr

    2002-01-01

    The classic wheat evolutionary history is one of adaptive radiation of the diploid Triticum/Aegilops species (A, S, D), genome convergence and divergence of the tetraploid (Triticum turgidum AABB, and Triticum timopheevii AAGG) and hexaploid (Triticum aestivum, AABBDD) species. We analyzed Acc-1 (plastid acetyl-CoA carboxylase) and Pgk-1 (plastid 3-phosphoglycerate kinase) genes to determine phylogenetic relationships among Triticum and Aegilops species of the wheat lineage and to establish the timeline of wheat evolution based on gene sequence comparisons. Triticum urartu was confirmed as the A genome donor of tetraploid and hexaploid wheat. The A genome of polyploid wheat diverged from T. urartu less than half a million years ago (MYA), indicating a relatively recent origin of polyploid wheat. The D genome sequences of T. aestivum and Aegilops tauschii are identical, confirming that T. aestivum arose from hybridization of T. turgidum and Ae. tauschii only 8,000 years ago. The diploid Triticum and Aegilops progenitors of the A, B, D, G, and S genomes all radiated 2.5–4.5 MYA. Our data suggest that the Acc-1 and Pgk-1 loci have different histories in different lineages, indicating genome mosaicity and significant intraspecific differentiation. Some loci of the S genome of Aegilops speltoides and the G genome of T. timophevii are closely related, suggesting the same origin of some parts of their genomes. None of the Aegilops genomes analyzed is a close relative of the B genome, so the diploid progenitor of the B genome remains unknown. PMID:12060759

  9. Phenotypic and molecular identification and clustering of lactic acid bacteria and yeasts from wheat (species Triticum durum and Triticum aestivum) sourdoughs of Southern Italy.

    PubMed

    Corsetti, A; Lavermicocca, P; Morea, M; Baruzzi, F; Tosti, N; Gobbetti, M

    2001-02-28

    The microflora of 25 wheat sourdoughs from the Apulia region, Southern Italy, was characterized. The sourdoughs were mainly produced from Triticum durum wheat. The number of lactic acid bacteria and yeasts ranged from ca. log 7.5 to log 9.3 colony forming units (cfu)/g and from log 5.5 to log 8.4 cfu/g, respectively. About 38% of the 317 isolates of lactic acid bacteria were identified by conventional physiological and biochemical tests. Phenotypic identification was confirmed by 16S rDNA and 16S/23S rRNA spacer region PCR. Overall, 30% of the isolates were identified as Lactobacillus sanfranciscensis, 20% as Lb. alimentarius, 14% as Lb. brevis, 12% as Leuconostoc citreum, 7% as Lb. plantarum, 6% as Lactococcus lactis subsp. lactis, 4% as Lb. fermentum and Lb. acidophilus, 2% as Weissella confusa and 1% as Lb. delbrueckii subsp. delbrueckii. Some of these species have not been previously isolated from sourdoughs. Since bakers yeast is widely used in sourdough production, Saccharomyces cerevisiae was largely found. The phenotypical relationships within the main lactic acid bacteria identified were established by using cluster analysis. A microbial map of the 25 sourdoughs was plotted showing characteristic associations among lactic acid bacteria and differences in the lactic acid bacteria species which were mainly due to the species of wheat flour, use of bakers yeast and type of bread.

  10. Uptake, localization, and speciation of cobalt in Triticum aestivum L. (wheat) and Lycopersicon esculentum M. (tomato).

    PubMed

    Collins, Richard N; Bakkaus, Estelle; Carrière, Marie; Khodja, Hicham; Proux, Olivier; Morel, Jean-Louis; Gouget, Barbara

    2010-04-15

    The root-to-shoot transfer, localization, and chemical speciation of Co were investigated in a monocotyledon (Triticum aestivum L., wheat) and a dicotyledon (Lycopersicon esculentum M., tomato) plant species grown in nutrient solution at low (5 muM) and high (20 muM) Co(II) concentrations. Cobalt was measured in the roots and shoots by inductively coupled plasma-mass spectrometry. X-ray absorption spectroscopy measurements were used to identify the chemical structure of Co within the plants and Co distribution in the leaves was determined by micro-PIXE (particle induced X-ray emission). Although the root-to-shoot transport was higher for tomato plants exposed to excess Co, both plants appeared as excluders. The oxidation state of Co(II) was not transformed by either plant in the roots or shoots and Co appeared to be present as Co(II) in a complex with carboxylate containing organic acids. Cobalt was also essentially located in the vascular system of both plant species indicating that neither responded to Co toxicity via sequestration in epidermal or trichome tissues as has been observed for other metals in metal hyperaccumulating plants.

  11. Water movement into dormant and non-dormant wheat (Triticum aestivum L.) grains

    PubMed Central

    Rathjen, Judith R.; Strounina, Ekaterina V.; Mares, Daryl J.

    2009-01-01

    The movement of water into harvest-ripe grains of dormant and non-dormant genotypes of wheat (Triticum aestivum L.) was investigated using Magnetic Resonance Micro-Imaging (MRMI). Images of virtual sections, both longitudinal and transverse, throughout the grain were collected at intervals after the start of imbibition and used to reconstruct a picture of water location within the different grain tissues and changes over time. The observations were supplemented by the weighing measurements of water content and imbibition of grains in water containing I2/KI which stains starch and lipid, thereby acting as a marker for water. In closely related genotypes, with either a dormant or a non-dormant phenotype, neither the rate of increase in water content nor the pattern of water distribution within the grain was significantly different until 18 h, when germination became apparent in the non-dormant genotype. Water entered the embryo and scutellum during the very early stages of imbibition through the micropyle and by 2 h water was clearly evident in the micropyle channel. After 12 h of imbibition, embryo structures such as the coleoptile and radicle were clearly distinguished. Although water accumulated between the inner (seed coat) and outer (pericarp) layers of the coat surrounding the grain, there was no evidence for movement of water directly across the coat and into the underlying starchy endosperm. PMID:19386615

  12. Proteomic analysis of peripheral layers during wheat (Triticum aestivum L.) grain development.

    PubMed

    Tasleem-Tahir, Ayesha; Nadaud, Isabelle; Girousse, Christine; Martre, Pierre; Marion, Didier; Branlard, Gérard

    2011-02-01

    Grains of hexaploid wheat, Triticum aestivum (cv. Récital), were collected at 15 stages of development, from anthesis to physiological maturity, 0-700°C days (degree days after anthesis). Two hundred and seven proteins of grain peripheral layers (inner pericarp, hyaline, testa and aleurone layer) were identified by 2-DE, MALDI-TOF MS and data mining, then were classified in 16 different functional categories. Study of the protein expression over time allowed identification of five main profiles and four distinct phases of development. Composite expression curves indicated that there was a shift from metabolic processes, translation, transcription and ATP interconversion towards storage and defence processes. Protein synthesis, protein turnover, signal transduction, membrane transport and biosynthesis of secondary metabolites were the mediating functions of this shift. A picture of the dynamic processes taking place in peripheral layers during grain development was obtained in this study. It should further help in the construction of proteome reference maps for the developing peripheral layers. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Relevance for food sciences of quantitative spatially resolved element profile investigations in wheat (Triticum aestivum) grain.

    PubMed

    Pongrac, Paula; Kreft, Ivan; Vogel-Mikus, Katarina; Regvar, Marjana; Germ, Mateja; Vavpetic, Primoz; Grlj, Natasa; Jeromel, Luka; Eichert, Diane; Budic, Bojan; Pelicon, Primoz

    2013-07-06

    Bulk element concentrations of whole grain and element spatial distributions at the tissue level were investigated in wheat (Triticum aestivum) grain grown in Zn-enriched soil. Inductively coupled plasma mass spectrometry and inductively coupled plasma optical emission spectrometry were used for bulk analysis, whereas micro-proton-induced X-ray emission was used to resolve the two-dimensional localization of the elements. Soil Zn application did not significantly affect the grain yield, but did significantly increase the grain Ca, Fe and Zn concentrations, and decrease the grain Na, P and Mo concentrations; bulk Mg, S, K, Mn, Cu, Cd and Pb concentrations remained unchanged. These changes observed in bulk element concentrations are the reflection of tissue-specific variations within the grain, revealing that Zn application to soil can lead to considerable alterations in the element distributions within the grain, which might ultimately influence the quality of the milling fractions. Spatially resolved investigations into the partitioning of the element concentrations identified the tissues with the highest element concentrations, which is of utmost importance for accurate prediction of element losses during the grain milling and polishing processes.

  14. Competition Increases Sensitivity of Wheat (Triticum aestivum) to Biotic Plant-Soil Feedback

    PubMed Central

    Hol, W. H. Gera; de Boer, Wietse; ten Hooven, Freddy; van der Putten, Wim H.

    2013-01-01

    Plant-soil feedback (PSF) and plant competition play an important role in structuring vegetation composition, but their interaction remains unclear. Recent studies suggest that competing plants could dilute pathogenic effects, whereas the standing view is that competition may increase the sensitivity of the focal plant to PSF. In agro-ecosystems each of these two options would yield contrasting outcomes: reduced versus enhanced effects of weeds on crop biomass production. To test the effect of competition on sensitivity to PSF, we grew Triticum aestivum (Common wheat) with and without competition from a weed community composed of Vicia villosa, Chenopodium album and Myosotis arvensis. Plants were grown in sterilized soil, with or without living field inoculum from 4 farms in the UK. In the conditioning phase, field inocula had both positive and negative effects on T. aestivum shoot biomass, depending on farm. In the feedback phase the differences between shoot biomass in T. aestivum monoculture on non-inoculated and inoculated soils had mostly disappeared. However, T. aestivum plants growing in mixtures in the feedback phase were larger on non-inoculated soil than on inoculated soil. Hence, T. aestivum was more sensitive to competition when the field soil biota was present. This was supported by the statistically significant negative correlation between shoot biomass of weeds and T. aestivum, which was absent on sterilized soil. In conclusion, competition in cereal crop-weed systems appears to increase cereal crop sensitivity to soil biota. PMID:23776610

  15. Competition increases sensitivity of wheat (Triticum aestivum) to biotic plant-soil feedback.

    PubMed

    Hol, W H Gera; de Boer, Wietse; ten Hooven, Freddy; van der Putten, Wim H

    2013-01-01

    Plant-soil feedback (PSF) and plant competition play an important role in structuring vegetation composition, but their interaction remains unclear. Recent studies suggest that competing plants could dilute pathogenic effects, whereas the standing view is that competition may increase the sensitivity of the focal plant to PSF. In agro-ecosystems each of these two options would yield contrasting outcomes: reduced versus enhanced effects of weeds on crop biomass production. To test the effect of competition on sensitivity to PSF, we grew Triticum aestivum (Common wheat) with and without competition from a weed community composed of Vicia villosa, Chenopodium album and Myosotis arvensis. Plants were grown in sterilized soil, with or without living field inoculum from 4 farms in the UK. In the conditioning phase, field inocula had both positive and negative effects on T. aestivum shoot biomass, depending on farm. In the feedback phase the differences between shoot biomass in T. aestivum monoculture on non-inoculated and inoculated soils had mostly disappeared. However, T. aestivum plants growing in mixtures in the feedback phase were larger on non-inoculated soil than on inoculated soil. Hence, T. aestivum was more sensitive to competition when the field soil biota was present. This was supported by the statistically significant negative correlation between shoot biomass of weeds and T. aestivum, which was absent on sterilized soil. In conclusion, competition in cereal crop-weed systems appears to increase cereal crop sensitivity to soil biota.

  16. Relevance for food sciences of quantitative spatially resolved element profile investigations in wheat (Triticum aestivum) grain

    PubMed Central

    Pongrac, Paula; Kreft, Ivan; Vogel-Mikuš, Katarina; Regvar, Marjana; Germ, Mateja; Vavpetič, Primož; Grlj, Nataša; Jeromel, Luka; Eichert, Diane; Budič, Bojan; Pelicon, Primož

    2013-01-01

    Bulk element concentrations of whole grain and element spatial distributions at the tissue level were investigated in wheat (Triticum aestivum) grain grown in Zn-enriched soil. Inductively coupled plasma mass spectrometry and inductively coupled plasma optical emission spectrometry were used for bulk analysis, whereas micro-proton-induced X-ray emission was used to resolve the two-dimensional localization of the elements. Soil Zn application did not significantly affect the grain yield, but did significantly increase the grain Ca, Fe and Zn concentrations, and decrease the grain Na, P and Mo concentrations; bulk Mg, S, K, Mn, Cu, Cd and Pb concentrations remained unchanged. These changes observed in bulk element concentrations are the reflection of tissue-specific variations within the grain, revealing that Zn application to soil can lead to considerable alterations in the element distributions within the grain, which might ultimately influence the quality of the milling fractions. Spatially resolved investigations into the partitioning of the element concentrations identified the tissues with the highest element concentrations, which is of utmost importance for accurate prediction of element losses during the grain milling and polishing processes. PMID:23676898

  17. Novel nuclear-cytoplasmic interaction in wheat (Triticum aestivum) induces vigorous plants.

    PubMed

    Soltani, Ali; Kumar, Ajay; Mergoum, Mohamed; Pirseyedi, Seyed Mostafa; Hegstad, Justin B; Mazaheri, Mona; Kianian, Shahryar F

    2016-03-01

    Interspecific hybridization can be considered an accelerator of evolution, otherwise a slow process, solely dependent on mutation and recombination. Upon interspecific hybridization, several novel interactions between nuclear and cytoplasmic genomes emerge which provide additional sources of diversity. The magnitude and essence of intergenomic interactions between nuclear and cytoplasmic genomes remain unknown due to the direction of many crosses. This study was conducted to address the role of nuclear-cytoplasmic interactions as a source of variation upon hybridization. Wheat (Triticum aestivum) alloplasmic lines carrying the cytoplasm of Aegilops mutica along with an integrated approach utilizing comparative quantitative trait locus (QTL) and epigenome analysis were used to dissect this interaction. The results indicate that cytoplasmic genomes can modify the magnitude of QTL controlling certain physiological traits such as dry matter weight. Furthermore, methylation profiling analysis detected eight polymorphic regions affected by the cytoplasm type. In general, these results indicate that novel nuclear-cytoplasmic interactions can potentially trigger an epigenetic modification cascade in nuclear genes which eventually change the genetic network controlling physiological traits. These modified genetic networks can serve as new sources of variation to accelerate the evolutionary process. Furthermore, this variation can synthetically be produced by breeders in their programs to develop epigenomic-segregating lines.

  18. Plasmon analyses of Triticum (wheat) and Aegilops: PCR–single-strand conformational polymorphism (PCR-SSCP) analyses of organellar DNAs

    PubMed Central

    Wang, Gui-Zhi; Miyashita, Naohiko T.; Tsunewaki, Koichiro

    1997-01-01

    To investigate phylogenetic relationships among plasmons in Triticum and Aegilops, PCR–single-strand conformational polymorphism (PCR-SSCP) analyses were made of 14.0-kb chloroplast (ct) and 13.7-kb mitochondrial (mt)DNA regions that were isolated from 46 alloplasmic wheat lines and one euplasmic line. These plasmons represent 31 species of the two genera. The ct and mtDNA regions included 10 and 9 structural genes, respectively. A total of 177 bands were detected, of which 40.6% were variable. The proportion of variable bands in ctDNA (51.1%) was higher than that of mtDNA (28.9%). The phylogenetic trees of plasmons, derived by two different models, indicate a common picture of plasmon divergence in the two genera and suggest three major groups of plasmons (Einkorn, Triticum, and Aegilops). Because of uniparental plasmon transmission, the maternal parents of all but one polyploid species were identified. Only one Aegilops species, Ae. speltoides, was included in the Triticum group, suggesting that this species is the plasmon and B and G genome donor of all polyploid wheats. ctDNA variations were more intimately correlated with vegetative characters, whereas mtDNA variations were more closely correlated with reproductive characters. Plasmon divergence among the diploids of the two genera largely paralleled genome divergence. The relative times of origin of the polyploid species were inferred from genetic distances from their putative maternal parents. PMID:9405654

  19. Microscopic and Molecular Characterization of the Prehaustorial Resistance against Wheat Leaf Rust (Puccinia triticina) in Einkorn (Triticum monococcum)

    PubMed Central

    Serfling, Albrecht; Templer, Sven E.; Winter, Peter; Ordon, Frank

    2016-01-01

    Puccinia triticina f. sp. tritici (Eriks.), the causal agent of leaf rust, causes substantial yield losses in wheat production. In wheat many major leaf rust resistance genes have been overcome by virulent races. In contrast, the prehaustorial resistance (phr) against wheat leaf rust detected in the diploid wheat Einkorn (Triticum monoccocum var. monococcum) accession PI272560 confers race-independent resistance against isolates virulent on accessions harboring resistance genes located on the A-genome of Triticum aestivum. Phr in PI272560 leads to abortion of fungal development during the formation of haustorial mother cells and to increased hydrogen peroxide concentration in comparison to the susceptible accession 36554 (Triticum boeoticum ssp. thaoudar var. reuteri). Increased peroxidase and endochitinase activity was detected in PI272560 within 6 h after inoculation (hai). Comparative transcriptome profiling using Massive Analysis of cDNA Ends (MACE) in infected and non-infected leaves detected 14220 differentially expressed tags in PI272560 and 15472 in accession 36554. Of these 2908 and 3004, respectively, could be assigned to Gene Ontology (GO) categories of which 463 were detected in both accessions and 311 were differentially expressed between the accessions. In accordance with the concept of non-host resistance in PI272560, genes with similarity to peroxidases, chitinases, β-1,3-glucanases and other pathogenesis-related genes were up-regulated within the first 8 hai, whereas up-regulation of such genes was delayed in 36554. Moreover, a Phosphoribulokinase gene contributing to non-host resistance in rice against stripe rust was exclusively expressed in the resistant accession PI272560. Gene expression underpinned physiological and phenotypic observations at the site of infection and are in accordance with the concept of non-host resistance. PMID:27881987

  20. Microscopic and Molecular Characterization of the Prehaustorial Resistance against Wheat Leaf Rust (Puccinia triticina) in Einkorn (Triticum monococcum).

    PubMed

    Serfling, Albrecht; Templer, Sven E; Winter, Peter; Ordon, Frank

    2016-01-01

    Puccinia triticina f. sp. tritici (Eriks.), the causal agent of leaf rust, causes substantial yield losses in wheat production. In wheat many major leaf rust resistance genes have been overcome by virulent races. In contrast, the prehaustorial resistance (phr) against wheat leaf rust detected in the diploid wheat Einkorn (Triticum monoccocum var. monococcum) accession PI272560 confers race-independent resistance against isolates virulent on accessions harboring resistance genes located on the A-genome of Triticum aestivum. Phr in PI272560 leads to abortion of fungal development during the formation of haustorial mother cells and to increased hydrogen peroxide concentration in comparison to the susceptible accession 36554 (Triticum boeoticum ssp. thaoudar var. reuteri). Increased peroxidase and endochitinase activity was detected in PI272560 within 6 h after inoculation (hai). Comparative transcriptome profiling using Massive Analysis of cDNA Ends (MACE) in infected and non-infected leaves detected 14220 differentially expressed tags in PI272560 and 15472 in accession 36554. Of these 2908 and 3004, respectively, could be assigned to Gene Ontology (GO) categories of which 463 were detected in both accessions and 311 were differentially expressed between the accessions. In accordance with the concept of non-host resistance in PI272560, genes with similarity to peroxidases, chitinases, β-1,3-glucanases and other pathogenesis-related genes were up-regulated within the first 8 hai, whereas up-regulation of such genes was delayed in 36554. Moreover, a Phosphoribulokinase gene contributing to non-host resistance in rice against stripe rust was exclusively expressed in the resistant accession PI272560. Gene expression underpinned physiological and phenotypic observations at the site of infection and are in accordance with the concept of non-host resistance.

  1. Repeatability of Mice Consumption Discrimination of Wheat (Triticum aestivum L.) Varieties across Field Experiments and Mouse Cohorts.

    PubMed

    Kiszonas, Alecia M; Fuerst, E Patrick; Morris, Craig F

    2015-07-01

    Whole grain wheat (Triticum aestivum L.) foods can provide critical nutrients for health and nutrition in the human diet. Potential flavor differences among varieties can be examined using consumption discrimination of the house mouse (Mus musculus L.) as a model system. This study examines consistency and repeatability of the mouse model and potentially, wheat grain flavor. A single elimination tournament design was used to measure relative consumption preference for hard red spring and hard white spring varieties across all 3 experiments in combination with 2 mouse cohorts. Fifteen replicate mice were used in 24-h trials to examine differences in preference among paired wheat varieties until an overall "winner" was established as the most highly preferred variety of wheat. In all 3 experiment-cohort combinations, the same varieties were preferred as the "winner" of both the hard red spring and hard white spring wheat varieties, Hollis and BR 7030, respectively. Despite the consistent preference for these varieties across experiments, the degree (magnitude) to which the mice preferred these varieties varied across experiments. For the hard white spring wheat varieties, the small number of varieties and confounding effects of experiment and cohort limited our ability to accurately gauge repeatability. Conversely, for the hard red spring wheat varieties, consumption preferences were consistent across experiments and mice cohorts. The single-elimination tournament model was effective in providing repeatable results in an effort to more fully understand the mouse model system and possible flavor differences among wheat varieties. The mouse model system used here is effective in identifying wheat varieties that may be more or less desirable to humans in whole wheat foods. The system identifies consistent differences across different mouse cohorts and crop years. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  2. The tRNATyr multigene family of Triticum aestivum: genome organization, sequence analyses and maturation of intron-containing pre-tRNAs in wheat germ extract.

    PubMed

    Arends, S; Kraus, J; Beier, H

    1996-04-22

    Southern analysis of Triticum DNA has revealed that nuclear tRNATyr genes are dispersed at a minimum of 16 loci in the genome. We have isolated six independent tRNATyr genes from a Triticum aestivum library in addition to three known members of the Triticum tRNATyr family. Four of the sequenced tRNATyr genes code for Triticum tRNA Tyr and two code for tRNA2Tyr. Three genes encode tRNAsTyr which carry one or two nucleotide substitutions as compared to the conventional genes. The nine Triticum tRNATyr genes possess highly conserved intron sequences ranging in size from 12 to 14 nucleotides. A common secondary intron structure with the 5' and 3' splice site loops separated by five base pairs can be formed by all pre-tRNAs Tyr which are efficiently spliced in the homologous wheat germ extract.

  3. Intergenerational responses of wheat (Triticum aestivum L.) to cerium oxide nanoparticles exposure

    DOE PAGES

    Rico, Cyren M.; Johnson, Mark G.; Marcus, Matthew A.; ...

    2017-02-06

    The intergenerational impact of engineered nanomaterials in plants is a major knowledge gap in the literature. A soil microcosm study was performed to assess the effects of multi-generational exposure of wheat (Triticum aestivum L.) to cerium oxide nanoparticles (CeO 2 -NPs). Seeds from plants that were exposed to 0, 125, and 500 mg CeO2-NPs kg-1 soil (Ce-0, Ce-125 or Ce-500, respectively) in first generation (S1) were cultivated in factorial combinations of Ce-0, Ce-125 or Ce-500 to produce second generation (S2) plants. The factorial combinations for first/second generation treatments in Ce-125 were S1-Ce-0/S2-Ce-0, S1-Ce-0/S2-Ce-125, S1-Ce-125/S2-Ce-0 and S1-Ce-125/S2-Ce-125, and in Ce-500 weremore » S1-Ce-0/S2-Ce-0, S1-Ce-0/S2-Ce-500, S1-Ce-500/S2-Ce-0 and S1-Ce-500/S2-Ce-500. Agronomic, elemental, isotopic, and synchrotron X-ray fluorescence (XRF) and X-ray absorption near-edge spectroscopy (XANES) data were collected on second generation plants. Results showed that plants treated during the first generation only with either Ce-125 or Ce-500 (e.g. S1-Ce-125/S2-Ce-0 or S1-Ce-500/S2-Ce-0) had reduced accumulation of Ce (61 or 50%), Fe (49 or 58%) and Mn (34 or 41%) in roots, and δ15 N (11 or 8%) in grains compared to the plants not treated in both generations (i.e. S1-Ce-0/S2-Ce-0). Plants treated in both generations with Ce-125 (i.e. S1-Ce-125/S2-Ce-125) produced grains that had lower Mn, Ca, K, Mg and P relative to plants treated in the second generation only (i.e. S1-Ce-0/S2-Ce-125). In addition, synchrotron XRF elemental chemistry maps of soil/plant thin-sections revealed limited transformation of CeO2-NPs with no evidence of plant uptake or accumulation. The findings demonstrated that first generation exposure of wheat to CeO2-NPs affects the physiology and nutrient profile of the second generation plants. However, the lack of concentration-dependent responses indicate that complex physiological processes are involved which alter uptake and metabolism of

  4. Molecular cloning and characterization of cDNAs encoding hemoglobin from wheat (Triticum aestivum) and potato (Solanum tuberosum).

    PubMed

    Larsen, Knud

    2003-06-11

    Hemoglobins (Hbs) are heme proteins encountered in all five kingdoms of living organisms. In plants, two different classes of Hbs have been identified: nonsymbiotic (class I) from both monocot and dicot species and symbiotic (class II) Hbs from nitrogen-fixing plants. This work reports the cloning and analysis of three nonsymbiotic Hb genes from wheat (Triticum aestivum) and potato (Solanum tuberosum). The Hb cDNAs were amplified by reverse transcriptase polymerase chain reaction (RT-PCR) using consensus oligonucleotide primers for nonsymbiotic Hbs.A wheat Hb cDNA (TaHb1) was isolated and shows a very high similarity to nonsymbiotic Hbs from Hordeum vulgare (98%) and Zea mays (83%). Another wheat Hb cDNA, designated TaHb2, exhibited strong similarity to truncated bacterial Hbs, the so-called 2-on-2 Hbs. In addition, a third Hb was cloned from potato, StHb. Expression analysis by RT-PCR demonstrated a very high expression level of the TaHb1 gene only in wheat roots. In contrast, the other wheat hemoglobin gene, TaHb2, was demonstrated to be constitutively expressed although differences in expression level in different tissues were observed. The expression of the TaHb1 gene is induced in wheat roots exposed to microaerobic conditions. The potato Hb gene, StHb, was highly expressed in roots and also in tubers and stem tissue although at much reduced levels.

  5. Rmg7, a New Gene for Resistance to Triticum Isolates of Pyricularia oryzae Identified in Tetraploid Wheat.

    PubMed

    Tagle, Analiza Grubanzo; Chuma, Izumi; Tosa, Yukio

    2015-04-01

    A single gene for resistance, designated Rmg7 (Resistance to Magnaporthe grisea 7), was identified in a tetraploid wheat accession, St24 (Triticum dicoccum, KU120), against Br48, a Triticum isolate of Pyricularia oryzae. Two other wheat accessions, St17 (T. dicoccum, KU112) and St25 (T. dicoccum, KU122), were also resistant against Br48 and showed a similar disease reaction pattern to St24. Crosses between these resistant accessions yielded no susceptible F2 seedlings, suggesting that St24, St17, and St25 carry the same resistance gene. Furthermore, a single avirulence gene corresponding to Rmg7 was detected in a segregation analysis of random F1 progenies between Br48 and MZ5-1-6, an Eleusine isolate virulent to St24 at a higher temperature. This avirulence gene was recognized not only by St24, but also by St17 and St25, thus supporting the preceding results indicating that all three accessions carry Rmg7. This resistance gene may have potential in future wheat breeding programs.

  6. Generation of amphidiploids from hybrids of wheat and related species from the genera Aegilops, Secale, Thinopyrum, and Triticum as a source of genetic variation for wheat improvement.

    PubMed

    Nemeth, Csilla; Yang, Cai-yun; Kasprzak, Paul; Hubbart, Stella; Scholefield, Duncan; Mehra, Surbhi; Skipper, Emma; King, Ian; King, Julie

    2015-02-01

    We aim to improve diversity of domesticated wheat by transferring genetic variation for important target traits from related wild and cultivated grass species. The present study describes the development of F1 hybrids between wheat and related species from the genera Aegilops, Secale, Thinopyrum, and Triticum and production of new amphidiploids. Amphidiploid lines were produced from 20 different distant relatives. Both colchicine and caffeine were successfully used to double the chromosome numbers. The genomic constitution of the newly formed amphidiploids derived from seven distant relatives was determined using genomic in situ hybridization (GISH). Altogether, 42 different plants were analysed, 19 using multicolour GISH separating the chromosomes from the A, B, and D genomes of wheat, as well as the distant relative, and 23 using single colour GISH. Restructuring of the allopolyploid genome, both chromosome losses and aneuploidy, was detected in all the genomes contained by the amphidiploids. From the observed chromosome numbers there is an indication that in amphidiploids the B genome of wheat suffers chromosome losses less frequently than the other wheat genomes. Phenotyping to realize the full potential of the wheat-related grass germplasm is underway, linking the analyzed genotypes to agronomically important target traits.

  7. Effect of mechanical weeding on wild chamomile (Matricaria chamomilla L.) populations in winter wheat crop (Triticum aestivum L.).

    PubMed

    Jaunard, D; Bizoux, J P; Monty, A; Henriet, F; De Proft, M; Vancutsem, F; Mahy, G; Bodson, B

    2012-01-01

    Currently, economic, agronomic and environmental concerns lead to reduce the use of herbicides. Mechanical weeding can help to reach this objective. Dynamics and biology of wild chamomile (Matricaria chamomilla L.) populations were assessed as well as dynamic of winter wheat (Triticum aestivum L.) for four level of application of a weeder-harrow (0, 1, 2, 3 treatment(s)). After each treatment, an effect of mechanical weeding on wild chamomile density was observed. Density of wild chamomile decreased significantly with intensification of mechanical weeding. A third treatment allowed eliminating late emerged plants.

  8. Silicon alleviates Cd stress of wheat seedlings (Triticum turgidum L. cv. Claudio) grown in hydroponics.

    PubMed

    Rizwan, M; Meunier, J-D; Davidian, J-C; Pokrovsky, O S; Bovet, N; Keller, C

    2016-01-01

    We investigated the potential role of silicon in improving tolerance and decreasing cadmium (Cd) toxicity in durum wheat (Triticum turgidum L. durum) either through a reduced Cd uptake or exclusion/sequestration in non-metabolic tissues. For this, plants were grown in hydroponic conditions for 10 days either in presence or absence of 1 mM Si and for 11 additional days in various Cd concentrations (0, 0.5, 5.0 and 50 μM). After harvesting, morphological and physiological parameters as well as elemental concentrations were recorded. Cadmium caused reduction in growth parameters, photosynthetic pigments and mineral nutrient concentrations both in shoots and roots. Shoot and root contents of malate, citrate and aconitate increased, while contents of phosphate, nitrate and sulphate decreased with increasing Cd concentrations in plants. Addition of Si to the nutrient solution mitigated these adverse effects: Cd concentration in shoots decreased while concentration of Cd adsorbed at the root cell apoplasmic level increased together with Zn uptake by roots. Overall, total Cd uptake decreased in presence of Si. There was no co-localisation of Cd and Si either at the shoot or at the root levels. No Cd was detected in leaf phytoliths. In roots, Cd was mainly detected in the cortical parenchyma and Si at the endodermis level, while analysis of the outer thin root surface of the plants grown in the 50 μM Cd + 1 mM Si treatment highlighted non-homogeneous Cd and Si enrichments. These data strongly suggest the existence of a root localised protection mechanism consisting in armoring the root surface by Si- and Cd-bearing compounds and in limiting root-shoot translocation.

  9. Aluminum Tolerance in Wheat (Triticum aestivum L.) (I. Uptake and Distribution of Aluminum in Root Apices).

    PubMed Central

    Delhaize, E.; Craig, S.; Beaton, C. D.; Bennet, R. J.; Jagadish, V. C.; Randall, P. J.

    1993-01-01

    We investigated the uptake and distribution of Al in root apices of near-isogenic wheat (Triticum aestivum L.) lines differing in Al tolerance at a single locus (Alt1: aluminum tolerance). Seedlings were grown in nutrient solution that contained 100 [mu]M Al, and the roots were subsequently stained with hematoxylin, a compound that binds Al in vitro to form a colored complex. Root apices of Al-sensitive genotypes stained after short exposures to Al (10 min and 1 h), whereas apices of Al-tolerant seedlings showed less intense staining after equivalent exposures. Differential staining preceded differences observed in either root elongation or total Al concentrations of root apices (terminal 2-3 mm of root). After 4 h of exposure to 100 [mu]M Al in nutrient solution, Al-sensitive genotypes accumulated more total Al in root apices than Al-tolerant genotypes, and the differences became more marked with time. Analysis of freeze-dried root apices by x-ray microanalysis showed that Al entered root apices of Al-sensitive plants and accumulated in the epidermal layer and in the cortical layer immediately below the epidermis. Long-term exposure of sensitive apices to Al (24 h) resulted in a distribution of Al coinciding with the absence of K. Quantitation of Al in the cortical layer showed that sensitive apices accumulated 5- to 10-fold more Al than tolerant apices exposed to Al solutions for equivalent times. These data are consistent with the hypothesis that Alt1 encodes a mechanism that excludes Al from root apices. PMID:12231972

  10. Cellular and Subcellular Immunohistochemical Localization and Quantification of Cadmium Ions in Wheat (Triticum aestivum).

    PubMed

    Gao, Wei; Nan, Tiegui; Tan, Guiyu; Zhao, Hongwei; Tan, Weiming; Meng, Fanyun; Li, Zhaohu; Li, Qing X; Wang, Baomin

    2015-01-01

    The distribution of metallic ions in plant tissues is associated with their toxicity and is important for understanding mechanisms of toxicity tolerance. A quantitative histochemical method can help advance knowledge of cellular and subcellular localization and distribution of heavy metals in plant tissues. An immunohistochemical (IHC) imaging method for cadmium ions (Cd2+) was developed for the first time for the wheat Triticum aestivum grown in Cd2+-fortified soils. Also, 1-(4-Isothiocyanobenzyl)-ethylenediamine-N,N,N,N-tetraacetic acid (ITCB-EDTA) was used to chelate the mobile Cd2+. The ITCB-EDTA/Cd2+ complex was fixed with proteins in situ via the isothiocyano group. A new Cd2+-EDTA specific monoclonal antibody, 4F3B6D9A1, was used to locate the Cd2+-EDTA protein complex. After staining, the fluorescence intensities of sections of Cd2+-positive roots were compared with those of Cd2+-negative roots under a laser confocal scanning microscope, and the location of colloidal gold particles was determined with a transmission electron microscope. The results enable quantification of the Cd2+ content in plant tissues and illustrate Cd2+ translocation and cellular and subcellular responses of T. aestivum to Cd2+ stress. Compared to the conventional metal-S coprecipitation histochemical method, this new IHC method is quantitative, more specific and has less background interference. The subcellular location of Cd2+ was also confirmed with energy-dispersive X-ray microanalysis. The IHC method is suitable for locating and quantifying Cd2+ in plant tissues and can be extended to other heavy metallic ions.

  11. Cellular and Subcellular Immunohistochemical Localization and Quantification of Cadmium Ions in Wheat (Triticum aestivum)

    PubMed Central

    Gao, Wei; Nan, Tiegui; Tan, Guiyu; Zhao, Hongwei; Tan, Weiming; Meng, Fanyun; Li, Zhaohu; Li, Qing X.; Wang, Baomin

    2015-01-01

    The distribution of metallic ions in plant tissues is associated with their toxicity and is important for understanding mechanisms of toxicity tolerance. A quantitative histochemical method can help advance knowledge of cellular and subcellular localization and distribution of heavy metals in plant tissues. An immunohistochemical (IHC) imaging method for cadmium ions (Cd2+) was developed for the first time for the wheat Triticum aestivum grown in Cd2+-fortified soils. Also, 1-(4-Isothiocyanobenzyl)-ethylenediamine-N,N,N,N-tetraacetic acid (ITCB-EDTA) was used to chelate the mobile Cd2+. The ITCB-EDTA/Cd2+ complex was fixed with proteins in situ via the isothiocyano group. A new Cd2+-EDTA specific monoclonal antibody, 4F3B6D9A1, was used to locate the Cd2+-EDTA protein complex. After staining, the fluorescence intensities of sections of Cd2+-positive roots were compared with those of Cd2+-negative roots under a laser confocal scanning microscope, and the location of colloidal gold particles was determined with a transmission electron microscope. The results enable quantification of the Cd2+ content in plant tissues and illustrate Cd2+ translocation and cellular and subcellular responses of T. aestivum to Cd2+ stress. Compared to the conventional metal-S coprecipitation histochemical method, this new IHC method is quantitative, more specific and has less background interference. The subcellular location of Cd2+ was also confirmed with energy-dispersive X-ray microanalysis. The IHC method is suitable for locating and quantifying Cd2+ in plant tissues and can be extended to other heavy metallic ions. PMID:25941807

  12. [Comparative genetic analysis of diploid naked wheat Triticum sinskajae and the progenitor T. monococcum accession].

    PubMed

    Goncharov, N P; Kondratenko, E Ia; Bannikova, S V; Konovalov, A A; Golovnina, K A

    2007-11-01

    The inheritance of several morphological and biochemical traits was studied in diploid (2n = 2x = 14) naked wheat Triticum sinskajae. The electrophoretic pattern of storage proteins (gliadins) of T. sinskajae differed only in two components from the pattern of T. monococcum accession k-20970, in a population of which T. sinskajae had been discovered. Analysis of biochemical polymorphisms revealed a difference between T. monococcum k-20970 and T. sinskajae in a slow 6-phosphogluconate dehydrogenase region but not in the other eight enzyme systems examined. Nucleotide sequence analysis of the nuclear Acc-1 (acetyl-CoA carboxylase) gene revealed a 46-bp deletion from intron 11 in T. monococcum k-20970 but not in T. sinskajae. This difference was not regarded as species-specific in view of the intraspecific polymorphism of the Acc-1 locus in T. monococcum. A monogenic control was demonstrated for the spring growth habit of T. sinskajae, and the monogenic control of the specific T. sinskajae ear shape was verified. The T. sinskajae ear shape is controlled by a recessive gene, while the T. monococcum ear shape is controlled by a dominant gene. The T. sinskajae ear shape, nakedness, soft glume, aristate glume, and the oblique brachium of the outer glume proved to be linked. The set of E. sin-skajae diagnostic characters is determined by a single (possibly, regulatory) gene or a set of closely linked genes. The two other genes specific to T. sinskajae-awnS, determining the awnlessness, and fig, determining the nonfissile inner (flower) glume--are, respectively, 1.35 +/- 0.98 and 3.34 +/- 1.54% of crossing over away from the mom gene, which determines the T. sinskajae ear shape.

  13. Genome-wide analysis of WRKY transcription factors in wheat (Triticum aestivum L.) and differential expression under water deficit condition.

    PubMed

    Ning, Pan; Liu, Congcong; Kang, Jingquan; Lv, Jinyin

    2017-01-01

    WRKY proteins, which comprise one of the largest transcription factor (TF) families in the plant kingdom, play crucial roles in plant development and stress responses. Despite several studies on WRKYs in wheat (Triticum aestivum L.), functional annotation information about wheat WRKYs is limited. Here, 171 TaWRKY TFs were identified from the whole wheat genome and compared with proteins from 19 other species representing nine major plant lineages. A phylogenetic analysis, coupled with gene structure analysis and motif determination, divided these TaWRKYs into seven subgroups (Group I, IIa-e, and III). Chromosomal location showed that most TaWRKY genes were enriched on four chromosomes, especially on chromosome 3B. In addition, 85 (49.7%) genes were either tandem (5) or segmental duplication (80), which suggested that though tandem duplication has contributed to the expansion of TaWRKY family, segmental duplication probably played a more pivotal role. Analysis of cis-acting elements revealed putative functions of WRKYs in wheat during development as well as under numerous biotic and abiotic stresses. Finally, the expression of TaWRKY genes in flag leaves, glumes, and lemmas under water-deficit condition were analyzed. Results showed that different TaWRKY genes preferentially express in specific tissue during the grain-filling stage. Our results provide a more extensive insight on WRKY gene family in wheat, and also contribute to the screening of more candidate genes for further investigation on function characterization of WRKYs under various stresses.

  14. Seed coating with arbuscular mycorrhizal fungi as an ecotechnologicalapproach for sustainable agricultural production of common wheat (Triticum aestivum L.).

    PubMed

    Oliveira, Rui S; Rocha, Inês; Ma, Ying; Vosátka, Miroslav; Freitas, Helena

    2016-01-01

    The exploitation of arbuscular mycorrhizal (AM) fungi has become of great interest in agriculture due to their potential roles in reducing the need for agrochemicals, while improving plant growth and nutrition. Nevertheless, the application of AM fungi by dispersing inocula in granular form to open agricultural fields is not feasible because nontargeted spreading of inocula over large surface areas results in high cost per plant. Seed coating has the potential to significantly reduce the amount of inoculum needed, resulting in cost reduction and increased efficiency. The aim of this study was to assess whether seed coating with AM fungal inoculum is a feasible delivery system for production of common wheat (Triticum aestivum L.). Wheat seeds were coated with inoculum of Rhizophagus irregularis BEG140 and grown under different fertilization conditions: (1) none, (2) partial, or (3) complete. Data indicated that mycorrhizal inoculation via seed coating significantly increased the dry weight of shoot and seed spikes of wheat associated with reduced fertilization. Assessment of nutritional status of wheat showed that plants inoculated with R. irregularis via seed coating displayed enhanced stem concentrations of potassium (K), sulfur (S), and zinc (Zn). There were no significant differences in root colonization between plants conventionally inoculated with R. irregularis in soil and those inoculated via seed coating. Seed coating with AM fungi may be as effective as conventional soil inoculation and may contribute to reduce the utilization of chemical fertilizers. The application of AM via seed coating is proposed as an ecotechnological approach for sustainable agricultural wheat production.

  15. DNA methylation pattern of Photoperiod-B1 is associated with photoperiod insensitivity in wheat (Triticum aestivum).

    PubMed

    Sun, Han; Guo, Zhiai; Gao, Lifeng; Zhao, Guangyao; Zhang, Wenping; Zhou, Ronghua; Wu, Yongzhen; Wang, Haiyang; An, Hailong; Jia, Jizeng

    2014-11-01

    As one of the three key components of the 'Green Revolution', photoperiod insensitivity is vital for improved adaptation of wheat (Triticum aestivum) cultivars to a wider geographical range. Photoperiod-B1a (Ppd-B1a) is one of the major genes that confers photoperiod insensitivity in 'Green Revolution' varieties, and has made a significant contribution to wheat yield improvement. In this study, we investigated the mechanisms underlying the photoperiod insensitivity of Ppd-B1a alleles from an epigenetic perspective using a combination of bisulfite genomic sequencing, orthologous comparative analysis, association analysis, linkage analysis and gene expression analysis. Based on the study of a large collection of wheat germplasm, we report two methylation haplotypes of Ppd-B1 and demonstrate that the higher methylation haplotype (haplotype a) was associated with increased copy numbers and higher expression levels of the Ppd-B1 gene, earlier heading and photoperiod insensitivity. Furthermore, assessment of the distribution frequency of the different methylation haplotypes suggested that the methylation patterns have undergone selection during the wheat breeding process. Our study suggests that DNA methylation in the regulatory region of the Ppd-B1 alleles, which is closely related to copy number variation, plays a significant role in wheat breeding, to confer photoperiod insensitivity and better adaptation to a wider geographical range.

  16. Immunoblot quantification of three classes of proteinaceous xylanase inhibitors in different wheat ( Triticum aestivum ) cultivars and milling fractions.

    PubMed

    Croes, Evi; Gebruers, Kurt; Luyten, Nikkie; Delcour, Jan A; Courtin, Christophe M

    2009-02-11

    In wheat ( Triticum aestivum ) grains, TAXI- (T. aestivum xylanase inhibitor), XIP- (xylanase inhibiting protein), and TLXI-type (thaumatin-like xylanase inhibitor) xylanase inhibitors (XIs) are expressed in considerable levels and under different forms. As these proteins have a significant impact on microbial xylanases frequently used in cereal-based biotechnological processes, knowledge of their quantitative and qualitative variability in wheat is of great interest. This paper reports the successful use of immunoquantification by Western blotting to determine the intercultivar variation in the three structurally different classes of XIs, as well as their distribution among various industrial milling fractions. TAXI and XIP protein levels in eight wheat cultivars ranged from 81 to 190 ppm and from 156 to 371 ppm, with average values of 133 and 235 ppm, respectively. Using immunoblotting, TLXI protein levels could be measured directly for the first time. They ranged from 51 to 150 ppm and amounted to 112 ppm on average. The three classes of XIs were distributed among different wheat milling fractions in a similar way, with 4 and 10 times higher concentrations in the aleurone-enriched fraction than in white flour and pericarp fractions, respectively. Immunoblot patterns suggested that the observed intercultivar and spatial variabilities within the wheat grain are not due to the presence or absence of specific members of the large polymorphic XI families but to differences in the overall level and/or proportions of the specific members.

  17. Genetic variability of the low-molecular-weight glutenin subunits in spelt wheat (Triticum aestivum ssp. spelta L. em Thell.).

    PubMed

    Caballero, L; Martín, L M; Alvarez, J B

    2004-03-01

    The low-molecular-weight glutenin subunit composition of a collection of 403 accessions of spelt wheat ( Triticum aestivum ssp. spelta L. em. Thell) was analyzed by SDS-PAGE. Extensive variation was found, including 46 different patterns for zone B and 16 for zone C. Patterns within zone B exhibited from two to six bands and patterns in zone C had between four and six bands in SDS-PAGE gels. A higher number of bands was observed when urea was added to the gels. Zone B exhibited between six and 11 bands, and we identified 14 new patterns in this zone. For zone C, up to ten new patterns that comprised between five and nine bands were detected. For both zones, 86 patterns were found. The variability detected in this material is greater than that detected in other hulled wheats.

  18. Evolution and Distribution of Hydrolytic Enzyme Activities during Preharvest Sprouting of Wheat (Triticum aestivum) in the Field.

    PubMed

    Olaerts, Heleen; Roye, Chiara; Derde, Liesbeth J; Sinnaeve, Georges; Meza, Walter R; Bodson, Bernard; Courtin, Christophe M

    2016-07-20

    To date, research on preharvest sprouted (PHS) wheat has mostly been conducted on kernels germinated under laboratory conditions, which differ widely from conditions in the field. To obtain detailed knowledge of the evolution of hydrolytic enzyme activities in PHS wheat (Triticum aestivum), a broad collection of samples from three varieties was obtained by harvesting before, at, and after maturity. Delaying harvest time coupled with periods of heavy rainfall caused sprouting in the kernels, observed as a drop in Falling Number and an increase in α-amylase activity. The appearance of α- and β-amylase, peptidase, and endoxylanase activity during field sprouting was independent from each other. Consequently, Falling Number could not be used to predict activity of other hydrolytic enzymes. When differentiating endogenous from kernel-associated microbial enzymes, results showed that α- and β-amylase and peptidase activity of PHS kernels were predominantly of endogenous origin, whereas endoxylanase activity was largely from microbial origin.

  19. Genetic analysis and molecular mapping of a new fertility restorer gene Rf8 for Triticum timopheevi cytoplasm in wheat (Triticum aestivum L.) using SSR markers.

    PubMed

    Sinha, Pallavi; Tomar, S M S; Vinod; Singh, Vikas K; Balyan, H S

    2013-12-01

    A study on mode of inheritance and mapping of fertility restorer (Rf) gene(s) using simple sequence repeat (SSR) markers was conducted in a cross of male sterile line 2041A having Triticum timopheevi cytoplasm and a restorer line PWR4099 of common wheat (Triticum aestivum L.). The F1 hybrid was completely fertile indicating that fertility restoration is a dominant trait. Based on the pollen fertility and seed set of bagged spikes in F2 generation, the individual plants were classified into fertile and sterile groups. Out of 120 F2 plants, 97 were fertile and 23 sterile (based on pollen fertility) while 98 plants set ≥ 5 seeds/spike and 22 produced ≤ 4 or no seed. The observed frequency fits well into Mendelian ratio of 3 fertile: 1 sterile with χ(2) value of 2.84 for pollen fertility and 2.17 for seed setting indicating that the fertility restoration is governed by a single dominant gene in PWR4099. The three linked SSR markers, Xwmc503, Xgwm296 and Xwmc112 located on the chromosome 2DS were placed at a distance of 3.3, 5.8 and 6.7 cM, respectively, from the Rf gene. Since, no known Rf gene is located on the chromosome arm 2DS, the Rf gene in PWR4099 is a new gene and proposed as Rf8. The closest SSR marker, Xwmc503, linked to the Rf8 was validated in a set of Rf, maintainer and cytoplasmic male sterile lines. The closely linked SSR marker Xwmc503 may be used in marker-assisted backcross breeding facilitating the transfer of fertility restoration gene Rf8 into elite backgrounds with ease.

  20. Identification of the TaBTF3 gene in wheat (Triticum aestivum L.) and the effect of its silencing on wheat chloroplast, mitochondria and mesophyll cell development.

    PubMed

    Ma, Hong-Zhen; Liu, Guo-Qin; Li, Cheng-Wei; Kang, Guo-Zhang; Guo, Tian-Cai

    2012-10-05

    The full-length cDNA (882bp) and DNA (1742bp) sequences encoding a basic transcription factor 3, designated as TaBTF3, were first isolated from common wheat (Triticum aestivum L.). Subcellular localization studies revealed that the TaBTF3 protein was mainly located in the cytoplasm and nucleus. In TaBTF3-silenced transgenic wheat seedlings obtained using the Virus-induced gene silencing (VIGS) method, the chlorophyll pigment content was markedly reduced. However, the malonaldehyde (MDA) and H(2)O(2) contents were enhanced, and the structure of the wheat mesophyll cell was seriously damaged. Furthermore, transcripts of the chloroplast- and mitochondrial-encoded genes were significantly reduced in TaBTF3-silenced transgenic wheat plants. These results suggest that the TaBTF3 gene might function in the development of the wheat chloroplast, mitochondria and mesophyll cell. This paper is the first report to describe the involvement of TaBTF3 in maintaining the normal plant mesophyll cell structure. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Pollen-mediated gene flow in wheat (Triticum aestivum L.) in a semiarid field environment in Spain.

    PubMed

    Loureiro, Iñigo; Escorial, María-Concepción; González, Águeda; Chueca, María-Cristina

    2012-12-01

    Transgenic wheat (Triticum aestivum L.) varieties are being developed and field-tested in various countries. Concerns regarding gene flow from genetically modified (GM) crops to non-GM crops have stimulated research to estimate outcrossing in wheat prior to the release and commercialization of any transgenic cultivars. The aim is to ensure that coexistence of all types of wheat with GM wheat is feasible in accordance with current regulations. The present study describes the result of a field experiment under the semi-arid climate conditions of Madrid, Spain, at two locations ("La Canaleja" and "El Encin" experimental stations) in Madrid over a 3-year period, from 2005 to 2007. The experimental design consisted of a 50 × 50 m wheat pollen source sown with wheat cultivars resistant to the herbicide chlortoluron ('Deganit' and 'Castan' respectively) and three susceptible receptor cultivars ('Abental', 'Altria' and 'Recital') sown in replicated 1 × 1 m plots at different distances (0, 1, 3, 5, 10, 20, 40, 80 and 100 m) and four directions. Outcrossing rates were measured as a percentage of herbicide-resistant hybrids using an herbicide-screening assay. Outcrossing was greatest near the pollen source, averaging 0.029% at 0 m distance at "La Canaleja" and 0.337% at "El Encin", both below the 0.9% European Union regulated threshold, although a maximum outcrossing rate of 3.5% was detected in one recipient plot. These percentages declined rapidly as the distance increased, but hybrids were detected at different rates at distances of up to 100 m, the maximum distance of the experiment. Environmental conditions, as drought in 2004-2005 and 2005-2006, may have influenced the extent of outcrossing. These assays carried out in wheat under semi-arid conditions in Europe provide a more complete assessment of pollen-mediated gene flow in this crop.

  2. Variations in Content and Extractability of Durum Wheat (Triticum turgidum L. var durum) Arabinoxylans Associated with Genetic and Environmental Factors

    PubMed Central

    Ciccoritti, Roberto; Scalfati, Giulia; Cammerata, Alessandro; Sgrulletta, Daniela

    2011-01-01

    Arabinoxylans (AX) represent the most abundant components of non-starch polysaccharides in wheat, constituting about 70% of cell wall polysaccharides. An important property of AX is their ability to form highly viscous water solutions; this peculiarity has a significant impact on the technological characteristics of wheat and determines the physiologically positive influence in consumption. Durum wheat (Triticum turgidum L. var durum), the raw material for pasta production, is one of the most important crops in Italy. As part of a large project aimed at improving durum wheat quality, the characterization of the nutritional and technological aspects of whole grains was considered. Particular attention was addressed to identify the best suited genotypes for the production of innovative types of pasta with enhanced functional and organoleptic properties. The objective of the present study was to investigate the genetic variability of AX by examining a group of durum wheat genotypes collected at two localities in Italy for two consecutive years. The environmental influence on AX content and extractability was also evaluated. Variability in the AX fraction contents was observed; the results indicated that AX fractions of durum wheat grain can be affected by the genotype and environment characteristics and the different contribution of genotype and environment to total variation was evidenced. The genotype × environment (G × E) interaction was significant for all examined traits, the variations due to G × E being lower than that of genotype or environment. The data and the statistical analysis allowed identification of the Italian durum wheat varieties that were consistently higher in total arabinoxilans; in addition, principal component analysis biplots illustrated that for arabinoxylan fractions some varieties responded differently in various environment climatic conditions. PMID:21845095

  3. Effect of Triticum turgidum subsp. turanicum wheat on irritable bowel syndrome: a double-blinded randomised dietary intervention trial.

    PubMed

    Sofi, Francesco; Whittaker, Anne; Gori, Anna Maria; Cesari, Francesca; Surrenti, Elisabetta; Abbate, Rosanna; Gensini, Gian Franco; Benedettelli, Stefano; Casini, Alessandro

    2014-06-14

    The aim of the present study was to examine the effect of a replacement diet with organic, semi-whole-grain products derived from Triticum turgidum subsp. turanicum (ancient) wheat on irritable bowel syndrome (IBS) symptoms and inflammatory/biochemical parameters. A double-blinded randomised cross-over trial was performed using twenty participants (thirteen females and seven males, aged 18-59 years) classified as having moderate IBS. Participants received products (bread, pasta, biscuits and crackers) made either from ancient or modern wheat for 6 weeks in a random order. Symptoms due to IBS were evaluated using two questionnaires, which were compiled both at baseline and on a weekly basis during the intervention period. Blood analyses were carried out at the beginning and end of each respective intervention period. During the intervention period with ancient wheat products, patients experienced a significant decrease in the severity of IBS symptoms, such as abdominal pain (P< 0·0001), bloating (P= 0·004), satisfaction with stool consistency (P< 0·001) and tiredness (P< 0·0001). No significant difference was observed after the intervention period with modern wheat products. Similarly, patients reported significant amelioration in the severity of gastrointestinal symptoms only after the ancient wheat intervention period, as measured by the intensity of pain (P= 0·001), the frequency of pain (P< 0·0001), bloating (P< 0·0001), abdominal distension (P< 0·001) and the quality of life (P< 0·0001). Interestingly, the inflammatory profile showed a significant reduction in the circulating levels of pro-inflammatory cytokines, including IL-6, IL-17, interferon-γ, monocyte chemotactic protein-1 and vascular endothelial growth factor after the intervention period with ancient wheat products, but not after the control period. In conclusion, significant improvements in both IBS symptoms and the inflammatory profile were reported after the ingestion of ancient wheat

  4. Population- and genome-specific patterns of linkage disequilibrium and SNP variation in spring and winter wheat (Triticum aestivum L.)

    PubMed Central

    2010-01-01

    Background Single nucleotide polymorphisms (SNPs) are ideally suited for the construction of high-resolution genetic maps, studying population evolutionary history and performing genome-wide association mapping experiments. Here, we used a genome-wide set of 1536 SNPs to study linkage disequilibrium (LD) and population structure in a panel of 478 spring and winter wheat cultivars (Triticum aestivum) from 17 populations across the United States and Mexico. Results Most of the wheat oligo pool assay (OPA) SNPs that were polymorphic within the complete set of 478 cultivars were also polymorphic in all subpopulations. Higher levels of genetic differentiation were observed among wheat lines within populations than among populations. A total of nine genetically distinct clusters were identified, suggesting that some of the pre-defined populations shared significant proportion of genetic ancestry. Estimates of population structure (FST) at individual loci showed a high level of heterogeneity across the genome. In addition, seven genomic regions with elevated FST were detected between the spring and winter wheat populations. Some of these regions overlapped with previously mapped flowering time QTL. Across all populations, the highest extent of significant LD was observed in the wheat D-genome, followed by lower LD in the A- and B-genomes. The differences in the extent of LD among populations and genomes were mostly driven by differences in long-range LD ( > 10 cM). Conclusions Genome- and population-specific patterns of genetic differentiation and LD were discovered in the populations of wheat cultivars from different geographic regions. Our study demonstrated that the estimates of population structure between spring and winter wheat lines can identify genomic regions harboring candidate genes involved in the regulation of growth habit. Variation in LD suggests that breeding and selection had a different impact on each wheat genome both within and among populations. The

  5. [Characteristics of alpha-amylase isozymes in cytologenetically different wheat cultivars].

    PubMed

    Netsvetaev, V P; Badaeva, E D

    2014-07-01

    The isoenzyme composition of alpha-amylase is studied by polyacrylamide gel electrophoresis in Tris-glycine (pH 8.3) system in wheat cultivars with different genome composition. We show that durum wheat (Triticum durum, 2n=4x=28, BBAA) lacks the isoenzymes encoded by 6D and 7D chromosomes that are present in common wheat zymograms (Triticum aestivum, 2n=6x=42, BBAADD). A similar pattern is observed in a synthetic allohexaploid carrying the BBAA genomes of wheat and the HchHch genome of barley (Hordeum chilense). Our method of electrophoresis fails to reveal additional variants of alpha-amylase encoded by the barley genome, although C-banding analysis confirms the genomic structure BBAAHChHCh of this allopolyploid. The electrophoretic spectrum of the spring common wheat cultivar Dobrynya with the wheat-Agropyron translocation 7DL-7AiL contains all of the alpha-amylase isoenzymes typical for common wheat (2n=6x=42, BBAADD) except for the zymotype encoded by the long arm of chromosome 7D. This observation confirms the results of cytogenetic analysis that identified a 7DL-7AiL translocation in this cultivar. No additional alpha-amylase isoenzymes encoded by Agropyron chromosome have been observed. Our data indicate that analysis of wheat-alien hybrids or introgressive forms should be carried out using a complex of different methods.

  6. Study on the Immunoreactivity of Triticum monococcum (Einkorn) Wheat in Patients with Wheat-Dependent Exercise-Induced Anaphylaxis for the Production of Hypoallergenic Foods.

    PubMed

    Lombardo, Carla; Bolla, Michela; Chignola, Roberto; Senna, Gianenrico; Rossin, Giacomo; Caruso, Beatrice; Tomelleri, Carlo; Cecconi, Daniela; Brandolini, Andrea; Zoccatelli, Gianni

    2015-09-23

    Wheat [Triticum aestivum (T.a.)] ingestion can cause a specific allergic reaction, which is called wheat-dependent exercise-induced anaphylaxis (WDEIA). The major allergen involved is ω-5 gliadin, a gluten protein coded by genes located on the B genome. Our aim was to study the immunoreactivity of proteins in Triticum monococcum (einkorn, T.m.), a diploid ancestral wheat lacking B chromosomes, for possible use in the production of hypoallergenic foods. A total of 14 patients with a clear history of WDEIA and specific immunoglobulin E (IgE) to ω-5 gliadin were enrolled. Skin prick test (SPT) with a commercial wheat extract and an in-house T.a. gluten diagnostic solution tested positive for 43 and 100% of the cases, respectively. No reactivity in patients tested with solutions prepared from four T.m. accessions was observed. The immunoblotting of T.m. gluten proteins performed with the sera of patients showed different IgE-binding profiles with respect to T.a., confirming the absence of ω-5 gliadin. A general lower immunoreactivity of T.m. gluten proteins with scarce cross-reactivity to ω-5 gliadin epitopes was assessed by an enzyme-linked immunosorbent assay (ELISA). Given the absence of reactivity by SPT and the limited cross-reactivity with ω-5 gliadin, T.m. might represent a potential candidate in the production of hypoallergenic bakery products for patients sensitized to ω-5 gliadin. Further analyses need to be carried out regarding its safety.

  7. A complete mitochondrial genome of wheat (Triticum aestivum cv. Chinese Yumai), and fast evolving mitochondrial genes in higher plants.

    PubMed

    Cui, Peng; Liu, Huitao; Lin, Qiang; Ding, Feng; Zhuo, Guoyin; Hu, Songnian; Liu, Dongcheng; Yang, Wenlong; Zhan, Kehui; Zhang, Aimin; Yu, Jun

    2009-12-01

    Plant mitochondrial genomes, encoding necessary proteins involved in the system of energy production, play an important role in the development and reproduction of the plant. They occupy a specific evolutionary pattern relative to their nuclear counterparts. Here, we determined the winter wheat (Triticum aestivum cv. Chinese Yumai) mitochondrial genome in a length of 452 and 526 bp by shotgun sequencing its BAC library. It contains 202 genes, including 35 known protein-coding genes, three rRNA and 17 tRNA genes, as well as 149 open reading frames (ORFs; greater than 300 bp in length). The sequence is almost identical to the previously reported sequence of the spring wheat (T. aestivum cv. Chinese Spring); we only identified seven SNPs (three transitions and four transversions) and 10 indels (insertions and deletions) between the two independently acquired sequences, and all variations were found in non-coding regions. This result confirmed the accuracy of the previously reported mitochondrial sequence of the Chinese Spring wheat. The nucleotide frequency and codon usage of wheat are common among the lineage of higher plant with a high AT-content of 58%. Molecular evolutionary analysis demonstrated that plant mitochondrial genomes evolved at different rates, which may correlate with substantial variations in metabolic rate and generation time among plant lineages. In addition, through the estimation of the ratio of non-synonymous to synonymous substitution rates between orthologous mitochondrion-encoded genes of higher plants, we found an accelerated evolutionary rate that seems to be the result of relaxed selection.

  8. Gaseous pollutants from brick kiln industry decreased the growth, photosynthesis, and yield of wheat (Triticum aestivum L.).

    PubMed

    Adrees, Muhammad; Ibrahim, Muhammad; Shah, Aamir Mehmood; Abbas, Farhat; Saleem, Farhan; Rizwan, Muhammad; Hina, Saadia; Jabeen, Fariha; Ali, Shafaqat

    2016-05-01

    Gaseous pollutant emissions from brick kiln industries deteriorate the current state of ambient air quality in Pakistan and worldwide. These gaseous pollutants affect the health of plants and may decrease plant growth and yield. A field experiment that was conducted to monitor the concentration of gaseous pollutants emitted mainly from brick kilns in the ambient air and associated impacts on the growth and physiological attributes of the two wheat (Triticum spp.) cultivars. Plants were grown at three sites, including control (Ayub Agriculture Research Institute, AARI), low pollution (LP) site (Small Estate Industry), and high pollution (HP) site (Sidar Bypass), of Faisalabad, Pakistan. Monitoring of ambient air pollution at experimental sites was carried out using the state-of-art ambient air analyzers. Plants were harvested after 120 days of germination and were analyzed for different growth attributes. Results showed that the hourly average concentration of gaseous air pollutants CO, NO2, SO2, and PM10 at HP site were significantly higher than the LP and control sites. Similarly, gaseous pollutants decreased plant height, straw and grain yield, photosynthesis and increased physical injury, and metal concentrations in the grains. However, wheat response toward gaseous pollutants did not differ between cultivars (Galaxy and 8173) studied. Overall, the results indicated that brick kiln emissions could reduce the performance of wheat grown in the soils around kilns and confirm the adverse impacts of pollutants on the growth, yield, and quality of the wheat.

  9. Comparative studies of mitochondrial proteomics reveal an intimate protein network of male sterility in wheat (Triticum aestivum L.).

    PubMed

    Wang, Shuping; Zhang, Gaisheng; Zhang, Yingxin; Song, Qilu; Chen, Zheng; Wang, Junsheng; Guo, Jialin; Niu, Na; Wang, Junwei; Ma, Shoucai

    2015-10-01

    Plant male sterility has often been associated with mitochondrial dysfunction; however, the mechanism in wheat (Triticum aestivum L.) has not been elucidated. This study set out to probe the mechanism of physiological male sterility (PHYMS) induced by the chemical hybridizing agent (CHA)-SQ-1, and cytoplasmic male sterility (CMS) of wheat at the proteomic level. A total of 71 differentially expressed mitochondrial proteins were found to be involved in pollen abortion and further identified by MALDI-TOF/TOF MS (matrix-assisted laser desorption/ionization-time of fight/time of flight mass spectrometry). These proteins were implicated in different cellular responses and metabolic processes, with obvious functional tendencies toward the tricarboxylic acid cycle, the mitochondrial electron transport chain, protein synthesis and degradation, oxidation stress, the cell division cycle, and epigenetics. Interactions between identified proteins were demonstrated by bioinformatics analysis, enabling a more complete insight into biological pathways involved in anther abortion and pollen defects. Accordingly, a mitochondria-mediated male sterility protein network in wheat is proposed; this network was further confirmed by physiological data, RT-PCR (real-time PCR), and TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling) assay. The results provide intriguing insights into the metabolic pathway of anther abortion induced by CHA-SQ-1 and also give useful clues to identify the crucial proteins of PHYMS and CMS in wheat. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  10. RNA-seq in grain unveils fate of neo- and paleopolyploidization events in bread wheat (Triticum aestivum L.)

    PubMed Central

    2011-01-01

    Background Whole genome duplication is a common evolutionary event in plants. Bread wheat (Triticum aestivum L.) is a good model to investigate the impact of paleo- and neoduplications on the organization and function of modern plant genomes. Results We performed an RNA sequencing-based inference of the grain filling gene network in bread wheat and identified a set of 37,695 non-redundant sequence clusters, which is an unprecedented resolution corresponding to an estimated half of the wheat genome unigene repertoire. Using the Brachypodium distachyon genome as a reference for the Triticeae, we classified gene clusters into orthologous, paralogous, and homoeologous relationships. Based on this wheat gene evolutionary classification, older duplicated copies (dating back 50 to 70 million years) exhibit more than 80% gene loss and expression divergence while recent duplicates (dating back 1.5 to 3 million years) show only 54% gene loss and 36 to 49% expression divergence. Conclusions We suggest that structural shuffling due to duplicated gene loss is a rapid process, whereas functional shuffling due to neo- and/or subfunctionalization of duplicates is a longer process, and that both shuffling mechanisms drive functional redundancy erosion. We conclude that, as a result of these mechanisms, half the gene duplicates in plants are structurally and functionally altered within 10 million years of evolution, and the diploidization process is completed after 45 to 50 million years following polyploidization. PMID:22136458

  11. Impacts of phosphorus and zinc levels on phosphorus and zinc nutrition and phytic acid concentration in wheat (Triticum aestivum L.).

    PubMed

    Yang, Xi-wen; Tian, Xiao-hong; Lu, Xin-chun; Cao, Yu-xian; Chen, Zi-hui

    2011-10-01

    Zinc (Zn) and phytic acid content in grain crops are directly related to their nutritional quality and therefore human health. To investigate the nutritional influences of phosphorus (P) and Zn levels on wheat (Triticum aestivum L.), plants were grown hydroponically to maturity in chelator-buffered solutions. Appropriate amounts of P, coupled with sufficient Zn, increased P and Zn concentrations in wheat grain. The Zn supply decreased both phytic acid and the molar ratios of phytic acid to Zn in wheat grain with respect to the Zn(0) treatment. Furthermore, proportions of Zn and P content in the grain relative to that of the whole plant were improved. With increasing P, the proportion of Zn and P content in the grain relative to the whole plant decreased. P and Zn acted antagonistically in roots. Excess P inhibited Zn uptake in roots, while Zn decreased the transfer of P from roots to shoots. For P that had been transported to the shoots, supplemental Zn facilitated its transfer to the grain. Excess P decreased the distribution of Zn in grain, while Zn enhanced the uptake of Zn and P in grain, The combined application of Zn fertilizer with the extensive use of P fertilizer can effectively increase the P and Zn concentration and Zn bioavailability of wheat grain, and hence Zn nutritional quality. Copyright © 2011 Society of Chemical Industry.

  12. Genetic diversity, population structure and marker-trait associations for agronomic and grain traits in wild diploid wheat Triticum urartu.

    PubMed

    Wang, Xin; Luo, Guangbin; Yang, Wenlong; Li, Yiwen; Sun, Jiazhu; Zhan, Kehui; Liu, Dongcheng; Zhang, Aimin

    2017-07-01

    Wild diploid wheat, Triticum urartu (T. urartu) is the progenitor of bread wheat, and understanding its genetic diversity and genome function will provide considerable reference for dissecting genomic information of common wheat. In this study, we investigated the morphological and genetic diversity and population structure of 238 T. urartu accessions collected from different geographic regions. This collection had 19.37 alleles per SSR locus and its polymorphic information content (PIC) value was 0.76, and the PIC and Nei's gene diversity (GD) of high-molecular-weight glutenin subunits (HMW-GSs) were 0.86 and 0.88, respectively. UPGMA clustering analysis indicated that the 238 T. urartu accessions could be classified into two subpopulations, of which Cluster I contained accessions from Eastern Mediterranean coast and those from Mesopotamia and Transcaucasia belonged to Cluster II. The wide range of genetic diversity along with the manageable number of accessions makes it one of the best collections for mining valuable genes based on marker-trait association. Significant associations were observed between simple sequence repeats (SSR) or HMW-GSs and six morphological traits: heading date (HD), plant height (PH), spike length (SPL), spikelet number per spike (SPLN), tiller angle (TA) and grain length (GL). Our data demonstrated that SSRs and HMW-GSs were useful markers for identification of beneficial genes controlling important traits in T. urartu, and subsequently for their conservation and future utilization, which may be useful for genetic improvement of the cultivated hexaploid wheat.

  13. Inhibition by wheat sprout (Triticum aestivum) juice of bisphenol A-induced oxidative stress in young women.

    PubMed

    Yi, Bitna; Kasai, Hiroshi; Lee, Ho-Sun; Kang, Yunkyeong; Park, Jong Y; Yang, Mihi

    2011-09-18

    For health of future generation, fertile young women should be monitored for exposure of endocrine disrupting chemicals (EDCs). Among EDCs, bisphenol A (BPA) is suggested to induce reactive oxygen species (ROS) which play an important role in pathologies of female diseases such as endometriosis. On the other hand, previous studies suggested that sprouts of wheat (Triticum aestivum) have antimutagenicity and antioxidant activity. We performed the 2 weeks intervention of wheat sprout juice (100ml/day) to investigate its effects on BPA-exposure and -oxidative toxicity in young women (N=14, age=24.4±4.0). Geometrical mean of urinary BPA levels was 1.81 (GSTD, 4.34)μg/g creatinine. We observed that irregular meals significantly increased levels of urinary BPA approximate 3 times (p=0.03). In addition, we found BPA-induced oxidative stress is correlated with levels of 8-hydroxydeoxyguanosine (8-OHdG) or malondialdehyde (MDA) levels (p=0.18 or 0.03, respectively). We also observed a continuous reduction of urinary BPA during the wheat sprout intervention (p=0.02). In summary, our data suggested potential detoxification of wheat sprouts on BPA-toxicity via antioxidative and interference of absorption, distribution, metabolism and excretion (ADME)-mediated mechanisms in young women.

  14. QTL mapping of 1000-kernel weight, kernel length, and kernel width in bread wheat (Triticum aestivum L.).

    PubMed

    Ramya, P; Chaubal, A; Kulkarni, K; Gupta, L; Kadoo, N; Dhaliwal, H S; Chhuneja, P; Lagu, M; Gupta, V

    2010-01-01

    Kernel size and morphology influence the market value and milling yield of bread wheat (Triticum aestivum L.). The objective of this study was to identify quantitative trait loci (QTLs) controlling kernel traits in hexaploid wheat. We recorded 1000-kernel weight, kernel length, and kernel width for 185 recombinant inbred lines from the cross Rye Selection 111 × Chinese Spring grown in 2 agro-climatic regions in India for many years. Composite interval mapping (CIM) was employed for QTL detection using a linkage map with 169 simple sequence repeat (SSR) markers. For 1000-kernel weight, 10 QTLs were identified on wheat chromosomes 1A, 1D, 2B, 2D, 4B, 5B, and 6B, whereas 6 QTLs for kernel length were detected on 1A, 2B, 2D, 5A, 5B and 5D. Chromosomes 1D, 2B, 2D, 4B, 5B and 5D had 9 QTLs for kernel width. Chromosomal regions with QTLs detected consistently for multiple year-location combinations were identified for each trait. Pleiotropic QTLs were found on chromosomes 2B, 2D, 4B, and 5B. The identified genomic regions controlling wheat kernel size and shape can be targeted during further studies for their genetic dissection.

  15. Effect of lead stress on mineral content and growth of wheat (Triticum aestivum) and spinach (Spinacia oleracea) seedlings.

    PubMed

    Lamhamdi, Mostafa; El Galiou, Ouiam; Bakrim, Ahmed; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel; Aarab, Ahmed; Lafont, René

    2013-01-01

    Lead (Pb) is the most common heavy metal contaminant in the environment. Pb is not an essential element for plants, but they absorb it when it is present in their environment, especially in rural areas when the soil is polluted by automotive exhaust and in fields contaminated with fertilizers containing heavy metal impurities. To investigate lead effects on nutrient uptake and metabolism, two plant species, spinach (Spinacia oleracea) and wheat (Triticum aestivum), were grown under hydroponic conditions and stressed with lead nitrate, Pb(NO3)2, at three concentrations (1.5, 3, and 15 mM). Lead is accumulated in a dose-dependent manner in both plant species, which results in reduced growth and lower uptake of all mineral ions tested. Total amounts and concentrations of most mineral ions (Na, K, Ca, P, Mg, Fe, Cu and Zn) are reduced, although Mn concentrations are increased, as its uptake is reduced less relative to the whole plant's growth. The deficiency of mineral nutrients correlates in a strong decrease in the contents of chlorophylls a and b and proline in both species, but these effects are less pronounced in spinach than in wheat. By contrast, the effects of lead on soluble proteins differ between species; they are reduced in wheat at all lead concentrations, whereas they are increased in spinach, where their value peaks at 3 mM Pb. The relative lead uptake by spinach and wheat, and the different susceptibility of these two species to lead treatment are discussed.

  16. Molecular characterization of the Puroindolin a-D1b allele and develpment of an STS marker in wheat (Triticum aestivum L.)

    USDA-ARS?s Scientific Manuscript database

    Kernel texture (grain hardness) is a leading quality characteristic of bread wheat (Triticum aestivum L.) as it dramatically influences its milling and processing properties, and consequently is utilized in the classification and marketing of grain. According to many previous reports (reviewed in Bh...

  17. Identification of Chromosome Locations of Genes Affecting pre-Harvest Sprouting and Seed Dormancy using Chromosome Substitution Lines in Tetraploid Wheat (Triticum turgidum L.)

    USDA-ARS?s Scientific Manuscript database

    Seed dormancy, the main factor contributing to pre-harvest sprouting (PHS) resistance, is a complex trait and strongly influenced by environmental growth conditions. In this study, three sets of single chromosome substitution lines, including 37 genotypes, in a durum wheat (Triticum turgidum var. du...

  18. A consensus framework map of durum wheat (Triticum durum Desf.) suitable for linkage disequilibrium analysis and genome-wide association mapping

    USDA-ARS?s Scientific Manuscript database

    Genomics applications in durum (Triticum durum Desf.) wheat have the potential to boost exploitation of genetic resources and to advance understanding of the genetics of important complex traits (e.g. resilience to environmental and biotic stresses). A dense and accurate consensus map specific for ...

  19. Discovery, distribution and diversity of Puroindoline-D1 genes in bread wheat from five countries (Triticum aestivum L.)

    PubMed Central

    2013-01-01

    Background Grain texture is one of the most important characteristics in bread wheat (Triticum aestivum L.). Puroindoline-D1 genes play the main role in controlling grain texture and are intimately associated with the milling and processing qualities in bread wheat. Results A series of diagnostic molecular markers and dCAPS markers were used to characterize Pina-D1 and Pinb-D1 in 493 wheat cultivars from diverse geographic locations. A primer walking strategy was used to characterize PINA-null alleles at the DNA level. Results indicated that Chinese landraces encompassing 12 different Puroindoline-D1 allelic combinations showed the highest diversity, while CIMMYT wheat cultivars containing 3 different Puroindoline-D1 allelic combinations showed the lowest diversity amongst wheat cultivars from the five countries surveyed. Two novel Pina-D1 alleles, designated Pina-D1s with a 4,422-bp deletion and Pina-D1u with a 6,460-bp deletion in the Ha (Hardness) locus, were characterized at the DNA level by a primer walking strategy, and corresponding molecular markers Pina-N3 and Pina-N4 were developed for straightforward identification of the Pina-D1s and Pina-D1u alleles. Analysis of the association of Puroindoline-D1 alleles with grain texture indicated that wheat cultivars with Pina-null/Pinb-null allele, possessing an approximate 33-kb deletion in the Ha locus, have the highest SKCS hardness index amongst the different genotypes used in this study. Moreover, wheat cultivars with the PINA-null allele have significantly higher SKCS hardness index than those of Pinb-D1b and Pinb-D1p alleles. Conclusions Molecular characterization of the Puroindoline-D1 allele was investigated in bread wheat cultivars from five geographic regions, resulting in the discovery of two new alleles - Pina-D1s and Pina-D1u. Molecular markers were developed for both alleles. Analysis of the association of the Puroindoline-D1 alleles with grain texture showed that cultivars with PINA-null allele

  20. Discovery, distribution and diversity of Puroindoline-D1 genes in bread wheat from five countries (Triticum aestivum L.).

    PubMed

    Chen, Feng; Li, Huanhuan; Cui, Dangqun

    2013-09-08

    Grain texture is one of the most important characteristics in bread wheat (Triticum aestivum L.). Puroindoline-D1 genes play the main role in controlling grain texture and are intimately associated with the milling and processing qualities in bread wheat. A series of diagnostic molecular markers and dCAPS markers were used to characterize Pina-D1 and Pinb-D1 in 493 wheat cultivars from diverse geographic locations. A primer walking strategy was used to characterize PINA-null alleles at the DNA level. Results indicated that Chinese landraces encompassing 12 different Puroindoline-D1 allelic combinations showed the highest diversity, while CIMMYT wheat cultivars containing 3 different Puroindoline-D1 allelic combinations showed the lowest diversity amongst wheat cultivars from the five countries surveyed. Two novel Pina-D1 alleles, designated Pina-D1s with a 4,422-bp deletion and Pina-D1u with a 6,460-bp deletion in the Ha (Hardness) locus, were characterized at the DNA level by a primer walking strategy, and corresponding molecular markers Pina-N3 and Pina-N4 were developed for straightforward identification of the Pina-D1s and Pina-D1u alleles. Analysis of the association of Puroindoline-D1 alleles with grain texture indicated that wheat cultivars with Pina-null/Pinb-null allele, possessing an approximate 33-kb deletion in the Ha locus, have the highest SKCS hardness index amongst the different genotypes used in this study. Moreover, wheat cultivars with the PINA-null allele have significantly higher SKCS hardness index than those of Pinb-D1b and Pinb-D1p alleles. Molecular characterization of the Puroindoline-D1 allele was investigated in bread wheat cultivars from five geographic regions, resulting in the discovery of two new alleles - Pina-D1s and Pina-D1u. Molecular markers were developed for both alleles. Analysis of the association of the Puroindoline-D1 alleles with grain texture showed that cultivars with PINA-null allele possessed relatively high SKCS

  1. Introgression of an imidazolinone-resistance gene from winter wheat (Triticum aestivum L.) into jointed goatgrass (Aegilops cylindrica Host).

    PubMed

    Perez-Jones, Alejandro; Mallory-Smith, Carol A; Hansen, Jennifer L; Zemetra, Robert S

    2006-12-01

    Imidazolinone-resistant winter wheat (Triticum aestivum L.) is being commercialized in the USA. This technology allows wheat growers to selectively control jointed goatgrass (Aegilops cylindrica Host), a weed that is especially problematic because of its close genetic relationship with wheat. However, the potential movement of the imidazolinone-resistance gene from winter wheat to jointed goatgrass is a concern. Winter wheat and jointed goatgrass have the D genome in common and can hybridize and backcross under natural field conditions. Since the imidazolinone-resistance gene (Imi1) is located on the D genome, it is possible for resistance to be transferred to jointed goatgrass via hybridization and backcrossing. To study the potential for gene movement, BC(2)S(2) plants were produced artificially using imidazolinone-resistant winter wheat (cv. FS-4) as the female parent and a native jointed goatgrass collection as the male recurrent parent. FS-4, the jointed goatgrass collection, and 18 randomly selected BC(2)S(2) populations were treated with imazamox. The percentage of survival was 100% for the FS-4, 0% for the jointed goatgrass collection and 6 BC(2)S(2) populations, 40% or less for 2 BC(2)S(2) populations, and 50% or greater for the remaining 10 BC(2)S(2) populations. Chromosome counts in BC(2)S(3) plants showed a restoration of the chromosome number of jointed goatgrass, with four out of four plants examined having 28 chromosomes. Sequencing of AHASL1D in BC(2)S(3) plants derived from BC(2)S(2)-6 revealed the sexual transmission of Imi1 from FS-4 to jointed goatgrass. Imi1 conferred resistance to the imidazolinone herbicide imazamox, as shown by the in vitro assay for acetohydroxyacid synthase (AHAS) activity.

  2. Construction of a hexaploid wheat (Triticum aestivum L.) bacterial artificial chromosome library for cloning genes for stripe rust resistance.

    PubMed

    Ling, P; Chen, X M

    2005-12-01

    A hexaploid wheat (Triticum aestivum L.) bacterial artificial chromosome (BAC) library was constructed for cloning Yr5 and other genes conferring resistance to stripe rust (Puccinia striiformis f. sp. tritici). Intact nuclei from a Yr5 near-isogenic line were used to isolate high molecular weight DNA, which was partially cleaved with HindIII and cloned into pECBAC1 and pIndigoBAC-5 vectors. The wheat BAC library consisted of 422,400 clones arrayed in 1100 micro-titer plates (each plate with 384 wells). Random sampling of 300 BAC clones indicated an average insert size of 140 kb, with a size range from 25 to 365 kb. Ninety percent of the clones in the library had an insert size greater than 100 kb and fewer than 5% of the clones did not contain inserts. Based on an estimated genome size of 15,966 Mb for hexaploid wheat, the BAC library was estimated to have a total coverage of 3.58x wheat genome equivalents, giving approximately 96% probability of identifying a clone representing any given wheat DNA sequence. Twelve BAC clones containing an Yr5 locus-specific marker (Yr5STS7/8) were successfully selected by PCR screening of 3-dimensional BAC pools. The results demonstrated that the T. aestivum BAC library is a valuable genomic resource for positional cloning of Yr5. The library also should be useful in cloning other genes for stripe rust resistance and other traits of interest in hexaploid wheat.

  3. High Transferability of Homoeolog-Specific Markers between Bread Wheat and Newly Synthesized Hexaploid Wheat Lines

    PubMed Central

    Zeng, Deying; Luo, Jiangtao; Li, Zenglin; Chen, Gang; Zhang, Lianquan; Ning, Shunzong; Yuan, Zhongwei; Zheng, Youliang; Hao, Ming; Liu, Dengcai

    2016-01-01

    Bread wheat (Triticum aestivum, 2n = 6x = 42, AABBDD) has a complex allohexaploid genome, which makes it difficult to differentiate between the homoeologous sequences and assign them to the chromosome A, B, or D subgenomes. The chromosome-based draft genome sequence of the ‘Chinese Spring’ common wheat cultivar enables the large-scale development of polymerase chain reaction (PCR)-based markers specific for homoeologs. Based on high-confidence ‘Chinese Spring’ genes with known functions, we developed 183 putative homoeolog-specific markers for chromosomes 4B and 7B. These markers were used in PCR assays for the 4B and 7B nullisomes and their euploid synthetic hexaploid wheat (SHW) line that was newly generated from a hybridization between Triticum turgidum (AABB) and the wild diploid species Aegilops tauschii (DD). Up to 64% of the markers for chromosomes 4B or 7B in the SHW background were confirmed to be homoeolog-specific. Thus, these markers were highly transferable between the ‘Chinese Spring’ bread wheat and SHW lines. Homoeolog-specific markers designed using genes with known functions may be useful for genetic investigations involving homoeologous chromosome tracking and homoeolog expression and interaction analyses. PMID:27611704

  4. Osmotic regulation of 10 wheat (Triticum aestivum L.) genotypes at soil water deficits.

    PubMed

    Hongbo, Shao; Zongsuo, Liang; Mingan, Shao

    2006-02-01

    Drought is a worldwide problem, seriously influencing plant (crop) productivity. Wheat is a stable food for 35% of the world population, moreover about 60% of land area on the globe belongs to arid and semi-arid zone. Wheat drought resistance is a multi-gene-controlling quantitative character and wheat final production in field is realized mainly by physiological regulation under the condition of multi-environmental factor interaction. Exploring drought resistance physiological mechanisms for different wheat genotypes is of importance to finding new drought resistance gene resources and conventional breeding and the basis for wheat drought resistance biotechnological breeding and platform. Osmotic adjustment regulation is the main component for physiological machinery of wheat drought resistance. By pot-cultivating experiments, investigation of osmotic adjustment comparison for 10 wheat genotypes at soil water deficits (75% FC, 55% FC, 45% FC, respectively), was conducted. The main results were as followed: (1) K(+) content in 10 wheat genotypes at three levels of soil water stress and at the same soil water deficit was very different. Five of these 10 wheat genotypes had higher K K(+) content under the condition of 75% FC. (2) Five of these 10 wheat genotypes possessed greater soluble sugar content at 55% FC soil water level. (3) Proline (Pro) content in five wheat genotypes was higher at 75% FC. (4) Five of these 10 wheat genotypes had lower malondialdehyde (MDA) content at 45% FC at seedling stage. Osmotic adjustment of wheat different genotypes was discussed in terms of different content of osmotic solutes.

  5. Folate distribution in barley (Hordeum vulgare L.), common wheat (Triticum aestivum L.) and durum wheat (Triticum turgidum durum Desf.) pearled fractions.

    PubMed

    Giordano, Debora; Reyneri, Amedeo; Blandino, Massimo

    2016-03-30

    Wholegrain cereals are an important source of folates. In this study, total folate was analysed in pearled fractions of barley and wheat cultivars employing AOAC Official Method 2004.05. In particular, the distribution of folate in the kernels was evaluated in three barley cultivars (two hulled types and a hulless one as well as two- and six-row types) and in a common and a durum wheat cultivar. A noticeable variation in the folate content was observed between the barley [653-1033 ng g(-1) dry matter (DM)] and wheat cultivars (1024-1119 ng g(-1) DM). The highest folate content was detected in the hulless barley cultivar (1033 ng g(-1) DM). A significant reduction in total folate, from 63% to 86%, was observed in all cultivars from the outermost to the innermost pearled fractions. Results proved that folates are mainly present in the germ and in the outer layers of the kernel. This is the first study reporting the folate distribution in kernels of both common and durum wheat and in a hulless barley cultivar. Results suggest that the pearling process could be useful for the selection of intermediate fractions that could be used in order to develop folate-enhanced ingredients and products. © 2015 Society of Chemical Industry.

  6. Structural analysis of wheat wax (Triticum aestivum, c.v. 'Naturastar' L.): from the molecular level to three dimensional crystals.

    PubMed

    Koch, K; Barthlott, W; Koch, S; Hommes, A; Wandelt, K; Mamdouh, W; De-Feyter, S; Broekmann, P

    2006-01-01

    In order to elucidate the self assembly process of plant epicuticular waxes, and the molecular arrangement within the crystals, re-crystallisation of wax platelets was studied on biological and non-biological surfaces. Wax platelets were extracted from the leaf blades of wheat (Triticum aestivum L., c.v. 'Naturastar', Poaceae). Waxes were analysed by gas chromatography (GC) and mass spectrometry (MS). Octacosan-1-ol was found to be the most abundant chemical component of the wax mixture (66 m%) and also the determining compound for the shape of the wax platelets. The electron diffraction pattern showed that both the wax mixture and pure octacosan-1-ol are crystalline. The re-crystallisation of the natural wax mixture and the pure octacosan-1-ol were studied by scanning tunnelling microscopy (STM), atomic force microscopy (AFM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Crystallisation of wheat waxes and pure octacosano-1-ol on the non polar highly ordered pyrolytic graphite (HOPG) led to the formation of platelet structures similar to those found on the plant surface. In contrast, irregular wax morphologies and flat lying plates were formed on glass, silicon, salt crystals (NaCl) and mica surfaces. Movement of wheat wax through isolated Convallaria majalis cuticles led to typical wax platelets of wheat, arranged in the complex patterns typical for C. majalis. STM of pure octacosan-1-ol monolayers on HOPG showed that the arrangement of the molecules strictly followed the hexagonal structure of the substrate crystal. Re-crystallisation of wheat waxes on non-polar crystalline HOPG substrate showed that technical surfaces could be used to generate microstructured, biomimetic surfaces. AFM and SEM studies proved that a template effect of the substrate determined the orientation of the re-grown crystals. These effects of the structure and polarity of the substrate on the morphology of the epicuticular waxes are relevant for

  7. Genetic characterization kernel polyphenol oxidases in wheat (Triticum spp.) and its cultivated and wild relatives

    USDA-ARS?s Scientific Manuscript database

    Polyphenol oxidase (PPO, EC, 1.10.31) is a major cause of discoloring in raw dough containing wheat flour. PPO is a ubiquitous enzyme that occurs in many tissues of the wheat plant, including the outer layers of wheat kernels. High levels of flour PPO have been associated with diminished end-product...

  8. First report of Fusarium redolens causing crown rot of wheat (Triticum spp.) in Turkey

    USDA-ARS?s Scientific Manuscript database

    Fusarium crown rot, caused by a complex of Fusarium spp., is a yield-limiting disease of wheat world-wide, especially in dry Mediterranean climates. In order to identify Fusarium species associated with crown rot of wheat, a survey was conducted in summer 2013 in the major wheat growing regions of T...

  9. Fluoranthene, a polycyclic aromatic hydrocarbon, inhibits light as well as dark reactions of photosynthesis in wheat (Triticum aestivum).

    PubMed

    Tomar, Rupal Singh; Jajoo, Anjana

    2014-11-01

    The toxic effect of fluoranthene (FLT) on seed germination, growth of seedling and photosynthesis processes of wheat (Triticum aestivum) was investigated. Wheat seeds were exposed to 5 µM and 25 µM FLT concentrations for 25 days and it was observed that FLT had inhibiting effect on rate of seed germination. The germination rate of wheat seeds decreased by 11% at 25 µM FLT concentration. Root/shoot growth and biomass production declined significantly even at low concentrations of FLT. Chlorophyll a fluorescence and gas exchange parameters were measured after 25 days to evaluate the effects of FLT on Photosystem II (PSII) activity and CO2 assimilation rate. The process of CO2 assimilation decreased more effectively by FLT as compared to the yield of PSII. A negative correlation was found between plant net photosynthesis, stomatal conductance, carboxylation capacity and biomass production with FLT. It is concluded that inhibiting effects of FLT on photosynthesis are contributed more by inhibition in the process of CO2 fixation rather than inhibition of photochemical events. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Effects of temperature - heavy metal interactions, antioxidant enzyme activity and gene expression in wheat (Triticum aestivum L.) seedlings.

    PubMed

    Ergün, N; Özçubukçu, S; Kolukirik, M; Temizkan, Ö

    2014-12-01

    In this study, the effect of heat and chromium (Cr) heavy metal interactions on wheat seedlings (Triticum aestivum L. cv. Ç-1252 and Gun91) was investigated by measuring total chlorophyll and carotenoid levels, catalase (CAT) and ascorbate peroxidase (APX) antioxidant enzyme activities, and MYB73, ERF1 and TaSRG gene expression. Examination of pigment levels demonstrated a decrease in total chlorophyll in both species of wheat under combined heat and heavy metal stress, while the carotenoid levels showed a slight increase. APX activity increased in both species in response to heavy metal stress, but the increase in APX activity in the Gun91 seedlings was higher than that in the Ç-1252 seedlings. CAT activity increased in Gun91 seedlings but decreased in Ç-1252 seedlings. These results showed that Gun91 seedling had higher resistance to Cr and Cr + heat stresses than the Ç-1252 seedling. The quantitative molecular analyses implied that the higher resistance was related to the overexpression of TaMYB73, TaERF1 and TaSRG transcription factors. The increase in the expression levels of these transcription factors was profound under combined Cr and heat stress. This study suggests that TaMYB73, TaERF1 and TaSRG transcription factors regulate Cr and heat stress responsive genes in wheat.

  11. A recessive gene controlling male sterility sensitive to short daylength/low temperature in wheat (Triticum aestivum L.).

    PubMed

    Chen, Xiao-dong; Sun, Dong-fa; Rong, De-fu; Peng, Jun-hua; Li, Cheng-dao

    2011-11-01

    Utilization of a two-line breeding system via photoperiod-thermo sensitive male sterility has a great potential for hybrid production in wheat (Triticum aestivum L.). 337S is a novel wheat male sterile line sensitive to both short daylength/low temperature and long daylength/high temperature. Five F(2) populations derived from the crosses between 337S and five common wheat varieties were developed for genetic analysis. All F(1)'s were highly fertile while segregation occurred in the F(2) populations with a ratio of 3 fertile:1 sterile under short daylength/low temperature. It is shown that male sterility in 337S was controlled by a single recessive gene, temporarily designated as wptms3. Bulked segregant analysis (BSA) coupled with simple sequence repeat (SSR) markers was applied to map the sterile gene using one mapping population. The wptms3 gene was mapped to chromosome arm 1BS and flanked by Xgwm413 and Xgwm182 at a genetic distance of 3.2 and 23.5 cM, respectively. The accuracy and efficiency of marker-assisted selection were evaluated and proved essential for identifying homozygous recessive male sterile genotypes of the wptms3 gene in F(2) generation.

  12. Use of doubled haploid technology for development of stable drought tolerant bread wheat (Triticum aestivum L.) transgenics.

    PubMed

    Chauhan, Harsh; Khurana, Paramjit

    2011-04-01

    Anther culture-derived haploid embryos were used as explants for Agrobacterium-mediated genetic transformation of bread wheat (Triticum aestivum L. cv CPAN1676) using barley HVA1 gene for drought tolerance. Regenerated plantlets were checked for transgene integration in T₀ generation, and positive transgenic haploid plants were doubled by colchicine treatment. Stable transgenic doubled haploid plants were obtained, and transgene expression was monitored till T₄ generation, and no transgene silencing was observed over the generations. Doubled haploid transgenic plants have faster seed germination and seedling establishment and show better drought tolerance in comparison with nontransgenic, doubled haploid plants, as measured by per cent germination, seedling growth and biomass accumulation. Physiological evaluation for abiotic stress by assessing nitrate reductase enzyme activity and plant yield under post-anthesis water limitation revealed a better tolerance of the transgenics over the wild type. This is the first report on the production of double haploid transgenic wheat through anther culture technique in a commercial cultivar for a desirable trait. This method would also be useful in functional genomics of wheat and other allopolyploids of agronomic importance. © 2010 The Authors. Plant Biotechnology Journal © 2010 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  13. Comprehensive analysis of the transcription of starch synthesis genes and the transcription factor RSR1 in wheat (Triticum aestivum) endosperm.

    PubMed

    Kang, Guo-Zhang; Xu, Wei; Liu, Guo-Qin; Peng, Xiao-Qi; Guo, Tian-Cai

    2013-02-01

    The cDNA sequences of 26 starch synthesis genes were identified in common wheat (Triticum aestivum L.), and their transcript levels were measured using quantitative real-time RT-PCR to assess the function of individual genes and the regulatory mechanism in wheat endosperm. The expression patterns of 26 genes in wheat endosperm were classified into three groups. The genes in group 1 were richly expressed in the early stage of grain development and may be involved in the construction of fundamental cell machinery, synthesis of glucan primers, and initiation of starch granules. The genes in group 2 were highly expressed during the middle and late stages of grain development, and their expression profiles were similar to the accumulation rate of endosperm starch; these genes are presumed to play a crucial role in starch production. The genes in group 3 were scantily expressed throughout the grain development period and might be associated with transitory starch synthesis. Transcripts of the negative transcription factor TaRSR1 were high at the early and late stages of grain development but low during the middle stage. The expression pattern of TaRSR1 was almost opposite to those of the group 2 starch synthesis genes, indicating that TaRSR1 might negatively regulate the expression of many endosperm starch synthesis genes during grain development.

  14. Effect of zinc-lysine on growth, yield and cadmium uptake in wheat (Triticum aestivum L.) and health risk assessment.

    PubMed

    Rizwan, Muhammad; Ali, Shafaqat; Hussain, Afzal; Ali, Qasim; Shakoor, Muhammad Bilal; Zia-Ur-Rehman, Muhammad; Farid, Mujahid; Asma, Maliha

    2017-11-01

    Cadmium (Cd) is among the most widespread toxic trace elements found in agricultural soils due to various anthropogenic activities. The role of micronutrient-amino chelates on reducing Cd toxicity in crop plants is recently introduced. The current study was conducted to highlight the role of foliar application of zinc-lysine (Zn-lys) complex on biochemical and growth parameters and Cd uptake in wheat (Triticum aestivum) grown in aged Cd-contaminated soil. Foliar concentration of Zn-lys (0, 10, 20, and 30 mg L(-1)) was applied at different time intervals (2nd, 3rd, 5th and 7th week of sowing) and plants were harvested at maturity. Folliar application of Zinc-lys significantly increased the photosynthesis, grain yield, enzyme activities and Zn contents in different plant tissues. Zinc-lys reduced Cd contents in grains, shoot and root as well as reduced the oxidative stress in wheat linearly in a dose-additive manner. Taken together, Zn-lys chelate efficiently improved wheat growth and fortified Zn contents while reduced Cd concentration in plant in a Zn-deficient Cd-contaminated soil. Although, health risk index (HRI) from the soil sampling area seems to be lower than <1 for Cd but may exceed due to long-term consumption of grains produced from such contaminated soil. Foliar applied Zn-lys reduced HRI which may help to reduce health risks associated with Cd. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Triticum mosaic virus exhibits limited population variation yet shows evidence of parallel evolution after replicated serial passage in wheat.

    PubMed

    Bartels, Melissa; French, Roy; Graybosch, Robert A; Tatineni, Satyanarayana

    2016-05-01

    An infectious cDNA clone of Triticum mosaic virus (TriMV) (genus Poacevirus; family Potyviridae) was used to establish three independent lineages in wheat to examine intra-host population diversity levels within protein 1 (P1) and coat protein (CP) cistrons over time. Genetic variation was assessed at passages 9, 18 and 24 by single-strand conformation polymorphism, followed by nucleotide sequencing. The founding P1 region genotype was retained at high frequencies in most lineage/passage populations, while the founding CP genotype disappeared after passage 18 in two lineages. We found that rare TriMV genotypes were present only transiently and lineages followed independent evolutionary trajectories, suggesting that genetic drift dominates TriMV evolution. These results further suggest that experimental populations of TriMV exhibit lower mutant frequencies than that of Wheat streak mosaic virus (genus Tritimovirus; family Potyviridae) in wheat. Nevertheless, there was evidence for parallel evolution at a synonymous site in the TriMV CP cistron.

  16. Predictions of heading date in bread wheat (Triticum aestivum L.) using QTL-based parameters of an ecophysiological model.

    PubMed

    Bogard, Matthieu; Ravel, Catherine; Paux, Etienne; Bordes, Jacques; Balfourier, François; Chapman, Scott C; Le Gouis, Jacques; Allard, Vincent

    2014-11-01

    Prediction of wheat phenology facilitates the selection of cultivars with specific adaptations to a particular environment. However, while QTL analysis for heading date can identify major genes controlling phenology, the results are limited to the environments and genotypes tested. Moreover, while ecophysiological models allow accurate predictions in new environments, they may require substantial phenotypic data to parameterize each genotype. Also, the model parameters are rarely related to all underlying genes, and all the possible allelic combinations that could be obtained by breeding cannot be tested with models. In this study, a QTL-based model is proposed to predict heading date in bread wheat (Triticum aestivum L.). Two parameters of an ecophysiological model (V sat and P base , representing genotype vernalization requirements and photoperiod sensitivity, respectively) were optimized for 210 genotypes grown in 10 contrasting location × sowing date combinations. Multiple linear regression models predicting V sat and P base with 11 and 12 associated genetic markers accounted for 71 and 68% of the variance of these parameters, respectively. QTL-based V sat and P base estimates were able to predict heading date of an independent validation data set (88 genotypes in six location × sowing date combinations) with a root mean square error of prediction of 5 to 8.6 days, explaining 48 to 63% of the variation for heading date. The QTL-based model proposed in this study may be used for agronomic purposes and to assist breeders in suggesting locally adapted ideotypes for wheat phenology.

  17. Variability and genetics of spacer DNA sequences between the ribosomal-RNA genes of hexaploid wheat (Triticum aestivum).

    PubMed

    May, C E; Appels, R

    1987-09-01

    Using restriction enzyme digests of genomic DNA extracted from the leaves of 25 hexaploid wheat (Triticum aestivum L. em. Thell.) cultivars and their hybrids, restriction fragment length polymorphisms of the spacer DNA which separates the ribosomal-RNA genes have been examined. (From one to three thousand of these genes are borne on chromosomes 1B and 6B of hexaploid wheat). The data show that there are three distinct alleles of the 1B locus, designated Nor-B1a, Nor-B1b, and Nor-B1c, and at least five allelic variants of the 6B locus, designated Nor-B2a, Nor-B2b, Nor-B2c, Nor-B2d, and Nor-B2e. A further, previously reported allele on 6B has been named Nor-B2f. Chromosome 5D has only one allelic variant, Nor-D3. Whereas the major spacer variants of the 1B alleles apparently differ by the loss or gain of one or two of the 133 bp sub-repeat units within the spacer DNA, the 6B allelic variants show major differences in their compositions and lengths. This may be related to the greater number of rDNA repeat units at this locus. The practical implications of these differences and their application to wheat breeding are discussed.

  18. Predictions of heading date in bread wheat (Triticum aestivum L.) using QTL-based parameters of an ecophysiological model

    PubMed Central

    Bogard, Matthieu; Ravel, Catherine; Paux, Etienne; Bordes, Jacques; Balfourier, François; Chapman, Scott C.; Le Gouis, Jacques; Allard, Vincent

    2014-01-01

    Prediction of wheat phenology facilitates the selection of cultivars with specific adaptations to a particular environment. However, while QTL analysis for heading date can identify major genes controlling phenology, the results are limited to the environments and genotypes tested. Moreover, while ecophysiological models allow accurate predictions in new environments, they may require substantial phenotypic data to parameterize each genotype. Also, the model parameters are rarely related to all underlying genes, and all the possible allelic combinations that could be obtained by breeding cannot be tested with models. In this study, a QTL-based model is proposed to predict heading date in bread wheat (Triticum aestivum L.). Two parameters of an ecophysiological model (V sat and P base, representing genotype vernalization requirements and photoperiod sensitivity, respectively) were optimized for 210 genotypes grown in 10 contrasting location × sowing date combinations. Multiple linear regression models predicting V sat and P base with 11 and 12 associated genetic markers accounted for 71 and 68% of the variance of these parameters, respectively. QTL-based V sat and P base estimates were able to predict heading date of an independent validation data set (88 genotypes in six location × sowing date combinations) with a root mean square error of prediction of 5 to 8.6 days, explaining 48 to 63% of the variation for heading date. The QTL-based model proposed in this study may be used for agronomic purposes and to assist breeders in suggesting locally adapted ideotypes for wheat phenology. PMID:25148833

  19. Aluminium tolerance of root hairs underlies genotypic differences in rhizosheath size of wheat (Triticum aestivum) grown on acid soil.

    PubMed

    Delhaize, Emmanuel; James, Richard A; Ryan, Peter R

    2012-08-01

    We found significant genetic variation in the ability of wheat (Triticum aestivum) to form rhizosheaths on acid soil and assessed whether differences in aluminium (Al(3+) ) tolerance of root hairs between genotypes was the physiological basis for this genetic variation. A method was developed to rapidly screen rhizosheath size in a range of wheat genotypes. Backcrossed populations were generated from cv Fronteira (large rhizosheath) using cv EGA-Burke (small rhizosheath) as the recurrent parent. A positive correlation existed between rhizosheath size on acid soil and root hair length. In hydroponic experiments, root hairs of the backcrossed lines with large rhizosheaths were more tolerant of Al(3+) toxicity than the backcrossed lines with small rhizosheaths. We conclude that greater Al(3+) tolerance of root hairs underlies the larger rhizosheath of wheat grown on acid soil. Tolerance of the root hairs to Al(3+) was largely independent of the TaALMT1 gene which suggests that different genes encode the Al(3+) tolerance of root hairs. The maintenance of longer root hairs in acid soils is important for the efficient uptake of water and nutrients.

  20. Molecular mapping of resistance gene to English grain aphid (Sitobion avenae F.) in Triticum durum wheat line C273.

    PubMed

    Liu, X L; Yang, X F; Wang, C Y; Wang, Y J; Zhang, H; Ji, W Q

    2012-02-01

    The English grain aphid, Sitobion avenae (Fabricius), is one of the most important insect pests causing substantial yield losses in wheat production in China and other grain-growing areas in the world. The efficient utilization of wheat genes for resistance to English grain aphid (EGA) provides an efficient, economic and environmentally sound approach to reduce the yield losses. In the present study, the wheat line C273 (Triticum durum AABB, 2n = 4x = 28), is resistant to EGA in greenhouse and field tests. To identify the resistance gene, designated RA-1 temporarily, C273 was crossed with susceptible genotype Poland 305 (T. polonicum, AABB, 2n = 4x = 28). The F(1), F(2) and F(2:3) lines were tested with EGA in the field and greenhouse. The results indicated that RA-1 is a single dominant gene, closely linked to the microsatellite markers (SSR) Xwmc179, Xwmc553 and Xwmc201 on chromosome 6AL at genetic distances of 3.47, 4.73 and 7.57 cM, respectively. The three SSR markers will be valuable in marker-assisted selection for resistance to EGA as well as for cloning this gene in the future.

  1. Olive pomace amendment in Mediterranean conditions: effect on soil and humic acid properties and wheat (Triticum turgidum L.) yield.

    PubMed

    Brunetti, Gennaro; Plaza, César; Senesi, Nicola

    2005-08-24

    The effects of the addition of either crude or exhausted olive pomace at two rates (10 and 20 t ha(-)(1)) on soil and soil humic acid (HA) properties and durum wheat (Triticum turgidum L.) yield were investigated in open-field Mediterranean conditions. Soil amendment with olive pomaces produced a significant increase of total organic, total extractable, humified and nonhumified C forms, and available K contents. With respect to control soil HA, humic-like acids isolated from crude and exhausted olive pomaces were characterized by larger phenolic OH group contents, smaller carboxyl group contents, a prevalent aliphatic character, extended molecular heterogeneity, and smaller aromatic polycondensation and humification degrees. In general, application of olive pomaces to soil produced a number of modifications in soil HAs, including the increase of O and acidic functional group contents, C/N ratio, and aliphaticity and the decrease of C/H ratio and N and C contents. Wheat grain yield increased significantly as an effect of olive pomace amendment. In particular, the increases were related to kernel weight, kernel number per square meter, and soil organic matter content. Possibly, the enhanced amount of soil organic matter in olive-pomace-amended soils relieved wheat of drought stress from anthesis to maturity by promoting a good soil structure, thereby reducing water loss by evaporation.

  2. Accelerated hydrolysis method to estimate the amino acid content of wheat (Triticum durum Desf.) flour using microwave irradiation.

    PubMed

    Kabaha, Khaled; Taralp, Alpay; Cakmak, Ismail; Ozturk, Levent

    2011-04-13

    The technique of microwave-assisted acid hydrolysis was applied to wholegrain wheat (Triticum durum Desf. cv. Balcali 2000) flour in order to speed the preparation of samples for analysis. The resultant hydrolysates were chromatographed and quantified in an automated amino acid analyzer. The effect of different hydrolysis temperatures, times and sample weights was examined using flour dispersed in 6 N HCl. Within the range of values tested, the highest amino acid recoveries were generally obtained by setting the hydrolysis parameters to 150 °C, 3 h and 200 mg sample weight. These conditions struck an optimal balance between liberating amino acid residues from the wheat matrix and limiting their subsequent degradation or transformation. Compared to the traditional 24 h reflux method, the hydrolysates were prepared in dramatically less time, yet afforded comparable ninhydrin color yields. Under optimal hydrolysis conditions, the total amino acid recovery corresponded to at least 85.1% of the total protein content, indicating the efficient extraction of amino acids from the flour matrix. The findings suggest that this microwave-assisted method can be used to rapidly profile the amino acids of numerous wheat grain samples, and can be extended to the grain analysis of other cereal crops.

  3. Activation of polyphenol oxidase in extracts of bran from several wheat (Triticum aestivum) cultivars using organic solvents, detergents, and chaotropes.

    PubMed

    Okot-Kotber, Moses; Liavoga, Allan; Yong, Kwon-Joong; Bagorogoza, Katherine

    2002-04-10

    Polyphenol oxidase (PPO), known to induce browning in wheat-based products, has been shown to be activatable in wheat (Triticum aestivum) bran extracts by chemical compounds. The activity in the extracts could be increased to varying degrees with acetone, methanol, ethanol, 2-propanol, and n-butanol as additives in the extraction buffer. The most potent alcoholic activator was n-butanol (about a 3-fold increase), followed by 2-propanol and ethanol, whereas methanol had the least effect. Ionic detergents in the extraction buffer were also good activators, with sodium dodecyl sulfate (SDS) being more potent (3-fold increase) than cetyltrimethylammonium bromide (CTAB) that had only half as much effect, whereas the nonionic detergent, Triton X-114, was ineffective. The chaotropes, urea and guanidine x HCl (GND), were the most potent activators of all, increasing the activity over 4-fold. Of the two chaotropes, GND was more effective at lower concentrations (<6 M) than urea. However, the enzyme activity lessened at a higher concentration of GND (6 M), while there was a further increase in the activity with 6 M urea treatment. The activity lessened with higher concentration of GND presumably as a result of extensive denaturation of the enzyme, as GND is known to be a more potent denaturant than urea. It is hypothesized that in wheat PPO exists in an inactive form which may be activated by the presence of activators, hitherto unknown, similar in effect to that elicited by the chemical denaturants in this study.

  4. Genetic characterization and expression analysis of wheat (Triticum aestivum) line 07OR1074 exhibiting very low polyphenol oxidase (PPO) activity.

    PubMed

    Hystad, S M; Martin, J M; Graybosch, R A; Giroux, M J

    2015-08-01

    Characterized novel mutations present at Ppo loci account for the substantial reduction of the total kernel PPO activity present in a putative null Ppo - A1 genetic background. Wheat (Triticum aestivum) polyphenol oxidase (PPO) contributes to the time-dependent discoloration of Asian noodles. Wheat contains multiple paralogous and orthologous Ppo genes, Ppo-A1, Ppo-D1, Ppo-A2, Ppo-D2, and Ppo-B2, expressed in wheat kernels. To date, wheat noodle color improvement efforts have focused on breeding cultivars containing Ppo-D1 and Ppo-A1 alleles conferring reduced PPO activity. A major impediment to wheat quality improvement is a lack of additional Ppo alleles conferring reduced kernel PPO. In this study, a previously reported very low PPO line, 07OR1074, was found to contain a novel allele at Ppo-A2 and null alleles at the Ppo-A1 and Ppo-D1 loci. To examine the impact of each mutation upon kernel PPO, populations were generated from crosses between 07OR1074 and the hard white spring wheat cultivars Choteau and Vida. Expression analysis using RNA-seq demonstrated no detectable Ppo-A1 transcripts in 07OR1074 while Ppo-D1 transcripts were present at less than 10% of that seen in Choteau and Vida. Novel markers specific for the Ppo-D1 and Ppo-A2 mutations discovered in 07OR1074, along with the Ppo-A1 STS marker, were used to screen segregating populations. Evaluation of lines indicated a substantial genotypic effect on PPO with Ppo-A1 and Ppo-D1 alleles contributing significantly to total PPO in both populations. These results show that the novel mutations in Ppo-A1 and Ppo-D1 present in 07OR1074 are both important to lowering overall wheat seed PPO activity and may be useful to produce more desirable and marketable wheat-based products.

  5. Detection of sugar accumulation and expression levels of correlative key enzymes in winter wheat (Triticum aestivum) at low temperatures.

    PubMed

    Zeng, Yan; Yu, Jing; Cang, Jing; Liu, Lijie; Mu, Yongchao; Wang, Junhong; Zhang, Da

    2011-01-01

    Carbohydrate accumulation is common in frost-resistant plants, and many enzymes participate in this process. The sugar content and expression levels of metabolic enzymes related to sugar biosynthesis in response to drops in temperature were measured in two cultivars of winter wheat (Triticum aestivum) with different cold tolerances. The results indicate that the two cultivars examined, Dongnongdongmai 1 and Jimai 22, accumulated high levels of carbohydrate before November 4 (above 0°C), and that accumulation decreased as temperatures fell. However, this decrease was more modest in Dongnongdongmai 1, which had a higher sugar content. Sucrose and fructose were the main soluble sugars, indicating an important role in freezing tolerance. Gene expression studies revealed that expression of the genes encoding chloroplastic enzymes was significantly upregulated in the tillering nodes. Expression upregulation of TaSS and TaTPT may be helpful for sugar accumulation before November 4.

  6. Growth responses of wheat (Triticum aestivum L. var. HD 2329) exposed to ambient air pollution under varying fertility regimes.

    PubMed

    Singh, Anoop; Agrawal, S B; Rathore, Dheeraj

    2003-08-20

    The problem of urban air pollution has attracted special attention in India due to a tremendous increase in the urban population; motor vehicles vis a vis the extent of energy utilization. Field studies were conducted on wheat crops (Triticum aestivum L. var. HD 2329) by keeping the pot-grown plants in similar edaphic conditions at nine different sites in Allahabad City to quantify the effects of ambient air pollution levels on selected growth and yield parameters. Air quality monitoring was done at all the sites for gaseous pollutants viz. SO2, NO2, and O3. Various growth parameters (plant height, biomass, leaf area, NPP, etc.) showed adverse effects at sites receiving higher pollution load. Reduction in test weight and harvest index was found to be directly correlated with the levels of pollutant concentrations. The study clearly showed the negative impact of air pollution on periurban agriculture.

  7. Genetic mechanisms of allopolyploid speciation through hybrid genome doubling: novel insights from wheat (Triticum and Aegilops) studies.

    PubMed

    Matsuoka, Yoshihiro; Takumi, Shigeo; Nasuda, Shuhei

    2014-01-01

    Polyploidy, which arises through complex genetic and ecological processes, is an important mode of plant speciation. This review provides an overview of recent advances in understanding why plant polyploid species are so ubiquitous and diverse. We consider how the modern framework for understanding genetic mechanisms of speciation could be used to study allopolyploid speciation that occurs through hybrid genome doubling, that is, whole genome doubling of interspecific F1 hybrids by the union of male and female unreduced gametes. We outline genetic and ecological mechanisms that may have positive or negative impacts on the process of allopolyploid speciation through hybrid genome doubling. We also discuss the current status of studies on the underlying genetic mechanisms focusing on the wheat (Triticum and Aegilops) hybrid-specific reproductive phenomena that are well known but deserve renewed attention from an evolutionary viewpoint.

  8. Nucleic acid (cDNA) and amino acid sequences of alpha-type gliadins from wheat (Triticum aestivum).

    PubMed Central

    Kasarda, D D; Okita, T W; Bernardin, J E; Baecker, P A; Nimmo, C C; Lew, E J; Dietler, M D; Greene, F C

    1984-01-01

    The complete amino acid sequence for an alpha-type gliadin protein of wheat (Triticum aestivum Linnaeus) endosperm has been derived from a cloned cDNA sequence. An additional cDNA clone that corresponds to about 75% of a similar alpha-type gliadin has been sequenced and shows some important differences. About 97% of the composite sequence of A-gliadin (an alpha-type gliadin fraction) has also been obtained by direct amino acid sequencing. This sequence shows a high degree of similarity with amino acid sequences derived from both cDNA clones and is virtually identical to one of them. On the basis of sequence information, after loss of the signal sequence, the mature alpha-type gliadins may be divided into five different domains, two of which may have evolved from an ancestral gliadin gene, whereas the remaining three contain repeating sequences that may have developed independently. Images PMID:6589619

  9. Comparative effects of glyphosate and atrazine in chloroplast ultrastructure of wheat and downy brome. [Triticum aestivum; Bromus tectorum

    SciTech Connect

    Auge, R.M.; Gealy, D.R.; Ogg, A.G.; Franceschi, V.R.

    1987-04-01

    Developing and mature leaves of winter wheat (Triticum aestivum L. var. Daws) and the weed species downy brome (Bromus tectorum L.) were subjected to 10 mM (foliar application) and 1 mM (root application) herbicide solutions. Glyphosate (N-(phosphonomethyl) glycine) and atrazine (2-chloro-4-(ethyl-amino)-6-(isopropylamino)-s-triazine) were prepared in a carrier composed of 5% soybean oil concentrate, 35% acetone and 60% water. Penetration experiments with /sup 3/H-labelled herbicides assessed what percentage of herbicide entered leaves, and microautoradiography was used to determine qualitatively how much herbicide was present in the sections viewed with TEM. Tissue was excised at 4, 18, 62 and 200 hours, and then either freeze-substituted or fixed chemically. Ultrastructural effects of each herbicide on chloroplasts from leaves of newly-germinated seedlings and of well-tillered plants are depicted and discussed. Temporal differences in response of chloroplasts to each herbicide are noted.

  10. MlAG12: a Triticum timopheevii-derived powdery mildew resistance gene in common wheat on chromosome 7AL.

    PubMed

    Maxwell, Judd J; Lyerly, Jeanette H; Cowger, Christina; Marshall, David; Brown-Guedira, Gina; Murphy, J Paul

    2009-11-01

    Wheat powdery mildew is an economically important disease in cool and humid environments. Powdery mildew causes yield losses as high as 48% through a reduction in tiller survival, kernels per head, and kernel size. Race-specific host resistance is the most consistent, environmentally friendly and, economical method of control. The wheat (Triticum aestivum L.) germplasm line NC06BGTAG12 possesses genetic resistance to powdery mildew introgressed from the AAGG tetraploid genome Triticum timopheevii subsp. armeniacum. Phenotypic evaluation of F(3) families derived from the cross NC06BGTAG12/'Jagger' and phenotypic evaluation of an F(2) population from the cross NC06BGTAG12/'Saluda' indicated that resistance to the 'Yuma' isolate of powdery mildew was controlled by a single dominant gene in NC06BGTAG12. Bulk segregant analysis (BSA) revealed simple sequence repeat (SSR) markers specific for chromosome 7AL segregating with the resistance gene. The SSR markers Xwmc273 and Xwmc346 mapped 8.3 cM distal and 6.6 cM proximal, respectively, in NC06BGTAG12/Jagger. The multiallelic Pm1 locus maps to this region of chromosome 7AL. No susceptible phenotypes were observed in an evaluation of 967 F(2) individuals in the cross NC06BGTAG12/'Axminster' (Pm1a) which indicated that the NC06BGTAG12 resistance gene was allelic or in close linkage with the Pm1 locus. A detached leaf test with ten differential powdery mildew isolates indicated the resistance in NC06BGTAG12 was different from all designated alleles at the Pm1 locus. Further linkage and allelism tests with five other temporarily designated genes in this very complex region will be required before giving a permanent designation to this gene. At this time the gene is given the temporary gene designation MlAG12.

  11. Dynamics of rhizosphere properties and antioxidative responses in wheat (Triticum aestivum L.) under cadmium stress.

    PubMed

    Li, Yonghua; Wang, Li; Yang, Linsheng; Li, Hairong

    2014-04-01

    In this study, we performed a rhizobox experiment to examine the dynamic changes in the rhizosphere properties and antioxidant enzyme responses of Triticum aestivum L. under three levels of cadmium stress. A set of micro-techniques (i.e., Rhizobox and Rhizon SMS) were applied for the dynamically non-destructive collection of the rhizosphere soil solution to enable the observation at a high temporal resolution. The dynamics of soluble cadmium and dissolved organic carbon (DOC) in the rhizosphere soil solutions of the Triticum aestivum L. were characterised by the sequence week 0 after sowing (WAS0)<3 weeks after sowing (WAS3)<10 weeks after sowing (WAS10), whereas the soil solution pH was found to follow an opposite distribution pattern. Systematically, both superoxide dismutase (SOD) and catalase (CAT) activities in the leaves of the Triticum aestivum L. increased concomitantly with increasing cadmium levels (p>0.05) and growth duration (p<0.05), whilst ascorbate peroxidase (APX) activity was induced to an elevated level at moderate cadmium stress with a decrease at high cadmium stress (p>0.05). These results suggested the enhancement of DOC production and the greater antioxidant enzyme activities were two important protective mechanisms of Triticum aestivum L. under cadmium stress, whereas rhizosphere acidification might be an important mechanism for the mobilisation of soil cadmium. The results also revealed that plant-soil interactions strongly influence the soil solution chemistry in the rhizosphere of Triticum aestivum L., that, in turn, can stimulate chemical and biochemical responses in the plants. In most cases, these responses to cadmium stress were sensitive and might allow us to develop strategies for reducing the risks of the cadmium contamination to crop production.

  12. A cold-responsive wheat (Triticum aestivum L.) gene wcor14 identified in a winter-hardy cultivar 'Mironovska 808'.

    PubMed

    Tsvetanov, S; Ohno, R; Tsuda, K; Takumi, S; Mori, N; Atanassov, A; Nakamura, C

    2000-02-01

    A cDNA library was constructed from a cold-acclimated winter-hardy common wheat (Triticum aestivum L.) cultivar 'Mironovska 808'. Using this library and a cold- and light-responsive barley cDNA clone cor14b as a probe, cDNAs of a homologous wheat gene wcor14 were isolated. Two identical cDNAs designated as wcor14a had an open reading frame encoding an acidic (pI = 4.71) and hydrophobic polypeptide with 140 amino acids (MW = 13.5 kDa). The deduced WCOR14a polypeptide showed 70% identity with the barley chloroplast-imported COR14b and had a nearly identical N-terminal, putative chloroplast transit peptide of 51 amino acid residues. Another cDNA clone wcor14b was assumed to encode a polypeptide WCORb which had 5 substitutions and a frame shift in the C-terminal region as compared with WCOR14a. RACE PCR, genomic PCR and Southern blot analyses suggested that wcor14 and its related sequences constitute a small multigene family with and without an intron in the hexaploid wheat genome. Northern blot analysis showed that transcripts of wcor14 accumulated within 3-6 hours of cold acclimation at 4 degrees C and the level reached a maximum at day 3. The transcripts became non-detectable within 3 hours after de-acclimation at room temperature. Contrary to the barley cor14b, a similar level of wcor14 transcripts was detected under the continuous darkness. Neither treatment with NaCl, ABA nor dehydration induced its expression. Based on these results we conclude that wcor14 is a wheat orthologue of the barley cor14b and specifically induced by low temperature.

  13. Effect of lead stress on mineral content and growth of wheat (Triticum aestivum) and spinach (Spinacia oleracea) seedlings

    PubMed Central

    Lamhamdi, Mostafa; El Galiou, Ouiam; Bakrim, Ahmed; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel; Aarab, Ahmed; Lafont, René

    2012-01-01

    Lead (Pb) is the most common heavy metal contaminant in the environment. Pb is not an essential element for plants, but they absorb it when it is present in their environment, especially in rural areas when the soil is polluted by automotive exhaust and in fields contaminated with fertilizers containing heavy metal impurities. To investigate lead effects on nutrient uptake and metabolism, two plant species, spinach (Spinacia oleracea) and wheat (Triticum aestivum), were grown under hydroponic conditions and stressed with lead nitrate, Pb(NO3)2, at three concentrations (1.5, 3, and 15 mM). Lead is accumulated in a dose-dependent manner in both plant species, which results in reduced growth and lower uptake of all mineral ions tested. Total amounts and concentrations of most mineral ions (Na, K, Ca, P, Mg, Fe, Cu and Zn) are reduced, although Mn concentrations are increased, as its uptake is reduced less relative to the whole plant’s growth. The deficiency of mineral nutrients correlates in a strong decrease in the contents of chlorophylls a and b and proline in both species, but these effects are less pronounced in spinach than in wheat. By contrast, the effects of lead on soluble proteins differ between species; they are reduced in wheat at all lead concentrations, whereas they are increased in spinach, where their value peaks at 3 mM Pb. The relative lead uptake by spinach and wheat, and the different susceptibility of these two species to lead treatment are discussed. PMID:23961216

  14. [Metabolic changes in wheat (Triticum aestivum L.) plants under action of bioregulator stifun].

    PubMed

    Iakhin, O I; Lubianov, A A; Iakhin, I A; Vakhitov, V A; Ibragimov, R I; Iumaguzhin, M S; Kalimullina, Z F

    2011-01-01

    Under action of growth-stimulating concentrations of bioregulator stifun on wheat plants, an increase of functional activity of nucleoli of meristematic cells; contents of lectin (wheat germ agglutinin); and activity of proteinases, tripsin inhibitors, and ATPase activity was established. The pool of free amino acids was increased under bioregulator use. Levels of methionine, phenylalanine, cysteine, lysine, and tyrosine were increased. It is likely that stifun could activate protein biosynthesis in wheat plants.

  15. [Chromosomal localization of the speltoidy gene, introgressed into bread wheat from Aegilops speltoides Tausch., and its interaction with the Q gene of Triticum spelta L].

    PubMed

    Simonov, A V; Pshenichnikova, T A

    2012-11-01

    The differences between bread wheat (Triticum aestivum L.) and spelt (Triticum spelta L.) in the shape of the spike and threshing character are determined by the allelic status of one major Q gene, mapped to the long arm of chromosome 5A. This gene is a member of the APETALA2 family of transcription factors and plays an important role in domestication of wheat. In the present study, using monosomic analysis, we determined the chromosomal localization of the Q(S)gene, introgressed into bread wheat from Aegilops speltoides Tausch. and homoallelic to the Q gene. It was demonstrated that the Q(S) gene was located in chromosome 5A of the bread wheat line from the Arsenal collection. This gene conferred spike speltoidy in the line itself, as well as in its hybrids with bread wheat cultivars. The Q(S) gene dominated over the bread wheat Q gene and was equally effective in the homo-, hemi-, and heterozygous states. In hybrids between the introgression line and a number of spring spelt accessions, interaction between the Q and Q(S) genes was observed, manifested as the formation of superspeltoid spike.

  16. Ozone gas affects the physical and chemical properties of wheat (Triticum aestivum L.) starch

    USDA-ARS?s Scientific Manuscript database

    Ozone can oxidize hydroxyl groups present at C2, C3, and C6 positions on the starch molecule and affect its physicochemical properties. In this experiment, bread wheat flour and isolated wheat starch were treated with ozone gas (1,500 ppm, gas flow rate 2.5 L/minutes) for 45 minutes and 30 minutes, ...

  17. Internal structure of carbonized wheat (Triticum spp.) grains-relationships to kernel texture and ploidy

    USDA-ARS?s Scientific Manuscript database

    The identification of wheat grains to the genus level is problematic in many archaeobotanical samples, yet this is key to better understanding wheat phylogeny and agricultural trajectories. This study was conducted to see if the pronounced differences in kernel texture (grain hardness) which exist a...

  18. Molecular cloning and expression analysis of multiple polyphenol oxidase genes in developing wheat (Triticum aestivum) kernels

    USDA-ARS?s Scientific Manuscript database

    Polypheol oxidase (PPO, Ec 1.10.31) is a major cause of discoloring in raw dough containing wheat flour. PPO is a ubiquitous enzyme that occurs in the outer layers of wheat kernels. High levels of flour PPO have been associated with dimished end-product color and brightness in a variety of products,...

  19. Molecular cloning and expression analysis of multiple polyphenol oxidase genes in developing wheat (Triticum aestivum) kernels

    USDA-ARS?s Scientific Manuscript database

    Polyphenol oxidase (PPO, EC 1.10.31) is a major cause of discoloring in raw dough containing wheat flour. Minimization of PPO activity has proven difficult because bread wheat is genetically complex, composed of the genomes of three grass species. The PPO-A1 and PPO-D1 genes, on chromosomes 2A and...

  20. Genetic markers of wheat (Triticum aestivum) associated with flavor preference using a mouse (Mus musculus) model

    USDA-ARS?s Scientific Manuscript database

    Whole wheat products provide critical nutrients for human health, differences in wheat flavor are not well understood. Using the house mouse as a model system, flavor preference and discrimination were examined using a two-choice feeding system and 24-h trials and the Student’s t statistic. To elimi...

  1. Identifying genetic markers of wheat (Triticum aestivum) associated with flavor preference using a mouse model

    USDA-ARS?s Scientific Manuscript database

    Whole wheat products provide critical nutrients for human health, though differences in wheat flavor are not well understood. Using the house mouse as a model system, flavor was examined using a two-choice feeding system and the Student’s t statistic. To eliminate the confounding effect of processin...

  2. Biological responses of wheat (Triticum aestivum) plants to the herbicide simetryne in soils.

    PubMed

    Jiang, Lei; Yang, Yi; Jia, Lin Xian; Lin, Jing Ling; Liu, Ying; Pan, Bo; Lin, Yong

    2016-05-01

    The rotation of rice and wheat is widely used and highly endorsed, and simetryne (s-triazine herbicide) is one of the principal herbicides widely used in this rotation for weed and grass control. However, little is known regarding the mechanism of the ecological and physiological effects of simetryne on wheat crops. In this study, we performed a comprehensive investigation of crop response to simetryne to elucidate the accumulation and phytotoxicity of the herbicide in wheat crops. Wheat plants exposed to 0.8 to 8.0mgkg(-1) simetryne for 7 d exhibited suppressed growth and decreased chlorophyll content. With simetryne concentration in the soil varied from 0.8mgkg(-1) to 8.0mgkg(-1), simetryne was progressively accumulated by the wheat plants. The accumulation of simetryne in the wheat plants not only induced the over production of ROS and injured the membrane lipids but also stimulated the production of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX), glutathione reductase (GR) and glutathione S-transferase (GST). A test of enzymatic activity and gene expression illustrated that the wheat plants were wise enough to motivate the antioxidant enzymes through both molecular and physiological mechanisms to alleviate the simetryne-induced stress. This study offers an illuminating insight into the effective adaptive response of the wheat plants to the simetryne stress.

  3. Evidence of intralocus recombination at the Glu-3 loci in bread wheat (Triticum aestivum L.)

    USDA-ARS?s Scientific Manuscript database

    The low-molecular weight glutenin subunits (LMW-GSs) are a class of wheat seed storage proteins that play a critical role in the determination of wheat flour bread-making quality. These proteins are encoded by multigene families located at the orthologous Glu-3 loci (Glu-A3, Glu-B3 and Glu-D3), on t...

  4. Nitrogen balance for wheat canopies (Triticum aestivum cv. Veery 10) grown under elevated and ambient CO2 concentrations

    NASA Technical Reports Server (NTRS)

    Smart, D. R.; Ritchie, K.; Bloom, A. J.; Bugbee, B. B.

    1998-01-01

    We examined the hypothesis that elevated CO2 concentration would increase NO3- absorption and assimilation using intact wheat canopies (Triticum aestivum cv. Veery 10). Nitrate consumption, the sum of plant absorption and nitrogen loss, was continuously monitored for 23 d following germination under two CO2 concentrations (360 and 1000 micromol mol-1 CO2) and two root zone NO3- concentrations (100 and 1000 mmol m3 NO3-). The plants were grown at high density (1780 m-2) in a 28 m3 controlled environment chamber using solution culture techniques. Wheat responded to 1000 micromol mol-1 CO2 by increasing carbon allocation to root biomass production. Elevated CO2 also increased root zone NO3- consumption, but most of this increase did not result in higher biomass nitrogen. Rather, nitrogen loss accounted for the greatest part of the difference in NO3- consumption between the elevated and ambient [CO2] treatments. The total amount of NO3(-)-N absorbed by roots or the amount of NO3(-)-N assimilated per unit area did not significantly differ between elevated and ambient [CO2] treatments. Instead, specific leaf organic nitrogen content declined, and NO3- accumulated in canopies growing under 1000 micromol mol-1 CO2. Our results indicated that 1000 micromol mol-1 CO2 diminished NO3- assimilation. If NO3- assimilation were impaired by high [CO2], then this offers an explanation for why organic nitrogen contents are often observed to decline in elevated [CO2] environments.

  5. Nitrogen balance for wheat canopies (Triticum aestivum cv. Veery 10) grown under elevated and ambient CO2 concentrations

    NASA Technical Reports Server (NTRS)

    Smart, D. R.; Ritchie, K.; Bloom, A. J.; Bugbee, B. B.

    1998-01-01

    We examined the hypothesis that elevated CO2 concentration would increase NO3- absorption and assimilation using intact wheat canopies (Triticum aestivum cv. Veery 10). Nitrate consumption, the sum of plant absorption and nitrogen loss, was continuously monitored for 23 d following germination under two CO2 concentrations (360 and 1000 micromol mol-1 CO2) and two root zone NO3- concentrations (100 and 1000 mmol m3 NO3-). The plants were grown at high density (1780 m-2) in a 28 m3 controlled environment chamber using solution culture techniques. Wheat responded to 1000 micromol mol-1 CO2 by increasing carbon allocation to root biomass production. Elevated CO2 also increased root zone NO3- consumption, but most of this increase did not result in higher biomass nitrogen. Rather, nitrogen loss accounted for the greatest part of the difference in NO3- consumption between the elevated and ambient [CO2] treatments. The total amount of NO3(-)-N absorbed by roots or the amount of NO3(-)-N assimilated per unit area did not significantly differ between elevated and ambient [CO2] treatments. Instead, specific leaf organic nitrogen content declined, and NO3- accumulated in canopies growing under 1000 micromol mol-1 CO2. Our results indicated that 1000 micromol mol-1 CO2 diminished NO3- assimilation. If NO3- assimilation were impaired by high [CO2], then this offers an explanation for why organic nitrogen contents are often observed to decline in elevated [CO2] environments.

  6. Accumulation of cadmium in near-isogenic lines of durum wheat (Triticum turgidum L. var durum): the role of transpiration.

    PubMed

    Quinn, C J; Mohammad, A; Macfie, S M

    2011-10-01

    Concentrations of cadmium in the grain of durum wheat (Triticum turgidum L. var durum) are often above the internationally acceptable limit of 0.2 mg kg(-1). Cultivars that vary in concentrations of cadmium in the grain have been identified but the physiology behind differential accumulation has not been determined. Three pairs of near-isogenic lines (isolines) of durum wheat that vary in aboveground cadmium accumulation (8982-TL 'high' and 'low', W9260-BC 'high' and 'low', and W9261-BG 'high' and 'low') were used to test the hypothesis that the greater amounts of cadmium in shoots of the 'high' isolines are correlated with greater volumes of water transpired. In general, cadmium content was positively correlated with transpiration only in the 'low' isolines. Although shoots of the 'high' isolines of W9260-BC and W9261-BG contained higher concentrations of cadmium than did their corresponding 'low' isolines, they did not transpire larger volumes of water. In addition, isolines of 8982-TL transpired less water than did the other pairs of isolines yet both 'high' and 'low' isolines of 8982-TL contained higher amounts of cadmium than did the other pairs. The difference between 'high' and 'low' isolines appears to be related to the relative contribution of transpiration to cadmium translocation to the shoot. Increased transpiration was associated with increased cadmium content in the 'low' isolines but in the 'high' isolines increased cadmium in the shoot occurred independently of the volume of water transpired.

  7. Salicylic acid changes the properties of extracellular peroxidase activity secreted from wounded wheat (Triticum aestivum L.) roots.

    PubMed

    Minibayeva, F; Mika, A; Lüthje, S

    2003-05-01

    Wheat ( Triticum aestivum L.) roots released proteins showing peroxidase activity in the apoplastic solution in response to wound stress. Preincubation of excised roots with 1 mM salicylic acid at pH 7.0 enhanced the guaiacol peroxidase activity of the extracellular solution (so-called extracellular peroxidase). The soluble enzymes were partially purified by precipitation with ammonium sulfate followed by size exclusion and ion exchange chromatography. Despite an increase in the total activity of secreted peroxidase induced by pretreatment of excised roots with salicylic acid, the specific activity of the partially purified protein was significantly lower compared to that of the control. Purification of the corresponding proteins by ion exchange chromatography indicates that several isoforms of peroxidase occurred in both control and salicylic acid-treated samples. The activities of the extracellular peroxidases secreted by the salicylic acid-treated roots responded differently to calcium and lectins compared with those from untreated roots. Taken together, our data suggest that salicylic acid changes the isoforms of peroxidase secreted by wounded wheat roots.

  8. Mapping a QTL conferring resistance to Fusarium head blight on chromosome 1B in winter wheat (Triticum aestivum L.)

    PubMed Central

    Nishio, Zenta; Onoe, Chihiro; Ito, Miwako; Tabiki, Tadashi; Nagasawa, Koichi; Miura, Hideho

    2016-01-01

    Fusarium head blight (FHB) is one of the most devastating diseases of wheat (Triticum aestivum L.), and the development of cultivars with FHB resistance is the most effective way to control the disease. Yumechikara is a Japanese hard red winter wheat cultivar that shows moderate resistance to FHB with superior bread-making quality. To identify quantitative trait loci (QTLs) for FHB resistance in Yumechikara, we evaluated doubled haploid lines derived from a cross between Yumechikara and a moderate susceptible cultivar, Kitahonami, for FHB resistance in a 5-year field trial, and we analyzed polymorphic molecular markers between the parents. Our analysis of these markers identified two FHB-resistance QTLs, one from Yumechikara and one from Kitahonami. The QTL from Yumechikara, which explained 36.4% of the phenotypic variation, was mapped on the distal region of chromosome 1BS, which is closely linked to the low-molecular-weight glutenin subunit gene Glu-B3 and the glume color gene Rg-B1. The other QTL (from Kitahonami) was mapped on chromosome 3BS, which explained 11.2% of the phenotypic variation. The close linkage between the FHB-resistance QTL on 1BS, Glu-B3 and Rg-B1 brings an additional value of simultaneous screening for both quality and FHB resistance using the glume color. PMID:28163582

  9. Salt-Induced Tissue-Specific Cytosine Methylation Downregulates Expression of HKT Genes in Contrasting Wheat (Triticum aestivum L.) Genotypes.

    PubMed

    Kumar, Suresh; Beena, Ananda Sankara; Awana, Monika; Singh, Archana

    2017-04-01

    Plants have evolved several strategies, including regulation of genes through epigenetic modifications, to cope with environmental stresses. DNA methylation is dynamically regulated through the methylation and demethylation of cytosine in response to environmental perturbations. High-affinity potassium transporters (HKTs) have accounted for the homeostasis of sodium and potassium ions in plants under salt stress. Wheat (Triticum aestivum L.) is sensitive to soil salinity, which impedes its growth and development, resulting in decreased productivity. The differential expression of HKTs has been reported to confer tolerance to salt stress in plants. In this study, we investigated variations in cytosine methylation and their effects on the expression of HKT genes in contrasting wheat genotypes under salt stress. We observed a genotype- and tissue-specific increase in cytosine methylation induced by NaCl stress that downregulated the expression of TaHKT2;1 and TaHKT2;3 in the shoot and root tissues of Kharchia-65, thereby contributing to its improved salt-tolerance ability. Although TaHKT1;4 was expressed only in roots and was downregulated under the stress in salt-tolerant genotypes, it was not regulated through variations in cytosine methylation. Thus, understanding epigenetic regulation and the function of HKTs would enable an improvement in salt tolerance and the development of salt-tolerant crops.

  10. Nitrogen balance for wheat canopies (Triticum aestivum cv. Veery 10) grown under elevated and ambient CO2 concentrations.

    PubMed

    Smart, D R; Ritchie, K; Bloom, A J; Bugbee, B B

    1998-01-01

    We examined the hypothesis that elevated CO2 concentration would increase NO3- absorption and assimilation using intact wheat canopies (Triticum aestivum cv. Veery 10). Nitrate consumption, the sum of plant absorption and nitrogen loss, was continuously monitored for 23 d following germination under two CO2 concentrations (360 and 1000 micromol mol-1 CO2) and two root zone NO3- concentrations (100 and 1000 mmol m3 NO3-). The plants were grown at high density (1780 m-2) in a 28 m3 controlled environment chamber using solution culture techniques. Wheat responded to 1000 micromol mol-1 CO2 by increasing carbon allocation to root biomass production. Elevated CO2 also increased root zone NO3- consumption, but most of this increase did not result in higher biomass nitrogen. Rather, nitrogen loss accounted for the greatest part of the difference in NO3- consumption between the elevated and ambient [CO2] treatments. The total amount of NO3(-)-N absorbed by roots or the amount of NO3(-)-N assimilated per unit area did not significantly differ between elevated and ambient [CO2] treatments. Instead, specific leaf organic nitrogen content declined, and NO3- accumulated in canopies growing under 1000 micromol mol-1 CO2. Our results indicated that 1000 micromol mol-1 CO2 diminished NO3- assimilation. If NO3- assimilation were impaired by high [CO2], then this offers an explanation for why organic nitrogen contents are often observed to decline in elevated [CO2] environments.

  11. Purification of antifreeze protein from wheat bran (Triticum aestivum L.) based on its hydrophilicity and ice-binding capacity.

    PubMed

    Zhang, Chao; Zhang, Hui; Wang, Li; Zhang, Junhui; Yao, Huiyuan

    2007-09-19

    Wheat-bran ( Triticum aestivum L.) antifreeze protein ( TaAFP) was purified 323-fold to electrophoretic homogeneity with an overall yield of 1.64% from wheat-bran protein by a specific three-step procedure. The three-step procedure was quicker, cheaper, and more effective than the five-step procedure we used earlier. First, TaAFP was concentrated by a phosphate buffer, on the basis of its strong hydrophilicity that was validated by thermal gravimetric analyses and a surface hydrophobicity analysis. Second, TaAFP was trapped in ice crystals for its specific ice-binding capacity, which was proved by ice-binding protocols. Remarkably, the ice-binding step was the most effective step, and the purification factor of this step was up to 270-fold. Finally, TaAFP was purified by HPLC purification, a complementary step for the specific ice-binding protocol, to electrophoretic homogeneity. Our protocols provide peers a novel and effective way for the search and purification of potential AFPs.

  12. Differential CO2 effect on primary carbon metabolism of flag leaves in durum wheat (Triticum durum Desf.).

    PubMed

    Aranjuelo, Iker; Erice, Gorka; Sanz-Sáez, Alvaro; Abadie, Cyril; Gilard, Françoise; Gil-Quintana, Erena; Avice, Jean-Christophe; Staudinger, Christiana; Wienkoop, Stefanie; Araus, Jose L; Bourguignon, Jacques; Irigoyen, Juan J; Tcherkez, Guillaume

    2015-12-01

    C sink/source balance and N assimilation have been identified as target processes conditioning crop responsiveness to elevated CO2 . However, little is known about phenology-driven modifications of C and N primary metabolism at elevated CO2 in cereals such as wheat. Here, we examined the differential effect of elevated CO2 at two development stages (onset of flowering, onset of grain filling) in durum wheat (Triticum durum, var. Sula) using physiological measurements (photosynthesis, isotopes), metabolomics, proteomics and (15) N labelling. Our results show that growth at elevated CO2 was accompanied by photosynthetic acclimation through a lower internal (mesophyll) conductance but no significant effect on Rubisco content, maximal carboxylation or electron transfer. Growth at elevated CO2 altered photosynthate export and tended to accelerate leaf N remobilization, which was visible for several proteins and amino acids, as well as lysine degradation metabolism. However, grain biomass produced at elevated CO2 was larger and less N rich, suggesting that nitrogen use efficiency rather than photosynthesis is an important target for improvement, even in good CO2 -responsive cultivars.

  13. Antagonist effects of Bacillus spp. strains against Fusarium graminearum for protection of durum wheat (Triticum turgidum L. subsp. durum).

    PubMed

    Zalila-Kolsi, Imen; Ben Mahmoud, Afif; Ali, Hacina; Sellami, Sameh; Nasfi, Zina; Tounsi, Slim; Jamoussi, Kaïs

    2016-11-01

    Bacillus species are attractive due to their potential use in the biological control of fungal diseases. Bacillus amyloliquefaciens strain BLB369, Bacillus subtilis strain BLB277, and Paenibacillus polymyxa strain BLB267 were isolated and identified using biochemical and molecular (16S rDNA, gyrA, and rpoB) approaches. They could produce, respectively, (iturin and surfactin), (surfactin and fengycin), and (fusaricidin and polymyxin) exhibiting broad spectrum against several phytopathogenic fungi. In vivo examination of wheat seed germination, plant height, phenolic compounds, chlorophyll, and carotenoid contents proved the efficiency of the bacterial cells and the secreted antagonist activities to protect Tunisian durum wheat (Triticum turgidum L. subsp. durum) cultivar Om Rabiia against F. graminearum fungus. Application of single bacterial culture medium, particularly that of B. amyloliquefaciens, showed better protection than combinations of various culture media. The tertiary combination of B. amyloliquefaciens, B. subtilis, and P. polymyxa bacterial cells led to the highest protection rate which could be due to strains synergistic or complementary effects. Hence, combination of compatible biocontrol agents could be a strategic approach to control plant diseases.

  14. Can Triticum urartu (Poaceae) be identified by pollen analysis? Implications for detecting the ancestor of the extinct two-grained einkorn-like wheat.

    PubMed

    López-Merino, Lourdes; Leroy, Suzanne A G; Haldorsen, Sylvi; Heun, Manfred; Reynolds, Alan

    2015-02-01

    The domestication of the one-grained einkorn (Triticum monococcum) in the Near East is relatively well known. However, an independent two-grained einkorn-like domestication has been archaeobotanically detected and scarce information is available. Triticum urartu, a wild wheat, was not fully described until the 1970s because the phenology does not allow it to be distinguished easily from wild einkorn (Triticum boeoticum subsp. thaoudar), although a genetic separation exists. Both species are mostly two grained and could potentially be the relatives of the extinct two-grained form. Pollen grains of several genetically well-identified wheat species, including T. urartu and T. boeoticum subsp. thaoudar, were studied by measuring the grain diameter and examining the exine sculpturing with phase-contrast microscopy and scanning electron microscopy to gain an insight into differences enabling taxonomic identification. This work showed that, although T. urartu pollen is smaller on average, grain diameter is not sufficient because of the size overlap between the species, but T. urartu presents a different exine sculpturing (scabrate) from other Triticum spp. (aerolate). This outcome is useful for taxonomists and archaeobotanists. First, it will allow a simple re-classification of herbarium materials. Second, further research could establish whether T. urartu was cultivated.

  15. Can Triticum urartu (Poaceae) be identified by pollen analysis? Implications for detecting the ancestor of the extinct two-grained einkorn-like wheat

    PubMed Central

    López-Merino, Lourdes; Leroy, Suzanne A G; Haldorsen, Sylvi; Heun, Manfred; Reynolds, Alan

    2015-01-01

    The domestication of the one-grained einkorn (Triticum monococcum) in the Near East is relatively well known. However, an independent two-grained einkorn-like domestication has been archaeobotanically detected and scarce information is available. Triticum urartu, a wild wheat, was not fully described until the 1970s because the phenology does not allow it to be distinguished easily from wild einkorn (Triticum boeoticum subsp. thaoudar), although a genetic separation exists. Both species are mostly two grained and could potentially be the relatives of the extinct two-grained form. Pollen grains of several genetically well-identified wheat species, including T. urartu and T. boeoticum subsp. thaoudar, were studied by measuring the grain diameter and examining the exine sculpturing with phase-contrast microscopy and scanning electron microscopy to gain an insight into differences enabling taxonomic identification. This work showed that, although T. urartu pollen is smaller on average, grain diameter is not sufficient because of the size overlap between the species, but T. urartu presents a different exine sculpturing (scabrate) from other Triticum spp. (aerolate). This outcome is useful for taxonomists and archaeobotanists. First, it will allow a simple re-classification of herbarium materials. Second, further research could establish whether T. urartu was cultivated. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 177, 278–289. PMID:25821246

  16. Ecological toxicity of reactive X-3B red dye and cadmium acting on wheat (Triticum aestivum).

    PubMed

    Cheng, Yun; Zhou, Qi-xing

    2002-01-01

    Ecological toxicity of reactive X-3B red dye and cadmium in both their single form and their combined form on wheat was studied using the experimental method of seed and root exposure. The single-factor exposure indicated that the inhibitory rate of wheat root elongation was significantly increased with the increase in the concentration of the dye in the cultural solution, although seed germination of wheat was not sensitive to the dye. The toxicity of cadmium was greatly higher than that of the dye, but low concentration cadmium (< 40 mg/L) could promote the germination of wheat seed. Interactive effects of the dye and cadmium on wheat were complicated. There was no significant correlation between the inhibitory rate of seed germination and the concentrations of the dye and cadmium. Low concentration cadmium could strengthen the toxicity of the dye acting on root elongation. On the contrary, high concentration cadmium could weaken the toxicity of the dye acting on root elongation.

  17. In Vitro Transcripts of Wild-Type and Fluorescent Protein-Tagged Triticum mosaic virus (Family Potyviridae) are Biologically Active in Wheat.

    PubMed

    Tatineni, Satyanarayana; McMechan, Anthony J; Bartels, Melissa; Hein, Gary L; Graybosch, Robert A

    2015-11-01

    Triticum mosaic virus (TriMV) (genus Poacevirus, family Potyviridae) is a recently described eriophyid mite-transmitted wheat virus. In vitro RNA transcripts generated from full-length cDNA clones of TriMV proved infectious on wheat. Wheat seedlings inoculated with in vitro transcripts elicited mosaic and mottling symptoms similar to the wild-type virus, and the progeny virus was efficiently transmitted by wheat curl mites, indicating that the cloned virus retained pathogenicity, movement, and wheat curl mite transmission characteristics. A series of TriMV-based expression vectors was constructed by engineering a green fluorescent protein (GFP) or red fluorescent protein (RFP) open reading frame with homologous NIa-Pro cleavage peptides between the P1 and HC-Pro cistrons. We found that GFP-tagged TriMV with seven or nine amino acid cleavage peptides efficiently processed GFP from HC-Pro. TriMV-GFP vectors were stable in wheat for more than 120 days and for six serial passages at 14-day intervals by mechanical inoculation and were transmitted by wheat curl mites similarly to the wild-type virus. Fluorescent protein-tagged TriMV was observed in wheat leaves, stems, and crowns. The availability of fluorescent protein-tagged TriMV will facilitate the examination of virus movement and distribution in cereal hosts and the mechanisms of cross protection and synergistic interactions between TriMV and Wheat streak mosaic virus.

  18. Shifts of microbial communities of wheat (Triticum aestivum L.) cultivation in a closed artificial ecosystem.

    PubMed

    Qin, Youcai; Fu, Yuming; Dong, Chen; Jia, Nannan; Liu, Hong

    2016-05-01

    The microbial communities of plant ecosystems are in relation to plant growing environment, but the alteration in biodiversity of rhizosphere and phyllosphere microbial communities in closed and controlled environments is unknown. The purpose of this study is to analyze the change regularity of microbial communities with wheat plants dependent-cultivated in a closed artificial ecosystem. The microbial community structures in closed-environment treatment plants were investigated by a culture-dependent approach, polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE), and Illumina Miseq high-throughput sequencing. The results indicated that the number of microbes decreased along with time, and the magnitude of bacteria, fungi, and actinomycetes were 10(7)-10(8), 10(5), and 10(3)-10(4) CFU/g (dry weight), respectively. The analysis of PCR-DGGE and Illumina Miseq revealed that the wheat leaf surface and near-root substrate had different microbial communities at different periods of wheat ecosystem development and showed that the relative highest diversity of microbial communities appeared at late and middle periods of the plant ecosystem, respectively. The results also indicated that the wheat leaf and substrate had different microbial community compositions, and the wheat substrate had higher richness of microbial community than the leaf. Flavobacterium, Pseudomonas, Paenibacillus, Enterobacter, Penicillium, Rhodotorula, Acremonium, and Alternaria were dominant in the wheat leaf samples, and Pedobacter, Flavobacterium, Halomonas, Marinobacter, Salinimicrobium, Lysobacter, Pseudomonas, Halobacillus, Xanthomonas, Acremonium, Monographella, and Penicillium were dominant populations in the wheat near-root substrate samples.

  19. Durum wheat (Triticum Durum Desf.) lines show different abilities to form masked mycotoxins under greenhouse conditions.

    PubMed

    Cirlini, Martina; Generotti, Silvia; Dall'Erta, Andrea; Lancioni, Pietro; Ferrazzano, Gianluca; Massi, Andrea; Galaverna, Gianni; Dall'Asta, Chiara

    2013-12-24

    Deoxynivalenol (DON) is the most prevalent trichothecene in Europe and its occurrence is associated with infections of Fusarium graminearum and F. culmorum, causal agents of Fusarium head blight (FHB) on wheat. Resistance to FHB is a complex character and high variability occurs in the relationship between DON content and FHB incidence. DON conjugation to glucose (DON-3-glucoside, D3G) is the primary plant mechanism for resistance towards DON accumulation. Although this mechanism has been already described in bread wheat and barley, no data are reported so far about durum wheat, a key cereal in the pasta production chain. To address this issue, the ability of durum wheat to detoxify and convert deoxynivalenol into D3G was studied under greenhouse controlled conditions. Four durum wheat varieties (Svevo, Claudio, Kofa and Neodur) were assessed for DON-D3G conversion; Sumai 3, a bread wheat variety carrying a major QTL for FHB resistance (QFhs.ndsu-3B), was used as a positive control. Data reported hereby clearly demonstrate the ability of durum wheat to convert deoxynivalenol into its conjugated form, D3G.

  20. Durum Wheat (Triticum Durum Desf.) Lines Show Different Abilities to Form Masked Mycotoxins under Greenhouse Conditions

    PubMed Central

    Cirlini, Martina; Generotti, Silvia; Dall’Erta, Andrea; Lancioni, Pietro; Ferrazzano, Gianluca; Massi, Andrea; Galaverna, Gianni; Dall’Asta, Chiara

    2013-01-01

    Deoxynivalenol (DON) is the most prevalent trichothecene in Europe and its occurrence is associated with infections of Fusarium graminearum and F. culmorum, causal agents of Fusarium head blight (FHB) on wheat. Resistance to FHB is a complex character and high variability occurs in the relationship between DON content and FHB incidence. DON conjugation to glucose (DON-3-glucoside, D3G) is the primary plant mechanism for resistance towards DON accumulation. Although this mechanism has been already described in bread wheat and barley, no data are reported so far about durum wheat, a key cereal in the pasta production chain. To address this issue, the ability of durum wheat to detoxify and convert deoxynivalenol into D3G was studied under greenhouse controlled conditions. Four durum wheat varieties (Svevo, Claudio, Kofa and Neodur) were assessed for DON-D3G conversion; Sumai 3, a bread wheat variety carrying a major QTL for FHB resistance (QFhs.ndsu-3B), was used as a positive control. Data reported hereby clearly demonstrate the ability of durum wheat to convert deoxynivalenol into its conjugated form, D3G. PMID:24368326

  1. Identification of Kernel Proteins Associated with the Resistance to Fusarium Head Blight in Winter Wheat (Triticum aestivum L.)

    PubMed Central

    Góral, Tomasz; Kwiatek, Michał; Majka, Maciej; Kosmala, Arkadiusz

    2014-01-01

    Numerous potential components involved in the resistance to Fusarium head blight (FHB) in cereals have been indicated, however, our knowledge regarding this process is still limited and further work is required. Two winter wheat (Triticum aestivum L.) lines differing in their levels of resistance to FHB were analyzed to identify the most crucial proteins associated with resistance in this species. The presented work involved analysis of protein abundance in the kernel bulks of more resistant and more susceptible wheat lines using two-dimensional gel electrophoresis and mass spectrometry identification of proteins, which were differentially accumulated between the analyzed lines, after inoculation with F. culmorum under field conditions. All the obtained two-dimensional patterns were demonstrated to be well-resolved protein maps of kernel proteomes. Although, 11 proteins were shown to have significantly different abundance between these two groups of plants, only two are likely to be crucial and have a potential role in resistance to FHB. Monomeric alpha-amylase and dimeric alpha-amylase inhibitors, both highly accumulated in the more resistant line, after inoculation and in the control conditions. Fusarium pathogens can use hydrolytic enzymes, including amylases to colonize kernels and acquire nitrogen and carbon from the endosperm and we suggest that the inhibition of pathogen amylase activity could be one of the most crucial mechanisms to prevent infection progress in the analyzed wheat line with a higher resistance. Alpha-amylase activity assays confirmed this suggestion as it revealed the highest level of enzyme activity, after F. culmorum infection, in the line more susceptible to FHB. PMID:25340555

  2. TLXI, a novel type of xylanase inhibitor from wheat (Triticum aestivum) belonging to the thaumatin family

    PubMed Central

    Fierens, Ellen; Rombouts, Sigrid; Gebruers, Kurt; Goesaert, Hans; Brijs, Kristof; Beaugrand, Johnny; Volckaert, Guido; Van Campenhout, Steven; Proost, Paul; Courtin, Christophe M.; Delcour, Jan A.

    2007-01-01

    Wheat (Triticum aestivum) contains a previously unknown type of xylanase (EC 3.2.1.8) inhibitor, which is described in the present paper for the first time. Based on its >60% similarity to TLPs (thaumatin-like proteins) and the fact that it contains the Prosite PS00316 thaumatin family signature, it is referred to as TLXI (thaumatin-like xylanase inhibitor). TLXI is a basic (pI≥9.3 in isoelectric focusing) protein with a molecular mass of approx. 18–kDa (determined by SDS/PAGE) and it occurs in wheat with varying extents of glycosylation. The TLXI gene sequence encodes a 26-amino-acid signal sequence followed by a 151-amino-acid mature protein with a calculated molecular mass of 15.6–kDa and pI of 8.38. The mature TLXI protein was expressed successfully in Pichia pastoris, resulting in a 21–kDa (determined by SDS/PAGE) recombinant protein (rTLXI). Polyclonal antibodies raised against TLXI purified from wheat react with epitopes of rTLXI as well as with those of thaumatin, demonstrating high structural similarity between these three proteins. TLXI has a unique inhibition specificity. It is a non-competitive inhibitor of a number of glycoside hydrolase family 11 xylanases, but it is inactive towards glycoside hydrolase family 10 xylanases. Progress curves show that TLXI is a slow tight-binding inhibitor, with a Ki of approx. 60–nM. Except for zeamatin, an α-amylase/trypsin inhibitor from maize (Zea mays), no other enzyme inhibitor is currently known among the TLPs. TLXI thus represents a novel type of inhibitor within this group of proteins. PMID:17269932

  3. Enhanced root and shoot growth of wheat (Triticum aestivum L.) by Trichoderma harzianum from Turkey.

    PubMed

    Kucuk, Cigdem

    2014-01-01

    It is well known that Trichoderma species can be used as biocontrol and plant growth promote agent. In this study, Trichoderma harzianum isolates were evaluated for their growth promotion effects on wheat in greenhouse experiments. Two isolates of T. harzianum were used. The experimental design was a randomized complete block with three replications. Seeds were inoculated with conidial suspensions of each isolate. Wheat plants grown in steriled soil in pots. T. harzianum T8 and T15 isolates increased wheat length, root dry weight and shoot dry weight according to untreated control. Turkish isolates T8 and T15 did not produce damage in seeds nor in plants.

  4. Identification and characterization of the three homeologues of a new sucrose transporter in hexaploid wheat (Triticum aestivum L.)

    PubMed Central

    2013-01-01

    Background Sucrose transporters (SUTs) play important roles in regulating the translocation of assimilates from source to sink tissues. Identification and characterization of new SUTs in economically important crops such as wheat provide insights into their role in determining seed yield. To date, however, only one SUT of wheat has been reported and functionally characterized. The present study reports the isolation and characterization of a new SUT, designated as TaSUT2, and its homeologues (TaSUT2A, TaSUT2B and TaSUT2D) in hexaploid wheat (Triticum aestivum L.). Results TaSUT2A and TaSUT2B genes each encode a protein with 506 amino acids, whereas TaSUT2D encodes a protein of 508 amino acids. The molecular mass of these proteins is predicted to be ~ 54 kDA. Topological analysis of the amino acid sequences of the three homeologues revealed that they contain 12 transmembrane spanning helices, which are described as distinct characteristic features of glycoside-pentoside-hexuronide cation symporter family that includes all known plant SUTs, and a histidine residue that appears to be localized at and associated conformationally with the sucrose binding site. Yeast SUSY7/ura3 strain cells transformed with TaSUT2A, TaSUT2B and TaSUT2D were able to uptake sucrose and grow on a medium containing sucrose as a sole source of carbon; however, our subcellular localization study with plant cells revealed that TaSUT2 is localized to the tonoplast. The expression of TaSUT2 was detected in the source, including flag leaf blade, flag leaf sheath, peduncle, glumes, palea and lemma, and sink (seed) tissues. The relative contributions of the three genomes of wheat to the total expression of TaSUT2 appear to differ with tissues and developmental stages. At the cellular level, TaSUT2 is expressed mainly in the vein of developing seeds and subepidermal mesophyll cells of the leaf blade. Conclusion This study demonstrated that TaSUT2 is a new wheat SUT protein. Given that TaSUT2 is

  5. Isolation and characterization of rubisco small subunit gene promoter from common wheat (Triticum aestivum L.).

    PubMed

    Mukherjee, Shalini; Stasolla, Claudio; Brûlé-Babel, Anita; Ayele, Belay T

    2015-01-01

    Choice of an appropriate promoter is critical to express target genes in intended tissues and developmental stages. However, promoters capable of directing gene expression in specific tissues and stages are not well characterized in monocot species. To identify such a promoter in wheat, this study isolated a partial sequence of the wheat small subunit of RuBisCO (TarbcS) promoter. In silico analysis revealed the presence of elements that are characteristic to rbcS promoters of other, mainly dicot, species. Transient expression of the TarbcS:GUS in immature wheat embryos and tobacco leaves but not in the wheat roots indicate the functionality of the TarbcS promoter fragment in directing the expression of target genes in green plant tissues.

  6. Lignin biosynthesis in wheat (Triticum aestivum L.): its response to waterlogging and association with hormonal levels.

    PubMed

    Nguyen, Tran-Nguyen; Son, SeungHyun; Jordan, Mark C; Levin, David B; Ayele, Belay T

    2016-01-25

    Lignin is an important structural component of plant cell wall that confers mechanical strength and tolerance against biotic and abiotic stressors; however it affects the use of biomass such as wheat straw for some industrial applications such as biofuel production. Genetic alteration of lignin quantity and quality has been considered as a viable option to overcome this problem. However, the molecular mechanisms underlying lignin formation in wheat biomass has not been studied. Combining molecular and biochemical approaches, the present study investigated the transcriptional regulation of lignin biosynthesis in two wheat cultivars with varying lodging characteristics and also in response to waterlogging. It also examined the association of lignin level in tissues with that of plant hormones implicated in the control of lignin biosynthesis. Analysis of lignin biosynthesis in the two wheat cultivars revealed a close association of lodging resistance with internode lignin content and expression of 4-coumarate:CoA ligase1 (4CL1), p-coumarate 3-hydroxylase1 (C3H1), cinnamoyl-CoA reductase2 (CCR2), ferulate 5-hydroxylase2 (F5H2) and caffeic acid O-methyltransferase2 (COMT2), which are among the genes highly expressed in wheat tissues, implying the importance of these genes in mediating lignin deposition in wheat stem. Waterlogging of wheat plants reduced internode lignin content, and this effect is accompanied by transcriptional repression of three of the genes characterized as highly expressed in wheat internode including phenylalanine ammonia-lyase6 (PAL6), CCR2 and F5H2, and decreased activity of PAL. Expression of the other genes was, however, induced by waterlogging, suggesting their role in the synthesis of other phenylpropanoid-derived molecules with roles in stress responses. Moreover, difference in internode lignin content between cultivars or change in its level due to waterlogging is associated with the level of cytokinin. Lodging resistance, tolerance against

  7. Molecular analyses of a repetitive DNA sequence in wheat (Triticum aestivum L.).

    PubMed

    Ueng, P P; Hang, A; Tsang, H; Vega, J M; Wang, L; Burton, C S; He, F T; Liu, B

    2000-06-01

    A repetitive sequence designated WE35 was isolated from wheat genomic DNA. This sequence consists of a 320-bp repeat unit and represents approximately 0.002% of the total wheat DNA. It is unidirectionally distributed either continuously or discretely in the genome. Ladder-like banding patterns were observed in Southern blots when the wheat genomic DNA was restricted with endonuclease enzymes EcoRI, HincII, NciI, and NdeI, which is characteristic for tandemly organized sequences. Two DNA fragments in p451 were frequently associated with the WE35 repetitive unit in a majority of lambda wheat genomic clones. A 475-bp fragment homologous to the 5'-end long terminal repeat (LTR) of cereal retroelements was also found in some lambda wheat genomic clones containing the repetitive unit. Physical mapping by fluorescence in situ hybridization (FISH) indicated that one pair of wheat chromosomes could be specifically detected with the WE35 positive probe p551. WE35 can be considered a chromosome-specific repetitive sequence. This repetitive unit could be used as a molecular marker for genetic, phylogenetic, and evolutionary studies in the tribe Triticeae.

  8. Expression partitioning of homeologs and tandem duplications contribute to salt tolerance in wheat (Triticum aestivum L.).

    PubMed

    Zhang, Yumei; Liu, Zhenshan; Khan, Abul Awlad; Lin, Qi; Han, Yao; Mu, Ping; Liu, Yiguo; Zhang, Hongsheng; Li, Lingyan; Meng, Xianghao; Ni, Zhongfu; Xin, Mingming

    2016-02-19

    Salt stress dramatically reduces crop yield and quality, but the molecular mechanisms underlying salt tolerance remain largely unknown. To explore the wheat transcriptional response to salt stress, we performed high-throughput transcriptome sequencing of 10-day old wheat roots under normal condition and 6, 12, 24 and 48 h after salt stress (HASS) in both a salt-tolerant cultivar and salt-sensitive cultivar. The results demonstrated global gene expression reprogramming with 36,804 genes that were up- or down-regulated in wheat roots under at least one stress condition compared with the controls and revealed the specificity and complexity of the functional pathways between the two cultivars. Further analysis showed that substantial expression partitioning of homeologous wheat genes occurs when the plants are subjected to salt stress, accounting for approximately 63.9% (2,537) and 66.1% (2,624) of the homeologous genes in 'Chinese Spring' (CS) and 'Qing Mai 6' (QM). Interestingly, 143 salt-responsive genes have been duplicated and tandemly arrayed on chromosomes during wheat evolution and polyploidization events, and the expression patterns of 122 (122/143, 85.3%) tandem duplications diverged dynamically over the time-course of salinity exposure. In addition, constitutive expression or silencing of target genes in Arabidopsis and wheat further confirmed our high-confidence salt stress-responsive candidates.

  9. Tandemly Duplicated Safener-Induced Glutathione S-Transferase Genes from Triticum tauschii Contribute to Genome- and Organ-Specific Expression in Hexaploid Wheat1

    PubMed Central

    Xu, Fangxiu; Lagudah, Evans S.; Moose, Stephen P.; Riechers, Dean E.

    2002-01-01

    Glutathione S-transferase (GST) gene expression was examined in several Triticum species, differing in genome constitution and ploidy level, to determine genome contribution to GST expression in cultivated, hexaploid bread wheat (Triticum aestivum). Two tandemly duplicated tau class GST genes (TtGSTU1 and TtGSTU2) were isolated from a single bacterial artificial chromosome clone in a library constructed from the diploid wheat and D genome progenitor to cultivated wheat, Triticum tauschii. The genes are very similar in genomic structure and their encoded proteins are 95% identical. Gene-specific reverse transcriptase-polymerase chain reaction analysis revealed differential transcript accumulation of TtGSTU1 and TtGSTU2 in roots and shoots. Expression of both genes was induced by herbicide safeners, 2,4-dichlorophenoxyacetic acid and abscisic acid, in the shoots of T. tauschii; however, expression of TtGSTU1 was always higher than TtGSTU2. In untreated seedlings, TtGSTU1 was expressed in both shoots and roots, whereas TtGSTU2 expression was only detected in roots. RNA gel-blot analysis of ditelosomic, aneuploid lines that are deficient for 6AS, 6BS, or 6DS chromosome arms of cultivated, hexaploid bread wheat showed differential genome contribution to safener-induced GST expression in shoots compared with roots. The GST genes from the D genome of hexaploid wheat contribute most to safener-induced expression in the shoots, whereas GSTs from the B and D genomes contribute to safener-induced expression in the roots. PMID:12226515

  10. Tandemly duplicated Safener-induced glutathione S-transferase genes from Triticum tauschii contribute to genome- and organ-specific expression in hexaploid wheat.

    PubMed

    Xu, Fangxiu; Lagudah, Evans S; Moose, Stephen P; Riechers, Dean E

    2002-09-01

    Glutathione S-transferase (GST) gene expression was examined in several Triticum species, differing in genome constitution and ploidy level, to determine genome contribution to GST expression in cultivated, hexaploid bread wheat (Triticum aestivum). Two tandemly duplicated tau class GST genes (TtGSTU1 and TtGSTU2) were isolated from a single bacterial artificial chromosome clone in a library constructed from the diploid wheat and D genome progenitor to cultivated wheat, Triticum tauschii. The genes are very similar in genomic structure and their encoded proteins are 95% identical. Gene-specific reverse transcriptase-polymerase chain reaction analysis revealed differential transcript accumulation of TtGSTU1 and TtGSTU2 in roots and shoots. Expression of both genes was induced by herbicide safeners, 2,4-dichlorophenoxyacetic acid and abscisic acid, in the shoots of T. tauschii; however, expression of TtGSTU1 was always higher than TtGSTU2. In untreated seedlings, TtGSTU1 was expressed in both shoots and roots, whereas TtGSTU2 expression was only detected in roots. RNA gel-blot analysis of ditelosomic, aneuploid lines that are deficient for 6AS, 6BS, or 6DS chromosome arms of cultivated, hexaploid bread wheat showed differential genome contribution to safener-induced GST expression in shoots compared with roots. The GST genes from the D genome of hexaploid wheat contribute most to safener-induced expression in the shoots, whereas GSTs from the B and D genomes contribute to safener-induced expression in the roots.

  11. Barley Stripe Mosaic Virus (BSMV) Induced MicroRNA Silencing in Common Wheat (Triticum aestivum L.)

    PubMed Central

    Jiao, Jian; Wang, Yichun; Selvaraj, Jonathan Nimal; Xing, Fuguo; Liu, Yang

    2015-01-01

    MicroRNAs (miRNAs) play important roles in growth, development, and response to environmental changes in plants. Based on the whole-genome shotgun sequencing strategy, more and more wheat miRNAs have been annotated. Now, there is a need for an effective technology to analyse endogenous miRNAs function in wheat. We report here that the modified barley stripe mosaic virus (BSMV)-induced miRNAs silencing system can be utilized to silence miRNAs in wheat. BSMV-based miRNA silencing system is performed through BSMV-based expression of miRNA target mimics to suppress miR159a and miR3134a. The relative expression levels of mature miR159a and miR3134a decrease with increasing transcript levels of their target genes in wheat plants. In summary, the developed approach is effective in silencing endogenous miRNAs, thereby providing a powerful tool for biological function analyses of miRNA molecules in common wheat. PMID:25955840

  12. De Novo Sequencing and Characterization of the Transcriptome of Dwarf Polish Wheat (Triticum polonicum L.).

    PubMed

    Wang, Yi; Wang, Chao; Wang, Xiaolu; Peng, Fan; Wang, Ruijiao; Jiang, Yulin; Zeng, Jian; Fan, Xing; Kang, Houyang; Sha, Lina; Zhang, Haiqin; Xiao, Xue; Zhou, Yonghong

    2016-01-01

    Construction as well as characterization of a polish wheat transcriptome is a crucial step to study useful traits of polish wheat. In this study, a transcriptome, including 76,014 unigenes, was assembled from dwarf polish wheat (DPW) roots, stems, and leaves using the software of Trinity. Among these unigenes, 61,748 (81.23%) unigenes were functionally annotated in public databases and classified into differentially functional types. Aligning this transcriptome against draft wheat genome released by the International Wheat Genome Sequencing Consortium (IWGSC), 57,331 (75.42%) unigenes, including 26,122 AB-specific and 2,622 D-specific unigenes, were mapped on A, B, and/or D genomes. Compared with the transcriptome of T. turgidum, 56,343 unigenes were matched with 103,327 unigenes of T. turgidum. Compared with the genomes of rice and barley, 14,404 and 7,007 unigenes were matched with 14,608 genes of barley and 7,708 genes of rice, respectively. On the other hand, 2,148, 1,611, and 2,707 unigenes were expressed specifically in roots, stems, and leaves, respectively. Finally, 5,531 SSR sequences were observed from 4,531 unigenes, and 518 primer pairs were designed.

  13. Phytotoxicity and uptake of roxarsone by wheat (Triticum aestivum L.) seedlings.

    PubMed

    Fu, Qing-Long; Blaney, Lee; Zhou, Dong-Mei

    2016-12-01

    Roxarsone (ROX), the primary aromatic arsenical additive (AAA) used in animal feeding operations, is of increasing concern to environmental and human health due to land application of ROX-laden animal manure. Few studies have investigated the phytotoxicity, uptake mechanisms, and speciation of AAA in crop plants. In this study, wheat seedlings were employed to address these issues under hydroponic conditions. Compared to inorganic arsenic, ROX was less toxic to wheat root elongation. Wheat roots were more sensitive to ROX stress than shoots. For the first time, metabolized inorganic arsenic was detected in plants, although ROX was the predominant detected arsenic species in wheat seedlings. ROX uptake and toxicity to roots were inhibited by humic acid at concentrations higher than 50 mg/L due to interaction with ROX. Phosphate enhanced ROX uptake, but no trends were observed for ROX uptake in the presence of glycerol at concentrations lower than 250 mM. In addition, ROX uptake was significantly decreased by silicate (Si(IV), 0.5-10 mM) and the metabolic inhibitor, 2,4-dinitrophenol (0.5-2 mM), indicating that ROX transport into wheat roots was actively mediated by Si(IV)-sensitive transporters. These findings provide important insights into the fate and speciation of AAA in soil-water-plant systems relevant to human health.

  14. Dynamic metabolome profiling reveals significant metabolic changes during grain development of bread wheat (Triticum aestivum L.).

    PubMed

    Zhen, Shoumin; Dong, Kun; Deng, Xiong; Zhou, Jiaxing; Xu, Xuexin; Han, Caixia; Zhang, Wenying; Xu, Yanhao; Wang, Zhimin; Yan, Yueming

    2016-08-01

    Metabolites in wheat grains greatly influence nutritional values. Wheat provides proteins, minerals, B-group vitamins and dietary fiber to humans. These metabolites are important to human health. However, the metabolome of the grain during the development of bread wheat has not been studied so far. In this work the first dynamic metabolome of the developing grain of the elite Chinese bread wheat cultivar Zhongmai 175 was analyzed, using non-targeted gas chromatography/mass spectrometry (GC/MS) for metabolite profiling. In total, 74 metabolites were identified over the grain developmental stages. Metabolite-metabolite correlation analysis revealed that the metabolism of amino acids, carbohydrates, organic acids, amines and lipids was interrelated. An integrated metabolic map revealed a distinct regulatory profile. The results provide information that can be used by metabolic engineers and molecular breeders to improve wheat grain quality. The present metabolome approach identified dynamic changes in metabolite levels, and correlations among such levels, in developing seeds. The comprehensive metabolic map may be useful when breeding programs seek to improve grain quality. The work highlights the utility of GC/MS-based metabolomics, in conjunction with univariate and multivariate data analysis, when it is sought to understand metabolic changes in developing seeds. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  15. Proteomic analysis of middle and late stages of bread wheat (Triticum aestivum L.) grain development

    PubMed Central

    Zhang, Ning; Chen, Feng; Huo, Wang; Cui, Dangqun

    2015-01-01

    Proteomic approaches were applied in four grain developmental stages of the Chinese bread wheat Yunong 201 and its ethyl methanesulfonate (EMS) mutant line Yunong 3114. 2-DE and tandem MALDI-TOF/TOF-MS analyzed proteome characteristics during middle and late grain development of the Chinese bread wheat Yunong 201 and its EMS mutant line Yunong 3114 with larger grain sizes. We identified 130 differentially accumulated protein spots representing 88 unique proteins, and four main expression patterns displayed a dynamic description of middle and late grain formation. Those identified protein species participated in eight biochemical processes: stress/defense, carbohydrate metabolism, protein synthesis/assembly/degradation, storage proteins, energy production and transportation, photosynthesis, transcription/translation, signal transduction. Comparative proteomic characterization demonstrated 12 protein spots that co-accumulated in the two wheat cultivars with different expression patterns, and six cultivar-specific protein spots including serpin, small heat shock protein, β-amylase, α-amylase inhibitor, dimeric α-amylase inhibitor precursor, and cold regulated protein. These cultivar-specific protein spots possibly resulted in differential yield-related traits of the two wheat cultivars. Our results provide valuable information for dissection of molecular and genetics basis of yield-related traits in bread wheat and the proteomic characterization in this study could also provide insights in the biology of middle and late grain development. PMID:26442048

  16. Heading Date QTL in Winter Wheat (Triticum aestivum L.) Coincide with Major Developmental Genes VERNALIZATION1 and PHOTOPERIOD1.

    PubMed

    Guedira, Mohammed; Xiong, Mai; Hao, Yuan Feng; Johnson, Jerry; Harrison, Steve; Marshall, David; Brown-Guedira, Gina

    2016-01-01

    In wheat (Triticum aestivum L.), time from planting to spike emergence is influenced by genes controlling vernalization requirement and photoperiod response. Characterizing the available genetic diversity of known and novel alleles of VERNALIZATION1 (VRN1) and PHOTOPERIOD1 (PPD1) in winter wheat can inform approaches for breeding climate resilient cultivars. This study identified QTL for heading date (HD) associated with multiple VRN1 and PPD1 loci in a population developed from a cross between two early flowering winter wheat cultivars. When the population was grown in the greenhouse after partial vernalization treatment, major heading date QTLs co-located with the VRN-A1 and VRN-B1 loci. Copy number variation at the VRN-A1 locus influenced HD such that RIL having three copies required longer cold exposure to transition to flowering than RIL having two VRN-A1 copies. Sequencing vrn-B1 winter alleles of the parents revealed multiple polymorphisms in the first intron that were the basis of mapping a major HD QTL coinciding with VRN-B1. A 36 bp deletion in the first intron of VRN-B1 was associated with earlier HD after partial vernalization in lines having either two or three haploid copies of VRN-A1. The VRN1 loci interacted significantly and influenced time to heading in field experiments in Louisiana, Georgia and North Carolina. The PPD1 loci were significant determinants of heading date in the fully vernalized treatment in the greenhouse and in all field environments. Heading date QTL were associated with alleles having large deletions in the upstream regions of PPD-A1 and PPD-D1 and with copy number variants at the PPD-B1 locus. The PPD-D1 locus was determined to have the largest genetic effect, followed by PPD-A1 and PPD-B1. Our results demonstrate that VRN1 and PPD1 alleles of varying strength allow fine tuning of flowering time in diverse winter wheat growing environments.

  17. Improving water use efficiency of wheat (triticum aestivum l. Giza 168) crop using 15N tracer technique under Egyptian environment

    NASA Astrophysics Data System (ADS)

    Refaie Emara, Eman Ibrahim; Hamed, Lamy Mamdoh Mohamed; Bocchi, Stefano; Galal, Yehia

    2015-04-01

    The Mediterranean environment is characterized by low and erratic rainfall amount which varies between (200-600 mm.year-1), and characterized also by high temperature which increase the rate of evapotranspiration from the cultivated soil. Under these conditions which have a great influence on crop production, there is a great needing to increase the crop water use efficiency. In this context, two field experiments were carried out in northern Cairo-Egypt, during November and December 2012 and April 2013, with two different textured soils. The soil in the first location (30° 16' N latitude, 30° 56' E longitude) is clay soil, while in the second one (30° 24' N latitude, 31° 35' E longitude) is sandy soil. The interaction effect of soil types, soil water regimes, nitrogen fertilizer application rates and timing on nitrogen balance of soil were studied, in terms of nitrogen gained by plant portions, remained in soil and losses through different ways for the wheat crop (Triticum aestivum L. Giza 168). The aim of this research is to increase the water use efficiency of wheat crop, in addition to identify the most proper and effective combinations of above-studied variables that provide a satisfactory grain wheat yield and finally to minimize the use of chemical nitrogen fertilizers. Three water regimes (100%, 75% and 50% of crop water requirements) using drip irrigation system and the application methods of Nitrogen rates, 100%, 80% and 60% of recommended rates, which are 178 Kg of Nitrogen for the clay soil and 238 Kg of Nitrogen for sandy soil, were applied to the two experimental fields. Ineed, two modes of agricultural management, mode A and B, were applied. Each mode is different than the other in terms of seedling and tillering practices, where mode A performed with 25% at seedling, 25% at tillering and 50% at jointing while mode B performed with 35% at seedling and 65% at tillering. The greatest limitation to growth and Nitrogen use efficiency was the amount

  18. Heading Date QTL in Winter Wheat (Triticum aestivum L.) Coincide with Major Developmental Genes VERNALIZATION1 and PHOTOPERIOD1

    PubMed Central

    Hao, Yuan Feng; Johnson, Jerry; Harrison, Steve; Marshall, David

    2016-01-01

    In wheat (Triticum aestivum L.), time from planting to spike emergence is influenced by genes controlling vernalization requirement and photoperiod response. Characterizing the available genetic diversity of known and novel alleles of VERNALIZATION1 (VRN1) and PHOTOPERIOD1 (PPD1) in winter wheat can inform approaches for breeding climate resilient cultivars. This study identified QTL for heading date (HD) associated with multiple VRN1 and PPD1 loci in a population developed from a cross between two early flowering winter wheat cultivars. When the population was grown in the greenhouse after partial vernalization treatment, major heading date QTLs co-located with the VRN-A1 and VRN-B1 loci. Copy number variation at the VRN-A1 locus influenced HD such that RIL having three copies required longer cold exposure to transition to flowering than RIL having two VRN-A1 copies. Sequencing vrn-B1 winter alleles of the parents revealed multiple polymorphisms in the first intron that were the basis of mapping a major HD QTL coinciding with VRN-B1. A 36 bp deletion in the first intron of VRN-B1 was associated with earlier HD after partial vernalization in lines having either two or three haploid copies of VRN-A1. The VRN1 loci interacted significantly and influenced time to heading in field experiments in Louisiana, Georgia and North Carolina. The PPD1 loci were significant determinants of heading date in the fully vernalized treatment in the greenhouse and in all field environments. Heading date QTL were associated with alleles having large deletions in the upstream regions of PPD-A1 and PPD-D1 and with copy number variants at the PPD-B1 locus. The PPD-D1 locus was determined to have the largest genetic effect, followed by PPD-A1 and PPD-B1. Our results demonstrate that VRN1 and PPD1 alleles of varying strength allow fine tuning of flowering time in diverse winter wheat growing environments. PMID:27163605

  19. Adaptation to rhizosphere acidification is a necessary prerequisite for wheat (Triticum aestivum L.) seedling resistance to ammonium stress.

    PubMed

    Wang, Feng; Gao, Jingwen; Tian, Zhongwei; Liu, Yang; Abid, Muhammad; Jiang, Dong; Cao, Weixing; Dai, Tingbo

    2016-11-01

    Because soil acidification accompanies ammonium (NH4(+)) stress, the tolerance of higher plants to ammonium is associated with their adaptation to root medium acidification. However, the underlying mechanisms of this adaptation have not been fully elucidated. The objective of this study was thus to elucidate the effect of rhizosphere pH on NH4(+) tolerance in different winter wheat cultivars (Triticum aestivum L.). Hydroponic experiments were carried out on two wheat cultivars: AK58 (an NH4(+)-sensitive cultivar) and XM25 (an NH4(+)-tolerant cultivar). Four pH levels resembling acidified (4.0, 5.0, 6.0 and 7.0) were tested and 5 mM NH4(+) nitrogen (AN) was used as a stress treatment, with 5 mM nitrate nitrogen used as a control. The addition of AN led to a severe reduction in biomass and an increase in free NH4(+), amino acids, and the activities of glutamine synthetase (GS) and glutamate dehydrogenase (GDH) in the shoots and roots of the two wheat cultivars. Further decreases in growth medium pH led to further increases in free NH4(+), but decreases in total amino acids and the activities of GS and NADH-dependent glutamate synthase (NADH-GDH). However, there was less of an increase in free NH4(+) and less of a reduction in the activities of GS and NADH-GDH in the cultivar XM25 compared with AK58. In addition, total soluble sugar content and the root-to-shoot soluble sugar ratio were also decreased by AN treatment, except in the shoots of XM25. Decreasing pH resulted in lower root-to-shoot soluble sugar ratios with greater reductions in the AK58 cultivar. These results indicate that wheat growth was inhibited significantly by the addition of NH4(+) combined with low pH. Low medium pH reduced the capacity for nitrogen assimilation and interrupted carbohydrate transport between the shoot and root. The NH4(+)-tolerant cultivar XM25 was better adapted to low rhizosphere pH due to its increased capacity for assimilating NH4(+) efficiently and thereby avoiding toxic

  20. Readily available phosphorous and nitrogen counteract for arsenic uptake and distribution in wheat (Triticum aestivum L.)

    PubMed Central

    Brackhage, Carsten; Huang, Jen-How; Schaller, Jörg; Elzinga, Evert J.; Dudel, E. Gert

    2014-01-01

    Elevated arsenic content in food crops pose a serious human health risk. Apart from rice wheat being another main food crop is possibly cultivated on contaminated sites. But for wheat uptake mechanisms are not entirely understood especially with regard to nutrient fertilization and different moisture regimes taking into account heavy rainfall events due to climate change. Here we show that especially higher P-fertilization under changing redox conditions may enhance arsenic uptake. This counteracts with higher N-fertilization reducing arsenic transfer and translocation into aboveground plant parts for both higher P-fertilization and reducing soil conditions. Arsenic speciation did not change in grain but for leaves P-fertilization together with reducing conditions increased the As(V) content compared to other arsenic species. Our results indicate important dependencies of nutrient fertilization, moisture conditions and substrate type on As accumulation of wheat as one of the most important crop plants worldwide with implications for agricultural practices. PMID:24821134

  1. Readily available phosphorous and nitrogen counteract for arsenic uptake and distribution in wheat (Triticum aestivum L.).

    PubMed

    Brackhage, Carsten; Huang, Jen-How; Schaller, Jörg; Elzinga, Evert J; Dudel, E Gert

    2014-05-13

    Elevated arsenic content in food crops pose a serious human health risk. Apart from rice wheat being another main food crop is possibly cultivated on contaminated sites. But for wheat uptake mechanisms are not entirely understood especially with regard to nutrient fertilization and different moisture regimes taking into account heavy rainfall events due to climate change. Here we show that especially higher P-fertilization under changing redox conditions may enhance arsenic uptake. This counteracts with higher N-fertilization reducing arsenic transfer and translocation into aboveground plant parts for both higher P-fertilization and reducing soil conditions. Arsenic speciation did not change in grain but for leaves P-fertilization together with reducing conditions increased the As(V) content compared to other arsenic species. Our results indicate important dependencies of nutrient fertilization, moisture conditions and substrate type on As accumulation of wheat as one of the most important crop plants worldwide with implications for agricultural practices.

  2. Readily available phosphorous and nitrogen counteract for arsenic uptake and distribution in wheat (Triticum aestivum L.)

    NASA Astrophysics Data System (ADS)

    Brackhage, Carsten; Huang, Jen-How; Schaller, Jörg; Elzinga, Evert J.; Dudel, E. Gert

    2014-05-01

    Elevated arsenic content in food crops pose a serious human health risk. Apart from rice wheat being another main food crop is possibly cultivated on contaminated sites. But for wheat uptake mechanisms are not entirely understood especially with regard to nutrient fertilization and different moisture regimes taking into account heavy rainfall events due to climate change. Here we show that especially higher P-fertilization under changing redox conditions may enhance arsenic uptake. This counteracts with higher N-fertilization reducing arsenic transfer and translocation into aboveground plant parts for both higher P-fertilization and reducing soil conditions. Arsenic speciation did not change in grain but for leaves P-fertilization together with reducing conditions increased the As(V) content compared to other arsenic species. Our results indicate important dependencies of nutrient fertilization, moisture conditions and substrate type on As accumulation of wheat as one of the most important crop plants worldwide with implications for agricultural practices.

  3. TaCYP78A5 regulates seed size in wheat (Triticum aestivum).

    PubMed

    Ma, Meng; Zhao, Huixian; Li, Zhaojie; Hu, Shengwu; Song, Weining; Liu, Xiangli

    2016-03-01

    Seed size is an important agronomic trait and a major component of seed yield in wheat. However, little is known about the genes and mechanisms that determine the final seed size in wheat. Here, we isolated TaCYP78A5, the orthologous gene of Arabidopsis CYP78A5/KLUH in wheat, from wheat cv. Shaan 512 and demonstrated that the expression of TaCYP78A5 affects seed size. TaCYP78A5 encodes the cytochrome P450 (CYP) 78A5 protein in wheat and rescued the phenotype of the Arabidopsis deletion mutant cyp78a5. By affecting the extent of integument cell proliferation in the developing ovule and seed, TaCYP78A5 influenced the growth of the seed coat, which appears to limit seed growth. TaCYP78A5 silencing caused a 10% reduction in cell numbers in the seed coat, resulting in a 10% reduction in seed size in wheat cv. Shaan 512. By contrast, the overexpression of TaCYP78A5 increased the number of cells in the seed coat, resulting in seed enlargement of ~11-35% in Arabidopsis. TaCYP78A5 activity was positively correlated with the final seed size. However, TaCYP78A5 overexpression significantly reduced seed set in Arabidopsis, possibly due to an ovule development defect. TaCYP78A5 also influenced embryo development by promoting embryo integument cell proliferation during seed development. Accordingly, a working model of the influence of TaCYP7A5 on seed size was proposed. This study provides direct evidence that TaCYP78A5 affects seed size and is a potential target for crop improvement.

  4. Molecular evolution of Wcor15 gene enhanced our understanding of the origin of A, B and D genomes in Triticum aestivum

    PubMed Central

    Liu, Fangfang; Si, Hongqi; Wang, Chengcheng; Sun, Genlou; Zhou, Erting; Chen, Can; Ma, Chuanxi

    2016-01-01

    The allohexaploid bread wheat originally derived from three closely related species with A, B and D genome. Although numerous studies were performed to elucidate its origin and phylogeny, no consensus conclusion has reached. In this study, we cloned and sequenced the genes Wcor15-2A, Wcor15-2B and Wcor15-2D in 23 diploid, 10 tetraploid and 106 hexaploid wheat varieties and analyzed their molecular evolution to reveal the origin of the A, B and D genome in Triticum aestivum. Comparative analyses of sequences in diploid, tetraploid and hexaploid wheats suggest that T. urartu, Ae. speltoides and Ae. tauschii subsp. strangulata are most likely the donors of the Wcor15-2A, Wcor15-2B and Wcor15-2D locus in common wheat, respectively. The Wcor15 genes from subgenomes A and D were very conservative without insertion and deletion of bases during evolution of diploid, tetraploid and hexaploid. Non-coding region of Wcor15-2B gene from B genome might mutate during the first polyploidization from Ae. speltoides to tetraploid wheat, however, no change has occurred for this gene during the second allopolyploidization from tetraploid to hexaploid. Comparison of the Wcor15 gene shed light on understanding of the origin of the A, B and D genome of common wheat. PMID:27526862

  5. Isolation and molecular characterization of ERF1, an ethylene response factor gene from durum wheat (Triticum turgidum L. subsp. durum), potentially involved in salt-stress responses.

    PubMed

    Makhloufi, Emna; Yousfi, Fatma-Ezzahra; Marande, William; Mila, Isabelle; Hanana, Mohsen; Bergès, Hélène; Mzid, Rim; Bouzayen, Mondher

    2014-12-01

    As food crop, wheat is of prime importance for human society. Nevertheless, our understanding of the genetic and molecular mechanisms controlling wheat productivity conditions has been, so far, hampered by the lack of sufficient genomic resources. The present work describes the isolation and characterization of TdERF1, an ERF gene from durum wheat (Triticum turgidum L. subsp. durum). The structural features of TdERF1 supported the hypothesis that it is a novel member of the ERF family in durum wheat and, considering its close similarity to TaERF1 of Triticum aestivum, it probably plays a similar role in mediating responses to environmental stresses. TdERF1 displayed an expression pattern that discriminated between two durum wheat genotypes contrasted with regard to salt-stress tolerance. The high number of cis-regulatory elements related to stress responses present in the TdERF1 promoter and the ability of TdERF1 to regulate the transcription of ethylene and drought-responsive promoters clearly indicated its potential role in mediating plant responses to a wide variety of environmental constrains. TdERF1 was also regulated by abscisic acid, ethylene, auxin, and salicylic acid, suggesting that it may be at the crossroads of multiple hormone signalling pathways. Four TdERF1 allelic variants have been identified in durum wheat genome, all shown to be transcriptionally active. Interestingly, the expression of one allelic form is specific to the tolerant genotype, further supporting the hypothesis that this gene is probably associated with the susceptibility/tolerance mechanism to salt stress. In this regard, the TdERF1 gene may provide a discriminating marker between tolerant and sensitive wheat varieties.

  6. Proteome characterization of developing grains in bread wheat cultivars (Triticum aestivum L.)

    PubMed Central

    2012-01-01

    Background The analyses of protein synthesis, accumulation and regulation during grain development in wheat are more complex because of its larger genome size compared to model plants such as Arabidopsis and rice. In this study, grains from two wheat cultivars Jimai 20 and Zhoumai 16 with different gluten quality properties were harvested at five development stages, and were used to displayed variable expression patterns of grain proteins. Results Proteome characterization during grain development in Chinese bread wheat cultivars Jimai 20 and Zhoumai 16 with different quality properties was investigated by 2-DE and tandem MALDI-TOF/TOF-MS. Identification of 117 differentially accumulated protein spots representing 82 unique proteins and five main expression patterns enabled a chronological description of wheat grain formation. Significant proteome expression differences between the two cultivars were found; these included 14 protein spots that accumulated in both cultivars but with different patterns and 27 cultivar-different spots. Among the cultivar-different protein spots, 14 accumulated in higher abundance in Jimai 20 than in Zhoumai 16, and included NAD-dependent isocitrate dehydrogenase, triticin precursor, LMW-s glutenin subunit and replication factor C-like protein. These proteins are likely to be associated with superior gluten quality. In addition, some proteins such as class II chitinase and peroxidase 1 with isoforms in developing grains were shown to be phosphorylated by Pro-Q Diamond staining and phosphorprotein site prediction. Phosphorylation could have important roles in wheat grain development. qRT-PCR analysis demonstrated that transcriptional and translational expression patterns of many genes were significantly different. Conclusions Wheat grain proteins displayed variable expression patterns at different developmental stages and a considerable number of protein spots showed differential accumulation between two cultivars. Differences in seed

  7. [Transformation of common wheat (Triticum aestivum L.) with herbicide-resistant EPSPs gene].

    PubMed

    Chen, L H; Wang, X W; Zhang, W J; Zhang, X D; Hu, D F; Liu, G T

    1999-01-01

    The herbicide-resistant EPSPs (5-enolpyruvylshikimate-3-phosphate synthase) gene was transformed into about 1,000 young spikes and 800 young embryos of wheat variety, Jinghua 1, with gene gun. Thirty-eight and four regenerated plants were obtained respectively screened with glyphosate. All regenerated plants were analysed by PCR and/or Southern blotting. The results indicated that EPSPs gene was integrated stably into the genome of Jinghua 1, and some of the transformants showed fertile. So herbicide-resistant EPSPs gene could be used as selective marker in the transformation of monocotyledon cereal crops, such as wheat.

  8. Complementary epistasis involving Sr12 explains adult plant resistance to stem rust in Thatcher wheat (Triticum aestivum L.).

    PubMed

    Rouse, Matthew N; Talbert, Luther E; Singh, Davinder; Sherman, Jamie D

    2014-07-01

    Quantitative trait loci conferring adult plant resistance to Ug99 stem rust in Thatcher wheat display complementary gene action suggesting multiple quantitative trait loci are needed for effective resistance. Adult plant resistance (APR) in wheat (Triticum aestivum L.) to stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), is desirable because this resistance can be Pgt race non-specific. Resistance derived from cultivar Thatcher can confer high levels of APR to the virulent Pgt race TTKSK (Ug99) when combined with stem rust resistance gene Sr57 (Lr34). To identify the loci conferring APR in Thatcher, we evaluated 160 RILs derived from Thatcher crossed to susceptible cultivar McNeal for field stem rust reaction in Kenya for two seasons and in St. Paul for one season. All RILs and parents were susceptible as seedlings to race TTKSK. However, adult plant stem rust severities in Kenya varied from 5 to 80 %. Composite interval mapping identified four quantitative trait loci (QTL). Three QTL were inherited from Thatcher and one, Sr57, was inherited from McNeal. The markers closest to the QTL peaks were used in an ANOVA to determine the additive and epistatic effects. A QTL on 3BS was detected in all three environments and explained 27-35 % of the variation. The peak of this QTL was at the same location as the Sr12 seedling resistance gene effective to race SCCSC. Epistatic interactions were significant between Sr12 and QTL on chromosome arms 1AL and 2BS. Though Sr12 cosegregated with the largest effect QTL, lines with Sr12 were not always resistant. The data suggest that Sr12 or a linked gene, though not effective to race TTKSK alone, confers APR when combined with other resistance loci.

  9. New isoforms and assembly of glutamine synthetase in the leaf of wheat (Triticum aestivum L.)

    SciTech Connect

    Wang, Xiaochun; Wei, Yihao; Shi, Lanxin; Ma, Xinming; Theg, Steven M.

    2015-08-24

    Glutamine synthetase (GS; EC 6.3.1.2) plays a crucial role in the assimilation and re-assimilation of ammonia derived from a wide variety of metabolic processes during plant growth and development. Here, three developmentally regulated isoforms of GS holoenzyme in the leaf of wheat (Triticum aestivum L.) seedlings are described using native-PAGE with a transferase activity assay. The isoforms showed different mobilities in gels, with GSII>GSIII>GSI. The cytosolic GSI was composed of three subunits, GS1, GSr1, and GSr2, with the same molecular weight (39.2kDa), but different pI values. GSI appeared at leaf emergence and was active throughout the leaf lifespan. GSII and GSIII, both located in the chloroplast, were each composed of a single 42.1kDa subunit with different pI values. GSII was active mainly in green leaves, while GSIII showed brief but higher activity in green leaves grown under field conditions. LC-MS/MS experiments revealed that GSII and GSIII have the same amino acid sequence, but GSII has more modification sites. With a modified blue native electrophoresis (BNE) technique and in-gel catalytic activity analysis, only two GS isoforms were observed: one cytosolic and one chloroplastic. Mass calibrations on BNE gels showed that the cytosolic GS1 holoenzyme was ~490kDa and likely a dodecamer, and the chloroplastic GS2 holoenzyme was ~240kDa and likely a hexamer. Lastly, our experimental data suggest that the activity of GS isoforms in wheat is regulated by subcellular localization, assembly, and modification to achieve their roles during plant development.

  10. Competition between plant and bacterial cells at the microscale regulates the dynamics of nitrogen acquisition in wheat (Triticum aestivum).

    PubMed

    Jones, David L; Clode, Peta L; Kilburn, Matt R; Stockdale, Elizabeth A; Murphy, Daniel V

    2013-11-01

    The ability of plants to compete effectively for nitrogen (N) resources is critical to plant survival. However, controversy surrounds the importance of organic and inorganic sources of N in plant nutrition because of our poor ability to visualize and understand processes happening at the root-microbial-soil interface. Using high-resolution nano-scale secondary ion mass spectrometry stable isotope imaging (NanoSIMS-SII), we quantified the fate of ¹⁵N over both space and time within the rhizosphere. We pulse-labelled the soil surrounding wheat (Triticum aestivum) roots with either ¹⁵NH₄⁺ or ¹⁵N-glutamate and traced the movement of ¹⁵N over 24 h. Imaging revealed that glutamate was rapidly depleted from the rhizosphere and that most ¹⁵N was captured by rhizobacteria, leading to very high ¹⁵N microbial enrichment. After microbial capture, approximately half of the ¹⁵N-glutamate was rapidly mineralized, leading to the excretion of NH₄⁺, which became available for plant capture. Roots proved to be poor competitors for ¹⁵N-glutamate and took up N mainly as ¹⁵NH₄⁺. Spatial mapping of ¹⁵N revealed differential patterns of ¹⁵N uptake within bacteria and the rapid uptake and redistribution of ¹⁵N within roots. In conclusion, we demonstrate the rapid cycling and transformation of N at the soil-root interface and that wheat capture of organic N is low in comparison to inorganic N under the conditions tested. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  11. A multiparental cross population for mapping QTL for agronomic traits in durum wheat (Triticum turgidum ssp. durum).

    PubMed

    Milner, Sara Giulia; Maccaferri, Marco; Huang, Bevan Emma; Mantovani, Paola; Massi, Andrea; Frascaroli, Elisabetta; Tuberosa, Roberto; Salvi, Silvio

    2016-02-01

    Multiparental cross designs for mapping quantitative trait loci (QTL) provide an efficient alternative to biparental populations because of their broader genetic basis and potentially higher mapping resolution. We describe the development and deployment of a recombinant inbred line (RIL) population in durum wheat (Triticum turgidum ssp. durum) obtained by crossing four elite cultivars. A linkage map spanning 2664 cM and including 7594 single nucleotide polymorphisms (SNPs) was produced by genotyping 338 RILs. QTL analysis was carried out by both interval mapping on founder haplotype probabilities and SNP bi-allelic tests for heading date and maturity date, plant height and grain yield from four field experiments. Sixteen QTL were identified across environments and detection methods, including two yield QTL on chromosomes 2BL and 7AS, with the former mapped independently from the photoperiod response gene Ppd-B1, while the latter overlapped with the vernalization locus VRN-A3. Additionally, 21 QTL with environment-specific effects were found. Our results indicated a prevalence of environment-specific QTL with relatively small effect on the control of grain yield. For all traits, functionally different QTL alleles in terms of direction and size of genetic effect were distributed among parents. We showed that QTL results based on founder haplotypes closely matched functional alleles at known heading date loci. Despite the four founders, only 2.1 different functional haplotypes were estimated per QTL, on average. This durum wheat population provides a mapping resource for detailed genetic dissection of agronomic traits in an elite background typical of breeding programmes.

  12. Higher Ammonium Transamination Capacity Can Alleviate Glutamate Inhibition on Winter Wheat (Triticum aestivum L.) Root Growth under High Ammonium Stress.

    PubMed

    Wang, Feng; Gao, Jingwen; Liu, Yang; Tian, Zhongwei; Muhammad, Abid; Zhang, Yixuan; Jiang, Dong; Cao, Weixing; Dai, Tingbo

    2016-01-01

    Most of the studies about NH4+ stress mechanism simply address the effects of free NH4+, failing to recognize the changed nitrogen assimilation products. The objective of this study was to elucidate the effects of glutamate on root growth under high ammonium (NH4+) conditions in winter wheat (Triticum aestivum L.). Hydroponic experiments were conducted using two wheat cultivars, AK58 (NH4+-sensitive) and Xumai25 (NH4+-tolerant) with either 5 mM NH4+ nitrogen (AN) as stress treatment or 5 mM nitrate (NO3-) nitrogen as control. To evaluate the effects of NH4+-assimilation products on plant growth, 1 μM L-methionine sulfoximine (MSO) (an inhibitor of glutamine synthetase (GS)) and 1 mM glutamates (a primary N assimilation product) were added to the solutions, respectively. The AN significantly reduced plant biomass, total root length, surface area and root volume in both cultivars, but less effect was observed in Xumai25. The inhibition effects were alleviated by the application of MSO but strengthened by the application of glutamate. The AN increased the activities of GS, glutamate dehydrogenase (GDH) in both cultivars, resulting in higher glutamate contents. However, its contents were decreased by the application of MSO. Compared to AK58, Xumai25 showed lower glutamate contents due to its higher activities of glutamic-oxaloacetic transaminase (GOT) and glutamic-pyruvic transaminase (GPT). With the indole-3-acetic acid (IAA) contents decreasing in roots, the ratio of shoot to root in IAA was increased, and further increased by the application of glutamate, and reduced by the application of MSO, but the ratio was lower in Xumai25. Meanwhile, the total soluble sugar contents and its root to shoot ratio also showed similar trends. These results indicate that the NH4+-tolerant cultivar has a greater transamination ability to prevent glutamate over-accumulation to maintain higher IAA transport ability, and consequently promoted soluble sugar transport to roots, further

  13. [Effect of vernalization and red light illumination of seedlings of bread wheat (Triticum aestivum L.) on the temperature profile of the cAMP phosphodiesterase activity].

    PubMed

    Fedenko, E P; Koksharova, T A; Agamalova, S R; Beliaeva, E V

    2004-01-01

    Phenotypic manifestations of Vrn (vernalization) and Ppd (photoperiodism) genes responsible for transition of bread wheat Triticum aestivum L. to generative growth (flowering) are mutually related. Since the mechanism of phytochrome-induced photoperiodism involves the enzymes of cyclic adenosine monophosphate metabolism and phosphodiesterase in particular, we tested involvement of phosphodiesterase in the process of winter wheat vernalization and formation of flowering competence in alternate wheat requiring a long day but no vernalization for the transition to flowering. We studied temperature dependence of phosphodiesterase activity in vernalized and unvernalized winter wheat on the one hand and in etiolated and red light illuminated seedlings of alternate wheat on the other hand. Short-term experiments demonstrated that vernalization and red light illumination are similar to long day by the effect on the long-day plants. Both influences induced a pronounced inversion of the temperature profile of phosphodiesterase activity in the 28-45 degrees C range. We propose that phosphodiesterase is involved in vernalization processes and can serve as a sensor of low temperature in winter wheat. Changed temperature profile is a radical control mechanism of phosphodiesterase activity in response to the influences (red light and vernalizing temperatures) responsible for competence of various bread wheat forms for generative growth.

  14. Visualization of A- and B-genome chromosomes in wheat (Triticum aestivum L.) x jointed goatgrass (Aegilops cylindrica Host) backcross progenies.

    PubMed

    Wang, Z N; Hang, A; Hansen, J; Burton, C; Mallory-Smith, C A; Zemetra, R S

    2000-12-01

    Wheat (Triticum aestivum) and jointed goatgrass (Aegilops cylindrica) can cross with each other, and their self-fertile backcross progenies frequently have extra chromosomes and chromosome segments, presumably retained from wheat, raising the possibility that a herbicide resistance gene might transfer from wheat to jointed goatgrass. Genomic in situ hybridization (GISH) was used to clarify the origin of these extra chromosomes. By using T. durum DNA (AABB genome) as a probe and jointed goatgrass DNA (CCDD genome) as blocking DNA, one, two, and three A- or B-genome chromosomes were identified in three BC2S2 individuals where 2n = 29, 30, and 31 chromosomes, respectively. A translocation between wheat and jointed goatgrass chromosomes was also detected in an individual with 30 chromosomes. In pollen mother cells with meiotic configuration of 14 II + 2 I, the two univalents were identified as being retained from the A or B genome of wheat. By using Ae. markgrafii DNA (CC genome) as a probe and wheat DNA (AABBDD genome) as blocking DNA. 14 C-genome chromosomes were visualized in all BC2S2 individuals. The GISH procedure provides a powerful tool to detect the A or B-genome chromatin in a jointed goatgrass background, making it possible to assess the risk of transfer of herbicide resistance genes located on the A or B genome of wheat to jointed goatgrass.

  15. Hybrid dwarfness in crosses between wheat (Triticum aestivum L.) and rye (Secale cereale L.): a new look at an old phenomenon.

    PubMed

    Tikhenko, N; Rutten, T; Tsvetkova, N; Voylokov, A; Börner, A

    2015-03-01

    The existence of hybrid dwarfs from intraspecific crosses in wheat (Triticum aestivum) was described 100 years ago, and the genetics underlying hybrid dwarfness are well understood. In this study, we report a dwarf phenotype in interspecific hybrids between wheat and rye (Secale cereale). We identified two rye lines that produce hybrid dwarfs with wheat and have none of the hitherto known hybrid dwarfing genes. Genetic analyses revealed that both rye lines carry a single allelic gene responsible for the dwarf phenotype. This gene was designated Hdw-R1 (Hybrid dwarf-R1). Application of gibberellic acid (GA3 ) to both intraspecific (wheat-wheat) and interspecific (wheat-rye) hybrids showed that hybrid dwarfness cannot be overcome by treatment with this phytohormone. Histological analysis of shoot apices showed that wheat-rye hybrids with the dwarf phenotype at 21 and 45 days after germination failed to develop further. Shoot apices of dwarf plants did not elongate, did not form new primordia and had a dome-shaped appearance in the seed. The possible relationship between hybrid dwarfness and the genes responsible for the transition from vegetative to generative growth stage is discussed.

  16. The dynamic process of interspecific interactions of competitive nitrogen capture between intercropped wheat (Triticum aestivum L.) and Faba Bean (Vicia faba L.).

    PubMed

    Li, Chunjie; Dong, Yan; Li, Haigang; Shen, Jianbo; Zhang, Fusuo

    2014-01-01

    Wheat (Triticum aestivum L.)/faba bean (Vicia faba L.) intercropping shows significant overyielding and high nitrogen (N)-use efficiency, but the dynamics of plant interactions have rarely been estimated. The objective of the present study was to investigate the temporal dynamics of competitive N acquisition between intercropped wheat and faba bean with the logistic model. Wheat and faba bean were grown together or alone with limited N supply in pots. Data of shoot and root biomass and N content measured from 14 samplings were fitted to logistic models to determine instantaneous rates of growth and N uptake. The superiority of instantaneous biomass production and N uptake shifted from faba bean to wheat with their growth. Moreover, the shift of superiority on N uptake occurred 7-12 days earlier than that of biomass production. Interspecific competition stimulated intercropped wheat to have a much earlier and stronger superiority on instantaneous N uptake compared with isolated wheat. The modeling methodology characterized the temporal dynamics of biomass production and N uptake of intercropped wheat and faba bean in different planting systems, which helps to understand the underlying process of plant interaction for intercropping plants.

  17. Uptake and metabolism of 10:2 fluorotelomer alcohol in soil-earthworm (Eisenia fetida) and soil-wheat (Triticum aestivum L.) systems.

    PubMed

    Zhao, Shuyan; Zhu, Lingyan

    2017-01-01

    The behavior of 10:2 fluorotelomer alcohol (10:2 FTOH) in the systems of soil-earthworm (Eisenia fetida), soil-wheat (Triticum aestivum L.) and soil-earthworm-wheat, including degradation in soil, uptake and metabolism in wheat and earthworms were investigated. Several perfluorocarboxylic acids (PFCAs) as degradation products of 10:2 FTOH were identified in the soil, plant and earthworms. 10:2 FTOH could be biodegraded to perfluorooctanoate (PFOA), perfluorononanate (PFNA) and perfluorodecanoate (PFDA) in soil in the absence or presence of wheat/earthworms, and PFDA was the predominant metabolite. Accumulation of initial 10:2 FTOH and its metabolites were observed in the wheat and earthworms, suggesting that 10:2 FTOH could be bioaccumulated in wheat and earthworms and biotransformed to the highly stable PFCAs. Perfluoropentanoic acid (PFPeA), perfluorohexanoic (PFHxA) and PFDA were detected in wheat root, while PFDA and perfluoroundecanoic acid (PFUnDA) were detected in shoot. PFNA and PFDA were determined in earthworms and the concentration of PFDA was much higher. The presence of earthworms and/or plant stimulated the microbial degradation of 10:2 FTOH in soil. The results supplied important evidence that degradation of 10:2 FTOH was an important potential source of PFCAs in the environment and in biota.

  18. First report of wheat blast caused by magnaporthe oryzae pathotype triticum in Bangladesh

    USDA-ARS?s Scientific Manuscript database

    Wheat blast or ‘brusone’, caused by the ascomycetous fungus Magnaporthe oryzae B.C. Couch (synonym Pyricularia oryzae Cavara), was first identified in 1985 in Brazil. M. oryzae is composed of a range of morphologically identical but genetically different host-specific pathotypes that are specialized...

  19. Effect of Sulfated Chitooligosaccharides on Wheat Seedlings (Triticum aestivum L.) under Salt Stress.

    PubMed

    Zou, Ping; Li, Kecheng; Liu, Song; He, Xiaofei; Zhang, Xiaoqian; Xing, Ronge; Li, Pengcheng

    2016-04-13

    In this study, sulfated chitooligosaccharide (SCOS) was applied to wheat seedlings to investigate its effect on the plants' defense response under salt stress. The antioxidant enzyme activities, chlorophyll contents, and fluorescence characters of wheat seedlings were determined at a certain time. The results showed that treatment with exogenous SCOS could decrease the content of malondialdehyde, increase the chlorophyll contents, and modulate fluorescence characters in wheat seedlings under salt stress. In addition, SCOS was able to regulate the activities of antioxidant enzymes containing superoxide dismutase, catalase, peroxidase, ascorbate peroxidase, glutathione reductase, and dehydroascorbate reductase. Similarly, the mRNA expression levels of several antioxidant enzymes were efficiently modulated by SCOS. The results indicated that SCOS could alleviate the damage of salt stress by adjusting the antioxidant enzyme activities of plant. The effect of SCOS on the photochemical efficiency of wheat seedlings was associated with its enhanced capacity for antioxidant enzymes, which prevented structure degradation of the photosynthetic apparatus under NaCl stress. Furthermore, the effective activities of alleviating salt stress indicated the activities of SCOS were closely related with the sulfate group.

  20. Triticum Mosaic Virus: A New Virus Isolated From Wheat in Kansas

    USDA-ARS?s Scientific Manuscript database

    In 2006 a mechanically-transmissible and previously uncharacterized virus was isolated in Kansas from wheat with mosaic symptoms. The physio-chemical properties of the virus were examined by purification on cesium chloride density gradients, electron microscopy, sodium dodecyl sulfate polyacrylalmid...

  1. Photoperiod insensitive Ppd-A1a mutations in tetraploid wheat (Triticum durum Desf.).

    PubMed

    Wilhelm, Edward P; Turner, Adrian S; Laurie, David A

    2009-01-01

    Variation in photoperiod response plays an important role in adapting crops to agricultural environments. In hexaploid wheat, mutations conferring photoperiod insensitivity (flowering after a similar time in short or long days) have been mapped on the 2B (Ppd-B1) and 2D (Ppd-D1) chromosomes in colinear positions to the 2H Ppd-H1 gene of barley. No A genome mutation is known. On the D genome, photoperiod insensitivity is likely to be caused by deletion of a regulatory region that causes misexpression of a member of the pseudo-response regulator (PRR) gene family and activation of the photoperiod pathway irrespective of day length. Photoperiod insensitivity in tetraploid (durum) wheat is less characterized. We compared pairs of near-isogenic lines that differ in photoperiod response and showed that photoperiod insensitivity is associated with two independent deletions of the A genome PRR gene that cause altered expression. This is associated with induction of the floral regulator FT. The A genome deletions and the previously described D genome deletion of hexaploid wheat remove a common region, suggesting a shared mechanism for photoperiod insensitivity. The identification of the A genome mutations will allow characterization of durum wheat germplasm and the construction of genotypes with novel combinations of photoperiod insensitive alleles.

  2. Response of Spring Wheat (Triticum aestivum L.) Quality Traits and Yield to Sowing Date

    PubMed Central

    Ahmed, Mukhtar; Fayyaz-ul-Hassan

    2015-01-01

    The unpredictability and large fluctuation of the climatic conditions in rainfed regions do affect spring wheat yield and grain quality. These variations offer the opportunity for the production of better quality wheat. The effect of variable years, locations and sowing managements on wheat grain yield and quality was studied through field experiments using three genotypes, three locations for two years under rainfed conditions. The two studied years as contrasting years at three locations and sowing dates depicted variability in temperature and water stress during grain filling which resulted considerable change in grain yield and quality. Delayed sowing, years (2009–10) and location (Talagang) with high temperature and water stress resulted increased proline, and grain quality traits i.e. grain protein (GP) and grain ash (GA) than optimum conditions (during 2008–09, at Islamabad and early sowing). However, opposite trend was observed for dry gluten (DG), sodium dodecyl sulphate (SDS), SPAD content and grain yield irrespective of genotypes. The influence of variable climatic conditions was dominant in determining the quality traits and inverse relationship was observed among some quality traits and grain yield. It may be concluded that by selecting suitable locations and different sowing managements for subjecting the crop to desirable environmental conditions (temperature and water) quality traits of wheat crop could be modified. PMID:25927839

  3. Thermal, pasting and morphological properties of starch granules of wheat (Triticum aestivum L.) varieties.

    PubMed

    Kumar, Rajesh; Khatkar, B S

    2017-07-01

    Large (A) and small (B) granules of wheat starch were separated and their morphological, thermal, structural and pasting properties were investigated. The pasting properties of starches from two wheat varieties showed significant differences. For wheat variety C-306, the unfractionated starch showed higher peak, trough, breakdown, final, and setback viscosities than the starch isolated from wheat variety WH-147. On the contrary, unfractionated starch of variety WH-147 has higher pasting temperature than the starch of the variety C-306. Differential scanning calorimetry results showed that unfractionated starch exhibited the higher gelatinization enthalpy, peak and conclusion temperatures than the isolated A- and B-starch granules from both the varieties. Scanning electron microscopy results revealed that large A-granules appeared to be smooth and displayed disk or lenticular shape having diameter 13-35 μm, while B-granules showed a spherical shape with diameter of 2-6 μm. The variations in structures and content would result in starch granules with different chemical and physical properties.

  4. Response of spring wheat (Triticum aestivum L.) quality traits and yield to sowing date.

    PubMed

    Ahmed, Mukhtar; Fayyaz-ul-Hassan

    2015-01-01

    The unpredictability and large fluctuation of the climatic conditions in rainfed regions do affect spring wheat yield and grain quality. These variations offer the opportunity for the production of better quality wheat. The effect of variable years, locations and sowing managements on wheat grain yield and quality was studied through field experiments using three genotypes, three locations for two years under rainfed conditions. The two studied years as contrasting years at three locations and sowing dates depicted variability in temperature and water stress during grain filling which resulted considerable change in grain yield and quality. Delayed sowing, years (2009-10) and location (Talagang) with high temperature and water stress resulted increased proline, and grain quality traits i.e. grain protein (GP) and grain ash (GA) than optimum conditions (during 2008-09, at Islamabad and early sowing). However, opposite trend was observed for dry gluten (DG), sodium dodecyl sulphate (SDS), SPAD content and grain yield irrespective of genotypes. The influence of variable climatic conditions was dominant in determining the quality traits and inverse relationship was observed among some quality traits and grain yield. It may be concluded that by selecting suitable locations and different sowing managements for subjecting the crop to desirable environmental conditions (temperature and water) quality traits of wheat crop could be modified.

  5. Screening of Bangladeshi winter wheat (Triticum aestivum L.) cultivars for sensitivity to ozone

    USDA-ARS?s Scientific Manuscript database

    The sensitivity to ozone of ten Bangladeshi wheat cultivars was tested by exposing plants to eight ozone exposure regimes in controlled environment chambers. Visible leaf injury, dry weight, chlorophyll, carotenoid content, leaf greenness (SPAD value), quantum yield of photochemistry and stomatal re...

  6. [Alleles at storage protein loci in Triticum spelta L. accessions and their occurrence in related wheats].

    PubMed

    Kozub, N A; Boguslavskiĭ, R L; Sozinov, I A; Tverdokhleb, E V; Ksinias, I N; Blium, Ia B; Sozinov, A A

    2014-01-01

    Variation at eight storage protein loci was analyzed in the collection of T. spelta accessions from the National Centre of Plant Genetic Resources of Ukraine, most of which are European spelts. The analysis allowed identification of seven alleles at the Gli-B1 locus, five alleles at the Gli-A1 and Glu-B1 loci, three alleles at the Gli-A3 locus, two at the Gli-D1, Gli-B5, Glu-A1, and Glu-D1 loci. The majority of alleles are encountered among common wheat cultivars, only five alleles were specific for spelts. The high frequency of the alleles Gli-B1hs* and h encoding the 45-type gamma-gliadin in European spelts and durum wheat cultivars, as well as the occurrence of these alleles in T. dicoccum, in particular, in accessions from Switzerland and Germany, supports von Büren's hypothesis that European spelt resulted from hybridization between a tetraploid wheat with the 45-type y-gliadin and a hexaploid wheat. Analysis of genetic distances based on the genotypes at eight storage protein loci permitted differentiation of the Asian spelt accession from European spelts.

  7. Mapping QTL for the traits associated with heat tolerance in Wheat (Triticum Aestivum L.)

    USDA-ARS?s Scientific Manuscript database

    High temperature (heat) stress during grain filling is a major problem in most of the wheat growing areas. Developing heat-tolerant cultivars is becoming a principal breeding goal in the Southern and Central Great Plain areas of USA. Traits associated with high temperature tolerance can be used to d...

  8. Lead (Pb)-induced biochemical and ultrastructural changes in wheat (Triticum aestivum) roots.

    PubMed

    Kaur, Gurpreet; Singh, Harminder Pal; Batish, Daizy Rani; Kohli, Ravinder Kumar

    2013-02-01

    The focus of the present study was to explore lead (Pb)-induced metabolic alterations vis-à-vis ultrastructural changes in wheat roots to establish Pb toxicity syndrome at a structural level. Pb (50-500 μM) enhanced malondialdehyde (an indicator of lipid peroxidation) and hydrogen peroxide content, and electrolyte leakage, thereby suggesting reactive oxygen species-induced disruption of membrane integrity and oxidative stress in wheat roots. The activities of superoxide dismutases and catalases enhanced upon Pb exposure, whereas those of ascorbate and guaiacol peroxidases declined. Pb-induced metabolic disruption was manifested in significant alterations in wheat root ultrastructure as analyzed by transmission electron microscopy. Pb caused thinning of cell wall (at 50 μM), formation of amoeboid protrusions and folds and intercellular spaces, and appearance of lesions and nicks/breaks (at ≥ 250 μM Pb). Pb was deposited along the cell walls as dark precipitates. At ≤ 250 μM Pb, the number of mitochondria increased significantly, whereas structural damage in terms of change of shape and disintegration was observed at ≥ 250 μM Pb. Pb reduced the size of nucleoli and induced puff formation (at 250 μM), resulting in complete disintegration/disappearance of nucleolus at 500 μM. The study concludes that Pb inhibited wheat root growth involving an ROS-mediated oxidative damage vis-à-vis the ultrastructural alterations in cell membrane and disruption of mitochondrial and nuclear integrity.

  9. Genes critical for the induction of cold acclimation in wheat (Triticum aestivum L.)

    USDA-ARS?s Scientific Manuscript database

    Phenotypic studies have shown that cold acclimation in wheat and its relatives start at different temperatures. To gain insight into the underlying mechanisms that regulate the induction of cold-acclimation process in cereals we compared the expression of genes in winter-habit (winter Norstar and w...

  10. First report of Cocksfoot mottle virus infecting wheat (Triticum aestivum) in Ohio

    USDA-ARS?s Scientific Manuscript database

    Cocksfoot mottle virus (CfMV) was discovered in Ohio wheat during a 2016 field survey utilizing RNA-Seq to identify virus-like sequences. Virus sequences were confirmed by reverse transcriptase-polymerase chain reaction (RT-PCR) and Sanger sequencing, and CfMV was transmitted to orchardgrass and pas...

  11. [Competitiveness of hard wheat (Triticum durum Desf.) varieties against ripgut brome (Bromus rigidus Roth)].

    PubMed

    Hamal, A; Benbella, M; Rzozi, S B; Bouhache, M; Msatef, Y

    2001-01-01

    Varieties with an excellent competitiveness against ripgut brome (Bromus rigidus Roth.) would be very important to reinforce others methods to control ripgut brome weed. This study was carried out in 1999-2000 season in a greenhouse experiment to test the aggressiveness degree of six varieties of hard wheat (Oum Rabia, Isly, Marzak, Karim, Sebou, and Massa) combined with ripgut brome. Plant density was fixed at 16 plants of wheat or Bromus for pure crop and 8 plants for wheat and 8 for Bromus mixture. The results showed that the numbers of kernels/spikes were higher in the mixture for on pure composition. For the kernel weight, the result was opposite except for Isly and Marzak varieties. Karim and Isly varieties obtained the highest grain yield and were more competitive in mixture composition but Sebou and Massa varieties were less competitive against ripgut brome. Results of ripgut brome productivity and water use efficiency were similar and were used to determine the aggressiveness coefficient of hard wheat varieties against ripgut brome. The reduction of the shoot dry matter of brome was 22 to 56% at flowering. The grain yield of brome was reduced from 57 to 81%.

  12. Alkali pretreatment of wheat straw (Triticum aestivum) at boiling temperature for producing a bioethanol precursor.

    PubMed

    Barman, Dhirendra Nath; Haque, Md Azizul; Kang, Tae Ho; Kim, Min Keun; Kim, Jungho; Kim, Hoon; Yun, Han Dae

    2012-01-01

    We evaluated the effect of dilute sodium hydroxide (NaOH) on wheat straw at boiling temperature for removing lignin and increasing the yield of reducing sugar. Various concentrations of NaOH (0.5% to 2%) were used for pretreating wheat straw at 105 °C for 10 min. Scanning electron microscopy, atomic force microscopy, and Fourier transform infrared spectroscopy studies revealed that the 2% NaOH-pretreated sample exposed more cellulose fiber. The maximum respective removal of lignin and hemicellulose was 70.3% and 68.2% from the 2% NaOH-pretreated liquor. The reducing sugar yield was 84.6% using an enzyme dose containing 20 FPU of cellulase, 40 IU of β-glucosidase and 4 FXU of xylanase/g of substrate. However, 2% NaOH-treated wheat straw had the lowest crystalline index of 52.5%, due to destructured cellulose fibers. The results indicate the effectiveness of producing the bioethanol precursor from wheat straw by using 2% NaOH at boiling temperature.

  13. Micro-colinearity between rice, Brachypodium, and Triticum monococcum at the wheat domestication locus Q

    USDA-ARS?s Scientific Manuscript database

    Brachypodium, a wild temperate grass with a small genome, was recently proposed as a new model organism for the large-genome grasses. However, few studies have been conducted to determine the level of conservation at the DNA level (micro-colinearity) between Brachypodium and wheat. In this study, ...

  14. The Complete Sequence of Triticum Mosaic Virus, a New Wheat Infecting Virus of the Great Plains

    USDA-ARS?s Scientific Manuscript database

    In the spring of 2006, a new virus was isolated from wheat grown in Western Kansas. Virion structure and the coat protein amino acid sequence suggested that the virus was similar to those in the Potyvirus family, but not closely related to any previously characterized isolate. A tentative name was...

  15. Micro-colinearity between rice, Brachypodium, and Triticum monococcum at the wheat domestication locus Q

    USDA-ARS?s Scientific Manuscript database

    Brachypodium, a wild temperate grass with a small genome, was recently proposed as a new model organism for the large-genome grasses. However, few studies have been conducted to determine the level of conservation at the DNA level (micro-colinearity) between Brachypodium and wheat. In this study, we...

  16. Correlation of manganese contents of soils and wheat plants (Triticum spelta) in the Cukurova Region of Turkey.

    PubMed

    Irmak, S; Vapur, H

    2008-10-01

    In this study, the statistical analysis of manganese contents for soil, leaf and grain samples of the wheat plants, Triticum spelta, in the Cukurova Region of Adana in Turkey was performed to determine the relationship among the variables and correlation coefficients of manganese (Mn) contents. The soil samples were taken from the plant rhizosphere. Leaf samples at the stem elongation time and grain samples at the physiological maturity stage were analysed for Mn contents. The Mn contents of soil (MnS) were between 1.47 and 3.80 mg kg(-1), but the MnS of some samples were measured below the critical level of soil (1.00 mg kg(-1)). Whereas Mn contents of leaves (MnL) were obtained between 47.55 and 126.40 mg kg(-1). The Mn contents of grain (MnG) were obtained between 20.16 and 49.08 mg kg(-1). Direct correlation was found between MnL and MnG. But indirect correlations between was found MnS and MnG. Correlation between MnL and MnG was significant at the 0.01 level according to statistical analysis.

  17. Low irradiances affect abscisic acid, indole-3-acidic acid, and cytokinin levels of wheat (Triticum aestivum L.) tissues

    NASA Technical Reports Server (NTRS)

    Nan, R.; Carman, J. G.; Salisbury, F. B.

    1999-01-01

    Wheat (Triticum aestivum L.) plants were grown under four irradiance levels: 1,400, 400, 200, and 100 micromol m-2 s-1. Leaves and roots were sampled before, during, and after the boot stage, and levels of abscisic acid (ABA), indole-3-acetic acid (IAA), zeatin, zeatin riboside, dihydrozeatin, dihydrozeatin riboside, isopentenyl adenine, and isopentenyl adenosine were quantified using noncompetitive indirect ELISA systems. Levels of IAA in leaves and roots of plants exposed to 100 micromol m-2 s-1 of irradiance were 0.7 and 2.9 micromol kg-1 dry mass (DM), respectively. These levels were 0.2 and 1.0 micromol kg-1 DM, respectively, when plants were exposed to 1,400 micromol m-2 s-1. Levels of ABA in leaves and roots of plants exposed to 100 micromol m-2 s-1 were 0.65 and 0.55 micromol kg-1 DM, respectively. They were 0.24 micromol kg-1 DM (both leaves and roots) when plants were exposed to 1,400 micromol m-2 s-1. Levels of isopentenyl adenosine in leaves (24.3 nmol kg-1 DM) and roots (29.9 nmol kg-1 DM) were not affected by differences in the irradiance regime. Similar values were obtained in a second experiment. Other cytokinins could not be detected (<10 nmol kg 1 DM) in either experiment with the sample sizes used (150-600 mg DM for roots and shoots, respectively).

  18. Effect of CO/sub 2/ enrichment on growth and reproduction of wheat grown under low oxygen. [Triticum aestivum

    SciTech Connect

    Musgrave, M.E.; Scheld, H.W.; Strain, B.R.

    1987-04-01

    Two cultivars of wheat (Triticum aestivum L. cvs Sonoita and Yecoro Rojo) were grown to maturity in a Phytotron B chamber within four sub-chambers which imposed two CO/sub 2/ levels (350 or 1000 ppm) at either ambient (21%) or low oxygen (5%). Techniques of growth analysis were used to characterize changes in plant carbon budgets imposed by the gas regimes. Large increases in leaf area were seen in the low oxygen treatments, due primarily to a stimulation of tillering. No necrosis was observed in roots developing at 5% oxygen but rather root development increased dramatically. Flowering was much delayed in the low oxygen, 350 ppm carbon dioxide regime and the spikes which did develop did not mature. While one cultivar (Sonoita) did not respond to CO/sub 2/ enrichment (1000 ppm) at ambient oxygen in terms of increases in leaf area and head number, carbon dioxide enrichment overcame the low oxygen effect on flowering in both cultivars. The results demonstrate a previously unknown interaction between carbon dioxide enrichment and low oxygen as they affect reproduction and may help elucidate the nature of low-oxygen-induced infertility.

  19. Responses of wheat (Triticum aestivum) and turnip (Brassica rapa) to the combined exposure of carbaryl and ultraviolet radiation.

    PubMed

    Lima, Maria P R; Soares, Amadeu M V M; Loureiro, Susana

    2015-07-01

    The increase of ultraviolet (UV) radiation reaching the Earth's surface as a result of increased ozone layer depletion has affected crop production systems and, in combination with pesticides used in agricultural activities, can lead to greater risks to the environment. The impact of UV radiation and carbaryl singly and in combination on Triticum aestivum (wheat) and Brassica rapa (turnip) was studied. The combined exposure was analyzed using the MixTox tool and was based on the conceptual model of independent action, where possible deviations to synergism or antagonism and dose-ratio or dose-level response pattern were also considered. Compared with the control, carbaryl and UV radiation individually led to reductions in growth, fresh and dry weight, and water content for both species. Combined treatment of UV and carbaryl was more deleterious compared with single exposure. For T. aestivum length, no interaction between the 2 stressors was found (independent action), and a dose-level deviation was the best description for the weight parameters. For B. rapa, dose-ratio deviations from the conceptual model were found when length and dry weight were analyzed, and a higher than expected effect on the fresh weight (synergism) occurred with combined exposure.

  20. The Effects of N Nutrition on the Water Relations and Gas Exchange Characteristics of Wheat (Triticum aestivum L.) 1

    PubMed Central

    Morgan, Jack A.

    1986-01-01

    The purpose of this study was to characterize leaf photosynthetic and stomatal responses of wheat (Triticum aestivum L.) plants grown under two N-nutritional regimes. High- and low-N regimes were imposed on growth-chamber-grown plants by fertilizing with nutrient solutions containing 12 or 1 millimolar nitrogen, respectively. Gas-exchange measurements indicated not only greater photosynthetic capacity of high-N plants under well-watered conditions, but also a greater sensitivity of CO2 exchange rate and leaf conductance to CO2 and leaf water potential compared to low-N plants. Increased sensitivity of high-N plants was associated with greater tissue elasticity, lower values of leaf osmotic pressure and greater aboveground biomass. These N-nutritional-related changes resulted in greater desiccation (lowered relative water content) of high-N plants as leaf water potential fell, and were implicated as being important in causing greater sensitivity of high-N leaf gas exchange to reductions in water potential. Water use efficiency of leaves, calculated as CO2 exchange rate/transpiration, increased from 9.1 to 13 millimoles per mole and 7.9 to 9.1 millimoles per mole for high- and low-N plants as water became limiting. Stomatal oscillations were commonly observed in the low-N treatment at low leaf water potentials and ambient CO2 concentrations, but disappeared as CO2 was lowered and stomata opened. PMID:16664606

  1. Low irradiances affect abscisic acid, indole-3-acidic acid, and cytokinin levels of wheat (Triticum aestivum L.) tissues

    NASA Technical Reports Server (NTRS)

    Nan, R.; Carman, J. G.; Salisbury, F. B.

    1999-01-01

    Wheat (Triticum aestivum L.) plants were grown under four irradiance levels: 1,400, 400, 200, and 100 micromol m-2 s-1. Leaves and roots were sampled before, during, and after the boot stage, and levels of abscisic acid (ABA), indole-3-acetic acid (IAA), zeatin, zeatin riboside, dihydrozeatin, dihydrozeatin riboside, isopentenyl adenine, and isopentenyl adenosine were quantified using noncompetitive indirect ELISA systems. Levels of IAA in leaves and roots of plants exposed to 100 micromol m-2 s-1 of irradiance were 0.7 and 2.9 micromol kg-1 dry mass (DM), respectively. These levels were 0.2 and 1.0 micromol kg-1 DM, respectively, when plants were exposed to 1,400 micromol m-2 s-1. Levels of ABA in leaves and roots of plants exposed to 100 micromol m-2 s-1 were 0.65 and 0.55 micromol kg-1 DM, respectively. They were 0.24 micromol kg-1 DM (both leaves and roots) when plants were exposed to 1,400 micromol m-2 s-1. Levels of isopentenyl adenosine in leaves (24.3 nmol kg-1 DM) and roots (29.9 nmol kg-1 DM) were not affected by differences in the irradiance regime. Similar values were obtained in a second experiment. Other cytokinins could not be detected (<10 nmol kg 1 DM) in either experiment with the sample sizes used (150-600 mg DM for roots and shoots, respectively).

  2. Characterization of waxy proteins and waxy genes of Triticum timopheevii and T. zhukovskyi and implications for evolution of wheat.

    PubMed

    Yan, L; Bhave, M

    2001-08-01

    The granule-bound starch (GBSS I, waxy protein) in Triticum timopheevii (AtAtGG) and T. zhukovskyi (AtAtAzAzGG) and a diagnostic section of the genes encoding GBSS-I from the Wx-TtA and Wx-G loci of T. timopheevii and the Wx-TtA, Wx-G, and Wx-TzA loci of T. zhukovskyi were investigated in this study. The waxy proteins in these two polyploid wheats could not be separated into distinct bands, in contrast to those in the T. turgidum (AABB)-T. aestivum (AABBDD) lineage. Alignment of sequences of the section covering exon4-intron4-exon5 of the various waxy genes led to the identification of gene-specific sequences in intron 4. The sequences specific to the Wx-TtA and Wx-G genes of T. timopheevii were different from those of the Wx-A1 gene and Wx-B1 genes of T. turgidum and T. aestivum. A surprising observation was that the Wx-TzA of T. zhukovskyi did not match with the Wx-TmA of T. monococcum, a putative donor of the Az genome, but matched unexpectedly and perfectly with the Wx-B1 gene on chromosome 4A, which is proposed to have translocated from the chromosome 7B of T. aestivum. The possible genetic mechanism explaining these observations is discussed.

  3. Uptake and acropetal translocation of polycyclic aromatic hydrocarbons by wheat (Triticum aestivum L.) grown in field-contaminated soil.

    PubMed

    Tao, Yuqiang; Zhang, Shuzhen; Zhu, Yong-Guan; Christie, Peter

    2009-05-15

    Uptake and acropetal translocation of 14 priority polycyclic aromatic hydrocarbons (PAHs) by wheat (Triticum aestivum L.) grown in 15 field-contaminated soils were investigated in a growth chamber. PAH concentrations in roots correlated positively with the corresponding concentrations in soils and negatively with the contents of soil organic carbon (p < 0.01). No clear linear relationship was found between log RCF (root concentration factor, microg g(-1) root/microg g(-1) soil on dry weight basis) and log Kow of these PAHs. Four-ring PAHs had the highest tendency to be taken up by roots. PAH concentrations in shoots correlated well with their concentrations in soils and roots. Furthermore, distribution profiles of PAHs in shoots were fairly similar to those in soils. Acropetal translocation of 10 PAHs (with log Kow varying from 3.45 to 5.78) was also implicated by Rt (ratio of PAH from root-to-shoot translocation to the total accumulation in shoots) ranging from 53.6 to 72.6%. A negative linear relationship was found between log Rt and log Kow of these PAHs (p < 0.01), and acropetal translocation of PAHs depended on their chemical properties.

  4. Microbial Diversity of Type I Sourdoughs Prepared and Back-Slopped with Wholemeal and Refined Soft (Triticum aestivum) Wheat Flours.

    PubMed

    Taccari, Manuela; Aquilanti, Lucia; Polverigiani, Serena; Osimani, Andrea; Garofalo, Cristiana; Milanović, Vesna; Clementi, Francesca

    2016-08-01

    The fermentation of type I sourdough was studied for 20 d with daily back-slopping under laboratory and artisan bakery conditions using 1 wholemeal and 2 refined soft wheat (Triticum aestivum) flours. The sourdough bacterial and yeast diversity and dynamics were investigated by plate counting and a combination of culture-dependent and culture-independent PCR-DGGE approach. The pH, total titrable acidity, and concentration of key organic acids (phytic, lactic, and acetic) were measured. Three flours differed for both chemical and rheological properties. A microbial succession was observed, with the atypical sourdough species detected at day 0 (i.e. Lactococcus lactis and Leuconostoc holzapfelii/citreum group for bacteria and Candida silvae and Wickerhamomyces anomalus for yeasts) being progressively replaced by taxa more adapted to the sourdough ecosystem (Lactobacillus brevis, Lactobacillus alimentarius/paralimentarius, Saccharomyces cerevisiae). In mature sourdoughs, a notably different species composition was observed. As sourdoughs propagated with the same flour at laboratory and artisan bakery level were compared, the influence of both the substrate and the propagation environment on microbial diversity was assumed.

  5. Alleviation of salt stress by halotolerant and halophilic plant growth-promoting bacteria in wheat (Triticum aestivum).

    PubMed

    Orhan, Furkan

    2016-01-01

    In the current study, 18 halotolerant and halophilic bacteria have been investigated for their plant growth promoting abilities in vitro and in a hydroponic culture. The bacterial strains have been investigated for ammonia, indole-3-acetic acid and 1-aminocyclopropane-1-carboxylate-deaminase production, phosphate solubilisation and nitrogen fixation activities. Of the tested bacteria, eight were inoculated with Triticum aestivum in a hydroponic culture. The investigated bacterial strains were found to have different plant-growth promoting activities in vitro. Under salt stress (200mM NaCl), the investigated bacterial strains significantly increased the root and shoot length and total fresh weight of the plants. The growth rates of the plants inoculated with bacterial strains ranged from 62.2% to 78.1%. Identifying of novel halophilic and halotolerant bacteria that promote plant growth can be used as alternatives for salt sensitive plants. Extensive research has been conducted on several halophilic and halotolerant bacterial strains to investigate their plant growth promoting activities. However, to the best of my knowledge, this is the first study to inoculate these bacterial strains with wheat. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  6. Genetic Map of Diploid Wheat, Triticum Monococcum L., and Its Comparison with Maps of Hordeum Vulgare L

    PubMed Central

    Dubcovsky, J.; Luo, M. C.; Zhong, G. Y.; Bransteitter, R.; Desai, A.; Kilian, A.; Kleinhofs, A.; Dvorak, J.

    1996-01-01

    A genetic map of diploid wheat, Triticum monococcum L., involving 335 markers, including RFLP DNA markers, isozymes, seed storage proteins, rRNA, and morphological loci, is reported. T. monococcum and barley linkage groups are remarkably conserved. They differ by a reciprocal translocation involving the long arms of chromosomes 4 and 5, and paracentric inversions in the long arm of chromosomes 1 and 4; the latter is in a segment of chromosome arm 4L translocated to 5L in T. monococcum. The order of the markers in the inverted segments in the T. monococcum genome is the same as in the B and D genomes of T. aestivum L. The T. monococcum map differs from the barley maps in the distribution of recombination within chromosomes. The major 5S rRNA loci were mapped on the short arms of T. monococcum chromosomes 1 and 5 and the long arms of barley chromosomes 2 and 3. Since these chromosome arms are colinear, the major 5S rRNA loci must be subjected to positional changes in the evolving Triticeae genome that do not perturb chromosome colinearity. The positional changes of the major 5S rRNA loci in Triticeae genomes are analogous to those of the 18S-5.8S-26S rRNA loci. PMID:8725244

  7. Molecular characterization of lipoxygenase genes on chromosome 4BS in Chinese bread wheat (Triticum aestivum L.).

    PubMed

    Zhang, Fuyan; Chen, Feng; Wu, Peipei; Zhang, Ning; Cui, Dangqun

    2015-08-01

    This study cloned two novel TaLox genes on chromosome of 4BS and developed a co-dominant marker, Lox-B23, in bread wheat that showed highly significant association with lipoxygenase activity. Lipoxygenase (Lox), a critical enzyme in the carotenoid biosynthetic pathway, significantly influences the color and processing quality of wheat-based products. Two novel Lox genes, designated TaLox-B2 and TaLox-B3, were cloned on chromosome 4BS of Chinese bread wheat. The deduced amino acid sequence showed that both TaLox-B2 and TaLox-B3 genes encoded an 861-aa protein and possessed a lipoxygenase superfamily domain at the 170-838 interval. Two different TaLox-B2 alleles, designated TaLox-B2a and TaLox-B2b, were subsequently discovered. A co-dominant marker, Lox-B23, was developed based on sequences of TaLox-B2a, TaLox-B2b, and TaLox-B3 genes to precisely distinguish these three alleles in Chinese bread cultivars. Among five allelic combinations of Lox genes at Lox-B1, Lox-B2, and Lox-B3 loci, wheat cultivars with TaLox-B1a/TaLox-B2a/TaLox-B3a combination exhibited the highest Lox activity, whereas those with TaLox-B1a/TaLox-B2b/TaLox-B3b combination significantly showed the lowest Lox activity. A RIL population was used to evaluate the influence of TaLox-B3a gene on Lox activity. Results showed that TaLox-B3a gene could significantly increase the Lox activity in bread wheat. Physical mapping indicated that both TaLox-B2 and TaLox-B3 genes were located on chromosome 4BS in bread wheat. This study provides useful information to further understand the molecular and genetic bases of Lox activity in bread wheat.

  8. Over-Expression of a Tobacco Nitrate Reductase Gene in Wheat (Triticum aestivum L.) Increases Seed Protein Content and Weight without Augmenting Nitrogen Supplying

    PubMed Central

    Zhao, Xiao-Qiang; Nie, Xuan-Li; Xiao, Xing-Guo

    2013-01-01

    Heavy nitrogen (N) application to gain higher yield of wheat (Triticum aestivum L.) resulted in increased production cost and environment pollution. How to diminish the N supply without losing yield and/or quality remains a challenge. To meet the challenge, we integrated and expressed a tobacco nitrate reductase gene (NR) in transgenic wheat. The 35S-NR gene was transferred into two winter cultivars, “Nongda146” and “Jimai6358”, by Agrobacterium-mediation. Over-expression of the transgene remarkably enhanced T1 foliar NR activity and significantly augmented T2 seed protein content and 1000-grain weight in 63.8% and 68.1% of T1 offspring (total 67 individuals analyzed), respectively. Our results suggest that constitutive expression of foreign nitrate reductase gene(s) in wheat might improve nitrogen use efficiency and thus make it possible to increase seed protein content and weight without augmenting N supplying. PMID:24040315

  9. The gamma-gliadin multigene family in common wheat (Triticum aestivum) and its closely related species.

    PubMed

    Qi, Peng-Fei; Wei, Yu-Ming; Ouellet, Thérèse; Chen, Qing; Tan, Xin; Zheng, You-Liang

    2009-04-21

    The unique properties of wheat flour primarily depend on gluten, which is the most important source of protein for human being. gamma-Gliadins have been considered to be the most ancient of the wheat gluten family. The complex family structure of gamma-gliadins complicates the determination of their function. Moreover, gamma-gliadins contain several sets of celiac disease epitopes. However, no systematic research has been conducted yet. A total of 170 gamma-gliadin genes were isolated from common wheat and its closely related species, among which 138 sequences are putatively functional. The ORF lengths of these sequences range from 678 to 1089 bp, and the repetitive region is mainly responsible for the size heterogeneity of gamma-gliadins. The repeat motif P(Q/L/S/T/I/V/R/A)F(S/Y/V/Q/I/C/L)P(R/L/S/T/H/C/Y)Q1-2(P(S/L/T/A/F/H)QQ)1-2is repeated from 7 to 22 times. Sequence polymorphism and linkage disequilibrium analyses show that gamma-gliadins are highly diverse. Phylogenic analyses indicate that there is no obvious discrimination between Sitopsis and Ae. tauschii at the Gli-1 loci, compared with diploid wheat. According to the number and placement of cysteine residues, we defined nine cysteine patterns and 17 subgroups. Alternatively, we classified gamma-gliadins into two types based on the length of repetitive domain. Amino acid composition analyses indicate that there is a wide range of essential amino acids in gamma-gliadins, and those gamma-gliadins from subgroup SG-10 and SG-12 and gamma-gliadins with a short repetitive domain are more nutritional. A screening of toxic epitopes shows that gamma-gliadins with a pattern of C9 and gamma-gliadins with a short repetitive domain almost lack any epitopes. gamma-Gliadin sequences in wheat and closely related Aegilops species are diverse. Each group/subgroup contributes differently to nutritional quality and epitope content. It is suggested that the genes with a short repetitive domain are more nutritional and valuable

  10. Whole Genome Association Mapping of Plant Height in Winter Wheat (Triticum aestivum L.)

    PubMed Central

    Zanke, Christine D.; Ling, Jie; Plieske, Jörg; Kollers, Sonja; Ebmeyer, Erhard; Korzun, Viktor; Argillier, Odile; Stiewe, Gunther; Hinze, Maike; Neumann, Kerstin; Ganal, Martin W.; Röder, Marion S.

    2014-01-01

    The genetic architecture of plant height was investigated in a set of 358 recent European winter wheat varieties plus 14 spring wheat varieties based on field data in eight environments. Genotyping of diagnostic markers revealed the Rht-D1b mutant allele in 58% of the investigated varieties, while the Rht-B1b mutant was only present in 7% of the varieties. Rht-D1 was significantly associated with plant height by using a mixed linear model and employing a kinship matrix to correct for population stratification. Further genotyping data included 732 microsatellite markers, resulting in 770 loci, of which 635 markers were placed on the ITMI map plus a set of 7769 mapped SNP markers genotyped with the 90 k iSELECT chip. When Bonferroni correction was applied, a total of 153 significant marker-trait associations (MTAs) were observed for plant height and the SSR markers (−log10 (P-value) ≥4.82) and 280 (−log10 (P-value) ≥5.89) for the SNPs. Linear regression between the most effective markers and the BLUEs for plant height indicated additive effects for the MTAs of different chromosomal regions. Analysis of syntenic regions in the rice genome revealed closely linked rice genes related to gibberellin acid (GA) metabolism and perception, i.e. GA20 and GA2 oxidases orthologous to wheat chromosomes 1A, 2A, 3A, 3B, 5B, 5D and 7B, ent-kaurenoic acid oxidase orthologous to wheat chromosome 7A, ent-kaurene synthase on wheat chromosome 2B, as well as GA-receptors like DELLA genes orthologous to wheat chromosomes 4B, 4D and 7A and genes of the GID family orthologous to chromosomes 2B and 5B. The data indicated that besides the widely used GA-insensitive dwarfing genes Rht-B1 and Rht-D1 there is a wide spectrum of loci available that could be used for modulating plant height in variety development. PMID:25405621

  11. NAD-dependent aromatic alcohol dehydrogenase in wheats (Triticum L.) and goatgrasses (Aegilops L.): evolutionary genetics.

    PubMed

    Jaaska, V

    1984-04-01

    Evolutionary electrophoretic variation of a NAD-specific aromatic alcohol dehydrogenase, AADH-E, in wheat and goatgrass species is described and discussed in comparison with a NAD-specific alcohol dehydrogenase (ADH-A) and a NADP-dependent AADH-B studied previously. Cultivated tetraploid emmer wheats (T. turgidum s. l.) and hexaploid bread wheats (T. aestivum s. l.) are all fixed for a heterozygous triplet, E(0.58)/E(0.64). The slowest isoenzyme, E(0.58), is controlled by a homoeoallelic gene on the chromosome arm 6AL of T. aestivum cv. 'Chinese Spring' and is inherent in all diploid wheats, T. monococcum s. Str., T. boeoticum s. l. and T. urartu. The fastest isoenzyme, E(0.64), is presumably controlled by the B- and D-genome homoeoalleles of the bread wheat and is the commonest alloenzyme of diploid goat-grasses, including Ae. speltaides and Ae. tauschii. The tetraploid T. timopheevii s. str. has a particular heterozygous triplet E(0.56)/E(0.71), whereas the hexaploid T. zhukovskyi exhibited polymorphism with electromorphs characteristic of T. timopheevii and T. monococcum. Wild tetraploid wheats, T. dicoccoides and T. araraticum, showed partially homologous intraspecific variation of AADH-E with heterozygous triplets E(0.58)/E(0.64) (the commonest), E(0.58)/E(0.71), E(0.45)/E(0.58), E(0.48)/E(0.58) and E(0.56)/E(0.58) recorded. Polyploid goatgrasses of the D-genome group, excepting Ae. cylindrica, are fixed for the common triplet E(0.58)/E(0.64). Ae. cylindrica and polyploid goatgrasses of the C(u)-genome group, excepting Ae. kotschyi, are homozygous for E(0.64). Ae. kotschyi is exceptional, showing fixed heterozygosity for both AADH-E and ADH-A with unique triplets E(0.56)/E(0.64) and A(0.49)/A(0.56).

  12. [Genetic diversity of reaction of common wheat (Triticum aestivum L.) cultivars to light intensity].

    PubMed

    Evtushenko, E V; Chekurov, V M

    2000-05-01

    The effect of low light intensity (LI) on the period from sprouting to earing was studied in 12 cultivars of the spring common wheat under controlled conditions. Differences between cultivars with respect to their responses to LI (RLIs) were found both for those that were photoperiod-sensitive and those that were almost photoperiod-neutral. Specifically, a prolonged photoperiod and a low LI differently increased the period from sprouting to earling in different cultivars. Genetic analysis of the RLI demonstrated, for the first time, that the weak response was incompletely dominant in F1. The results of genetic analysis agree with the hypothesis that the cultivars Pitic 62 and Novosibirskaya 22 differ in alleles of two loci controlling the RLI in wheat.

  13. Heat-stable phytases in transgenic wheat (Triticum aestivum L.): deposition pattern, thermostability, and phytate hydrolysis.

    PubMed

    Brinch-Pedersen, Henrik; Hatzack, Frank; Stöger, Eva; Arcalis, Elsa; Pontopidan, Katrine; Holm, Preben B

    2006-06-28

    The present paper addresses the question of thermotolerance of in planta synthesized heterologous enzymes using phytase as a model. Two individual transgenic wheat materials expressing an Aspergillus fumigatus phytase with a low denaturation temperature (62.5 degrees C) but a high refolding capacity, and a rationally designed consensus phytase engineered to a high denaturation temperature (89.3 degrees C), were evaluated. High levels of endosperm specific expression were ensured by the wheat high molecular weight glutenin 1DX5 promoter. Immunodetection at the light and electron microscopical level shows unequivocally that the heterologous phytase is deposited in the vacuole, albeit that the transformation constructs were designed for secretion to the apoplast. Evaluation of heat stability properties and kinetic properties unraveled that, under these deposition conditions, heat stability based on high unfolding temperature is superior to high refolding capacity and represents a realistic strategy for improving phosphate and mineral bioavailability in cereal-based feed and food.

  14. Enzyme affinity to cell types in wheat straw (Triticum aestivum L.) before and after hydrothermal pretreatment

    PubMed Central

    2013-01-01

    Background Wheat straw used for bioethanol production varies in enzymatic digestibility according to chemical structure and composition of cell walls and tissues. In this work, the two biologically different wheat straw organs, leaves and stems, are described together with the effects of hydrothermal pretreatment on chemical composition, tissue structure, enzyme adhesion and digestion. To highlight the importance of inherent cell wall characteristics and the diverse effects of mechanical disruption and biochemical degradation, separate leaves and stems were pretreated on lab-scale and their tissue structures maintained mostly intact for image analysis. Finally, samples were enzymatically hydrolysed to correlate digestibility to chemical composition, removal of polymers, tissue composition and disruption, particle size and enzyme adhesion as a result of pretreatment and wax removal. For comparison, industrially pretreated wheat straw from Inbicon A/S was included in all the experiments. Results Within the same range of pretreatment severities, industrial pretreatment resulted in most hemicellulose and epicuticular wax/cutin removal compared to lab-scale pretreated leaves and stems but also in most re-deposition of lignin on the surface. Tissues were furthermore degraded from tissues into individual cells while lab-scale pretreated samples were structurally almost intact. In both raw leaves and stems, endoglucanase and exoglucanase adhered most to parenchyma cells; after pretreatment, to epidermal cells in all the samples. Despite heavy tissue disruption, industrially pretreated samples were not as susceptible to enzymatic digestion as lab-scale pretreated leaves while lab-scale pretreated stems were the least digestible. Conclusions Despite preferential enzyme adhesion to epidermal cells after hydrothermal pretreatment, our results suggest that the single most important factor determining wheat straw digestibility is the fraction of parenchyma cells rather than

  15. Seed maturation regulators are related to the control of seed dormancy in wheat (Triticum aestivum L.).

    PubMed

    Rikiishi, Kazuhide; Maekawa, Masahiko

    2014-01-01

    In Arabidopsis, the regulation network of the seed maturation program controls the induction of seed dormancy. Wheat EST sequences showing homology with the master regulators of seed maturation, leafy cotyledon1 (LEC1), LEC2 and FUSCA3 (FUS3), were searched from databases and designated respectively as TaL1L (LEC1-LIKE), TaL2L (LEC2-LIKE), and TaFUS3. TaL1LA, TaL2LA and TaFUS3 mainly expressed in seeds or embryos, with the expression limited to the early stages of seed development. Results show that tissue-specific and developmental-stage-dependent expressions are similar to those of seed maturation regulators in Arabidopsis. In wheat cultivars, the expression level of TaL1LA is correlated significantly with the germination index (GI) of whole seeds at 40 days after pollination (DAP) (r =  -0.83**). Expression levels of TaFUS3 and TaL2LA are significantly correlated respectively with GIs at 40 DAP and 50 DAP, except for dormant cultivars. No correlation was found between the expression level of TaVP1, orthologue of ABA insensitive3 (ABI3), and seed dormancy. Delay of germination1 (DOG1) was identified as a quantitative trait locus (QTL) for the regulation of seed dormancy in Arabidopsis. Its promoter has RY motif, which is a target sequence of LEC2. Significant correlation was found between the expression of TaDOG1 and seed dormancy except for dormant cultivars. These results indicate that TaL1LA, TaL2LA, and TaFUS3 are wheat orthologues of seed maturation regulators. The expressions of these genes affect the level of seed dormancy. Furthermore, the pathways, which involve seed maturation regulators and TaDOG1, are important for regulating seed dormancy in wheat.

  16. Validation of a 1DL earliness per se (eps) flowering QTL in bread wheat (Triticum aestivum).

    PubMed

    Zikhali, Meluleki; Leverington-Waite, Michelle; Fish, Lesley; Simmonds, James; Orford, Simon; Wingen, Luzie U; Goram, Richard; Gosman, Nick; Bentley, Alison; Griffiths, Simon

    2014-01-01

    Vernalization, photoperiod and the relatively poorly defined earliness per se (eps) genes regulate flowering in plants. We report here the validation of a major eps quantitative trait locus (QTL) located on wheat 1DL using near isogenic lines (NILs). We used four independent pairs of NILs derived from a cross between Spark and Rialto winter wheat varieties, grown in both the field and controlled environments. NILs carrying the Spark allele, defined by QTL flanking markers Xgdm111 and Xbarc62, consistently flowered 3-5 days earlier when fully vernalized relative to those with the Rialto. The effect was independent of photoperiod under field conditions, short days (10-h light), long days (16-h light) and very long days (20-h light). These results validate our original QTL identified using doubled haploid (DH) populations. This QTL represents variation maintained in elite north-western European winter wheat germplasm. The two DH lines used to develop the NILs, SR9 and SR23 enabled us to define the location of the 1DL QTL downstream of marker Xgdm111. SR9 has the Spark 1DL arm while SR23 has a recombinant 1DL arm with the Spark allele from Xgdm111 to the distal end. Our work suggests that marker assisted selection of eps effects is feasible and useful even before the genes are cloned. This means eps genes can be defined and positionally cloned in the same way as the photoperiod and vernalization genes have been. This validation study is a first step towards fine mapping and eventually cloning the gene directly in hexaploid wheat.

  17. Selenium promotes sulfur accumulation and plant growth in wheat (Triticum aestivum).

    PubMed

    Boldrin, Paulo F; de Figueiredo, Marislaine A; Yang, Yong; Luo, Hongmei; Giri, Shree; Hart, Jonathan J; Faquin, Valdemar; Guilherme, Luiz R G; Thannhauser, Theorodore W; Li, Li

    2016-09-01

    Selenium (Se) is an essential micronutrient for animals and humans and a target for biofortification in crops. Sulfur (S) is a crucial nutrient for plant growth. To gain better understanding of Se and S nutrition and interaction in plants, the effects of Se dosages and forms on plant growth as well as on S level in seven wheat lines were examined. Low dosages of both selenate and selenite supplements were found to enhance wheat shoot biomass and show no inhibitory effect on grain production. The stimulation on plant growth was correlated with increased APX antioxidant enzyme activity. Se forms were found to exert different effects on S metabolism in wheat plants. Selenate treatment promoted S accumulation, which was not observed with selenite supplement. An over threefold increase of S levels following selenate treatment at low dosages was observed in shoots of all wheat lines. Analysis of the sulfate transporter gene expression revealed an increased transcription of SULTR1;1, SULTR1;3 and SULTR4;1 in roots following 10 μM Na2 SeO4 treatment. Mass spectrometry-based targeted protein quantification confirmed the gene expression results and showed enhanced protein levels. The results suggest that Se treatment mimics S deficiency to activate specific sulfate transporter expression to stimulate S uptake, resulting in the selenate-induced S accumulation. This study supports that plant growth and nutrition benefit from low dosages of Se fertilization and provides information on the basis underlying Se-induced S accumulation in plants. © 2016 Scandinavian Plant Physiology Society.

  18. Comparative metabolic responses and adaptive strategies of wheat (Triticum aestivum) to salt and alkali stress.

    PubMed

    Guo, Rui; Yang, Zongze; Li, Feng; Yan, Changrong; Zhong, Xiuli; Liu, Qi; Xia, Xu; Li, Haoru; Zhao, Long

    2015-07-07

    It is well known that salinization (high-pH) has been considered as a major environmental threat to agricultural systems. The aim of this study was to investigate the differences between salt stress and alkali stress in metabolic profiles and nutrient accumulation of wheat; these parameters were also evaluated to determine the physiological adaptive mechanisms by which wheat tolerates alkali stress. The harmful effect of alkali stress on the growth and photosynthesis of wheat were stronger than those of salt stress. High-pH of alkali stress induced the most of phosphate and metal ions to precipitate; as a result, the availability of nutrients significantly declined. Under alkali stress, Ca sharply increased in roots, however, it decreased under salt stress. In addition, we detected the 75 metabolites that were different among the treatments according to GC-MS analysis, including organic acids, amino acids, sugars/polyols and others. The metabolic data showed salt stress and alkali stress caused different metabolic shifts; alkali stress has a stronger injurious effect on the distribution and accumulation of metabolites than salt stress. These outcomes correspond to specific detrimental effects of a highly pH environment. Ca had a significant positive correlation with alkali tolerates, and increasing Ca concentration can immediately trigger SOS Na exclusion system and reduce the Na injury. Salt stress caused metabolic shifts toward gluconeogenesis with increased sugars to avoid osmotic stress; energy in roots and active synthesis in leaves were needed by wheat to develop salt tolerance. Alkali stress (at high pH) significantly inhibited photosynthetic rate; thus, sugar production was reduced, N metabolism was limited, amino acid production was reduced, and glycolysis was inhibited.

  19. Genotoxic Effects of Superconducting Static Magnetic Fields (SMFs) on Wheat (Triticum aestivum) Pollen Mother Cells (PMCs)

    NASA Astrophysics Data System (ADS)

    Zhang, Pingping; Yin, Ruochun; Chen, Zhiyou; Wu, Lifang; Yu, Zengliang

    2007-04-01

    The effects of superconducting static magnetic fields (SMFs) on the pollen mother cells (PMCs) of wheat were investigated in order to evaluate the possible genotoxic effect of such non-ionizing radiation. The seeds of wheat were exposed to static magnetic fields with either different magnetic flux densities (0, 1, 3, 5 and 7 Tesla) for 5 h or different durations (1, 3 and 5 h) at a magnetic flux density of 7 Tesla. The seeds were germinated at 23oC after exposure and the seedlings were transplanted into the field. The PMCs from young wheat ears were taken and slides were made following the conventional method. The genotoxic effect was evaluated in terms of micronucleus (MN), chromosomal bridge, lagging chromosome and fragments in PMCs. Although the exposed groups of a low field intensity (below 5 Tesla) showed no statistically significant difference in the aberration frequency compared with the unexposed control groups and sham exposed groups, a significant increase in the chromosomal bridge, lagging chromosome, triple-polar segregation or micronucleus was observed at a field strength of 5 Tesla or 7 Tesla, respectively. The analysis of dose-effect relationships indicated that the increased frequency of meiotic abnormal cells correlated with the flux density of the magnetic field and duration, but no linear relationship was observed. Such statistically significant differences indicated a potential genotoxic effect of high static magnetic fields above 5 T.

  20. Toxicity of sulfadiazine and copper and their interaction to wheat (Triticum aestivum L.) seedlings.

    PubMed

    Xu, Yonggang; Yu, Wantai; Ma, Qiang; Zhou, Hua; Jiang, Chunming

    2017-08-01

    A pot experiment was carried out to investigate the single and combined effect of different concentrations of sulfadiazine (SDZ) (1 and 10mgkg(-1)) and copper (Cu) (20 and 200mgkg(-1)) stresses on growth, hydrogen peroxide (H2O2), malondialdehyde (MDA), antioxidant enzyme activities of wheat seedlings and their accumulation. High SDZ or Cu level significantly inhibited the growth of wheat seedlings, but the emergence rate was only inhibited by high SDZ level. The presence of Cu reduced the accumulation of SDZ, whereas the effect of SDZ on the accumulation of Cu depended on their concentrations. Low Cu level significantly increased the chlorophyll content, while high Cu level or both SDZ concentrations resulted in a significant decrease in the chlorophyll content as compared to the control. Additionally, H2O2 and MDA contents increased with the elevated SDZ or Cu level. The activities of superoxide dismutase, peroxidase and catalase were also stimulated by SDZ or Cu except for the aerial part treated by low Cu level and root treated by high SDZ level. The joint toxicity data showed that the toxicity of SDZ to wheat seedlings was generally alleviated by the presence of Cu, whereas the combined toxicity of SDZ and Cu was larger than equivalent Cu alone. Copyright © 2017. Published by Elsevier Inc.

  1. Agrobacterium-mediated large-scale transformation of wheat (Triticum aestivum L.) using glyphosate selection.

    PubMed

    Hu, T; Metz, S; Chay, C; Zhou, H P; Biest, N; Chen, G; Cheng, M; Feng, X; Radionenko, M; Lu, F; Fry, J

    2003-06-01

    An Agrobacterium-mediated transformation system with glyphosate selection has been developed for the large-scale production of transgenic plants. The system uses 4-day precultured immature embryos as explants. A total of 30 vectors containing the 5-enol-pyruvylshikimate-3-phosphate synthase gene from Agrobacterium strain CP4 (aroA:CP4), which confers resistance to glyphosate, were introduced into wheat using this system. The aroA:CP4 gene served two roles in this study-selectable marker and gene of interest. More than 3,000 transgenic events were produced with an average transformation efficiency of 4.4%. The entire process from isolation of immature embryos to production of transgenic plantlets was 50-80 days. Transgenic events were evaluated over several generations based on genetic, agronomic and molecular criteria. Forty-six percent of the transgenic events fit a 3:1 segregation ratio. Molecular analysis confirmed that four of six lead transgenic events selected from Agrobacterium transformation contained a single insert and a single copy of the transgene. Stable expression of theAROA:CP4 gene was confirmed by ELISA through nine generations. A comparison of Agrobacterium-mediated transformation to a particle bombardment system demonstrated that the Agrobacterium system is reproducible, has a higher transformation efficiency with glyphosate selection and produces higher quality transgenic events in wheat. One of the lead events from this study, no. 33391, has been identified as a Roundup Ready wheat commercial candidate.

  2. The optimal atmospheric CO2 concentration for the growth of winter wheat (Triticum aestivum).

    PubMed

    Xu, Ming

    2015-07-20

    This study examined the optimal atmospheric CO2 concentration of the CO2 fertilization effect on the growth of winter wheat with growth chambers where the CO2 concentration was controlled at 400, 600, 800, 1000, and 1200 ppm respectively. I found that initial increase in atmospheric CO2 concentration dramatically enhanced winter wheat growth through the CO2 fertilization effect. However, this CO2 fertilization effect was substantially compromised with further increase in CO2 concentration, demonstrating an optimal CO2 concentration of 889.6, 909.4, and 894.2 ppm for aboveground, belowground, and total biomass, respectively, and 967.8 ppm for leaf photosynthesis. Also, high CO2 concentrations exceeding the optima not only reduced leaf stomatal density, length and conductance, but also changed the spatial distribution pattern of stomata on leaves. In addition, high CO2 concentration also decreased the maximum carboxylation rate (Vc(max)) and the maximum electron transport rate (J(max)) of leaf photosynthesis. However, the high CO2 concentration had little effect on leaf length and plant height. The optimal CO2 fertilization effect found in this study can be used as an indicator in selecting and breeding new wheat strains in adapting to future high atmospheric CO2 concentrations and climate change.

  3. [Identification of catalytically active groups of wheat (Triticum aestivum L.) germ lipase].

    PubMed

    Korneeva, O S; Popova, T N; Kapranchikov, V S; Motina, E A

    2008-01-01

    The active site of wheat germ lipase was studied by the Dixon method and chemical modification. The profile of curve logV = f(pH), pK and ionization heat values, lipase photoinactivation, and lipase inactivation with diethylpyrocarbonate and dicyclohexylcarbodiimide led us to assume that the active site of the enzyme comprises the carboxylic group of aspartic or glutamic acid and the imidazole group of histidine. Apparently, the OH-group of serine plays a key role in catalysis: as a result of incubation for 1 h in the presence of phenylmethylsulfonyl fluoride, the enzyme activity decreased by more than 70%. It is shown that ethylenediamine tetraacetate is a noncompetitive inhibitor of lipase. Wheat germs are very healthful because they are rich in vitamins, essential amino acids, and proteins. For this reason, wheat germs are widely used in food, medical, and feed mill industries [1-3]. However, their use is limited by instability during storage, which is largely determined by the effect of hydrolytic and redox enzymes. Representative enzymes of this group are lipase (glycerol ester hydrolase, EC 3.1.1.3), which hydrolyzes triglycerides of higher fatty acids, and lipoxygenase (EC 1.13.11.13), which oxidizes polyunsaturated higher fatty acids.

  4. An Assessment of Heavy Ion Irradiation Mutagenesis for Reverse Genetics in Wheat (Triticum aestivum L.)

    PubMed Central

    Fitzgerald, Timothy L.; Powell, Jonathan J.; Stiller, Jiri; Weese, Terri L.; Abe, Tomoko; Zhao, Guangyao; Jia, Jizeng; McIntyre, C. Lynne; Li, Zhongyi; Manners, John M.; Kazan, Kemal

    2015-01-01

    Reverse genetic techniques harnessing mutational approaches are powerful tools that can provide substantial insight into gene function in plants. However, as compared to diploid species, reverse genetic analyses in polyploid plants such as bread wheat can present substantial challenges associated with high levels of sequence and functional similarity amongst homoeologous loci. We previously developed a high-throughput method to identify deletions of genes within a physically mutagenized wheat population. Here we describe our efforts to combine multiple homoeologous deletions of three candidate disease susceptibility genes (TaWRKY11, TaPFT1 and TaPLDß1). We were able to produce lines featuring homozygous deletions at two of the three homoeoloci for all genes, but this was dependent on the individual mutants used in crossing. Intriguingly, despite extensive efforts, viable lines possessing homozygous deletions at all three homoeoloci could not be produced for any of the candidate genes. To investigate deletion size as a possible reason for this phenomenon, we developed an amplicon sequencing approach based on synteny to Brachypodium distachyon to assess the size of the deletions removing one candidate gene (TaPFT1) in our mutants. These analyses revealed that genomic deletions removing the locus are relatively large, resulting in the loss of multiple additional genes. The implications of this work for the use of heavy ion mutagenesis for reverse genetic analyses in wheat are discussed. PMID:25719507

  5. Mass Spectrometric Characterization of Benzoxazinoid Glycosides from Rhizopus-Elicited Wheat (Triticum aestivum) Seedlings.

    PubMed

    de Bruijn, Wouter J C; Vincken, Jean-Paul; Duran, Katharina; Gruppen, Harry

    2016-08-17

    Benzoxazinoids function as defense compounds and have been suggested to possess health-promoting effects. In this work, the mass spectrometric behavior of benzoxazinoids from the classes benzoxazin-3-ones (with subclasses lactams, hydroxamic acids, and methyl derivatives) and benzoxazolinones was studied. Wheat seeds were germinated with simultaneous elicitation by Rhizopus. The seedling extract was screened for the presence of benzoxazinoid (glycosides) using reversed-phase ultra-high-performance liquid chromatography with photodiode array detection coupled in line to multiple-stage mass spectrometry (RP-UHPLC-PDA-MS(n)). Benzoxazin-3-ones from the different subclasses showed distinctly different ionization and fragmentation behaviors. These features were incorporated into a newly proposed decision guideline to aid the classification of benzoxazinoids. Glycosides of the methyl derivative 2-hydroxy-4-methoxy-1,4-benzoxazin-3-one were tentatively identified for the first time in wheat. We conclude that wheat seedlings germinated with simultaneous fungal elicitation contain a diverse array of benzoxazinoids, mainly constituted by benzoxazin-3-one glycosides.

  6. Increased puroindoline levels slow ruminal digestion of wheat (Triticum aestivum L.) starch by cattle.

    PubMed

    Swan, C G; Bowman, J G P; Martin, J M; Giroux, M J

    2006-03-01

    Starch is the primary nutrient in ruminant diets used to promote high levels of performance. The site of starch digestion alters the nature of digestive end products (VFA in the rumen vs. glucose in the small intestine) and the efficiency of use. Cereal grain endosperm texture plays a major role in the rate and extent of starch degradation in ruminants. Wheat grain texture is regulated by the starch surface protein complex friabilin that consists primarily of puroindoline (PIN) A and B. Soft kernel texture in wheat is a result of both PIN genes being in the wild type active form and bound to starch. The objective of this study was to investigate the effect of varying PIN content in wheat on the rate of starch digestion in the rumen of beef cattle. In Exp. 1, 6 transgenic soft pin a/b isolines created in a hard wheat background, and 2 hard wheat controls were milled to yield a wide range of mean particle sizes across all lines. Milled samples were incubated in situ for 3 h. Increased expression of both PINA and PINB decreased DM digestibility (DMD) by 29.2% (P < 0.05) and decreased starch digestibility by 30.8% (P < 0.05). Experiment 2 separated the effects of particle size and total PIN content on digestion by milling the hardest and softest lines such that the mean particle size was nearly identical. Increased PIN decreased DMD by 21.7% (P < 0.05) and starch digestibility by 19.9% (P < 0.05) across particle sizes smaller than whole kernel. Experiment 3 addressed the time course of PIN effects in the rumen by observing ground samples of the hardest and softest lines over a 12-h in situ period. Increased PIN decreased DMD by 10.4% (P < 0.05) and starch digestibility by 11.0% (P < 0.05) across all time points. Dry matter and starch digestibility results demonstrated that increased expression of PIN was associated with a decreased rate of ruminal digestion independent of particle size. Puroindolines seem to aid in the protection of starch molecules from microbial

  7. Interaction effects on uptake and toxicity of perfluoroalkyl substances and cadmium in wheat (Triticum aestivum L.) and rapeseed (Brassica campestris L.) from co-contaminated soil.

    PubMed

    Zhao, Shuyan; Fan, Ziyan; Sun, Lihui; Zhou, Tao; Xing, Yuliang; Liu, Lifen

    2017-03-01

    A vegetation study was conducted to investigate the interactive effects of perfluoroalkyl substances (PFASs), including perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), and Cadmium (Cd) on soil enzyme activities, phytotoxicity and bioaccumulation of wheat (Triticum aestivum L.) and rapeseed (Brassica campestris L.) from co-contaminated soil. Soil urease activities were inhibited significantly but catalase activities were promoted significantly by interaction of PFASs and Cd which had few effects on sucrase activities. Joint stress with PFASs and Cd decreased the biomass of plants and chlorophyll (Chl) content in both wheat and rapeseed, and malondialdehyde (MDA) content, superoxide dismutase (SOD) and peroxidase (POD) activities were increased in wheat but inhibited in rapeseed compared with single treatments. The bioconcentration abilities of PFASs in wheat and rapeseed were decreased, and the translocation factor of PFASs was decreased in wheat but increased in rapeseed with Cd addition. The bioaccumulation and translocation abilities of Cd were increased significantly in both wheat and rapeseed with PFASs addition. These findings suggested important evidence that the co-existence of PFASs and Cd reduced the bioavailability of PFASs while enhanced the bioavailability of Cd in soil, which increased the associated environmental risk for Cd but decreased for PFASs.

  8. Dynamic changes of rhizosphere properties and antioxidant enzyme responses of wheat plants (Triticum aestivum L.) grown in mercury-contaminated soils.

    PubMed

    Li, Yonghua; Sun, Hongfei; Li, Hairong; Yang, Linsheng; Ye, Bixiong; Wang, Wuyi

    2013-10-01

    A pot experiment was conducted to investigate the dynamic changes in the rhizosphere properties and antioxidant enzyme responses of wheat plants (Triticum aestivum L.) grown in three levels of Hg-contaminated soils. The concentrations of soluble Hg and dissolved organic carbon (DOC) in the rhizosphere soil solutions of the wheat plants were characterised by the sequence before sowing>trefoil stage>stooling stage, whereas the soil solution pH was found to follow an opposite distribution pattern. The activities of antioxidant enzymes in wheat plants under Hg stress were substantially altered. Greater superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) activities were observed in the wheat plants grown in a highly polluted soil than in a slightly polluted soil (with increases of 11-27% at the trefoil stage and 26-70% at the stooling stage); however, increasing concentrations of Hg up to seriously polluted level led to reduced enzyme activities. The present results suggest that wheat plants could positively adapt to environmental Hg stress, with rhizosphere acidification, the enhancement of DOC production and greater antioxidant enzyme activities perhaps being three important mechanisms involved in the metal uptake/tolerance in the rhizospheres of wheat plants grown in Hg-contaminated soils.

  9. Impact of transgene genome location on gene migration from herbicide-resistant wheat (Triticum aestivum L.) to jointed goatgrass (Aegilops cylindrica Host).

    PubMed

    Rehman, Maqsood; Hansen, Jennifer L; Mallory-Smith, Carol A; Zemetra, Robert S

    2017-08-01

    Wheat (Triticum aestivum) (ABD) and jointed goatgrass (Aegilops cylindrica) (CD) can cross and produce hybrids that can backcross to either parent. Such backcrosses can result in progeny with chromosomes and/or chromosome segments retained from wheat. Thus, a herbicide resistance gene could migrate from wheat to jointed goatgrass. In theory, the risk of gene migration from herbicide-resistant wheat to jointed goatgrass is more likely if the gene is located on the D genome and less likely if the gene is located on the A or B genome of wheat. BC1 populations (jointed goatgrass as a recurrent parent) were analyzed for chromosome numbers and transgene transmission rates under sprayed and non-sprayed conditions. Transgene retention in the non-sprayed BC1 generation for the A, B and D genomes was 84, 60 and 64% respectively. In the sprayed populations, the retention was 81, 59 and 74% respectively. The gene transmission rates were higher than the expected 50% or less under sprayed and non-sprayed conditions, possibly owing to meiotic chromosome restitution and/or chromosome non-disjunction. Such high transmission rates in the BC1 generation negates the benefits of gene placement for reducing the potential of gene migration from wheat to jointed goatgrass. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  10. Evidence of intralocus recombination at the Glu-3 loci in bread wheat (Triticum aestivum L.).

    PubMed

    Ibba, Maria I; Kiszonas, Alecia M; Morris, Craig F

    2017-05-01

    Recombination at the Glu-3 loci was identified, and strong genetic linkage was observed only between the amplicons representing i-type and s-type genes located, respectively, at the Glu-A3 and Glu-B3 loci. The low-molecular weight glutenin subunits (LMW-GSs) are one of the major components of wheat seed storage proteins and play a critical role in the determination of wheat end-use quality. The genes encoding this class of proteins are located at the orthologous Glu-3 loci (Glu-A3, Glu-B3, and Glu-D3). Due to the complexity of these chromosomal regions and the high sequence similarity between different LMW-GS genes, their organization and recombination characteristics are still incompletely understood. This study examined intralocus recombination at the Glu-3 loci in two recombinant inbred line (RIL) and one doubled haploid (DH) population, all segregating for the Glu-A3, Glu-B3, and Glu-D3 loci. The analysis was conducted using a gene marker system that consists of the amplification of the complete set of the LMW-GS genes and their visualization by capillary electrophoresis. Recombinant marker haplotypes were detected in all three populations with different recombination rates depending on the locus and the population. No recombination was observed between the amplicons representing i-type and s-type LMW-GS genes located, respectively, at the Glu-A3 and Glu-B3 loci, indicating tight linkage between these genes. Results of this study contribute to better understanding the genetic linkage and recombination between different LMW-GS genes, the structure of the Glu-3 loci, and the development of more specific molecular markers that better represent the genetic diversity of these loci. In this way, a more precise analysis of the contribution of various LMW-GSs to end-use quality of wheat may be achieved.

  11. Physiological and antioxidant response of wheat (Triticum aestivum) seedlings to fluoroquinolone antibiotics.

    PubMed

    Riaz, Luqman; Mahmood, Tariq; Coyne, Mark S; Khalid, Azeem; Rashid, Audil; Hayat, Malik Tahir; Gulzar, Asim; Amjad, Muhammad

    2017-06-01

    Combinations of antibiotics occur in terrestrial environments due to excessive prescription, consumption, and disposal and have adverse effects, including crop toxicity. We examined short-term (20-d) toxicity of the fluoroquinolone antibiotics ciprofloxacin, enrofloxacin, levofloxacin, and their mixture in a germination and a greenhouse sand culture study with wheat. We tested the hypothesis that oxidative stress plays a role in toxicity by examining stress products and antioxidants involved in detoxifying reactive oxygen species (ROS) during stress. Germination was unaffected by any antibiotic concentration or mixture used. The highest antibiotic concentrations, 100 and 300 mg L(-1), significantly decreased wheat growth. In 20 days exposure the maximum malondialdehyde production (2.45 μmol g(-1) fresh weight), total phenols (16.40 mg g(-1) of extract), and total antioxidant capacity (17.74 mg of Vitamin C g(-1) of extract) and maximum activities of superoxide dismutase (7.99 units mg(-1) protein min(-1)) and ascorbate peroxidase (0.69 μmol ascorbate mg(-1) protein min(-1)) significantly increased compared to the control. In contrast, catalase (0.45 mmol H2O2 mg(-1) protein min(-1)) and peroxidase (0.0005 units mg(-1) protein min(-1)) activity significantly decreased compared to the control. We conclude that high antibiotic concentrations in the plant growth medium reduced wheat growth by causing oxidative stress. The capacity to respond to oxidative stress was compromised by increasingly higher antibiotic concentrations in some enzyme systems. This stress damaged the physiological structure of the young plants and could reduce crop productivity in the long term. Consequently, fluoroquinolone-contaminated water challenges developing countries with constraints on available water for irrigation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Decay of enteric microorganisms in biosolids-amended soil under wheat (Triticum aestivum) cultivation.

    PubMed

    Schwarz, K R; Sidhu, J P S; Pritchard, D L; Li, Y; Toze, S

    2014-08-01

    There is a growing need for better assessment of health risks associated with land-applied biosolids. This study investigated in-situ decay of seeded human adenovirus (HAdV), Salmonella enterica, Escherichia coli, and bacteriophage (MS2) in biosolids-amended soil under wheat cultivation. The biosolids seeded with microorganisms were placed in decay chambers which were then placed in the topsoil (10 cm depth) at three different sites. Sites were selected in arid wheat-growing regions of Australia with loamy-sand soil type (Western Australia) and sandy soil (South Australia). Seeded E. coli and S. enterica had a relatively short decay time (T90 = 4-56 days) in biosolids-amended soil compared to un-amended soil (T90 = 8-83 days). The decreasing soil moisture over the wheat-growing season significantly (P < 0.05) influenced survival time of both bacteria and MS2 at Western Australia (Moora) and South Australia (Mt Compass) sites, particularly in the un-amended soils. Increasing soil temperature also significantly (P < 0.05) influenced the decay of MS2 at these sites. In this study, no notable decline in HAdV numbers (PCR detectable units) was observed in both biosolids-amended and the un-amended soils at all three sites. The HAdV decay time (T90 ≥ 180 days) in biosolids-amended and un-amended soils was significantly higher than MS2 (T90 = 22-108 days). The results of this study suggest that adenovirus could survive for a longer period of time (>180 days) during the winter in biosolids-amended soil. The stability of adenovirus suggests that consideration towards biosolids amendment frequency, time, rates and appropriate withholding periods are necessary for risk mitigation. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  13. Production of doubled haploids in durum wheat (Triticum turgidum L.) through isolated microspore culture.

    PubMed

    Cistué, L; Soriano, M; Castillo, A M; Vallés, M P; Sanz, J M; Echávarri, B

    2006-04-01

    The objective of this work was to produce doubled haploid plants from durum wheat through the induction of androgenesis. A microspore culture technique was developed and used to produce fertile doubled haploid plants of agronomic interest. Five cultivars, one selected line, plus a collection of 20 F(1) crosses between different genotypes of high breeding value were used. Studies on several factors such as pre-treatments and media components were carried out in order to develop a protocol to regenerate green haploid plantlets. Anthers were pre-treated in 0.7 M mannitol. Microspores, from anther maceration, were plated on a C(17) induction culture medium with ovary co-culture. The optimum regeneration medium J25-8 was used. From 35 microspore isolations, 407 green plantlets were obtained. With this technique mature embryos were obtained. Green plants were regenerated from all genotypes used and approximately 67% of them were spontaneously doubled haploids. Some haploids and a very few polyploids plants were obtained. From the 407 plants, 275 were completely fertile and gave enough seeds to be assayed in the field. This protocol could be used complementary to or instead of the intergeneric crossing with maize as an economically feasible method to obtain doubled haploids from most durum wheat genotypes.

  14. Changes in the nuclear proteome of developing wheat (Triticum aestivum L.) grain

    PubMed Central

    Bonnot, Titouan; Bancel, Emmanuelle; Chambon, Christophe; Boudet, Julie; Branlard, Gérard; Martre, Pierre

    2015-01-01

    Wheat grain end-use value is determined by complex molecular interactions that occur during grain development, including those in the cell nucleus. However, our knowledge of how the nuclear proteome changes during grain development is limited. Here, we analyzed nuclear proteins of developing wheat grains collected during the cellularization, effective grain-filling, and maturation phases of development, respectively. Nuclear proteins were extracted and separated by two-dimensional gel electrophoresis. Image analysis revealed 371 and 299 reproducible spots in gels with first dimension separation along pH 4–7 and pH 6–11 isoelectric gradients, respectively. The relative abundance of 464 (67%) protein spots changed during grain development. Abundance profiles of these proteins clustered in six groups associated with the major phases and phase transitions of grain development. Using nano liquid chromatography-tandem mass spectrometry to analyse 387 variant and non-variant protein spots, 114 different proteins were identified that were classified into 16 functional classes. We noted that some proteins involved in the regulation of transcription, like HMG1/2-like protein and histone deacetylase HDAC2, were most abundant before the phase transition from cellularization to grain-filling, suggesting that major transcriptional changes occur during this key developmental phase. The maturation period was characterized by high relative abundance of proteins involved in ribosome biogenesis. Data are available via ProteomeXchange with identifier PXD002999. PMID:26579155

  15. Extractability and chromatographic characterization of wheat (triticum aestivum l.) bran protein.

    PubMed

    De Brier, N; Gomand, S V; Celus, I; Courtin, C M; Brijs, K; Delcour, J A

    2015-05-01

    About 70% of the protein for human consumption is derived from plants, with cereals as the most important source. Wheat bran protein has a more balanced amino acid profile than that of flour. We here for the first time report the amino acid, size exclusion, and SDS-PAGE profiles of bran Osborne protein fractions (OPFs). Moreover, we also investigated how OPFs are affected when physical barriers which entrap proteins in bran tissues are removed. Albumin/globulin is the most abundant OPF. It is richer in lysine and asparagine/aspartic acid than other OPF. Most bran albumin/globulin proteins have a molecular weight (MW) lower than 30 k and their chromatographic profiles differ from those of flour. The prolamin has high levels of proline and glutamine/glutamic acid. It is rich in proteins with a MW of 30 to 45 k and about 66 k reflecting contamination with gliadin from endosperm. The glutelin has high levels of glycine, proline, and glutamine/glutamic acid. Its protein is of intermediate and high MW with little protein with MW lower than 30 k. The high (MWs from 80 to 120 k) and low (MW around 45 k) MW glutenin subunits of flour are also present in bran. The glutelin of wheat endosperm is named glutenin. Ball milling releases albumin/globulin and glutelin but not prolamin. Not all glutelin was endosperm glutenin as a substantial part was entrapped in the aleurone cells.

  16. Plant growth stimulation of wheat (Triticum aestivum L.) by inoculation of salinity tolerant Azotobacter strains.

    PubMed

    Chaudhary, Deepika; Narula, Neeru; Sindhu, S S; Behl, R K

    2013-10-01

    Five salinity tolerant Azotobacter strains i.e., ST3, ST6, ST9, ST17 and ST24 were obtained from saline soils. These Azotobacter strains were used as inoculant for wheat variety WH157 in earthen pots containing saline soil under pot house conditions, using three fertilizer treatment doses i.e., control (no fertilizer, no inoculation), 90 Kg N ha(-1) and 120 Kg N ha(-1). Inoculation with salinity tolerant Azotobacter strains caused significant increase in total nitrogen, biomass and grain yield of wheat. Maximum increase in plant growth parameters were obtained after inoculation with Azotobacter strain ST24 at fertilization dose of 120 kg N ha(-1) and its inoculation resulted in attaining 89.9 cms plant height, 6.1 g seed yield, 12.0 g shoot dry weight and 0.7 % total nitrogen. The survival of Azotobacter strain ST24 in the soil was also highest in all the treatments at 30, 60 and 90 days after sowing (DAS). However, the population of Azotobacter decreased on 90 DAS as compared to counts observed at 60 DAS at all the fertilization treatments.

  17. Mycoflora and deoxynivalenol in whole wheat grains (Triticum aestivum L.) from Southern Brazil.

    PubMed

    Savi, Geovana D; Piacentini, Karim C; Tibola, Casiane S; Scussel, Vildes M

    2014-01-01

    The fungal species Fusarium graminearum is related to deoxynivalenol (DON) formation. The aim of this study was to evaluate mycoflora and DON occurrence in 53 whole wheat grain samples collected in Southern Brazil during the 2012 crop. Wheat grains showed adequate values of water activity ranging from 0.48 to 0.72, within the required limits of moisture content, ranging from 9.1% to 13.9%. In addition, low counts of fungal colonies, ranging from 10 to 8.2 × 10(2), were found. For Fusarium genera, there was predominance of Fusarium verticillioides (34%) and F graminearum (30.2%). For Aspergillus species, 37.7% of Aspergillus flavus was determined. Regarding the Penicillium species, Penicillium digitatum (49%) was the most found species. DON was detected in 47.2% (25 out of 53) of the samples analysed, with levels ranging from 243.7 to 2281.3 µg kg(-1) (mean: 641.9 µg kg(-1)).

  18. Multi-walled carbon nanotubes can enhance root elongation of wheat ( Triticum aestivum) plants

    NASA Astrophysics Data System (ADS)

    Wang, Xiuping; Han, Heyou; Liu, Xueqin; Gu, Xiaoxu; Chen, Kun; Lu, Donglian

    2012-06-01

    The potential effects of oxidized multi-walled carbon nanotubes (o-MWCNTs) with a length ranging from 50 to 630 nm on the development and physiology of wheat plants were evaluated by examining their effects on seed germination, root elongation, stem length, and vegetative biomass at a concentration ranging from 10 to 160 μg/mL in the plant. Results indicated that after 7 days of exposure to the o-MWCNTs medium, faster root growth and higher vegetative biomass were observed, but seed germination and stem length did not show any difference as compared with controls. Moreover, a physiological study was conducted at cellular level using a traditional physiological approach to evidence the possible alterations in morphology, the cell length of root zone, and the dehydrogenase activity of seedlings. Transmission electron microscopy images revealed that o-MWCNTs could penetrate the cell wall and enter the cytoplasm after being taken up by roots. The cell length of root zone for the seedlings germinated and grown in the o-MWCNTs (80 μg/mL) medium increased by 1.4-fold and a significant concentration-dependent increase in the dehydrogenase activity for the o-MWCNT-treated wheat seedlings was detected. These findings suggest that o-MWCNTs can significantly promote cell elongation in the root system and increase the dehydrogenase activity, resulting in faster root growth and higher biomass production.

  19. Evaluation of some drought resistance criteria at seedling stage in wheat (Triticum aestivum L.) cultivars.

    PubMed

    Tavakol, E; Pakniyat, H

    2007-04-01

    This research was conducted to evaluate some of the drought resistance criteria at seedling stage in wheat. A factorial experiment in a Completely Randomized Design (CRD) was used with two factors consisted of stress levels (0, -5 and -8 bar) using PEG 6000 and genotypes (10 genotypes of bread wheat; Azar 2, Gahar, Koohdasht, Bow, Zagros, Cham, Niknejad, E1 Neilairi, Bohoih and Giza 164) in three replications in a hydroponic condition. Stress Tolerance Index (STI), Water Use Efficiency (WUE), Biological Yield (BY), Shoot Dry Weight (SDW), Root Dry Weight (RDW), Root/Shoot weight ratio (R/S), Root Length (RL), Relative Water Content (RWC), Wilting Percentage (WP) and first and 2nd Leaves Extention Rate (LER1 and LER2) were measured at seedling stage. Increasing stress levels caused reduction in BY, SDW, RDW, RL, RWC, LER1 and LER2, but an increase in WUE, DWR, R/S and WP. Azar2, Gahar, Koohdasht, Zagros and Bow were in favorite condition in regard to STI, WUE and other criteria. Therefore, they are drought tolerant and might be suitable genotypes at water deficit conditions. Niknejad, E1 Neilairi and Cham were moderate and Giza 164 and Bohoih were sensitive genotypes to drought conditions. This research revealed that at -5 bar, WUE, BY, SDW, R/S and LER2 and at -8 bar, WUE, BY and WP were suitable criteria for selection of drought resistant genotypes at seedling stage.

  20. Electrophoretic analysis of the high-molecular-weight glutenin subunits of Triticum monococcum, T. urartu, and the A genome of bread wheat (T. aestivum).

    PubMed

    Waines, J G; Payne, P I

    1987-05-01

    The high molecular weight (HMW) subunit composition of glutenin was analysed by sodium dodecyl sulphate, polyacrylamide gel electrophoresis (SDS-PAGE) in the A genome of 497 diploid wheats and in 851 landraces of bread wheat. The material comprised 209 accessions of wild Triticum monococcum ssp. boeoticum from Greece, Turkey, Lebanon, Armenia, Iraq, and Iran; 132 accessions of the primitive domesticate T. monococcum ssp. monococcum from many different germplasm collections; one accession of free-threshing T. monococcum ssp. sinskajae; 155 accessions of wild T. urartu from Lebanon, Turkey, Armenia, Iraq, and Iran; and landraces of T. aestivum, mainly from the Mediterranean area and countries bordering on the Himalayan Mountains. Four novel HMW glutenin sub-units were discovered in the landraces of bread wheat, and the alleles that control them were designated Glu-Ald through Glu-Alg, respectively. The HMW subunits of T. monococcum ssp. boeoticum have a major, "x" subunit of slow mobility and several, less prominent, "y" subunits of greater mobility, all of which fall within the mobility range of HMW subunits reported for bread wheat. In T. monococcum ssp. monococcum the range of the banding patterns for HMW subunits was similar to that of ssp. boeoticum. However, two accessions, while containing "y" subunits were null for "x" subunits. The single accession of Triticum monococcum ssp. sinskajae had a banding pattern similar to that of most ssp. boeoticum and ssp. monococcum accessions. The HMW subunit banding patterns of T. urartu accessions were distinct from those of T. monococcum. All of them contained one major "x" and most contained one major "y" subunit. In the other accessions a "y" subunit was not expressed. The active genes for "y" subunits, if transferred to bread wheat, may be useful in improving bread-making quality.

  1. Dynamics of small RNA profiles of virus and host origin in wheat cultivars synergistically infected by Wheat streak mosaic virus and Triticum mosaic virus: virus infection caused a drastic shift in the endogenous small RNA profile.

    PubMed

    Tatineni, Satyanarayana; Riethoven, Jean-Jack M; Graybosch, Robert A; French, Roy; Mitra, Amitava

    2014-01-01

    Co-infection of wheat (Triticum aestivum L.) by Wheat streak mosaic virus (WSMV, a Tritimovirus) and Triticum mosaic virus (TriMV, a Poacevirus) of the family Potyviridae causes synergistic interaction. In this study, the effects of the synergistic interaction between WSMV and TriMV on endogenous and virus-derived small interfering RNAs (vsiRNAs) were examined in susceptible ('Arapahoe') and temperature-sensitive resistant ('Mace') wheat cultivars at 18°C and 27°C. Single and double infections in wheat caused a shift in the profile of endogenous small RNAs from 24 nt being the most predominant in healthy plants to 21 nt in infected wheat. Massive amounts of 21 and 22 nt vsiRNAs accumulated in singly and doubly infected Arapahoe at both temperatures and in Mace at 27°C but not 18°C. The plus- and minus-sense vsiRNAs were distributed throughout the genomic RNAs in Arapahoe at both temperature regimens and in Mace at 27°C, although some regions served as hot-spots, spawning an excessive number of vsiRNAs. The vsiRNA peaks were conserved among cultivars, suggesting that the Dicer-like enzymes in susceptible and resistant cultivars similarly accessed the genomic RNAs of WSMV or TriMV. Accumulation of large amounts of vsiRNAs in doubly infected plants suggests that the silencing suppressor proteins encoded by TriMV and WSMV do not prevent the formation of vsiRNAs; thus, the synergistic effect observed is independent from RNA-silencing mediated vsiRNA biogenesis. The high-resolution map of endogenous and vsiRNAs from WSMV- and/or TriMV-infected wheat cultivars may form a foundation for understanding the virus-host interactions, the effect of synergistic interactions on host defense, and virus resistance mechanisms in wheat.

  2. Dynamics of Small RNA Profiles of Virus and Host Origin in Wheat Cultivars Synergistically Infected by Wheat Streak Mosaic Virus and Triticum Mosaic Virus: Virus Infection Caused a Drastic Shift in the Endogenous Small RNA Profile

    PubMed Central

    Tatineni, Satyanarayana; Riethoven, Jean-Jack M.; Graybosch, Robert A.; French, Roy; Mitra, Amitava

    2014-01-01

    Co-infection of wheat (Triticum aestivum L.) by Wheat streak mosaic virus (WSMV, a Tritimovirus) and Triticum mosaic virus (TriMV, a Poacevirus) of the family Potyviridae causes synergistic interaction. In this study, the effects of the synergistic interaction between WSMV and TriMV on endogenous and virus-derived small interfering RNAs (vsiRNAs) were examined in susceptible (‘Arapahoe’) and temperature-sensitive resistant (‘Mace’) wheat cultivars at 18°C and 27°C. Single and double infections in wheat caused a shift in the profile of endogenous small RNAs from 24 nt being the most predominant in healthy plants to 21 nt in infected wheat. Massive amounts of 21 and 22 nt vsiRNAs accumulated in singly and doubly infected Arapahoe at both temperatures and in Mace at 27°C but not 18°C. The plus- and minus-sense vsiRNAs were distributed throughout the genomic RNAs in Arapahoe at both temperature regimens and in Mace at 27°C, although some regions served as hot-spots, spawning an excessive number of vsiRNAs. The vsiRNA peaks were conserved among cultivars, suggesting that the Dicer-like enzymes in susceptible and resistant cultivars similarly accessed the genomic RNAs of WSMV or TriMV. Accumulation of large amounts of vsiRNAs in doubly infected plants suggests that the silencing suppressor proteins encoded by TriMV and WSMV do not prevent the formation of vsiRNAs; thus, the synergistic effect observed is independent from RNA-silencing mediated vsiRNA biogenesis. The high-resolution map of endogenous and vsiRNAs from WSMV- and/or TriMV-infected wheat cultivars may form a foundation for understanding the virus-host interactions, the effect of synergistic interactions on host defense, and virus resistance mechanisms in wheat. PMID:25365307

  3. Segregation for fertility and meiotic stability in novel Brassica allohexaploids.

    PubMed

    Mwathi, Margaret W; Gupta, Mehak; Atri, Chaya; Banga, Surinder S; Batley, Jacqueline; Mason, Annaliese S

    2017-04-01

    Allohexaploid Brassica populations reveal ongoing segregation for fertility, while genotype influences fertility and meiotic stability. Creation of a new Brassica allohexaploid species is of interest for the development of a crop type with increased heterosis and adaptability. At present, no naturally occurring, meiotically stable Brassica allohexaploid exists, with little data available on chromosome behaviour and meiotic control in allohexaploid germplasm. In this study, 100 plants from the cross B. carinata × B. rapa (A2 allohexaploid population) and 69 plants from the cross (B. napus × B. carinata) × B. juncea (H2 allohexaploid population) were assessed for fertility and meiotic behaviour. Estimated pollen viability, self-pollinated seed set, number of seeds on the main shoot, number of pods on the main shoot, seeds per ten pods and plant height were measured for both the A2 and H2 populations and for a set of reference control cultivars. The H2 population had high segregation for pollen viability and meiotic stability, while the A2 population was characterised by low pollen fertility and a high level of chromosome loss. Both populations were taller, but had lower average fertility trait values than the control cultivar samples. The study also characterises fertility and meiotic chromosome behaviour in genotypes and progeny sets in heterozygous allotetraploid Brassica derived lines, and indicates that genotypes of the parents and H1 hybrids are affecting chromosome pairing and fertility phenotypes in the H2 population. The identification and characterisation of factors influencing stability in novel allohexaploid Brassica populations will assist in the development of this as a new crop species for food and agricultural benefit.

  4. Protocol for efficient regulation of in vitro morphogenesis in einkorn (Triticum monococcum L.), a recalcitrant diploid wheat species

    PubMed Central

    Miroshnichenko, Dmitry; Chaban, Inna; Chernobrovkina, Mariya; Dolgov, Sergey

    2017-01-01

    Einkorn (Triticum monococcum L.) is A-genome diploid wheat that has a potential to become a useful model for understanding the biology and genomics in Triticeae. Unfortunately, the application of modern technologies such as genetic engineering, RNAi-based gene silencing and genome editing is not available for einkorn as there is no efficient in vitro tissue culture and plant regeneration system. In the present study an efficient and simple protocol for plant regeneration via direct or indirect somatic embryogenesis and organogenesis has been developed. Various auxins used as sole inductors in einkorn displayed low effect for morphogenesis (0–8%) and plant regeneration (1–2 shoots per explant). The addition of Daminozide, the inhibitor of biosynthesis of gibberellins, together with auxin significantly improved the formation of morphogenic structures, especially when Dicamba (51.4%) and Picloram (56.6%) were used for combination; furthermore, the simultaneous addition of cytokinin into induction medium significantly promoted in vitro performance. Among the tested cytokinins, the urea-type substances, such as TDZ and CPPU were more effective than the adenine type ones, BA and Zeatin, for the regulation of morphogenesis; especially, TDZ was more effective than CPPU for shoot formation (11.73 vs. 7.04 per regenerating callus). The highest morphogenic response of 90.2% with the production of more than 10 shoots per initial explant was observed when 3.0 mg/L Dicamba, 50.0 mg/L Daminozide and 0.25 mg/L TDZ were combined together. Along with the identification of appropriate induction medium, the optimal developmental stage for einkorn was found as partially transparent immature embryo in size of around 1.0 mm. Although in the present study the critical balance between plant growth regulators was established for einkorn only, we assume that further the proposed strategy could be successfully applied to other recalcitrant cereal species and genotypes. PMID:28273182

  5. Low-temperature tolerance and genetic potential in wheat (Triticum aestivum L.): response to photoperiod, vernalization, and plant development.

    PubMed

    Limin, Allen E; Fowler, D Brian

    2006-07-01

    It is frequently observed that winter habit types are more low-temperature (LT) tolerant than spring habit types. This raises the question of whether this is due to pleiotropic effects of the vernalization loci or to the linkage of LT-tolerance genes to these vernalization loci. Reciprocal near-isogenic lines (NILs) for alleles at the Vrn-A1 locus, Vrn-A1 and vrn-A1, determining spring and winter habit respectively, in two diverse genetic backgrounds of wheat (Triticum aestivum L.) were used to separate the effects of vernalization, photoperiod, and development on identical, or near identical, genetic backgrounds. The vrn-A1 allele in the winter lines allowed full expression of genotype dependent LT tolerance potential. The winter allele (vrn-A1) in a very cold tolerant genetic background resulted in 11 degrees C, or a 2.4-fold, greater LT tolerance compared to the spring allele. Similarly, the delay in development caused by short-day (SD) versus long-day (LD) photoperiod in the identical spring habit NIL resulted in an 8.5 degrees C or 2.1-fold, increase in LT tolerance. The duration of time in early developmental stages was shown to underlie full expression of genetic LT-tolerance potential. Therefore, pleiotropic effects of the vernalization loci can explain the association of LT tolerance and winter habit irrespective of either the proposed closely linked Fr-A1 or the more distant Fr-A2 LT-tolerance QTLs. Plant development progressively reduced LT-acclimation ability, particularly after the main shoot meristem had advanced to the double ridge reproductive growth stage. The Vrn-1 genes, or other members of the flowering induction pathway, are discussed as possible candidates for involvement in LT-tolerance repression.

  6. Effect of biochar on alleviation of cadmium toxicity in wheat (Triticum aestivum L.) grown on Cd-contaminated saline soil.

    PubMed

    Abbas, Tahir; Rizwan, Muhammad; Ali, Shafaqat; Adrees, Muhammad; Zia-Ur-Rehman, Muhammad; Qayyum, Muhammad Farooq; Ok, Yong Sik; Murtaza, Ghulam

    2017-04-10

    Soil degradation by salinity and accumulation of trace elements such as cadmium (Cd) in the soils are expected to become one of the most critical issues hindering sustainable production and feeding the increasing population. Biochar (BC) has been known to protect the plants against soil salinity and heavy metal stress. A soil culture study was performed to evaluate the effect of BC on wheat (Triticum aestivum L.) growth, biomass, and reducing Cd and sodium (Na) uptake grown in Cd-contaminated saline soil under ambient conditions. Soil salinity decreased the plant growth, biomass, grain yield, chlorophyll contents, and gas exchange parameters and caused oxidative stress in plants compared with Cd stress alone. Salt stress increased Cd and Na uptake and reduced the potassium (K) and zinc (Zn) uptake by plants. AB-DTPA-extractable Cd and soil electrical conductivity (ECe) increased under salt stress compared to the soil without NaCl stress. Biochar application improved the plant growth and reduced the Cd and Na uptake except in plants treated with higher BC and salt stress (5.0% BC + 50 mM NaCl). Biochar application reduced the oxidative stress in plants and modified the antioxidant enzyme activities, and reduced the bioavailable Cd under salt stress. The positive effects of BC under lower salt stress while the negative effects of BC under higher BC and salt levels indicated that BC doses should be used with great care in higher soil salinity levels simultaneously contaminated with Cd to avoid the negative effects of BC on growth and metal uptake.

  7. Plant water uptake by hard red winter wheat (Triticum aestivum L.) genotypes at 2 degrees C and low light intensity.

    PubMed

    Kenefick, Donald G; Koepke, James A; Sutton, Fedora

    2002-09-26

    Hard red winter wheat (HRWW; Triticum aestivm L.) plants from genotypes selected in the Northern Great Plains of the U.S. have less tissue water after exposure to cool autumn temperatures than plants from the Southern Great Plains. It is generally assumed that the reduced tissue water content of northern compared to southern cultivars is due to an impedance to water uptake by northern plants as a result of the low autumn temperatures. We hypothesize that if low temperature impedes water uptake then less soil water would be removed by northern than by southern-selected cultivars. This hypothesis was tested by comparing plant water uptake of a northern (FR) and a southern (FS) cultivar in relation to their foliage water content at 2 degrees C. At 2 degrees C foliage water content of FR plants decreased more rapidly than that of FS plants, similar to field results in the fall. During 6 wk, foliage water content of FR plants decreased 20 to 25% of the pre-treatment value, compared to only 5 to 10% by FS plants. Plant water uptake was about 60 g H2O*g FDW(-1) by FS plants, while FR plants maintained plant water uptake in excess of 100 g H2O*g FDW(-1) during the 6 wk period at 2 degrees C. When four other northern genotypes of equal freeze resistance were studied, foliage water content and plant water uptake change were similar to FR plants. In these northern-selected HRWW cultivars foliage water content reduction resulting from cold acclimation is not due to impedance to plant water uptake.

  8. Arbuscular Mycorrhiza Augments Arsenic Tolerance in Wheat (Triticum aestivum L.) by Strengthening Antioxidant Defense System and Thiol Metabolism.

    PubMed

    Sharma, Surbhi; Anand, Garima; Singh, Neeraja; Kapoor, Rupam

    2017-01-01

    Arbuscular mycorrhiza (AM) can help plants to tolerate arsenic (As) toxicity. However, plant responses are found to vary with the host plant and the AM fungal species. The present study compares the efficacy of two AM fungi Rhizoglomus intraradices (M1) and Glomus etunicatum (M2) in amelioration of As stress in wheat (Triticum aestivum L. var. HD-2967). Mycorrhizal (M) and non-mycorrhizal (NM) wheat plants were subjected to four levels of As (0, 25, 50, and 100 mg As kg(-1) soil). Although As additions had variable effects on the percentage of root colonized by the two fungal inoculants, each mycobiont conferred benefits to the host plant. Mycorrhizal plants continued to display better growth than NM plants. Formation of AM helped the host plant to overcome As-induced P deficiency and maintained favorable P:As ratio. Inoculation of AMF had variable effects on the distribution of As in plant tissues. While As translocation factor decreased in low As (25 mg kg(-1) soil), it increased under high As (50 and 100 mg As kg(-1) soil). Further As translocation to grain was reduced (As grain:shoot ratio) in M plants compared with NM plants. Arsenic-induced oxidative stress (generation of H2O2 and lipid peroxidation) in plants reduced significantly by AMF inoculation. The alleviation potential of AM was more evident with increase in severity of As stress. Colonization of AMF resulted in higher activities of the antioxidant enzymes (superoxide dismutase, catalase, and guaiacol peroxidase). It increased the concentrations of the antioxidant molecules (carotenoids, proline, and α-tocopherol) than their NM counterparts at high As addition level. Comparatively higher activities of enzymes of glutathione-ascorbate cycle in M plants led to higher ascorbate:dehydroascorbate (AsA:DHA) and glutathione:glutathione disulphide (GSH:GSSG) ratios. Inoculation by AMF also augmented the glyoxalase system by increasing the activities of both glyoxalase I and glyoxalase II enzymes. Mycorrhizal

  9. Higher Ammonium Transamination Capacity Can Alleviate Glutamate Inhibition on Winter Wheat (Triticum aestivum L.) Root Growth under High Ammonium Stress

    PubMed Central

    Liu, Yang; Tian, Zhongwei; Muhammad, Abid; Zhang, Yixuan; Jiang, Dong; Cao, Weixing; Dai, Tingbo

    2016-01-01

    Most of the studies about NH4+ stress mechanism simply address the effects of free NH4+, failing to recognize the changed nitrogen assimilation products. The objective of this study was to elucidate the effects of glutamate on root growth under high ammonium (NH4+) conditions in winter wheat (Triticum aestivum L.). Hydroponic experiments were conducted using two wheat cultivars, AK58 (NH4+-sensitive) and Xumai25 (NH4+-tolerant) with either 5 mM NH4+ nitrogen (AN) as stress treatment or 5 mM nitrate (NO3-) nitrogen as control. To evaluate the effects of NH4+-assimilation products on plant growth, 1 μM L-methionine sulfoximine (MSO) (an inhibitor of glutamine synthetase (GS)) and 1 mM glutamates (a primary N assimilation product) were added to the solutions, respectively. The AN significantly reduced plant biomass, total root length, surface area and root volume in both cultivars, but less effect was observed in Xumai25. The inhibition effects were alleviated by the application of MSO but strengthened by the application of glutamate. The AN increased the activities of GS, glutamate dehydrogenase (GDH) in both cultivars, resulting in higher glutamate contents. However, its contents were decreased by the application of MSO. Compared to AK58, Xumai25 showed lower glutamate contents due to its higher activities of glutamic-oxaloacetic transaminase (GOT) and glutamic-pyruvic transaminase (GPT). With the indole-3-acetic acid (IAA) contents decreasing in roots, the ratio of shoot to root in IAA was increased, and further increased by the application of glutamate, and reduced by the application of MSO, but the ratio was lower in Xumai25. Meanwhile, the total soluble sugar contents and its root to shoot ratio also showed similar trends. These results indicate that the NH4+-tolerant cultivar has a greater transamination ability to prevent glutamate over-accumulation to maintain higher IAA transport ability, and consequently promoted soluble sugar transport to roots, further

  10. Chromosomal location of genes for novel glutenin subunits and gliadins in wild emmer wheat (Triticum turgidum L. var. dicoccoides).

    PubMed

    Xu, S S; Khan, K; Klindworth, D L; Faris, J D; Nygard, G

    2004-05-01

    The glutenin and gliadin proteins of wild emmer wheat, Triticum turgidum L. var. dicoccoides, have potential for improvement of durum wheat ( T. turgidum L. var. durum) quality. The objective of this study was to determine the chromosomes controlling the high molecular weight (HMW) glutenin subunits and gliadin proteins present in three T. turgidum var. dicoccoides accessions (Israel-A, PI-481521, and PI-478742), which were used as chromosome donors in Langdon durum- T. turgidum var. dicoccoides (LDN-DIC) chromosome substitution lines. The three T. turgidum var. dicoccoides accessions, their respective LDN-DIC substitution lines, and a number of controls with known HMW glutenin subunits were analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), urea/SDS-PAGE, and acid polyacrylamide gel electrophoresis (A-PAGE). The results revealed that all three T. turgidum var. dicoccoides accessions possess Glu-A1 alleles that are the same as or similar to those reported previously. However, each T. turgidum var. dicoccoides accession had a unique Glu-B1 allele. PI-478742 had an unusual 1Bx subunit, which had mobility slightly slower than the 1Ax subunit in 12% SDS-PAGE gels. The subunits controlled by chromosome 1B of PI-481521 were slightly faster in mobility than the subunits of the Glu-B1n allele, and the 1By subunit was identified as band 8. The 1B subunits of Israel-A had similar mobility to subunits 14 and 16. The new Glu-B1 alleles were designated as Glu-B1be in Israel-A, Glu-B1bf in PI-481521, and Glu-B1bg in PI-478742. Results from A-PAGE revealed that PI-481521, PI-478742, and Israel-A had eight, 12, and nine unique gliadin bands, respectively, that were assigned to specific chromosomes. The identified glutenin subunits and gliadin proteins in the LDN-DIC substitution lines provide the basis for evaluating their effects on end-use quality, and they are also useful biochemical markers for identifying specific chromosomes or chromosome

  11. Arbuscular Mycorrhiza Augments Arsenic Tolerance in Wheat (Triticum aestivum L.) by Strengthening Antioxidant Defense System and Thiol Metabolism

    PubMed Central

    Sharma, Surbhi; Anand, Garima; Singh, Neeraja; Kapoor, Rupam

    2017-01-01

    Arbuscular mycorrhiza (AM) can help plants to tolerate arsenic (As) toxicity. However, plant responses are found to vary with the host plant and the AM fungal species. The present study compares the efficacy of two AM fungi Rhizoglomus intraradices (M1) and Glomus etunicatum (M2) in amelioration of As stress in wheat (Triticum aestivum L. var. HD-2967). Mycorrhizal (M) and non-mycorrhizal (NM) wheat plants were subjected to four levels of As (0, 25, 50, and 100 mg As kg-1 soil). Although As additions had variable effects on the percentage of root colonized by the two fungal inoculants, each mycobiont conferred benefits to the host plant. Mycorrhizal plants continued to display better growth than NM plants. Formation of AM helped the host plant to overcome As-induced P deficiency and maintained favorable P:As ratio. Inoculation of AMF had variable effects on the distribution of As in plant tissues. While As translocation factor decreased in low As (25 mg kg-1 soil), it increased under high As (50 and 100 mg As kg-1 soil). Further As translocation to grain was reduced (As grain:shoot ratio) in M plants compared with NM plants. Arsenic-induced oxidative stress (generation of H2O2 and lipid peroxidation) in plants reduced significantly by AMF inoculation. The alleviation potential of AM was more evident with increase in severity of As stress. Colonization of AMF resulted in higher activities of the antioxidant enzymes (superoxide dismutase, catalase, and guaiacol peroxidase). It increased the concentrations of the antioxidant molecules (carotenoids, proline, and α-tocopherol) than their NM counterparts at high As addition level. Comparatively higher activities of enzymes of glutathione-ascorbate cycle in M plants led to higher ascorbate:dehydroascorbate (AsA:DHA) and glutathione:glutathione disulphide (GSH:GSSG) ratios. Inoculation by AMF also augmented the glyoxalase system by increasing the activities of both glyoxalase I and glyoxalase II enzymes. Mycorrhizal

  12. UPLC-QTOF analysis reveals metabolomic changes in the flag leaf of wheat (Triticum aestivum L.) under low-nitrogen stress.

    PubMed

    Zhang, Yang; Ma, Xin-Ming; Wang, Xiao-Chun; Liu, Ji-Hong; Huang, Bing-Yan; Guo, Xiao-Yang; Xiong, Shu-Ping; La, Gui-Xiao

    2017-02-01

    Wheat is one of the most important grain crop plants worldwide. Nitrogen (N) is an essential macronutrient for the growth and development of wheat and exerts a marked influence on its metabolites. To investigate the influence of low nitrogen stress on various metabolites of the flag leaf of wheat (Triticum aestivum L.), a metabolomic analysis of two wheat cultivars under different induced nitrogen levels was conducted during two important growth periods based on large-scale untargeted metabolomic analysis using ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF). Multivariate analyses-such as principle components analysis (PCA) and orthogonal partial least square discriminant analysis (OPLS-DA)-were used for data analysis. PCA yielded distinctive clustering information among the samples, classifying the wheat flag samples into two categories: those under normal N treatment and low N treatment. By processing OPLS-DA, eleven secondary metabolites were shown to be responsible for classifying the two groups. The secondary metabolites may be considered potential biomarkers of low nitrogen stress. Chemical analyses showed that most of the identified secondary metabolites were flavonoids and their related derivatives, such as iso-vitexin, iso-orientin and methylisoorientin-2″-O-rhamnoside, etc. This study confirmed the effect of low nitrogen stress on the metabolism of wheat, and revealed that the accumulation of secondary metabolites is a response to abiotic stresses. Meanwhile, we aimed to identify markers which could be used to monitor the nitrogen status of wheat crops, presumably to guide appropriate fertilization regimens. Furthermore, the UPLC-QTOF metabolic platform technology can be used to study metabolomic variations of wheat under abiotic stresses. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  13. Green manure and long-term fertilization effects on soil zinc and cadmium availability and uptake by wheat (Triticum aestivum L.) at different growth stages.

    PubMed

    Grüter, Roman; Costerousse, Benjamin; Bertoni, Angelina; Mayer, Jochen; Thonar, Cécile; Frossard, Emmanuel; Schulin, Rainer; Tandy, Susan

    2017-12-01

    Zinc (Zn) deficiency in human populations depending on cereals as a main source of Zn is a global malnutrition problem. In this field study, we investigated the potential of green manure application to increase soil Zn availability and wheat grain Zn concentrations (biofortification) on a Luvisol with different long-term fertilizer management. We also studied cadmium (Cd), as wheat is a major contributor of this undesired non-essential element to human diets. Clover (Trifolium alexandrinum L.), mustard (Sinapis alba L.) or no green manure was grown on field plots which had been managed with farmyard manure or mineral fertilizers for 65years in Switzerland. After green manure incorporation into the soil, spring wheat (Triticum aestivum L.) was grown on all plots. The "diffusive gradients in thin films" (DGT) method and DTPA extraction were used to compare soil Zn and Cd availability among the treatments. In contrast to mustard, clover increased soil mineral nitrogen concentrations and wheat biomass; however, neither increased grain Zn concentrations. DGT-available Zn and Cd increased temporarily after both farmyard manure and mineral nitrogen fertilizer application. Higher DTPA-extractable soil Zn and Cd, lower wheat grain yields, but higher grain Zn concentrations were obtained with farmyard manure compared to mineral fertilizers, independent of the green manure treatment. Farmyard manure added Zn, Cd and organic matter that increased the soil binding capacity for Zn and Cd. The decomposition of clover residues caused higher wheat grain yields, but only marginally lower grain Zn concentrations. The absence of a stronger dilution of grain Zn was probably due to organic acid and nitrogen release from decomposing clover, which facilitated Zn uptake by wheat. The study revealed that both long- and short-term field management with organic matter alters soil Zn and Cd concentrations but that the long-term effects dominate their uptake by wheat, in Zn sufficient soil

  14. Different site-specific N-glycan types in wheat (Triticum aestivum L.) PAP phytase.

    PubMed

    Dionisio, Giuseppe; Brinch-Pedersen, Henrik; Welinder, Karen Gjesing; Jørgensen, Malene

    2011-07-01

    Phytase activity in grain is essential to make phosphate available to cell metabolism, and in food and feed. Cereals contain the purple acid phosphatase type of phytases (PAPhy). Mature wheat grain is dominated by TaPAPhy_a which, in the present work, has been characterized by extensive peptide and glycopeptide sequencing by mass spectrometry. Seven N-linked glycosylation sites were found. Three of these sites were dominated by variant forms of the XylMan(3)FucGlcNAc(2), i.e. the HRP-type of glycan. Complex-type glycans with one or two additional GlcNAc were observed, however in trace amounts only. At four sites the glycan consisted of a single GlcNAc residue. The mature protein is ca. 500 residues in size and appears to be truncated at the N- and C-termini. Copyright © 2011. Published by Elsevier Ltd.

  15. Mitochondria are the main target for oxidative damage in leaves of wheat (Triticum aestivum L.).

    PubMed

    Bartoli, Carlos Guillermo; Gómez, Facundo; Martínez, Dana Ethel; Guiamet, Juan José

    2004-08-01

    Photosynthesis, respiration, and other processes produce reactive oxygen species (ROS) that can cause oxidative modifications to proteins, lipids, and DNA. The production of ROS increases under stress conditions, causing oxidative damage and impairment of normal metabolism. In this work, oxidative damage to various subcellular compartments (i.e. chloroplasts, mitochondria, and peroxisomes) was studied in two cultivars of wheat differing in ascorbic acid content, and growing under good irrigation or drought. In well-watered plants, mitochondria contained 9-28-fold higher concentrations of oxidatively modified proteins than chloroplasts or peroxisomes. In general, oxidative damage to proteins was more intense in the cultivar with the lower content of ascorbic acid, particularly in the chloroplast stroma. Water stress caused a marked increase in oxidative damage to proteins, particularly in mitochondria and peroxisomes. These results indicate that mitochondria are the main target for oxidative damage to proteins under well-irrigated and drought conditions.

  16. Genetic architecture of seed longevity in bread wheat (Triticum aestivum L.).

    PubMed

    Arif, Mian Abdur Rehman; Nagel, Manuela; Lohwasser, Ulrike; Borner, Andreas

    2017-03-01

    The deterioration in the quality of ex situ conserved seed over time reflects a combination of both physical and chemical changes. Intraspecific variation for longevity is, at least in part, under genetic control. Here, the grain of 183 bread wheat accessions maintained under low-temperature storage at the IPK-Gatersleben genebank over some decades have been tested for their viability, along with that of fresh grain subjected to two standard artificial ageing procedures. A phenotype-genotype association analysis, conducted to reveal the genetic basis of the observed variation between accessions, implicated many regions of the genome, underling the genetic complexity of the trait. Some, but not all, of these regions were associated with variation for both natural and experimental ageing, implying some non-congruency obtains between these two forms of testing for longevity. The genes underlying longevity appear to be independent of known genes determining dormancy and pre-harvest sprouting.

  17. Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat ( Triticum aestivum L.).

    PubMed

    Börner, A.; Schumann, E.; Fürste, A.; Cöster, H.; Leithold, B.; Röder, S.; Weber, E.

    2002-11-01

    A set of 114 recombinant inbred lines of the 'International Triticeae Mapping Initiative' mapping population was grown during the seasons 1997, 1998, 1999 and 2000 under several environments. Twenty morphological (glume colour, awn colour, waxiness, leaf erectness, peduncle length), agronomical (ear emergence time, flowering time, grain filling time, ear length, plant height, lodging, grain number, thousand-grain-weight, grain weight per ear, grain protein content, winter hardiness) and disease resistance (powdery mildew, yellow rust, leaf rust, fusarium) traits were studied. Not all traits were scored in each experiment. In total 210 QTLs with a LOD threshold of >2.0 (minor QTLs) were detected of which 64 reached a LOD score of >3.0 (major QTLs). Often QTLs were detected in comparable positions in different experiments. Homologous and homoeologous relationships of the detected QTLs, and already described major genes or QTLs determining the same traits in wheat or other Triticeae members, are discussed.

  18. Isolation and characterization of an endosperm-specific promoter from wheat (Triticum aestivum L.).

    PubMed

    Song, Fei; Cui, Cui-Ju; Chen, Ling; Sun, Yang-Liu; Wang, Fei-Fei; Hussain, Javeed; Li, Yin; Wang, Chen; Wang, Cheng; Chen, Ming-Jie; Wang, Yue-Sheng; Yang, Guang-Xiao; He, Guang-Yuan

    2012-01-01

    Genes coding for avenin-like proteins (ALP) represent a new family of wheat storage protein genes. To find a wheat endosperm-specific promoter, a 1644-bp fragment upstream of the ALP type-B gene (GenBank accession number JN622144) was isolated. The important promoter elements of the ALP type-B gene were ascertained through sequence analysis which revealed that this fragment contains the TATA and CAAT boxes, which are important elements in gene expression. A prolamin box containing an endosperm motif and a GCN4-like motif (GLM) is present at about 300 bp upstream of the translation start site. The promoter sequence has two ESP-like elements and one of them is followed by an RY motif with the nucleotides CATG overlapping. The RY motif is considered the core functional sequence in a promoter. In an attempt to confirm the promoter activity, a series of 5'-deletions of the promoter were fused with the beta-glucuronidase (GUS) gene, and the constructs were stably introduced into tobacco plants. GUS staining confirmed that the AVL type-B promoter is an endosperm-specific promoter in tobacco seeds. Quantitative analysis of GUS expression in transgenic plants showed that even the shortest 5'-deletion, i.e. a 290-bp promoter sequence within the prolamin box, was sufficient to drive GUS expression in the endosperm. The highest expression level was found in transgenic plants containing the 5'-deletion vector construct pALP-8. This suggests that the ESP-like element overlapping with the RY motif may play a crucial role in the regulatory function of the promoter.

  19. Expression and functional analysis of TaASY1 during meiosis of bread wheat (Triticum aestivum)

    PubMed Central

    Boden, Scott A; Shadiac, Nadim; Tucker, Elise J; Langridge, Peter; Able, Jason A

    2007-01-01

    Background Pairing and synapsis of homologous chromosomes is required for normal chromosome segregation and the exchange of genetic material via recombination during meiosis. Synapsis is complete at pachytene following the formation of a tri-partite proteinaceous structure known as the synaptonemal complex (SC). In yeast, HOP1 is essential for formation of the SC, and localises along chromosome axes during prophase I. Homologues in Arabidopsis (AtASY1), Brassica (BoASY1) and rice (OsPAIR2) have been isolated through analysis of mutants that display decreased fertility due to severely reduced synapsis of homologous chromosomes. Analysis of these genes has indicated that they play a similar role to HOP1 in pairing and formation of the SC through localisation to axial/lateral elements of the SC. Results The full length wheat cDNA and genomic clone, TaASY1, has been isolated, sequenced and characterised. TaASY1 is located on chromosome Group 5 and the open reading frame displays significant nucleotide sequence identity to OsPAIR2 (84%) and AtASY1 (63%). Transcript and protein analysis showed that expression is largely restricted to meiotic tissue, with elevated levels during the stages of prophase I when pairing and synapsis of homologous chromosomes occur. Immunolocalisation using transmission electron microscopy showed TaASY1 interacts with chromatin that is associated with both axial elements before SC formation as well as lateral elements of formed SCs. Conclusion TaASY1 is a homologue of ScHOP1, AtASY1 and OsPAIR2 and is the first gene to be isolated from bread wheat that is involved in pairing and synapsis of homologous chromosomes. PMID:17683575

  20. Solar Radiation-Associated Adaptive SNP Genetic Differentiation in Wild Emmer Wheat, Triticum dicoccoides

    PubMed Central

    Ren, Jing; Chen, Liang; Jin, Xiaoli; Zhang, Miaomiao; You, Frank M.; Wang, Jirui; Frenkel, Vladimir; Yin, Xuegui; Nevo, Eviatar; Sun, Dongfa; Luo, Ming-Cheng; Peng, Junhua

    2017-01-01

    Whole-genome scans with large number of genetic markers provide the opportunity to investigate local adaptation in natural populations and identify candidate genes under positive selection. In the present study, adaptation genetic differentiation associated with solar radiation was investigated using 695 polymorphic SNP markers in wild emmer wheat originated in a micro-site at Yehudiyya, Israel. The test involved two solar radiation niches: (1) sun, in-between trees; and (2) shade, under tree canopy, separated apart by a distance of 2–4 m. Analysis of molecular variance showed a small (0.53%) but significant portion of overall variation between the sun and shade micro-niches, indicating a non-ignorable genetic differentiation between sun and shade habitats. Fifty SNP markers showed a medium (0.05 ≤ FST ≤ 0.15) or high genetic differentiation (FST > 0.15). A total of 21 outlier loci under positive selection were identified by using four different FST-outlier testing algorithms. The markers and genome locations under positive selection are consistent with the known patterns of selection. These results suggested that genetic differentiation between sun and shade habitats is substantial, radiation-associated, and therefore ecologically determined. Hence, the results of this study reflected effects of natural selection through solar radiation on EST-related SNP genetic diversity, resulting presumably in different adaptive complexes at a micro-scale divergence. The present work highlights the evolutionary theory and application significance of solar radiation-driven natural selection in wheat improvement. PMID:28352272

  1. Physical and stress-strain properties of wheat (Triticum aestivum) kernel.

    PubMed

    Babić, Ljiljana; Babić, Mirko; Turan, Jan; Matić-Kekić, Snežana; Radojčin, Milivoj; Mehandžić-Stanišić, Sanja; Pavkov, Ivan; Zoranović, Miodrag

    2011-05-01

    Two hard wheat varieties and one soft variety grown under the same agroecological conditions were analyzed for their physical and uniaxial stress-strain compression properties. The physical properties of wheat kernel were determined at a moisture content of 0.13 kg kg(-1) (wet basis), whereas the stress-strain compression test was conducted at a kernel moisture content from 0.082 to 0.433 kg kg(-1) . Mean kernel lengths were 5.46 (5.37 and 5.38) mm, widths were 2.56 (2.47 and 2.62) mm and thicknesses were 2.12 (2.18 and 2.43) mm for Simonida, Dragana and NS 40S cultivars, respectively. Bulk densities were 791.34 (Simonida), 788.51 (Dragana) and 731.77 kg m(-3) (NS 40S). The force at the yield point was 241.46 N for Dragana (moisture content 0.133 kg kg(-1) ), 244.30 N for Simonida (0.136 kg kg(-1) ) and 164.90 N for NS 40S (0.433 kg kg(-1) ). The width and thickness of the analyzed kernels were small compared with the length, and bulk densities were also moderate. The yield point force values of the two hard varieties were 2.2 times higher than the values of the soft variety, at a moisture content of 0.136 kg kg(-1) for Simonida, 0.133 kg kg(-1) for Dragana and 0.141 kg kg(-1) for NS 40S. Copyright © 2011 Society of Chemical Industry.

  2. Differential expression of molybdenum transport and assimilation genes between two winter wheat cultivars (Triticum aestivum).

    PubMed

    Nie, Zhaojun; Hu, Chengxiao; Liu, Hongen; Tan, Qiling; Sun, Xuecheng

    2014-09-01

    Molybdenum (Mo) is an essential trace element for higher plants. Winter wheat cultivar 97003 has a higher Mo efficiency than 97014 under Mo-deficiency stress. Mo efficiency is related to Mo uptake, transfer and assimilation in plants. Several genes are involved in regulating Mo uptake, transfer and assimilation in plants. To obtain a better understanding of the aforementioned difference in Mo uptake, we have conducted a hydroponic trail to investigate the expression of genes related to Mo uptake, transfer and assimilation in the above two cultivars. The results indicate a closed relationship between Mo uptake and TaSultr5.1, TaSultr5.2 and TaCnx1 expression, according to a stepwise regression analysis of the time course of Mo uptake in the two cultivars. Meanwhile, expression of TaSultr5.2 in roots also showed a positive relationship with Mo uptake rates. 97003 had stronger Mo uptake than 97014 at low Mo-application rates (less than 1 μmol Mo L(-1)) due to the higher expression of TaSultr5.2, TaSultr5.1 and TaCnx1 in roots. On the contrary, Mo uptake of 97003 was weaker than 97014 at high Mo application rates (ranging from 5 to 20 μmol Mo L(-1)), which was related to significant down-regulation of TaSultr5.2 and TaCnx1 genes in roots of 97003 compared to 97014. Therefore, we speculated that the differential-expression intensities of TaSultr5.2, TaSultr5.1 and TaCnx1 could be the cause of the difference in Mo uptake between the two winter wheat cultivars at low and high Mo application levels.

  3. TaSCL14, a novel wheat (Triticum aestivum L.) GRAS gene, regulates plant growth, photosynthesis, tolerance to photooxidative stress, and senescence.

    PubMed

    Chen, Kunmei; Li, Hongwei; Chen, Yaofeng; Zheng, Qi; Li, Bin; Li, Zhensheng

    2015-01-20

    Rates of photosynthesis, tolerance to photooxidative stress, and senescence are all important physiological factors that affect plant development and thus agricultural productivity. GRAS proteins play essential roles in plant growth and development as well as in plant responses to biotic and abiotic stresses. So far few GRAS genes in wheat (Triticum aestivum L.) have been characterized. A previous transcriptome analysis indicated that the expression of a GRAS gene (TaSCL14) was induced by high-light stress in Xiaoyan 54 (XY54), a common wheat cultivar with strong tolerance to high-light stress. In this study, TaSCL14 gene was isolated from XY54 and mapped on chromosome 4A. TaSCL14 was expressed in various wheat organs, with high levels in stems and roots. Our results confirmed that TaSCL14 expression was indeed responsive to high-light stress. Barley stripe mosaic virus (BSMV)-based virus-induced gene silencing (VIGS) of TaSCL14 in wheat was performed to help characterize its potential functions. Silencing of TaSCL14 resulted in inhibited plant growth, decreased photosynthetic capacity, and reduced tolerance to photooxidative stress. In addition, silencing of TaSCL14 in wheat promoted leaf senescence induced by darkness. These results suggest that TaSCL14 may act as a multifunctional regulator involved in plant growth, photosynthesis, tolerance to photooxidative stress, and senescence.

  4. Relationship between male sterility and β-1,3-glucanase activity and callose deposition-related gene expression in wheat (Triticum aestivum L.).

    PubMed

    Liu, H Z; Zhang, G S; Zhu, W W; Ba, Q S; Niu, N; Wang, J W; Ma, S C; Wang, J S

    2015-01-26

    In previous studies, we first isolated one different protein β-1,3-glucanase using two-dimensional electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry from normal wheat (Triticum aestivum L.) and chemical hybridization agent-induced male sterility (CIMS) wheat. In this experiment, β-1,3-glucanase activity and the expression of a callose deposition-related gene, UDP-glucose phosphorylase (UGPase), were determinate in normal, CIMS, and genetic male sterility (GS) wheat. β-1,3-glucanase activity was significantly different between the fertile and sterile lines during callose synthesis and degradation, but there was no difference between CIMS and GS wheat. The UGPase gene of callose deposition was highly expressed in the meiophase and sharply decreased in the tetrad stage. However, the expression of the UGPase gene was significantly different between the fertile and sterile lines. These data indicated that β-1,3-glucanase activity and the expression of the UGPase gene play important roles in the male sterility of wheat. Consequently, pollen mother cells (PMCs) might degenerate at the early meiosis stage, and differences in UGPase gene expression and β-1,3-glucanase activity might eventually result in complete pollen collapse. In addition, the critical period of anther abortion might be the meiosis stage to the tetrad stage rather than what we previously thought, the mononuclear period.

  5. Mitochondria-addressed cations decelerate the leaf senescence and death in Arabidopsis thaliana and increase the vegetative period and improve crop structure of the wheat Triticum aestivum.

    PubMed

    Dzyubinskaya, E V; Ionenko, I F; Kiselevsky, D B; Samuilov, V D; Samuilov, F D

    2013-01-01

    Plastoquinone or its methylated form covalently bound to the membrane-penetrating decyltriphenylphosphonium cation (SkQ1 and SkQ3) retarded the senescence of Arabidopsis thaliana rosette leaves and their death. Dodecyltriphenylphosphonium (C(12)TPP(+)) had a similar effect. Much like SkQ1, C(12)TPP(+) prevented production of reactive oxygen species (ROS) measured by the fluorescence of 2',7'-dichlorofluorescein in mitochondria of the plant cells. SkQ1 augmented the length of the vegetation period and the common and productive tillering, improved the crop structure and the productivity of the wheat Triticum aestivum. These results indicate that the tested compounds act as antioxidants, that ROS participate in aging and death of A. thaliana leaves, and wheat tillering is increased and the crop structure is improved by SkQ1.

  6. Purification and some properties of catalase from wheat germ (Triticum aestivum L.).

    PubMed

    Garcia, R; Kaid, N; Vignaud, C; Nicolas, J

    2000-04-01

    Two isoforms of catalase, CAT-1 and CAT-2, were purified from wheat germ after extraction, ammonium sulfate precipitations, hydrophobic chromatography, and two ionic-exchange chromatographies. The global yields and the purification factors were close to 3% and 50 for CAT-1 and close to 6% and 100 for CAT-2. Both isoforms exhibit an optimum activity at pH 7. When pH was decreased from 7 to 5.6, CAT-1 showed a decreasing affinity for its substrate, whereas the opposite was found for CAT-2. Both isoforms were irreversibly denaturated when exposed to acidic pH, CAT-1 being more sensitive than CAT-2. Conversely, CAT-2 appeared to be more sensitive to inhibitors. The rate as well as the extent of denaturation during incubation with 3-amino-1,2,4-triazole (AT) were higher with CAT-2 than with CAT-1. Guaiacol is a competitive inhibitor more potent with respect to CAT-2. The difference in affinity for hydrogen peroxide as well as the poor stability of CAT-1 in acidic medium suggests that this isoform could be less effective during dough mixing.

  7. RNA-seq transcriptional profiling of Herbaspirillum seropedicae colonizing wheat (Triticum aestivum) roots.

    PubMed

    Pankievicz, V C S; Camilios-Neto, D; Bonato, P; Balsanelli, E; Tadra-Sfeir, M Z; Faoro, H; Chubatsu, L S; Donatti, L; Wajnberg, G; Passetti, F; Monteiro, R A; Pedrosa, F O; Souza, E M

    2016-04-01

    Herbaspirillum seropedicae is a diazotrophic and endophytic bacterium that associates with economically important grasses promoting plant growth and increasing productivity. To identify genes related to bacterial ability to colonize plants, wheat seedlings growing hydroponically in Hoagland's medium were inoculated with H. seropedicae and incubated for 3 days. Total mRNA from the bacteria present in the root surface and in the plant medium were purified, depleted from rRNA and used for RNA-seq profiling. RT-qPCR analyses were conducted to confirm regulation of selected genes. Comparison of RNA profile of root attached and planktonic bacteria revealed extensive metabolic adaptations to the epiphytic life style. These adaptations include expression of specific adhesins and cell wall re-modeling to attach to the root. Additionally, the metabolism was adapted to the microxic environment and nitrogen-fixation genes were expressed. Polyhydroxybutyrate (PHB) synthesis was activated, and PHB granules were stored as observed by microscopy. Genes related to plant growth promotion, such as auxin production were expressed. Many ABC transporter genes were regulated in the bacteria attached to the roots. The results provide new insights into the adaptation of H. seropedicae to the interaction with the plant.

  8. Screening of Bangladeshi winter wheat (Triticum aestivum L.) cultivars for sensitivity to ozone.

    PubMed

    Saitanis, Costas J; Bari, Shafiqul M; Burkey, Kent O; Stamatelopoulos, Dimitris; Agathokleous, Evgenios

    2014-12-01

    The sensitivity to ozone of ten Bangladeshi wheat cultivars was tested by exposing plants to eight ozone exposure regimes (50, 60, 80, 100, 120, 135, 150, and 200 ppb for 14, 11, 8, 6, 5, 4, 3, and 1 days, respectively, for 8 h/day) in controlled environment chambers. Visible leaf injury, dry weight, chlorophyll, carotenoid content, leaf greenness (SPAD value), quantum yield of photosynthesis, and stomatal resistance were measured to evaluate response. Shoot biomass, total chlorophyll, leaf greenness, and carotenoid content were reduced in ozone-exposed plants. Based on the results of principal component analysis (PCA)-biplot analysis, the order of sensitivity to ozone was: Akbar > Sufi ≥ Bijoy ≥ Shatabdi > Bari-26 ≥ Gourab > Bari-25 ≥ Prodip ≥ Sourav > Kanchan. The most important parameters to discriminate cultivars with respect to ozone sensitivity were visible injury and chlorophyll b/a ratio, whereas quantum yield of photosynthesis was less important. Differences in stomatal resistance were not a significant factor in ozone response. Regression of cultivars' PCA scores against year of release revealed no trend, suggesting that ozone tolerance was not incorporated during cultivar breeding.

  9. [Effect of malonate on the structural and functional changes of wheat Triticum aestivum L. root cells].

    PubMed

    Bufetov, E N; Polygalova, O O; Ponomareva, A A

    2004-01-01

    A study was made of respiration, output of K+ and ultrastructure of wheat root cells treated for 6 h with malonic acid (MA) (15 mM), an inhibitor of succinate dehydrogenase. After a 1 h treatment, on the background of a decrease in respiration, and output of K+ an increased number of lumens of smooth endoplasmic reticulum was observed. These changes may be the result of lipid biosynthesis. Within first hours of treatment with MA, the mitochondrial matrix was becoming more brightened, and after 3 h all organelles became transparent. Moreover, mitochondria increased in size and almost lacked cristae. After 4 h mitochondria assumed their normal sizes due, presumably, to a competitive action of malonate. After 5 h the matrix was brightened again, mitochondria augmented in size, several organelles acquired torus shapes, and their outer area was eventually increased. We found contacts of endoplasmic reticulum lumens with mitochondria, which may suggest the synthesis of an enzyme, able to transform to malonate. After a 6 h exposure of MA, we observed the increase of respiration, re-entry of K+ and normal ultrastructure of mitochondria. Based on our experiments, we conclude that adaptation of root cells may be a result of external NADPH-dehydrogenase activity and MA detoxification.

  10. Association Mapping of Kernel Size and Milling Quality in Wheat (Triticum aestivum L.) Cultivars

    PubMed Central

    Breseghello, Flavio; Sorrells, Mark E.

    2006-01-01

    Association mapping is a method for detection of gene effects based on linkage disequilibrium (LD) that complements QTL analysis in the development of tools for molecular plant breeding. In this study, association mapping was performed on a selected sample of 95 cultivars of soft winter wheat. Population structure was estimated on the basis of 36 unlinked simple-sequence repeat (SSR) markers. The extent of LD was estimated on chromosomes 2D and part of 5A, relative to the LD observed among unlinked markers. Consistent LD on chromosome 2D was <1 cM, whereas in the centromeric region of 5A, LD extended for ∼5 cM. Association of 62 SSR loci on chromosomes 2D, 5A, and 5B with kernel morphology and milling quality was analyzed through a mixed-effects model, where subpopulation was considered as a random factor and the marker tested was considered as a fixed factor. Permutations were used to adjust the threshold of significance for multiple testing within chromosomes. In agreement with previous QTL analysis, significant markers for kernel size were detected on the three chromosomes tested, and alleles potentially useful for selection were identified. Our results demonstrated that association mapping could complement and enhance previous QTL information for marker-assisted selection. PMID:16079235

  11. Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars.

    PubMed

    Breseghello, Flavio; Sorrells, Mark E

    2006-02-01

    Association mapping is a method for detection of gene effects based on linkage disequilibrium (LD) that complements QTL analysis in the development of tools for molecular plant breeding. In this study, association mapping was performed on a selected sample of 95 cultivars of soft winter wheat. Population structure was estimated on the basis of 36 unlinked simple-sequence repeat (SSR) markers. The extent of LD was estimated on chromosomes 2D and part of 5A, relative to the LD observed among unlinked markers. Consistent LD on chromosome 2D was <1 cM, whereas in the centromeric region of 5A, LD extended for approximately 5 cM. Association of 62 SSR loci on chromosomes 2D, 5A, and 5B with kernel morphology and milling quality was analyzed through a mixed-effects model, where subpopulation was considered as a random factor and the marker tested was considered as a fixed factor. Permutations were used to adjust the threshold of significance for multiple testing within chromosomes. In agreement with previous QTL analysis, significant markers for kernel size were detected on the three chromosomes tested, and alleles potentially useful for selection were identified. Our results demonstrated that association mapping could complement and enhance previous QTL information for marker-assisted selection.

  12. In-situ atrazine biodegradation dynamics in wheat (Triticum) crops under variable hydrologic regime

    NASA Astrophysics Data System (ADS)

    la Cecilia, Daniele; Maggi, Federico

    2017-08-01

    A comprehensive biodegradation reaction network of atrazine (ATZ) and its 18 byproducts was coupled to the nitrogen cycle and integrated in a computational solver to assess the in-situ biodegradation effectiveness and leaching along a 5 m deep soil cultivated with wheat in West Wyalong, New South Wales, Australia. Biodegradation removed 97.7% of 2 kg/ha ATZ yearly applications in the root zone, but removal substantially decreased at increasing depths; dechlorination removed 79% of ATZ in aerobic conditions and 18% in anaerobic conditions, whereas deethylation and oxidation removed only 0.11% and 0.15% of ATZ, respectively. The residual Cl mass fraction in ATZ and 4 byproducts was 2.4% of the applied mass. ATZ half-life ranged from 150 to 247 days in the soil surface. ATZ reached 5 m soil depth within 200 years and its concentration increased from 1 ×10-6 to 4 ×10-6 mg/kgdry-soil over time. The correlation between ATZ specific biomass degradation affinity Φ0 and half-life t1/2, although relatively uncertain for both hydrolyzing and oxidizing bacteria, suggested that microorganisms with high Φ0 led to low ATZ t1/2. Greater ATZ applications were balanced by small nonlinear increments of ATZ biodegraded fraction within the root zone and therefore less ATZ leached into the shallow aquifer.

  13. Genes encoding 4-Cys antimicrobial peptides in wheat Triticum kiharae Dorof. et Migush.: multimodular structural organization, instraspecific variability, distribution and role in defence.

    PubMed

    Utkina, Lyubov L; Andreev, Yaroslav A; Rogozhin, Eugene A; Korostyleva, Tatyana V; Slavokhotova, Anna A; Oparin, Peter B; Vassilevski, Alexander A; Grishin, Eugene V; Egorov, Tsezi A; Odintsova, Tatyana I

    2013-08-01

    A novel family of antifungal peptides was discovered in the wheat Triticum kiharae Dorof. et Migusch. Two members of the family, designated Tk-AMP-X1 and Tk-AMP-X2, were completely sequenced and shown to belong to the α-hairpinin structural family of plant peptides with a characteristic C1XXXC2-X(n)-C3XXXC4 motif. The peptides inhibit the spore germination of several fungal pathogens in vitro. cDNA and gene cloning disclosed unique structure of genes encoding Tk-AMP-X peptides. They code for precursor proteins of unusual multimodular structure, consisting of a signal peptide, several α-hairpinin (4-Cys) peptide domains with a characteristic cysteine pattern separated by linkers and a C-terminal prodomain. Three types of precursor proteins, with five, six or seven 4-Cys peptide modules, were found in wheat. Among the predicted family members, several peptides previously isolated from T. kiharae seeds were identified. Genes encoding Tk-AMP-X precursors have no introns in the protein-coding regions and are upregulated by fungal pathogens and abiotic stress, providing conclusive evidence for their role in stress response. A combined PCR-based and bioinformatics approach was used to search for related genes in the plant kingdom. Homologous genes differing in the number of peptide modules were discovered in phylogenetically-related Triticum and Aegilops species, including polyploid wheat genome donors. Association of the Tk-AMP-X genes with A, B/G or D genomes of hexaploid wheat was demonstrated. Furthermore, Tk-AMP-X-related sequences were shown to be widespread in the Poaceae family among economically important crops, such as barley, rice and maize. © 2013 FEBS.

  14. Genome-wide identification, phylogeny and expressional profiles of mitogen activated protein kinase kinase kinase (MAPKKK) gene family in bread wheat (Triticum aestivum L.).

    PubMed

    Wang, Meng; Yue, Hong; Feng, Kewei; Deng, Pingchuan; Song, Weining; Nie, Xiaojun

    2016-08-22

    Mitogen-activated protein kinase kinase kinases (MAPKKKs) are the important components of MAPK cascades, which play the crucial role in plant growth and development as well as in response to diverse stresses. Although this family has been systematically studied in many plant species, little is known about MAPKKK genes in wheat (Triticum aestivum L.), especially those involved in the regulatory network of stress processes. In this study, we identified 155 wheat MAPKKK genes through a genome-wide search method based on the latest available wheat genome information, of which 29 belonged to MEKK, 11 to ZIK and 115 to Raf subfamily, respectively. Then, chromosome localization, gene structure and conserved protein motifs and phylogenetic relationship as well as regulatory network of these TaMAPKKKs were systematically investigated and results supported the prediction. Furthermore, a total of 11 homologous groups between A, B and D sub-genome and 24 duplication pairs among them were detected, which contributed to the expansion of wheat MAPKKK gene family. Finally, the expression profiles of these MAPKKKs during development and under different abiotic stresses were investigated using the RNA-seq data. Additionally, 10 tissue-specific and 4 salt-responsive TaMAPKKK genes were selected to validate their expression level through qRT-PCR analysis. This study for the first time reported the genome organization, evolutionary features and expression profiles of the wheat MAPKKK gene family, which laid the foundation for further functional analysis of wheat MAPKKK genes, and contributed to better understanding the roles and regulatory mechanism of MAPKKKs in wheat.

  15. A genome-wide analysis of the auxin/indole-3-acetic acid gene family in hexaploid bread wheat (Triticum aestivum L.).

    PubMed

    Qiao, Linyi; Zhang, Xiaojun; Han, Xiao; Zhang, Lei; Li, Xin; Zhan, Haixian; Ma, Jian; Luo, Peigao; Zhang, Wenping; Cui, Lei; Li, Xiaoyan; Chang, Zhijian

    2015-01-01

    The Auxin/indole-3-acetic acid (Aux/IAA) gene family plays key roles in the primary auxin-response process and controls a number of important traits in plants. However, the characteristics of the Aux/IAA gene family in hexaploid bread wheat (Triticum aestivum L.) have long been unknown. In this study, a comprehensive identification of the Aux/IAA gene family was performed using the latest draft genome sequence of the bread wheat "Chinese Spring." Thirty-four Aux/IAA genes were identified, 30 of which have duplicated genes on the A, B or D sub-genome, with a total of 84 Aux/IAA sequences. These predicted Aux/IAA genes were non-randomly distributed in all the wheat chromosomes except for chromosome 2D. The information of wheat Aux/IAA proteins is also described. Based on an analysis of phylogeny, expression and adaptive evolution, we prove that the Aux/IAA family in wheat has been replicated twice in the two allopolyploidization events of bread wheat, when the tandem duplication also occurred. The duplicated genes have undergone an evolutionary process of purifying selection, resulting in the high conservation of copy genes among sub-genomes and functional redundancy among several members of the TaIAA family. However, functional divergence probably existed in most TaIAA members due to the diversity of the functional domain and expression pattern. Our research provides useful information for further research into the function of Aux/IAA genes in wheat.

  16. Uncovering leaf rust responsive miRNAs in wheat (Triticum aestivum L.) using high-throughput sequencing and prediction of their targets through degradome analysis.

    PubMed

    Kumar, Dhananjay; Dutta, Summi; Singh, Dharmendra; Prabhu, Kumble Vinod; Kumar, Manish; Mukhopadhyay, Kunal

    2017-01-01

    Deep sequencing identified 497 conserved and 559 novel miRNAs in wheat, while degradome analysis revealed 701 targets genes. QRT-PCR demonstrated differential expression of miRNAs during stages of leaf rust progression. Bread wheat (Triticum aestivum L.) is an important cereal food crop feeding 30 % of the world population. Major threat to wheat production is the rust epidemics. This study was targeted towards identification and functional characterizations of micro(mi)RNAs and their target genes in wheat in response to leaf rust ingression. High-throughput sequencing was used for transcriptome-wide identification of miRNAs and their expression profiling in retort to leaf rust using mock and pathogen-inoculated resistant and susceptible near-isogenic wheat plants. A total of 1056 mature miRNAs were identified, of which 497 miRNAs were conserved and 559 miRNAs were novel. The pathogen-inoculated resistant plants manifested more miRNAs compared with the pathogen infected susceptible plants. The miRNA counts increased in susceptible isoline due to leaf rust, conversely, the counts decreased in the resistant isoline in response to pathogenesis illustrating precise spatial tuning of miRNAs during compatible and incompatible interaction. Stem-loop quantitative real-time PCR was used to profile 10 highly differentially expressed miRNAs obtained from high-throughput sequencing data. The spatio-temporal profiling validated the differential expression of miRNAs between the isolines as well as in retort to pathogen infection. Degradome analysis provided 701 predicted target genes associated with defense response, signal transduction, development, metabolism, and transcriptional regulation. The obtained results indicate that wheat isolines employ diverse arrays of miRNAs that modulate their target genes during compatible and incompatible interaction. Our findings contribute to increase knowledge on roles of microRNA in wheat-leaf rust interactions and could help in rust

  17. Genome-wide association mapping for stripe rust (Puccinia striiformis F. sp. tritici) in US Pacific Northwest winter wheat (Triticum aestivum L.).

    PubMed

    Naruoka, Y; Garland-Campbell, K A; Carter, A H

    2015-06-01

    Potential novel and known QTL for race-specific all-stage and adult plant resistance to stripe rust were identified by genome-wide association mapping in the US PNW winter wheat accessions. Stripe rust (Puccinia striiformis F. sp. tritici; also known as yellow rust) is a globally devastating disease of wheat (Triticum aestivum L.) and a major threat to wheat production in the US Pacific Northwest (PNW), therefore both adult plant and all-stage resistance have been introduced into the winter wheat breeding programs in the PNW. The goal of this study was to identify quantitative trait loci (QTL) and molecular markers for these resistances through genome-wide association (GWAS) mapping in winter wheat accessions adapted to the PNW. Stripe rust response for adult plants was evaluated in naturally occurring epidemics in a total of nine environments in Washington State, USA. Seedling response was evaluated with three races under artificial inoculation in the greenhouse. The panel was genotyped with the 9K Illumina Wheat single nucleotide polymorphism (SNP) array and additional markers linked to previously reported genes and QTL for stripe rust resistance. The population was grouped into three sub-populations. Markers linked to Yr17 and previously reported QTL for stripe rust resistance were identified on chromosomes 1B, 2A, and 2B. Potentially novel QTL associated with race-specific seedling response were identified on chromosomes 1B and 1D. Potentially novel QTL associated with adult plant response were located on chromosomes 2A, 2B, 3B, 4A, and 4B. Stripe rust was reduced when multiple alleles for resistance were present. The resistant allele frequencies were different among sub-populations in the panel. This information provides breeders with germplasm and closely linked markers for stripe rust resistance to facilitate the transfer of multiple loci for durable stripe rust resistance into wheat breeding lines and cultivars.

  18. Molecular cloning, phylogenetic analysis, and expression profiling of endoplasmic reticulum molecular chaperone BiP genes from bread wheat (Triticum aestivum L.).

    PubMed

    Zhu, Jiantang; Hao, Pengchao; Chen, Guanxing; Han, Caixia; Li, Xiaohui; Zeller, Friedrich J; Hsam, Sai L K; Hu, Yingkao; Yan, Yueming

    2014-10-01

    The endoplasmic reticulum chaperone binding protein (BiP) is an important functional protein, which is involved in protein synthesis, folding assembly, and secretion. In order to study the role of BiP in the process of wheat seed development, we cloned three BiP homologous cDNA sequences in bread wheat (Triticum aestivum), completed by rapid amplification of cDNA ends (RACE), and examined the expression of wheat BiP in wheat tissues, particularly the relationship between BiP expression and the subunit types of HMW-GS using near-isogenic lines (NILs) of HMW-GS silencing, and under abiotic stress. Sequence analysis demonstrated that all BiPs contained three highly conserved domains present in plants, animals, and microorganisms, indicating their evolutionary conservation among different biological species. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) revealed that TaBiP (Triticum aestivum BiP) expression was not organ-specific, but was predominantly localized to seed endosperm. Furthermore, immunolocalization confirmed that TaBiP was primarily located within the protein bodies (PBs) in wheat endosperm. Three TaBiP genes exhibited significantly down-regulated expression following high molecular weight-glutenin subunit (HMW-GS) silencing. Drought stress induced significantly up-regulated expression of TaBiPs in wheat roots, leaves, and developing grains. The high conservation of BiP sequences suggests that BiP plays the same role, or has common mechanisms, in the folding and assembly of nascent polypeptides and protein synthesis across species. The expression of TaBiPs in different wheat tissue and under abiotic stress indicated that TaBiP is most abundant in tissues with high secretory activity and with high proportions of cells undergoing division, and that the expression level of BiP is associated with the subunit types of HMW-GS and synthesis. The expression of TaBiPs is developmentally regulated during seed development and early seedling

  19. Signaling events leading to red-light-induced suppression of photomorphogenesis in wheat (Triticum aestivum).

    PubMed

    Gupta, Varsha; Roy, Ansuman; Tripathy, Baishnab C

    2010-10-01

    Perception of red light (400 μmol photon m²/s) by the shoot bottom turned off the greening process in wheat. To understand the signaling cascade leading to this photomorphogenic response, certain signaling components were probed in seedlings grown in different light regimes. Upon analysis the gene expression of heterotrimeric Gα and Gβ were severely down-regulated in seedlings grown without vermiculite and having their shoot bottom exposed to red light (R/V-) and was similar to that of dark-grown seedlings. Supplementing the red-light-grown V- seedlings with blue light resulted in up-regulation of both Gα and Gβ expression, suggesting that blue light is able to modulate G protein expression. Treatment of cytokinin analog benzyladenine to cytokinin-deficient red-light-grown R/V- seedlings resulted in up-regulation of gene expression of both Gα and Gβ. To probe further, modulators of signal transduction pathway--AlF₃ (G protein activator), LaCl₃ (Ca(2+) channel blocker), NaF (nonspecific phosphatase inhibitor), or calmodulin (CaM) antagonists trifluoperazine (TFP) and N-(6-aminohexyl)-5-chloro-1-nafthalene-sulfonamide (W-7)--were added along with Hoagland solution to the roots of 4-day-old etiolated seedlings, grown on germination paper and transferred to red light. AlF₃, LaCl₃, NaF failed to elicit any photomorphogenic response. However, CaM antagonists TFP and W-7 significantly reversed the red-light-induced suppression of photomorphogenesis. Phosphorylation of proteins assayed in the absence or presence of CaM antagonist TFP revealed respective up-regulation or down-regulation of phosphorylation of several plastidic proteins in R/V- seedlings. These suggest that signal transduction of red light perceived by the shoot bottom to suppress photomorphogenesis is mediated by CaM-dependent protein kinases.

  20. Molecular diversity of α-gliadin expressed genes in genetically contrasted spelt (Triticum aestivum ssp. spelta) accessions and comparison with bread wheat (T. aestivum ssp. aestivum) and related diploid Triticum and Aegilops species.

    PubMed

    Dubois, Benjamin; Bertin, Pierre; Mingeot, Dominique

    2016-01-01

    The gluten proteins of cereals such as bread wheat (Triticum aestivum ssp. aestivum) and spelt (T. aestivum ssp. spelta) are responsible for celiac disease (CD). The α-gliadins constitute the most immunogenic class of gluten proteins as they include four main T-cell stimulatory epitopes that affect CD patients. Spelt has been less studied than bread wheat and could constitute a source of valuable diversity. The objective of this work was to study the genetic diversity of spelt α-gliadin transcripts and to compare it with those of bread wheat. Genotyping data from 85 spelt accessions obtained with 19 simple sequence repeat (SSR) markers were used to select 11 contrasted accessions, from which 446 full open reading frame α-gliadin genes were cloned and sequenced, which revealed a high allelic diversity. High variations among the accessions were highlighted, in terms of the proportion of α-gliadin sequences from each of the three genomes (A, B and D), and their composition in the four T-cell stimulatory epitopes. An accession from Tajikistan stood out, having a particularly high proportion of α-gliadins from the B genome and a low immunogenic content. Even if no clear separation between spelt and bread wheat sequences was shown, spelt α-gliadins displayed specific features concerning e.g. the frequencies of some amino acid substitutions. Given this observation and the variations in toxicity revealed in the spelt accessions in this study, the high genetic diversity held in spelt germplasm collections could be a valuable resource in the development of safer varieties for CD patients.

  1. Exogenous Nitric Oxide (NO) Interferes with Lead (Pb)-Induced Toxicity by Detoxifying Reactive Oxygen Species in Hydroponically Grown Wheat (Triticum aestivum) Roots

    PubMed Central

    Kaur, Gurpreet; Singh, Harminder Pal; Batish, Daizy R.; Mahajan, Priyanka; Kohli, Ravinder Kumar; Rishi, Valbha

    2015-01-01

    Nitric Oxide (NO) is a bioactive signaling molecule that mediates a variety of biotic and abiotic stresses. The present study investigated the role of NO (as SNP [sodium nitroprusside]) in ameliorating lead (Pb)-toxicity in Triticum aestivum (wheat) roots. Pb (50 and 250 μM) alone and in combination with SNP (100 μM) was given to hydroponically grown wheat roots for a period of 0–8 h. NO supplementation reduced the accumulation of oxidative stress markers (malondialdehyde, conjugated dienes, hydroxyl ions and superoxide anion) and decreased the antioxidant enzyme activity in wheat roots particularly up to 6 h, thereby suggesting its role as an antioxidant. NO ameliorated Pb-induced membrane damage in wheat roots as evidenced by decreased ion-leakage and in situ histochemical localization. Pb-exposure significantly decreased in vivo NO level. The study concludes that exogenous NO partially ameliorates Pb-toxicity, but could not restore the plant growth on prolonged Pb-exposure. PMID:26402793

  2. Exogenous Nitric Oxide (NO) Interferes with Lead (Pb)-Induced Toxicity by Detoxifying Reactive Oxygen Species in Hydroponically Grown Wheat (Triticum aestivum) Roots.

    PubMed

    Kaur, Gurpreet; Singh, Harminder Pal; Batish, Daizy R; Mahajan, Priyanka; Kohli, Ravinder Kumar; Rishi, Valbha

    2015-01-01

    Nitric Oxide (NO) is a bioactive signaling molecule that mediates a variety of biotic and abiotic stresses. The present study investigated the role of NO (as SNP [sodium nitroprusside]) in ameliorating lead (Pb)-toxicity in Triticum aestivum (wheat) roots. Pb (50 and 250 μM) alone and in combination with SNP (100 μM) was given to hydroponically grown wheat roots for a period of 0-8 h. NO supplementation reduced the accumulation of oxidative stress markers (malondialdehyde, conjugated dienes, hydroxyl ions and superoxide anion) and decreased the antioxidant enzyme activity in wheat roots particularly up to 6 h, thereby suggesting its role as an antioxidant. NO ameliorated Pb-induced membrane damage in wheat roots as evidenced by decreased ion-leakage and in situ histochemical localization. Pb-exposure significantly decreased in vivo NO level. The study concludes that exogenous NO partially ameliorates Pb-toxicity, but could not restore the plant growth on prolonged Pb-exposure.

  3. Copy number variation affecting the Photoperiod-B1 and Vernalization-A1 genes is associated with altered flowering time in wheat (Triticum aestivum).

    PubMed

    Díaz, Aurora; Zikhali, Meluleki; Turner, Adrian S; Isaac, Peter; Laurie, David A

    2012-01-01

    The timing of flowering during the year is an important adaptive character affecting reproductive success in plants and is critical to crop yield. Flowering time has been extensively manipulated in crops such as wheat (Triticum aestivum L.) during domestication, and this enables them to grow productively in a wide range of environments. Several major genes controlling flowering time have been identified in wheat with mutant alleles having sequence changes such as insertions, deletions or point mutations. We investigated genetic variants in commercial varieties of wheat that regulate flowering by altering photoperiod response (Ppd-B1 alleles) or vernalization requirement (Vrn-A1 alleles) and for which no candidate mutation was found within the gene sequence. Genetic and genomic approaches showed that in both cases alleles conferring altered flowering time had an increased copy number of the gene and altered gene expression. Alleles with an increased copy number of Ppd-B1 confer an early flowering day neutral phenotype and have arisen independently at least twice. Plants with an increased copy number of Vrn-A1 have an increased requirement for vernalization so that longer periods of cold are required to potentiate flowering. The results suggest that copy number variation (CNV) plays a significant role in wheat adaptation.

  4. Effects of elevated CO2 concentration on growth, photosynthetic characteristics and biomass of wheat (Triticum aestivum L.) in Lunar Palace 1

    NASA Astrophysics Data System (ADS)

    Dong, Chen; Liu, Hui; Liu, Hong; Wang, Minjuan; Fu, Yuming; Shao, Lingzhi; Liu, Guanghui; Yu, Juan

    Short- and long-term effects of elevated CO2 concentration on growth, photosynthetic characteristics and biomass of wheat (Triticum aestivum L.) are examined during 90 days in Lunar Palace 1. While a short-term exposure to elevated CO2 induces a large increase in photosynthesis in wheat plants, long-term growth in elevated CO2 often results in a smaller increase due to reduced photosynthetic capacity. In this study, it was also shown that, net photosynthesis per unit leaf area was raised at an increased CO2 concentration partly due to a decrease in photorespiration, partly due to an increased substrate supply. Transpiration was reduced due to a lower stomatal conductance. The growth response of whole plants to a high CO2 concentration will be the main subject of this paper. Firstly, an estimation is made to what extent a doubling in CO2 concentration affects wheat plant growth in Lunar Palace 1. Secondly, the mechanisms behind this growth stimulation will be assessed. Finally, in those cases where wheat plants are grown over a range of environmental conditions, we select that condition where control plants are growing fastest. Thus, this study may be a matter of interest for researchers in both space and unban agriculture fields.

  5. Alleviation of chromium toxicity by glycinebetaine is related to elevated antioxidant enzymes and suppressed chromium uptake and oxidative stress in wheat (Triticum aestivum L.).

    PubMed

    Ali, Shafaqat; Chaudhary, Aaifa; Rizwan, Muhammad; Anwar, Hafiza Tania; Adrees, Muhammad; Farid, Mujahid; Irshad, Muhammad Kashif; Hayat, Tahir; Anjum, Shakeel Ahmad

    2015-07-01

    Little information is available on the role of glycinebetaine (GB) in chromium (Cr) tolerance while Cr toxicity is widespread problem in crops grown on Cr-contaminated soils. In this study, we investigated the influence of GB on Cr tolerance in wheat (Triticum aestivum L.) grown in sand and soil mediums. Three concentrations of chromium (0, 0.25, and 0.5 mM) were tested with and without foliar application of GB (0.1 M). Chromium alone led to a significant growth inhibition and content of chlorophyll a, b, proteins and enhanced the activity of antioxidant enzymes. Glycinebetaine foliar application successfully alleviated the toxic effects of Cr on wheat plants and enhanced growth characteristics, biomass, proteins, and chlorophyll contents. Glycinebetaine also reduced Cr accumulation in wheat plants especially in grains and enhanced the activity of antioxidant enzymes in both shoots and roots. This study provides evidence that GB application contributes to decreased Cr concentrations in wheat plants and its importance in the detoxification of heavy metals.

  6. Copy Number Variation Affecting the Photoperiod-B1 and Vernalization-A1 Genes Is Associated with Altered Flowering Time in Wheat (Triticum aestivum)

    PubMed Central

    Isaac, Peter; Laurie, David A.

    2012-01-01

    The timing of flowering during the year is an important adaptive character affecting reproductive success in plants and is critical to crop yield. Flowering time has been extensively manipulated in crops such as wheat (Triticum aestivum L.) during domestication, and this enables them to grow productively in a wide range of environments. Several major genes controlling flowering time have been identified in wheat with mutant alleles having sequence changes such as insertions, deletions or point mutations. We investigated genetic variants in commercial varieties of wheat that regulate flowering by altering photoperiod response (Ppd-B1 alleles) or vernalization requirement (Vrn-A1 alleles) and for which no candidate mutation was found within the gene sequence. Genetic and genomic approaches showed that in both cases alleles conferring altered flowering time had an increased copy number of the gene and altered gene expression. Alleles with an increased copy number of Ppd-B1 confer an early flowering day neutral phenotype and have arisen independently at least twice. Plants with an increased copy number of Vrn-A1 have an increased requirement for vernalization so that longer periods of cold are required to potentiate flowering. The results suggest that copy number variation (CNV) plays a significant role in wheat adaptation. PMID:22457747

  7. Construction and Evaluation of cDNA Libraries for Large-Scale Expressed Sequence Tag Sequencing in Wheat (Triticum aestivum L.)

    PubMed Central

    Zhang, D.; Choi, D. W.; Wanamaker, S.; Fenton, R. D.; Chin, A.; Malatrasi, M.; Turuspekov, Y.; Walia, H.; Akhunov, E. D.; Kianian, P.; Otto, C.; Simons, K.; Deal, K. R.; Echenique, V.; Stamova, B.; Ross, K.; Butler, G. E.; Strader, L.; Verhey, S. D.; Johnson, R.; Altenbach, S.; Kothari, K.; Tanaka, C.; Shah, M. M.; Laudencia-Chingcuanco, D.; Han, P.; Miller, R. E.; Crossman, C. C.; Chao, S.; Lazo, G. R.; Klueva, N.; Gustafson, J. P.; Kianian, S. F.; Dubcovsky, J.; Walker-Simmons, M. K.; Gill, K. S.; Dvořák, J.; Anderson, O. D.; Sorrells, M. E.; McGuire, P. E.; Qualset, C. O.; Nguyen, H. T.; Close, T. J.

    2004-01-01

    A total of 37 original cDNA libraries and 9 derivative libraries enriched for rare sequences were produced from Chinese Spring wheat (Triticum aestivum L.), five other hexaploid wheat genotypes (Cheyenne, Brevor, TAM W101, BH1146, Butte 86), tetraploid durum wheat (T. turgidum L.), diploid wheat (T. monococcum L.), and two other diploid members of the grass tribe Triticeae (Aegilops speltoides Tausch and Secale cereale L.). The emphasis in the choice of plant materials for library construction was reproductive development subjected to environmental factors that ultimately affect grain quality and yield, but roots and other tissues were also included. Partial cDNA expressed sequence tags (ESTs) were examined by various measures to assess the quality of these libraries. All ESTs were processed to remove cloning system sequences and contaminants and then assembled using CAP3. Following these processing steps, this assembly yielded 101,107 sequences derived from 89,043 clones, which defined 16,740 contigs and 33,213 singletons, a total of 49,953 “unigenes.” Analysis of the distribution of these unigenes among the libraries led to the conclusion that the enrichment methods were effective in reducing the most abundant unigenes and to the observation that the most diverse libraries were from tissues exposed to environmental stresses including heat, drought, salinity, or low temperature. PMID:15514038

  8. A sampling system for estimating the cultivation of wheat (Triticum aestivum L) from LANDSAT data. M.S. Thesis - 21 Jul. 1983

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Moreira, M. A.

    1983-01-01

    Using digitally processed MSS/LANDSAT data as auxiliary variable, a methodology to estimate wheat (Triticum aestivum L) area by means of sampling techniques was developed. To perform this research, aerial photographs covering 720 sq km in Cruz Alta test site at the NW of Rio Grande do Sul State, were visually analyzed. LANDSAT digital data were analyzed using non-supervised and supervised classification algorithms; as post-processing the classification was submitted to spatial filtering. To estimate wheat area, the regression estimation method was applied and different sample sizes and various sampling units (10, 20, 30, 40 and 60 sq km) were tested. Based on the four decision criteria established for this research, it was concluded that: (1) as the size of sampling units decreased the percentage of sampled area required to obtain similar estimation performance also decreased; (2) the lowest percentage of the area sampled for wheat estimation with relatively high precision and accuracy through regression estimation was 90% using 10 sq km s the sampling unit; and (3) wheat area estimation by direct expansion (using only aerial photographs) was less precise and accurate when compared to those obtained by means of regression estimation.

  9. The house mouse (Mus musculus L.) exerts strong differential grain consumption preferences among hard red and white spring wheat (Triticum aestivum L.) varieties in a single-elimination tournament design

    USDA-ARS?s Scientific Manuscript database

    Wheat (Triticum aestivum) plays a central role in the health and nutrition of humans. Yet, little is known about possible flavor differences among different varieties. We have developed a model system using the house mouse (Mus musculus) to determine feeding preferences as a prelude to extending res...

  10. Association of puroindoline b-2 variants with grain traits, yield components and flag leaf size in bread wheat (Triticum aestivum L.) varieties of Yellow and Huai Valley of China

    USDA-ARS?s Scientific Manuscript database

    A total of 169 wheat (Triticum aestivum L.) varieties (landraces and cultivars) were used to asses the relationship between Puroindoline D1 alleles and Puroindoline b-B2 variants and grain hardness, other grain traits, grain yield components, and flag leaf size. Results indicated that the average SK...

  11. Three-dimensional distribution of vessels, passage cells and lateral roots along the root axis of winter wheat (Triticum aestivum)

    PubMed Central

    Wu, Haiwen; Jaeger, Marc; Wang, Mao; Li, Baoguo; Zhang, Bao Gui

    2011-01-01

    Background and Aims The capacity of a plant to absorb and transport water and nutrients depends on anatomical structures within the roots and their co-ordination. However, most descriptions of root anatomical structure are limited to 2-D cross-sections, providing little information on 3-D spatial relationships and hardly anything on their temporal evolution. Three-dimensional reconstruction and visualization of root anatomical structures can illustrate spatial co-ordination among cells and tissues and provide new insights and understanding of the interrelation between structure and function. Methods Classical paraffin serial-section methods, image processing, computer-aided 3-D reconstruction and 3-D visualization techniques were combined to analyse spatial relationships among metaxylem vessels, passage cells and lateral roots in nodal roots of winter wheat (Triticum aestivum). Key Results 3-D reconstruction demonstrated that metaxylem vessels were neither parallel, nor did they run directly along the root axis from the root base to the root tip; rather they underwent substitution and transition. Most vessels were connected to pre-existent or newly formed vessels by pits on their lateral walls. The spatial distributions of both passage cells and lateral roots exhibited similar position-dependent patterns. In the transverse plane, the passage cells occurred opposite the poles of the protoxylem and the lateral roots opposite those of the protophloem. Along the axis of a young root segment, the passage cells were arranged in short and discontinuous longitudinal files, thus as the tissues mature, the sequence in which the passage cells lose their transport function is not basipetal. In older segments, passage cells decreased drastically in number and coexisted with lateral roots. The spatial distribution of lateral roots was similar to that of the passage cells, mirroring their similar functions as lateral pathways for water and nutrient transport to the stele

  12. Integrated analysis of seed proteome and mRNA oxidation reveals distinct post-transcriptional features regulating dormancy in wheat (Triticum aestivum L.).

    PubMed

    Gao, Feng; Rampitsch, Christof; Chitnis, Vijaya R; Humphreys, Gavin D; Jordan, Mark C; Ayele, Belay T

    2013-10-01

    Wheat seeds can be released from a dormant state by after-ripening; however, the underlying molecular mechanisms are still mostly unknown. We previously identified transcriptional programmes involved in the regulation of after-ripening-mediated seed dormancy decay in wheat (Triticum aestivum L.). Here, we show that seed dormancy maintenance and its release by dry after-ripening in wheat is associated with oxidative modification of distinct seed-stored mRNAs that mainly correspond to oxidative phosphorylation, ribosome biogenesis, nutrient reservoir and α-amylase inhibitor activities, suggesting the significance of post-transcriptional repression of these biological processes in regulating seed dormancy. We further show that after-ripening induced seed dormancy release in wheat is mediated by differential expression of specific proteins in both dry and hydrated states, including those involved in proteolysis, cellular signalling, translation and energy metabolism. Among the genes corresponding to these proteins, the expression of those encoding α-amylase/trypsin inhibitor and starch synthase appears to be regulated by mRNA oxidation. Co-expression analysis of the probesets differentially expressed and oxidized during dry after-ripening along with those corresponding to proteins differentially regulated between dormant and after-ripened seeds produced three co-expressed gene clusters containing more candidate genes potentially involved in the regulation of seed dormancy in wheat. Two of the three clusters are enriched with elements that are either abscisic acid (ABA) responsive or recognized by ABA-regulated transcription factors, indicating the association between wheat seed dormancy and ABA sensitivity.

  13. Evolution and dispersal of emmer wheat (Triticum sp.) from novel haplotypes of Ppd-1 (photoperiod response) genes and their surrounding DNA sequences.

    PubMed

    Takenaka, Shotaro; Kawahara, Taihachi

    2012-09-01

    The sequence data from 5' UTR, intronic, coding and 3' UTR regions of Ppd-A1 and Ppd-B1 were investigated for a total of 158 accessions of emmer wheat landraces comprising 19 of wild emmer wheat (Triticum dicoccoides), 45 of hulled emmer wheat (T. dicoccum) and 94 of free-threshing (FT) emmer wheat (T. durum etc.). We detected some novel types of deletions in the coding regions from 22 hulled emmer accessions and 20 FT emmer accessions. Emmer wheat accessions with these deletions could produce predicted proteins likely to lack function. We also observed some novel mutations in Ppd-B1. Sixty-seven and forty-one haplotypes were found in Ppd-A1 and Ppd-B1, respectively. Some mutations found in this study have not been known, so they have potential for useful genetic resources for wheat breeding. On the basis of sequence data from the 5' UTR region, both Ppd-A1 and Ppd-B1 haplotypes were divided into two groups (Type AI/AII and Type BI/BII). Types AI and AII of Ppd-A1 suggested gene flow between wild and hulled emmer. On the other hand, Types BI and BII of Ppd-B1 suggested gene flow between wild and FT emmer. More than half of hulled emmer accessions were Type AII/BI but few FT emmer accessions were of this type. Therefore, over half of the hulled emmer did not contribute to evolution of FT emmer.

  14. Pre-drought priming sustains grain development under post-anthesis drought stress by regulating the growth hormones in winter wheat (Triticum aestivum L.).

    PubMed

    Abid, Muhammad; Shao, Yuhang; Liu, Sixi; Wang, Feng; Gao, Jingwen; Jiang, Dong; Tian, Zhongwei; Dai, Tingbo

    2017-05-19

    Drought stress during grain filling is the most yield-damaging to wheat. Pre-drought priming facilitated the wheat plants to sustain grain development against the post-anthesis drought stress by modulating the levels of growth hormones. Post-anthesis drought stress substantially reduces grain yield in wheat (Triticum aestivum L.) due to impaired grain development associated with imbalanced levels of growth hormones. To investigate whether pre-drought priming could sustain grain development in wheat by regulating favorable levels of growth hormones under post-anthesis drought conditions, the plants of a drought-sensitive (Yangmai-16) and drought-tolerant (Luhan-7) wheat cultivar were exposed to a moderate drought stress during tillering (Feekes 2 stage) for priming, and then, a subsequent severe drought stress was applied from 7 to 14 days after anthesis. The results showed that drought-stressed plants of both cultivars showed a decline in flag leaf water potential, chlorophyll contents, photosynthetic rate, grain size initiation, and grain filling as compared to well-watered plants; however, decline in these traits was less in pre-drought primed (PD) plants than in nonprimed (ND) plants. Under drought stress, the PD plants regulated higher concentrations of zeatin and zeatin riboside, indole-3-acetic acid, gibberellins, and lower abscisic acid content in grains, resulting in higher endosperm cell division and expansion, grain size initiation, grain-filling rate and duration, and finally higher grain dry weights as compared to ND plants. The PD plants of both cultivars showed higher potential to tolerate the post-anthesis drought stress, but more effect was displayed by drought-tolerant cultivar. From the achieved results, it was concluded that pre-drought priming facilitated the wheat plants to sustain higher grain development and yield against the most yield-damaging post-anthesis drought stress by modulating the levels of growth hormones.

  15. Genome-wide association mapping of resistance to eyespot disease (Pseudocercosporella herpotrichoides) in European winter wheat (Triticum aestivum L.) and fine-mapping of Pch1.

    PubMed

    Zanke, Christine D; Rodemann, Bernd; Ling, Jie; Muqaddasi, Quddoos H; Plieske, Jörg; Polley, Andreas; Kollers, Sonja; Ebmeyer, Erhard; Korzun, Viktor; Argillier, Odile; Stiewe, Gunther; Zschäckel, Thomas; Ganal, Martin W; Röder, Marion S

    2017-03-01

    Genotypes with recombination events in the Triticum ventricosum introgression on chromosome 7D allowed to fine-map resistance gene Pch1, the main source of eyespot resistance in European winter wheat cultivars. Eyespot (also called Strawbreaker) is a common and serious fungal disease of winter wheat caused by the necrotrophic fungi Oculimacula yallundae and Oculimacula acuformis (former name Pseudocercosporella herpotrichoides). A genome-wide association study (GWAS) for eyespot was performed with 732 microsatellite markers (SSR) and 7761 mapped SNP markers derived from the 90 K iSELECT wheat array using a panel of 168 European winter wheat varieties as well as three spring wheat varieties and phenotypic evaluation of eyespot in field tests in three environments. Best linear unbiased estimations (BLUEs) were calculated across all trials and ranged from 1.20 (most resistant) to 5.73 (most susceptible) with an average value of 4.24 and a heritability of H (2) = 0.91. A total of 108 SSR and 235 SNP marker-trait associations (MTAs) were identified by considering associations with a -log10 (P value) ≥3.0. Significant MTAs for eyespot-score BLUEs were found on chromosomes 1D, 2A, 2D, 3D, 5A, 5D, 6A, 7A and 7D for the SSR markers and chromosomes 1B, 2A, 2B, 2D, 3B and 7D for the SNP markers. For 18 varieties (10.5%), a highly resistant phenotype was detected that was linked to the presence of the resistance gene Pch1 on chromosome 7D. The identification of genotypes with recombination events in the introgressed genomic segment from Triticum ventricosum harboring the Pch1 resistance gene on chromosome 7DL allowed the fine-mapping of this gene using additional SNP markers and a potential candidate gene Traes_7DL_973A33763 coding for a CC-NBS-LRR class protein was identified.

  16. A pseudo-response regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.).

    PubMed

    Beales, James; Turner, Adrian; Griffiths, Simon; Snape, John W; Laurie, David A

    2007-09-01

    Ppd-D1 on chromosome 2D is the major photoperiod response locus in hexaploid wheat (Triticum aestivum). A semi-dominant mutation widely used in the "green revolution" converts wheat from a long day (LD) to a photoperiod insensitive (day neutral) plant, providing adaptation to a broad range of environments. Comparative mapping shows Ppd-D1 to be colinear with the Ppd-H1 gene of barley (Hordeum vulgare) which is a member of the pseudo-response regulator (PRR) gene family. To investigate the relationship between wheat and barley photoperiod genes we isolated homologues of Ppd-H1 from a 'Chinese Spring' wheat BAC library and compared them to sequences from other wheat varieties with known Ppd alleles. Varieties with the photoperiod insensitive Ppd-D1a allele which causes early flowering in short (SD) or LDs had a 2 kb deletion upstream of the coding region. This was associated with misexpression of the 2D PRR gene and expression of the key floral regulator FT in SDs, showing that photoperiod insensitivity is due to activation of a known photoperiod pathway irrespective of day length. Five Ppd-D1 alleles were found but only the 2 kb deletion was associated with photoperiod insensitivity. Photoperiod insensitivity can also be conferred by mutation at a homoeologous locus on chromosome 2B (Ppd-B1). No candidate mutation was found in the 2B PRR gene but polymorphism within the 2B PRR gene cosegregated with the Ppd-B1 locus in a doubled haploid population, suggesting that insensitivity on 2B is due to a mutation outside the sequenced region or to a closely linked gene.

  17. Heavy metal and metalloid concentrations in components of 25 wheat (Triticum aestivum) varieties in the vicinity of lead smelters in Henan province, China.

    PubMed

    Xing, Weiqin; Zhang, Hongyi; Scheckel, Kirk G; Li, Liping

    2016-01-01

    Soil contamination and human impacts have been reported in the vicinity of lead (Pb) smelters in Henan, China. However, no information is available on crop uptake of soil contaminants near these smelters. Grains, glume, rachis, and stem/leaf samples of 25 wheat (Triticum aestivum) varieties were collected from a small, smelter-impacted agricultural area of Beishe Village, Henan Province, and were analyzed for arsenic (As), cadmium (Cd), copper (Cu), Pb, and zinc (Zn) concentrations. The study aim was to evaluate the level of contaminant uptake in wheat and ostensibly observe if specific varieties of wheat were more susceptible to uptake. The mean concentrations of As, Cd, Cu, Pb, and Zn in whole grain flour were 0.0915, 0.192, 3.22, 0.280, and 32.5 mg kg(-1), respectively. Grain concentrations of all 25 varieties for Cd as well as 16 varieties for Pb exceeded the maximum permissible concentrations (MPC) for consumption. Mean pollution indexes (MPI) (element concentration of wheat grain/MPC for As, Cd or Pb) of the grains varied 0.562-2.15. As, Pb, and Cd contributed 5.22, 40.0, and 54.8 % to the MPI for all 25 varieties, respectively. This survey highlights Cd and Pb contamination of wheat grains in the vicinity of lead smelters in Henan Province, and likely other farm villages in the area. Further work is needed to examine uptake and contamination of other crops and vegetables impacted from the lead smelters in Henan Province and the absorption of toxic elements from food sources by local inhabitants.

  18. Characterization of Triticum aestivum Abscisic Acid Receptors and a Possible Role for These in Mediating Fusairum Head Blight Susceptibility in Wheat

    PubMed Central

    Gordon, Cameron S.; Rajagopalan, Nandhakishore; Risseeuw, Eddy P.; Surpin, Marci; Ball, Fraser J.; Barber, Carla J.; Buhrow, Leann M.; Clark, Shawn M.; Page, Jonathan E.; Todd, Chris D.; Abrams, Suzanne R.; Loewen, Michele C.

    2016-01-01

    Abscisic acid (ABA) is a well-characterized plant hormone, known to mediate developmental aspects as well as both abiotic and biotic stress responses. Notably, the exogenous application of ABA has recently been shown to increase susceptibility to the fungal pathogen Fusarium graminearum, the causative agent of Fusarium head blight (FHB) in wheat and other cereals. However roles and mechanisms associated with ABA’s modulation of pathogen responses remain enigmatic. Here the identification of putative ABA receptors from available genomic databases for Triticum aestivum (bread wheat) and Brachypodium distachyon (a model cereal) are reported. A number of these were cloned for recombinant expression and their functionality as ABA receptors confirmed by in vitro assays against protein phosphatases Type 2Cs. Ligand selectivity profiling of one of the wheat receptors (Ta_PYL2DS_FL) highlighted unique activities compared to Arabidopsis AtPYL5. Mutagenic analysis showed Ta_PYL2DS_FL amino acid D180 as being a critical contributor to this selectivity. Subsequently, a virus induced gene silencing (VIGS) approach was used to knockdown wheat Ta_PYL4AS_A (and similar) in planta, yielding plants with increased early stage resistance to FHB progression and decreased mycotoxin accumulation. Together these results confirm the existence of a family of ABA receptors in wheat and Brachypodium and present insight into factors modulating receptor function at the molecular level. That knockdown of Ta_PYL4AS_A (and similar) leads to early stage FHB resistance highlights novel targets for investigation in the future development of disease resistant crops. PMID:27755583

  19. The role of bacterial communities in the natural suppression of Rhizoctonia bare patch of wheat Triticum aestivum L

    USDA-ARS?s Scientific Manuscript database

    Rhizoctonia bare patch and root rot of wheat, caused by Rhizoctonia solani AG-8, develops as distinct patches of stunted plants, and limits the yield of direct-seeded wheat in the Pacific Northwest (PNW) of the United States. At a long-term wheat cropping systems study site near Ritzville, WA, conve...

  20. Genetic Mapping of a new family of Seed-Expressed Polyphenol Oxidase genes in Wheat (Triticum aestivum L.)

    USDA-ARS?s Scientific Manuscript database

    Polyphenol oxidase (PPO) enzymatic activity is a major cause in time-dependent discoloration in wheat dough products. The PPO-A1 and PPO-D1 genes have been shown to contribute to wheat kernel PPO activity. However it has been shown that wheat contains multiple PPO genes. Recently a novel PPO gene...

  1. Spectroscopic analysis of diversity of Arabinoxylan structures in endosperm cell walls of wheat cultivars (Triticum aestivum) in the HEALTHGRAIN diversity collection.

    PubMed

    Toole, Geraldine A; Le Gall, Gwenaelle; Colquhoun, Ian J; Johnson, Phil; Bedo, Zoltan; Saulnier, Luc; Shewry, Peter R; Mills, E N Clare

    2011-07-13

    Fifty bread wheat (Triticum aestivum L.) cultivars were selected from the HEALTHGRAIN germplasm collection based on variation in their contents of total and water-extractable arabinoxylan. FT-IR spectroscopic mapping of thin transverse sections of grain showed variation in cell wall arabinoxylan composition between the cultivars, from consisting almost entirely of low-substituted arabinoxylan (e.g., T.aestivum 'Claire') to almost entirely of highly substituted arabinoxylan (e.g., T.aestivum 'Manital') and a mixture of the two forms (e.g., T.aestivum 'Hereward'). Complementary data were obtained using endoxylanase digestion of flour followed by HP-AEC analysis of the arabinoxylan oligosaccharides. This allowed the selection of six cultivars for more detailed analysis using FT-IR and (1)H NMR spectroscopy to determine the proportions of mono-, di-, and unsubstituted xylose residues. The results of the two analyses were consistent, showing that variation in the composition and structure of the endosperm cell wall arabinoxylan is present between bread wheat cultivars. The heterogeneity and spatial distribution of the arabinoxylan in endosperm cell walls may be exploited in wheat processing as it may allow the production of mill streams enriched in various arabinoxylan fractions which have beneficial effects on health.

  2. Silicon availability modifies nutrient use efficiency and content, C:N:P stoichiometry, and productivity of winter wheat (Triticum aestivum L.)

    PubMed Central

    Neu, Silke; Schaller, Jörg; Dudel, E. Gert

    2017-01-01

    Silicon (Si) is known as beneficial element for graminaceous plants. The importance of Si for plant functioning of cereals was recently emphasized. However, about the effect of Si availability on biomass production, grain yield, nutrient status and nutrient use efficiency for wheat (Triticum aestivum L.), as one of the most important crop plants worldwide, less is known so far. Consequently, we assessed the effect of a broad range of supply levels of amorphous SiO2 on wheat plant performance. Our results revealed that Si is readily taken up and accumulated basically in aboveground vegetative organs. Carbon (C) and phosphorus (P) status of plants were altered in response to varying Si supply. In bulk straw biomass C concentration decreased with increasing Si supply, while P concentration increased from slight limitation towards optimal nutrition. Thereby, aboveground biomass production increased at low to medium supply levels of silica whereas grain yield increased at medium supply level only. Nutrient use efficiency was improved by Si insofar that biomass production was enhanced at constant nitrogen (N) status of substrate and plants. Consequently, our findings imply fundamental influences of Si on C turnover, P availability and nitrogen use efficiency for wheat as a major staple crop. PMID:28094308

  3. Starch granule formation and protein deposition in wheat (Triticum aestivum L.) starchy endosperm cells is altered by high temperature during grain fill

    NASA Astrophysics Data System (ADS)

    Hurkman, William J.; Wood, Delilah F.

    2010-06-01

    High temperatures during wheat grain fill decrease starch and protein levels, adversely affecting wheat yield and flour quality. To determine the effect of high temperature on starchy endosperm cell development, grain (Triticum aestivum L. 'Butte 86') was produced under a 24/17°C or 37/28°C day/night regimen imposed from flowering to maturity and starch and protein deposition examined using scanning electron microscopy. The high temperature regimen shortened the duration of grain fill from 40 to 18 days. Under the 37/28°C regimen, A- and B-type starch granules decreased in size. A-type starch granules also exhibited pitting, suggesting enhanced action of starch degradative enzymes. Under both temperature regimens, protein bodies originated early in development and coalesced during mid to late development to form a continuous protein matrix surrounding the starch granules. Under the 37/28°C regimen, the proportion of protein matrix increased in endosperm cells of mature grain. Taken together, the changes in starch granule number and size and in protein matrix amount provide clues for understanding how high temperature during grain fill can affect end use properties of wheat flour.

  4. Analysis of betaine and choline contents of aleurone, bran, and flour fractions of wheat (Triticum aestivum L.) Using (1)H nuclear magnetic resonance (NMR) spectroscopy.

    PubMed

    Graham, Stewart F; Hollis, James H; Migaud, Marie; Browne, Roy A

    2009-03-11

    In conventional milling, the aleurone layer is combined with the bran fraction. Studies indicate that the bran fraction of wheat contains the majority of the phytonutrients betaine and choline, with relatively minor concentrations in the refined flour. This present study suggests that the wheat aleurone layer ( Triticum aestivum L. cv. Tiger) contains the greatest concentration of both betaine and choline (1553.44 and 209.80 mg/100 g of sample, respectively). The bran fraction contained 866.94 and 101.95 mg/100 g of sample of betaine and choline, respectively, while the flour fraction contained 23.30 mg/100 g of sample (betaine) and 28.0 mg/100 g of sample (choline). The betaine content for the bran was lower, and the choline content was higher compared to previous studies, although it is known that there is large variation in betaine and choline contents between wheat cultivars. The ratio of betaine/choline in the aleurone fraction was approximately 7:1; in the bran, the ratio was approximately 8:1; and in the flour fraction, the ratio was approximately 1:1. The study further emphasizes the superior phytonutrient composition of the aleurone layer.

  5. Variation of the phytotoxicity of municipal solid waste incinerator bottom ash on wheat (Triticum aestivum L.) seed germination with leaching conditions.

    PubMed

    Phoungthong, Khamphe; Zhang, Hua; Shao, Li-Ming; He, Pin-Jing

    2016-03-01

    Municipal solid waste incinerator bottom ash (MSWIBA) has long been regarded as an alternative building material in the construction industry. However, the pollutants contained in the bottom ash could potentially leach out and contaminate the local environment, which presents an obstacle to the reuse of the materials. To evaluate the environmental feasibility of using MSWIBA as a recycled material in construction, the leaching derived ecotoxicity was assessed. The leaching behavior of MSWIBA under various conditions, including the extractant type, leaching time, liquid-to-solid (L/S) ratio, and leachate pH were investigated, and the phytotoxicity of these leachates on wheat (Triticum aestivum L.) seed germination was determined. Moreover, the correlation between the germination index and the concentrations of various chemical constituents in the MSWIBA leachates was assessed using multivariate statistics with principal component analysis and Pearson's correlation analysis. It was found that, heavy metal concentrations in the leachate were pH and L/S ratio dependent, but were less affected by leaching time. Heavy metals were the main pollutants present in wheat seeds. Heavy metals (especially Ba, Cr, Cu and Pb) had a substantial inhibitory effect on wheat seed germination and root elongation. To safely use MSWIBA in construction, the potential risk and ecotoxicity of leached materials must be addressed.

  6. Nitrate reductase-mediated early nitric oxide burst alleviates oxidative damage induced by aluminum through enhancement of antioxidant defenses in roots of wheat (Triticum aestivum).

    PubMed

    Sun, Chengliang; Lu, Lingli; Liu, Lijuan; Liu, Wenjing; Yu, Yan; Liu, Xiaoxia; Hu, Yan; Jin, Chongwei; Lin, Xianyong

    2014-03-01

    • Nitric oxide (NO) is an important signaling molecule involved in the physiological processes of plants. The role of NO release in the tolerance strategies of roots of wheat (Triticum aestivum) under aluminum (Al) stress was investigated using two genotypes with different Al resistances. • An early NO burst at 3 h was observed in the root tips of the Al-tolerant genotype Jian-864, whereas the Al-sensitive genotype Yang-5 showed no NO accumulation at 3 h but an extremely high NO concentration after 12 h. Stimulating NO production at 3 h in the root tips of Yang-5 with the NO donor relieved Al-induced root inhibition and callose production, as well as oxidative damage and ROS accumulation, while elimination of the early NO burst by NO scavenger aggravated root inhibition in Jian-864. • Synthesis of early NO in roots of Jian-864 was mediated through nitrate reductase (NR) but not through NO synthase. Elevated antioxidant enzyme activities were induced by Al stress in both wheat genotypes and significantly enhanced by NO donor, but suppressed by NO scavenger or NR inhibitor. • These results suggest that an NR-mediated early NO burst plays an important role in Al resistance of wheat through modulating enhanced antioxidant defense to adapt to Al stress.

  7. Alternative splicing in the coding region of Ppo-A1 directly influences the polyphenol oxidase activity in common wheat (Triticum aestivum L.).

    PubMed

    Sun, Youwei; He, Zhonghu; Ma, Wujun; Xia, Xianchun

    2011-03-01

    Polyphenol oxidase (PPO) plays a crucial role in browning reactions in fresh and processed fruits and vegetables, as well as products made from cereal grains. Common wheat (Triticum aestivum L.) has a large genome, representing an interesting system to advance our understanding of plant PPO gene expression, regulation and function. In the present study, we characterized the expression of Ppo-A1, a major PPO gene located on wheat chromosome 2A, using DNA sequencing, semi-quantitative RT-PCR, PPO activity assays and whole-grain staining methods during grain development. The results indicated that the expression of the Ppo-A1b allele was regulated by alternative splicing of pre-mRNAs, resulting from a 191-bp insertion in intron 1 and one C/G SNP in exon 2. Eight mRNA isoforms were identified in developing grains based on alignments between cDNA and genomic DNA sequences. Only the constitutively spliced isoform b encodes a putative full-length PPO protein based on its coding sequence whereas the other seven spliced isoforms, a, c, d, e, f, g and h, have premature termination codons resulting in potential nonsense-mediated mRNA decay. The differences in expression of Ppo-A1a and Ppo-A1b were confirmed by PPO activity assays and whole grain staining, providing direct evidence for the influence of alternative splicing in the coding region of Ppo-A1 on polyphenol oxidase activity in common wheat grains.

  8. Silicon availability modifies nutrient use efficiency and content, C:N:P stoichiometry, and productivity of winter wheat (Triticum aestivum L.)

    NASA Astrophysics Data System (ADS)

    Neu, Silke; Schaller, Jörg; Dudel, E. Gert

    2017-01-01

    Silicon (Si) is known as beneficial element for graminaceous plants. The importance of Si for plant functioning of cereals was recently emphasized. However, about the effect of Si availability on biomass production, grain yield, nutrient status and nutrient use efficiency for wheat (Triticum aestivum L.), as one of the most important crop plants worldwide, less is known so far. Consequently, we assessed the effect of a broad range of supply levels of amorphous SiO2 on wheat plant performance. Our results revealed that Si is readily taken up and accumulated basically in aboveground vegetative organs. Carbon (C) and phosphorus (P) status of plants were altered in response to varying Si supply. In bulk straw biomass C concentration decreased with increasing Si supply, while P concentration increased from slight limitation towards optimal nutrition. Thereby, aboveground biomass production increased at low to medium supply levels of silica whereas grain yield increased at medium supply level only. Nutrient use efficiency was improved by Si insofar that biomass production was enhanced at constant nitrogen (N) status of substrate and plants. Consequently, our findings imply fundamental influences of Si on C turnover, P availability and nitrogen use efficiency for wheat as a major staple crop.

  9. Identification of autophagy-related genes ATG4 and ATG8 from wheat (Triticum aestivum L.) and profiling of their expression patterns responding to biotic and abiotic stresses.

    PubMed

    Pei, Dan; Zhang, Wei; Sun, Hong; Wei, Xiaojing; Yue, Jieyu; Wang, Huazhong

    2014-10-01

    The genes coding for wheat ATG4 and ATG8 were cloned and their roles in autophagy were verified. Implications of ATG4/ATG8 in wheat responses to stresses were suggested by expression profiling. Autophagy-related proteins ATG4 and ATG8 are crucial for autophagy biogenesis. ATG4 processes ATG8 precursor to expose its C-terminal glycine for phosphatidyl ethanolamine (PE) lipidation. ATG8, in the form of ATG8-PE adduct, functions in the organization dynamics of autophagic membranes. Here, we report the identification of two/nine members of the ATG4/ATG8 family from common wheat (Triticum aestivum L.). Expression of each wheat ATG4/ATG8 could complement the autophagy activity of yeast atg4/atg8 mutant cells. GFP fusion proteins of ATG8s, especially of ATG8s with innate C-terminal-exposed glycines, localized to punctate autophagic membranes. Both of purified ATG4s could cleave ATG8s in vitro, but they had different activities and different preferences for ATG8 substrates. Two times of transcript accumulation, an early one and a late one, of ATG4s/ATG8s were detected in the early phases of the Pm21- and Pm3f-triggered wheat incompatible reactions to the powdery mildew causal fungus Blumeria graminis f. sp. tritici (Bgt), and fluorescence microscopy also revealed a Bgt-induced enhanced wheat autophagy level in the Pm21-triggered incompatible reaction. Only one time of Bgt-induced transcript accumulation of ATG4s/ATG8s, corresponding to but much higher than the late one in incompatible reactions, was detected in a susceptible line isogenic to the Pm21 resistance line. These results suggested positive roles of ATG4/ATG8-associated autophagy process in the early stage and possible negative roles in the late stage of wheat immunity response to Bgt. In addition, expression of wheat ATG4s/ATG8s was also found to be upregulated by abiotic stress factors and distinctively regulated by different phytohormones.

  10. Molecular mapping of the grain iron and zinc concentration, protein content and thousand kernel weight in wheat (Triticum aestivum L.)

    PubMed Central

    Krishnappa, Gopalareddy; Chaudhary, Swati; Ahlawat, Arvind Kumar; Singh, Santosh Kumar; Shukla, Ram Bihari; Jaiswal, Jai Prakash; Singh, Gyanendra Pratap; Solanki, Ishwar Singh

    2017-01-01

    Genomic regions responsible for accumulation of grain iron concentration (Fe), grain zinc concentration (Zn), grain protein content (PC) and thousand kernel weight (TKW) were investigated in 286 recombinant inbred lines (RILs) derived from a cross between an old Indian wheat variety WH542 and a synthetic derivative (Triticum dicoccon PI94624/Aegilops squarrosa [409]//BCN). RILs were grown in six environments and evaluated for Fe, Zn, PC, and TKW. The population showed the continuous distribution for all the four traits, that for pooled Fe and PC was near normal, whereas, for pooled Zn, RILs exhibited positively skewed distribution. A genetic map spanning 2155.3cM was constructed using microsatellite markers covering the 21 chromosomes and used for QTL analysis. 16 quantitative trait loci (QTL) were identified in this study. Four QTLs (QGFe.iari-2A, QGFe.iari-5A, QGFe.iari-7A and QGFe.iari-7B) for Fe, five QTLs (QGZn.iari-2A, QGZn.iari-4A, QGZn.iari-5A, QGZn.iari-7A and QGZn.iari-7B) for Zn, two QTLs (QGpc.iari-2A and QGpc.iari-3A) for PC, and five QTLs (QTkw.iari-1A, QTkw.iari-2A, QTkw.iari-2B, QTkw.iari-5B and QTkw.iari-7A) for TKW were identified. The QTLs together explained 20.0%, 32.0%, 24.1% and 32.3% phenotypic variation, respectively, for Fe, Zn, PC and TKW. QGpc.iari-2A was consistently expressed in all the six environments, whereas, QGFe.iari-7B and QGZn.iari-2A were identified in two environments each apart from pooled mean. QTkw.iari-2A and QTkw.iari-7A, respectively, were identified in four and three environments apart from pooled mean. A common region in the interval of Xgwm359-Xwmc407 on chromosome 2A was associated with Fe, Zn, and PC. One more QTL for TKW was identified on chromosome 2A but in a different chromosomal region (Xgwm382-Xgwm359). Two more regions on 5A (Xgwm126-Xgwm595) and 7A (Xbarc49-Xwmc525) were found to be associated with both Fe and Zn. A QTL for TKW was identified (Xwmc525-Xbarc222) in a different chromosomal region on the same

  11. Empirical rheology and pasting properties of soft-textured durum wheat (Triticum turgidum ssp. durum) and hard-textured common wheat (T. aestivum)

    USDA-ARS?s Scientific Manuscript database

    Puroindoline (PIN) proteins are the molecular basis for wheat kernel texture classification and affect flour milling performance. This study aimed at investigating the effect of PINs on kernel physical characteristics and dough rheological properties of common wheat (Alpowa cv, soft wheat) and durum...

  12. Genome-wide quantitative trait locus mapping identifies multiple major loci for brittle rachis and threshability in Tibetan semi-wild wheat (Triticum aestivum ssp. tibetanum Shao).

    PubMed

    Jiang, Yun-Feng; Lan, Xiu-Jin; Luo, Wei; Kong, Xing-Chen; Qi, Peng-Fei; Wang, Ji-Rui; Wei, Yu-Ming; Jiang, Qian-Tao; Liu, Ya-Xi; Peng, Yuan-Ying; Chen, Guo-Yue; Dai, Shou-Fen; Zheng, You-Liang

    2014-01-01

    Tibetan semi-wild wheat (Triticum aestivum ssp. tibetanum Shao) is a semi-wild hexaploid wheat resource that is only naturally distributed in the Qinghai-Tibet Plateau. Brittle rachis and hard threshing are two important characters of Tibetan semi-wild wheat. A whole-genome linkage map of T. aestivum ssp. tibetanum was constructed using a recombinant inbred line population (Q1028×ZM9023) with 186 lines, 564 diversity array technology markers, and 117 simple sequence repeat markers. Phenotypic data on brittle rachis and threshability, as two quantitative traits, were evaluated on the basis of the number of average spike rachis fragments per spike and percent threshability in 2012 and 2013, respectively. Quantitative trait locus (QTL) mapping performed using inclusive composite interval mapping analysis clearly identified four QTLs for brittle rachis and three QTLs for threshability. However, three loci on 2DS, 2DL, and 5AL showed pleiotropism for brittle rachis and threshability; they respectively explained 5.3%, 18.6%, and 18.6% of phenotypic variation for brittle rachis and 17.4%, 13.2%, and 35.2% of phenotypic variation for threshability. A locus on 3DS showed an independent effect on brittle rachis, which explained 38.7% of the phenotypic variation. The loci on 2DS and 3DS probably represented the effect of Tg and Br1, respectively. The locus on 5AL was in very close proximity to the Q gene, but was different from the predicted q in Tibetan semi-wild wheat. To our knowledge, the locus on 2DL has never been reported in common wheat but was prominent in T. aestivum ssp. tibetanum accession Q1028. It remarkably interacted with the locus on 5AL to affect brittle rachis. Several major loci for brittle rachis and threshability were identified in Tibetan semi-wild wheat, improving the understanding of these two characters and suggesting the occurrence of special evolution in Tibetan semi-wild wheat.

  13. FAR5, a fatty acyl-coenzyme A reductase, is involved in primary alcohol biosynthesis of the leaf blade cuticular wax in wheat (Triticum aestivum L.)

    PubMed Central

    Wang, Yong; Wang, Meiling; Sun, Yulin; Wang, Yanting; Li, Tingting; Chai, Guaiqiang; Jiang, Wenhui; Shan, Liwei; Li, Chunlian; Xiao, Enshi; Wang, Zhonghua

    2015-01-01

    A waxy cuticle that serves as a protective barrier against non-stomatal water loss and environmental damage coats the aerial surfaces of land plants. It comprises a cutin polymer matrix and waxes. Cuticular waxes are complex mixtures of very long chain fatty acids (VLCFAs) and their derivatives. Results show that primary alcohols are the major components of bread wheat (Triticum aestivum L.) leaf blade cuticular waxes. Here, the characterization of TaFAR5 from wheat cv Xinong 2718, which is allelic to TAA1b, an anther-specific gene, is reported. Evidence is presented for a new function for TaFAR5 in the biosynthesis of primary alcohols of leaf blade cuticular wax in wheat. Expression of TaFAR5 cDNA in yeast (Saccharomyces cerevisiae) led to production of C22:0 primary alcohol. The transgenic expression of TaFAR5 in tomato (Solanum lycopersicum) cv MicroTom leaves resulted in the accumulation of C26:0, C28:0, and C30:0 primary alcohols. TaFAR5 encodes an alcohol-forming fatty acyl-coenzyme A reductase (FAR). Expression analysis revealed that TaFAR5 was expressed at high levels in the leaf blades, anthers, pistils, and seeds. Fully functional green fluorescent protein-tagged TaFAR5 protein was localized to the endoplasmic reticulum (ER), the site of primary alcohol biosynthesis. SDS–PAGE analysis indicated that the TaFAR5 protein possessed a molecular mass of 58.4kDa, and it was also shown that TaFAR5 transcript levels were regulated in response to drought, cold, and abscisic acid (ABA). Overall, these data suggest that TaFAR5 plays an important role in the synthesis of primary alcohols in wheat leaf blade. PMID:25468933

  14. Analysis of transgenic wheat (Triticum aestivum L.) harboring a maize (Zea mays L.) gene for plastid EF-Tu: segregation pattern, expression and effects of the transgene.

    PubMed

    Fu, Jianming; Ristic, Zoran

    2010-06-01

    We previously reported that transgenic wheat (Triticum aestivum L.) carrying a maize (Zea mays L.) gene (Zmeftu1) for chloroplast protein synthesis elongation factor, EF-Tu, displays reduced thermal aggregation of leaf proteins, reduced injury to photosynthetic membranes (thylakoids), and enhanced rate of CO(2) fixation following exposure to heat stress (18 h at 45 degrees C) [Fu et al. in Plant Mol Biol 68:277-288, 2008]. In the current study, we investigated the segregation pattern and expression of the transgene Zmeftu1 and determined the grain yield of transgenic plants after exposure to a brief heat stress (18 h at 45 degrees C). We also assessed thermal aggregation of soluble leaf proteins in transgenic plants, testing the hypothesis that increased levels of EF-Tu will lead to a non-specific protection of leaf proteins against thermal aggregation. The transgenic wheat displayed a single-gene pattern of segregation of Zmeftu1. Zmeftu1 was expressed, and the transgenic plants synthesized and accumulated three anti-EF-Tu cross-reacting polypeptides of similar molecular mass but different pI, suggesting the possibility of posttranslational modification of this protein. The transgenic plants also showed better grain yield after exposure to heat stress compared with their non-transgenic counterparts. Soluble leaf proteins of various molecular masses displayed lower thermal aggregation in transgenic than in non-transgenic wheat. The results suggest that overexpression of chloroplast EF-Tu can be beneficial to wheat tolerance to heat stress. Moreover, the results also support the hypothesis that EF-Tu contributes to heat tolerance by acting as a molecular chaperone and protecting heat-labile proteins from thermal aggregation in a non-specific manner.

  15. FAR5, a fatty acyl-coenzyme A reductase, is involved in primary alcohol biosynthesis of the leaf blade cuticular wax in wheat (Triticum aestivum L.).

    PubMed

    Wang, Yong; Wang, Meiling; Sun, Yulin; Wang, Yanting; Li, Tingting; Chai, Guaiqiang; Jiang, Wenhui; Shan, Liwei; Li, Chunlian; Xiao, Enshi; Wang, Zhonghua

    2015-03-01

    A waxy cuticle that serves as a protective barrier against non-stomatal water loss and environmental damage coats the aerial surfaces of land plants. It comprises a cutin polymer matrix and waxes. Cuticular waxes are complex mixtures of very long chain fatty acids (VLCFAs) and their derivatives. Results show that primary alcohols are the major components of bread wheat (Triticum aestivum L.) leaf blade cuticular waxes. Here, the characterization of TaFAR5 from wheat cv Xinong 2718, which is allelic to TAA1b, an anther-specific gene, is reported. Evidence is presented for a new function for TaFAR5 in the biosynthesis of primary alcohols of leaf blade cuticular wax in wheat. Expression of TaFAR5 cDNA in yeast (Saccharomyces cerevisiae) led to production of C22:0 primary alcohol. The transgenic expression of TaFAR5 in tomato (Solanum lycopersicum) cv MicroTom leaves resulted in the accumulation of C26:0, C28:0, and C30:0 primary alcohols. TaFAR5 encodes an alcohol-forming fatty acyl-coenzyme A reductase (FAR). Expression analysis revealed that TaFAR5 was expressed at high levels in the leaf blades, anthers, pistils, and seeds. Fully functional green fluorescent protein-tagged TaFAR5 protein was localized to the endoplasmic reticulum (ER), the site of primary alcohol biosynthesis. SDS-PAGE analysis indicated that the TaFAR5 protein possessed a molecular mass of 58.4kDa, and it was also shown that TaFAR5 transcript levels were regulated in response to drought, cold, and abscisic acid (ABA). Overall, these data suggest that TaFAR5 plays an important role in the synthesis of primary alcohols in wheat leaf blade.

  16. The molecular basis of genetic diversity among cytoplasms of Triticum and Aegilops : 7. Restriction endonuclease analysis of mitochondrial DNAs from polyploid wheats and their ancestral species.

    PubMed

    Terachi, T; Ogihara, Y; Tsunewaki, K

    1990-09-01

    Many related species and strains of common wheat were compared by matching differences among their mitochondrial genomes with their "parent" nuclear genomes. We examined three species of Aegilops, section Sitopsis (Ae. bicornis, Ae. sharonensis, and Ae. speltoides), emmer wheat (Triticum dicoccoides, T. dicoccum, and T. durum), common wheat (T. spelta, T. aestivum, and T. compaction), and timopheevi wheat (T. araraticum, T. timopheevi, and T. zhukovskyi). A single source of the cytoplasm was used in all the species, except Ae. speltoides (two sources), T. araraticum (two), and T. aestivum (three). Following restriction endonuclease analyses, the mitochondrial genomes were found to comprise seven types, and a dendrogram showing their genetic relatedness was constructed, based upon the percentage of common restriction fragments. MtDNAs from T. dicoccum, T. durum, T. aestivum, and T. compactum yielded identical restriction fragment patterns; these differed from T. dicoccoides and T. spelta mtDNAs in only 2.3% of their fragments. The fragment patterns of T. timopheevi and T. zhukovskyi were identical, and these differed from T. araraticum mtDNA by only one fragment. In both the emmer-dinkel and timopheevi groups, mitochondrial genome differentiation is evident, suggesting a diphyletic origin of each group. MtDNAs from four accessions of the Sitopsis species of Aegilops differ greatly from one another, but those of Ae. bicornis, Ae. sharonensis, and Ae. searsii, belonging to the same subsection Emarginata, are relatively similar. MtDNAs of timopheevi species are identical, or nearly so, to those of Ae. speltoides accession (09), suggesting that the latter was the cytoplasm donor to the former, polyploid group. The origin of this polyploid group seems to be rather recent in that the diploid and polyploid species possess nearly identical mitochondrial genomes. We cannot determine, with precision, the cytoplasm donor to the emmer-dinkel group. However, our results do

  17. Markers to a common bunt resistance gene derived from 'Blizzard' wheat (Triticum aestivum L.) and mapped to chromosome arm 1BS.

    PubMed

    Wang, Shu; Knox, Ronald E; DePauw, Ronald M; Clarke, Fran R; Clarke, John M; Thomas, Julian B

    2009-08-01

    Common bunt, caused by Tilletia caries (DC.) Tul. & C. Tul. and T. laevis J.G Kuhn, is an economically important disease of wheat (Triticum aestivum L.) worldwide. The resistance in the winter wheat cultivar 'Blizzard' is effective against known races of common bunt in western Canada. The incorporation of resistance from Blizzard into field-ready cultivars may be accelerated through the use of molecular markers. Using the maize pollen method, a doubled haploid population of 147 lines was developed from the F(1) of the second backcross of Blizzard (resistant) by breeding line '8405-JC3C' (susceptible). Doubled haploid lines were inoculated at seeding with race T19 or T19 and L16 and disease reaction was examined under controlled conditions in 1999 and natural conditions in 2002, and 2003. Resistant:susceptible-doubled haploid lines segregated in a 1:1 ratio for bunt reaction, indicating single major gene segregation. Microsatellite primers polymorphic on the parents were screened on the population. Initial qualitative segregation analysis indicated that the wheat microsatellite markers Xgwm374, Xbarc128 and Xgwm264, located on wheat chromosome 1BS, were significantly linked to the resistance locus. Qualitative results were confirmed with quantitative trait locus analysis. The genetic distance, calculated with JoinMap, between the bunt resistance locus and overlapping markers Xgwm374, Xgwm264 and Xbarc128 was 3.9 cM. The three markers were validated on doubled haploid populations BW337/P9502&DAF1BB and Blizzard/P9514-AR17A3E evaluated for common bunt reaction in the growth chamber in 2007. These markers will be useful in selecting for the common bunt resistance from Blizzard and assist in identifying the resistance among potential new sources of resistance.

  18. Mutual impacts of wheat (Triticum aestivum L.) and earthworms (Eisenia fetida) on the bioavailability of perfluoroalkyl substances (PFASs) in soil.

    PubMed

    Zhao, Shuyan; Fang, Shuhong; Zhu, Lingyan; Liu, Li; Liu, Zhengtao; Zhang, Yahui

    2014-01-01

    Wheat and earthworms were exposed individually and together to soils contaminated with 11 perfluoroalkyl substances (PFASs). Wheat accumulated PFASs from soil with root concentration factors and bioconcentration factors that decreased as the number of perfluorinated carbons in the molecule increased. Earthworms accumulated PFASs from soil with biota-to-soil accumulation factors that increased with the number of carbons. Translocation factors (TF) of perfluorinated carboxylates (PFCAs) in wheat peaked at perfluorohexanoic acid and decreased significantly as the number of carbons increased or decreased. Perfluorohexane sulfonate produced the greatest TF of the three perfluorinated sulfonates (PFSAs) examined. Wheat increased the bioaccumulation of all 11 PFASs in earthworms and earthworms increased the bioaccumulation in wheat of PFCAs containing seven or less perfluorinated carbons, decreased bioaccumulation of PFCAs with more than seven carbons, and decreased bioaccumulation of PFSAs. In general, the co-presence of wheat and earthworms enhanced the bioavailability of PFASs in soil.

  19. Genome-wide identification and characterization of Glyceraldehyde-3-phosphate dehydrogenase genes family in wheat (Triticum aestivum).

    PubMed

    Zeng, Lingfeng; Deng, Rong; Guo, Ziping; Yang, Shushen; Deng, Xiping

    2016-03-16

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a central enzyme in glycolysi, we performed genome-wide identification of GAPDH genes in wheat and analyzed their structural characteristics and expression patterns under abiotic stress in wheat. A total of 22 GAPDH genes were identified in wheat cv. Chinese spring; the phylogenetic and structure analysis showed that these GAPDH genes could be divided into four distinct subfamilies. The expression profiles of GAPDH genes showed tissue specificity all over plant development stages. The qRT-PCR results revealed that wheat GAPDHs were involved in several abiotic stress response. Wheat carried 22 GAPDH genes, representing four types of plant GAPDHs (gapA/B, gapC, gapCp and gapN). Whole genome duplication and segmental duplication might account for the expansion of wheat GAPDHs. Expression analysis implied that GAPDHs play roles in plants abiotic stress tolerance.

  20. Genome-wide analysis of short interspersed nuclear elements SINES revealed high sequence conservation, gene association and retrotranspositional activity in wheat.

    PubMed

    Ben-David, Smadar; Yaakov, Beery; Kashkush, Khalil

    2013-10-01

    Short interspersed nuclear elements (SINEs) are non-autonomous non-LTR retroelements that are present in most eukaryotic species. While SINEs have been intensively investigated in humans and other animal systems, they are poorly studied in plants, especially in wheat (Triticum aestivum). We used quantitative PCR of various wheat species to determine the copy number of a wheat SINE family, termed Au SINE, combined with computer-assisted analyses of the publicly available 454 pyrosequencing database of T. aestivum. In addition, we utilized site-specific PCR on 57 Au SINE insertions, transposon methylation display and transposon display on newly formed wheat polyploids to assess retrotranspositional activity, epigenetic status and genetic rearrangements in Au SINE, respectively. We retrieved 3706 different insertions of Au SINE from the 454 pyrosequencing database of T. aestivum, and found that most of the elements are inserted in A/T-rich regions, while approximately 38% of the insertions are associated with transcribed regions, including known wheat genes. We observed typical retrotransposition of Au SINE in the second generation of a newly formed wheat allohexaploid, and massive hypermethylation in CCGG sites surrounding Au SINE in the third generation. Finally, we observed huge differences in the copy numbers in diploid Triticum and Aegilops species, and a significant increase in the copy numbers in natural wheat polyploids, but no significant increase in the copy number of Au SINE in the first four generations for two of three newly formed allopolyploid species used in this study. Our data indicate that SINEs may play a prominent role in the genomic evolution of wheat through stress-induced activation. © 2013 Ben-Gurion University The Plant Journal © 2013 John Wiley & Sons Ltd.

  1. Genome-wide analysis of short interspersed nuclear elements SINES revealed high sequence conservation, gene association and retrotranspositional activity in wheat

    PubMed Central

    Ben-David, Smadar; Yaakov, Beery; Kashkush, Khalil

    2013-01-01

    Short interspersed nuclear elements (SINEs) are non-autonomous non-LTR retroelements that are present in most eukaryotic species. While SINEs have been intensively investigated in humans and other animal systems, they are poorly studied in plants, especially in wheat (Triticum aestivum). We used quantitative PCR of various wheat species to determine the copy number of a wheat SINE family, termed Au SINE, combined with computer-assisted analyses of the publicly available 454 pyrosequencing database of T. aestivum. In addition, we utilized site-specific PCR on 57 Au SINE insertions, transposon methylation display and transposon display on newly formed wheat polyploids to assess retrotranspositional activity, epigenetic status and genetic rearrangements in Au SINE, respectively. We retrieved 3706 different insertions of Au SINE from the 454 pyrosequencing database of T. aestivum, and found that most of the elements are inserted in A/T-rich regions, while approximately 38% of the insertions are associated with transcribed regions, including known wheat genes. We observed typical retrotransposition of Au SINE in the second generation of a newly formed wheat allohexaploid, and massive hypermethylation in CCGG sites surrounding Au SINE in the third generation. Finally, we observed huge differences in the copy numbers in diploid Triticum and Aegilops species, and a significant increase in the copy numbers in natural wheat polyploids, but no significant increase in the copy number of Au SINE in the first four generations for two of three newly formed allopolyploid species used in this study. Our data indicate that SINEs may play a prominent role in the genomic evolution of wheat through stress-induced activation. PMID:23855320

  2. A consensus framework map of durum wheat (Triticum durum Desf.) suitable for linkage disequilibrium analysis and genome-wide association mapping.

    PubMed

    Maccaferri, Marco; Cane', Maria Angela; Sanguineti, Maria C; Salvi, Silvio; Colalongo, Maria C; Massi, Andrea; Clarke, Fran; Knox, Ron; Pozniak, Curtis J; Clarke, John M; Fahima, Tzion; Dubcovsky, Jorge; Xu, Steven; Ammar, Karim; Karsai, Ildikó; Vida, Gyula; Tuberosa, Roberto

    2014-10-07

    Durum wheat (Triticum durum Desf.) is a tetraploid cereal grown in the medium to low-precipitation areas of the Mediterranean Basin, North America and South-West Asia. Genomics applications in durum wheat have the potential to boost exploitation of genetic resources and to advance understanding of the genetics of important complex traits (e.g. resilience to environmental and biotic stresses). A dense and accurate consensus map specific for T. durum will greatly facilitate genetic mapping, functional genomics and marker-assisted improvement. High quality genotypic data from six core recombinant inbred line populations were used to obtain a consensus framework map of 598 simple sequence repeats (SSR) and Diversity Array Technology® (DArT) anchor markers (common across populations). Interpolation of unique markers from 14 maps allowed us to position a total of 2,575 markers in a consensus map of 2,463 cM. The T. durum A and B genomes were covered in their near totality based on the reference SSR hexaploid wheat map. The consensus locus order compared to those of the single component maps showed good correspondence, (average Spearman's rank correlation rho ρ value of 0.96). Differences in marker order and local recombination rate were observed between the durum and hexaploid wheat consensus maps. The consensus map was used to carry out a whole-genome search for genetic differentiation signatures and association to heading date in a panel of 183 accessions adapted to the Mediterranean areas. Linkage disequilibrium was found to decay below the r2 threshold=0.3 within 2.20 cM, on average. Strong molecular differentiations among sub-populations were mapped to 87 chromosome regions. A genome-wide association scan for heading date from 27 field trials in the Mediterranean Basin and in Mexico yielded 50 chromosome regions with evidences of association in multiple environments. The consensus map presented here was used as a reference for genetic diversity and mapping

  3. [Transgenic wheat (Triticum aestivum L.) with increased resistance to the storage pest obtained by Agrobacterium tumefaciens--mediated].

    PubMed

    Bi, Rui-Ming; Jia, Hai-Yan; Feng, De-Shun; Wang, Hong-Gang

    2006-05-01

    The transgenic wheat of improved resistance to the storage pest was production. We have introduced the cowpea trypsin inhibitor gene (CpTI) into cultured embryonic callus cells of immature embryos of wheat elite line by Agrobacterium-mediated method. Independent plantlets were obtained from the kanamycin-resistant calli after screening. PCR and real time PCR analysis, PCR-Southern and Southern blot hybridization indicated that there were 3 transgenic plants viz. transformed- I, II and III (T- I, T-II and T-III). The transformation frequencies were obviously affected by Agrobacterium concentration, the infection duration and transformation treatment. The segregations of CpTI in the transgenic wheat progenies were not easily to be elucidated, and some transgenic wheat lines (T- I and T-III) showed Mendelian segregations. The determinations of insect resistance to the stored grain insect of wheat viz. the grain moth (Sitotroga cerealella Olivier) indicated that the 3 transgenic wheat progeny seeds moth-resistance was improved significantly. The seed moth-eaten ratio of T- I, T-II, T-III and nontransformed control was 19.8%, 21.9%, 32.9% and 58.3% respectively. 3 transgenic wheat T1 PCR-positive plants revealed that the 3 transgenic lines had excellent agronomic traits. They supplied good germplasm resource of insect-resistance for wheat genetic improvement.

  4. The distal portion of wheat (Triticum aestivum L.) chromosome 5D short arm controls endosperm vitreosity and grain hardness

    USDA-ARS?s Scientific Manuscript database

    Kernel vitreosity is an important trait of wheat grain, but its complete developmental control is not known. We developed back-cross seven (BC7) near isogenic lines in the soft white spring wheat cultivar Alpowa that possess or lack the distal portion of chromosome 5D short arm. This deletion was de...

  5. Introgression of leaf rust and stripe rust resistance from Sharon goatgrass (Aegilops sharonensis Eig) into bread wheat (Triticum aestivum L.)

    USDA-ARS?s Scientific Manuscript database

    Leaf rust and stripe rust are devastating wheat diseases, causing significant yield losses in many regions of the world. The use of resistant varieties is the most efficient way to protect wheat crops from these diseases. Sharon goatgrass (Aegilops sharonensis or AES), which is a diploid wild relati...

  6. Cereal cyst nematode screening in locally adapted spring wheat (Triticum aestivum L.) germplasm of the Pacific Northwest, 2015

    USDA-ARS?s Scientific Manuscript database

    Field screenings were performed to determine if there is resistance to Heterodera filipjevi in locally adapted wheat germplasm which could be introgressed into new WA wheat varieties. A field naturally infested with Heterodera filipjevi located in Colton, WA, was selected for this experiment. Cultiv...

  7. Proteomic profiling analysis reveals that glutathione system plays important roles responding to osmotic stress in wheat (Triticum aestivum L.) roots

    PubMed Central

    Dong, Wen; Zhang, Daijing; Gao, Xiaolong; Shao, Yun; Tong, Doudou

    2016-01-01

    Wheat is one of the most important crops in the world, and osmotic stress has become one of the main factors affecting wheat production. Understanding the mechanism of the response of wheat to osmotic stress would be greatly significant. In the present study, isobaric tag for relative and absolute quantification (iTRAQ) was used to analyze the changes of protein expression in the wheat roots exposed to different osmotic stresses. A total of 2,228 expressed proteins, including 81 differentially expressed proteins, between osmotic stress and control, were found. The comprehensive analysis of these differentially expressed proteins revealed that osmotic stress increased the variety of expressed proteins and suppressed the quantity of expressed proteins in wheat roots. Furthermore, the proteins for detoxifying and reactive oxygen species scavenging, especially the glutathione system, played important roles in maintaining organism balance in response to osmotic stress in wheat roots. Thus, the present study comprehensively describes the protein expression changes in wheat roots in response to osmotic stress, providing firmer foundation to further study the mechanism of osmotic resistance in wheat. PMID:27602297

  8. Evidence of intralocus recombination between the low-molecular weight glutenin subunit in bread wheat (Triticum aestivum L.)

    USDA-ARS?s Scientific Manuscript database

    The low-molecular weight glutenin subunits (LMW-GSs) are one of the major components of wheat seed storage proteins and play a critical role in the determination of wheat flour bread-making quality. The genes encoding for this class of proteins are mainly located at the orthologous Glu-3 loci (Glu-A...

  9. Genome-wide association mapping of fusarium head blight resistance in wheat (Triticum aestivum L.) using genotyping by sequencing

    USDA-ARS?s Scientific Manuscript database

    Fusarium head blight (FHB) is one of the most important wheat diseases worldwide and host resistance displays complex genetic control. A genome-wide association study (GWAS) was performed on 273 winter wheat breeding lines from the mid-western and eastern regions of the US to identify chromosomal re...

  10. Genotype dependent burst of transposable element expression in crowns of hexaploid wheat (Triticum aestivum L.) during cold acclimation

    USDA-ARS?s Scientific Manuscript database

    The expression of 1,613 transposable elements (TEs) represented in the Affymetix Wheat Genome Chip was examined during cold treatment in crowns of 4 hexaploid wheat genotypes that vary in tolerance to cold and in flowering time. The TE expression profiles showed a constant level of expression throug...

  11. Nutrient variability in phloem: examining changes in K, Mg, Zn and Fe concentration during grain loading in common wheat (Triticum aestivum).

    PubMed

    Palmer, Lachlan J; Palmer, Lyndon T; Rutzke, Michael A; Graham, Robin D; Stangoulis, James C R

    2014-12-01

    In wheat, nutrients are transported to seeds via the phloem yet access to this vascular tissue for exudate collection and quantitative analysis of elemental composition is difficult. The purest phloem is collected through the use of aphid stylectomy with volumes of exudate collected normally in the range of 20-500 nl. In this work a new method using inductively coupled plasma mass spectroscopy (ICP-MS) was developed to measure the concentration of K, Mg, Zn and Fe in volumes of wheat (Triticum aestivum, genotype Samnyt 16) phloem as small as 15.5 nl. This improved method was used to observe changes in phloem nutrient concentration during the grain loading period. There were statistically significant increases in phloem Mg and Zn concentration and a significant decrease in K over the period from 1-2 days after anthesis (DAA) to 9-12 DAA. During this period, there was no statistically significant change in phloem Fe concentration. © 2014 Scandinavian Plant Physiology Society.

  12. Accumulation and conversion of sugars by developing wheat grains. VII. Effect of changes in sieve tube and endosperm cavity sap concentrations on the grain filling rate. [Triticum aestivum

    SciTech Connect

    Fisher, D.B.; Gifford, R.M.

    1987-06-01

    The extent to which wheat grain growth is dependent on transport pool solute concentration was investigated by the use of illumination and partial grain removal to vary solute concentrations in the sieve tube and endosperm cavity saps of the wheat ear (Triticum aestivum L.). Short-term grain growth rates were estimated indirectly from the product of phloem area, sieve tube sap concentration, and /sup 32/P translocation velocity. On a per grain basis, calculated rates of mass transport through the peduncle were fairly constant over a substantial range in other transport parameters (i.e. velocity, concentration, phloem area, and grain number). The rates were about 40% higher than expected; this probably reflects some unavoidable bias on faster-moving tracer in the velocity estimates. Sieve tube sap concentration increased in all experiments (by 20 to 64%), with a concomitant decline in velocity (to as low as 8% of the initial value). Endosperm cavity sucrose concentration also increased in all experiments, but cavity sap osmolality and total amino acid concentration remained nearly constant. No evidence was found for an increase in the rate of mass transport per grain through the peduncle in response to the treatments. This apparent unresponsiveness of grain growth rate to increased cavity sap sucrose concentration conflicts with earlier in vitro endosperm studies showing that sucrose uptake increased with increasing external sucrose concentration up to 150 to 200 millimolar.

  13. When Isolated at Full Receptivity, in Vitro Fertilized Wheat (Triticum aestivum, L.) Egg Cells Reveal [Ca2+]cyt Oscillation of Intracellular Origin

    PubMed Central