Science.gov

Sample records for allopurinol xanthine oxidase

  1. Xanthine toxicity to caterpillars synergized by allopurinol, a xanthine dehydrogenase/oxidase inhibitor.

    PubMed

    Slansky, F

    1993-11-01

    Xanthine (2,6-dioxypurine), which occurs in certain legumes and other plants, was fed in artificial diet to larvae of two noctuid moth species, a legume specialist,Anticarsia gemmatalis, and a generalist,Spodoptera frugiperda. In addition, diets either lacked or contained allopurinol (4-hydroxypyrazolo(3,4-d)-pyrimidine), an inhibitor of xanthine dehydrogenase and oxidase, enzymes that convert xanthine to uric acid. Xanthine alone (up to 2% fresh mass, fm) had little deleterious effect on either species, whereas allopurinol alone (up to 1% fm) had moderate but significant effects, increasing mortality, slowing development, and reducing insect biomass. At 0.5% fm allopurinol, the decrease in biomass-relative growth rate (RGR) was associated with reductions in the efficiency of conversion to biomass of digested food (ECD; both species) and in the biomass-relative consumption rate (RCR;A. gemmatalis). In addition, pupae of each species from allopurinol-fed larvae had increased water retention (i.e., lower percentage dry mass) compared with insects consuming control diet. When fed diet containing both compounds (1% fm xanthin+0.5% fm allopurinol), noA. gemmatalis and only 40% ofS. frugiperda larvae reached the prepupal stage; additionally for the latter species, there was a substantial slowing of growth and reductions in final biomass, RGR, RCR, and ECD. These results indicate a synergistic interaction, in which the effects of xanthine and allopurinol combined in the diet were significantly greater than the additive effects of each compound tested separately. Presumably, the inhibition of xanthine dehydrogenase by allopurinol prevented the absorbed xanthine from being converted to uric acid and excreted. In addition, this study expands the phenomenon of phytochemical detoxification by insects to include xanthine dehydrogenase, an enzyme generally not considered within this context. PMID:24248717

  2. Therapeutic Effects of Xanthine Oxidase Inhibitors: Renaissance Half a Century after the Discovery of Allopurinol

    PubMed Central

    PACHER, PÁL; NIVOROZHKIN, ALEX; SZABÓ, CSABA

    2008-01-01

    The prototypical xanthine oxidase (XO) inhibitor allopurinol, has been the cornerstone of the clinical management of gout and conditions associated with hyperuricemia for several decades. More recent data indicate that XO also plays an important role in various forms of ischemic and other types of tissue and vascular injuries, inflammatory diseases, and chronic heart failure. Allopurinol and its active metabolite oxypurinol showed considerable promise in the treatment of these conditions both in experimental animals and in small-scale human clinical trials. Although some of the beneficial effects of these compounds may be unrelated to the inhibition of the XO, the encouraging findings rekindled significant interest in the development of additional, novel series of XO inhibitors for various therapeutic indications. Here we present a critical overview of the effects of XO inhibitors in various pathophysiological conditions and also review the various emerging therapeutic strategies offered by this approach. PMID:16507884

  3. Hydroxychavicol: a potent xanthine oxidase inhibitor obtained from the leaves of betel, Piper betle.

    PubMed

    Murata, Kazuya; Nakao, Kikuyo; Hirata, Noriko; Namba, Kensuke; Nomi, Takao; Kitamura, Yoshihisa; Moriyama, Kenzo; Shintani, Takahiro; Iinuma, Munekazu; Matsuda, Hideaki

    2009-07-01

    The screening of Piperaceous plants for xanthine oxidase inhibitory activity revealed that the extract of the leaves of Piper betle possesses potent activity. Activity-guided purification led us to obtain hydroxychavicol as an active principle. Hydroxychavicol is a more potent xanthine oxidase inhibitor than allopurinol, which is clinically used for the treatment of hyperuricemia.

  4. Potential xanthine oxidase inhibitory activity of endophytic Lasiodiplodia pseudotheobromae.

    PubMed

    Kapoor, Neha; Saxena, Sanjai

    2014-07-01

    Xanthine oxidase is considered as a potential target for treatment of hyperuricemia. Hyperuricemia is predisposing factor for gout, chronic heart failure, atherosclerosis, tissue injury, and ischemia. To date, only two inhibitors of xanthine oxidase viz. allopurinol and febuxostat have been clinically approved for used as drugs. In the process of searching for new xanthine oxidase inhibitors, we screened culture filtrates of 42 endophytic fungi using in vitro qualitative and quantitative XO inhibitory assays. The qualitative assay exhibited potential XO inhibition by culture filtrates of four isolates viz. #1048 AMSTITYEL, #2CCSTITD, #6AMLWLS, and #96 CMSTITNEY. The XO inhibitory activity was present only in the chloroform extract of the culture filtrates. Chloroform extract of culture filtrate #1048 AMSTITYEL exhibited the highest inhibition of XO with an IC50 value of 0.61 μg ml(-1) which was better than allopurinol exhibiting an IC50 of 0.937 μg ml(-1) while febuxostat exhibited a much lower IC50 of 0.076 μg ml(-1). Further, molecular phylogenetic tools and morphological studies were used to identify #1048 AMSTITYEL as Lasiodiplodia pseudotheobromae. This is the first report of an endophytic Lasiodiplodia pseudotheobromae from Aegle marmelos exhibiting potential XO Inhibitory activity.

  5. Potential xanthine oxidase inhibitory activity of endophytic Lasiodiplodia pseudotheobromae.

    PubMed

    Kapoor, Neha; Saxena, Sanjai

    2014-07-01

    Xanthine oxidase is considered as a potential target for treatment of hyperuricemia. Hyperuricemia is predisposing factor for gout, chronic heart failure, atherosclerosis, tissue injury, and ischemia. To date, only two inhibitors of xanthine oxidase viz. allopurinol and febuxostat have been clinically approved for used as drugs. In the process of searching for new xanthine oxidase inhibitors, we screened culture filtrates of 42 endophytic fungi using in vitro qualitative and quantitative XO inhibitory assays. The qualitative assay exhibited potential XO inhibition by culture filtrates of four isolates viz. #1048 AMSTITYEL, #2CCSTITD, #6AMLWLS, and #96 CMSTITNEY. The XO inhibitory activity was present only in the chloroform extract of the culture filtrates. Chloroform extract of culture filtrate #1048 AMSTITYEL exhibited the highest inhibition of XO with an IC50 value of 0.61 μg ml(-1) which was better than allopurinol exhibiting an IC50 of 0.937 μg ml(-1) while febuxostat exhibited a much lower IC50 of 0.076 μg ml(-1). Further, molecular phylogenetic tools and morphological studies were used to identify #1048 AMSTITYEL as Lasiodiplodia pseudotheobromae. This is the first report of an endophytic Lasiodiplodia pseudotheobromae from Aegle marmelos exhibiting potential XO Inhibitory activity. PMID:24801403

  6. Simulation of the solid state and the first and second hydration shell of the xanthine oxidase inhibitor allopurinol: Structures obtained using DFT and MP2 methods

    NASA Astrophysics Data System (ADS)

    Álvarez-Ros, M. C.; Alcolea Palafox, M.

    2016-05-01

    Allopurinol (AL) was investigated in the isolated state, solid state, and in the hydrated form through an exhaustive quantum-chemical analysis. Full geometry optimization and energy calculations of the 11 most stable tautomers in the isolated state were performed. The most stable one corresponds to AL-15 at all the levels of computation. Several weak bands of the experimental spectrum in Ar-matrix were tentatively assigned to tautomer AL-25. The crystal unit cell of the solid state was simulated by a heptamer form. Comparisons with the experimental values confirm that only tautomer AL-15 appears in the solid state. The hydration of the two most stable tautomers: AL-15 and AL-25 was carried out. Solvent effects were considered using the Tomasi's polarized continuum model (PCM) and by the explicit model (EM) including a variable number of water molecules surrounding the base to simulate the first and second hydration shells. In this second hydration shell the calculated difference in the free energy between both tautomers is so small, that both tautomers can coexist in bull water. Some of the most important conclusions on the effects of the hydration on the molecular structure were presented. The deformation and interaction energies were corrected for basis set superposition error (BSSE) using the counterpoise (CP) procedure.

  7. Xanthine oxidase inhibitors from Vietnamese Blumea balsamifera L.

    PubMed

    Nguyen, Mai Thanh Thi; Nguyen, Nhan Trung

    2012-08-01

    From the MeOH extract of the aerial part of Blumea balsamifera L., a new dihydroflavonol, (2R,3S)-(-)-4'-O-methyldihydroquercetin (1), together with seven known compounds has been isolated. Their structures were elucidated on the basis of spectroscopic data. Compounds 1-4 and 6-8 displayed significant xanthine oxidase inhibitory activity in a concentration-dependent manner, and compounds 1, 6 and 8 showed more potent inhibitory activity, with IC₅₀ values ranging from 0.23 to 1.91 µM, than that of a positive control allopurinol (IC₅₀ 2.50 µM). PMID:22821854

  8. 9-Benzoyl 9-deazaguanines as potent xanthine oxidase inhibitors.

    PubMed

    Rodrigues, Marili V N; Barbosa, Alexandre F; da Silva, Júlia F; dos Santos, Deborah A; Vanzolini, Kenia L; de Moraes, Marcela C; Corrêa, Arlene G; Cass, Quezia B

    2016-01-15

    A novel potent xanthine oxidase inhibitor, 3-nitrobenzoyl 9-deazaguanine (LSPN451), was selected from a series of 10 synthetic derivatives. The enzymatic assays were carried out using an on-flow bidimensional liquid chromatography (2D LC) system, which allowed the screening¸ the measurement of the kinetic inhibition constant and the characterization of the inhibition mode. This compound showed a non-competitive inhibition mechanism with more affinity for the enzyme-substrate complex than for the free enzyme, and inhibition constant of 55.1±9.80 nM, about thirty times more potent than allopurinol. Further details of synthesis and enzymatic studies are presented herein.

  9. Xanthine oxidase inhibitory activity of alkyl gallates.

    PubMed

    Masuoka, Noriyoshi; Nihei, Ken-ichi; Kubo, Isao

    2006-08-01

    A series (C1-C12) of alkyl gallates was examined for their effects on the activity of xanthine oxidase. Octyl (C8), decyl (C10), and dodecyl (C12) gallates competitively inhibited uric acid formation generated by xanthine oxidase, and the inhibition increased upon increasing the alkyl chain length. Interestingly, neither menthyl nor bornyl gallates inhibited uric acid formation. These data indicate that the hydrophobic alkyl portion is associated with the xanthine-binding site in the Mo-binding domain. It is likely that the linear alkyl portion interacts with the hydrophobic domain close to the binding site, and the hydrophobic interaction is crucial to inhibit the xanthine oxidase reaction. On the other hand, all of gallic acid and its esters equally suppress superoxide anion generation catalyzed by xanthine oxidase at low concentration. The suppression is not due to scavenging activity of these gallates but due to reduction of xanthine oxidase by these gallates. The reduced enzyme catalyzes the reaction to generate hydrogen peroxide and uric acid.

  10. Allopurinol

    MedlinePlus

    ... xanthine oxidase inhibitors. It works by reducing the production of uric acid in the body. High levels ... your doctor and the laboratory. Your doctor will order certain lab tests to check your body's response ...

  11. Xanthine oxidase inhibitors from Brandisia hancei.

    PubMed

    Kong, L D; Wolfender, J L; Cheng, C H; Hostettmann, K; Tan, R X

    1999-12-01

    Xanthine oxidase is a key enzyme associated with the incidence of hyperuricemia-related disorders. Repeated chromatography of the enzyme inhibitory part of the water extract of the twigs and leaves of Brandisia hancei (Scrophulariaceae) gave a flavone luteolin, an iridoid glycoside mussaenoside, two beta-sitosterol glycosides daucosterol and beta-sitosterol gentiobioside, and five phenylethanoids arenarioside, brandioside, acteoside, 2'-O-acetylacteoside and isoacteoside. Luteolin and isoacteoside inhibited the xanthine oxidase (XO, EC 1.2.3.2) with the IC50 values at 7.83 and 45.48 microM, respectively. Isoacteoside was found to be the first phenylethanoid that decreased substantially the formation of uric acid by inhibiting competitively xanthine oxidase (Ki value: 10.08 microM). Furthermore, the study suggested that the caffeoylation of the 6'-hydroxyl group of the phenylethanoids was essential for the enzyme inhibitory action.

  12. Xanthine oxidase inhibitory activity of some Indian medical plants.

    PubMed

    Umamaheswari, Muthuswamy; AsokKumar, Kuppusamy; Somasundaram, Arumugam; Sivashanmugam, Thirumalaisamy; Subhadradevi, Varadharajan; Ravi, Thenvungal Kochupapy

    2007-02-12

    Xanthine oxidase inhibitory activity was assayed from six species belonging to different families traditionally used for the treatment of gout and related symptoms by indigenous people of India. The aqueous, methanol-water mixture and methanolic extract of these plants were used for the experiment. Of the 18 extracts assayed, 14 extracts demonstrated xanthine oxidase inhibitory activity at 100 microg/ml, among which 10 extracts showed an inhibition greater than 50% and IC(50) values below 100 microg/ml. The methanolic extracts of Coccinia grandis, Datura metel, Strychnos nux-vomica and Vitex negundo showed more than 50% inhibition, hence, they were screened for their in vivo hypouricaemic activity against potassium oxonate-induced hyperuricaemia in mice. Methanolic extracts of Coccinia grandis and Vitex negundo showed a significant decrease in the serum urate level (3.90+/-0.07 mg/dl, P<0.001) and (6.26+/-0.06 mg/dl, P<0.01), respectively, when compared to hyperuricaemic control (11.42+/-0.14 mg/dl). This effect is almost similar to the serum urate level of allopurinol (3.89+/-0.07 mg/dl).

  13. Increased xanthine oxidase in the skin of preeclamptic women.

    PubMed

    Bainbridge, Shannon A; Deng, Jau-Shyong; Roberts, James M

    2009-05-01

    Xanthine oxioreductase is the holoenzyme responsible for terminal purine catabolism. Under conditions of metabolic stress or heightened proinflammatory cytokine production, this enzyme is preferentially in its oxidized form, xanthine oxidase, with catalytic action that generates uric acid and the free radical superoxide. As preeclampsia is characterized by heightened inflammation, oxidative stress, and hyperuricemia, it has been proposed that xanthine oxidase plays a pivotal role in this hypertensive disorder of pregnancy. We sought to determine whether xanthine oxidase protein content was higher in maternal tissue of preeclamptic mothers, compared to healthy pregnant controls, using immunohistochemical analysis of skin biopsies. We further compared xanthine oxidase immunoreactivity in skin biopsies from preeclamptic women and patients with several inflammatory conditions. In preeclamptic women, intense xanthine oxidase immunoreactivity was present within the epidermis. By contrast, only very faint xanthine oxidase staining was observed in skin biopsies from healthy pregnant controls. Further, a role for inflammation in the increase of xanthine oxidase was suggested by similar findings of heightened xanthine oxidase immunoreactivity in the skin biopsies from nonpregnant individuals diagnosed with conditions of systemic inflammation. The finding of increased xanthine oxidase in maternal tissue, most likely as the result of heightened maternal inflammation, suggests maternal xanthine oxidase as a source of free radical and uric acid generation in preeclampsia.

  14. Fluorescence quenching study of quercetin interaction with bovine milk xanthine oxidase

    NASA Astrophysics Data System (ADS)

    Rasoulzadeh, Farzaneh; Jabary, Hamideh Nadjarpour; Naseri, Abdolhossein; Rashidi, Mohammad-Reza

    2009-02-01

    Quercetin is a natural flavonoid with many important therapeutic properties. The interaction of this polyphenolic compound bovine milk xanthine oxidase as one of its major target proteins was studied using fluorescence quenching method for the first time. It was found that the fluorescence quenching of xanthine oxidase occurs through a static mechanism. The results revealed the presence of a single binding site on xanthine oxidase with the binding constant value equals to 1.153 × 10 4 l mol -1 at 310 K and pH 7.4. The thermodynamic parameters were also calculated at different temperatures. The enthalpy and entropy changes were found as -10.661 kJ mol -1 and +43.321 J mol -1 K -1 indicating that both hydrogen binding and hydrophobic are involved in the interaction of this polyphenolic natural compound with xanthine oxidase. The results may provide a ground for further studies with different flavonoids to find a safe alternative for allopurinol, the only xanthine oxidase inhibitor with clinical application.

  15. In vitro antimalarial and xanthine oxidase inhibition of 2-Aminoanthraquinone.

    PubMed

    Rauf, Abdur; Khan, Rehan; Khan, Haroon; Jehan, Noor; Akram, Mohammad; Ahmad, Zarka; Muhammad, Naveed; Farooq, Umar; Khan, Ajmal

    2016-03-01

    In the present research study 2-Aminoanthraquinone were scrutinized for their antimalarial and Xanthine oxidase inhibitor potential. It demonstrated marked concentration dependent antimalarial activity with maximum effect of 89.06% and with IC50 of 34.17 µM. Regarding Xanthine oxidase inhibitor activity, it evoked significant effect with 57.45% activity with IC50 value of 81.57.19 μM. In conclusion, 2-Aminoanthraquinone showed potent antimalarial and xanthine oxidase inhibitory activity. PMID:27087090

  16. IRON REGULATES XANTHINE OXIDASE ACTIVITY IN THE LUNG

    EPA Science Inventory

    The iron chelator deferoxamine has been reported to inhibit both xanthine oxidase (XO) and xanthine dehydrogenase activity, but the relationship of this effect to the availability of iron in the cellular and tissue environment remains unexplored. XO and total xanthine oxidoreduct...

  17. Inhibition of xanthine oxidase to prevent statin-induced myalgia and rhabdomiolysis.

    PubMed

    Alis, Rafael; Sanchis-Gomar, Fabian; Risso-Ballester, Jennifer; Perez-Quilis, Carme; Cortell-Ballester, Jose; Romagnoli, Marco; Blesa, Jose R; Emanuele, Enzo

    2015-03-01

    Although statins remain the cornerstone of lipid-lowering therapy for reducing the burden of atherosclerotic vascular disease, their administration has been associated with muscle-related adverse effects, including myalgia and rhabdomyolysis. Such adverse events are probably due to reduced antioxidant defenses associated with fewer intermediate metabolites in the cholesterol synthesis pathway. We hypothesize that the concomitant inhibition of xanthine oxidase via coadministration of allopurinol with statins could diminish reactive oxygen species (ROS)-related muscle damage, which would have in turn have positive effects on both the incidence of muscle-related adverse events and cardiovascular outcomes. Accordingly, inhibition of xanthine oxidase has been previously shown to be effective for reducing biomarkers of muscle damage following exercise in professional athletes. Because of the widespread statin utilization and increasing trends in their therapeutic use in atherosclerotic vascular diseases, the proposed strategy could have important clinical implications for reducing statin-induced myalgia and rhabdomyolysis. PMID:25568951

  18. Monochloramine produces reactive oxygen species in liver by converting xanthine dehydrogenase into xanthine oxidase

    SciTech Connect

    Sakuma, Satoru Miyoshi, Emi; Sadatoku, Namiko; Fujita, Junko; Negoro, Miki; Arakawa, Yukio; Fujimoto, Yohko

    2009-09-15

    In the present study, we assessed the influence of monochloramine (NH{sub 2}Cl) on the conversion of xanthine dehydrogenase (XD) into xanthine oxidase (XO) in rat liver in vitro. When incubated with the partially purified cytosolic fraction from rat liver, NH{sub 2}Cl (2.5-20 {mu}M) dose-dependently enhanced XO activity concomitant with a decrease in XD activity, implying that NH{sub 2}Cl can convert XD into the reactive oxygen species (ROS) producing form XO. The NH{sub 2}Cl (5 {mu}M)-induced XD/XO interconversion in the rat liver cytosol was completely inhibited when added in combination with an inhibitor of NH{sub 2}Cl methionine (25 {mu}M). A sulfhydryl reducing agent, dithiothreitol at concentrations of 0.1, 1 and 5 mM also dose-dependently reversed the NH{sub 2}Cl (5 {mu}M)-induced XD/XO interconversion. These imply that NH{sub 2}Cl itself acts on the XD/XO interconversion, and that this conversion occurs at the cysteine residues in XD. Furthermore, using the fluorescent probe 2',7'-dichlorodihydrofluorescein diacetate, it was found that NH{sub 2}Cl could increase ROS generation in the cytoplasm of rat primary hepatocyte cultures, and that this increase might be reversed by an XO inhibitor, allopurinol. These results suggest that NH{sub 2}Cl has the potential to convert XD into XO in the liver, which in turn may induce the ROS generation in this region.

  19. Xanthine oxidase inhibitory activity of Vietnamese medicinal plants.

    PubMed

    Nguyen, Mai Thanh Thi; Awale, Suresh; Tezuka, Yasuhiro; Tran, Quan Le; Watanabe, Hiroshi; Kadota, Shigetoshi

    2004-09-01

    Among 288 extracts, prepared from 96 medicinal plants used in Vietnamese traditional medicine to treat gout and related symptoms, 188 demonstrated xanthine oxidase (XO) inhibitory activity at 100 microg/ml, with 46 having greater than 50% inhibition. At 50 microg/ml, 168 of the extracts were active, with 21 possessing more than 50% inhibition. At 25 microg/ml, 146 extracts exhibited inhibitory activity, with 8 showing over 50% inhibition, while 126 extracts presented activity at 10 microg/ml, with 2 having greater than 50% inhibition. The MeOH extracts of Artemisia vulgaris, Caesalpinia sappan (collected at the Seven-Mountain area), Blumea balsamifera (collected in Lam Dong province), Chrysanthemum sinense and MeOH-H(2)O extract of Tetracera scandens (Khanh Hoa province) exhibited strong XO inhibitory activity with IC(50) values less than 20 microg/ml. The most active extract was the MeOH extract of the flower of C. sinense with an IC(50) value of 5.1 microg/ml. Activity-guided fractionation of the MeOH extract led to the isolation of caffeic acid (1), luteolin (2), eriodictyol (3), and 1,5-di-O-caffeoylquinic acid (4). All these compounds showed significant XO inhibitory activity in a concentration-dependent manner, and the activity of 2 was more potent (IC(50) 1.3 microM) than the clinically used drug, allopurinol (IC(50) 2.5 microM). PMID:15340229

  20. A new lupane triterpene from Tetracera scandens L., xanthine oxidase inhibitor.

    PubMed

    Nguyen, Mai Thanh Thi; Nguyen, Nhan Trung

    2013-01-01

    From the MeOH extract of the stem of Tetracera scandens L., a new nor-lupane triterpene, 28-O-β-D-glucopyranosyl ester of platanic acid (1), has been isolated together with six known compounds. Their structures were elucidated on the basis of spectroscopic data. Compounds 1-6 displayed significant xanthine oxidase inhibitory activity in a concentration-dependent manner, and compound 4 showed more potent inhibitory activity with an IC(50) value of 1.9 µM than that of a positive control allopurinol (IC(50) 2.5 µM). PMID:22260251

  1. Xanthine oxidase inhibitory lanostanoids from Ganoderma tsugae.

    PubMed

    Lin, Kai-Wei; Chen, Yen-Ting; Yang, Shyh-Chyun; Wei, Bai-Luh; Hung, Chi-Feng; Lin, Chun-Nan

    2013-09-01

    Two new lanostanoids, 3α-acetoxy-22-oxo-5α-lanosta-8,24-dien-21-oic acid, named tsugaric acid D (1) and 16α-hydroxy-3-oxo-5α-lanosta-6,8,24(24(1))-trien-21-oic acid, named tsugaric acid E (2) were isolated from the fruit bodies of Ganoderma tsugae. The structures 1 and 2 were determined by spectroscopic methods. Compound 1 and known compounds 3 and 6 exhibited significant inhibitory effects on xanthine oxidase (XO) activity with an IC50 values of 90.2±24.2, 116.1±3.0, and 181.9±5.8 μM, respectively. Known compound 5 was able to protect human keratinocytes against damage induced by UVB light, which showed 5 could protect keratinocytes from photodamage. The 1 and 5 μM 1 combined with 5 μM cisplatin, respectively, enhanced the cytotoxicity induced by cisplatin. It suggested that 1 and 5 μM 1 combined with low dose of cisplatin may enhance the therapeutic efficacy of cisplatin and reduce side effect and cisplatin resistant.

  2. Longan seed extract reduces hyperuricemia via modulating urate transporters and suppressing xanthine oxidase activity.

    PubMed

    Hou, Chien-Wei; Lee, Ying-Chung; Hung, Hsiao-Fang; Fu, Hua-Wen; Jeng, Kee-Ching

    2012-01-01

    Hyperuricemia causes gouty arthritis, kidney disease, heart disease, and other diseases. Xanthine oxidase (XOD) and urate transporters play important roles in urate homeostasis. Numerous plants have been identified as XOD inhibitors. Longan seeds are known to contain high levels of polyphenols such as corilagin, gallic acid and ellagic acid. We examined the effect of longan seed extract on XOD inhibition and urate transporters GLUT1 and GLUT9 using both in vitro and in vivo assays. The results showed that dried longan seed extract (LSE) and its active components inhibited XOD dose-dependently in vitro. LSE inhibited uric acid production and XOD activity in normal liver cells (clone-9 cells) and was not cytotoxic under the concentration of 200 μg/ml. For the in vivo study, Sprague-Dawley (SD) rats were given intraperitoneally for thirty minutes with or without allopurinol (a XOD inhibitor, 3.5 mg/kg) or LSE (80 mg/kg) and then injected intraperitioneally with 250 mg/kg of oxonic acid and 300 mg/kg of hypoxanthine intragastrically. LSE was able to reduce serum uric acid level and XOD activity in hyperuricemic rats. However, LSE or allopurinol did not inhibit the liver XOD activities. On the other hand, GLUT1 protein was suppressed in kidney and GLUT9 was induced in liver from experimental rats and LSE or allopurinol decreased GLUT9 but increased GLUT1 protein level in the liver and kidney, respectively. These results confirmed the claimed effect of longan seeds on gout and other complications and suggested that its urate reducing effect might be due to modulation of urate transporters and inhibition of circulating xanthine oxidase.

  3. Iron regulates xanthine oxidase activity in the lung.

    PubMed

    Ghio, Andrew J; Kennedy, Thomas P; Stonehuerner, Jacqueline; Carter, Jacqueline D; Skinner, Kelly A; Parks, Dale A; Hoidal, John R

    2002-09-01

    The iron chelator deferoxamine has been reported to inhibit both xanthine oxidase (XO) and xanthine dehydrogenase activity, but the relationship of this effect to the availability of iron in the cellular and tissue environment remains unexplored. XO and total xanthine oxidoreductase activity in cultured V79 cells was increased with exposure to ferric ammonium sulfate and inhibited by deferoxamine. Lung XO and total xanthine oxidoreductase activities were reduced in rats fed an iron-depleted diet and increased in rats supplemented with iron, without change in the ratio of XO to total oxidoreductase. Intratracheal injection of an iron salt or silica-iron, but not aluminum salts or silica-zinc, significantly increased rat lung XO and total xanthine oxidoreductase activities, immunoreactive xanthine oxidoreductase, and the concentration of urate in bronchoalveolar fluid. These results suggest the possibility that the production of uric acid, a major chelator of iron in extracellular fluid, is directly influenced by iron-mediated regulation of the expression and/or activity of its enzymatic source, xanthine oxidase.

  4. Antioxidant, α-glucosidase and xanthine oxidase inhibitory activity of bioactive compounds from maize (Zea mays L.).

    PubMed

    Nile, Shivraj H; Park, Se W

    2014-01-01

    Chemical investigations into maize (Zea mays L.) kernels yielded phenolic compounds, which were structurally established using chromatographic and spectroscopic methods. The isolated phenolic compounds from maize kernel were examined in vitro for their antioxidant abilities by DPPH (2,2-diphenyl-1-picryl hydrazine) radical, OH radical scavenging activity, and reducing ability, along with α-glucosidase and xanthine oxidase (XO) inhibition. The isolated maize phenolics revealed significant xanthine oxidase and α-glucosidase inhibitory activity to that of allopurinol and acarbose in vitro and in vivo, respectively. The kinetics study with xanthine oxidase revealed competitive type of inhibition by isolated maize vanillic acid (M2), ferulic acid (M5), 3'-methoxyhirsutrin (M7), and peonidin-3-glucoside (M10) as compared to control allopurinol. Overall, with few exceptions, all the phenolic compounds from maize kernel revealed significant biological activities with all parameters examined. Also, the phenolic compounds from maize were found to be more reactive toward DPPH radical and had considerable reducing ability and OH radical scavenging activity. These findings suggest that maize kernel phenolic compounds can be considered as potential antioxidant, α-glucosidase, and XO inhibitory agents those might be further explored for the design of lead antioxidant, antidiabetic and antigout drug candidates using in vivo trials. PMID:23957301

  5. Lead optimization of isocytosine-derived xanthine oxidase inhibitors.

    PubMed

    Bajaj, Komal; Burudkar, Sandeep; Shah, Pranay; Keche, Ashish; Ghosh, Usha; Tannu, Prashant; Khanna, Smriti; Srivastava, Ankita; Deshmukh, Nitin J; Dixit, Amol; Ahire, Yogesh; Damre, Anagha; Nemmani, Kumar V S; Kulkarni-Almeida, Asha; B-Rao, Chandrika; Sharma, Rajiv; Sivaramakrishnan, H

    2013-02-01

    We report our attempts at improving the oral efficacy of low-nanomolar inhibitors of xanthine oxidase from isocytosine series through chemical modifications. Our lead compound had earlier shown good in vivo efficacy when administered intraperitoneally but not orally. Several modifications are reported here which achieved more than twofold improvement in exposure. A compound with significant improvement in oral efficacy was also obtained.

  6. Synthesis, xanthine oxidase inhibition, and antioxidant screening of benzophenone tagged thiazolidinone analogs.

    PubMed

    Ranganatha, V Lakshmi; Begum, A Bushra; Naveen, P; Zameer, Farhan; Hegdekatte, Raghavendra; Khanum, Shaukath Ara

    2014-08-01

    A series of novel 2-(diaryl methanone)-N-(4-oxo-2-phenyl-thiazolidin-3-yl)-acetamides were synthesized by various Schiff bases of (4-benzoyl-phenoxy)-aceto hydrazide with thioglycolic acid. The structures of the newly synthesized compounds were confirmed by IR, (1) H NMR, mass spectra, and C, H, N analysis. Further, all the synthesized compounds 9a-n were evaluated for xanthine oxidase (XO) inhibition and antioxidant properties. Among all the tested compounds, 9f, 9m, and 9n demonstrated potent XO inhibition of 52, 76, and 26%, respectively, compared to the standard drug allopurinol, which is evident from in vitro and in silico analysis. On the other hand, compounds 9c, 9d, and 9k exhibit potent antioxidant properties. PMID:24853493

  7. Xanthine dehydrogenase and aldehyde oxidase impact plant hormone homeostasis and affect fruit size in 'Hass' avocado.

    PubMed

    Taylor, Nicky J; Cowan, A Keith

    2004-04-01

    The contribution of xanthine dehydrogenase (XDH, EC 1.1.1.204) to fruit size was investigated using the normal and small-fruit variants of Persea americana Mill. cv. 'Hass'. Inhibition of XDH by treatment of normal fruit, in the linear phase of growth (phase II), with allopurinol (Allo) arrested fruit growth. Adenine (Ade), a less effective inhibitor of this enzyme, also arrested fruit growth when applied in phase II and slowed fruit growth when applied in phase III. A time-course study on the activity of XDH in mesocarp tissue from normal and small fruit showed that maximum activity occurred late in phase II and that the peak in activity was absent in mesocarp of the small fruit. Feeding Ade to growing fruit in phase III caused a transient decline in fruit growth (measured as change in fruit length). Thereafter, growth resumed although fruit size was irreversibly affected. Treatment of fruit with Ade and Ade-containing cytokinins altered activity of another molybdenum enzyme, aldehyde oxidase (EC 1.2.3.1). Cytokinin oxidase was induced by cytokinin and auxin. Purine catabolism via hypoxanthine/xanthine was operative in normal fruit and in mesocarp from the small-fruit variant and as expected, Allo treatment caused accumulation of xanthine and adenine. In the absence of an increase in XDH during growth of the small-fruit phenotype, low levels of Ade were interpreted as resulting from respiration-enhanced adenylate depletion. Stress and/or pathogen induction of the alternative oxidase pathway is proposed as a possible cause.

  8. Xanthine oxidase-catalyzed crosslinking of cell membrane proteins.

    PubMed

    Girotti, A W; Thomas, J P; Jordan, J E

    1986-12-01

    Isolated erythrocyte membranes exposed to protease-free xanthine oxidase plus xanthine and ferric iron undergo lipid peroxidation and protein crosslinking (appearance of high molecular weight aggregates on sodium dodecyl sulfate (SDS) gel electrophoresis). Spectrin is more susceptible to crosslinking than the other polypeptides. Thiol-reducible bonds (disulfides) as well as nonreducible bonds are generated, the former type relatively rapidly (detected within 10-20 min) and the latter type more slowly (usually detected after 1 h). Reducible crosslinking is inhibited by catalase, but not by superoxide dismutase, desferrioxamine, butylated hydroxyltoluene, and mannitol; whereas nonreducible crosslinking, like free radical lipid peroxidation, is inhibited by all of these agents except mannitol. Zinc(II) also inhibits lipid peroxidation, but stimulates disulfide bond formation to the virtual exclusion of all other crosslinking. Our results indicate that disulfide formation is dependent on H2O2, but not O2- or iron. However, O2-, H2O2, and iron are all required for lipid peroxidation and nondisulfide crosslinking, suggesting the intermediacy of OH generated via the iron-catalyzed Haber-Weiss reaction. The possible role of malonaldehyde (MDA, a by-product of lipid peroxidation) in the latter type of crosslinking was examined. Solubilized samples of xanthine/xanthine oxidase-treated membranes showed a strong visible fluorescence (emission maximum 450 nm; excitation 390 nm). This resembled the fluorescence of membranes treated with authentic MDA, which forms conjugated imine linkages between amino groups. Fluorescence scanning of SDS gels from MDA-treated membranes showed a strong signal coincident with crosslinked proteins and also one in the low molecular weight, nonprotein region, suggestive of aminolipid conjugates. Similar scanning on xanthine/xanthine oxidase-reacted membranes indicated that all fluorescence is associated with the lipid fraction. Thus, nonreducible

  9. Inhibition of xanthine oxidase by some Chinese medicinal plants used to treat gout.

    PubMed

    Kong, L D; Cai, Y; Huang, W W; Cheng, C H; Tan, R X

    2000-11-01

    The enzyme xanthine oxidase catalyses the oxidation of hypoxanthine to xanthine and then to uric acid, which plays a crucial role in gout. A total of 122 traditional Chinese medicinal plants, selected according to the clinical efficacy and prescription frequency for the treatment of gout and other hyperuricemia-related disorders, have been evaluated for the enzyme inhibitory activity. Among the 122 methanol extracts derived from these species, 69 were shown to be inhibitory at 100 microg/ml, with 29 having greater than 50% inhibition. As to the equal amount of water extracts, 40 were disclosed to be active at 100 microg/ml, with 13 possessing more than 50% inhibition. At 50 microg/ml, 58 methanol and 24 water extracts exhibited inhibitory activity, with 15 of the former and two of the latter showing greater than 50% inhibition. The most active was the methanol extract of the twig of Cinnamomum cassia (Lauraceae) (IC(50), 18 microg/ml), which was followed immediately by those of the flower of Chrysanthemum indicum (Asteraceae) (IC(50), 22 microg/ml) and the leaves of Lycopus europaeus (Lamiatae) (IC(50), 26 microg/ml). Among the water extracts, the strongest inhibition of the enzyme was observed with that of the rhizome of Polygonum cuspidatum (Polygonaceae) (IC(50), 38 microg/ml). The IC(50) value of allopurinol used as a positive control was 1.06 microg/ml. The study demonstrated that the effects for these medicinal plants used for the gout treatment were based, at least in part, on the xanthine oxidase inhibitory action.

  10. Evaluation of Xanthine Oxidase Inhibitory Potential and In vivo Hypouricemic Activity of Dimocarpus longan Lour. Extracts

    PubMed Central

    Sheu, Shi-Yuan; Fu, Yuan-Tsung; Huang, Wen-Dar; Chen, Yung-Ann; Lei, Yi-Chih; Yao, Chun-Hsu; Hsu, Feng-Lin; Kuo, Tzong-Fu

    2016-01-01

    Background: Longan is a fruit tree known to contain many phenolic components, which are capable of protecting people from oxidative damage through an anti-inflammatory mechanism. It may be also worthwhile to study the effect on lowering uric acid activity. Materials and Methods: This study investigates the lowering of uric acid using longan extracts, including flowers, pericarps, seeds, leaves, and twigs, on potassium-oxonate-induced hyperuricemia mice and its inhibitory actions against xanthine oxidase (XO) activities. Results: The findings revealed that ethyl acetate fraction of longan extracts exhibited strong XO-inhibitory activity, and the flower extracts (IC50 = 115.8 μg/mL) revealed more potent XO-inhibitory activity to those of pericarps (118.9 μg/mL), twigs (125.3 μg/mL), seeds (262.5 μg/mL), and leaves (331.1 μg/mL) in vitro. In addition, different dosages of longan extract (50–100 mg/kg) were administered to hyperuricemic mice. The lowering effect of longan extracts on uric acid at 75 mg/kg markedly reduced plasma uric acid levels in decreasing order: Flowers (80%) > seeds (72%) > pericarps (64%) > twigs (59%) > leaves (41%), compared with allopurinol (89%). Finally, 10 isolated phytochemicals from longan flowers were then examined in vitro. The results indicated that proanthocyanidin A2 and acetonylgeraniin A significantly inhibited XO activity in vitro. This is the first report providing new insights into the urate-reducing effect of phenolic dimer and hydrolyzable tannin, which can be developed to potential hypouricemic agents. SUMMARY Longan flower extracts possess more potent XO-inhibitory activity than pericarps, twigs, seeds, and leaves in vitroThe lowering effect of longan flowers and seeds extracts markedly reduced plasma uric acid levels as compared to allopurinol in vivoThe extract proanthocyanidin A2 and acetonylgeraniin A were demonstrated potent XO inhibitory activity in vitro Abbreviations used: PO: Potassium-oxonate, XO: xanthine

  11. Xanthine oxidase inhibitory activity of Lychnophora species from Brazil ("Arnica").

    PubMed

    Filha, Z S Ferraz; Vitolo, I F; Fietto, L G; Lombardi, J A; Saúde-Guimarães, D A

    2006-08-11

    Twenty-two extracts from five Lychnophora species and one Lychnophoriopsis species, traditionally used in Brazil as analgesic, anti-inflammatory, and to treat bruise and rheumatism were examined for the inhibition of xanthine oxidase (XO), the enzyme that catalyses the metabolism of hypoxanthine and xanthine into uric acid. Sixteen extracts were tested. All of them were found to have excellent XO inhibitory activity, with inhibitions greater than 38% at 100 microg/mL in the assay mixture. The most active plants examined were Lychnophora trichocarpha, Lychnophora ericoides, Lychnophora staavioides and Lychnophoriopsis candelabrum, with inhibitions of 77%, 78%, 66% and 63% at 100 microg/mL, respectively, and IC(50) values of 6.16, 8.28, 33.97 and 37.70 microg/mL, respectively.

  12. [Molecular docking analysis of xanthine oxidase inhibition by constituents of cichory].

    PubMed

    Wang, Xue-jie; Lin, Zhi-jian; Zhang, Bing; Zhu, Chun-sheng; Niu, Hong-juan; Zhou, Yue; Nie, An-zheng; Wang, Yu

    2015-10-01

    Human xanthine oxidase is considered to be a target for therapy of hyperuricemia. Cichorium intybus is a Chinese plant medicine which widely used in Xinjiang against various diseases. In order to screen the inhibitors of xanthine oxidase from C. intybus and to explore main pharmacological actions of cichory a compound collection of C. intybus was built via consulting related references about chemical research on cichory. The three-dimensional crystal structure of xanthine oxidase (PDB code: 1N5X) from Protein Data Bank was downloaded.. Autodock 4.2 was employed to screen the inhibitors of xanthine oxidase from cichory 70 compounds were found to possess quite low binding free energy comparing with TEI (febuxostat). C. intybus contains constituents possessing potential inhibitive activity against xanthine oxidase. It can explain the main pharmacological actions of cichory which can significantly lower the level of serum uric acid. PMID:26975108

  13. [Molecular docking analysis of xanthine oxidase inhibition by constituents of cichory].

    PubMed

    Wang, Xue-jie; Lin, Zhi-jian; Zhang, Bing; Zhu, Chun-sheng; Niu, Hong-juan; Zhou, Yue; Nie, An-zheng; Wang, Yu

    2015-10-01

    Human xanthine oxidase is considered to be a target for therapy of hyperuricemia. Cichorium intybus is a Chinese plant medicine which widely used in Xinjiang against various diseases. In order to screen the inhibitors of xanthine oxidase from C. intybus and to explore main pharmacological actions of cichory a compound collection of C. intybus was built via consulting related references about chemical research on cichory. The three-dimensional crystal structure of xanthine oxidase (PDB code: 1N5X) from Protein Data Bank was downloaded.. Autodock 4.2 was employed to screen the inhibitors of xanthine oxidase from cichory 70 compounds were found to possess quite low binding free energy comparing with TEI (febuxostat). C. intybus contains constituents possessing potential inhibitive activity against xanthine oxidase. It can explain the main pharmacological actions of cichory which can significantly lower the level of serum uric acid.

  14. Longevity and aging. Role of free radicals and xanthine oxidase. A review.

    PubMed

    Labat-Robert, J; Robert, L

    2014-04-01

    Longevity and aging are differently regulated. Longevity has an important part of genetic determinants, aging is essentially post-genetic. Among the genes involved in longevity determination, sirtuins, activated also by calorie restriction and some others as the TOR pathway, attracted special interest after the insulin–IGF pathway first shown to regulate longevity in model organisms. For most of these genes, postponement of life-threatening diseases is the basis of their action which never exceeds about 35% of all determinants, in humans. Among the post-genetic mechanisms responsible for age-related decline of function, free radicals attracted early interest as well as the Maillard reaction, generating also free radicals. Most attempts to remediate to free radical damage failed however, although different scavenger mechanisms and protective substances are present in the organism. Synthetic protectors were also tested without success. The only example of a successful treatment of a free radical mediated pathology is the case of xanthine oxidase, involved in cardiovascular pathology, essentially during the ischemia-reperfusion process. Its inhibition by allopurinol is currently used to fight this deadly syndrome.

  15. Characterization of an Anti-gout Xanthine Oxidase Inhibitor from Pleurotus ostreatus.

    PubMed

    Jang, In-Taek; Hyun, Se-Hee; Shin, Ja-Won; Lee, Yun-Hae; Ji, Jeong-Hyun; Lee, Jong-Soo

    2014-09-01

    We selected Pleurotus ostreatus from among several edible mushrooms because it has high anti-gout xanthine oxidase (XOD) inhibitory activity. The maximal amount of XOD inhibitor was extracted when the Pleurotus ostreatus fruiting body was treated with distilled water at 40℃ for 48 hr. The XOD inhibitor thus obtained was purified by Sephadex G-50 gel permeation chromatography, ultrafiltration, C18 solid phase extraction chromatography and reverse-phase high-performance liquid chromatography with 3% of solid yield, and its XOD inhibitory activity was 0.9 mg/mL of IC50. The purified XOD inhibitor was a tripeptide with the amino acid sequence phenylalanine-cysteine-histidine and a molecular weight of 441.3 Da. The XOD inhibitor-containing ultrafiltrates from Pleurotus ostreatus demonstrated dose-dependent anti-gout effects in a Sprague-Dawley rat model of potassium oxonate-induced gout, as shown by decreased serum urated levels at doses of 500 and 1,000 mg/kg, although the effect was not as great as that achieved with the commercial anti-gout agent, allopurinol when administered at a dose of 50 mg/kg. PMID:25346610

  16. The role of urate and xanthine oxidase inhibitors in cardiovascular disease.

    PubMed

    George, Jacob; Struthers, Allan D

    2008-01-01

    Many studies have shown a strong correlation between urate levels and cardiovascular disease. The formation of urate is complex as the same enzyme that produces urate, xanthine oxidase (XO) also catalyzes the formation of reactive oxygen species (ROS). There is some evidence that the urate molecule has free radical scavenging properties in vitro and acute infusions of urate improve endothelial function in at-risk populations. High levels of ROS are clearly linked to worse outcome in a variety of conditions. Allopurinol has been the archetypal XO inhibitor for over 40 years. Small studies have demonstrated its beneficial effects, mainly in heart failure but also in a variety of other cohorts of patients with cardiovascular risk. It is a safe agent, provided suitable patients are chosen and monitored carefully. Newer promising agents like oxypurinol have not shown the expected benefits in larger multicentered studies. This review looks at the biology of urate, its role in cardiovascular disease, the possible mechanisms by which XO inhibitors exert their beneficial effect on endothelial dysfunction, and examines the possible causes for the failure of newer agents to live up to expectations.

  17. Xanthine oxidase inhibition by febuxostat attenuates experimental atherosclerosis in mice.

    PubMed

    Nomura, Johji; Busso, Nathalie; Ives, Annette; Matsui, Chieko; Tsujimoto, Syunsuke; Shirakura, Takashi; Tamura, Mizuho; Kobayashi, Tsunefumi; So, Alexander; Yamanaka, Yoshihiro

    2014-04-01

    Atherosclerosis is a chronic inflammatory disease due to lipid deposition in the arterial wall. Multiple mechanisms participate in the inflammatory process, including oxidative stress. Xanthine oxidase (XO) is a major source of reactive oxygen species (ROS) and has been linked to the pathogenesis of atherosclerosis, but the underlying mechanisms remain unclear. Here, we show enhanced XO expression in macrophages in the atherosclerotic plaque and in aortic endothelial cells in ApoE(-/-) mice, and that febuxostat, a highly potent XO inhibitor, suppressed plaque formation, reduced arterial ROS levels and improved endothelial dysfunction in ApoE(-/-) mice without affecting plasma cholesterol levels. In vitro, febuxostat inhibited cholesterol crystal-induced ROS formation and inflammatory cytokine release in murine macrophages. These results demonstrate that in the atherosclerotic plaque, XO-mediated ROS formation is pro-inflammatory and XO-inhibition by febuxostat is a potential therapy for atherosclerosis.

  18. Xanthine oxidase inhibitory activity of Hungarian wild-growing mushrooms.

    PubMed

    Ványolós, Attila; Orbán-Gyapai, Orsolya; Hohmann, Judit

    2014-08-01

    Mushrooms represent a remarkable and yet largely unexplored source of new, biologically active natural products. In this work, we report on the xanthine oxidase (XO) inhibitory activity of 47 wild-growing mushrooms native to Hungary. Aqueous and organic (n-hexane, chloroform, and 50% methanol) extracts of selected mushrooms from different families were screened for their XO inhibitory activities. Among the 188 extracts investigated, the chloroform and 50% methanol fractions proved to be the most effective. Some species exhibited high inhibitory activity, e.g., Hypholoma fasciculare (IC50  =67.76 ± 11.05 µg/mL), Suillus grevillei (IC50  =13.28 ± 1.58 µg/mL), and Tricholoma populinum (IC50  =85.08 ± 15.02 µg/mL); others demonstrated moderate or weak activity. Additional studies are warranted to characterize the compounds responsible for the XO inhibitory activity of mushroom extracts.

  19. Antioxidant activities and xanthine oxidase inhibitory effects of extracts and main polyphenolic compounds obtained from Geranium sibiricum L.

    PubMed

    Wu, Nan; Zu, Yuangang; Fu, Yujie; Kong, Yu; Zhao, Jintong; Li, Xiaojuan; Li, Ji; Wink, Michael; Efferth, Thomas

    2010-04-28

    The antioxidant capacity and xanthine oxidase inhibitory effects of extracts and main polyphenolic compounds of Geranium sibiricum were studied in the present work. The antioxidant capacity was evaluated by ferric reducing antioxidant power, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging, superoxide radical scavenging, nitric oxide scavenging, beta-carotene-linoleic acid bleaching, and reducing power assays. Among the extracts and four fractions, the ethyl acetate fraction showed the highest phenolic content (425.36 +/- 9.70 mg of gallic acid equivalent/g extracts) and the best antioxidant activity. The IC(50) values of the ethyl acetate fraction were 0.93, 3.32, 2.06, 2.66, and 1.64 microg/mL in the DPPH radical scavenging, superoxide radical scavenging, nitric oxide scavenging, beta-carotene-linoleic acid bleaching, and reducing power assays, respectively. Of the polyphenolic compounds separated from the ethyl acetate fraction, geraniin showed a higher activity than corilagin and gallic acid. The IC(50) values ranged from 0.87 to 2.53 microM, which were even lower than the positive control (except for allopurinol). All test samples except for the petroleum ether fraction showed xanthine oxidase inhibitory effects. We conclude that G. sibiricum represents a valuable natural antioxidant source and is potentially applicable in the healthy food industry.

  20. Xanthine oxidase-catalyzed metabolism of 2-nitrofluorene, a carcinogenic air pollutant, in rat skin.

    PubMed

    Ueda, Osamu; Kitamura, Shigeyuki; Ohashi, Koji; Sugihara, Kazumi; Ohta, Shigeru

    2003-04-01

    The reductive metabolism of 2-nitrofluorene, a carcinogenic air pollutant, in rat skin microsomes and cytosol was investigated. 2-Nitrofluorene was reduced to the corresponding amine by the microsomes with NADPH and by the cytosol with 2-hydroxypyrimidine or 4-hydroxypyrimidine under anaerobic conditions. The cytosolic activity was much higher than that of skin microsomes. The 2- or 4-hydroxypyrimidine-linked nitroreductase activity was inhibited by oxypurinol and (+/-)-8-(3-methoxy-4-phenylsulfinylphenyl) pyrazolo[1,5-a]-1,3,5-triazine-4(1H)-one (BOF-4272), inhibitors of xanthine oxidase, but not by menadione, chlorpromazine and isovanillin, inhibitors of aldehyde oxidase. When skin cytosol was applied to a DEAE-cellulose column, the fractions containing xanthine oxidase exhibited a marked 2-hydroxypyrimidine-linked nitroreductase activity. In contrast, the aldehyde oxidase fraction showed little activity. Nitroreductase fractions obtained by ion exchange chromatography showed a band in Western blotting analysis using anti-rat xanthine oxidase. Moreover, the xanthine oxidase fraction exhibited a significant nitroreductase activity in the presence of 2-hydroxypyrimidine, 4-hydroxypyrimidine or hypoxanthine, and these activities were inhibited by inhibitors of xanthine oxidase. These results indicated that reduction of 2-nitrofluorene in the skin was mainly catalyzed by xanthine oxidase. PMID:12642461

  1. Determination of human plasma xanthine oxidase activity by high-performance liquid chromatography.

    PubMed

    Yamamoto, T; Moriwaki, Y; Takahashi, S; Tsutsumi, Z; Yamakita, J; Nasako, Y; Hiroishi, K; Higashino, K

    1996-06-01

    An assay for human plasma xanthine oxidase activity was developed with pterin as the substrate and the separation of product (isoxanthopterin) by high-performance liquid chromatography with a fluorescence detector. The reaction mixture consists of 60 microliters of plasma and 240 microliters of 0.2 M Tris-HCl buffer (pH 9.0) containing 113 microM pterin. With this assay, the activity of plasma xanthine oxidase could be easily determined despite its low activity. As a result, it could be demonstrated that the intravenous administration of heparin or the oral administration of ethanol did not increase plasma xanthine oxidase activity in normal subjects, and also that plasma xanthine oxidase activity was higher in patients with hepatitis C virus infection than in healthy subjects or patients with gout. In addition, a single patient with von Gierke's disease showed a marked increase in the plasma activity of this enzyme, relative to that apparent in normal subjects. PMID:8811453

  2. Superoxide radicals scavenging and xanthine oxidase inhibitory activity of magnesium lithospermate B from Salvia miltiorrhiza.

    PubMed

    Liu, Xiaoyu; Chen, Ruohua; Shang, Yanjun; Jiao, Binghua; Huang, Caiguo

    2009-06-01

    In this study we investigated the superoxide radicals scavenging effect and xanthine oxidase inhibitory activity by magnesium lithospermate B, which was originally isolated from the roots of Salvia miltiorrhiza (also named Danshen or Dansham), an important herb in Oriental medicine. Superoxide radicals were generated both in beta-NADH/PMS system and xanthine/ xanthine oxidase system. Magnesium lithospermate B significantly inhibited the reduction of NBT induced by superoxide radicals with an IC(50) of 29.8 microg/mL and 4.06 microg/mL respectively in the two systems. Further study suggested that magnesium lithospermate B can directly inhibit xanthine oxidase and exhibits competitive inhibition. Magnesium lithospermate B was also found to have the hypouricemic activity in vivo against potassium oxonate-induced hyperuricaemia in mice. After oral administration of magnesium lithospermate B at doses of 10, 20 and 30 mg/kg, there was a significant decrease in the serum urate level when compared to the hyperuricemia control. In addition, magnesium lithospermate B significantly protected HL-60 cells from superoxide radicals-induced apoptosis in the xanthine/ xanthine oxidase reactions. This study provided evidence that magnesium lithospermate B exhibits direct superoxide radicals scavenging and xanthine oxidase inhibitory activity.

  3. Identification of a xanthine oxidase-inhibitory component from Sophora flavescens using NMR-based metabolomics.

    PubMed

    Suzuki, Ryuichiro; Hasuike, Yuka; Hirabayashi, Moeka; Fukuda, Tatsuo; Okada, Yoshihito; Shirataki, Yoshiaki

    2013-10-01

    We demonstrate that NMR-based metabolomics studies can be used to identify xanthine oxidase-inhibitory compounds in the diethyl ether soluble fraction prepared from a methanolic extract of Sophora flavescens. Loading plot analysis, accompanied by direct comparison of 1H NMR spectraexhibiting characteristic signals, identified compounds exhibiting inhibitory activity. NMR analysis indicated that these characteristic signals were attributed to flavanones such as sophoraflavanone G and kurarinone. Sophoraflavanone G showed inhibitory activity towards xanthine oxidase in an in vitro assay. PMID:24354187

  4. Protection against acetaminophen-induced liver injury by allopurinol is dependent on aldehyde oxidase-mediated liver preconditioning

    SciTech Connect

    Williams, C. David; McGill, Mitchell R.; Lebofsky, Margitta; Bajt, Mary Lynn; Jaeschke, Hartmut

    2014-02-01

    Acetaminophen (APAP) overdose causes severe and occasionally fatal liver injury. Numerous drugs that attenuate APAP toxicity have been described. However these compounds frequently protect by cytochrome P450 inhibition, thereby preventing the initiating step of toxicity. We have previously shown that pretreatment with allopurinol can effectively protect against APAP toxicity, but the mechanism remains unclear. In the current study, C3HeB/FeJ mice were administered allopurinol 18 h or 1 h prior to an APAP overdose. Administration of allopurinol 18 h prior to APAP overdose resulted in an 88% reduction in liver injury (serum ALT) 6 h after APAP; however, 1 h pretreatment offered no protection. APAP-cysteine adducts and glutathione depletion kinetics were similar with or without allopurinol pretreatment. The phosphorylation and mitochondrial translocation of c-jun-N-terminal-kinase (JNK) have been implicated in the progression of APAP toxicity. In our study we showed equivalent early JNK activation (2 h) however late JNK activation (6 h) was attenuated in allopurinol treated mice, which suggests that later JNK activation is more critical for the toxicity. Additional mice were administered oxypurinol (primary metabolite of allopurinol) 18 h or 1 h pre-APAP, but neither treatment protected. This finding implicated an aldehyde oxidase (AO)-mediated metabolism of allopurinol, so mice were treated with hydralazine to inhibit AO prior to allopurinol/APAP administration, which eliminated the protective effects of allopurinol. We evaluated potential targets of AO-mediated preconditioning and found increased hepatic metallothionein 18 h post-allopurinol. These data show metabolism of allopurinol occurring independent of P450 isoenzymes preconditions the liver and renders the animal less susceptible to an APAP overdose. - Highlights: • 18 h allopurinol pretreatment protects against acetaminophen-induced liver injury. • 1 h allopurinol pretreatment does not protect from APAP

  5. Production of the carbonate radical anion during xanthine oxidase turnover in the presence of bicarbonate.

    PubMed

    Bonini, Marcelo G; Miyamoto, Sayuri; Di Mascio, Paolo; Augusto, Ohara

    2004-12-10

    Xanthine oxidase is generally recognized as a key enzyme in purine catabolism, but its structural complexity, low substrate specificity, and specialized tissue distribution suggest other functions that remain to be fully identified. The potential of xanthine oxidase to generate superoxide radical anion, hydrogen peroxide, and peroxynitrite has been extensively explored in pathophysiological contexts. Here we demonstrate that xanthine oxidase turnover at physiological pH produces a strong one-electron oxidant, the carbonate radical anion. The radical was shown to be produced from acetaldehyde oxidation by xanthine oxidase in the presence of catalase and bicarbonate on the basis of several lines of evidence such as oxidation of both dihydrorhodamine 123 and 5,5-dimethyl-1-pyrroline-N-oxide and chemiluminescence and isotope labeling/mass spectrometry studies. In the case of xanthine oxidase acting upon xanthine and hypoxanthine as substrates, carbonate radical anion production was also evidenced by the oxidation of 5,5-dimethyl-1-pyrroline-N-oxide and of dihydrorhodamine 123 in the presence of uricase. The results indicated that Fenton chemistry occurring in the bulk solution is not necessary for carbonate radical anion production. Under the conditions employed, the radical was likely to be produced at the enzyme active site by reduction of a peroxymonocarbonate intermediate whose formation and reduction is facilitated by the many xanthine oxidase redox centers. In addition to indicating that the carbonate radical anion may be an important mediator of the pathophysiological effects of xanthine oxidase, the results emphasize the potential of the bicarbonate-carbon dioxide pair as a source of biological oxidants. PMID:15448145

  6. Screening of xanthine oxidase inhibitors in complex mixtures using online HPLC coupled with postcolumn fluorescence-based biochemical detection.

    PubMed

    Li, Deqiang; Li, Shaoping; Zhao, Jing

    2014-02-01

    Xanthine oxidase (XO) catalyzes the metabolism of hypoxanthine and xanthine to uric acid, the overproduction and/or underexcretion of which could cause the incidence of hyperuricemia such as gout. Herein, the inhibition of XO is recognized as one of the therapeutic approaches to treat gout. In the present study, an off-line fluorescence-based microplate method was first developed for an XO assay in which the enzyme converted pterin to its fluorescent metabolite isoxanthopterin. Then, a postcolumn continuous XO assay as a means of bioactivity assessment was coupled to HPLC separation to establish the online HPLC with diode array detection, biochemical detection, and MS/MS system for the screening of XO inhibitors. The availability of the online system was first tested with a positive drug, allopurinol, a well-known XO inhibitor, and subsequent analysis of Scutellaria baicalensis extract showed that two main bioactive compounds with XO inhibitory activities were observed, indicating that the developed online system was applicable to complex mixtures.

  7. Oxidation reaction by xanthine oxidase: theoretical study of reaction mechanism.

    PubMed

    Amano, Tatsuo; Ochi, Noriaki; Sato, Hirofumi; Sakaki, Shigeyoshi

    2007-07-01

    The oxidation process by molybdenum-containing enzyme, xanthine oxidase, is theoretically studied with a model complex representing the reaction center and a typical benchmark substrate, formamide. Comparisons were systematically made among reaction mechanisms proposed previously. In the concerted and stepwise mechanisms that were theoretically discussed previously, the oxidation reaction takes place with a moderate activation barrier. However, the product is less stable than the reactant complex, which indicates that these mechanisms are unlikely. Moreover, the product of the concerted mechanism is not consistent with the isotope experimental result. In addition to those mechanisms, another mechanism initiated by the deprotonation of the active site was newly investigated here. In the transition state of this reaction, the carbon atom of formamide interacts with the oxo ligand of the Mo center and the hydrogen atom is moving from the carbon atom to the thioxo ligand. This reaction takes place with a moderate activation barrier and considerably large exothermicity. Furthermore, the product by this mechanism is consistent with the isotope experimental result. Also, our computations clearly show that the deprotonation of the active site occurs with considerable exothermicity in the presence of glutamic acid and substrate. The intermediate of the stepwise mechanism could not be optimized in the case of the deprotonated active site. From all these results, it should be concluded that the one-step mechanism with the deprotonated active site is the most plausible.

  8. Xanthine oxidase inhibitory activity of extracts prepared from Polygonaceae species.

    PubMed

    Orbán-Gyapai, Orsolya; Lajter, Ildikó; Hohmann, Judit; Jakab, Gusztáv; Vasas, Andrea

    2015-03-01

    The xanthine oxidase (XO) inhibitory activity of aqueous and organic extracts of 27 selected species belonging in five genera (Fallopia, Oxyria, Persicaria, Polygonum and Rumex) of the family Polygonaceae occurring in the Carpathian Basin were tested in vitro. From different plant parts (aerial parts, leaves, flowers, fruits and roots), a total of 196 extracts were prepared by subsequent extraction with methanol and hot H2O and solvent-solvent partition of the MeOH extract yielding n-hexane, chloroform and 50% MeOH subextracts. It was found that the chloroform subextracts and/or the remaining 50% MeOH extracts of Fallopia species (F. bohemica, F. japonica and F. sachalinensis), Rumex species (R. acetosa, R. acetosella, R. alpinus, R. conglomeratus, R. crispus, R. hydrolapathus, R. pulcher, R. stenophyllus, R. thyrsiflorus, R. obtusifolius subsp. subalpinus, R. patientia) and Polygonum bistorta, Polygonum hydropiper, Polygonum lapathifolium and Polygonum viviparum demonstrated the highest XO inhibitory activity (>85% inhibition) at 400 µg/mL. The IC50 values of the active extracts were also determined. On the basis of the results, these plants, and especially P. hydropiper and R. acetosella, are considered worthy of activity-guided phytochemical investigations.

  9. Protection against acetaminophen-induced liver injury by allopurinol is dependent on aldehyde oxidase-mediated liver preconditioning.

    PubMed

    Williams, C David; McGill, Mitchell R; Lebofsky, Margitta; Bajt, Mary Lynn; Jaeschke, Hartmut

    2014-02-01

    Acetaminophen (APAP) overdose causes severe and occasionally fatal liver injury. Numerous drugs that attenuate APAP toxicity have been described. However these compounds frequently protect by cytochrome P450 inhibition, thereby preventing the initiating step of toxicity. We have previously shown that pretreatment with allopurinol can effectively protect against APAP toxicity, but the mechanism remains unclear. In the current study, C3HeB/FeJ mice were administered allopurinol 18h or 1h prior to an APAP overdose. Administration of allopurinol 18h prior to APAP overdose resulted in an 88% reduction in liver injury (serum ALT) 6h after APAP; however, 1h pretreatment offered no protection. APAP-cysteine adducts and glutathione depletion kinetics were similar with or without allopurinol pretreatment. The phosphorylation and mitochondrial translocation of c-jun-N-terminal-kinase (JNK) have been implicated in the progression of APAP toxicity. In our study we showed equivalent early JNK activation (2h) however late JNK activation (6h) was attenuated in allopurinol treated mice, which suggests that later JNK activation is more critical for the toxicity. Additional mice were administered oxypurinol (primary metabolite of allopurinol) 18h or 1h pre-APAP, but neither treatment protected. This finding implicated an aldehyde oxidase (AO)-mediated metabolism of allopurinol, so mice were treated with hydralazine to inhibit AO prior to allopurinol/APAP administration, which eliminated the protective effects of allopurinol. We evaluated potential targets of AO-mediated preconditioning and found increased hepatic metallothionein 18h post-allopurinol. These data show metabolism of allopurinol occurring independent of P450 isoenzymes preconditions the liver and renders the animal less susceptible to an APAP overdose.

  10. A kinetic study of hypoxanthine oxidation by milk xanthine oxidase.

    PubMed Central

    Escribano, J; Garcia-Canovas, F; Garcia-Carmona, F

    1988-01-01

    The course of the reaction sequence hypoxanthine----xanthine----uric acid catalysed by xanthine:oxygen oxidoreductase from milk was investigated on the basis of u.v. spectra taken during the course of hypoxanthine and xanthine oxidations. It was found that xanthine accumulated in the reaction mixture when hypoxanthine was used as a substrate. The time course of the concentrations of hypoxanthine, xanthine intermediate and uric acid product was simulated numerically. The mathematical model takes into account the competition of substrate, intermediate and product and the accumulation of the intermediate at the enzyme. This type of analysis permits the kinetic parameters of the enzyme for hypoxanthine and xanthine to be obtained. PMID:3196295

  11. Inhibition of xanthine oxidase reduces wasting and improves outcome in a rat model of cancer cachexia.

    PubMed

    Springer, Jochen; Tschirner, Anika; Hartman, Kai; Palus, Sandra; Wirth, Eva K; Ruis, Silvia Busquets; Möller, Nadine; von Haehling, Stephan; Argiles, Josep M; Köhrle, Josef; Adams, Volker; Anker, Stefan D; Doehner, Wolfram

    2012-11-01

    Cachexia is a common co-morbidity in cancer occurring in up to 80% of patients depending on the type of cancer. Uric acid (UA), the end-product of the purine metabolism, is elevated in cachexia due to tissue wasting and upregulated xanthine oxidase (XO) activity. High serum UA levels indicate increased XO-dependent production of oxygen free radicals (reactive oxygen species; ROS) and correlate with metabolic illness and poor survival. We hypothesized that XO-inhibition might reduce inflammatory signals accounting for tissue wasting and improve survival in experimental cancer cachexia. Animals were inoculated intraperitoneally with AH-130 hepatoma cells and treated with two XO-inhibitors: allopurinol [Allo, low (LD) and high dose (HD) 4 and 40 mg/kg/d] and its more effective active metabolite oxypurinol (Oxy, 4 and 40 mg/kg/d) or placebo for 15 days. Weight loss and tissue wasting of both fat and lean tissue (assessed by NMR-scanning) was reduced by both LD and HD Allo and LD-Oxy, but not by HD-Oxy. A robust induction of XO-activity for generation of reactive oxygen species was seen in the placebo group (assessed by electron paramagnetic spectroscopy), which was reduced by XO-inhibition. Increased ROS induced cytokine signaling, proteolytic activity and tissue degradation were all attenuated by XO inhibition. Survival was significantly and dose dependently improved. Food intake and spontaneous locomotor activity were higher, indicating a higher quality of life. Inhibition of XO can reduce tissue wasting and improve survival in cancer cachexia and clearly clinical studies are needed.

  12. Xanthine Oxidase and Cardiovascular Risk in Obese Children

    PubMed Central

    Tam, Harrison K.; Kelly, Aaron S.; Metzig, Andrea M.; Steinberger, Julia

    2014-01-01

    Abstract Background: Pathological mechanisms of how childhood obesity leads to increased risk of cardiovascular disease (CVD) are not fully characterized. Oxidative-stress–related enzymes, such as xanthine oxidase (XO), have been linked to obesity, endothelial dysfunction, and CVD in adults, but little is known about this pathway in children. The aim of this study was to determine whether differential XO activity is associated with endothelial dysfunction, CVD risk factors, or cytokine levels. Methods: Fasting plasma samples were obtained from obese (BMI ≥95th percentile; n=20) and age- and gender-matched healthy weight (BMI >5th and <85th percentile; n=22) children and adolescents (mean age, 12±3 years) to quantify XO activity. In addition, fasting cholesterol, insulin, glucose, blood pressure, endothelial function, and cytokine levels were assessed. Results: We observed a 3.8-fold increase in plasma XO activity in obese, compared to healthy weight, children (118±21 vs. 31±9 nU/mg of protein; p<0.001). Plasma XO activity was correlated with BMI z-score (r=0.41), waist circumference (r=0.41), high-density lipoprotein cholesterol (r=−0.32), oxidized low-density lipoprotein (r=0.57), adiponectin (r=−0.53), and monocyte chemotactic protein-1 (r=−0.59). Conclusion: XO activity is highly elevated in obese children and correlates with CVD risk factors, suggesting that XO may play a role in increasing cardiovascular risk early in life in the context of obesity. PMID:24568669

  13. Effect of dietary protein and iron on the fractional turnover rate of rat liver xanthine oxidase

    SciTech Connect

    Cherry, D.M.; Amy, N.K.

    1987-12-01

    Rat liver xanthine oxidase activity is regulated in response to dietary protein and iron. To investigate whether the change in activity was mediated by a change in the rate of protein degradation, we measured the fractional turnover rate using the double-isotope technique with (/sup 3/H)- and (/sup 14/C)leucine and calculated the apparent half-life of xanthine oxidase in rats fed diets containing either 20 or 5% casein with either 35 or 5 mg iron/kg diet. Under control conditions, xanthine oxidase had an apparent half-life of 4.8 d and approximately 65% of the enzyme subunits were active. Rats fed diets with low dietary protein had lower xanthine oxidase activity, but the enzyme had a slower fractional turnover rate, resulting in an apparent half-life of 6.4 d, and only 15-20% of the enzyme was active. The apparent half-life of xanthine oxidase increased to 7.5 d in rats fed diets with low dietary iron, but dietary iron did not affect the specific activity of the enzyme or the percentage of active subunits. These results suggest that the loss of enzyme activity is not due to loss of enzyme protein by increased degradation, but rather to inactivation of the enzyme.

  14. Novel Insights Into Interactions Between Mitochondria and Xanthine Oxidase in Acute Cardiac Volume Overload

    PubMed Central

    Gladden, James D; Zelickson, Blake R; Wei, Chih-Chang; Ulasova, Elena; Zheng, Junying; Ahmed, Mustafa I.; Chen, Yuanwen; Bamman, Marcas; Ballinger, Scott; Darley-Usmar, Victor; Dell’Italia, Louis J

    2012-01-01

    Xanthine oxidoreductase (XOR) is increased in the left ventricle (LV) of humans with volume overload (VO) and mitochondrial inhibition of the respiratory chain occurs in animal models of VO. Since mitochondria are both a source and target of reactive oxygen and nitrogen species, we hypothesized that activation of XOR and mitochondrial dysfunction are interdependent. To test this we used the aortocaval fistula (ACF) rat model of VO and a simulation of the stretch response in isolated adult cardiomyocytes with and without the inhibitor of XOR, allopurinol, or the mitochondrially targeted antioxidant MitoQ. XO activity was increased in cardiomyocytes from ACF vs. sham rats (24h) without an increase in XO protein. A two-fold increase in LV end-diastolic pressure/wall stress and a decrease in LV systolic elastance with ACF were improved with allopurinol (100 mg/kg) started at ACF induction. Subsarcolemmal state 3 mitochondrial respiration was significantly decreased in ACF and normalized by allopurinol. Cardiomyocytes subjected to 3 hour cyclical stretch resulted in an increase in XO activity and mitochondrial swelling, which was prevented by allopurinol or MitoQ pretreatment. These studies establish an early interplay between cardiomyocyte XO activation and bioenergetic dysfunction that may provide a new target that prevents progression to heart failure in VO. PMID:21925594

  15. Time dependent inhibition of xanthine oxidase in irradiated solutions of folic acid, aminopterin and methotrexate

    SciTech Connect

    Robinson, K.; Pilot, T.F.; Meany, J.E. )

    1990-01-01

    The xanthine oxidase catalyzed oxidation of hypoxanthine was followed by monitoring the formation of uric acid at 290 nm. Inhibition of xanthine oxidase occurs in aqueous solutions of folic acid methotrexate and aminopterin. These compounds are known to dissociate upon exposure to ultraviolet light resulting in the formation of their respective 6-formylpteridine derivatives. The relative rates of dissociation were monitored spectrophotometrically by determining the absorbance of their 2,4-dinitrophenylhydrazine derivatives at 500 nm. When aqueous solutions of folic acid, aminopterin and methotrexate were exposed to uv light, a direct correlation was observed between the concentrations of the 6-formylpteridine derivatives existing in solution and the ability of these solutions to inhibit xanthine oxidase. The relative potency of the respective photolysis products were estimated.

  16. QSAR and SAR studies on the reduction of some aromatic nitro compounds by xanthine oxidase.

    PubMed

    Thakur, Mamta; Thakur, Abhilash; Balasubramanian, Krishnan

    2006-01-01

    This work describes QSAR and SAR studies on the reduction of 27 aromatic nitro compounds by xanthine oxidase using both distance-based topological indices and quantum molecular descriptors along with indicator parameters. The application of a multiple linear regression analysis indicated that a combination of distance-based topological indices with the ad hoc molecular descriptors and the indicator parameters yielded a statistically significant model for the activity, log K (the reduction of aromatic nitro compounds by xanthine oxidase). The final selection of a potential aromatic nitro compound for the reduction by xanthine oxidase is made by quantum molecular modeling. We have found that, among the various parameters, the quantum Mulliken charge parameters on the fourth atom or para position relative to the nitro group correlated best with the activity.

  17. An amperometric biosensor for fish freshness detection from xanthine oxidase immobilized in polypyrrole-polyvinylsulphonate film.

    PubMed

    Dolmaci, Nezaket; Çete, Servet; Arslan, Fatma; Yaşar, Ahmet

    2012-08-01

    A new amperometric biosensor was developed for determining hypoxanthine in fish meat. Xanthine oxidase with pyrrole and polyvinylsulphonate was immobilized on the surface of a platinum electrode by electropolymerization. The determination of xanthine-hypoxanthine was performed by means of oxidation of uric acid liberated during the enzyme reaction on the surface of the enzyme electrode at + 0.30V (SCE). The effects of pH, substrate concentration, and temperature on the response of the xanthine-hypoxanthine biosensor were investigated. The linear working range of the enzyme electrode was 1.0 × 10(-7) -1.0 × 10(-3) M of the hypoxanthine concentration, and the detection limit was 1.0 × 10(-7)M. The apparent K(m(app)) and I(max) of the immobilized xanthine oxidase were found to be 0.0154 mM and 1.203 μA/mM, respectively. The best pH and temperature value for xanthine oxidase were selected as 7.75 and 25°C, respectively. The sensor was used for the determination of hypoxhantine in fish meat. Results show that the fish degraded very rapidly after seven days and the hypoxanthine amount was found to increase over days of storage.

  18. Chemical Evidence for Potent Xanthine Oxidase Inhibitory Activity of Ethyl Acetate Extract of Citrus aurantium L. Dried Immature Fruits.

    PubMed

    Liu, Kun; Wang, Wei; Guo, Bing-Hua; Gao, Hua; Liu, Yang; Liu, Xiao-Hong; Yao, Hui-Li; Cheng, Kun

    2016-03-02

    Xanthine oxidase is a key enzyme which can catalyze hypoxanthine and xanthine to uric acid causing hyperuricemia in humans. Xanthine oxidase inhibitory activities of 24 organic extracts of four species belonging to Citrus genus of the family Rutaceae were assayed in vitro. Since the ethyl acetate extract of C. aurantium dried immature fruits showed the highest xanthine oxidase inhibitory activity, chemical evidence for the potent inhibitory activity was clarified on the basis of structure identification of the active constituents. Five flavanones and two polymethoxyflavones were isolated and evaluated for inhibitory activity against xanthine oxidase in vitro. Of the compounds, hesperetin showed more potent inhibitory activity with an IC50 value of 16.48 μM. For the first time, this study provides a rational basis for the use of C. aurantium dried immature fruits against hyperuricemia.

  19. The role of superoxide in xanthine oxidase-induced autooxidation of linoleic acid.

    PubMed

    Thomas, M J; Mehl, K S; Pryor, W A

    1982-07-25

    The effect of hydroxyperoxyoctadecadienoic acid, e.g. 13-hydroperoxy-cis,9,trans-11-octadecadienoic acid, on the autooxidation of linoleic acid induced by superoxide radical was examined in a system containing xanthine oxidase, acetaldehyde, and diethylenetriaminepentaacetic acid dissolved in an aqueous phosphate buffer containing 10% ethanol. The superoxide radical is required for autooxidation, as shown by essentially complete inhibition on the addition of superoxide dismutase. Pure linoleic acid was not readily oxidized, but the addition of lipid hydroperoxide markedly stimulated the autooxidation. Addition of 2.8 microM FeCl3 did not produce an increase in the rate of xanthine oxidase-induced autooxidation. Spontaneous autooxidation, a process slower than xanthine oxidase-induced autooxidation, was detectable on the time scale of these observations but was slower than the xanthine oxidase-induced autooxidation. Initiation of linoleic acid autooxidation is postulated to result from a reaction between superoxide and lipid hydroperoxide. The nature of this reaction is uncertain, but it does not appear to depend on iron catalysis. PMID:6282880

  20. Effects of Biota orientalis extract and its flavonoid constituents, quercetin and rutin on serum uric acid levels in oxonate-induced mice and xanthine dehydrogenase and xanthine oxidase activities in mouse liver.

    PubMed

    Zhu, Ji Xiao; Wang, Ying; Kong, Ling Dong; Yang, Cheng; Zhang, Xin

    2004-07-01

    The hypouricemic actions of Biota orientalis (BO) extract and its flavonoid constituents quercetin and rutin, were in vivo examined using oxonate-induced hyperuricemic mice. Quercetin and rutin, when administered three times orally to the oxonate-induced hyperuricemic mice, were able to elicit dose-dependent hypouricemic effects. The effects of quercetin and rutin were more potent than that of Biota orientalis extract at the same dose of 100 mg/kg. At doses of 50 mg/kg of quercetin or above, or at doses of 100 mg/kg of rutin or above, the serum urate levels of the oxonate-pretreated mice were not different from normal mice. In addition, Biota orientalis extract, quercetin and rutin, when tested in vivo on mouse liver homogenates, elicited significant inhibitory actions on the xanthine dehydrogenase/xanthine oxidase (XDH/XO) activities. The effects of quercetin and rutin resulted less potent than that of allopurinol. However, intraperitoneal administration at the same scheme did not produce any observable hypouricemic effect. These hypouricemic effects are partly due to the inhibition of XDH/XO activities in mouse liver. The pharmacological profile of the flavonoids is partly different from that of allopurinol. Such hypouricemic action and inhibition of the enzyme activity of quercetin and rutin may be responsible for a part of the beneficial effects of Biota orientalis extract on hyperuricemia and gout. The effects of quercetin and rutin on serum urate levels in hyperuricemic mice induced by oxonate and the inhibition of enzyme activities in mouse liver are discussed in relation to their absorption and metabolism, and their potential application to treat gout and hyperuricemia.

  1. In vitro Xanthine Oxidase Inhibitory Studies of Lippia nodiflora and Isolated Flavonoids and Phenylethanoid Glycosides as Potential Uric Acid-lowering Agents.

    PubMed

    Cheng, Lee-Chuen; Murugaiyah, Vikneswaran; Chan, Kit-Lam

    2015-06-01

    Lippia nodiflora has been traditionally used for treatment of knee joint pain. Hitherto, no studies have been reported on the effective use of L. nodiflora against hyperuricemia, gout or other metabolic disorders. In this present study, L. nodiflora was examined for its ability to lower uric acid levels using an in vitro xanthine oxidase inhibitory assay. The whole plant methanolic extract was subjected to bioactivity-guided fractionation to yield 4 fractions (F1-F4). F3 displayed the highest potency and was further purified by column chromatography to afford two phenylethanoid glycosides, arenarioside (1) and verbascoside (2), and three flavonoids, 6-hydroxyluteolin (3), 6-hydroxyluteolin-7-O-glycoside (4), and nodifloretin (5). These compounds inhibited xanthine oxidase activity, with IC50 values between 7.52 ± 0.01 and 130.00 ± 2.25 μM, of which 3 was the most potent. In contrast, allopurinol, serving as a positive control, was 0.22 ± 0.00 μM. Thus, L. nodiflora, and its chemical constituents are worthy of further studies as potential anti-hyperuricemic agents.

  2. [Establishment of double targets of high throughput screening model for xanthine oxidase inhibitors and superoxide anion scavengers].

    PubMed

    Xie, Tao; Qin, Zhi-Zhen; Zhou, Rui; Zhao, Ying; Du, Guan-hua

    2015-04-01

    A double targets of high throughput screening model for xanthine oxidase inhibitors and superoxide anion scavengers was established. In the reaction system of xanthine oxidase, WST-1 works as the probe for the ultra oxygen anion generation, and product uric acid works as xanthine oxidase activity indicator. By using SpectraMax M5 continuous spectrum enzyme sign reflectoscope reflector, the changes of these indicators' concentration were observed and the influence factors of this reaction system to establish the high throughput screening model were studied. And the model is confirmed by positive drugs. In the reaction system, the final volume of reaction system is 50 μL and the concentrations of xanthine oxidase is 4 mU x mL(-1), xanthine 250 μmol x L(-1) and WST-1 100 μmol x L(-1), separately. The Z'-factor of model for xanthine oxidase inhibitors is 0.537 4, S/N is 47.519 9; the Z'-factor of model for superoxide anion scavengers is 0.507 4, S/N is 5.388 9. This model for xanthine oxidase inhibitors and superoxide anion scavengers has more common characteristics of the good stability, the fewer reagent types and quantity, the good repeatability, and so on. And it can be widely applied in high-throughput screening research.

  3. pH-jump studies at subzero temperatures on an intermediate in the reaction of xanthine oxidase with xanthine.

    PubMed Central

    Tsopanakis, A D; Tanner, S J; Bray, R C

    1978-01-01

    Xanthine oxidase is stable and active in aqueous dimethyl sulphoxide solutions of up to at least 57% (w/w). Simple techniques are described for mixing the enzyme in this solvent at--82 degrees C, with its substrate, xanthine. When working at high pH values under such conditions, no reaction occurred, as judged by the absence of e.p.r. signals. On warming to--60 degrees C, for 10 min, however, the Very Rapid molybdenum(V) e.p.r. signal was obtained. This signal did not change on decreasing the pH, while maintaining the sample in liquid nitrate reductase, caused its molybdenum(V) e.p.r. signal to change from the high-pH to the low-pH form. These findings are not compatible with the conclusions of Edmondson, Ballou, Van Heuvelen, Palmer & Massey [J. Biol. Chem. (1973) 248, 6135-6144], that the Very Rapid signal is in prototropic equilibrium with the Rapid signal, and should be important in understanding the mechanism of action of the enzyme. They emphasize the unique nature of the intermediate represented by the Very Rapid e.p.r. signal. The possible value of the pK for loss of an exchangeable proton from the Rapid signal is discussed. PMID:33666

  4. Study on the activity of non-purine xanthine oxidase inhibitor by 3D-QSAR modeling and molecular docking

    NASA Astrophysics Data System (ADS)

    Li, Peizhen; Tian, Yueli; Zhai, Honglin; Deng, Fangfang; Xie, Meihong; Zhang, Xiaoyun

    2013-11-01

    Non-purine derivatives have been shown to be promising novel drug candidates as xanthine oxidase inhibitors. Based on three-dimensional quantitative structure-activity relationship (3D-QSAR) methods including comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA), two 3D-QSAR models for a series of non-purine xanthine oxidase (XO) inhibitors were established, and their reliability was supported by statistical parameters. Combined 3D-QSAR modeling and the results of molecular docking between non-purine xanthine oxidase inhibitors and XO, the main factors that influenced activity of inhibitors were investigated, and the obtained results could explain known experimental facts. Furthermore, several new potential inhibitors with higher activity predicted were designed, which based on our analyses, and were supported by the simulation of molecular docking. This study provided some useful information for the development of non-purine xanthine oxidase inhibitors with novel structures.

  5. Granulomatous reaction to red tattoo pigment treated with allopurinol.

    PubMed

    Godinho, Mariana Marteleto; Aguinaga, Felipe; Grynszpan, Rachel; Lima, Victor Maselli; Azulay, David Rubem; Cuzzi, Tullia; Ramos-E-Silva, Marcia; Manela-Azulay, Mônica

    2015-09-01

    Granulomatous reactions to tattoo ink are most commonly associated with mercury sulfide, a component of red pigments. Treatment options show limited results. Allopurinol, an inhibitor of xanthine oxidase, has been reported as a successful alternative treatment to granulomatous disorders, such as sarcoidosis and granulomatous reactions to fillers and tattoos. We report a case of granulomatous reaction to red tattoo pigment treated with allopurinol for 6 months. Good clinical improvement could be noticed during this time. Two months after we stopped the treatment, the lesion recurred. Allopurinol emerges as an important drug for the management of granulomatous reactions caused by tattoo pigments. Based on the significant clinical improvement noticed during its use, we recommend new studies to elucidate all the potential benefits of the use of allopurinol for the treatment of granulomatous reactions to tattoo ink. PMID:26211454

  6. Interaction of a green ester-bonded gemini surfactant with xanthine oxidase: Biophysical perspective.

    PubMed

    Akram, Mohd; Bhat, Imtiyaz Ahmad; Kabir-ud-Din

    2015-01-01

    A multi technique approach was utilized to explore the interaction between a novel green gemini surfactant, ethane-1,2-diyl bis(N,N-dimethyl-N-tetradecylammoniumacetoxy) dichloride (14-E2-14), with bovine milk xanthine oxidase (XO). Tensiometric, spectroscopic, microscopic and molecular modeling results demonstrate significant interaction and structural change of native xanthine oxidase upon 14-E2-14 combination. The results obtained in this study may be beneficial for scientists to calibrate conformation of the enzyme by novel biodegradable/green microstructures; consequently, it would likely add new impetus in understanding the treatment modes of various diseases like gout, hyperuricemia, liver and brain necrosis. Moreover, the 14-E2-14-XO interaction assists to unfurl new routes in the designing/selection of green-surfactant-protein mixtures widely used in food processing, cosmetics, and pharmaceutical industries.

  7. Interaction of a green ester-bonded gemini surfactant with xanthine oxidase: Biophysical perspective.

    PubMed

    Akram, Mohd; Bhat, Imtiyaz Ahmad; Kabir-ud-Din

    2015-01-01

    A multi technique approach was utilized to explore the interaction between a novel green gemini surfactant, ethane-1,2-diyl bis(N,N-dimethyl-N-tetradecylammoniumacetoxy) dichloride (14-E2-14), with bovine milk xanthine oxidase (XO). Tensiometric, spectroscopic, microscopic and molecular modeling results demonstrate significant interaction and structural change of native xanthine oxidase upon 14-E2-14 combination. The results obtained in this study may be beneficial for scientists to calibrate conformation of the enzyme by novel biodegradable/green microstructures; consequently, it would likely add new impetus in understanding the treatment modes of various diseases like gout, hyperuricemia, liver and brain necrosis. Moreover, the 14-E2-14-XO interaction assists to unfurl new routes in the designing/selection of green-surfactant-protein mixtures widely used in food processing, cosmetics, and pharmaceutical industries. PMID:25849998

  8. Inhibitory effects of cardols and related compounds on superoxide anion generation by xanthine oxidase.

    PubMed

    Masuoka, Noriyoshi; Nihei, Ken-ichi; Maeta, Ayami; Yamagiwa, Yoshiro; Kubo, Isao

    2015-01-01

    5-Pentadecatrienylresorcinol, isolated from cashew nuts and commonly known as cardol (C₁₅:₃), prevented the generation of superoxide radicals catalysed by xanthine oxidase without the inhibition of uric acid formation. The inhibition kinetics did not follow the Michelis-Menten equation, but instead followed the Hill equation. Cardol (C₁₀:₀) also inhibited superoxide anion generation, but resorcinol and cardol (C₅:₀) did not inhibit superoxide anion generation. The related compounds 3,5-dihydroxyphenyl alkanoates and alkyl 2,4-dihydroxybenzoates, had more than a C9 chain, cooperatively inhibited but alkyl 3,5-dihydroxybenzoates, regardless of their alkyl chain length, did not inhibit the superoxide anion generation. These results suggested that specific inhibitors for superoxide anion generation catalysed by xanthine oxidase consisted of an electron-rich resorcinol group and an alkyl chain having longer than C9 chain. PMID:25053055

  9. Identification of crypto- and neochlorogenic lactones as potent xanthine oxidase inhibitors in roasted coffee beans.

    PubMed

    Honda, Sari; Miura, Yukari; Masuda, Akiko; Masuda, Toshiya

    2014-01-01

    Xanthine oxidase (XO) inhibitory activity has been found in boiling water extracts from roasted coffee beans. Therefore, assay-guided purification of the extracts was performed using size-exclusion column chromatography, and subsequently with reversed phase HPLC to afford lactone derivatives of chlorogenic acids. Among the tested lactones, crypto- and neochlorogenic lactones showed potent XO inhibitory activities compared with three major chlorogenic acids found in coffee beans. These XO inhibitory lactones may ameliorate gout and hyperuricemia in humans who drink coffee.

  10. Intermediate dehydrogenase-oxidase form of xanthine oxidoreductase in rat liver.

    PubMed Central

    Kamiński, Z W; Jezewska, M M

    1979-01-01

    A spectrophotometric method for the determination of three forms of xanthine oxidoreductase, namely dehydrogenase (D), dehydrogenase-oxidase (D/O) and oxidase (O), is described. Enzymic fractions obtained from rat liver were found to contain either all three forms, or (under special conditions of preparation) only two forms, D and D/O. The conversion of form D leads to form D/O leads to form O in the presence of Cu2+ ions was shown. Form D/O acted with NAD+ as well as with O2 as electron acceptors, it exhibited greater affinity to NAD+ than to O2, and NAD+ abolished the oxidase activity of this form. Moreover, oxidase activity of form D/O was inhibited by NADH. These facts indicate that NAD+ and O2 compete for the same active site on the enzyme molecule. PMID:226081

  11. Plasma xanthine oxidase activity and lipid hydroperoxide levels in preterm infants.

    PubMed

    Supnet, M C; David-Cu, R; Walther, F J

    1994-09-01

    Ischemia-reperfusion injury may affect morbidity and mortality in preterm and asphyxiated term infants. Reoxygenation of hypoxic tissues leads to the formation of free oxygen radicals by xanthine oxidase that may induce lipid peroxidation, enzyme inhibition, and DNA strand breakage. We measured arterial cord blood samples from 36 healthy term infants for baseline values and arterial blood sampled at 1 and 4 h after birth from 45 preterm infants admitted for intensive care for serial estimates of plasma xanthine oxidase activity and lipid hydroperoxide levels. Mean +/- SEM plasma xanthine oxidase activity in cord blood of term infants was 2.3 +/- 0.4 mU/mL and lipid hydroperoxide levels were 2.6 +/- 0.3 nmol/mL. Eighteen of the 45 preterm infants met the criteria defining poor outcome (poor outcome group) and had lower umbilical arterial pH and base excess than the 27 preterm infants in the control group. Mean plasma xanthine oxidase activity increased from 2.7 +/- 0.4 at 1 h to 4.7 +/- 0.6 mU/mL at 4 h of age (p < 0.001) in the poor outcome group and decreased from 2.1 +/- 0.3 to 1.1 +/- 0.2 mU/mL (p = 0.004) in the control group. Lipid hydroperoxide levels in the poor outcome group increased from 2.8 +/- 0.6 nmol/mL at 1 h to 4.3 +/- 0.6 nmol/mL at 4 h of age (p < 0.001) and decreased from 2.1 +/- 0.6 to 1.6 +/- 0.2 nmol/mL (p = 0.008) in the control group. At 4 h of age, xanthine oxidase activity and lipid hydroperoxide levels were significantly higher in the poor outcome group than in the controls (p < 0.001).(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Xanthine oxidase formation during experimental ischemia of the equine small intestine.

    PubMed Central

    Prichard, M; Ducharme, N G; Wilkins, P A; Erb, H N; Butt, M

    1991-01-01

    We hypothesized that xanthine oxidase plays a role in the postischemic reperfusion injury in the equine small intestine. Under anesthesia, four horses and two ponies underwent ischemic strangulating obstructions of segments of the proximal jejunum, mid-jejunum and ileum. Prior to vascular occlusion, and at 1 h and 2 h of ischemia, full-thickness intestinal biopsies were collected for histopathological evaluation and for determination of combined xanthine dehydrogenase (XDH) plus xanthine oxidase (XO) activity, and XO activity alone. The level of XO activity was expressed in percentage according to the ratio of XO/(XDH + XO). We found a nearly threefold increase in the combined level of XDH plus XO activity from ileum to duodenum (p less than 0.04). However, the preischemic level of % XO activity did not vary significantly (p = 0.61) between segments of jejuno-ileum. Likewise, no significant difference was noted between intestinal segments after ischemia. Therefore, the data from all intestinal segments were pooled for each time and analyzed using Wilcoxon's signed rank test (one-tailed). Compared to the pre-ischemic level of % XO activity (median 27%), the % XO activity increased after 1 h of ischemia (median 37.0%), reaching statistical significance (p = 0.016). There were no statistical differences between the preischemic % XO activity and the % XO activity in non-ischemic bowel at the end of the anesthetic period. During ischemia, % XO activity increased, which lends credence to the importance of xanthine oxidase in previously-documented reperfusion injury in the equine small intestine. PMID:1790484

  13. Electron transfer within xanthine oxidase: A solvent kinetic isotope effect study

    SciTech Connect

    Hille, R. )

    1991-09-03

    Solvent kinetic isotope effect studies of electron transfer within xanthine oxidase have been performed, using a stopped-flow pH-jump technique to perturb the distribution of reducing equivalents within partially reduced enzyme and follow the kinetics of reequilibration spectrophotometrically. It is found that the rate constant for electron transfer between the flavin and one of the iron-sulfur centers of the enzyme observed when the pH is jumped from 10 to 6 decreases from 173 to 25 s{sup {minus}1} on going from HJ{sub 2}O to D{sub 2}O, giving an observed solvent kinetic isotope effect of 6.9. An effect of comparable magnitude is observed for the pH jump in the opposite direction, the rate constant decreasing form 395 to 56 s{sup {minus}1}. The solvent kinetic isotope effect on k{sub obs} is found to be directly proportional to the mole fraction of D{sub 2}O in the reaction mix for the pH jump in each direction, consistent with the effect arising from a single exchangeable proton. Calculations of the microscopic rate constants for electron transfer between the flavin and the iron-sulfur center indicate that the intrinsic solvent kinetic isotope effect for electron transfer from the neutral flavin semiquinone to the iron-sulfur center designated Fe/S I is substantially greater than for electron transfer in the opposite direction and that the observed solvent kinetic isotope effect is a weighted average of the intrinsic isotope effects for the forward and reverse microscopic electron-transfer steps. The results emphasize the importance of prototropic equilibria in the kinetic as well as thermodynamic behavior of xanthine oxidase and indicate that protonation/deprotonation of the isoalloxazine ring is concomitant with electron transfer in the xanthine oxidase system.

  14. Allopurinol and oxypurinol promote osteoblast differentiation and increase bone formation

    PubMed Central

    Orriss, Isabel R.; Arnett, Timothy R.; George, Jacob; Witham, Miles D.

    2016-01-01

    Allopurinol and its active metabolite, oxypurinol are widely used in the treatment of gout and hyperuricemia. They inhibit xanthine oxidase (XO) an enzyme in the purine degradation pathway that converts xanthine to uric acid. This investigation examined the effect of allopurinol and oxypurinol on bone formation, cell number and viability, gene expression and enzyme activity in differentiating and mature, bone-forming osteoblasts. Although mRNA expression remained relatively constant, XO activity decreased over time with mature osteoblasts displaying reduced levels of uric acid (20% decrease). Treatment with allopurinol and oxypurinol (0.1–1 µM) reduced XO activity by up to 30%. At these concentrations, allopurinol and oxypurinol increased bone formation by osteoblasts ~4-fold and ~3-fold, respectively. Cell number and viability were unaffected. Both drugs increased tissue non-specific alkaline phosphatase (TNAP) activity up to 65%. Osteocalcin and TNAP mRNA expression was increased, 5-fold and 2-fold, respectively. Expression of NPP1, the enzyme responsible for generating the mineralisation inhibitor, pyrophosphate, was decreased 5-fold. Col1α1 mRNA expression and soluble collagen levels were unchanged. Osteoclast formation and resorptive activity were not affected by treatment with allopurinol or oxypurinol. Our data suggest that inhibition of XO activity promotes osteoblast differentiation, leading to increased bone formation in vitro. PMID:26968635

  15. Posttranslational ruling of xanthine oxidase activity in bovine milk by its substrates

    SciTech Connect

    Silanikove, Nissim Shapiro, Fira; Leitner, Gabriel

    2007-11-23

    The aims of this study were to test the hypothesis that the substrates of xanthine oxidase (XO), xanthine and hypoxanthine, are consumed while the milk is stored in the gland between milkings, and to explore how XO activity responds to bacteria commonly associated with subclinical infections in the mammary gland. Freshly secreted milk was obtained following complete evacuation of the gland and induction of milk ejection with oxytocin. In bacteria-free fresh milk xanthine and hypoxanthine were converted to uric acid within 30 min (T{sub 1/2} {approx} 10 min), which in turn provides electrons for formation of hydrogen peroxide and endows the alveolar lumen with passive protection against invading bacteria. On the other hand, the longer residence time of milk in the cistern compartment was not associated with oxidative stress as a result of XO idleness caused by exhaustion of its physiological fuels. The specific response of XO to bacteria species and the resulting bacteria-dependent nitrosative stress further demonstrates that it is part of the gland immune system.

  16. In vitro and in vivo studies on adlay-derived seed extracts: phenolic profiles, antioxidant activities, serum uric acid suppression, and xanthine oxidase inhibitory effects.

    PubMed

    Zhao, Mouming; Zhu, Dashuai; Sun-Waterhouse, Dongxiao; Su, Guowan; Lin, Lianzhu; Wang, Xiao; Dong, Yi

    2014-08-01

    This study aimed to explore the potential of polished adlay, brown adlay, adlay bran, and adlay hull to prevent and treat hyperuricemia. Brown adlay extract effectively decreased the serum uric acid levels of oxonate-induced hyperuricemic rats. Free and bound phenolic extracts from these materials contained significant amounts of phenolics, with free phenolics dominated by chlorogenic acid and p-coumaric acid while bound phenolics dominated by p-coumaric acid and ferulic acid. Free and bound phenolics of adlay bran exhibited significant xanthine oxidase inhibition activities, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activities, oxygen radical absorbance capacities, and superoxide radical scavenging activities. Adlay bran phenolics could be effective xanthine oxidase inhibitors and radical scavengers. p-Coumaric acid is a xanthine oxidase inhibitor with strong superoxide radical scavenging activity. However, ferulic acid is a xanthine oxidase inhibitor with weak superoxide radical scavenging activity. Chlorogenic acid is a superoxide radical scavenger with weak xanthine oxidase inhibitory activity.

  17. Allopurinol and dimethylthiourea reduce brain infarction following middle cerebral artery occlusion in rats.

    PubMed

    Martz, D; Rayos, G; Schielke, G P; Betz, A L

    1989-04-01

    Free radicals have been shown to play an important role in ischemia-reperfusion injury in several organ systems; however, the role of free radicals in central nervous system ischemia has been less well studied. Many potential free radical-generating systems exist. The primary products of these reactions, superoxide and hydrogen peroxide, may combine to produce hydroxyl radicals. Of the many potential sources of free radical generation, the enzyme xanthine oxidase has been shown to be important in ischemia in noncerebral tissue. We investigated the effect of the hydroxyl radical scavenger dimethylthiourea and the xanthine oxidase inhibitor allopurinol on infarct volume in a model of continuous partial ischemia. Male Sprague-Dawley rats were treated with dimethylthiourea or allopurinol before middle cerebral artery occlusion. Infarct volume was measured by triphenyltetrazolium chloride staining of brains removed 3 or 24 hours after occlusion. Stroke volume was reduced by 30% after dimethylthiourea treatment and by 32-35% after allopurinol treatment. At 24 hours after stroke, cortical tissue was more effectively protected than caudate tissue with both agents. Pretreatment with dimethylthiourea and allopurinol also significantly reduced cerebral edema formation and improved blood-brain barrier function as measured by fluorescein uptake. Our results imply that hydroxyl radicals are important in tissue injury secondary to partial cerebral ischemia and that xanthine oxidase may be the primary source of these radicals.

  18. Catalase, carbonic anhydrase and xanthine oxidase activities in patients with mycosis fungoides.

    PubMed

    Cengiz, Fatma Pelin; Beyaztas, Serap; Gokce, Basak; Arslan, Oktay; Guler, Ozen Ozensoy

    2015-04-01

    Mycosis fungoides (MF) is the most common form of cutaneous T-cell lymphoma. In several studies the relationship between catalase (CAT), human cytosolic carbonic anhydrases (CA; hCA-I and hCA-II) and xanthine oxidase (XO) enzyme activities have been investigated in various types of cancers but carbonic anhydrase, catalase and xanthine oxidase activities in patients with MF have not been previously reported. Therefore, in this preliminary study we aim to investigate CAT, CA and XO activities in patients with MF. This study enrolled 32 patients with MF and 26 healthy controls. According to the results, CA and CAT activities were significantly lower in patients with mycosis fungoides than controls (p < 0.001) (p < 0.001). There was no significant difference in XO activity between patient and control group (p = 0.601). Within these findings, we believe these enzyme activity levels might be a potentially important finding as an additional diagnostic biochemical tool for MF.

  19. Purification of xanthine oxidase from bovine milk by affinity chromatography with a novel gel.

    PubMed

    Beyaztaş, Serap; Arslan, Oktay

    2015-06-01

    A new affinity gel was synthesized for the purification of xanthine oxidase (XO, EC 1.2.3.22) from bovine milk. The gel was prepared on a Sepharose 4B matrix on which a spacer arm based on l-tyrosine was covalently attached via CNBr activation, followed by reaction with the XO inhibitor p-aminobenzamidine. The elution conditions of affinity gel were determined at different pH values and ionic strengths. Maximum elution of XO was achieved at pH 9.0 and ionic strength around 0.4. The overall purification for XO was 1645-fold with 20.49% yield. SDS-PAGE of the enzyme indicates a single band with an apparent MW of 150 kDa. The gel provides a simple, rapid and effective useful for the purification of XO. Heat stability was determined on purified XO activity. Xanthine oxidase was preserved up to 70% with activity exposure of 60 °C and incubated for 60 min. These results indicated that the enzyme was heat stable. PMID:25089709

  20. A structure-based catalytic mechanism for the xanthine oxidase family of molybdenum enzymes.

    PubMed Central

    Huber, R; Hof, P; Duarte, R O; Moura, J J; Moura, I; Liu, M Y; LeGall, J; Hille, R; Archer, M; Romão, M J

    1996-01-01

    The crystal structure of the xanthine oxidase-related molybdenum-iron protein aldehyde oxido-reductase from the sulfate reducing anaerobic Gram-negative bacterium Desulfovibrio gigas (Mop) was analyzed in its desulfo-, sulfo-, oxidized, reduced, and alcohol-bound forms at 1.8-A resolution. In the sulfo-form the molybdenum molybdopterin cytosine dinucleotide cofactor has a dithiolene-bound fac-[Mo, = O, = S, ---(OH2)] substructure. Bound inhibitory isopropanol in the inner compartment of the substrate binding tunnel is a model for the Michaelis complex of the reaction with aldehydes (H-C = O,-R). The reaction is proposed to proceed by transfer of the molybdenum-bound water molecule as OH- after proton transfer to Glu-869 to the carbonyl carbon of the substrate in concert with hydride transfer to the sulfido group to generate [MoIV, = O, -SH, ---(O-C = O, -R)). Dissociation of the carboxylic acid product may be facilitated by transient binding of Glu-869 to the molybdenum. The metal-bound water is replenished from a chain of internal water molecules. A second alcohol binding site in the spacious outer compartment may cause the strong substrate inhibition observed. This compartment is the putative binding site of large inhibitors of xanthine oxidase. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:8799115

  1. Absorption of enzymatically active sup 125 I-labeled bovine milk xanthine oxidase fed to rabbits

    SciTech Connect

    Rzucidlo, S.J. ); Zikakis, J.P. )

    1990-05-01

    Rabbits fed a regular laboratory diet supplemented with a high-fat milk containing xanthine oxidase (XO) were studied to determine the presence of active XO in the blood. A pilot feeding study, where rabbits consumed a high-fat diet containing xanthine oxidase, showed a correlation between dairy food consumption and XO activity in the blood. Antibody to dietary XO was also found. In a second study, rabbits were fed ad libitum the high-fat milk and blood serum samples were tested weekly for XO activity. No elevation in serum XO activity was found. A third study showed that serum XO activity was increased when rabbits were force fed the high-fat milk. The final study consisted of force feeding {sup 125}I-labeled XO to one rabbit to ascertain whether the observed increase in serum XO was due to dietary or endogenous XO. Isoelectric focusing of sera collected from the test rabbit strongly suggested that at least a portion of the serum XO contained the radioactive label. This is the first direct evidence showing the uptake of dietary active XO from the gut.

  2. Long-term inhibition of xanthine oxidase by febuxostat does not decrease blood pressure in deoxycorticosterone acetate (DOCA)-salt hypertensive rats.

    PubMed

    Szasz, Theodora; Davis, Robert Patrick; Garver, Hannah S; Burnett, Robert J; Fink, Gregory D; Watts, Stephanie W

    2013-01-01

    Xanthine oxidase and its products, uric acid and ROS, have been implicated in the pathogenesis of cardiovascular disease, such as hypertension. We have previously reported that allopurinol inhibition of XO does not alter the progression of deoxycorticosterone acetate (DOCA)-salt hypertension in rats. However other researchers have observed a reduction in blood pressure after allopurinol treatment in the same model. To resolve this controversy, in this study we used the newer and more effective XO inhibitor febuxostat, and hypothesized that a more complete XO blockade might impair hypertension development and its end-organ consequences. We used DOCA-salt hypertensive rats and administered vehicle (salt water) or febuxostat (orally, 5 mg/kg/day in salt water) in a short-term "reversal" experiment (2 weeks of treatment 3 weeks after DOCA-salt beginning) and a long-term "prevention" experiment (treatment throughout 4 weeks of DOCA-salt). We confirmed XO inhibition by febuxostat by measuring circulating and tissue levels of XO metabolites. We found an overall increase in hypoxanthine (XO substrate) and decrease in uric acid (XO product) levels following febuxostat treatment. However, despite a trend for reduced blood pressure in the last week of long-term febuxostat treatment, no statistically significant difference in hemodynamic parameters was observed in either study. Additionally, no change was observed in relative heart and kidney weight. Aortic media/lumen ratio was minimally improved by long-term febuxostat treatment. Additionally, febuxostat incubation in vitro did not modify contraction of aorta or vena cava to norepinephrine, angiotensin II or endothelin-1. We conclude that XO inhibition is insufficient to attenuate hypertension in the rat DOCA-salt model, although beneficial vascular effects are possible.

  3. Synthesis and bioevaluation of 2-phenyl-4-methyl-1,3-selenazole-5-carboxylic acids as potent xanthine oxidase inhibitors.

    PubMed

    Guan, Qi; Cheng, Zengjin; Ma, Xiaoxue; Wang, Lijie; Feng, Dongjie; Cui, Yuanhang; Bao, Kai; Wu, Lan; Zhang, Weige

    2014-10-01

    A series of 2-phenyl-4-methyl-1,3-selenazole-5-carboxylic acid derivatives (8a-f, 9a-m) were synthesized and evaluated for inhibitory activity against xanthine oxidase in vitro. Structure-activity relationship analyses have also been presented. Most of the target compounds exhibited potency levels in the nanomolar range. Compound 9e emerged as the most potent xanthine oxidase inhibitor (IC50 = 5.5 nM) in comparison to febuxostat (IC50 = 18.6 nM). Steady-state kinetics measurements with the bovine milk enzyme indicated a mixed type inhibition with Ki and Ki' values of 0.9 and 2.3 nM, respectively. A molecular modeling study on compounds 9e was performed to gain an insight into its binding mode with xanthine oxidase, and to provide the basis for further structure-guided design of new non-purine xanthine oxidase inhibitors related with 2-phenyl-4-methyl-1,3-selenazole-5-carboxylic acid scaffold.

  4. Thermal properties of milk fat, xanthine oxidase, caseins and whey proteins in pulsed electric field-treated bovine whole milk.

    PubMed

    Sharma, Pankaj; Oey, Indrawati; Everett, David W

    2016-09-15

    Thermodynamics of milk components (milk fat, xanthine oxidase, caseins and whey proteins) in pulsed electric field (PEF)-treated milk were compared with thermally treated milk (63 °C for 30 min and 73 °C for 15s). PEF treatments were applied at 20 or 26 kV cm(-1) for 34 μs with or without pre-heating of milk (55 °C for 24s), using bipolar square wave pulses in a continuous mode of operation. PEF treatments did not affect the final temperatures of fat melting (Tmelting) or xanthine oxidase denaturation (Tdenaturation), whereas thermal treatments increased both the Tmelting of milk fat and the Tdenaturation for xanthine oxidase by 2-3 °C. Xanthine oxidase denaturation was ∼13% less after PEF treatments compared with the thermal treatments. The enthalpy change (ΔH of denaturation) of whey proteins decreased in the treated-milk, and denaturation increased with the treatment intensity. New endothermic peaks in the calorimetric thermograms of treated milk revealed the formation of complexes due to interactions between MFGM (milk fat globule membrane) proteins and skim milk proteins. Evidence for the adsorption of complexes onto the MFGM surface was obtained from the increase in surface hydrophobicity of proteins, revealing the presence of unfolded hydrophobic regions. PMID:27080877

  5. Allopurinol reduces antigen-specific and polyclonal activation of human T cells

    PubMed Central

    Pérez-Mazliah, Damián; Albareda, María C.; Alvarez, María G.; Lococo, Bruno; Bertocchi, Graciela L.; Petti, Marcos; Viotti, Rodolfo J.; Laucella, Susana A.

    2012-01-01

    Allopurinol is the most popular commercially available xanthine oxidase inhibitor and it is widely used for treatment of symptomatic hyperuricaemia, or gout. Although, several anti-inflammatory actions of allopurinol have been demonstrated in vivo and in vitro, there have been few studies on the action of allopurinol on T cells. In the current study, we have assessed the effect of allopurinol on antigen-specific and mitogen-driven activation and cytokine production in human T cells. Allopurinol markedly decreased the frequency of IFN-γ and IL-2-producing T cells, either after polyclonal or antigen-specific stimulation with Herpes Simplex virus 1, Influenza (Flu) virus, tetanus toxoid and Trypanosoma cruzi-derived antigens. Allopurinol attenuated CD69 upregulation after CD3 and CD28 engagement and significantly reduced the levels of spontaneous and mitogen-induced intracellular reactive oxygen species in T cells. The diminished T cell activation and cytokine production in the presence of allopurinol support a direct action of allopurinol on human T cells, offering a potential pharmacological tool for the management of cell-mediated inflammatory diseases. PMID:23049532

  6. The inhibitory kinetics and mechanism of dietary vitamins D3 and B2 on xanthine oxidase.

    PubMed

    Lin, Suyun; Zhang, Guowen; Liao, Yijing; Gong, Deming

    2016-06-15

    Dietary guidelines to promote health are usually based on the patterns' prediction on disease risk of foods and nutrients. Overactivity of xanthine oxidase (XO) is the underlying cause of gout. Herein, the inhibitory kinetics and mechanism of dietary vitamins D3 and B2 on XO were investigated by multispectroscopic methods and a molecular modeling technique. The results showed that vitamin D3 competitively inhibited XO with an inhibition constant of 26.93 ± 0.42 μM by inserting into the active cavity of XO interacting with the surrounding amino acid residues through hydrogen bond and van der Waals forces. Vitamin D3 bound to XO thereby induced the structural compactness of XO which in turn hindered the binding of substrate xanthine to cause the inhibition on XO. Vitamin B2 exhibited a mixed-type inhibition by binding to the vicinity of the active cavity with an inhibition constant of 37.76 ± 0.87 μM through hydrophobic interactions and a feeble hydrogen bond, and it induced the unfolding of the XO structure and an increase of the flexible loops (β-turns and random coils) which might move to cover the active pocket and reduce the binding of the substrate xanthine, and then lead to a lower catalytic activity of the enzyme. In addition, vitamins D3 and B2 showed a synergistic effect on inhibiting the activity of XO in a certain range of concentration. These findings may provide new insights into the inhibitory mechanism of vitamins D3 and B2 on XO and functional research of the vitamins in the supplementary treatment of gout.

  7. The inhibitory kinetics and mechanism of dietary vitamins D3 and B2 on xanthine oxidase.

    PubMed

    Lin, Suyun; Zhang, Guowen; Liao, Yijing; Gong, Deming

    2016-06-15

    Dietary guidelines to promote health are usually based on the patterns' prediction on disease risk of foods and nutrients. Overactivity of xanthine oxidase (XO) is the underlying cause of gout. Herein, the inhibitory kinetics and mechanism of dietary vitamins D3 and B2 on XO were investigated by multispectroscopic methods and a molecular modeling technique. The results showed that vitamin D3 competitively inhibited XO with an inhibition constant of 26.93 ± 0.42 μM by inserting into the active cavity of XO interacting with the surrounding amino acid residues through hydrogen bond and van der Waals forces. Vitamin D3 bound to XO thereby induced the structural compactness of XO which in turn hindered the binding of substrate xanthine to cause the inhibition on XO. Vitamin B2 exhibited a mixed-type inhibition by binding to the vicinity of the active cavity with an inhibition constant of 37.76 ± 0.87 μM through hydrophobic interactions and a feeble hydrogen bond, and it induced the unfolding of the XO structure and an increase of the flexible loops (β-turns and random coils) which might move to cover the active pocket and reduce the binding of the substrate xanthine, and then lead to a lower catalytic activity of the enzyme. In addition, vitamins D3 and B2 showed a synergistic effect on inhibiting the activity of XO in a certain range of concentration. These findings may provide new insights into the inhibitory mechanism of vitamins D3 and B2 on XO and functional research of the vitamins in the supplementary treatment of gout. PMID:27241164

  8. Lonicera hypoglauca inhibits xanthine oxidase and reduces serum uric acid in mice.

    PubMed

    Chien, Shih-Chang; Yang, Chen-Wei; Tseng, Yen-Hsueh; Tsay, Hsin-Sheng; Kuo, Yueh-Hsiung; Wang, Sheng-Yang

    2009-03-01

    Xanthine oxidase (XOD) catalyzes the oxidation of hypoxanthine to xanthine and then to uric acid, and is a key enzyme in the pathogenesis of hyperuricemia. The ability of extracts of Lonicera hypoglauca (Caprifoliaceae) to inhibit XOD was investigated in this study. An ethanol extract (LH-crude) of the leaves of L. hypoglauca and its derived EtOAc soluble sub-fractions (LH-EA) significantly inhibited XOD activity, with IC50 values for LH-crude and LH-EA of 48.8 and 35.2 microg/mL. Moreover, LH-EA reduced serum urate levels IN VIVO in a potassium oxonate-induced hyperuricemic mouse model, by 70.1% and 93.7% of the hyperuricemic untreated group at doses of 300 and 500 mg/kg of LH-EA, respectively. Finally, we used bioactivity-guided fractionation to isolate a new bisflavonoid, loniceraflavone, which showed significant inhibition of XOD (IC50=0.85 microg/mL). These results suggest that L. hypoglauca and its extracts may have a considerable potential for development as an anti-hyperuricemia agent for clinical application.

  9. Honey as an apitherapic product: its inhibitory effect on urease and xanthine oxidase.

    PubMed

    Sahin, Huseyin

    2016-01-01

    The aim of this study was to evaluate new natural inhibitor sources for the enzymes urease and xanthine oxidase (XO). Chestnut, oak and polyfloral honey extracts were used to determine inhibition effects of both enzymes. In addition to investigate inhibition, the antioxidant capacities of these honeys were determined using total phenolic content (TPC), ferric reducing antioxidant power (FRAP), and DPPH radical scavenging activity assays. Due to their high phenolic content, chestnut and oak honeys are found to be a powerful source for inhibition of both enzymes. Especially, oak honeys were efficient for urease inhibition with 0.012-0.021 g/mL IC50 values, and also chestnut honeys were powerful for XO inhibition with 0.028-0.039 g/mL IC50 values. Regular daily consumption of these honeys can prevent gastric ulcers deriving from Helicobacter pylori and pathological disorders mediated by reactive oxygen species.

  10. New insights into xanthine oxidase behavior upon heating using spectroscopy and in silico approach.

    PubMed

    Dumitrașcu, Loredana; Stănciuc, Nicoleta; Aprodu, Iuliana

    2016-07-01

    Thermal dependent conformational changes of xanthine oxidase (XOD) were studied using sensitive and non-destructive methods like fluorescence spectroscopy and molecular modeling in the temperature range of 25-85°C. Intrinsic fluorescence studies showed that the microenvironment of tryptophan and tyrosine residues becomes more exposed to solvent as the temperature increased up to 85°C, whereas in case of flavin cofactor is rather conserved. At higher temperatures, the flavin adenine dinucleotide is displaced from the core of the protein, but is not fully released as shown by the Stern Volmer quenching constant and accessible fraction of the cofactor. Anyway, no significant changes in the structure of XOD monomer were identified after running molecular dynamics simulations at temperatures 25°C, 65°C and 85°C. Therefore, we can conclude that the most important changes in the protein structure at thermal treatment mainly consist on molecular aggregation and dissociation events.

  11. [Allopurinol and its role in the treatment of sarcopenia].

    PubMed

    Ferrando, Beatriz; Olaso-Gonzalez, Gloria; Sebastia, Vicente; Viosca, Enrique; Gomez-Cabrera, Mari Carmen; Viña, Jose

    2014-01-01

    Xanthine oxidase (XO) is an enzyme that catalyzes the oxidation of hypoxanthine to xanthine and uric acid and plays an important role in purine catabolism. The purine analogue, allopurinol, is a well-known inhibitor of XO widely used in the clinical management of gout and conditions associated with hyperuricemia. More recent data indicate that allopurinol reduces oxidative stress and improves vascular function in several cardiometabolic diseases, prolongs exercise time in angina, and improves the efficiency of cardiac contractility in heart failure. XO also plays an important role in free radical generation during skeletal muscle contraction and thus, it has been related to the muscle damage associated to exhaustive exercise. Several research groups have shown the protective effect of allopurinol in the prevention of this type of damage. Based on this background, a critical overview is presented on the possible role of allopurinol in the treatment of sarcopenia, a geriatric syndrome characterized by progressive and generalized loss of skeletal muscle mass and strength with a risk of adverse outcomes, such as physical disability, poor quality of life and death.

  12. [Allopurinol and its role in the treatment of sarcopenia].

    PubMed

    Ferrando, Beatriz; Olaso-Gonzalez, Gloria; Sebastia, Vicente; Viosca, Enrique; Gomez-Cabrera, Mari Carmen; Viña, Jose

    2014-01-01

    Xanthine oxidase (XO) is an enzyme that catalyzes the oxidation of hypoxanthine to xanthine and uric acid and plays an important role in purine catabolism. The purine analogue, allopurinol, is a well-known inhibitor of XO widely used in the clinical management of gout and conditions associated with hyperuricemia. More recent data indicate that allopurinol reduces oxidative stress and improves vascular function in several cardiometabolic diseases, prolongs exercise time in angina, and improves the efficiency of cardiac contractility in heart failure. XO also plays an important role in free radical generation during skeletal muscle contraction and thus, it has been related to the muscle damage associated to exhaustive exercise. Several research groups have shown the protective effect of allopurinol in the prevention of this type of damage. Based on this background, a critical overview is presented on the possible role of allopurinol in the treatment of sarcopenia, a geriatric syndrome characterized by progressive and generalized loss of skeletal muscle mass and strength with a risk of adverse outcomes, such as physical disability, poor quality of life and death. PMID:25131431

  13. Ischemic heart diseases in Egypt: role of xanthine oxidase system and ischemia-modified albumin.

    PubMed

    Ali, Ola Sayed; Abdelgawad, Hanan Muhammad; Mohammed, Makram Sayed; El-Awady, Rehab Refaat

    2014-09-01

    It is known that xanthine oxidoreductase contributes significantly to ischemia/reperfusion injury by generating reactive oxygen species. Ischemia-modified albumin (IMA) is a biomarker of acute myocardial ischemia with high sensitivity but moderate specificity. Our study aims to evaluate the xanthine oxidase (XO) system and the IMA level in the serum of patients with ischemic heart disease, and their correlation with traditional cardiac markers. The study was conducted on 60 patients with ischemic heart disease and 22 healthy subjects (control group). Subjects were divided into three groups: group I (30 patients with ST-elevated myocardial infarction), group II (30 patients with chronic stable angina), and the control group (22 subjects). The patients and controls had laboratory tests performed including lipid profile, cardiac enzymes, XO, uric acid, and IMA. The serum levels of XO and IMA were significantly higher in group I (1.65 ± 0.29 U/ml and 0.58 ± 0.15 ABSU, respectively) than in group II (1.11 ± 0.20 U/ml and 0.29 ± 0.10 ABSU, respectively) and the control group (0.95 ± 0.16 U/ml and 0.24 ± 0.08 ABSU, respectively) (P < 0.001). There was a significant positive correlation between XO and IMA in group I. Also, there was significant positive correlation between XO or IMA and other cardiac markers, with the highest level of significance between IMA and creatine kinase (CK-MB). In group II only XO activity was significantly elevated in comparison with controls. These results confirm the role of XO enzyme in ischemic heart disease with involvement of IMA, at a detectable level, during the early necrotic phase.

  14. Brain purine metabolism and xanthine dehydrogenase/oxidase conversion in hyperammonemia are under control of NMDA receptors and nitric oxide.

    PubMed

    Kaminsky, Yury; Kosenko, Elena

    2009-10-19

    In hyperammonemia, a decrease in brain ATP can be a result of adenine nucleotide catabolism. Xanthine dehydrogenase (XD) and xanthine oxidase (XO) are the end steps in the purine catabolic pathway and directly involved in depletion of the adenylate pool in the cell. Besides, XD can easily be converted to XO to produce reactive oxygen species in the cell. In this study, the effects of acute ammonia intoxication in vivo on brain adenine nucleotide pool and xanthine and hypoxanthine, the end degradation products of adenine nucleotides, during the conversion of XD to XO were studied. Injection of rats with ammonium acetate was shown to lead to the dramatic decrease in the ATP level, adenine nucleotide pool size and adenylate energy charge and to the great increase in hypoxanthine and xanthine 11 min after the lethal dose indicating rapid degradation of adenylates. Conversion of XD to XO in hyperammonemic rat brain was evidenced by elevated XO/XD activity ratio. Injection of MK-801, a NMDA receptor blocker, prevented ammonia-induced catabolism of adenine nucleotides and conversion of XD to XO suggesting that in vivo these processes are mediated by activation of NMDA receptors. The in vitro dose-dependent effects of sodium nitroprusside, a NO donor, on XD and XO activities are indicative of the direct modification of the enzymes by nitric oxide. This is the first report evidencing the increase in brain xanthine and hypoxanthine levels and adenine nucleotide breakdown in acute ammonia intoxication and NMDA receptor-mediated prevention of these alterations.

  15. Cardiac contractility in Antarctic teleost is modulated by nitrite through xanthine oxidase and cytochrome p-450 nitrite reductase.

    PubMed

    Garofalo, Filippo; Amelio, Daniela; Gattuso, Alfonsina; Cerra, Maria Carmela; Pellegrino, Daniela

    2015-09-15

    In mammalian and non-mammalian vertebrates, nitrite anion, the largest pool of intravascular and tissue nitric oxide storage, represents a key player of many biological processes, including cardiac modulation. As shown by our studies on Antarctic teleosts, nitrite-dependent cardiac regulation is of great relevance also in cold-blooded vertebrates. This study analysed the influence elicited by nitrite on the performance of the perfused beating heart of two Antarctic stenotherm teleosts, the haemoglobinless Chionodraco hamatus (icefish) and the red-blooded Trematomus bernacchii. Since haemoglobin is crucial in nitric oxide homeostasis, the icefish, a naturally occurring genetic knockout for this protein, provides exclusive opportunities to investigate nitric oxide/nitrite signaling. In vivo, nitrite conversion to nitric oxide requires the nitrite reductase activity of xanthine oxidase and cytochrome P-450, thus the involvement of these enzymes was also evaluated. We showed that, in C. hamatus and T. bernacchii, nitrite influenced cardiac performance by inducing a concentration-dependent positive inotropic effect which was unaffected by nitric oxide scavenging by PTIO in C. hamatus, while it was abolished in T. bernacchii. Specific inhibition of xanthine oxidase and cytochrome P-450 revealed, in the two teleosts, that the nitrite-dependent inotropism required the nitrite reductase activity of both enzymes. We also found that xanthine oxidase is more expressed in C. hamatus than in T. bernacchii, while the opposite was observed concerning cytochrome P-450. Results suggested that in the heart of C. hamatus and T. bernacchii, nitrite is an integral physiological source of nitric oxide with important signaling properties, which require the nitrite reductase activity of xanthine oxidase and cytochrome P-450. PMID:26045289

  16. Cardiac contractility in Antarctic teleost is modulated by nitrite through xanthine oxidase and cytochrome p-450 nitrite reductase.

    PubMed

    Garofalo, Filippo; Amelio, Daniela; Gattuso, Alfonsina; Cerra, Maria Carmela; Pellegrino, Daniela

    2015-09-15

    In mammalian and non-mammalian vertebrates, nitrite anion, the largest pool of intravascular and tissue nitric oxide storage, represents a key player of many biological processes, including cardiac modulation. As shown by our studies on Antarctic teleosts, nitrite-dependent cardiac regulation is of great relevance also in cold-blooded vertebrates. This study analysed the influence elicited by nitrite on the performance of the perfused beating heart of two Antarctic stenotherm teleosts, the haemoglobinless Chionodraco hamatus (icefish) and the red-blooded Trematomus bernacchii. Since haemoglobin is crucial in nitric oxide homeostasis, the icefish, a naturally occurring genetic knockout for this protein, provides exclusive opportunities to investigate nitric oxide/nitrite signaling. In vivo, nitrite conversion to nitric oxide requires the nitrite reductase activity of xanthine oxidase and cytochrome P-450, thus the involvement of these enzymes was also evaluated. We showed that, in C. hamatus and T. bernacchii, nitrite influenced cardiac performance by inducing a concentration-dependent positive inotropic effect which was unaffected by nitric oxide scavenging by PTIO in C. hamatus, while it was abolished in T. bernacchii. Specific inhibition of xanthine oxidase and cytochrome P-450 revealed, in the two teleosts, that the nitrite-dependent inotropism required the nitrite reductase activity of both enzymes. We also found that xanthine oxidase is more expressed in C. hamatus than in T. bernacchii, while the opposite was observed concerning cytochrome P-450. Results suggested that in the heart of C. hamatus and T. bernacchii, nitrite is an integral physiological source of nitric oxide with important signaling properties, which require the nitrite reductase activity of xanthine oxidase and cytochrome P-450.

  17. HTS followed by NMR based counterscreening. Discovery and optimization of pyrimidones as reversible and competitive inhibitors of xanthine oxidase.

    PubMed

    Evenäs, Johan; Edfeldt, Fredrik; Lepistö, Matti; Svitacheva, Naila; Synnergren, Anna; Lundquist, Britta; Gränse, Mia; Rönnholm, Anna; Varga, Mikael; Wright, John; Wei, Min; Yue, Sherrie; Wang, Junfeng; Li, Chong; Li, Xuan; Chen, Gang; Liao, Yong; Lv, Gang; Tjörnebo, Ann; Narjes, Frank

    2014-03-01

    The identification of novel, non-purine based inhibitors of xanthine oxidase is described. After a high-throughput screening campaign, an NMR based counterscreen was used to distinguish actives, which interact with XO in a reversible manner, from assay artefacts. This approach identified pyrimidone 1 as a reversible and competitive inhibitor with good lead-like properties. A hit to lead campaign gave compound 41, a nanomolar inhibitor of hXO with efficacy in the hyperuricemic rat model after oral dosing.

  18. Chemopreventive effect of a xanthine oxidase inhibitor, 1'-acetoxychavicol acetate, on rat oral carcinogenesis.

    PubMed

    Ohnishi, M; Tanaka, T; Makita, H; Kawamori, T; Mori, H; Satoh, K; Hara, A; Murakami, A; Ohigashi, H; Koshimizu, K

    1996-04-01

    The effect of a xanthine oxidase inhibitor, 1'-acetoxychavicol acetate (ACA), on 4-nitroquinoline 1-oxide (4-NQO)-induced oral carcinogenesis was investigated in male F344 rats. All rats except those in the ACA-alone and untreated groups were given 4-NQO (20 ppm) In the drinking water for 8 weeks to induce oral cancer. Starting 1 week before the 4-NQO exposure, animals were fed diet containing 100 ppm or 500 ppm ACA for 10 weeks, followed by the basal diet without ACA for 22 weeks. Other groups were fed the diet containing ACA at 100 ppm or 500 ppm for 22 weeks, starting 1 week after the cessation of 4-NQO exposure. The remaining groups consisted of rats given 500 ppm ACA alone or untreated rats. At the termination of the experiment (32 weeks), the incidences of tongue neoplasms and preneoplastic lesions, polyamine levels in the tongue tissue, and cell proliferation activity estimated in terms of 5-bromodeoxyuridine (BrdU)-labeling index and by morphometric analysis of silver-stained nucleolar organizer regions' protein (AgNORs) were compared among the groups. Feeding of ACA at the two doses during initiation or postinitiation significantly decreased the development of tongue carcinoma (93-100% reduction, P < 0.001) and preneoplasia (43-50% reduction for hyperplasia and 34-48% reduction for dysplasia, P < 0.05). There were no such lesions in rats fed ACA alone or those in the untreated control group. The number of AgNORs per cell nucleus was significantly decreased by feeding of ACA at a high dose (500 ppm) (29% inhibition, P < 0.05). The BrdU-labeling index was also reduced by dietary administration of ACA (23-32% inhibition, P < 0.01). In addition, ACA feeding reduced tongue polyamine levels (35-40% inhibition, P < 0.05). These results indicate that ACA inhibited rat oral carcinogenesis, and such inhibition might be related to suppression of cell proliferation in the oral mucosa by the xanthine oxidase inhibitor.

  19. Effects of allopurinol on exercise-induced muscle damage: new therapeutic approaches?

    PubMed

    Sanchis-Gomar, F; Pareja-Galeano, H; Perez-Quilis, C; Santos-Lozano, A; Fiuza-Luces, C; Garatachea, N; Lippi, G; Lucia, A

    2015-01-01

    Intensive muscular activity can trigger oxidative stress, and free radicals may hence be generated by working skeletal muscle. The role of the enzyme xanthine oxidase as a generating source of free radicals is well documented and therefore is involved in the skeletal muscle damage as well as in the potential transient cardiovascular damage induced by high-intensity physical exercise. Allopurinol is a purine hypoxanthine-based structural analog and a well-known inhibitor of xanthine oxidase. The administration of the xanthine oxidase inhibitor allopurinol may hence be regarded as promising, safe, and an economic strategy to decrease transient skeletal muscle damage (as well as heart damage, when occurring) in top-level athletes when administered before a competition or a particularly high-intensity training session. Although continuous administration of allopurinol in high-level athletes is not recommended due to its possible role in hampering training-induced adaptations, the drug might be useful in non-athletes. Exertional rhabdomyolysis is the most common form of rhabdomyolysis and affects individuals participating in a type of intense exercise to which they are not accustomed. This condition can cause exercise-related myoglobinuria, thus increasing the risk of acute renal failure and is also associated with sickle cell trait. In this manuscript, we have reviewed the recent evidence about the effects of allopurinol on exercise-induced muscle damage. More research is needed to determine whether allopurinol may be useful for preventing not only exertional rhabdomyolysis and acute renal damage but also skeletal muscle wasting in critical illness as well as in immobilized, bedridden, sarcopenic or cachectic patients.

  20. The dual actions of Paederia scandens extract as a hypouricemic agent: xanthine oxidase inhibitory activity and uricosuric effect.

    PubMed

    Yan, Haiyan; Ma, Ying; Liu, Mei; Zhou, Lanlan

    2008-09-01

    Hyperuricemia is associated with a number of pathological conditions, such as gout. Lowering of elevated uric acid levels in the blood could be achieved by xanthine oxidase inhibitors and inhibitors of renal urate reabsorption. Some natural compounds isolated from herbs used in traditional Chinese medicine have been previously demonstrated to act as xanthine oxidase inhibitors. In the present investigation, Paederia scandens (Lour.) Merrill (Rubiaceae) extract (PSE; 4.5, 2.25, and 1.125 g/kg) orally for 14 days was demonstrated to possess in vivo potent hypouricemic activity in hyperuricemic rats pretreated with potassium oxonate. In addition, PSE was also demonstrated to be an inhibitor of xanthine oxidase. Lineweaver-Burk analysis of the enzyme kinetics indicated that the inhibition of PSE was of a mixed type. Using an oxonate-induced hyperuricemic rat model, PSE was indeed shown to exhibit uricosuric action in vivo, which could explain, at least in part, the observed hypouricemic effect of PSE in these rats. The potential application of this compound in the treatment of conditions associated with hyperuricemia is discussed.

  1. Flavonoid glycosides isolated from unique legume plant extracts as novel inhibitors of xanthine oxidase.

    PubMed

    Spanou, Chrysoula; Veskoukis, Aristidis S; Kerasioti, Thalia; Kontou, Maria; Angelis, Apostolos; Aligiannis, Nektarios; Skaltsounis, Alexios-Leandros; Kouretas, Dimitrios

    2012-01-01

    Legumes and the polyphenolic compounds present in them have gained a lot of interest due to their beneficial health implications. Dietary polyphenolic compounds, especially flavonoids, exert antioxidant properties and are potent inhibitors of xanthine oxidase (XO) activity. XO is the main contributor of free radicals during exercise but it is also involved in pathogenesis of several diseases such as vascular disorders, cancer and gout. In order to discover new natural, dietary XO inhibitors, some polyphenolic fractions and pure compounds isolated from two legume plant extracts were tested for their effects on XO activity. The fractions isolated from both Vicia faba and Lotus edulis plant extracts were potent inhibitors of XO with IC(50) values range from 40-135 µg/mL and 55-260 µg/mL, respectively. All the pure polyphenolic compounds inhibited XO and their K(i) values ranged from 13-767 µM. Ten of the compounds followed the non competitive inhibitory model whereas one of them was a competitive inhibitor. These findings indicate that flavonoid isolates from legume plant extracts are novel, natural XO inhibitors. Their mode of action is under investigation in order to examine their potential in drug design for diseases related to overwhelming XO action.

  2. Role of host xanthine oxidase in infection due to enteropathogenic and Shiga-toxigenic Escherichia coli.

    PubMed

    Crane, John K

    2013-01-01

    Xanthine oxidase (XO) has been recognized as an important host defense enzyme for decades. In our recent study in Infection and Immunity, we found that enteropathogenic and Shiga-toxigenic E. coli (EPEC and STEC) were far more resistant to killing by the XO pathway than laboratory E. coli strains used in the past. Although XO plus hypoxanthine substrate rarely generated enough H 2O 2 to kill EPEC and STEC, the pathogens were able to sense the H2O2 and react to it with an increase in expression of virulence factors, most notably Shiga toxin (Stx). H 2O 2 produced by XO also triggered a chloride secretory response in T84 cell monolayers studied in the Ussing chamber. Adding exogenous XO plus its substrate in vivo did not decrease the number of STEC bacteria recovered from ligated intestinal loops, but instead appeared to worsen the infection and increased the amount of Stx2 toxin produced. XO plus hypoxanthine also increases the ability of Stx2 to translocate across intestinal monolayers. With regard to EPEC and STEC, the role of XO appears more complex and subtle than what has been reported in the past, since XO also plays a role in host-pathogen signaling, in regulating virulence in pathogens, in Stx production and in toxin translocation. Uric acid produced by XO may also be in itself an immune modulator in the intestinal tract.

  3. Characterization and Thermodynamic Relationship of Three Polymorphs of a Xanthine Oxidase Inhibitor, Febuxostat.

    PubMed

    Patel, Jinish; Jagia, Moksh; Bansal, Arvind Kumar; Patel, Sarsvatkumar

    2015-11-01

    Febuxostat (FXT), a xanthine oxidase inhibitor, is an interesting and unique molecule, which exhibits extensive polymorphism, with over 15 polymorphic forms reported to date. The primary purpose of the study was to characterize the three polymorphic forms with respect to their thermodynamic quantities and establish thermodynamic relationship between them. The polymorphs were characterized by thermal and powder X-ray diffraction methods. Three different methods were used to calculate the transition temperatures (Ttr) and thereby their thermodynamic relationships. Although the first and second method used calorimetric data (melting point and heat of fusion), the third method employed the use of configurational free energy phase diagram. The onset melting points of three polymorphic forms were found to be 482.89 ± 0.37 K for form I, 476.30 ± 1.21 K for form II, and 474.19 ± 0.11 K for form III. Moreover, the powder X-ray diffraction patterns for each form were also unique. The polymorphic pair of form I and II and of form I and III was found to be enantiotropic, whereas pair of form II and III was monotropic. Besides the relative thermodynamic aspects (free energy differences, enthalpy, entropy contributions) using different methods, the pharmaceutical implications and phase transformation aspects have also been covered.

  4. Xanthine oxidase-mediated denitrosation of N-nitroso-tryptophan by superoxide and uric acid.

    PubMed

    Viles, Kimberley; Mathai, Clinton; Jourd'heuil, Frances L; Jourd'heuil, David

    2013-01-15

    Recent studies indicate the formation of protein nitrosamines in vivo and tryptophan residues in proteins might represent important targets of nitrosative and oxidative stress. In the present work, we examined the mechanism by which xanthine oxidase (XO) denitrosates N-nitroso Trp residues and determined the applicability of the reactions involved to the detection of nitrosated Trp residues by tri-iodide-based chemiluminescence. We found that - in addition to superoxide - denitrosation of N-acetyl-nitroso Trp (NANT) by hypoxanthine and XO occurred via the intermediacy of uric acid. Zero-order dependence of NANT decay rate with uric acid was achieved with increasing concentrations of uric acid (k(0)∼6.0×10(-4)s(-1)) and generated nitric oxide. In contrast, S-nitrosoglutathione and nitrosyl-myoglobin were stable in the presence of uric acid. NANT decomposition by uric acid could be reproducibly measured using the tri-iodide-based chemiluminescence assay in the presence of excess nitrite upon pre-treatment with acidified sulfanilamide. N-nitrosated albumin was sensitive to uric acid-induced decomposition only after proteolytic degradation. In conclusion, XO decomposes nitrosated Trp through superoxide and uric acid pathways and in the case of uric acid generates free nitric oxide. Site-specificity of this reaction may possibly be used in combination with the tri-iodide-based chemiluminescence assay to discern between nitrosated Trp, S-nitrosothiols, and nitrosylated heme proteins. PMID:23099296

  5. Prokaryotic expression of the chicken xanthine oxidase (XOD) subunit and its localization in liver and kidney.

    PubMed

    Lin, Huayuan; Chen, Yanjun; Huang, Qiqi; Guo, Xiaoquan; Liu, Ping; Liu, Weilian; Zhang, Caiying; Cao, Huabin; Hu, Guoliang

    2016-06-01

    Xanthine oxidase (XOD) is the members of the molybdenum hydroxylase flavoprotein family and it plays a vital role in the body's purine catabolism. In this study, we cloned the XOD 37kDa subunit protein by using RT-PCR and pMD-18-T clone vector based on the total RNA extracted from chicken liver. The cloning XOD subunit protein gene was ligated into the pET-32a to construct the recombinant plasmid pET-XOD. After the pET-XOD expression vector was transformed into host cells Rosetta (DE3), the recombinant XOD subunit proteins (54.8kDa) were successfully induced by isopropy1 β-d-thiogalactoside (IPTG). Rabbit antiserums were produced by using the purification of the recombinant XOD subunit protein as antigen. The titer of the antiserum was more than 1:102,400 determined by using ELISA. The result of Western blot demonstrated that the antiserum could specifically recognize the chicken liver XOD. Immunohistochemistry and immunofluorescence showed that the XOD mainly presented in the cytoplasm of chicken hepatocytes and proximal tubular epithelial cells. Our results indicated that the XOD subunit protein polyclonal antibody prepared by this method could be used for the further researches of the biological function of the XOD in the chicken. PMID:26949113

  6. The xanthine oxidase inhibitor febuxostat suppresses development of nonalcoholic steatohepatitis in a rodent model.

    PubMed

    Nakatsu, Yusuke; Seno, Yasuyuki; Kushiyama, Akifumi; Sakoda, Hideyuki; Fujishiro, Midori; Katasako, Aya; Mori, Keiichi; Matsunaga, Yasuka; Fukushima, Toshiaki; Kanaoka, Ryuhei; Yamamotoya, Takeshi; Kamata, Hideaki; Asano, Tomoichiro

    2015-07-01

    Xanthine oxidase (XO) is an enzyme involved in the production of uric acid (UA) from purine nucleotides. Numerous recent studies have revealed the likelihood of metabolic syndrome including nonalcoholic fatty liver disease (NAFLD) or steatohepatitis (NASH) to be related to hyperuricemia. However, it remains unclear whether elevated serum UA during the development of NAFLD or NASH is a cause or a consequence of these diseases. In this study, the XO inhibitor febuxostat was administered to two types of NASH model mice. Febuxostat exerted a strong protective effect against NASH development induced by a high-fat diet containing trans fatty acid (HFDT). In contrast, methionine choline-deficient-diet-induced NASH development not accompanied by hyperuricemia showed no UA normalization, suggesting that the ameliorating effect of febuxostat occurs via the normalization of hyperuricemia itself and/or accompanying molecular mechanism(s) such as oxidative stress. In the HFDT-fed mice, hyperuricemia, elevated alanine aminotransferase, and increased Tunnel-positive cells in the liver were normalized by febuxostat administration. In addition, upregulation of fatty acid oxidation-related genes, fibrotic change, and increases in collagen deposition, inflammatory cytokine expressions, and lipid peroxidation in the HFDT-fed mice were also normalized by febuxostat administration. Taken together, these observations indicate that administration of febuxostat has a protective effect against HFDT-induced NASH development, suggesting the importance of XO in its pathogenesis. Thus XO inhibitors are potentially potent therapies for patients with NASH, particularly that associated with hyperuricemia.

  7. Xanthine Oxidase-Derived ROS Display a Biphasic Effect on Endothelial Cells Adhesion and FAK Phosphorylation.

    PubMed

    Ben-Mahdi, Meriem H; Dang, Pham My-Chan; Gougerot-Pocidalo, Marie-Anne; O'Dowd, Yvonne; El-Benna, Jamel; Pasquier, Catherine

    2016-01-01

    In pathological situations such as ischemia-reperfusion and acute respiratory distress syndrome, reactive oxygen species (ROS) are produced by different systems which are involved in endothelial cells injury, ultimately leading to severe organ dysfunctions. The aim of this work was to study the effect of ROS produced by hypoxanthine-xanthine oxidase (Hx-XO) on the adhesion of human umbilical vein endothelial cells (HUVEC) and on the signaling pathways involved. Results show that Hx-XO-derived ROS induced an increase in HUVEC adhesion in the early stages of the process (less than 30 min), followed by a decrease in adhesion in the later stages of the process. Interestingly, Hx-XO-derived ROS induced the same biphasic effect on the phosphorylation of the focal adhesion kinase (FAK), a nonreceptor tyrosine kinase critical for cell adhesion, but not on ERK1/2 phosphorylation. The biphasic effect was not seen with ERK1/2 where a decrease in phosphorylation only was observed. Wortmannin, a PI3-kinase inhibitor, inhibited ROS-induced cell adhesion and FAK phosphorylation. Orthovanadate, a protein tyrosine phosphatase inhibitor, and Resveratrol (Resv), an antioxidant agent, protected FAK and ERK1/2 from dephosphorylation and HUVEC from ROS-induced loss of adhesion. This study shows that ROS could have both stimulatory and inhibitory effects on HUVEC adhesion and FAK phosphorylation and suggests that PI3-kinase and tyrosine phosphatase control these effects. PMID:27528888

  8. The role of xanthine oxidase in hemodialysis-induced oxidative injury: relationship with nutritional status.

    PubMed

    Miric, Dijana; Kisic, Bojana; Stolic, Radojica; Miric, Bratislav; Mitic, Radoslav; Janicijevic-Hudomal, Snezana

    2013-01-01

    The role of xanthine oxidase (XOD) in patients undergoing chronic hemodialysis treatment (HD) is poorly understood. Geriatric nutritional risk index (GNRI) ≤ 90 could be linked with malnutrition-inflammation complex syndrome. This study measured XOD, myeloperoxidase (MPO), superoxide dismutase (SOD), lipid hydroperoxides, total free thiol groups, and advanced oxidation protein products (AOPP) in 50 HD patients before commencing (pre-HD) and immediately after completion of HD session (post-HD) and in 22 healthy controls. Pre-HD serum hydroperoxides, AOPP, XOD, and SOD were higher and total thiol groups were lower in patients than in controls (P < 0.05, resp.). Compared to baseline values, serum MPO activity was increased irrespective of GNRI status. Serum XOD activity was increasing during HD treatment in the group with GNRI ≤ 90 (P = 0.030) whilst decreasing in the group with GNRI > 90 (P = 0.002). In a multiple regression analysis, post-HD serum XOD activity was independently associated with GNRI ≤ 90 ( β ± SE: 0.398 ± 0.151; P = 0.012) and HD vintage ( β ± SE: -0.349 ± 0.139; P = 0.016). These results indicate that an upregulated XOD may be implicated in HD-induced oxidative injury contributing to accelerated protein damage in patients with GNRI ≤ 90.

  9. Hydroxylated chalcones with dual properties: Xanthine oxidase inhibitors and radical scavengers.

    PubMed

    Hofmann, Emily; Webster, Jonathan; Do, Thuy; Kline, Reid; Snider, Lindsey; Hauser, Quintin; Higginbottom, Grace; Campbell, Austin; Ma, Lili; Paula, Stefan

    2016-02-15

    In this study, we evaluated the abilities of a series of chalcones to inhibit the activity of the enzyme xanthine oxidase (XO) and to scavenge radicals. 20 mono- and polyhydroxylated chalcone derivatives were synthesized by Claisen-Schmidt condensation reactions and then tested for inhibitory potency against XO, a known generator of reactive oxygen species (ROS). In parallel, the ability of the synthesized chalcones to scavenge a stable radical was determined. Structure-activity relationship analysis in conjunction with molecular docking indicated that the most active XO inhibitors carried a minimum of three hydroxyl groups. Moreover, the most effective radical scavengers had two neighboring hydroxyl groups on at least one of the two phenyl rings. Since it has been proposed previously that XO inhibition and radical scavenging could be useful properties for reduction of ROS-levels in tissue, we determined the chalcones' effects to rescue neurons subjected to ROS-induced stress created by the addition of β-amyloid peptide. Best protection was provided by chalcones that combined good inhibitory potency with high radical scavenging ability in a single molecule, an observation that points to a potential therapeutic value of this compound class.

  10. Prokaryotic expression of the chicken xanthine oxidase (XOD) subunit and its localization in liver and kidney.

    PubMed

    Lin, Huayuan; Chen, Yanjun; Huang, Qiqi; Guo, Xiaoquan; Liu, Ping; Liu, Weilian; Zhang, Caiying; Cao, Huabin; Hu, Guoliang

    2016-06-01

    Xanthine oxidase (XOD) is the members of the molybdenum hydroxylase flavoprotein family and it plays a vital role in the body's purine catabolism. In this study, we cloned the XOD 37kDa subunit protein by using RT-PCR and pMD-18-T clone vector based on the total RNA extracted from chicken liver. The cloning XOD subunit protein gene was ligated into the pET-32a to construct the recombinant plasmid pET-XOD. After the pET-XOD expression vector was transformed into host cells Rosetta (DE3), the recombinant XOD subunit proteins (54.8kDa) were successfully induced by isopropy1 β-d-thiogalactoside (IPTG). Rabbit antiserums were produced by using the purification of the recombinant XOD subunit protein as antigen. The titer of the antiserum was more than 1:102,400 determined by using ELISA. The result of Western blot demonstrated that the antiserum could specifically recognize the chicken liver XOD. Immunohistochemistry and immunofluorescence showed that the XOD mainly presented in the cytoplasm of chicken hepatocytes and proximal tubular epithelial cells. Our results indicated that the XOD subunit protein polyclonal antibody prepared by this method could be used for the further researches of the biological function of the XOD in the chicken.

  11. Xanthine Oxidase-Derived ROS Display a Biphasic Effect on Endothelial Cells Adhesion and FAK Phosphorylation

    PubMed Central

    Dang, Pham My-Chan; Gougerot-Pocidalo, Marie-Anne; Pasquier, Catherine

    2016-01-01

    In pathological situations such as ischemia-reperfusion and acute respiratory distress syndrome, reactive oxygen species (ROS) are produced by different systems which are involved in endothelial cells injury, ultimately leading to severe organ dysfunctions. The aim of this work was to study the effect of ROS produced by hypoxanthine-xanthine oxidase (Hx-XO) on the adhesion of human umbilical vein endothelial cells (HUVEC) and on the signaling pathways involved. Results show that Hx-XO-derived ROS induced an increase in HUVEC adhesion in the early stages of the process (less than 30 min), followed by a decrease in adhesion in the later stages of the process. Interestingly, Hx-XO-derived ROS induced the same biphasic effect on the phosphorylation of the focal adhesion kinase (FAK), a nonreceptor tyrosine kinase critical for cell adhesion, but not on ERK1/2 phosphorylation. The biphasic effect was not seen with ERK1/2 where a decrease in phosphorylation only was observed. Wortmannin, a PI3-kinase inhibitor, inhibited ROS-induced cell adhesion and FAK phosphorylation. Orthovanadate, a protein tyrosine phosphatase inhibitor, and Resveratrol (Resv), an antioxidant agent, protected FAK and ERK1/2 from dephosphorylation and HUVEC from ROS-induced loss of adhesion. This study shows that ROS could have both stimulatory and inhibitory effects on HUVEC adhesion and FAK phosphorylation and suggests that PI3-kinase and tyrosine phosphatase control these effects. PMID:27528888

  12. Quick identification of xanthine oxidase inhibitor and antioxidant from Erycibe obtusifolia by a drug discovery platform composed of multiple mass spectrometric platforms and thin-layer chromatography bioautography.

    PubMed

    Chen, Zhiyong; Tao, Hongxun; Liao, Liping; Zhang, Zijia; Wang, Zhengtao

    2014-08-01

    As a final step of the purine metabolism process, xanthine oxidase catalyzes the oxidation of hypoxanthine and xanthine into uric acid. Our research has demonstrated that Erycibe obtusifolia has xanthine oxidase inhibitory properties. The purpose of this paper is to describe a new strategy based on a combination of multiple mass spectrometric platforms and thin-layer chromatography bioautography for effectively screening the xanthine oxidase inhibitory and antioxidant properties of E. obtusifolia. This strategy was accomplished through the following steps. (i) Separate the extract of E. obtusifolia into fractions by an autopurification system controlled by liquid chromatography with mass spectrometry. (ii) Determine the active fractions of E. obtusifolia by thin-layer chromatography bioautography. (iii) Identify the structure of the main active compounds with the information provided by direct analysis in real time mass spectrometry. (iv) Calculate the IC50 value of each compound against xanthine oxidase using high-performance liquid chromatography. Using the caulis of E. obtusifolia as the experimental material, seven target peaks were screened out as xanthine oxidase inhibitors or antioxidants. Our screening strategy allows for rapid analysis of small molecules with almost no sample preparation and can be completed within a week, making it a useful assay to identify unstable compounds and provide the empirical foundation for E. obtusifolia as a natural remedy for gout and oxidative-stress-related diseases.

  13. Lithospermic acid as a novel xanthine oxidase inhibitor has anti-inflammatory and hypouricemic effects in rats.

    PubMed

    Liu, Xiaoyu; Chen, Ruohua; Shang, Yanjun; Jiao, Binghua; Huang, Caiguo

    2008-11-25

    Lithospermic acid (LSA) was originally isolated from the roots of Salvia mitiorrhiza, a common herb of oriental medicine. Previous studies demonstrated that LSA has antioxidant effects. In this study, we investigated the in vitro xanthine oxidase (XO) inhibitory activity, and in vivo hypouricemic and anti-inflammatory effects of rats. XO activity was detected by measuring the formation of uric acid or superoxide radicals in the xanthine/xanthine oxidase system. The results showed that LSA inhibited the formation of uric acid and superoxide radicals significantly with an IC50 5.2 and 1.08 microg/ml, respectively, and exhibited competitive inhibition. It was also found that LSA scavenged superoxide radicals directly in the system beta-NADH/PMS and inhibited the production of superoxide in human neutrophils stimulated by PMA and fMLP. LSA was also found to have hypouricemic activity on oxonate-pretreated rats in vivo and have anti-inflammatory effects in a model of gouty arthritis. These results suggested that LSA is a competitive inhibitor of XO, able to directly scavenge superoxide and inhibit superoxide production in vitro, and presents hypouricemic and anti-inflammatory actions in vivo.

  14. Novel C-9, 9'-O-acyl esters of (-)-carinol as free-radical scavengers and xanthine oxidase enzyme inhibitors: synthesis and biological evaluation.

    PubMed

    Suryadevara, Praveen Kumar; Tatipaka, Hari Babu; Vidadala, Rama Subba Rao; Tiwari, Ashok K; Rao, Janaswamy Madhusudana; Babu, Katragadda Suresh

    2013-02-01

    New compounds with hydrophyllic esters of (-)-carinol were synthesized and evaluated as xanthine oxidase enzyme inhibitors and antioxidants. Aliphatic esterfication of C-9,9'-OH groups of (-)-carinol resulted in lowering antioxidant and xanthine oxidase inhibitory activities. However certain aromatic acyl esters considerably improved the xathine oxidase inhibition. Aromatic esterification with electron withdrawing substitutions would preferred for improvement in XOD inhibition while retaining radical scavenging activity, electron withdrawing substitution led to the loss of free radical scavenging property and neutral substituents decrease the enzyme inhibitory potential.

  15. Role of xanthine oxidoreductase and NAD(P)H oxidase in endothelial superoxide production in response to oscillatory shear stress

    NASA Technical Reports Server (NTRS)

    McNally, J. Scott; Davis, Michael E.; Giddens, Don P.; Saha, Aniket; Hwang, Jinah; Dikalov, Sergey; Jo, Hanjoong; Harrison, David G.

    2003-01-01

    Oscillatory shear stress occurs at sites of the circulation that are vulnerable to atherosclerosis. Because oxidative stress contributes to atherosclerosis, we sought to determine whether oscillatory shear stress increases endothelial production of reactive oxygen species and to define the enzymes responsible for this phenomenon. Bovine aortic endothelial cells were exposed to static, laminar (15 dyn/cm2), and oscillatory shear stress (+/-15 dyn/cm2). Oscillatory shear increased superoxide (O2.-) production by more than threefold over static and laminar conditions as detected using electron spin resonance (ESR). This increase in O2*- was inhibited by oxypurinol and culture of endothelial cells with tungsten but not by inhibitors of other enzymatic sources. Oxypurinol also prevented H2O2 production in response to oscillatory shear stress as measured by dichlorofluorescin diacetate and Amplex Red fluorescence. Xanthine-dependent O2*- production was increased in homogenates of endothelial cells exposed to oscillatory shear stress. This was associated with decreased xanthine dehydrogenase (XDH) protein levels and enzymatic activity resulting in an elevated ratio of xanthine oxidase (XO) to XDH. We also studied endothelial cells lacking the p47phox subunit of the NAD(P)H oxidase. These cells exhibited dramatically depressed O2*- production and had minimal XO protein and activity. Transfection of these cells with p47phox restored XO protein levels. Finally, in bovine aortic endothelial cells, prolonged inhibition of the NAD(P)H oxidase with apocynin decreased XO protein levels and prevented endothelial cell stimulation of O2*- production in response to oscillatory shear stress. These data suggest that the NAD(P)H oxidase maintains endothelial cell XO levels and that XO is responsible for increased reactive oxygen species production in response to oscillatory shear stress.

  16. Synthesis, crystal structures, fluorescence and xanthine oxidase inhibitory activity of pyrazole-based 1,3,4-oxadiazole derivatives

    NASA Astrophysics Data System (ADS)

    Qi, De-Qiang; Yu, Chuan-Ming; You, Jin-Zong; Yang, Guang-Hui; Wang, Xue-Jie; Zhang, Yi-Ping

    2015-11-01

    A series of pyrazole-based 1,3,4-oxadiazole derivatives were rationally designed and synthesized in good yields by following a convenient route. All the newly synthesized molecules were fully characterized by IR, 1H NMR and elemental analysis. Eight compounds were structurally determined by single crystal X-ray diffraction analysis. The fluorescence properties of all the compounds were investigated in dimethyl sulfoxide media. In addition, these newly synthesized compounds were evaluated for in vitro inhibitory activity against commercial enzyme xanthine oxidase (XO) by measuring the formation of uric acid from xanthine. Among the compounds synthesized and tested, 3d and 3e were found to be moderate inhibitory activity against commercial XO with IC50 = 72.4 μM and 75.6 μM. The studies gave a new insight in further optimization of pyrazole-based 1,3,4-oxadiazole derivatives with excellent fluorescence properties and XO inhibitory activity.

  17. Substrate Orientation and Catalytic Specificity in the Action of Xanthine Oxidase: The Sequential Hydroxylation of Hypoxanthine to Uric Acid

    SciTech Connect

    Cao, Hongnan; Pauff, James M.; Hille, Russ

    2010-11-29

    Xanthine oxidase is a molybdenum-containing enzyme catalyzing the hydroxylation of a sp{sup 2}-hybridized carbon in a broad range of aromatic heterocycles and aldehydes. Crystal structures of the bovine enzyme in complex with the physiological substrate hypoxanthine at 1.8 {angstrom} resolution and the chemotherapeutic agent 6-mercaptopurine at 2.6 {angstrom} resolution have been determined, showing in each case two alternate orientations of substrate in the two active sites of the crystallographic asymmetric unit. One orientation is such that it is expected to yield hydroxylation at C-2 of substrate, yielding xanthine. The other suggests hydroxylation at C-8 to give 6,8-dihydroxypurine, a putative product not previously thought to be generated by the enzyme. Kinetic experiments demonstrate that >98% of hypoxanthine is hydroxylated at C-2 rather than C-8, indicating that the second crystallographically observed orientation is significantly less catalytically effective than the former. Theoretical calculations suggest that enzyme selectivity for the C-2 over C-8 of hypoxanthine is largely due to differences in the intrinsic reactivity of the two sites. For the orientation of hypoxanthine with C-2 proximal to the molybdenum center, the disposition of substrate in the active site is such that Arg880 and Glu802, previous shown to be catalytically important for the conversion of xanthine to uric acid, play similar roles in hydroxylation at C-2 as at C-8. Contrary to the literature, we find that 6,8-dihydroxypurine is effectively converted to uric acid by xanthine oxidase.

  18. Xanthine oxidase inhibitor febuxostat as a novel agent postulated to act against vascular inflammation.

    PubMed

    Sabán-Ruiz, José; Alonso-Pacho, Ana; Fabregate-Fuente, Martín; de la Puerta González-Quevedo, Cristina

    2013-01-01

    Xanthine oxidoreductase (XOR) catalyzes the final two reactions that lead to uric acid formation. XOR is a complex molibdoflavoenzyme present in two different functional forms: dehydrogenase and xantine oxidase (XO). XO is a critical source of reactive oxygen species (ROS) that contribute to vascular inflammation. Under normal physiological conditions, it is mainly found in the dehydrogenase form, while in inflammatory situations, posttranslational modification converts the dehydrogenase form into XO. These inflammatory conditions lead to an increase in XO levels and thus an increased ROS generation by the enzymatic process, finally resulting in alterations in vascular function. It has also been shown that XO secondarily leads to peroxynitrite formation. Peroxynitrite is one of the most powerful ROS that is produced by the reaction of nitric oxide and superoxide radicals, and is considered to be a marker for reactive nitrogen species, accompanied by oxidative stress. Febuxostat is a novel nonpurine XO-specific inhibitor for treating hyperuricemia. As febuxostat inhibits both oxidized and reduced forms of the enzyme, it inhibits the ROS formation and the inflammation promoted by oxidative stress. The administration of febuxostat has also reduced nitro-oxidative stress. XO serum levels are significantly increased in various pathological states such as inflammation, ischemia-reperfusion or aging and that XO-derived ROS formation is involved in oxidative damage. Thus, it may be possible that the inhibition of this enzymatic pathway by febuxostat would be beneficial for the vascular inflammation. In animal models, febuxostat treatment has already demonstrated anti-inflammatory effects, together with the reduction in XO activity. However, the role of febuxostat in humans requires further investigation.

  19. Is Xanthine oxidase activity in polycystic ovary syndrome associated with inflammatory and cardiovascular risk factors?

    PubMed

    Isık, Hatice; Aynıoglu, Oner; Tımur, Hakan; Sahbaz, Ahmet; Harma, Muge; Can, Murat; Guven, Berrak; Alptekin, Husnu; Kokturk, Furuzan

    2016-08-01

    The aim of this study is to examine women with polycystic ovary syndrome (PCOS) to determine the relationship between xanthine oxidase (XO) and oxidative stress, inflammatory status, and various clinical and biochemical parameters. In this cross-sectional study a total of 83 women including 45 PCOS patients and 38 healthy women were enrolled. We collected blood samples for XO and superoxide dismutase (SOD) activity, hormone levels, cholesterol values, and inflammatory markers. Body mass index (BMI) , waist-to-hip ratio (WHR), and blood pressure were assessed. Blood samples were taken for hormonal levels, cholesterol levels, fasting plasma glucose (FPG), fasting plasma insulin (FPI), homeostatic model assessment-insulin resistance (HOMA-IR) index, quantitative insulin sensitivity check index (QUICKI), C-reactive protein (CRP), white blood cell and neutrophil counts, XO and SOD activities. The basal hormone levels, triglyceride (TG) levels, TG/HDL-C (high density lipoprotein-cholesterol) ratios FPG, FPI and HOMA-IR levels were higher in PCOS patients compared to controls (p<0.05). Platelet and plateletcrit (PCT) values, CRP, and XO activity were significantly increased, however SOD activity was decreased in PCOS patients (p<0.001). XO activity was positively correlated with LH/FSH and TG/HDL ratios, CRP, PCT, FPG, FPI, and HOMA-IR, and negatively correlated with QUICKI levels. In conclusion, XO is a useful marker to assess oxidative stress in PCOS patients. Positive correlations between XO and inflammatory markers and cardiovascular disease risk factors suggest that XO plays an important role in the pathogenesis of PCOS and its metabolic complications. PMID:27295433

  20. Development of 2-(Substituted Benzylamino)-4-Methyl-1, 3-Thiazole-5-Carboxylic Acid Derivatives as Xanthine Oxidase Inhibitors and Free Radical Scavengers.

    PubMed

    Ali, Md Rahmat; Kumar, Suresh; Afzal, Obaid; Shalmali, Nishtha; Sharma, Manju; Bawa, Sandhya

    2016-04-01

    A series of 2-(substituted benzylamino)-4-methylthiazole-5-carboxylic acid was designed and synthesized as structural analogue of febuxostat. A methylene amine spacer was incorporated between the phenyl ring and thiazole ring in contrast to febuxostat in which the phenyl ring was directly linked with the thiazole moiety. The purpose of incorporating methylene amine was to provide a heteroatom which is expected to favour hydrogen bonding within the active site residues of the enzyme xanthine oxidase. The structure of all the compounds was established by the combined use of FT-IR, NMR and MS spectral data. All the compounds were screened in vitro for their ability to inhibit the enzyme xanthine oxidase as per the reported procedure along with DPPH free radical scavenging assay. Compounds 5j, 5k and 5l demonstrated satisfactory potent xanthine oxidase inhibitory activities with IC50 values, 3.6, 8.1 and 9.9 μm, respectively, whereas compounds 5k, 5n and 5p demonstrated moderate antioxidant activities having IC50 15.3, 17.6 and 19.6 μm, respectively, along with xanthine oxidase inhibitory activity. Compound 5k showed moderate xanthine oxidase inhibitory activity as compared with febuxostat along with antioxidant activity. All the compounds were also studied for their binding affinity in active site of enzyme (PDB ID-1N5X).

  1. Phytochemical Composition, Antioxidant and Xanthine Oxidase Inhibitory Activities of Amaranthus cruentus L. and Amaranthus hybridus L. Extracts

    PubMed Central

    Nana, Fernand W.; Hilou, Adama; Millogo, Jeanne F.; Nacoulma, Odile G.

    2012-01-01

    This paper describes a preliminary assessment of the nutraceutical value of Amaranthus cruentus (A. cruentus) and Amaranthus hybridus (A. hybridus), two food plant species found in Burkina Faso. Hydroacetonic (HAE), methanolic (ME), and aqueous extracts (AE) from the aerial parts were screened for in vitro antioxidant and xanthine oxidase inhibitory activities. Phytochemical analyses revealed the presence of polyphenols, tannins, flavonoids, steroids, terpenoids, saponins and betalains. Hydroacetonic extracts have shown the most diversity for secondary metabolites. The TLC analyses of flavonoids from HAE extracts showed the presence of rutin and other unidentified compounds. The phenolic compound contents of the HAE, ME and AE extracts were determined using the Folin–Ciocalteu method and ranged from 7.55 to 10.18 mg Gallic acid equivalent GAE/100 mg. Tannins, flavonoids, and flavonols ranged from 2.83 to 10.17 mg tannic acid equivalent (TAE)/100 mg, 0.37 to 7.06 mg quercetin equivalent (QE) /100 mg, and 0.09 to 1.31 mg QE/100 mg, respectively. The betacyanin contents were 40.42 and 6.35 mg Amaranthin Equivalent/100 g aerial parts (dry weight) in A. cruentus and A. hybridus, respectively. Free-radical scavenging activity expressed as IC50 (DPPH method) and iron reducing power (FRAP method) ranged from 56 to 423 µg/mL and from 2.26 to 2.56 mmol AAE/g, respectively. Xanthine oxidase inhibitory activities of extracts of A. cruentus and A. hybridus were 3.18% and 38.22%, respectively. The A. hybridus extract showed the best antioxidant and xanthine oxidase inhibition activities. The results indicated that the phytochemical contents of the two species justify their traditional uses as nutraceutical food plants. PMID:24281664

  2. An oxidative coupling product of luteolin with cysteine ester and its enhanced inhibitory activity for xanthine oxidase.

    PubMed

    Masuda, Toshiya; Nojima, Shoko; Miura, Yukari; Honda, Sari; Masuda, Akiko

    2015-08-15

    Oxidative coupling reactions of several flavonoids with a cysteine ester (a radicalic and nucleophilic biochemical) were carried out and the abilities of the coupling products against xanthine oxidase (XO) were screened. One of the products, derived from luteolin, showed a notable inhibitory effect. A potent XO inhibitory compound was isolated from the complex mixture of the product of the coupling of luteolin and cysteine ethyl ester, and its structure was determined by NMR and MS analysis. The compound has a unique 1,4-thiazine ring unit on the luteolin B-ring and is inhibited XO 4.5 times more strongly than it did luteolin.

  3. Isocytosine-based inhibitors of xanthine oxidase: design, synthesis, SAR, PK and in vivo efficacy in rat model of hyperuricemia.

    PubMed

    Khanna, Smriti; Burudkar, Sandeep; Bajaj, Komal; Shah, Pranay; Keche, Ashish; Ghosh, Usha; Desai, Avani; Srivastava, Ankita; Kulkarni-Almeida, Asha; Deshmukh, Nitin J; Dixit, Amol; Brahma, Manoja K; Bahirat, Umakant; Doshi, Lalit; Nemmani, Kumar V S; Tannu, Prashant; Damre, Anagha; B-Rao, Chandrika; Sharma, Rajiv; Sivaramakrishnan, H

    2012-12-15

    Structure-activity relationship studies were carried out for lead generation following structure-guided design approach from an isocytosine scaffold identified earlier for xanthine oxidase inhibition. A 470-fold improvement in in vitro IC(50) was obtained in the process. Five most potent compounds with nanomolar IC(50) values were selected for pharmacokinetics and in vivo experiments. The best compound showed good in vivo activity when administered intraperitoneally but was not active by oral route. The results suggest that improvement in oral exposure could improve the in vivo efficacy of this series.

  4. Xanthine oxidase, but not neutrophils, contributes to activation of cardiac sympathetic afferents during myocardial ischaemia in cats

    PubMed Central

    Tjen-A-Looi, Stephanie C; Fu, Liang-Wu; Longhurst, John C

    2002-01-01

    Activation of cardiac sympathetic afferents during myocardial ischaemia causes angina and induces important cardiovascular reflex responses. Reactive oxygen species (ROS) are important chemical stimuli of cardiac afferents during and after ischaemia. Iron-catalysed Fenton chemistry constitutes one mechanism of production of hydroxyl radicals. Another potential source of these species is xanthine oxidase-catalysed oxidation of purines. Polymorphonuclear leukocytes (PMNs) also contribute to the production of ROS in some conditions. The present study tested the hypothesis that both xanthine oxidase-catalysed oxidation of purines and neutrophils provide a source of ROS sufficient to activate cardiac afferents during ischaemia. We recorded single-unit activity of cardiac afferents innervating the ventricles recorded from the left thoracic sympathetic chain (T1-5) of anaesthetized cats to identify the afferents' responses to ischaemia. The role of xanthine oxidase in activation of these afferents was determined by infusion of oxypurinol (10 mg kg−1, i.v.), an inhibitor of xanthine oxidase. The importance of neutrophils as a potential source of ROS in the activation of cardiac afferents during ischaemia was assessed by the infusion of a polyclonal antibody (3 mg ml−1 kg−1, i.v.) raised in rabbits immunized with cat PMNs. This antibody decreased the number of circulating PMNs and, to a smaller extent, platelets. Since previous data suggest that platelets release serotonin (5-HT), which activates cardiac afferents through a serotonin receptor (subtype 3,5-HT3 receptor) mechanism, before treatment with the antibody in another group, we blocked 5-HT3 receptors on sensory nerve endings with tropisetron (300 μg kg−1, i.v.). We observed that oxypurinol significantly decreased the activity of cardiac afferents during myocardial ischaemia from 1.5 ± 0.4 to 0.8 ± 0.4 impulses s−1. Similarly, the polyclonal antibody significantly reduced the discharge frequency of

  5. Lipid peroxidation in egg phosphatidylcholine liposomes: comparative studies on the induction systems Fe2+/ascorbate and Fe(3+)-chelates/xanthine-xanthine oxidase.

    PubMed

    Fukuzawa, K; Iemura, M; Tokumura, A

    1996-05-01

    Two typical systems of lipid peroxidation in egg yolk phosphatidylcholine (egg PC) liposomes were compared: an enzymic system involving superoxide (O2) generated by xanthine (X), xanthine oxidase (XO) and Fe(3+)-chelates (Fe(3+)-ADP and Fe(3+)-EDTA), and a non-enzymic system involving ascorbic acid (ASA) and Fe2+. These two systems exhibited a different pH-dependence: the rate in the enzymic system was maximal at pH 8-8.5, whereas that in the non-enzymic system was high below pH 7.4 and low above pH 7.6. The rates of lipid peroxidation differed with the membrane charge, and this charge-dependent phenomenon differed in the two peroxidation systems: in the Fe(3+)-chelates/X-XO-system, the rate was slow in neutrally charged egg PC liposomes and rapid in egg PC liposomes containing negatively charged dicetylphosphate (DCP) or positively charged stearylamine (SA), whereas in the Fe2+/AsA-system, the rate was rapid in neutral egg PC liposomes but no lipid peroxidation occurred in egg PC liposomes charged with DCP or SA. The decomposition rate of the hydroperoxide of PC (PC-OOH) incorporated into dimyristoyl-phosphatidylcholine (DMPC) liposomes differed depending on the membrane charge in the two systems and this charge-dependence of the rates correlated well with that of the initiation rate of lipid peroxidation dependent on membrane charge. In the Fe2+/AsA-system, lipid peroxidation depended on the endogenous presence of PC-OOH, and the amounts of PC-OOH required for initiation of the reaction differed depending on the membrane charge. However, in the Fe(3+)-chelates/X-XO-system, lipid peroxidation occurred very slowly in the absence of PC-OOH, but rapidly in its presence. PMID:8741572

  6. Quercetin and hydroxytyrosol attenuates xanthine/xanthine oxidase-induced toxicity in H9c2 cardiomyocytes by regulation of oxidative stress and stress-sensitive signaling pathways.

    PubMed

    Ozbek, Namik; Bali, Elif B; Karasu, Cimen

    2015-10-01

    The increased activity of xanthine/xanthine oxidase (X/XO) has been suggested as a risk factor for heart disease and herbal polyphenols exhibits cardioprotection in vitro and in vivo. To understand the cardioprotective action mechanisms of polyphenol quercetin and hydroxytyrosol, the expression levels of stress-responsive proteins were studied in X/XO-induced toxicity model of H9c2 cardiomyocyocytes. Pretreatment with each polypenol (0.1-10 μg/ml; 24 h) enhanced viability (p < 0.01; MTT test) and inhibited reactive oxygen species (ROS) generation (p < 0.001; H2DCFDA assay) against 12 h exposure to a free radical generating system, X (0.5 mM) and XO (5 mU/ml). Western blotting experiments showed that X/XO increases the phosphorylation of downstream substrate of p38, MAPK-activated protein kinase 2 (MAPKAPK-2), p44/42-MAPK (Erk1/2) and cleaved caspase-3 (p < 0.001, vs. Control), however inhibits the levels of phosphorylated c-Jun and Hsp27 (p < 0.01, vs. Control). Pretreatment with quercetin or hydroxytyrosol attenuated the phosphorylation of MAPKAPK-2 and cleaved caspase-3 in X/XO-exposed cells (p < 0.01, vs. X/XO). Hydroxytyrosol enhanced the reduction of phosphorylation of a transcriptional target c-Jun and led to overphosphorylation in protective proteins, p44/42-MAPK and Hsp27 in X/XO-exposed cells (p < 0.01, vs. X/XO). Our data suggest that quercetin and hydroxytyrosol protects cardiomyocytes against X/XO-induced oxidative toxicity by diminishing intracellular ROS and the regulation of stress-sensitive protein kinase cascades and transcription factors. PMID:26374991

  7. Quantitative electron spin resonance (ESR) analysis of antioxidative properties using the acetaldehyde/xanthine oxidase system

    NASA Astrophysics Data System (ADS)

    Souchard, J.-P.; Nepveu, F.

    1998-05-01

    We present a method for the quantitative ESR analysis of the antioxidant properties of drugs using the acetaldhehyde/xanthine oxidase (AC/XOD) superoxide generating system and 5,5-dimethyl-l-pyrroline-N-oxide (DMPO) as spin trap. In stoichiometric conditions (AC/XOD, 60 mM/0.018 U), the resulting paramagnetic DMPO adduct disappeared with superoxide dismutase and remained when catalase or DMSO were used. That adduct was dependent only on superoxide and resulted from the trapping of a carboxyl radical by DMPO (aN = 15.2 G, aH = 18.9 G). Similar results were obtained using 4-pyridyl-l-oxide-N-t-butyl nitrone (POBN) as spin trap. The ESR signal of the DMPO-CO2- adduct was very stable and allowed quantitative analysis of the antioxidative activity of redox molecules from an IC{50} value representing the concentration causing 50% inhibition of its intensity. Among the tested compounds, manganese(II), complexes were the most effective, 25 times as active as ascorbic acid or (+)catechin and 500-fold more antioxidative than Trolox^R. Nous présentons une méthode d'analyse quantitative de l'activité antioxydante de composés d'intérêt pharmaceutique basée sur le système acétaldéhyde/xanthine oxydase (AC/XOD), l'utilisation de la RPE et du piégeage de spin avec le 5,5-diméthyl-l-pyrroline-N-oxyde (DMPO). Dans les conditions stoechiométriques {AC/XOD, 60 mM/0,018 U/ml}, l'adduit radicalaire résultant de ce système disparaît en présence de superoxyde dismutase et persiste en présence de catalase ou de DMSO. Cet adduit ne dépend que de la présence de l'anion superoxyde et provient du piégeage d'un radical carboxyle CO2- sur le DMPO (aN = 15.2 G, aH = 18.9 G). Des résultats similaires ont été obtenus avec le piégeur de spin 4-pyridyl-l-oxyde-N-t-butyl nitrone (POBN). Le signal RPE de l'adduit DMPO-CO2- est très stable et permet la quantification de l'activité antioxydante de pharmacophores redox par la détermination de la CI{50}, concentration qui

  8. Chemoprevention of azoxymethane-induced rat colon carcinogenesis by a xanthine oxidase inhibitor, 1'-acetoxychavicol acetate.

    PubMed

    Tanaka, T; Kawabata, K; Kakumoto, M; Makita, H; Matsunaga, K; Mori, H; Satoh, K; Hara, A; Murakami, A; Koshimizu, K; Ohigashi, H

    1997-09-01

    In our studies to find natural compounds with chemopreventive efficacy in foods, using azoxymethane (AOM)-induced colonic aberrant crypt foci and colonic mucosal cell proliferation as biomarkers, a xanthine oxidase inhibitor, 1'-acetoxychavicol acetate (ACA), present in the edible plant Languas galanga from Thailand was found to be effective. This study was conducted to test the ability of ACA to inhibit AOM-induced colon tumorigenesis when it was fed to rats during the initiation or post-initiation phase. Male F344 rats were given three weekly s.c. injections of AOM (15 mg/kg body weight) to induce colonic neoplasms. They were fed diet containing 100 or 500 ppm ACA for 4 weeks, starting one week before the first dosing of AOM (the initiation feeding). The other groups were fed the ACA diet for 34 weeks, starting one week after the last AOM injection (the post-initiation feeding). At the termination of the study (week 38), AOM had induced 71% incidence of colonic adenocarcinoma (12/17 rats). The initiation feeding with ACA caused significant reduction in the incidence of colon carcinoma (54% inhibition by 100 ppm ACA feeding and 77% inhibition by 500 ppm ACA feeding, P = 0.03 and P = 0.001, respectively). The post-initiation feeding with ACA also suppressed the incidence of colonic carcinoma (45% inhibition by 100 ppm ACA feeding and 93% inhibition by 500 ppm ACA feeding, P = 0.06 and P = 0.00003, respectively). Such inhibition was dose-dependent and was associated with suppression of proliferation biomarkers, such as ornithine decarboxylase activity in the colonic mucosa, and blood and colonic mucosal polyamine contents. ACA also elevated the activities of phase II enzymes, glutathione S-transferase (GST) and quinone reductase (QR), in the liver and colon. These results indicate that ACA could inhibit the development of AOM-induced colon tumorigenesis through its suppression of cell proliferation in the colonic mucosa and its induction of GST and QR. The results

  9. Design, synthesis of novel pyranotriazolopyrimidines and evaluation of their anti-soybean lipoxygenase, anti-xanthine oxidase, and cytotoxic activities.

    PubMed

    Saïd, Abderrahim Ben; Romdhane, Anis; Elie, Nicolas; Touboul, David; Jannet, Hichem Ben; Bouajila, Jalloul

    2016-12-01

    The synthesis of 14-(aryl)-14H-naphto[2,1-b]pyrano[3,2-e][1,2,4]triazolo[1,5-c]pyrimidine-2-yl) acetamidoximes 2a-e has been accomplished by reaction of 2-acetonitrile derivatives 1a-e with hydroxylamine. Cyclocondensation reaction of precursors 2a-e with some elctrophilic species such as ethylorthoformate, acetic anhydride, and methyl-acetoacetate provided the new oxadiazole derivatives 3a-e, 4a-e, and 5a-e, respectively. On the other hand, the reaction of precursors 2a-e with 2-chloropropanoyl chloride afforded the new acetimidamides 6a-e which evolve under reflux of toluene to the new oxadiazoles 7a-e. The synthetic compounds were screened for their anti-xanthine oxidase, anti-soybean lipoxygenase, and cytotoxic activities. Moderate to weak xanthine oxidase and soybean lipoxygenase inhibitions were obtained but significant cytotoxic activities were noted. The most cytotoxic activities were recorded mainly (i) 5a was the most active (IC50 = 4.0 μM) and selective against MCF-7 and (ii) 2a was cytotoxic against the four cell lines with selectivity for MCF-7 and OVCAR-3 (IC50 = 17 and 12 μM, respectively) while 2e is highly selective against OVCAR-3 (IC50 = 10 μM).

  10. X-ray Crystal Structure of Arsenite-Inhibited Xanthine Oxidase:[mu]-Sulfido,[mu]-Oxo Double Bridge between Molybdenum and Arsenic in the Active Site

    SciTech Connect

    Cao, Hongnan; Hall, James; Hille, Russ

    2012-10-23

    Xanthine oxidoreductase is a molybdenum-containing enzyme that catalyzes the hydroxylation reaction of sp{sup 2}-hybridized carbon centers of a variety of substrates, including purines, aldehydes, and other heterocyclic compounds. The complex of arsenite-inhibited xanthine oxidase has been characterized previously by UV-vis, electron paramagnetic resonance, and X-ray absorption spectroscopy (XAS), and the catalytically essential sulfido ligand of the square-pyrimidal molybdenum center has been suggested to be involved in arsenite binding through either a {mu}-sulfido,{mu}-oxo double bridge or a single {mu}-sulfido bridge. However, this is contrary to the crystallographically observed single {mu}-oxo bridge between molybdenum and arsenic in the desulfo form of aldehyde oxidoreductase from Desulfovibrio gigas (an enzyme closely related to xanthine oxidase), whose molybdenum center has an oxo ligand replacing the catalytically essential sulfur, as seen in the functional form of xanthine oxidase. Here we use X-ray crystallography to characterize the molybdenum center of arsenite-inhibited xanthine oxidase and solve the structures of the oxidized and reduced inhibition complexes at 1.82 and 2.11 {angstrom} resolution, respectively. We observe {mu}-sulfido,{mu}-oxo double bridges between molybdenum and arsenic in the active sites of both complexes. Arsenic is four-coordinate with a distorted trigonal-pyramidal geometry in the oxidized complex and three-coordinate with a distorted trigonal-planar geometry in the reduced complex. The doubly bridged binding mode is in agreement with previous XAS data indicating that the catalytically essential sulfur is also essential for the high affinity of reduced xanthine oxidoreductase for arsenite.

  11. Inactivation of Escherichia coli glutamine synthetase by xanthine oxidase, nicotinate hydroxylase, horseradish peroxidase, or glucose oxidase: effects of ferredoxin, putidaredoxin, and menadione.

    PubMed

    Stadtman, E R; Wittenberger, M E

    1985-06-01

    Previous studies have shown that several mixed-function oxidation (MFO) systems are capable of catalyzing the inactivation of glutamine synthetase (GS) [R.L. Levine, C. N. Oliver, R. M. Fulks, and E. R. Stadtman (1978) Proc. Natl. Acad. Sci. USA 78, 2120-2124] and a number of the other enzymes [L. Fucci, C. N. Oliver, M. J. Coon, and E. R. Stadtman (1983) Proc. Natl. Acad. Sci. USA 80, 1521-1525]. It has now been found that in the presence of Fe(III), O2, and an appropriate electron donor (hypoxanthine or NADPH, respectively) glutamine synthetase is also inactivated by either milk xanthine oxidase or Clostridial nicotinate hydroxylase. Inactivation of glutamine synthetase by either of these flavoproteins is greatly stimulated by the presence of electron carrier proteins possessing nonheme-iron-sulfur (NHIS) clusters (i.e., ferredoxin or putidaredoxin) or by the presence of menadione. The inactivation reactions are partially inhibited by free radical scavengers, superoxide dismutase, (SOD), histidine, mannitol, dimethyl sulfoxide, and dimethylthiourea, and are inhibited completely by either Mn(II), EDTA, or catalase. The sensitivity to SOD inhibition is greatly suppressed when the xanthine oxidase system is supplemented with either ferredoxin or redoxin. In the presence of the latter NHIS-proteins (and only when they are present), MFO systems, comprised of either horseradish peroxidase and H2O2 or glucose oxidase, O2, and glucose, can also catalyze the inactivation of GS. The ability of ferredoxin and putidaredoxin to promote oxidation modification of GS by any one of these MFO systems suggests that proteins with NHIS centers may mediate the generation (or stabilization) of highly reactive radical intermediates.

  12. Allopurinol Use during Pregnancy - Outcome of 31 Prospectively Ascertained Cases and a Phenotype Possibly Indicative for Teratogenicity

    PubMed Central

    Hoeltzenbein, Maria; Stieler, Katja; Panse, Mary; Wacker, Evelin; Schaefer, Christof

    2013-01-01

    Allopurinol is a purine analogue that inhibits xanthine oxidase. It is mainly used for the treatment of hyperuricemia in patients with gout or tumor lysis syndrome. Experience with allopurinol in pregnancy is scarce. In 2011, Kozenko et al. reported on a child with multiple malformations after maternal treatment with allopurinol throughout pregnancy. Possible teratogenicity of allopurinol was proposed due to the similarity of the pattern of malformations in children with mycophenolate embryopathy. A possible common mechanism of both drugs, i.e. disruption of purine synthesis, was discussed. We report on the outcome of 31 prospectively ascertained pregnancies with allopurinol exposure at least during first trimester. Pregnancy outcomes were 2 spontaneous abortions, 2 elective terminations of pregnancy and 27 live born children. The overall rate of major malformations (3.7%) and of spontaneous abortions (cumulative incidence 11%, 95%-CI 3–40) were both within the normal range. However, there was one child with severe malformations including microphthalmia, cleft lip and palate, renal hypoplasia, low-set ears, hearing deficit, bilateral cryptorchidism, and micropenis. The striking similarity of the anomalies in this child and the case described by Kozenko et al. might be considered as a signal for teratogenicity. Thus, we would recommend caution with allopurinol treatment in the first trimester, until further data are available. PMID:23840514

  13. Allopurinol reduces severity of delayed neurologic sequelae in experimental carbon monoxide toxicity in rats.

    PubMed

    Dong, Guangtao; Ren, Ming; Wang, Xiujie; Jiang, Hongquan; Yin, Xiang; Wang, Shuyu; Wang, Xudong; Feng, Honglin

    2015-05-01

    Approximately half of those who survive severe carbon monoxide (CO) poisoning develop delayed neurologic sequelae. Growing evidence supports the crucial role of free radicals in delayed brain injury associated with CO toxicity. Xanthine oxidase (XO) has been reported to play a pivotal role in the generation of reactive oxygen species (ROS) in CO poisoning. A recent report indicates that allopurinol both attenuated oxidative stress and possessed anti-inflammatory properties in an animal model of acute liver failure. In this study, we aimed to explore the potential of allopurinol to reduce the severity of delayed neurologic sequelae. The rats were first exposed to 1000 ppm CO for 40 min and then to 3000 ppm CO for another 20 min. Following CO poisoning, the rats were injected with allopurinol (50 mg/kg, i.p.) six times. Results showed that allopurinol significantly reduced neuronal death and suppressed expression of pro-inflammatory factors, including tumor necrosis factor-α, intercellular adhesion molecule-1, ionized calcium-binding adapter molecule 1, and degraded myelin basic protein. Furthermore, behavioral studies revealed an improved performance in the Morris water maze test. Our findings indicated that allopurinol may have protective effects against delayed neurologic sequelae caused by CO toxicity.

  14. Role of xanthine oxidase, lactoperoxidase, and NO in the innate immune system of mammary secretion during active involution in dairy cows: manipulation with casein hydrolyzates.

    PubMed

    Silanikove, Nissim; Shapiro, Fira; Shamay, Avi; Leitner, Gabriel

    2005-05-01

    The aims of this study were to test whether xanthine oxidase, lactoperoxidase, and NO are components of the innate immune system of mammary secretion during active involution in dairy cows, and whether the innate immune system is activated by casein hydrolysates. Our laboratory has shown recently that infusion of CNH into mammary glands induced involution and was associated with earlier increases in the concentrations of components of the innate immune system. Intact casein is inactive and served as control. Half of the glands of 8 Holstein cows scheduled for dry off (approximately 60 days before parturition) were injected for 3 days with a single dose of casein hydrolyzates and the contralateral glands with a single dose of intact casein with the same concentration. Involution elicited marked increases in xanthine oxidase and lactoperoxidase activities, and accumulation of urate and nitrate. NO and H(2)O(2) were constantly produced in the mammary gland secretion. Nitrite formed either by autooxidation of NO or by conversion of nitrate to nitrite by xanthine oxidase was converted into the powerful nitric dioxide radical by lactoperoxidase and H(2)O(2) that is derived from the metabolism of xanthine oxidase. Nitric dioxide is most likely responsible for the formation of nitrosothiols on thiol-bearing groups, which allows an extended NO presence in mammary secretion. Nitrite is effectively converted to nitrate, which accumulated in the range of approximately 25 microM -1 mM from the start of the experiment to the complete involution of glands. The mammary secretion in all glands was bactericidal and bacteriostatic during established involution, and this appeared sooner and more acutely in glands treated with casein hydrolyzates, within 8 to 24 h. It is concluded that xanthine oxidase, lactoperoxidase, and NO are components of the mammary innate immune system that form bactericidal and bacteriostatic activities in mammary secretions. The innate immune system play a

  15. Role of xanthine oxidase, lactoperoxidase, and NO in the innate immune system of mammary secretion during active involution in dairy cows: manipulation with casein hydrolyzates.

    PubMed

    Silanikove, Nissim; Shapiro, Fira; Shamay, Avi; Leitner, Gabriel

    2005-05-01

    The aims of this study were to test whether xanthine oxidase, lactoperoxidase, and NO are components of the innate immune system of mammary secretion during active involution in dairy cows, and whether the innate immune system is activated by casein hydrolysates. Our laboratory has shown recently that infusion of CNH into mammary glands induced involution and was associated with earlier increases in the concentrations of components of the innate immune system. Intact casein is inactive and served as control. Half of the glands of 8 Holstein cows scheduled for dry off (approximately 60 days before parturition) were injected for 3 days with a single dose of casein hydrolyzates and the contralateral glands with a single dose of intact casein with the same concentration. Involution elicited marked increases in xanthine oxidase and lactoperoxidase activities, and accumulation of urate and nitrate. NO and H(2)O(2) were constantly produced in the mammary gland secretion. Nitrite formed either by autooxidation of NO or by conversion of nitrate to nitrite by xanthine oxidase was converted into the powerful nitric dioxide radical by lactoperoxidase and H(2)O(2) that is derived from the metabolism of xanthine oxidase. Nitric dioxide is most likely responsible for the formation of nitrosothiols on thiol-bearing groups, which allows an extended NO presence in mammary secretion. Nitrite is effectively converted to nitrate, which accumulated in the range of approximately 25 microM -1 mM from the start of the experiment to the complete involution of glands. The mammary secretion in all glands was bactericidal and bacteriostatic during established involution, and this appeared sooner and more acutely in glands treated with casein hydrolyzates, within 8 to 24 h. It is concluded that xanthine oxidase, lactoperoxidase, and NO are components of the mammary innate immune system that form bactericidal and bacteriostatic activities in mammary secretions. The innate immune system play a

  16. [The Xanthine Oxidase Inhibitory Activity and Hypouricemic Effects of Crude Drugs Obtained from the Silkworm in Mice].

    PubMed

    Tanaka, Ryuichirou; Miyata, Yuuma; Minakuchi, Naoki; Murakami, Ayako; Sakazaki, Fumitoshi

    2015-01-01

    This study evaluated the effects of crude drugs obtained from the silkworm in mice with oxonic acid-induced hyperuricemia using xanthine oxidase inhibitory activity and plasma uric acid levels. The plasma uric acid level was analyzed using an improved HPLC with UV detection (HPLC-UV) method, which enabled high-sensitivity analysis of a microliter of plasma. Using this method, we evaluated natural products administered orally to the hypouricemic mice. The plasma uric acid level of mice administered a water-soluble extract from silkworm larvae with botrytis (used in traditional Chinese medicine to reduce wind, lower blood pressure, and change platelet coagulation) was significantly lower than in the control group 1, 2, and 3 h after treatment. In addition, water soluble extracts from a fungus (NBRC 31161) metabolite and silkworm pupae and larvae reduced the plasma uric acid levels in mice compared with the control group.

  17. Screening and determination of potential xanthine oxidase inhibitors from Radix Salviae Miltiorrhizae using ultrafiltration liquid chromatography-mass spectrometry.

    PubMed

    Liu, Yang; Liu, Shu; Liu, Zhiqiang

    2013-04-01

    Xanthine oxidase (XOD) inhibitors play an important role in the treatment of gout and many other diseases related to the superoxide anion metabolism. In this study, an ultrafiltration-liquid chromatography-mass spectrometry (UF-LC-MS) method was developed for the screening and identification of potential XOD inhibitors from Radix Salviae Miltiorrhizae extract. Eleven lipophilic diterpenoid quinines were identified as XOD inhibitors from the extract. The relationship between the structure and activity of the detected compounds was estimated on the basis of the UF-LC-MS data. The results demonstrate that the 1,2-naphthoquinone group is necessary for the XOD inhibitory activity of the compounds, and that furan and hydroxyl on the alicyclic ring could enhance the activity of the compounds at different levels. These results may explain and support the medical use of the extract of Radix S. Miltiorrhizae for the prevention and treatment of hyperuricemia and gout.

  18. Structure-based design and biological evaluation of novel 2-(indol-2-yl) thiazole derivatives as xanthine oxidase inhibitors.

    PubMed

    Song, Jeong Uk; Jang, Jae Wan; Kim, Tae Hun; Park, Heuisul; Park, Wan Su; Jung, Sang-Hun; Kim, Geun Tae

    2016-02-01

    Inhibition of xanthine oxidase (XO) has obviously been a central concept for controlling hyperuricemia, which causes serious and painful inflammatory arthritis disease such as gout. We discovered a series of novel 2-(indol-2-yl)thiazole derivatives as XO inhibitors at the level of nanomolar activity. Structure-guided design using molecular modeling program (Accelrys Software program) provided an excellent basis for optimization of 2-(indol-2-yl)thiazole compounds. Structure-activity relationship indicated that hydrophobic alkoxy group (isopropoxy, cyclopentoxy) at 5-position and hydrogen binding acceptor (NO2, CN) at 7-position of indole ring appear as critical functional groups. Among the compounds, 2-(7-nitro-5-isopropoxy-indol-2-yl)-4-methylthiazole-5-carboxylic acid (9m) exhibits the most potent XO inhibitory activity (IC50 value: 5.1 nM) and the excellent uric acid lowering activity in potassium oxonate induced hyperuricemic rat model.

  19. [The Xanthine Oxidase Inhibitory Activity and Hypouricemic Effects of Crude Drugs Obtained from the Silkworm in Mice].

    PubMed

    Tanaka, Ryuichirou; Miyata, Yuuma; Minakuchi, Naoki; Murakami, Ayako; Sakazaki, Fumitoshi

    2015-01-01

    This study evaluated the effects of crude drugs obtained from the silkworm in mice with oxonic acid-induced hyperuricemia using xanthine oxidase inhibitory activity and plasma uric acid levels. The plasma uric acid level was analyzed using an improved HPLC with UV detection (HPLC-UV) method, which enabled high-sensitivity analysis of a microliter of plasma. Using this method, we evaluated natural products administered orally to the hypouricemic mice. The plasma uric acid level of mice administered a water-soluble extract from silkworm larvae with botrytis (used in traditional Chinese medicine to reduce wind, lower blood pressure, and change platelet coagulation) was significantly lower than in the control group 1, 2, and 3 h after treatment. In addition, water soluble extracts from a fungus (NBRC 31161) metabolite and silkworm pupae and larvae reduced the plasma uric acid levels in mice compared with the control group. PMID:26423873

  20. Glutathione disulfide formation and oxidant stress during acetaminophen-induced hepatotoxicity in mice in vivo: the protective effect of allopurinol.

    PubMed

    Jaeschke, H

    1990-12-01

    Acetaminophen (500 mg/kg i.p.) induced hepatotoxicity in fasted ICR mice in vivo. Acetaminophen also caused a long-lasting 50% reduction of the hepatic ATP content, an irreversible loss of hepatic xanthine dehydrogenase activity and a transient increase of the xanthine oxidase activity. All effects occurred before parenchymal cell damage, i.e., the release of cellular enzymes. The hepatic content of GSH and GSSG was initially depleted by acetaminophen without affecting the GSSG:GSH ratio (1:200), however, during the recovery phase of the hepatic GSH levels the GSSG content increased faster than GSH, resulting in a GSSG:GSH ratio of 1:18 24 h after acetaminophen administration. The mitochondrial GSSG content increased from 2% in controls to greater than 20% in acetaminophen-treated mice. The extremely elevated tissue GSSG levels were accompanied by a 4-fold increase of the plasma GSSG concentrations but not by an enhanced biliary efflux, although hepatic GSSG formation and biliary excretion were not affected by acetaminophen. Allopurinol protected dose-dependently against acetaminophen-induced cell injury, the loss of ATP and the increase of the GSSG content in the total liver and in the mitochondrial compartment without inhibiting reactive metabolite formation. High, protective as well as low, nonprotective doses of allopurinol almost completely inhibited hepatic xanthine oxidase and dehydrogenase activity, but only high doses prevented the increase of the mitochondrial GSSG content. The data indicate a long-lasting, primarily intracellular oxidant stress during the progression phase of acetaminophen-induced cell necrosis. The protective effect of allopurinol is unlikely to involve the inhibition of reactive oxygen formation by xanthine oxidase but could be the result of its antioxidant property. PMID:2262912

  1. Human xanthine oxidase recombinant in E. coli: A whole cell catalyst for preparative drug metabolite synthesis.

    PubMed

    Ferreira Antunes, Márcia; Eggimann, Fabian Kurt; Kittelmann, Matthias; Lütz, Stephan; Hanlon, Steven P; Wirz, Beat; Bachler, Thorsten; Winkler, Margit

    2016-10-10

    Human xanthine oxidoreductase (XOR), which is responsible for the final steps of the purine metabolism pathway and involved in oxidative drug metabolism, was successfully expressed in Escherichia coli BL21(DE3) Gold. Recombinant human (rh) XOR yielded higher productivity with the gene sequence optimized for expression in E.coli than with the native gene sequence. Induction of XOR expression with lactose or IPTG resulted in complete loss of activity whereas shake flasks cultures using media rather poor in nutrients resulted in functional XOR expression in the stationary phase. LB medium was used for a 25L fermentation in fed-batch mode, which led to a 5 fold increase of the enzyme productivity when compared to cultivation in shake flasks. Quinazoline was used as a substrate on the semi-preparative scale using an optimized whole cell biotransformation protocol, yielding 73mg of the isolated product, 4-quinazolinone, from 104mg of starting material.

  2. Screening of Potential Xanthine Oxidase Inhibitors in Gnaphalium hypoleucum DC. by Immobilized Metal Affinity Chromatography and Ultrafiltration-Ultra Performance Liquid Chromatography-Mass Spectrometry.

    PubMed

    Zhang, Hong-Jian; Hu, Yi-Juan; Xu, Pan; Liang, Wei-Qing; Zhou, Jie; Liu, Pei-Gang; Cheng, Lin; Pu, Jin-Bao

    2016-01-01

    In this study, a new method based on immobilized metal affinity chromatography (IMAC) combined with ultrafiltration-ultra performance liquid chromatography-mass spectrometry (UF-UPLC-MS) was developed for discovering ligands for xanthine oxidase (XO) in Gnaphalium hypoleucum DC., a folk medicine used in China for the treatment of gout. By IMAC, the high flavonoid content of G. hypoleucum could be determined rapidly and efficiently. UF-UPLC-MS was used to select the bound xanthine oxidase ligands in the mixture and identify them. Finally, two flavonoids, luteolin-4'-O-glucoside and luteolin, were successfully screened and identified as the candidate XO inhibitors of G. hypoleucum. They were evaluated in vitro for XO inhibitory activity and their interaction mechanism was studied coupled with molecular simulations. The results were in favor of the hypothesis that the flavonoids of G. hypoleucum might be the active content for gout treatment by inhibiting XO. PMID:27649136

  3. In vitro antioxidant, lipoxygenase and xanthine oxidase inhibitory activities of fractions from Cienfuegosia digitata Cav., Sida alba L. and Sida acuta Burn f. (Malvaceae).

    PubMed

    Konaté, K; Souza, A; Coulibaly, A Y; Meda, N T R; Kiendrebeogo, M; Lamien-Meda, A; Millogo-Rasolodimby, J; Lamidi, M; Nacoulma, O G

    2010-11-15

    In this study polyphenol content, antioxidant activity, lipoxygenase (LOX) and Xanthine Oxidase (XO) inhibitory effects of n-hexane, dichloromethane, ethyl acetate and n-butanol fractions of aqueous acetone extracts from S. alba L., S. acuta Burn f and Cienfuegosia digitata Cav. were investigated. The total phenolics, flavonoids, flavonols and total tannins were determined by spectrophotometric methods using Folin-ciocalteu, AlCl3 reagents and tannic acid, respectively. The antioxidant potential was evaluated using three methods: inhibition of free radical 2,2-diphenyl-1-picrylhydramzyl (DPPH), ABTS radical cation decolorization assay and Iron (III) to iron (II) reduction activity (FRAP). For enzymatic activity, lipoxygenase and xanthine oxidase inhibitory activities were used. This study shows a relationship between polyphenol contents, antioxidant and enzymatic activities. Present results showed that ethyl acetate and dichloromethane fractions elicit the highest polyphenol content, antioxidant and enzymatic activities.

  4. Bioactive Compounds, Antioxidant, Xanthine Oxidase Inhibitory, Tyrosinase Inhibitory and Anti-Inflammatory Activities of Selected Agro-Industrial By-products

    PubMed Central

    Oskoueian, Ehsan; Abdullah, Norhani; Hendra, Rudi; Karimi, Ehsan

    2011-01-01

    Evaluation of abundantly available agro-industrial by-products for their bioactive compounds and biological activities is beneficial in particular for the food and pharmaceutical industries. In this study, rapeseed meal, cottonseed meal and soybean meal were investigated for the presence of bioactive compounds and antioxidant, anti-inflammatory, xanthine oxidase and tyrosinase inhibitory activities. Methanolic extracts of rapeseed meal showed significantly (P < 0.01) higher phenolics and flavonoids contents; and significantly (P < 0.01) higher DPPH and nitric oxide free radical scavenging activities when compared to that of cottonseed meal and soybean meal extracts. Ferric thiocyanate and thiobarbituric acid tests results showed rapeseed meal with the highest antioxidant activity (P < 0.01) followed by BHT, cotton seed meal and soybean meal. Rapeseed meal extract in xanthine oxidase and tyrosinase inhibitory assays showed the lowest IC50 values followed by cottonseed and soybean meals. Anti-inflammatory assay using IFN-γ/LPS stimulated RAW 264.7 cells indicated rapeseed meal is a potent source of anti-inflammatory agent. Correlation analysis showed that phenolics and flavonoids were highly correlated to both antioxidant and anti-inflammatory activities. Rapeseed meal was found to be promising as a natural source of bioactive compounds with high antioxidant, anti-inflammatory, xanthine oxidase and tyrosinase inhibitory activities in contrast to cotton and soybean meals. PMID:22272095

  5. Ultrafiltration liquid chromatography combined with high-speed countercurrent chromatography for screening and isolating potential α-glucosidase and xanthine oxidase inhibitors from Cortex Phellodendri.

    PubMed

    Li, Sainan; Liu, Chunming; Guo, Liping; Zhang, Yuchi; Wang, Jing; Ma, Bing; Wang, Yueqi; Wang, Yumeng; Ren, Junqi; Yang, Xiaojing; Qin, Yao; Tang, Ying

    2014-09-01

    Cortex Phellodendri is a typical Chinese herb with a large number of alkaloids existing in all parts of it. The most common methods for screening and isolating alkaloids are mostly labor intensive and time consuming. In this study, a new assay based upon ultrafiltration liquid chromatography was developed for the rapid screening of ligands for α-glucosidase and xanthine oxidase. The C. Phellodendri extract was found to contain two alkaloids with both α-glucosidase- and xanthine oxidase binding activities and one lactone with α-glucosidase-binding activity. Subsequently, with the help of high-speed countercurrent chromatography, the specific binding ligands including palmatine, berberine, and obaculactone with purities of 97.38, 96.12, and 96.08%, respectively, were successfully separated. An optimized low-toxicity two-phase solvent system composed of ethyl acetate/n-butanol/ethanol/water (3.5:1.7:0.5:5, v/v/v/v) was used to isolate the three compounds mentioned above from C. Phellodendri. The targeted compounds were identified by liquid chromatography coupled with mass spectrometry and NMR spectroscopy. Therefore, ultrafiltration liquid chromatography combined with high-speed countercurrent chromatography is not only a powerful tool for screening and isolating α-glucosidase and xanthine oxidase inhibitors in complex samples but is also a useful platform for discovering bioactive compounds for the prevention and treatment of diabetes mellitus and gout.

  6. Preparing a new biosensor for hypoxanthine determination by immobilization of xanthine oxidase and uricase in polypyrrole-polyvinyl sulphonate film.

    PubMed

    Görgülü, Mustafa; Çete, Servet; Arslan, Halit; Yaşar, Ahmet

    2013-10-01

    In this study, a new amperometric biosensor for the determination of hypoxanthine was developed. To this aim, polypyrrole-polyvinyl sulphonate films were prepared on the platinum electrode by the electropolymerization of pyrrole in the presence of polyvinyl sulphonate. Xanthine oxidase and uricase enzymes were immobilized in polypyrrole-polyvinyl sulphonate via the entrapment method. Optimum conditions of enzyme electrode were determined. Hypoxanthine detection is based on the oxidation of hydrogen peroxide at +400 mV produced by the enzymatic reaction on the enzyme electrode surface. The linear working range of biosensor for hypoxanthine was determined. The effects of pH and temperature on the response of the hypoxanthine biosensor were investigated. Optimum pH and temperature were measured as 8 and 30°C, respectively. Operational and storage stability of the biosensor were determined. After 20 assays, the biosensor sustained 74.5% of its initial performance. After 33 days, the biosensor lost 36% of its initial performance. The performance of the biosensor was tested in real samples.

  7. Bioassay-Guided Isolation and Identification of Xanthine Oxidase Inhibitory Constituents from the Leaves of Perilla frutescens.

    PubMed

    Huo, Li-Na; Wang, Wei; Zhang, Chun-Yu; Shi, Hai-Bo; Liu, Yang; Liu, Xiao-Hong; Guo, Bing-Hua; Zhao, Dong-Mei; Gao, Hua

    2015-09-25

    Activity-directed fractionation and purification processes were employed to identify xanthine oxidase (XO) inhibitory compounds from the leaves of Perilla frutescens. The total extract was evaluated in vitro on XO inhibitory activity and in vivo in an experimental model with potassium oxonate-induced hyperuricemia in mice which was used to evaluate anti-hyperuricemic activity. The crude extract showed expressive urate-lowering activity results. Solvent partitioning of the total extract followed by macroporous resin column chromatography of the n-butanol extract yielded four extracts and eluted parts. Among them, only the 70% ethanol eluted part of the n-butanol extract showed strong activity and therefore was subjected to separation and purification using various chromatographic techniques. Five compounds showing potent activity were identified by comparing their spectral data with literature values to be caffeic acid, vinyl caffeate, rosmarinic acid, methyl rosmarinate, and apigenin. These results indicate that pending further study, these compounds could be used as novel natural product agents for the treatment of hyperuricemia.

  8. Purine nucleoside phosphorylase and xanthine oxidase activities in erythrocytes and plasma from marine, semiaquatic and terrestrial mammals.

    PubMed

    López-Cruz, Roberto I; Pérez-Milicua, Myrna Barjau; Crocker, Daniel E; Gaxiola-Robles, Ramón; Bernal-Vertiz, Jaime A; de la Rosa, Alejandro; Vázquez-Medina, José P; Zenteno-Savín, Tania

    2014-05-01

    Purine nucleoside phosphorylase (PNP) and xanthine oxidase (XO) are key enzymes involved in the purine salvage pathway. PNP metabolizes purine bases to synthetize purine nucleotides whereas XO catalyzes the oxidation of purines to uric acid. In humans, PNP activity is reported to be high in erythrocytes and XO activity to be low in plasma; however, XO activity increases after ischemic events. XO activity in plasma of northern elephant seals has been reported during prolonged fasting and rest and voluntary associated apneas. The objective of this study was to analyze circulating PNP and XO activities in marine mammals adapted to tolerate repeated cycles of ischemia/reperfusion associated with diving (bottlenose dolphin, northern elephant seal) in comparison with semiaquatic (river otter) and terrestrial mammals (human, pig). PNP activities in plasma and erythrocytes, as well as XO activity in plasma, from all species were quantified by spectrophotometry. No clear relationship in circulating PNP or XO activity could be established between marine, semiaquatic and terrestrial mammals. Erythrocytes from bottlenose dolphins and humans are highly permeable to nucleosides and glucose, intraerythrocyte PNP activity may be related to a release of purine nucleotides from the liver. High-energy costs will probably mean a higher ATP degradation rate in river otters, as compared to northern elephant seals or dolphins. Lower erythrocyte PNP activity and elevated plasma XO activity in northern elephant seal could be associated with fasting and/or sleep- and dive-associated apneas.

  9. Elevated level of renal xanthine oxidase mRNA transcription after nephropathogenic infectious bronchitis virus infection in growing layers

    PubMed Central

    Lin, Huayuan; Huang, Qiqi; Liu, Weilian; Zou, Yuelong; Zhu, Shuliang; Deng, Guangfu; Kuang, Jun; Zhang, Caiying; Cao, Huabin; Hu, Guoliang

    2015-01-01

    To assess relationships between xanthine oxidase (XOD) and nephropathogenic infectious bronchitis virus (NIBV) infection, 240 growing layers (35 days old) were randomly divided into two groups (infected and control) of 120 chickens each. Each chicken in the control and infected group was intranasally inoculated with 0.2 mL sterile physiological saline and virus, respectively, after which serum antioxidant parameters and renal XOD mRNA expression in growing layers were evaluated at 8, 15 and 22 days post-inoculation (dpi). The results showed that serum glutathione peroxidase and superoxide dismutase activities in the infected group were significantly lower than in the control group at 8 and 15 dpi (p < 0.01), while serum malondialdehyde concentrations were significantly higher (p < 0.01). The serum uric acid was significantly higher than that of the control group at 15 dpi (p < 0.01). In addition, the kidney mRNA transcript level and serum activity of XOD in the infected group was significantly higher than that of the control group at 8, 15 and 22 dpi (p < 0.05). The results indicated that NIBV infection could cause the increases of renal XOD gene transcription and serum XOD activity, leading to hyperuricemia and reduction of antioxidants in the body. PMID:26119168

  10. Purine nucleoside phosphorylase and xanthine oxidase activities in erythrocytes and plasma from marine, semiaquatic and terrestrial mammals.

    PubMed

    López-Cruz, Roberto I; Pérez-Milicua, Myrna Barjau; Crocker, Daniel E; Gaxiola-Robles, Ramón; Bernal-Vertiz, Jaime A; de la Rosa, Alejandro; Vázquez-Medina, José P; Zenteno-Savín, Tania

    2014-05-01

    Purine nucleoside phosphorylase (PNP) and xanthine oxidase (XO) are key enzymes involved in the purine salvage pathway. PNP metabolizes purine bases to synthetize purine nucleotides whereas XO catalyzes the oxidation of purines to uric acid. In humans, PNP activity is reported to be high in erythrocytes and XO activity to be low in plasma; however, XO activity increases after ischemic events. XO activity in plasma of northern elephant seals has been reported during prolonged fasting and rest and voluntary associated apneas. The objective of this study was to analyze circulating PNP and XO activities in marine mammals adapted to tolerate repeated cycles of ischemia/reperfusion associated with diving (bottlenose dolphin, northern elephant seal) in comparison with semiaquatic (river otter) and terrestrial mammals (human, pig). PNP activities in plasma and erythrocytes, as well as XO activity in plasma, from all species were quantified by spectrophotometry. No clear relationship in circulating PNP or XO activity could be established between marine, semiaquatic and terrestrial mammals. Erythrocytes from bottlenose dolphins and humans are highly permeable to nucleosides and glucose, intraerythrocyte PNP activity may be related to a release of purine nucleotides from the liver. High-energy costs will probably mean a higher ATP degradation rate in river otters, as compared to northern elephant seals or dolphins. Lower erythrocyte PNP activity and elevated plasma XO activity in northern elephant seal could be associated with fasting and/or sleep- and dive-associated apneas. PMID:24530799

  11. A xanthine oxidase inhibitor 1'-acetoxychavicol acetate inhibits azoxymethane-induced colonic aberrant crypt foci in rats.

    PubMed

    Tanaka, T; Makita, H; Kawamori, T; Kawabata, K; Mori, H; Murakami, A; Satoh, K; Hara, A; Ohigashi, H; Koshimizu, K

    1997-05-01

    The modifying effect of dietary administration of a xanthine oxidase inhibitor 1'-acetoxychavicol acetate (ACA) present in an edible plant Languas galanga in Thailand on the development of azoxymethane (AOM)-induced colonic aberrant crypt foci (ACF) was investigated in rats. Male F344 rats were given s.c. injections of AOM (15 mg/kg body wt) once a week for 3 weeks to induce colonic ACF. They were fed the diets containing 100 or 200 ppm ACA for 5 weeks, starting 1 week before the first dosing of AOM. At the termination of the study (week 5), AOM induced 118 +/- 28 ACF/colon. Dietary administration of ACA caused significant reduction in the frequency of ACF (41% inhibition by 100 ppm ACA feeding and 37% inhibition by 200 ppm ACA feeding, P<0.01). Such inhibition might be associated with suppression of the proliferation biomarkers' expression such as ornithine decarboxylase activity in the colonic mucosa, number of silver-stained nucleolar organizer regions' protein in the colonic mucosal cell nuclei and blood polyamine content. These results indicate that ACA could inhibit the development of AOM-induced ACF through its suppression of cell proliferation in the colonic mucosa and ACA might be a possible chemopreventive agent against colon tumourigenesis.

  12. Superoxide radical is involved in the sclerotial differentiation of filamentous phytopathogenic fungi: identification of a fungal xanthine oxidase.

    PubMed

    Papapostolou, Ioannis; Georgiou, Christos D

    2010-01-01

    This study shows that the direct indicator of oxidative stress superoxide radical (O·₂⁻) is involved in the sclerotial differentiation of the phytopathogenic filamentous fungi Rhizoctonia solani, Sclerotinia sclerotiorum, Sclerotium rolfsii, and Sclerotinia minor. The production rate of O·₂⁻ and the antioxidant enzyme superoxide dismutase (SOD) levels in the sclerotiogenic fungi were significantly higher and lower, respectively, than those of their non-differentiating counterpart strains, which strongly suggests that the oxidative stress of the sclerotium differentiating fungi is higher than that of the non-differentiating ones. Xanthine oxidase (XO), which was detected for the first time in fungi in general, was localized in the cytoplasmic membrane. The contribution of XO in the overall O·₂⁻production was very significant, reaching 30-70% among the strains, especially in the transition developmental stage between the undifferentiated and the differentiated state, suggesting a sclerotium triggering and a phytopathogenic role of XO during plant infection. The additional finding that these fungi secrete extracellular SOD can be related to their protection from the response of plants to produce O·₂⁻ at infection sites. PMID:20943149

  13. Online coupling solid-phase ligand-fishing with high-performance liquid chromatography-diode array detector-tandem mass spectrometry for rapid screening and identification of xanthine oxidase inhibitors in natural products.

    PubMed

    Peng, Mi-Jun; Shi, Shu-Yun; Chen, Lin; Zhang, Shui-Han; Cai, Ping; Chen, Xiao-Qing

    2016-09-01

    Screening and analysis of bioactive compounds from natural products is challenging work due to their complexity. This study presents the first report on hyphenation of solid-phase ligand-fishing using immobilized xanthine oxidase microcolumn (IXOM) and high-performance liquid chromatography-diode array detector-tandem mass spectrometry (HPLC-DAD-MS/MS) for screening and identification of XO inhibitors from complex mixtures. Solid-phase ligand-fishing system was hyphenated with the HPLC system via four-port switching valve and a six-port injection valve as an interface for transferring effluents from IXOM to HPLC, and collecting chromatograms from LFMC (ligand-fishing microextraction column) and C18 column in a run by only one DAD. Mixtures containing allopurinol (positive control) and tryptophane (negative control) were analyzed in order to verify the specificity and reproducibility of the approach. Subsequently, the newly developed system was applied to screening and identification of XO inhibitors from L. macranthoides and its human microsomal metabolites. Six prototype compounds (3-caffeoylquinic acid, 5-caffeoylquinic acid, 4-caffeoylquinic acid, 3,4-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid, 4,5-dicaffeoylquinic acid) and three metabolites (3-caffeoyl-epi-quinic acid, 5-caffeoyl-epi-quinic acid, 4-caffeoyl-epi-quinic acid) with XO binding affinities were identified. The XO inhibition activities of six prototype compounds were evaluated and confirmed using in vitro enzymatic assay. With the online system developed here, we present a feasible, selective, and effective strategy for rapid screening and identification of enzyme inhibitors from complex mixtures. PMID:27438719

  14. High-performance liquid chromatography coupled with post-column dual-bioactivity assay for simultaneous screening of xanthine oxidase inhibitors and free radical scavengers from complex mixture.

    PubMed

    Li, D Q; Zhao, J; Li, S P

    2014-06-01

    Xanthine oxidase (XO) can catalyze hypoxanthine and xanthine to generate uric acid and reactive oxygen species (ROS), including superoxide anion radical (O₂(•-)) and hydrogen peroxide. XO inhibitors and free radical scavengers are beneficial to the treatment of gout and many related diseases. In the present study, an on-line high-performance liquid chromatography (HPLC) coupled with post-column dual-bioactivity assay was established and successfully applied to simultaneously screening of XO inhibitors and free radical scavengers from a complex mixture, Oroxylum indicum extract. The integrated system of HPLC separation, bioactivity screening and mass spectrometry identification was proved to be simple and effective for rapid and sensitive screening of individual bioactive compounds in complex mixtures.

  15. Evaluation of antioxidant and xanthine oxidase inhibitory activity of different solvent extracts of leaves of Citrullus colocynthis

    PubMed Central

    Nessa, Fazilatun; Khan, Saeed A.

    2014-01-01

    Background: Citrullus colocynthis is a folk medicinal plan of United Arab Emirates. Several studies on this plant reported and focused on the biological and toxicological profile of fruits pulp. The present study focused on the antioxidant potency of leaf extract of this plant. Aim: To evaluate the antioxidant and xanthine oxidase (XO) inhibitory activities of C. colocynthis by chemical method. Materials and Methods: Four different solvent extracts (methanol-CCM, methanol: water (1:1)-CCMW, chloroform-CCC and hexane-CCH) of leaves of C. colocynthis were investigated for their free radical scavenging activity using DPPH radical as a substrate, lipid peroxidation (LPO) inhibitory activity using a model system consisting of β-carotene-linoleic acid, superoxide radical scavenging activity (enzymatically/nonenzymatically) and XO inhibitory activity. A dose response curve was plotted for determining SC50 and IC50 values for expressing the results of free radical scavenging activity and XO inhibitory activities respectively. Results: The high polyphenolic content of CCM and CCMW extract showed highest antioxidant activity irrespective the method used for this investigation. The overall results decreased in the order of: CCM > CCMW > CCC > CCH. CCH extract was inactive towards chemically generated superoxide radical and poor DPPH radical scavengers. The results of LPO inhibitory activities of leaves extract (0.1, 0.5 and 1.0 mg/mL) also decreased in the order of: CCM > CCMW > CCC > CCH. Overall 1.0 mg/mL leaves extract showed highest antioxidant potency amongst the studied concentration. Conclusion: CCMW and CCM extract of C. colocynthis exhibited promising antioxidants and XO inhibitory activities. PMID:25002802

  16. HZE ⁵⁶Fe-ion irradiation induces endothelial dysfunction in rat aorta: role of xanthine oxidase.

    PubMed

    Soucy, Kevin G; Lim, Hyun Kyo; Kim, Jae Hyung; Oh, Young; Attarzadeh, David O; Sevinc, Baris; Kuo, Maggie M; Shoukas, Artin A; Vazquez, Marcelo E; Berkowitz, Dan E

    2011-10-01

    Ionizing radiation has been implicated in the development of significant cardiovascular complications. Since radiation exposure is associated with space exploration, astronauts are potentially at increased risk of accelerated cardiovascular disease. This study investigated the effect of high atomic number, high-energy (HZE) iron-ion radiation on vascular and endothelial function as a model of space radiation. Rats were exposed to a single whole-body dose of iron-ion radiation at doses of 0, 0.5 or 1 Gy. In vivo aortic stiffness and ex vivo aortic tension responses were measured 6 and 8 months after exposure as indicators of chronic vascular injury. Rats exposed to 1 Gy iron ions demonstrated significantly increased aortic stiffness, as measured by pulse wave velocity. Aortic rings from irradiated rats exhibited impaired endothelial-dependent relaxation consistent with endothelial dysfunction. Acute xanthine oxidase (XO) inhibition or reactive oxygen species (ROS) scavenging restored endothelial-dependent responses to normal. In addition, XO activity was significantly elevated in rat aorta 4 months after whole-body irradiation. Furthermore, XO inhibition, initiated immediately after radiation exposure and continued until euthanasia, completely inhibited radiation-dependent XO activation. ROS production was elevated after 1 Gy irradiation while production of nitric oxide (NO) was significantly impaired. XO inhibition restored NO and ROS production. Finally, dietary XO inhibition preserved normal endothelial function and vascular stiffness after radiation exposure. These results demonstrate that radiation induced XO-dependent ROS production and nitroso-redox imbalance, leading to chronic vascular dysfunction. As a result, XO is a potential target for radioprotection. Enhancing the understanding of vascular radiation injury could lead to the development of effective methods to ameliorate radiation-induced vascular damage.

  17. Switching from allopurinol to febuxostat for the treatment of hyperuricemia and renal function in patients with chronic kidney disease.

    PubMed

    Tsuruta, Yuki; Mochizuki, Toshio; Moriyama, Takahito; Itabashi, Mitsuyo; Takei, Takashi; Tsuchiya, Ken; Nitta, Kosaku

    2014-11-01

    Hyperuricemia is a frequent complication of chronic kidney disease (CKD). Febuxostat is a novel xanthine oxidase inhibitor that is metabolized by many metabolic pathways in the kidney and the liver. We performed a 1-year cohort study of 73 hyperuricemic patients who had an estimated glomerular filtration rate (eGFR) below 45 ml/min and were being treated with urate-lowering therapy. In 51 patients, treatment was changed from allopurinol to febuxostat, and the other 22 patients were continued on allopurinol. The serum levels of uric acid (UA) level, creatinine, and other biochemical parameters were measured at baseline and after 3, 6, 9, and 12 months of treatment. The serum UA levels significantly decreased from 6.1 ± 1.0 to 5.7 ± 1.2 mg/dl in the febuxostat group and significantly increased from 6.2 ± 1.1 to 6.6 ± 1.1 mg/dl in the allopurinol group. The eGFR decreased 27.3 to 25.7 ml/min in the febuxostat group and from 26.1 to 19.9 ml/min in the allopurinol group. The switch from allopurinol to febuxostat was significantly associated with the changes in eGFR according to a multiple regression analysis (β = -0.22145, P < 0.05). Febuxostat reduced the serum UA levels and slowed the progression of renal disease in our CKD cohort in comparison with allopurinol.

  18. Effect of Soy Sauce on Serum Uric Acid Levels in Hyperuricemic Rats and Identification of Flazin as a Potent Xanthine Oxidase Inhibitor.

    PubMed

    Li, Huipin; Zhao, Mouming; Su, Guowan; Lin, Lianzhu; Wang, Yong

    2016-06-15

    This is the first report on the ability of soy sauce to effectively reduce the serum uric acid levels and xanthine oxidase (XOD) activities of hyperuricemic rats. Soy sauce was partitioned sequentially into ethyl acetate and water fractions. The ethyl acetate fraction with strong XOD inhibition effect was purified further. On the basis of xanthine oxidase inhibitory (XOI) activity-guided purification, nine compounds including 3,4-dihydroxy ethyl cinnamate, diisobutyl terephthalate, harman, daidzein, flazin, catechol, thymine, genistein, and uracil were obtained. It was the first time that 3,4-dihydroxy ethyl cinnamate and diisobutyl terephthalate had been identified from soy sauce. Flazin with hydroxymethyl furan ketone group at C-1 and carboxyl at C-3 exhibited the strongest XOI activity (IC50 = 0.51 ± 0.05 mM). According to fluorescence quenching and molecular docking experiments, flazin could enter into the catalytic center of XOD to interact with Lys1045, Gln1194, and Arg912 mainly by hydrophobic forces and hydrogen bonds. Flazin, catechol, and genistein not only were potent XOD inhibitors but also held certain antioxidant activities. According to ADME (absorption, distribution, metabolism, and excretion) simulation in silico, flazin had good oral bioavailability in vivo. PMID:27181598

  19. Development of a method to screen and isolate potential xanthine oxidase inhibitors from Panax japlcus var via ultrafiltration liquid chromatography combined with counter-current chromatography.

    PubMed

    Li, Sainan; Tang, Ying; Liu, Chunming; Li, Jing; Guo, Liping; Zhang, Yuchi

    2015-03-01

    Panax japlcus var is a typical Chinese herb with a large number of saponins existing in all parts of it. The common methods of screening and isolating saponins are mostly labor-intensive and time-consuming. In this study, a new assay based on ultrafiltration-liquid chromatography-mass spectrometry (UF-LC-MS) was developed for the rapid screening and identifying of the ligands for xanthine oxidase from the extract of P. japlcus. Six saponins were identified as xanthine oxidase inhibitors from the extract. Subsequently, the specific binding ligands, namely, 24 (R)-majoroside R1, chikusetsusaponin IVa, oleanolic acid-28-O-β-D-glucopyranoside, notoginsenoside Fe, ginsenoside Rb2 and ginsenoside Rd (the purities of them were 95.74%, 96.12%, 93.19%, 94.83%, 95.07% and 94.62%, respectively) were separated by high-speed counter-current chromatography (HSCCC). The component ratio of the solvent system of HSCCC was calculated with the help of a multiexponential function model was optimized. The partition coefficient (K) values of the target compounds and resolutions of peaks were employed as the research indicators, and exponential function and binomial formulas were used to optimize the solvent system and flow rate of the mobile phases in a two-stage separation. An optimized two-phase solvent system composed of ethyl acetate, isopropanol, 0.1% aqueous formic acid (1.9:1.0:1.3, v/v/v, for the first-stage) and that composed of methylene chloride, acetonitrile, isopropanol, 0.1% aqueous formic acid (5.6:1.0:2.4:5.2, v/v/v/v, for the second-stage) were used to isolate the six compounds from P. japlcus. The targeted compounds isolated, collected and purified by HSCCC were analyzed by high performance liquid chromatography (UPLC), and the chemical structures of all the six compounds were identified by UV, MS and NMR. The results demonstrate that UF-LC-MS combined with HSCCC might provide not only a powerful tool for screening and isolating xanthine oxidase inhibitors in complex

  20. Molecular Docking Analysis of Selected Clinacanthus nutans Constituents as Xanthine Oxidase, Nitric Oxide Synthase, Human Neutrophil Elastase, Matrix Metalloproteinase 2, Matrix Metalloproteinase 9 and Squalene Synthase Inhibitors

    PubMed Central

    Narayanaswamy, Radhakrishnan; Isha, Azizul; Wai, Lam Kok; Ismail, Intan Safinar

    2016-01-01

    Background: Clinacanthus nutans (Burm. f.) Lindau has gained popularity among Malaysians as a traditional plant for anti-inflammatory activity. Objective: This prompted us to carry out the present study on a selected 11 constituents of C. nutans which are clinacoside A–C, cycloclinacoside A1, shaftoside, vitexin, orientin, isovitexin, isoorientin, lupeol and β-sitosterol. Materials and Methods: Selected 11 constituents of C. nutans were evaluated on the docking behavior of xanthine oxidase (XO), nitric oxide synthase (NOS), human neutrophil elastase (HNE), matrix metalloproteinase (MMP 2 and 9), and squalene synthase (SQS) using Discovery Studio Version 3.1. Also, molecular physicochemical, bioactivity, absorption, distribution, metabolism, excretion, and toxicity (ADMET), and toxicity prediction by computer assisted technology analyzes were also carried out. Results: The molecular physicochemical analysis revealed that four ligands, namely clinacoside A–C and cycloclinacoside A1 showed nil violations and complied with Lipinski's rule of five. As for the analysis of bioactivity, all the 11 selected constituents of C. nutans exhibited active score (>0) toward enzyme inhibitors descriptor. ADMET analysis showed that the ligands except orientin and isoorientin were predicted to have Cytochrome P4502D6 inhibition effect. Docking studies and binding free energy calculations revealed that clinacoside B exhibited the least binding energy for the target enzymes except for XO and SQS. Isovitexin and isoorientin showed the potentials in the docking and binding with all of the six targeted enzymes, whereas vitexin and orientin docked and bound with only NOS and HNE. Conclusion: This present study has paved a new insight in understanding these 11 C. nutans ligands as potential inhibitors against XO, NOS, HNE, MMP 2, MMP 9, and SQS. SUMMARY Isovitexin and isoorientin (Clinacanthus nutans constituent) showed potentials in the docking and binding with all of the six targeted

  1. Induction of xanthine oxidase activity, endoplasmic reticulum stress and caspase activation by sodium metabisulfite in rat liver and their attenuation by Ghrelin.

    PubMed

    Ercan, Sevim; Kencebay, Ceren; Basaranlar, Goksun; Derin, Narin; Aslan, Mutay

    2015-02-01

    Sodium metabisulfite is used as a preservative in many food preparations but can oxidize to sulfite radicals initiating molecular oxidation. Ghrelin is a peptide hormone primarily produced in the stomach and has anti-inflammatory and anti-oxidant effects on gastrointestinal and cardiovascular systems. This study was performed to elucidate the effect of ghrelin on sulfite-induced endoplasmic reticulum (ER) stress and caspase activation in rat peripheral organs. Xanthine oxidase (XO), xanthine dehydrogenase (XDH) enzyme activities, ER stress markers [phosphorylated PKR-like ER kinase (pPERK); C/EBP-homologous protein (CHOP)], caspase-3, -8, -9 activities, nuclear factor kappa-B (NF-κB) levels were determined in liver, heart and kidney of rats treated with sodium metabisulfite and/or ghrelin for 5 weeks. Sodium metabisulfite treatment significantly elevated XO activity, induced expression of GRP78, CHOP and increased caspase-3, -8 and -9 activities in liver but had no significant effect in heart and kidney. Ghrelin treatment decreased XO activity to baseline levels and attenuated ER stress and caspase activation in liver tissue of sodium metabisulfite treated rats. In conclusion, metabolism of sodium metabisulfite in liver tissue increased XO activity, induced ER stress and caused caspase activation which was attenuated by ghrelin treatment. Ghrelin's hepatoprotective effect could be through modulation of XO activity. PMID:25486021

  2. Induction of xanthine oxidase activity, endoplasmic reticulum stress and caspase activation by sodium metabisulfite in rat liver and their attenuation by Ghrelin.

    PubMed

    Ercan, Sevim; Kencebay, Ceren; Basaranlar, Goksun; Derin, Narin; Aslan, Mutay

    2015-02-01

    Sodium metabisulfite is used as a preservative in many food preparations but can oxidize to sulfite radicals initiating molecular oxidation. Ghrelin is a peptide hormone primarily produced in the stomach and has anti-inflammatory and anti-oxidant effects on gastrointestinal and cardiovascular systems. This study was performed to elucidate the effect of ghrelin on sulfite-induced endoplasmic reticulum (ER) stress and caspase activation in rat peripheral organs. Xanthine oxidase (XO), xanthine dehydrogenase (XDH) enzyme activities, ER stress markers [phosphorylated PKR-like ER kinase (pPERK); C/EBP-homologous protein (CHOP)], caspase-3, -8, -9 activities, nuclear factor kappa-B (NF-κB) levels were determined in liver, heart and kidney of rats treated with sodium metabisulfite and/or ghrelin for 5 weeks. Sodium metabisulfite treatment significantly elevated XO activity, induced expression of GRP78, CHOP and increased caspase-3, -8 and -9 activities in liver but had no significant effect in heart and kidney. Ghrelin treatment decreased XO activity to baseline levels and attenuated ER stress and caspase activation in liver tissue of sodium metabisulfite treated rats. In conclusion, metabolism of sodium metabisulfite in liver tissue increased XO activity, induced ER stress and caused caspase activation which was attenuated by ghrelin treatment. Ghrelin's hepatoprotective effect could be through modulation of XO activity.

  3. The methanol extract of Euonymus laxiflorus, Rubia lanceolata and Gardenia jasminoides inhibits xanthine oxidase and reduce serum uric acid level in rats.

    PubMed

    Liu, Li-Min; Cheng, Shu-Fen; Shieh, Po-Chuen; Lee, Jang-Chang; Chen, Jih-Jung; Ho, Chi-Tang; Kuo, Sheng-Chu; Kuo, Daih-Huang; Huang, Li-Jiau; Way, Tzong-Der

    2014-08-01

    Chinese herbal medicinal plants, Euonymus laxiflorus (EL), Rubia lanceolata (RL) and Gardenia jasminoides (GJ), have been used wildly to treat arthritis and gout in Taiwan for decades. To understand the beneficial effects of these three plants, their xanthine oxidase (XO) inhibitory activity in vitro and hypouricaemic activity in vivo were investigated. Our results suggested that methanol extracts were better than water extracts for inhibition of XO activity and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, except the water extract of GJ, which exhibited the strongest radical scavenging effect. In animal study, the serum urate level was significantly decreased after oral administration of higher dose (0.39g/kg) methanol extract of the mixture of three plants (ERG). In addition, methanol extract of ERG reduced the pain reaction time in the second phase of formalin induced pain. The results provide useful information on the pharmacological activities of these plants for the potential in treating hyperuricemia.

  4. The xanthine oxidase inhibitor Febuxostat reduces tissue uric acid content and inhibits injury-induced inflammation in the liver and lung.

    PubMed

    Kataoka, Hiroshi; Yang, Ke; Rock, Kenneth L

    2015-01-01

    Necrotic cell death in vivo induces a robust neutrophilic inflammatory response and the resulting inflammation can cause further tissue damage and disease. Dying cells induce this inflammation by releasing pro-inflammatory intracellular components, one of which is uric acid. Cells contain high levels of intracellular uric acid, which is produced when purines are oxidized by the enzyme xanthine oxidase. Here we test whether a non-nucleoside xanthine oxidase inhibitor, Febuxostat (FBX), can reduce intracellular uric acid levels and inhibit cell death-induced inflammation in two different murine tissue injury models; acid-induced acute lung injury and acetaminophen liver injury. Infiltration of inflammatory cells induced by acid injection into lungs or peritoneal administration of acetaminophen was evaluated by quantification with flow cytometry and tissue myeloperoxidase activity in the presence or absence of FBX treatment. Uric acid levels in serum and tissue were measured before giving the stimuli and during inflammation. The impact of FBX treatment on the peritoneal inflammation caused by the microbial stimulus, zymosan, was also analyzed to see whether FBX had a broad anti-inflammatory effect. We found that FBX reduced uric acid levels in acid-injured lung tissue and inhibited acute pulmonary inflammation triggered by lung injury. Similarly, FBX reduced uric acid levels in the liver and inhibited inflammation in response to acetaminophen-induced hepatic injury. In contrast, FBX did not reduce inflammation to zymosan, and therefore is not acting as a general anti-inflammatory agent. These results point to the potential of using agents like FBX to treat cell death-induced inflammation.

  5. Organic compounds present in airborne particles stimulate superoxide production and DNA fragmentation: role of NOX and xanthine oxidase in animal tissues.

    PubMed

    Busso, Iván Tavera; Silva, Guillermo Benjamín; Carreras, Hebe Alejandra

    2016-08-01

    Suspended particulate matter trigger the production of reactive oxygen species. However, most of the studies dealing with oxidative damage of airborne particles focus on the effects of individual compounds and not real mixtures. In order to study the enzymatic superoxide production resulting from the exposition to a complex mixture, we derived organic extracts from airborne particles collected daily in an urban area and exposed kidney, liver, and heart mammal tissues. After that, we measured DNA damage employing the comet assay. We observed that in every tissue, NADPH oxidase and xanthine oxidase were involved in O2 (-) production when they were exposed to the organic extracts, as the lucigenin's chemiluminescence decays when enzymes were inhibited. The same trend was observed with the percentage of cells with comets, since DNA damage was higher when they were exposed to same experimental conditions. Our data allow us to hypothesize that these enzymes play an important role in the oxidative stress produced by PAHs and that there is a mechanism involving them in the O2 (-)generation. PMID:27180836

  6. Organic compounds present in airborne particles stimulate superoxide production and DNA fragmentation: role of NOX and xanthine oxidase in animal tissues.

    PubMed

    Busso, Iván Tavera; Silva, Guillermo Benjamín; Carreras, Hebe Alejandra

    2016-08-01

    Suspended particulate matter trigger the production of reactive oxygen species. However, most of the studies dealing with oxidative damage of airborne particles focus on the effects of individual compounds and not real mixtures. In order to study the enzymatic superoxide production resulting from the exposition to a complex mixture, we derived organic extracts from airborne particles collected daily in an urban area and exposed kidney, liver, and heart mammal tissues. After that, we measured DNA damage employing the comet assay. We observed that in every tissue, NADPH oxidase and xanthine oxidase were involved in O2 (-) production when they were exposed to the organic extracts, as the lucigenin's chemiluminescence decays when enzymes were inhibited. The same trend was observed with the percentage of cells with comets, since DNA damage was higher when they were exposed to same experimental conditions. Our data allow us to hypothesize that these enzymes play an important role in the oxidative stress produced by PAHs and that there is a mechanism involving them in the O2 (-)generation.

  7. Flavonoid content, free radical scavenging and increase in xanthine oxidase inhibitory activity in Galgeun-tang following fermentation with Lactobacillus plantarum.

    PubMed

    Kim, Dong-Seon; Um, Young Ran; Ma, Jin Yeul

    2014-11-01

    Galgeun-tang (GT) prior to and following fermentation with Lactobacillus plantarum was analyzed to determine the total polyphenol and flavonoid contents and the antioxidant activity. GT, fermented GT (FGT) and their three solvent-partitioned fractions, which were prepared by successive partitioning with ethyl acetate (EtOAc), butanol (BuOH) and water, were evaluated for total polyphenol and flavonoid contents, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity and xanthine oxidase (XO) inhibitory activity. Following fermentation, the total polyphenol content only increased slightly; however, the flavonoid content increased by 24.3%. The radical scavenging activity increased from 22.4 to 27.5% and the XO inhibitory activity increased from 20.2 to 62.4% at 500 µg/ml. The EtOAc fraction among the solvent‑partitioned fractions demonstrated the highest total polyphenol and flavonoid contents, radical scavenging activities and XO inhibitory activity, and the quantity also markedly increased following fermentation.

  8. Affinity selection-based two-dimensional chromatography coupled with high-performance liquid chromatography-mass spectrometry for discovering xanthine oxidase inhibitors from Radix Salviae Miltiorrhizae.

    PubMed

    Fu, Yu; Mo, Hua-Yan; Gao, Wen; Hong, Jia-Ying; Lu, Jun; Li, Ping; Chen, Jun

    2014-08-01

    Xanthine oxidase (XOD) is a key oxidative enzyme to the pathogenesis of hyperuricemia and certain diseases induced by excessive reactive oxygen species. XOD inhibitors could provide an important therapeutic approach to treat such diseases. A new method using affinity selection-based two-dimensional chromatography coupled with liquid chromatography-mass spectrometry was developed for the online screening of potential XOD inhibitors from Radix Salviae Miltiorrhizae. Based on our previous study, the two-dimensional, turbulent-flow chromatography (TFC) was changed to a mixed-mode anion-exchange/reversed-phase column and one reversed-phase column. The developed method was validated to be selective and sensitive for screening XOD-binding compounds, especially weak acidic ones, in the extracts. Three salvianolic acids were screened from the Radix Salviae Miltiorrhizae extract via the developed method. The XOD inhibitory activities of salvianolic acid C and salvianolic acid A were confirmed, and their inhibitory modes were measured. Salvianolic acid C exhibited potent XOD inhibitory activity with an IC(50) of 9.07 μM. This work demonstrated that the developed online, two-dimensional TFC/LC-MS method was effective in discovering the binding affinity of new compounds from natural extracts for target proteins, even at low concentrations.

  9. Caffeine affects the biological responses of human hematopoietic cells of myeloid lineage via downregulation of the mTOR pathway and xanthine oxidase activity.

    PubMed

    Gibbs, Bernhard F; Gonçalves Silva, Isabel; Prokhorov, Alexandr; Abooali, Maryam; Yasinska, Inna M; Casely-Hayford, Maxwell A; Berger, Steffen M; Fasler-Kan, Elizaveta; Sumbayev, Vadim V

    2015-10-01

    Correction of human myeloid cell function is crucial for the prevention of inflammatory and allergic reactions as well as leukaemia progression. Caffeine, a naturally occurring food component, is known to display anti-inflammatory effects which have previously been ascribed largely to its inhibitory actions on phosphodiesterase. However, more recent studies suggest an additional role in affecting the activity of the mammalian target of rapamycin (mTOR), a master regulator of myeloid cell translational pathways, although detailed molecular events underlying its mode of action have not been elucidated. Here, we report the cellular uptake of caffeine, without metabolisation, by healthy and malignant hematopoietic myeloid cells including monocytes, basophils and primary acute myeloid leukaemia mononuclear blasts. Unmodified caffeine downregulated mTOR signalling, which affected glycolysis and the release of pro-inflammatory/pro-angiogenic cytokines as well as other inflammatory mediators. In monocytes, the effects of caffeine were potentiated by its ability to inhibit xanthine oxidase, an enzyme which plays a central role in human purine catabolism by generating uric acid. In basophils, caffeine also increased intracellular cyclic adenosine monophosphate (cAMP) levels which further enhanced its inhibitory action on mTOR. These results demonstrate an important mode of pharmacological action of caffeine with potentially wide-ranging therapeutic impact for treating non-infectious disorders of the human immune system, where it could be applied directly to inflammatory cells.

  10. Immunohistochemical observations on tumor suppressor gene p53 status in mouse fibrosarcoma following in-vivo photodynamic therapy: the role of xanthine oxidase activity

    NASA Astrophysics Data System (ADS)

    Ziolkowski, Piotr P.; Symonowicz, Krzysztof; Milnerowicz, Artur; Osiecka, Beata J.

    1997-12-01

    Tumor suppressor gene p53 expression in a mouse fibrosarcoma following in-vivo photodynamic therapy has been studied using the immunohistochemical method. Photodynamic treatment involved injections of the well known sensitizer -- hematoporphyrin derivative at the doses 1.25 and 2.5 mg/kg of body weight and irradiations at the doses 25 and 50 J/sq cm. Glass slide preparations from PDT-treated tumors were obtained at different time points (15, 60 minutes, 2 and 24 hours) after therapy, subsequently stained for wild type/mutant p53, and assessed for positive reaction. High PDT doses (HpD -- 2.5 mg/kg; light dose -- 50 J/sq cm) correlated with decreased expression of p53 in tumor cells. The other part of the study was directed to measure the xanthine oxidase (XO) activity in the tumor cells. PDT included injections of HpD and light exposure at the same doses as for p53 study. We observed a complete inhibition of the enzyme activity. The slight increase in XO activity was found following treatment with either light or HpD alone.

  11. Hydroxysafflor Yellow A Inhibits LPS-Induced NLRP3 Inflammasome Activation via Binding to Xanthine Oxidase in Mouse RAW264.7 Macrophages

    PubMed Central

    Xu, Xiaolong; Guo, Yuhong; Zhao, Jingxia; Wang, Ning; Ding, Junying; Liu, Qingquan

    2016-01-01

    Hydroxysafflor yellow A (HSYA) is an effective therapeutic agent for inflammatory diseases and autoimmune disorders; however, its regulatory effect on NLRP3 inflammasome activation in macrophages has not been investigated. In this study, we predicted the potential interaction between HSYA and xanthine oxidase (XO) via PharmMapper inverse docking and confirmed the binding inhibition via inhibitory test (IC50 = 40.04 μM). Computation docking illustrated that, in this HSYA-XO complex, HSYA was surrounded by Leu 648, Leu 712, His 875, Leu 873, Ser 876, Glu 879, Phe 649, and Asn 650 with a binding energy of −5.77 kcal/M and formed hydrogen bonds with the hydroxyl groups of HSYA at Glu 879, Asn 650, and His 875. We then found that HSYA significantly decreased the activity of XO in RAW264.7 macrophages and suppressed LPS-induced ROS generation. Moreover, we proved that HSYA markedly inhibited LPS-induced cleaved caspase-1 activation via suppressing the sensitization of NLRP3 inflammasome and prevented the mature IL-1β formation from pro-IL-1β form. These findings suggest that XO may be a potential target of HSYA via direct binding inhibition and the combination of HSYA-XO suppresses LPS-induced ROS generation, contributing to the depression of NLRP3 inflammasome and inhibition of IL-1β secretion in macrophages. PMID:27433030

  12. Essential oil from leaves of Cinnamomum osmophloeum acts as a xanthine oxidase inhibitor and reduces the serum uric acid levels in oxonate-induced mice.

    PubMed

    Wang, S Y; Yang, C W; Liao, J W; Zhen, W W; Chu, F H; Chang, S T

    2008-11-01

    The xanthine oxidase (XOD) inhibitory activity and anti-hyperuricemia effect in mice of Cinnamomum osmophloeum, which is an endemic tree in Taiwan, were evaluated in this study. The results demonstrated that the essential oil of C. osmophloeum leaves presented the strongest XOD inhibition activity (IC(50)=16.3 μg/ml); however, no significant XOD inhibition activities were found in ethanolic and hot water extracts. Furthermore, among the main compounds of essential oil, the cinnamaldehyde exhibited the potent XOD inhibition activity with an IC(50)=8.4 μg/ml. Besides, the reducing serum uric acid levels in oxonate-induced mice by cinnamaldehyde were further investigated. The hyperuricemic mice were oral administrated cinnamaldehyde at a dosage of 150 mg/kg, the uric acid value in serum was reduced from 5.25±0.63 to 2.10±0.04 mg/dl, the levels of serum uric acid in mice was lowered down by 84.48% as compared to the hyperuricemic control group. Based on the results obtained in this study, cinnamaldehyde may be a potential lead compound for developing the pharmaceutic for anti-hyperuricemia agent. PMID:18693097

  13. Xanthine Oxidase Activity Is Associated with Risk Factors for Cardiovascular Disease and Inflammatory and Oxidative Status Markers in Metabolic Syndrome: Effects of a Single Exercise Session

    PubMed Central

    Feoli, Ana Maria Pandolfo; Macagnan, Fabrício Edler; Piovesan, Carla Haas; Bodanese, Luiz Carlos; Siqueira, Ionara Rodrigues

    2014-01-01

    Objective. The main goal of the present study was to investigate the xanthine oxidase (XO) activity in metabolic syndrome in subjects submitted to a single exercise session. We also investigated parameters of oxidative and inflammatory status. Materials/Methods. A case-control study (9 healthy and 8 MS volunteers) was performed to measure XO, superoxide dismutase (SOD), glutathione peroxidase activities, lipid peroxidation, high-sensitivity C-reactive protein (hsCRP) content, glucose levels, and lipid profile. Body mass indices, abdominal circumference, systolic and diastolic blood pressure, and TG levels were also determined. The exercise session consisted of 3 minutes of stretching, 3 minutes of warm-up, 30 minutes at a constant dynamic workload at a moderate intensity, and 3 minutes at a low speed. The blood samples were collected before and 15 minutes after the exercise session. Results. Serum XO activity was higher in MS group compared to control group. SOD activity was lower in MS subjects. XO activity was correlated with SOD, abdominal circumference, body mass indices, and hsCRP. The single exercise session reduced the SOD activity in the control group. Conclusions. Our data support the association between oxidative stress and risk factors for cardiovascular diseases and suggest XO is present in the pathogenesis of metabolic syndrome. PMID:24967004

  14. Development of a selective and fast LC-MS/MS for determination of WSJ-537, an xanthine oxidase inhibitor, in rat plasma: Application to a pharmacokinetic study.

    PubMed

    Lin, Jianyang; Yang, Tian; Zhang, Donghu

    2016-08-15

    Gout is a common metabolic disorder caused by the deposition of monosodium urate crystals within joints. A new kind of xanthine oxidase inhibitor, WSJ-537, was developed as a potential drug. In order to investigate the pharmacokinetic behavior in vivo, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for determination the concentration of WSJ-537 in rat plasma was developed. After extraction by protein precipitation method with acetonitrile, the chromatographic separation was accomplished on a Venusil ASB C18 column(2.1mm×50mm, 3mm)at a flow rate of 0.3mLmin(-1) with the mobile phase consisting of acetonitrile-ammonium acetate (33:67, v/v). An electrospray ionization (ESI) source was applied and operated in the positive ion mode. The plasma concentration was detected by multiple reactions monitoring (MRM) mode with the target fragment ions m/z 410.2→m/z 368.1 for WSJ-537 and m/z 244.1→m/z 185.0 for the IS. Good linearity was observed in the range of 20-800ngmL(-1) (r=0.9947). The recovery of WSJ-537 in rats plasma was more than 85%. This method was suitable for pharmacokinetic studies after oral administration of 10mg/kg WSJ-537 in rats. PMID:27322629

  15. Quantitative analysis of phenolic metabolites from different parts of Angelica keiskei by HPLC-ESI MS/MS and their xanthine oxidase inhibition.

    PubMed

    Kim, Dae Wook; Curtis-Long, Marcus J; Yuk, Heung Joo; Wang, Yan; Song, Yeong Hun; Jeong, Seong Hun; Park, Ki Hun

    2014-06-15

    Angelica keiskei is used as popular functional food stuff. However, quantitative analysis of this plant's metabolites has not yet been disclosed. The principal phenolic compounds (1-16) within A. keiskei were isolated, enabling us to quantify the metabolites within different parts of the plant. The specific quantification of metabolites (1-16) was accomplished by multiple reaction monitoring (MRM) using a quadruple tandem mass spectrometer. The limit of detection and limit of quantitation were calculated as 0.4-44 μg/kg and 1.5-148 μg/kg, respectively. Abundance and composition of these metabolites varied significantly across different parts of plant. For example, the abundance of chalcones (12-16) decreased as follows: root bark (10.51 mg/g)>stems (8.52 mg/g)>leaves (2.63 mg/g)>root cores (1.44 mg/g). The chalcones were found to be responsible for the xanthine oxidase (XO) inhibition shown by this plant. The most potent inhibitor, xanthoangelol inhibited XO with an IC50 of 8.5 μM. Chalcones (12-16) exhibited mixed-type inhibition characteristics.

  16. As compared to allopurinol, urate-lowering therapy with febuxostat has superior effects on oxidative stress and pulse wave velocity in patients with severe chronic tophaceous gout.

    PubMed

    Tausche, A-K; Christoph, M; Forkmann, M; Richter, U; Kopprasch, S; Bielitz, C; Aringer, M; Wunderlich, C

    2014-01-01

    We prospectively evaluated whether an effective 12-month uric acid-lowering therapy (ULT) with the available xanthine oxidase (XO) inhibitors allopurinol and febuxostat in patients with chronic tophaceous gout has an impact on oxidative stress and/or vascular function. Patients with chronic tophaceous gout who did not receive active ULT were included. After clinical evaluation, serum uric acid levels (SUA) and markers of oxidative stress were measured, and carotid-femoral pulse wave velocity (cfPWV) was assessed. Patients were then treated with allopurinol (n = 9) or with febuxostat (n = 8) to target a SUA level ≤ 360 μmol/L. After 1 year treatment, the SUA levels, markers of oxidative stress and the cfPWV were measured again. Baseline characteristics of both groups showed no significant differences except a higher prevalence of moderate impairment of renal function (estimated glomerular filtration rate <60 ml/min) in the febuxostat group. Uric acid lowering with either inhibitors of XO resulted in almost equally effective reduction in SUA levels. The both treatment groups did not differ in their baseline cfPWV (allopurinol group: 14.1 ± 3.4 m/s, febuxostat group: 13.7 ± 2.7 m/s, p = 0.80). However, after 1 year of therapy, we observed a significant cfPWV increase in the allopurinol group (16.8 ± 4.3 m/s, p = 0.001 as compared to baseline), but not in the febuxostat patients (13.3 ± 2.3 m/s, p = 0.55). Both febuxostat and allopurinol effectively lower SUA levels in patients with severe gout. However, we observed that febuxostat also appeared to be beneficial in preventing further arterial stiffening. Since cardiovascular events are an important issue in treating patients with gout, this unexpected finding may have important implications and should be further investigated in randomized controlled trials.

  17. Successful treatment of refractory gout using combined therapy consisting of febuxostat and allopurinol in a patient with chronic renal failure.

    PubMed

    Maekawa, Michitaka; Tomida, Hidetaka; Aoki, Takafumi; Hishida, Manabu; Morinaga, Takatoshi; Tamai, Hirofumi

    2014-01-01

    Gouty arthritis is a metabolic disorder associated with hyperuricemia. Despite the development of novel pharmacotherapies, some hyperuricemia patients are drug refractory and develop gout. A 74-year-old man with frequent gouty attacks and chronic renal failure presented with asymmetrical polyarthritis affecting multiple joints. The diagnosis of gout was confirmed based on the presence of monosodium urate crystals in the patient's right wrist. The administration of systemic corticosteroids relieved the joint inflammation and pain; however, the urate level increased to 28 mg/dL and the gout attacks recurred. Combined allopurinol, febuxostat, and benzbromarone therapy reduced the urate level to <6 mg/dL, and the attacks gradually declined. This is the first report of two xanthine oxidase inhibitors being used to treat refractory gout.

  18. The mitochondrial-targeted antioxidant MitoQ ameliorates metabolic syndrome features in obesogenic diet-fed rats better than Apocynin or Allopurinol.

    PubMed

    Feillet-Coudray, Christine; Fouret, Gillen; Ebabe Elle, Raymond; Rieusset, Jennifer; Bonafos, Beatrice; Chabi, Beatrice; Crouzier, David; Zarkovic, Kamelija; Zarkovic, Neven; Ramos, Jeanne; Badia, Eric; Murphy, Michael P; Cristol, Jean Paul; Coudray, Charles

    2014-10-01

    The prevalence of metabolic syndrome (MetS) components including obesity, dyslipidemia, insulin resistance (IR), and hepatic steatosis is rapidly increasing in wealthy societies. It is accepted that inflammation/oxidative stress are involved in the initiation/evolution of the MetS features. The present work was designed to evaluate the effects of three major cellular ROS production systems on obesity, glucose tolerance, and hepatic steatosis development and on oxidative stress onset. To do so, 40 young male Sprague-Dawley rats were divided into 5 groups: 1-control group, 2-high fat (HF) group (60% energy from fat), 3-HF+ MitoQ (mitochondrial ROS scavenger), 4-HF+ Apocynin (NADPH oxidase inhibitor), 5-HF+ Allopurinol (xanthine oxidase inhibitor). After 8 weeks of these treatments, surrogate MetS, mitochondrial function, and oxidative stress markers were measured in blood and liver. As expected, rats that were fed the HF diet exhibited increased body weight, glucose intolerance, overt hepatic steatosis, and increased hepatic oxidative stress. The impacts of the studied ROS inhibitors on these aspects of the MetS were markedly different. MitoQ showed the most clinically relevant effects, attenuating body weight gain and glucose intolerance provoked by the HF diet. Both Apocynin and Allopurinol showed limited effects suggesting secondary roles of xanthine oxidase (XO) or NADPH oxidase-dependent ROS production in the onset of oxidative stress-dependent obesity, glucose intolerance, and hepatic steatosis process. Thus, MitoQ revealed the central role of mitochondrial oxidative stress in the development of MetS and suggested that mitochondria-targeted antioxidants may be worth considering as potentially helpful therapies for MetS features.

  19. Development and validation of a stability-indicating RP-HPLC method for the determination of febuxostat (a xanthine oxidase inhibitor).

    PubMed

    Mukthinuthalapati, Mathrusri Annapurna; Bandaru, Sai Pavan Kumar; Bukkapatnam, Venkatesh; Mohapatro, Chitaranjan

    2013-01-01

    Febuxostat is a selective inhibitor of xanthine oxidase that is used for the treatment of hyperuricaemia in patients with gout. An isocratic liquid chromatographic method was developed and validated for the determination of febuxostat. Chromatographic separation was achieved on a C18 column using sodium acetate buffer (pH 4.0)-acetonitrile (40:60, v/v), with a flow rate 1.2 mL/min (ultraviolet detection at 254 nm). Linearity was observed in the concentration range of 0.1-200 µg/mL (R(2) = 0.9999) with a linear regression equation of y = 21148x - 2025.1. The limit of quantification was found to be 0.0783 µg/mL and the limit of detection was found to be 0.0257 µg/mL. Febuxostat was subjected to stress conditions of degradation in aqueous solutions, including acidic, alkaline, oxidation, photolysis and thermal degradation. The forced degradation studies were performed by using sodium hydroxide, hydrochloric acid, hydrogen peroxide and thermal and ultraviolet radiation. Febuxostat is more sensitive toward acidic conditions than oxidation and very resistant toward alkaline, thermal and photolytic degradations. The method was validated as per the guidelines of the International Conference on Harmonization. The intra-day and inter-day precision (relative standard deviation) was found to be 0.29-0.41 and 0.63-0.76, respectively. The method is simple, specific, precise, robust and accurate for the determination of febuxostat in pharmaceutical dosage forms (tablets).

  20. In vitro xanthine oxidase and albumin denaturation inhibition assay of Barringtonia racemosa L. and total phenolic content analysis for potential anti-inflammatory use in gouty arthritis

    PubMed Central

    Osman, Nurul Izzati; Sidik, Norrizah Jaafar; Awal, Asmah; Adam, Nurul Athirah Mohamad; Rezali, Nur Inani

    2016-01-01

    Aim: This study was conducted to evaluate the in vitro anti-inflammatory activities and total phenolic content (TPC) of methanolic extracts of infloresence axes, endosperms, leaves, and pericarps of Barringtonia racemosa L. Methods: The anti-inflammatory study was conducted by assessing the potential through xanthine oxidase (XO) and albumin denaturation inhibition assays. Meanwhile, the TPC in the extracts were assessed by Folin-Ciocalteu assay. Results: In the XO inhibition assay, the infloresence axes extract was found to exert the highest inhibition capacity at 0.1% (w/v) with 59.54 ± 0.001% inhibition followed by leaves (58.82 ± 0.001%), pericarps (57.99 ± 0.003%), and endosperms (57.20 ± 0.003%) extracts. Similarly in the albumin denaturation inhibition assay, the infloresence axes extract had shown the greatest inhibition capacity with 70.58 ± 0.004% inhibition followed by endosperms (66.80 ± 0.024%), leaves (65.29 ± 0.006%), and pericarps extracts (43.33 ± 0.002%). Meanwhile, for TPC analysis, leaves extract was found to have the highest phenolic content (53.94 ± 0.000 mg gallic acid equivalent [GAE]/g DW) followed by infloresence axes (31.54 ± 0.001 mg GAE/g DW), endosperms (22.63 ± 0.001 mg GAE/g DW), and the least was found in pericarps (15.54 ± 0.001 mg GAE/g DW). Conclusion: The results indeed verified the in vitro anti-inflammatory activities of B. racemosa and supported its potential to be used in alleviating gouty arthritis and XO-related diseases. PMID:27757263

  1. Post-Translational Modification as a Potential Explanation of High Levels of Enzyme Polymorphism: Xanthine Dehydrogenase and Aldehyde Oxidase in DROSOPHILA MELANOGASTER

    PubMed Central

    Finnerty, Victoria; Johnson, George

    1979-01-01

    Xanthine dehydrogenase (XDH) and aldehyde oxidase (AO) in Drosophila melanogaster require for their activity the action of another unlinked locus, maroon-like (mal). While the XDH and AO loci are on chromosome 3, mal maps to the X chromosome. Although functional mal gene product is required for XDH and AO activity, it is possible to examine the effects of mutant mal alleles in those cases when pairs of mutants complement to produce a partial restoration of activity. To test whether mal mediates a post-translational modification of the XDH and AO proteins, we constructed several mal heteroallelic complementing stocks of Drosophila in which the third chromosomes were co-isogenic. Since all lines were co-isogenic for the XDH and AO structural genes, any variation in these enzymes seen when comparing these stocks must have been produced by post-translational modification by mal. We examined the XDH and AO proteins in these stocks by gel-sieving electrophoresis, a procedure that permits independent characterization of a protein's charge and shape, and is capable of discriminating many variants not detected in routine electrophoresis. In every mal heteroallelic combination, there is a significant alteration in protein shape, when compared to wild type. The magnitude of differences in shape of XDH and AO is correlated both with differences in their enzyme activities and with differences in their thermal stabilities. As the body of this variation appears heritable, any functional differences resulting from these variants are of real genetic and evolutionary interest. A similar post-translational modification of XDH and AO by yet another locus, lxd, was subsequently documented in an analogous manner. The pattern of electrophoretic differences produced by mal and lxd modification is similar to that reported for electrophoretic "alleles" of XDH in natural populations. The implication is that heritable variation in electrophoretic mobility at these two enzyme loci, and

  2. Bioactive compounds from Carissa opaca roots and xanthine oxidase and alpha-amylase inhibitory activities of their methanolic extract and its fractions in different solvents

    PubMed Central

    Saeed, Ramsha; Ahmed, Dildar

    2015-01-01

    Background: Carissa opaca is known for its many ethnomedicinal uses. There was a need to study its bioactivities and identify its phytochemicals. Objective: The objective was to isolate and identify phytochemicals from roots of C. opaca and to evaluate xanthine oxidase (XO) and alpha-amylase inhibitory activities of their methanolic extract and its fractions. Materials and Methods: Methanolic extract of finely divided powder of roots of C. opaca was obtained by cold maceration, followed by its fractionation to obtain hexane, chloroform, ethyl acetate, n-butanolic, and aqueous fractions. Phytochemicals screening was done by standard protocols. XO and alpha-amylase inhibitory activities of the methanolic extract and its fractions were studied. The most active ethyl acetate fraction was subjected to the column and thin layer chromatography to isolate its compounds, which were identified by gas chromatography-mass spectrometry and high-performance liquid chromatography comparison. Results: Methanolic extract displayed significant activity against both the enzymes with IC50 of 156.0 mg/mL and 5.6 mg/mL for XO and alpha-amylase, respectively. Ethyl acetate fraction showed highest activity against both the enzymes with IC50 of 129 mg/mL and 4.9 mg/mL for XO and alpha-amylase, respectively. Chloroform fraction had IC50 of 154.2 mg/mL and 5.5 mg/mL for XO and alpha-amylase, respectively. Aqueous fraction exhibited significant efficacy against alpha-amylase (IC50 5.0 mg/mL). Hexane fraction showed good activity against alpha-amylase in a dose-dependent manner but exhibited opposite trend against XO. The compounds isolated from ethyl acetate fraction included limonene, vanillin, lupeol, rutin, quercetin, b-sitosterol, Vitamin E, 2-hydroxyacetophenone, naphthalenone, 2,3,3-trimethyl-2-(3-methylbuta-1,3-dienyl)-6-methylenecyclohexanone, and 2-benzenedicarboxylic acid, mono(2-ethylhexyl) ester. Conclusions: Moderately polar phytochemicals of C. opaca roots possess exploitable

  3. Hepatocyte growth factor inhibits hypoxia/reoxygenation-induced activation of xanthine oxidase in endothelial cells through the JAK2 signaling pathway

    PubMed Central

    Zhang, Ying Qian; Hu, Shun Ying; Chen, Yun Dai; Guo, Ming Zhou; Wang, Shan

    2016-01-01

    Vascular endothelial cells (ECs) appear to be one of the primary targets of hypoxia/reoxygenation (H/R) injury. In our previous study, we demonstrated that hepatocyte growth factor (HGF) exhibited a protective effect in cardiac microvascular endothelial cells (CMECs) subjected to H/R by inhibiting xanthine oxidase (XO) by reducing the cytosolic Ca2+ concentration increased in response to H/R. The precise mechanisms through which HGF inhibits XO activation remain to be determined. In the present study, we examined the signaling pathway through which HGF regulates Ca2+ concentrations and the activation of XO during H/R in primary cultured rat CMECs. CMECs were exposed to 4 h of hypoxia and 1 h of reoxygenation. The protein expression of XO and the activation of the phosphoinositide 3-kinase (PI3K), janus kinase 2 (JAK2) and p38 mitogen-activated protein kinase (p38 MAPK) signaling pathways were detected by western blot analysis. Cytosolic calcium (Ca2+) concentrations and reactive oxygen species (ROS) levels were measured by flow cytometry. The small interfering RNA (siRNA)-mediated knockdown of XO inhibited the increase in ROS production induced by H/R. LY294002 and AG490 inhibited the H/R-induced increase in the production and activation of XO. The PI3K and JAK2 signaling pathways were activated by H/R. The siRNA-mediated knockdown of PI3K and JAK2 also inhibited the increase in the production of XO protein. HGF inhibited JAK2 activation whereas it had no effect on PI3K activation. The siRNA-mediated knockdown of JAK2 prevented the increase in cytosolic Ca2+ induced by H/R. Taken together, these findings suggest that H/R induces the production and activation of XO through the JAK2 and PI3K signaling pathways. Furthermore, HGF prevents XO activation following H/R primarily by inhibiting the JAK2 signaling pathway and in turn, inhibiting the increase in cytosolic Ca2+. PMID:27573711

  4. Inhibitory Effects of Tart Cherry (Prunus cerasus) Juice on Xanthine Oxidoreductase Activity and its Hypouricemic and Antioxidant Effects on Rats.

    PubMed

    Haidari, F; Mohammad Shahi, M; Keshavarz, S A; Rashidi, M R

    2009-03-01

    The aim of this study was to investigate the effect of tart cherry juice on serum uric acid levels, hepatic xanthine oxidoreductase activity and two non-invasive biomarkers of oxidative stress (total antioxidant capacity and malondialdehyde concentration), in normal and hyperuricemic rats. Tart cherry juice (5 ml/kg) was given by oral gavage to rats for 2 weeks. Allopurinol (5 mg/kg) was used as a positive control and was also given by oral gavage. Data showed that tart cherry juice treatment did not cause any significant reduction in the serum uric acid levels in normal rats, but significantly reduced (P<0.05) the serum uric acid levels of hyperuricemic rats in a time-dependent manner. Tart cherry juice treatment also inhibited hepatic xanthine oxidase/dehydrogenase activity. Moreover, a significant increase (P<0.05) in serum total antioxidant capacity was observed in tart cherry juice treated-rats in both normal and hyperuricemic groups. The oral administration of tart cherry juice also led to a significant reduction (P<0.05) in MDA concentration in the hyperuricemic rats. Although the hypouricemic effect of allopurinol, as a putative inhibitor of xanthine oxidoreductase, was much higher than that of tart cherry, it could not significantly change anti-oxidative parameters. These features of tart cherry make it an attractive candidate for the prophylactic treatment of hyperuricaemia, particularly if it is to be taken on a long-term basis. Further investigations to define its clinical efficacy would be highly desirable. PMID:22691805

  5. Pitfalls, prevention, and treatment of hyperuricemia during tumor lysis syndrome in the era of rasburicase (recombinant urate oxidase)

    PubMed Central

    Pession, Andrea; Melchionda, Fraia; Castellini, Claudia

    2008-01-01

    Along with hydration and urinary alkalinization, allopurinol has been the standard agent for the management of hyperuricemia in patients with a high tumor burden at risk of tumor lysis syndrome; however, this agent often fails to prevent and treat this complication effectively. Rasburicase (recombinant urate oxidase) has been shown to be effective in reducing uric acid and preventing uric acid accumulation in patients with hematologic malignancies with hyperuricemia or at high risk of developing it. Rasburicase acts at the end of the purine catabolic pathway and, unlike allopurinol, does not induce accumulation of xanthine or hypoxanthine. Its rapid onset of action and the ability to lower pre-existing elevated uric acid levels are the advantages of rasburicase over allopurinol. Rasburicase represents an effective alternative to allopurinol to promptly reduce uric acid levels, improve patient’s electrolyte status, and reverse renal insufficiency. The drug, initially studied in pediatric patients with acute lymphoblastic leukemia and aggressive non-Hodgkin lymphoma, seems to show comparable benefit in adults with similar lymphoid malignancies or at high risk of tumor lysis syndrome. Current and future trials will evaluate alternative doses and different schedules of rasburicase to maintain its efficacy while reducing its cost. The review provides a comprehensive and detailed review of pathogenesis, laboratory, and clinical presentation of TLS together with clinical studies already performed both in pediatric and adult patients. PMID:19707436

  6. Anti-oxidant effects of the extracts from the leaves of Chromolaena odorata on human dermal fibroblasts and epidermal keratinocytes against hydrogen peroxide and hypoxanthine-xanthine oxidase induced damage.

    PubMed

    Thang, P T; Patrick, S; Teik, L S; Yung, C S

    2001-06-01

    In cutaneous tissue repair, oxidants and antioxidants play very important roles. In local acute and chronic wounds, oxidants are known to have the ability to cause as cell damage and may function as inhibitory factors to wound healing. The administration of anti-oxidants or free radical scavengers is reportedly helpful, notably in order to limit the delayed sequelae of thermal trauma and to enhance the healing process. Extracts from the leaves of Chromolaena odorata have been shown to be beneficial for treatment of wounds. Studies in vitro of these extracts demonstrated enhanced proliferation of fibroblasts, endothelial cells and keratinocytes, stimulation of keratinocyte migration in an in vitro wound assay, up-regulation of production by keratinocytes of extracellular matrix proteins and basement membrane components, and inhibition of collagen lattice contraction by fibroblasts. In this study, the anti-oxidant effects of both total ethanol and polyphenolic extracts from the plant leaves on hydrogen peroxide and hypoxanthine-xanthine oxidase induced damage to human fibroblasts and keratinocytes were investigated. Cell viability was monitored by a colorimetric assay. The results showed that for fibroblasts, toxicity of hydrogen peroxide or hypoxanthine xanthine oxidase on cells was dose-dependent. Total ethanol extract (TEE) at 400 and 800 microg/ml showed maximum and consistent protective cellular effect on oxidant toxicity at low or high doses of oxidants. The 50 microg/ml concentration of TEE also had significant and slightly protective effects on fibroblasts against hydrogen peroxide and hypoxanthine-xanthine oxidase induced damage, respectively. For keratinocytes, a dose-dependent relationship of oxidant toxicity was only seen with hydrogen peroxide but the protective action of the extract correlated with oxidant dosage. TEE at 400 and 800 microg/ml showed dose-dependent effects with both low and high concentration of oxidants. TEE at 50 microg/ml had no

  7. Biosensing methods for xanthine determination: a review.

    PubMed

    Pundir, Chandra Shekhar; Devi, Rooma

    2014-04-10

    Xanthine (3,7-dihydro-purine-2,6-dione) is generated from guanine by guanine deaminase and hypoxanthine by xanthine oxidase (XOD). The determination of xanthine in meat indicates its freshness, while its level in serum/urine provides valuable information about diagnosis and medical management of certain metabolic disorders such as xanthinuria, hyperurecemia, gout and renal failure. Although chromatographic methods such a HPLC, capillary electrophoresis and mass spectrometry are available for quantification of xanthine in biological materials, these suffer from certain limitations such as complexity, time consuming sample preparation and requirement of expensive apparatus and trained persons to operate. Immobilized XOD based biosensors have emerged as simple, rapid, sensitive and economic tools for determination of xanthine in food industries and clinical diagnosis. This review article describes the various immobilization methods of XOD and different matrices used for construction of xanthine biosensors, their classification, analytical performance and applications along with their merits and demerits. The future perspectives for improvement of present xanthine biosensors are also discussed. PMID:24629268

  8. Multicentre, prospective, randomised, open-label, blinded end point trial of the efficacy of allopurinol therapy in improving cardiovascular outcomes in patients with ischaemic heart disease: protocol of the ALL-HEART study

    PubMed Central

    Ford, Ian; Walker, Andrew; Hawkey, Chris; Begg, Alan; Avery, Anthony; Taggar, Jaspal; Wei, Li; Struthers, Allan D; MacDonald, Thomas M

    2016-01-01

    Introduction Ischaemic heart disease (IHD) is one of the most common causes of death in the UK and treatment of patients with IHD costs the National Health System (NHS) billions of pounds each year. Allopurinol is a xanthine oxidase inhibitor used to prevent gout that also has several positive effects on the cardiovascular system. The ALL-HEART study aims to determine whether allopurinol improves cardiovascular outcomes in patients with IHD. Methods and analysis The ALL-HEART study is a multicentre, controlled, prospective, randomised, open-label blinded end point (PROBE) trial of allopurinol (up to 600 mg daily) versus no treatment in a 1:1 ratio, added to usual care, in 5215 patients aged 60 years and over with IHD. Patients are followed up by electronic record linkage and annual questionnaires for an average of 4 years. The primary outcome is the composite of non-fatal myocardial infarction, non-fatal stroke or cardiovascular death. Secondary outcomes include all-cause mortality, quality of life and cost-effectiveness of allopurinol. The study will end when 631 adjudicated primary outcomes have occurred. The study is powered at 80% to detect a 20% reduction in the primary end point for the intervention. Patient recruitment to the ALL-HEART study started in February 2014. Ethics and dissemination The study received ethical approval from the East of Scotland Research Ethics Service (EoSRES) REC 2 (13/ES/0104). The study is event-driven and results are expected after 2019. Results will be reported in peer-reviewed journals and at scientific meetings. Results will also be disseminated to guideline committees, NHS organisations and patient groups. Trial registration number 32017426, pre-results. PMID:27609859

  9. Cisplatin-induced renal toxicity via tumor necrosis factor-α, interleukin 6, tumor suppressor P53, DNA damage, xanthine oxidase, histological changes, oxidative stress and nitric oxide in rats: protective effect of ginseng.

    PubMed

    Yousef, Mokhtar I; Hussien, Hend M

    2015-04-01

    Cisplatin is an effective chemotherapeutic agent successfully used in the treatment of a wide range of solid tumors, while its usage is limited due to its nephrotoxicity. The present study was undertaken to examine the effectiveness of ginseng to ameliorate the renal nephrotoxicity, damage in kidney genomic DNA, tumor necrosis factor-α, interleukin 6, tumor suppressor P53, histological changes and oxidative stress induced by cisplatin in rats. Cisplatin caused renal damage, including DNA fragmentation, upregulates gene expression of tumor suppressor protein p53 and tumor necrosis factor-α and IL-6. Cisplatin increased the levels of kidney TBARS, xanthine oxidase, nitric oxide, serum urea and creatinine. Cisplatin decreased the activities of antioxidant enzymes (GST, GPX, CAT and SOD), ATPase and the levels of GSH. A microscopic examination showed that cisplatin caused kidney damage including vacuolization, severe necrosis and degenerative changes. Ginseng co-treatment with cisplatin reduced its renal damage, oxidative stress, DNA fragmentation and induced DNA repair processes. Also, ginseng diminished p53 activation and improved renal cell apoptosis and nephrotoxicity. It can be concluded that, the protective effects of ginseng against cisplatin induced-renal damage was associated with the attenuation of oxidative stress and the preservation of antioxidant enzymes.

  10. Allopurinol therapy and cataractogenesis in humans

    SciTech Connect

    Lerman, S.; Megaw, J.M.; Gardner, K.

    1982-08-01

    Long-term ingestion of allopurinol, an antihyperuricemic agent used to treat gout, may be related to the development of lens opacities in relatively young patients (second to fifth decades of life). Cataracts obtained from three patients taking allopurinol were subjected to high-resolution phosphorescence spectroscopy. The characteristic allopurinol triplet was demonstrated in all three cataracts. Identical spectra were obtained for normal human lenses incubated in media containing 10(-3)M allopurinol and exposed to 1.2 mW/cm2 ultraviolet radiation for 16 hours; control lenses (irradiated without allopurinol) showed no allopurinol triplets. Similar data were obtained for lenses from rats given one dose of allopurinol and exposed to ultraviolet radiation overnight. These data provide evidence that allopurinol can be photobound in rat and human lenses and suggest its cataractogenic potential.

  11. Xanthine Oxidoreductase Function Contributes to Normal Wound Healing.

    PubMed

    Madigan, Michael C; McEnaney, Ryan M; Shukla, Ankur J; Hong, Guiying; Kelley, Eric E; Tarpey, Margaret M; Gladwin, Mark; Zuckerbraun, Brian S; Tzeng, Edith

    2015-01-01

    Chronic, nonhealing wounds result in patient morbidity and disability. Reactive oxygen species (ROS) and nitric oxide (NO) are both required for normal wound repair, and derangements of these result in impaired healing. Xanthine oxidoreductase (XOR) has the unique capacity to produce both ROS and NO. We hypothesize that XOR contributes to normal wound healing. Cutaneous wounds were created in C57Bl6 mice. XOR was inhibited with dietary tungsten or allopurinol. Topical hydrogen peroxide (H2O2, 0.15%) or allopurinol (30 μg) was applied to wounds every other day. Wounds were monitored until closure or collected at d 5 to assess XOR expression and activity, cell proliferation and histology. The effects of XOR, nitrite, H2O2 and allopurinol on keratinocyte cell (KC) and endothelial cell (EC) behavior were assessed. We identified XOR expression and activity in the skin and wound edges as well as granulation tissue. Cultured human KCs also expressed XOR. Tungsten significantly inhibited XOR activity and impaired healing with reduced ROS production with reduced angiogenesis and KC proliferation. The expression and activity of other tungsten-sensitive enzymes were minimal in the wound tissues. Oral allopurinol did not reduce XOR activity or alter wound healing but topical allopurinol significantly reduced XOR activity and delayed healing. Topical H2O2 restored wound healing in tungsten-fed mice. In vitro, nitrite and H2O2 both stimulated KC and EC proliferation and EC migration. These studies demonstrate for the first time that XOR is abundant in wounds and participates in normal wound healing through effects on ROS production. PMID:25879627

  12. Xanthine Oxidoreductase Function Contributes to Normal Wound Healing.

    PubMed

    Madigan, Michael C; McEnaney, Ryan M; Shukla, Ankur J; Hong, Guiying; Kelley, Eric E; Tarpey, Margaret M; Gladwin, Mark; Zuckerbraun, Brian S; Tzeng, Edith

    2015-04-14

    Chronic, nonhealing wounds result in patient morbidity and disability. Reactive oxygen species (ROS) and nitric oxide (NO) are both required for normal wound repair, and derangements of these result in impaired healing. Xanthine oxidoreductase (XOR) has the unique capacity to produce both ROS and NO. We hypothesize that XOR contributes to normal wound healing. Cutaneous wounds were created in C57Bl6 mice. XOR was inhibited with dietary tungsten or allopurinol. Topical hydrogen peroxide (H2O2, 0.15%) or allopurinol (30 μg) was applied to wounds every other day. Wounds were monitored until closure or collected at d 5 to assess XOR expression and activity, cell proliferation and histology. The effects of XOR, nitrite, H2O2 and allopurinol on keratinocyte cell (KC) and endothelial cell (EC) behavior were assessed. We identified XOR expression and activity in the skin and wound edges as well as granulation tissue. Cultured human KCs also expressed XOR. Tungsten significantly inhibited XOR activity and impaired healing with reduced ROS production with reduced angiogenesis and KC proliferation. The expression and activity of other tungsten-sensitive enzymes were minimal in the wound tissues. Oral allopurinol did not reduce XOR activity or alter wound healing but topical allopurinol significantly reduced XOR activity and delayed healing. Topical H2O2 restored wound healing in tungsten-fed mice. In vitro, nitrite and H2O2 both stimulated KC and EC proliferation and EC migration. These studies demonstrate for the first time that XOR is abundant in wounds and participates in normal wound healing through effects on ROS production.

  13. TcO(PnA.O-1-(2-nitroimidazole)) [BMS-181321], a new technetium-containing nitroimidazole complex for imaging hypoxia: synthesis, characterization, and xanthine oxidase-catalyzed reduction.

    PubMed

    Linder, K E; Chan, Y W; Cyr, J E; Malley, M F; Nowotnik, D P; Nunn, A D

    1994-01-01

    A technetium(V)oxo nitroimidazole complex that shows promise for imaging regional hypoxia in vivo, [BMS-181321, TcO(PnAO-1-(2-nitroimidazole))] (1) was prepared from 3,3,9,9-tetramethyl-1-(2-nitro-1H-imidazol-1-yl)-4,8-diazaundecane -2,10-dione dioxime, a 2-nitroimidazole-containing derivative of propyleneamine oxime (PnAO). The 99Tc complex [99Tc]Oxo[[3,3,9,9-tetramethyl-1-(2-nitro-1H-imidazol-1-yl)-4,8- diazaundecane-2,10-dione dioximato]-(3-)-N,N',N'',N''']technetium (V) was synthesized both from pertechnetate and [TcO(Eg)2]- (Eg = ethylene glycol). A new synthetic route to TcO(PnAO) (2) is also described. 99TcO(PnAO-1-(2-nitroimidazole)) was characterized by 1H NMR, IR, and UV/vis spectroscopy, HPLC, FAB mass spectrometry, and X-ray crystallography. Electrochemistry of 1 reveals that the nitro redox chemistry found in the ligand is maintained upon coordination to technetium but shifts to a slightly more positive potential. Using chiral HPLC (Chiracel OD), 99mTc (1) was resolved into its two enantiomers. However, the two isomers were found to racemize quickly (t1/2 < 2 min) in the presence of water. Localization of 1 is believed to be mediated by enzymatically catalyzed reduction of the nitroimidazole group, so the in vitro reaction of 99Tc(1) with the nitroreductase enzyme xanthine oxidase (XOD) was studied. XOD catalyzed the quantitative reduction of the nitroimidazole group on the molecule under anaerobic conditions in the presence of hypoxanthine. No reaction was noted using a non-nitro-containing complex (2). The rate of reduction of the Tc-nitroimidazole complex (1.5 +/- 0.16 nmol/min per unit XOD) was faster than that observed previously for the nitroimidazole BATOs (BATO = boronic acid adduct of technetium dioxime) and was about two-thirds that of fluoromisonidazole, a compound that has proven useful for imaging hypoxia in humans when labeled with 18F. These data suggest that BMS-181321 (1) has the potential to be recognized by nitroreductase enzymes in

  14. Allopurinol and kidney function: An update.

    PubMed

    Stamp, Lisa K; Chapman, Peter T; Palmer, Suetonia C

    2016-01-01

    Allopurinol is the most commonly used urate lowering therapy in the management of gout. Despite the fact that it has been available for over 40 years there is ongoing debate about optimal allopurinol dosing in gout patients with chronic kidney disease. Given that gout is common in patients with renal impairment, clinicians need to be aware of the relationships between serum urate and kidney function as well as the effects of allopurinol on kidney function and vice versa. The use of allopurinol in patients on dialysis is an understudied area. Dialysis reduces plasma oxypurinol concentrations, therefore the dose and time of administration in relationship to dialysis need to be carefully considered. Recently, it has been suggested that there may be a role for allopurinol in patients with chronic kidney disease without gout. Observational studies have reported an association between serum urate and chronic kidney disease and end stage renal failure. The effect of urate lowering therapy with allopurinol on progression of kidney disease has been examined in small studies with varying results. Larger clinical trials are currently underway. This review will examine the relationships between allopurinol and kidney function in adults with and without renal disease and address allopurinol dosing in gout patients with impaired kidney function.

  15. NADPH oxidase-derived reactive oxygen species contribute to impaired cutaneous microvascular function in chronic kidney disease

    PubMed Central

    DuPont, Jennifer J.; Ramick, Meghan G.; Farquhar, William B.; Townsend, Raymond R.

    2014-01-01

    Oxidative stress promotes vascular dysfunction in chronic kidney disease (CKD). We utilized the cutaneous circulation to test the hypothesis that reactive oxygen species derived from NADPH oxidase and xanthine oxidase impair nitric oxide (NO)-dependent cutaneous vasodilation in CKD. Twenty subjects, 10 stage 3 and 4 patients with CKD (61 ± 4 yr; 5 men/5 women; eGFR: 39 ± 4 ml·min−1·1.73 m−2) and 10 healthy controls (55 ± 2 yr; 4 men/6 women; eGFR: >60 ml·min−1·1.73 m−2) were instrumented with 4 intradermal microdialysis fibers for the delivery of 1) Ringer solution (Control), 2) 10 μM tempol (scavenge superoxide), 3) 100 μM apocynin (NAD(P)H oxidase inhibition), and 4) 10 μM allopurinol (xanthine oxidase inhibition). Skin blood flow was measured via laser-Doppler flowmetry during standardized local heating (42°C). Ng-nitro-l-arginine methyl ester (l-NAME; 10 mM) was infused to quantify the NO-dependent portion of the response. Cutaneous vascular conductance (CVC) was calculated as a percentage of the maximum CVC achieved during sodium nitroprusside infusion at 43°C. Cutaneous vasodilation was attenuated in patients with CKD (77 ± 3 vs. 88 ± 3%, P = 0.01), but augmented with tempol and apocynin (tempol: 88 ± 2 (P = 0.03), apocynin: 91 ± 2% (P = 0.001). The NO-dependent portion of the response was reduced in patients with CKD (41 ± 4 vs. 58 ± 2%, P = 0.04), but improved with tempol and apocynin (tempol: 58 ± 3 (P = 0.03), apocynin: 58 ± 4% (P = 0.03). Inhibition of xanthine oxidase did not alter cutaneous vasodilation in either group (P > 0.05). These data suggest that NAD(P)H oxidase is a source of reactive oxygen species and contributes to microvascular dysfunction in patients with CKD. PMID:24761000

  16. Evaluation of Neuronal Protective Effects of Xanthine Oxidoreductase Inhibitors on Severe Whole-brain Ischemia in Mouse Model and Analysis of Xanthine Oxidoreductase Activity in the Mouse Brain

    PubMed Central

    SUZUKI, Go; OKAMOTO, Ken; KUSANO, Teruo; MATSUDA, Yoko; FUSE, Akira; YOKOTA, Hiroyuki

    2015-01-01

    Global cerebral ischemia and reperfusion (I/R) often result in high mortality. Free radicals play an important role in global cerebral I/R. Xanthine oxidoreductase (XOR) inhibitors, such as allopurinol, have been reported to protect tissues from damage caused by reactive oxygen species (ROS) by inhibiting its production through XOR inhibition. The recently introduced XOR inhibitor febuxostat, which is a more potent inhibitor than allopurinol, is expected to decrease free radical production more effectively. Here, we analyzed the effects of allopurinol and febuxostat in decreasing global severe cerebral I/R damage in mice. Mice were divided into three groups: a placebo group, an allopurinol group, and a febuxostat group. Pathological examinations, which were performed in each group in the CA1 and CA2 regions of the hippocampus 4 days after I/R surgery, revealed that there was a decrease in the number of neuronal cells in the 14-min occlusion model in both regions and that drugs that were administered to prevent this damage were not effective. The enzymatic activity was extremely low in the mouse brain, and XOR could not be detected in the nonischemic and ischemic mice brains with western blot analyses. Thus, one of the reasons for the decreased effectiveness of XOR inhibitors in controlling severe whole-brain ischemia in a mouse model was the low levels of expression of XOR in the mouse brain. PMID:25744353

  17. Pathways of nitrogen assimilation in cowpea nodules studied using /sup 15/N/sub 2/ and allopurinol. [Vigna unguiculata L. Walp. cv Vita

    SciTech Connect

    Atkins, C.A.; Storer, P.J.; Pate, J.S.

    1988-01-01

    In the presence of 0.5 millimolar allopurinol (4-hydroxypyrazolo (3,4-d)pyrimidine), an inhibitor of NAD:xanthine oxidoreductase (EC 1.2.3.2), intact attached nodules of cowpea (vigna unguiculata L. Walp. cv Vita 3) formed (/sup 15/N)xanthine from /sup 15/N/sub 2/ at rates equivalent to those of ureide synthesis, confirming the direct assimilation of fixed nitrogen into purines. Xanthine accumulated in nodules and was exported in increasing amounts in xylem of allopurinol-treated plants. Other intermediates of purine oxidation, de novo purine synthesis, and ammonia assimilation did not increase and, over the time course of experiments (4 hours), allopurinol had no effect on nitrogenase (EC 1.87.99.2) activity. Negligible /sup 15/N -labeling of asparagine from /sup 15/N/sub 2/ was observed, suggesting that the significant pool (up to 14 micromoles per gram of nodule fresh weight) of this amide in cowpea nodules was not formed directly from fixation but may have accumulated as a consequence of phloem delivery.

  18. Formulation development of allopurinol suppositories and injectables.

    PubMed

    Lee, D K; Wang, D P

    1999-11-01

    Allopurinol was formulated into injectable and suppository dosage forms. The injectable formulation was prepared by dissolving allopurinol in a cosolvent system consisting of dimethyl sulfoxide (DMSO) and propylene glycol (v/v = 50/50). The stability of allopurinol in the cosolvent system was studied under accelerated storage conditions, and results indicate first-order degradation kinetics with an activation energy of 24.3 kcal/mol. The development of suppository dosage forms was performed by formulating allopurinol with polyethylene glycol (PEG) mixtures of different molecular weights. In vitro release profiles of suppositories formulated with different polyethylene bases were obtained in the pH 7.4 buffer solution using the USP 23 paddle method at 100 rpm. Results indicate that the release rate of the suppository formulations containing PEG 1500/PEG 4000 at the ratio (w/w) of 2.5/10 to 10/2.5 appeared to be similar. However, the addition of sodium lauryl sulfate in the suppository decreased the release rate of allopurinol significantly. A future study to establish in vitro/in vivo correlation (iv/ivc) is suggested.

  19. Hyperuricemia-Related Diseases and Xanthine Oxidoreductase (XOR) Inhibitors: An Overview

    PubMed Central

    Chen, Changyi; Lü, Jian-Ming; Yao, Qizhi

    2016-01-01

    Uric acid is the final oxidation product of purine metabolism in humans. Xanthine oxidoreductase (XOR) catalyzes oxidative hydroxylation of hypoxanthine to xanthine to uric acid, accompanying the production of reactive oxygen species (ROS). Uric acid usually forms ions and salts known as urates and acid urates in serum. Clinically, overproduction or under-excretion of uric acid results in the elevated level of serum uric acid (SUA), termed hyperuricemia, which has long been established as the major etiologic factor in gout. Accordingly, urate-lowering drugs such as allopurinol, an XOR-inhibitor, are extensively used for the treatment of gout. In recent years, the prevalence of hyperuricemia has significantly increased and more clinical investigations have confirmed that hyperuricemia is an independent risk factor for cardiovascular disease, hypertension, diabetes, and many other diseases. Urate-lowering therapy may also play a critical role in the management of these diseases. However, current XOR-inhibitor drugs such as allopurinol and febuxostat may have significant adverse effects. Therefore, there has been great effort to develop new XOR-inhibitor drugs with less or no toxicity for the long-term treatment or prevention of these hyperuricemia-related diseases. In this review, we discuss the mechanism of uric acid homeostasis and alterations, updated prevalence, therapeutic outcomes, and molecular pathophysiology of hyperuricemia-related diseases. We also summarize current discoveries in the development of new XOR inhibitors. PMID:27423335

  20. Hyperuricemia-Related Diseases and Xanthine Oxidoreductase (XOR) Inhibitors: An Overview.

    PubMed

    Chen, Changyi; Lü, Jian-Ming; Yao, Qizhi

    2016-01-01

    Uric acid is the final oxidation product of purine metabolism in humans. Xanthine oxidoreductase (XOR) catalyzes oxidative hydroxylation of hypoxanthine to xanthine to uric acid, accompanying the production of reactive oxygen species (ROS). Uric acid usually forms ions and salts known as urates and acid urates in serum. Clinically, overproduction or under-excretion of uric acid results in the elevated level of serum uric acid (SUA), termed hyperuricemia, which has long been established as the major etiologic factor in gout. Accordingly, urate-lowering drugs such as allopurinol, an XOR-inhibitor, are extensively used for the treatment of gout. In recent years, the prevalence of hyperuricemia has significantly increased and more clinical investigations have confirmed that hyperuricemia is an independent risk factor for cardiovascular disease, hypertension, diabetes, and many other diseases. Urate-lowering therapy may also play a critical role in the management of these diseases. However, current XOR-inhibitor drugs such as allopurinol and febuxostat may have significant adverse effects. Therefore, there has been great effort to develop new XOR-inhibitor drugs with less or no toxicity for the long-term treatment or prevention of these hyperuricemia-related diseases. In this review, we discuss the mechanism of uric acid homeostasis and alterations, updated prevalence, therapeutic outcomes, and molecular pathophysiology of hyperuricemia-related diseases. We also summarize current discoveries in the development of new XOR inhibitors. PMID:27423335

  1. A nanocomposite/crude extract enzyme-based xanthine biosensor.

    PubMed

    Sadeghi, Susan; Fooladi, Ebrahim; Malekaneh, Mohammad

    2014-11-01

    A novel amperometric biosensor for xanthine was developed based on covalent immobilization of crude xanthine oxidase (XOD) extracted from bovine milk onto a hybrid nanocomposite film via glutaraldehyde. Toward the preparation of the film, a stable colloids solution of core-shell Fe3O4/polyaniline nanoparticles (PANI/Fe3O4 NPs) was dispersed in solution containing chitosan (CHT) and H2PtCl6 and electrodeposited over the surface of a carbon paste electrode (CPE) in one step. Scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectrophotometry, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) were used for characterization of the electrode surface. The developed biosensor (XOD/CHT/Pt NPs/PANI/Fe3O4/CPE) was employed for determination of xanthine based on amperometric detection of hydrogen peroxide (H2O2) reduction at -0.35V (vs. Ag/AgCl). The biosensor exhibited a fast response time to xanthine within 8s and a linear working concentration range from 0.2 to 36.0μM (R(2)=0.997) with a detection limit of 0.1μM (signal/noise [S/N]=3). The sensitivity of the biosensor was 13.58μAμM(-1)cm(-2). The apparent Michaelis-Menten (Km) value for xanthine was found to be 4.7μM. The fabricated biosensor was successfully applied for measurement of fish and chicken meat freshness, which was in agreement with the standard method at the 95% confidence level. PMID:25062853

  2. Endothelin-1 impairs coronary arteriolar dilation: Role of p38 kinase-mediated superoxide production from NADPH oxidase.

    PubMed

    Thengchaisri, Naris; Hein, Travis W; Ren, Yi; Kuo, Lih

    2015-09-01

    Elevated levels of endothelin-1 (ET-1), a potent vasoactive peptide, are implicated as a risk factor for cardiovascular diseases by exerting vasoconstriction. The aim of this study was to address whether ET-1, at sub-vasomotor concentrations, elicits adverse effects on coronary microvascular function. Porcine coronary arterioles (50-100μm) were isolated, cannulated and pressurized without flow for in vitro study. Diameter changes were recorded using a videomicrometer. Arterioles developed basal tone (60±3μm) and dilated to the endothelium-dependent nitric oxide (NO)-mediated vasodilators serotonin (1nmol/L to 0.1μmol/L) and adenosine (1nmol/L to 10μmol/L). Treating the vessels with a clinically relevant sub-vasomotor concentration of ET-1 (10pmol/L, 60min) significantly attenuated arteriolar dilations to adenosine and serotonin but not to endothelium-independent vasodilator sodium nitroprusside. The arteriolar wall contains ETA receptors and the adverse effect of ET-1 was prevented by ETA receptor antagonist BQ123, the superoxide scavenger Tempol, the NADPH oxidase inhibitors apocynin and VAS2870, the NOX2-based NADPH oxidase inhibitor gp91 ds-tat, or the p38 kinase inhibitor SB203580. However, ETB receptor antagonist BQ788, H2O2 scavenger catalase, scrambled gp91 ds-tat, or inhibitors of xanthine oxidase (allopurinol), PKC (Gö 6983), Rho kinase (Y27632), and c-Jun N-terminal kinase (SP600125) did not protect the vessel. Immunohistochemical staining showed that ET-1 elicited Tempol-, apocynin- and SB203580-sensitive superoxide productions in the arteriolar wall. Our results indicate that exposure of coronary arterioles to a pathophysiological, sub-vasomotor concentration of ET-1 leads to vascular dysfunction by impairing endothelium-dependent NO-mediated dilation via p38 kinase-mediated production of superoxide from NADPH oxidase following ETA receptor activation.

  3. Endothelin-1 Impairs Coronary Arteriolar Dilation: Role of p38 Kinase-mediated Superoxide Production from NADPH Oxidase

    PubMed Central

    Thengchaisri, Naris; Hein, Travis W.; Ren, Yi; Kuo, Lih

    2015-01-01

    Elevated levels of endothelin-1 (ET-1), a potent vasoactive peptide, are implicated as a risk factor for cardiovascular diseases by exerting vasoconstriction. The aim of this study was to address whether ET-1, at sub-vasomotor concentrations, elicits adverse effects on coronary microvascular function. Porcine coronary arterioles (50–100 μm) were isolated, cannulated and pressurized without flow for in vitro study. Diameter changes were recorded using a videomicrometer. Arterioles developed basal tone (60±3 μm) and dilated to the endothelium-dependent nitric oxide (NO)-mediated vasodilators serotonin (1 nmol/L to 0.1 μmol/L) and adenosine (1 nmol/L to 10 μmol/L). Treating the vessels with a clinically relevant sub-vasomotor concentration of ET-1 (10 pmol/L, 60 minutes) significantly attenuated arteriolar dilations to adenosine and serotonin but not to endothelium-independent vasodilator sodium nitroprusside. The arteriolar wall contains ETA receptors and the adverse effect of ET-1 was prevented by ETA receptor antagonist BQ123, the superoxide scavenger Tempol, the NADPH oxidase inhibitors apocynin and VAS2870, the NOX2-based NADPH oxidase inhibitor gp91 ds-tat, or the p38 kinase inhibitor SB203580. However, ETB receptor antagonist BQ788, H2O2 scavenger catalase, scrambled gp91 ds-tat, or inhibitors of xanthine oxidase (allopurinol), PKC (Gö 6983), Rho kinase (Y27632), and c-Jun N-terminal kinase (SP600125) did not protect the vessel. Immunohistochemical staining showed that ET-1 elicited Tempol-, apocynin- and SB203580-sensitive superoxide production in the arteriolar wall. Our results indicate that exposure of coronary arterioles to a pathophysiological, sub-vasomotor concentration of ET-1 leads to vascular dysfunction by impairing endothelium-dependent NO-mediated dilation via p38 kinase-mediated production of superoxide from NADPH oxidase following ETA receptor activation. PMID:26211713

  4. [Allopurinol-induced hypersensitivity syndrome resulting in death].

    PubMed

    Laurisch, Sören; Jaedtke, Maren; Demir, Reyhan; Sorrentino, Sajoscha A; Kielstein, Jan T; Rennekampff, Hans-Oliver; Vogt, Peter M; Meyer, Gerd P; Fuchs, Martin; Klein, Gunnar; Drexler, Hartmut; Schieffer, Bernhard; Napp, L Christian

    2010-04-01

    The present report describes the case of a 67-year-old patient who developed an allopurinol-induced hypersensitivity syndrome (AHS) with toxic epidermal necrolysis and subsequently died of septic multiorgan failure. Considering the increasing prescription rate of allopurinol, the present case report intends to demonstrate the underestimated threat of AHS.

  5. Goats' milk xanthine oxidoreductase is grossly deficient in molybdenum.

    PubMed

    Atmani, Djebbar; Benboubetra, Mustapha; Harrison, Roger

    2004-02-01

    Xanthine oxidoreductase (XOR) was purified from goats' milk. The u.v.-visible absorption spectrum was essentially identical to those of the corresponding bovine and human milk enzymes and showed an A280/A450 ratio of 5.20+/-0.12, indicating a high degree of purity. Like bovine and human milk XORs, enzyme purified from goats' milk showed a single band on SDS-PAGE corresponding to a subunit with approximate Mr 150,000. On Western blotting, mouse monoclonal anti-human XOR antibody cross-reacted with purified caprine and bovine XORs. The specific xanthine oxidase activity of goats' milk XOR, however, was very much lower than that of bovine XOR, although NADH oxidase activities of XOR from the two sources were similar. In these respects, the caprine milk XOR mirrors the human milk enzyme, in which case the kinetic effects have previously been attributed to relatively low molybdenum content. The molybdenum content of goats' milk XOR also was shown to be relatively low, with 0.09 atoms Mo per subunit, compared with 055 atoms Mo per subunit for the bovine enzyme. A parallel purification of human milk XOR showed 0.03 atoms Mo per subunit. The possible physiological significance of the low molybdenum content of the caprine milk enzyme and of its correspondingly low enzymic activity is discussed.

  6. Effects of Parsley (Petroselinum crispum) and its Flavonol Constituents, Kaempferol and Quercetin, on Serum Uric Acid Levels, Biomarkers of Oxidative Stress and Liver Xanthine Oxidoreductase Aactivity inOxonate-Induced Hyperuricemic Rats.

    PubMed

    Haidari, Fatemeh; Keshavarz, Seid Ali; Mohammad Shahi, Majid; Mahboob, Soltan-Ali; Rashidi, Mohammad-Reza

    2011-01-01

    Increased serum uric acid is known to be a major risk related to the development of several oxidative stress diseases. The aim of this study was to investigate the effect of parsley, quercetin and kaempferol on serum uric acid levels, liver xanthine oxidoreductase activity and two non-invasive biomarkers of oxidative stress (total antioxidant capacity and malondialdehyde concentration) in normal and oxonate-induced hyperuricemic rats. A total of 60 male Wistar rats were randomly divided into ten equal groups; including 5 normal groups (vehicle, parsley, quercetin, kaempferol and allopurinol) and 5 hyperuricemic groups (vehicle, parsley, quercetin, kaempferol and allopurinol). Parsley (5 g/Kg), quercetin (5 mg/Kg), kaempferol (5 mg/Kg) and allopurinol (5 mg/Kg) were administrated to the corresponding groups by oral gavage once a day for 2 weeks. The results showed that parsley and its flavonol did not cause any significant reduction in the serum uric acid levels in normal rats, but significantly reduced the serum uric acid levels of hyperuricemic rats in a time-dependent manner. All treatments significantly inhibited liver xanthine oxidoreductase activity. Parsley, kaempferol and quercetin treatment led also to a significant increase in total antioxidant capacity and decrease in malondialdehyde concentration in hyperuricemic rats. Although the hypouricemic effect of allopurinol was much higher than that of parsley and its flavonol constituents, it could not significantly change oxidative stress biomarkers. These features of parsley and its flavonols make them as a possible alternative for allopurinol, or at least in combination therapy to minimize the side effects of allopurinol to treat hyperuricemia and oxidative stress diseases.

  7. Allopurinol and Cardiovascular Outcomes in Adults With Hypertension.

    PubMed

    MacIsaac, Rachael L; Salatzki, Janek; Higgins, Peter; Walters, Matthew R; Padmanabhan, Sandosh; Dominiczak, Anna F; Touyz, Rhian M; Dawson, Jesse

    2016-03-01

    Allopurinol lowers blood pressure in adolescents and has other vasoprotective effects. Whether similar benefits occur in older individuals remains unclear. We hypothesized that allopurinol is associated with improved cardiovascular outcomes in older adults with hypertension. Data from the United Kingdom Clinical Research Practice Datalink were used. Multivariate Cox-proportional hazard models were applied to estimate hazard ratios for stroke and cardiac events (defined as myocardial infarction or acute coronary syndrome) associated with allopurinol use over a 10-year period in adults aged >65 years with hypertension. A propensity-matched design was used to reduce potential for confounding. Allopurinol exposure was a time-dependent variable and was defined as any exposure and then as high (≥300 mg daily) or low-dose exposure. A total of 2032 allopurinol-exposed patients and 2032 matched nonexposed patients were studied. Allopurinol use was associated with a significantly lower risk of both stroke (hazard ratio, 0.50; 95% confidence interval, 0.32-0.80) and cardiac events (hazard ratio, 0.61; 95% confidence interval, 0.43-0.87) than nonexposed control patients. In exposed patients, high-dose treatment with allopurinol (n=1052) was associated with a significantly lower risk of both stroke (hazard ratio, 0.58; 95% confidence interval, 0.36-0.94) and cardiac events (hazard ratio, 0.65; 95% confidence interval, 0.46-0.93) than low-dose treatment (n=980). Allopurinol use is associated with lower rates of stroke and cardiac events in older adults with hypertension, particularly at higher doses. Prospective clinical trials are needed to evaluate whether allopurinol improves cardiovascular outcomes in adults with hypertension.

  8. Reexamining Michaelis-Menten Enzyme Kinetics for Xanthine Oxidase

    ERIC Educational Resources Information Center

    Bassingthwaighte, James B.; Chinn, Tamara M.

    2013-01-01

    Abbreviated expressions for enzyme kinetic expressions, such as the Michaelis-Menten (M-M) equations, are based on the premise that enzyme concentrations are low compared with those of the substrate and product. When one does progress experiments, where the solute is consumed during conversion to form a series of products, the idealized conditions…

  9. Protein Conformational Gating of Enzymatic Activity in Xanthine Oxidoreductase

    SciTech Connect

    Ishikita, Hiroshi; Eger, Bryan T.; Okamoto, Ken; Nishino, Takeshi; Pai, Emil F.

    2012-05-24

    In mammals, xanthine oxidoreductase can exist as xanthine dehydrogenase (XDH) and xanthine oxidase (XO). The two enzymes possess common redox active cofactors, which form an electron transfer (ET) pathway terminated by a flavin cofactor. In spite of identical protein primary structures, the redox potential difference between XDH and XO for the flavin semiquinone/hydroquinone pair (E{sub sq/hq}) is {approx}170 mV, a striking difference. The former greatly prefers NAD{sup +} as ultimate substrate for ET from the iron-sulfur cluster FeS-II via flavin while the latter only accepts dioxygen. In XDH (without NAD{sup +}), however, the redox potential of the electron donor FeS-II is 180 mV higher than that for the acceptor flavin, yielding an energetically uphill ET. On the basis of new 1.65, 2.3, 1.9, and 2.2 {angstrom} resolution crystal structures for XDH, XO, the NAD{sup +}- and NADH-complexed XDH, E{sub sq/hq} were calculated to better understand how the enzyme activates an ET from FeS-II to flavin. The majority of the E{sub sq/hq} difference between XDH and XO originates from a conformational change in the loop at positions 423-433 near the flavin binding site, causing the differences in stability of the semiquinone state. There was no large conformational change observed in response to NAD{sup +} binding at XDH. Instead, the positive charge of the NAD{sup +} ring, deprotonation of Asp429, and capping of the bulk surface of the flavin by the NAD{sup +} molecule all contribute to altering E{sub sq/hq} upon NAD{sup +} binding to XDH.

  10. Allopurinol use in a New Zealand population: prevalence and adherence.

    PubMed

    Horsburgh, Simon; Norris, Pauline; Becket, Gordon; Arroll, Bruce; Crampton, Peter; Cumming, Jacqueline; Keown, Shirley; Herbison, Peter

    2014-07-01

    Allopurinol is effective for the control of gout and its long-term complications when taken consistently. There is evidence that adherence to allopurinol therapy varies across population groups. This may exacerbate differences in the burden of gout on population groups and needs to be accurately assessed. The aim of this study was to describe the prevalence of allopurinol use in a region of New Zealand using community pharmacy dispensing data and to examine the levels of suboptimal adherence in various population groups. Data from all community pharmacy dispensing databases in a New Zealand region were collected for a year covering 2005/2006 giving a near complete picture of dispensings to area residents. Prevalence of allopurinol use in the region by age, sex, ethnicity and socioeconomic position was calculated. Adherence was assessed using the medication possession ratio (MPR), with a MPR of 0.80 indicative of suboptimal adherence. Multiple logistic regression was used to explore variations in suboptimal adherence across population groups. A total of 953 people received allopurinol in the study year (prevalence 3%). Prevalence was higher in males (6%) than in females (1%) and Māori (5%) than non-Māori (3%). The overall MPR during the study was 0.88, with 161 (22%) of patients using allopurinol having suboptimal adherence. Non-Māori were 54% less likely to have suboptimal allopurinol adherence compared to Māori (95% CI 0.30-0.72, p = 0.001). These findings are consistent with those from other studies nationally and internationally and point to the important role for health professionals in improving patient adherence to an effective gout treatment.

  11. Allopurinol in the treatment of acquired reactive perforating collagenosis*

    PubMed Central

    Tilz, Hemma; Becker, Jürgen Christian; Legat, Franz; Schettini, Antonio Pedro Mendes; Inzinger, Martin; Massone, Cesare

    2013-01-01

    Acquired reactive perforating collagenosis is a perforating dermatosis usually associated with different systemic diseases, mainly diabetes mellitus and/or chronic renal insufficiency. Different therapies have been tried but treatment is not standardized yet and remains a challenge. In the last few years, allopurinol has been reported as a good therapeutic option for acquired reactive perforating collagenosis. We describe the case of a 73-year-old man affected by acquired reactive perforating collagenosis associated with diabetes type 1 and chronic renal failure with secondary hyperparathyroidism. The patient was successfully treated with allopurinol 100mg once/day p.o.. PMID:23539010

  12. Construction of novel xanthine biosensor by using polymeric mediator/MWCNT nanocomposite layer for fish freshness detection.

    PubMed

    Dervisevic, Muamer; Custiuc, Esma; Çevik, Emre; Şenel, Mehmet

    2015-08-15

    A novel nanocomposite host matrix for enzyme immobilization of xanthine oxidase was developed by incorporating MWCNT in poly(GMA-co-VFc) copolymer film. In the food industry fish is a product with a very low commercial life, and a high variability as well elevated level of xanthine is an important biomarker as a sign of spoilage. The fabricated process was characterized by scanning electron microscopy (SEM), and the electrochemical behaviors of the biosensor were characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The prepared enzyme electrodes exhibited maximum response at pH 7.0 and 45°C +0.35 V and reached 95% of steady-state current in about ∼ 4 s and its sensitivity was 16 mAM(-1). Linear ranges (2-28 μM, 28-46 and 46-86 μM), analytical performance and a low detection limit 0.12 μM obtained from the xanthine biosensor gives reliable results in measuring xanthine concentration in the fish meat. All the results indicating that the resulting biosensor exhibited a good response to xanthine that was related to the addition of MWCNT in the polymeric mediator film which played an important role in the biosensor performance. In addition, the biosensor exhibited high good storage stability and satisfactory anti-interference ability.

  13. The Effects of Xanthine Oxidoreductase Inhibitors on Oxidative Stress Markers following Global Brain Ischemia Reperfusion Injury in C57BL/6 Mice

    PubMed Central

    Yamaguchi, Masahiro; Okamoto, Ken; Kusano, Teruo; Matsuda, Yoko; Suzuki, Go; Fuse, Akira; Yokota, Hiroyuki

    2015-01-01

    We demonstrated that 3-nitrotyrosine and 4-hydroxy-2-nonenal levels in mouse brain were elevated from 1 h until 8 h after global brain ischemia for 14 min induced with the 3-vessel occlusion model; this result indicates that ischemia reperfusion injury generated oxidative stress. Reactive oxygen species production was observed not only in the hippocampal region, but also in the cortical region. We further evaluated the neuroprotective effect of xanthine oxidoreductase inhibitors in the mouse 3-vessel occlusion model by analyzing changes in the expression of genes regulated by the transcription factor nuclear factor-kappa B (including pro-inflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), matrix metalloproteinase-9 and intercellular adhesion molecules-1). Administration of allopurinol resulted in a statistically significant decrease in IL-1β and TNF-α mRNA expression, whereas febuxostat had no significant effect on expression of these genes; nevertheless, both inhibitors effectively reduced serum uric acid concentration. It is suggested that the neuroprotective effect of allopurinol is derived not from inhibition of reactive oxygen species production by xanthine oxidoreductase, but rather from a direct free-radical-scavenging effect. PMID:26230326

  14. Expression of Drosophila melanogaster xanthine dehydrogenase in Aspergillus nidulans and some properties of the recombinant enzyme.

    PubMed Central

    Adams, Benjamin; Lowe, David J; Smith, Andrew T; Scazzocchio, Claudio; Demais, Stephane; Bray, Robert C

    2002-01-01

    Recent crystal structures of xanthine dehydrogenase, xanthine oxidase and related enzymes have paved the way for a detailed structural and functional analysis of these enzymes. One problem encountered when working with these proteins, especially with recombinant protein, is that the preparations tend to be heterogeneous, with only a fraction of the enzyme molecules being active. This is due to the incompleteness of post-translational modification, which for this protein is a complex, and incompletely understood, process involving incorporation of the Mo and Fe/S centres. The enzyme has been expressed previously in both Drosophila and insect cells using baculovirus. The insect cell system has been exploited by Iwasaki et al. [Iwasaki, Okamoto, Nishino, Mizushima and Hori (2000) J. Biochem (Tokyo) 127, 771-778], but, for the rat enzyme, yields a complex mixture of enzyme forms, containing around 10% of functional enzyme. The expression of Drosophila melanogaster xanthine dehydrogenase in Aspergillus nidulans is described. The purified protein has been analysed both functionally and spectroscopically. Its specific activity is indistinguishable from that of the enzyme purified from fruit flies [Doyle, Burke, Chovnick, Dutton, Whittle and Bray (1996) Eur. J. Biochem. 239, 782-795], and it appears to be more active than recombinant xanthine dehydrogenase produced with the baculovirus system. EPR spectra of the recombinant Drosophila enzyme are reported, including parameters for the Fe/S centres. Only a very weak "Fe/SIII" signal (g(1,2,3), 2.057, 1.930, 1.858) was observed, in contrast to the strong analogous signal reported for the enzyme from baculovirus. Since this signal appears to be associated with incomplete post-translational modification, this is consistent with relatively more complete cofactor incorporation in the Aspergillus-produced enzyme. Thus we have developed a recombinant expression system for D. melanogaster xanthine dehydrogenase, which can be used

  15. Nephrotoxicity of allopurinol is enhanced in experimental hypertension.

    PubMed

    Trachtman, H; Valderrama, E; Futterweit, S

    1991-02-01

    Hyperuricemia is present in 20-40% of pediatric and adult patients with essential hypertension. This metabolic abnormality may represent an additional risk factor for the development of cardiovascular disease. Therefore, we performed the following studies to determine 1) whether hyperuricemia is more prevalent in the spontaneously hypertensive rat (SHR) and 2) whether allopurinol treatment has a beneficial effect on the development of hypertension in this strain, based on its capacity to lower the serum uric acid concentration and to act as an antioxidant agent. SHR and control Wistar-Kyoto (WKY) rats were assigned to two groups, one given tap water to drink and the other provided water containing allopurinol (400 mg/l) to furnish an approximate daily dose equal to 100 mg/kg body wt. This treatment was maintained for 15 weeks. The serum uric acid levels were similar in untreated SHR and WKY rats (1.85 +/- 0.10 versus 1.66 +/- 0.14 mg/dl; p = 0.28). In the control WKY rat strain, allopurinol therapy did not adversely affect weight gain or hematocrit and did not cause an increase in mortality. It resulted in a moderate decrement in kidney function (creatinine clearance: allopurinol-treated group 0.32 +/- 0.09 versus control group 0.46 +/- 0.04 ml/min/100 g body wt, in conjunction with mild-to-moderate tubulointerstitial inflammation (allopurinol-treated group 0.9 +/- 0.4 versus control group 0).(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Ameliorative Effect of Allopurinol on Vascular Complications of Insulin Resistance

    PubMed Central

    El-Bassossy, Hany M.; Elberry, Ahmed A.; Azhar, Ahmad; Ghareib, Salah A.; Alahdal, Abdulrahman M.

    2015-01-01

    The aim of the current study was to evaluate the possible protective effect of allopurinol (Allo) on experimentally induced insulin resistance (IR) and vascular complications. Rats were divided into four groups: control, IR, allopurinol-treated IR (IR-Allo), and allopurinol-treated control (Allo). IR was induced by adding fructose and high fat, high salt diet for 12 weeks. The results showed that Allo has alleviated the increased level of TNF-α and the systolic, diastolic, mean, and notch pressure observed in IR with no change in pulse pressure. In addition, Allo decreased the heart rate in the treated group compared to IR rats. On the other hand, it has no effect on increased levels of insulin, glucose, fructosamine, or body weight gain compared to IR group, while it increased significantly the insulin level and body weight without hyperglycemia in the control group. Moreover, Allo treatment ameliorated increased level of 4HNE, Ang II, and Ang R1. In conclusion, the results of the current study show that Allo has a protective effect on vascular complications of IR which may be attributed to the effect of Allo on decreasing the TNF-α, 4HNE, Ang II, and Ang R1 as well as increasing the level of insulin secretion. PMID:25785277

  17. Xanthine oxidoreductase in atherosclerosis pathogenesis: not only oxidative stress.

    PubMed

    Battelli, Maria Giulia; Polito, Letizia; Bolognesi, Andrea

    2014-12-01

    Endothelial xanthine oxidoreductase (XOR) together with NAD(P)H oxidase and nitric oxide (NO) synthase plays a physiologic role in inflammatory signalling, the regulation of NO production and vascular function. The oxidative stress generated by these enzymes may induce endothelial dysfunction, leading to atherosclerosis, cardiovascular diseases and metabolic syndrome. XOR activity creates both oxidant and anti-oxidant products that are implicated in the development of hypertension, smoking vascular injury, dyslipidemia and diabetes, which are the main risk factors of atherosclerosis. In particular, uric acid may have a protective as well as a detrimental role in vascular alterations, thus justifying the multi-directional effects of XOR inhibition. Moreover, XOR products are associated with cell differentiation, leading to adipogenesis and foam cell formation, as well as to the production of monocyte chemoattractant protein-1 from arterial smooth muscle cells, after proliferation and migration. The role of XOR in adipogenesis is also connected with insulin resistance and obesity, two main features of type 2 diabetes.

  18. Lesinurad in combination with allopurinol: results of a phase 2, randomised, double-blind study in patients with gout with an inadequate response to allopurinol

    PubMed Central

    Perez-Ruiz, Fernando; Sundy, John S; Miner, Jeffrey N; Cravets, Matthew; Storgard, Chris

    2016-01-01

    Objectives To assess the efficacy and tolerability of lesinurad, an oral selective uric acid reabsorption inhibitor, in combination with allopurinol versus allopurinol alone in patients with gout and an inadequate response to allopurinol. Methods Patients (N=227) with an inadequate response to allopurinol, defined as serum urate (sUA) ≥6 mg/dL on ≥2 occasions ≥2 weeks apart despite ≥6 weeks of allopurinol, were randomised 2:1 to 4 weeks of double-blind treatment with lesinurad (200, 400 or 600 mg/day) or matching placebo in combination with their prestudy allopurinol dose (200–600 mg/day). Colchicine prophylaxis for gout flares was required. The primary end point was percent reduction from baseline sUA levels at 4 weeks. A pharmacokinetic substudy was also conducted. Safety was assessed throughout. Results Patients (n=208) received ≥1 dose of blinded medication. Lesinurad 200, 400 and 600 mg in combination with allopurinol produced significant mean percent reductions from baseline sUA of 16%, 22% and 30%, respectively, versus a mean 3% increase with placebo (p<0.0001, all doses vs placebo). Similar results were observed in patients with mild or moderate renal insufficiency (estimated creatinine clearance 30 to <90 mL/min). The incidence of ≥1 treatment-emergent adverse event was 46%, 48% and 54% with lesinurad 200, 400 and 600 mg, respectively, and 46% with placebo (most frequent, gout flares, arthralgia, headache and nasopharyngitis), with no deaths or serious adverse events. Conclusions Lesinurad achieves clinically relevant and statistically significant reductions in sUA in combination with allopurinol in patients who warrant additional therapy on allopurinol alone. Trial registration number NCT01001338. PMID:26742777

  19. Electronic spectra and structures of some biologically important xanthines

    NASA Astrophysics Data System (ADS)

    Shukla, M. K.; Mishra, P. C.

    1994-08-01

    Electronic absorption and fluorescence spectra of aqueous solutions of xanthine, caffeine, theophylline and theobromine have been studied at different pH. The observed spectra have been interpreted in terms of neutral and ionic forms of the molecules with the help of molecular orbital calculations. At neutral and acidic pH, the spectra can be assigned to the corresponding most stable neutral forms, with the exception that the fluorescence of xanthine at acidic pH appears to originate from the lowest singlet excited state of a cation of the molecule. At alkaline pH, xanthine and theophylline exist mainly as their monoanions. In xanthine and theophylline at alkaline pH, fluorescence originates from the lowest singlet excited state of the corresponding anion. However, in caffeine and theobromine, even at alkaline pH, fluorescence belongs to the neutral species. On the whole, the properties of xanthine are quite different from those of the methyl xanthines.

  20. [A case of allopurinol-induced granulomatous hepatitis with ductopenia and cholestasis].

    PubMed

    Yoon, Jae Young; Min, Sun Yang; Park, Ju Yee; Hong, Seung Goun; Park, Sang Jong; Paik, So Ya; Park, Young Min

    2008-03-01

    Allopurinol-induced hypersensitivity syndrome is characterized by an idiosyncratic reaction involving multiple-organs, which usually begins 2 to 6 weeks after starting allopurinol. In rare cases, the adverse reactions to allopurinol are accompanied by a variety of liver injury, such as reactive hepatitis, granulomatous hepatitis, vanishing bile duct syndrome, or fulminant hepatic failure. Here we report a case with granulomatous hepatitis and ductopenia. A 69-year-old man with chronic renal failure, hyperuricemia, and previously normal liver function presented with jaundice, skin rash, and fever 2 weeks after taking allopurinol (200 mg/day). In histopathology, a liver biopsy specimen showed mild spotty necrosis of hepatocytes, marked cholestasis in parenchyma, and some granulomas in the portal area. There were vacuolar degeneration in the interlobular bile ducts and ductopenia in the portal tracts. Pathologic criteria strongly suggested the presence of allopurinol-induced granulomatous hepatitis with ductopenia and cholestasis. The patient fully recovered following the early administration of systemic corticosteroid therapy.

  1. Formation and Detoxification of Reactive Oxygen Species

    ERIC Educational Resources Information Center

    Kuciel, Radoslawa; Mazurkiewicz, Aleksandra

    2004-01-01

    A model of reactive oxygen species metabolism is proposed as a laboratory exercise for students. The superoxide ion in this model is generated during the reaction of oxidation of xanthine, catalyzed by xanthine oxidase. The effect of catalase, superoxide dismutase, and allopurinol on superoxide ion generation and removal in this system is also…

  2. Xanthine oxidoreductase activation is implicated in the onset of metabolic arthritis.

    PubMed

    Aibibula, Zulipiya; Ailixiding, Maierhaba; Iwata, Munetaka; Piao, Jinying; Hara, Yasushi; Okawa, Atsushi; Asou, Yoshinori

    2016-03-25

    A metabolic syndrome (MetS) is accompanied by hyperuricemia, during which xanthine oxidoreductase (XOR) catalyzes the production of uric acid. In the cohort study, a correlation between uric acid concentration in the synovial fluid and osteoarthritis (OA) incidence is observed. The purpose of our study was to elucidate XOR function in terms of correlation between MetS and OA. Seven week-old male C57BL6J mice were fed normal diet (ND) or high fat diet (HFD) with or without febuxostat (FEB), a XOR inhibitor. HFD stimulated xanthine oxidase activity in the IPFP and the visceral fat. OA changes at the site of the knee joints had progressed due to HFD, but these changes were reduced upon FEB administration. IL-1β expression in the HFD group was increased in accordance with the enhancement of NLRP3 or iNOS expression in the IPFP, whereas it was inhibited by FEB administration. In the organ culture system, when the IPFP was stimulated with insulin, IL-1β expression was increased in accordance with the increase of NLRP3 expression; however, they were reduced by FEB administration. Based on the above results, we showed that inflammasome activation accompanied by an increase in XOR activity contributed to IPFP inflammation followed by OA progression. PMID:26903297

  3. Streptomyces coelicolor XdhR is a direct target of (p)ppGpp that controls expression of genes encoding xanthine dehydrogenase to promote purine salvage.

    PubMed

    Sivapragasam, Smitha; Grove, Anne

    2016-05-01

    The gene encoding Streptomyces coelicolor xanthine dehydrogenase regulator (XdhR) is divergently oriented from xdhABC, which encodes xanthine dehydrogenase (Xdh). Xdh is required for purine salvage pathways. XdhR was previously shown to repress xdhABC expression. We show that XdhR binds the xdhABC-xdhR intergenic region with high affinity (Kd ∼ 0.5 nM). DNaseI footprinting reveals that this complex formation corresponds to XdhR binding the xdhR gene promoter at two adjacent sites; at higher protein concentrations, protection expands to a region that overlaps the transcriptional and translational start sites of xdhABC. While substrates for Xdh have little effect on DNA binding, GTP and ppGpp dissociate the DNA-XdhR complex. Progression of cells to stationary phase, a condition associated with increased (p)ppGpp production, leads to elevated xdhB expression; in contrast, inhibition of Xdh by allopurinol results in xdhB repression. We propose that XdhR is a direct target of (p)ppGpp, and that expression of xdhABC is upregulated during the stringent response to promote purine salvage pathways, maintain GTP homeostasis and ensure continued (p)ppGpp synthesis. During exponential phase growth, basal levels of xdhABC expression may be achieved by GTP serving as a lower-affinity XdhR ligand.

  4. Allopurinol use in pregnancy in three women with inflammatory bowel disease: safety and outcomes: a case series

    PubMed Central

    2013-01-01

    Background Allopurinol is a frequently prescribed drug. In inflammatory bowel disease patients who shunt thiopurine metabolism towards more toxic and less desirable pathways, allopurinol is proving to be an effective add on therapy with good resultant disease control and less treatment side effects. As many such patients are young, the potential for pregnant women to be exposed to allopurinol is increasing. The safety of allopurinol in pregnancy is not known however. Case presentation We report three cases of safe use of allopurinol in pregnancy for women with inflammatory bowel disease. This included 2 patients with ulcerative colitis and 1 patient with fistulising Crohn’s disease. Allopurinol was used throughout pregnancy in all patients. All 3 pregnancies resulted in normal healthy babies born at term by Caesarean section. Conclusion It is important to evaluate and document the safety of allopurinol during pregnancy, as it is finding new roles in young patients. These three cases add significantly to the very limited data on allopurinol use in pregnancy. We encourage reporting of all cases of allopurinol use in pregnant patients and suggest an allopurinol pregnancy registry to document drug exposures and outcomes. PMID:24345189

  5. Immunological comparison of sulfite oxidase

    SciTech Connect

    Pollock, V.; Barber, M.J. )

    1991-03-11

    Polyclonal antibodies (rabbit), elicited against FPLC-purified chicken and rat liver sulfite oxidase (SO), have been examined for inhibition and binding to purified chicken (C), rat (R), bovine (B), alligator (A) and shark (S) liver enzymes. Anti-CSO IgG cross-reacted with all five enzymes, with varying affinities, in the order CSO=ASO{gt}RSO{gt}BSO{gt}SSO. Anti-ROS IgG also cross-reacted with all five enzymes in the order RSO{gt}CSO=ASO{gt}BSO{gt}SSO. Anti-CSO IgG inhibited sulfite:cyt. c reductase (S:CR), sulfite:ferricyanide reductase (S:FR) and sulfite:dichlorophenolindophenol reductase (S:DR) activities of CSO to different extents (S:CR{gt}S:FR=S:DR). Similar differential inhibition was found for anti-ROS IgG and RSO S:CR, S:FR and S:DR activities. Anti-CSO IgG inhibited S:CR activities in the order CSO=ASO{much gt}SSO{gt}BSO. RSO was uninhibited. For anti-RSO IgG the inhibition order was RSO{gt}SSO{gt}BSO{gt}ASO. CSO was uninhibited. Anti-CSO and RSO IgGs partially inhibited Chlorella nitrate reductase (NR). Minor cross-reactivity was found for xanthine oxidase. Common antigenic determinants for all five SO's and NR are indicated.

  6. A Real-World Study of Switching From Allopurinol to Febuxostat in a Health Plan Database

    PubMed Central

    Altan, Aylin; Shiozawa, Aki; Bancroft, Tim; Singh, Jasvinder A.

    2015-01-01

    Objective The objective of this study was to assess the real-world comparative effectiveness of continuing on allopurinol versus switching to febuxostat. Methods In a retrospective claims data study of enrollees in health plans affiliated with Optum, we evaluated patients from February 1, 2009, to May 31, 2012, with a gout diagnosis, a pharmacy claim for allopurinol or febuxostat, and at least 1 serum uric acid (SUA) result available during the follow-up period. Univariate and multivariable-adjusted analyses (controlling for patient demographics and clinical factors) assessed the likelihood of SUA lowering and achievement of target SUA of less than 6.0 mg/dL or less than 5.0 mg/dL in allopurinol continuers versus febuxostat switchers. Results The final study population included 748 subjects who switched to febuxostat from allopurinol and 4795 continuing users of allopurinol. The most common doses of allopurinol were 300 mg/d or less in 95% of allopurinol continuers and 93% of febuxostat switchers (prior to switching); the most common dose of febuxostat was 40 mg/d, in 77% of febuxostat switchers (after switching). Compared with allopurinol continuers, febuxostat switchers had greater (1) mean preindex SUA, 8.0 mg/dL versus 6.6 mg/dL (P < 0.001); (2) likelihood of postindex SUA of less than 6.0 mg/dL, 62.2% versus 58.7% (P = 0.072); (3) likelihood of postindex SUA of less than 5.0 mg/dL, 38.9% versus 29.6% (P < 0.001); and (4) decrease in SUA, 1.8 (SD, 2.2) mg/dL versus 0.4 (SD, 1.7) mg/dL (P < 0.001). In multivariable-adjusted analyses, compared with allopurinol continuers, febuxostat switchers had significantly higher likelihood of achieving SUA of less than 6.0 mg/dL (40% higher) and SUA of less than 5.0 mg/dL (83% higher). Conclusions In this “real-world” setting, many patients with gout not surprisingly were not treated with maximum permitted doses of allopurinol. Patients switched to febuxostat were more likely to achieve target SUA levels than those

  7. Allopurinol initiation and change in blood pressure in older adults with hypertension.

    PubMed

    Beattie, Catherine J; Fulton, Rachael L; Higgins, Peter; Padmanabhan, Sandosh; McCallum, Linsay; Walters, Matthew R; Dominiczak, Anna F; Touyz, Rhian M; Dawson, Jesse

    2014-11-01

    Hypertension is a key risk factor for cardiovascular disease, and new treatments are needed. Uric acid reduction lowers blood pressure (BP) in adolescents, suggesting a direct pathophysiological role in the development of hypertension. Whether the same relationship is present in older adults is unknown. We explored change in BP after allopurinol initiation using data from the UK Clinical Practice Research Datalink. Data were extracted for patients with hypertension aged >65 years who were prescribed allopurinol with pretreatment and during treatment BP readings. Data from comparable controls were extracted. The change in BP in patients with stable BP medication was the primary outcome and was compared between groups. Regression analysis was used to adjust for potential confounding factors, and a propensity-matched sample was generated. Three hundred sixty-five patients who received allopurinol and 6678 controls were included. BP fell in the allopurinol group compared with controls (between-group difference in systolic and diastolic BP: 2.1 mm Hg; 95% confidence interval, -0.6 to 4.8; and 1.7 mm Hg; 95% confidence interval, 0.4-3.1, respectively). Allopurinol use was independently associated with a fall in both systolic and diastolic BP on regression analysis (P<0.001). Results were consistent in the propensity-matched sample. There was a trend toward greater fall in BP in the high-dose allopurinol group, but change in BP was not related to baseline uric acid level. Allopurinol use is associated with a small fall in BP in adults. Further studies of the effect of high-dose allopurinol in adults with hypertension are needed.

  8. Hypouricemic effect of allopurinol are improved by Pallidifloside D based on the uric acid metabolism enzymes PRPS, HGPRT and PRPPAT.

    PubMed

    Li, Hong-Gang; Hou, Pi-Yong; Zhang, Xi; He, Yi; Zhang, Jun; Wang, Shu-Qing; Anderson, Samantha; Zhang, Yan-Wen; Wu, Xiao-Hui

    2016-09-01

    Allopurinol is a commonly used medication to treat hyperuricemia and its complications. Pallidifloside D, a saponin glycoside constituent from the total saponins of Smilax riparia, had been proved to enhanced hypouricemic effect of allopurinol based on uric acid metabolism enzyme XOD. In this study, we evaluated whether Pallidifloside D (5mg/kg) enhanced hypouricemic effect of allopurinol (5mg/kg) related to others uric acid metabolism enzymes such as PRPS, HGPRT and PRPPAT. We found that, compared with allopurinol alone, the combination of allopurinol and Pallidifloside D significantly up-regulated HGPRT mRNA expression and down-regulated the mRNA expression of PRPS and PRPPAT in PC12 cells (all P<0.01). These results strongly suggest that hypouricemic effect of allopurinol are improved by Pallidifloside D via numerous mechanisms and our data may have a potential value in clinical practice in the treatment of gout and other hyperuricemic conditions. PMID:27370097

  9. Impact of Urate Level on Cardiovascular Risk in Allopurinol Treated Patients. A Nested Case-Control Study

    PubMed Central

    Søltoft Larsen, Kasper; Pottegård, Anton; Lindegaard, Hanne M.; Hallas, Jesper

    2016-01-01

    Background Gout gives rise to increased risk of cardiovascular events. Gout attacks can be effectively prevented with urate lowering drugs, and allopurinol potentially reduces cardiovascular risk. What target level of urate is required to reduce cardiovascular risk is not known. Objectives To investigate the effect of achieving target plasma urate with allopurinol on cardiovascular outcomes in a case-control study nested within long-term users of allopurinol. Methods We identified long-term users of allopurinol in Funen County, Denmark. Among these, we identified all cases of cardiovascular events and sampled 4 controls to each case from the same population. The cases and controls were compared with respect to whether they reached a urate target below 0.36 mmol/l on allopurinol. The derived odds ratios were controlled for potential confounders available from data on prescriptions, laboratory values and in- and outpatient contacts. Results No association between treatment-to-target urate level and cardiovascular events were found (adjusted odds ratio of 1.01, 95% confidence interval 0.79–1.28). No significant effect was seen in any subgroup defined by age, gender, renal function, allopurinol dose or the achieved urate level. Overall, the doses of allopurinol used in this study were low (mean ≈ 140 mg/day). Conclusion We were unable to demonstrate a link between achieved urate level in patients treated with allopurinol and risk of cardiovascular events. Possible explanations include that allopurinol doses higher than those used in this study are required to achieve cardiovascular risk reduction or that the cardiovascular effect of allopurinol is not mediated through low urate levels. It remains to be seen whether allopurinol has a dose-response relationship with cardiovascular events at higher doses. PMID:26751377

  10. Protective effects of fish oil, allopurinol, and verapamil on hepatic ischemia-reperfusion injury in rats

    PubMed Central

    Messiha, Basim Anwar Shehata; Abo-Youssef, Amira M.

    2015-01-01

    Background: The major aim of this work was to study the protective effects of fish oil (FO), allopurinol, and verapamil on hepatic ischemia-reperfusion (IR)-induced injury in experimental rats. Materials and Methods: Sixty male Wistar albino rats were randomly assigned to six groups of 10 rats each. Group 1 served as a negative control. Group 2 served as hepatic IR control injury. Groups 3, 4, 5, and 6 received N-acetylcysteine (standard), FO, allopurinol, and verapamil, respectively, for 3 consecutive days prior to ischemia. All animals were fasted for 12 h, anesthetized and underwent midline laparotomy. The portal triads were clamped by mini-artery clamp for 30 min followed by reperfusion for 30 min. Blood samples were withdrawn for estimation of serum alanine transaminase (ALT) and aspartate transaminase (AST) activities as well as hepatic thiobarbituric acid reactive substances, reduced glutathione, myeloperoxidase, and total nitrate/nitrite levels, in addition to histopathological examination. Results: Fish oil, allopurinol, and verapamil reduced hepatic IR injury as evidenced by significant reduction in serum ALT and AST enzyme activities. FO and verapamil markedly reduced oxidative stress as compared to control IR injury. Levels of inflammatory biomarkers in liver were also reduced after treatment with FO, allopurinol, or verapamil. In accordance, a marked improvement of histopathological findings was observed with all of the three treatments. Conclusion: The findings of this study prove the benefits of FO, allopurinol, and verapamil on hepatic IR-induced liver injury and are promising for further clinical trials. PMID:26283828

  11. The possible antianginal effect of allopurinol in vasopressin-induced ischemic model in rats.

    PubMed

    Al-Zahrani, Yahya A; Al-Harthi, Sameer E; Khan, Lateef M; El-Bassossy, Hani M; Edris, Sherif M; A Sattar, Mai A Alim

    2015-10-01

    The anti-anginal effects of allopurinol were assessed in experimental model rats of angina and their effects were evaluated with amlodipine. In the vasopressin-induced angina model, oral administration of allopurinol in dose of 10 mg/kg revealed remarkably analogous effects in comparison with amlodipine such as dose-dependent suppression of vasopressin-triggered time, duration and severity of ST depression. In addition, allopurinol produced dose dependent suppression of plasma Malondialdehyde (MDA) level, systolic blood pressure, cardiac contractility and cardiac oxygen consumption; while in contrast, amlodipine minimally suppressed the elevation of plasma MDA level. Endothelial NO synthase (eNOS) expression, serum nitrate were strikingly increased, however lipid profile was significantly reduced. Seemingly, allopurinol was found to be more potent than amlodipine - a calcium channel antagonist. To conclude, it was explicitly observed and verified that on the ischemic electrocardiography (ECG) changes in angina pectoris model in rats, allopurinol exerts a significant protective effects, reminiscent of enhancement of vascular oxidative stress, function of endothelial cells, improved coronary blood flow in addition to the potential enhancement in myocardial stress. Moreover, our findings were in conformity with several human studies. PMID:26594114

  12. [Allopurinol therapy in imported dogs with leishmaniasis treated outside the endemic area].

    PubMed

    Helm, M; Müller, W; Schaarschmidt, D; Grimm, F; Deplazes, P

    2013-10-01

    Canine leishmaniosis (CL) has become one of the most frequently diagnosed travel associated infection in dogs in Switzerland and Germany. The aim of the study was to define recommendations for treatment with allopurinol and follow-up examinations of dogs with CL in a non endemic area. 31 dogs infected with Leishmania were treated with allopurinol (10 - 15 mg/kg twice daily, per os) and the effectiveness was examined. The diagnosis had been confirmed by the detection of specific anti-Leishmania antibodies and/or Leihmania-DNA. 22 dogs had clinical signs (skin lesions, lameness or lack of fitness) and 9 dogs were asymptomatic but showed abnormal laboratory parameters. Under treatment with allopurinol the symptoms disappeared within 1 - 5 months in 20 dogs.

  13. Effects of Allopurinol on Arterial Stiffness: A Meta-Analysis of Randomized Controlled Trials

    PubMed Central

    Deng, Gang; Qiu, Zhandong; Li, Dayong; Fang, Yu; Zhang, Suming

    2016-01-01

    Background Several studies have tested the effects of allopurinol on arterial stiffness, but the results have been inconclusive. We aimed to conduct a meta-analysis to investigate the impacts of allopurinol treatment on arterial stiffness, as measured by pulse wave velocity (PWV) and augmentation index (AIx). Material/Methods Randomized controlled trials (RCTs) assessing the effects of allopurinol on arterial stiffness were identified through searching PubMed, Web of Science, EMBASE, the Cochrane Library for Central Register of Clinical Trials, and China National Knowledge Infrastructure up to December 2015. The primary endpoints were the change of PWV and AIx after allopurinol treatment. The weighted mean difference (WMD) or standardized mean difference (SMD) and the 95% confidence interval (CI) of each study were pooled for meta-analysis. Results A total of 11 RCTs met the inclusion criteria and were included in the final meta-analysis. Eight RCTs with 1,111 patients were pooled for PWV; eight RCTs with 397 patients were pooled for PWV. Allopurinol administration did not significantly change PWV (WMD=−0.19 m/s, 95% CI: −0.49 to 0.12, Z=1.21, p=0.23), but significantly reduced AIx (SMD=−0.34, 95% CI: −0.54 to −0.14, Z=3.35, p=0.0008). Conclusions Although our meta-analysis showed some favorable effects of allopurinol treatment on improving AIx, its impact on arterial stiffness must be tested in more large-scale RCTs. PMID:27110924

  14. Rapid clearance of xanthines from airway and pulmonary tissues

    SciTech Connect

    Kroell, F.K.; Karlsson, J.A.; Nilsson, E.; Ryrfeldt, A.; Persson, C.G. )

    1990-05-01

    The airway and pulmonary fate of two antiasthma xanthines was examined in a guinea pig perfused lung preparation where the airway mechanics and airway microvascular perfusion are maintained at near normal values. 14C-theophylline or 14C-enprofylline was infused for 10, 30, and 300 s into the pulmonary artery of the guinea pig isolated lung. The radioactivity increased rapidly (within 10 s) in tracheobronchial as well as in lung tissue, confirming that the large airway microcirculation was well supplied also by the perfusion. The effluent concentrations of total 3H and 14C radioactivity at the onset, during, and after intrapulmonary infusion of 14C-labeled xanthines and 3H-sucrose were closely associated, suggesting that the xanthines, like sucrose, largely distributed in extracellular fluid and were not taken up by the tissues. No metabolites of enprofylline or theophylline could be detected in the lung tissue or lung effluent, suggesting that xanthines are not biotransformed by the guinea pig lung. After intratracheal instillation of 14C-theophylline, the peak radioactivity in the lung effluent appeared in the second 15-s fraction after instillation, and after 10 and 60 min, 68.1 +/- 4.7% and 86.9 +/- 8.4%, respectively, of the given dose had appeared in the lung effluent. The present data suggest a mainly extracellular distribution and a rapid clearance of xanthines from the lung and airway tissues. The rapid disappearance of topical theophylline may explain the lack of success of inhalation therapy with this drug.

  15. HLA-DR9 and DR14 are associated with the allopurinol-induced hypersensitivity in hematologic malignancy.

    PubMed

    Jung, Jae-Woo; Kim, Ju-Young; Yoon, Sung-Soo; Cho, Sang-Heon; Park, Seon-Yang; Kang, Hye-Ryun

    2014-01-01

    Allopurinol, a widely used urate-lowering agent, is a leading cause of severe cutaneous adverse reactions (SCARs), especially in patients with HLA-B*58:01. Despite its routine use for the prevention of tumor lysis-related hyperuricemia prior to chemotherapy, the risk of allopurinol-induced hypersensitivity has not been investigated in patients with hematologic malignancies. This retrospective cohort study was conducted to investigate the incidence and risk factors of allopurinol-induced hypersensitivity in patients at least 18 years of age with hematologic malignancies. We reviewed 463 patients who had ever taken allopurinol for the prevention of hyperuricemia prior to chemotherapy and had undergone serologic HLA typing as a pre-transplant evaluation from January 2000 to May 2010. Thirteen (2.8%) patients experienced maculopapular eruptions (MPE) and none experienced SCARs. Among subtypes of underlying hematologic malignancies, percentage of chronic myeloid leukemia was significantly higher in the allopurinol hypersensitivity group compared with the tolerant group (23.1% (3/13) vs. 5.9% (26/440), P = 0.044). According to HLA subtypes, the incidence of allopurinol-induced MPE was 4.0% in HLA-B58 (+) patients (2/50) and 2.7% in HLA-B58 (-) patients (11/403) but this difference was statistically insignificant. In contrast to HLA-B58, the frequencies of DR9 and DR14 were significantly higher in the allopurinol-induced MPE group compared with the allopurinol tolerant group (38.5% (5/13) vs. 13.6% (53/443), P = 0.019, and 38.5% (5/13) vs. 15.6% (41/440), P = 0.038, respectively). In conclusion, HLA-DR9 and DR14, but not HLA-B58, are associated with hypersensitivity reaction by allopurinol when administered in patients with hematologic malignancy prior to chemotherapy.

  16. Chronic Allopurinol Treatment during the Last Trimester of Pregnancy in Sows: Effects on Low and Normal Birth Weight Offspring

    PubMed Central

    Gieling, Elise T.; Antonides, Alexandra; Fink-Gremmels, Johanna; ter Haar, Kim; Kuller, Wikke I.; Meijer, Ellen; Nordquist, Rebecca E.; Stouten, Jacomijn M.; Zeinstra, Elly; van der Staay, Franz Josef

    2014-01-01

    Low-birth-weight (LBW) children are born with several risk factors for disease, morbidity and neonatal mortality, even if carried to term. Placental insufficiency leading to hypoxemia and reduced nutritional supply is the main cause for LBW. Brain damage and poor neurological outcome can be the consequence. LBW after being carried to term gives better chances for survival, but these children are still at risk for poor health and the development of cognitive impairments. Preventive therapies are not yet available. We studied the risk/efficacy of chronic prenatal treatment with the anti-oxidative drug allopurinol, as putative preventive treatment in piglets. LBW piglets served as a natural model for LBW. A cognitive holeboard test was applied to study the learning and memory abilities of these allopurinol treated piglets after weaning. Preliminary analysis of the plasma concentrations in sows and their piglets suggested that a daily dose of 15 mg.kg−1 resulted in effective plasma concentration of allopurinol in piglets. No adverse effects of chronic allopurinol treatment were found on farrowing, birth weight, open field behavior, learning abilities, relative brain, hippocampus and spleen weights. LBW piglets showed increased anxiety levels in an open field test, but cognitive performance was not affected by allopurinol treatment. LBW animals treated with allopurinol showed the largest postnatal compensatory body weight gain. In contrast to a previous study, no differences in learning abilities were found between LBW and normal-birth-weight piglets. This discrepancy might be attributable to experimental differences. Our results indicate that chronic prenatal allopurinol treatment during the third trimester of pregnancy is safe, as no adverse side effects were observed. Compensatory weight gain of treated piglets is a positive indication for the chronic prenatal use of allopurinol in these animals. Further studies are needed to assess the possible preventive effects

  17. Combination of allopurinol and hyperbaric oxygen therapy: A new treatment in experimental acute necrotizing pancreatitis?

    PubMed Central

    Comert, Bilgin; Isik, Ahmet Turan; Aydin, Sezai; Bozoglu, Ergun; Unal, Bulent; Deveci, Salih; Mas, Nuket; Cinar, Esref; Mas, Mehmet Refik

    2007-01-01

    AIM: To investigate the individual and combined effects of allopurinol and hyperbaric oxygen (HBO) therapy on biochemical and histopathological changes, oxidative stress, and bacterial translocation (BT) in the experimental rat acute pancreatitis (AP). METHODS: Eighty-five Sprague-Dawley rats were included in the study. Fifteen of the eighty-five rats were used as controls (sham, GroupI). AP was induced via intraductal taurocholate infusion in the remaining seventy rats. Rats that survived to induction of acute necrotizing pancreatitis were randomized into four groups. Group II received saline, Group III allopurinol, Group IV allopurinol plus HBO and Group V HBO alone. Serum amylase levels, oxidative stress parameters, BT and histopathologic scores were determined. RESULTS: Serum amylase levels were lower in Groups III, IV and V compared to Group II (974 ± 110, 384 ± 40, 851 ± 56, and 1664 ± 234 U/L, respectively, P < 0.05, for all). Combining the two treatment options revealed significantly lower median [25-75 percentiles] histopathological scores when compared to individual administrations (13 [12.5-15] in allopurinol group, 9.5 [7-11.75] in HBO group, and 6 [4.5-7.5] in combined group, P < 0.01). Oxidative stress markers were significantly better in all treatment groups compared to the controls. Bacterial translocation into the pancreas and mesenteric lymph nodes was lower in Groups III, IV and V compared to Group II (54%, 23%, 50% vs 100% for translocation to pancreas, and 62%, 46%, 58% vs 100% for translocation to mesenteric lymph nodes, respectively, P < 0.05 for all). CONCLUSION: The present study confirms the benefit of HBO and allopurinol treatment when administered separately in experimental rat AP. Combination of these treatment options appears to prevent progression of pancreatic injury parameters more effectively. PMID:18069760

  18. Structural and Functional Insights into the Catalytic Inactivity of the Major Fraction of Buffalo Milk Xanthine Oxidoreductase

    PubMed Central

    Gadave, Kaustubh S.; Panda, Santanu; Singh, Surender; Kalra, Shalini; Malakar, Dhruba; Mohanty, Ashok K.; Kaushik, Jai K.

    2014-01-01

    Background Xanthine oxidoreductase (XOR) existing in two interconvertible forms, xanthine dehydrogenase (XDH) and xanthine oxidase (XO), catabolises xanthine to uric acid that is further broken down to antioxidative agent allantoin. XOR also produces free radicals serving as second messenger and microbicidal agent. Large variation in the XO activity has been observed among various species. Both hypo and hyper activity of XOR leads to pathophysiological conditions. Given the important nutritional role of buffalo milk in human health especially in south Asia, it is crucial to understand the functional properties of buffalo XOR and the underlying structural basis of variations in comparison to other species. Methods and Findings Buffalo XO activity of 0.75 U/mg was almost half of cattle XO activity. Enzymatic efficiency (kcat/Km) of 0.11 sec−1 µM−1 of buffalo XO was 8–10 times smaller than that of cattle XO. Buffalo XOR also showed lower antibacterial activity than cattle XOR. A CD value (Δε430 nm) of 46,000 M−1 cm−1 suggested occupancy of 77.4% at Fe/S I centre. Buffalo XOR contained 0.31 molybdenum atom/subunit of which 48% existed in active sulfo form. The active form of XO in buffalo was only 16% in comparison to ∼30% in cattle. Sequencing revealed 97.4% similarity between buffalo and cattle XOR. FAD domain was least conserved, while metal binding domains (Fe/S and Molybdenum) were highly conserved. Homology modelling of buffalo XOR showed several variations occurring in clusters, especially close to FAD binding pocket which could affect NAD+ entry in the FAD centre. The difference in XO activity seems to be originating from cofactor deficiency, especially molybdenum. Conclusion A major fraction of buffalo milk XOR exists in a catalytically inactive form due to high content of demolybdo and desulfo forms. Lower Fe/S content and structural factors might be contributing to lower enzymatic efficiency of buffalo XOR in a minor way. PMID:24498153

  19. A Randomized Controlled Trial of Allopurinol in Patients With Peripheral Arterial Disease

    PubMed Central

    Robertson, Alan J.; Struthers, Allan D.

    2016-01-01

    Background Patients with peripheral arterial disease (PAD) are limited by intermittent claudication in the distance they can walk. Allopurinol has been shown in coronary arterial disease to prolong exercise before angina occurs, likely by prevention of oxygen wastage in tissues and reduction of harmful oxidative stress. Methods In this study we evaluated whether allopurinol could prolong the time to development of leg pain in participants with PAD. In a double-blind, randomized controlled clinical trial participants were randomized to receive either allopurinol 300 mg twice daily or placebo for 6 months. The primary outcome was change in exercise capacity on treadmill testing at 6 months. Secondary outcomes were 6-minute walking distance, Walking Impairment Questionnaire, SF-36 questionnaire, flow-mediated dilatation, and oxidized low-density lipoprotein. Outcome measures were repeated midstudy and at the end of study. The mean age of the 50 participants was 68.4 ± 1.2 years with 39 of 50 (78%) male. Results Five participants withdrew during the study (2 active, 3 placebo). There was a significant reduction in uric acid levels in those who received active treatment of 52.1% (P < 0.001), but no significant change in either the pain-free or the maximum walking distance. Other measures of exercise capacity, blood vessel function, and the participants' own assessment of their health and walking ability also did not change during the course of the study. Conclusions Although allopurinol has been shown to be of benefit in a number of other diseases, in this study there was no evidence of any improvement after treatment in patients with PAD. PMID:26277090

  20. Comparatve uric acid lowering studies of allopurinol with an indigenous medicinal plant in rabbits.

    PubMed

    Mohammad, Imran Shair; Latif, Sana; Yar, Muhammad; Nasar, Faiza; Ahmad, Irshad; Naeem, Muhammad

    2014-01-01

    The aim of this research was to carry out a comparative study of lowering of uric acid by the use of dried powder of Colchicum luteum and allopathic drug (allopurinol) in rabbits, to determine whether herbal drugs can be used by patients instead of allopathic drugs. The herbal medicine, dried corm powder of Colchicum luteum 2.5 mg/kg/day and dried powder of allopurinol 2 mg/kg/day an allopathic medicine, was used in the study. The results of these medicines were observed in animal model, using 12 adult rabbits, which were divided into three groups A, B and C, respectively, where group C was taken as control. The SPSS version 17 was used for statistical analysis and analysis of variance (ANOVA) was used for comparing the data in different groups and the level of significance was 5%. It was resulted that dried corm of Colchicum luteum significantly reduced the uric acid in adult rabbits as reduced by allopathic medicine--allopurinol. In the light of present research we concluded that the herbal medicines can be used in lieu of allopathic drugs. Thus, the risk of side effects that are associated with the prolonged use of allopathic drugs can be minimized.

  1. HLA-B*58:01 for Allopurinol-Induced Cutaneous Adverse Drug Reactions: Implication for Clinical Interpretation in Thailand

    PubMed Central

    Sukasem, Chonlaphat; Jantararoungtong, Thawinee; Kuntawong, Parnrat; Puangpetch, Apichaya; Koomdee, Napatrupron; Satapornpong, Patompong; Supapsophon, Patcharin; Klaewsongkram, Jettanong; Rerkpattanapipat, Ticha

    2016-01-01

    Background: The aim of this study was to investigate the predisposition to different types of allopurinol-induced cutaneous adverse drug reactions (CADR), including Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN; SJS-TEN, n = 13), drug reaction with eosinophilia and systemic symptoms (DRESS, n = 10) and Maculopapular eruption (MPE; n = 7), conferred by HLA-B*58:01 in a Thai population. Methods: This case-control association study compares 30 patients with allopurinol-induced CADR, allopurinol-tolerant control patients (n = 100), and a Thai general population (n = 1095). Patients' human leukocyte antigen type B (HLA-B) alleles were genotyped by using a two-stage sequence-specific oligonucleotide probe system. Results: Of a total 30 patients with CADR due to allopurinol, 29 (96.7%) patients were found to be at least heterozygous for HLA-B*58:01, compared to only 4.0% in allopurinol-tolerant patients (p < 0.001). Odds ratio (OR) for the association of HLA-B*58:01 with allopurinol-induced CADR in this population was 696.0 (95% CI: 74.8–6475.0). The HLA-B*58:01 allele was present in all patients with allopurinol-induced SJS-TEN (OR = 579.0, 95%CI: 29.5–11362.7, p < 0.001) and DRESS (OR 430.3, 95%CI: 22.6–8958.9, p < 0.001). Additionally, OR of HLA-B*58:01 was highly significant in the allopurinol-induced MPE patients (OR 144.0, 95%CI: 13.9–1497.0, p < 0.001). Conclusion: In this study we confirmed the association between HLAB*58:01 and allopurinol-induced SJS-TEN in a Thai population. In addition, we identified an association between HLA-B*58:01 and allopurinol-induced DRESS and MPE in this population. Therefore, HLA-B*58:01 can be used as a pharmacogenetic marker for allopurinol-induced CADR including SJS-TEN, DRESS and MPE. These results suggest that screening for HLA-B*58:01 alleles in patients who will be treated with allopurinol would be clinically helpful in preventing the risk of developing CARD in a Thai patients. Summary Regardless of

  2. Allopurinol Reduces the Lethality Associated with Acute Renal Failure Induced by Crotalus durissus terrificus Snake Venom: Comparison with Probenecid

    PubMed Central

    Frezzatti, Rodrigo; Silveira, Paulo Flavio

    2011-01-01

    Background Acute renal failure is one of the most serious complications of envenoming resulting from Crotalus durissus terrificus bites. This study evaluated the relevance of hyperuricemia and oxidative stress and the effects of allopurinol and probenecid in renal dysfunction caused by direct nephrotoxicity of C. d. terrificus venom. Methodology/Principal Findings Hematocrit, protein, renal function and redox status were assessed in mice. High ratio of oxidized/reduced glutathione and hyperuricemia induced by C. d. terrificus venom were ameliorated by both, allopurinol or probenecid, but only allopurinol significantly reduced the lethality caused by C. d. terrificus venom. The effectiveness of probenecid is compromised probably because it promoted hypercreatinemia and hypocreatinuria and worsed the urinary hypo-osmolality in envenomed mice. In turn, the highest effectiveness of allopurinol might be due to its ability to diminish the intracellular formation of uric acid. Conclusions/Significance Data provide consistent evidences linking uric acid with the acute renal failure induced by C. d. terrificus venom, as well as that this envenoming in mice constitutes an attractive animal model suitable for studying the hyperuricemia and that the allopurinol deserves to be clinically evaluated as an approach complementary to anti-snake venom serotherapy. PMID:21909449

  3. Apocynin is not an inhibitor of vascular NADPH oxidases but an antioxidant.

    PubMed

    Heumüller, Sabine; Wind, Sven; Barbosa-Sicard, Eduardo; Schmidt, Harald H H W; Busse, Rudi; Schröder, Katrin; Brandes, Ralf P

    2008-02-01

    A large body of literature suggest that vascular reduced nicotinamide-adenine dinucleotide phosphate (NADPH) oxidases are important sources of reactive oxygen species. Many studies, however, relied on data obtained with the inhibitor apocynin (4'-hydroxy-3'methoxyacetophenone). Because the mode of action of apocynin, however, is elusive, we determined its mechanism of inhibition on vascular NADPH oxidases. In HEK293 cells overexpressing NADPH oxidase isoforms (Nox1, Nox2, or Nox4), apocynin failed to inhibit superoxide anion generation detected by lucigenin chemiluminescence. In contrast, apocynin interfered with the detection of reactive oxygen species in assay systems selective for hydrogen peroxide or hydroxyl radicals. Importantly, apocynin interfered directly with the detection of peroxides but not superoxide, if generated by xanthine/xanthine oxidase or nonenzymatic systems. In leukocytes, apocynin is a prodrug that is activated by myeloperoxidase, a process that results in the formation of apocynin dimers. Endothelial cells and smooth muscle cells failed to form these dimers and, therefore, are not able to activate apocynin. Dimer formation was, however, observed in Nox-overexpressing HEK293 cells when myeloperoxidase was supplemented. As a consequence, apocynin should only inhibit NADPH oxidase in leukocytes, whereas in vascular cells, the compound could act as an antioxidant. Indeed, in vascular smooth muscle cells, the activation of the redox-sensitive kinases p38-mitogen-activate protein kinase, Akt, and extracellular signal-regulated kinase 1/2 by hydrogen peroxide and by the intracellular radical generator menadione was prevented in the presence of apocynin. These observations indicate that apocynin predominantly acts as an antioxidant in endothelial cells and vascular smooth muscle cells and should not be used as an NADPH oxidase inhibitor in vascular systems. PMID:18086956

  4. Febuxostat, a novel xanthine oxidoreductase inhibitor, improves hypertension and endothelial dysfunction in spontaneously hypertensive rats.

    PubMed

    Shirakura, Takashi; Nomura, Johji; Matsui, Chieko; Kobayashi, Tsunefumi; Tamura, Mizuho; Masuzaki, Hiroaki

    2016-08-01

    Xanthine oxidase (XO) is an enzyme responsible for the production of uric acid. XO produces considerable amount of oxidative stress throughout the body. To date, however, its pathophysiologic role in hypertension and endothelial dysfunction still remains controversial. To explore the possible involvement of XO-derived oxidative stress in the pathophysiology of vascular dysfunction, by use of a selective XO inhibitor, febuxostat, we investigated the impact of pharmacological inhibition of XO on hypertension and vascular endothelial dysfunction in spontaneously hypertensive rats (SHRs). Sixteen-week-old SHR and normotensive Wistar-Kyoto (WKY) rats were treated with tap water (control) or water containing febuxostat (3 mg/kg/day) for 6 weeks. Systolic blood pressure (SBP) in febuxostat-treated SHR (220 ± 3 mmHg) was significantly (P < 0.05) decreased compared with the control SHR (236 ± 4 mmHg) while SBP in febuxostat-treated WKY was constant. Acetylcholine-induced endothelium-dependent relaxation in aortas from febuxostat-treated SHR was significantly (P < 0.05) improved compared with the control SHR, whereas relaxation in response to sodium nitroprusside was not changed. Vascular XO activity and tissue nitrotyrosine level, a representative indicator of local oxidative stress, were considerably elevated in the control SHR compared with the control WKY, and this increment was abolished by febuxostat. Our results suggest that exaggerated XO activity and resultant increase in oxidative stress in this experimental model contribute to the hypertension and endothelial dysfunction, thereby supporting a notion that pharmacological inhibition of XO is valuable not only for hyperuricemia but also for treating hypertension and related endothelial dysfunction in human clinics.

  5. Sequential combined treatment with allopurinol and benznidazole in the chronic phase of Trypanosoma cruzi infection: a pilot study

    PubMed Central

    Perez-Mazliah, D. E.; Alvarez, M. G.; Cooley, G.; Lococo, B. E.; Bertocchi, G.; Petti, M.; Albareda, M. C.; Armenti, A. H.; Tarleton, R. L.; Laucella, S. A.; Viotti, R.

    2013-01-01

    Objectives Even though the use of combined drugs has been proved to be effective in other chronic infections, assessment of combined treatment of antiparasitic drugs in human Chagas' disease has not been performed. Herein, a pilot study was conducted to evaluate the tolerance and side effects of a sequential combined treatment of two antiparasitic drugs, allopurinol and benznidazole, in the chronic phase of Trypanosoma cruzi infection. Patients and methods Changes in total and T. cruzi-specific T and B cells were monitored during a median follow-up of 36 months. Allopurinol was administered for 3 months (600 mg/day) followed by 30 days of benznidazole (5 mg/kg/day) in 11 T. cruzi-infected subjects. Results The combined sequential treatment of allopurinol and benznidazole was well tolerated. The levels of T. cruzi-specific antibodies significantly decreased after sequential combined treatment, as determined by conventional serology and by a multiplex assay using recombinant proteins. The frequency of T. cruzi-specific interferon-γ-producing T cells significantly increased after allopurinol treatment and decreased to background levels following benznidazole administration in a substantial proportion of subjects evaluated. The levels of total naive (CD45RA + CCR7 + CD62L+) CD4 + and CD8 + T cells were restored after allopurinol administration and maintained after completion of the combined drug protocol, along with a decrease in T cell activation in total peripheral CD4 + and CD8 + T cells. Conclusions This pilot study shows that the combination of allopurinol and benznidazole induces significant modifications in T and B cell responses indicative of a reduction in parasite burden, and sustains the feasibility of administration of two antiparasitic drugs in the chronic phase of Chagas' disease. PMID:23104493

  6. Life Threatening, Allopurinol-related Dress Syndrome as a Rare Cause of Fever of Unknown Origin.

    PubMed

    Civardi, Giuseppe; Zanlari, Luca; Bassi, Emanuele; Zangrandi, Adriano; Maria Cesinaro, Anna; Nosseir, Sofia; De Maria, Nicola

    2015-01-01

    Drug reaction eosinophilia with systemic symptoms (DRESS) syndrome is a potentially life threatening condition secondary to the usage of a wide type of drugs. A 38-year-old woman under allopurinol therapy for hyperuricemia was admitted in our department with fever and a diffuse cutaneous erythematous eruption. A few days after admission she developed rapidly progressive signs of acute liver and kidney failure. Subsequently, her clinical conditions shortly improved. The histologic findings obtained from skin and liver biopsies were consistent with a toxic drug reaction. The patient completely recovered and has been healthy for five years.

  7. Molecular cloning of a cDNA coding for mouse liver xanthine dehydrogenase. Regulation of its transcript by interferons in vivo.

    PubMed Central

    Terao, M; Cazzaniga, G; Ghezzi, P; Bianchi, M; Falciani, F; Perani, P; Garattini, E

    1992-01-01

    The cDNA coding for xanthine dehydrogenase (XD) is isolated from mouse liver mRNA by cross-hybridization with a DNA fragment of the Drosophila melanogaster homologue. Two lambda bacteriophage overlapping clones represent the copy of a 4538-nucleotide-residue-long transcript with an open reading frame of 4005 nucleotide residues, coding for a putative polypeptide of 1335 amino acid residues. Comparison of the deduced amino acid sequence of the mouse XD with those of the Drosophila and the rat homologues shows a high conservation of this protein (55% identity between mouse and Drosophila, and 94% identity between mouse and rat). RNA blotting analysis demonstrates that interferon-alpha (IFN-alpha) and its inducers, i.e. poly(I).poly(C), bacterial lipopolysaccharide (LPS) and tilorone (2,7-bis-[2-(diethylamino)ethoxy]fluoren-9-one), increase the expression of XD mRNA in liver. Poly(I).poly(C) also induces XD mRNA in several other tissues in vivo. Protein synthesis de novo is not required for the elevation of XD mRNA after IFN-alpha treatment, since cycloheximide does not block the induction. The elevation of XD mRNA concentration is relatively fast and precedes the induction of both XD and xanthine oxidase (XO) enzymic activities. Images Fig. 4. Fig. 5. Fig. 6. Fig. 7. PMID:1590774

  8. Increase in thyroid stimulating hormone levels in patients with gout treated with inhibitors of xanthine oxidoreductase.

    PubMed

    Perez-Ruiz, Fernando; Chinchilla, Sandra Pamela; Atxotegi, Joana; Urionagüena, Irati; Herrero-Beites, Ana Maria; Aniel-Quiroga, Maria Angeles

    2015-11-01

    Increase in thyroid stimulating hormone (TSH) levels over the upper normal limit has been reported in a small percentage of patients treated with febuxostat in clinical trials, but a mechanistic explanation is not yet available. In an observational parallel longitudinal cohort study, we evaluated changes in TSH levels in patients with gout at baseline and during urate-lowering treatment with febuxostat. Patients to be started on allopurinol who had a measurement of TSH in the 6-month period prior to baseline evaluation were used for comparison. TSH levels and change in TSH levels at 12-month follow-up were compared between groups. Patients with abnormal TSH levels or previous thyroid disease or on amiodarone were not included for analysis. Eighty-eight patients treated with febuxostat and 87 with allopurinol were available for comparisons. Patients to be treated with febuxostat had higher urate levels and TSH levels, more severe gout, and poorer renal function, but were similar regarding other characteristics. A similar rise in TSH levels was observed in both groups (0.4 and 0.5 µUI/mL for febuxostat and allopurinol, respectively); at 12-mo, 7/88 (7.9 %) of patients on febuxostat and 4/87 (3.4 %) of patients on allopurinol showed TSH levels over 0.5 µUI/mL. Doses prescribed (corrected for estimated glomerular filtration rate in the case if patients on allopurinol) and baseline TSH levels were determinants of TSH levels at 12-month follow-up. No impact on free T4 (fT4) levels was observed. Febuxostat, but also allopurinol, increased TSH levels in a dose-dependent way, thus suggesting rather a class effect than a drug effect, but with no apparent impact on either clinical or fT4 levels. PMID:26342297

  9. Increase in thyroid stimulating hormone levels in patients with gout treated with inhibitors of xanthine oxidoreductase.

    PubMed

    Perez-Ruiz, Fernando; Chinchilla, Sandra Pamela; Atxotegi, Joana; Urionagüena, Irati; Herrero-Beites, Ana Maria; Aniel-Quiroga, Maria Angeles

    2015-11-01

    Increase in thyroid stimulating hormone (TSH) levels over the upper normal limit has been reported in a small percentage of patients treated with febuxostat in clinical trials, but a mechanistic explanation is not yet available. In an observational parallel longitudinal cohort study, we evaluated changes in TSH levels in patients with gout at baseline and during urate-lowering treatment with febuxostat. Patients to be started on allopurinol who had a measurement of TSH in the 6-month period prior to baseline evaluation were used for comparison. TSH levels and change in TSH levels at 12-month follow-up were compared between groups. Patients with abnormal TSH levels or previous thyroid disease or on amiodarone were not included for analysis. Eighty-eight patients treated with febuxostat and 87 with allopurinol were available for comparisons. Patients to be treated with febuxostat had higher urate levels and TSH levels, more severe gout, and poorer renal function, but were similar regarding other characteristics. A similar rise in TSH levels was observed in both groups (0.4 and 0.5 µUI/mL for febuxostat and allopurinol, respectively); at 12-mo, 7/88 (7.9 %) of patients on febuxostat and 4/87 (3.4 %) of patients on allopurinol showed TSH levels over 0.5 µUI/mL. Doses prescribed (corrected for estimated glomerular filtration rate in the case if patients on allopurinol) and baseline TSH levels were determinants of TSH levels at 12-month follow-up. No impact on free T4 (fT4) levels was observed. Febuxostat, but also allopurinol, increased TSH levels in a dose-dependent way, thus suggesting rather a class effect than a drug effect, but with no apparent impact on either clinical or fT4 levels.

  10. Xanthine Dehydrogenase Is Transported to the Drosophila Eye

    PubMed Central

    Reaume, A. G.; Clark, S. H.; Chovnick, A.

    1989-01-01

    The rosy (ry) locus in Drosophila melanogaster codes for the enzyme xanthine dehydrogenase. Mutants that have no enzyme activity are characterized by a brownish eye color phenotype reflecting a deficiency in the red eye pigment. This report demonstrates that enzyme which is synthesized in some tissue other than the eye is transported and sequestered at the eye. Previous studies find that no leader sequence is associated with this molecule but a peroxisomal targeting sequence has been noted, and the enzyme has been localized to peroxisomes. This represents a rare example of an enzyme involved in intermediary metabolism being transported from one tissue to another and may also be the first example of a peroxisomal protein being secreted from a cell. PMID:2513252

  11. Albumin microparticles as the carriers for allopurinol and applicable for the treatment of ischemic stroke

    NASA Astrophysics Data System (ADS)

    Aganyants, Hovsep Alexandr; Nikohosyan, Gayane; Danielyan, Kristine Edgar

    2016-11-01

    Albumin nanoparticles are already used for the treatment of the cancer. In our current work, it is presented the technique for the preparation of small-size 1- to 5-micron particles coated with the allopurinol. We propose that this combination of the compounds might be useful for the ischemic stroke treatment as the agent preventing formation of the brain edema, reactive oxygen species, and initiation of cells regeneration. Glutaraldehyde was used for the polymerization of albumin. Determination of the particle size was performed by the light as well as phase contrast microscopies and analyzed by Pixcavator 6.0 and Image Tool programs. Modification and establishment of iodine-based method served as the base for quantification of bound with the particles and free allopurinol. As a consequence of the experiments, the best formulation of glutaraldehyde ratio and albumin quantity as well as conditions for the formation of the smallest sized spheroid-shaped particles were found for the further in vivo application.

  12. Four-week effects of allopurinol and febuxostat treatments on blood pressure and serum creatinine level in gouty men.

    PubMed

    Kim, Hyun Ah; Seo, Young-Il; Song, Yeong W

    2014-08-01

    The aim of this study was to observe the effects of uric acid lowering therapy (UALT), febuxostat and allopurinol, on blood pressure (BP) and serum creatinine level. Post-hoc data were derived from a phase-III, randomised, double-blind, 4-week trial of male gouty patients that compared the safety and efficacy of febuxostat and allopurinol in adults with gout. The subjects were randomly assigned to one of five groups, 35-37 in each group (febuxostat: 40, 80, 120 mg/d; allopurinol: 300 mg/d; control group: placebo). Blood pressure and serum creatinine level were measured at baseline and at weeks 2 and 4. Diastolic BP and creatinine level had decreased significantly in the UALT groups compared to the control group at week 4. Diastolic BP had decreased significantly in the allopurinol group and serum creatinine level had decreased significantly in the febuxostat groups at week 4. After adjusting for confounding variables, serum uric acid changes were found to be significantly correlated with changes in serum creatinine level but were not associated with changes in systolic or diastolic BP. UALT in gouty subjects significantly decreased diastolic BP and serum creatinine level. Changes in uric acid were significantly correlated with those in serum creatinine level, suggesting the feasibility of renal function improvement through UALT in gouty men.

  13. Efficacy of allopurinol and benzbromarone for the control of hyperuricaemia. A pathogenic approach to the treatment of primary chronic gout

    PubMed Central

    Perez-Ruiz, F; Alonso-Ruiz, A; Calabozo, M; Herrero-Beites, A; Garcia-Erauskin, G; Ruiz-Lucea, E

    1998-01-01

    OBJECTIVES—To study the efficacy of allopurinol and benzbromarone to reduce serum urate concentrations in patients with primary chronic gout.
METHODS—Prospective, parallel, open study of 86 consecutive male patients with primary chronic gout. Forty nine patients (26 normal excretors and 23 under excretors) were given allopurinol 300 mg/day and 37 under excretors benzbromarone 100 mg/day. After achieving steady plasma urate concentrations with such doses, treatment was then adjusted to obtain optimal plasmatic urate concentrations (under 6 mg/dl).
RESULTS—Patients receiving allopurinol 300 mg/day showed a mean reduction of plasmatic urate of 2.75 mg/dl (from 8.60 to 5.85 mg/dl) and 3.34 mg/dl (from 9.10 to 5.76 mg/dl) in normal excretors and under excretors respectively. Patients receiving benzbromarone 100 mg/day achieved a reduction of plasmatic urate of 5.04 mg/dl (from 8.58 to 3.54 mg/dl). Fifty three per cent of patients receiving allopurinol and 100% receiving benzbromarone achieved optimal plasma urate concentrations at such doses. The patients with poor results with allopurinol 300 mg/day achieved a proper plasma urate concentration with allopurinol 450 to 600 mg/day, the mean final dose being 372 mg/day. Renal fuction improved and no case of renal lithiasis was observed among benzbromarone treated patients, whose mean final dose was 76 mg/day.
CONCLUSION—Benzbromarone is very effective to control plasma urate concentrations at doses ranging from 50 to 100 mg/day. Uricosuric treatment is a suitable approach to the treatment of patients with gout who show underexcretion of urate.

 Keywords: gout; gout suppressants; allopurinol; benzbromarone PMID:9849314

  14. Purification and characterization of multiple forms of rat liver xanthine oxidoreductase expressed in baculovirus-insect cell system.

    PubMed

    Nishino, Tomoko; Amaya, Yoshihiro; Kawamoto, Susumu; Kashima, Yuji; Okamoto, Ken; Nishino, Takeshi

    2002-10-01

    cDNA of rat liver xanthine oxidoreductase (XOR), a molybdenum-containing iron-sulfur flavoprotein, was expressed in a baculovirus-insect cell system. The expressed XOR consisted of a heterogeneous mixture of native dimeric, demolybdo-dimeric, and monomeric forms, each of which was separated and purified to homogeneity. All the expressed forms contained flavin, of which the semiquinone form was stable during dithionite titration after dithiothreitol treatment, indicating that the flavin domains of all the expressed molecules have the intact conformations interconvertible between NAD(+)-dependent dehydrogenase (XDH) and O(2)-dependent oxidase (XO) types. The absorption spectrum and metal analyses showed that the monomeric form lacks not only molybdopterin but also one of the iron-sulfur centers. The reductive titration of the monomer with dithionite showed that the monomeric form required only three electrons for complete reduction, and the redox potential of the iron-sulfur center in the monomeric form is a lower value than that of FAD. In contrast to native or demolybdo-dimeric XDHs, the monomer showed a very slow reductive process with NADH under anaerobic conditions, although the conformation around FAD is a dehydrogenase form, suggesting the important role of the iron-sulfur center in the reductive process of FAD with the reduced pyridine nucleotide.

  15. Pre-Treatment with Allopurinol or Uricase Attenuates Barrier Dysfunction but Not Inflammation during Murine Ventilator-Induced Lung Injury

    PubMed Central

    Kuipers, Maria T.; Aslami, Hamid; Vlaar, Alexander P. J.; Juffermans, Nicole P.; Tuip-de Boer, Anita M.; Hegeman, Maria A.; Jongsma, Geartsje; Roelofs, Joris J. T. H.; van der Poll, Tom; Schultz, Marcus J.; Wieland, Catharina W.

    2012-01-01

    Introduction Uric acid released from injured tissue is considered a major endogenous danger signal and local instillation of uric acid crystals induces acute lung inflammation via activation of the NLRP3 inflammasome. Ventilator-induced lung injury (VILI) is mediated by the NLRP3 inflammasome and increased uric acid levels in lung lavage fluid are reported. We studied levels in human lung injury and the contribution of uric acid in experimental VILI. Methods Uric acid levels in lung lavage fluid of patients with acute lung injury (ALI) were determined. In a different cohort of cardiac surgery patients, uric acid levels were correlated with pulmonary leakage index. In a mouse model of VILI the effect of allopurinol (inhibits uric acid synthesis) and uricase (degrades uric acid) pre-treatment on neutrophil influx, up-regulation of adhesion molecules, pulmonary and systemic cytokine levels, lung pathology, and regulation of receptors involved in the recognition of uric acid was studied. In addition, total protein and immunoglobulin M in lung lavage fluid and pulmonary wet/dry ratios were measured as markers of alveolar barrier dysfunction. Results Uric acid levels increased in ALI patients. In cardiac surgery patients, elevated levels correlated significantly with the pulmonary leakage index. Allopurinol or uricase treatment did not reduce ventilator-induced inflammation, IκB-α degradation, or up-regulation of NLRP3, Toll-like receptor 2, and Toll-like receptor 4 gene expression in mice. Alveolar barrier dysfunction was attenuated which was most pronounced in mice pre-treated with allopurinol: both treatment strategies reduced wet/dry ratio, allopurinol also lowered total protein and immunoglobulin M levels. Conclusions Local uric acid levels increase in patients with ALI. In mice, allopurinol and uricase attenuate ventilator-induced alveolar barrier dysfunction. PMID:23226314

  16. Proteinuria reduction after treatment with miltefosine and allopurinol in dogs naturally infected with leishmaniasis

    PubMed Central

    Proverbio, Daniela; Spada, Eva; de Giorgi, Giada Bagnagatti; Perego, and Roberta

    2016-01-01

    Aim: The aim of this study was to evaluate changes in proteinuria in dogs naturally infected with visceral leishmaniasis, following treatment with miltefosine (MLF) and allopurinol. Materials and Methods: Medical records of 40 dogs with leishmaniasis, treated with 2 mg/kg MLF every 24 h PO and 10 mg/kg allopurinol every 12 h for 28 days were reviewed. 20 dogs were included in the study, and clinical staging was performed following guidelines of the Canine leishmaniasis (CanL) Working Group, and dogs were categorized for proteinuria according to the International Renal Interest Society (IRIS) staging system. Clinical score, indirect fluorescent antibody test titer, serum total protein, gamma globulin (IgG), serum creatinine and urea concentration, and urine protein creatinine ratio (UP/C) were recorded at the time of diagnosis before the start of therapy (D0) and at the end of 28 days of therapy (D28). Results: Following the CanL Working Group staging, all 20 dogs were classified as the clinical Stage C (Clinical disease) before and after the cycle of treatment. Before the cycle of therapy, dogs were categorized according to the IRIS staging system, as: 9/20 non-proteinuric (NP), 7/20 borderline proteinuric (BP), and 4/20 proteinuric (P). After treatment, 12/20 dogs were NP, 7/20 were BP, and 1/20 was P. There was a significant change in UP/C values before and after one cycle of treatment with MLF. In detail, after 28 days of therapy, 2 of 9 NP dogs became BP, 3 of the 7 BP dogs became NP, and 2 of the 4 P dogs became NP. Conclusion: This study showed a significant decrease in UP/C values occurred after one cycle of treatment with MLF and allopurinol in dogs naturally affected with CanL. This suggests that MLF does not increase proteinuria, and the use of MLF could be considered for the management of dogs with leishmaniasis, particularly in those with impaired renal function at the time of diagnosis.

  17. Proteinuria reduction after treatment with miltefosine and allopurinol in dogs naturally infected with leishmaniasis

    PubMed Central

    Proverbio, Daniela; Spada, Eva; de Giorgi, Giada Bagnagatti; Perego, and Roberta

    2016-01-01

    Aim: The aim of this study was to evaluate changes in proteinuria in dogs naturally infected with visceral leishmaniasis, following treatment with miltefosine (MLF) and allopurinol. Materials and Methods: Medical records of 40 dogs with leishmaniasis, treated with 2 mg/kg MLF every 24 h PO and 10 mg/kg allopurinol every 12 h for 28 days were reviewed. 20 dogs were included in the study, and clinical staging was performed following guidelines of the Canine leishmaniasis (CanL) Working Group, and dogs were categorized for proteinuria according to the International Renal Interest Society (IRIS) staging system. Clinical score, indirect fluorescent antibody test titer, serum total protein, gamma globulin (IgG), serum creatinine and urea concentration, and urine protein creatinine ratio (UP/C) were recorded at the time of diagnosis before the start of therapy (D0) and at the end of 28 days of therapy (D28). Results: Following the CanL Working Group staging, all 20 dogs were classified as the clinical Stage C (Clinical disease) before and after the cycle of treatment. Before the cycle of therapy, dogs were categorized according to the IRIS staging system, as: 9/20 non-proteinuric (NP), 7/20 borderline proteinuric (BP), and 4/20 proteinuric (P). After treatment, 12/20 dogs were NP, 7/20 were BP, and 1/20 was P. There was a significant change in UP/C values before and after one cycle of treatment with MLF. In detail, after 28 days of therapy, 2 of 9 NP dogs became BP, 3 of the 7 BP dogs became NP, and 2 of the 4 P dogs became NP. Conclusion: This study showed a significant decrease in UP/C values occurred after one cycle of treatment with MLF and allopurinol in dogs naturally affected with CanL. This suggests that MLF does not increase proteinuria, and the use of MLF could be considered for the management of dogs with leishmaniasis, particularly in those with impaired renal function at the time of diagnosis. PMID:27651682

  18. NADPH Oxidase Biology and the Regulation of Tyrosine Kinase Receptor Signaling and Cancer Drug Cytotoxicity

    PubMed Central

    Paletta-Silva, Rafael; Rocco-Machado, Nathália; Meyer-Fernandes, José Roberto

    2013-01-01

    The outdated idea that reactive oxygen species (ROS) are only dangerous products of cellular metabolism, causing toxic and mutagenic effects on cellular components, is being replaced by the view that ROS have several important functions in cell signaling. In aerobic organisms, ROS can be generated from different sources, including the mitochondrial electron transport chain, xanthine oxidase, myeloperoxidase, and lipoxygenase, but the only enzyme family that produces ROS as its main product is the NADPH oxidase family (NOX enzymes). These transfer electrons from NADPH (converting it to NADP−) to oxygen to make O2•−. Due to their stability, the products of NADPH oxidase, hydrogen peroxide, and superoxide are considered the most favorable ROS to act as signaling molecules. Transcription factors that regulate gene expression involved in carcinogenesis are modulated by NADPH oxidase, and it has emerged as a promising target for cancer therapies. The present review discusses the mechanisms by which NADPH oxidase regulates signal transduction pathways in view of tyrosine kinase receptors, which are pivotal to regulating the hallmarks of cancer, and how ROS mediate the cytotoxicity of several cancer drugs employed in clinical practice. PMID:23434665

  19. Use of HLA-B*58:01 genotyping to prevent allopurinol induced severe cutaneous adverse reactions in Taiwan: national prospective cohort study

    PubMed Central

    Ko, Tai-Ming; Tsai, Chang-Youh; Chen, Shih-Yang; Chen, Kuo-Shu; Yu, Kuang-Hui; Chu, Chih-Sheng; Huang, Chung-Ming; Wang, Chrong-Reen; Weng, Chia-Tse; Yu, Chia-Li; Hsieh, Song-Chou; Tsai, Jer-Chia; Lai, Wen-Ter; Tsai, Wen-Chan; Yin, Guang-Dar; Ou, Tsan-Teng; Cheng, Kai-Hung; Yen, Jeng-Hsien; Liou, Teh-Ling; Lin, Tsung-Hsien; Chen, Der-Yuan; Hsiao, Pi-Jung; Weng, Meng-Yu; Chen, Yi-Ming; Chen, Chen-Hung; Liu, Ming-Fei; Yen, Hsueh-Wei; Lee, Jia-Jung; Kuo, Mei-Chuan; Wu, Chen-Ching; Hung, Shih-Yuan; Luo, Shue-Fen; Yang, Ya-Hui; Chuang, Hui-Ping; Chou, Yi-Chun; Liao, Hung-Ting; Wang, Chia-Wen; Huang, Chun-Lin; Chang, Chia-Shuo; Lee, Ming-Ta Michael; Chen, Pei; Wong, Chih-Shung; Chen, Chien-Hsiun; Wu, Jer-Yuarn; Chen, Yuan-Tsong

    2015-01-01

    Objective To evaluate the use of prospective screening for the HLA-B*58:01 allele to identify Taiwanese individuals at risk of severe cutaneous adverse reactions (SCARs) induced by allopurinol treatment. Design National prospective cohort study. Setting 15 medical centres in different regions of Taiwan, from July 2009 to August 2014. Participants 2926 people who had an indication for allopurinol treatment but had not taken allopurinol previously. Participants were excluded if they had undergone a bone marrow transplant, were not of Han Chinese descent, and had a history of allopurinol induced hypersensitivity. DNA purified from 2910 participants’ peripheral blood was used to assess the presence of HLA-B*58:01. Main outcome measures Incidence of allopurinol induced SCARs with and without screening. Results Participants who tested positive for HLA-B*58:01 (19.6%, n=571) were advised to avoid allopurinol, and were referred to an alternate drug treatment or advised to continue with their prestudy treatment. Participants who tested negative (80.4%, n=2339) were given allopurinol. Participants were interviewed once a week for two months to monitor symptoms. The historical incidence of allopurinol induced SCARs, estimated by the National Health Insurance research database of Taiwan, was used for comparison. Mild, transient rash without blisters developed in 97 (3%) participants during follow-up. None of the participants was admitted to hospital owing to adverse drug reactions. SCARs did not develop in any of the participants receiving allopurinol who screened negative for HLA-B*58:01. By contrast, seven cases of SCARs were expected, based on the estimated historical incidence of allopurinol induced SCARs nationwide (0.30% per year, 95% confidence interval 0.28% to 0.31%; P=0.0026; two side one sample binomial test). Conclusions Prospective screening of the HLA-B*58:01 allele, coupled with an alternative drug treatment for carriers, significantly decreased the incidence

  20. CHARACTERISTICS OF POLYPHENOL OXIDASES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyphenol oxidase (PPO, EC 1.14.18.1 or EC 1.10.3.1) catalyzes the oxidation of o-diphenols to o-quinones. Highly reactive o-quinones couple with phenolics and specific amino acids on proteins to form the characteristic browning products in many wounded fruits, vegetables, and leaf tissues of plant...

  1. Assessment of allopurinol plus meglumine antimoniate in the treatment of visceral leishmaniasis in patients infected with HIV.

    PubMed

    Laguna, F; López-Vélez, R; Soriano, V; Montilla, P; Alvar, J; González-Lahoz, J M

    1994-05-01

    We report on 11 patients with HIV infection and visceral leishmaniasis and who were treated with meglumine antimoniate plus allopurinol for 3 weeks (six patients) or 4 weeks (five patients). Clinical and parasitological cures were achieved in four of the five patients treated for 4 weeks and in one of the six patients treated for 3 weeks. Only one patient developed a severe maculopapular rash. Allopurinol plus meglumine antimoniate was found to be a safe combination of drugs for the treatment of visceral leishmaniasis in patients infected with HIV. The optimal length of this treatment is unknown but a course of at least 4 weeks' duration would appear to be necessary for obtaining parasitological cure in most cases.

  2. Efficacy of Combined Therapy with Liposome-Encapsulated Meglumine Antimoniate and Allopurinol in Treatment of Canine Visceral Leishmaniasis

    PubMed Central

    da Silva, Sydnei M.; Amorim, Izabela F. G.; Ribeiro, Raul R.; Azevedo, Erly G.; Demicheli, Cynthia; Melo, Maria N.; Tafuri, Wagner L.; Gontijo, Nelder F.; Michalick, Marilene S. M.

    2012-01-01

    An innovative liposomal formulation of meglumine antimoniate (LMA) was recently reported to promote both long-term parasite suppression and reduction of infectivity to sand flies in dogs with visceral leishmaniasis. However, 5 months after treatment, parasites were still found in the bone marrow of all treated dogs. In order to improve treatment with LMA, the present study aimed to evaluate its efficacy in combination with allopurinol. Mongrel dogs naturally infected with Leishmania infantum were treated with six doses of LMA (6.5 mg Sb/kg of body weight/dose) given at 4-day intervals, plus allopurinol (20 mg/kg/24 h per os) for 140 days. Comparison was made with groups treated with LMA, allopurinol, empty liposomes plus allopurinol, empty liposomes, and saline. Dogs remained without treatment from day 140 to 200 after the start of treatment. The drug combination promoted both clinical improvement of dogs and significant reduction in the parasitic load in bone marrow and spleen on days 140 and 200 compared to these parameters in the pretreatment period. This is in contrast with the other protocols, which did not result in significant reduction of the bone marrow parasite load on day 200. Strikingly, the combined treatment, in contrast to the other regimens, induced negative quantitative PCR (qPCR) results in the liver of 100% of the dogs. Both xenodiagnosis and skin parasite determination by qPCR indicated that the drug combination was effective in blocking the transmission of skin parasites to sand flies. Based on all of the parasitological tests performed on day 200, 50% of the animals that received the combined treatment were considered cured. PMID:22411610

  3. Vibrational spectral investigation on xanthine and its derivatives—theophylline, caffeine and theobromine

    NASA Astrophysics Data System (ADS)

    Gunasekaran, S.; Sankari, G.; Ponnusamy, S.

    2005-01-01

    A normal coordinate analysis has been carried out on four compounds having a similar ring structure with different side chain substitutions, which are xanthine, caffeine, theophylline, and theobromine. Xanthine is chemically known as 2,6-dihydroxy purine. Caffeine, theophylline and theobromine are methylated xanthines. Considering the methyl groups as point mass, the number of normal modes of vibrations can be distributed as Γ vib=27 A'+12 A″ based on C s point group symmetry associated with the structures. In the present work 15 A' and 12 A″ normal modes are considered. A new set of orthonormal symmetry co-ordinates have been constructed. Wilson's F- G matrix method has been adopted for the normal coordinate analysis. A satisfactory vibrational band assignment has been made by employing the FTIR and FT Raman spectra of the compounds. The potential energy distribution is calculated with the arrived values of the force constants and hence the agreement of the frequency assignment has been checked.

  4. Development of a new reporter gene system--dsRed/xanthine phosphoribosyltransferase-xanthine for molecular imaging of processes behind the intact blood-brain barrier.

    PubMed

    Doubrovin, Mikhail; Ponomarev, Vladimir; Serganova, Inna; Soghomonian, Suren; Myagawa, Tadashi; Beresten, Tatiana; Ageyeva, Lyudmila; Sadelain, Michel; Koutcher, Jason; Blasberg, Ronald G; Tjuvajev, Juri G Gelovani

    2003-04-01

    We report the development of a novel dual-modality fusion reporter gene system consisting of Escherichia coli xanthine phosphoribosyltransferase (XPRT) for nuclear imaging with radiolabeled xanthine and Discosoma red fluorescent protein for optical fluorescent imaging applications. The dsRed/XPRT fusion gene was successfully created and stably transduced into RG2 glioma cells, and both reporters were shown to be functional. The level of dsRed fluorescence directly correlated with XPRT enzymatic activity as measured by ribophosphorylation of [14C]-xanthine was in vitro (Ki = 0.124 +/- 0.008 vs. 0.00031 +/- 0.00005 mL/min/g in parental cell line), and [*]-xanthine octanol/water partition coefficient was 0.20 at pH = 7.4 (logP = -0.69), meeting requirements for the blood-brain barrier (BBB) penetrating tracer. In the in vivo experiment, the concentration of [14C]-xanthine in the normal brain varied from 0.20 to 0.16 + 0.05% dose/g under 0.87 + 0.24% dose/g plasma radiotracer concentration. The accumulation in vivo in the transfected flank tumor was to 2.4 +/- 0.3% dose/g, compared to 0.78 +/- 0.02% dose/g and 0.64 +/- 0.05% dose/g in the control flank tumors and intact muscle, respectively. [14C]-Xanthine appeared to be capable of specific accumulation in the transfected infiltrative brain tumor (RG2-dsRed/XPRT), which corresponded to the 585 nm fluorescent signal obtained from the adjacent cryosections. The images of endogenous gene expression with the "sensory system" have to be normalized for the transfection efficiency based on the "beacon system" image data. Such an approach requires two different "reporter genes" and two different "reporter substrates." Therefore, the novel dsRed/XPRT fusion gene can be used as a multimodality reporter system in the biological applications requiring two independent reporter genes, including the cells located behind the BBB.

  5. HPLC method development for the online-coupling of chromatographic Perilla frutescens extract separation with xanthine oxidase enzymatic assay.

    PubMed

    Kaufmann, Christine M; Grassmann, Johanna; Letzel, Thomas

    2016-05-30

    Enzyme-regulatory effects of compounds contained in complex mixtures can be unveiled by coupling a continuous-flow enzyme assay to a chromatographic separation. A temperature-elevated separation was developed and the performance was tested using Perilla frutescens plant extracts of various polarity (water, methanol, ethanol/water). Owning to the need of maintaining sufficient enzymatic activity, only low organic solvent concentrations can be added to the mobile phase. Hence, to broaden the spectrum of eluting compounds, two different organic solvents and various contents were tested. The chromatographic performance and elution was further improved by the application of a moderate temperature gradient to the column. By taking the effect of eluent composition as well as calculated logD values and molecular structure of known extract compounds into account, unknown features were tentatively assigned. The method used allowed the successful observation of an enzymatic inhibition caused by P. frutescens extract. PMID:26986639

  6. Enantioselective uptake of BOF-4272, a xanthine oxidase inhibitor with a chiral sulfoxide, by isolated rat hepatocytes.

    PubMed

    Naito, S; Nishimura, M

    2001-12-01

    The transport mechanisms of the enantiomers of BOF-4272, a new drug for the treatment of hyperuricemia, were studied using freshly prepared rat hepatocytes. BOF-4272 consists of S(-) and R(+) enantiomers due to a chiral center in the sulfoxide moiety. The uptake of these BOF-4272 enantiomers by hepatocytes was found to be temperature and dose dependent. The temperature-dependent uptake of the S(-) and R(+) enantiomers showed saturation kinetics. The Km values for the S(-) and R(+) enantiomers were 59.3 and 25.7 microM, respectively, which was a significant difference (p < 0.05). However, the maximal uptake rate was comparable for both enantiomers. Metabolic inhibitors such as antimycin, oligomycin, rotenone, carbonylcyanide m-chlorophenyl hydrazone, and carbonyl cyanide-p-(trifluromethoxy)-phenylhydrazone significantly inhibited uptake of the R(+) enantiomer, but had little effect on uptake of the S(-) enantiomer. Ouabain (an inhibitor of Na+/K(+)-ATPase) and p-nitrobenzylthioinosine (NBMPR, a nucleoside transporter inhibitor) showed no significant effects on the uptake of either enantiomer. Organic anions such as taurocholate and cholate reduced the uptake of both enantiomers. These results suggest that the hepatic uptake of both BOF-4272 enantiomers is not due to simple diffusion but also involves carrier-mediated uptake. We suggest that the carrier-mediated uptake of BOF-4272 enantiomers includes both NBMPR-insensitive facilitated diffusion and an active transport system in liver plasma membrane, and that the enantioselective uptake of BOF-4272 is due to differences in affinity for the active transporter.

  7. Antioxidant effect of naturally occurring xanthines on the oxidative damage of DNA bases

    NASA Astrophysics Data System (ADS)

    Vieira, A. J. S. C.; Telo, J. P.; Pereira, H. F.; Patrocínio, P. F.; Dias, R. M. B.

    1999-01-01

    The repair of the oxidised radicals of adenine and guanosine by several naturally occurring xanthines was studied. Each pair of DNA purine/xanthine was made to react with the sulphate radical and the decrease of the concentration of both compounds was measured by HPLC as a function of irradiation time. The results show that xanthine efficiently prevents the oxidation of the two DNA purines. Theophyline and paraxanthine repair the oxidised radical of adenine but not the one from guanosine. Theobromine and caffeine do not show any protecting effect. An order of the oxidation potentials of all the purines studied is proposed. La réparation des radicaux oxydés de l'adénine et de la guanosine par des xanthines naturelles a été étudiée en soumettant chaque paire base de l'ADN/xanthine à l'oxydation par le radical sulfate et en mesurant par HPLC la disparition des deux composés en fonction du temps d'irradiation. Les résultats montrent que la xanthine joue un rôle protecteur efficace contre l'oxydation des deux purines de l'ADN. La théophyline et la paraxanthine réparent le radical oxydé de l'adénine mais pas celui de la guanosine. La théobromine et la cafeíne n'ont pas d'effet protecteur. Un ordre de potentiels d'oxydation des purines étudiées est proposé.

  8. Variation in biochemical properties of allozymes of xanthine dehydrogenase in Drosophila pseudoobscura.

    PubMed

    Wilcox, D R; Prakash, S

    1980-12-01

    Twenty-six D. pseudoobscura strains isogenic for xanthine dehydrogenase alleles from Mesa Verde, Colorado, were tested for differences in the biochemical properties of different allelic forms of xanthine dehydrogenase. No significant differences in binding affinity (Km) or substrate specificity of the enzyme were found. Significant variation among strains, in activity (Vmax) and among electromorphs, as well as among strains, in thermolability was found. For the few strains tested, the activity and thermolability differences were shown to co-segregate with the electrophoretic mobility of the variant allele. PMID:6943118

  9. A spectroscopic and pulse radiolysis study of allopurinol and its copper complex

    NASA Astrophysics Data System (ADS)

    Torreggiani, A.; Tamba, M.; Trinchero, A.; Fini, G.

    2003-06-01

    Allopurinol (ALP), an anti-hyperuricemic drug, was investigated in the absence and in the presence of Cu(II) ions by vibrational spectroscopy and pulse radiolysis technique in order to obtain some elucidation on the mechanism of its beneficial effect against oxygen free radical-mediated damage. ALP is suggested to give protection to living organisms both by metal chelation and direct scavenging of free radicals. The Raman and IR spectra have been useful to assess the relevant interactions of ALP with Cu(II) ions, which play an important role in the metal catalysed generation of reactive oxygen species. A proposal of the complex structure was performed; the predominant species seems to be a monomeric complex where ALP interacts with the metal by one nitrogen atom of the five-membered ring and the CO group. The pulse radiolysis data have given information on the behaviour of ALP towards radiation-induced radicals. ALP appears to be a good scavenger of rad OH, giving rise to intermediate transients, namely resonance-stabilised phenoxyl radicals. Also in the presence of Cu(II) ions, ALP reacts fast towards rad OH radicals.

  10. Synthesis, physicochemical properties of allopurinol derivatives and their biological activity against Trypanosoma cruzi.

    PubMed

    Raviolo, M A; Solana, M E; Novoa, M M; Gualdesi, M S; Alba-Soto, C D; Briñón, M C

    2013-11-01

    Chagas disease is caused by Trypanosoma cruzi (T. cruzi) leading to a huge number of infections and deaths per year, because in addition to many sufferers only having limited access to health services only an inefficient chemotherapy is available using drugs such as benznidazole and nifurtimox. Here, C6-alkyl (2a-c) and N1-acyl (3a-c) derivatives of Allopurinol (Allop, compound with activity against T. cruzi) were synthesized in good yields and their structures were unambiguously characterized. Only 2a, 2b and 3c showed inhibitory activity against the proliferative stages of the parasite when tested at 1 μg mL(-1) with the 3c derivative exhibiting an IC50 value similar to that of Allop and not being toxic for mammalian cells. Relevant pharmaceutical physicochemical properties (pKa, stability, solubility, lipophilicity) were also determined as well by using Lipinski's rule, polar surface area and molecular rigidity. Taken together, the results demonstrated that the studied derivatives had optimal properties for bioavailability and oral absorption. For the stability studies, Micellar Liquid Chromatography was used as the analytical method which was fully validated according to the FDA guidelines and shown to be a suitable, sensitive and simple method for routine analysis of these Allop derivatives.

  11. Ocular signs, diagnosis and long-term treatment with allopurinol in a cat with leishmaniasis.

    PubMed

    Richter; Schaarschmidt-Kiener; Krudewig

    2014-06-01

    A case of leishmaniasis with predominantly ocular signs in a cat living in Switzerland and it's treatment is reported. The cat was imported from Spain 4 years earlier and was initially presented with chronic uveitis. Laboratory test results were negative for feline immunodeficiency virus (FIV), feline infectious peritonitis (FIP), feline leukaemia virus (FeLV) and Toxoplasma gondii, as well as for Bartonella haenselae and Leishmania spp. Twenty-one months later the cat was presented again because of development of keratitis and granulomatous blepharitis. Blood cell count revealed severe Pancytopenia; Cytology of fine needle aspirates of granulomatous lesions on both upper eyelids and of a corneal smear revealed intracytoplasmatic microorganisms. A preliminary diagnosis of leishmaniasis was supported by positive polymerase chain reaction from bone marrow and eyelid samples for Leishmania infantum DNA and by a high serum antibody titer for Leishmania spp. Treatment with Allopurinol (10 mg/kg, BID) orally led to rapid improvement of ocular signs, general condition and blood cell count with complete remission of lid and corneal lesions within 2 months of treatment.

  12. Ocular signs, diagnosis and long-term treatment with allopurinol in a cat with leishmaniasis.

    PubMed

    Richter; Schaarschmidt-Kiener; Krudewig

    2014-06-01

    A case of leishmaniasis with predominantly ocular signs in a cat living in Switzerland and it's treatment is reported. The cat was imported from Spain 4 years earlier and was initially presented with chronic uveitis. Laboratory test results were negative for feline immunodeficiency virus (FIV), feline infectious peritonitis (FIP), feline leukaemia virus (FeLV) and Toxoplasma gondii, as well as for Bartonella haenselae and Leishmania spp. Twenty-one months later the cat was presented again because of development of keratitis and granulomatous blepharitis. Blood cell count revealed severe Pancytopenia; Cytology of fine needle aspirates of granulomatous lesions on both upper eyelids and of a corneal smear revealed intracytoplasmatic microorganisms. A preliminary diagnosis of leishmaniasis was supported by positive polymerase chain reaction from bone marrow and eyelid samples for Leishmania infantum DNA and by a high serum antibody titer for Leishmania spp. Treatment with Allopurinol (10 mg/kg, BID) orally led to rapid improvement of ocular signs, general condition and blood cell count with complete remission of lid and corneal lesions within 2 months of treatment. PMID:24867242

  13. [A model-based meta-analysis to compare urate-lowering response rate of febuxostat and allopurinol in gout patient].

    PubMed

    Sun, Yi; Li, Liang; Zhou, Tian-Yan; Lu, Wei

    2014-12-01

    This study aims to compare the urate-lowering response rate of febuxostat and allopurinol in gout patient using a model-based meta-analysis. The literature search identified 22 clinical trials of gout with a total of 43 unique treatment arms that met our inclusion criteria, and a total of 6 365 gout patients were included in the study. The response rates of allopuriol and febuxostat were characterized by Tmax model and Emax model respectively, and the effect of baseline serum uric acid (sUA) and patient type on the drug effect was tested. The results showed that allopurinol can reach an average maximum response rate of 50.8% while febuxostat can reach a 100% response rate within a very short time, and the ED50 was 34.3 mg. Covariate analysis revealed that baseline sUA has a negative effect on response rate of allopurinol, and a positive effect on the predicted ED50 of febuxostat. For patients who had shown inadequate response to prior allopurinol treatment, the average response rate was about half that of the allopurinol responder patients.

  14. Effect of antiperoxidative drugs on gastric damage induced by ethanol in rats

    SciTech Connect

    Mizui, T.; Sato, H.; Hirose, F.; Doteuchi, M.

    1987-08-10

    Lesion formation due to oral administration of absolute ethanol could be prevented by parenteral pretreatment with antiperoxidative drugs such as butylated hydroxytoluene (BHT), quercetin and quinacrine. Also effective were allopurinol and oxypurinol, inhibitors of xanthine oxidase, but not superoxide dismutase (SOD) and hydroxyl radical scavengers, such as sodium benzoate and dimethyl sulfoxide (DMSO). BHT, quercetin, quinacrine and sulfhydryl compounds such as reduced glutathione and cysteamine which offer gastroprotection in vivo against ethanol inhibited lipid peroxidation induced in vitro by ferrous ion in porcine gastric mucosal homogenate, but SOD, sodium benzoate, DMSO, allopurinol and oxypurinol did not. These results suggest the possibility that an active species, probably derived from free iron mobilized by the xanthine oxidase system, other than oxygen radicals such as hydroxyl formation in the gastric mucosa after absolute ethanol administration. 38 references, 1 figure, 4 tables.

  15. Spectroscopic Signatures and Structural Motifs in Isolated and Hydrated Xanthine: a Computational Study

    NASA Astrophysics Data System (ADS)

    Singh, Vipin Bahadur

    2016-06-01

    The conformational landscapes of xanthine and its hydrated complex have been investigated by MP2 and DFT methods. The ground state geometry optimization yield five lowest energy conformers of xanth1-(H2O)1 complex at the MP2/6-311++G(d,p) level of theory for the first time. We investigated the low-lying excited states of bare xanthine by means of coupled cluster singles and approximate doubles (CC2) and TDDFT methods and a satisfactory interpretation of the electronic absorption spectra1 is obtained. The difference between the S0-S1 transition energy due to the most stable and the second most stable stable conformation of xanthine was found to be 859 wn. One striking feature is the coexistence of the blue and red shift of the vertical excitation energy of the optically bright state S1 of xanthine upon forming complex with a water at C2=O and C6=O carbonyl sites, respectively. The lowest singlet ππ* excited-state of the xanth1-(H2O)1 complex involving C2=O carbonyl are strongly blue shifted which is in agreement with the result of R2PI spectra of singly hydrated xanthine. While for the most stable and the second most stable xanth1-(H2O)1 complexes involving C6=O carbonyl, the lowest singlet ππ* excited-state is red shifted. The effect of hydration on S1 excited state due to bulk water environment was mimicked by a combination of polarizable continuum solvent model (PCM) and conductor like screening model (COSMO), which also shows a blue shift in accordance with the result of electronic absorption spectra in aqueous solution. This hypsochromic shift, is expected to be the result of the changes in the π-electron delocalization extent of molecule because of hydrogen bond formation. The optimized structure of xanthine dimer, computed the first time by MP2 and DFT methods. The binding energy of this dimer linked by double N-H…O=C hydrogen bonds was found to be 88 kj/mole at the MP2/6-311++G(d,p) level of theory. Computed IR spectra is found in remarkable agreement

  16. The measurement of theophylline in human serum or plasma using gas chromatography and isotope dilution-mass spectrometry (GC-IDMS) taking other substituted xanthines into consideration.

    PubMed

    Kress, Michael; Meissner, Dieane; Kaiser, Patricia; Hanke, Rainer; Wood, William Graham

    2002-01-01

    A method is described which uses a combination of gas chromatography and isotope dilution-mass spectrometry (GC-IDMS) to determine the concentration of theophylline (1,3-dimethyl xanthine) in human plasma or serum samples. The effects of similar substituted xanthines - namely theobromine (3,7-dimethyl xanthine), paraxanthine (1,7-dimethyl xanthine) 1,3-dimethyl-7-(2-hydroxyethyl) xanthine (internal standard HPLC) and caffeine (1,3,7-trimethyl xanthine) were tested to confirm the specificity of the method. The derivatisation of all xanthines was performed with N-methyl-N-trimethylsilyl trifluroacetamide (MSTFA). The internal standard used was 2-(13)C ,1,3-(15)N2-theophylline. The extraction and derivatisation procedures were examined in detail and optimised stepwise during the development of the method. High-performance liquid chromatography (HPLC) was used for comparison.

  17. Canine leishmaniosis: in vitro efficacy of miltefosine and marbofloxacin alone or in combination with allopurinol against clinical strains of Leishmania infantum.

    PubMed

    Farca, Anna Maria; Miniscalco, B; Badino, P; Odore, R; Monticelli, P; Trisciuoglio, A; Ferroglio, E

    2012-06-01

    Despite the availability of different therapeutic options, canine visceral leishmaniosis (CVL) remains a challenging disease to treat. Recently miltefosine has been registered for use in dogs, and different studies have demonstrated its leishmanicidal effect. Moreover, it has been suggested that fluoroquinolones, compared to standard chemotherapeutic agents, could be an effective and pragmatic alternative to treat CVL. The efficacy of miltefosine and marbofloxacin alone or in combination with allopurinol against clinical strains of Leishmania infantum was assessed in vitro by incubating increasing concentrations of the drugs with a standard parasite inoculum. Miltefosine was significantly more efficacious than marbofloxacin (P < 0.05) against the two strains of L. infantum either alone or in combination with allopurinol. Both drugs were significantly (P < 0.05) more efficacious when associated with allopurinol than alone.

  18. A comparative study of efficacy and safety of febuxostat and allopurinol in pyrazinamide-induced hyperuricemic tubercular patients

    PubMed Central

    Pichholiya, Meenu; Yadav, Arvind Kumar; Luhadia, S. K.; Tahashildar, Jameela; Aseri, M. L.

    2016-01-01

    Objectives: To compare the efficacy and safety of febuxostat and allopurinol in pyrazinamide (PZA)-induced hyperuricemia in patients taking antitubercular therapy (ATT). Methods: This randomized controlled study was conducted at a tertiary care teaching institute of Rajasthan in all the sputum-positive tubercular patients aged between 18 and 65 years of either sex. Serum uric acid level was monitored at 0th, 2nd, 4th, 6th, and 8th week of ATT. Patients whose uric acid level was found to be increased at 2nd week were finally recruited in the study. Ninety patients who developed hyperuricemia due to ATT were divided randomly into three groups (Group A - febuxostat, Group B - allopurinol, and Group C - control) of thirty patients each. Mean serum uric acid levels were calculated at all the weeks in all the groups, and serum uric acid levels were compared by applying student's t-test and ANOVA. Results: Mean serum uric acid level decreased from 10.698 mg/dl (at 2nd week) to 7.846 mg/dl (at 8th week) in Group A and from 11.34 mg/dl (at 2nd week) to 7.280 mg/dl (at 8th week) in Group B. Numbers of adverse events encountered across both the treatment groups were same with both the drugs. Conclusion: Allopurinol and febuxostat were equally efficacious in lowering PZA induced raised serum uric acid level in tubercular patients, and it was possible to continue ATT without withdrawing PZA. PMID:27721537

  19. Safety and efficacy of oral febuxostat for treatment of HLA-B*5801-negative gout: a randomized, open-label, multicentre, allopurinol-controlled study

    PubMed Central

    Yu, K-H; Lai, J-H; Hsu, P-N; Chen, D-Y; Chen, C-J; Lin, H-Y

    2016-01-01

    Objectives: This phase IIIB study compared the efficacy and safety of febuxostat and allopurinol in gout patients with or without tophi who were HLA-B*5801 negative. Method: Eligible patients were randomized to a febuxostat group (80 mg QD) or an allopurinol group (300 mg QD). Following an initial 2-week washout period, over the next 12 weeks we made five measurements of serum urate levels along with assessments of adverse events (AEs). Results: Forty-three out of 152 screened subjects (28.3%) were ineligible either because of the presence of the HLA-B*5801 allele or for various other reasons. The febuxostat group (n = 54) and the allopurinol group (n = 55) had no significant differences in demographic or baseline characteristics. From week 2 to week 12, the febuxostat group had a significantly lower serum urate level than the allopurinol group (p ≤ 0.001 for all comparisons) and significantly more patients with serum urate levels less than 6.0 mg/dL. The serum urate levels of the febuxostat group declined by more than 40% from week 2 to week 12 and this decrease was greater than that in the allopurinol group (~30%). The two groups were similar in terms of AEs. Conclusions: Febuxostat was more effective than allopurinol in reducing the serum urate levels of Han Chinese patients with gout or tophaceous gout who were HLA-B*5801 negative, without causing any serious skin reactions. Febuxostat should be considered for treatment of Han Chinese patients with gout who are HLA-B*5801 negative. PMID:26771445

  20. A pilot study on the impact of a low fructose diet and allopurinol on clinic blood pressure among overweight and prehypertensive subjects: a randomized placebo controlled trial.

    PubMed

    Madero, Magdalena; Rodríguez Castellanos, Francisco E; Jalal, Diana; Villalobos-Martín, Maria; Salazar, Jonathan; Vazquez-Rangel, Armando; Johnson, Richard J; Sanchez-Lozada, L Gabriela

    2015-11-01

    Fructose and sodium intake have been associated with hypertension and metabolic syndrome. Although various mechanisms are involved, fructose causes hypertension partly through rising intracellular and serum uric acid. To date, there are no studies in adults that have evaluated the impact of low fructose diets and allopurinol on prehypertensive and overweight subjects. The objective of this study was to compare the effect of low fructose diet and allopurinol or placebo on blood pressure (BP) and metabolic syndrome components The study was a controlled clinical trial and consisted of two phases; in the first phase of intervention (4 weeks), patients were randomized to either low fructose diet (34 patients) or control diet (38 patients). In the second phase of intervention (weeks 4-8), the same groups continued with the same diet prescriptions but were further randomized to receive placebo or allopurinol (300 mg/d). Clinic and 24-hour ambulatory BP, anthropometric measures, and laboratory data were determined at baseline, weeks 4 and 8. Seventy-two patients were included in the trial. At the end of the dietary phase, both diet groups significantly reduced their BP, but there were no between-group differences. Compared to placebo, at the end of follow-up, subjects in the allopurinol group had a lower clinic systolic blood pressure and this was significant within- and between-group comparisons. The percentage of dippers was higher in the allopurinol group, and weight was reduced significantly despite the absence of caloric restriction Allopurinol was associated with a significant reduction in clinic BP, an increase in the percentage of dippers, and significant weight loss. Larger studies with longer follow-up are needed to confirm our findings.

  1. Crystallization of Mitochondrial Cytochrome Oxidase

    NASA Astrophysics Data System (ADS)

    Ozawa, Takayuki; Tanaka, Masashi; Wakabayashi, Takashi

    1982-12-01

    Cytochrome c oxidase (ferrocytochrome c:oxygen oxidoreductase, EC 1.9.3.1) was purified from beef heart mitochondria. By washing the oxidase with detergent on a hydrophobic interaction column, phospholipids were depleted to the level of 1 mol of cardiolipin per mol of heme a. Hydrophobic impurities and partially denatured oxidase were separated from the intact oxidase on an affinity column with cytochrome c as the specific ligand. The final preparation of the oxidase contained seven distinct polypeptides. The molecular weight of the oxidase was estimated to be 130,000 from its specific heme a and copper content and from the subunit composition. Crystals of the oxidase were obtained by slow removal of the detergent from the buffer in which the oxidase was dissolved. The needle-shaped crystals were 100 μ m in average length and 5 μ m in width, and they strongly polarized visible light. Electron diffraction patterns were obtained with an unstained glutaraldehyde-fixed single crystal by electron microscopy using 1,000-kV electrons. From electron micrographs and the diffraction patterns of the crystal, it was concluded that the crystal is monoclinic in the space group P21, with unit cell dimensions a = 92 angstrom, b = 84 angstrom, and c = 103 angstrom, and α =β 90 degrees, γ = 126 degrees.

  2. Xanthine degradation and related enzyme activities in leaves and fruits of two coffea species differing in caffeine catabolism.

    PubMed

    Vitória, A P; Mazzafera, P

    1999-05-01

    The degradation of xanthine was studied in young and aged leaves and in immature and mature fruits of Coffea arabica and Coffea dewevrei, which differ with respect to caffeine catabolism. Radioisotope feeding experiments showed that leaves degraded xanthine more readily than fruits but that mature fruits and aged leaves were less efficient than younger tissues. In all cases, a significant part of the recovered radioactivity was in the ureides. Xanthine dehydrogenase was characterized as the enzyme responsible for xanthine degradation, and its activity and that of uricase were consistent with the results obtained in the radioisotope feeding experiments. Activities of allantoinase and allantoate amidohydrolase could not be detected. Considerable levels of endogenous allantoin and allantoic acid were found in fruits and leaves. Therefore, ureide accumulation might be a consequence of low enzyme activity. There was no positive correlation between urease activity and the data from the radioisotope feeding experiments.

  3. Uric acid accumulation in an Arabidopsis urate oxidase mutant impairs seedling establishment by blocking peroxisome maintenance.

    PubMed

    Hauck, Oliver K; Scharnberg, Jana; Escobar, Nieves Medina; Wanner, Gerhard; Giavalisco, Patrick; Witte, Claus-Peter

    2014-07-01

    Purine nucleotides can be fully catabolized by plants to recycle nutrients. We have isolated a urate oxidase (uox) mutant of Arabidopsis thaliana that accumulates uric acid in all tissues, especially in the developing embryo. The mutant displays a reduced germination rate and is unable to establish autotrophic growth due to severe inhibition of cotyledon development and nutrient mobilization from the lipid reserves in the cotyledons. The uox mutant phenotype is suppressed in a xanthine dehydrogenase (xdh) uox double mutant, demonstrating that the underlying cause is not the defective purine base catabolism, or the lack of UOX per se, but the elevated uric acid concentration in the embryo. Remarkably, xanthine accumulates to similar levels in the xdh mutant without toxicity. This is paralleled in humans, where hyperuricemia is associated with many diseases whereas xanthinuria is asymptomatic. Searching for the molecular cause of uric acid toxicity, we discovered a local defect of peroxisomes (glyoxysomes) mostly confined to the cotyledons of the mature embryos, which resulted in the accumulation of free fatty acids in dry seeds. The peroxisomal defect explains the developmental phenotypes of the uox mutant, drawing a novel link between uric acid and peroxisome function, which may be relevant beyond plants. PMID:25052714

  4. Superoxide Free Radicals Are Produced in Glyoxysomes 1

    PubMed Central

    Sandalio, Luisa M.; Fernández, Victor M.; Rupérez, Francisco L.; Del Río, Luis A.

    1988-01-01

    The production of superoxide free radicals in pellet and supernatant fractions of glyoxysomes, specialized plant peroxisomes from watermelon (Citrullus vulgaris Schrad.) cotyledons, was investigated. Upon inhibition of the endogenous superoxide dismutase, xanthine, and hypoxanthine induced in glyoxysomal supernatants the generation of O2− radicals and this was inhibited by allopurinol. In glyoxysomal pellets, NADH stimulated the generation of superoxide radicals. Superoxide production by purines was due to xanthine oxidase, which was found predominantly in the matrix of glyoxysomes. The generation of O2− radicals in glyoxysomes by endogenous metabolites suggests new active oxygen-related roles for glyoxysomes, and for peroxisomes in general, in cellular metabolism. PMID:16666081

  5. NADPH Oxidase and Neurodegeneration

    PubMed Central

    Hernandes, Marina S; Britto, Luiz R G

    2012-01-01

    NADPH oxidase (Nox) is a unique, multi-protein, electron transport system that produces large amounts of superoxide via the reduction of molecular oxygen. Nox-derived reactive oxygen species (ROS) are known to be involved in a variety of physiological processes, including host defense and signal transduction. However, over the past decade, the involvement of (Nox)-dependent oxidative stress in the pathophysiology of several neurodegenerative diseases has been increasingly recognized. ROS produced by Nox proteins contribute to neurodegenerative diseases through distinct mechanisms, such as oxidation of DNA, proteins, lipids, amino acids and metals, in addition to activation of redox-sensitive signaling pathways. In this review, we discuss the recent literature on Nox involvement in neurodegeneration, focusing on Parkinson and Alzheimer diseases. PMID:23730256

  6. Synthesis and Analgesic Activity of Annelated Xanthine Derivatives in Experimental Models in Rodents.

    PubMed

    Zygmunt, Małgorzata; Sapa, Jacek; Drabczyńska, Anna; Karcz, Tadeusz; Müller, Christa; Köse, Meryem; Latacz, Gniewomir; Schabikowski, Jakub; Bednarski, Marek; Kieć-Kononowicz, Katarzyna

    2015-10-01

    A series of annelated derivatives of xanthine were synthesized and assayed as potential analgesic agents. All synthesized xanthine derivatives were tested in the writhing test and hot-plate test. The pharmacological assays demonstrated that all the compounds prepared, without exception, displayed a significant activity in the mouse writhing assay. The analgesic action of the most active compounds, expressed as ED50 was found to be 1.4-4.3 times more potent than that of acetylsalicylic acid used as the reference compound. However, only some of the compounds demonstrated analgesic activity in the hot-plate test. The analgesic effect of some compounds is probably related to their agonistic, antagonistic, or partial agonistic activity at the adenosine receptors.

  7. An efficient route to xanthine based A(2A) adenosine receptor antagonists and functional derivatives.

    PubMed

    Labeaume, Paul; Dong, Ma; Sitkovsky, Michail; Jones, Elizabeth V; Thomas, Rhiannon; Sadler, Sara; Kallmerten, Amy E; Jones, Graham B

    2010-09-21

    A one-pot route to 8-substituted xanthines has been developed from 5,6-diaminouracils and carboxaldehydes. Yields are good and the process applicable to a range of substrates including a family of A(2A) adenosine receptor antagonists. A new route to the KW-6002 family of antagonists is presented including a pro-drug variant, and application to related image contrast agents developed.

  8. Design and evaluation of xanthine based adenosine receptor antagonists: Potential hypoxia targeted immunotherapies

    PubMed Central

    Thomas, Rhiannon; Lee, Joslynn; Chevalier, Vincent; Sadler, Sara; Selesniemi, Kaisa; Hatfield, Stephen; Sitkovsky, Michail; Ondrechen, Mary Jo; Jones, Graham B.

    2015-01-01

    Molecular modeling techniques were applied to the design, synthesis and optimization of a new series of xanthine based adenosine A2A receptor antagonists. The optimized lead compound was converted to a PEG derivative and a functional in vitro bioassay used to confirm efficacy. Additionally, the PEGylated version showed enhanced aqueous solubility and was inert to photoisomerization, a known limitation of existing antagonists of this class. PMID:24126093

  9. Mechanism of Substrate and Inhibitor Binding of Rhodobacter Capsulatus Xanthine Dehydrogenase

    SciTech Connect

    Dietzel, U.; Kuper, J; Doebbler, J; Schulte, A; Truglio, J; Leimkuhler, S; Kisker, C

    2009-01-01

    Rhodobacter capsulatus xanthine dehydrogenase (XDH) is an (ae)2 heterotetrameric cytoplasmic enzyme that resembles eukaryotic xanthine oxidoreductases in respect to both amino acid sequence and structural fold. To obtain a detailed understanding of the mechanism of substrate and inhibitor binding at the active site, we solved crystal structures of R. capsulatus XDH in the presence of its substrates hypoxanthine, xanthine, and the inhibitor pterin-6-aldehyde using either the inactive desulfo form of the enzyme or an active site mutant (EB232Q) to prevent substrate turnover. The hypoxanthine- and xanthine-bound structures reveal the orientation of both substrates at the active site and show the importance of residue GluB-232 for substrate positioning. The oxygen atom at the C-6 position of both substrates is oriented toward ArgB-310 in the active site. Thus the substrates bind in an orientation opposite to the one seen in the structure of the reduced enzyme with the inhibitor oxypurinol. The tightness of the substrates in the active site suggests that the intermediate products must exit the binding pocket to allow first the attack of the C-2, followed by oxidation of the C-8 atom to form the final product uric acid. Structural studies of pterin-6-aldehyde, a potent inhibitor of R. capsulatus XDH, contribute further to the understanding of the relative positioning of inhibitors and substrates in the binding pocket. Steady state kinetics reveal a competitive inhibition pattern with a Ki of 103.57 {+-} 18.96 nm for pterin-6-aldehyde.

  10. Interactions of xanthines with activated carbon. I. Kinetics of the adsorption process

    NASA Astrophysics Data System (ADS)

    Navarrete Casas, R.; García Rodriguez, A.; Rey Bueno, F.; Espínola Lara, A.; Valenzuela Calahorro, C.; Navarrete Guijosa, A.

    2006-06-01

    Because of their pharmaceutical and industrial applications, we have studied the adsorption of xanthine derivates (caffeine and theophylline) by activated carbon. To this end, we examined kinetic, equilibrium and thermodynamic aspects of the process. This paper reports the kinetics results. The experimental results indicate that the process was first order in C and the overall process was assumed to involve a single, reversible adsorption-desorption process obeying a kinetic law postulated by us.

  11. Analyzing Xanthine Dehydrogenase Iron-Sulfur Clusters Using Electron Paramagnetic Resonance Spectroscopy

    SciTech Connect

    Hodson, R.

    2004-02-05

    Xanthine dehydrogenase is a metalloenzyme that is present in a variety of eukaryotic and prokaryotic organisms. The oxidation of the xanthine occurs at the molybdenum site, and the catalytic cycle is completed by electron transfer to the iron-sulfur (Fe/S) clusters and finally the flavin, where they are accepted by nicotinamide adenine dinucleotide (NAD). Since the site giving rise to the Fe/S I electron paramagnetic resonance (EPR) signal is thought to be the initial recipient of the electrons from the Mo, we wish to understand which EPR signal is associated with which Fe/S cluster in the structure in order to develop an understanding of the electron flow within the molecule. Samples of xanthine dehydrogenase wild-type and mutant forms were analyzed with EPR spectroscopy techniques at low and high temperatures. The results showed an altered Fe/S I signal along with an unaltered Fe/S II signal. The converted Cysteine, in the mutant, did affect the Fe/S cluster immediately adjacent to it. Therefore, the Fe/S I signal arises from the Fe/S cluster closest to the Mo and immediately adjacent to the mutated amino acid, and the Fe/S II signal must arise from the more distant Fe/S cluster.

  12. Quercetin and Allopurinol Ameliorate Kidney Injury in STZ-Treated Rats with Regulation of Renal NLRP3 Inflammasome Activation and Lipid Accumulation

    PubMed Central

    Zhang, Qing-Yu; Wang, Fu-Meng; Kong, Ling-Dong

    2012-01-01

    Hyperuricemia, hyperlipidemia and inflammation are associated with diabetic nephropathy. The NLRP3 inflammasome-mediated inflammation is recently recognized in the development of kidney injury. Urate and lipid are considered as danger signals in the NLRP3 inflammasome activation. Although dietary flavonoid quercetin and allopurinol alleviate hyperuricemia, dyslipidmia and inflammation, their nephroprotective effects are currently unknown. In this study, we used streptozotocin (STZ)-induced diabetic nephropathy model with hyperuricemia and dyslipidemia in rats, and found over-expression of renal inflammasome components NLRP3, apoptosis-associated speck-like protein and Caspase-1, resulting in elevation of IL-1β and IL-18, with subsequently deteriorated renal injury. These findings demonstrated the possible association between renal NLRP3 inflammasome activation and lipid accumulation to superimpose causes of nephrotoxicity in STZ-treated rats. The treatment of quercetin and allopurinol regulated renal urate transport-related proteins to reduce hyperuricemia, and lipid metabolism-related genes to alleviate kidney lipid accumulation in STZ-treated rats. Furthermore, quercetin and allopurinol were found to suppress renal NLRP3 inflammasome activation, at least partly, via their anti-hyperuricemic and anti-dyslipidemic effects, resulting in the amelioration of STZ-induced the superimposed nephrotoxicity in rats. These results may provide a basis for the prevention of diabetes-associated nephrotoxicity with urate-lowering agents such as quercetin and allopurinol. PMID:22701621

  13. Polyphenols decreased liver NADPH oxidase activity, increased muscle mitochondrial biogenesis and decreased gastrocnemius age-dependent autophagy in aged rats.

    PubMed

    Laurent, Caroline; Chabi, Beatrice; Fouret, Gilles; Py, Guillaume; Sairafi, Badie; Elong, Cecile; Gaillet, Sylvie; Cristol, Jean Paul; Coudray, Charles; Feillet-Coudray, Christine

    2012-09-01

    This study explored major systems of reactive oxygen species (ROS) production and their consequences on oxidative stress, mitochondriogenesis and muscle metabolism in aged rats, and evaluated the efficiency of 30-day oral supplementation with a moderate dose of a red grape polyphenol extract (RGPE) on these parameters. In the liver of aged rats, NADPH oxidase activity was increased and mitochondrial respiratory chain complex activities were altered, while xanthine oxidase activity remained unchanged. In muscles, only mitochondrial activity was modified with aging. The oral intake of RGPE decreased liver NADPH oxidase activity in the aged rats without affecting global oxidative stress, suggesting that NADPH oxidase was probably not the dominant detrimental source of production of O(2)·(-) in the liver. Interestingly, RGPE supplementation increased mitochondrial biogenesis and improved antioxidant status in the gastrocnemius of aged rats, while it had no significant effect in soleus. RGPE supplementation also decreased age-dependent autophagy in gastrocnemius of aged rats. These results extended existing findings on the beneficial effects of RGPE on mitochondriogenesis and muscle metabolism in aged rats.

  14. Indole-3-ethanol Oxidase

    PubMed Central

    Percival, Frank W.; Purves, William K.; Vickery, Larry E.

    1973-01-01

    We report the further characterization of indole-3-ethanol oxidase from cucumber seedlings. The effects of various inhibitors suggest that the enzyme may be a flavoprotein with a metal ion and sulfhydryl groups required for full activity. Indole-3-acetaldehyde, a product of the reaction, inhibits the enzyme. This inhibition is overcome by O2 but not by indole-3-ethanol, indicating that the kinetic mechanism of the enzyme is a ping-pong Bi-Bi. The enzyme undergoes cooperative interactions with indoleethanol, yielding Hill coefficients as high as 2.96. Gibberellins are without effect on the enzyme, but it is inhibited by several acidic indoles possessing growth-promoting activity and by two synthetic auxins, 2,4-dichlorophenoxyacetic acid and 2,4,5-trichlorophenoxyacetic acid. Increasing concentrations of indoleacetic acid (IAA) brought about a slight reduction in the indoleethanol concentration producing halfmaximal velocity. Increasing levels of indoleethanol decreased the concentration of IAA required for half-maximal inhibition. At low concentrations of indoleethanol, low levels of IAA activated rather than inhibited. The effect of IAA was not overcome at higher levels of indoleethanol. These results may be interpreted as showing that IAA is a noncompetitive inhibitor which binds to that conformation of the enzyme which also binds indoleethanol. The significance of these interactions for the regulation of IAA biosynthesis is discussed. PMID:16658401

  15. A prodigiosin analogue inactivates NADPH oxidase in macrophage cells by inhibiting assembly of p47phox and Rac.

    PubMed

    Nakashima, Takuji; Iwashita, Takashi; Fujita, Tsuyoshi; Sato, Emiko; Niwano, Yoshimi; Kohno, Masahiro; Kuwahara, Shunsuke; Harada, Nobuyuki; Takeshita, Satoshi; Oda, Tatsuya

    2008-01-01

    Prodigiosins are natural red pigments that have multi-biological activities. Recently, we discovered a marine bacterial strain, which produces a red pigment. Extensive two-dimensional nuclear magnetic resonance and mass spectrometry analysis showed that the pigment is a prodigiosin analogue (PG-L-1). Here, we investigated the effect of PG-L-1 on NADPH oxidase activity in macrophage cells. PG-L-1 significantly inhibited superoxide anion (O(2)(-)) production by phorbol 12-myristate 13-acetate (PMA)-stimulated RAW 264.7 cells, a mouse macrophage cell line. The ED(50) value was estimated to be approximately 0.3 microM. PG-L-1 had no direct scavenging effect on O(2)(-) generated by hypoxanthine/xanthine oxidase system in electron spin resonance-spin trapping determinations, suggesting that this compound directly acts on the O(2)(-) production system, NADPH oxidase, in macrophage cells. We further investigated the effect of PG-L-1 on the behaviour of the cytosolic components of the NADPH oxidase, p67(phox), p47(phox), p40(phox), Rac and protein kinase C (PKC), in PMA-stimulated RAW 264.7 cells. Although PG-L-1 showed no effect on the activation of PKC, the immunoblotting analysis using specific antibodies showed that PG-L-1 strongly inhibits the association of p47(phox) and Rac in the plasma membrane of PMA-stimulated RAW 264.7 cells. These results suggest that PG-L-1 inactivates NADPH oxidase through the inhibition of the binding of p47(phox) and Rac to the membrane components of NADPH oxidase.

  16. Pterostilbene and allopurinol reduce fructose-induced podocyte oxidative stress and inflammation via microRNA-377.

    PubMed

    Wang, Wei; Ding, Xiao-Qin; Gu, Ting-Ting; Song, Lin; Li, Jian-Mei; Xue, Qiao-Chu; Kong, Ling-Dong

    2015-06-01

    High dietary fructose is an important causative factor in the development of metabolic syndrome-associated glomerular podocyte oxidative stress and injury. Here, we identified microRNA-377 (miR-377) as a biomarker of oxidative stress in renal cortex of fructose-fed rats, which correlated with podocyte injury and albuminuria in metabolic syndrome. Fructose feeding increased miR-377 expression, decreased superoxide dismutase (SOD) expression and activity, and caused O2(-) and H2O2 overproduction in kidney cortex or glomeruli of rats. This reactive oxygen species induction increased p38 MAPK phosphorylation and thioredoxin-interacting protein (TXNIP) expression and activated the NOD-like receptor pyrin domain-containing 3 (NLRP3) inflammasome to produce interleukin-1β in kidney glomeruli of fructose-fed rats. These pathological processes were further evaluated in cultured differentiated podocytes exposed to 5mM fructose, or transfected with miR-377 mimic/inhibitor and TXNIP siRNA, or co-incubated with p38 MAPK inhibitor, demonstrating that miR-377 overexpression activates the O2(-)/p38 MAPK/TXNIP/NLRP3 inflammasome pathway to promote oxidative stress and inflammation in fructose-induced podocyte injury. Antioxidants pterostilbene and allopurinol were found to ameliorate fructose-induced hyperuricemia, podocyte injury, and albuminuria in rats. More importantly, pterostilbene and allopurinol inhibited podocyte miR-377 overexpression to increase SOD1 and SOD2 levels and suppress the O2(-)/p38 MAPK/TXNIP/NLRP3 inflammasome pathway activation in vivo and in vitro, consistent with the reduction of oxidative stress and inflammation. These findings suggest that miR-377 plays an important role in glomerular podocyte oxidative stress, inflammation, and injury driven by high fructose. Inhibition of miR-377 by antioxidants may be a promising therapeutic strategy for the prevention of metabolic syndrome-associated glomerular podocyte injury.

  17. Determination of Xanthine in the Presence of Hypoxanthine by Adsorptive Stripping Voltammetry at the Mercury Film Electrode

    PubMed Central

    Farias, Percio Augusto Mardini; Castro, Arnaldo Aguiar

    2014-01-01

    A stripping method for the determination of xanthine in the presence of hypoxanthine at the submicromolar concentration levels is described. The method is based on controlled adsorptive accumulation at the thin-film mercury electrode followed by a fast linear scan voltammetric measurement of the surface species. Optimum experimental conditions were found to be the use of 1.0 × 10−3 mol L−1 NaOH solution as supporting electrolyte, an accumulation potential of 0.00 V for xanthine and −0.50 V for hypoxanthine–copper, and a linear scan rate of 200 mV second−1. The response of xanthine is linear over the concentration ranges of 20–140 ppb. For an accumulation time of 30 minutes, the detection limit was found to be 36 ppt (2.3 × 10−10 mol L−1). Adequate conditions for measuring the xanthine in the presence of hypoxanthine, copper and other metals, uric acid, and other nitrogenated bases were also investigated. The utility of the method is demonstrated by the presence of xanthine associated with hypoxanthine, uric acid, nitrogenated bases, ATP, and ssDNA. PMID:24940040

  18. Prokaryotic orthologues of mitochondrial alternative oxidase and plastid terminal oxidase.

    PubMed

    McDonald, Allison E; Amirsadeghi, Sasan; Vanlerberghe, Greg C

    2003-12-01

    The mitochondrial alternative oxidase (AOX) and the plastid terminal oxidase (PTOX) are two similar members of the membrane-bound diiron carboxylate group of proteins. AOX is a ubiquinol oxidase present in all higher plants, as well as some algae, fungi, and protists. It may serve to dampen reactive oxygen species generation by the respiratory electron transport chain. PTOX is a plastoquinol oxidase in plants and some algae. It is required in carotenoid biosynthesis and may represent the elusive oxidase in chlororespiration. Recently, prokaryotic orthologues of both AOX and PTOX proteins have appeared in sequence databases. These include PTOX orthologues present in four different cyanobacteria as well as an AOX orthologue in an alpha-proteobacterium. We used PCR, RT-PCR and northern analyses to confirm the presence and expression of the PTOX gene in Anabaena variabilis PCC 7120. An extensive phylogeny of newly found prokaryotic and eukaryotic AOX and PTOX proteins supports the idea that AOX and PTOX represent two distinct groups of proteins that diverged prior to the endosymbiotic events that gave rise to the eukaryotic organelles. Using multiple sequence alignment, we identified residues conserved in all AOX and PTOX proteins. We also provide a scheme to readily distinguish PTOX from AOX proteins based upon differences in amino acid sequence in motifs around the conserved iron-binding residues. Given the presence of PTOX in cyanobacteria, we suggest that this acronym now stand for plastoquinol terminal oxidase. Our results have implications for the photosynthetic and respiratory metabolism of these prokaryotes, as well as for the origin and evolution of eukaryotic AOX and PTOX proteins.

  19. [Alternative oxidase in industrial fungi].

    PubMed

    Gu, Shuai; Liu, Qiang; He, Hao; Li, Shuang

    2015-01-01

    Filamentous fungi have been used in industrial fermentation extensively. Based on non-phosphorylating electron transport process, alternative respiration pathway (ARP) acts as an energy overflow, which can balance carbon metabolism and electron transport, allow the continuance of tricarboxylic acid cycle without the formation of ATP, and permit the turnover of carbon skeletons. Alternative respiration pathway also plays an important role in the stress response of fungi and the physiological function of conditioned pathogen. Alternative oxidase (AOX) is the terminal oxidase responsible for the activity of alternative respiration pathway, which exists widely in higher plants, parts of fungi and algae. Owing to the property that alternative oxidase (AOX) is sensitive to salicylhydroxamic acid (SHAM) and insensitive to conventional inhibitors of cytochrome respiration, alternative respiration pathway by AOX is also named as cyanide-resistant respiration (CRR). In recent years, the study of the alternative respiration pathway and alternative oxidase has been a hot topic in the area involving cellular respiration metabolism. In this review we summarized the latest research advances about the functions of alternative respiration pathway and alternative oxidase in industrial fungi.

  20. Cost-Effectiveness Analysis of HLA-B*5801 Testing in Preventing Allopurinol-Induced SJS/TEN in Thai Population

    PubMed Central

    Saokaew, Surasak; Tassaneeyakul, Wichittra; Maenthaisong, Ratree; Chaiyakunapruk, Nathorn

    2014-01-01

    Background Stevens-Johnson syndrome (SJS) and Toxic Epidermal Necrolysis (TEN), caused by allopurinol therapy, are strongly associated with the human leukocyte antigen (HLA), HLA-B*5801. Identification of HLA-B*5801 genotype before prescribing allopurinol offers the possibility of avoiding allopurinol-induced SJS/TEN. As there is a paucity of evidence about economic value of such testing, this study aims to determine the cost-effectiveness of HLA-B*5801 testing compared with usual care (no genetic testing) before allopurinol administration in Thailand. Methods and Finding A decision analytical and Markov model was used to estimate life time costs and outcomes represented as quality adjusted life years (QALYs) gained. The model was populated with relevant information of the association between gene and allopurinol-induced SJS/TEN, test characteristics, costs, and epidemiologic data for Thailand from a societal perspective. Input data were obtained from the literature and a retrospective database analysis. The results were expressed as incremental cost per QALY gained. A base-case analysis was performed for patients at age 30. A series of sensitivity analyses including scenario, one-way, and probabilistic sensitivity analyses were constructed to explore the robustness of the findings. Based on a hypothetical cohort of 1,000 patients, the incremental total cost was 923,919 THB (USD 29,804) and incremental QALY was 5.89 with an ICER of 156,937.04 THB (USD 5,062) per QALY gained. The cost of gout management, incidence of SJS/TEN, case fatality rate of SJS/TEN, and cost of genetic testing are considered very influential parameters on the cost-effectiveness value of HLA-B*5801 testing. Conclusions The genetic testing for HLA-B*5801 before allopurinol administration is considered a highly potential cost-effective intervention in Thailand. The findings are sensitive to a number of factors. In addition to cost-effectiveness findings, consideration of other factors including

  1. A placebo-controlled study examining the effect of allopurinol on heart rate variability and dysrhythmia counts in chronic heart failure

    PubMed Central

    Shehab, Abdullah M A; Butler, Robert; MacFadyen, Robert J; Struthers, Allan D

    2001-01-01

    Aims Allopurinol improves endothelial function in chronic heart failure by reducing oxidative stress. We wished to explore if such an effect would attenuate autonomic dysfunction in CHF in line with many other effective therapies in CHF. Methods We performed a prospective, randomized, double-blind cross-over study in 16 patients with NYHA Class II-IV chronic heart failure (mean age 67 ± 10 years, 13 male, comparing allopurinol (2 months) at a daily dose of 300 mg (if creatinine < 150 µmol l−1) or 100 mg (if creatinine > 150 µmol l−1) with matched placebo. Mean heart rate and dysrhythmia counts were recorded from 24 h Holter tapes at monthly intervals for 6 months. We assessed autonomic function using standard time domain heart rate variability parameters (HRV): SDNN, SDANN, SDNN index, rMSSD and TI. Results Allopurinol had no significant effect on heart rate variability compared with placebo; the results are expressed as a difference in means ± s.d. with 95% confidence interval (CI) between allopurinol and placebo: SDNN mean=6.5 ± 4.8 ms, P = 0.18 and 95% CI (−3.7, 17); TI mean=−2.1 ± 1.4, P = 0.16 and 95% CI (−5.2, 0.8); SDANN mean=−2.8 ± 7 ms, P = 0.68 and 95% CI (−18, 12); SDNNi mean=2 ± 6.6, P = 0.7 and 95% CI (−12, 16); RMSSD mean=−0.9 ± 2, P = 0.68 and 95% CI (−5.6, 3.7). For mean heart rate the corresponding results were 0.9 ± 1.4, P = 0.5 and 95% CI (−2, 3.8). Log 24 h ventricular ectopic counts (VEC) were 0.032 ± 0.37, P = 0.7 and 95% CI (−0.1, 0.2). Patient compliance with study medication was good since allopurinol showed its expected effect of reducing plasma uric acid (P < 0.001). Conclusions Allopurinol at doses, which are known to reduce oxidative stress appear to have no significant effect on resting autonomic tone, as indicated by time domain heart rate variability or on dysrhythmia count in stable heart failure patients. PMID:11318768

  2. Spectroscopic evidence of xanthine compounds fluorescence quenching effect on water-soluble porphyrins

    NASA Astrophysics Data System (ADS)

    Makarska-Bialokoz, Magdalena

    2015-02-01

    The formation of π-stacked complexes between water-soluble porphyrins: 4,4‧,4″,4″‧-(21H,23H-porphine-5,10,15,20-tetrayl)tetrakis-(benzoic acid) (H2TCPP), 5,10,15,20-tetrakis(4-sulfonatophenyl)-21H,23H-porphine (H2TPPS4), 5,10,15,20-tetrakis[4-(trimethylammonio)phenyl]-21H,23H-porphine tetra-p-tosylate (H2TTMePP), 5,10,15,20-tetrakis(1-methyl-4-pyridyl)-21H,23H-porphine tetra-p-tosylate (H2TMePyP), the Cu(II) complexes of H2TTMePP and H2TMePyP, as well as chlorophyll a with xanthine, theophylline (1,3-dimethylxanthine) and theobromine (3,7-dimethylxanthine) has been studied analysing their absorption and steady-state fluorescence spectra in aqueous (or acetone in case of chlorophyll a) solution. During titration by the compounds from xanthine group the bathochromic effect in the porphyrin absorption spectra as well as the hypochromicity of the porphyrin Soret maximum can be noticed. The fluorescence quenching effect observed during interactions in the systems examined suggests the process of static quenching. The association and fluorescence quenching constants are of the order of magnitude of 103 - 102 mol-1. The results obtained show that xanthine and its derivatives can quench the fluorescence of the porphyrins according to the number of methyl groups in the molecule of quencher.

  3. The management of gout

    PubMed Central

    Rheumatology, Andrew Finch; Rheumatologist, Paul Kubler

    2016-01-01

    SUMMARY Gout is a common inflammatory arthritis that is increasing in prevalence. It is caused by the deposition of urate crystals. Non-steroidal anti-inflammatory drugs, colchicine and corticosteroids are options for the management of acute gout. They are equally efficacious and comorbidities guide the best choice. Allopurinol is an effective treatment for reducing concentrations of uric acid. Renal function guides the starting dose of allopurinol and the baseline serum uric acid concentration guides the maintenance dose. Febuxostat is another xanthine oxidase inhibitor. It is clinically equivalent to allopurinol. Uricosuric drugs, such as probenecid, increase uric acid excretion. New drugs in this class will soon become available and are likely to have a role in the treatment of patients who do not respond to other drugs.

  4. Photoion mass spectroscopy and valence photoionization of hypoxanthine, xanthine and caffeine

    NASA Astrophysics Data System (ADS)

    Feyer, Vitaliy; Plekan, Oksana; Richter, Robert; Coreno, Marcello; Prince, Kevin C.

    2009-03-01

    Photoionization mass spectra of hypoxanthine, xanthine and caffeine were measured using the photoelectron-photoion coincidence technique and noble gas resonance radiation at energies from 8.4 to 21.2 eV for ionization. The fragmentation patterns for these compounds show that hydrogen cyanide is the main neutral loss species at higher photon energies, while photoionization below 16.67 eV led predominantly to the parent ion. The valence photoelectron spectra of this family of molecules were measured over an extended energy range, including the inner C, N and O 2s valence orbitals. The observed ion fragments were related to ionization of the valence orbitals.

  5. Hordeum vulgare Seedlings Amine Oxidase

    PubMed Central

    Cogoni, Antonina; Piras, Carla; Farci, Raffaele; Melis, Antonello; Floris, Giovanni

    1990-01-01

    Although no amine oxidase could be detected in crude extracts, the enzyme has been purified to apparent homogeneity from Hordeum vulgare seedlings using ammonium sulfate precipitation and chromatography on DEAE cellulose, Hydroxylapatite, and Sephadex G200 columns. Gel filtration experiments indicate a molecular weight of about 150,000. The pH optimum of the enzyme was found to be 7.5 in potassium phosphate buffer. The spectrum of ultraviolet and visible regions were similar to Cuamine oxidase from Leguminosae. PMID:16667542

  6. Nicotine- and tar-free cigarette smoke induces cell damage through reactive oxygen species newly generated by PKC-dependent activation of NADPH oxidase.

    PubMed

    Asano, Hiroshi; Horinouchi, Takahiro; Mai, Yosuke; Sawada, Osamu; Fujii, Shunsuke; Nishiya, Tadashi; Minami, Masabumi; Katayama, Takahiro; Iwanaga, Toshihiko; Terada, Koji; Miwa, Soichi

    2012-01-01

    We examined cytotoxic effects of nicotine/tar-free cigarette smoke extract (CSE) on C6 glioma cells. The CSE induced plasma membrane damage (determined by lactate dehydrogenase leakage and propidium iodide uptake) and cell apoptosis {determined by MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] reduction activity and DNA fragmentation}. The cytotoxic activity decayed with a half-life of approximately 2 h at 37°C, and it was abolished by N-acetyl-L-cysteine and reduced glutathione. The membrane damage was prevented by catalase and edaravone (a scavenger of (•)OH) but not by superoxide dismutase, indicating involvement of (•)OH. In contrast, the CSE-induced cell apoptosis was resistant to edaravone and induced by authentic H(2)O(2) or O(2)(-) generated by the xanthine/xanthine oxidase system, indicating involvement of H(2)O(2) or O(2)(-) in cell apoptosis. Diphenyleneiodonium [NADPH oxidase (NOX) inhibitor] and bisindolylmaleimide I [BIS I, protein kinase C (PKC) inhibitor] abolished membrane damage, whereas they partially inhibited apoptosis. These results demonstrate that 1) a stable component(s) in the CSE activates PKC, which stimulates NOX to generate reactive oxygen species (ROS), causing membrane damage and apoptosis; 2) different ROS are responsible for membrane damage and apoptosis; and 3) part of the apoptosis is caused by oxidants independently of PKC and NOX. PMID:22302021

  7. Expression of alternative oxidase in tomato

    SciTech Connect

    Kakefuda, M.; McIntosh, L. )

    1990-05-01

    Tomato fruit ripening is characterized by an increase in ethylene biosynthesis, a burst in respiration (i.e. the climacteric), fruit softening and pigmentation. As whole tomatoes ripened from mature green to red, there was an increase in the alternative oxidase capacity. Aging pink tomato slices for 24 and 48 hrs also showed an increase of alternative oxidase and cytochrome oxidase capacities. Monoclonal antibodies prepared to the Sauromatum guttatum alternative oxidase were used to follow the appearance of alternative oxidase in tomato fruits. There is a corresponding increase in a 36kDa protein with an increase in alternative oxidase capacity. Effects of ethylene and norbornadiene on alternative oxidase capacity were also studied. We are using an alternative oxidase cDNA clone from potato to study the expression of mRNA in ripening and wounded tomatoes to determine if the gene is transcriptionally regulated.

  8. In a double-blind, randomized and placebo-controlled trial, adjuvant allopurinol improved symptoms of mania in in-patients suffering from bipolar disorder.

    PubMed

    Jahangard, Leila; Soroush, Sara; Haghighi, Mohammad; Ghaleiha, Ali; Bajoghli, Hafez; Holsboer-Trachsler, Edith; Brand, Serge

    2014-08-01

    Allopurinol is a drug used primarily to treat hyperuricemia. In patients suffering from acute mania, increased levels of uric acid are observed, and symptom improvements are associated with decreased levels of uric acid. Accordingly, a purinergic dysfunction is plausibly a causative factor in the pathophysiology of mania. The aim of the present study was therefore to investigating whether allopurinol has benefits for patients treated with sodium valproate during acute mania. (Background) A double-blind, placebo-controlled study lasting 4 weeks was performed. The intention-to-treatment population included 57 patients; 50 concluded the study per protocol. Patients suffering from BPD and during acute mania were randomly assigned either to a treatment (sodium valproate 15-20 mg/kg+300 mg allopurinol twice a day) or to a control condition (sodium valproate 15-20 mg/kg+placebo). Experts rated illness severity and illness improvements (Clinical Global impression), and extent of mania via the Young Mania Rating scale. Uric acid levels were assessed at the beginning and end of the study. (Experimental procedures) Compared to the control group, symptoms of mania decreased significantly over time in the treatment group. Uric acid levels declined significantly in the treatment as compared to the control group. Probability of remission after 4 weeks was 23 times higher in the treatment than the control group. Lower uric acid levels after 4 weeks were associated with symptom improvements. (Results) The pattern of results from this double-blind, randomized and placebo-controlled study indicates that adjuvant allopurinol leads to significant improvements in patients suffering from acute mania (Conclusion). PMID:24953766

  9. Isolation and characterization of the Xanthine dehydrogenase gene of the Mediterranean fruit fly, Ceratitis capitata.

    PubMed Central

    Pitts, R J; Zwiebel, L J

    2001-01-01

    Xanthine dehydrogenase (XDH) is a member of the molybdenum hydroxylase family of enzymes catalyzing the oxidation of hypoxanthine and xanthine to uric acid. The enzyme is also required for the production of one of the major Drosophila eye pigments, drosopterin. The XDH gene has been isolated in many species representing a broad cross section of the major groups of living organisms, including the cDNA encoding XDH from the Mediterranean fruit fly Ceratitis capitata (CcXDH) described here. CcXDH is closely related to other insect XDHs and is able to rescue the phenotype of the Drosophila melanogaster XDH mutant, rosy, in germline transformation experiments. A previously identified medfly mutant, termed rosy, whose phenotype is suggestive of a disruption in XDH function, has been examined for possible mutations in the XDH gene. However, we find no direct evidence that a mutation in the CcXDH gene or that a reduction in the CcXDH enzyme activity is present in rosy medflies. Conclusive studies of the nature of the medfly rosy mutant will require rescue by germline transformation of mutant medflies. PMID:11514452

  10. Aldehyde Oxidase Functions as a Superoxide Generating NADH Oxidase: An Important Redox Regulated Pathway of Cellular Oxygen Radical Formation

    PubMed Central

    Kundu, Tapan K.; Velayutham, Murugesan; Zweier, Jay L.

    2012-01-01

    The enzyme aldehyde oxidase (AO) is a member of the molybdenum hydroxylase family that includes xanthine oxidoreductase (XOR); however, its physiological substrates and functions remain unclear. Moreover, little is known about its role in cellular redox stress. Utilizing electron paramagnetic resonance spin trapping we measured the role of AO in the generation of reactive oxygen species (ROS) through the oxidation of NADH, and the effects of inhibitors of AO on NADH-mediated superoxide ( O2•−) generation. NADH was found to be a good substrate for AO with apparent Km and Vmax values of 29μM and 12 nmol min−1 mg−1, respectively. From O2•− generation measurements by cytochrome c reduction the apparent Km and Vmax values of NADH for AO were 11 μM and 15 nmol min−1 mg−1, respectively. With NADH oxidation by AO, ≥65% of the total electron flux led to O2•− generation. Diphenyleneiodonium completely inhibited AO-mediated O2•− production confirming that this occurs at the FAD site. Inhibitors of this NADH-derived O2•− generation were studied with amidone the most potent exerting complete inhibition at 100 μM concentration, while 150 μM menadione, raloxifene or β-estradiol led to 81%, 46% or 26% inhibition, respectively. From the kinetic data, the levels of AO and NADH, O2•− production was estimated to be ~89 and ~4 nM/s in liver and heart, respectively, much higher than that estimated for XOR under similar conditions. Owing to the ubiquitous distribution of NADH, aldehydes, and other endogenous AO substrates, AO is predicted to have an important role in cellular redox stress and related disease pathogenesis. PMID:22404107

  11. Sol-gel SELEX circumventing chemical conjugation of low molecular weight metabolites discovers aptamers selective to xanthine.

    PubMed

    Bae, Hyunjung; Ren, Shuo; Kang, Jeehye; Kim, Minjung; Jiang, Yuanyuan; Jin, Moonsoo M; Min, Irene M; Kim, Soyoun

    2013-12-01

    Sensitive detection of the metabolites indicative of a particular disease contributes to improved therapy outcomes. Developing binding reagents for detection of low molecular weight metabolites is hampered by the difficulty with immobilization of targets through appropriate covalent chemical linkage while ensuring that selected reagents retain specificity to unmodified metabolites. To circumvent chemical modification of targets, we employed sol-gel droplets deposited onto a porous silicon chip to entrap a purine metabolite, xanthine, which was found at lower levels in urine samples from patients with non-Hodgkin lymphoma. By sol-gel SELEX (systematic evolution of ligands by exponential enrichment) against xanthine, specific aptamers (KD ∼ 10 μM) with sensitivity of detection at as low as 1 μM were isolated, which bound to other purine metabolites at more than 100-fold lower affinity. In contrast, we failed to isolate xanthine-specific aptamers when SELEX was performed against xanthine covalently linked to polymer resin. This study demonstrates that the sol-gel platform for entrapping low molecular weight metabolites without chemical modifications can be utilized for SELEX to discover aptamers against clinical metabolite markers for diagnosis application.

  12. Genetic heterogeneity within electrophoretic "alleles" of xanthine dehydrogenase in Drosophila pseudoobscura.

    PubMed

    Singh, R S; Lewontin, R C; Felton, A A

    1976-11-01

    An experimental plan for an exhaustive determination of genic variation at structural gene loci is presented. In the initial steps of this program, 146 isochromosomal lines from 12 geographic populations of D. pseudoobscura were examined for allelic variation of xanthine dehydrogenase by the serial use of 4 different electrophoretic conditions and a head stability test. The 5 criteria revealed a total of 37 allelic classes out of the 146 genomes examined where only 6 had been previously revealed by the usual method of gel electrophoresis. This immense increase in genic variation also showed previously unsuspected population differences between the main part of the species distribution and the isolated population of Bogotá population. The average heterozygosity at the Xdh locus is at least 72% in natural populations. This result, together with the very large number of alleles segregating and the pattern of allelic frequencies, has implications for theories of genetic polymorphism which are discussed.

  13. Acyclic Immucillin Phosphonates. Second-Generation Inhibitors of Plasmodium falciparum Hypoxanthine- Guanine-Xanthine Phosphoribosyltransferase

    SciTech Connect

    Hazelton, Keith Z.; Ho, Meng-Chaio; Cassera, Maria B.; Clinch, Keith; Crump, Douglas R.; Rosario Jr., Irving; Merino, Emilio F.; Almo, Steve C.; Tyler, Peter C.; Schramm, Vern L.

    2012-06-22

    We found that Plasmodium falciparum is the primary cause of deaths from malaria. It is a purine auxotroph and relies on hypoxanthine salvage from the host purine pool. Purine starvation as an antimalarial target has been validated by inhibition of purine nucleoside phosphorylase. Hypoxanthine depletion kills Plasmodium falciparum in cell culture and in Aotus monkey infections. Hypoxanthine-guanine-xanthine phosphoribosyltransferase (HGXPRT) from P. falciparum is required for hypoxanthine salvage by forming inosine 5'-monophosphate, a branchpoint for all purine nucleotide synthesis in the parasite. We present a class of HGXPRT inhibitors, the acyclic immucillin phosphonates (AIPs), and cell permeable AIP prodrugs. The AIPs are simple, potent, selective, and biologically stable inhibitors. The AIP prodrugs block proliferation of cultured parasites by inhibiting the incorporation of hypoxanthine into the parasite nucleotide pool and validates HGXPRT as a target in malaria.

  14. Analysis of DHE-derived oxidation products by HPLC in the assessment of superoxide production and NADPH oxidase activity in vascular systems.

    PubMed

    Fernandes, Denise C; Wosniak, João; Pescatore, Luciana A; Bertoline, Maria A; Liberman, Marcel; Laurindo, Francisco R M; Santos, Célio X C

    2007-01-01

    Dihydroethidium (DHE) is a widely used sensitive superoxide (O2(*-)) probe. However, DHE oxidation yields at least two fluorescent products, 2-hydroxyethidium (EOH), known to be more specific for O2(*-), and the less-specific product ethidium. We validated HPLC methods to allow quantification of DHE products in usual vascular experimental situations. Studies in vitro showed that xanthine/xanthine oxidase, and to a lesser degree peroxynitrite/carbon dioxide system led to EOH and ethidium formation. Peroxidase/H2O2 but not H2O2 alone yielded ethidium as the main product. In vascular smooth muscle cells incubated with ANG II (100 nM, 4 h), we showed a 60% increase in EOH/DHE ratio, prevented by PEG-SOD or SOD1 overexpression. We further validated a novel DHE-based NADPH oxidase assay in vascular smooth muscle cell membrane fractions, showing that EOH was uniquely increased after ANG II. This assay was also adapted to a fluorescence microplate reader, providing results in line with HPLC results. In injured artery slices, shown to exhibit increased DHE-derived fluorescence at microscopy, there was approximately 1.5- to 2-fold increase in EOH/DHE and ethidium/DHE ratios after injury, and PEG-SOD inhibited only EOH formation. We found that the amount of ethidium product and EOH/ethidium ratios are influenced by factors such as cell density and ambient light. In addition, we indirectly disclosed potential roles of heme groups and peroxidase activity in ethidium generation. Thus HPLC analysis of DHE-derived oxidation products can improve assessment of O2(*-) production or NADPH oxidase activity in many vascular experimental studies.

  15. Xanthine effects on renal proximal tubular function and cyclic AMP metabolism.

    PubMed

    Coulson, R; Scheinman, S J

    1989-02-01

    We evaluated the renal effects of xanthines using two in vitro models: the isolated perfused rat kidney (IPRK) and cultured opossum kidney (OK) cells, a continuous cell line that resembles proximal tubule and responds to parathyroid hormone (PTH). 1,3-Diethyl-8-phenylxanthine (DPX) a potent adenosine receptor antagonist, increased urine volume, glomerular filtration rate, vascular resistance and the fractional excretions of Na, K, Ca and Pi in the IPRK. DPX lowered the Na-dependent uptake of Pi by OK cells. By comparison enprofylline, 3-propylxanthine (ENP), a weak adenosine receptor antagonist, produced a slight elevation in glomerular filtration rate but no changes in electrolyte excretion by IPRK or Pi uptake by OK cells. Both DPX and ENP produced negligible elevations in basal IPRK cAMP. A 1-nM bolus of PTH elevated urinary and perfusate cAMP 50- and 10-fold, respectively. PTH-elevated urinary and perfusate cAMP were augmented further 4- to 7-fold with DPX and 3- to 4-fold with ENP (All IPRK experiments used 50 microM xanthine). OK cells produced a 2-fold cAMP response to 10 nM PTH alone. OK cells treated with 50 microM DPX exhibited no increase in basal but a 13-fold increase in PTH-stimulated cell cAMP. The rank order of potency at 50 microM to augment OK cell cAMP with 10 nM PTH was DPX greater than 1,3-dipropyl-8-cyclopentylxanthine (DPC) greater than 1-methyl-3-isobutylxanthine greater than theobromine greater than theophylline greater than caffeine greater than ENP = no effect.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2537403

  16. Incorporation of copper into lysyl oxidase.

    PubMed

    Kosonen, T; Uriu-Hare, J Y; Clegg, M S; Keen, C L; Rucker, R B

    1997-10-01

    Lysyl oxidase is a copper-dependent enzyme involved in extracellular processing of collagens and elastin. Although it is known that copper is essential for the functional activity of the enzyme, there is little information on the incorporation of copper. In the present study we examined the insertion of copper into lysyl oxidase using 67Cu in cell-free transcription/translation assays and in normal skin fibroblast culture systems. When a full-length lysyl oxidase cDNA was used as a template for transcription/translation reactions in vitro, unprocessed prolysyl oxidase appeared to bind copper. To examine further the post-translational incorporation of copper into lysyl oxidase, confluent skin fibroblasts were incubated with inhibitors of protein synthesis (cycloheximide, 10 microg/ml), glycosylation (tunicamycin, 10 microg/ml), protein secretion (brefeldin A, 10 microg/ml) and prolysyl oxidase processing (procollagen C-peptidase inhibitor, 2.5 microg/ml) together with 300 microCi of carrier-free 67Cu. It was observed that protein synthesis was a prerequisite for copper incorporation, but inhibition of glycosylation by tunicamycin did not affect the secretion of 67Cu as lysyl oxidase. Brefeldin A inhibited the secretion of 67Ci-labelled lysyl oxidase by 46%, but the intracellular incorporation of copper into lysyl oxidase was not affected. In addition, the inhibition of the extracellular proteolytic processing of prolysyl oxidase to lysyl oxidase had minimal effects on the secretion of protein-bound 67Cu. Our results indicate that, similar to caeruloplasmin processing [Sato and Gitlin (1991) J. Biol. Chem. 266, 5128-5134], copper is inserted into prolysyl oxidase independently of glycosylation. PMID:9355764

  17. Oxipurinol: alloxanthine, Oxyprim, oxypurinol.

    PubMed

    2004-01-01

    Oxipurinol [alloxanthine, Oxyprim, oxypurinol] is the active metabolite of the only commercially available xanthine oxidase inhibitor, allopurinol. Oxipurinol is also a xanthine oxidase inhibitor. Oxipurinol is currently being developed by Cardiome Pharma. It is waiting for approval in the US for the treatment of allopurinol-intolerant hyperuricaemia (gout) and is in phase III trials for the treatment of congestive heart failure. Allopurinol is indicated for the treatment of symptomatic hyperuricaemia, or gout. Approximately 3-5% of patients receiving allopurinol develop intolerance to the drug. Oxipurinol was originally developed by Burroughs Wellcome (later GlaxoSmithKline), and has been available on a compassionate-use basis since 1967 for use in allopurinol-intolerant patients. The licensee company ILEX Oncology has stated that oxipurinol does not have patent protection. Oxipurinol's potential for treatment of congestive heart failure is based on the possibility that xanthine oxidase inhibitors may improve myocardial work efficiency by sensitising cardiac muscle cells to calcium ions, which are a key determinant of cardiac muscle function. This results in more efficient contraction of cardiac muscle cells, without the same increase in oxygen demand. At the second annual BioPartnering North America conference (BPN-2004) [February 2004, Vancouver, Canada], Cardiome Pharma stated that it was seeking a commercialisation partner to market and distribute oxipurinol in the US for the treatment of allopurinol-intolerant hyperuricaemia. In 1995, ILEX Oncology obtained an exclusive licence to oxipurinol from Burroughs Wellcome. Burroughs Wellcome later became part of Glaxo Wellcome, which merged with SmithKline Beecham in December 2000 to form GlaxoSmithKline. ILEX's licence agreement is now with GlaxoSmithKline and The Wellcome Foundation. In December 2001, ILEX granted Paralex, a privately held New York-based company, an exclusive sublicence to all of ILEX's rights to

  18. Allopurinol ameliorates thioacetamide-induced acute liver failure by regulating cellular redox-sensitive transcription factors in rats.

    PubMed

    Demirel, Ulvi; Yalniz, Mehmet; Aygün, Cem; Orhan, Cemal; Tuzcu, Mehmet; Sahin, Kazim; Ozercan, Ibrahim Hanifi; Bahçecioğlu, Ibrahim Halil

    2012-08-01

    Oxidative stress plays important role in the development of acute liver failure. In this study, we investigated effects of allopurinol (AP) upon thioacetamide (TAA)-induced liver injury and the potential mechanisms leading to amelioration in inflammation with AP treatment. Acute liver failure was induced by intraperitoneal administration of TAA (300 mg/kg/day for 2 days). Thirty-five rats were divided into five groups as control (group 1), TAA (group 2), TAA + 25AP (group 3), TAA + 50 AP (group 4), and TAA + 100AP (group 5). The number of animals in each group was seven. At the end of the study, histopathological, biochemical, and western blot analysis were done. TAA treatment significantly increased serum levels of aminotransferases, liver malondialdehyde (MDA), nuclear factor-kappa B (NF-қB ), activator protein-1 (AP-1), tumor necrosis factor-alpha (TNF-α), cyclooxygenase-2 (COX-2) and interleukin-6 (IL-6) levels, and the necro-inflammation scores. Nevertheless, nuclear factor E2-related factor-2 and heme oxygenase-1 (HO-1) expressions in the liver were decreased by TAA. AP treatment significantly lowered the serum levels of aminotransferases (P < 0.01) and liver MDA, NF-κB, AP-1, TNF-α, COX-2, and IL-6 expressions (P < 0.05). Moreover, AP restored the liver Nrf2 and HO-1 expressions and improved the necro-inflammation scores significantly. AP improves oxidative stress-induced liver damage by regulating cellular redox-sensitive transcriptor factors and expression of pro-inflammatory and antioxidant defense mechanisms. AP probably exerts these beneficiary features by its free radical scavenging ability in a dose-dependent manner.

  19. Monoamine Oxidase Inhibitors: Clinical Review

    PubMed Central

    Remick, Ronald A.; Froese, Colleen

    1990-01-01

    Monoamine oxidase inhibitors (MAOIs) are effective antidepressant agents. They are increasingly and effectively used in a number of other psychiatric and non-psychiatric medical syndromes. Their potential for serious toxicity (i.e., hypertensive reaction) is far less than original reports suggest, and newer reversible substrate-specific MAOIs may offer even less toxicity. The author reviews the pharmacology, mechanism of action, clinical indications, and dosing strategies of MAOIs. The common MAOI side-effects (hypotension, weight gain, sexual dysfunction, insomnia, daytime sedation, myoclonus, and hypertensive episodes) are described and management techniques suggested. Recent clinical developments involving MAOIs are outlined. PMID:21233984

  20. Glucose oxidase activity of actinomycetes.

    PubMed

    St Vlahov, S

    1978-01-01

    The ability of 311 actiomycete, belonging to 12 species to produce glucose oxidase was studied. It was found that 174 of them formed exoenzymes on solid medium and 133 in liquid medium. The composition of the nutrient medium has an essential effect on the amount of enzyme formed. Strains with considerably higher activity form a greater amount of exoenzymes on soya meal medium and on synthetic medium with KNO2. The highest activity of the culture liquid of some strains was observed between the 6th and 7th day of cultivation. During this phase of growth the highest productivity of the biomas was established. PMID:76424

  1. Febuxostat: a review of its use in the treatment of hyperuricaemia in patients with gout.

    PubMed

    Frampton, James E

    2015-03-01

    Febuxostat (Adenuric(®), Uloric(®), Feburic(®)) is an orally-active, potent, non-purine, selective xanthine oxidase inhibitor. In the EU, it is indicated in adults for the treatment of chronic hyperuricaemia in conditions where urate deposition has already occurred. Unlike allopurinol, the prototypical xanthine oxidase inhibitor that is the cornerstone therapy for chronic gout, febuxostat does not require dosage adjustment in patients with mild or moderate renal impairment. In randomized, double-blind studies, 6-12 months' treatment with febuxostat at dosages approved for use in the EU (80 and 120 mg/day) was significantly more effective in lowering serum uric acid (sUA) levels in patients with hyperuricaemia and gout than allopurinol at dosages commonly prescribed in practice (100-300 mg/day); febuxostat demonstrated greater urate-lowering efficacy than allopurinol in patients with renal impairment. In open-label extension studies, 3-5 years' treatment with febuxostat maintained a target sUA level of <6.0 mg/dL in most patients; sustained reduction in sUA level was associated with near elimination of gout flares and improved tophus status. Febuxostat therapy was generally well tolerated during clinical development; frequently reported adverse events included liver function abnormalities, diarrhoea and rash. Cardiovascular (CV) events were the most common serious adverse events; the comparative safety of febuxostat and allopurinol is being examined further in large, ongoing trials in patients with gout who already have, or are at risk of developing, CV disease. In conclusion, febuxostat is a well established antihyperuricaemic agent that provides an effective alternative to allopurinol for the management of chronic gout.

  2. Characterization of the Iron-Sulfur Clusters in Xanthine Dehydrogenase Using Electron Paramagnetic Resonance Spectroscopy and Magnetic Coupling Interactions

    SciTech Connect

    Scott, J. Robert

    2004-02-04

    Xanthine dehydrogenase is a metalloenzyme that is present in numerous eukaryotic and prokaryotic organisms. It contains molybdenum, two different iron-sulfur clusters, and flavin. While the structures of both iron-sulfur clusters were known, it was unclear as to which structure was in which location. Electron paramagnetic resonance spectroscopy probes the paramagnetic qualities of molecules or ions. With this technology we wished to understand which EPR spectrum was associated with which iron-sulfur cluster by looking at magnetic coupling between the paramagnetic Mo(V) oxidation state and the reduced iron-sulfur clusters. We then assigned the clusters to their corresponding locations. The spin-spin interactions observed between Mo(V) and Fe-S I in xanthine dehydrogenase at low temperature show that Fe-S I is the closer site in contrast to Fe-S II.

  3. Mitochondrial Cytochrome c Oxidase Deficiency

    PubMed Central

    Rak, Malgorzata; Bénit, Paule; Chrétien, Dominique; Bouchereau, Juliette; Schiff, Manuel; El-Khoury, Riyad; Tzagoloff, Alexander; Rustin, Pierre

    2016-01-01

    As with other mitochondrial respiratory chain components, marked clinical and genetic heterogeneity is observed in patients with a cytochrome c oxidase deficiency. This constitutes a considerable diagnostic challenge and raises a number of puzzling questions. So far, pathological mutations have been reported in more than 30 genes, in both mitochondrial and nuclear DNA, affecting either structural subunits of the enzyme or proteins involved in its biogenesis. In this review, we discuss the possible causes of the discrepancy between the spectacular advances made in the identification of the molecular bases of cytochrome oxidase deficiency and the lack of any efficient treatment in diseases resulting from such deficiencies. This brings back many unsolved questions related to the frequent delay of clinical manifestation, variable course and severity, and tissue-involvement often associated with these diseases. In this context, we stress the importance to study different models of these diseases, but also discuss the limitations encountered in most available disease models. In the future, with the possible exception of replacement therapy using genes, cells or organs, a better understanding of underlying mechanism(s) of these mitochondrial diseases is presumably required to develop efficient therapy. PMID:26846578

  4. Effects of anthocyanins from purple sweet potato (Ipomoea batatas L. cultivar Eshu No. 8) on the serum uric acid level and xanthine oxidase activity in hyperuricemic mice.

    PubMed

    Zhang, Zi-Cheng; Su, Guan-Hua; Luo, Chun-Li; Pang, Ya-Lu; Wang, Lin; Li, Xing; Wen, Jia-Hao; Zhang, Jiu-Liang

    2015-09-01

    This study was aimed at evaluating the hypouricemic effect of the anthocyanin-rich purple sweet potato extract (APSPE). In vitro, APSPE has been proved to significantly inhibit XO activity in a dose-dependent manner. In vivo, APSPE could not only inhibit the XO activity in mouse liver, but also reduce the serum uric acid level in hyperuricemic mice and affect the expression of mRNA levels of related renal transporters, such as mURAT1, mGLUT9, mOAT1 and mOCTN2. Moreover, APSPE could effectively regulate BUN and Cr levels to normal and decrease the inflammatory cellular influx in the tubule of the hyperuricemic mice. This study indicates the potential clinical utility of APSPE as a safe and effective anti-hyperuricemia bioactive agent or functional food. PMID:26201407

  5. Effects of anthocyanins from purple sweet potato (Ipomoea batatas L. cultivar Eshu No. 8) on the serum uric acid level and xanthine oxidase activity in hyperuricemic mice.

    PubMed

    Zhang, Zi-Cheng; Su, Guan-Hua; Luo, Chun-Li; Pang, Ya-Lu; Wang, Lin; Li, Xing; Wen, Jia-Hao; Zhang, Jiu-Liang

    2015-09-01

    This study was aimed at evaluating the hypouricemic effect of the anthocyanin-rich purple sweet potato extract (APSPE). In vitro, APSPE has been proved to significantly inhibit XO activity in a dose-dependent manner. In vivo, APSPE could not only inhibit the XO activity in mouse liver, but also reduce the serum uric acid level in hyperuricemic mice and affect the expression of mRNA levels of related renal transporters, such as mURAT1, mGLUT9, mOAT1 and mOCTN2. Moreover, APSPE could effectively regulate BUN and Cr levels to normal and decrease the inflammatory cellular influx in the tubule of the hyperuricemic mice. This study indicates the potential clinical utility of APSPE as a safe and effective anti-hyperuricemia bioactive agent or functional food.

  6. Miracle Fruit (Synsepalum dulcificum) Exhibits as a Novel Anti-Hyperuricaemia Agent.

    PubMed

    Shi, Yeu-Ching; Lin, Kai-Sian; Jhai, Yi-Fen; Lee, Bao-Hong; Han, Yifan; Cui, Zhibin; Hsu, Wei-Hsuan; Wu, She-Ching

    2016-01-01

    Miracle fruit (Synsepalum dulcificum) belongs to the Sapotaceae family. It can change flavors on taste buds, transforming acidic tastes to sweet. We evaluated various miracle fruit extracts, including water, butanol, ethyl acetate (EA), and hexane fractions, to determine its antioxidant effects. These extracts isolated from miracle fruit exerted potential for reduction of uric acid and inhibited xanthine oxidase activity in vitro and in monosodiumurate (MSU)-treated RAW264.7 macrophages. Moreover, we also found that the butanol extracts of miracle fruit attenuated oxonic acid potassium salt-induced hyperuricaemia in ICR mice by lowering serum uric acid levels and activating hepatic xanthine oxidase. These effects were equal to those of allopurinol, suggesting that the butanol extract of miracle fruit could be developed as a novel anti-hyperuricaemia agent or health food. PMID:26821007

  7. Miracle Fruit (Synsepalum dulcificum) Exhibits as a Novel Anti-Hyperuricaemia Agent.

    PubMed

    Shi, Yeu-Ching; Lin, Kai-Sian; Jhai, Yi-Fen; Lee, Bao-Hong; Han, Yifan; Cui, Zhibin; Hsu, Wei-Hsuan; Wu, She-Ching

    2016-01-26

    Miracle fruit (Synsepalum dulcificum) belongs to the Sapotaceae family. It can change flavors on taste buds, transforming acidic tastes to sweet. We evaluated various miracle fruit extracts, including water, butanol, ethyl acetate (EA), and hexane fractions, to determine its antioxidant effects. These extracts isolated from miracle fruit exerted potential for reduction of uric acid and inhibited xanthine oxidase activity in vitro and in monosodiumurate (MSU)-treated RAW264.7 macrophages. Moreover, we also found that the butanol extracts of miracle fruit attenuated oxonic acid potassium salt-induced hyperuricaemia in ICR mice by lowering serum uric acid levels and activating hepatic xanthine oxidase. These effects were equal to those of allopurinol, suggesting that the butanol extract of miracle fruit could be developed as a novel anti-hyperuricaemia agent or health food.

  8. Effect of 4-hydroxypyrazolo (3,4-D) pyrimidine (allopurinol) on post-irradiation cerebral blood flow: implications of free-radical involvement

    SciTech Connect

    Cockerham, L.G.; Arroyo, C.M.; Hampton, J.D.

    1988-01-01

    Early transient incapacitation (ETI) is the complete cessation of motor performance, occurring transiently and within the first 30 min following exposure to supralethal doses of ionizing irradiation. Studies have reported severe decreases in regional cerebral blood flow (rCBF) in primates at the same postirradiation time after receiving supralethal doses of gamma irradiation. One study demonstrated a dramatic fall of total cerebral blood flow following a single, 25-Gy, Co exposure. Free radical interactions have been implicated in a large number of pathological conditions including irradiation injury, ischemia, microvascular injury, and cell membrane damage. The triphasic cerebral ischemic response seen after irradiation may be even more damaging than complete ischemia since reperfusion may lead to the formation of additional free radicals. A possible mode of pharmacologic intervention may be the introduction of superoxide dismutase or allopurinol since both were used to attenuate the biochemical and functional damage usually associated with free-radical production. This study was designed to determine whether the inhibition of free radical formation via the preirradiation administration of allopurinol would be successful in altering the postirradiation hypotension and reduced rCBF. The hippocampus and the hypothalamus, were selected for the determination of blood flow in this study since a dramatic, postirradiation decrease in blood flow has been reported in these areas.

  9. Discovery of GSK2795039, a Novel Small Molecule NADPH Oxidase 2 Inhibitor

    PubMed Central

    Hirano, Kazufumi; Chen, Woei Shin; Chueng, Adeline L.W.; Dunne, Angela A.; Seredenina, Tamara; Filippova, Aleksandra; Ramachandran, Sumitra; Bridges, Angela; Chaudry, Laiq; Pettman, Gary; Allan, Craig; Duncan, Sarah; Lee, Kiew Ching; Lim, Jean; Ma, May Thu; Ong, Agnes B.; Ye, Nicole Y.; Nasir, Shabina; Mulyanidewi, Sri; Aw, Chiu Cheong; Oon, Pamela P.; Liao, Shihua; Li, Dizheng; Johns, Douglas G.; Miller, Neil D.; Davies, Ceri H.; Browne, Edward R.; Matsuoka, Yasuji; Chen, Deborah W.; Jaquet, Vincent

    2015-01-01

    Abstract Aims: The NADPH oxidase (NOX) family of enzymes catalyzes the formation of reactive oxygen species (ROS). NOX enzymes not only have a key role in a variety of physiological processes but also contribute to oxidative stress in certain disease states. To date, while numerous small molecule inhibitors have been reported (in particular for NOX2), none have demonstrated inhibitory activity in vivo. As such, there is a need for the identification of improved NOX inhibitors to enable further evaluation of the biological functions of NOX enzymes in vivo as well as the therapeutic potential of NOX inhibition. In this study, both the in vitro and in vivo pharmacological profiles of GSK2795039, a novel NOX2 inhibitor, were characterized in comparison with other published NOX inhibitors. Results: GSK2795039 inhibited both the formation of ROS and the utilization of the enzyme substrates, NADPH and oxygen, in a variety of semirecombinant cell-free and cell-based NOX2 assays. It inhibited NOX2 in an NADPH competitive manner and was selective over other NOX isoforms, xanthine oxidase, and endothelial nitric oxide synthase enzymes. Following systemic administration in mice, GSK2795039 abolished the production of ROS by activated NOX2 enzyme in a paw inflammation model. Furthermore, GSK2795039 showed activity in a murine model of acute pancreatitis, reducing the levels of serum amylase triggered by systemic injection of cerulein. Innovation and Conclusions: GSK2795039 is a novel NOX2 inhibitor that is the first small molecule to demonstrate inhibition of the NOX2 enzyme in vivo. Antioxid. Redox Signal. 23, 358–374. PMID:26135714

  10. A Novel Reaction Mediated by Human Aldehyde Oxidase: Amide Hydrolysis of GDC-0834

    PubMed Central

    Wong, Susan; Kirkpatrick, Donald S.; Liu, Lichuan; Khojasteh, S. Cyrus; Hop, Cornelis E. C. A.; Barr, John T.; Jones, Jeffrey P.; Halladay, Jason S.

    2015-01-01

    GDC-0834, a Bruton’s tyrosine kinase inhibitor investigated as a potential treatment of rheumatoid arthritis, was previously reported to be extensively metabolized by amide hydrolysis such that no measurable levels of this compound were detected in human circulation after oral administration. In vitro studies in human liver cytosol determined that GDC-0834 (R)-N-(3-(6-(4-(1,4-dimethyl-3-oxopiperazin-2-yl)phenylamino)-4-methyl-5-oxo- 4,5-dihydropyrazin-2-yl)-2-methylphenyl)-4,5,6,7-tetrahydrobenzo[b] thiophene-2-carboxamide) was rapidly hydrolyzed with a CLint of 0.511 ml/min per milligram of protein. Aldehyde oxidase (AO) and carboxylesterase (CES) were putatively identified as the enzymes responsible after cytosolic fractionation and mass spectrometry-proteomics analysis of the enzymatically active fractions. Results were confirmed by a series of kinetic experiments with inhibitors of AO, CES, and xanthine oxidase (XO), which implicated AO and CES, but not XO, as mediating GDC-0834 amide hydrolysis. Further supporting the interaction between GDC-0834 and AO, GDC-0834 was shown to be a potent reversible inhibitor of six known AO substrates with IC50 values ranging from 0.86 to 1.87 μM. Additionally, in silico modeling studies suggest that GDC-0834 is capable of binding in the active site of AO with the amide bond of GDC-0834 near the molybdenum cofactor (MoCo), orientated in such a way to enable potential nucleophilic attack on the carbonyl of the amide bond by the hydroxyl of MoCo. Together, the in vitro and in silico results suggest the involvement of AO in the amide hydrolysis of GDC-0834. PMID:25845827

  11. NADPH oxidase inhibition ameliorates Trypanosoma cruzi-induced myocarditis during Chagas disease

    PubMed Central

    Dhiman, Monisha; Garg, Nisha Jain

    2015-01-01

    Trypanosoma cruzi, the aetiological agent of Chagas disease, invades nucleated mammalian cells including macrophages. In this study, we investigated the crosstalk between T. cruzi-induced immune activation of reactive oxygen species (ROS) and pro-inflammatory responses, and their role in myocardial pathology. Splenocytes of infected mice (C3H/HeN) responded to Tc-antigenic stimulus by more than a two-fold increase in NADPH oxidase (NOX) activity, ROS generation, cytokine production (IFN-γ > IL-4 > TNFα > IL1-β ≈ IL6), and predominant expansion of CD4+ and CD8+ T cells. Inhibition of NOX, but not of myeloperoxidase and xanthine oxidase, controlled the ROS (>98%) and cytokine (70–89%) release by Tc-stimulated splenocytes of infected mice. Treatment of infected mice with apocynin (NOX inhibitor) in drinking water resulted in a 50–90% decline in endogenous NOX/ROS and cytokine levels, and splenic phagocytes’ proliferation. The splenic percentage of T cells was maintained, though more than a 40% decline in splenic index (spleen weight/body weight) indicated decreased T-cell proliferation in apocynin-treated/infected mice. The blood and tissue parasite burden were significantly increased in apocynin-treated/infected mice, yet acute myocarditis, ie inflammatory infiltrate consisting of macrophages, neutrophils, and CD8+ T cells, and tissue oxidative adducts (eg 8-isoprostanes, 3-nitrotyrosine, and 4-hydroxynonenal) were diminished in apocynin-treated/infected mice. Consequently, hypertrophy (increased cardiomyocytes’ size and β-MHC, BNP, and ANP mRNA levels) and fibrosis (increased collagen, glycosaminoglycans, and lipid contents) of the heart during the chronic phase were controlled in apocynin-treated mice. We conclude that NOX/ROS is a critical regulator of the splenic response (phagocytes, T cells, and cytokines) to T. cruzi infection, and bystander effects of heart-infiltrating phagocytes and CD8+ T cells resulting in cardiac remodelling in chagasic

  12. Study on inclusion complex of cyclodextrin with methyl xanthine derivatives by fluorimetry

    NASA Astrophysics Data System (ADS)

    Wei, Yan-Li; Ding, Li-Hua; Dong, Chuan; Niu, Wei-Ping; Shuang, Shao-Min

    2003-10-01

    The inclusion complexes of β-cyclodextrin (β-CD) and HP-β-cyclodextrin (HP-β-CD) with caffeine, theophylline and theobromine were investigated by fluorimetry. Various factors affecting the formation of inclusion complexes were discussed in detail including forming time, pH effect and temperature. The results indicate that inclusion process was affected seriously by laying time and pH. The forming time of β-CD inclusion complexes is much longer than that of HP-β-CD. The optimum pH range is about 7-12 for caffeine, 8-10 for TP, 10.5-12 for TB. The intensities of their fluorescence increase with the decreasing of temperature. Their maximum excitation wavelengths are all in the range of 280-290 nm. The emission wavelength of caffeine and theophylline are both in the range of 340-360 nm, and that of theobromine is about 325 nm. The fluorescence signals are intensified with the increasing concentration of CD. The stoichiometry of the inclusion complexes of CD with these three methyl xanthine derivatives are all 1:1 and the formation constant are all calculated.

  13. [A study on inclusion complexes of cyclodextrin with three anticancer xanthines by fluorescence].

    PubMed

    Wei, Yan-li; Dong, Chuan

    2004-07-01

    The inclusion complexes of beta-Cyclodextrin (beta-CD) and HP-beta-Cyclodextrin (HP-beta-CD) with 6-Mercaptopurine (6-MP), Azathioprine (BAN) and 8-Azaguanine (Azan) were investigated by fluorescence. Various factors affecting the formation of inclusion complexes were discussed in detail including formation time and pH effect. The formation constants of their inclusion complexes were determined. The results indicated that their inclusion was affected significantly by laying time and pH. The formation time of beta-CD inclusion complexes is much longer than that of HP-beta-CD. The optimum pH is about pH = 7.7-12. Their maximum excitation wavelengths are all in the range of 276-285 nm and the maximum emission wavelengths are all in the range of 328-353 nm. The fluorescence signals are intensified with increasing concentration of CD. The stoichiometries of the inclusion complexes of CD with these three anticancer xanthines are all 1:1 and the formation constants are calculated.

  14. Determination of Flavonoids, Phenolic Acids, and Xanthines in Mate Tea (Ilex paraguariensis St.-Hil.)

    PubMed Central

    Bojić, Mirza; Simon Haas, Vicente; Maleš, Željan

    2013-01-01

    Raw material, different formulations of foods, and dietary supplements of mate demands control of the content of bioactive substances for which high performance thin layer chromatography (TLC), described here, presents simple and rapid approach for detections as well as quantification. Using TLC densitometry, the following bioactive compounds were identified and quantified: chlorogenic acid (2.1 mg/g), caffeic acid (1.5 mg/g), rutin (5.2 mg/g), quercetin (2.2 mg/g), and kaempferol (4.5 mg/g). The results obtained with TLC densitometry for caffeine (5.4 mg/g) and theobromine (2.7 mg/g) show no statistical difference to the content of total xanthines (7.6 mg/g) obtained by UV-Vis spectrophotometry. Thus, TLC remains a technique of choice for simple and rapid analysis of great number of samples as well as a primary screening technique in plant analysis. PMID:23841023

  15. Xanthine microsensor based on polypyrrole molecularly imprinted film modified carbon fiber microelectrodes.

    PubMed

    Liu, Bin; Wang, Xiao-Li; Lian, Hui-Ting; Sun, Xiang-Ying

    2013-09-15

    A molecularly imprinted polymers (MIPs) microsensor was presented as a carbon fiber microelectrode (CFME) coating for specifically recognizing xanthine (Xan). The polymeric film was obtained based on the imprinted procedure of electropolymerization of pyrrole in the presence of the template molecule Xan by cyclic voltammetry, and template was removed by magnetic stirring. Under the optimum conditions, a satisfactory molecularly binding selectivity of Xan was obtained from the MIPs microsensor with an imprinting factor (IF) of 6.63 and a linear response to concentration in certain ranges. The ranges are from 4.0 × 10⁻⁶ to 6.0 × 10⁻⁵ M and from 8.0 × 10⁻⁵ to 2.0 × 10⁻³ M with a detection limit of 2.5 × 10⁻⁷ M. Meanwhile, good stability (relative standard deviation [RSD] = 3.2%, n = 10) and reproducibility (RSD = 2.0%, n = 10) were observed, and recoveries ranging from 96.9 to 102.5% were calculated when applied to Xan determination in real blood serum samples.

  16. Rapid and sensitive gas-chromatographic determination of caffeine in blood plasma, saliva, and xanthine beverages.

    PubMed

    Teeuwen, H W; Elbers, E L; van Rossum, J M

    1991-02-01

    A gas chromatographic procedure is reported for the determination of caffeine in plasma, saliva, and xanthine beverages. Using a 75 cm column packed with OV-17, nitrogen-sensitive detection, and 1 ml samples, a suitable limit of analysis (coefficient of variation (CV) = 10.2%) of 50 ng/ml was obtained in plasma. Within-day CVs at caffeine concentrations of 0.1-0.5-2.0-7.5-15.0 micrograms/ml in plasma were 7.7-5.6-4.8-3.8-3.4%, respectively. The limit of detection, defined as the injected quantity of caffeine giving rise to a signal to noise ratio of 2, is 40 pg, corresponding to a plasma concentration of 1 ng/ml. The procedure involves addition of the internal standard 7-pentyl theophylline and alkaline extraction of the sample with dichloromethane. The method described rivals any gaschromatographic assay published so far in rapidness and accuracy. Plasma and saliva caffeine concentrations were determined in a healthy male volunteer after swallowing 400 ml of coffee. The calculated pharmacokinetic parameters, assuming complete absorption of caffeine from the G.I. tract, agree well with previously published values. PMID:1875916

  17. Structural Insights into Sulfite Oxidase Deficiency

    SciTech Connect

    Karakas,E.; Wilson, H.; Graf, T.; Xiang, S.; Jaramillo-Busquets, S.; Rajagopalan, K.; Kisker, C.

    2005-01-01

    Sulfite oxidase deficiency is a lethal genetic disease that results from defects either in the genes encoding proteins involved in molybdenum cofactor biosynthesis or in the sulfite oxidase gene itself. Several point mutations in the sulfite oxidase gene have been identified from patients suffering from this disease worldwide. Although detailed biochemical analyses have been carried out on these mutations, no structural data could be obtained because of problems in crystallizing recombinant human and rat sulfite oxidases and the failure to clone the chicken sulfite oxidase gene. We synthesized the gene for chicken sulfite oxidase de novo, working backward from the amino acid sequence of the native chicken liver enzyme by PCR amplification of a series of 72 overlapping primers. The recombinant protein displayed the characteristic absorption spectrum of sulfite oxidase and exhibited steady state and rapid kinetic parameters comparable with those of the tissue-derived enzyme. We solved the crystal structures of the wild type and the sulfite oxidase deficiency-causing R138Q (R160Q in humans) variant of recombinant chicken sulfite oxidase in the resting and sulfate-bound forms. Significant alterations in the substrate-binding pocket were detected in the structure of the mutant, and a comparison between the wild type and mutant protein revealed that the active site residue Arg-450 adopts different conformations in the presence and absence of bound sulfate. The size of the binding pocket is thereby considerably reduced, and its position relative to the cofactor is shifted, causing an increase in the distance of the sulfur atom of the bound sulfate to the molybdenum.

  18. Human lysyl oxidase-like 2.

    PubMed

    Moon, Hee-Jung; Finney, Joel; Ronnebaum, Trey; Mure, Minae

    2014-12-01

    Lysyl oxidase like-2 (LOXL2) belongs to the lysyl oxidase (LOX) family, which comprises Cu(2+)- and lysine tyrosylquinone (LTQ)-dependent amine oxidases. LOXL2 is proposed to function similarly to LOX in the extracellular matrix (ECM) by promoting crosslinking of collagen and elastin. LOXL2 has also been proposed to regulate extracellular and intracellular cell signaling pathways. Dysregulation of LOXL2 has been linked to many diseases, including cancer, pro-oncogenic angiogenesis, fibrosis and heart diseases. In this review, we will give an overview of the current understandings and hypotheses regarding the molecular functions of LOXL2.

  19. An alternative oxidase monoclonal antibody recognises a highly conserved sequence among alternative oxidase subunits.

    PubMed

    Finnegan, P M; Wooding, A R; Day, D A

    1999-03-19

    The alternative oxidase is found in the inner mitochondrial membranes of plants and some fungi and protists. A monoclonal antibody raised against the alternative oxidase from the aroid lily Sauromatum guttatum has been used extensively to detect the enzyme in these organisms. Using an immunoblotting strategy, the antibody binding site has been localised to the sequence RADEAHHRDVNH within the soybean alternative oxidase 2 protein. Examination of sequence variants showed that A2 and residues C-terminal to H7 are required for recognition by the monoclonal antibody raised against the alternative oxidase. The recognition sequence is highly conserved among all alternative oxidase proteins and is absolutely conserved in 12 of 14 higher plant sequences, suggesting that this antibody will continue to be extremely useful in studying the expression and synthesis of the alternative oxidase.

  20. Effect of NADH on hypoxanthine hydroxylation by native NAD+-dependent xanthine oxidoreductase of rat liver, and the possible biological role of this effect.

    PubMed Central

    Kamiński, Z W; Jezewska, M M

    1981-01-01

    The course of the reaction sequence hypoxanthine leads to xanthine leads to uric acid, catalysed by the NAD+-dependent activity of xanthine oxidoreductase, was investigated under conditions either of immediate oxidation of the NADH formed or of NADH accumulation. The enzymic preparation was obtained from rat liver, and purified 75-fold (as compared with the 25000 g supernatant) on a 5'-AMP-Sepharose 4B column; in this preparation the NAD+-dependent activity accounted for 100% of total xanthine oxidoreductase activity. A spectrophotometric method was developed for continuous measurements of changes in the concentrations of the three purines involved. The time course as well as the effects of the concentrations of enzyme and of hypoxanthine were examined. NADH produced by the enzyme lowered its activity by 50%, resulting in xanthine accumulation and in decreases of uric acid formation and of hypoxanthine utilization. The inhibition of the Xanthine oxidoreductase NAD+-dependent activity by NADH is discussed as a possible factor in the regulation of IMP biosynthesis by the 'de novo' pathway or (from unchanged hypoxanthine) by ther salvage pathway. PMID:6952874

  1. Prokaryotic origins for the mitochondrial alternative oxidase and plastid terminal oxidase nuclear genes.

    PubMed

    Finnegan, Patrick M; Umbach, Ann L; Wilce, Jackie A

    2003-12-18

    The mitochondrial alternative oxidase is a diiron carboxylate quinol oxidase (Dox) found in plants and some fungi and protists, but not animals. The plastid terminal oxidase is distantly related to alternative oxidase and is most likely also a Dox protein. Database searches revealed that the alpha-proteobacterium Novosphingobium aromaticivorans and the cyanobacteria Nostoc sp. PCC7120, Synechococcus sp. WH8102 and Prochlorococcus marinus subsp. pastoris CCMP1378 each possess a Dox homolog. Each prokaryotic protein conforms to the current structural models of the Dox active site and phylogenetic analyses suggest that the eukaryotic Dox genes arose from an ancestral prokaryotic gene.

  2. Regulation of NADPH oxidases in skeletal muscle.

    PubMed

    Ferreira, Leonardo F; Laitano, Orlando

    2016-09-01

    The only known function of NAD(P)H oxidases is to produce reactive oxygen species (ROS). Skeletal muscles express three isoforms of NAD(P)H oxidases (Nox1, Nox2, and Nox4) that have been identified as critical modulators of redox homeostasis. Nox2 acts as the main source of skeletal muscle ROS during contractions, participates in insulin signaling and glucose transport, and mediates the myocyte response to osmotic stress. Nox2 and Nox4 contribute to skeletal muscle abnormalities elicited by angiotensin II, muscular dystrophy, heart failure, and high fat diet. Our review addresses the expression and regulation of NAD(P)H oxidases with emphasis on aspects that are relevant to skeletal muscle. We also summarize: i) the most widely used NAD(P)H oxidases activity assays and inhibitors, and ii) studies that have defined Nox enzymes as protagonists of skeletal muscle redox homeostasis in a variety of health and disease conditions. PMID:27184955

  3. Activation of polyphenol oxidase of chloroplasts.

    PubMed

    Tolbert, N E

    1973-02-01

    Polyphenol oxidase of leaves is located mainly in chloroplasts isolated by differential or sucrose density gradient centrifugation. This activity is part of the lamellar structure that is not lost on repeated washing of the plastids. The oxidase activity was stable during prolonged storage of the particles at 4 C or -18 C. The Km (dihydroxyphenylalanine) for spinach leaf polyphenol oxidase was 7 mm by a spectrophotometric assay and 2 mm by the manometric assay. Polyphenol oxidase activity in the leaf peroxisomal fraction, after isopycnic centrifugation on a linear sucrose gradient, did not coincide with the peroxisomal enzymes but was attributed to proplastids at nearly the same specific density.Plants were grouped by the latency properties for polyphenol oxidase in their isolated chloroplasts. In a group including spinach, Swiss chard, and beet leaves the plastids immediately after preparation from fresh leaves required a small amount of light for maximal rates of oxidation of dihydroxyphenylalanine. Polyphenol oxidase activity in the dark or light increased many fold during aging of these chloroplasts for 1 to 5 days. Soluble polyphenol oxidase of the cytoplasm was not so stimulated. Chloroplasts prepared from stored leaves were also much more active than from fresh leaves. Maximum rates of dihydroxyphenylalanine oxidation were 2 to 6 mmoles x mg(-1) chlorophyll x hr(-1). Equal stimulation of latent polyphenol oxidase in fresh or aged chloroplasts in this group was obtained by either light, an aged trypsin digest, 3-(4-chlorophenyl)-1, 1-dimethylurea, or antimycin A. A variety of other treatments did not activate or had little effect on the oxidase, including various peptides, salts, detergents, and other proteolytic enzymes.Activation of latent polyphenol oxidase in spinach chloroplasts by trypsin amounted to as much as 30-fold. The trypsin activation occurred even after the trypsin had been treated with 10% trichloroacetic acid, 1.0 n HCl or boiled for 30

  4. Renoprotective effect of the xanthine oxidoreductase inhibitor topiroxostat on adenine-induced renal injury.

    PubMed

    Kamijo-Ikemori, Atsuko; Sugaya, Takeshi; Hibi, Chihiro; Nakamura, Takashi; Murase, Takayo; Oikawa, Tsuyoshi; Hoshino, Seiko; Hisamichi, Mikako; Hirata, Kazuaki; Kimura, Kenjiro; Shibagaki, Yugo

    2016-06-01

    The aim of the present study was to reveal the effect of a xanthine oxidoreductase (XOR) inhibitor, topiroxostat (Top), compared with another inhibitor, febuxostat (Feb), in an adenine-induced renal injury model. We used human liver-type fatty acid-binding protein (L-FABP) chromosomal transgenic mice, and urinary L-FABP, a biomarker of tubulointerstitial damage, was used to evaluate tubulointerstitial damage. Male transgenic mice (n = 24) were fed a 0.2% (wt/wt) adenine-containing diet. Two weeks after the start of this diet, renal dysfunction was confirmed, and the mice were divided into the following four groups: the adenine group was given only the diet containing adenine, and the Feb, high-dose Top (Top-H), and low-dose Top (Top-L) groups were given diets containing Feb (3 mg/kg), Top-H (3 mg/kg), and Top-L (1 mg/kg) in addition to adenine for another 2 wk. After withdrawal of the adenine diet, each medication was continued for 2 wk. Serum creatinine levels, the degree of macrophage infiltration, tubulointerstitial damage, renal fibrosis, urinary 15-F2t-isoprostane levels, and renal XOR activity were significantly attenuated in the kidneys of the Feb, Top-L, and Top-H groups compared with the adenine group. Serum creatinine levels in the Top-L and Top-H groups as well as renal XOR in the Top-H group were significantly lower than those in the Feb group. Urinary excretion of L-FABP in both the Top-H and Top-L groups was significantly lower than in the adenine and Feb groups. In conclusion, Top attenuated renal damage in an adenine-induced renal injury model. PMID:27029427

  5. Cyclin-Dependent Kinase Five Mediates Activation of Lung Xanthine Oxidoreductase in Response to Hypoxia

    PubMed Central

    Kim, Bo S.; Serebreni, Leonid; Fallica, Jonathan; Hamdan, Omar; Wang, Lan; Johnston, Laura; Kolb, Todd; Damarla, Mahendra; Damico, Rachel; Hassoun, Paul M.

    2015-01-01

    Background Xanthine oxidoreductase (XOR) is involved in oxidative metabolism of purines and is a source of reactive oxygen species (ROS). As such, XOR has been implicated in oxidant-mediated injury in multiple cardiopulmonary diseases. XOR enzyme activity is regulated, in part, via a phosphorylation-dependent, post-translational mechanism, although the kinase(s) responsible for such hyperactivation are unknown. Methods and Results Using an in silico approach, we identified a cyclin-dependent kinase 5 (CDK5) consensus motif adjacent to the XOR flavin adenine dinucleotide (FAD) binding domain. CDK5 is a proline-directed serine/threonine kinase historically linked to neural development and injury. We tested the hypothesis that CDK5 and its activators are mediators of hypoxia-induced hyperactivation of XOR in pulmonary microvascular endothelial cells (EC) and the intact murine lung. Using complementary molecular and pharmacologic approaches, we demonstrated that hypoxia significantly increased CDK5 activity in EC. This was coincident with increased expression of the CDK5 activators, cyclin-dependent kinase 5 activator 1 (CDK5r1 or p35/p25), and decreased expression of the CDK5 inhibitory peptide, p10. Expression of p35/p25 was necessary for XOR hyperactivation. Further, CDK5 physically associated with XOR and was necessary and sufficient for XOR phosphorylation and hyperactivation both in vitro and in vivo. XOR hyperactivation required the target threonine (T222) within the CDK5-consensus motif. Conclusions and Significance These results indicate that p35/CDK5-mediated phosphorylation of T222 is required for hypoxia-induced XOR hyperactivation in the lung. Recognizing the contribution of XOR to oxidative injury in cardiopulmonary disease, these observations identify p35/CDK5 as novel regulators of XOR and potential modifiers of ROS-mediated injury. PMID:25831123

  6. Direct Activation of β-Cell KATP Channels with a Novel Xanthine Derivative

    PubMed Central

    Raphemot, Rene; Swale, Daniel R.; Dadi, Prasanna K.; Jacobson, David A.; Cooper, Paige; Wojtovich, Andrew P.; Banerjee, Sreedatta; Nichols, Colin G.

    2014-01-01

    ATP-regulated potassium (KATP) channel complexes of inward rectifier potassium channel (Kir) 6.2 and sulfonylurea receptor (SUR) 1 critically regulate pancreatic islet β-cell membrane potential, calcium influx, and insulin secretion, and consequently, represent important drug targets for metabolic disorders of glucose homeostasis. The KATP channel opener diazoxide is used clinically to treat intractable hypoglycemia caused by excessive insulin secretion, but its use is limited by off-target effects due to lack of potency and selectivity. Some progress has been made in developing improved Kir6.2/SUR1 agonists from existing chemical scaffolds and compound screening, but there are surprisingly few distinct chemotypes that are specific for SUR1-containing KATP channels. Here we report the serendipitous discovery in a high-throughput screen of a novel activator of Kir6.2/SUR1: VU0071063 [7-(4-(tert-butyl)benzyl)-1,3-dimethyl-1H-purine-2,6(3H,7H)-dione]. The xanthine derivative rapidly and dose-dependently activates Kir6.2/SUR1 with a half-effective concentration (EC50) of approximately 7 μM, is more efficacious than diazoxide at low micromolar concentrations, directly activates the channel in excised membrane patches, and is selective for SUR1- over SUR2A-containing Kir6.1 or Kir6.2 channels, as well as Kir2.1, Kir2.2, Kir2.3, Kir3.1/3.2, and voltage-gated potassium channel 2.1. Finally, we show that VU0071063 activates native Kir6.2/SUR1 channels, thereby inhibiting glucose-stimulated calcium entry in isolated mouse pancreatic β cells. VU0071063 represents a novel tool/compound for investigating β-cell physiology, KATP channel gating, and a new chemical scaffold for developing improved activators with medicinal chemistry. PMID:24646456

  7. Renoprotective effect of the xanthine oxidoreductase inhibitor topiroxostat on adenine-induced renal injury.

    PubMed

    Kamijo-Ikemori, Atsuko; Sugaya, Takeshi; Hibi, Chihiro; Nakamura, Takashi; Murase, Takayo; Oikawa, Tsuyoshi; Hoshino, Seiko; Hisamichi, Mikako; Hirata, Kazuaki; Kimura, Kenjiro; Shibagaki, Yugo

    2016-06-01

    The aim of the present study was to reveal the effect of a xanthine oxidoreductase (XOR) inhibitor, topiroxostat (Top), compared with another inhibitor, febuxostat (Feb), in an adenine-induced renal injury model. We used human liver-type fatty acid-binding protein (L-FABP) chromosomal transgenic mice, and urinary L-FABP, a biomarker of tubulointerstitial damage, was used to evaluate tubulointerstitial damage. Male transgenic mice (n = 24) were fed a 0.2% (wt/wt) adenine-containing diet. Two weeks after the start of this diet, renal dysfunction was confirmed, and the mice were divided into the following four groups: the adenine group was given only the diet containing adenine, and the Feb, high-dose Top (Top-H), and low-dose Top (Top-L) groups were given diets containing Feb (3 mg/kg), Top-H (3 mg/kg), and Top-L (1 mg/kg) in addition to adenine for another 2 wk. After withdrawal of the adenine diet, each medication was continued for 2 wk. Serum creatinine levels, the degree of macrophage infiltration, tubulointerstitial damage, renal fibrosis, urinary 15-F2t-isoprostane levels, and renal XOR activity were significantly attenuated in the kidneys of the Feb, Top-L, and Top-H groups compared with the adenine group. Serum creatinine levels in the Top-L and Top-H groups as well as renal XOR in the Top-H group were significantly lower than those in the Feb group. Urinary excretion of L-FABP in both the Top-H and Top-L groups was significantly lower than in the adenine and Feb groups. In conclusion, Top attenuated renal damage in an adenine-induced renal injury model.

  8. Azide inhibition of urate oxidase

    PubMed Central

    Gabison, Laure; Colloc’h, Nathalie; Prangé, Thierry

    2014-01-01

    The inhibition of urate oxidase (UOX) by azide was investigated by X-ray diffraction techniques and compared with cyanide inhibition. Two well characterized sites for reagents are present in the enzyme: the dioxygen site and the substrate-binding site. To examine the selectivity of these sites towards azide inhibition, several crystallization conditions were developed. UOX was co-crystallized with azide (N3) in the presence or absence of either uric acid (UA, the natural substrate) or 8-azaxanthine (8AZA, a competitive inhibitor). In a second set of experiments, previously grown orthorhombic crystals of the UOX–UA or UOX–8AZA complexes were soaked in sodium azide solutions. In a third set of experiments, orthorhombic crystals of UOX with the exchangeable ligand 8-nitroxanthine (8NXN) were soaked in a solution containing uric acid and azide simultaneously (competitive soaking). In all assays, the soaking periods were either short (a few hours) or long (one or two months). These different experimental conditions showed that one or other of the sites, or the two sites together, could be inhibited. This also demonstrated that azide not only competes with dioxygen as cyanide does but also competes with the substrate for its enzymatic site. A model in agreement with experimental data would be an azide in equilibrium between two sites, kinetically in favour of the dioxygen site and thermodynamically in favour of the substrate-binding site. PMID:25005084

  9. Heme/copper terminal oxidases

    SciTech Connect

    Ferguson-Miller, S.; Babcock, G.T.

    1996-11-01

    Spatially well-organized electron-transfer reactions in a series of membrane-bound redox proteins form the basis for energy conservation in both photosynthesis and respiration. The membrane-bound nature of the electron-transfer processes is critical, as the free energy made available in exergonic redox chemistry is used to generate transmembrane proton concentration and electrostatic potential gradients. These gradients are subsequently used to drive ATP formation, which provides the immediate energy source for constructive cellular processes. The terminal heme/copper oxidases in respiratory electron-transfer chains illustrate a number of the thermodynamic and structural principles that have driven the development of respiration. This class of enzyme reduces dioxygen to water, thus clearing the respiratory system of low-energy electrons so that sustained electron transfer and free-energy transduction can occur. By using dioxygen as the oxidizing substrate, free-energy production per electron through the chain is substantial, owing to the high reduction potential of O{sub 2} (0.815 V at pH 7). 122 refs.

  10. GPCR Ligand Dendrimer (GLiDe) Conjugates: Adenosine Receptor Interactions of a Series of Multivalent Xanthine Antagonists

    PubMed Central

    Kecskés, Angela; Tosh, Dilip K.; Wei, Qiang; Gao, Zhan-Guo; Jacobson, Kenneth A.

    2011-01-01

    Previously, G protein–coupled receptor (GPCR) agonists were tethered from polyamidoamine (PAMAM) dendrimers to provide high receptor affinity and selectivity. Here we prepared GPCR Ligand Dendrimer (GLiDe) conjugates from a potent adenosine receptor (AR) antagonist; such agents are of interest for treating Parkinson’s disease, asthma, and other conditions. Xanthine amine congener (XAC) was appended with an alkyne group on an extended C8 substituent for coupling by Cu(I)-catalyzed click chemistry to azide-derivatized G4 (fourth-generation) PAMAM dendrimers to form triazoles. These conjugates also contained triazole-linked PEG groups (8 or 22 moieties per 64 terminal positions) for increasing water-solubility and optionally prosthetic groups for spectroscopic characterization and affinity labeling. Human AR binding affinity increased progressively with the degree of xanthine substitution to reach Ki values in the nM range. The order of affinity of each conjugate was hA2AAR > hA3AR > hA1AR, while the corresponding monomer was ranked hA2AAR > hA1AR ≥ hA3AR. The antagonist activity of the most potent conjugate 14 (34 xanthines per dendrimer) was examined at the Gi-coupled A1AR. Conjugate 14 at 100 nM right-shifted the AR agonist concentration-response curve in a cyclic AMP functional assay in a parallel manner, but at 10 nM (lower than its Ki value) it significantly suppressed the maximal agonist effect in calcium mobilization. This is the first systematic probing of a potent AR antagonist tethered on a dendrimer and its activity as a function of variable loading. PMID:21539392

  11. Mechanism of Porcine Liver Xanthine Oxidoreductase Mediated N-Oxide Reduction of Cyadox as Revealed by Docking and Mutagenesis Studies

    PubMed Central

    Hao, Haihong; Dai, Menghong; Wang, Xu; Huang, Lingli; Liu, Zhenli; Yuan, Zonghui

    2013-01-01

    Xanthine oxidoreductase (XOR) is a cytoplasmic molybdenum-containing oxidoreductase, catalyzing both endogenous purines and exogenous compounds. It is suggested that XOR in porcine hepatocytes catalyzes the N-oxide reduction of quinoxaline 1,4-di-N-oxides (QdNOs). To elucidate the molecular mechanism underlying this metabolism, the cDNA of porcine XOR was cloned and heterologously expressed in Spodoptera frugiperda insect cells. The bovine XOR, showing sequence identity of 91% to porcine XOR, was employed as template for homology modeling. By docking cyadox, a representative compound of QdNOs, into porcine XOR model, eight amino acid residues, Gly47, Asn352, Ser360, Arg427, Asp430, Asp431, Ser1227 and Lys1230, were located at distances of less than 4Å to cyadox. Site-directed mutagenesis was performed to analyze their catalytic functions. Compared with wild type porcine XOR, G47A, S360P, D431A, S1227A, and K1230A displayed altered kinetic parameters in cyadox reduction, similarly to that in xanthine oxidation, indicating these mutations influenced electron-donating process of xanthine before subsequent electron transfer to cyadox to fulfill the N-oxide reduction. Differently, R427E and D430H, both located in the 424–434 loop, exhibited a much lower Km and a decreased Vmax respectively in cyadox reduction. Arg427 may be related to the substrate binding of porcine XOR to cyadox, and Asp430 is suggested to be involved in the transfer of electron to cyadox. This study initially reveals the possible catalytic mechanism of porcine XOR in cyadox metabolism, providing with novel insights into the structure-function relationship of XOR in the reduction of exogenous di-N-oxides. PMID:24040113

  12. NADPH oxidases: new actors in thyroid cancer?

    PubMed

    Ameziane-El-Hassani, Rabii; Schlumberger, Martin; Dupuy, Corinne

    2016-08-01

    Hydrogen peroxide (H2O2) is a crucial substrate for thyroid peroxidase, a key enzyme involved in thyroid hormone synthesis. However, as a potent oxidant, H2O2 might also be responsible for the high level of oxidative DNA damage observed in thyroid tissues, such as DNA base lesions and strand breakages, which promote chromosomal instability and contribute to the development of tumours. Although the role of H2O2 in thyroid hormone synthesis is well established, its precise mechanisms of action in pathological processes are still under investigation. The NADPH oxidase/dual oxidase family are the only oxidoreductases whose primary function is to produce reactive oxygen species. As such, the function and expression of these enzymes are tightly regulated. Thyrocytes express dual oxidase 2, which produces most of the H2O2 for thyroid hormone synthesis. Thyrocytes also express dual oxidase 1 and NADPH oxidase 4, but the roles of these enzymes are still unknown. Here, we review the structure, expression, localization and function of these enzymes. We focus on their potential role in thyroid cancer, which is characterized by increased expression of these enzymes. PMID:27174022

  13. Mitochondrial targeting of human protoporphyrinogen oxidase.

    PubMed

    Davids, Lester M; Corrigall, Anne V; Meissner, Peter N

    2006-05-01

    Variegate porphyria is an autosomal dominant disorder of heme metabolism resulting from a deficiency in protoporphyrinogen oxidase, an enzyme located on the inner mitochondrial membrane. This study examined the effect of three South African VP-causing mutations (H20P, R59W, R168C) on mitochondrial targeting. Only H20P did not target, and of eight protoporphyrinogen oxidase-GFP chimeric fusion proteins created, N-terminal residues 1-17 were found to be the minimal protoporphyrinogen oxidase sequence required for efficient mitochondrial targeting. Removal of this N-terminal sequence displayed mitochondrial localization, suggesting internal mitochondrial targeting signals. In addition, six constructs were engineered to assess the effect of charge and helicity on mitochondrial targeting of the protein. Of those engineered, only the PPOX20/H20P-GFP construct abolished mitochondrial targeting, presumably through disruption of the protoporphyrinogen oxidase alpha-helix. Based on our results we propose a mechanism for protoporphyrinogen oxidase targeting to the mitochondrion.

  14. Immunoblot analyses of the elicited Sanguinaria canadensis enzyme, dihydrobenzophenanthridine oxidase: evidence for resolution from a polyphenol oxidase isozyme.

    PubMed

    Ignatov, A; Neuman, M C; Barg, R; Krueger, R J; Coscia, C J

    1997-11-15

    In our initial purification of dihydrobenzophenanthridine oxidase from Sanguinaria canadensis plant cell cultures, we reported that our most purified preparations contained a major band at 77 kDa and minor lower Mr bands. Here we present evidence on highly purified dihydrobenzophenanthridine oxidase from elicited S. canadensis cultures to indicate that this enzyme is the 77-kDa protein and that lower Mr bands include an isozyme(s) of the polyphenol oxidase family that copurifies with it. An antibody raised against the 77-kDa protein and an anti-polyphenol oxidase antibody that recognizes a 70-kDa band were used to monitor chromatographic fractions by immunoblot analysis of the oxidases. Oxidase-containing eluates from DEAE-Sephadex, CM, and HiTrap blue were compared to corresponding flow-through fractions. Bands at 77 and 88 kDa were detected with anti-dihydrobenzophenanthridine oxidase antibody in eluates displaying high dihydrobenzophenanthridine oxidase activity. Polyphenol oxidase specific activity and immunoreactivity partitioned both in flow-through and eluate fractions of the CM and HiTrap columns. Estimation of the dihydrobenzophenanthridine oxidase and polyphenol oxidase specific activities for each step showed increasing enrichment of alkaloidal enzyme accompanied by variable dihydrobenzophenanthridine oxidase/polyphenol oxidase activity ratios. Taken together these observations indicate that the dihydrobenzophenanthridine and polyphenol oxidases have Mr values of 77 and 70 kDa, respectively, and the two enzymes are different entities.

  15. ALTERNATIVE OXIDASE: From Gene to Function.

    PubMed

    Vanlerberghe, Greg C.; McIntosh, Lee

    1997-06-01

    Plants, some fungi, and protists contain a cyanide-resistant, alternative mitochondrial respiratory pathway. This pathway branches at the ubiquinone pool and consists of an alternative oxidase encoded by the nuclear gene Aox1. Alternative pathway respiration is only linked to proton translocation at Complex 1 (NADH dehydrogenase). Alternative oxidase expression is influenced by stress stimuli-cold, oxidative stress, pathogen attack-and by factors constricting electron flow through the cytochrome pathway of respiration. Control is exerted at the levels of gene expression and in response to the availability of carbon and reducing potential. Posttranslational control involves reversible covalent modification of the alternative oxidase and activation by specific carbon metabolites. This dynamic system of coarse and fine control may function to balance upstream respiratory carbon metabolism and downstream electron transport when these coupled processes become imbalanced as a result of changes in the supply of, or demand for, carbon, reducing power, and ATP.

  16. The anti-inflammatory and anti-hyperuricemic effects of Chinese herbal formula danggui-nian-tong-tang on acute gouty arthritis: a comparative study with indomethacin and allopurinol.

    PubMed

    Chou, C T; Kuo, S C

    1995-01-01

    The traditional Chinese antirheumatic herb Danggui-Nian-Tong-Tang (DGNTT) was studied comparatively with indomethacin and allopurinol to evaluate its anti-inflammatory and antihyperuricemic effects in patients with gout. Results in this study did not show any significant improvement in reducing the total number of painful and swollen joints, articular index and pain score (P > 0.05) by treatment with DGNTT. Unlike allopurinol, DGNTT did not lower the high serum level of uric acid. In vitro study in rats showed that DGNTT significantly inhibits the activity of beta-glucuronidase (P < 0.05) and lysozyme release (P < 0.01) from neutrophils. In conclusion, despite the effect of inhibition on enzyme release from neutrophils, DGNTT is not effective in treating acute arthritis or hyperuricemia.

  17. The laser desorption/laser ionization mass spectra of some methylated xanthines and the laser desorption of caffeine and theophylline from thin layer chromatography plates

    NASA Astrophysics Data System (ADS)

    Rogers, Kevin; Milnes, John; Gormally, John

    1993-02-01

    Laser desorption/laser ionization time-of-flight mass spectra of caffeine, theophylline, theobromine and xanthine are reported. These mass spectra are compared with published spectra obtained using electron impact ionization. Mass spectra of caffeine and theophylline obtained by IR laser desorption from thin layer chromatography plates are also described. The laser desorption of materials from thin layer chromatography plates is discussed.

  18. Potential Pharmacologic Treatments for Cystinuria and for Calcium Stones Associated with Hyperuricosuria

    SciTech Connect

    Goldfarb, David S.

    2012-03-14

    Two new potential pharmacologic therapies for recurrent stone disease are described. The role of hyperuricosuria in promoting calcium stones is controversial with only some but not all epidemiologic studies demonstrating associations between increasing urinary uric acid excretion and calcium stone disease. The relationship is supported by the ability of uric acid to 'salt out' (or reduce the solubility of) calcium oxalate in vitro. A randomized, controlled trial of allopurinol in patients with hyperuricosuria and normocalciuria was also effective in preventing recurrent stones. Febuxostat, a nonpurine inhibitor of xanthine oxidase (also known as xanthine dehydrogenase or xanthine oxidoreductase) may have advantages over allopurinol and is being tested in a similar protocol, with the eventual goal of determining whether urate-lowering therapy prevents recurrent calcium stones. Treatments for cystinuria have advanced little in the past 30 years. Atomic force microscopy has been used recently to demonstrate that effective inhibition of cystine crystal growth is accomplished at low concentrations of L-cystine methyl ester and L-cystine dimethyl ester, structural analogs of cystine that provide steric inhibition of crystal growth. In vitro, L-cystine dimethyl ester had a significant inhibitory effect on crystal growth. The drug's safety and effectiveness will be tested in an Slc3a1 knockout mouse that serves as an animal model of cystinuria.

  19. Potential pharmacologic treatments for cystinuria and for calcium stones associated with hyperuricosuria.

    PubMed

    Goldfarb, David S

    2011-08-01

    Two new potential pharmacologic therapies for recurrent stone disease are described. The role of hyperuricosuria in promoting calcium stones is controversial with only some but not all epidemiologic studies demonstrating associations between increasing urinary uric acid excretion and calcium stone disease. The relationship is supported by the ability of uric acid to "salt out" (or reduce the solubility of) calcium oxalate in vitro. A randomized, controlled trial of allopurinol in patients with hyperuricosuria and normocalciuria was also effective in preventing recurrent stones. Febuxostat, a nonpurine inhibitor of xanthine oxidase (also known as xanthine dehydrogenase or xanthine oxidoreductase) may have advantages over allopurinol and is being tested in a similar protocol, with the eventual goal of determining whether urate-lowering therapy prevents recurrent calcium stones. Treatments for cystinuria have advanced little in the past 30 years. Atomic force microscopy has been used recently to demonstrate that effective inhibition of cystine crystal growth is accomplished at low concentrations of l-cystine methyl ester and l-cystine dimethyl ester, structural analogs of cystine that provide steric inhibition of crystal growth. In vitro, l-cystine dimethyl ester had a significant inhibitory effect on crystal growth. The drug's safety and effectiveness will be tested in an Slc3a1 knockout mouse that serves as an animal model of cystinuria.

  20. Cinnamaldehyde and allopurinol reduce fructose-induced cardiac inflammation and fibrosis by attenuating CD36-mediated TLR4/6-IRAK4/1 signaling to suppress NLRP3 inflammasome activation

    PubMed Central

    Kang, Lin-Lin; Zhang, Dong-Mei; Ma, Chun-Hua; Zhang, Jian-Hua; Jia, Ke-Ke; Liu, Jia-Hui; Wang, Rong; Kong, Ling-Dong

    2016-01-01

    Fructose consumption induces metabolic syndrome to increase cardiovascular disease risk. Cinnamaldehyde and allopurinol possess anti-oxidative and anti-inflammatory activity to relieve heart injury in metabolic syndrome. But the mechanisms of fructose-induced cardiac injury, and cardioprotective effects of cinnamaldehyde and allopurinol are not completely understood. In this study, fructose-fed rats displayed metabolic syndrome with elevated serum ox-LDL, cardiac oxidative stress, inflammation and fibrosis. Scavenger receptor CD36, Toll-like receptor 4 (TLR4), TLR6, IL-1R-associated kinase 4/1 (IRAK4/1), nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP3) inflammasome, interleukin-1β, transforming growth factor-β (TGF-β), drosophila mothers against DPP homolog (Smad) 2/3 phosphorylation and Smad4 were increased in animal and H9c2 cell models. These pathological processes were further evaluated in ox-LDL or fructose-exposed H9c2 cells pretreated with ROS scavenger and CD36 specific inhibitor, or IRAK1/4 inhibitor, and transfected with CD36, NLRP3, or IRAK4/1 siRNA, demonstrating that NLPR3 inflammasome activation through CD36-mediated TLR4/6-IRAK4/1 signaling may promote cardiac inflammation and fibrosis. Cinnamaldehyde and allopurinol reduced cardiac oxidative stress to suppress NLPR3 inflammasome activation and TGF-β/Smads signaling by inhibiting CD36-mediated TLR4/6-IRAK4/1 signaling under fructose induction. These results suggest that the blockage of CD36-mediated TLR4/6-IRAK4/1 signaling to suppress NLRP3 inflammasome activation by cinnamaldehyde and allopurinol may protect against fructose-induced cardiac inflammation and fibrosis. PMID:27270216

  1. Oxipurinol: alloxanthine, Oxyprim, oxypurinol.

    PubMed

    2004-01-01

    Oxipurinol [alloxanthine, Oxyprim, oxypurinol] is the active metabolite of the only commercially available xanthine oxidase inhibitor, allopurinol. Oxipurinol is also a xanthine oxidase inhibitor. Oxipurinol is currently being developed by Cardiome Pharma. It is waiting for approval in the US for the treatment of allopurinol-intolerant hyperuricaemia (gout) and is in phase III trials for the treatment of congestive heart failure. Allopurinol is indicated for the treatment of symptomatic hyperuricaemia, or gout. Approximately 3-5% of patients receiving allopurinol develop intolerance to the drug. Oxipurinol was originally developed by Burroughs Wellcome (later GlaxoSmithKline), and has been available on a compassionate-use basis since 1967 for use in allopurinol-intolerant patients. The licensee company ILEX Oncology has stated that oxipurinol does not have patent protection. Oxipurinol's potential for treatment of congestive heart failure is based on the possibility that xanthine oxidase inhibitors may improve myocardial work efficiency by sensitising cardiac muscle cells to calcium ions, which are a key determinant of cardiac muscle function. This results in more efficient contraction of cardiac muscle cells, without the same increase in oxygen demand. At the second annual BioPartnering North America conference (BPN-2004) [February 2004, Vancouver, Canada], Cardiome Pharma stated that it was seeking a commercialisation partner to market and distribute oxipurinol in the US for the treatment of allopurinol-intolerant hyperuricaemia. In 1995, ILEX Oncology obtained an exclusive licence to oxipurinol from Burroughs Wellcome. Burroughs Wellcome later became part of Glaxo Wellcome, which merged with SmithKline Beecham in December 2000 to form GlaxoSmithKline. ILEX's licence agreement is now with GlaxoSmithKline and The Wellcome Foundation. In December 2001, ILEX granted Paralex, a privately held New York-based company, an exclusive sublicence to all of ILEX's rights to

  2. Xanthine dehydrogenase and 2-furoyl-coenzyme A dehydrogenase from Pseudomonas putida Fu1: two molybdenum-containing dehydrogenases of novel structural composition.

    PubMed Central

    Koenig, K; Andreesen, J R

    1990-01-01

    The constitutive xanthine dehydrogenase and the inducible 2-furoyl-coenzyme A (CoA) dehydrogenase could be labeled with [185W]tungstate. This labeling was used as a reporter to purify both labile proteins. The radioactivity cochromatographed predominantly with the residual enzymatic activity of both enzymes during the first purification steps. Both radioactive proteins were separated and purified to homogeneity. Antibodies raised against the larger protein also exhibited cross-reactivity toward the second smaller protein and removed xanthine dehydrogenase and 2-furoyl-CoA dehydrogenase activity up to 80 and 60% from the supernatant of cell extracts, respectively. With use of cell extract, Western immunoblots showed only two bands which correlated exactly with the activity stains for both enzymes after native polyacrylamide gel electrophoresis. Molybdate was absolutely required for incorporation of 185W, formation of cross-reacting material, and enzymatic activity. The latter parameters showed a perfect correlation. This evidence proves that the radioactive proteins were actually xanthine dehydrogenase and 2-furoyl-CoA dehydrogenase. The apparent molecular weight of the native xanthine dehydrogenase was about 300,000, and that of 2-furoyl-CoA dehydrogenase was 150,000. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of both enzymes revealed two protein bands corresponding to molecular weights of 55,000 and 25,000. The xanthine dehydrogenase contained at least 1.6 mol of molybdenum, 0.9 ml of cytochrome b, 5.8 mol of iron, and 2.4 mol of labile sulfur per mol of enzyme. The composition of the 2-furoyl-CoA dehydrogenase seemed to be similar, although the stoichiometry was not determined. The oxidation of furfuryl alcohol to furfural and further to 2-furoic acid by Pseudomonas putida Fu1 was catalyzed by two different dehydrogenases. Images PMID:2170335

  3. Inorganic nitrite attenuates NADPH oxidase-derived superoxide generation in activated macrophages via a nitric oxide-dependent mechanism.

    PubMed

    Yang, Ting; Peleli, Maria; Zollbrecht, Christa; Giulietti, Alessia; Terrando, Niccolo; Lundberg, Jon O; Weitzberg, Eddie; Carlström, Mattias

    2015-06-01

    Oxidative stress contributes to the pathogenesis of many disorders, including diabetes and cardiovascular disease. Immune cells are major sources of superoxide (O2(∙-)) as part of the innate host defense system, but exaggerated and sustained O2(∙-) generation may lead to progressive inflammation and organ injuries. Previous studies have proven organ-protective effects of inorganic nitrite, a precursor of nitric oxide (NO), in conditions manifested by oxidative stress and inflammation. However, the mechanisms are still not clear. This study aimed at investigating the potential role of nitrite in modulating NADPH oxidase (NOX) activity in immune cells. Mice peritoneal macrophages or human monocytes were activated by lipopolysaccharide (LPS), with or without coincubation with nitrite. O2(∙-) and peroxynitrite (ONOO(-)) formation were detected by lucigenin-based chemiluminescence and fluorescence techniques, respectively. The intracellular NO production was measured by DAF-FM DA fluorescence. NOX isoforms and inducible NO synthase (iNOS) expression were detected by qPCR. LPS increased both O2(∙-) and ONOO(-) production in macrophages, which was significantly reduced by nitrite (10µmol/L). Mechanistically, the effects of nitrite are (1) linked to increased NO generation, (2) similar to that observed with the NO donor DETA-NONOate, and (3) can be abolished by the NO scavenger carboxy-PTIO or by the xanthine oxidase (XO) inhibitor febuxostat. Nox2 expression was increased in activated macrophages, but was not influenced by nitrite. However, nitrite attenuated LPS-induced upregulation of iNOS expression. Similar to that observed in mice macrophages, nitrite also reduced O2(∙-) generation in LPS-activated human monocytes. In conclusion, XO-mediated reduction of nitrite attenuates NOX activity in activated macrophages, which may modulate the inflammatory response. PMID:25724690

  4. A single amino acid substitution confers high cinchonidine oxidation activity comparable with that of rabbit to monkey aldehyde oxidase 1.

    PubMed

    Fukiya, Kensuke; Itoh, Kunio; Yamaguchi, Satoshi; Kishiba, Akiko; Adachi, Mayuko; Watanabe, Nobuaki; Tanaka, Yorihisa

    2010-02-01

    Aldehyde oxidase 1 (AOX1) is a major member of the xanthine oxidase family belonging to the class of complex molybdo-flavoenzymes and plays an important role in the nucleophilic oxidation of N-heterocyclic aromatic compounds and various aldehydes. The enzyme has been well known to show remarkable species differences. Comparing the rabbit and monkey enzymes, the former showed extremely high activity toward cinchonidine and methotrexate, but the latter exhibited only marginal activities. In contrast, monkey had several times greater activity than did rabbit toward zonisamide and (+)-4-(4-cyanoanilino)-5,6-dihydro-7-hydroxy-7H-cyclopenta[d]-pyrimidine [(S)-RS-8359]. In this report, we tried to confer high cinchonidine oxidation activity comparable with that of rabbit AOX1 to monkey AOX1. The chimera proteins prepared by restriction enzyme digestion and recombination methods between monkey and rabbit AOX1s indicated that the sequences from Asn993 to Ala1088 of rabbit AOX1 are essential for the activity. The kinetic parameters were then measured using monkey AOX1 mutants prepared by site-directed mutagenesis. The monkey V1085A mutant acquired the high cinchonidine oxidation activity. Inversely, the reciprocal rabbit A1081V mutant lost the activity entirely: amino acid 1081 of rabbit AOX1 corresponding to amino acid 1085 of monkey AOX1. Thus, cinchonidine oxidation activity was drastically changed by mutation of a single residue in AOX1. However, this might be true for bulky substrates such as cinchonidine but not for small substrates. The mechanism of substrate-dependent species differences in AOX1 activity toward bulky substrates is discussed.

  5. Structure and evolution of vertebrate aldehyde oxidases: from gene duplication to gene suppression.

    PubMed

    Kurosaki, Mami; Bolis, Marco; Fratelli, Maddalena; Barzago, Maria Monica; Pattini, Linda; Perretta, Gemma; Terao, Mineko; Garattini, Enrico

    2013-05-01

    Aldehyde oxidases (AOXs) and xanthine dehydrogenases (XDHs) belong to the family of molybdo-flavoenzymes. Although AOXs are not identifiable in fungi, these enzymes are represented in certain protists and the majority of plants and vertebrates. The physiological functions and substrates of AOXs are unknown. Nevertheless, AOXs are major drug metabolizing enzymes, oxidizing a wide range of aromatic aldehydes and heterocyclic compounds of medical/toxicological importance. Using genome sequencing data, we predict the structures of AOX genes and pseudogenes, reconstructing their evolution. Fishes are the most primitive organisms with an AOX gene (AOXα), originating from the duplication of an ancestral XDH. Further evolution of fishes resulted in the duplication of AOXα into AOXβ and successive pseudogenization of AOXα. AOXβ is maintained in amphibians and it is the likely precursors of reptilian, avian, and mammalian AOX1. Amphibian AOXγ is a duplication of AOXβ and the likely ancestor of reptilian and avian AOX2, which, in turn, gave rise to mammalian AOX3L1. Subsequent gene duplications generated the two mammalian genes, AOX3 and AOX4. The evolution of mammalian AOX genes is dominated by pseudogenization and deletion events. Our analysis is relevant from a structural point of view, as it provides information on the residues characterizing the three domains of each mammalian AOX isoenzyme. We cloned the cDNAs encoding the AOX proteins of guinea pig and cynomolgus monkeys, two unique species as to the evolution of this enzyme family. We identify chimeric RNAs from the human AOX3 and AOX3L1 pseudogenes with potential to encode a novel microRNA.

  6. The Overexpression of NALP3 Inflammasome in Knee Osteoarthritis Is Associated with Synovial Membrane Prolidase and NADPH Oxidase 2

    PubMed Central

    Clavijo-Cornejo, Denise; Martínez-Flores, Karina; Silva-Luna, Karina; Fernández-Torres, Javier; Zamudio-Cuevas, Yessica; Guadalupe Santamaría-Olmedo, Mónica

    2016-01-01

    Osteoarthritis is characterized by the presence of proinflammatory cytokines and reactive oxygen species. We aimed to clarify the role of prooxidant enzyme content at the synovial membrane level and how it correlates with the inflammatory process in patients with knee osteoarthritis (KOA). In synovial membranes from KOA patients and control group, we analyzed the protein content of prooxidant enzymes such as Nox2, xanthine oxidase (XO), and prolidase as well as the proinflammatory NALP3. Results show that protein content of prolidase and Nox2 increased 4.8- and 8.4-fold, respectively, and XO showed an increasing trend, while the NALP3 inflammasome increased 5.4-fold with respect to control group. Levels of prolidase and XO had a positive correlation between the levels of NALP3 and Nox2. By principal component analysis the protein expression pattern by study groups was evaluated. Three clusters were identified; protein expression patterns were higher for clusters two (prolidase) and three (XO and Nox2) between KOA patients and controls. Data suggest that prooxidant enzymes increase in synovial membrane of KOA patients and may contribute to the inflammatory state and degradation of the articular cartilage. PMID:27777643

  7. Structure–function characterization reveals new catalytic diversity in the galactose oxidase and glyoxal oxidase family

    PubMed Central

    Yin, DeLu (Tyler); Urresti, Saioa; Lafond, Mickael; Johnston, Esther M.; Derikvand, Fatemeh; Ciano, Luisa; Berrin, Jean-Guy; Henrissat, Bernard; Walton, Paul H.; Davies, Gideon J.; Brumer, Harry

    2015-01-01

    Alcohol oxidases, including carbohydrate oxidases, have a long history of research that has generated fundamental biological understanding and biotechnological applications. Despite a long history of study, the galactose 6-oxidase/glyoxal oxidase family of mononuclear copper-radical oxidases, Auxiliary Activity Family 5 (AA5), is currently represented by only very few characterized members. Here we report the recombinant production and detailed structure–function analyses of two homologues from the phytopathogenic fungi Colletotrichum graminicola and C. gloeosporioides, CgrAlcOx and CglAlcOx, respectively, to explore the wider biocatalytic potential in AA5. EPR spectroscopy and crystallographic analysis confirm a common active-site structure vis-à-vis the archetypal galactose 6-oxidase from Fusarium graminearum. Strikingly, however, CgrAlcOx and CglAlcOx are essentially incapable of oxidizing galactose and galactosides, but instead efficiently catalyse the oxidation of diverse aliphatic alcohols. The results highlight the significant potential of prospecting the evolutionary diversity of AA5 to reveal novel enzyme specificities, thereby informing both biology and applications. PMID:26680532

  8. Electronic structure of some adenosine receptor antagonists. III. Quantitative investigation of the electronic absorption spectra of alkyl xanthines

    NASA Astrophysics Data System (ADS)

    Moustafa, H.; Shalaby, Samia H.; El-sawy, K. M.; Hilal, Rifaat

    2002-07-01

    Quantitative and comparative investigation of the electronic absorption spectra of theophylline, caffeine and their derivatives is reported. The spectra of theophylline, caffeine and theobromine were compared to establish the predominant tautomeric species in solution. This comparison, analysis of solvent effects and assignments of the observed transitions via MO computations indicate the exits of only one tautomeric species in solution that is the N7 form. A low-lying triplet state was identified which corresponds to a HOMO-LUMO transition. This relatively long-lived T 1 state is always less polar than the ground state and may very well underlie the photochemical reactivity of alkyl xanthines. Substituents of different electron donating or withdrawing strengths and solvent effects are investigated and analyzed. The present analysis is facilitated via computer deconvolution of the observed spectra and MO computation.

  9. Pharmacodynamic profile of the new potent antibronchospastic agent 7-[(2,2-dimethyl)propyl]-1-methyl xanthine.

    PubMed

    Evangelista, S; Ballati, L; Boni, P; Castellucci, A; Perretti, F; Tramontana, M; Toja, E

    1995-05-01

    The pharmacodynamic profile of a new xanthine derivative, 7-[(2,2-dimethyl)propyl]-1-methyl xanthine (CAS 155006-67-0, MX2/120), was investigated in comparison with theophylline. The compound reduces in vitro the bronchospastic tone induced by carbachol or histamine in guinea-pig bronchi, with a potency 11 and 5 fold greater than theophylline, respectively. MX2/120 is significantly more active and long-lasting than theophylline in in vivo experiments toward spasmogens such as acetylcholine (ED50 over 5 h = 15 mumol/kg p.o. vs 230 mumol/kg p.o.) or histamine (ED50 over 5 h = 122 mumol/kg p.o. vs 500 mumol/kg p.o.) while being almost equiactive to theophylline toward antigen and capsaicin induced cough strokes. MX2/120, if administered by i.p. route reduces hyperresponsiveness to histamine induced by PAF and extravasation of protein into bronchoalveolar lavage fluid induced by capsaicin. These anti-inflammatory effects of MX2/120 are of similar extent when compared to theophylline. Unlike theophylline, MX2/120 up to 275 mumol/kg p.o. possesses little or no CNS excitatory effects in mice in terms of reduction of sleeping time induced by chlordiazepoxide, increase in mortality and convulsions induced by pentetrazol and increase in locomotor activity. This reduced neuroexcitatory action is probably related to its lack of affinity to adenosine receptors that could also explain the absence of effect on basal gastric secretion. Chronotropic effects of MX2/120 in conscious rats are similar to those of theophylline while the effects of both drugs on blood pressure are of minor extent. The overall pharmacodynamic properties of MX2/120 are superior to those of theophylline in relation to its antibronchospastic activity and lack of excitatory effects on CNS.

  10. The reductive half-reaction of xanthine dehydrogenase from Rhodobacter capsulatus: the role of Glu232 in catalysis.

    PubMed

    Hall, James; Reschke, Stefan; Cao, Hongnan; Leimkühler, Silke; Hille, Russ

    2014-11-14

    The kinetic properties of an E232Q variant of the xanthine dehydrogenase from Rhodobacter capsulatus have been examined to ascertain whether Glu(232) in wild-type enzyme is protonated or unprotonated in the course of catalysis at neutral pH. We find that kred, the limiting rate constant for reduction at high [xanthine], is significantly compromised in the variant, a result that is inconsistent with Glu(232) being neutral in the active site of the wild-type enzyme. A comparison of the pH dependence of both kred and kred/Kd from reductive half-reaction experiments between wild-type and enzyme and the E232Q variant suggests that the ionized Glu(232) of wild-type enzyme plays an important role in catalysis by discriminating against the monoanionic form of substrate, effectively increasing the pKa of substrate by two pH units and ensuring that at physiological pH the neutral form of substrate predominates in the Michaelis complex. A kinetic isotope study of the wild-type R. capsulatus enzyme indicates that, as previously determined for the bovine and chicken enzymes, product release is principally rate-limiting in catalysis. The disparity in rate constants for the chemical step of the reaction and product release, however, is not as great in the bacterial enzyme as compared with the vertebrate forms. The results indicate that the bacterial and bovine enzymes catalyze the chemical step of the reaction to the same degree and that the faster turnover observed with the bacterial enzyme is due to a faster rate constant for product release than is seen with the vertebrate enzyme.

  11. Extracellular oxidases of the lignin-degrading fungus Panus tigrinus.

    PubMed

    Cadimaliev, D A; Revin, V V; Atykyan, N A; Samuilov, V D

    2005-06-01

    Two extracellular oxidases (laccases) were isolated from the extracellular fluid of the fungus Panus (Lentinus) tigrinus cultivated in low-nitrogen medium supplemented with birch sawdust. The enzymes were purified by successive chromatography on columns with TEAE-cellulose and DEAE-Toyopearl 650M. Both oxidases catalyze oxidation of pyrocatechol and ABTS. Moreover, oxidase 1 also catalyzes oxidation of guaiacol, o-phenylenediamine, and syringaldazine. The enzymes have identical pH (7.0) and temperature (60-65 degrees C) optimums. Absorption spectra of the oxidases differ from the spectra of typical "blue" laccases and are similar to the spectrum of yellow oxidase. PMID:16038613

  12. HPTLC Analysis, Antioxidant and Antigout Activity of Indian Plants.

    PubMed

    Nile, Shivraj Hariram; Park, Se Won

    2014-01-01

    The HPTLC analysis, antioxidant, and antigout activity of Asparagus racemosus, Withania somnifera, Vitex negundo, Plumbago zeylanica, Butea monosperma and Tephrosia purpurea extracts were investigated. The chemical fingerprinting were carried out by high performance thin layer chromatography (HPTLC), antioxidant activity by ABTS, DPPH, FRAP radical scavenging assays, and antiogout activity by cow milk xanthine oxidase. The HPTLC fingerprint qualitatively revealed predominant amount of flavonoids. The TEAC values ranged from 45.80 to 140 µM trolox/100 g dry weight for ABTS, from 85 to 430 µM trolox/ 100 g dw DPPH, and 185 to 560 µM trolox/100 g dw for FRAP respectively. Plants used in this study was found to inhibit the toxicity, as seen from the decreased LPO and increased GSH, SOD and CAT levels. The total phenolic and flavonoid content ranged from 10.21 to 28.17 and 5.80 to 10.1 mg of gallic acid equivalents (GAE)/100 gdw respectively. The plant extracts demonstrated significant xanthine oxidase inhibitory activity at 100 g/mL and revealed an inhibition greater than 50 % and IC50 values below the standard. This effect was almost similar to the activity of allopurinol (Standard drug) against xanthine oxidase (90.2 ± 0.4 %). These plant root extract will be subjected for further extensive studies to isolate and identify their active constituents which are useful for against inflammation and gout. PMID:25237348

  13. Maternal fructose drives placental uric acid production leading to adverse fetal outcomes

    PubMed Central

    Asghar, Zeenat A.; Thompson, Alysha; Chi, Maggie; Cusumano, Andrew; Scheaffer, Suzanne; Al-Hammadi, Noor; Saben, Jessica L.; Moley, Kelle H.

    2016-01-01

    Maternal metabolic diseases increase offspring risk for low birth weight and cardiometabolic diseases in adulthood. Excess fructose consumption may confer metabolic risks for both women and their offspring. However, the direct consequences of fructose intake per se are unknown. We assessed the impact of a maternal high-fructose diet on the fetal-placental unit in mice in the absence of metabolic syndrome and determined the association between maternal serum fructose and placental uric acid levels in humans. In mice, maternal fructose consumption led to placental inefficiency, fetal growth restriction, elevated fetal serum glucose and triglyceride levels. In the placenta, fructose induced de novo uric acid synthesis by activating the activities of the enzymes AMP deaminase and xanthine oxidase. Moreover, the placentas had increased lipids and altered expression of genes that control oxidative stress. Treatment of mothers with the xanthine oxidase inhibitor allopurinol reduced placental uric acid levels, prevented placental inefficiency, and improved fetal weights and serum triglycerides. Finally, in 18 women delivering at term, maternal serum fructose levels significantly correlated with placental uric acid levels. These findings suggest that in mice, excess maternal fructose consumption impairs placental function via a xanthine oxidase/uric acid-dependent mechanism, and similar effects may occur in humans. PMID:27125896

  14. NADPH oxidases in the arbuscular mycorrhizal symbiosis

    PubMed Central

    Belmondo, Simone; Calcagno, Cristina; Genre, Andrea; Puppo, Alain; Pauly, Nicolas; Lanfranco, Luisa

    2016-01-01

    ABSTRACT Plant NADPH oxidases are the major source of reactive oxygen species (ROS) that plays key roles as both signal and stressor in several plant processes, including defense responses against pathogens. ROS accumulation in root cells during arbuscular mycorrhiza (AM) development has raised the interest in understanding how ROS-mediated defense programs are modulated during the establishment of this mutualistic interaction. We have recently analyzed the expression pattern of 5 NADPH oxidase (also called RBOH) encoding genes in Medicago truncatula, showing that only one of them (MtRbohE) is specifically upregulated in arbuscule-containing cells. In line with this result, RNAi silencing of MtRbohE generated a strong alteration in root colonization, with a significant reduction in the number of arbusculated cells. On this basis, we propose that MtRBOHE-mediated ROS production plays a crucial role in the intracellular accommodation of arbuscules. PMID:27018627

  15. Lysyl oxidase isoforms in gastric cancer.

    PubMed

    Añazco, Carolina; Delgado-López, Fernando; Araya, Paulina; González, Ileana; Morales, Erik; Pérez-Castro, Ramón; Romero, Jacqueline; Rojas, Armando

    2016-09-01

    Gastric cancer (GC) is the fifth most frequent cancer in the world and shows the highest incidence in Latin America and Asia. An increasing amount of evidence demonstrates that lysyl oxidase isoforms, a group of extracellular matrix crosslinking enzymes, should be considered as potential biomarkers and therapeutic targets in GC. In this review, we focus on the expression levels of lysyl oxidase isoforms, its functions and the clinical implications in GC. Finding novel proteins related to the processing of these extracellular matrix enzymes might be helpful in the design of new therapies, which, in combination with classic pharmacology, could be used to delay the progress of this aggressive cancer and offer a wider temporal window for clinical intervention. PMID:27564724

  16. Imaging Monoamine Oxidase in the Human Brain

    SciTech Connect

    Fowler, J. S.; Volkow, N. D.; Wang, G-J.; Logan, Jean

    1999-11-10

    Positron emission tomography (PET) studies mapping monoamine oxidase in the human brain have been used to measure the turnover rate for MAO B; to determine the minimum effective dose of a new MAO inhibitor drug lazabemide and to document MAO inhibition by cigarette smoke. These studies illustrate the power of PET and radiotracer chemistry to measure normal biochemical processes and to provide information on the effect of drug exposure on specific molecular targets.

  17. Monoamine oxidase inhibitors from Gentiana lutea.

    PubMed

    Haraguchi, Hiroyuki; Tanaka, Yasumasa; Kabbash, Amal; Fujioka, Toshihiro; Ishizu, Takashi; Yagi, Akira

    2004-08-01

    Three monoamine oxidase (MAO) inhibitors were isolated from Gentiana lutea. Their structures were elucidated to be 3-3''linked-(2'-hydroxy-4-O-isoprenylchalcone)-(2'''-hydroxy-4''-O-isoprenyldihydrochalcone) (1), 2-methoxy-3-(1,1'-dimethylallyl)-6a,10a-dihydrobenzo(1,2-c)chroman-6-one and 5-hydroxyflavanone. These compounds, and the hydrolysis product of 1, displayed competitive inhibitory properties against MAO-B which was more effective than MAO-A.

  18. Acrolein activates matrix metalloproteinases by increasing reactive oxygen species in macrophages

    SciTech Connect

    O'Toole, Timothy E. Zheng Yuting; Hellmann, Jason; Conklin, Daniel J.; Barski, Oleg; Bhatnagar, Aruni

    2009-04-15

    Acrolein is a ubiquitous component of environmental pollutants such as automobile exhaust, cigarette, wood, and coal smoke. It is also a natural constituent of several foods and is generated endogenously during inflammation or oxidation of unsaturated lipids. Because increased inflammation and episodic exposure to acrolein-rich pollutants such as traffic emissions or cigarette smoke have been linked to acute myocardial infarction, we examined the effects of acrolein on matrix metalloproteinases (MMPs), which destabilize atherosclerotic plaques. Our studies show that exposure to acrolein resulted in the secretion of MMP-9 from differentiated THP-1 macrophages. Acrolein-treatment of macrophages also led to an increase in reactive oxygen species (ROS), free intracellular calcium ([Ca{sup 2+}]{sub i}), and xanthine oxidase (XO) activity. ROS production was prevented by allopurinol, but not by rotenone or apocynin and by buffering changes in [Ca{sup 2+}]{sub I} with BAPTA-AM. The increase in MMP production was abolished by pre-treatment with the antioxidants Tiron and N-acetyl cysteine (NAC) or with the xanthine oxidase inhibitors allopurinol or oxypurinol. Finally, MMP activity was significantly stimulated in aortic sections from apoE-null mice containing advanced atherosclerotic lesions after exposure to acrolein ex vivo. These observations suggest that acrolein exposure results in MMP secretion from macrophages via a mechanism that involves an increase in [Ca{sup 2+}]{sub I}, leading to xanthine oxidase activation and an increase in ROS production. ROS-dependent activation of MMPs by acrolein could destabilize atherosclerotic lesions during brief episodes of inflammation or pollutant exposure.

  19. Uric acid promotes left ventricular diastolic dysfunction in mice fed a Western diet.

    PubMed

    Jia, Guanghong; Habibi, Javad; Bostick, Brian P; Ma, Lixin; DeMarco, Vincent G; Aroor, Annayya R; Hayden, Melvin R; Whaley-Connell, Adam T; Sowers, James R

    2015-03-01

    The rising obesity rates parallel increased consumption of a Western diet, high in fat and fructose, which is associated with increased uric acid. Population-based data support that elevated serum uric acids are associated with left ventricular hypertrophy and diastolic dysfunction. However, the mechanism by which excess uric acid promotes these maladaptive cardiac effects has not been explored. In assessing the role of Western diet-induced increases in uric acid, we hypothesized that reductions in uric acid would prevent Western diet-induced development of cardiomyocyte hypertrophy, cardiac stiffness, and impaired diastolic relaxation by reducing growth and profibrotic signaling pathways. Four-weeks-old C57BL6/J male mice were fed excess fat (46%) and fructose (17.5%) with or without allopurinol (125 mg/L), a xanthine oxidase inhibitor, for 16 weeks. The Western diet-induced increases in serum uric acid along with increases in cardiac tissue xanthine oxidase activity temporally related to increases in body weight, fat mass, and insulin resistance without changes in blood pressure. The Western diet induced cardiomyocte hypertrophy, myocardial oxidative stress, interstitial fibrosis, and impaired diastolic relaxation. Further, the Western diet enhanced activation of the S6 kinase-1 growth pathway and the profibrotic transforming growth factor-β1/Smad2/3 signaling pathway and macrophage proinflammatory polarization. All results improved with allopurinol treatment, which lowered cardiac xanthine oxidase as well as serum uric acid levels. These findings support the notion that increased production of uric acid with intake of a Western diet promotes cardiomyocyte hypertrophy, inflammation, and oxidative stress that lead to myocardial fibrosis and associated impaired diastolic relaxation.

  20. Comparison of kinetic properties of amine oxidases from sainfoin and lentil and immunochemical characterization of copper/quinoprotein amine oxidases.

    PubMed

    Zajoncová, L; Frébort, I; Luhová, L; Sebela, M; Galuszka, P; Pec, P

    1999-01-01

    Kinetic properties of novel amine oxidase isolated from sainfoin (Onobrychis viciifolia) were compared to those of typical plant amine oxidase (EC 1.4.3.6) from lentil (Lens culinaris). The amine oxidase from sainfoin was active toward substrates, such as 1,5-diaminopentane (cadaverine) with K(m) of 0.09 mM and 1,4-diaminobutane (putrescine) with K(m) of 0.24 mM. The maximum rate of oxidation for cadaverine at saturating concentration was 2.7 fold higher than that of putrescine. The amine oxidase from lentil had the maximum rate for putrescine comparable to the rate of sainfoin amine oxidase with the same substrate. Both amine oxidases, like other plant Cu-amine oxidases, were inhibited by substrate analogs (1,5-diamino-3-pentanone, 1,4-diamino-2-butanone and aminoguanidine), Cu2+ chelating agents (diethyltriamine, 1,10-phenanthroline, 8-hydroxyquinoline, 2,2'-bipyridyl, imidazole, sodium cyanide and sodium azide), some alkaloids (L-lobeline and cinchonine), some lathyrogens (beta-aminopropionitrile and aminoacetonitrile) and other inhibitors (benzamide oxime, acetone oxime, hydroxylamine and pargyline). Tested by Ouchterlony's double diffusion in agarose gel, polyclonal antibodies against the amine oxidase from sainfoin, pea and grass pea cross-reacted with amine oxidases from several other Fabaceae and from barley (Hordeum vulgare) of Poaceae, while amine oxidase from the filamentous fungus Aspergillus niger did not cross-react at all. However, using Western blotting after SDS-PAGE with rabbit polyclonal antibodies against the amine oxidase from Aspergillus niger, some degree of similarity of plant amine oxidases from sainfoin, pea, field pea, grass pea, fenugreek, common melilot, white sweetclover and Vicia panonica with the A. niger amine oxidase was confirmed. PMID:10092944

  1. Pathological changes in platelet histamine oxidases in atopic eczema

    PubMed Central

    Ionescu, Gruia

    1993-01-01

    Increased plasma histamine levels were associated with significantly lowered diamine and type B monoamine oxidase activities in platelet-rich plasma of atopic eczema (AE) patients. The diamine oxidase has almost normal cofactor levels (pyridoxal phosphate and Cu2+) but the cofactor levels for type B monoamine oxidase (flavin adenine dinucleotide and Fe2+) are lowered. The biogenic amines putrescine, cadaverine, spermidine, spermine, tyramine and serotonin in the sera, as well as dopamine and epinephrine in EDTA-plasma were found to be normal. It is unlikely, therefore, that these amines are responsible for the decreased activities of monoamine and diamine oxidase in these patients. The most likely causative factors for the inhibition of the diamine oxidase are nicotine, alcohol, food additives and other environmental chemicals, or perhaps a genetic defect of the diamine oxidase. PMID:18475554

  2. Crystal Structure of a Two-domain Multicopper Oxidase

    PubMed Central

    Lawton, Thomas J.; Sayavedra-Soto, Luis A.; Arp, Daniel J.; Rosenzweig, Amy C.

    2009-01-01

    The two-domain multicopper oxidases are proposed to be key intermediates in the evolution of three-domain multicopper oxidases. A number of two-domain multicopper oxidases have been identified from genome sequences and are classified as type A, type B, or type C on the basis of the predicted location of the type 1 copper center. The crystal structure of blue copper oxidase, a type C two-domain multicopper oxidase from Nitrosomonas europaea, has been determined to 1.9 Å resolution. Blue copper oxidase is a trimer, of which each subunit comprises two cupredoxin domains. Each subunit houses a type 1 copper site in domain 1 and a type 2/type 3 trinuclear copper cluster at the subunit-subunit interface. The coordination geometry at the trinuclear copper site is consistent with reduction of the copper ions. Although the overall architecture of blue copper oxidase is similar to nitrite reductases, detailed structural alignments show that the fold and domain orientation more closely resemble the three-domain multicopper oxidases. These observations have important implications for the evolution of nitrite reductases and multicopper oxidases. PMID:19224923

  3. Effect of commercial or depurinized milk on rat liver growth-regulatory kinases, nuclear factor-kappa B, and endonuclease in experimental hyperuricemia: comparison with allopurinol therapy.

    PubMed

    Kocic, G; Pavlovic, R; Nikolic, G; Veljkovic, A; Panseri, S; Chiesa, L M; Andjelkovic, T; Jevtovic-Stoimenov, T; Sokolovic, D; Cvetkovic, T; Stojanovic, S; Kocic, H; Nikolic, R

    2014-07-01

    Hyperuricemia is a biochemical hallmark of gout, renal urate lithiasis, and inherited purine disorders, and may be a result of enormous ATP breakdown or purine release as a result of cardiovascular disease, hypertension, kidney disease, eclampsia, obesity, metabolic syndrome, psoriasis, tumor lysis syndrome, or intense physical training. The beneficial role of dairy products on hyperuricemia management and prevention is well documented in the literature. The primary aim of our experimental study was to examine the effect of milk dietary regimen (commercial 1.5% fat UHT milk or patented depurinized milk) compared with allopurinol therapy on experimental hyperuricemia induced by oxonic acid in rats. Principal component analysis was applied on a data set consisting of 11 variables for 8 different experimental groups. Among the 11 parameters measured (plasma uric acid and the liver parameters NFκB-p65, Akt kinase/phospho-Akt kinase, ERK kinase/phospho-ERK kinase, IRAK kinase/phospho IRAK kinase, p38/phospho-p38, and DNase), Akt/phospho Akt and ERK/phospho-ERK signaling were extracted as the most discriminating. We also compared the content of various potentially toxic compounds (sulfur compounds, ketones, aldehydes, alcohols, esters, carboxylic acids, and phthalates) in untreated commercial milk and depurinized milk. Of all the compounds investigated in this study that were observed in commercial milk (24 volatile organic compounds and 4 phthalates), 6 volatile organic compounds were not detected in depurinized milk. For almost all of the other compounds, significant decreases in concentration were observed in depurinized milk compared with commercial milk. In conclusion, a depurinized milk diet may be recommended in nutritional treatment of primary and secondary hyperuricemia to avoid uric acid and other volatile, potentially toxic compounds that may slow down liver regeneration and may induce chronic liver diseases.

  4. Nox NADPH Oxidases and the Endoplasmic Reticulum

    PubMed Central

    Araujo, Thaís L.S.; Abrahão, Thalita B.

    2014-01-01

    Abstract Significance: Understanding isoform- and context-specific subcellular Nox reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase compartmentalization allows relevant functional inferences. This review addresses the interplay between Nox NADPH oxidases and the endoplasmic reticulum (ER), an increasingly evident player in redox pathophysiology given its role in redox protein folding and stress responses. Recent Advances: Catalytic/regulatory transmembrane subunits are synthesized in the ER and their processing includes folding, N-glycosylation, heme insertion, p22phox heterodimerization, as shown for phagocyte Nox2. Dual oxidase (Duox) maturation also involves the regulation by ER-resident Duoxa2. The ER is the activation site for some isoforms, typically Nox4, but potentially other isoforms. Such location influences redox/Nox-mediated calcium signaling regulation via ER targets, such as sarcoendoplasmic reticulum calcium ATPase (SERCA). Growing evidence suggests that Noxes are integral signaling elements of the unfolded protein response during ER stress, with Nox4 playing a dual prosurvival/proapoptotic role in this setting, whereas Nox2 enhances proapoptotic signaling. ER chaperones such as protein disulfide isomerase (PDI) closely interact with Noxes. PDI supports growth factor-dependent Nox1 activation and mRNA expression, as well as migration in smooth muscle cells, and PDI overexpression induces acute spontaneous Nox activation. Critical Issues: Mechanisms of PDI effects include possible support of complex formation and RhoGTPase activation. In phagocytes, PDI supports phagocytosis, Nox activation, and redox-dependent interactions with p47phox. Together, the results implicate PDI as possible Nox organizer. Future Directions: We propose that convergence between Noxes and ER may have evolutive roots given ER-related functional contexts, which paved Nox evolution, namely calcium signaling and pathogen killing. Overall, the interplay between

  5. Teneligliptin Decreases Uric Acid Levels by Reducing Xanthine Dehydrogenase Expression in White Adipose Tissue of Male Wistar Rats

    PubMed Central

    2016-01-01

    We investigated the effects of teneligliptin on uric acid metabolism in male Wistar rats and 3T3-L1 adipocytes. The rats were fed with a normal chow diet (NCD) or a 60% high-fat diet (HFD) with or without teneligliptin for 4 weeks. The plasma uric acid level was not significantly different between the control and teneligliptin groups under the NCD condition. However, the plasma uric acid level was significantly decreased in the HFD-fed teneligliptin treated rats compared to the HFD-fed control rats. The expression levels of xanthine dehydrogenase (Xdh) mRNA in liver and epididymal adipose tissue of NCD-fed rats were not altered by teneligliptin treatment. On the other hand, Xdh expression was reduced significantly in the epididymal adipose tissue of the HFD-fed teneligliptin treated rats compared with that of HFD-fed control rats, whereas Xdh expression in liver did not change significantly in either group. Furthermore, teneligliptin significantly decreased Xdh expression in 3T3-L1 adipocytes. DPP-4 treatment significantly increased Xdh expression in 3T3-L1 adipocytes. With DPP-4 pretreatment, teneligliptin significantly decreased Xdh mRNA expression compared to the DPP-4-treated 3T3-L1 adipocytes. In conclusion, our studies suggest that teneligliptin reduces uric acid levels by suppressing Xdh expression in epididymal adipose tissue of obese subjects.

  6. Teneligliptin Decreases Uric Acid Levels by Reducing Xanthine Dehydrogenase Expression in White Adipose Tissue of Male Wistar Rats

    PubMed Central

    2016-01-01

    We investigated the effects of teneligliptin on uric acid metabolism in male Wistar rats and 3T3-L1 adipocytes. The rats were fed with a normal chow diet (NCD) or a 60% high-fat diet (HFD) with or without teneligliptin for 4 weeks. The plasma uric acid level was not significantly different between the control and teneligliptin groups under the NCD condition. However, the plasma uric acid level was significantly decreased in the HFD-fed teneligliptin treated rats compared to the HFD-fed control rats. The expression levels of xanthine dehydrogenase (Xdh) mRNA in liver and epididymal adipose tissue of NCD-fed rats were not altered by teneligliptin treatment. On the other hand, Xdh expression was reduced significantly in the epididymal adipose tissue of the HFD-fed teneligliptin treated rats compared with that of HFD-fed control rats, whereas Xdh expression in liver did not change significantly in either group. Furthermore, teneligliptin significantly decreased Xdh expression in 3T3-L1 adipocytes. DPP-4 treatment significantly increased Xdh expression in 3T3-L1 adipocytes. With DPP-4 pretreatment, teneligliptin significantly decreased Xdh mRNA expression compared to the DPP-4-treated 3T3-L1 adipocytes. In conclusion, our studies suggest that teneligliptin reduces uric acid levels by suppressing Xdh expression in epididymal adipose tissue of obese subjects. PMID:27652270

  7. Analysis of xanthine dehydrogenase mRNA levels in mutants affecting the expression of the rosy locus.

    PubMed Central

    Covington, M; Fleenor, D; Devlin, R B

    1984-01-01

    Xanthine dehydrogenase (XDH) mRNA levels were measured in a number of mutants and natural variants affecting XDH gene expression. Two variants, ry+4 and ry+10, contain cis-acting elements which map to a region flanking the 5' end of the XDH gene. Ry+4, which has 2-3 times more XDH protein than a wild type strain, has 3.2 times more XDH mRNA. Ry+10 has 50% of the wild type XDH level and 54% of the wild type XDH mRNA level. Three rosy mutants which map within the structural gene were also examined. Two of these had little if any XDH mRNA, but the third mutant had 1.3 times more XDH mRNA than wild type flies. Another mutant, ry2 , which contains no XDH protein and has a 9KB transposable element inserted into the XDH gene, has normal levels of XDH mRNA transcripts which are also the same size as those found in the wild type strain. Changes in XDH mRNA levels were measured during Drosophila development and found to parallel changes in the amount of XDH protein. In addition, there were no large changes in the size of XDH mRNA during development. Images PMID:6588363

  8. Teneligliptin Decreases Uric Acid Levels by Reducing Xanthine Dehydrogenase Expression in White Adipose Tissue of Male Wistar Rats.

    PubMed

    Moriya, Chihiro; Satoh, Hiroaki

    2016-01-01

    We investigated the effects of teneligliptin on uric acid metabolism in male Wistar rats and 3T3-L1 adipocytes. The rats were fed with a normal chow diet (NCD) or a 60% high-fat diet (HFD) with or without teneligliptin for 4 weeks. The plasma uric acid level was not significantly different between the control and teneligliptin groups under the NCD condition. However, the plasma uric acid level was significantly decreased in the HFD-fed teneligliptin treated rats compared to the HFD-fed control rats. The expression levels of xanthine dehydrogenase (Xdh) mRNA in liver and epididymal adipose tissue of NCD-fed rats were not altered by teneligliptin treatment. On the other hand, Xdh expression was reduced significantly in the epididymal adipose tissue of the HFD-fed teneligliptin treated rats compared with that of HFD-fed control rats, whereas Xdh expression in liver did not change significantly in either group. Furthermore, teneligliptin significantly decreased Xdh expression in 3T3-L1 adipocytes. DPP-4 treatment significantly increased Xdh expression in 3T3-L1 adipocytes. With DPP-4 pretreatment, teneligliptin significantly decreased Xdh mRNA expression compared to the DPP-4-treated 3T3-L1 adipocytes. In conclusion, our studies suggest that teneligliptin reduces uric acid levels by suppressing Xdh expression in epididymal adipose tissue of obese subjects. PMID:27652270

  9. Trials of the bronchodilator activity of the xanthine analogue SDZ MKS 492 in healthy volunteers during a methacholine challenge test.

    PubMed

    Foster, R W; Jubber, A S; Hassan, N A; Franke, B; Vernillet, L; Denouel, J; Carpenter, J R; Small, R C

    1993-01-01

    An approximately steady-state reduction of specific airway conductance was induced in healthy human subjects by means of an individualized inhaled methacholine loading dose followed by a maintenance dose regime. Tested against this background bronchoconstriction, the xanthine analogue SDZ MKS 492, when administered as a single oral dose of 40 mg, showed a significant bronchodilator action, which lasted for up to 5.5 h. Bronchodilatation was not seen after administration of 10 or 20 mg doses. SDZ MKS 492 inhaled as a dry powder had a bronchodilator action that was small, most evident with the 12 mg dose and transient. The peak relief of imposed bronchoconstriction was 29% and the apparent half-time of removal of SDZ MKS 492 from its site of action was 5-6 min. Inhaled SDZ 492 had a bitter taste that was not masked by inclusion of menthol and aspartame in the formulation. The bronchodilatation seen in laboratory animals can also be produced by SDZ MKS 492 in man when administered orally or by inhalation. Its magnitude correlates better with the plasma concentration of parent drug than with that of either of the identified metabolites. Dispositional processes in the lung abbreviate its action after administration by inhalation.

  10. NADPH Oxidase Promotes Neutrophil Extracellular Trap Formation in Pulmonary Aspergillosis

    PubMed Central

    Röhm, Marc; Grimm, Melissa J.; D'Auria, Anthony C.; Almyroudis, Nikolaos G.

    2014-01-01

    NADPH oxidase is a crucial enzyme in antimicrobial host defense and in regulating inflammation. Chronic granulomatous disease (CGD) is an inherited disorder of NADPH oxidase in which phagocytes are defective in generation of reactive oxidant intermediates. Aspergillus species are ubiquitous, filamentous fungi, which can cause invasive aspergillosis, a major cause of morbidity and mortality in CGD, reflecting the critical role for NADPH oxidase in antifungal host defense. Activation of NADPH oxidase in neutrophils can be coupled to the release of proteins and chromatin that comingle in neutrophil extracellular traps (NETs), which can augment extracellular antimicrobial host defense. NETosis can be driven by NADPH oxidase-dependent and -independent pathways. We therefore undertook an analysis of whether NADPH oxidase was required for NETosis in Aspergillus fumigatus pneumonia. Oropharyngeal instillation of live Aspergillus hyphae induced neutrophilic pneumonitis in both wild-type and NADPH oxidase-deficient (p47phox−/−) mice which had resolved in wild-type mice by day 5 but progressed in p47phox−/− mice. NETs, identified by immunostaining, were observed in lungs of wild-type mice but were absent in p47phox−/− mice. Using bona fide NETs and nuclear chromatin decondensation as an early NETosis marker, we found that NETosis required a functional NADPH oxidase in vivo and ex vivo. In addition, NADPH oxidase increased the proportion of apoptotic neutrophils. Together, our results show that NADPH oxidase is required for pulmonary clearance of Aspergillus hyphae and generation of NETs in vivo. We speculate that dual modulation of NETosis and apoptosis by NADPH oxidase enhances antifungal host defense and promotes resolution of inflammation upon infection clearance. PMID:24549323

  11. Multicopper oxidase-1 orthologs from diverse insect species have ascorbate oxidase activity.

    PubMed

    Peng, Zeyu; Dittmer, Neal T; Lang, Minglin; Brummett, Lisa M; Braun, Caroline L; Davis, Lawrence C; Kanost, Michael R; Gorman, Maureen J

    2015-04-01

    Members of the multicopper oxidase (MCO) family of enzymes can be classified by their substrate specificity; for example, ferroxidases oxidize ferrous iron, ascorbate oxidases oxidize ascorbate, and laccases oxidize aromatic substrates such as diphenols. Our previous work on an insect multicopper oxidase, MCO1, suggested that it may function as a ferroxidase. This hypothesis was based on three lines of evidence: RNAi-mediated knock down of Drosophila melanogaster MCO1 (DmMCO1) affects iron homeostasis, DmMCO1 has ferroxidase activity, and DmMCO1 has predicted iron binding residues. In our current study, we expanded our focus to include MCO1 from Anopheles gambiae, Tribolium castaneum, and Manduca sexta. We verified that MCO1 orthologs have similar expression profiles, and that the MCO1 protein is located on the basal surface of cells where it is positioned to oxidize substrates in the hemolymph. In addition, we determined that RNAi-mediated knock down of MCO1 in A. gambiae affects iron homeostasis. To further characterize the enzymatic activity of MCO1 orthologs, we purified recombinant MCO1 from all four insect species and performed kinetic analyses using ferrous iron, ascorbate and two diphenols as substrates. We found that all of the MCO1 orthologs are much better at oxidizing ascorbate than they are at oxidizing ferrous iron or diphenols. This result is surprising because ascorbate oxidases are thought to be specific to plants and fungi. An analysis of three predicted iron binding residues in DmMCO1 revealed that they are not required for ferroxidase or laccase activity, but two of the residues (His374 and Asp380) influence oxidation of ascorbate. These two residues are conserved in MCO1 orthologs from insects and crustaceans; therefore, they are likely to be important for MCO1 function. The results of this study suggest that MCO1 orthologs function as ascorbate oxidases and influence iron homeostasis through an unknown mechanism. PMID:25701385

  12. Multicopper oxidase-1 orthologs from diverse insect species have ascorbate oxidase activity

    PubMed Central

    Peng, Zeyu; Dittmer, Neal T.; Lang, Minglin; Brummett, Lisa M.; Braun, Caroline L.; Davis, Lawrence C.; Kanost, Michael R.; Gorman, Maureen J.

    2015-01-01

    Members of the multicopper oxidase (MCO) family of enzymes can be classified by their substrate specificity; for example, ferroxidases oxidize ferrous iron, ascorbate oxidases oxidize ascorbate, and laccases oxidize aromatic substrates such as diphenols. Our previous work on an insect multicopper oxidase, MCO1, suggested that it may function as a ferroxidase. This hypothesis was based on three lines of evidence: RNAi-mediated knock down of Drosophila melanogaster MCO1 (DmMCO1) affects iron homeostasis, DmMCO1 has ferroxidase activity, and DmMCO1 has predicted iron binding residues. In our current study, we expanded our focus to include MCO1 from Anopheles gambiae, Tribolium castaneum, and Manduca sexta. We verified that MCO1 orthologs have similar expression profiles, and that the MCO1 protein is located on the basal surface of cells where it is positioned to oxidize substrates in the hemolymph. In addition, we determined that RNAi-mediated knock down of MCO1 in A. gambiae affects iron homeostasis. To further characterize the enzymatic activity of MCO1 orthologs, we purified recombinant MCO1 from all four insect species and performed kinetic analyses using ferrous iron, ascorbate and two diphenols as substrates. We found that all of the MCO1 orthologs are much better at oxidizing ascorbate than they are at oxidizing ferrous iron or diphenols. This result is surpring because ascorbate oxidases are thought to be specific to plants and fungi. An analysis of three predicted iron binding residues in DmMCO1 revealed that they are not required for ferroxidase or laccase activity, but two of the residues (His374 and Asp380) influence oxidation of ascorbate. These two residues are conserved in MCO1 orthologs from insects and crustaceans; therefore, they are likely to be important for MCO1 function. The results of this study suggest that MCO1 orthologs function as ascorbate oxidases and influence iron homeostasis through an unknown mechanism. PMID:25701385

  13. Endothelins and NADPH oxidases in the cardiovascular system.

    PubMed

    Dammanahalli, Karigowda J; Sun, Zhongjie

    2008-01-01

    1. The endothelin (ET) system and NADPH oxidase play important roles in the regulation of cardiovascular function, as well as in the pathogenesis of hypertension and other cardiovascular diseases. 2. Endothelins activate NADPH oxidases and thereby increase superoxide production, resulting in oxidative stress and cardiovascular dysfunction. Thus, NADPH oxidases may mediate the role of endothelins in some cardiovascular diseases. However, the role of reactive oxygen species (ROS) in mediating ET-induced vasoconstriction and cardiovascular disease remains under debate, as evidenced by conflicting reports from different research teams. Conversely, activation of NADPH oxidase can stimulate ET secretion via ROS generation, which further enhances the cardiovascular effects of NADPH oxidase. However, little is known about how ROS activate the endothelin system. It seems that the relationship between ET-1 and ROS may vary with cardiovascular disorders. 3. Endothelins activate NADPH oxidase via the ET receptor-proline-rich tyrosine kinase-2 (Pyk2)-Rac1 pathway. Rac1 is an important regulator of NADPH oxidase. There is ample evidence supporting direct stimulation by Rac1 of NADPH oxidase activity. In addition, Rac1-induced cardiomyocyte hypertrophy is mediated by the generation of ROS.

  14. Characterization of ascorbate oxidase from Acremonium sp. HI-25.

    PubMed

    Hirose, J; Sakurai, T; Imamura, K; Watanabe, H; Iwamoto, H; Hiromi, K; Itoh, H; Shin, T; Murao, S

    1994-05-01

    The ascorbate oxidase obtained from a microorganism, Acremonium sp. HI-25 (molecular weight, 80 kDa; monomeric protein), was studied with respect to atomic absorption, EPR, absorption spectra, circular dichroism (CD) spectra, and steady-state kinetics. The enzyme was found to be a multicopper protein, containing four copper atoms of three kinds, types 1, 2, and 3 copper, in the ratio of 1:1:2. The EPR parameters of the type 1 and 2 copper atoms in the ascorbate oxidase are very similar to those in the case of the ascorbate oxidase obtained from cucumber, which is a dimeric protein. The apparent Km and kcat values for ascorbic acid of the ascorbate oxidase from Acremonium sp. HI-25 are almost the same as those of the monomeric unit of the ascorbate oxidase from cucumber. PMID:7961590

  15. The human lysyl oxidase-like 2 protein functions as an amine oxidase toward collagen and elastin.

    PubMed

    Kim, Young-Mi; Kim, Eun-Cheol; Kim, Youngho

    2011-01-01

    The lysyl oxidase-like 2 (LOXL2) protein is a human paralogue of lysyl oxidase (LOX) that functions as an amine oxidase for formation of lysine-derived cross-links found in collagen and elastin. In addition to the C-terminal domains characteristic to the LOX family members, LOXL2 contains four scavenger receptor cysteine-rich (SRCR) domains in the N-terminus. In order to assess the amine oxidase activity of LOXL2, we expressed a series of recombinant LOXL2 proteins with deletions in the SRCR domains, using an Escherichia coli expression system. All of the purified recombinant LOXL2 proteins, with or without the SRCR domains in the N-terminus, showed significant amine oxidase activity toward several different types of collagen and elastin in in vitro amine oxidase assays, indicating deletion of the SRCR domains does not interfere with amine oxidase activity of LOXL2. Further, amine oxidase activity of LOXL2 was not susceptible to inhibition by β-aminopropionitrile, an irreversible inhibitor of LOX, suggesting a different enzymatic mechanism between these two paralogues.

  16. Differential involvement of various sources of reactive oxygen species in thyroxin-induced hemodynamic changes and contractile dysfunction of the heart and diaphragm muscles.

    PubMed

    Elnakish, Mohammad T; Schultz, Eric J; Gearinger, Rachel L; Saad, Nancy S; Rastogi, Neha; Ahmed, Amany A E; Mohler, Peter J; Janssen, Paul M L

    2015-06-01

    Thyroid hormones are key regulators of basal metabolic state and oxidative metabolism. Hyperthyroidism has been reported to cause significant alterations in hemodynamics, and in cardiac and diaphragm muscle functions, all of which have been linked to increased oxidative stress. However, the definite source of increased reactive oxygen species (ROS) in each of these phenotypes is still unknown. The goal of the current study was to test the hypothesis that thyroxin (T4) may produce distinct hemodynamic, cardiac, and diaphragm muscle abnormalities by differentially affecting various sources of ROS. Wild-type and T4 mice with and without 2-week treatments with allopurinol (xanthine oxidase inhibitor), apocynin (NADPH oxidase inhibitor), L-NIO (nitric oxide synthase inhibitor), or MitoTEMPO (mitochondria-targeted antioxidant) were studied. Blood pressure and echocardiography were noninvasively evaluated, followed by ex vivo assessments of isolated heart and diaphragm muscle functions. Treatment with L-NIO attenuated the T4-induced hypertension in mice. However, apocynin improved the left-ventricular (LV) dysfunction without preventing the cardiac hypertrophy in these mice. Both allopurinol and MitoTEMPO reduced the T4-induced fatigability of the diaphragm muscles. In conclusion, we show here for the first time that T4 exerts differential effects on various sources of ROS to induce distinct cardiovascular and skeletal muscle phenotypes. Additionally, we find that T4-induced LV dysfunction is independent of cardiac hypertrophy and NADPH oxidase is a key player in this process. Furthermore, we prove the significance of both xanthine oxidase and mitochondrial ROS pathways in T4-induced fatigability of diaphragm muscles. Finally, we confirm the importance of the nitric oxide pathway in T4-induced hypertension. PMID:25795514

  17. Differential involvement of various sources of reactive oxygen species in thyroxin-induced hemodynamic changes and contractile dysfunction of the heart and diaphragm muscles

    PubMed Central

    Elnakish, Mohammad T.; Schultz, Eric J.; Gearinger, Rachel L.; Saad, Nancy S.; Rastogi, Neha; Ahmed, Amany A.E.; Mohler, Peter J.; Janssen, Paul M.L.

    2015-01-01

    Thyroid hormones are key regulators of basal metabolic state and oxidative metabolism. Hyperthyroidism has been reported to cause significant alterations in hemodynamics, and in cardiac and diaphragm muscle function, all of which have been linked to increased oxidative stress. However, the definite source of increased reactive oxygen species (ROS) in each of these phenotypes is still unknown. The goal of the current study was to test the hypothesis that thyroxin (T4) may produce distinct hemodynamic, cardiac, and diaphragm muscle abnormalities by differentially affecting various sources of ROS. Wild-type and T4 mice with and without 2-week treatments with allopurinol (xanthine oxidase inhibitor), apocynin (NADPH oxidase inhibitor), L-NIO (nitric oxide synthase inhibitor), or MitoTEMPO (mitochondria-targeted antioxidant) were studied. Blood pressure and echocardiography were noninvasively evaluated, followed by ex vivo assessments of isolated heart and diaphragm muscle functions. Treatment with L-NIO attenuated the T4-induced hypertension in mice. However, apocynin improved the left-ventricular (LV) dysfunction without preventing the cardiac hypertrophy in these mice. Both allopurinol and MitoTEMPO reduced the T4-induced fatigability of the diaphragm muscles. In conclusion, we show here for the first time that T4 exerts differential effects on various sources of ROS to induce distinct cardiovascular and skeletal muscle phenotypes. Additionally, we find that T4-induced LV dysfunction is independent of cardiac hypertrophy and NADPH oxidase is a key player in this process. Furthermore, we prove the significance of both xanthine oxidase and mitochondrial ROS pathways in T4-induced fatigability of diaphragm muscles. Finally, we confirm the importance of the nitric oxide pathway in T4-induced hypertension. PMID:25795514

  18. Acrolein-induced oxidative stress in NAD(P)H Oxidase Subunit gp91phox knock-out mice and its modulation of NFκB and CD36.

    PubMed

    Yousefipour, Zivar; Zhang, Chelsea; Monfareed, Mahdieh; Walker, James; Newaz, Mohammad

    2013-11-01

    An essential component of NAD(P)H, gp91phox, maintains the functionality of the enzyme in producing oxygen radicals. NAD(P)H oxidase plays an important role in oxidative stress but its precise contribution in acrolein-induced toxicity was not explored. We examined the involvement of NAD(P)H oxidase and other oxidant system in acrolein toxicity using gp91phox knockout mice. Male gp91phox knockout (KO) mice (20-25 gm) or wild type (WT) controls were treated with acrolein (0.5 μg/kg; 1 week). Animals were sacrificed and the liver was used to determine biochemical parameters. Knockout mice generated low (1.43 ±.02 pg/μg protein) free radicals as evident in 8-Isoprostane compared with the WT mice (2.19 ± 0.1). Acrolein increased 8-Isoprostane in WT (P<.05) and KO (p<.05) mice. Xanthine Oxidase (XO) activity was higher (p<.05) in KO (0.56 ± 0.06 μ unit/μg protein) than WT mice. Acrolein increased XO in KO mice, but significantly increased it only in WT. Cycloxygenase (COX) activity was not different between WT and KO mice, although acroelin increased COX in WT. Knockout mice exhibited a significantly low (2.1 ± 0.2 μmol/mg protein) total antioxidant status (TAS) compared with the WT (3.5 ± 0.3). Acrolein reduced TAS in both WT and KO mice equally. Baseline NFκB was significantly higher in KO mice, although acrolein increased NFκB in WT but not in KO. CD36 was higher (p<.05) in KO mice than the WT and acrolein increased (p<.05) CD36 further in KO but not in WT mice. These data suggest that NAD(P)H oxidase contributes significantly in acrolein-induced oxidative stress. We also suggests that in the absence of NAD(P)H oxidase XO plays a definitive role together with reduced antioxidant ability to compound the toxic effects of acrolein. We propose that in absence of NAD(P)H oxidase a different signaling process may involve that utilizes CD36 besides NFκB.

  19. Effects of topiroxostat and febuxostat on urinary albumin excretion and plasma xanthine oxidoreductase activity in db/db mice.

    PubMed

    Nakamura, Takashi; Murase, Takayo; Nampei, Mai; Morimoto, Nobutaka; Ashizawa, Naoki; Iwanaga, Takashi; Sakamoto, Ryusuke

    2016-06-01

    Topiroxostat, a xanthine oxidoreductase (XOR) inhibitor, has been shown to decrease the urinary albumin-to-creatinine ratio compared with placebo in hyperuricemic patients with stage 3 chronic kidney disease. Thus, we aimed to ascertain the albuminuria-lowering effect of topiroxostat in diabetic mouse. Db/db mice were fed standard diets with or without topiroxostat (0.1, 0.3, 1, and 3mg/kg/day) and febuxostat (0.1, 0.3, and 1mg/kg/day) for four weeks. Urinary albumin and purine bodies levels, XOR activities, and drug concentrations in the liver, kidney, and plasma were measured. Moreover, the XOR inhibitory activity of each XOR inhibitor was evaluated with or without an exogenous protein in vitro. Topiroxostat decreased dose-dependently the urinary albumin excretion, but febuxostat did not show such a tendency. Treatment with topiroxostat inhibited plasma XOR activity with dose-dependent increase in plasma purine levels, which was not observed by febuxostat. Pharmacokinetic/pharmacodynamic analysis revealed that topiroxostat and febuxostat concentration in each tissue showed a good correlation with both the hypouricemic effect and plasma drug concentration, whereas the change in albuminuria correlated neither with the change in uric acid nor with drug concentration in plasma. However, the change in urinary albumin and plasma XOR activity showed good correlation in topiroxostat group. The 50% inhibitory concentration (IC50 value) of febuxostat against plasma XOR in vitro was 12-fold higher than that of topiroxostat, and increased by approximately 13-fold by interfering with an exogenous protein. Topiroxostat caused reduced urinary albumin excretion, in which potent inhibition of the plasma XOR activity might be involved.

  20. Alternative oxidase and plastoquinol terminal oxidase in marine prokaryotes of the Sargasso Sea.

    PubMed

    McDonald, Allison E; Vanlerberghe, Greg C

    2005-04-11

    Alternative oxidase (AOX) represents a non-energy conserving branch in mitochondrial electron transport while plastoquinol terminal oxidase (PTOX) represents a potential branch in photosynthetic electron transport. Using a metagenomics dataset, we have uncovered numerous and diverse AOX and PTOX genes from the Sargasso Sea. Sequence similarity, synteny and phylogenetic analyses indicate that the large majority of these genes are from prokaryotes. AOX appears to be widely distributed among marine Eubacteria while PTOX is widespread among strains of cyanobacteria closely related to the high-light adapted Prochlorococcus marinus MED4, as well as Synechococcus. The wide distribution of AOX and PTOX in marine prokaryotes may have important implications for productivity in the world's oceans.

  1. Enzymatic polymerization of dihydroquercetin using bilirubin oxidase.

    PubMed

    Khlupova, M E; Vasil'eva, I S; Shumakovich, G P; Morozova, O V; Chertkov, V A; Shestakova, A K; Kisin, A V; Yaropolov, A I

    2015-02-01

    Dihydroquercetin (or taxifolin) is one of the most famous flavonoids and is abundant in Siberian larch (Larix sibirica). The oxidative polymerization of dihydroquercetin (DHQ) using bilirubin oxidase as a biocatalyst was investigated and some physicochemical properties of the products were studied. DHQ oligomers (oligoDHQ) with molecular mass of 2800 and polydispersity of 8.6 were obtained by enzymatic reaction under optimal conditions. The oligomers appeared to be soluble in dimethylsulfoxide, dimethylformamide, and methanol. UV-visible spectra of oligoDHQ in dimethylsulfoxide indicated the presence of highly conjugated bonds. The synthesized oligoDHQ was also characterized by FTIR and (1)H and (13)C NMR spectroscopy. Comparison of NMR spectra of oligoDHQ with DHQ monomer and the parent flavonoids revealed irregular structure of a polymer formed via the enzymatic oxidation of DHQ followed by nonselective radical polymerization. As compared with the monomer, oligoDHQ demonstrated higher thermal stability and high antioxidant activity.

  2. [NADPH oxidases, Nox: new isoenzymes family].

    PubMed

    Chuong Nguyen, Minh Vu; Lardy, Bernard; Paclet, Marie-Hélène; Rousset, Francis; Berthier, Sylvie; Baillet, Athan; Grange, Laurent; Gaudin, Philippe; Morel, Françoise

    2015-01-01

    NADPH oxidases, Nox, are a family of isoenzymes, composed of seven members, whose sole function is to produce reactive oxygen species (ROS). Although Nox catalyze the same enzymatic reaction, they acquired from a common ancestor during evolution, specificities related to their tissue expression, subcellular localization, activation mechanisms and regulation. Their functions could vary depending on the pathophysiological state of the tissues. Indeed, ROS are not only bactericidal weapons in phagocytes but also essential cellular signaling molecules and their overproduction is involved in chronic diseases and diseases of aging. The understanding of the mechanisms involved in the function of Nox and the emergence of Nox inhibitors, require a thorough knowledge of their nature and structure. The objectives of this review are to highlight, in a structure/function approach, the main similar and differentiated properties shared by the human Nox isoenzymes.

  3. Degradation of pentachlorophenol by potato polyphenol oxidase.

    PubMed

    Hou, Mei-Fang; Tang, Xiao-Yan; Zhang, Wei-De; Liao, Lin; Wan, Hong-Fu

    2011-11-01

    In this study, polyphenol oxidase (PPO) was extracted from commercial potatoes. Degradation of pentachlorophenol by potato PPO was investigated. The experimental results show that potato PPO is more active in weak acid than in basic condition and that the optimum pH for the reaction is 5.0. The degradation of pentachlorophenol by potato PPO reaches a maximum at 298 K. After reaction for 1 h, the removal of both pentachlorophenol and total organic carbon is >70% with 6.0 units/mL potato PPO at pH 5.0 and 298 K. Pentachlorophenol can be degraded through dechlorination and ring-opening by potato PPO. The work demonstrates that pentachlorophenol can be effectively eliminated by crude potato PPO. PMID:21967325

  4. Visualization of monoamine oxidase in human brain

    SciTech Connect

    Fowler, J.S.; Volkow, N.D.; Wang, G.J.; Pappas, N.; Shea, C.; MacGregor, R.R.; Logan, J.

    1996-12-31

    Monoamine oxidase is a flavin enzyme which exists in two subtypes, MAO A and MAO B. In human brain MAO B predominates and is largely compartmentalized in cell bodies of serotonergic neurons and glia. Regional distribution of MAO B was determined by positron computed tomography with volunteers after the administration of deuterium substituted [11C]L-deprenyl. The basal ganglia and thalamus exhibited the greatest concentrations of MAO B with intermediate levels in the frontal cortex and cingulate gyrus while lowest levels were observed in the parietal and temporal cortices and cerebellum. We observed that brain MAO B increases with are in health normal subjects, however the increases were generally smaller than those revealed with post-mortem studies.

  5. Drugs related to monoamine oxidase activity.

    PubMed

    Fišar, Zdeněk

    2016-08-01

    Progress in understanding the role of monoamine neurotransmission in pathophysiology of neuropsychiatric disorders was made after the discovery of the mechanisms of action of psychoactive drugs, including monoamine oxidase (MAO) inhibitors. The increase in monoamine neurotransmitter availability, decrease in hydrogen peroxide production, and neuroprotective effects evoked by MAO inhibitors represent an important approach in the development of new drugs for the treatment of mental disorders and neurodegenerative diseases. New drugs are synthesized by acting as multitarget-directed ligands, with MAO, acetylcholinesterase, and iron chelation as targets. Basic information is summarized in this paper about the drug-induced regulation of monoaminergic systems in the brain, with a focus on MAO inhibition. Desirable effects of MAO inhibition include increased availability of monoamine neurotransmitters, decreased oxidative stress, decreased formation of neurotoxins, induction of pro-survival genes and antiapoptotic factors, and improved mitochondrial functions.

  6. NADPH Oxidases in Lung Health and Disease

    PubMed Central

    Bernard, Karen; Hecker, Louise; Luckhardt, Tracy R.; Cheng, Guangjie

    2014-01-01

    Abstract Significance: The evolution of the lungs and circulatory systems in vertebrates ensured the availability of molecular oxygen (O2; dioxygen) for aerobic cellular metabolism of internal organs in large animals. O2 serves as the physiologic terminal acceptor of mitochondrial electron transfer and of the NADPH oxidase (Nox) family of oxidoreductases to generate primarily water and reactive oxygen species (ROS), respectively. Recent advances: The purposeful generation of ROS by Nox family enzymes suggests important roles in normal physiology and adaptation, most notably in host defense against invading pathogens and in cellular signaling. Critical issues: However, there is emerging evidence that, in the context of chronic stress and/or aging, Nox enzymes contribute to the pathogenesis of a number of lung diseases. Future Directions: Here, we review evolving functions of Nox enzymes in normal lung physiology and emerging pathophysiologic roles in lung disease. Antioxid. Redox Signal. 20, 2838–2853. PMID:24093231

  7. ROS signalling, NADPH oxidases and cancer.

    PubMed

    Landry, William D; Cotter, Thomas G

    2014-08-01

    ROS (reactive oxygen species) have long been regarded as a series of destructive molecules that have a detrimental effect on cell homoeostasis. In support of this are the myriad antioxidant defence systems nearly all eukaryotic cells have that are designed to keep the levels of ROS in check. However, research data emerging over the last decade have demonstrated that ROS can influence a range of cellular events in a manner similar to that seen for traditional second messenger molecules such as cAMP. Hydrogen peroxide (H2O2) appears to be the main ROS with such signalling properties, and this molecule has been shown to affect a wide range of cellular functions. Its localized synthesis by the Nox (NADPH oxidase) family of enzymes and how these enzymes are regulated is of particular interest to those who work in the field of tumour biology.

  8. POLYAMINE OXIDASE 1 from rice (Oryza sativa) is a functional ortholog of Arabidopsis POLYAMINE OXIDASE 5

    PubMed Central

    Liu, Taibo; Wook Kim, Dong; Niitsu, Masaru; Berberich, Thomas; Kusano, Tomonobu

    2014-01-01

    POLYAMINE OXIDASE 1 (OsPAO1), from rice (Oryza sativa), and POLYAMINE OXIDASE 5 (AtPAO5), from Arabidopsis (Arabidopsis thaliana), are enzymes sharing high identity at the amino acid level and with similar characteristics, such as polyamine specificity and pH preference; furthermore, both proteins localize to the cytosol. A loss-of-function Arabidopsis mutant, Atpao5–2, was hypersensitive to low doses of exogenous thermospermine but this phenotype could be rescued by introduction of the wild-type AtPAO5 gene. Introduction of OsPAO1, under the control of a constitutive promoter, into Atpao5–2 mutants also restored normal thermospermine sensitivity, allowing growth in the presence of low levels of thermospermine, along with a concomitant decrease in thermospermine content in plants. By contrast, introduction of OsPAO3, which encodes a peroxisome-localized polyamine oxidase, into Atpao5–2 plants could not rescue any of the mutant phenotypes in the presence of thermospermine. These results suggest that OsPAO1 is the functional ortholog of AtPAO5. PMID:25763711

  9. Stability of spermine oxidase to thermal and chemical denaturation: comparison with bovine serum amine oxidase.

    PubMed

    Cervelli, Manuela; Leonetti, Alessia; Cervoni, Laura; Ohkubo, Shinji; Xhani, Marla; Stano, Pasquale; Federico, Rodolfo; Polticelli, Fabio; Mariottini, Paolo; Agostinelli, Enzo

    2016-10-01

    Spermine oxidase (SMOX) is a flavin-containing enzyme that specifically oxidizes spermine to produce spermidine, 3-aminopropanaldehyde and hydrogen peroxide. While no crystal structure is available for any mammalian SMOX, X-ray crystallography showed that the yeast Fms1 polyamine oxidase has a dimeric structure. Based on this scenario, we have investigated the quaternary structure of the SMOX protein by native gel electrophoresis, which revealed a composite gel band pattern, suggesting the formation of protein complexes. All high-order protein complexes are sensitive to reducing conditions, showing that disulfide bonds were responsible for protein complexes formation. The major gel band other than the SMOX monomer is the covalent SMOX homodimer, which was disassembled by increasing the reducing conditions, while being resistant to other denaturing conditions. Homodimeric and monomeric SMOXs are catalytically active, as revealed after gel staining for enzymatic activity. An engineered SMOX mutant deprived of all but two cysteine residues was prepared and characterized experimentally, resulting in a monomeric species. High-sensitivity differential scanning calorimetry of SMOX was compared with that of bovine serum amine oxidase, to analyse their thermal stability. Furthermore, enzymatic activity assays and fluorescence spectroscopy were used to gain insight into the unfolding process. PMID:27295021

  10. Plastid terminal oxidase 2 (PTOX2) is the major oxidase involved in chlororespiration in Chlamydomonas

    PubMed Central

    Houille-Vernes, Laura; Rappaport, Fabrice; Wollman, Francis-André; Alric, Jean; Johnson, Xenie

    2011-01-01

    By homology with the unique plastid terminal oxidase (PTOX) found in plants, two genes encoding oxidases have been found in the Chlamydomonas genome, PTOX1 and PTOX2. Here we report the identification of a knockout mutant of PTOX2. Its molecular and functional characterization demonstrates that it encodes the oxidase most predominantly involved in chlororespiration in this algal species. In this mutant, the plastoquinone pool is constitutively reduced under dark-aerobic conditions, resulting in the mobile light-harvesting complexes being mainly, but reversibly, associated with photosystem I. Accordingly, the ptox2 mutant shows lower fitness than wild type when grown under phototrophic conditions. Single and double mutants devoid of the cytochrome b6f complex and PTOX2 were used to measure the oxidation rates of plastoquinols via PTOX1 and PTOX2. Those lacking both the cytochrome b6f complex and PTOX2 were more sensitive to light than the single mutants lacking either the cytochrome b6f complex or PTOX2, which discloses the role of PTOX2 under extreme conditions where the plastoquinone pool is overreduced. A model for chlororespiration is proposed to relate the electron flow rate through these alternative pathways and the redox state of plastoquinones in the dark. This model suggests that, in green algae and plants, the redox poise results from the balanced accumulation of PTOX and NADPH dehydrogenase. PMID:22143777

  11. Polyphenol Oxidase Activity Expression in Ralstonia solanacearum

    PubMed Central

    Hernández-Romero, Diana; Solano, Francisco; Sanchez-Amat, Antonio

    2005-01-01

    Sequencing of the genome of Ralstonia solanacearum revealed several genes that putatively code for polyphenol oxidases (PPOs). To study the actual expression of these genes, we looked for and detected all kinds of PPO activities, including laccase, cresolase, and catechol oxidase activities, in cellular extracts of this microorganism. The conditions for the PPO assays were optimized for the phenolic substrate, pH, and sodium dodecyl sulfate concentration used. It was demonstrated that three different PPOs are expressed. The genes coding for the enzymes were unambiguously correlated with the enzymatic activities detected by generation of null mutations in the genes by using insertional mutagenesis with a suicide plasmid and estimating the changes in the levels of enzymatic activities compared to the levels in the wild-type strain. The protein encoded by the RSp1530 locus is a multicopper protein with laccase activity. Two other genes, RSc0337 and RSc1501, code for nonblue copper proteins exhibiting homology to tyrosinases. The product of RSc0337 has strong tyrosine hydroxylase activity, and it has been shown that this enzyme is involved in melanin synthesis by R. solanacearum. The product of the RSc1501 gene is an enzyme that shows a clear preference for oxidation of o-diphenols. Preliminary characterization of the mutants obtained indicated that PPOs expressed by R. solanacearum may participate in resistance to phenolic compounds since the mutants exhibited higher sensitivity to l-tyrosine than the wild-type strain. These results suggest a possible role in the pathogenic process to avoid plant resistance mechanisms involving the participation of phenolic compounds. PMID:16269713

  12. Dephenolization of industrial wastewaters catalyzed by polyphenol oxidase

    SciTech Connect

    Atlow, S.C.; Bonadonna-Aparo, L.; Klibanov, A.M.

    1984-01-01

    A new enzymatic method for the removal of phenols from industrial aqueous effluents has been developed. The method uses the enzyme polyphenol oxidase which oxidizes phenols to the corresponding o-quinones; the latter then undergo a nonenzymatic polymerization to form water-insoluble aggregates. Therefore, the enzyme in effect precipitates phenols from water. Polyphenol oxidase has been found to nearly completely dephenolize solutions of phenol in the concentration range from 0.01 to 1.0 g/L. The enzymatic treatment is effective over a wide range of pH and temperature; a crude preparation of polyphenol oxidase (mushroom extract) is as effective as a purified, commercially obtained version. In addition to phenol itself, polyphenol oxidase is capable of precipitating from water a number of substituted phenols (cresols, chlorophenols, naphthol, etc.). Also, even pollutants which are unreactive towards polyphenol oxidase can be enzymatically coprecipitated with phenol. The polyphenol oxidase treatment has been successfully used to dephenolize two different real industrial wastewater samples, from a plant producing triarylphosphates and from a coke plant. The advantage of the polyphenol oxidase dephenolization over the peroxidase-catalyzed one previously elaborated by the authors is that the former enzyme uses molecular oxygen instead of costly hydrogen peroxide (used by peroxidase) as an oxidant.

  13. Current status of NADPH oxidase research in cardiovascular pharmacology

    PubMed Central

    Rodiño-Janeiro, Bruno K; Paradela-Dobarro, Beatriz; Castiñeiras-Landeira, María Isabel; Raposeiras-Roubín, Sergio; González-Juanatey, José R; Álvarez, Ezequiel

    2013-01-01

    The implications of reactive oxygen species in cardiovascular disease have been known for some decades. Rationally, therapeutic antioxidant strategies combating oxidative stress have been developed, but the results of clinical trials have not been as good as expected. Therefore, to move forward in the design of new therapeutic strategies for cardiovascular disease based on prevention of production of reactive oxygen species, steps must be taken on two fronts, ie, comprehension of reduction-oxidation signaling pathways and the pathophysiologic roles of reactive oxygen species, and development of new, less toxic, and more selective nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitors, to clarify both the role of each NADPH oxidase isoform and their utility in clinical practice. In this review, we analyze the value of NADPH oxidase as a therapeutic target for cardiovascular disease and the old and new pharmacologic agents or strategies to prevent NADPH oxidase activity. Some inhibitors and different direct or indirect approaches are available. Regarding direct NADPH oxidase inhibition, the specificity of NADPH oxidase is the focus of current investigations, whereas the chemical structure-activity relationship studies of known inhibitors have provided pharmacophore models with which to search for new molecules. From a general point of view, small-molecule inhibitors are preferred because of their hydrosolubility and oral bioavailability. However, other possibilities are not closed, with peptide inhibitors or monoclonal antibodies against NADPH oxidase isoforms continuing to be under investigation as well as the ongoing search for naturally occurring compounds. Likewise, some different approaches include inhibition of assembly of the NADPH oxidase complex, subcellular translocation, post-transductional modifications, calcium entry/release, electron transfer, and genetic expression. High-throughput screens for any of these activities could provide new

  14. Immobilization of Pichia pastoris cells containing alcohol oxidase activity

    PubMed Central

    Maleknia, S; Ahmadi, H; Norouzian, D

    2011-01-01

    Background and Objectives The attempts were made to describe the development of a whole cell immobilization of P. pastoris by entrapping the cells in polyacrylamide gel beads. The alcohol oxidase activity of the whole cell Pichia pastoris was evaluated in comparison with yeast biomass production. Materials and Methods Methylotrophic yeast P. pastoris was obtained from Collection of Standard Microorganisms, Department of Bacterial Vaccines, Pasteur Institute of Iran (CSMPI). Stock culture was maintained on YPD agar plates. Alcohol oxidase was strongly induced by addition of 0.5% methanol as the carbon source. The cells were harvested by centrifugation then permeabilized. Finally the cells were immobilized in polyacrylamide gel beads. The activity of alcohol oxidase was determined by method of Tane et al. Results At the end of the logarithmic phase of cell culture, the alcohol oxidase activity of the whole cell P. Pastoris reached the highest level. In comparison, the alcohol oxidase activity was measured in an immobilized P. pastoris when entrapped in polyacrylamide gel beads. The alcohol oxidase activity of cells was induced by addition of 0.5% methanol as the carbon source. The cells were permeabilized by cetyltrimethylammonium bromide (CTAB) and immobilized. CTAB was also found to increase the gel permeability. Alcohol oxidase activity of immobilized cells was then quantitated by ABTS/POD spectrophotometric method at OD 420. There was a 14% increase in alcohol oxidase activity in immobilized cells as compared with free cells. By addition of 2-butanol as a substrate, the relative activity of alcohol oxidase was significantly higher as compared with other substrates added to the reaction media. Conclusion Immobilization of cells could eliminate lengthy and expensive procedures of enzyme separation and purification, protect and stabilize enzyme activity, and perform easy separation of the enzyme from the reaction media. PMID:22530090

  15. CotA, a multicopper oxidase from Bacillus pumilus WH4, exhibits manganese-oxidase activity.

    PubMed

    Su, Jianmei; Bao, Peng; Bai, Tenglong; Deng, Lin; Wu, Hui; Liu, Fan; He, Jin

    2013-01-01

    Multicopper oxidases (MCOs) are a family of enzymes that use copper ions as cofactors to oxidize various substrates. Previous research has demonstrated that several MCOs such as MnxG, MofA and MoxA can act as putative Mn(II) oxidases. Meanwhile, the endospore coat protein CotA from Bacillus species has been confirmed as a typical MCO. To study the relationship between CotA and the Mn(II) oxidation, the cotA gene from a highly active Mn(II)-oxidizing strain Bacillus pumilus WH4 was cloned and overexpressed in Escherichia coli strain M15. The purified CotA contained approximately four copper atoms per molecule and showed spectroscopic properties typical of blue copper oxidases. Importantly, apart from the laccase activities, the CotA also displayed substantial Mn(II)-oxidase activities both in liquid culture system and native polyacrylamide gel electrophoresis. The optimum Mn(II) oxidase activity was obtained at 53°C in HEPES buffer (pH 8.0) supplemented with 0.8 mM CuCl2. Besides, the addition of o-phenanthroline and EDTA both led to a complete suppression of Mn(II)-oxidizing activity. The specific activity of purified CotA towards Mn(II) was 0.27 U/mg. The Km, Vmax and kcat values towards Mn(II) were 14.85±1.17 mM, 3.01×10(-6)±0.21 M·min(-1) and 0.32±0.02 s(-1), respectively. Moreover, the Mn(II)-oxidizing activity of the recombinant E. coli strain M15-pQE-cotA was significantly increased when cultured both in Mn-containing K liquid medium and on agar plates. After 7-day liquid cultivation, M15-pQE-cotA resulted in 18.2% removal of Mn(II) from the medium. Furthermore, the biogenic Mn oxides were clearly observed on the cell surfaces of M15-pQE-cotA by scanning electron microscopy. To our knowledge, this is the first report that provides the direct observation of Mn(II) oxidation with the heterologously expressed protein CotA, Therefore, this novel finding not only establishes the foundation for in-depth study of Mn(II) oxidation mechanisms, but also offers a

  16. CotA, a Multicopper Oxidase from Bacillus pumilus WH4, Exhibits Manganese-Oxidase Activity

    PubMed Central

    Su, Jianmei; Bao, Peng; Bai, Tenglong; Deng, Lin; Wu, Hui; Liu, Fan; He, Jin

    2013-01-01

    Multicopper oxidases (MCOs) are a family of enzymes that use copper ions as cofactors to oxidize various substrates. Previous research has demonstrated that several MCOs such as MnxG, MofA and MoxA can act as putative Mn(II) oxidases. Meanwhile, the endospore coat protein CotA from Bacillus species has been confirmed as a typical MCO. To study the relationship between CotA and the Mn(II) oxidation, the cotA gene from a highly active Mn(II)-oxidizing strain Bacillus pumilus WH4 was cloned and overexpressed in Escherichia coli strain M15. The purified CotA contained approximately four copper atoms per molecule and showed spectroscopic properties typical of blue copper oxidases. Importantly, apart from the laccase activities, the CotA also displayed substantial Mn(II)-oxidase activities both in liquid culture system and native polyacrylamide gel electrophoresis. The optimum Mn(II) oxidase activity was obtained at 53°C in HEPES buffer (pH 8.0) supplemented with 0.8 mM CuCl2. Besides, the addition of o-phenanthroline and EDTA both led to a complete suppression of Mn(II)-oxidizing activity. The specific activity of purified CotA towards Mn(II) was 0.27 U/mg. The Km, Vmax and kcat values towards Mn(II) were 14.85±1.17 mM, 3.01×10−6±0.21 M·min−1 and 0.32±0.02 s−1, respectively. Moreover, the Mn(II)-oxidizing activity of the recombinant E. coli strain M15-pQE-cotA was significantly increased when cultured both in Mn-containing K liquid medium and on agar plates. After 7-day liquid cultivation, M15-pQE-cotA resulted in 18.2% removal of Mn(II) from the medium. Furthermore, the biogenic Mn oxides were clearly observed on the cell surfaces of M15-pQE-cotA by scanning electron microscopy. To our knowledge, this is the first report that provides the direct observation of Mn(II) oxidation with the heterologously expressed protein CotA, Therefore, this novel finding not only establishes the foundation for in-depth study of Mn(II) oxidation mechanisms, but also offers a

  17. Multilayered Polyelectrolyte Microcapsules: Interaction with the Enzyme Cytochrome C Oxidase

    PubMed Central

    Pastorino, Laura; Dellacasa, Elena; Noor, Mohamed R.; Soulimane, Tewfik; Bianchini, Paolo; D'Autilia, Francesca; Antipov, Alexei; Diaspro, Alberto; Tofail, Syed A. M.; Ruggiero, Carmelina

    2014-01-01

    Cell-sized polyelectrolyte capsules functionalized with a redox-driven proton pump protein were assembled for the first time. The interaction of polyelectrolyte microcapsules, fabricated by electrostatic layer-by-layer assembly, with cytochrome c oxidase molecules was investigated. We found that the cytochrome c oxidase retained its functionality, that the functionalized microcapsules interacting with cytochrome c oxidase were permeable and that the permeability characteristics of the microcapsule shell depend on the shell components. This work provides a significant input towards the fabrication of an integrated device made of biological components and based on specific biomolecular functions and properties. PMID:25372607

  18. NADPH oxidase deficiency in X-linked chronic granulomatous disease.

    PubMed Central

    Hohn, D C; Lehrer, R I

    1975-01-01

    We measured the cyanide-insensitive pyridine nucleotide oxidase activity of fractionated resting and phagocytic neutrophils from 11 normal donors, 1 patient with hereditary deficiency of myeloperoxidase, and 7 patients with X-linked chronic granulomatous disease (CGD). When measured under optimal conditions (at pH 5.5 and in the presence of 0.5 mM Mn++), NADPH oxidase activity increased fourfold with phagocytosis and was six-fold higher than with NADH. Phagocytic neutrophils from patients with CGD were markedly deficient in NADPH oxidase activity. Images PMID:235560

  19. Identification of yeasts from clinical specimens by oxidase test.

    PubMed

    Kumar, S; Arora, B S; Mathur, M D

    2000-10-01

    A total of 100 yeasts and yeast like fungi isolates from clinical specimens were negative for oxidase production on Sabouraud dextrose agar. When grown on Columbia agar, chocolate agar, tryptose agar, Mueller-Hinton agar, brain heart infusion and a medium resembling Sabouraud's dextrose agar but with starch instead of dextrose, all the isolate of Candida albicans (55), C. guilliermondii (6), C. parapsilosis (14), C. tropicalis (6), C. pseudotropicalis (6) and Crytococcus neoformans (2) were positive for oxidase producation. Torulopsis glabrata (2), Saccharomyces cervisiae (2) and two out of seven isolates of C. krusei were negative for oxidase test. PMID:11344606

  20. Pathways involved in mild gastrointestinal inflammation induced by a low level exposure to a food contaminant.

    PubMed

    Anton, Pauline M; Theodorou, Vassilia; Roy, Sabine; Fioramonti, Jean; Bueno, Lionel

    2002-06-01

    Chronic gut inflammation is associated with radical oxygen species (ROS) genesis. ROS may activate certain transcription factors such as nuclear factor kappa beta (NF-kappaB), which regulates cyclooxygenase-2 (COX-2). Diquat, a food contaminant, is responsible for oxidative stress. This work aimed to establish the involvement of ROS and prostanoids on diquat-induced gastrointestinal inflammation and mast cell hyperplasia. Diquat increased gastrointestinal MPO activity and mast cell number. Its effect on gastric MPO activity was reversed by PD 138,387 (a COX-2 selective inhibitor) and PDTC (an inhibitor of NF-kappaB activation) but not by DMSO (a hydroxyl radical scavenger) and allopurinol (a xanthine oxidase inhibitor). In contrast, increased jejunal MPO activity was blocked by both DMSO, PD 138,387, and PDTC, while allopurinol enhanced it. PD 138,387 and PDTC reduced gastrointestinal mast cell number while DMSO and allopurinol did not Diquat-induced inflammation involves a gastrointestinal NF-kappaB activation and COX-2 dependent proinflammatory prostanoid synthesis. Furthermore, the hydroxyl radical is involved in intestinal but not gastric inflammation.

  1. Beyond brown: polyphenol oxidases as enzymes of plant specialized metabolism

    PubMed Central

    Sullivan, Michael L.

    2015-01-01

    Most cloned and/or characterized plant polyphenol oxidases (PPOs) have catechol oxidase activity (i.e., they oxidize o-diphenols to o-quinones) and are localized or predicted to be localized to plastids. As a class, they have broad substrate specificity and are associated with browning of produce and other plant materials. Because PPOs are often induced by wounding or pathogen attack, they are most generally believed to play important roles in plant defense responses. However, a few well-characterized PPOs appear to have very specific roles in the biosynthesis of specialized metabolites via both tyrosinase (monophenol oxidase) and catechol oxidase activities. Here we detail a few examples of these and explore the possibility that there may be many more “biosynthetic” PPOs. PMID:25642234

  2. Isolation of oxidase-negative Pseudomonas aeruginosa from sputum culture.

    PubMed Central

    Hampton, K D; Wasilauskas, B L

    1979-01-01

    Two isolates of Pseudomonas aeruginosa lacking characteristic indophenol oxidase were recovered from a sputum specimen. A discussion of the characteristic biochemical tests and antibiograms along with a possible explanation for this phenomenon is presented. PMID:225349

  3. Position-Specific Isotope Analysis of Xanthines: A (13)C Nuclear Magnetic Resonance Method to Determine the (13)C Intramolecular Composition at Natural Abundance.

    PubMed

    Diomande, Didier G; Martineau, Estelle; Gilbert, Alexis; Nun, Pierrick; Murata, Ariaki; Yamada, Keita; Watanabe, Naoharu; Tea, Illa; Robins, Richard J; Yoshida, Naohiro; Remaud, Gérald S

    2015-07-01

    The natural xanthines caffeine, theobromine, and theophylline are of major commercial importance as flavor constituents in coffee, cocoa, tea, and a number of other beverages. However, their exploitation for authenticity, a requirement in these commodities that have a large origin-based price-range, by the standard method of isotope ratio monitoring by mass spectrometry (irm-MS) is limited. We have now developed a methodology that overcomes this deficit that exploits the power of isotopic quantitative (13)C nuclear magnetic resonance (NMR) spectrometry combined with chemical modification of the xanthines to enable the determination of positional intramolecular (13)C/(12)C ratios (δ(13)Ci) with high precision. However, only caffeine is amenable to analysis: theobromine and theophylline present substantial difficulties due to their poor solubility. However, their N-methylation to caffeine makes spectral acquisition feasible. The method is confirmed as robust, with good repeatability of the δ(13)Ci values in caffeine appropriate for isotope fractionation measurements at natural abundance. It is shown that there is negligible isotope fractionation during the chemical N-methylation procedure. Thus, the method preserves the original positional δ(13)Ci values. The method has been applied to measure the position-specific variation of the (13)C/(12)C distribution in caffeine. Not only is a clear difference between caffeine isolated from different sources observed, but theobromine from cocoa is found to show a (13)C pattern distinct from that of caffeine. PMID:26067163

  4. [Development of syringe-type off line pre-column and simultaneous quantitation of four xanthine derivatives (caffeine, theobromine, theophylline and paraxanthine) in serum].

    PubMed

    Kouno, Y; Samizo, K; Ishizuka, H; Ishikura, C

    1997-03-01

    A new syringe-type minicolumn, called Extrashot-Silica (EXS-Silica), containing diatomaceous earth granules was described. The EXS-Silica differs from the conventional pretreatment column. Using the EXS-Silica we can execute the simultaneous extraction-injection to HPLC, column. Therefore, an analysis using the EXS-Silica is an easier and faster method than the general HPLC analysis method. In this study, we carried out the simultaneous determination of four xanthine derivatives, such as caffeine, theobromine, theophylline and paraxanthine, in serum specimens. We used dichloromethane containing 4% ethanol (v/v) for the extraction-injection and water-acetic acid-ethanol-dichloromethane (0.2:0.2:4:95.6, v/v) for the mobile phase of HPLC. The eluent was monitored with a UV detector at 275 nm. A linear relationship between the amount of drug and the peak height was confirmed in the range of 1-40 micrograms/ml for the above-mentioned four xanthine derivatives in the serum. When a 5 microliters aliquot of the serum was subjected to this method, the observed detection limits of the drug were far less than therapeutic concentrations. The analytical accuracy of our method was finally confirmed by comparing the obtained analytical data by the new method with those obtained using the fluorescense polarization immunoassay method. Serum concentrations of theophylline obtained by these two methods correlate satisfactorily. Except for minor modifications in the injector, the existing liquid-chromatographic equipment can be used.

  5. Cytotoxicity of polyamines to Amoeba proteus: role of polyamine oxidase.

    PubMed

    Schenkel, E; Dubois, J G; Helson-Cambier, M; Hanocq, M

    1996-02-01

    It has been shown that oxidation of polyamines by polyamine oxidases can produce toxic compounds (H2O2, aldehydes, ammonia) and that the polyamine oxidase-polyamine system is implicated, in vitro, in the death of several parasites. Using Amoeba proteus as an in vitro model, we studied the cytotoxicity to these cells of spermine, spermidine, their acetyl derivatives, and their hypothetical precursors. Spermine and N1-acetylspermine were more toxic than emetine, an amoebicidal reference drug. Spermine presented a short-term toxicity, but a 48-h contact time was necessary for the high toxicity of spermidine. The uptake by Amoeba cells of the different polyamines tested was demonstrated. On the other hand, a high polyamine oxidase activity was identified in Amoeba proteus crude extract. Spermine (theoretical 100%) and N1-acetylspermine (64%) were the best substrates at pH 9.5, while spermidine, its acetyl derivatives, and putrescine were very poorly oxidized by this enzyme (3-20%). Spermine oxidase activity was inhibited by phenylhydrazine (nil) and isoniazid (approximately 50%). Mepacrine did not inhibit the enzyme activity at pH 8. Neither monoamine nor diamine oxidase activity (approximately 10%) was found. It must be emphasized that spermine, the best enzyme substrate, is the most toxic polyamine. This finding suggests that knowledge of polyamine oxidase specificity can be used to modulate the cytotoxicity of polyamine derivatives. Amoeba proteus was revealed as a simple model for investigation of the connection between cytotoxicity and enzyme activity.

  6. Cytotoxicity of polyamines to Amoeba proteus: role of polyamine oxidase.

    PubMed

    Schenkel, E; Dubois, J G; Helson-Cambier, M; Hanocq, M

    1996-02-01

    It has been shown that oxidation of polyamines by polyamine oxidases can produce toxic compounds (H2O2, aldehydes, ammonia) and that the polyamine oxidase-polyamine system is implicated, in vitro, in the death of several parasites. Using Amoeba proteus as an in vitro model, we studied the cytotoxicity to these cells of spermine, spermidine, their acetyl derivatives, and their hypothetical precursors. Spermine and N1-acetylspermine were more toxic than emetine, an amoebicidal reference drug. Spermine presented a short-term toxicity, but a 48-h contact time was necessary for the high toxicity of spermidine. The uptake by Amoeba cells of the different polyamines tested was demonstrated. On the other hand, a high polyamine oxidase activity was identified in Amoeba proteus crude extract. Spermine (theoretical 100%) and N1-acetylspermine (64%) were the best substrates at pH 9.5, while spermidine, its acetyl derivatives, and putrescine were very poorly oxidized by this enzyme (3-20%). Spermine oxidase activity was inhibited by phenylhydrazine (nil) and isoniazid (approximately 50%). Mepacrine did not inhibit the enzyme activity at pH 8. Neither monoamine nor diamine oxidase activity (approximately 10%) was found. It must be emphasized that spermine, the best enzyme substrate, is the most toxic polyamine. This finding suggests that knowledge of polyamine oxidase specificity can be used to modulate the cytotoxicity of polyamine derivatives. Amoeba proteus was revealed as a simple model for investigation of the connection between cytotoxicity and enzyme activity. PMID:8882384

  7. Confirmation of a blocked amino terminus of sulfhydryl oxidase

    SciTech Connect

    Janolino, V.G.; Morrison-Rowe, S.J.; Swaisgood, H.E. )

    1990-09-01

    The isolation of sulfhydryl oxidase from bovine milk in a suitably pure form for sequencing was carried out by transient covalent affinity chromatography of diafiltered whey using cysteinylsuccinamidopropyl-glass as matrix. The glutathione-eluted proteins were separated by SDS-PAGE. By radiolabeling the affinity chromatography-purified enzyme with ({sup 14}C)iodoacetate before subjecting to SDS-PAGE, the sulfhydryl oxidase band was identified, because sulfhydryl oxidase is known to be inactivated by alkylation of one sulfhydryl group per mole. The results confirmed that sulfhydryl oxidase corresponds to the 85 ({plus minus} 5)-kDa band observed on SDS-PAGE. The protein band corresponding to radiolabeled sulfhydryl oxidase was recovered from SDS-PAGE gels by electrophoretic elution and by electroblotting on polyvinylidene difluoride membrane and subjected to gas phase sequencing. Precautions were taken during electrophoretic elution to prevent reactions that result in N-terminal blocking. Both methods of protein recovery yielded negative results when subjected to sequence analysis indicating that the N-terminus of sulfhydryl oxidase is blocked.

  8. Chronic monoamine oxidase-B inhibitor treatment blocks monoamine oxidase-A enzyme activity.

    PubMed

    Bartl, Jasmin; Müller, Thomas; Grünblatt, Edna; Gerlach, Manfred; Riederer, Peter

    2014-04-01

    Patients with Parkinson's disease receive selective irreversible monoamine oxidase (MAO)-B inhibitors, but their effects on MAO-A activity are not known during long-term application. We determined MAO-A inhibition in plasma samples from patients with MAO-B inhibitor intake or without MAO-B inhibitor treatment and from healthy controls. We detected a 70 % reduction of MAO-A activity in patients with MAO-B inhibitor therapy in comparison to the other groups. Our results suggest that treatment with MAO-B inhibitor may also influence MAO-A activity in vivo, when administered daily.

  9. MONOAMINE OXIDASE: RADIOTRACER DEVELOPMENT AND HUMAN STUDIES.

    SciTech Connect

    FOWLER,J.S.; LOGAN,J.; VOLKOW,N.D.; WANG,G.J.; MACGREGOR,R.R.; DING,Y.S.

    2000-09-28

    PET is uniquely capable of providing information on biochemical transformations in the living human body. Although most of the studies of monoamine oxidase (MAO) have focused on measurements in the brain, the role of peripheral MAO as a phase 1 enzyme for the metabolism of drugs and xenobiotics is gaining attention (Strolin Benedetti and Tipton, 1998; Castagnoli et al., 1997.). MAO is well suited for this role because its concentration in organs such as kidneys, liver and digestive organs is high sometimes exceeding that in the brain. Knowledge of the distribution of the MAO subtypes within different organs and different cells is important in determining which substrates (and which drugs and xenobiotics) have access to which MAO subtypes. The highly variable subtype distribution with different species makes human studies even more important. In addition, the deleterious side effects of combining MAO inhibitors with other drugs and with foodstuffs makes it important to know the MAO inhibitory potency of different drugs both in the brain and in peripheral organs (Ulus et al., 2000). Clearly PET can play a role in answering these questions, in drug research and development and in discovering some of the factors which contribute to the highly variable MAO levels in different individuals.

  10. Origin and evolution of lysyl oxidases.

    PubMed

    Grau-Bové, Xavier; Ruiz-Trillo, Iñaki; Rodriguez-Pascual, Fernando

    2015-05-29

    Lysyl oxidases (LOX) are copper-dependent enzymes that oxidize primary amine substrates to reactive aldehydes. The best-studied role of LOX enzymes is the remodeling of the extracellular matrix (ECM) in animals by cross-linking collagens and elastin, although intracellular functions have been reported as well. Five different LOX enzymes have been identified in mammals, LOX and LOX-like (LOXL) 1 to 4, showing a highly conserved catalytic carboxy terminal domain and more divergence in the rest of the sequence. Here we have surveyed a wide selection of genomes in order to infer the evolutionary history of LOX. We identified LOX proteins not only in animals, but also in many other eukaryotes, as well as in bacteria and archaea - which reveals a pre-metazoan origin for this gene family. LOX genes expanded during metazoan evolution resulting in two superfamilies, LOXL2/L3/L4 and LOX/L1/L5. Considering the current knowledge on the function of mammalian LOX isoforms in ECM remodeling, we propose that LOXL2/L3/L4 members might have preferentially been involved in making cross-linked collagen IV-based basement membrane, whereas the diversification of LOX/L1/L5 forms contributed to chordate/vertebrate-specific ECM innovations, such as elastin and fibronectin. Our work provides a novel view on the evolution of this family of enzymes.

  11. Monoamine oxidase: radiotracer chemistry and human studies.

    PubMed

    Fowler, Joanna S; Logan, Jean; Shumay, Elena; Alia-Klein, Nelly; Wang, Gene-Jack; Volkow, Nora D

    2015-03-01

    Monoamine oxidase (MAO) oxidizes amines from both endogenous and exogenous sources thereby regulating the concentration of neurotransmitter amines such as serotonin, norepinephrine, and dopamine as well as many xenobiotics. MAO inhibitor drugs are used in the treatment of Parkinson's disease and in depression stimulating the development of radiotracer tools to probe the role of MAO in normal human biology and in disease. Over the past 30 years since the first radiotracers were developed and the first positron emission tomography (PET) images of MAO in humans were carried out, PET studies of brain MAO in healthy volunteers and in patients have identified different variables that have contributed to different MAO levels in brain and in peripheral organs. MAO radiotracers and PET have also been used to study the current and developing MAO inhibitor drugs including the selection of doses for clinical trials. In this article, we describe the following: (1) the development of MAO radiotracers; (2) human studies including the relationship of brain MAO levels to genotype, personality, neurological, and psychiatric disorders; and (3) examples of the use of MAO radiotracers in drug research and development. We will conclude with outstanding needs to improve the radiotracers that are currently used and possible new applications.

  12. Inhibition of monoamine oxidase by benzoxathiolone analogues.

    PubMed

    Mostert, Samantha; Petzer, Anél; Petzer, Jacobus P

    2016-02-15

    Inhibitors of the monoamine oxidase (MAO) enzymes are considered useful therapeutic agents, and are used in the clinic for the treatment of depressive illness and Parkinson's disease. In addition, MAO inhibitors are also under investigation for the treatment of certain cardiovascular pathologies and as possible aids to smoking cessation. In an attempt to discover novel classes of compounds that inhibit the MAOs, the current study examines the human MAO inhibitory properties of a small series of 2H-1,3-benzoxathiol-2-one analogues. The results show that the benzoxathiolones are potent MAO-B inhibitors with IC50 values ranging from 0.003 to 0.051 μM. Although the benzoxathiolones are selective for the MAO-B isoform, two compounds display good MAO-A inhibition with IC50 values of 0.189 and 0.424 μM. Dialysis studies show that a selected compound inhibits the MAOs reversibly. It may thus be concluded that the benzoxathiolone class is suitable for the design and development of MAO-B inhibitors, and that in some instances good MAO-A inhibition may also be achieved.

  13. Monoamine oxidase inhibitory activities of heterocyclic chalcones.

    PubMed

    Minders, Corné; Petzer, Jacobus P; Petzer, Anél; Lourens, Anna C U

    2015-11-15

    Studies have shown that natural and synthetic chalcones (1,3-diphenyl-2-propen-1-ones) possess monoamine oxidase (MAO) inhibition activities. Of particular importance to the present study is a report that a series of furanochalcones acts as MAO-B selective inhibitors. Since the effect of heterocyclic substitution, other than furan (and more recently thiophene, piperidine and quinoline) on the MAO inhibitory properties of the chalcone scaffold remains unexplored, the aim of this study was to synthesise and evaluate further heterocyclic chalcone analogues as inhibitors of the human MAOs. For this purpose, heterocyclic chalcone analogues that incorporate pyrrole, 5-methylthiophene, 5-chlorothiophene and 6-methoxypyridine substitution were examined. Seven of the nine synthesised compounds exhibited IC50 values <1 μM for the inhibition of MAO-B, with all compounds exhibiting higher affinities for MAO-B compared to the MAO-A isoform. The most potent MAO-B inhibitor (4h) displays an IC50 value of 0.067 μM while the most potent MAO-A inhibitor (4e) exhibits an IC50 value of 3.81 μM. It was further established that selected heterocyclic chalcones are reversible and competitive MAO inhibitors. 4h, however, may exhibit tight-binding to MAO-B, a property linked to its thiophene moiety. We conclude that high potency chalcones such as 4h represent suitable leads for the development of MAO-B inhibitors for the treatment of Parkinson's disease and possibly other neurodegenerative disorders.

  14. Origin and evolution of lysyl oxidases

    PubMed Central

    Grau-Bové, Xavier; Ruiz-Trillo, Iñaki; Rodriguez-Pascual, Fernando

    2015-01-01

    Lysyl oxidases (LOX) are copper-dependent enzymes that oxidize primary amine substrates to reactive aldehydes. The best-studied role of LOX enzymes is the remodeling of the extracellular matrix (ECM) in animals by cross-linking collagens and elastin, although intracellular functions have been reported as well. Five different LOX enzymes have been identified in mammals, LOX and LOX-like (LOXL) 1 to 4, showing a highly conserved catalytic carboxy terminal domain and more divergence in the rest of the sequence. Here we have surveyed a wide selection of genomes in order to infer the evolutionary history of LOX. We identified LOX proteins not only in animals, but also in many other eukaryotes, as well as in bacteria and archaea – which reveals a pre-metazoan origin for this gene family. LOX genes expanded during metazoan evolution resulting in two superfamilies, LOXL2/L3/L4 and LOX/L1/L5. Considering the current knowledge on the function of mammalian LOX isoforms in ECM remodeling, we propose that LOXL2/L3/L4 members might have preferentially been involved in making cross-linked collagen IV-based basement membrane, whereas the diversification of LOX/L1/L5 forms contributed to chordate/vertebrate-specific ECM innovations, such as elastin and fibronectin. Our work provides a novel view on the evolution of this family of enzymes. PMID:26024311

  15. Leflunomide, a Reversible Monoamine Oxidase Inhibitor.

    PubMed

    Petzer, Jacobus P; Petzer, Anél

    2016-01-01

    A screening study aimed at identifying inhibitors of the enzyme, monoamine oxidase (MAO), among clinically used drugs have indicated that the antirheumatic drug, leflunomide, is an inhibitor of both MAO isoforms. Leflunomide inhibits human MAO-A and MAO-B and exhibits IC50 values of 19.1 μM and 13.7 μM, respectively. The corresponding Ki values are 17.7 μM (MAO-A) and 10.1 μM (MAO-B). Dialyses of mixtures of the MAO enzymes and leflunomide show that inhibition of the MAOs by leflunomide is reversible. The principal metabolite of leflunomide, teriflunomide (A77 1726), in contrast is not an MAO inhibitor. This study concludes that, although leflunomide is only moderately potent as an MAO inhibitor, isoxazole derivatives may represent a general class of MAO inhibitors and this heterocycle may find application in MAO inhibitor design. In this respect, MAO inhibitors are used in the clinic for the treatment of depressive illness and Parkinson's disease, and are under investigation as therapy for certain types of cancer, Alzheimer's disease and age-related impairment of cardiac function. PMID:26299850

  16. Monoamine oxidase: Radiotracer chemistry and human studies

    DOE PAGES

    Fowler, Joanna S.; Logan, Jean; Shumay, Elena; Alia-Klein, Nelly; Wang, Gene-Jack; Volkow, Nora D.

    2015-03-01

    Monoamine oxidase (MAO) oxidizes amines from both endogenous and exogenous sources thereby regulating the concentration of neurotransmitter amines such as serot onin, norepinephrine and dopamine as well as many xenobiotics. MAO inhibitor drugs are used in the treatment of Parkinson’s disease and in depression stimulating the development of radiotracer tools to probe the role of MAO in normal human biology and in disease. Over the past 30 since the first radiotracers were developed and the first PET images of MAO in humans were carried out, PET studies of brain MAO in healthy volunteers and in patients have identified different variablesmore » which have contributed to different MAO levels in brain and in peripheral organs. MAO radiotracers and PET have also been used to study the current and developing MAO inhibitor drugs including the selection of doses for clinical trials. In this article, we describe (1) the development of MAO radiotracers; (2) human studies including the relationship of brain MAO levels to genotype, personality, neurological and psychiatric disorders; (3) examples of the use of MAO radiotracers in drug research and development. We will conclude with outstanding needs to improve the radiotracers which are currently used and possible new applications.« less

  17. Monoamine oxidase: Radiotracer chemistry and human studies

    SciTech Connect

    Fowler, Joanna S.; Logan, Jean; Shumay, Elena; Alia-Klein, Nelly; Wang, Gene-Jack; Volkow, Nora D.

    2015-03-01

    Monoamine oxidase (MAO) oxidizes amines from both endogenous and exogenous sources thereby regulating the concentration of neurotransmitter amines such as serot onin, norepinephrine and dopamine as well as many xenobiotics. MAO inhibitor drugs are used in the treatment of Parkinson’s disease and in depression stimulating the development of radiotracer tools to probe the role of MAO in normal human biology and in disease. Over the past 30 since the first radiotracers were developed and the first PET images of MAO in humans were carried out, PET studies of brain MAO in healthy volunteers and in patients have identified different variables which have contributed to different MAO levels in brain and in peripheral organs. MAO radiotracers and PET have also been used to study the current and developing MAO inhibitor drugs including the selection of doses for clinical trials. In this article, we describe (1) the development of MAO radiotracers; (2) human studies including the relationship of brain MAO levels to genotype, personality, neurological and psychiatric disorders; (3) examples of the use of MAO radiotracers in drug research and development. We will conclude with outstanding needs to improve the radiotracers which are currently used and possible new applications.

  18. Crystallization of beef heart cytochrome c oxidase

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Shinya; Shinzawa, Kyoko; Tsukihara, Tomitake; Abe, Toshio; Caughey, Winslow S.

    1991-03-01

    The three-dimensional structure of cytochrome c oxidase, a complex (multimetal, multisubunit) membrane protein is critical to elucidation of the mechanism of the enzymic reactions and their control. Our recent developments in the crystallization of the enzyme isolated from beef hearts are presented. The crystals appeared more readily at higher protein concentration, lower ionic strength, higher detergent concentration (Brij-35) and lower temperature. Large crystals were obtained by changing one of these parameters to the crystallization point as slowly as possible, keeping the other parameters constant. Increasing the detergent concentration was the most successful method, producing green crystals of the resting oxidized form as hexagonal bipyramids with typical dimensions of 0.6 mm. The usual procedures for crystallization of water soluble proteins, such as increasing ionic strength by vapor diffusion, were not applicable for this enzyme. Crystals of the resting oxidized enzyme belong to a space group of P6 2 or P6 4 with cell dimensions, a = b = 208.7 Å and c = 282.3 Å. The Patterson function shows that the crystal exhibited a non-crystallographic two-fold axis parallel to the c-axis in the asymmetric unit.

  19. Existence of aa3-type ubiquinol oxidase as a terminal oxidase in sulfite oxidation of Acidithiobacillus thiooxidans.

    PubMed

    Sugio, Tsuyoshi; Hisazumi, Tomohiro; Kanao, Tadayoshi; Kamimura, Kazuo; Takeuchi, Fumiaki; Negishi, Atsunori

    2006-07-01

    It was found that Acidithiobacillus thiooxidans has sulfite:ubiquinone oxidoreductase and ubiquinol oxidase activities in the cells. Ubiquinol oxidase was purified from plasma membranes of strain NB1-3 in a nearly homogeneous state. A purified enzyme showed absorption peaks at 419 and 595 nm in the oxidized form and at 442 and 605 nm in the reduced form. Pyridine ferrohaemochrome prepared from the enzyme showed an alpha-peak characteristic of haem a at 587 nm, indicating that the enzyme contains haem a as a component. The CO difference spectrum of ubiquinol oxidase showed two peaks at 428 nm and 595 nm, and a trough at 446 nm, suggesting the existence of an aa(3)-type cytochrome in the enzyme. Ubiquinol oxidase was composed of three subunits with apparent molecular masses of 57 kDa, 34 kDa, and 23 kDa. The optimum pH and temperature for ubiquinol oxidation were pH 6.0 and 30 degrees C. The activity was completely inhibited by sodium cyanide at 1.0 mM. In contrast, the activity was inhibited weakly by antimycin A(1) and myxothiazol, which are inhibitors of mitochondrial bc(1) complex. Quinone analog 2-heptyl-4-hydoroxyquinoline N-oxide (HOQNO) strongly inhibited ubiquinol oxidase activity. Nickel and tungstate (0.1 mM), which are used as a bacteriostatic agent for A. thiooxidans-dependent concrete corrosion, inhibited ubiquinol oxidase activity 100 and 70% respectively.

  20. Effects of feeding endophyte-infected fescue seed to Holstein cows during the dry period on plasma nitric oxide (NO), xanthine oxidase (XO) and haptoglobin (Hp) status in newborn calves.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fescue toxicosis in cattle, caused by ingestion of endophyte-infected fescue (EIF), is associated with decreased feed intake, growth, milk production and reproductive efficiency as well as decreased resistance to heat, transportation and immune stress. Increased inflammatory response to immune chal...

  1. Isotropic exchange interaction between Mo and the proximal FeS center in the xanthine oxidase family member aldehyde oxidoreductase from Desulfovibrio gigas on native and polyalcohol inhibited samples: an EPR and QM/MM study.

    PubMed

    Gómez, María C; Neuman, Nicolás I; Dalosto, Sergio D; González, Pablo J; Moura, José J G; Rizzi, Alberto C; Brondino, Carlos D

    2015-03-01

    Aldehyde oxidoreductase from Desulfovibrio gigas (DgAOR) is a homodimeric molybdenum-containing protein that catalyzes the hydroxylation of aldehydes to carboxylic acids and contains a Mo-pyranopterin active site and two FeS centers called FeS 1 and FeS 2. The electron transfer reaction inside DgAOR is proposed to be performed through a chemical pathway linking Mo and the two FeS clusters involving the pyranopterin ligand. EPR studies performed on reduced as-prepared DgAOR showed that this pathway is able to transmit very weak exchange interactions between Mo(V) and reduced FeS 1. Similar EPR studies but performed on DgAOR samples inhibited with glycerol and ethylene glycol showed that the value of the exchange coupling constant J increases ~2 times upon alcohol inhibition. Structural studies in these DgAOR samples have demonstrated that the Mo-FeS 1 bridging pathway does not show significant differences, confirming that the changes in J observed upon inhibition cannot be ascribed to structural changes associated neither with pyranopterin and FeS 1 nor with changes in the electronic structure of FeS 1, as its EPR properties remain unchanged. Theoretical calculations indicate that the changes in J detected by EPR are related to changes in the electronic structure of Mo(V) determined by the replacement of the OHx labile ligand for an alcohol molecule. Since the relationship between electron transfer rate and isotropic exchange interaction, the present results suggest that the intraenzyme electron transfer process mediated by the pyranopterin moiety is governed by a Mo ligand-based regulatory mechanism.

  2. Modeling the effects of estradiol and progesterone on the acute phase proinflammatory axis: Variability in tumor necrosis factor-alpha, nitric oxide, and xanthine oxidase responses to endotoxin challenge in steers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The severity of host response in some diseases differs between sexes and this dimorphism has been attributed to the immunomodulating effects of reproductive steroid hormones. In females, susceptibility to disease stress has been associated with reproductive status and attributed to prevailing proge...

  3. Monoamine oxidase and agitation in psychiatric patients.

    PubMed

    Nikolac Perkovic, Matea; Svob Strac, Dubravka; Nedic Erjavec, Gordana; Uzun, Suzana; Podobnik, Josip; Kozumplik, Oliver; Vlatkovic, Suzana; Pivac, Nela

    2016-08-01

    Subjects with schizophrenia or conduct disorder display a lifelong pattern of antisocial, aggressive and violent behavior and agitation. Monoamine oxidase (MAO) is an enzyme involved in the degradation of various monoamine neurotransmitters and neuromodulators and therefore has a role in various psychiatric and neurodegenerative disorders and pathological behaviors. Platelet MAO-B activity has been associated with psychopathy- and aggression-related personality traits, while variants of the MAOA and MAOB genes have been associated with diverse clinical phenotypes, including aggressiveness, antisocial problems and violent delinquency. The aim of the study was to evaluate the association of platelet MAO-B activity, MAOB rs1799836 polymorphism and MAOA uVNTR polymorphism with severe agitation in 363 subjects with schizophrenia and conduct disorder. The results demonstrated significant association of severe agitation and smoking, but not diagnosis or age, with platelet MAO-B activity. Higher platelet MAO-B activity was found in subjects with severe agitation compared to non-agitated subjects. Platelet MAO-B activity was not associated with MAOB rs1799836 polymorphism. These results suggested the association between increased platelet MAO-B activity and severe agitation. No significant association was found between severe agitation and MAOA uVNTR or MAOB rs1799836 polymorphism, revealing that these individual polymorphisms in MAO genes are not related to severe agitation in subjects with schizophrenia and conduct disorder. As our study included 363 homogenous Caucasian male subjects, our data showing this negative genetic association will be a useful addition to future meta-analyses. PMID:26851573

  4. Oxygen radicals as second messengers for expression of the monocyte chemoattractant protein, JE/MCP-1, and the monocyte colony-stimulating factor, CSF-1, in response to tumor necrosis factor-alpha and immunoglobulin G. Evidence for involvement of reduced nicotinamide adenine dinucleotide phosphate (NADPH)-dependent oxidase.

    PubMed

    Satriano, J A; Shuldiner, M; Hora, K; Xing, Y; Shan, Z; Schlondorff, D

    1993-09-01

    The potential involvement of reactive oxygen species in the expression of genes involved in immune response was examined in mesangial cells. Tumor necrosis factor (TNF-alpha) and aggregated (aggr.) IgG increased mRNA levels for the monocyte chemoattractant protein, JE/MCP-1, and the colony-stimulating factor, CSF-1. Scavengers for free radicals such as di- and tetra-methylthiourea (DMTU and TMTU) attenuated the increase in mRNA levels in response to TNF-alpha and aggr. IgG. Generation of superoxide anion by xanthine oxidase and hypoxanthine increased mRNA levels of these genes, but exogenous H2O2 did not. Addition of NADPH to activate a membrane-bound NADPH-oxidase generated superoxide and caused a dose-dependent increase in mRNA levels and further enhanced the stimulation by TNF-alpha or aggr. IgG. An inhibitor of NADPH-dependent oxidase 4'-hydroxy-3'-methoxy-acetophenone attenuated the rise in mRNA levels in response to TNF-alpha and aggr. IgG. By nuclear run-on experiments TNF-alpha, aggr. IgG and NADPH increased the transcription rates for JE/MCP-1 and CSF-1, effects inhibited by TMTU. We conclude that generation of reactive oxygen species, possibly by NADPH-dependent oxidase, are involved in the induction of the JE/MCP-1 and CSF-1 genes by TNF-alpha and IgG complexes. The concerted expression of leukocyte-directed cytokines represents a general response to tissue injury.

  5. Sulfide inhibition of and metabolism by cytochrome c oxidase.

    PubMed

    Nicholls, Peter; Marshall, Doug C; Cooper, Chris E; Wilson, Mike T

    2013-10-01

    Hydrogen sulfide (H2S), a classic cytochrome c oxidase inhibitor, is also an in vitro oxidase substrate and an in vivo candidate hormonal ('gasotransmitter') species affecting sleep and hibernation. H2S, nitric oxide (NO) and carbon monoxide (CO) share some common features. All are low-molecular-mass physiological effectors and also oxidase inhibitors, capable of binding more than one enzyme site, and each is an oxidizable 'substrate'. The oxidase oxidizes CO to CO2, NO to nitrite and sulfide to probable persulfide species. Mitochondrial cytochrome c oxidase in an aerobic steady state with ascorbate and cytochrome c is rapidly inhibited by sulfide in a biphasic manner. At least two successive inhibited species are involved, probably partially reduced. The oxidized enzyme, in the absence of turnover, occurs in at least two forms: the 'pulsed' and 'resting' states. The pulsed form reacts aerobically with sulfide to form two intermediates, 'P' and 'F', otherwise involved in the reaction of oxygen with reduced enzyme. Sulfide can directly reduce the oxygen-reactive a3CuB binuclear centre in the pulsed state. The resting enzyme does not undergo such a step, but only a very slow one-electron reduction of the electron-transferring haem a. In final reactivation phases, both the steady-state inhibition of catalysis and the accumulation of P and F states are reversed by slow sulfide oxidation. A model for this complex reaction pattern is presented. PMID:24059525

  6. Crystal Structure of Alcohol Oxidase from Pichia pastoris

    PubMed Central

    Valerius, Oliver; Feussner, Ivo; Ficner, Ralf

    2016-01-01

    FAD-dependent alcohol oxidases (AOX) are key enzymes of methylotrophic organisms that can utilize lower primary alcohols as sole source of carbon and energy. Here we report the crystal structure analysis of the methanol oxidase AOX1 from Pichia pastoris. The crystallographic phase problem was solved by means of Molecular Replacement in combination with initial structure rebuilding using Rosetta model completion and relaxation against an averaged electron density map. The subunit arrangement of the homo-octameric AOX1 differs from that of octameric vanillyl alcohol oxidase and other dimeric or tetrameric alcohol oxidases, due to the insertion of two large protruding loop regions and an additional C-terminal extension in AOX1. In comparison to other alcohol oxidases, the active site cavity of AOX1 is significantly reduced in size, which could explain the observed preference for methanol as substrate. All AOX1 subunits of the structure reported here harbor a modified flavin adenine dinucleotide, which contains an arabityl chain instead of a ribityl chain attached to the isoalloxazine ring. PMID:26905908

  7. Forage polyphenol oxidase and ruminant livestock nutrition

    PubMed Central

    Lee, Michael R. F.

    2014-01-01

    Polyphenol oxidase (PPO) is predominately associated with the detrimental effect of browning fruit and vegetables, however, interest within PPO containing forage crops (crops to be fed to animals) has grown since the browning reaction was associated with reduced nitrogen (N) losses in silo and the rumen. The reduction in protein breakdown in silo of red clover (high PPO forage) increased the quality of protein, improving N-use efficiency [feed N into product N (e.g., Milk): NUE] when fed to ruminants. A further benefit of red clover silage feeding is a significant reduction in lipolysis (cleaving of glycerol-based lipid) in silo and an increase in the deposition of beneficial C18 polyunsaturated fatty acid (PUFA) in animal products, which has also been linked to PPO activity. PPOs protection of plant protein and glycerol based-PUFA in silo is related to the deactivation of plant proteases and lipases. This deactivation occurs through PPO catalyzing the conversion of diphenols to quinones which bind with cellular nucleophiles such as protein reforming a protein-bound phenol (PBP). If the protein is an enzyme (e.g., protease or lipase) the complexing denatures the enzyme. However, PPO is inactive in the anaerobic rumen and therefore any subsequent protection of plant protein and glycerol based-PUFA in the rumen must be as a result of events that occurred to the forage pre-ingestion. Reduced activity of plant proteases and lipases would have little effect on NUE and glycerol based-PUFA in the rumen due to the greater concentration of rumen microbial proteases and lipases. The mechanism for PPOs protection of plant protein in the rumen is a consequence of complexing plant protein, rather than protease deactivation per se. These complexed proteins reduce protein digestibility in the rumen and subsequently increase undegraded dietary protein flow to the small intestine. The mechanism for protecting glycerol-based PUFA has yet to be fully elucidated but may be associated

  8. Hydrogen peroxide-mediated cytotoxicity of rat endothelial cells: Changes in ATP and purine products and the effects of protective interventions

    SciTech Connect

    Gibbs, D.F.; Varanl, J.; Phan, S.H.; Ward, P.A. )

    1990-02-26

    Hydrogen peroxide-mediated cytotoxicity (as measured by {sup 51}Cr-release) of rat pulmonary artery endothelial cells was time-dependent and related to the concentration of peroxide employed. The cytotoxic effects of hydrogen peroxide were, as expected, prevented by catalase and the degree of protection was directly related to its time of addition. Endothelial cells were incubated with {sup 14}C-adenosine to achieve intracellular labeling of adenosine triphosphate (ATP), following which the cells were washed and exposed to hydrogen peroxide. Based on analysis of cell extracts by high-performance liquid chromatography, there was a time-dependent loss of intracellular radioactivity and ATP with the simultaneous appearance of purine degradation products including xanthine/hypoxanthine. The extracellular fluid of cells exposed to hydrogen peroxide contained significant amounts of xanthine/hypoxanthine. The ferric iron chelator deferoxamine provided almost complete protection against hydrogen peroxide-mediated cytotoxicity. Two inhibitors of xanthine oxidase-(allopurinol and oxypurinol) were protective as was deoxycoformycin, an inhibitor of adenosine deaminase. Remarkably, cells protected by these agents showed the same loss of intracellular ATP as unprotected, hydrogen peroxide-treated cells. These findings demonstrate the dissociation between ATP loss per se and oxidant mediated cytotoxicity of endothelial cells.

  9. Expression of alternative oxidase in Drosophila ameliorates diverse phenotypes due to cytochrome oxidase deficiency

    PubMed Central

    Kemppainen, Kia K.; Rinne, Juho; Sriram, Ashwin; Lakanmaa, Matti; Zeb, Akbar; Tuomela, Tea; Popplestone, Anna; Singh, Satpal; Sanz, Alberto; Rustin, Pierre; Jacobs, Howard T.

    2014-01-01

    Mitochondrial dysfunction is a significant factor in human disease, ranging from systemic disorders of childhood to cardiomyopathy, ischaemia and neurodegeneration. Cytochrome oxidase, the terminal enzyme of the mitochondrial respiratory chain, is a frequent target. Lower eukaryotes possess alternative respiratory-chain enzymes that provide non-proton-translocating bypasses for respiratory complexes I (single-subunit reduced nicotinamide adenine dinucleotide dehydrogenases, e.g. Ndi1 from yeast) or III + IV [alternative oxidase (AOX)], under conditions of respiratory stress or overload. In previous studies, it was shown that transfer of yeast Ndi1 or Ciona intestinalis AOX to Drosophila was able to overcome the lethality produced by toxins or partial knockdown of complex I or IV. Here, we show that AOX can provide a complete or substantial rescue of a range of phenotypes induced by global or tissue-specific knockdown of different cIV subunits, including integral subunits required for catalysis, as well as peripheral subunits required for multimerization and assembly. AOX was also able to overcome the pupal lethality produced by muscle-specific knockdown of subunit CoVb, although the rescued flies were short lived and had a motility defect. cIV knockdown in neurons was not lethal during development but produced a rapidly progressing locomotor and seizure-sensitivity phenotype, which was substantially alleviated by AOX. Expression of Ndi1 exacerbated the neuronal phenotype produced by cIV knockdown. Ndi1 expressed in place of essential cI subunits produced a distinct residual phenotype of delayed development, bang sensitivity and male sterility. These findings confirm the potential utility of alternative respiratory chain enzymes as tools to combat mitochondrial disease, while indicating important limitations thereof. PMID:24293544

  10. Regulation of Ascorbate Oxidase Expression in Pumpkin by Auxin and Copper 1

    PubMed Central

    Esaka, Muneharu; Fujisawa, Kouichi; Goto, Miwa; Kisu, Yasutomo

    1992-01-01

    Ascorbate oxidase expression in pumpkin (Cucurbita spp.) tissues was studied. Specific ascorbate oxidase activities in pumpkin leaf and stem tissues were about 2 and 1.5 times that in the fruit tissues, respectively. In seeds, little ascorbate oxidase activity was detected. Northern blot analyses showed an abundant ascorbate oxidase mRNA in leaf and stem tissues. Fruit tissues had lower levels of ascorbate oxidase mRNA than leaf and stem tissues. Ascorbate oxidase mRNA was not detected in seeds. Specific ascorbate oxidase activity gradually increased during early seedling growth of pumpkin seeds. The increase was accompanied by an increase in ascorbate oxidase mRNA. When ascorbate oxidase activity in developing pumpkin fruits was investigated, the activities in immature fruits that are rapidly growing at 0, 2, 4, and 7 d after anthesis were much higher than those in mature fruits at 14 and 30 d after anthesis. The specific activity and mRNA of ascorbate oxidase markedly increased after inoculation of pumpkin fruit tissues into Murashige and Skoog's culture medium in the presence of an auxin such as 2,4-dichlorophenoxyacetic acid (2,4-D) but not in the absence of 2,4-D. In the presence of 10 mg/L of 2,4-D, ascorbate oxidase mRNA was the most abundant. Thus, ascorbate oxidase is induced by 2,4-D. These results indicate that ascorbate oxidase is involved in cell growth. In pumpkin callus, ascorbate oxidase activity could be markedly increased by adding copper. Furthermore, immunological blotting showed that the amount of ascorbate oxidase protein was also increased by adding copper. However, northern blot analyses showed that ascorbate oxidase mRNA was not increased by adding copper. We suggest that copper may control ascorbate oxidase expression at translation or at a site after translation. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:16652952

  11. Characterization of wheat germin (oxalate oxidase) expressed by Pichia pastoris

    SciTech Connect

    Pan, Heng-Yen; Whittaker, Mei M.; Bouveret, Romaric; Berna, Anne; Bernier, Francois; Whittaker, James W. . E-mail: jim@ebs.ogi.edu

    2007-05-18

    High-level secretory expression of wheat (Triticum aestivum) germin/oxalate oxidase was achieved in Pichia pastoris fermentation cultures as an {alpha}-mating factor signal peptide fusion, based on the native wheat cDNA coding sequence. The oxalate oxidase activity of the recombinant enzyme is substantially increased (7-fold) by treatment with sodium periodate, followed by ascorbate reduction. Using these methods, approximately 1 g (4 x 10{sup 4} U) of purified, activated enzyme was obtained following eight days of induction of a high density Pichia fermentation culture, demonstrating suitability for large-scale production of oxalate oxidase for biotechnological applications. Characterization of the recombinant protein shows that it is glycosylated, with N-linked glycan attached at Asn47. For potential biomedical applications, a nonglycosylated (S49A) variant was also prepared which retains essentially full enzyme activity, but exhibits altered protein-protein interactions.

  12. Studies on the active site of pig plasma amine oxidase.

    PubMed Central

    Collison, D; Knowles, P F; Mabbs, F E; Rius, F X; Singh, I; Dooley, D M; Cote, C E; McGuirl, M

    1989-01-01

    Amine oxidase from pig plasma (PPAO) has two bound Cu2+ ions and at least one pyrroloquinoline quinone (PQQ) moiety as cofactors. It is shown that recovery of activity by copper-depleted PPAO is linear with respect to added Cu2+ ions. Recovery of e.s.r. and optical spectral characteristics of active-site copper parallel the recovery of catalytic activity. These results are consistent with both Cu2+ ions contributing to catalysis. Further e.s.r. studies indicate that the two copper sites in PPAO, unlike those in amine oxidases from other sources, are chemically distinct. These comparative studies establish that non-identity of the Cu2+ ions in PPAO is not a requirement for amine oxidase activity. It is shown through the use of a new assay procedure that there are two molecules of PQQ bound per molecule of protein in PPAO; only the more reactive of these PQQ moieties is required for activity. PMID:2559715

  13. X-ray absorption spectroscopy of chicken sulfite oxidase crystals

    SciTech Connect

    George, G.N.; Pickering, I.J.; Kisker, C.

    1999-05-17

    Sulfite oxidase catalyzes the physiologically vital oxidation of sulfite to sulfate. Recently, the crystal structure of chicken sulfite oxidase has been reported at 1.9 {angstrom} resolution. In contrast to the information available from previous X-ray absorption spectroscopic studies, the active site indicated by crystallography was a mono-oxo species. Because of this the possibility that the crystals did in fact contain a reduced molybdenum species was considered in the crystallographic work. The authors report herein an X-ray absorption spectroscopic study of polycrystalline sulfite oxidase prepared in the same manner as the previous single-crystal samples, and compare this with data for frozen solutions of oxidized and reduced enzyme.

  14. The use of galactose oxidase in lipid labeling

    SciTech Connect

    Radin, N.S.; Evangelatos, G.P.

    1981-03-01

    Galactose oxidase can be used to oxidize the terminal carbon atom of lipids containing galactose or N-acetylgalactosamine, and the resultant aldehyde group can be reduced back to the original carbinol with radioactive borohydride. The efficiency of the first reaction has been investigated systematically by using (6-/sup 3/H)galactosyl ceramide as substrate and measuring the amount of radioactive water formed. This enabled us to establish that the addition of catalase and peroxidase greatly speeded the oxidation, that phosphate and PIPES buffers were the best among those tested, that the reaction continued for 24 hr without a second addition of galactose oxidase, and that the optimum concentration of organic solvent (tetrahydrofuran) was 50%. The suggestion if made that a similar set of variables be studied for each lipid or nonlipid by the same basic technique: labeling by the oxidase/borohydride method and use of the resultant compound as substrate.

  15. Composition of partially purified NADPH oxidase from pig neutrophils.

    PubMed Central

    Bellavite, P; Jones, O T; Cross, A R; Papini, E; Rossi, F

    1984-01-01

    The superoxide (O2.-)-forming enzyme NADPH oxidase from pig neutrophils was solubilized and partially purified by gel-filtration chromatography. The purification procedure allowed the separation of NADPH oxidase activity from NADH-dependent cytochrome c reductase and 2,6-dichlorophenol-indophenol reductase activities. O2.-forming activity was co-purified with cytochrome b-245 and was associated with phospholipids. However, active fractions endowed with cytochrome b were devoid of ubiquinone and contained only little FAD. The cytochrome b/FAD ratio was 1.13:1 in the crude solubilized extract and increased to 18.95:1 in the partially purified preparations. Most of FAD was associated with fractions containing NADH-dependent oxidoreductases. These results are consistent with the postulated role of cytochrome b in O2.-formation by neutrophil NADPH oxidase, but raise doubts about the participation of flavoproteins in this enzyme activity. PMID:6439185

  16. Improved operational stability of peroxidases by coimmobilization with glucose oxidase.

    PubMed

    van de Velde, F; Lourenço, N D; Bakker, M; van Rantwijk, F; Sheldon, R A

    2000-08-01

    The operational stability of peroxidases was considerably enhanced by generating hydrogen peroxide in situ from glucose and oxygen. For example, the total turnover number of microperoxidase-11 in the oxidation of thioanisole was increased sevenfold compared with that obtained with continuous addition of H(2)O(2). Coimmobilization of peroxidases with glucose oxidase into polyurethane foams afforded heterogeneous biocatalysts in which the hydrogen peroxide is formed inside the polymeric matrix from glucose and oxygen. The total turnover number of chloroperoxidase in the oxidation of thioanisole and cis-2-heptene was increased to new maxima of 250. 10(3) and 10. 10(3), respectively, upon coimmobilization with glucose oxidase. Soybean peroxidase, which normally shows only classical peroxidase activity, was transformed into an oxygen-transfer catalyst when coimmobilized with glucose oxidase. The combination catalyst mediated the enantioselective oxidation of thioanisole [50% ee (S)] with 210 catalyst turnovers. PMID:10861408

  17. The mechanism of cytochrome C oxidase inhibition by nitric oxide.

    PubMed

    Antunes, Fernando; Cadenas, Enrique

    2007-01-01

    The basic biochemistry of the inhibition of cytochrome oxidase by NO is reviewed. Three possible mechanisms that include the binding of NO to the fully reduced Fe(a3)-Cu(B) site, to the semi-reduced Fe(a3)-Cu(B) site, and to the fully oxidized Fe(a3)-Cu(B) site are confronted with the experimental data. Mathematical models are used to facilitate the analysis and to solve puzzling observations concerning the NO inhibition of cytochrome oxidase. It is concluded that the inhibition of cytochrome oxidase by NO is mixed, having both competitive and uncompetitive components, but under physiological electron flows the competitive component is largely predominant. The physiological and pathological relevance of this inhibition is briefly discussed.

  18. Oxidation of polymines by diamine oxidase from human seminal plasma.

    PubMed Central

    Hölttä, E; Pulkkinen, P; Elfving, K; Jänne, J

    1975-01-01

    1. Diamine oxidase [amine-oxygen oxidoreductase (deaminating)(pyridoxal-containing), EC 1.4.3.6] was purified from human seminal plasma more than 1,700-fold. The enzyme appeared to be homogeneous on polyacrylamide-gel electrophoresis at two different pH values. 2. The general properties of the enzyme were comparable with those described for other diamine oxidases from different mammalian sources. The molecular weight of the enzyme was calculated to be about 182,000. 3. The enzyme had highest affinity for diamines, but polyamines spermidine and spermine were also degraded at concentrations that can be considered physiological in human semen. 3. The possible degradation of spermine by diamine oxidase in human semen in vivo may give rise to the formation of cytotoxic aldehydes that conceivably can influence the motility and survival of the spermatozoa. PMID:239684

  19. Redox regulation of E3 ubiquitin ligases and their role in skeletal muscle atrophy.

    PubMed

    Olaso-Gonzalez, Gloria; Ferrando, Beatriz; Derbre, Frederic; Salvador-Pascual, Andrea; Cabo, Helena; Pareja-Galeano, Helios; Sabater-Pastor, Frederic; Gomez-Cabrera, Mari Carmen; Vina, Jose

    2014-10-01

    Muscle atrophy is linked to reactive oxygen species (ROS) production during hindlimb-unloading due, at least in part, to the activation of xanthine oxidase (XO). The major aim of our study was to determine the mechanism by which ROS cause muscle atrophy and its possible prevention by allopurinol, a well-known inhibitor of XO widely used in clinical practice, and indomethacin, a nonsteroidal anti-inflammatory drug. We studied the activation of p38 MAP Kinase and NF-?B pathways, and the expression of two E3 ubiquitin ligases involved in proteolysis, the Muscle atrophy F-Box (MAFb) and Muscle RING Finger-1 (MuRF-1). Male Wistar rats (3 mold) conditioned by 14 days of hindlimb unloading (n=18), with or without the treatment, were compared with freely ambulating controls (n=18). After the experimental intervention, soleus muscles were removed, weighted and analyzed to determine oxidative stress and inflammatory parameters. We found that hindlimb unloading induced a significant increase in XO activity in plasma (39%, p=0.001) and in the protein expression of CuZnSOD and Catalase in skeletal muscle. Inhibitionof XO partially prevented protein carbonylation, both in plasma and in soleus muscle, in the unloaded animals. The most relevant new fact reported is that allopurinol prevents soleus muscle atrophy by ~20% after hindlimb unloading. Combining allopurinol and indomethacin we found a further prevention in the atrophy process. This is mediated by the inhibition of the p38 MAPK-MAFbx and NF-?B -MuRF-1 pathways. Our data point out the potential benefit of allopurinol and indomethacin administration for bedridden, astronauts, sarcopenic and cachexic patients. PMID:26461377

  20. A Conserved Steroid Binding Site in Cytochrome c Oxidase

    SciTech Connect

    Qin, Ling; Mills, Denise A.; Buhrow, Leann; Hiser, Carrie; Ferguson-Miller, Shelagh

    2010-09-02

    Micromolar concentrations of the bile salt deoxycholate are shown to rescue the activity of an inactive mutant, E101A, in the K proton pathway of Rhodobacter sphaeroides cytochrome c oxidase. A crystal structure of the wild-type enzyme reveals, as predicted, deoxycholate bound with its carboxyl group at the entrance of the K path. Since cholate is a known potent inhibitor of bovine oxidase and is seen in a similar position in the bovine structure, the crystallographically defined, conserved steroid binding site could reveal a regulatory site for steroids or structurally related molecules that act on the essential K proton path.

  1. Functional characterization of gibberellin oxidases from cucumber, Cucumis sativus L.

    PubMed

    Pimenta Lange, Maria João; Liebrandt, Anja; Arnold, Linda; Chmielewska, Sara-Miriam; Felsberger, André; Freier, Eduard; Heuer, Monika; Zur, Doreen; Lange, Theo

    2013-06-01

    Cucurbits have been used widely to elucidate gibberellin (GA) biosynthesis. With the recent availability of the genome sequence for the economically important cucurbit Cucumis sativus, sequence data became available for all genes potentially involved in GA biosynthesis for this species. Sixteen cDNAs were cloned from root and shoot of 3-d to 7-d old seedlings and from mature seeds of C. sativus. Two cDNAs code for GA 7-oxidases (CsGA7ox1, and -2), five for GA 20-oxidases (CsGA20ox1, -2, -3, -4, and -5), four for GA 3-oxidases (CsGA3ox1, -2, -3, and -4), and another five for GA 2-oxidases (CsGA2ox1, -2, -3, -4, and -5). Their enzymatic activities were investigated by heterologous expression of the cDNAs in Escherichia coli and incubation of the cell lysates with (14)C-labelled, D2-labelled, or unlabelled GA-substrates. The two GA 7-oxidases converted GA12-aldehyde to GA12 efficiently. CsGA7ox1 converted GA12 to GA14, to 15α-hydroxyGA12, and further to 15α-hydroxyGA14. CsGA7ox2 converted GA12 to its 12α-hydroxylated analogue GA111. All five GA 20-oxidases converted GA12 to GA9 as a major product, and to GA25 as a minor product. The four GA 3-oxidases oxidized the C19-GA GA9 to GA4 as the only product. In addition, three of them (CsGA3ox2, -3, and -4) converted the C20-GA GA12 to GA14. The GA 2-oxidases CsGA2ox1, -2, -3, and -4 oxidized the C19-GAs GA9 and GA4 to GA34 and GA51, respectively. CsGA2ox2, -3, and -4 converted GA51 and GA34 further to respective GA-catabolites. In addition to C19-GAs, CsGA2ox4 also converted the C20-GA GA12 to GA110. In contrast, CsGA2ox5 oxidized only the C20 GA12 to GA110 as the sole product. As shown for CsGA20ox1 and CsGA3ox1, similar reactions were catalysed with 13-hydroxlyated GAs as substrates. It is likely that these enzymes are also responsible for the biosynthesis of 13-hydroxylated GAs in vivo that occur at low levels in cucumber.

  2. Colloidal properties of biomacromolecular solutions: Towards urate oxidase crystal design

    NASA Astrophysics Data System (ADS)

    Bonneté, Françoise

    2013-02-01

    Crystallization of biological macromolecules is governed by weak interaction forces, attractive and repulsive. Knowledge of solution properties, via second virial coefficient measurements, makes it possible to select physico-chemical parameters that govern and control phase diagrams and thus to grow crystals for specific applications (bio-crystallography or pharmaceutical processes). We highlight here with urate oxidase a salting-in effect that increases its solubility and the depletion effect of amphiphilic polymer, at a polymer concentration above its cmc, in order to grow diffracting crystals of urate oxidase. These two effects were used to grow crystals for high pressure crystallography and in a purification process.

  3. [The clinical picture of gout is changing].

    PubMed

    Julkunen, Heikki; Konttinen, Yrjö T

    2010-01-01

    The prevalence of gout in the western countries is 1-2%. The disease has become more common during the last two decades, and the same time its clinical picture has changed. The disease is often polyarticular, the patients are older than before and they have more often associated cardiovascular diseases and renal insufficiency. Effective treatment of acute gout is nonsteroidal anti-inflammatory drugs with intra-articular or systematic corticosteroids. The goal for the treatment of intermittent and chronic gout is to maintain serum urate concentration velow 360 micromol/l by diet and by antihyperuricemic meditation, primarly allopurinole and probenecid. Febuxostat is a new xanthine oxidase inhibitor, which will be available for the treatment of refractory gout in the near future. Special attention should be paid on detecting and treating cardiovascular diseases and their risk factors in patients with gout.

  4. [An update on gout: diagnostic approach, treatment and comorbidity].

    PubMed

    Diller, Magnus; Fleck, Martin

    2016-08-01

    Muskuloskeletal ultrasound and dual-energy-CT (DECT) findings are increasingly relevant for the establishment of the diagnosis of gout, and are therefore incorporated into the novel ACR / EULAR classification criteria. Canakinumab, a monoclonal antibody directed against interleukin-1β (IL-1β) has been approved in 2013 for the treatment of acute gout and for prophylaxis of flares. In patients demonstrating an inadequate response upon treatment with allopurinol or febuxostat, combination therapy with lesinurad might reduce uric acid levels to the target of < 6 mg / dl (< 5 mg / dl in tophaceous gout). Rapid lowering of uric acid levels and effective tophi reduction can be achieved with pegloticase, which can be utilized in selected patients presenting contraindications to xanthine oxidase inhibitors and uricosuric drugs. This article summarizes current scientific aspects of diagnosis, treatment and comorbidities of gout in the context of clinical relevance. PMID:27509346

  5. Expression of terminal oxidases under nutrient-starved conditions in Shewanella oneidensis: detection of the A-type cytochrome c oxidase

    PubMed Central

    Le Laz, Sébastien; kpebe, Arlette; Bauzan, Marielle; Lignon, Sabrina; Rousset, Marc; Brugna, Myriam

    2016-01-01

    Shewanella species are facultative anaerobic bacteria that colonize redox-stratified habitats where O2 and nutrient concentrations fluctuate. The model species Shewanella oneidensis MR-1 possesses genes coding for three terminal oxidases that can perform O2 respiration: a bd-type quinol oxidase and cytochrome c oxidases of the cbb3-type and the A-type. Whereas the bd- and cbb3-type oxidases are routinely detected, evidence for the expression of the A-type enzyme has so far been lacking. Here, we investigated the effect of nutrient starvation on the expression of these terminal oxidases under different O2 tensions. Our results reveal that the bd-type oxidase plays a significant role under nutrient starvation in aerobic conditions. The expression of the cbb3-type oxidase is also modulated by the nutrient composition of the medium and increases especially under iron-deficiency in exponentially growing cells. Most importantly, under conditions of carbon depletion, high O2 and stationary-growth, we report for the first time the expression of the A-type oxidase in S. oneidensis, indicating that this terminal oxidase is not functionally lost. The physiological role of the A-type oxidase in energy conservation and in the adaptation of S. oneidensis to redox-stratified environments is discussed. PMID:26815910

  6. Expression of terminal oxidases under nutrient-starved conditions in Shewanella oneidensis: detection of the A-type cytochrome c oxidase.

    PubMed

    Le Laz, Sébastien; Kpebe, Arlette; Bauzan, Marielle; Lignon, Sabrina; Rousset, Marc; Brugna, Myriam

    2016-01-01

    Shewanella species are facultative anaerobic bacteria that colonize redox-stratified habitats where O2 and nutrient concentrations fluctuate. The model species Shewanella oneidensis MR-1 possesses genes coding for three terminal oxidases that can perform O2 respiration: a bd-type quinol oxidase and cytochrome c oxidases of the cbb3-type and the A-type. Whereas the bd- and cbb3-type oxidases are routinely detected, evidence for the expression of the A-type enzyme has so far been lacking. Here, we investigated the effect of nutrient starvation on the expression of these terminal oxidases under different O2 tensions. Our results reveal that the bd-type oxidase plays a significant role under nutrient starvation in aerobic conditions. The expression of the cbb3-type oxidase is also modulated by the nutrient composition of the medium and increases especially under iron-deficiency in exponentially growing cells. Most importantly, under conditions of carbon depletion, high O2 and stationary-growth, we report for the first time the expression of the A-type oxidase in S. oneidensis, indicating that this terminal oxidase is not functionally lost. The physiological role of the A-type oxidase in energy conservation and in the adaptation of S. oneidensis to redox-stratified environments is discussed. PMID:26815910

  7. Diiron centre mutations in Ciona intestinalis alternative oxidase abolish enzymatic activity and prevent rescue of cytochrome oxidase deficiency in flies

    PubMed Central

    Andjelković, Ana; Oliveira, Marcos T.; Cannino, Giuseppe; Yalgin, Cagri; Dhandapani, Praveen K.; Dufour, Eric; Rustin, Pierre; Szibor, Marten; Jacobs, Howard T.

    2015-01-01

    The mitochondrial alternative oxidase, AOX, carries out the non proton-motive re-oxidation of ubiquinol by oxygen in lower eukaryotes, plants and some animals. Here we created a modified version of AOX from Ciona instestinalis, carrying mutations at conserved residues predicted to be required for chelation of the diiron prosthetic group. The modified protein was stably expressed in mammalian cells or flies, but lacked enzymatic activity and was unable to rescue the phenotypes of flies knocked down for a subunit of cytochrome oxidase. The mutated AOX transgene is thus a potentially useful tool in studies of the physiological effects of AOX expression. PMID:26672986

  8. Structural Changes and Proton Transfer in Cytochrome c Oxidase.

    PubMed

    Vilhjálmsdóttir, Jóhanna; Johansson, Ann-Louise; Brzezinski, Peter

    2015-08-27

    In cytochrome c oxidase electron transfer from cytochrome c to O2 is linked to transmembrane proton pumping, which contributes to maintaining a proton electrochemical gradient across the membrane. The mechanism by which cytochrome c oxidase couples the exergonic electron transfer to the endergonic proton translocation is not known, but it presumably involves local structural changes that control the alternating proton access to the two sides of the membrane. Such redox-induced structural changes have been observed in X-ray crystallographic studies at residues 423-425 (in the R. sphaeroides oxidase), located near heme a. The aim of the present study is to investigate the functional effects of these structural changes on reaction steps associated with proton pumping. Residue Ser425 was modified using site-directed mutagenesis and time-resolved spectroscopy was used to investigate coupled electron-proton transfer upon reaction of the oxidase with O2. The data indicate that the structural change at position 425 propagates to the D proton pathway, which suggests a link between redox changes at heme a and modulation of intramolecular proton-transfer rates.

  9. Beyond brown: polyphenol oxidases as enzymes of plant specialized metabolism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most cloned and/or characterized plant polyphenol oxidases (PPOs) have catecholase activity (i.e., they oxidize o-diphenols to o-quinones) and are localized or predicted to be localized to plastids. As a class, they have broad substrate specificity and are associated with browning of produce and oth...

  10. Polyphenol oxidase activity in co-ensiled temperate grasses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyphenol oxidase (PPO) and its o-diphenol substrates have been shown to effectively decrease proteolytic activity during the ensiling of forages such as red clover. Orchardgrass and smooth bromegrass both contain high levels of PPO activity, but lack appropriate levels of o-diphenols to adequately...

  11. Platinum Nanoparticles: Efficient and Stable Catechol Oxidase Mimetics.

    PubMed

    Liu, Yi; Wu, Haohao; Chong, Yu; Wamer, Wayne G; Xia, Qingsu; Cai, Lining; Nie, Zhihong; Fu, Peter P; Yin, Jun-Jie

    2015-09-01

    Although enzyme-like nanomaterials have been extensively investigated over the past decade, most research has focused on the peroxidase-like, catalase-like, or SOD-like activity of these nanomaterials. Identifying nanomaterials having oxidase-like activities has received less attention. In this study, we demonstrate that platinum nanoparticles (Pt NPs) exhibit catechol oxidase-like activity, oxidizing polyphenols into the corresponding o-quinones. Four unique approaches are employed to demonstrate the catechol oxidase-like activity exerted by Pt NPs. First, UV-vis spectroscopy is used to monitor the oxidation of polyphenols catalyzed by Pt NPs. Second, the oxidized products of polyphenols are identified by ultrahigh-performance liquid chromatography (UHPLC) separation followed by high-resolution mass spectrometry (HRMS) identification. Third, electron spin resonance (ESR) oximetry techniques are used to confirm the O2 consumption during the oxidation reaction. Fourth, the intermediate products of semiquinone radicals formed during the oxidation of polyphenols are determined by ESR using spin stabilization. These results indicate Pt NPs possess catechol oxidase-like activity. Because polyphenols and related bioactive substances have been explored as potent antioxidants that could be useful for the prevention of cancer and cardiovascular diseases, and Pt NPs have been widely used in the chemical industry and medical science, it is essential to understand the potential effects of Pt NPs for altering or influencing the antioxidant activity of polyphenols.

  12. Energy-Dependent Reversal of the Cytochrome Oxidase Reaction

    NASA Astrophysics Data System (ADS)

    Wikstrom, Marten

    1981-07-01

    Energization of isolated rat liver mitochondria with ATP under conditions in which cytochrome c is poised in a highly oxidized state shifts the state of cytochrome oxidase (cytochrome c oxidase; ferrocytochrome c:oxygen oxidoreductase, EC 1.9.3.1) from fully oxidized to two new spectroscopically distinguishable states depending on the applied phosphorylation potential and redox potential at cytochrome c. Both new states are spectrally similar or identical to two previously described intermediates in the reaction between reduced enzyme and O2. The data suggest that the energy-dependent transitions are due to reversed electron transfer from water to ferricytochrome c linked to accumulation of intermediates of O2 reduction at the catalytic heme a3/copper center. Titrations with redox potential indicate that each transition is a one-electron step, a finding that would identify the second observed compound as enzyme-bound peroxide or its equivalent. This is consistent with this compound being spectrally identical to ``Compound C,'' previously described as the reaction product between half-reduced oxidase (two electrons) and O2. On the basis of these data a catalytic scheme of O2 reduction is proposed for the heme a3/copper center of cytochrome oxidase.

  13. Molecular dynamics in cytochrome c oxidase Moessbauer spectra deconvolution

    SciTech Connect

    Bossis, Fabrizio; Palese, Luigi L.

    2011-01-07

    Research highlights: {yields} Cytochrome c oxidase molecular dynamics serve to predict Moessbauer lineshape widths. {yields} Half height widths are used in modeling of Lorentzian doublets. {yields} Such spectral deconvolutions are useful in detecting the enzyme intermediates. -- Abstract: In this work low temperature molecular dynamics simulations of cytochrome c oxidase are used to predict an experimentally observable, namely Moessbauer spectra width. Predicted lineshapes are used to model Lorentzian doublets, with which published cytochrome c oxidase Moessbauer spectra were simulated. Molecular dynamics imposed constraints to spectral lineshapes permit to obtain useful information, like the presence of multiple chemical species in the binuclear center of cytochrome c oxidase. Moreover, a benchmark of quality for molecular dynamic simulations can be obtained. Despite the overwhelming importance of dynamics in electron-proton transfer systems, limited work has been devoted to unravel how much realistic are molecular dynamics simulations results. In this work, molecular dynamics based predictions are found to be in good agreement with published experimental spectra, showing that we can confidently rely on actual simulations. Molecular dynamics based deconvolution of Moessbauer spectra will lead to a renewed interest for application of this approach in bioenergetics.

  14. Platinum Nanoparticles: Efficient and Stable Catechol Oxidase Mimetics.

    PubMed

    Liu, Yi; Wu, Haohao; Chong, Yu; Wamer, Wayne G; Xia, Qingsu; Cai, Lining; Nie, Zhihong; Fu, Peter P; Yin, Jun-Jie

    2015-09-01

    Although enzyme-like nanomaterials have been extensively investigated over the past decade, most research has focused on the peroxidase-like, catalase-like, or SOD-like activity of these nanomaterials. Identifying nanomaterials having oxidase-like activities has received less attention. In this study, we demonstrate that platinum nanoparticles (Pt NPs) exhibit catechol oxidase-like activity, oxidizing polyphenols into the corresponding o-quinones. Four unique approaches are employed to demonstrate the catechol oxidase-like activity exerted by Pt NPs. First, UV-vis spectroscopy is used to monitor the oxidation of polyphenols catalyzed by Pt NPs. Second, the oxidized products of polyphenols are identified by ultrahigh-performance liquid chromatography (UHPLC) separation followed by high-resolution mass spectrometry (HRMS) identification. Third, electron spin resonance (ESR) oximetry techniques are used to confirm the O2 consumption during the oxidation reaction. Fourth, the intermediate products of semiquinone radicals formed during the oxidation of polyphenols are determined by ESR using spin stabilization. These results indicate Pt NPs possess catechol oxidase-like activity. Because polyphenols and related bioactive substances have been explored as potent antioxidants that could be useful for the prevention of cancer and cardiovascular diseases, and Pt NPs have been widely used in the chemical industry and medical science, it is essential to understand the potential effects of Pt NPs for altering or influencing the antioxidant activity of polyphenols. PMID:26305170

  15. Purification of gibberellin sub 53 -oxidase from spinach

    SciTech Connect

    Wilson, T.M.; Zeevaart, J.A.D. )

    1989-04-01

    Spinach is a long-day rosette plants, in which stem growth is mediated by gibberellins. It has been shown that two enzymatic steps, GA{sub 53}-oxidase and GA{sub 19}-oxidase, are controlled by light. To develop an understanding into this light regulation, purification of GA{sub 53}-oxidase has been undertaken. The original assay relied on the HPLC separation of the product and substrate, but was considered too slow for the development of a purification scheme. A TLC system was developed which in conjunction with improvements to the assay conditions was sensitive and gave rapid results. The partial purification of the GA{sub 53}-oxidase is achieved by a high speed centrifugation, 40-55% ammonium sulfate precipitation, an hydroxyapatite column, Sephadex G-100 column and an anion exchange FPLC column, Mono Q HR10/10, yielding 1000-fold purification and 15% recovery. Monoclonal antibodies to the protein will be raised and used to further characterize the enzyme.

  16. 21 CFR 866.2420 - Oxidase screening test for gonorrhea.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Oxidase screening test for gonorrhea. 866.2420 Section 866.2420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2420...

  17. 21 CFR 866.2420 - Oxidase screening test for gonorrhea.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Oxidase screening test for gonorrhea. 866.2420 Section 866.2420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2420...

  18. 21 CFR 866.2420 - Oxidase screening test for gonorrhea.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Oxidase screening test for gonorrhea. 866.2420 Section 866.2420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2420...

  19. 21 CFR 866.2420 - Oxidase screening test for gonorrhea.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Oxidase screening test for gonorrhea. 866.2420 Section 866.2420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2420...

  20. 21 CFR 866.2420 - Oxidase screening test for gonorrhea.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Oxidase screening test for gonorrhea. 866.2420 Section 866.2420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2420...

  1. NADPH oxidases in Eukaryotes: red algae provide new hints!

    PubMed

    Hervé, Cécile; Tonon, Thierry; Collén, Jonas; Corre, Erwan; Boyen, Catherine

    2006-03-01

    The red macro-alga Chondrus crispus is known to produce superoxide radicals in response to cell-free extracts of its green algal pathogenic endophyte Acrochaete operculata. So far, no enzymes involved in this metabolism have been isolated from red algae. We report here the isolation of a gene encoding a homologue of the respiratory burst oxidase gp91(phox) in C. crispus, named Ccrboh. This single copy gene encodes a polypeptide of 825 amino acids. Search performed in available genome and EST algal databases identified sequences showing common features of NADPH oxidases in other algae such as the red unicellular Cyanidioschyzon merolae, the economically valuable red macro-alga Porphyra yezoensis and the two diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana. Domain organization and phylogenetic relationships with plant, animal, fungal and algal NADPH oxidase homologues were analyzed. Transcription analysis of the C. crispus gene revealed that it was over-transcribed during infection of C. crispus gametophyte by the endophyte A. operculata, and after incubation in presence of atrazine, methyl jasmonate and hydroxyperoxides derived from C20 polyunsaturated fatty acids (PUFAs). These results also illustrate the interest of exploring the red algal lineage for gaining insight into the deep evolution of NADPH oxidases in Eukaryotes.

  2. [Synthesis and localization of L-lactate oxidase in yeasts].

    PubMed

    Arinbasarova, A Iu; Biriukova, E N; Suzina, N E; Medentsev, A G

    2014-01-01

    Conditions for L-lactate oxidase synthesis by the yeast Yarrowia lpolytica were investigated. The enzyme was found to be synthesized during growth on L-lactate in the exponential growth phase. L-lactate oxidase synthesis was observed, also on glucose after adaptation to stress conditions (oxidative or thermal stress) r during the stationary growth phase after glucose consumption. The cells grown on L-lactate exhibited high levels of antioxidant enzymes (catalase, superoxide dismutase, glucose-6-phosphate dehydrogenase, and glutathione reductase), which exceeded those of glucose-grown cells. The ultrastructure of L-lactate-grown cellsand of those grown on glucose and adapted to various stress.conditions was also found to besimilar, with increased mitochondria, elevated number and size ofperoxisomes, and formation of lipid and polyphosphate inclusions. In order to determine the intracellular localization of L-lactate oxidase, the cells were disintegrated by the lytic enzyme complex from Helix pomatia. Centrifugation of the homogenate in Percoll gradient resulted in the isolation of purified fractions of the native mitochondria and peroxisomes. L-Lactate oxidase was shown to be localized in peroxisomes. PMID:25844463

  3. Alternative oxidase and uncoupling protein: thermogenesis versus cell energy balance.

    PubMed

    Jarmuszkiewicz, W; Sluse-Goffart, C M; Vercesi, A E; Sluse, F E

    2001-04-01

    The physiological role of an alternative oxidase and an uncoupling protein in plant and protists is discussed in terms of thermogenesis and energy metabolism balance in the cell. It is concluded that thermogenesis is restricted not only by a lower-limit size but also by a kinetically-limited stimulation of the mitochondrial respiratory chain.

  4. Reducing peanut allergens by high pressure combined with polyphenol oxidase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyphenol oxidase (PPO) has been shown to reduce major peanut allergens (Ara h 1 and Ara h 2). Because high pressure (HP) can increase enzyme activity, we postulated that further reduction of peanut allergens can be achieved through HP combined with PPO. Peanut extracts were treated with each of th...

  5. CHARACTERISTICS OF POLYPHENOL OXIDASES FROM RED CLOVER (TRIFOLIUM PRATENSE)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyphenol oxidase (PPO, EC 1.14.18.1 or EC 1.10.3.1) catalyzes the oxidation of o-diphenols to o-quinones which cause browning reactions in many wounded fruits, vegetables, and plants including the forage crop red clover (Trifolium pratense). Production of o-quinones in red clover inhibits post-har...

  6. Pig kidney diamine oxidase. A new method of purification.

    PubMed

    Floris, G; Fadda, M B

    1979-07-15

    Diamine oxidase has been purified from pig kidney by a new method to rapidly obtain larger amounts of pure enzyme with a good yield. The enzyme obtained gives only one band in SDS gel electrophoresis. The specific activity and the absorption spectra were identical to those of already preparations homogeneous reported by different methods of purification. PMID:121960

  7. Urate-lowering therapy: current options and future prospects for elderly patients with gout.

    PubMed

    Stamp, Lisa K; Chapman, Peter T

    2014-11-01

    Gout is increasingly seen in the elderly population, in large part due to physiological decline in renal function with age, and as a result of therapy for comorbidities, in particular the use of diuretic therapies for hypertension and congestive heart failure. Urate-lowering therapy (ULT) is the cornerstone of successful long-term gout management with the aim of achieving a sustained reduction in urate (<0.36 mmol/L, or lower [<0.30 mmol/L] in those with tophi). After decades during which there has been relatively little interest in developing new agents to treat gout, the last 5-10 years has seen a plethora of new agents with several now used in routine clinical practice. There has also been a renewed focus on the optimal use of established ULT, specifically allopurinol, which remains the first-line therapy for most patients. There is emerging data on its use in patients with renal impairment and better recognition of risk factors of the rare but potentially lethal allopurinol hypersensitivity syndrome (AHS). Febuxostat, a new xanthine oxidase inhibitor, is now established in everyday practice. Uricosuric agents may be indicated in certain patient groups, whilst a new class of recombinant uricases (pegloticase) given by intravenous infusion may achieve dramatic and rapid urate-lowering effects. Cost and other factors have thus far limited its use to the very severe cases. Furthermore, increased understanding of urate metabolism has led to the development of a number of drugs currently under clinical evaluation. Common therapeutic targets are the urate transporters in the kidney and alternative xanthine oxidase inhibition pathways. These advances bode well for the better management of gout and hyperuricaemia in our elderly patients.

  8. Berberine-induced apoptosis in human prostate cancer cells is initiated by reactive oxygen species generation

    SciTech Connect

    Meeran, Syed M.; Katiyar, Suchitra; Katiyar, Santosh K.

    2008-05-15

    Phytochemicals show promise as potential chemopreventive or chemotherapeutic agents against various cancers. Here we report the chemotherapeutic effects of berberine, a phytochemical, on human prostate cancer cells. The treatment of human prostate cancer cells (PC-3) with berberine induced dose-dependent apoptosis but this effect of berberine was not seen in non-neoplastic human prostate epithelial cells (PWR-1E). Berberine-induced apop