Sample records for allostatic load components

  1. Is burnout related to allostatic load?

    PubMed

    Langelaan, Saar; Bakker, Arnold B; Schaufeli, Wilmar B; van Rhenen, Willem; van Doornen, Lorenz J P

    2007-01-01

    Burnout has a negative impact on physical health, but the mechanisms underlying this relation remain unclear. To elucidate these mechanisms, possible mediating physiological systems or risk factors for adverse health in burned-out employees should be investigated. The aim of the present study among 290 Dutch managers was to explore whether allostatic load mediates the relationship between burnout and physical health. Burned-out managers, as identified with the Maslach Burnout Inventory General Survey (MBI-GS), were compared with a healthy control group with regard to their allostatic load. The allostatic load index included eight parameters: Body-mass index (BMI), systolic and diastolic blood pressure (SBP and DBP), C-reactive protein (CRP), high-density lipoprotein (HDL), cholesterol, glycosylated hemoglobin (HbA1C) and glucose. Contrary to expectations, burned-out managers did not differ from healthy managers with regard to their scores on the allostatic load index. An additional analysis, using groups of managers in the extreme deciles of exhaustion (the core symptom of burnout), did also not reveal differences in allostatic load. Burnout seems not to be associated with this proxy measure of allostatic load. The mediating physiological mechanisms between burnout and objective physical health remain to be elucidated.

  2. Allostatic load: a useful concept for advancing nursing research.

    PubMed

    Rosemberg, Marie-Anne S; Li, Yang; Seng, Julia

    2017-12-01

    To elucidate the historical development of the allostatic load concept, alongside its use in nursing research, and to explore how allostatic load has been investigated among two stress-vulnerable populations. 'Stress' is a prominent term in understanding the development of disease. Allostatic load is among several approaches undertaken to quantify the magnitude of stress and understand how stress can affect health. We explored the advent of allostatic load including its antecedents, and consequences. We used an exemplar case to apply the concept. We reviewed studies that used allostatic load among workers and women of childbearing age. There remains a need to consolidate a common definition and operationalisation of allostatic load. Despite this need for further work, allostatic load is a good fit for nursing science which focuses on the client, environment and health. Only 12 studies explored allostatic load among workers (n = 6) and women of childbearing age (n = 6). In some studies, allostatic load was used as a predictor while in others it was used as an outcome. None of the studies considered it as a mediator. The concept of allostatic load holds promise for nursing researchers to operationalise a holistic view of multiple stressors and to quantify their effects on health. Studies are needed to affirm the role of allostatic load as a potential mediator between multiple stressors and outcomes. Longitudinal studies are also needed to demonstrate a causal pathway from stressor exposure to tertiary outcomes such as chronic conditions and morbidity. Allostatic load is a useful concept for nurses working with stress-vulnerable populations. With the use of an interpretable allostatic load index, nurses will be able to intervene at various stages of the allostasis-adaptation process (stress-response) and adjust interventions accordingly. © 2017 John Wiley & Sons Ltd.

  3. Allostatic load and socioeconomic status in Polish adult men.

    PubMed

    Lipowicz, Anna; Szklarska, Alicja; Malina, Robert M

    2014-03-01

    This study considers the relationship between a cumulative index of biological dysregulation (allostatic load) and several dimensions of socioeconomic status (SES) and lifestyle in adult Polish males. The extent to which lifestyle variables can explain SES variation in allostatic load was also evaluated. Participants were 3887 occupationally active men aged 25-60 years living in cities and villages in the Silesia region of Poland. The allostatic load indicator included eleven markers: % fat (adverse nutritional intake), systolic and diastolic blood pressures (cardiovascular activity), FEV1 (lung function), erythrocyte sedimentation rate (inflammatory processes), glucose and total cholesterol (cardiovascular disease risk), total plasma protein (stress-haemoconcentration), bilirubin, creatinine clearance and alkaline phosphatase activity (hepatic and renal functions). A higher level of completed education, being married and residing in an urban area were associated with lower physiological dysregulation. The association between indicators of SES and allostatic load was not eliminated or attenuated when unhealthy lifestyle variables were included in the model. Smoking status and alcohol consumption played minimal roles in explaining the association between SES and allostatic load; physical activity, however, had a generally protective effect on allostatic load.

  4. Consumption of fast food, sugar-sweetened beverages, artificially-sweetened beverages and allostatic load among young adults.

    PubMed

    van Draanen, Jenna; Prelip, Michael; Upchurch, Dawn M

    2018-06-01

    This study investigates the associations between recent consumption of fast foods, sugar-sweetened beverages, and artificially-sweetened beverages on level of allostatic load, a measure of cumulative biological risk, in young adults in the US. Data from Wave IV of the National Longitudinal Study of Adolescent to Adult Health were analyzed. Negative binomial regression models were used to estimate the associations between consumption of fast foods, sugar-sweetened, and artificially-sweetened beverages and allostatic load. Poisson and logistic regression models were used to estimate the associations between these diet parameters and combined biomarkers of physiological subsystems that comprise our measure of allostatic load. All analyses were weighted and findings are representative of young adults in the US, ages 24-34 in 2008 (n = 11,562). Consumption of fast foods, sugar-sweetened, and artificially-sweetened beverages were associated with higher allostatic load at a bivariate level. Accounting for demographics and medication use, only artificially-sweetened beverages remained significantly associated with allostatic load. When all three dietary components were simultaneously included in a model, both sugar- and artificially-sweetened beverage consumption were associated with higher allostatic load. Differences in allostatic load emerge early in the life course and young adults consuming sugar- or artificially-sweetened beverages have higher allostatic load, net of demographics and medication use. Public health messages to young adults may need to include cautions about both sugar- and artificially-sweetened beverages.

  5. Allostasis and allostatic load: implications for neuropsychopharmacology.

    PubMed

    McEwen, B S

    2000-02-01

    The primary hormonal mediators of the stress response, glucocorticoids and catecholamines, have both protective and damaging effects on the body. In the short run, they are essential for adaptation, maintenance of homeostasis, and survival (allostasis). Yet, over longer time intervals, they exact a cost (allostatic load) that can accelerate disease processes. The concepts of allostasis and allostatic load center around the brain as interpreter and responder to environmental challenges and as a target of those challenges. In anxiety disorders, depressive illness, hostile and aggressive states, substance abuse, and post-traumatic stress disorder (PTSD), allostatic load takes the form of chemical imbalances as well as perturbations in the diurnal rhythm, and, in some cases, atrophy of brain structures. In addition, growing evidence indicates that depressive illness and hostility are both associated with cardiovascular disease (CVD) and other systemic disorders. A major risk factor for these conditions is early childhood experiences of abuse and neglect that increase allostatic load later in life and lead individuals into social isolation, hostility, depression, and conditions like extreme obesity and CVD. Animal models support the notion of lifelong influences of early experience on stress hormone reactivity. Whereas, depression and childhood abuse and neglect tend to be more prevalent in individuals at the lower end of the socioeconomic ladder, cardiovascular and other diseases follow a gradient across the full range of socioeconomic status (SES). An SES gradient is also evident for measures of allostatic load. Wide-ranging SES gradients have also been described for substance abuse and affective and anxiety disorders as a function of education. These aspects are discussed as important, emerging public health issues where the brain plays a key role.

  6. Association of education and receiving social transfers with allostatic load in the Swiss population-based CoLaus study.

    PubMed

    Nicod, Edouard; Stringhini, Silvia; Marques-Vidal, Pedro; Paccaud, Fred; Waeber, Gérard; Lamiraud, Karine; Vollenweider, Peter; Bochud, Murielle

    2014-06-01

    Allostatic load reflects cumulative exposure to stressors throughout lifetime and has been associated with several adverse health outcomes. It is hypothesized that people with low socioeconomic status (SES) are exposed to higher chronic stress and have therefore greater levels of allostatic load. To assess the association of receiving social transfers and low education with allostatic load. We included 3589 participants (1812 women) aged over 35years and under retirement age from the population-based CoLaus study (Lausanne, Switzerland, 2003-2006). We computed an allostatic load index aggregating cardiovascular, metabolic, dyslipidemic and inflammatory markers. A novel index additionally including markers of oxidative stress was also examined. Men with low vs. high SES were more likely to have higher levels of allostatic load (odds ratio (OR)=1.93/2.34 for social transfers/education, 95%CI from 1.45 to 4.17). The same patterns were observed among women. Associations persisted after controlling for health behaviors and marital status. Low education and receiving social transfers independently and cumulatively predict high allostatic load and dysregulation of several homeostatic systems in a Swiss population-based study. Participants with low SES are at higher risk of oxidative stress, which may justify its inclusion as a separate component of allostatic load. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Childhood Maltreatment Predicts Allostatic Load in Adulthood

    PubMed Central

    Widom, Cathy Spatz; Horan, Jacqueline; Brzustowicz, Linda

    2015-01-01

    Childhood maltreatment has been linked to numerous negative health outcomes. However, few studies have examined mediating processes using longitudinal designs or objectively measured biological data. This study sought to determine whether child abuse and neglect predicts allostatic load (a composite indicator of accumulated stress-induced biological risk) and to examine potential mediators. Using a prospective cohort design, children (ages 0-11) with documented cases of abuse and neglect were matched with non-maltreated children and followed up into adulthood with in-person interviews and a medical status exam (mean age 41). Allostatic load was assessed with nine physical health indicators. Child abuse and neglect predicted allostatic load, controlling for age, sex, and race. The direct effect of child abuse and neglect persisted despite the introduction of potential mediators of internalizing and externalizing problems in adolescence and social support and risky lifestyle in middle adulthood. These findings reveal the long-term impact of childhood abuse and neglect on physical health over 30 years later. PMID:25700779

  8. Childhood abuse and depression in adulthood: The mediating role of allostatic load.

    PubMed

    Scheuer, Sandra; Wiggert, Nicole; Brückl, Tanja Maria; Awaloff, Yvonne; Uhr, Manfred; Lucae, Susanne; Kloiber, Stefan; Holsboer, Florian; Ising, Marcus; Wilhelm, Frank H

    2018-04-22

    Traumatic experiences during childhood are considered a major risk factor for depression in adulthood. Childhood trauma may induce physiological dysregulation with long-term effects of increased allostatic load until adulthood, which may lead to depression. Thus, our aim was to investigate whether allostatic load - which represents a multi-system measure of physiological dysregulation - mediates the association between childhood trauma and adult depression. The study sample consisted of 324 depressed inpatients participating in the Munich Antidepressant Response Signature (MARS) project and 261 mentally healthy control participants. The mediation analysis using a case-control approach included childhood trauma, i.e., physical and sexual abuse, as predictor variables and an allostatic load index comprised of 12 stress-related biomarkers as mediator. Age and sex were included as covariates. Mediation analyses revealed that the influence of physical abuse, but not sexual abuse, during childhood on depression in adulthood was mediated by allostatic load. This effect was moderated by age: particularly young (18-42 years) and middle-aged (43-54 years) adults with a history of physical abuse during childhood exhibited high allostatic load, which in turn was associated with increased rates of depression, but this was not the case for older participants (55-81 years). Results support the theoretical assumption of allostatic load mediating the effect of physical abuse during childhood on depression in adulthood. This predominantly holds for younger participants, while depression in older participants was independent of physical abuse and allostatic load. The effect of sexual abuse on depression, however, was not mediated by allostatic load. Identifying allostatic load biomarkers prospectively in the developmental course of depression is an important target for future research. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Allostatic load and comorbidities: A mitochondrial, epigenetic, and evolutionary perspective.

    PubMed

    Juster, Robert-Paul; Russell, Jennifer J; Almeida, Daniel; Picard, Martin

    2016-11-01

    Stress-related pathophysiology drives comorbid trajectories that elude precise prediction. Allostatic load algorithms that quantify biological "wear and tear" represent a comprehensive approach to detect multisystemic disease processes of the mind and body. However, the multiple morbidities directly or indirectly related to stress physiology remain enigmatic. Our aim in this article is to propose that biological comorbidities represent discrete pathophysiological processes captured by measuring allostatic load. This has applications in research and clinical settings to predict physical and psychiatric comorbidities alike. The reader will be introduced to the concepts of allostasis, allostasic states, allostatic load, and allostatic overload as they relate to stress-related diseases and the proposed prediction of biological comorbidities that extend rather to understanding psychopathologies. In our transdisciplinary discussion, we will integrate perspectives related to (a) mitochondrial biology as a key player in the allostatic load time course toward diseases that "get under the skin and skull"; (b) epigenetics related to child maltreatment and biological embedding that shapes stress perception throughout lifespan development; and (c) evolutionary drivers of distinct personality profiles and biobehavioral patterns that are linked to dimensions of psychopathology.

  10. Allostatic Load Assessment for Early Detection of Stress in the Workplace in Egypt.

    PubMed

    Ali, Ola Sayed; Badawy, Nadia; Rizk, Sanaa; Gomaa, Hend; Saleh, Mai Sabry

    2016-09-15

    Workplace stress is hazardous for its harmful impact on employees' health and organizational productivity. The aim of the study is to apply the Allostatic Load Index (ALI) which is a multi-component measure for health risk assessment and early detection of stress among workers in Egypt. Sixty-two working adults randomly selected from two different working environments in Egypt were included in the study. Participants completed a self-reported questionnaire for socio-demographic and work variables. Andrews and Withey test for Job Satisfaction was filled and 3 ml blood samples were collected. Markers assessed for Allostatic Load were serum cortisol, c-reactive protein, dehydroepiandrosterone-sulphate, total thyroxine, total cholesterol, triglycerides, low-density lipoprotein, high-density lipoprotein, total cholesterol to high-density lipoprotein ratio, systolic and diastolic blood pressures, waist to hip ratio and body mass index. The risk quartile method was used for calculation of ALI. ALI value of four or more indicates high Allostatic Load. Job satisfaction scale defined about a quarter of the study population (24%) to be dissatisfied with Allostatic Load of 2.4 as the mean value. Population percentage with ALI ≥4 reached 12.9% with 100% of them females. A significant association was found between Allostatic Load of primary mediators and age, the presence of chronic diseases, place of work and female gender. Female gender and the old age of the Egyptian workforce under study are at higher risk of chronic diseases. Using an alternative way -for example, the cut-point method- instead of the risk quartiles for dichotomization of markers used in ALI calculation could be more precise for early detection of stress among healthy individuals.

  11. Stress, Allostatic Load, Catecholamines, and Other Neurotransmitters in Neurodegenerative Diseases

    PubMed Central

    2016-01-01

    As populations age, the prevalence of geriatric neurodegenerative diseases will increase. These diseases generally are multifactorial, arising from complex interactions among genes, environment, concurrent morbidities, treatments, and time. This essay provides a concept for the pathogenesis of Lewy body diseases such as Parkinson disease, by considering them in the context of allostasis and allostatic load. Allostasis reflects active, adaptive processes that maintain apparent steady states, via multiple, interacting effectors regulated by homeostatic comparators—“homeostats.” Stress can be defined as a condition or state in which a sensed discrepancy between afferent information and a setpoint for response leads to activation of effectors, reducing the discrepancy. “Allostatic load” refers to the consequences of sustained or repeated activation of mediators of allostasis. From the analogy of an idling car, the revolutions per minute of the engine can be maintained at any of a variety of levels (allostatic states). Just as allostatic load (cumulative wear and tear) reflects design and manufacturing variations, byproducts of combustion, and time, eventually leading to engine breakdown, allostatic load in catecholaminergic neurons might eventually lead to Lewy body diseases. Central to the argument is that catecholaminergic neurons leak vesicular contents into the cytoplasm continuously during life and that catecholamines in the neuronal cytoplasm are autotoxic. These neurons therefore depend on vesicular sequestration to limit autotoxicity of cytosolic transmitter. Parkinson disease might be a disease of the elderly because of allostatic load, which depends on genetic predispositions, environmental exposures, repeated stress-related catecholamine release, and time. PMID:22297542

  12. Stress, Allostatic Load, Catecholamines, and Other Neurotransmitters in Neurodegenerative Diseases

    PubMed Central

    2017-01-01

    As populations age, the prevalence of geriatric neurodegenerative diseases will increase. These diseases generally are multifactorial, arising from complex interactions among genes, environment, concurrent morbidities, treatments, and time. This essay provides a concept for the pathogenesis of Lewy body diseases such as Parkinson disease, by considering them in the context of allostasis and allostatic load. Allostasis reflects active, adaptive processes that maintain apparent steady states, via multiple, interacting effectors regulated by homeostatic comparators—“homeostats.” Stress can be defined as a condition or state in which a sensed discrepancy between afferent information and a setpoint for response leads to activation of effectors, reducing the discrepancy. “Allostatic load” refers to the consequences of sustained or repeated activation of mediators of allostasis. From the analogy of an idling car, the revolutions per minute of the engine can be maintained at any of a variety of levels (allostatic states). Just as allostatic load (cumulative wear and tear) reflects design and manufacturing variations, byproducts of combustion, and time, eventually leading to engine breakdown, allostatic load in catecholaminergic neurons might eventually lead to Lewy body diseases. Central to the argument is that catecholaminergic neurons leak vesicular contents into the cytoplasm continuously during life and that catecholamines in the neuronal cytoplasm are autotoxic. These neurons therefore depend on vesicular sequestration to limit autotoxicity of cytosolic transmitter. Parkinson disease might be a disease of the elderly because of allostatic load, which depends on genetic predispositions, environmental exposures, repeated stress-related catecholamine release, and time. PMID:21615193

  13. Allostatic Load and Effort-Reward Imbalance: Associations over the Working-Career.

    PubMed

    Coronado, José Ignacio Cuitún; Chandola, Tarani; Steptoe, Andrew

    2018-01-24

    Although associations between work stressors and stress-related biomarkers have been reported in cross-sectional studies, the use of single time measurements of work stressors could be one of the reasons for inconsistent associations. This study examines whether repeated reports of work stress towards the end of the working career predicts allostatic load, a measure of chronic stress related physiological processes. Data from waves 2 to 6 of the English Longitudinal Study of Ageing (ELSA) were analysed, with a main analytical sample of 2663 older adults (aged 50+) who had at least one measurement of effort-reward imbalance between waves 2-6 and a measurement of allostatic load at wave 6. Cumulative work stress over waves 2-6 were measured by the effort-reward imbalance model. ELSA respondents who had reported two or more occasions of imbalance had a higher (0.3) estimate of the allostatic load index than those who did not report any imbalance, controlling for a range of health and socio-demographic factors, as well as allostatic load at baseline. More recent reports of imbalance were significantly associated with a higher allostatic load index, whereas reports of imbalance from earlier waves of ELSA were not. The accumulation of work related stressors could have adverse effects on chronic stress biological processes.

  14. Allostatic load but not medical burden predicts memory performance in late-life bipolar disorder.

    PubMed

    Vaccarino, Sophie R; Rajji, Tarek K; Gildengers, Ariel G; Waters, Sarah E S; Butters, Meryl A; Menon, Mahesh; Blumberger, Daniel M; Voineskos, Aristotle N; Miranda, Dielle; Mulsant, Benoit H

    2018-03-01

    Older patients with bipolar disorder (BD) present with variable degrees of cognitive impairment. Over time, stress, mood episodes, and comorbidities increase the body's allostatic load. We assessed the extent to which allostatic load vs more traditional measures of medical burden account for the heterogeneity in cognition in this population. Thirty-five older euthymic patients with BD and 30 age-equated, gender-equated, and education-equated comparison participants were administered a comprehensive assessment including a neuropsychological battery, and 9 physiological measures to determine allostatic load. The relationship among allostatic load, medical burden, and cognition was assessed. Compared with the mentally healthy comparators, patients were impaired globally, and in 4 cognitive domains-information-processing speed / executive functioning, delayed memory, language, and visuomotor ability, and presented with greater medical burden but not a different allostatic load. Allostatic load, but not medical burden, was associated with delayed memory performance both in a correlational analysis and in a multivariate regression analysis. Euthymic older patients with BD are impaired on several cognitive domains and have high medical burden. Their memory performance is more strongly associated with allostatic load than with traditional measures of medical burden. These findings need to be replicated and extended longitudinally. Copyright © 2017 John Wiley & Sons, Ltd.

  15. Homeless street children in Nepal: use of allostatic load to assess the burden of childhood adversity.

    PubMed

    Worthman, Carol M; Panter-Brick, Catherine

    2008-01-01

    As challenges to child well-being through economic disadvantage, family disruption, and migration or displacement escalate world wide, the need for cross-culturally robust understanding of childhood adversity proportionately increases. Toward this end, developmental risk was assessed in four contrasting groups of 107 Nepali children ages 10-14 years that represent distinctive, common conditions in which contemporary children grow up. Relative cumulative burden (allostatic load) indexed by multiple dimensions of physical and psychosocial stress was ascertained among homeless street boys and three family-based groups, from poor urban squatter settlements, urban middle class, and a remote rural village. Biomarkers of stress and vulnerability to stress included growth status, salivary cortisol, antibodies to Epstein-Barr virus, acute phase inflammatory responses (alpha1-antichymotrypsin), and cardiovascular fitness and reactivity (flex heart rate and pressor response). Individual biomarkers of risk and allostatic load differed markedly among groups, were highest in villagers, and varied by components of allostatic load. Such data suggest a need for critical appraisal of homelessness and migration as a risk factor to youth, given prevailing local conditions such as rural poverty, and represents the only multidimensional study of childhood allostatic load and developmental risk in non-Western settings.

  16. Allostatic Load and Effort-Reward Imbalance: Associations over the Working-Career

    PubMed Central

    Coronado, José Ignacio Cuitún; Chandola, Tarani; Steptoe, Andrew

    2018-01-01

    Although associations between work stressors and stress-related biomarkers have been reported in cross-sectional studies, the use of single time measurements of work stressors could be one of the reasons for inconsistent associations. This study examines whether repeated reports of work stress towards the end of the working career predicts allostatic load, a measure of chronic stress related physiological processes. Data from waves 2 to 6 of the English Longitudinal Study of Ageing (ELSA) were analysed, with a main analytical sample of 2663 older adults (aged 50+) who had at least one measurement of effort-reward imbalance between waves 2–6 and a measurement of allostatic load at wave 6. Cumulative work stress over waves 2–6 were measured by the effort-reward imbalance model. ELSA respondents who had reported two or more occasions of imbalance had a higher (0.3) estimate of the allostatic load index than those who did not report any imbalance, controlling for a range of health and socio-demographic factors, as well as allostatic load at baseline. More recent reports of imbalance were significantly associated with a higher allostatic load index, whereas reports of imbalance from earlier waves of ELSA were not. The accumulation of work related stressors could have adverse effects on chronic stress biological processes. PMID:29364177

  17. Does Education Lower Allostatic Load? A Co-twin Control Study

    PubMed Central

    Hamdi, Nayla R.; South, Susan C.; Krueger, Robert F.

    2016-01-01

    Many studies have found that education is associated with better health, but the causal basis of this association is unclear. The current study used a co-twin control design to examine if differences in years of education within twin pairs predict allostatic load. The strength of this design is that it controls for genetic and other familial confounds shared between twins. The sample consisted of 381 twins (with 292 twins from 146 complete pairs; mean age=57; 61% female) who participated in the biomarker project of the Midlife Development in the United States (MIDUS) study. Individual-level analyses showed a significant, negative association between years of education and allostatic load, but this association was explained entirely by familial influences shared between twins. The results of this study suggest that schooling does not itself protect against allostatic load. PMID:26778778

  18. Allostatic Load and Health in the Older Population of England: A Crossed-Lagged Analysis

    PubMed Central

    Read, Sanna; Grundy, Emily

    2014-01-01

    Objective Allostatic load, a composite measure of accumulated physical wear and tear, has been proposed as an early sign of physiological dysregulation predictive of health problems, functional limitation, and disability. However, much previous research has been cross sectional and few studies consider repeated measures. We investigate the directionality of associations between allostatic load, self-rated health, and a measure of physical function (walking speed). Methods The sample included men and women 60 and older who participated in Wave 2 (2004) and Wave 4 (2008) of the English Longitudinal Study of Ageing (n = 6132 in Wave 2). Allostatic load was measured with nine biomarkers using a multisystem summary approach. Self-rated health was measured using a global 5 point summary indicator. Time to walk 8 ft was used as a measure of function. We fitted and tested autoregressive cross-lagged models between the allostatic load measure, self-rated health, and walking speed in Waves 2 and 4. Models were adjusted for age, sex, educational level, and smoking status at Wave 2 and for time-varying indicators of marital status, wealth, physical activity, and social support. Results Allostatic load predicted slower walking speed (standardized estimate = −0.08, 95% confidence interval [CI] = −0.10 to −0.05). Better self-rated health predicted faster walking speed (standardized estimate = 0.11, 95% CI = 0.08-0.13) as well as lower allostatic load (standardized estimate = −0.15, 95% CI = −0.22 to −0.09), whereas paths from allostatic load and walking speed to self-rated health were weaker (standardized estimates = −0.05 [95% CI = −0.07 to −0.02] and 0.06 [95% CI = 0.04–0.08]). Conclusions Allostatic load can be a useful risk indicator of subsequent poor health or function. PMID:25153937

  19. Childhood Socioeconomic Status and Stress in Late Adulthood: A Longitudinal Approach to Measuring Allostatic Load

    PubMed Central

    Nowakowski, Alexandra C. H.

    2017-01-01

    Objectives: This study examines how the effects of childhood socioeconomic status (SES) may carry on into late adulthood. Methods: We examine how childhood SES affects both perceived stress and allostatic load, which is a cumulative measure of the body’s biologic response to chronic stress. We use the National Social Life, Health, and Aging Project, Waves 1 and 2, and suggest a novel method of incorporating a longitudinal allostatic load measure. Results: Individuals who grew up in low SES households have higher allostatic load scores in late adulthood, and this association is mediated mostly by educational attainment. Discussion: The longitudinal allostatic load measure shows similar results to the singular measures and allows us to include 2 time points into one outcome measure. Incorporating 2 separate time points into one measure is important because allostatic load is a measure of cumulative physiological dysregulation, and longitudinal data provide a more comprehensive measure. PMID:29226194

  20. The role of education in explaining racial/ethnic allostatic load differentials in the United States.

    PubMed

    Howard, Jeffrey T; Sparks, P Johnelle

    2015-01-01

    This study expands on earlier findings of racial/ethnic and education-allostatic load associations by assessing whether racial/ethnic differences in allostatic load persist across all levels of educational attainment. This study used data from four recent waves of the National Health and Nutrition Survey (NHANES). Results from this study suggest that allostatic load differs significantly by race/ethnicity and educational attainment overall, but that the race/ethnicity association is not consistent across education level. Analysis of interactions and education-stratified models suggest that allostatic load levels do not differ by race/ethnicity for individuals with low education; rather, the largest allostatic load differentials for Mexican Americans (p < .01) and non-Hispanic blacks (p < .001) are observed for individuals with a college degree or more. These findings add to the growing evidence that differences in socioeconomic opportunities by race/ethnicity are likely a consequence of differential returns to education, which contribute to higher stress burdens among minorities compared to non-Hispanic whites.

  1. Allostatic Load Is Linked to Cortical Thickness Changes Depending on Body-Weight Status

    PubMed Central

    Ottino-González, Jonatan; Jurado, María A.; García-García, Isabel; Segura, Bàrbara; Marqués-Iturria, Idoia; Sender-Palacios, María J.; Tor, Encarnació; Prats-Soteras, Xavier; Caldú, Xavier; Junqué, Carme; Garolera, Maite

    2017-01-01

    Objective: Overweight (body mass index or BMI ≥ 25 kg/m2) and stress interact with each other in complex ways. Overweight promotes chronic low-inflammation states, while stress is known to mediate caloric intake. Both conditions are linked to several avoidable health problems and to cognitive decline, brain atrophy, and dementia. Since it was proposed as a framework for the onset of mental illness, the allostatic load model has received increasing attention. Although changes in health and cognition related to overweight and stress are well-documented separately, the association between allostatic load and brain integrity has not been addressed in depth, especially among overweight subjects. Method: Thirty-four healthy overweight-to-obese and 29 lean adults underwent blood testing, neuropsychological examination, and magnetic resonance imaging to assess the relationship between cortical thickness and allostatic load, represented as an index of 15 biomarkers (this is, systolic and diastolic arterial tension, glycated hemoglobin, glucose, creatinine, total cholesterol, HDL and LDL cholesterol, triglycerides, c-reactive protein, interleukin-6, insulin, cortisol, fibrinogen, and leptin). Results: Allostatic load indexes showed widespread positive and negative significant correlations (p < 0.01) with cortical thickness values depending on body-weight status. Conclusion: The increase of allostatic load is linked to changes in the gray matter composition of regions monitoring behavior, sensory-reward processing, and general cognitive function. PMID:29375342

  2. Children's Emotionality Moderates the Association Between Maternal Responsiveness and Allostatic Load: Investigation Into Differential Susceptibility.

    PubMed

    Dich, Nadya; Doan, Stacey N; Evans, Gary W

    2015-01-01

    While emotionality is often thought of as a risk factor, differential susceptibility theory argues that emotionality reflects susceptibility to both positive and negative environmental influences. The present study explored whether emotional children might be more susceptible to the effects of both high and low maternal responsiveness on allostatic load, a physiological indicator of chronic stress. Participants were 226 mother and child dyads. Mothers reported on children's emotionality at child age 9. Maternal responsiveness was measured at age 13 using self-reports and behavioral observation. Allostatic load was measured at age 13 and 17 using neuroendocrine, cardiovascular, and metabolic biomarkers. Emotionality was associated with higher allostatic load if self-reported responsiveness was low, but with lower allostatic load, when self-reported responsiveness was high. © 2015 The Authors. Child Development © 2015 Society for Research in Child Development, Inc.

  3. Discrimination and anger control as pathways linking socioeconomic disadvantage to allostatic load in midlife.

    PubMed

    Zilioli, Samuele; Imami, Ledina; Ong, Anthony D; Lumley, Mark A; Gruenewald, Tara

    2017-12-01

    Recent evidence suggests that experiences of discrimination contribute to socioeconomic status health disparities. The current study examined if the experience and regulation of anger-an expected emotional response to discrimination-serves as an explanatory factor for the previously documented links between socioeconomic disadvantage (SED), discrimination, and allostatic load. Data were drawn from the second wave of the Midlife in the United States (MIDUS) study and included 909 adults who participated in the biomarkers subproject. Results revealed that perceived discrimination was associated with higher levels of allostatic load. Furthermore, we found evidence that perceived discrimination and anger control sequentially explained the relationship between SED and allostatic load, such that greater discrimination was associated with lower levels of anger control, which, in turn accounted for the effects of discrimination on allostatic load. These results remained significant after controlling for negative affect, positive affect, other forms of anger expression, as well as demographic covariates. Our findings suggest that low anger control may be an important psychological pathway through which experiences of discrimination influence health. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Allostatic load in foreign-born and US-born blacks: evidence from the 2001-2010 National Health and Nutrition Examination Survey.

    PubMed

    Doamekpor, Lauren A; Dinwiddie, Gniesha Y

    2015-03-01

    We tested whether the immigrant health advantage applies to non-Hispanic Black immigrants and examined whether nativity-based differences in allostatic load exist among non-Hispanic Blacks. We used pooled data from the 2001-2010 National Health and Nutrition Examination Survey to compare allostatic load scores for US-born (n = 2745) and foreign-born (n = 152) Black adults. We used multivariate logistic regression techniques to assess the association between nativity and high allostatic load scores, controlling for gender, age, health behaviors, and socioeconomic status. For foreign-born Blacks, length of stay and age were powerful predictors of allostatic load scores. For older US-born Blacks and those who were widowed, divorced, or separated, the risk of high allostatic load was greater. Foreign-born Blacks have a health advantage in allostatic load. Further research is needed that underscores a deeper understanding of the mechanisms driving this health differential to create programs that target these populations differently.

  5. Evaluating the Effects of Coping Style on Allostatic Load, by Sex: The Jackson Heart Study, 2000–2004

    PubMed Central

    Loucks, Eric B.; Arheart, Kristopher L.; Hickson, DeMarc A.; Kohn, Robert; Buka, Stephen L.; Gjelsvik, Annie

    2015-01-01

    The objective of this study was to examine the cross-sectional association between coping styles and allostatic load among African American adults in the Jackson Heart Study (2000–2004). Coping styles were assessed using the Coping Strategies Inventory-Short Form; allostatic load was measured by using 9 biomarkers standardized into z-scores. Sex-stratified multivariable linear regressions indicated that females who used disengagement coping styles had significantly higher allostatic load scores (β = 0.016; 95% CI, 0.001–0.032); no such associations were found in males. Future longitudinal investigations should examine why disengagement coping style is linked to increased allostatic load to better inform effective interventions and reduce health disparities among African American women. PMID:26425869

  6. Child Maltreatment and Allostatic Load: Consequences for Physical and Mental Health in Children from Low-Income Families

    PubMed Central

    Rogosch, Fred A.; Dackis, Melissa N.; Cicchetti, Dante

    2012-01-01

    Child maltreatment and biomarkers of allostatic load were investigated in relation to child health problems and psychological symptomatology. Participants attended a summer research day camp and included 137 maltreated and 110 nonmaltreated low-income children, who were aged 8 to 10 years (M = 9.42) and racially and ethnically diverse; 52% were male. Measurements obtained included salivary cortisol and DHEA, body-mass index, waist-hip ratio, and blood pressure; these indicators provided a composite index of allostatic load. Child self-report and camp adult-rater reports of child symptomatology were obtained; mothers provided information on health problems. The results indicated that higher allostatic load and child maltreatment status independently predicted poorer health outcomes and greater behavior problems. Moderation effects indicated that allostatic load was related to somatic complaints, attention problems, and thought problems only among maltreated children. Risks associated with high waist-hip ratio, low morning cortisol, and high morning DHEA also were related to depressive symptoms only for maltreated children. The results support an allostatic load conceptualization of the impact of high environmental stress and child abuse and neglect on child health and behavioral outcomes and have important implications for long-term physical and mental health. PMID:22018084

  7. Is there an independent association between burnout and increased allostatic load? Testing the contribution of psychological distress and depression.

    PubMed

    Hintsa, Taina; Elovainio, Marko; Jokela, Markus; Ahola, Kirsi; Virtanen, Marianna; Pirkola, Sami

    2016-08-01

    Burnout has been suggested to be related to depression. We examined the relationship between burnout and allostatic load, and whether this association is independent of psychological distress and depression. We measured burnout psychological distress, depression, and allostatic load in 3283 participants. Higher burnout (β = 0.06, p =0.003) and cynicism (β = 0.03, p = 0.031) and decreased professional efficacy (β = 0.03, p = 0.007) were related to higher allostatic load independent of age, sex, education, occupation and psychological distress. Depression, however, explained 60 percent of the association. Burnout is related to higher allostatic load, and this association partly overlaps with co-occurring depression. © The Author(s) 2014.

  8. Measuring allostatic load in the workforce: a systematic review

    PubMed Central

    MAUSS, Daniel; LI, Jian; SCHMIDT, Burkhard; ANGERER, Peter; JARCZOK, Marc N.

    2014-01-01

    The Allostatic Load Index (ALI) has been used to establish associations between stress and health-related outcomes. This review summarizes the measurement and methodological challenges of allostatic load in occupational settings. Databases of Medline, PubPsych, and Cochrane were searched to systematically explore studies measuring ALI in working adults following the PRISMA statement. Study characteristics, biomarkers and methods were tabulated. Methodological quality was evaluated using a standardized checklist. Sixteen articles (2003–2013) met the inclusion criteria, with a total of 39 (range 6–17) different variables used to calculate ALI. Substantial heterogeneity was observed in the number and type of biomarkers used, the analytic techniques applied and study quality. Particularly, primary mediators were not regularly included in ALI calculation. Consensus on methods to measure ALI in working populations is limited. Research should include longitudinal studies using multi-systemic variables to measure employees at risk for biological wear and tear. PMID:25224337

  9. Allostatic load and biological anthropology.

    PubMed

    Edes, Ashley N; Crews, Douglas E

    2017-01-01

    Multiple stressors affect developing and adult organisms, thereby partly structuring their phenotypes. Determining how stressors influence health, well-being, and longevity in human and nonhuman primate populations are major foci within biological anthropology. Although much effort has been devoted to examining responses to multiple environmental and sociocultural stressors, no holistic metric to measure stress-related physiological dysfunction has been widely applied within biological anthropology. Researchers from disciplines outside anthropology are using allostatic load indices (ALIs) to estimate such dysregulation and examine life-long outcomes of stressor exposures, including morbidity and mortality. Following allostasis theory, allostatic load represents accumulated physiological and somatic damage secondary to stressors and senescent processes experienced over the lifespan. ALIs estimate this wear-and-tear using a composite of biomarkers representing neuroendocrine, cardiovascular, metabolic, and immune systems. Across samples, ALIs are associated significantly with multiple individual characteristics (e.g., age, sex, education, DNA variation) of interest within biological anthropology. They also predict future outcomes, including aspects of life history variation (e.g., survival, lifespan), mental and physical health, morbidity and mortality, and likely health disparities between groups, by stressor exposures, ethnicity, occupations, and degree of departure from local indigenous life ways and integration into external and commodified ones. ALIs also may be applied to similar stress-related research areas among nonhuman primates. Given the reports from multiple research endeavors, here we propose ALIs may be useful for assessing stressors, stress responses, and stress-related dysfunction, current and long-term cognitive function, health and well-being, and risk of early mortality across many research programs within biological anthropology. © 2017 American

  10. Neighborhood Poverty, Allostatic Load, and Birth Outcomes in African American and White Women: Findings from the Bogalusa Heart Study

    PubMed Central

    Wallace, Maeve; Harville, Emily; Theall, Katherine; Webber, Larry; Chen, Wei; Berenson, Gerald

    2014-01-01

    As a biologically-mediated pathway between adversity and declines in physical health, allostatic load has been frequently hypothesized as a potential contributor to racial disparities in birth outcomes, but empirical evidence is lacking. The purpose of this study was to examine the relationships between maternal preconception allostatic load, race, and adverse birth outcomes within the context of neighborhood-level poverty using data from the Bogalusa Heart Study. Allostatic load was quantified as a count of regulatory biomarkers falling in the highest risk quartile of the sample distribution as measured from a physical examination that took place prior to conception. Consistent with previous findings, African American women resided in more impoverished neighborhoods and had higher allostatic load scores compared to whites; however, allostatic load was not associated with preterm birth or low birthweight in fully adjusted models. These results underscore a need for further refinement of both biologic and contextual measures that capture holistically the way in which stressful conditions and experiences encountered across the life-course influence health potentials and engender inequities in reproductive health outcomes. PMID:24184350

  11. Kindergarten stressors and cumulative adrenocortical activation: the "first straws" of allostatic load?

    PubMed

    Bush, Nicole R; Obradović, Jelena; Adler, Nancy; Boyce, W Thomas

    2011-11-01

    Using an ethnically diverse longitudinal sample of 338 kindergarten children, this study examined the effects of cumulative contextual stressors on children's developing hypothalamic-pituitary-adrenocortical (HPA) axis regulation as an early life indicator of allostatic load. Chronic HPA axis regulation was assessed using cumulative, multiday measures of cortisol in both the fall and spring seasons of the kindergarten year. Hierarchical linear regression analyses revealed that contextual stressors related to ethnic minority status, socioeconomic status, and family adversity each uniquely predicted children's daily HPA activity and that some of those associations were curvilinear in conformation. Results showed that the quadratic, U-shaped influences of family socioeconomic status and family adversity operate in different directions to predict children's HPA axis regulation. Results further suggested that these associations differ for White and ethnic minority children. In total, this study revealed that early childhood experiences contribute to shifts in one of the principal neurobiological systems thought to generate allostatic load, confirming the importance of early prevention and intervention efforts. Moreover, findings suggested that analyses of allostatic load and developmental theories accounting for its accrual would benefit from an inclusion of curvilinear associations in tested predictive models.

  12. Associations Between Socioeconomic Status and Allostatic Load: Effects of Neighborhood Poverty and Tests of Mediating Pathways

    PubMed Central

    Mentz, Graciela; Lachance, Laurie; Johnson, Jonetta; Gaines, Causandra; Israel, Barbara A.

    2012-01-01

    Objectives. We examined relationships between neighborhood poverty and allostatic load in a low- to moderate-income multiracial urban community. We tested the hypothesis that neighborhood poverty is associated with allostatic load, controlling for household poverty. We also examined the hypotheses that this association was mediated by psychosocial stress and health-related behaviors. Methods. We conducted multilevel analyses using cross-sectional data from a probability sample survey in Detroit, Michigan (n = 919) and the 2000 US Census. The outcome measure was allostatic load. Independent variables included neighborhood and household poverty, psychosocial stress, and health-related behaviors. Covariates included neighborhood and individual demographic characteristics. Results. Neighborhood poverty was positively associated with allostatic load (P < .05), independent of household poverty and controlling for potential confounders. Relationships between neighborhood poverty were mediated by self-reported neighborhood environment stress but not by health-related behaviors. Conclusions. Neighborhood poverty is associated with wear and tear on physiological systems, and this relationship is mediated through psychosocial stress. These relationships are evident after accounting for household poverty levels. Efforts to promote health equity should focus on neighborhood poverty, associated stressful environmental conditions, and household poverty. PMID:22873478

  13. Associations between socioeconomic status and allostatic load: effects of neighborhood poverty and tests of mediating pathways.

    PubMed

    Schulz, Amy J; Mentz, Graciela; Lachance, Laurie; Johnson, Jonetta; Gaines, Causandra; Israel, Barbara A

    2012-09-01

    We examined relationships between neighborhood poverty and allostatic load in a low- to moderate-income multiracial urban community. We tested the hypothesis that neighborhood poverty is associated with allostatic load, controlling for household poverty. We also examined the hypotheses that this association was mediated by psychosocial stress and health-related behaviors. We conducted multilevel analyses using cross-sectional data from a probability sample survey in Detroit, Michigan (n = 919) and the 2000 US Census. The outcome measure was allostatic load. Independent variables included neighborhood and household poverty, psychosocial stress, and health-related behaviors. Covariates included neighborhood and individual demographic characteristics. Neighborhood poverty was positively associated with allostatic load (P < .05), independent of household poverty and controlling for potential confounders. Relationships between neighborhood poverty were mediated by self-reported neighborhood environment stress but not by health-related behaviors. Neighborhood poverty is associated with wear and tear on physiological systems, and this relationship is mediated through psychosocial stress. These relationships are evident after accounting for household poverty levels. Efforts to promote health equity should focus on neighborhood poverty, associated stressful environmental conditions, and household poverty.

  14. Does allostatic load calculation method matter? Evaluation of different methods and individual biomarkers functioning by race/ethnicity and educational level.

    PubMed

    Howard, Jeffrey T; Sparks, P Johnelle

    2016-09-10

    Using nationally representative data for adults of age 25 years and older from four waves of the National Health and Nutrition Examination Survey (NHANES), collected from 2003 through 2010, this study examines differences in individual health markers used to calculate allostatic load, with particular attention given to stratification by race/ethnicity and educational level. Factor analysis with maximum likelihood estimation was used. Fisher's r to z transformation test was used to determine whether or not observed differences in factor loadings were statistically significant. The findings reveal the unidimensionality of the concept of allostatic load and the underlying differences in associations between individual biomarkers and summary measures of allostatic load. Additionally, metabolic processes tend to be the most important predictor of allostatic load for all adults; however, inflammatory measures are more important in determining allostatic load scores for non-Hispanic blacks compared to non-Hispanic whites and for adults with less than a college education compared to adults with some college or a college degree. These findings highlight the continued importance of studying the concept of "weathering" or allostatic load at the population level and need to better understand how population groups facing exclusion from economic, social, and political power may internalize this position which may cause early health deterioration and ultimate mortality chance through different expression of health insults and premature aging. Am. J. Hum. Biol. 28:627-635, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Allostatic load in parents of children with developmental disorders: moderating influence of positive affect.

    PubMed

    Song, Jieun; Mailick, Marsha R; Ryff, Carol D; Coe, Christopher L; Greenberg, Jan S; Hong, Jinkuk

    2014-02-01

    This study examines whether parents of children with developmental disorders are at risk of elevated allostatic load relative to control parents and whether positive affect moderates difference in risk. In all, 38 parents of children with developmental disorders and 38 matched comparison parents were analyzed. Regression analyses revealed a significant interaction between parent status and positive affect: parents of children with developmental disorders had lower allostatic load when they had higher positive affect, whereas no such association was evident for comparison parents. The findings suggest that promoting greater positive affect may lower health risks among parents of children with developmental disorders.

  16. Allostatic Load and Health Status of African Americans and Whites

    ERIC Educational Resources Information Center

    Deuster, Patricia A.; Kim-Dorner, Su Jong; Remaley, Alan T.; Poth, Merrily

    2011-01-01

    Objectives: To compare health risks in 84 healthy African American and 45 white men and women after calculating allostatic load (AL) from biologic, psychosocial, and behavioral measures. Methods: Participants (18-45 years) ranging in weight from normal to obese and without hypertension or diabetes. Fitness, body fat, CRP, mood, social support,…

  17. Allostatic load mediates the impact of stress and trauma on physical and mental health in Indigenous Australians.

    PubMed

    Sarnyai, Zoltán; Berger, Maximus; Jawan, Isabella

    2016-02-01

    A considerable gap exists in health and social emotional well-being between Indigenous people and non-Indigenous Australians. Recent research in stress neurobiology highlights biological pathways that link early adversity and traumas as well as life stresses to ill health. We argue that the neurobiological stress response and its maladaptive changes, termed allostatic load, provide a useful framework to understand how adversity leads to physical and mental illness in Indigenous people. In this paper we review the biology of allostatic load and make links between stress-induced systemic hormonal, metabolic and immunological changes and physical and mental illnesses. Exposure to chronic stress throughout life results in an increased allostatic load that may contribute to a number of metabolic, cardiovascular and mental disorders that shorten life expectancy in Indigenous Australians. © The Royal Australian and New Zealand College of Psychiatrists 2015.

  18. Allostatic Load: Single Parents, Stress-Related Health Issues, and Social Care

    ERIC Educational Resources Information Center

    Johner, Randy L.

    2007-01-01

    This article explores the possible relationships between allostatic load (AL) and stress-related health issues in the low-income single-parent population, using both a population health perspective (PHP) and a biological framework. A PHP identifies associations among such factors as gender, income, employment, and social support and their…

  19. Apolipoprotein E genotype does not moderate the associations of depressive symptoms, neuroticism and allostatic load with cognitive ability and cognitive aging in the Lothian Birth Cohort 1936.

    PubMed

    Crook, Zander; Booth, Tom; Cox, Simon R; Corley, Janie; Dykiert, Dominika; Redmond, Paul; Pattie, Alison; Taylor, Adele M; Harris, Sarah E; Starr, John M; Deary, Ian J

    2018-01-01

    In this replication-and-extension study, we tested whether depressive symptoms, neuroticism, and allostatic load (multisystem physiological dysregulation) were related to lower baseline cognitive ability and greater subsequent cognitive decline in older adults, and whether these relationships were moderated by the E4 allele of the apolipoprotein E (APOE) gene. We also tested whether allostatic load mediated the relationships between neuroticism and cognitive outcomes. We used data from the Lothian Birth Cohort 1936 (n at Waves 1-3: 1,028 [M age = 69.5 y]; 820 [M duration since Wave 1 = 2.98 y]; 659 [M duration since Wave 1 = 6.74 y]). We fitted latent growth curve models of general cognitive ability (modeled using five cognitive tests) with groups of APOE E4 non-carriers and carriers. In separate models, depressive symptoms, neuroticism, and allostatic load predicted baseline cognitive ability and subsequent cognitive decline. In addition, models tested whether allostatic load mediated relationships between neuroticism and cognitive outcomes. Baseline cognitive ability had small-to-moderate negative associations with depressive symptoms (β range = -0.20 to -0.17), neuroticism (β range = -0.27 to -0.23), and allostatic load (β range = -0.11 to 0.09). Greater cognitive decline was linked to baseline allostatic load (β range = -0.98 to -0.83) and depressive symptoms (β range = -1.00 to -0.88). However, APOE E4 allele possession did not moderate the relationships of depressive symptoms, neuroticism and allostatic load with cognitive ability and cognitive decline. Additionally, the associations of neuroticism with cognitive ability and cognitive decline were not mediated through allostatic load. Our results suggest that APOE E4 status does not moderate the relationships of depressive symptoms, neuroticism, and allostatic load with cognitive ability and cognitive decline in healthy older adults. The most notable positive finding in the current research was the

  20. Apolipoprotein E genotype does not moderate the associations of depressive symptoms, neuroticism and allostatic load with cognitive ability and cognitive aging in the Lothian Birth Cohort 1936

    PubMed Central

    Booth, Tom; Cox, Simon R.; Corley, Janie; Dykiert, Dominika; Redmond, Paul; Pattie, Alison; Taylor, Adele M.; Harris, Sarah E.; Starr, John M.; Deary, Ian J.

    2018-01-01

    Objectives In this replication-and-extension study, we tested whether depressive symptoms, neuroticism, and allostatic load (multisystem physiological dysregulation) were related to lower baseline cognitive ability and greater subsequent cognitive decline in older adults, and whether these relationships were moderated by the E4 allele of the apolipoprotein E (APOE) gene. We also tested whether allostatic load mediated the relationships between neuroticism and cognitive outcomes. Methods We used data from the Lothian Birth Cohort 1936 (n at Waves 1–3: 1,028 [M age = 69.5 y]; 820 [M duration since Wave 1 = 2.98 y]; 659 [M duration since Wave 1 = 6.74 y]). We fitted latent growth curve models of general cognitive ability (modeled using five cognitive tests) with groups of APOE E4 non-carriers and carriers. In separate models, depressive symptoms, neuroticism, and allostatic load predicted baseline cognitive ability and subsequent cognitive decline. In addition, models tested whether allostatic load mediated relationships between neuroticism and cognitive outcomes. Results Baseline cognitive ability had small-to-moderate negative associations with depressive symptoms (β range = -0.20 to -0.17), neuroticism (β range = -0.27 to -0.23), and allostatic load (β range = -0.11 to 0.09). Greater cognitive decline was linked to baseline allostatic load (β range = -0.98 to -0.83) and depressive symptoms (β range = -1.00 to -0.88). However, APOE E4 allele possession did not moderate the relationships of depressive symptoms, neuroticism and allostatic load with cognitive ability and cognitive decline. Additionally, the associations of neuroticism with cognitive ability and cognitive decline were not mediated through allostatic load. Conclusions Our results suggest that APOE E4 status does not moderate the relationships of depressive symptoms, neuroticism, and allostatic load with cognitive ability and cognitive decline in healthy older adults. The most notable positive

  1. A Multimethodological Analysis of Cumulative Risk and Allostatic Load among Rural Children.

    ERIC Educational Resources Information Center

    Evans, Gary W.

    2003-01-01

    This study modeled physical and psychosocial aspects of home environment and personal characteristics in a cumulative risk heuristic. Found that elevated cumulative risk was associated with heightened cardiovascular and neuroendocrine parameters, increased deposition of body fat, and higher summary index of total allostatic load. Replicated…

  2. A non-linear association between self-reported negative emotional response to stress and subsequent allostatic load: prospective results from the Whitehall II cohort study.

    PubMed

    Dich, Nadya; Doan, Stacey N; Kivimäki, Mika; Kumari, Meena; Rod, Naja Hulvej

    2014-11-01

    Previous research suggests that high levels of negative emotions may affect health. However, it is likely that the absence of an emotional response following stressful events may also be problematic. Accordingly, we investigated whether a non-linear association exists between negative emotional response to major life events and allostatic load, a multisystem indicator of physiological dysregulation. Study sample was 6764 British civil service workers from the Whitehall II cohort. Negative emotional response was assessed by self-report at baseline. Allostatic load was calculated using cardiovascular, metabolic and immune function biomarkers at three clinical follow-up examinations. A non-linear association between negative emotional response and allostatic load was observed: being at either extreme end of the distribution of negative emotional response increased the risk of physiological dysregulation. Allostatic load also increased with age, but the association between negative emotional response and allostatic load remained stable over time. These results provide evidence for a more nuanced understanding of the role of negative emotions in long-term physical health. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Allostatic load: A theoretical model for understanding the relationship between maternal posttraumatic stress disorder and adverse birth outcomes.

    PubMed

    Li, Yang; Rosemberg, Marie-Anne Sanon; Seng, Julia S

    2018-07-01

    Adverse birth outcomes such as preterm birth and low birth weight are significant public health concerns and contribute to neonatal morbidity and mortality. Studies have increasingly been exploring the predictive effects of maternal posttraumatic stress disorder (PTSD) on adverse birth outcomes. However, the biological mechanisms by which maternal PTSD affects birth outcomes are not well understood. Allostatic load refers to the cumulative dysregulations of the multiple physiological systems as a response to multiple social-ecological levels of chronic stress. Allostatic load has been well documented in relation to both chronic stress and adverse health outcomes in non-pregnant populations. However, the mediating role of allostatic load is less understood when it comes to maternal PTSD and adverse birth outcomes. To propose a theoretical model that depicts how allostatic load could mediate the impact of maternal PTSD on birth outcomes. We followed the procedures for theory synthesis approach described by Walker and Avant (2011), including specifying focal concepts, identifying related factors and relationships, and constructing an integrated representation. We first present a theoretical overview of the allostatic load theory and the other 4 relevant theoretical models. Then we provide a brief narrative review of literature that empirically supports the propositions of the integrated model. Finally, we describe our theoretical model. The theoretical model synthesized has the potential to advance perinatal research by delineating multiple biomarkers to be used in future. After it is well validated, it could be utilized as the theoretical basis for health care professionals to identify high-risk women by evaluating their experiences of psychosocial and traumatic stress and to develop and evaluate service delivery and clinical interventions that might modify maternal perceptions or experiences of stress and eliminate their impacts on adverse birth outcomes. Copyright

  4. Allostatic load as a predictor of all-cause and cause-specific mortality in the general population: Evidence from the Scottish Health Survey.

    PubMed

    Robertson, Tony; Beveridge, Gayle; Bromley, Catherine

    2017-01-01

    Allostatic load is a multiple biomarker measure of physiological 'wear and tear' that has shown some promise as marker of overall physiological health, but its power as a risk predictor for mortality and morbidity is less well known. This study has used data from the 2003 Scottish Health Survey (SHeS) (nationally representative sample of Scottish population) linked to mortality records to assess how well allostatic load predicts all-cause and cause-specific mortality. From the sample, data from 4,488 men and women were available with mortality status at 5 and 9.5 (rounded to 10) years after sampling in 2003. Cox proportional hazard models estimated the risk of death (all-cause and the five major causes of death in the population) according to allostatic load score. Multiple imputation was used to address missing values in the dataset. Analyses were also adjusted for potential confounders (sex, age and deprivation). There were 258 and 618 deaths over the 5-year and 10-year follow-up period, respectively. In the fully-adjusted model, higher allostatic load (poorer physiological 'health') was not associated with an increased risk of all-cause mortality after 5 years (HR = 1.07, 95% CI 0.94 to 1.22; p = 0.269), but it was after 10 years (HR = 1.08, 95% CI 1.01 to 1.16; p = 0.026). Allostatic load was not associated with specific causes of death over the same follow-up period. In conclusions, greater physiological wear and tear across multiple physiological systems, as measured by allostatic load, is associated with an increased risk of death, but may not be as useful as a predictor for specific causes of death.

  5. Intelligence and socioeconomic position in childhood in relation to frailty and cumulative allostatic load in later life: the Lothian Birth Cohort 1936

    PubMed Central

    Gale, Catharine R; Booth, Tom; Starr, John M; Deary, Ian J

    2016-01-01

    Background Information on childhood determinants of frailty or allostatic load in later life is sparse. We investigated whether lower intelligence and greater socioeconomic disadvantage in childhood increased the risk of frailty and higher allostatic load, and explored the mediating roles of adult socioeconomic position, educational attainment and health behaviours. Methods Participants were 876 members of the Lothian Birth Cohort 1936 whose intelligence was assessed at age 11. At age 70, frailty was assessed using the Fried criteria. Measurements were made of fibrinogen, triglyceride, total and high-density lipoprotein cholesterol, albumin, glycated haemoglobin, C reactive protein, body mass index and blood pressure, from which an allostatic load score was calculated. Results In sex-adjusted analyses, lower intelligence and lower social class in childhood were associated with an increased risk of frailty: relative risks (95% CIs) were 1.57 (1.21 to 2.03) for a SD decrease in intelligence and 1.48 (1.12 to 1.96) for a category decrease in social class. In the fully adjusted model, both associations ceased to be significant: relative risks were 1.13 (0.83 to 1.54) and 1.19 (0.86 to 1.61), respectively. Educational attainment had a significant mediating effect. Lower childhood intelligence in childhood, but not social class, was associated with higher allostatic load. The sex-adjusted coefficient for allostatic load for a SD decrease in intelligence was 0.10 (0.07 to 0.14). In the fully adjusted model, this association was attenuated but remained significant (0.05 (0.01 to 0.09)). Conclusions Further research will need to investigate the mechanisms whereby lower childhood intelligence is linked to higher allostatic load in later life. PMID:26700299

  6. Allostatic load as a predictor of all-cause and cause-specific mortality in the general population: Evidence from the Scottish Health Survey

    PubMed Central

    Beveridge, Gayle; Bromley, Catherine

    2017-01-01

    Allostatic load is a multiple biomarker measure of physiological ‘wear and tear’ that has shown some promise as marker of overall physiological health, but its power as a risk predictor for mortality and morbidity is less well known. This study has used data from the 2003 Scottish Health Survey (SHeS) (nationally representative sample of Scottish population) linked to mortality records to assess how well allostatic load predicts all-cause and cause-specific mortality. From the sample, data from 4,488 men and women were available with mortality status at 5 and 9.5 (rounded to 10) years after sampling in 2003. Cox proportional hazard models estimated the risk of death (all-cause and the five major causes of death in the population) according to allostatic load score. Multiple imputation was used to address missing values in the dataset. Analyses were also adjusted for potential confounders (sex, age and deprivation). There were 258 and 618 deaths over the 5-year and 10-year follow-up period, respectively. In the fully-adjusted model, higher allostatic load (poorer physiological ‘health’) was not associated with an increased risk of all-cause mortality after 5 years (HR = 1.07, 95% CI 0.94 to 1.22; p = 0.269), but it was after 10 years (HR = 1.08, 95% CI 1.01 to 1.16; p = 0.026). Allostatic load was not associated with specific causes of death over the same follow-up period. In conclusions, greater physiological wear and tear across multiple physiological systems, as measured by allostatic load, is associated with an increased risk of death, but may not be as useful as a predictor for specific causes of death. PMID:28813505

  7. Intelligence and socioeconomic position in childhood in relation to frailty and cumulative allostatic load in later life: the Lothian Birth Cohort 1936.

    PubMed

    Gale, Catharine R; Booth, Tom; Starr, John M; Deary, Ian J

    2016-06-01

    Information on childhood determinants of frailty or allostatic load in later life is sparse. We investigated whether lower intelligence and greater socioeconomic disadvantage in childhood increased the risk of frailty and higher allostatic load, and explored the mediating roles of adult socioeconomic position, educational attainment and health behaviours. Participants were 876 members of the Lothian Birth Cohort 1936 whose intelligence was assessed at age 11. At age 70, frailty was assessed using the Fried criteria. Measurements were made of fibrinogen, triglyceride, total and high-density lipoprotein cholesterol, albumin, glycated haemoglobin, C reactive protein, body mass index and blood pressure, from which an allostatic load score was calculated. In sex-adjusted analyses, lower intelligence and lower social class in childhood were associated with an increased risk of frailty: relative risks (95% CIs) were 1.57 (1.21 to 2.03) for a SD decrease in intelligence and 1.48 (1.12 to 1.96) for a category decrease in social class. In the fully adjusted model, both associations ceased to be significant: relative risks were 1.13 (0.83 to 1.54) and 1.19 (0.86 to 1.61), respectively. Educational attainment had a significant mediating effect. Lower childhood intelligence in childhood, but not social class, was associated with higher allostatic load. The sex-adjusted coefficient for allostatic load for a SD decrease in intelligence was 0.10 (0.07 to 0.14). In the fully adjusted model, this association was attenuated but remained significant (0.05 (0.01 to 0.09)). Further research will need to investigate the mechanisms whereby lower childhood intelligence is linked to higher allostatic load in later life. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  8. Children's Negative Emotionality Combined with Poor Self-Regulation Affects Allostatic Load in Adolescence

    ERIC Educational Resources Information Center

    Dich, Nadya; Doan, Stacey; Evans, Gary

    2015-01-01

    The present study examined the concurrent and prospective, longitudinal effects of childhood negative emotionality and self-regulation on allostatic load (AL), a physiological indicator of chronic stress. We hypothesized that negative emotionality in combination with poor self-regulation would predict elevated AL. Mothers reported on children's…

  9. From Childhood Maltreatment to Allostatic Load in Adulthood: The Role of Social Support

    PubMed Central

    Horan, Jacqueline M.; Widom, Cathy S.

    2017-01-01

    Although previous research has documented that social support acts as a protective factor for individuals exposed to trauma, most research relies on assessments of social support at one point in time. The present study used data from a prospective cohort design study to examine the stability of social support from childhood through middle adulthood in individuals with documented histories of childhood abuse and neglect and matched controls (aged 0–11) and assessed the impact of social support on allostatic load, a composite measure of physiological stress response assessed through blood tests and physical measurements, in middle adulthood. Maltreated children are more likely to have unstable social support across the life span, compared to matched controls. Social support across the life span partially mediated the relationship between child maltreatment and allostatic load in adulthood, although there were differences by race and sex. These findings have implications for interventions to prevent the negative consequences of child maltreatment. PMID:26260146

  10. Relationships between allostatic load, unhealthy behaviors, and depressive disorder in U.S. adults, 2005-2012 NHANES.

    PubMed

    Rodriquez, Erik J; Livaudais-Toman, Jennifer; Gregorich, Steven E; Jackson, James S; Nápoles, Anna M; Pérez-Stable, Eliseo J

    2018-05-01

    Unhealthy behaviors may modify relationships between chronic stress and depression among diverse older adults. We analyzed nationally representative cross-sectional data from participants aged 40-79 years of the 2005-2012 National Health and Nutrition Examination Survey. Unhealthy behaviors included current smoking, excessive/binge drinking, insufficient physical activity, and fair/poor diet. Allostatic load was defined by 10 biomarkers indicating the cumulative physiologic burden of stress. Depressive disorder was assessed using the Patient Health Questionnaire. Multivariable logistic regression examined whether current smoking, excessive/binge drinking, insufficient physical activitiy, and fair/poor diet modified relationships between allostatic load and depressive disorder. Mean age of 12,272 participants was 55.6 years (standard error = 0.19), 51.9% were women, and most had at least a high school education (81.8%). Latinos (11.3%) and African Americans (10.4%) were more likely than Whites (7.1%; p < 0.001) to meet depressive disorder criteria. Allostatic load was not associated independently with depressive disorder in any racial/ethnic group and this lack of a relationship did not differ by the extent of unhealthy behaviors. Although Latinos and African Americans report higher levels of depression than Whites, physiological markers of stress do not appear to explain these differences. Published by Elsevier Inc.

  11. Greater Leisure Time Physical Activity Is Associated with Lower Allostatic Load in White, Black, and Mexican American Midlife Women: Findings from the National Health and Nutrition Examination Survey, 1999 through 2004.

    PubMed

    Upchurch, Dawn M; Rainisch, Bethany Wexler; Chyu, Laura

    2015-01-01

    Allostatic load is a useful construct to understand how social and environmental conditions get under the skin to affect health. To date, few studies have examined health-enhancing lifestyle behaviors and their potential benefits in reducing allostatic load. The purpose of this study was to investigate the contributions of leisure time physical activity on level of allostatic load among White, Black, and Mexican American midlife women. Data were from the National Health and Nutrition Examination Survey, 1999 through 2004 (n = 1,680, women ages 40-59). All analyses were weighted. Negative binomial regression was used to model a summative count measure of allostatic load (M = 2.30). Models were also computed to estimate adjusted predicted allostatic load for given levels of physical activity, and by race/ethnicity for each age category (40-44, 45-49, 50-54, 55-59), controlling for other demographics and medication use. Higher levels of physical activity were associated significantly with lower levels of allostatic load, independent of demographics. Compared with White women ages 40 to 44, all other racial/ethnic-by-age groups had significantly higher allostatic load. Higher socioeconomic status was associated with a lower allostatic load. Adjusted prediction models demonstrated associations between greater levels of physical activity and lower allostatic load for all ages and racial/ethnic groups. Our findings suggest physical activity may ameliorate some of the effects of cumulative physiological dysregulation and subsequent disease burden in midlife women. Programs and policies that encourage and promote healthy aging and provide opportunities for a diversity of women to engage in health-enhancing lifestyle practices such as physical activity are recommended. Copyright © 2015 Jacobs Institute of Women's Health. Published by Elsevier Inc. All rights reserved.

  12. A systematic review of allostatic load, health, and health disparities.

    PubMed

    Beckie, Theresa M

    2012-10-01

    The theoretical constructs of allostasis and allostatic load (AL) have contributed to our understanding of how constantly changing social and environmental factors impact physiological functioning and shape health and aging disparities, particularly along socioeconomic, gendered, racial, and ethnic lines. AL represents the cumulative dysregulation of biological systems with prolonged or poorly regulated allostatic responses. Nearly two decades of empirical research has focused on operationalizing the AL construct for examining the antecedents and health outcomes accompanying multisystem biological dysregulation. The purpose of this systematic review is to examine the empirical literature that quantifies the AL construct; the review also evaluates the social, environmental, and genetic antecedents of AL as well as its predictive utility for a variety of health outcomes. A total of 58 articles published between 1997 and 2012 were retrieved, analyzed, and synthesized. The results revealed considerable heterogeneity in the operationalization of AL and the measurement of AL biomarkers, making interpretations and comparisons across studies challenging. There is, however, empirical substantiation for the relationships between AL and socioeconomic status, social relationships, workplace, lifestyle, race/ethnicity, gender, stress exposure, and genetic factors. The literature also demonstrated associations between AL and physical and mental health and all-cause mortality. Targeting the antecedents of AL during key developmental periods is essential for improving public health. Priorities for future research include conducting prospective longitudinal studies, examining a broad range of antecedent allostatic challenges, and collecting reliable measures of multisystem dysregulation explicitly designed to assess AL, at multiple time points, in population-representative samples.

  13. Youth temperament, harsh parenting, and variation in the oxytocin receptor gene forecast allostatic load during emerging adulthood.

    PubMed

    Brody, Gene H; Yu, Tianyi; Barton, Allen W; Miller, Gregory E; Chen, Edith

    2017-08-01

    An association has been found between receipt of harsh parenting in childhood and adult health problems. However, this research has been principally retrospective, has treated children as passive recipients of parental behavior, and has overlooked individual differences in youth responsivity to harsh parenting. In a 10-year multiple-wave prospective study of African American families, we addressed these issues by focusing on the influence of polymorphisms in the oxytocin receptor gene (OXTR), variants of which appear to buffer or amplify responses to environmental stress. The participants were 303 youths, with a mean age of 11.2 at the first assessment, and their parents, all of whom were genotyped for variations in the rs53576 (A/G) polymorphism. Teachers rated preadolescent (ages 11 to 13) emotionally intense and distractible temperaments, and adolescents (ages 15 and 16) reported receipt of harsh parenting. Allostatic load was assessed during young adulthood (ages 20 and 21). Difficult preadolescent temperament forecast elevated receipt of harsh parenting in adolescence, and adolescents who experienced harsh parenting evinced high allostatic load during young adulthood. However, these associations emerged only among children and parents who carried A alleles of the OXTR genotype. The results suggest the oxytocin system operates along with temperament and parenting to forecast young adults' allostatic load.

  14. Reaction time in adolescence, cumulative allostatic load, and symptoms of anxiety and depression in adulthood: the West of Scotland Twenty-07 Study.

    PubMed

    Gale, Catharine R; Batty, G David; Cooper, Sally-Ann; Deary, Ian J; Der, Geoff; McEwen, Bruce S; Cavanagh, Jonathan

    2015-06-01

    To examine the relation between reaction time in adolescence and subsequent symptoms of anxiety and depression and investigate the mediating role of sociodemographic measures, health behaviors, and allostatic load. Participants were 705 members of the West of Scotland Twenty-07 Study. Choice reaction time was measured at age 16. At age 36 years, anxiety and depression were assessed with the 12-item General Health Questionnaire (GHQ) and the Hospital Anxiety and Depression Scale (HADS), and measurements were made of blood pressure, pulse rate, waist-to-hip ratio, and total and high-density lipoprotein cholesterol, C-reactive protein, albumin, and glycosolated hemoglobin from which allostatic load was calculated. In unadjusted models, longer choice reaction time at age 16 years was positively associated with symptoms of anxiety and depression at age 36 years: for a standard deviation increment in choice reaction time, regression coefficients (95% confidence intervals) for logged GHQ score, and square-root-transformed HADS anxiety and depression scores were 0.048 (0.016-0.080), 0.064 (0.009-0.118), and 0.097 (0.032-0.163) respectively. Adjustment for sex, parental social class, GHQ score at age 16 years, health behaviors at age 36 years and allostatic load had little attenuating effect on the association between reaction time and GHQ score, but weakened those between reaction time and the HADS subscales. Part of the effect of reaction time on depression was mediated through allostatic load; this mediating role was of borderline significance after adjustment. Adolescents with slower processing speed may be at increased risk for anxiety and depression. Cumulative allostatic load may partially mediate the relation between processing speed and depression.

  15. Parental academic involvement in adolescence, academic achievement over the life course and allostatic load in middle age: a prospective population-based cohort study.

    PubMed

    Westerlund, Hugo; Gustafsson, Per E; Theorell, Töres; Janlert, Urban; Hammarström, Anne

    2013-06-01

    Parental involvement in their children's studies, particularly in terms of academic socialisation, has been shown to predict academic achievement, and is thus a candidate modifiable factor influencing life course socioeconomic circumstances. Socioeconomic disadvantage is thought to impact on health over the life course partly by allostatic load, that is, cumulative biological risk. We sought to elucidate the role of parental involvement at age 16 on the life course development of allostatic load. In a population-based cohort (365 women and 352 men, 67% of the eligible participants), we examined the association between parental involvement in their offspring's studies, measured by teacher and pupil ratings at age 16 and an allostatic load index summarising 12 physiological risk markers at age 43. Mediation through life course academic and occupational achievement was assessed by entering school grades, adult educational achievement and socioeconomic position at age 43 in a linear regression analysis in a stepwise manner and testing for mediation. Parental interest in their offspring's studies during the last year of compulsory school-rather than the parent's social class or availability of practical academic support-was found to predict adult allostatic load (β=-0.12, 95% CI -0.20 to -0.05). Further adjustments indicated that academic achievement over the life course mediated a large part of the effect of parental interest on allostatic load. Parental interest in their offspring's studies may have protective effects by decreasing the likelihood of a chain of risk involving low academic achievement, low socioeconomic position and high accumulated physiological stress.

  16. Impact of alprazolam in allostatic load and neurocognition of patients with anxiety disorders and chronic stress (GEMA): observational study protocol.

    PubMed

    Soria, Carlos A; Remedi, Carolina; Núñez, Daniel A; D'Alessio, Luciana; Roldán, Emilio J A

    2015-07-14

    The allostatic load model explains the additive effects of multiple biological processes that accelerate pathophysiology related to stress, particularly in the central nervous system. Stress-related mental conditions such as anxiety disorders and neuroticism (a well-known stress vulnerability factor), have been linked to disturbances of hypothalamo-pituitary-adrenal with cognitive implications. Nevertheless, there are controversial results in the literature and there is a need to determine the impact of the psychopharmacological treatment on allostatic load parameters and in cognitive functions. Gador study of Estres Modulation by Alprazolam, aims to determine the impact of medication on neurobiochemical variables related to chronic stress, metabolic syndrome, neurocognition and quality of life in patients with anxiety, allostatic load and neuroticism. In this observational prospective phase IV study, highly sympthomatic patients with anxiety disorders (six or more points in the Hamilton-A scale), neuroticism (more than 18 points in the Neo five personality factor inventory (NEO-FFI) scale), an allostatic load (three positive clinical or biochemical items at Crimmins and Seeman criteria) will be included. Clinical variables of anxiety, neuroticism, allostatic load, neurobiochemical studies, neurocognition and quality of life will be determined prior and periodically (1, 2, 4, 8, and 12 weeks) after treatment (on demand of alprazolam from 0.75 mg/day to 3.0 mg/day). A sample of n=55/182 patients will be considered enough to detect variables higher than 25% (pretreatment vs post-treatment or significant correlations) with a 1-ß power of 0-80. t Test and/or non-parametric test, and Pearson's test for correlation analysis will be determined. This study protocol was approved by an Independent Ethics Committee of FEFyM (Foundation for Pharmacological Studies and Drugs, Buenos Aires) and by regulatory authorities of Argentina (ANMAT, Dossier # 61 409-8 of 20

  17. Impact of alprazolam in allostatic load and neurocognition of patients with anxiety disorders and chronic stress (GEMA): observational study protocol

    PubMed Central

    Soria, Carlos A; Remedi, Carolina; Núñez, Daniel A; D'Alessio, Luciana; Roldán, Emilio J A

    2015-01-01

    Introduction The allostatic load model explains the additive effects of multiple biological processes that accelerate pathophysiology related to stress, particularly in the central nervous system. Stress-related mental conditions such as anxiety disorders and neuroticism (a well-known stress vulnerability factor), have been linked to disturbances of hypothalamo–pituitary–adrenal with cognitive implications. Nevertheless, there are controversial results in the literature and there is a need to determine the impact of the psychopharmacological treatment on allostatic load parameters and in cognitive functions. Gador study of Estres Modulation by Alprazolam, aims to determine the impact of medication on neurobiochemical variables related to chronic stress, metabolic syndrome, neurocognition and quality of life in patients with anxiety, allostatic load and neuroticism. Methods/analysis In this observational prospective phase IV study, highly sympthomatic patients with anxiety disorders (six or more points in the Hamilton-A scale), neuroticism (more than 18 points in the Neo five personality factor inventory (NEO-FFI) scale), an allostatic load (three positive clinical or biochemical items at Crimmins and Seeman criteria) will be included. Clinical variables of anxiety, neuroticism, allostatic load, neurobiochemical studies, neurocognition and quality of life will be determined prior and periodically (1, 2, 4, 8, and 12 weeks) after treatment (on demand of alprazolam from 0.75 mg/day to 3.0 mg/day). A sample of n=55/182 patients will be considered enough to detect variables higher than 25% (pretreatment vs post-treatment or significant correlations) with a 1-ß power of 0–80. t Test and/or non-parametric test, and Pearson's test for correlation analysis will be determined. Ethics and dissemination This study protocol was approved by an Independent Ethics Committee of FEFyM (Foundation for Pharmacological Studies and Drugs, Buenos Aires) and by regulatory

  18. Changes in Allostatic Load during workplace reorganization.

    PubMed

    Carlsson, Rikke Hinge; Hansen, Åse Marie; Nielsen, Martin Lindhardt; Blønd, Morten; Netterstrøm, Bo

    2017-12-01

    Allostatic Load (AL) represents the strain on the body produced by repeated physiologic or allostatic responses activated during stressful situations. Several cross-sectional studies have found empirical substantiation for the relationship between impaired psychosocial work environment and high AL. The aim of this longitudinal study is to investigate changes in AL during workplace reorganization that has been shown to cause impaired psychosocial work environment. Moreover, we aim to investigate the association between changes in AL and changes in psychosocial work environment (job strain, effort-reward imbalance) and psychological distress (stress symptoms and perceived stress). A major reorganization of non-state public offices was effectuated in Denmark on 1 January 2007. In 2006 and 2008, we collected clinical and questionnaire data from 359 participants, 265 women and 94 men, employed in seven municipality or county administrations. Four municipalities and one county merged with others, while one municipality and one county remained unmerged. We calculated the AL score based on 13 physiological markers reflecting stress responses of the cardiovascular, metabolic, neuroendocrine and immune systems. We analysed changes in AL from 2006 to 2008. AL increased significantly during workplace reorganization in the whole study group but we observed only a tendency of significant increase in AL in the merger group compared with the control group. Moreover, we observed no association between the changes in AL and changes in psychosocial work environment and psychological distress. This result leaves the conclusion unclear but contributes to the limited research in this area with a longitudinal design and focus on low-risk levels and small changes in AL in healthy people as predictor of future disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Reaction Time in Adolescence, Cumulative Allostatic Load, and Symptoms of Anxiety and Depression in Adulthood: The West of Scotland Twenty-07 Study

    PubMed Central

    Gale, Catharine R.; Batty, G. David; Cooper, Sally-Ann; Deary, Ian J.; Der, Geoff; McEwen, Bruce S.; Cavanagh, Jonathan

    2015-01-01

    ABSTRACT Objective To examine the relation between reaction time in adolescence and subsequent symptoms of anxiety and depression and investigate the mediating role of sociodemographic measures, health behaviors, and allostatic load. Methods Participants were 705 members of the West of Scotland Twenty-07 Study. Choice reaction time was measured at age 16. At age 36 years, anxiety and depression were assessed with the 12-item General Health Questionnaire (GHQ) and the Hospital Anxiety and Depression Scale (HADS), and measurements were made of blood pressure, pulse rate, waist-to-hip ratio, and total and high-density lipoprotein cholesterol, C-reactive protein, albumin, and glycosolated hemoglobin from which allostatic load was calculated. Results In unadjusted models, longer choice reaction time at age 16 years was positively associated with symptoms of anxiety and depression at age 36 years: for a standard deviation increment in choice reaction time, regression coefficients (95% confidence intervals) for logged GHQ score, and square-root–transformed HADS anxiety and depression scores were 0.048 (0.016–0.080), 0.064 (0.009–0.118), and 0.097 (0.032–0.163) respectively. Adjustment for sex, parental social class, GHQ score at age 16 years, health behaviors at age 36 years and allostatic load had little attenuating effect on the association between reaction time and GHQ score, but weakened those between reaction time and the HADS subscales. Part of the effect of reaction time on depression was mediated through allostatic load; this mediating role was of borderline significance after adjustment. Conclusions Adolescents with slower processing speed may be at increased risk for anxiety and depression. Cumulative allostatic load may partially mediate the relation between processing speed and depression. PMID:25984823

  20. Allostatic load and pain severity in older adults: Results from the English Longitudinal Study of Ageing

    PubMed Central

    Sibille, Kimberly T.; McBeth, John; Smith, Diane; Wilkie, Ross

    2017-01-01

    Pain is common in older adults, is frequently experienced as stressful, and is associated with increased morbidity and mortality. Stress regulatory systems are adaptive to challenge and change, allostasis, until demands exceed the adaptive capacity contributing to dysregulation, resulting in a high allostatic load. A high allostatic load is associated with increased risk of morbidity and mortality. Pain severity, based on the average intensity of frequent pain, was hypothesized to be positively associated with AL. Four formulations of AL were investigated. Cross-sectional data from Wave 4 (2008–2009) of the English Longitudinal Study of Aging (ELSA) were analysed. Covariates in the model included age, sex, education, smoking status, alcohol consumption, activity level, depression and common comorbid health conditions. A total of 5341 individuals were included; mean age 65.3(±9.2) years, 55% female, 62.4% infrequent or no pain, 12.6% mild pain, 19.1% moderate pain, and 5.9% severe pain. Severe pain was associated with greater AL defined by all four formulations. The amount of variance explained by pain severity and the covariates was highest when allostatic load was defined by the high risk quartile (12.9%) and by the clinical value (11.7%). Findings indicate a positive relationship between pain severity and AL. Further investigation is needed to determine if there is a specific AL signature for pain that differs from other health conditions. PMID:27988258

  1. Life-Course Accumulation of Neighborhood Disadvantage and Allostatic Load: Empirical Integration of Three Social Determinants of Health Frameworks

    PubMed Central

    Gustafsson, Per E.; San Sebastian, Miguel; Janlert, Urban; Theorell, Töres; Westerlund, Hugo; Hammarström, Anne

    2014-01-01

    Objectives. We examined if the accumulation of neighborhood disadvantages from adolescence to mid-adulthood were related to allostatic load, a measure of cumulative biological risk, in mid-adulthood, and explored whether this association was similar in women and men. Methods. Data were from the participants in the Northern Swedish Cohort (analytical n = 818) at ages 16, 21, 30, and 43 years in 1981, 1986, 1995, and 2008. Personal living conditions were self-reported at each wave. At age 43 years, 12 biological markers were measured to operationalize allostatic load. Registered data for all residents in the cohort participants’ neighborhoods at each wave were used to construct a cumulative measure of neighborhood disadvantage. Associations were examined in ordinary least-squares regression models. Results. We found that cumulative neighborhood disadvantage between ages 16 and 43 years was related to higher allostatic load at age 43 years after adjusting for personal living conditions in the total sample (B = 0.11; P = .004) and in men (B = 0.16; P = .004), but not in women (B = 0.07; P = .248). Conclusions. Our findings suggested that neighborhood disadvantage acted cumulatively over the life course on biological wear and tear, and exemplified the gains of integrating social determinants of health frameworks. PMID:24625161

  2. Cumulative stress pathophysiology in schizophrenia as indexed by allostatic load.

    PubMed

    Nugent, Katie L; Chiappelli, Joshua; Rowland, Laura M; Hong, L Elliot

    2015-10-01

    The etiopathophysiology of schizophrenia has long been linked to stress and the influence of stress is important in all stages of the illness. Previous examinations of perceived stress and acute stress responses may not capture this longitudinal stress pathophysiology. We hypothesized that the cumulative negative effects of stress, indexed by allostatic load (AL), would be elevated in schizophrenia, and that the AL paradigm would be relevant to our understanding of pathophysiology in schizophrenia. We assessed allostatic load in 30 patients with schizophrenia (SZ; mean age = 33; 17 males) and 20 healthy controls (HC; mean age = 35; 12 males) using 13 cardiovascular, metabolic, neuroendocrine and immune biomarkers. Participants' perceived stress over the past month, functional capacity and psychiatric symptoms were also measured. Controlling for age, SZ had significantly higher AL as compared to HC (p = 0.007). Greater AL was present in both early course and chronic SZ, and was associated with reduced functional capacity (p = 0.006) and more psychotic symptoms (p = 0.048) in SZ. Current level of perceived stress was not significantly elevated in SZ or associated with AL in either group. The higher AL found in SZ may reflect increased bodily "wear and tear", possibly caused by more chronic stress exposure or maladaptive responses to stress over time, although additional research is required to differentiate these causes. The higher AL is similarly present in early and chronic SZ, suggesting primary maladaptive stress physiology rather than secondary effects from medications or chronic illness. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. The impact of allostatic load on maternal sympathovagal functioning in stressful child contexts: Implications for problematic parenting

    PubMed Central

    STURGE-APPLE, MELISSA L.; SKIBO, MICHAEL A.; ROGOSCH, FRED A.; IGNJATOVIC, ZELJKO; HEINZELMAN, WENDI

    2011-01-01

    The present study applies an allostatic load framework to an examination of the relationship between maternal psychosocial risk factors and maladaptive parenting behaviors. Specifically, the implications of low socioeconomic status and maternal depressive symptoms for maternal sympathovagal functioning during young children’s distress were examined, as well as whether that functioning was, in turn, associated with maternal insensitivity, hostility, intrusiveness, and disengagement during mother–child dyadic interaction. Consistent with an allostatic framework, three patterns of sympathovagal functioning were expected to emerge: normative arousal, hyperarousal, and hypoarousal profiles. Furthermore, meaningful associations between maternal psychosocial risk factors, maladaptive parenting behaviors, and the three profiles of sympathovagal functioning were anticipated. Participants included 153 mother–toddler dyads recruited proportionately from lower and middle socioeconomic status backgrounds. Mothers’ sympathovagal response to their child’s distress was assessed during the Strange Situation paradigm, and mothers’ parenting behavior was assessed during a dyadic free-play interaction. As hypothesized, normative arousal, hyperarousal, and hypoarousal profiles of maternal sympathovagal functioning were identified. Maternal depressive symptomatology predicted the hyperarousal profile, whereas socioeconomic adversity predicted hypoarousal. Moreover, allostatic load profiles were differentially associated with problematic parenting behaviors. These findings underscore the role of physiological dysregulation as a mechanism in the relationship between proximal risk factors and actual maladaptive parenting behaviors. PMID:21756435

  4. Perceived Discrimination among African American Adolescents and Allostatic Load: A Longitudinal Analysis with Buffering Effects

    ERIC Educational Resources Information Center

    Brody, Gene H.; Lei, Man-Kit; Chae, David H.; Yu, Tianyi; Kogan, Steven M.; Beach, Steven R. H.

    2014-01-01

    This study was designed to examine the prospective relations of perceived racial discrimination with allostatic load (AL), along with a possible buffer of the association. A sample of 331 African Americans in the rural South provided assessments of perceived discrimination from ages 16 to 18 years. When youth were 18 years, caregivers reported…

  5. Understanding behavioral effects of early life stress using the reactive scope and allostatic load models

    PubMed Central

    HOWELL, BRITTANY R.; SANCHEZ, MAR M.

    2015-01-01

    The mechanisms through which early life stress leads to psychopathology are thought to involve allostatic load, the “wear and tear” an organism is subjected to as a consequence of sustained elevated levels of glucocorticoids caused by repeated/prolonged stress activations. The allostatic load model described this phenomenon, but has been criticized as inadequate to explain alterations associated with early adverse experience in some systems, including behavior, which cannot be entirely explained from an energy balance perspective. The reactive scope model has been more recently proposed and focuses less on energy balance and more on dynamic ranges of physiological and behavioral mediators. In this review we examine the mechanisms underlying the behavioral consequences of early life stress in the context of both these models. We focus on adverse experiences that involve mother–infant relationship disruption, and dissect those mechanisms involving maternal care as a regulator of development of neural circuits that control emotional and social behaviors in the offspring. We also discuss the evolutionary purpose of the plasticity in behavioral development, which has a clear adaptive value in a changing environment. PMID:22018078

  6. Stress Measured by Allostatic Load in Neurologically Impaired Children: The Importance of Nutritional Status.

    PubMed

    Calcaterra, Valeria; Cena, Hellas; de Silvestri, Annalisa; Albertini, Riccardo; De Amici, Mara; Valenza, Mario; Pelizzo, Gloria

    2017-01-01

    Allostatic load (AL) is the cumulative physiological wear and tear that results from repeated efforts to adapt to stressors over time. The life stress response is modified by nutritional status. We estimated AL scores among neurologically impaired (NI) children; the association with malnutrition was also evaluated. Forty-one patients with severe disabilities were included. Data based on 15 biomarkers were used to create the AL score. A dichotomous outcome of high AL was defined for those who had ≥6 dysregulated components. Body mass index (BMI)-standard deviation score (SDS) <-2 or SDS ≥2 and biochemical markers (≥4) defined malnutrition. High AL was noted in 17/41 of the whole sample (41.47%). Malnutrition occurred in 36.6% of the subjects. A significant correlation between high AL and malnutrition was observed (p = 0.01; ar ea under the receiver operating characteristic curve, 0.7457). High AL subjects had a significantly higher BMI (p = 0.009) and lower BMI-SDS (p = 0.003) than low AL subjects. AL score correlated with fat mass (p ≤ 0.01) and negatively correlated with fat-free mass (p ≤ 0.02). In NI children, high AL was associated with malnutrition. Body composition is a better indicator than BMI of allostatic adjustments. AL estimation should be considered a measure of health risk and be used to promote quality of life in at-risk disabled populations. © 2017 S. Karger AG, Basel.

  7. Life Events Trajectories, Allostatic Load, and the Moderating Role of Age at Arrival from Puerto Rico to the US Mainland

    PubMed Central

    Arévalo, Sandra P.; Tucker, Katherine L; Falcon, Luis M

    2014-01-01

    Our aim was to examine the effects of trajectories of stressful life events on allostatic load, measured over a two year time period, and to investigate the roles of language acculturation and age at migration in this association, in a sample of Puerto Rican migrants. We used data from the Boston Puerto Rican Health Study; a population-based prospective cohort of older Puerto Ricans recruited between the ages of 45 and 75 years. The Institutional Review Boards at Tufts Medical Center and Northeastern University approved the study. We used latent growth mixture modeling (LGMM) to identify different classes of two-year trajectories of stressful life events; analysis of variance to examine group differences by stress trajectory; and linear regression to test for the modifying effects of age at arrival on the association of stress trajectory with allostatic load at follow-up. In LGMM analysis, we identified three distinct stress trajectories; low, moderate ascending, and high. Unexpectedly, participants in the low stress group had the highest allostatic load at follow-up (F=4.4, p=0.01) relative to the other two groups. Age at arrival had a statistically significant moderating effect on the association. A reported two year period of moderate but repetitive and increasingly bad life events was associated with increases in allostatic load for participants who arrived to the U.S. mainland after the age of 5 years, and was particularly strong for those arriving between 6–11 years, but not for those arriving earlier or later. Results from this study highlight the complex effects of stress during the life course, and point to certain vulnerable periods for immigrant children that could modify long term effects of stress. PMID:25265208

  8. Beyond allostatic load: rethinking the role of stress in regulating human development.

    PubMed

    Ellis, Bruce J; Del Giudice, Marco

    2014-02-01

    How do exposures to stress affect biobehavioral development and, through it, psychiatric and biomedical disorder? In the health sciences, the allostatic load model provides a widely accepted answer to this question: stress responses, while essential for survival, have negative long-term effects that promote illness. Thus, the benefits of mounting repeated biological responses to threat are traded off against costs to mental and physical health. The adaptive calibration model, an evolutionary-developmental theory of stress-health relations, extends this logic by conceptualizing these trade-offs as decision nodes in allocation of resources. Each decision node influences the next in a chain of resource allocations that become instantiated in the regulatory parameters of stress response systems. Over development, these parameters filter and embed information about key dimensions of environmental stress and support, mediating the organism's openness to environmental inputs, and function to regulate life history strategies to match those dimensions. Drawing on the adaptive calibration model, we propose that consideration of biological fitness trade-offs, as delineated by life history theory, is needed to more fully explain the complex relations between developmental exposures to stress, stress responsivity, behavioral strategies, and health. We conclude that the adaptive calibration model and allostatic load model are only partially complementary and, in some cases, support different approaches to intervention. In the long run, the field may be better served by a model informed by life history theory that addresses the adaptive role of stress response systems in regulating alternative developmental pathways.

  9. Sex-specific interaction effects of age, occupational status, and workplace stress on psychiatric symptoms and allostatic load among healthy Montreal workers.

    PubMed

    Juster, Robert-Paul; Moskowitz, D S; Lavoie, Joel; D'Antono, Bianca

    2013-11-01

    Socio-demographics and workplace stress may affect men and women differently. The aim of this cross-sectional study was to assess sex-specific interactions among age, occupational status, and workplace Demand-Control-Support (D-C-S) factors in relation to psychiatric symptoms and allostatic load levels representing multi-systemic "wear and tear". It was hypothesized that beyond main effects, D-C-S factors would be moderated by occupational status and age in sex-specific directions predictive of subjective psychiatric symptoms and objective physiological dysregulations. Participants included healthy male (n = 81) and female (n = 118) Montreal workers aged 20 to 64 years (Men: M = 39.4 years, SD = 11.3; Women: M = 42.8 years, SD = 11.38). The Job Content Questionnaire was administered to assess workplace D-C-S factors that included psychological demands, decisional latitude, and social support. Occupational status was coded using the Nam--Powers--Boyd system derived from the Canadian census. Psychiatric symptoms were assessed using the Beck Anxiety Scale and the Beck Depression Inventory II. Sex-specific allostatic load indices were calculated based on fifteen biomarkers. Regression analyses revealed that higher social support was associated with less depressive symptoms in middle aged (p = 0.033) and older men (p = 0.027). Higher occupational status was associated with higher allostatic load levels for men (p = 0.035), while the reverse occurred for women (p = 0.048). Women with lower occupational status but with higher decision latitude had lower allostatic load levels, as did middle-aged (p = 0.031) and older women (p = 0.003) with higher psychological demands. In summary, age and occupational status moderated workplace stress in sex-specific ways that have occupational health implications.

  10. Mental health consequences of stress and trauma: allostatic load markers for practice and policy with a focus on Indigenous health.

    PubMed

    Berger, Maximus; Juster, Robert-Paul; Sarnyai, Zoltán

    2015-12-01

    Mental health, well-being, and social life are intimately related as is evident from the higher incidence of psychiatric illness in individuals exposed to social stress and adversity. Several biological pathways linking social adversity to health outcomes are heavily investigated in the aims of facilitating early identification and prevention of adverse health outcomes. We provide a practice-orientated overview of the allostatic load model and how it relates to metabolic and cardiovascular comorbidity in psychiatric disorders. Allostatic load brings together a set of neuroendocrine, metabolic, immune and cardiovascular biomarkers that are elevated in individuals with adverse early life experiences and are predictive of cardiovascular and metabolic risk in psychiatric illness of critical importance for Indigenous Australians. © The Royal Australian and New Zealand College of Psychiatrists 2015.

  11. The importance of age, sex and place in understanding socioeconomic inequalities in allostatic load: Evidence from the Scottish Health Survey (2008-2011).

    PubMed

    Robertson, Tony; Watts, Eleanor

    2016-02-09

    Given the broad spectrum of health and wellbeing outcomes that are patterned by socioeconomic position (SEP), it has been suggested that there may be common biological pathways linking SEP and health. Allostatic load is one such pathway, which aims to measure cumulative burden/dysregulation across multiple physiological systems. This study aimed to determine the contextual and demographic factors (age, sex and place) that may be important in better understanding the links between lower SEP and higher allostatic load. Data were from a nationally representative sample of adults (18+): the Scottish Health Survey (2008-2011). Higher SEP ('1') was defined as having 'Higher'-level, secondary school qualifications versus having lower level or no qualifications ('0'). For allostatic load, a range of 10 biomarkers across the cardiovascular, metabolic and immune systems were used. Respondents were scored "1" for each biomarker that fell into the highest quartile of risk. Linear regressions were run in STATA, including SEP, age (continuous and as a 7-category variable), sex (male/female), urbanity (a 5-category variable ranging from primary cities to remote rural areas) and geographical location (based on 10 area-level healthboards). Interactions between SEP and each predictor, as well as stratified analyses, were tested. Lower SEP was associated with higher allostatic load even after adjusting for age, sex and place (b = -0.631, 95 % CI -0.795, -0.389, p < 0.001). There was no significant effect moderation between SEP and age, sex or place. Stratified analysis did show that the inequality identified in the baseline models widened with age, becoming significant at ages 35-44, before narrowing at older ages (75+). There was no difference by sex, but more mixed findings with regards place (urbanity or geographical location), with a mix of significant and non-significant results by SEP that did not appear to follow any pattern. Inequalities in allostatic load by educational

  12. Lead exposure is related to hypercortisolemic profiles and allostatic load in Brazilian older adults

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souza-Talarico, Juliana N., E-mail: junery@usp.br

    Lead levels (Pb) have been linked to both hyper- and hypo-reactivity of hypothalamic-pituitary-adrenal axis (HPA) axis to acute stress in animals and humans. Similarly, allostatic load (AL), the ‘wear and tear’ of chronic stress, is associated with inadequate HPA axis activity. We examined whether Pb levels would be associated with altered diurnal cortisol profile, as a primary mediator of AL, during aging. Pb levels were measured from blood samples (BPb) of 126 Brazilian individuals (105 women), between 50 and 82 years old. Six neuroendocrine, metabolic, and anthropometric biomarkers were analyzed and values were transformed into an AL index using clinicalmore » reference cut-offs. Salivary samples were collected at home over 2 days at awakening, 30-min after waking, afternoon, and evening periods to determine cortisol levels. A multiple linear regression model showed a positive association between BPb as the independent continuous variable and cortisol awakening response (R{sup 2}=0.128; B=0.791; p=0.005) and overall cortisol concentration (R{sup 2}=0.266; B=0.889; p<0.001) as the outcomes. Repeated measures ANOVA showed that individuals with high BPb levels showed higher cortisol at 30 min after awakening (p=0.003), and in the afternoon (p=0.002) than those with low BPb values. Regarding AL, regression model showed that BPb was positively associated with AL index (R{sup 2}=0.100; B=0.204; p=0.032). Correlation analyzes with individual biomarkers showed that BPb was positively correlated with HDL cholesterol (p=0.02) and negatively correlated with DHEA-S (p=0.049). These findings suggest that Pb exposure, even at levels below the reference blood lead level for adults recommended by the National Institute for Occupational Safety and Health and by the Center for Disease Control and Prevention, may contribute to AL and dysregulated cortisol functioning in older adults. Considering these findings were based on cross-sectional data future research is needed to

  13. Allostatic load: single parents, stress-related health issues, and social care.

    PubMed

    Johner, Randy L

    2007-05-01

    This article explores the possible relationships between allostatic load (AL) and stress-related health issues in the low-income single-parent population, using both a population health perspective (PHP) and a biological framework. A PHP identifies associations among such factors as gender, income, employment, and social support and their potential effect on health outcomes. A PHP also recognizes physiological and pathological manifestations of the body such as stress (mental or somatic) and individual biological parameters (for example, glucose levels) as health determinants. AL uses an aggregate score of individual biological parameters as a health measure that is exacerbated through repetitive movement of physiologic systems under stress. The social work profession should incorporate knowledge of both PHP and AL into its theory and practice domains for effective care of vulnerable populations such as single-parent families.

  14. Allostatic load in parents of children with developmental disorders: Moderating influence of positive affect

    PubMed Central

    Song, Jieun; Mailick, Marsha R.; Ryff, Carol D.; Coe, Christopher L.; Greenberg, Jan S.; Hong, Jinkuk

    2013-01-01

    This study examines whether parents of children with developmental disorders (DD) are at risk for elevated allostatic load (AL) relative to control parents, and whether positive affect moderates difference in risk. Thirty-eight parents of children with DD and 38 matched comparison parents were analyzed. Regression analyses revealed a significant interaction between parent status and AL level: parents of children with DD had lower AL when they had higher positive affect, whereas no such association was evident for comparison parents. The findings suggest that promoting greater positive affect may lower health risks among parents of children with DD. PMID:23300048

  15. Linear data mining the Wichita clinical matrix suggests sleep and allostatic load involvement in chronic fatigue syndrome.

    PubMed

    Gurbaxani, Brian M; Jones, James F; Goertzel, Benjamin N; Maloney, Elizabeth M

    2006-04-01

    To provide a mathematical introduction to the Wichita (KS, USA) clinical dataset, which is all of the nongenetic data (no microarray or single nucleotide polymorphism data) from the 2-day clinical evaluation, and show the preliminary findings and limitations, of popular, matrix algebra-based data mining techniques. An initial matrix of 440 variables by 227 human subjects was reduced to 183 variables by 164 subjects. Variables were excluded that strongly correlated with chronic fatigue syndrome (CFS) case classification by design (for example, the multidimensional fatigue inventory [MFI] data), that were otherwise self reporting in nature and also tended to correlate strongly with CFS classification, or were sparse or nonvarying between case and control. Subjects were excluded if they did not clearly fall into well-defined CFS classifications, had comorbid depression with melancholic features, or other medical or psychiatric exclusions. The popular data mining techniques, principle components analysis (PCA) and linear discriminant analysis (LDA), were used to determine how well the data separated into groups. Two different feature selection methods helped identify the most discriminating parameters. Although purely biological features (variables) were found to separate CFS cases from controls, including many allostatic load and sleep-related variables, most parameters were not statistically significant individually. However, biological correlates of CFS, such as heart rate and heart rate variability, require further investigation. Feature selection of a limited number of variables from the purely biological dataset produced better separation between groups than a PCA of the entire dataset. Feature selection highlighted the importance of many of the allostatic load variables studied in more detail by Maloney and colleagues in this issue [1] , as well as some sleep-related variables. Nonetheless, matrix linear algebra-based data mining approaches appeared to be of

  16. The APOA1/C3/A4/A5 cluster and markers of allostatic load in the Boston Puerto Rican Health Study

    USDA-ARS?s Scientific Manuscript database

    The APOA1/C3/A4/A5 cluster encodes key regulators of plasma lipids. Interactions between dietary factors and single nucleotide polymorphisms (SNPs) in the cluster have been reported. Allostatic load, or physiological dysregulation in response to stress, has been implicated in shaping health disparit...

  17. Stressors Among Latino Day Laborers A Pilot Study Examining Allostatic Load

    PubMed Central

    de Castro, A. B.; Voss, Joachim G.; Ruppin, Ayelet; Dominguez, Carlos F.; Seixas, Noah S.

    2010-01-01

    This pilot study evaluated the feasibility of conducting a research project focused on stressors and allostatic load (AL) among day laborers. A total of 30 Latino men were recruited from CASA Latina. a worker center in Seattle. Participants completed an interview and researchers measured six indicators of AL (body mass index, waist-to-hip ratio, systolic blood pressure, diastolic blood pressure, C-reactive protein, and cortisol). Percentages and mean scores were calculated for several self-reported stressors in work, economic, and social contexts and were compared between low and high AL groups. Overall, participants with high AL reported experiencing more stressors than those with low AL. Additionally, those with high AL generally reported being less healthy both physically and mentally. Findings suggest that Latino day laborers experience stressors that place them at risk for high AL. Also, a study of this nature is possible, but must be conducted with trust and collaboration between researchers and community partners. PMID:20507008

  18. Marital conflict, respiratory sinus arrhythmia, and allostatic load: interrelations and associations with the development of children's externalizing behavior.

    PubMed

    El-Sheikh, Mona; Hinnant, J Benjamin

    2011-08-01

    Allostatic load theory hypothesizes that stress and the body's responses to stressors contribute to longer term physiological changes in multiple systems over time (allostasis), and that shifts in how these systems function have implications for adjustment and health. We investigated these hypotheses with longitudinal data from two independent samples (n = 413; 219 girls, 194 boys) with repeated measures at ages 8, 9, 10, and 11. Initial parental marital conflict and its change over time indexed children's exposure to an important familial stressor, which was examined in interaction with children's respiratory sinus arrhythmia (RSA) reactivity to laboratory tasks (stress response) to predict children's basal levels of RSA over time. We also investigated children's sex as an additional possible moderator. Our second research question focused on examining whether initial levels and changes in resting RSA over time predicted children's externalizing behavior. Boys with a strong RSA suppression response to a frustrating laboratory task who experienced higher initial marital conflict or increasing marital conflict over time showed decreases in their resting RSA over time. In addition, boys' initial resting RSA (but not changes in resting RSA over time) was negatively related to change over time in externalizing symptoms. Findings for girls were more mixed. Results are discussed in the context of developmental psychobiology, allostatic load, and implications for the development of psychopathology.

  19. Neighborhood Socioeconomic Deprivation and Allostatic Load: A Scoping Review.

    PubMed

    Ribeiro, Ana Isabel; Amaro, Joana; Lisi, Cosima; Fraga, Silvia

    2018-05-28

    Residing in socioeconomically deprived neighborhoods may pose substantial physiological stress, which can then lead to higher allostatic load (AL), a marker of biological wear and tear that precedes disease. The aim of the present study was to map the current evidence about the relationship between neighborhood socioeconomic deprivation and AL. A scoping review approach was chosen to provide an overview of the type, quantity, and extent of research available. The review was conducted using three bibliographic databases (PubMed, SCOPUS, and Web of Science) and a standardized protocol. Fourteen studies were identified. Studies were predominantly from the USA, cross-sectional, focused on adults, and involved different races and ethnic groups. A wide range of measures of AL were identified: the mode of the number of biomarkers per study was eight but with large variability (range: 6⁻24). Most studies ( n = 12) reported a significant association between neighborhood deprivation and AL. Behaviors and environmental stressors seem to mediate this relationship and associations appear more pronounced among Blacks, men, and individuals with poor social support. Such conclusions have important public health implications as they enforce the idea that neighborhood environment should be improved to prevent physiological dysregulation and consequent chronic diseases.

  20. Impaired sleep and allostatic load: cross-sectional results from the Danish Copenhagen Aging and Midlife Biobank.

    PubMed

    Clark, Alice Jessie; Dich, Nadya; Lange, Theis; Jennum, Poul; Hansen, Ase Marie; Lund, Rikke; Rod, Naja Hulvej

    2014-12-01

    Understanding the mechanisms linking sleep impairment to morbidity and mortality is important for future prevention, but these mechanisms are far from elucidated. We aimed to determine the relation between impaired sleep, both in terms of duration and disturbed sleep, and allostatic load (AL), which is a measure of systemic wear and tear of multiple body systems, as well as with individual risk markers within the cardiac, metabolic, anthropometric, and immune system. A cross-sectional population-based study of 5226 men and women from the Danish Copenhagen Aging and Midlife Biobank with comprehensive information on sleep duration, disturbed sleep, objective measures of an extensive range of biological risk markers, and physical conditions. Long sleep (mean difference 0.23; 95% confidence interval, 0.13, 0.32) and disturbed sleep (0.14; 0.06, 0.22) were associated with higher AL as well as with high-risk levels of risk markers from the anthropometric, metabolic, and immune system. Sub-analyses suggested that the association between disturbed sleep and AL might be explained by underlying disorders. Whereas there was no association between short sleep and AL, the combination of short and disturbed sleep was associated with higher AL (0.19; 0.08, 0.30) and high-risk levels of immune system markers. Our study suggests small but significant differences in the distribution of allostatic load, a pre-clinical indicator of disease risk and premature death, for people with impaired relative to normal sleep. Impaired sleep may be a risk factor for developing disease and be a risk marker for underlying illness or sleep disorders. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Marital conflict, respiratory sinus arrhythmia, and allostatic load: Interrelations and associations with the development of children’s externalizing behavior

    PubMed Central

    El-Sheikh, Mona; Hinnant, J. Benjamin

    2011-01-01

    Allostatic load theory hypothesizes that stress and the body’s responses to stressors contribute to longer term physiological changes in multiple systems over time (allostasis), and that shifts in how these systems function have implications for adjustment and health. We investigated these hypotheses with longitudinal data from two independent samples (n = 413; 219 girls, 194 boys) with repeated measures at ages 8, 9, 10, and 11. Initial parental marital conflict and its change over time indexed children’s exposure to an important familial stressor, which was examined in interaction with children’s respiratory sinus arrhythmia (RSA) reactivity to laboratory tasks (stress response) to predict children’s basal levels of RSA over time. We also investigated children’s sex as an additional possible moderator. Our second research question focused on examining whether initial levels and changes in resting RSA over time predicted children’s externalizing behavior. Boys with a strong RSA suppression response to a frustrating laboratory task who experienced higher initial marital conflict or increasing marital conflict over time showed decreases in their resting RSA over time. In addition, boys’ initial resting RSA (but not changes in resting RSA over time) was negatively related to change over time in externalizing symptoms. Findings for girls were more mixed. Results are discussed in the context of developmental psychobiology, allostatic load, and implications for the development of psychopathology. PMID:21756434

  2. Neighborhood Poverty and Allostatic Load in African American Youth

    PubMed Central

    Lei, Man-Kit; Chen, Edith; Miller, Gregory E.

    2014-01-01

    OBJECTIVE: This study was designed to determine whether living in a neighborhood in which poverty levels increase across adolescence is associated with heightened levels of allostatic load (AL), a biological composite reflecting cardiometabolic risk. The researchers also sought to determine whether receipt of emotional support could ameliorate the effects of increases in neighborhood poverty on AL. METHODS: Neighborhood concentrations of poverty were obtained from the Census Bureau for 420 African American youth living in rural Georgia when they were 11 and 19 years of age. AL was measured at age 19 by using established protocols for children and adolescents. When youth were 18, caregivers reported parental emotional support and youth assessed receipt of peer and mentor emotional support. Covariates included family poverty status at ages 11 and 19, family financial stress, parental employment status, youth stress, and youths’ unhealthful behaviors. RESULTS: Youth who lived in neighborhoods in which poverty levels increased from ages 11 to 19 evinced the highest levels of AL even after accounting for the individual-level covariates. The association of increasing neighborhood poverty across adolescence with AL was not significant for youth who received high emotional support. CONCLUSIONS: This study is the first to show an association between AL and residence in a neighborhood that increases in poverty. It also highlights the benefits of supportive relationships in ameliorating this association. PMID:25311604

  3. Perceived Discrimination among African American Adolescents and Allostatic Load: A Longitudinal Analysis with Buffering Effects

    PubMed Central

    Brody, Gene H.; Lei, Man-Kit; Chae, David H.; Yu, Tianyi; Kogan, Steven M.; Beach, Steven R. H.

    2013-01-01

    This study was designed to examine the prospective relations of perceived racial discrimination with allostatic load (AL), along with a possible buffer of the association. A sample of 331 African Americans in the rural South provided assessments of perceived discrimination from ages 16 to 18 years. When youths were 18, caregivers reported parental emotional support, and youths assessed peer emotional support. AL and potential confounder variables were assessed when youths were 20. Latent Growth Mixture Modeling identified two perceived discrimination classes: high and stable and low and increasing. Adolescents in the high and stable class evinced heightened AL even with confounder variables controlled. The racial discrimination to AL link was not significant for young adults who received high emotional support. PMID:24673162

  4. Social status and biological dysregulation: the "status syndrome" and allostatic load.

    PubMed

    Seeman, Melvin; Stein Merkin, Sharon; Karlamangla, Arun; Koretz, Brandon; Seeman, Teresa

    2014-10-01

    Data from a national sample of 1255 adults who were part of the MIDUS (Mid-life in the U.S.) follow-up study and agreed to participate in a clinic-based in-depth assessment of their health status were used to test the hypothesis that, quite part from income or educational status, perceptions of lower achieved rank relative to others and of relative inequality in key life domains would be associated with greater evidence of biological health risks (i.e., higher allostatic load). Results indicate that over a variety of status indices (including, for example, the person's sense of control, placement in the community rank hierarchy, perception of inequality in the workplace) a syndrome of perceived relative deprivation is associated with higher levels of biological dysregulation. The evidence is interpreted in light of the well-established associations between lower socio-economic status and various clinically identified health morbidities. The present evidence serves, in effect, both as a part of the explanation of how socio-economic disparities produce downstream morbidity, and as an early warning system regarding the ultimate health effects of currently increasing status inequalities. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Allostasis and Allostatic Load in the Context of Poverty in Early Childhood

    PubMed Central

    Blair, Clancy; Raver, Cybele; Granger, Douglas; Mills-Koonce, Roger; Hibel, Leah

    2014-01-01

    This paper examined the relation of early environmental adversity associated with poverty to child resting or basal level of cortisol in a prospective longitudinal sample of 1,135 children seen at 7, 15, 24, 35, and 48 months of age. We found main effects for length of time in poverty, poor housing quality, African American ethnicity, and low positive caregiving behavior in which each was uniquely associated with an overall higher level of cortisol from age 7 months to 48 months. We also found that two aspects of the early environment in the context of poverty, adult exits from the home and perceived economic insufficiency, were related to salivary cortisol in a time dependent manner. The effect for the first of these, exits from the home, was consistent with the principle of allostatic load in which the effects of adversity on stress physiology accumulate over time. The effect for perceived economic insufficiency was one in which insufficiency was associated with higher levels of cortisol in infancy but with a typical but steeper decline in cortisol with age at subsequent time points. PMID:21756436

  6. Hypocortisolism as a potential marker of allostatic load in children: Associations with family risk and internalizing disorders

    PubMed Central

    Watamura, Sarah Enos; Hankin, Benjamin L.

    2014-01-01

    Although the majority of research attention to the HPA-axis in stress-related disorders and as a marker of allostatic load has focused on over-activation of this stress system, theory and data clearly indicate that under-activation is also an important type of dysregulation. In the current study, we focused on low cortisol, exploring a constellation of risk factors comprised of stress exposure, maternal depression, and attenuated basal and stress reactive cortisol in two samples of children. The first sample is 110 preschoolers living in high stress environments. Cortisol was assessed across the day at home and at child care as well as across two stress paradigms. These data were used to classify whether children’s HPA-axis activity was attenuated. Serious family financial strain, maternal depression, and attenuated cortisol all made unique contributions in models predicting current clinical levels of internalizing symptoms as rated by mothers and teachers. The second sample was 166 3rd, 6th, and 9th graders studied 5 times across a 1-year period. Maternal and child depression were determined through structured clinical interviews, and stress exposure was assessed via checklist and interview techniques with the child and the parent. Cortisol was assessed multiple times across a lab visit at time 1, and these data were combined into a single continuous measure. Cortisol concentrations across the lab visit interacted with stress exposure across the year such that children with lower average cortisol at time 1, maternal depressive symptoms, and increased stress across the 12 months showed increasing levels of internalizing symptoms. Based on these and related data we propose that prior to puberty, low cortisol may be an important marker of allostatic load, particularly for risk of depression and anxiety. PMID:21756439

  7. Re-employment, job quality, health and allostatic load biomarkers: prospective evidence from the UK Household Longitudinal Study

    PubMed Central

    Chandola, Tarani; Zhang, Nan

    2018-01-01

    Abstract Background There is little evidence on whether becoming re-employed in poor quality work is better for health and well-being than remaining unemployed. We examined associations of job transition with health and chronic stress-related biomarkers among a population-representative cohort of unemployed British adults. Methods A prospective cohort of 1116 eligible participants aged 35 to 75 years, who were unemployed at wave 1 (2009/10) of the UK Household Longitudinal Study, were followed up at waves 2 (2010/11) and 3 (2011/12) for allostatic load biomarkers and self-reported health. Negative binomial and multiple regression models estimated the association between job adversity and these outcomes. Results Compared with adults who remained unemployed, formerly unemployed adults who transitioned into poor quality jobs had higher levels of overall allostatic load (0.51, 0.32–0.71), log HbA1c (0.06, <0.001–0.12), log triglycerides (0.39, 0.22–0.56), log C-reactive protein (0.45, 0.16–0.75), log fibrinogen (0.09, 0.01–0.17) and total cholesterol to high-density lipoprotein (HDL) ratio (1.38, 0.88–1.88). Moreover, physically healthier respondents at wave 1 were more likely to transition into good quality and poor quality jobs after 1 year than those who remained unemployed. Conclusions Formerly unemployed adults who transitioned into poor quality work had greater adverse levels of biomarkers compared with their peers who remained unemployed. The selection of healthier unemployed adults into these poor quality or stressful jobs was unlikely to explain their elevated levels of chronic stress-related biomarkers. Job quality cannot be disregarded from the employment success of the unemployed, and may have important implications for their health and well-being. PMID:29024973

  8. [Work-related Stress and the Allostatic Load Index - A Systematic Review].

    PubMed

    Mauss, D; Li, J; Schmidt, B; Angerer, P; Jarczok, M N

    2017-12-01

    Work-related stress is a growing social challenge and has been associated with reduced employee health, well-being, and productivity. One tool to measure the stress-related wear and tear of the body is the Allostatic Load Index (ALI). This review summarizes recent evidence on the association between work-related stress and ALI in working adults. A systematic literature search following the PRISMA-Statement was conducted in 21 databases including Medline, PubPsych, MedPilot, and Cochrane Register. Publications addressing work related-stress and medical parameters using ALI were considered. Data on study population, analytic techniques, and results were tabulated. Methodological quality was evaluated using a standardized checklist. 9 articles were identified with a total of 3 532 employees from 5 countries reporting cross-sectional data from the years 2003-2013. Overall, 7 studies reported a positive and significant association between work-related stress and ALI, while 2 studies showed no or an insignificant association. Substantial heterogeneity was observed in methods applied and study quality. This systematic review provides evidence that work-related stress is associated with ALI in cross-sectional studies. This association needs to be demonstrated by future studies using longitudinal data on working populations. © Georg Thieme Verlag KG Stuttgart · New York.

  9. Chronic stress and illness in children: the role of allostatic load.

    PubMed

    Johnston-Brooks, C H; Lewis, M A; Evans, G W; Whalen, C K

    1998-01-01

    Recent studies of stress have highlighted the contributions of chronic psychological and environmental stressors to health and well-being. Children may be especially vulnerable to the negative effects of chronic stressors. Allostasis, the body's ability to adapt and adjust to environmental demands, has been proposed as an explanatory mechanism for the stress-health link, yet empirical evidence is minimal. This study tested the proposition that allostasis may be an underlying physiological mechanism linking chronic stress to poor health outcomes in school-aged children. Specifically, we examined whether allostasis would mediate or moderate the link between chronic stress and health. To test the hypothesis that allostasis contributes to the relation between chronic stress and poor health, we examined household density as a chronic environmental stressor, cardiovascular reactivity (CVR) as a marker of allostatic load, and number of school absences due to illness as the health outcome in a sample of 81 boys. Structural equation modeling indicated that the mediating model fit the data well, accounting for 17% of the variance in days ill. Results provide the first evidence that CVR may mediate the relation between household density and medical illness in children. More generally, these findings support the role of allostasis as an underlying mechanism in the link between chronic stress and health.

  10. Social Relationships and Allostatic Load in the MIDUS Study

    PubMed Central

    Brooks, Kathryn P.; Gruenwald, Tara; Karlamanga, Arun; Hu, Peifung; Koretz, Brandon; Seeman, Teresa E.

    2014-01-01

    OBJECTIVE This study examines how the social environment is related to allostatic load (AL), a multi-system index of biological risk. METHODS A national sample of adults (N = 949) aged 34-84 rated their relationships with spouse, family, and friends at two time points 10 years apart. At the second time point, participants completed a biological protocol in which indices of autonomic, hypothalamic-pituitary-adrenal axis, cardiovascular, inflammatory, and metabolic function were obtained and used to create an AL summary score. Generalized estimating equations were used to examine the associations among three aspects of social relationships – social support, social negativity, and frequency of social contact – and AL. RESULTS Higher levels of spouse negativity, family negativity, friend contact, and network level contact were each associated with higher AL, and higher levels of spouse support were associated with lower AL, independent of age, sociodemographic factors, and health covariates. Tests for age interactions suggested that friend support and network support were each associated with higher AL among older adults, but at younger ages there appeared to be no association between friend support and AL and a negative association between network support and AL. For network negativity, there was a marginal interaction such that network negativity was associated with higher AL among younger adults but there was no association among older adults. CONCLUSIONS These findings demonstrate that structural and functional aspects of the social environment are associated with AL, and extend previous work by demonstrating that these associations vary based on the type of relationship assessed and by age. PMID:24447186

  11. An immune risk phenotype, cognitive impairment, and survival in very late life: impact of allostatic load in Swedish octogenarian and nonagenarian humans.

    PubMed

    Wikby, Anders; Ferguson, Frederick; Forsey, Rosalyn; Thompson, Julie; Strindhall, Jan; Löfgren, Sture; Nilsson, Bengt-Olof; Ernerudh, Jan; Pawelec, Graham; Johansson, Boo

    2005-05-01

    In the previous OCTO longitudinal study, we identified an immune risk phenotype (IRP) of high CD8 and low CD4 numbers and poor proliferative response. We also demonstrated that cognitive impairment constitutes a major predictor of nonsurvival. In the present NONA longitudinal study, we simultaneously examine in a model of allostatic load IRP and compromised cognition in 4-year survival in a population-based sample (n = 138, 86-94 years). Immune system measurements consisted of determinations of T-cell subsets, plasma interleukin 6 and cytomegalovirus and Epstein-Barr virus serology. Interleukin 2 responsiveness to concanavalin A, using data from the previous OCTO (octogenarians) immune study, hereafter OCTO immune, was also examined. Cognitive status was rated using a battery of neuropsychological tests. Logistic regression indicated that the IRP and cognitive impairment together predicted 58% of observed deaths. IRP was associated with late differentiated CD8+CD28-CD27- cells (p < .001), decreased interleukin 2 responsiveness (p < .05) and persistent viral infection (p < .01). Cognitive impairment was associated with increased plasma interleukin 6 (p < .001). IRP individuals with cognitive impairment were all deceased at the follow-up, indicating an allostatic overload.

  12. Relationship of Psychosocial Resources with Allostatic Load: A Systematic Review

    PubMed Central

    Wiley, Joshua F.; Bei, Bei; Bower, Julienne E.; Stanton, Annette L.

    2016-01-01

    Objective Allostatic load (AL) represents cumulative wear-and-tear on the body, and is operationalized as a multi-system index of biomarkers. AL is associated with morbidities and mortality, leading to a growing body of literature that uses AL as an outcome on its own right. Psychosocial resources (PSRs), such as mastery and social support, may influence health outcomes in part via AL, and the current review seeks to characterize the relations between PSRs and AL. Methods A systematic review was conducted by searching PubMed, CINAHL Plus, PsycINFO, Scopus, and Embase for studies examining the relation between PSR(s) and AL in humans. From 1,417 abstracts screened, 60 full-text articles were reviewed, and 24 studies met inclusion criteria. Results Mixed evidence exists for a relationship between PSRs and AL. Most (14/24) studies used a cross-sectional design and only one study investigated whether a PSR predicted change in AL. Compared to cross-sectional studies, longitudinal studies were more likely to report a significant relationship (8/14 versus 8/10, respectively). Studies with statistically significant main or moderated effects had larger sample sizes than those reporting null effects. Whether a study reported a significant main or moderated relationship did not differ by whether psychological (8/11) or social (10/16) resources were assessed. Conclusions Evidence for a relationship between PSRs and AL is equivocal, and obtained significant relationships are generally small in magnitude. Gaps in the current literature and directions for future research are discussed. Longitudinal studies are needed that repeatedly assess PSRs and AL. PMID:27768647

  13. Marital Conflict, Allostatic Load, and the Development of Children's Fluid Cognitive Performance

    ERIC Educational Resources Information Center

    Hinnant, J. Benjamin; El-Sheikh, Mona; Keiley, Margaret; Buckhalt, Joseph A.

    2013-01-01

    Relations between marital conflict, children's respiratory sinus arrhythmia (RSA), and fluid cognitive performance were examined over 3 years to assess allostatic processes. Participants were 251 children reporting on marital conflict, baseline RSA, and RSA reactivity (RSA-R) to a lab challenge were recorded, and fluid cognitive performance…

  14. Social relationships and allostatic load in Taiwanese elderly and near elderly.

    PubMed

    Seeman, Teresa; Glei, Dana; Goldman, Noreen; Weinstein, Maxine; Singer, Burt; Lin, Yu-Hsuan

    2004-12-01

    Despite the increasing evidence linking aspects of the social environment to a range of health outcomes, important questions remain concerning the precise mechanisms or pathways through which social circumstances exert their influence. Biological pathways are one important area of current research interest. Using data from the Social Environment and Biomarkers of Aging Study (SEBAS) in Taiwan, we examined relationships between social environment characteristics and an index of cumulative biological dysregulation ("allostatic load," AL) in near elderly (NE) (aged 54-70) and elderly Taiwanese (aged 71+). Longitudinal data on levels of social integration and extent of social support were used to predict cumulative AL at the final survey year. Linear regression analyses revealed that among the NE, presence of a spouse between 1996 and 2000 was associated with lower AL in 2000 among men, but not women. Among the elderly, ties with close friends and/or neighbors were found to be significantly related to lower AL for both men and women. Perceived qualities of these social relationships did not show consistent associations with AL. This relatively modest set of significant relationships stands in contrast to somewhat stronger patterns of findings from studies in Western societies. Cross-cultural differences between Western societies and an East Asian society such as Taiwan raise the intriguing possibility that contextual, normative influences on social experience affect the patterns of association between features of these social worlds and the physiological substrates of health.

  15. Cumulative neighborhood risk of psychosocial stress and allostatic load in adolescents.

    PubMed

    Theall, Katherine P; Drury, Stacy S; Shirtcliff, Elizabeth A

    2012-10-01

    The authors examined the impact of cumulative neighborhood risk of psychosocial stress on allostatic load (AL) among adolescents as a mechanism through which life stress, including neighborhood conditions, may affect health and health inequities. They conducted multilevel analyses, weighted for sampling and propensity score-matched, among adolescents aged 12-20 years in the National Health and Nutrition Examination Survey (1999-2006). Individuals (first level, n = 11,886) were nested within families/households (second level, n = 6,696) and then census tracts (third level, n = 2,191) for examination of the contextual effect of cumulative neighborhood risk environment on AL. Approximately 35% of adolescents had 2 or more biomarkers of AL. A significant amount of variance in AL was explained at the neighborhood level. The likelihood of having a high AL was approximately 10% higher for adolescents living in medium-cumulative-risk neighborhoods (adjusted odds ratio (OR) = 1.09, 95% confidence interval (CI): 1.08, 1.09), 28% higher for those living in high-risk neighborhoods (adjusted OR = 1.28, 95% CI: 1.27, 1.30), and 69% higher for those living in very-high-risk neighborhoods (adjusted OR = 1.69, 95% CI: 1.68, 1.70) as compared with adolescents living in low-risk areas. Effect modification was observed by both individual- and neighborhood-level sociodemographic factors. These findings offer support for the hypothesis that neighborhood risks may culminate in a range of biologically mediated negative health outcomes detectable in adolescents.

  16. Cumulative Neighborhood Risk of Psychosocial Stress and Allostatic Load in Adolescents

    PubMed Central

    Theall, Katherine P.; Drury, Stacy S.; Shirtcliff, Elizabeth A.

    2012-01-01

    The authors examined the impact of cumulative neighborhood risk of psychosocial stress on allostatic load (AL) among adolescents as a mechanism through which life stress, including neighborhood conditions, may affect health and health inequities. They conducted multilevel analyses, weighted for sampling and propensity score-matched, among adolescents aged 12–20 years in the National Health and Nutrition Examination Survey (1999–2006). Individuals (first level, n = 11,886) were nested within families/households (second level, n = 6,696) and then census tracts (third level, n = 2,191) for examination of the contextual effect of cumulative neighborhood risk environment on AL. Approximately 35% of adolescents had 2 or more biomarkers of AL. A significant amount of variance in AL was explained at the neighborhood level. The likelihood of having a high AL was approximately 10% higher for adolescents living in medium-cumulative-risk neighborhoods (adjusted odds ratio (OR) = 1.09, 95% confidence interval (CI): 1.08, 1.09), 28% higher for those living in high-risk neighborhoods (adjusted OR = 1.28, 95% CI: 1.27, 1.30), and 69% higher for those living in very-high-risk neighborhoods (adjusted OR = 1.69, 95% CI: 1.68, 1.70) as compared with adolescents living in low-risk areas. Effect modification was observed by both individual- and neighborhood-level sociodemographic factors. These findings offer support for the hypothesis that neighborhood risks may culminate in a range of biologically mediated negative health outcomes detectable in adolescents. PMID:23035140

  17. Household crowding is associated with higher allostatic load among the Inuit.

    PubMed

    Riva, Mylene; Plusquellec, Pierrich; Juster, Robert-Paul; Laouan-Sidi, Elhadji A; Abdous, Belkacem; Lucas, Michel; Dery, Serge; Dewailly, Eric

    2014-04-01

    Household crowding is an important problem in some aboriginal communities that is reaching particularly high levels among the circumpolar Inuit. Living in overcrowded conditions may endanger health via stress pathophysiology. This study examines whether higher household crowding is associated with stress-related physiological dysregulations among the Inuit. Cross-sectional data on 822 Inuit adults were taken from the 2004 Qanuippitaa? How are we? Nunavik Inuit Health Survey. Chronic stress was measured using the concept of allostatic load (AL) representing the multisystemic biological 'wear and tear' of chronic stress. A summary index of AL was constructed using 14 physiological indicators compiled into a traditional count-based index and a binary variable that contrasted people at risk on at least seven physiological indicators. Household crowding was measured using indicators of household size (total number of people and number of children per house) and overcrowding defined as more than one person per room. Data were analysed using weighted Generalised Estimating Equations controlling for participants' age, sex, income, diet and involvement in traditional activities. Higher household crowding was significantly associated with elevated AL levels and with greater odds of being at risk on at least seven physiological indicators, especially among women and independently of individuals' characteristics. This study demonstrates that household crowding is a source of chronic stress among the Inuit of Nunavik. Differential housing conditions are shown to be a marker of health inequalities among this population. Housing conditions are a critical public health issue in many aboriginal communities that must be investigated further to inform healthy and sustainable housing strategies.

  18. Association of allostatic load with brain structure and cognitive ability in later life

    PubMed Central

    Booth, Tom; Royle, Natalie A.; Corley, Janie; Gow, Alan J.; Valdés Hernández, Maria del C.; Muñoz Maniega, Susana; Ritchie, Stuart J.; Bastin, Mark E.; Starr, John M.; Wardlaw, Joanna M.; Deary, Ian J.

    2015-01-01

    Allostatic load (AL) has been proposed as a general framework for understanding the cumulative effects of life stress on individuals. Despite growing interest in AL, limited research has been conducted on aging samples. We consider the association of AL (operationalized by a range of inflammatory, cardiovascular, and metabolic measures) with a range of brain volume measurements and cognitive ability in a large cohort sample of older adults (n = 658, mean age = 72.5 years, standard deviation = 0.7) using structural equation modeling. AL was significantly inversely associated with total brain volume (range of standardized β = −0.16 to −0.20) and white-matter volume (−0.35 to −0.36) and positively with hippocampal volume (0.10–0.15) but not gray-matter volume (0.04). AL was also significantly inversely associated with general cognitive ability (range β = −0.13 to −0.20), processing speed (−0.20 to −0.22), and knowledge (−0.18 to −0.20) but not memory or nonverbal reasoning. The associations of AL with cognitive abilities were not mediated by these brain volume measures. AL did not predict cognitive change from age 11 to approximately age 73. The findings suggest a link between AL and later life brain health and cognitive functioning. PMID:25659881

  19. Mediating pathways between parental socio-economic position and allostatic load in mid-life: Findings from the 1958 British birth cohort.

    PubMed

    Barboza Solís, Cristina; Fantin, Romain; Castagné, Raphaële; Lang, Thierry; Delpierre, Cyrille; Kelly-Irving, Michelle

    2016-09-01

    Understanding how human environments affect our health by "getting under the skin" and penetrating the cells, organs and physiological systems of our bodies is a key tenet in public health research. Here, we examine the idea that early life socioeconomic position (SEP) can be biologically embodied, potentially leading to the production of health inequalities across population groups. Allostatic load (AL), a composite measure of overall physiological wear-and-tear, could allow for a better understanding of the potential biological pathways playing a role in the construction of the social gradient in adult health. We investigate the factors mediating the link between two components of parental SEP, maternal education (ME) and parental occupation (PO), and AL at 44 years. Data was used from 7573 members of the 1958 British birth cohort follow-up to age 44. AL was constructed using 14 biomarkers representing four physiological systems. We assessed the contribution of financial/materialist, psychological/psychosocial, educational, and health behaviors/BMI pathways over the life course, in mediating the associations between ME, PO and AL. ME and PO were mediated by three pathways: educational, material/financial, and health behaviors, for both men and women. A better understanding of embodiment processes leading to disease development may contribute to developing adapted public policies aiming to reduce health inequalities. Copyright © 2016. Published by Elsevier Ltd.

  20. The Relationship between Allostatic Load and Psychosocial Characteristics among Women Veterans.

    PubMed

    Beckie, Theresa M; Duffy, Allyson; Groer, Maureen W

    2016-01-01

    Allostatic load (AL) is a novel perspective for examining the damaging effects of stress on health and disease. Women veterans represent an understudied yet vulnerable subgroup of women with increased reports of traumatic stressors across their lifespan. AL has not been examined in this group. This study hypothesized that reports of sexual assault in childhood, civilian life, or in the military by women veterans was associated with AL and selected psychosocial measures. We also hypothesized that AL scores are positively associated with psychosocial characteristics. Using a cross-sectional design, psychosocial and physiological data were obtained from women veterans (n = 81; 24-70 years old). The AL score was 3.03 ± 2.36 and positively associated with age (p = .001). There was a trend for higher pain scores for women with an AL score of 2 or greater compared with those with an AL score of less than 2. There were significant differences in the Somatic Subscale of the Center for Epidemiological Depression Scale among the sexual assault categories with increasing scores among women reporting sexual assault in childhood, military, and civilian life (p = .049). The scores of the Profile of Mood States Depression/Dejection Subscale (p = .015), the Post-Traumatic Checklist- Military (p = .002), and the Pain Outcome Questionnaire (p = .001) were associated with sexual assault categories in a dose-response fashion. AL was associated positively with age, and sexual assault categories were associated with increased somatization, depressed mood, posttraumatic symptoms and pain. Assessing both AL and sexual trauma are critical for preventing and managing the subsequent negative health consequences among women veterans. Copyright © 2016 Jacobs Institute of Women's Health. Published by Elsevier Inc. All rights reserved.

  1. Sex and Gender Roles in Relation to Mental Health and Allostatic Load.

    PubMed

    Juster, Robert-Paul; Pruessner, Jens C; Desrochers, Alexandra Bisson; Bourdon, Olivier; Durand, Nadia; Wan, Nathalie; Tourjman, Valérie; Kouassi, Edouard; Lesage, Alain; Lupien, Sonia J

    2016-09-01

    Beyond male/female binaries, gender roles represent masculine and feminine traits that we assimilate and enact throughout life span development. Bem proposed that "androgynous" individuals adeptly adapt to different contexts by alternating from a strong repertoire of both masculine and feminine gender roles. By contrast, "undifferentiated" individuals may not adapt as well to social norms because of weak self-endorsed masculinity and femininity. Among 204 adults (mean [standard error] age = 40.4 [0.9] years; 70% women) working in a psychiatric hospital, we hypothesized that androgynous individuals would present better mental health and less physiological dysregulations known as allostatic load (AL) than undifferentiated individuals. AL was indexed using 20 biomarkers using the conventional "all-inclusive" formulation that ascribes cutoffs without regard for sex or an alternative "sex-specific" formulation with cutoffs tailored for each sex separately while controlling for sex hormones (testosterone, estradiol, progesterone). Well-validated questionnaires were used. Independent of sex, androgynous individuals experienced higher self-esteem and well-being and lower depressive symptoms than did undifferentiated individuals. Men manifested higher AL than did women using the all-inclusive AL index (p = .044, ηP = 0.025). By contrast, the sex-specific AL algorithm unmasked a sex by gender roles interaction for AL (p = .043, ηP = 0.048): with the highest AL levels in undifferentiated men. Analysis using a gender index based on seven gendered constructs revealed that a greater propensity toward feminine characteristics correlated only with elevated sex-specific AL (r = 0.163, p = .025). Beyond providing psychobiological evidence for Bem's theory, this study highlights how sex-specific AL formulations detect the effects of sociocultural gender.

  2. Marital Conflict, Allostatic Load, and the Development of Children's Fluid Cognitive Performance

    PubMed Central

    Hinnant, J. Benjamin; El-Sheikh, Mona; Keiley, Margaret; Buckhalt, Joseph A.

    2013-01-01

    Relations between marital conflict, children’s respiratory sinus arrhythmia (RSA), and fluid cognitive performance were examined over three years to assess allostatic processes. Participants were 251 children reporting on marital conflict, baseline RSA and RSA reactivity to a lab challenge were recorded, and fluid cognitive performance was measured using the Woodcock-Johnson III. A cross-lagged model showed that higher levels of marital conflict at age 8 predicted weaker RSA-R at age 9 for children with lower baseline RSA. A growth model showed that lower baseline RSA in conjunction with weaker RSA-R predicted the slowest development of fluid cognitive performance. Findings suggest that stress may affect development of physiological systems regulating attention, which are tied to the development of fluid cognitive performance. PMID:23534537

  3. Social Patterning of Cumulative Biological Risk by Education and Income Among African Americans

    PubMed Central

    Diez Roux, Ana V.; Gebreab, Samson Y.; Wyatt, Sharon B.; Dubbert, Patricia M.; Sarpong, Daniel F.; Sims, Mario; Taylor, Herman A.

    2012-01-01

    Objectives. We examined the social patterning of cumulative dysregulation of multiple systems, or allostatic load, among African Americans adults. Methods. We examined the cross-sectional associations of socioeconomic status (SES) with summary indices of allostatic load and neuroendocrine, metabolic, autonomic, and immune function components in 4048 Jackson Heart Study participants. Results. Lower education and income were associated with higher allostatic load scores in African American adults. Patterns were most consistent for the metabolic and immune dimensions, less consistent for the autonomic dimension, and absent for the neuroendocrine dimension among African American women. Associations of SES with the global allostatic load score and the metabolic and immune domains persisted after adjustment for behavioral factors and were stronger for income than for education. There was some evidence that the neuroendocrine dimension was inversely associated with SES after behavioral adjustment in men, but the immune and autonomic components did not show clear dose–response trends, and we observed no associations for the metabolic component. Conclusions. Findings support our hypothesis that allostatic load is socially patterned in African American women, but this pattern is less consistent in African American men. PMID:22594727

  4. Work Stress, Caregiving and Allostatic Load: Prospective results from Whitehall II cohort study

    PubMed Central

    Dich, Nadya; Lange, Theis; Head, Jenny; Rod, Naja Hulvej

    2015-01-01

    Objective Studies investigating health effects of work and family stress usually consider these factors in isolation. The present study investigated prospective interactive effects of job strain and informal caregiving on allostatic load (AL), a multisystem indicator of physiological dysregulation. Methods Subjects were 7,007 British civil servants from the Whitehall II cohort study. Phase 3 (1991-1994) served as the baseline, Phases 5 (1997-1999) and 7 (2002-2004) as follow-ups. Job strain (high job demands combined with low control) and caregiving (providing care to aged or disabled relatives) were assessed at baseline. AL index (possible range 0-9) was assessed at baseline and both follow-ups based on 9 cardiovascular, metabolic and immune biomarkers. Linear mixed effect models were used to examine the association of job strain and caregiving with AL. Results High caregiving burden (above the sample median weekly hours of providing care) predicted higher AL levels, with the effect strongest in those also reporting job strain [b = 0.36, 95% CI: 0.01– 0.71)]; however, the interaction between job strain and caregiving was not significant (p = 0.56). Regardless of job strain, participants with low caregiving burden (below sample median) had lower subsequent AL levels than non-caregivers [b = 0.22, 95% CI: 0.06–0.37]. Conclusions The study provides some evidence for adverse effects of stress at work combined with family demands on physiological functioning. However, providing care to others may also have health protective effects if it does not involve excessive time commitment. PMID:25984826

  5. Stress and health behaviors as potential mediators of the relationship between neighborhood quality and allostatic load.

    PubMed

    Buschmann, Robert N; Prochaska, John D; Cutchin, Malcolm P; Peek, M Kristen

    2018-03-29

    Neighborhood quality is associated with health. Increasingly, researchers are focusing on the mechanisms underlying that association, including the role of stress, risky health behaviors, and subclinical measures such as allostatic load (AL). This study uses mixed-effects regression modeling to examine the association between two objective measures and one subjective measure of neighborhood quality and AL in an ethnically diverse population-based sample (N = 2706) from a medium-sized Texas city. We also examine whether several measures of psychological stress and health behaviors mediate any relationship between neighborhood quality and AL. In this sample, all three separate measures of neighborhood quality were associated with individual AL (P < .01). However, only the subjective measure, perceived neighborhood quality, was associated with AL after adjusting for covariates. In mixed-effects multiple regression models there was no evidence of mediation by either stress or health behaviors. In this study, only one measure of neighborhood quality was related to a measure of health, which contrasts with considerable previous research in this area. In this sample, neighborhood quality may affect AL through other mechanisms, or there may be other health-affecting factors is this area that share that overshadow local neighborhood variation. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Mismatch or allostatic load? Timing of life adversity differentially shapes gray matter volume and anxious temperament.

    PubMed

    Kuhn, Manuel; Scharfenort, Robert; Schümann, Dirk; Schiele, Miriam A; Münsterkötter, Anna L; Deckert, Jürgen; Domschke, Katharina; Haaker, Jan; Kalisch, Raffael; Pauli, Paul; Reif, Andreas; Romanos, Marcel; Zwanzger, Peter; Lonsdorf, Tina B

    2016-04-01

    Traditionally, adversity was defined as the accumulation of environmental events (allostatic load). Recently however, a mismatch between the early and the later (adult) environment (mismatch) has been hypothesized to be critical for disease development, a hypothesis that has not yet been tested explicitly in humans. We explored the impact of timing of life adversity (childhood and past year) on anxiety and depression levels (N = 833) and brain morphology (N = 129). Both remote (childhood) and proximal (recent) adversities were differentially mirrored in morphometric changes in areas critically involved in emotional processing (i.e. amygdala/hippocampus, dorsal anterior cingulate cortex, respectively). The effect of adversity on affect acted in an additive way with no evidence for interactions (mismatch). Structural equation modeling demonstrated a direct effect of adversity on morphometric estimates and anxiety/depression without evidence of brain morphology functioning as a mediator. Our results highlight that adversity manifests as pronounced changes in brain morphometric and affective temperament even though these seem to represent distinct mechanistic pathways. A major goal of future studies should be to define critical time periods for the impact of adversity and strategies for intervening to prevent or reverse the effects of adverse childhood life experiences. © The Author (2015). Published by Oxford University Press.

  7. Mismatch or allostatic load? Timing of life adversity differentially shapes gray matter volume and anxious temperament

    PubMed Central

    Kuhn, Manuel; Scharfenort, Robert; Schümann, Dirk; Schiele, Miriam A.; Münsterkötter, Anna L.; Deckert, Jürgen; Domschke, Katharina; Haaker, Jan; Kalisch, Raffael; Pauli, Paul; Reif, Andreas; Romanos, Marcel; Zwanzger, Peter

    2016-01-01

    Traditionally, adversity was defined as the accumulation of environmental events (allostatic load). Recently however, a mismatch between the early and the later (adult) environment (mismatch) has been hypothesized to be critical for disease development, a hypothesis that has not yet been tested explicitly in humans. We explored the impact of timing of life adversity (childhood and past year) on anxiety and depression levels (N = 833) and brain morphology (N = 129). Both remote (childhood) and proximal (recent) adversities were differentially mirrored in morphometric changes in areas critically involved in emotional processing (i.e. amygdala/hippocampus, dorsal anterior cingulate cortex, respectively). The effect of adversity on affect acted in an additive way with no evidence for interactions (mismatch). Structural equation modeling demonstrated a direct effect of adversity on morphometric estimates and anxiety/depression without evidence of brain morphology functioning as a mediator. Our results highlight that adversity manifests as pronounced changes in brain morphometric and affective temperament even though these seem to represent distinct mechanistic pathways. A major goal of future studies should be to define critical time periods for the impact of adversity and strategies for intervening to prevent or reverse the effects of adverse childhood life experiences. PMID:26568620

  8. Supportive Family Environments, Genes That Confer Sensitivity, and Allostatic Load Among Rural African American Emerging Adults: A Prospective Analysis

    PubMed Central

    Brody, Gene H.; Yu, Tianyi; Chen, Yi-fu; Kogan, Steven M.; Evans, Gary W.; Windle, Michael; Gerrard, Meg; Gibbons, Frederick X.; Simons, Ronald L.; Philibert, Robert A.

    2012-01-01

    The purpose of this study was to investigate interactions between exposure to supportive family environments and genetic characteristics, which were hypothesized to forecast variations in allostatic load (AL) in a representative sample of 315 rural African American youths. Data on family environments were gathered when youths were 11–13, and genetic data were collected when they were 16, years of age. Data on AL were obtained at the beginning of emerging adulthood, age 19 years. The data analyses revealed that, as predicted, emerging adults exposed to less supportive family environments across preadolescence manifested higher levels of AL when they carried the short (s) allele at the 5-HTTLPR and an allele of DRD4 with 7 or more repeats. This is an E(family environment) × G(5-HTTLPR status) × G(DRD4 status) interaction. These data suggest that African American youths carrying genes that confer sensitivity who are exposed to less supportive family environments may be at greater risk for adverse physical health consequences that AL presages. PMID:22468688

  9. Allostatic Perspectives in Women Veterans With a History of Childhood Sexual Assault.

    PubMed

    Groër, Maureen Wimberly; Kostas-Polston, Elizabeth A; Dillahunt-Aspillaga, Christina; Beckie, Theresa M; Johnson-Mallard, Versie; Duffy, Allyson; Evans, Mary E

    2016-07-01

    Women veterans have increased reports of sexual victimization compared to women in general, including childhood sexual assault (CSA) before military service, increasing the risk of military sexual trauma. Findings from recent studies reveal negative health effects following a history of CSA. There is a strong relationship between CSA and revictimization in civilian and military life, which may contribute to allostatic load. (1) To determine the relationship between women veterans' CSA history and later sexual assault history and (2) to determine the relationships between women veterans' CSA and primary mediators and secondary and tertiary outcomes of allostasis. Cross-sectional. Women (N = 81), 18-70 years old, veterans of the U.S. Armed Services. Participants completed questionnaires and blood and hair samples were collected. Several scales were utilized: Posttraumatic Checklist-Military, Center for Epidemiological Studies-Depression Scale, Pain Outcomes Questionnaire-Short Form, Cohen's Perceived Stress Scale (PSS), Profile of Mood States, and an investigator-developed sexual harassment/assault instrument. Thirty-three percent of participants reported CSA; of these, 38.5% reported military sexual assault and 70.3% sexual assault during civilian life. Those with CSA had higher cholesterol, triglycerides, perceived stress scores, and greater pain and fatigue than those without CSA. Hair cortisol was marginally lower in women with CSA when PSS was controlled, suggesting a dampened hypothalamic-pituitary-adrenal axis. These data suggest that some women veterans with a history of CSA may have increased allostatic load and be at increased risk for a variety of later life illnesses. © The Author(s) 2016.

  10. Mediators of the relationship between race and allostatic load in African and White Americans.

    PubMed

    Tomfohr, Lianne M; Pung, Meredith A; Dimsdale, Joel E

    2016-04-01

    Allostatic load (AL) is a cumulative index of physiological dysregulation, which has been shown to predict cardiovascular events and all-cause mortality. On average, African Americans (AA) have higher AL than their White American (WA) counterparts. This study investigated whether differences in discrimination, negative affect-related variables (e.g., experience and expression of anger, depression), and health practices (e.g., exercise, alcohol use, smoking, subjective sleep quality) mediate racial differences in AL. Participants included healthy, AA (n = 76) and WA (n = 100), middle-aged (Mage = 35.2 years) men (n = 98) and women (n = 78). Questionnaires assessed demographics, psychosocial variables, and health practices. Biological data were collected as part of an overnight hospital stay-AL score was composed of 11 biomarkers. The covariates age, gender, and socioeconomic status were held constant in each analysis. Findings showed significant racial differences in AL, such that AA had higher AL than their WA counterparts. Results of serial mediation indicated a pathway whereby racial group was associated with discrimination, which was then associated with increased experience of anger and decreased subjective sleep quality, which were associated with AL (e.g., race → discrimination → experience of anger → subjective sleep quality → AL); in combination, these variables fully mediated the relationship between race and AL (p < .05). These results suggest that discrimination plays an important role in explaining racial differences in an important indictor of early disease through its relationship with negative affect-related factors and health practices. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  11. Work stress, caregiving, and allostatic load: prospective results from the Whitehall II cohort study.

    PubMed

    Dich, Nadya; Lange, Theis; Head, Jenny; Rod, Naja Hulvej

    2015-06-01

    Studies investigating health effects of work and family stress usually consider these factors in isolation. The present study investigated prospective interactive effects of job strain and informal caregiving on allostatic load (AL), a multisystem indicator of physiological dysregulation. Participants were 7007 British civil servants from the Whitehall II cohort study. Phase 3 (1991-1994) served as the baseline, and Phases 5 (1997-1999) and 7 (2002-2004) served as follow-ups. Job strain (high job demands combined with low control) and caregiving (providing care to aged or disabled relatives) were assessed at baseline. AL index (possible range, 0-9) was assessed at baseline and both follow-ups based on nine cardiovascular, metabolic, and immune biomarkers. Linear mixed-effect models were used to examine the association of job strain and caregiving with AL. High caregiving burden (above the sample median weekly hours of providing care) predicted higher AL levels, with the effect strongest in those also reporting job strain (b = 0.36, 95% confidence interval = 0.01-0.71); however, the interaction between job strain and caregiving was not significant (p = .56). Regardless of job strain, participants with low caregiving burden (below sample median) had lower subsequent AL levels than did non-caregivers (b = -0.22, 95% confidence interval = -0.06--0.37). The study provides some evidence for adverse effects of stress at work combined with family demands on physiological functioning. However, providing care to others may also have health protective effects if it does not involve excessive time commitment.

  12. School education, physical performance in late midlife and allostatic load: a retrospective cohort study.

    PubMed

    Hansen, Åse M; Andersen, Lars L; Mendes de Leon, Carlos F; Bruunsgaard, Helle; Lund, Rikke

    2016-08-01

    The mechanisms underlying the social gradient in physical functioning are not fully understood. Cumulative physiological stress may be a pathway. The present study aimed to investigate the association between highest attained school education and physical performance in late midlife, and to determine to what extent cumulative physiological stress mediated these associations. The study is based on data from the Copenhagen Aging and Midlife Biobank (CAMB; n=5467 participants, aged 48-62 years, 31.5% women). School education was measured as highest examination passed in primary or secondary school (3 categories). Cumulative stress was operationalised as allostatic load (AL), and measured as the number of biological parameters (out of 14) in which participants scored in the poorest quartile. Physical performance included dynamic muscle performance (chair rise ability, postural balance, sagittal flexibility) and muscle strength (jump height, trunk extension and flexion, and handgrip strength). Among women, higher school education was associated with better performance in all physical performance tests. Among men, higher school education was associated with better performance only in chair rise and jump height. AL partially mediated the association between school education and physical performance, and accounted only for 2-30% of the total effect among women. Similar results were observed among men for chair rise and jump height. These results might indicate that AL plays a minor role in the association between school education and late midlife dynamic muscle performance in both men and women, and in muscle strength among women. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  13. A groundwork for allostatic neuro-education

    PubMed Central

    Gerdes, Lee; Tegeler, Charles H.; Lee, Sung W.

    2015-01-01

    We propose to enliven educational practice by marrying a conception of education as guided human development, to an advanced scientific understanding of the brain known as allostasis (stability through change). The result is a groundwork for allostatic neuro-education (GANE). Education as development encompasses practices including the organic (homeschooling and related traditions), cognitive acquisition (emphasis on standards and testing), and the constructivist (aimed to support adaptive creativity for both learner and society). Allostasis views change to be the norm in biology, defines success in contexts of complex natural environments rather than controlled settings, and identifies the brain as the organ of central command. Allostatic neuro-education contrasts with education focused dominantly on testing, or neuroscience based on homeostasis (stability through constancy). The GANE perspective is to view learners in terms of their neurodevelopmental trajectories; its objective is to support authentic freedom, mediated by competent, integrated, and expansive executive functionality (concordant with the philosophy of freedom of Rudolf Steiner); and its strategy is to be attuned to rhythms in various forms (including those of autonomic arousal described in polyvagal theory) so as to enable experiential excitement for learning. The GANE presents a variety of testable hypotheses, and studies that explore prevention or mitigation of the effects of early life adversity or toxic stress on learning and development may be of particular importance. Case studies are presented illustrating use of allostatic neurotechnology by an adolescent male carrying diagnoses of Asperger’s syndrome and attention-deficit hyperactivity disorder, and a grade school girl with reading difficulties. The GANE is intended as a re-visioning of education that may serve both learners and society to be better prepared for the accelerating changes of the 21st century. PMID:26347688

  14. A groundwork for allostatic neuro-education.

    PubMed

    Gerdes, Lee; Tegeler, Charles H; Lee, Sung W

    2015-01-01

    We propose to enliven educational practice by marrying a conception of education as guided human development, to an advanced scientific understanding of the brain known as allostasis (stability through change). The result is a groundwork for allostatic neuro-education (GANE). Education as development encompasses practices including the organic (homeschooling and related traditions), cognitive acquisition (emphasis on standards and testing), and the constructivist (aimed to support adaptive creativity for both learner and society). Allostasis views change to be the norm in biology, defines success in contexts of complex natural environments rather than controlled settings, and identifies the brain as the organ of central command. Allostatic neuro-education contrasts with education focused dominantly on testing, or neuroscience based on homeostasis (stability through constancy). The GANE perspective is to view learners in terms of their neurodevelopmental trajectories; its objective is to support authentic freedom, mediated by competent, integrated, and expansive executive functionality (concordant with the philosophy of freedom of Rudolf Steiner); and its strategy is to be attuned to rhythms in various forms (including those of autonomic arousal described in polyvagal theory) so as to enable experiential excitement for learning. The GANE presents a variety of testable hypotheses, and studies that explore prevention or mitigation of the effects of early life adversity or toxic stress on learning and development may be of particular importance. Case studies are presented illustrating use of allostatic neurotechnology by an adolescent male carrying diagnoses of Asperger's syndrome and attention-deficit hyperactivity disorder, and a grade school girl with reading difficulties. The GANE is intended as a re-visioning of education that may serve both learners and society to be better prepared for the accelerating changes of the 21st century.

  15. Allostatic load is associated with chronic conditions in the Boston Puerto Rican Health Study

    PubMed Central

    Mattei, Josiemer; Demissie, Serkalem; Falcon, Luis M; Ordovas, Jose M

    2010-01-01

    Puerto Ricans living in the United States mainland present multiple disparities in prevalence of chronic diseases, relative to other racial and ethnic groups. Allostatic load (AL), or the cumulative wear and tear of physiological responses to stressors such as major life events, social and environmental burden, has been proposed as a possible mechanism for the inequalities observed in minority groups, but has not been studied in Puerto Ricans. The aim of this study was to determine the association of AL to six chronic diseases (abdominal obesity, hypertension, diabetes, and self-reported cardiovascular disease (CVD), arthritis and cancer) in Puerto Ricans, and to contrast AL to metabolic syndrome (MetS). Participants of the Boston Puerto Rican Health Study (n=1,116, ages 45–75 years) underwent a home-based interview, where questionnaires were completed and biological samples collected. A summary definition of AL was constructed using clinically-defined cutoffs and medication use for 10 physiological parameters in different body systems. Logistic regression models were run to determine associations between AL score and disease status, controlling for age, sex, smoking, alcohol use, physical activity, total fat intake and energy intake. Parallel models were also run with MetS score replacing AL. We found that increasing categories of AL score were significantly associated with abdominal obesity, hypertension, diabetes and self-reported cardiovascular disease (CVD) and arthritis, but not with self-reported cancer. The strength of associations of AL with all conditions, except diabetes and cancer, was similar to or larger than those of MetS score. In conclusion, Puerto Rican older adults experienced physiological dysregulation that was associated with increased odds of chronic conditions. AL was more strongly associated with most conditions, compared to MetS, suggesting that this cumulative measure may be a better predictor of disease. These results have prospective

  16. Allostatic Self-efficacy: A Metacognitive Theory of Dyshomeostasis-Induced Fatigue and Depression.

    PubMed

    Stephan, Klaas E; Manjaly, Zina M; Mathys, Christoph D; Weber, Lilian A E; Paliwal, Saee; Gard, Tim; Tittgemeyer, Marc; Fleming, Stephen M; Haker, Helene; Seth, Anil K; Petzschner, Frederike H

    2016-01-01

    This paper outlines a hierarchical Bayesian framework for interoception, homeostatic/allostatic control, and meta-cognition that connects fatigue and depression to the experience of chronic dyshomeostasis. Specifically, viewing interoception as the inversion of a generative model of viscerosensory inputs allows for a formal definition of dyshomeostasis (as chronically enhanced surprise about bodily signals, or, equivalently, low evidence for the brain's model of bodily states) and allostasis (as a change in prior beliefs or predictions which define setpoints for homeostatic reflex arcs). Critically, we propose that the performance of interoceptive-allostatic circuitry is monitored by a metacognitive layer that updates beliefs about the brain's capacity to successfully regulate bodily states (allostatic self-efficacy). In this framework, fatigue and depression can be understood as sequential responses to the interoceptive experience of dyshomeostasis and the ensuing metacognitive diagnosis of low allostatic self-efficacy. While fatigue might represent an early response with adaptive value (cf. sickness behavior), the experience of chronic dyshomeostasis may trigger a generalized belief of low self-efficacy and lack of control (cf. learned helplessness), resulting in depression. This perspective implies alternative pathophysiological mechanisms that are reflected by differential abnormalities in the effective connectivity of circuits for interoception and allostasis. We discuss suitably extended models of effective connectivity that could distinguish these connectivity patterns in individual patients and may help inform differential diagnosis of fatigue and depression in the future.

  17. Allostatic Self-efficacy: A Metacognitive Theory of Dyshomeostasis-Induced Fatigue and Depression

    PubMed Central

    Stephan, Klaas E.; Manjaly, Zina M.; Mathys, Christoph D.; Weber, Lilian A. E.; Paliwal, Saee; Gard, Tim; Tittgemeyer, Marc; Fleming, Stephen M.; Haker, Helene; Seth, Anil K.; Petzschner, Frederike H.

    2016-01-01

    This paper outlines a hierarchical Bayesian framework for interoception, homeostatic/allostatic control, and meta-cognition that connects fatigue and depression to the experience of chronic dyshomeostasis. Specifically, viewing interoception as the inversion of a generative model of viscerosensory inputs allows for a formal definition of dyshomeostasis (as chronically enhanced surprise about bodily signals, or, equivalently, low evidence for the brain's model of bodily states) and allostasis (as a change in prior beliefs or predictions which define setpoints for homeostatic reflex arcs). Critically, we propose that the performance of interoceptive-allostatic circuitry is monitored by a metacognitive layer that updates beliefs about the brain's capacity to successfully regulate bodily states (allostatic self-efficacy). In this framework, fatigue and depression can be understood as sequential responses to the interoceptive experience of dyshomeostasis and the ensuing metacognitive diagnosis of low allostatic self-efficacy. While fatigue might represent an early response with adaptive value (cf. sickness behavior), the experience of chronic dyshomeostasis may trigger a generalized belief of low self-efficacy and lack of control (cf. learned helplessness), resulting in depression. This perspective implies alternative pathophysiological mechanisms that are reflected by differential abnormalities in the effective connectivity of circuits for interoception and allostasis. We discuss suitably extended models of effective connectivity that could distinguish these connectivity patterns in individual patients and may help inform differential diagnosis of fatigue and depression in the future. PMID:27895566

  18. Rearing history and allostatic load in adult western lowland gorillas (Gorilla gorilla gorilla) in human care.

    PubMed

    Edes, Ashley N; Wolfe, Barbara A; Crews, Douglas E

    2016-01-01

    Disrupted rearing history is a psychological and physical stressor for nonhuman primates, potentially resulting in multiple behavioral and physiological changes. As a chronic, soma-wide stressor, altered rearing may be best assessed using a holistic tool such as allostatic load (AL). In humans, AL estimates outcomes of lifetime stress-induced damage. We predicted mother-reared gorillas would have lower AL than nursery-reared and wild-caught conspecifics. We estimated AL for 27 gorillas housed at the Columbus Zoo and Aquarium between 1956 and 2014. AL estimates were calculated using biomarkers obtained during previous anesthetic events. Biomarkers in the high-risk quartile were counted toward a gorilla's AL. Rearing history was categorized as mother-reared, nursery-reared, and wild-caught. Using ANCOVA, rearing history and AL are significantly associated when age and sex are entered as covariates. Wild-caught gorillas have significantly higher AL than mother-reared gorillas. Neither wild-caught nor mother-reared gorillas are significantly different from nursery-reared gorillas. When examined by sex, males of all rearing histories have significantly lower AL than females. We suggest males face few stressors in human care and ill effects of rearing history do not follow. Wild-caught females have significantly higher AL than mother-reared females, but neither is significantly different from nursery-reared females. Combined with our previous work on AL in this group, wherein females had twofold higher AL than males, we suggest females in human care face more stressors than males. Disrupted rearing history may exacerbate effects of these stressors. Providing opportunities for females to choose their distance from males may help reduce their AL. © 2016 Wiley Periodicals, Inc.

  19. Associations of allostatic load with sleep apnea, insomnia, short sleep duration, and other sleep disturbances: findings from the National Health and Nutrition Examination Survey 2005 to 2008.

    PubMed

    Chen, Xiaoli; Redline, Susan; Shields, Alexandra E; Williams, David R; Williams, Michelle A

    2014-08-01

    To examine whether allostatic load (AL), a measure of cumulative physiologic dysregulation across biological systems, was associated with sleep apnea, insomnia, and other sleep disturbances. Data from the National Health and Nutrition Examination Survey 2005-2008 were used. AL was measured using nine biomarkers representing cardiovascular, inflammatory, and metabolic system functioning. A total of 3330 US adults aged 18 years and older were included in this study. The prevalence of high AL (AL score  ≥3) was the highest among African Americans (26.3%), followed by Hispanic Americans (20.3%), whites (17.7%), and other racial/ethnic group (13.8%). After adjustment for sociodemographic and lifestyle factors, high AL was significantly associated with sleep apnea (odds ratio [OR], 1.92; 95% confidence interval [CI], 1.40-2.63), snoring (OR, 2.20; 95% CI, 1.79-2.69), snorting/stop breathing (OR, 2.16; 95% CI, 1.46-3.21), prolonged sleep latency (OR, 1.42; 95% CI, 1.08-1.88), short sleep duration (<6 hours) (OR, 1.35; 95% CI, 1.00-1.82), and diagnosed sleep disorder (OR, 2.26; 95% CI, 1.66-3.08). There was no clear evidence that observed associations varied by sociodemographic characteristics. This study suggests significant associations of high AL with sleep apnea, sleep apnea symptoms, insomnia component, short sleep duration, and diagnosed sleep disorder among US adults. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Cumulative Socioeconomic Status Risk, Allostatic Load, and Adjustment: A Prospective Latent Profile Analysis With Contextual and Genetic Protective Factors

    PubMed Central

    Brody, Gene H.; Yu, Tianyi; Chen, Yi-fu; Kogan, Steven M.; Evans, Gary W.; Beach, Steven R. H.; Windle, Michael; Simons, Ronald L.; Gerrard, Meg; Gibbons, Frederick X.; Philibert, Robert A.

    2012-01-01

    The health disparities literature identified a common pattern among middle-aged African Americans that includes high rates of chronic disease along with low rates of psychiatric disorders despite exposure to high levels of cumulative SES risk. The current study was designed to test hypotheses about the developmental precursors to this pattern. Hypotheses were tested with a representative sample of 443 African American youths living in the rural South. Cumulative SES risk and protective processes were assessed at 11-13 years; psychological adjustment was assessed at ages 14-18 years; genotyping at the 5-HTTLPR was conducted at age 16 years; and allostatic load (AL) was assessed at age 19 years. A Latent Profile Analysis identified 5 profiles that evinced distinct patterns of SES risk, AL, and psychological adjustment, with 2 relatively large profiles designated as focal profiles: a physical health vulnerability profile characterized by high SES risk/high AL/low adjustment problems, and a resilient profile characterized by high SES risk/low AL/low adjustment problems. The physical health vulnerability profile mirrored the pattern found in the adult health disparities literature. Multinomial logistic regression analyses indicated that carrying an s allele at the 5-HTTLPR and receiving less peer support distinguished the physical health vulnerability profile from the resilient profile. Protective parenting and planful self-regulation distinguished both focal profiles from the other 3 profiles. The results suggest the public health importance of preventive interventions that enhance coping and reduce the effects of stress across childhood and adolescence. PMID:22709130

  1. Cumulative socioeconomic status risk, allostatic load, and adjustment: a prospective latent profile analysis with contextual and genetic protective factors.

    PubMed

    Brody, Gene H; Yu, Tianyi; Chen, Yi-fu; Kogan, Steven M; Evans, Gary W; Beach, Steven R H; Windle, Michael; Simons, Ronald L; Gerrard, Meg; Gibbons, Frederick X; Philibert, Robert A

    2013-05-01

    The health disparities literature has identified a common pattern among middle-aged African Americans that includes high rates of chronic disease along with low rates of psychiatric disorders despite exposure to high levels of cumulative socioeconomic status (SES) risk. The current study was designed to test hypotheses about the developmental precursors to this pattern. Hypotheses were tested with a representative sample of 443 African American youths living in the rural South. Cumulative SES risk and protective processes were assessed at ages 11-13 years; psychological adjustment was assessed at ages 14-18 years; genotyping at the 5-HTTLPR was conducted at age 16 years; and allostatic load (AL) was assessed at age 19 years. A latent profile analysis identified 5 profiles that evinced distinct patterns of SES risk, AL, and psychological adjustment, with 2 relatively large profiles designated as focal profiles: a physical health vulnerability profile characterized by high SES risk/high AL/low adjustment problems, and a resilient profile characterized by high SES risk/low AL/low adjustment problems. The physical health vulnerability profile mirrored the pattern found in the adult health disparities literature. Multinomial logistic regression analyses indicated that carrying an s allele at the 5-HTTLPR and receiving less peer support distinguished the physical health vulnerability profile from the resilient profile. Protective parenting and planful self-regulation distinguished both focal profiles from the other 3 profiles. The results suggest the public health importance of preventive interventions that enhance coping and reduce the effects of stress across childhood and adolescence.

  2. Role of allostatic load and health behaviours in explaining socioeconomic disparities in mortality: a structural equation modelling approach.

    PubMed

    Kim, Gyu Ri; Jee, Sun Ha; Pikhart, Hynek

    2018-06-01

    The relationship between socioeconomic status and mortality has been well established; however, the extent to which biological factors mediate this relationship is less clear, and empirical evidence from non-Western settings is limited. Allostasis, a cumulative measure of physiological dysregulation, has been proposed as the underlying mechanism linking socioeconomic status to adverse health outcomes. The current study aimed to ascertain the contribution of allostatic load (AL) and health behaviours to socioeconomic inequalities in mortality among Korean adults. The sample comprised 70 713 middle-aged and older-aged adults, aged 40-79 years from the Korean Metabolic Syndrome Mortality Study. Using structural equation modelling (SEM), mediation analyses were performed to estimate the effects of socioeconomic position (SEP) on mortality over the follow-up and the extent to which AL, physical exercise and non-smoking status mediate the association between SEP and mortality. A total of 5618 deaths (7.9%) occurred during the mean follow-up of 15.2 years (SD 2.9). SEM confirmed a direct significant effect of SEP on mortality, as well as significant indirect paths through AL, physical exercise and non-smoking status. Our findings provide support for the mediating role of AL and health behaviours in the link between SEP and mortality. Policies designed to reduce social disparities in mortality in the long term should primarily focus on reducing stress and promoting healthy lifestyles among the socially disadvantaged groups. Future studies should further assess the role of other mediators such as psychosocial factors, which may contribute to socioeconomic inequalities in mortality. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  3. Birth of the Allostatic Model: From Cannon's Biocracy to Critical Physiology.

    PubMed

    Arminjon, Mathieu

    2016-04-01

    Physiologists and historians are still debating what conceptually differentiates each of the three major modern theories of regulation: the constancy of the milieu intérieur, homeostasis and allostasis. Here I propose that these models incarnate two distinct regimes of politization of the life sciences. This perspective leads me to suggest that the historicization of physiological norms is intrinsic to the allostatic model, which thus divides it fundamentally from the two others. I analyze the allostatic model in the light of the Canguilhemian theory, showing how the former contributed to the development of a critical epistemology immune to both naturalist essentialism and social constructivism. With a unique clarity in the history of physiology, allostasis gives us a model of the convergence of historical epistemology and scientific practice. As such it played a key role in codifying the epistemological basis of certain current research programs that, in the fields of social epidemiology and feminist neuroscience, promote what we name here a critical physiology.

  4. Composite load spectra for select space propulsion structural components

    NASA Technical Reports Server (NTRS)

    Newell, J. F.; Ho, H. W.; Kurth, R. E.

    1991-01-01

    The work performed to develop composite load spectra (CLS) for the Space Shuttle Main Engine (SSME) using probabilistic methods. The three methods were implemented to be the engine system influence model. RASCAL was chosen to be the principal method as most component load models were implemented with the method. Validation of RASCAL was performed. High accuracy comparable to the Monte Carlo method can be obtained if a large enough bin size is used. Generic probabilistic models were developed and implemented for load calculations using the probabilistic methods discussed above. Each engine mission, either a real fighter or a test, has three mission phases: the engine start transient phase, the steady state phase, and the engine cut off transient phase. Power level and engine operating inlet conditions change during a mission. The load calculation module provides the steady-state and quasi-steady state calculation procedures with duty-cycle-data option. The quasi-steady state procedure is for engine transient phase calculations. In addition, a few generic probabilistic load models were also developed for specific conditions. These include the fixed transient spike model, the poison arrival transient spike model, and the rare event model. These generic probabilistic load models provide sufficient latitude for simulating loads with specific conditions. For SSME components, turbine blades, transfer ducts, LOX post, and the high pressure oxidizer turbopump (HPOTP) discharge duct were selected for application of the CLS program. They include static pressure loads and dynamic pressure loads for all four components, centrifugal force for the turbine blade, temperatures of thermal loads for all four components, and structural vibration loads for the ducts and LOX posts.

  5. Nativity differences in allostatic load by age, sex, and Hispanic background from the Hispanic Community Health Study/Study of Latinos.

    PubMed

    Salazar, Christian R; Strizich, Garrett; Seeman, Teresa E; Isasi, Carmen R; Gallo, Linda C; Avilés-Santa, M Larissa; Cai, Jianwen; Penedo, Frank J; Arguelles, Willian; Sanders, Anne E; Lipton, Richard B; Kaplan, Robert C

    2016-12-01

    Allostatic load (AL), an index of biological "wear and tear" on the body from cumulative exposure to stress, has been little studied in US Hispanics/Latinos. We investigated AL accumulation patterns by age, sex, and nativity in the Hispanic Community Health Study/Study of Latinos. We studied 15,830 Hispanic/Latinos of Mexican, Cuban, Dominican, Puerto Rican, Central and South American descent aged 18-74 years, 77% of whom were foreign-born. Consistent with the conceptualization of AL, we developed an index based upon 16 physiological markers that spanned the cardiometabolic, parasympathetic, and inflammatory systems. We computed mean adjusted AL scores using log-linear models across age-groups (18-44, 45-54, 55-74 years), by sex and nativity status. Among foreign-born individuals, differences in AL by duration of residence in the US (<10, ≥10 years) and age at migration (<24, ≥24 years) were also examined. In persons younger than 55 years old, after controlling for socioeconomic and behavioral factors, AL was highest among US-born individuals, intermediate in foreign-born Hispanics/Latinos with longer duration in the US (≥10 years), and lowest among those with shorter duration in the US (<10 years) ( P <0.0001 for increasing trend). Similarly, AL increased among the foreign-born with earlier age at immigration. These trends were less pronounced among individuals ≥55 years of age. Similar patterns were observed across all Hispanic/Latino heritage groups ( P for interaction=0.5). Our findings support both a "healthy immigrant" pattern and a loss of health advantage over time among US Hispanics/Latinos of diverse heritages.

  6. A model for homeopathic remedy effects: low dose nanoparticles, allostatic cross-adaptation, and time-dependent sensitization in a complex adaptive system

    PubMed Central

    2012-01-01

    Background This paper proposes a novel model for homeopathic remedy action on living systems. Research indicates that homeopathic remedies (a) contain measurable source and silica nanoparticles heterogeneously dispersed in colloidal solution; (b) act by modulating biological function of the allostatic stress response network (c) evoke biphasic actions on living systems via organism-dependent adaptive and endogenously amplified effects; (d) improve systemic resilience. Discussion The proposed active components of homeopathic remedies are nanoparticles of source substance in water-based colloidal solution, not bulk-form drugs. Nanoparticles have unique biological and physico-chemical properties, including increased catalytic reactivity, protein and DNA adsorption, bioavailability, dose-sparing, electromagnetic, and quantum effects different from bulk-form materials. Trituration and/or liquid succussions during classical remedy preparation create “top-down” nanostructures. Plants can biosynthesize remedy-templated silica nanostructures. Nanoparticles stimulate hormesis, a beneficial low-dose adaptive response. Homeopathic remedies prescribed in low doses spaced intermittently over time act as biological signals that stimulate the organism’s allostatic biological stress response network, evoking nonlinear modulatory, self-organizing change. Potential mechanisms include time-dependent sensitization (TDS), a type of adaptive plasticity/metaplasticity involving progressive amplification of host responses, which reverse direction and oscillate at physiological limits. To mobilize hormesis and TDS, the remedy must be appraised as a salient, but low level, novel threat, stressor, or homeostatic disruption for the whole organism. Silica nanoparticles adsorb remedy source and amplify effects. Properly-timed remedy dosing elicits disease-primed compensatory reversal in direction of maladaptive dynamics of the allostatic network, thus promoting resilience and recovery from

  7. A model for homeopathic remedy effects: low dose nanoparticles, allostatic cross-adaptation, and time-dependent sensitization in a complex adaptive system.

    PubMed

    Bell, Iris R; Koithan, Mary

    2012-10-22

    This paper proposes a novel model for homeopathic remedy action on living systems. Research indicates that homeopathic remedies (a) contain measurable source and silica nanoparticles heterogeneously dispersed in colloidal solution; (b) act by modulating biological function of the allostatic stress response network (c) evoke biphasic actions on living systems via organism-dependent adaptive and endogenously amplified effects; (d) improve systemic resilience. The proposed active components of homeopathic remedies are nanoparticles of source substance in water-based colloidal solution, not bulk-form drugs. Nanoparticles have unique biological and physico-chemical properties, including increased catalytic reactivity, protein and DNA adsorption, bioavailability, dose-sparing, electromagnetic, and quantum effects different from bulk-form materials. Trituration and/or liquid succussions during classical remedy preparation create "top-down" nanostructures. Plants can biosynthesize remedy-templated silica nanostructures. Nanoparticles stimulate hormesis, a beneficial low-dose adaptive response. Homeopathic remedies prescribed in low doses spaced intermittently over time act as biological signals that stimulate the organism's allostatic biological stress response network, evoking nonlinear modulatory, self-organizing change. Potential mechanisms include time-dependent sensitization (TDS), a type of adaptive plasticity/metaplasticity involving progressive amplification of host responses, which reverse direction and oscillate at physiological limits. To mobilize hormesis and TDS, the remedy must be appraised as a salient, but low level, novel threat, stressor, or homeostatic disruption for the whole organism. Silica nanoparticles adsorb remedy source and amplify effects. Properly-timed remedy dosing elicits disease-primed compensatory reversal in direction of maladaptive dynamics of the allostatic network, thus promoting resilience and recovery from disease. Homeopathic

  8. Evening cortisol is associated with intra-individual instability in daytime napping in nursing home residents with dementia: an allostatic load perspective.

    PubMed

    Woods, Diana Lynn; Yefimova, Maria

    2012-10-01

    Circadian rhythm disruption, reflected in alterations in sleep-wake activity and daytime napping behavior, is consistently reported in nursing home (NH) residents with dementia. This disruption may be reflected in day-to-day instability. The concept of allostatic load (AL), a measure of cumulative biological burden over a lifetime, may be a helpful model for understanding cortisol diurnal rhythm and daytime napping activity in this population. The purpose of this study was to examine the association between intra-individual daytime napping episodes and basal cortisol diurnal rhythm in NH residents with dementia in the context of AL. U sing a within-individual longitudinal design (N = 51), the authors observed and recorded daytime napping activity every 20 min for 10 hr per day across 4 consecutive days. The authors obtained saliva samples 4 times each day (upon participants' waking and within 1 hr, 6 hr, and 12 hr of participants' wake time) for cortisol analysis. The authors categorized participants as high changers (HCs; day-to-day instability in napping activity) or low changers (LCs; day-to-day stability). There were no significant differences in resident characteristics between groups. There was a significant difference between HCs and LCs in napping episodes (F = 4.86, p = .03), with an interaction effect of evening cortisol on napping episodes in the HC group (F = 10.161, p = .001). NH residents with unstable day-to-day napping episodes are more responsive to alterations in evening cortisol, an index of a dysregulated hypothalamic-pituitary-adrenal (HPA) axis. They may also be more amenable to environmental intervention, an avenue for further research.

  9. Effects of Childhood Stress Can Accumulate in the Body. Science Brief

    ERIC Educational Resources Information Center

    National Scientific Council on the Developing Child, 2008

    2008-01-01

    This brief presents the findings of a study that examined the effects of "allostatic load" on children in poverty at age 9 and 13. "Allostatic load" refers to the measurement of the cumulative wear and tear on the body that results from experiencing stress. Research shows that high allostatic load in childhood is associated with long-term…

  10. Composite Load Spectra for Select Space Propulsion Structural Components

    NASA Technical Reports Server (NTRS)

    Ho, Hing W.; Newell, James F.

    1994-01-01

    Generic load models are described with multiple levels of progressive sophistication to simulate the composite (combined) load spectra (CLS) that are induced in space propulsion system components, representative of Space Shuttle Main Engines (SSME), such as transfer ducts, turbine blades and liquid oxygen (LOX) posts. These generic (coupled) models combine the deterministic models for composite load dynamic, acoustic, high-pressure and high rotational speed, etc., load simulation using statistically varying coefficients. These coefficients are then determined using advanced probabilistic simulation methods with and without strategically selected experimental data. The entire simulation process is included in a CLS computer code. Applications of the computer code to various components in conjunction with the PSAM (Probabilistic Structural Analysis Method) to perform probabilistic load evaluation and life prediction evaluations are also described to illustrate the effectiveness of the coupled model approach.

  11. Composite load spectra for select space propulsion structural components

    NASA Technical Reports Server (NTRS)

    Newell, J. F.; Kurth, R. E.; Ho, H.

    1991-01-01

    The objective of this program is to develop generic load models with multiple levels of progressive sophistication to simulate the composite (combined) load spectra that are induced in space propulsion system components, representative of Space Shuttle Main Engines (SSME), such as transfer ducts, turbine blades, and liquid oxygen posts and system ducting. The first approach will consist of using state of the art probabilistic methods to describe the individual loading conditions and combinations of these loading conditions to synthesize the composite load spectra simulation. The second approach will consist of developing coupled models for composite load spectra simulation which combine the deterministic models for composite load dynamic, acoustic, high pressure, and high rotational speed, etc., load simulation using statistically varying coefficients. These coefficients will then be determined using advanced probabilistic simulation methods with and without strategically selected experimental data.

  12. Joint Procrustes Analysis for Simultaneous Nonsingular Transformation of Component Score and Loading Matrices

    ERIC Educational Resources Information Center

    Adachi, Kohei

    2009-01-01

    In component analysis solutions, post-multiplying a component score matrix by a nonsingular matrix can be compensated by applying its inverse to the corresponding loading matrix. To eliminate this indeterminacy on nonsingular transformation, we propose Joint Procrustes Analysis (JPA) in which component score and loading matrices are simultaneously…

  13. Testing the Nanoparticle-Allostatic Cross Adaptation-Sensitization Model for Homeopathic Remedy Effects

    PubMed Central

    Bell, Iris R.; Koithan, Mary; Brooks, Audrey J.

    2012-01-01

    Key concepts of the Nanoparticle-Allostatic Cross-Adaptation-Sensitization (NPCAS) Model for the action of homeopathic remedies in living systems include source nanoparticles as low level environmental stressors, heterotypic hormesis, cross-adaptation, allostasis (stress response network), time-dependent sensitization with endogenous amplification and bidirectional change, and self-organizing complex adaptive systems. The model accommodates the requirement for measurable physical agents in the remedy (source nanoparticles and/or source adsorbed to silica nanoparticles). Hormetic adaptive responses in the organism, triggered by nanoparticles; bipolar, metaplastic change, dependent on the history of the organism. Clinical matching of the patient’s symptom picture, including modalities, to the symptom pattern that the source material can cause (cross-adaptation and cross-sensitization). Evidence for nanoparticle-related quantum macro-entanglement in homeopathic pathogenetic trials. This paper examines research implications of the model, discussing the following hypotheses: Variability in nanoparticle size, morphology, and aggregation affects remedy properties and reproducibility of findings. Homeopathic remedies modulate adaptive allostatic responses, with multiple dynamic short- and long-term effects. Simillimum remedy nanoparticles, as novel mild stressors corresponding to the organism’s dysfunction initiate time-dependent cross-sensitization, reversing the direction of dysfunctional reactivity to environmental stressors. The NPCAS model suggests a way forward for systematic research on homeopathy. The central proposition is that homeopathic treatment is a form of nanomedicine acting by modulation of endogenous adaptation and metaplastic amplification processes in the organism to enhance long-term systemic resilience and health. PMID:23290882

  14. Composite load spectra for select space propulsion structural components

    NASA Technical Reports Server (NTRS)

    Newell, J. F.; Kurth, R. E.; Ho, H.

    1986-01-01

    A multiyear program is performed with the objective to develop generic load models with multiple levels of progressive sophistication to simulate the composite (combined) load spectra that are induced in space propulsion system components, representative of Space Shuttle Main Engines (SSME), such as transfer ducts, turbine blades, and liquid oxygen (LOX) posts. Progress of the first year's effort includes completion of a sufficient portion of each task -- probabilistic models, code development, validation, and an initial operational code. This code has from its inception an expert system philosophy that could be added to throughout the program and in the future. The initial operational code is only applicable to turbine blade type loadings. The probabilistic model included in the operational code has fitting routines for loads that utilize a modified Discrete Probabilistic Distribution termed RASCAL, a barrier crossing method and a Monte Carlo method. An initial load model was developed by Battelle that is currently used for the slowly varying duty cycle type loading. The intent is to use the model and related codes essentially in the current form for all loads that are based on measured or calculated data that have followed a slowly varying profile.

  15. The Darwinian concept of stress: benefits of allostasis and costs of allostatic load and the trade-offs in health and disease.

    PubMed

    Korte, S Mechiel; Koolhaas, Jaap M; Wingfield, John C; McEwen, Bruce S

    2005-02-01

    Why do we get the stress-related diseases we do? Why do some people have flare ups of autoimmune disease, whereas others suffer from melancholic depression during a stressful period in their life? In the present review possible explanations will be given by using different levels of analysis. First, we explain in evolutionary terms why different organisms adopt different behavioral strategies to cope with stress. It has become clear that natural selection maintains a balance of different traits preserving genes for high aggression (Hawks) and low aggression (Doves) within a population. The existence of these personality types (Hawks-Doves) is widespread in the animal kingdom, not only between males and females but also within the same gender across species. Second, proximate (causal) explanations are given for the different stress responses and how they work. Hawks and Doves differ in underlying physiology and these differences are associated with their respective behavioral strategies; for example, bold Hawks preferentially adopt the fight-flight response when establishing a new territory or defending an existing territory, while cautious Doves show the freeze-hide response to adapt to threats in their environment. Thus, adaptive processes that actively maintain stability through change (allostasis) depend on the personality type and the associated stress responses. Third, we describe how the expression of the various stress responses can result in specific benefits to the organism. Fourth, we discuss how the benefits of allostasis and the costs of adaptation (allostatic load) lead to different trade-offs in health and disease, thereby reinforcing a Darwinian concept of stress. Collectively, this provides some explanation of why individuals may differ in their vulnerability to different stress-related diseases and how this relates to the range of personality types, especially aggressive Hawks and non-aggressive Doves in a population. A conceptual framework is

  16. Influence of early life stress on later hypothalamic–pituitary–adrenal axis functioning and its covariation with mental health symptoms: A study of the allostatic process from childhood into adolescence

    PubMed Central

    Essex, Marilyn J.; Shirtcliff, Elizabeth A.; Burk, Linnea R.; Ruttle, Paula L.; Klein, Marjorie H.; Slattery, Marcia J.; Kalin, Ned H.; Armstrong, Jeffrey M.

    2012-01-01

    The hypothalamic-pituitary-adrenal (HPA) axis is a primary mechanism in the allostatic process through which early life stress (ELS) contributes to disease. Studies of the influence of ELS on children’s HPA axis functioning have yielded inconsistent findings. To address this issue, the present study considers multiple types of ELS (maternal depression, paternal depression, and family expressed anger), mental health symptoms, and two components of HPA functioning (trait-like and epoch-specific activity) in a long-term prospective community study of 357 children. ELS was assessed during the infancy and preschool periods; mental health symptoms and cortisol were assessed at child ages 9, 11, 13, and 15 years. A 3-level hierarchical linear model addressed questions regarding the influences of ELS on HPA functioning and its co-variation with mental health symptoms. ELS influenced trait-like cortisol level and slope, with both hyper- and hypo-arousal evident depending on type of ELS. Further, type(s) of ELS influenced co-variation of epoch-specific HPA functioning and mental health symptoms, with a tighter coupling of HPA alterations with symptom severity among children exposed previously to ELS. Results highlight the importance of examining multiple types of ELS and dynamic HPA functioning in order to capture the allostatic process unfolding across the transition into adolescence. PMID:22018080

  17. Influence of early life stress on later hypothalamic-pituitary-adrenal axis functioning and its covariation with mental health symptoms: a study of the allostatic process from childhood into adolescence.

    PubMed

    Essex, Marilyn J; Shirtcliff, Elizabeth A; Burk, Linnea R; Ruttle, Paula L; Klein, Marjorie H; Slattery, Marcia J; Kalin, Ned H; Armstrong, Jeffrey M

    2011-11-01

    The hypothalamic-pituitary-adrenal (HPA) axis is a primary mechanism in the allostatic process through which early life stress (ELS) contributes to disease. Studies of the influence of ELS on children's HPA axis functioning have yielded inconsistent findings. To address this issue, the present study considers multiple types of ELS (maternal depression, paternal depression, and family expressed anger), mental health symptoms, and two components of HPA functioning (traitlike and epoch-specific activity) in a long-term prospective community study of 357 children. ELS was assessed during the infancy and preschool periods; mental health symptoms and cortisol were assessed at child ages 9, 11, 13, and 15 years. A three-level hierarchical linear model addressed questions regarding the influences of ELS on HPA functioning and its covariation with mental health symptoms. ELS influenced traitlike cortisol level and slope, with both hyper- and hypoarousal evident depending on type of ELS. Further, type(s) of ELS influenced covariation of epoch-specific HPA functioning and mental health symptoms, with a tighter coupling of HPA alterations with symptom severity among children exposed previously to ELS. Results highlight the importance of examining multiple types of ELS and dynamic HPA functioning in order to capture the allostatic process unfolding across the transition into adolescence.

  18. Assessment of Wind Turbine Component Loads Under Yaw-Offset Conditions

    DOE PAGES

    Damiani, Rick R.; Dana, Scott; Annoni, Jennifer; ...

    2018-04-13

    Renewed interest in yaw control for wind turbine and power plants for wake redirection and load mitigation demands a clear understanding of the effects of running with skewed inflow. In this paper, we investigate the physics of yawed operations, building up the complexity from a simplified analytical treatment to more complex aeroelastic simulations. Results in terms of damage equivalent loads (DELs) and extreme loads under operating, misaligned conditions are compared to data collected from an instrumented, utility-scale wind turbine. The analysis shows that multiple factors are responsible for the DELs of the various components, and that airfoil aerodynamics, elastic characteristicsmore » of the rotor, and turbulence intensities are the primary drivers. Both fatigue and extreme loads are observed to have relatively complex trends with yaw offsets, which can change depending on the wind-speed regime. As a result, good agreement is found between predicted and measured trends for both fatigue and ultimate loads.« less

  19. Assessment of Wind Turbine Component Loads Under Yaw-Offset Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Damiani, Rick R.; Dana, Scott; Annoni, Jennifer

    Renewed interest in yaw control for wind turbine and power plants for wake redirection and load mitigation demands a clear understanding of the effects of running with skewed inflow. In this paper, we investigate the physics of yawed operations, building up the complexity from a simplified analytical treatment to more complex aeroelastic simulations. Results in terms of damage equivalent loads (DELs) and extreme loads under operating, misaligned conditions are compared to data collected from an instrumented, utility-scale wind turbine. The analysis shows that multiple factors are responsible for the DELs of the various components, and that airfoil aerodynamics, elastic characteristicsmore » of the rotor, and turbulence intensities are the primary drivers. Both fatigue and extreme loads are observed to have relatively complex trends with yaw offsets, which can change depending on the wind-speed regime. As a result, good agreement is found between predicted and measured trends for both fatigue and ultimate loads.« less

  20. Simulation of Crack Propagation in Engine Rotating Components under Variable Amplitude Loading

    NASA Technical Reports Server (NTRS)

    Bonacuse, P. J.; Ghosn, L. J.; Telesman, J.; Calomino, A. M.; Kantzos, P.

    1998-01-01

    The crack propagation life of tested specimens has been repeatedly shown to strongly depend on the loading history. Overloads and extended stress holds at temperature can either retard or accelerate the crack growth rate. Therefore, to accurately predict the crack propagation life of an actual component, it is essential to approximate the true loading history. In military rotorcraft engine applications, the loading profile (stress amplitudes, temperature, and number of excursions) can vary significantly depending on the type of mission flown. To accurately assess the durability of a fleet of engines, the crack propagation life distribution of a specific component should account for the variability in the missions performed (proportion of missions flown and sequence). In this report, analytical and experimental studies are described that calibrate/validate the crack propagation prediction capability ]or a disk alloy under variable amplitude loading. A crack closure based model was adopted to analytically predict the load interaction effects. Furthermore, a methodology has been developed to realistically simulate the actual mission mix loading on a fleet of engines over their lifetime. A sequence of missions is randomly selected and the number of repeats of each mission in the sequence is determined assuming a Poisson distributed random variable with a given mean occurrence rate. Multiple realizations of random mission histories are generated in this manner and are used to produce stress, temperature, and time points for fracture mechanics calculations. The result is a cumulative distribution of crack propagation lives for a given, life limiting, component location. This information can be used to determine a safe retirement life or inspection interval for the given location.

  1. Numerical verification of two-component dental implant in the context of fatigue life for various load cases.

    PubMed

    Szajek, Krzysztof; Wierszycki, Marcin

    2016-01-01

    Dental implant designing is a complex process which considers many limitations both biological and mechanical in nature. In earlier studies, a complete procedure for improvement of two-component dental implant was proposed. However, the optimization tasks carried out required assumption on representative load case, which raised doubts on optimality for the other load cases. This paper deals with verification of the optimal design in context of fatigue life and its main goal is to answer the question if the assumed load scenario (solely horizontal occlusal load) leads to the design which is also "safe" for oblique occlussal loads regardless the angle from an implant axis. The verification is carried out with series of finite element analyses for wide spectrum of physiologically justified loads. The design of experiment methodology with full factorial technique is utilized. All computations are done in Abaqus suite. The maximal Mises stress and normalized effective stress amplitude for various load cases are discussed and compared with the assumed "safe" limit (equivalent of fatigue life for 5e6 cycles). The obtained results proof that coronial-appical load component should be taken into consideration in the two component dental implant when fatigue life is optimized. However, its influence in the analyzed case is small and does not change the fact that the fatigue life improvement is observed for all components within whole range of analyzed loads.

  2. Reducing Undue Conservatism in "Higher Frequency" Structural Design Loads in Aerospace Components

    NASA Technical Reports Server (NTRS)

    Knight, J. Brent

    2012-01-01

    This study is intended to investigate the frequency dependency of significant strain due to vibratory loads in aerospace vehicle components. The notion that "higher frequency" dynamic loads applied as static loads is inherently conservative is perceived as widely accepted. This effort is focused on demonstrating that principle and attempting to evolve methods to capitalize on it to mitigate undue conservatism. It has been suggested that observations of higher frequency modes that resulted in very low corresponding strain did so due to those modes not being significant. Two avionics boxes, one with its first significant mode at 341 Hz and the other at 857 Hz, were attached to a flat panel installed on a curved orthogrid panel which was driven acoustically in tests performed at NASA/MSFC. Strain and acceleration were measured at select locations on each of the boxes. When possible, strain gage rosettes and accelerometers were installed on either side of a given structural member so that measured strain and acceleration data would directly correspond to one another. Ultimately, a frequency above which vibratory loads can be disregarded for purposes of static structural analyses and sizing of typical robust aerospace components is sought.

  3. Isolating Added Mass Load Components of CPAS Main Clusters

    NASA Technical Reports Server (NTRS)

    Ray, Eric S.

    2017-01-01

    The current simulation for the Capsule Parachute Assembly System (CPAS) lacks fidelity in representing added mass for the 116 ft Do ringsail Main parachute. The availability of 3-D models of inflating Main canopies allowed for better estimation the enclosed air volume as a function of time. This was combined with trajectory state information to estimate the components making up measured axial loads. A proof-of-concept for an alternate simulation algorithm was developed based on enclosed volume as the primary independent variable rather than drag area growth. Databases of volume growth and parachute drag area vs. volume were developed for several flight tests. Other state information was read directly from test data, rather than numerically propagated. The resulting simulated peak loads were close in timing and magnitude to the measured loads data. However, results are very sensitive to data curve fitting and may not be suitable for Monte Carlo simulations. It was assumed that apparent mass was either negligible or a small fraction of enclosed mass, with little difference in results.

  4. Local Laser Strengthening of Steel Sheets for Load Adapted Component Design in Car Body Structures

    NASA Astrophysics Data System (ADS)

    Jahn, Axel; Heitmanek, Marco; Standfuss, Jens; Brenner, Berndt; Wunderlich, Gerd; Donat, Bernd

    The current trend in car body construction concerning light weight design and car safety improvement increasingly requires an adaption of the local material properties on the component load. Martensitic hardenable steels, which are typically used in car body components, show a significant hardening effect, for instance in laser welded seams. This effect can be purposefully used as a local strengthening method. For several steel grades the local strengthening, resulting from a laser remelting process was investigated. The strength in the treated zone was determined at crash relevant strain rates. A load adapted design of complex reinforcement structures was developed for compression and bending loaded tube samples, using numerical simulation of the deformation behavior. Especially for bending loaded parts, the crash energy absorption can be increased significantly by local laser strengthening.

  5. Slow Crack Growth and Fatigue Life Prediction of Ceramic Components Subjected to Variable Load History

    NASA Technical Reports Server (NTRS)

    Jadaan, Osama

    2001-01-01

    Present capabilities of the NASA CARES/Life (Ceramic Analysis and Reliability Evaluation of Structures/Life) code include probabilistic life prediction of ceramic components subjected to fast fracture, slow crack growth (stress corrosion), and cyclic fatigue failure modes. Currently, this code has the capability to compute the time-dependent reliability of ceramic structures subjected to simple time-dependent loading. For example, in slow crack growth (SCG) type failure conditions CARES/Life can handle the cases of sustained and linearly increasing time-dependent loads, while for cyclic fatigue applications various types of repetitive constant amplitude loads can be accounted for. In real applications applied loads are rarely that simple, but rather vary with time in more complex ways such as, for example, engine start up, shut down, and dynamic and vibrational loads. In addition, when a given component is subjected to transient environmental and or thermal conditions, the material properties also vary with time. The objective of this paper is to demonstrate a methodology capable of predicting the time-dependent reliability of components subjected to transient thermomechanical loads that takes into account the change in material response with time. In this paper, the dominant delayed failure mechanism is assumed to be SCG. This capability has been added to the NASA CARES/Life (Ceramic Analysis and Reliability Evaluation of Structures/Life) code, which has also been modified to have the ability of interfacing with commercially available FEA codes executed for transient load histories. An example involving a ceramic exhaust valve subjected to combustion cycle loads is presented to demonstrate the viability of this methodology and the CARES/Life program.

  6. Vegetated land cover near residence is associated with ...

    EPA Pesticide Factsheets

    Abstract Background: Greater exposure to urban green spaces has been linked to reduced risks of depression, cardiovascular disease, diabetes and premature death. Alleviation of chronic stress is a hypothesized pathway to improved health. Previous studies linked chronic stress with biomarker-based measures of physiological dysregulation known as allostatic load. This study aimed to assess the relationship between vegetated land cover near residences and allostatic load. Methods: This cross-sectional population-based study involved 204 adult residents of the Durham-Chapel Hill, North Carolina metropolitan area. Exposure was quantified using high-resolution metrics of trees and herbaceous vegetation within 500 m of each residence derived from the U.S. Environmental Protection Agency’s EnviroAtlas land cover dataset. Eighteen biomarkers of immune, neuroendocrine, and metabolic functions were measured in serum or saliva samples. Allostatic load was defined as a sum of biomarker values dichotomized at specific percentiles of sample distribution. Regression analysis was conducted using generalized additive models with two-dimensional spline smoothing function of geographic coordinates, weighted measures of vegetated land cover allowing decay of effects with distance, and geographic and demographic covariates. Results: An inter-quartile range increase in distance-weighted vegetated land cover was associated with 37% (46%; 27%) reduced allostatic load; significantly

  7. Multibody dynamics: Modeling component flexibility with fixed, free, loaded, constraint, and residual modes

    NASA Technical Reports Server (NTRS)

    Spanos, John T.; Tsuha, Walter S.

    1989-01-01

    The assumed-modes method in multibody dynamics allows the elastic deformation of each component in the system to be approximated by a sum of products of spatial and temporal functions commonly known as modes and modal coordinates respectively. The choice of component modes used to model articulating and non-articulating flexible multibody systems is examined. Attention is directed toward three classical Component Mode Synthesis (CMS) methods whereby component normal modes are generated by treating the component interface (I/F) as either fixed, free, or loaded with mass and stiffness contributions from the remaining components. The fixed and free I/F normal modes are augmented by static shape functions termed constraint and residual modes respectively. A mode selection procedure is outlined whereby component modes are selected from the Craig-Bampton (fixed I/F plus constraint), MacNeal-Rubin (free I/F plus residual), or Benfield-Hruda (loaded I/F) mode sets in accordance with a modal ordering scheme derived from balance realization theory. The success of the approach is judged by comparing the actuator-to-sensor frequency response of the reduced order system with that of the full order system over the frequency range of interest. A finite element model of the Galileo spacecraft serves as an example in demonstrating the effectiveness of the proposed mode selection method.

  8. Optimal acetabular component orientation estimated using edge-loading and impingement risk in patients with metal-on-metal hip resurfacing arthroplasty.

    PubMed

    Mellon, Stephen J; Grammatopoulos, George; Andersen, Michael S; Pandit, Hemant G; Gill, Harinderjit S; Murray, David W

    2015-01-21

    Edge-loading in patients with metal-on-metal resurfaced hips can cause high serum metal ion levels, the development of soft-tissue reactions local to the joint called pseudotumours and ultimately, failure of the implant. Primary edge-loading is where contact between the femoral and acetabular components occurs at the edge/rim of the acetabular component whereas impingement of the femoral neck on the acetabular component's edge causes secondary or contrecoup edge-loading. Although the relationship between the orientation of the acetabular component and primary edge-loading has been identified, the contribution of acetabular component orientation to impingement and secondary edge-loading is less clear. Our aim was to estimate the optimal acetabular component orientation for 16 metal-on-metal hip resurfacing arthroplasty (MoMHRA) subjects with known serum metal ion levels. Data from motion analysis, subject-specific musculoskeletal modelling and Computed Tomography (CT) measurements were used to calculate the dynamic contact patch to rim (CPR) distance and impingement risk for 3416 different acetabular component orientations during gait, sit-to-stand, stair descent and static standing. For each subject, safe zones free from impingement and edge-loading (CPR <10%) were defined and, consequently, an optimal acetabular component orientation was determined (mean inclination 39.7° (SD 6.6°) mean anteversion 14.9° (SD 9.0°)). The results of this study suggest that the optimal acetabular component orientation can be determined from a patient's motion and anatomy. However, 'safe' zones of acetabular component orientation associated with reduced risk of dislocation and pseudotumour are also associated with a reduced risk of edge-loading and impingement. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Wavelength selection by dielectric-loaded plasmonic components

    NASA Astrophysics Data System (ADS)

    Holmgaard, Tobias; Chen, Zhuo; Bozhevolnyi, Sergey I.; Markey, Laurent; Dereux, Alain; Krasavin, Alexey V.; Zayats, Anatoly V.

    2009-02-01

    Fabrication, characterization, and modeling of waveguide-ring resonators and in-line Bragg gratings for wavelength selection in the telecommunication range are reported utilizing dielectric-loaded surface plasmon-polariton waveguides. The devices were fabricated by depositing subwavelength-sized polymer ridges on a smooth gold film using industrially compatible large-scale UV photolithography. We demonstrate efficient and compact wavelength-selective filters, including waveguide-ring resonators with an insertion loss of ˜2 dB and a footprint of only 150 μm2 featuring narrow bandwidth (˜20 nm) and high contrast (˜13 dB) features in the transmission spectrum. The performance of the components is found in good agreement with the results obtained by full vectorial three-dimensional finite element simulations.

  10. Engineering Analysis of Thermal-Load Components in the Process of Heating of Pet Preforms

    NASA Astrophysics Data System (ADS)

    Sidorov, D. É.; Kolosov, A. E.; Kazak, I. A.; Pogorelyi, A. V.

    2018-05-01

    The influence of thermal-load components (convection, collimated and uncollimated components of infrared radiation) in the process of production of PET packaging on the heating of PET preforms has been assessed. It has been established that the collimated component of infrared radiation ensures most (up to 70%) of the thermal energy in the process of heating of a PET preform.

  11. Reliability demonstration test for load-sharing systems with exponential and Weibull components

    PubMed Central

    Hu, Qingpei; Yu, Dan; Xie, Min

    2017-01-01

    Conducting a Reliability Demonstration Test (RDT) is a crucial step in production. Products are tested under certain schemes to demonstrate whether their reliability indices reach pre-specified thresholds. Test schemes for RDT have been studied in different situations, e.g., lifetime testing, degradation testing and accelerated testing. Systems designed with several structures are also investigated in many RDT plans. Despite the availability of a range of test plans for different systems, RDT planning for load-sharing systems hasn’t yet received the attention it deserves. In this paper, we propose a demonstration method for two specific types of load-sharing systems with components subject to two distributions: exponential and Weibull. Based on the assumptions and interpretations made in several previous works on such load-sharing systems, we set the mean time to failure (MTTF) of the total system as the demonstration target. We represent the MTTF as a summation of mean time between successive component failures. Next, we introduce generalized test statistics for both the underlying distributions. Finally, RDT plans for the two types of systems are established on the basis of these test statistics. PMID:29284030

  12. Reliability demonstration test for load-sharing systems with exponential and Weibull components.

    PubMed

    Xu, Jianyu; Hu, Qingpei; Yu, Dan; Xie, Min

    2017-01-01

    Conducting a Reliability Demonstration Test (RDT) is a crucial step in production. Products are tested under certain schemes to demonstrate whether their reliability indices reach pre-specified thresholds. Test schemes for RDT have been studied in different situations, e.g., lifetime testing, degradation testing and accelerated testing. Systems designed with several structures are also investigated in many RDT plans. Despite the availability of a range of test plans for different systems, RDT planning for load-sharing systems hasn't yet received the attention it deserves. In this paper, we propose a demonstration method for two specific types of load-sharing systems with components subject to two distributions: exponential and Weibull. Based on the assumptions and interpretations made in several previous works on such load-sharing systems, we set the mean time to failure (MTTF) of the total system as the demonstration target. We represent the MTTF as a summation of mean time between successive component failures. Next, we introduce generalized test statistics for both the underlying distributions. Finally, RDT plans for the two types of systems are established on the basis of these test statistics.

  13. Method to eliminate flux linkage DC component in load transformer for static transfer switch.

    PubMed

    He, Yu; Mao, Chengxiong; Lu, Jiming; Wang, Dan; Tian, Bing

    2014-01-01

    Many industrial and commercial sensitive loads are subject to the voltage sags and interruptions. The static transfer switch (STS) based on the thyristors is applied to improve the power quality and reliability. However, the transfer will result in severe inrush current in the load transformer, because of the DC component in the magnetic flux generated in the transfer process. The inrush current which is always 2 ~ 30 p.u. can cause the disoperation of relay protective devices and bring potential damage to the transformer. The way to eliminate the DC component is to transfer the related phases when the residual flux linkage of the load transformer and the prospective flux linkage of the alternate source are equal. This paper analyzes how the flux linkage of each winding in the load transformer changes in the transfer process. Based on the residual flux linkage when the preferred source is completely disconnected, the method to calculate the proper time point to close each phase of the alternate source is developed. Simulation and laboratory experiments results are presented to show the effectiveness of the transfer method.

  14. Study the Cyclic Plasticity Behavior of 508 LAS under Constant, Variable and Grid-Load-Following Loading Cycles for Fatigue Evaluation of PWR Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohanty, Subhasish; Barua, Bipul; Soppet, William K.

    This report provides an update of an earlier assessment of environmentally assisted fatigue for components in light water reactors. This report is a deliverable in September 2016 under the work package for environmentally assisted fatigue under DOE’s Light Water Reactor Sustainability program. In an April 2016 report, we presented a detailed thermal-mechanical stress analysis model for simulating the stress-strain state of a reactor pressure vessel and its nozzles under grid-load-following conditions. In this report, we provide stress-controlled fatigue test data for 508 LAS base metal alloy under different loading amplitudes (constant, variable, and random grid-load-following) and environmental conditions (in airmore » or pressurized water reactor coolant water at 300°C). Also presented is a cyclic plasticity-based analytical model that can simultaneously capture the amplitude and time dependency of the component behavior under fatigue loading. Results related to both amplitude-dependent and amplitude-independent parameters are presented. The validation results for the analytical/mechanistic model are discussed. This report provides guidance for estimating time-dependent, amplitude-independent parameters related to material behavior under different service conditions. The developed mechanistic models and the reported material parameters can be used to conduct more accurate fatigue and ratcheting evaluation of reactor components.« less

  15. Differential bacterial load on components of total knee prosthesis in patients with prosthetic joint infection.

    PubMed

    Holinka, Johannes; Pilz, Magdalena; Hirschl, Alexander M; Graninger, Wolfgang; Windhager, Reinhard; Presterl, Elisabeth

    2012-10-01

    The purpose of our study was to evaluate and quantify the bacterial adherence on different components of total knee prosthesis with the sonication culture method. Explanted components of all patients with presumptive prosthetic or implant infection were treated by sonication separately in sterile containers to dislodge the adherent bacteria from the surfaces and cultured. The bacterial load of the different knee components (femur, tibia, PE-inlay and patella) was evaluated by counting of colony-forming units (CFU) dislodged from the components surfaces using the sonication culture method. Overall, 27 patients had positive sonication cultures of explanted total knee prostheses. Microorganisms were detected from 88 of 100 explanted components. Twenty femoral components were culture positive and 7 negative, 23 tibial components as well as 23 polyethylene (PE) platforms had positive microorganism detection from the surface. Staphylococcus epidermidis adhered to the highest number of components whereas Staphylococcus aureus yielded the highest load of CFU in the sonication cultures. Although not significant, PE-inlays and tibial components were most often affected. The highest CFU count was detected in polyethylene components. The sonication culture method is a reliable method to detect bacteria from the components. Additionally, the results demonstrate that bacterial adherence is not affecting a single component of knee prosthesis only. Thus, in septic revision surgery partial prosthetic exchange or exchange of single polyethylene components alone may be not sufficient.

  16. Adult cyclical vomiting syndrome: a disorder of allostatic regulation?

    PubMed

    Levinthal, D J; Bielefeldt, K

    2014-08-01

    Cyclic vomiting syndrome (CVS) is an idiopathic illness characterized by stereotypic and sudden-onset episodes of intense retching and repetitive vomiting that are often accompanied by severe abdominal pain. Many associated factors that predict CVS attacks, such as prolonged periods of fasting, sleep deprivation, physical and emotional stress, or acute anxiety, implicate sympathetic nervous system activation as a mechanism that may contribute to CVS pathogenesis. Furthermore, adult patients with CVS tend to have a history of early adverse life events, mood disorders, chronic stress, and drug abuse-all associations that may potentiate sympathetic neural activity. In this review, we set forth a conceptual model in which CVS is viewed as a brain disorder involving maladaptive plasticity within central neural circuits important for allostatic regulation of the sympathetic nervous system. This model not only can account for the varied clinical observations that are linked with CVS, but also has implications for potential therapeutic interventions. Thus, it is likely that cognitive behavioral therapy, stress management ("mind-body") interventions, regular exercise, improved sleep, and avoidance of cannabis and opiate use could have positive influences on the clinical course for patients with CVS.

  17. Method to Eliminate Flux Linkage DC Component in Load Transformer for Static Transfer Switch

    PubMed Central

    2014-01-01

    Many industrial and commercial sensitive loads are subject to the voltage sags and interruptions. The static transfer switch (STS) based on the thyristors is applied to improve the power quality and reliability. However, the transfer will result in severe inrush current in the load transformer, because of the DC component in the magnetic flux generated in the transfer process. The inrush current which is always 2~30 p.u. can cause the disoperation of relay protective devices and bring potential damage to the transformer. The way to eliminate the DC component is to transfer the related phases when the residual flux linkage of the load transformer and the prospective flux linkage of the alternate source are equal. This paper analyzes how the flux linkage of each winding in the load transformer changes in the transfer process. Based on the residual flux linkage when the preferred source is completely disconnected, the method to calculate the proper time point to close each phase of the alternate source is developed. Simulation and laboratory experiments results are presented to show the effectiveness of the transfer method. PMID:25133255

  18. Non-Intrusive Load Monitoring of HVAC Components using Signal Unmixing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahimpour, Alireza; Qi, Hairong; Fugate, David L

    Heating, Ventilating and Air Conditioning units (HVAC) are a major electrical energy consumer in buildings. Monitoring of the operation and energy consumption of HVAC would increase the awareness of building owners and maintenance service providers of the condition and quality of performance of these units, enabling conditioned-based maintenance which would help achieving higher energy efficiency. In this paper, a novel non-intrusive load monitoring method based on group constrained non-negative matrix factorization is proposed for monitoring the different components of HVAC unit by only measuring the whole building aggregated power signal. At the first level of this hierarchical approach, power consumptionmore » of the building is decomposed to energy consumption of the HVAC unit and all the other electrical devices operating in the building such as lighting and plug loads. Then, the estimated power signal of the HVAC is used for estimating the power consumption profile of the HVAC major electrical loads such as compressors, condenser fans and indoor blower. Experiments conducted on real data collected from a building testbed maintained at the Oak Ridge National Laboratory (ORNL) demonstrate high accuracy on the disaggregation task.« less

  19. Psychobiological stress in vital exhaustion. Findings from the Men Stress 40+ study.

    PubMed

    Noser, Emilou; Fischer, Susanne; Ruppen, Jessica; Ehlert, Ulrike

    2018-02-01

    Despite the increased risk for cardiovascular morbidity associated with vital exhaustion (VE), the underlying pathophysiological mechanisms remain unclear. Allostatic load may constitute the missing link between VE and cardiovascular diseases. The aim of the present study was to investigate whether men with different degrees of VE would differ in terms of allostatic load, chronic stress, and social support. The Men Stress 40+ study sample consisted of N=121 apparently healthy men aged 40 to 75years. The following allostatic load markers were aggregated to create a cumulative index of biological stress: salivary cortisol, salivary dehydroepiandrosterone sulfate (DHEA-S), waist-to-hip-ratio, systolic and diastolic blood pressure. Long-term cortisol and DHEA were additionally measured in hair. Chronic stress and social support were assessed via validated questionnaires. Groups of mildly, substantially, and severely exhausted men were compared using one-way ANOVAs with appropriate post-hoc tests. Men who reported mild or severe levels of vital exhaustion had the highest scores on the cumulative index of biological stress. Hair cortisol was unrelated to vital exhaustion; hair DHEA was highest in men with substantial levels of exhaustion. Men with mild exhaustion reported the lowest levels of chronic stress, while men with severe exhaustion reported the lowest levels of social support. Signs of allostatic load are detectable in vitally exhausted men at a stage where no major cardiovascular consequences have yet ensued. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Finite-element computer program for axisymmetric loading situations where components may have a relative interference fit

    NASA Technical Reports Server (NTRS)

    Taylor, C. M.

    1977-01-01

    A finite element computer program which enables the analysis of distortions and stresses occurring in compounds having a relative interference is presented. The program is limited to situations in which the loading is axisymmetric. Loads arising from the interference fit(s) and external, inertial, and thermal loadings are accommodated. The components comprise several different homogeneous isotropic materials whose properties may be a function of temperature. An example illustrating the data input and program output is given.

  1. Sex-based differences in lifting technique under increasing load conditions: A principal component analysis.

    PubMed

    Sheppard, P S; Stevenson, J M; Graham, R B

    2016-05-01

    The objective of the present study was to determine if there is a sex-based difference in lifting technique across increasing-load conditions. Eleven male and 14 female participants (n = 25) with no previous history of low back disorder participated in the study. Participants completed freestyle, symmetric lifts of a box with handles from the floor to a table positioned at 50% of their height for five trials under three load conditions (10%, 20%, and 30% of their individual maximum isometric back strength). Joint kinematic data for the ankle, knee, hip, and lumbar and thoracic spine were collected using a two-camera Optotrak motion capture system. Joint angles were calculated using a three-dimensional Euler rotation sequence. Principal component analysis (PCA) and single component reconstruction were applied to assess differences in lifting technique across the entire waveforms. Thirty-two PCs were retained from the five joints and three axes in accordance with the 90% trace criterion. Repeated-measures ANOVA with a mixed design revealed no significant effect of sex for any of the PCs. This is contrary to previous research that used discrete points on the lifting curve to analyze sex-based differences, but agrees with more recent research using more complex analysis techniques. There was a significant effect of load on lifting technique for five PCs of the lower limb (PC1 of ankle flexion, knee flexion, and knee adduction, as well as PC2 and PC3 of hip flexion) (p < 0.005). However, there was no significant effect of load on the thoracic and lumbar spine. It was concluded that when load is standardized to individual back strength characteristics, males and females adopted a similar lifting technique. In addition, as load increased male and female participants changed their lifting technique in a similar manner. Copyright © 2016. Published by Elsevier Ltd.

  2. Loads and loads and loads: the influence of prospective load, retrospective load, and ongoing task load in prospective memory.

    PubMed

    Meier, Beat; Zimmermann, Thomas D

    2015-01-01

    In prospective memory tasks different kinds of load can occur. Adding a prospective memory task can impose a load on ongoing task performance. Adding ongoing task load (OTL) can affect prospective memory performance. The existence of multiple target events increases prospective load (PL) and adding complexity to the to-be-remembered action increases retrospective load (RL). In two experiments, we systematically examined the effects of these different types of load on prospective memory performance. Results showed an effect of PL on costs in the ongoing task for categorical targets (Experiment 2), but not for specific targets (Experiment 1). RL and OTL both affected remembering the retrospective component of the prospective memory task. We suggest that PL can enhance costs in the ongoing task due to additional monitoring requirements. RL and OTL seem to impact the division of resources between the ongoing task and retrieval of the retrospective component, which may affect disengagement from the ongoing task. In general, the results demonstrate that the different types of load affect prospective memory differentially.

  3. Loads and loads and loads: the influence of prospective load, retrospective load, and ongoing task load in prospective memory

    PubMed Central

    Meier, Beat; Zimmermann, Thomas D.

    2015-01-01

    In prospective memory tasks different kinds of load can occur. Adding a prospective memory task can impose a load on ongoing task performance. Adding ongoing task load (OTL) can affect prospective memory performance. The existence of multiple target events increases prospective load (PL) and adding complexity to the to-be-remembered action increases retrospective load (RL). In two experiments, we systematically examined the effects of these different types of load on prospective memory performance. Results showed an effect of PL on costs in the ongoing task for categorical targets (Experiment 2), but not for specific targets (Experiment 1). RL and OTL both affected remembering the retrospective component of the prospective memory task. We suggest that PL can enhance costs in the ongoing task due to additional monitoring requirements. RL and OTL seem to impact the division of resources between the ongoing task and retrieval of the retrospective component, which may affect disengagement from the ongoing task. In general, the results demonstrate that the different types of load affect prospective memory differentially. PMID:26082709

  4. Determination of mechanical loading components of the equine metacarpus from measurements of strain during walking.

    PubMed

    Merritt, J S; Burvill, C R; Pandy, M G; Davies, H M S

    2006-08-01

    The mechanical environment of the distal limb is thought to be involved in the pathogenesis of many injuries, but has not yet been thoroughly described. To determine the forces and moments experienced by the metacarpus in vivo during walking and also to assess the effect of some simplifying assumptions used in analysis. Strains from 8 gauges adhered to the left metacarpus of one horse were recorded in vivo during walking. Two different models - one based upon the mechanical theory of beams and shafts and, the other, based upon a finite element analysis (FEA) - were used to determine the external loads applied at the ends of the bone. Five orthogonal force and moment components were resolved by the analysis. In addition, 2 orthogonal bending moments were calculated near mid-shaft. Axial force was found to be the major loading component and displayed a bi-modal pattern during the stance phase of the stride. The shaft model of the bone showed good agreement with the FEA model, despite making many simplifying assumptions. A 3-dimensional loading scenario was observed in the metacarpus, with axial force being the major component. These results provide an opportunity to validate mathematical (computer) models of the limb. The data may also assist in the formulation of hypotheses regarding the pathogenesis of injuries to the distal limb.

  5. Effects of electrical loads containing non-resistive components on electromagnetic vibration energy harvester performance

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Corr, Lawrence R.; Ma, Tianwei

    2018-02-01

    To further advance the existing knowledge base on rectified vibration energy harvester design, this study investigates the fundamental effects of electrical loads containing non-resistive components (e.g., rectifiers and capacitors) on electromagnetic energy harvester performance. Three types of electrical loads, namely (I) a resistor with a rectifier, (II) a resistor with a rectifier and a capacitor, and (III) a simple charging circuit consisting of a rectifier and a capacitor, were considered. A linear electromagnetic energy harvester was used as an illustrative example. Results have verified that device performance obtained from pure-resistive loads cannot be generalized to applications involving rectifier and/or capacitor loads. Such generalization caused not only an overestimation in the maximum power delivered to the load resistance for cases (I) and (II), but also an underestimation of the optimal load resistance and an overestimation of device natural frequency for case (II). Results obtained from case (II) also showed that it is possible to tune the mechanical natural frequency of device using an adjustable regulating capacitor. For case (III), it was found that a larger storing capacitor, with a low rectifier voltage drop, improves the performance of the electromagnetic harvester.

  6. Response spectrum method for extreme wave loading with higher order components of drag force

    NASA Astrophysics Data System (ADS)

    Reza, Tabeshpour Mohammad; Mani, Fatemi Dezfouli; Ali, Dastan Diznab Mohammad; Saied, Mohajernasab; Saied, Seif Mohammad

    2017-03-01

    Response spectra of fixed offshore structures impacted by extreme waves are investigated based on the higher order components of the nonlinear drag force. In this way, steel jacket platforms are simplified as a mass attached to a light cantilever cylinder and their corresponding deformation response spectra are estimated by utilizing a generalized single degree of freedom system. Based on the wave data recorded in the Persian Gulf region, extreme wave loading conditions corresponding to different return periods are exerted on the offshore structures. Accordingly, the effect of the higher order components of the drag force is considered and compared to the linearized state for different sea surface levels. When the fundamental period of the offshore structure is about one third of the main period of wave loading, the results indicate the linearized drag term is not capable of achieving a reliable deformation response spectrum.

  7. [A simulative biomechanical experiment on different position of none-cement acetabular components influencing the load distribution around acetabulum].

    PubMed

    Li, Dongsong; Liu, Jianguo; Li, Shuqiang; Fan, Honghui; Guan, Jikui

    2008-02-01

    In the present study, a three dimensional finite-element model of the human pelvic was reconstructed, and then, under different acetabular component position (the abduction angle ranges from 30 degrees to 70 degrees and the anteversion ranges from 5 degrees to 30degrees) the load distribution around the acetabular was evaluated by the computer biomechanical analysis program (Solidworks). Through the obtained load distribution results, the most even and reasonable range of the distribution was selected; therefore the safe range of the acetabular component implantation can be validated from the biomechanics aspect.

  8. Vocabulary Acquisition through Cloze Exercises, Sentence-Writing and Composition-Writing: Extending the Evaluation Component of the Involvement Load Hypothesis

    ERIC Educational Resources Information Center

    Zou, Di

    2017-01-01

    This research inspects the allocation of involvement load to the evaluation component of the involvement load hypothesis, examining how three typical approaches to evaluation (cloze-exercises, sentence-writing, and composition-writing) promote word learning. The results of this research were partially consistent with the predictions of the…

  9. Does Maximal External Tibial Component Rotation Influence Tibiofemoral Load Distribution in the Primary Knee Arthroplasty Setting: A Comparison of Neutral vs Maximal Anatomical External Rotatory States.

    PubMed

    Manning, William A; Ghosh, Kanishka M; Blain, Alasdair P; Longstaff, Lee M; Rushton, Steven P; Deehan, David J

    2017-06-01

    Tibial component rotation at time of knee arthroplasty can influence conformity, load transmission across the polyethylene surface, and perhaps ultimately determined survivorship. Optimal tibial component rotation on the cut surface is reliant on standard per operative manual stressing. This subjective assessment aims to balance constraint and stability of the articulation through a full arc of movement. Using a cadaveric model, computer navigation and under defined, previously validated loaded conditions mimicking the in vivo setting, the influence of maximal tibial component external rotation compared with the neutral state was examined for changes in laxity and tibiofemoral continuous load using 3D displacement measurement and an orthosensor continuous load sensor implanted within the polyethylene spacer in a simulated single radius total knee arthroplasty. No significant difference was found throughout arc of motion (0-115 degrees of flexion) for maximal varus and/or valgus or rotatory laxity between the 2 states. The neutral state achieved equivalence for mediolateral load distribution at each point of flexion. We have found that external rotation of the tibial component increased medial compartment load in comparison with the neutral position. Compared with the neutral state, external rotation consistently effected a marginal, but not significant reduction in lateral load under similar loading conditions. The effects were most pronounced in midflexion. On the basis of these findings, we would advocate for the midtibial tubercle point to determine tibial component rotation and caution against component external rotation. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Residual thermal stress control in composite reinforced metal structures. [by mechanical loading of metal component prior to bonding

    NASA Technical Reports Server (NTRS)

    Kelly, J. B.; June, R. R.

    1972-01-01

    Advanced composite materials, composed of boron or graphite fibers and a supporting matrix, make significant structural efficiency improvements available to aircraft and aerospace designers. Residual stress induced during bonding of composite reinforcement to metal structural elements can be reduced or eliminated through suitable modification to the manufacturing processes. The most successful method employed during this program used a steel tool capable of mechanically loading the metal component in compression prior to the adhesive bonding cycle. Compression loading combined with heating to 350 F during the bond cycle can result in creep deformation in aluminum components. The magnitude of the deformation increases with increasing stress level during exposure to 350 F.

  11. Development of methodology for component testing under impact loading for space applications

    NASA Astrophysics Data System (ADS)

    Church, Phillip; Taylor, Nicholas; Perkinson, Marie-Claire; Wishart, Alex; Vijendran, Sanjay; Braithwaite, Chris

    2017-06-01

    A number of recent studies have highlighted the scientific benefits of penetrator technology in conducting exploration on other planetary bodies and moons within the solar system. Such a ``hard landing'' approach is cheaper and easier than the traditional ``soft landing'' method. However it is necessary for the science package of such a mission to withstand the rapid decelerations that will occur upon impact. This paper outlines an approach that has been developed to simulate the loading appropriate to Europa and also to monitor component performance before, during and after the impact.

  12. Plutonium immobilization can loading FY99 component test report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kriikku, E.

    2000-06-01

    This report summarizes FY99 Can Loading work completed for the Plutonium Immobilization Project and it includes details about the Helium hood, cold pour cans, Can Loading robot, vision system, magnetically coupled ray cart and lifts, system integration, Can Loading glovebox layout, and an FY99 cost table.

  13. Clinical, hemispheric, and autonomic changes associated with use of closed-loop, allostatic neurotechnology by a case series of individuals with self-reported symptoms of post-traumatic stress.

    PubMed

    Tegeler, Charles H; Cook, Jared F; Tegeler, Catherine L; Hirsch, Joshua R; Shaltout, Hossam A; Simpson, Sean L; Fidali, Brian C; Gerdes, Lee; Lee, Sung W

    2017-04-19

    The objective of this pilot study was to explore the use of a closed-loop, allostatic, acoustic stimulation neurotechnology for individuals with self-reported symptoms of post-traumatic stress, as a potential means to impact symptomatology, temporal lobe high frequency asymmetry, heart rate variability (HRV), and baroreflex sensitivity (BRS). From a cohort of individuals participating in a naturalistic study to evaluate use of allostatic neurotechnology for diverse clinical conditions, a subset was identified who reported high scores on the Posttraumatic Stress Disorder Checklist (PCL). The intervention entailed a series of sessions wherein brain electrical activity was monitored noninvasively at high spectral resolutions, with software algorithms translating selected brain frequencies into acoustic stimuli (audible tones) that were delivered back to the user in real time, to support auto-calibration of neural oscillations. Participants completed symptom inventories before and after the intervention, and a subset underwent short-term blood pressure recordings for HRV and BRS. Changes in temporal lobe high frequency asymmetry were analyzed from baseline assessment through the first four sessions, and for the last four sessions. Nineteen individuals (mean age 47, 11 women) were enrolled, and the majority also reported symptom scores that exceeded inventory thresholds for depression. They undertook a median of 16 sessions over 16.5 days, and 18 completed the number of sessions recommended. After the intervention, 89% of the completers reported clinically significant decreases in post-traumatic stress symptoms, indicated by a change of at least 10 points on the PCL. At a group level, individuals with either rightward (n = 7) or leftward (n = 7) dominant baseline asymmetry in temporal lobe high frequency (23-36 Hz) activity demonstrated statistically significant reductions in their asymmetry scores over the course of their first four sessions. For 12 individuals

  14. Under the Skin: Using Theories From Biology and the Social Sciences to Explore the Mechanisms Behind the Black–White Health Gap

    PubMed Central

    Darity, William A.

    2010-01-01

    Equity and social well-being considerations make Black–White health disparities an area of important concern. Although previous research suggests that discrimination- and poverty-related stressors play a role in African American health outcomes, the mechanisms are unclear. Allostatic load is a concept that can be employed to demonstrate how environmental stressors, including psychosocial ones, may lead to a cumulative physiological toll on the body. We discuss both the usefulness of this framework for understanding how discrimination can lead to worse health among African Americans, and the challenges for conceptualizing biological risk with existing data and methods. We also contrast allostatic load with theories of historical trauma such as posttraumatic slavery syndrome. Finally, we offer our suggestions for future interdisciplinary research on health disparities. PMID:20147678

  15. Biological costs of economic transition: Stress levels during the transition from communism to capitalism in Poland.

    PubMed

    Lipowicz, Anna; Szklarska, Alicja; Mitas, Andrzej W

    2016-05-01

    At the end of the 1980s, Poland began the transformation from an essentially one-party communist system to a politically pluralistic democratic system. These political and economic changes had major social consequences, among others unemployment and a sharp decrease in real personal income. The aim of the study was to investigate the possible relationship between stress in adult men, measured by the Allostatic Load, and the socio-economic deterioration during the first part of the economic transition. The Allostatic Load included eleven markers assessing adverse nutritional intake, cardiovascular activity, inflammatory processes, and lung, hepatic and renal functions. The results indicate a significantly higher risk of metabolic dysregulation in men examined after 1990, compared to men from previous years. After adjustment for socioeconomic variables and lifestyle variables, men examined in 1991 had a 31% greater risk of higher Allostatic Load compared with men examined in 1985 (OR=1.31; p=0.0541), in 1992, this risk was 50% greater (OR=1.50; p<0.01), and in 1993, the risk was 66% greater (OR=1.66; p<0.05). The conclusion is drawn that significantly more stressogenic factors for men were those directly connected with the financial situation of their families, than a sudden but short increase of prices for goods and services. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Assessment of spatiotemporal variations in the fluvial wash-load component in the 21st century with regard to GCM climate change scenarios.

    PubMed

    Mouri, Goro

    2015-11-15

    For stream water, in which a relationship exists between wash-load concentration and discharge, an estimate of fine-sediment delivery may be obtained from a traditional fluvial wash-load rating curve. Here, we demonstrate that the remaining wash-load material load can be estimated from a traditional empirical principle on a nationwide scale. The traditional technique was applied to stream water for the whole of Japan. Four typical GCMs were selected from the Coupled Model Intercomparison Project Phase 5 (CMIP5) ensemble to provide the driving fields for the following regional climate models to assess the wash-load component based on rating curves: the Model for Interdisciplinary Research on Climate (MIROC), the Meteorological Research Institute Atmospheric General Circulation Model (MRI-GCM), the Hadley Centre Global Environment Model (HadGEM) and the Geophysical Fluid Dynamics Laboratory (GFDL) climate model. The simulations consisted of an ensemble, including multiple physics configurations and different Representative Concentration Pathways (RCP2.6, RCP4.5 and RCP8.5), which was used to produce monthly datasets for the whole country of Japan. The impacts of future climate changes on fluvial wash load in Japanese stream water were based on the balance of changes in hydrological factors. The annual and seasonal variations of the fluvial wash load were assessed from the result of the ensemble analysis in consideration of the Greenhouse Gas (GHG) emission scenarios. The determined results for the amount of wash load increase range from approximately 20 to 110% in the 2040s, especially along part of the Pacific Ocean and the Sea of Japan regions. In the 2090s, the amount of wash load is projected to increase by more than 50% over the whole of Japan. The assessment indicates that seasonal variation is particularly important because the rainy and typhoon seasons, which include extreme events, are the dominant seasons. Because fluvial wash-load-component turbidity

  17. Design-Load Basis for LANL Structures, Systems, and Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    I. Cuesta

    2004-09-01

    This document supports the recommendations in the Los Alamos National Laboratory (LANL) Engineering Standard Manual (ESM), Chapter 5--Structural providing the basis for the loads, analysis procedures, and codes to be used in the ESM. It also provides the justification for eliminating the loads to be considered in design, and evidence that the design basis loads are appropriate and consistent with the graded approach required by the Department of Energy (DOE) Code of Federal Regulation Nuclear Safety Management, 10, Part 830. This document focuses on (1) the primary and secondary natural phenomena hazards listed in DOE-G-420.1-2, Appendix C, (2) additional loadsmore » not related to natural phenomena hazards, and (3) the design loads on structures during construction.« less

  18. Optical components damage parameters database system

    NASA Astrophysics Data System (ADS)

    Tao, Yizheng; Li, Xinglan; Jin, Yuquan; Xie, Dongmei; Tang, Dingyong

    2012-10-01

    Optical component is the key to large-scale laser device developed by one of its load capacity is directly related to the device output capacity indicators, load capacity depends on many factors. Through the optical components will damage parameters database load capacity factors of various digital, information technology, for the load capacity of optical components to provide a scientific basis for data support; use of business processes and model-driven approach, the establishment of component damage parameter information model and database systems, system application results that meet the injury test optical components business processes and data management requirements of damage parameters, component parameters of flexible, configurable system is simple, easy to use, improve the efficiency of the optical component damage test.

  19. Loaded transducer for downhole drilling components

    DOEpatents

    Hall, David R [Provo, UT; Fox, Joe [Spanish Fork, UT; Daly, Jeffery E [Cypress, TX

    2009-05-05

    A system for transmitting information between downhole components has a first downhole component with a first mating surface and a second downhole component having a second mating surface configured to substantially mate with the first mating surface. The system also has a first transmission element with a first communicating surface and is mounted within a recess in the first mating surface. The first transmission element also has an angled surface. The recess has a side with multiple slopes for interacting with the angled surface, each slope exerting a different spring force on the first transmission element. A second transmission element has a second communicating surface mounted proximate the second mating surface and adapted to communicate with the first communicating surface.

  20. Signal-to-noise contribution of principal component loads in reconstructed near-infrared Raman tissue spectra.

    PubMed

    Grimbergen, M C M; van Swol, C F P; Kendall, C; Verdaasdonk, R M; Stone, N; Bosch, J L H R

    2010-01-01

    The overall quality of Raman spectra in the near-infrared region, where biological samples are often studied, has benefited from various improvements to optical instrumentation over the past decade. However, obtaining ample spectral quality for analysis is still challenging due to device requirements and short integration times required for (in vivo) clinical applications of Raman spectroscopy. Multivariate analytical methods, such as principal component analysis (PCA) and linear discriminant analysis (LDA), are routinely applied to Raman spectral datasets to develop classification models. Data compression is necessary prior to discriminant analysis to prevent or decrease the degree of over-fitting. The logical threshold for the selection of principal components (PCs) to be used in discriminant analysis is likely to be at a point before the PCs begin to introduce equivalent signal and noise and, hence, include no additional value. Assessment of the signal-to-noise ratio (SNR) at a certain peak or over a specific spectral region will depend on the sample measured. Therefore, the mean SNR over the whole spectral region (SNR(msr)) is determined in the original spectrum as well as for spectra reconstructed from an increasing number of principal components. This paper introduces a method of assessing the influence of signal and noise from individual PC loads and indicates a method of selection of PCs for LDA. To evaluate this method, two data sets with different SNRs were used. The sets were obtained with the same Raman system and the same measurement parameters on bladder tissue collected during white light cystoscopy (set A) and fluorescence-guided cystoscopy (set B). This method shows that the mean SNR over the spectral range in the original Raman spectra of these two data sets is related to the signal and noise contribution of principal component loads. The difference in mean SNR over the spectral range can also be appreciated since fewer principal components can

  1. Detection of Unexpected High Correlations between Balance Calibration Loads and Load Residuals

    NASA Technical Reports Server (NTRS)

    Ulbrich, N.; Volden, T.

    2014-01-01

    An algorithm was developed for the assessment of strain-gage balance calibration data that makes it possible to systematically investigate potential sources of unexpected high correlations between calibration load residuals and applied calibration loads. The algorithm investigates correlations on a load series by load series basis. The linear correlation coefficient is used to quantify the correlations. It is computed for all possible pairs of calibration load residuals and applied calibration loads that can be constructed for the given balance calibration data set. An unexpected high correlation between a load residual and a load is detected if three conditions are met: (i) the absolute value of the correlation coefficient of a residual/load pair exceeds 0.95; (ii) the maximum of the absolute values of the residuals of a load series exceeds 0.25 % of the load capacity; (iii) the load component of the load series is intentionally applied. Data from a baseline calibration of a six-component force balance is used to illustrate the application of the detection algorithm to a real-world data set. This analysis also showed that the detection algorithm can identify load alignment errors as long as repeat load series are contained in the balance calibration data set that do not suffer from load alignment problems.

  2. A new way of thinking about complications of prematurity.

    PubMed

    Moore, Tiffany A; Berger, Ann M; Wilson, Margaret E

    2014-01-01

    The morbidity and mortality of preterm infants are impacted by their ability to maintain physiologic homeostasis using metabolic, endocrine, and immunologic mechanisms independent of the mother's placenta. Exploring McEwen's allostatic load model in preterm infants provides a new way to understand the altered physiologic processes associated with frequently occurring complications of prematurity such as bronchopulmonary dysplasia, intraventricular hemorrhage, necrotizing enterocolitis, and retinopathy of prematurity. The purpose of this article is to present a new model to enhance understanding of the altered physiologic processes associated with complications of prematurity. The model of allostatic load and complications of prematurity was derived to explore the relationship between general stress of prematurity and complications of prematurity. The proposed model uses the concepts of general stress of prematurity, allostasis, physiologic response patterns (adaptive-maladaptive), allostatic load, and complications of prematurity. These concepts are defined and theoretical relationships in the proposed model are interpreted using the four maladaptive response patterns of repeated hits, lack of adaptation, prolonged response, and inadequate response. Empirical evidence for cortisol, inflammation, and oxidative stress responses are used to support the theoretical relationships. The proposed model provides a new way of thinking about physiologic dysregulation in preterm infants. The ability to describe and understand complex physiologic mechanisms involved in complications of prematurity is essential for research. Advancing the knowledge of complications of prematurity will advance clinical practice and research and lead to testing of interventions to reduce negative outcomes in preterm infants.

  3. The composite load spectra project

    NASA Technical Reports Server (NTRS)

    Newell, J. F.; Ho, H.; Kurth, R. E.

    1990-01-01

    Probabilistic methods and generic load models capable of simulating the load spectra that are induced in space propulsion system components are being developed. Four engine component types (the transfer ducts, the turbine blades, the liquid oxygen posts and the turbopump oxidizer discharge duct) were selected as representative hardware examples. The composite load spectra that simulate the probabilistic loads for these components are typically used as the input loads for a probabilistic structural analysis. The knowledge-based system approach used for the composite load spectra project provides an ideal environment for incremental development. The intelligent database paradigm employed in developing the expert system provides a smooth coupling between the numerical processing and the symbolic (information) processing. Large volumes of engine load information and engineering data are stored in database format and managed by a database management system. Numerical procedures for probabilistic load simulation and database management functions are controlled by rule modules. Rules were hard-wired as decision trees into rule modules to perform process control tasks. There are modules to retrieve load information and models. There are modules to select loads and models to carry out quick load calculations or make an input file for full duty-cycle time dependent load simulation. The composite load spectra load expert system implemented today is capable of performing intelligent rocket engine load spectra simulation. Further development of the expert system will provide tutorial capability for users to learn from it.

  4. Use of Flexible Body Coupled Loads in Assessment of Day of Launch Flight Loads

    NASA Technical Reports Server (NTRS)

    Starr, Brett R.; Yunis, Isam; Olds, Aaron D.

    2011-01-01

    A Day of Launch flight loads assessment technique that determines running loads calculated from flexible body coupled loads was developed for the Ares I-X Flight Test Vehicle. The technique was developed to quantify DOL flight loads in terms of structural load components rather than the typically used q-alpha metric to provide more insight into the DOL loads. In this technique, running loads in the primary structure are determined from the combination of quasi-static aerodynamic loads and dynamic loads. The aerodynamic loads are calculated as a function of time using trajectory parameters passed from the DOL trajectory simulation and are combined with precalculated dynamic loads using a load combination equation. The potential change in aerodynamic load due to wind variability during the countdown is included in the load combination. In the event of a load limit exceedance, the technique allows the identification of what load component is exceeded, a quantification of how much the load limit is exceeded, and where on the vehicle the exceedance occurs. This technique was used to clear the Ares I-X FTV for launch on October 28, 2009. This paper describes the use of coupled loads in the Ares I-X flight loads assessment and summarizes the Ares I-X load assessment results.

  5. Loaded Transducer Fpr Downhole Drilling Component

    DOEpatents

    Hall, David R.; Hall, H. Tracy; Pixton, David; Dahlgren, Scott; Sneddon, Cameron; Briscoe, Michael; Fox, Joe

    2005-07-05

    A robust transmission element for transmitting information between downhole tools, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The transmission element maintains reliable connectivity between transmission elements, thereby providing an uninterrupted flow of information between drill string components. A transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe. To close gaps present between transmission elements, transmission elements may be biased with a "spring force," urging them closer together.

  6. Loaded transducer for downhole drilling components

    DOEpatents

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David S.; Briscoe, Michael A.; Dahlgren, Scott Steven; Fox, Joe; Sneddon, Cameron

    2006-02-21

    A robust transmission element for transmitting information between downhole tools, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The transmission element maintains reliable connectivity between transmission elements, thereby providing an uninterrupted flow of information between drill string components. A transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe. To close gaps present between transmission elements, transmission elements may be biased with a "spring force, urging them closer together."

  7. Load to failure of different zirconia implant abutments with titanium components.

    PubMed

    Mascarenhas, Faye; Yilmaz, Burak; McGlumphy, Edwin; Clelland, Nancy; Seidt, Jeremy

    2017-06-01

    Abutments with a zirconia superstructure and a titanium insert have recently become popular. Although they have been tested under static load, their performance under simulated mastication is not well known. The purpose of this in vitro study was to compare the cyclic load to failure of 3 types of zirconia abutments with different mechanisms of retention of the zirconia to the titanium interface. Fifteen implants (n=5 per system) and abutments (3 groups: 5 friction fit [Frft]; 5 bonded; and 5 titanium ring friction fit [Ringfrft]) were used. Abutments were thermocycled in water between 5°C and 55°C for 15000 cycles and then cyclically loaded for 20000 cycles or until failure at a frequency of 2 Hz by using a sequentially increased loading protocol up to a maximum of 720 N. The load to failure for each group was recorded, and 1-way analysis of variance was performed. The mean load-to-failure values for the Frft group was 526 N, for the Bond group 605 N, and for the Ringfrft group 288 N. A statistically significant difference was found among all abutments tested (P<.05). Abutments with the bonded connection showed the highest load-to-failure value, and the abutment with the titanium ring friction fit connection showed the lowest load-to-failure value. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  8. Micro- and nano-scale damage on the surface of W divertor component during exposure to high heat flux loads with He

    NASA Astrophysics Data System (ADS)

    Li, C.; Greuner, H.; Zhao, S. X.; Böswirth, B.; Luo, G. N.; Zhou, X.; Jia, Y. Z.; Liu, X.; Liu, W.

    2015-11-01

    Micro- and nano-scale surface damage on a W divertor component sample exposed to high heat flux loads generated with He atoms has been investigated through SEM, EBSD, AFM and FIB-SEM. The component sample was supplied by the Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP) and AT&M company, China, and the loading experiment was performed in the GLADIS facility at IPP Garching, Germany. Two typical damage structures were observed on the surface: the first one is characterized by obvious blisters and some grooves formed from ruptured blisters, and the other one is a kind of porous structure accompanying with at least ∼25 nm surface material loss. As the grain orientation is further away from <111>, the damage morphology gradually changes from the former structure to the latter. The possible damage mechanism is discussed.

  9. Modeling multisystem biological risk in young adults: The Coronary Artery Risk Development in Young Adults Study.

    PubMed

    Seeman, Teresa; Gruenewald, Tara; Karlamangla, Arun; Sidney, Steve; Liu, Kiang; McEwen, Bruce; Schwartz, Joseph

    2010-01-01

    Although much prior research has focused on identifying the roles of major regulatory systems in health risks, the concept of allostatic load (AL) focuses on the importance of a more multisystems view of health risks. How best to operationalize allostatic load, however, remains the subject of some debate. We sought to test a hypothesized metafactor model of allostatic load composed of a number of biological system factors, and to investigate model invariance across sex and ethnicity. Biological data from 782 men and women, aged 32-47, from the Oakland, CA and Chicago, IL sites of the Coronary Artery Risk Development in Young Adults Study (CARDIA) were collected as part of the Year 15exam in 2000. These include measures of blood pressure, metabolic parameters (glucose, insulin, lipid profiles, and waist circumference), markers of inflammation (interleukin-6, C-reactive protein, and fibrinogen), heart rate variability, sympathetic nervous system activity (12-hr urinary norepinephrine and epinephrine) and hypothalamic-pituitary-adrenal axis activity (diurnal salivary free cortisol). A "metafactor" model of AL as an aggregate measure of six underlying latent biological subfactors was found to fit the data, with the metafactor structure capturing 84% of variance of all pairwise associations among biological subsystems. There was little evidence of model variance across sex and/or ethnicity. These analyses extend work operationalizing AL as a multisystems index of biological dysregulation, providing initial support for a model of AL as a metaconstruct of inter-relationships among multiple biological regulatory systems, that varies little across sex or ethnicity.

  10. Effects of yoga on the autonomic nervous system, gamma-aminobutyric-acid, and allostasis in epilepsy, depression, and post-traumatic stress disorder.

    PubMed

    Streeter, C C; Gerbarg, P L; Saper, R B; Ciraulo, D A; Brown, R P

    2012-05-01

    A theory is proposed to explain the benefits of yoga practices in diverse, frequently comorbid medical conditions based on the concept that yoga practices reduce allostatic load in stress response systems such that optimal homeostasis is restored. It is hypothesized that stress induces (1) imbalance of the autonomic nervous system (ANS) with decreased parasympathetic nervous system (PNS) and increased sympathetic nervous system (SNS) activity, (2) underactivity of the gamma amino-butyric acid (GABA) system, the primary inhibitory neurotransmitter system, and (3) increased allostatic load. It is further hypothesized that yoga-based practices (4) correct underactivity of the PNS and GABA systems in part through stimulation of the vagus nerves, the main peripheral pathway of the PNS, and (5) reduce allostatic load. Depression, epilepsy, post traumatic stress disorder (PTSD), and chronic pain exemplify medical conditions that are exacerbated by stress, have low heart rate variability (HRV) and low GABAergic activity, respond to pharmacologic agents that increase activity of the GABA system, and show symptom improvement in response to yoga-based interventions. The observation that treatment resistant cases of epilepsy and depression respond to vagal nerve stimulation corroborates the need to correct PNS underactivity as part of a successful treatment plan in some cases. According to the proposed theory, the decreased PNS and GABAergic activity that underlies stress-related disorders can be corrected by yoga practices resulting in amelioration of disease symptoms. This has far-reaching implications for the integration of yoga-based practices in the treatment of a broad array of disorders exacerbated by stress. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Resilience and biomarkers of health risk in Black smokers and nonsmokers.

    PubMed

    Berg, Carla J; Haardörfer, Regine; McBride, Colleen M; Kilaru, Varun; Ressler, Kerry J; Wingo, Aliza P; Saba, Nabil F; Payne, Jackelyn B; Smith, Alicia

    2017-11-01

    Blacks are disproportionately affected by tobacco-related illnesses as well as traumatic events associated with psychiatric conditions and smoking. We examined the potential protective nature of resilience within this context, hypothesizing resilience differentially moderates the associations of traumatic experiences to depressive symptoms and to biomarkers of health risk among Black ever versus never smokers. Measures of resilience, traumatic experiences, depressive symptoms, and biomarkers (interleukin-6 [IL-6], C-reactive protein [CRP], allostatic load) were obtained among 852 Blacks recruited from Grady Memorial Hospital in Atlanta. Ever smokers experienced more trauma (p < .001) and depressive symptoms (p = .01). Structural equation modeling indicated that, in ever smokers, childhood trauma was positively associated with depressive symptoms (p < .001); resilience was negatively associated with depressive symptoms (p = .01). Depressive symptoms were positively associated with IL-6 (p = .03), which was positively associated with allostatic load (p = .01). Adulthood trauma was associated with higher CRP levels (p = .03). In never smokers, childhood (p < .001) and adulthood trauma (p = .01) were associated with more depressive symptoms. Adulthood trauma was also associated with higher CRP levels (p < .001), which was positively associated with allostatic load (p < .001). Never smokers with higher resilience had a negative association between childhood trauma and depressive symptoms whereas those with lower resilience had a positive association between childhood trauma and depressive symptoms. Resilience was negatively associated with CRP levels (p < .001). Interventions targeting resilience may prevent smoking and adverse health outcomes. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  12. The Role of Child Adrenocortical Functioning in Pathways between Interparental Conflict and Child Maladjustment

    ERIC Educational Resources Information Center

    Davies, Patrick T.; Sturge-Apple, Melissa L.; Cicchetti, Dante; Cummings, E. Mark

    2007-01-01

    This study examined the interplay between interparental conflict and child cortisol reactivity to interparental conflict in predicting child maladjustment in a sample of 178 families and their kindergarten children. Consistent with the allostatic load hypothesis (McEwen & Stellar, 1993), results indicated that interparental conflict was…

  13. Effect of an allostatic modulator on stress blood indicators and meat quality of commercial young bulls in Mexico.

    PubMed

    Rubio Lozano, M S; Méndez Medina, R D; Reyes Mayorga, K; Rubio García, M E; Ovando, M A; Ngapo, T M; Galindo Maldonado, F A

    2015-07-01

    To assess the effect of an allostatic modulator (AM) on stress blood indicators and meat quality traits, the feed of 80 non-castrated 18-20 month-old bulls was supplemented with 10 g/day of an AM for 30 days before slaughter. Another 80 bulls served as control animals. The AM was comprised of ascorbic acid, acetoxybenzoic acid and sodium and potassium chloride. Blood samples were taken at slaughter for analyses of hematocrit value, erythrocyte and leukocyte counts, and glucose, lactate and cortisol concentrations. Post-mortem measures of meat color and pH were made at 24h and color, shear force and cooking loss on meat from 20 animals at 28 days. The AM supplementation resulted in lower hematocrit value, erythrocyte count and glucose level (P<0.05), higher a* (P<0.0001) and b* (P<0.0001) at 24h and lower b* (P<0.05) at 28 days. Thus AM treatment improved some stress blood indicators and meat color and therefore merits further investigation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Pilot Study of A Novel Biobehavioral Intervention’s Effect on Physiologic State, Perceived Stress and Affect: An Investigation of the Health Benefits of Laughter Yoga Participational

    DTIC Science & Technology

    2017-03-25

    the past 16 years of war. 1-3 McEwen’ s allostatic load model delineates how chronic stress up-regulates the sympathetic nervous system causing...physiologic and psychological sequela. Conversely, yogic breathing has been shown to up-regulate the parasympathetic nervous system due to the

  15. External and Internal Factors Influencing Happiness in Elite Collegiate Athletes

    ERIC Educational Resources Information Center

    Denny, Katherine G.; Steiner, Hans

    2009-01-01

    When under conditions of high demand and allostatic load, are happiness and satisfaction in four domains (family, friends, academics, recreation) influenced more by external or internal factors? Do student-athletes who lead exceedingly complicated lives report happiness as a function of athletic achievement or internal disposition? Stanford…

  16. Biomarkers of Psychological Stress in Health Disparities Research

    PubMed Central

    Djuric, Zora; Bird, Chloe E.; Furumoto-Dawson, Alice; Rauscher, Garth H.; Ruffin, Mack T.; Stowe, Raymond P.; Tucker, Katherine L.; Masi, Christopher M.

    2009-01-01

    Psychological stress can contribute to health disparities in populations that are confronted with the recurring stress of everyday life. A number of biomarkers have been shown to be affected by psychological stress. These biomarkers include allostatic load, which is a summary measure of the cumulative biological burden of the repeated attempts to adapt to daily stress. Allostatic load includes effects on the hypothalamic-pituitary axis, the sympathetic nervous system and the cardiovascular system. These in turn affect the immune system via bidirectional signaling pathways. Evidence is also building that psychological stress, perhaps via heightened inflammatory states, can increase oxidative stress levels and DNA damage. The inter-relationships of ethnicity, genotype, gene expression and ability to adequately mitigate stress response are just starting to be appreciated. The need to conduct these studies in disadvantaged populations is clear and requires methods to address potential logistical barriers. Biomarkers can help characterize and quantify the biological impact of psychological stress on the etiology of health disparities. PMID:20305736

  17. An allostatic mechanism for M2 pyruvate kinase as an amino-acid sensor.

    PubMed

    Yuan, Meng; McNae, Iain W; Chen, Yiyuan; Blackburn, Elizabeth A; Wear, Martin A; Michels, Paul A M; Fothergill-Gilmore, Linda A; Hupp, Ted; Walkinshaw, Malcolm D

    2018-05-10

    We have tested the effect of all 20 proteinogenic amino acids on the activity of the M2 isoenzyme of pyruvate kinase (M2PYK) and show that within physiologically relevant concentrations, phenylalanine, alanine, tryptophan, methionine, valine, and proline act as inhibitors while histidine and serine act as activators. Size exclusion chromatography has been used to show that all amino acids, whether activators or inhibitors, stabilise the tetrameric form of M2PYK. In the absence of amino-acid ligands an apparent tetramer-monomer dissociation K d is estimated to be ~0.9 µM with a slow dissociation rate (t 1/2 ~ 15 min). X-ray structures of M2PYK complexes with alanine, phenylalanine, and tryptophan show the M2PYK locked in an inactive T-state conformation, while activators lock the M2PYK tetramer in the active R-state conformation. Amino-acid binding in the allosteric pocket triggers rigid body rotations (11°) stabilising either T or R-states. The opposing inhibitory and activating effects of the non-essential amino acids serine and alanine suggest that M2PYK could act as a rapid-response nutrient sensor to rebalance cellular metabolism. This competition at a single allosteric site between activators and inhibitors provides a novel regulatory mechanism by which M2PYK activity is finely tuned by the relative (but not absolute) concentrations of activator and inhibitor amino acids. Such 'allostatic' regulation may be important in metabolic reprogramming and influencing cell fate. ©2018 The Author(s).

  18. Therapeutic polymers for dental adhesives: Loading resins with bio-active components

    PubMed Central

    Imazato, Satoshi; Ma, Sai; Chen, Ji-hua; Xu, Hockin H.K.

    2014-01-01

    Objectives Many recent adhesives on the market exhibit reasonable clinical performance. Future innovations in adhesive materials should therefore seek out novel properties rather than simply modifying existing technologies. It is proposed that adhesive materials that are “bio-active” could contribute to better prognosis of restorative treatments. Methods This review examines the recent approaches used to achieve therapeutic polymers for dental adhesives by incorporating bio-active components. A strategy to maintain adhesive restorations is the focus of this paper. Results Major trials on therapeutic dental adhesives have looked at adding antibacterial activities or remineralization effects. Applications of antibacterial resin monomers based on quaternary ammonium compounds have received much research attention, and the loading of nano-sized bioactive particles or multiple ion-releasing glass fillers have been perceived as advantageous since they are not expected to influence the mechanical properties of the carrier polymer. Significance The therapeutic polymer approaches described here have the potential to provide clinical benefits. However, not many technological applications in this category have been successfully commercialized. Clinical evidence as well as further advancement of these technologies can be a driving force to make these new types of materials clinically available. PMID:23899387

  19. Relationships between the Definition of the Hyperplane Width to the Fidelity of Principal Component Loading Patterns.

    NASA Astrophysics Data System (ADS)

    Richman, Michael B.; Gong, Xiaofeng

    1999-06-01

    When applying eigenanalysis, one decision analysts make is the determination of what magnitude an eigenvector coefficient (e.g., principal component (PC) loading) must achieve to be considered as physically important. Such coefficients can be displayed on maps or in a time series or tables to gain a fuller understanding of a large array of multivariate data. Previously, such a decision on what value of loading designates a useful signal (hereafter called the loading `cutoff') for each eigenvector has been purely subjective. The importance of selecting such a cutoff is apparent since those loading elements in the range of zero to the cutoff are ignored in the interpretation and naming of PCs since only the absolute values of loadings greater than the cutoff are physically analyzed. This research sets out to objectify the problem of best identifying the cutoff by application of matching between known correlation/covariance structures and their corresponding eigenpatterns, as this cutoff point (known as the hyperplane width) is varied.A Monte Carlo framework is used to resample at five sample sizes. Fourteen different hyperplane cutoff widths are tested, bootstrap resampled 50 times to obtain stable results. The key findings are that the location of an optimal hyperplane cutoff width (one which maximized the information content match between the eigenvector and the parent dispersion matrix from which it was derived) is a well-behaved unimodal function. On an individual eigenvector, this enables the unique determination of a hyperplane cutoff value to be used to separate those loadings that best reflect the relationships from those that do not. The effects of sample size on the matching accuracy are dramatic as the values for all solutions (i.e., unrotated, rotated) rose steadily from 25 through 250 observations and then weakly thereafter. The specific matching coefficients are useful to assess the penalties incurred when one analyzes eigenvector coefficients of a

  20. Load control system. [for space shuttle external tank ground tests

    NASA Technical Reports Server (NTRS)

    Grosse, J. C.

    1977-01-01

    The load control system developed for the shuttle external structural tests is described. The system consists of a load programming/display module, and a load control module along with the following hydraulic system components: servo valves, dump valves, hydraulic system components, and servo valve manifold blocks. One load programming/display subsystem can support multiple load control subsystem modules.

  1. Pilot Study for Definition of Track Component Load Environments

    DOT National Transportation Integrated Search

    1981-02-01

    This report describes the results of an experimental and analytical effort to define the vehicle induced load environment in an at-grade, concrete tie/ballast transit track structure. The experiment was performed on the UMTA transit track oval at the...

  2. Thermally determining flow and/or heat load distribution in parallel paths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chainer, Timothy J.; Iyengar, Madhusudan K.; Parida, Pritish R.

    A method including obtaining calibration data for at least one sub-component in a heat transfer assembly, wherein the calibration data comprises at least one indication of coolant flow rate through the sub-component for a given surface temperature delta of the sub-component and a given heat load into said sub-component, determining a measured heat load into the sub-component, determining a measured surface temperature delta of the sub-component, and determining a coolant flow distribution in a first flow path comprising the sub-component from the calibration data according to the measured heat load and the measured surface temperature delta of the sub-component.

  3. Thermally determining flow and/or heat load distribution in parallel paths

    DOEpatents

    Chainer, Timothy J.; Iyengar, Madhusudan K.; Parida, Pritish R.

    2016-12-13

    A method including obtaining calibration data for at least one sub-component in a heat transfer assembly, wherein the calibration data comprises at least one indication of coolant flow rate through the sub-component for a given surface temperature delta of the sub-component and a given heat load into said sub-component, determining a measured heat load into the sub-component, determining a measured surface temperature delta of the sub-component, and determining a coolant flow distribution in a first flow path comprising the sub-component from the calibration data according to the measured heat load and the measured surface temperature delta of the sub-component.

  4. Impact of Life History on Fear Memory and Extinction

    PubMed Central

    Remmes, Jasmin; Bodden, Carina; Richter, S. Helene; Lesting, Jörg; Sachser, Norbert; Pape, Hans-Christian; Seidenbecher, Thomas

    2016-01-01

    Behavioral profiles are strongly shaped by an individual's whole life experience. The accumulation of negative experiences over lifetime is thought to promote anxiety-like behavior in adulthood (“allostatic load hypothesis”). In contrast, the “mismatch hypothesis” of psychiatric disease suggests that high levels of anxiety-like behavior are the result of a discrepancy between early and late environment. The aim of the present study was to investigate how different life histories shape the expression of anxiety-like behavior and modulate fear memory. In addition, we aimed to clarify which of the two hypotheses can better explain the modulation of anxiety and fear. For this purpose, male mice grew up under either adverse or beneficial conditions during early phase of life. In adulthood they were further subdivided in groups that either matched or mismatched the condition experienced before, resulting in four different life histories. The main results were: (i) Early life benefit followed by late life adversity caused decreased levels of anxiety-like behavior. (ii) Accumulation of adversity throughout life history led to impaired fear extinction learning. Late life adversity as compared to late life benefit mainly affected extinction training, while early life adversity as compared to early life benefit interfered with extinction recall. Concerning anxiety-like behavior, the results do neither support the allostatic load nor the mismatch hypothesis, but rather indicate an anxiolytic effect of a mismatched early beneficial and later adverse life history. In contrast, fear memory was strongly affected by the accumulation of adverse experiences over the lifetime, therefore supporting allostatic load hypothesis. In summary, this study highlights that anxiety-like behavior and fear memory are differently affected by specific combinations of adverse or beneficial events experienced throughout life. PMID:27757077

  5. Higher effort–reward imbalance and lower job control predict exit from the labour market at the age of 61 years or younger: evidence from the English Longitudinal Study of Ageing

    PubMed Central

    Hintsa, T; Kouvonen, A; McCann, M; Jokela, M; Elovainio, M; Demakakos, P

    2015-01-01

    Background We examined whether higher effort–reward imbalance (ERI) and lower job control are associated with exit from the labour market. Methods There were 1263 participants aged 50–74 years from the English Longitudinal Study on Ageing with data on working status and work-related psychosocial factors at baseline (wave 2; 2004–2005), and working status at follow-up (wave 5; 2010–2011). Psychosocial factors at work were assessed using a short validated version of ERI and job control. An allostatic load index was formed using 13 biological parameters. Depressive symptoms were measured using the Center for Epidemiologic Studies Depression Scale. Exit from the labour market was defined as not working in the labour market when 61 years old or younger in 2010–2011. Results Higher ERI OR=1.62 (95% CI 1.01 to 2.61, p=0.048) predicted exit from the labour market independent of age, sex, education, occupational class, allostatic load and depression. Job control OR=0.60 (95% CI 0.42 to 0.85, p=0.004) was associated with exit from the labour market independent of age, sex, education, occupation and depression. The association of higher effort OR=1.32 (95% CI 1.01 to 1.73, p=0.045) with exit from the labour market was independent of age, sex and depression but attenuated to non-significance when additionally controlling for socioeconomic measures. Reward was not related to exit from the labour market. Conclusions Stressful work conditions can be a risk for exiting the labour market before the age of 61 years. Neither socioeconomic position nor allostatic load and depressive symptoms seem to explain this association. PMID:25631860

  6. Higher effort-reward imbalance and lower job control predict exit from the labour market at the age of 61 years or younger: evidence from the English Longitudinal Study of Ageing.

    PubMed

    Hintsa, T; Kouvonen, A; McCann, M; Jokela, M; Elovainio, M; Demakakos, P

    2015-06-01

    We examined whether higher effort-reward imbalance (ERI) and lower job control are associated with exit from the labour market. There were 1263 participants aged 50-74 years from the English Longitudinal Study on Ageing with data on working status and work-related psychosocial factors at baseline (wave 2; 2004-2005), and working status at follow-up (wave 5; 2010-2011). Psychosocial factors at work were assessed using a short validated version of ERI and job control. An allostatic load index was formed using 13 biological parameters. Depressive symptoms were measured using the Center for Epidemiologic Studies Depression Scale. Exit from the labour market was defined as not working in the labour market when 61 years old or younger in 2010-2011. Higher ERI OR=1.62 (95% CI 1.01 to 2.61, p=0.048) predicted exit from the labour market independent of age, sex, education, occupational class, allostatic load and depression. Job control OR=0.60 (95% CI 0.42 to 0.85, p=0.004) was associated with exit from the labour market independent of age, sex, education, occupation and depression. The association of higher effort OR=1.32 (95% CI 1.01 to 1.73, p=0.045) with exit from the labour market was independent of age, sex and depression but attenuated to non-significance when additionally controlling for socioeconomic measures. Reward was not related to exit from the labour market. Stressful work conditions can be a risk for exiting the labour market before the age of 61 years. Neither socioeconomic position nor allostatic load and depressive symptoms seem to explain this association. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  7. Continental hydrology loading observed by VLBI measurements

    NASA Astrophysics Data System (ADS)

    Eriksson, David; MacMillan, D. S.

    2014-07-01

    Variations in continental water storage lead to loading deformation of the crust with typical peak-to-peak variations at very long baseline interferometry (VLBI) sites of 3-15 mm in the vertical component and 1-2 mm in the horizontal component. The hydrology signal at VLBI sites has annual and semi-annual components and clear interannual variations. We have calculated the hydrology loading series using mass loading distributions derived from the global land data assimilation system (GLDAS) hydrology model and alternatively from a global grid of equal-area gravity recovery and climate experiment (GRACE) mascons. In the analysis of the two weekly VLBI 24-h R1 and R4 network sessions from 2003 to 2010 the baseline length repeatabilities are reduced in 79 % (80 %) of baselines when GLDAS (GRACE) loading corrections are applied. Site vertical coordinate repeatabilities are reduced in about 80 % of the sites when either GLDAS or GRACE loading is used. In the horizontal components, reduction occurs in 70-80 % of the sites. Estimates of the annual site vertical amplitudes were reduced for 16 out of 18 sites if either loading series was applied. We estimated loading admittance factors for each site and found that the average admittances were 1.01 0.05 for GRACE and 1.39 0.07 for GLDAS. The standard deviations of the GRACE admittances and GLDAS admittances were 0.31 and 0.68, respectively. For sites that have been observed in a set of sufficiently temporally dense daily sessions, the average correlation between VLBI vertical monthly averaged series and GLDAS or GRACE loading series was 0.47 and 0.43, respectively.

  8. Behavior Of Aircraft Components Under Crash-Type Loads

    NASA Technical Reports Server (NTRS)

    Carden, Huey D.; Boitnott, Richard L.; Fasanella, Edwin L.

    1993-01-01

    Report presents overview of research involving use of concepts of aircraft elements and substructures not necessarily designed or optimized with respect to energy-absorption or crash-loading considerations. Experimental and analytical data presented in report indicate some general trends in failure behaviors of class of composite-material structures including individual fuselage frames, skeleton subfloors with stringers and floor beams but without skin covering, and subfloors with skin added to frame/stringer arrangement.

  9. Resilience to adversity and the early origins of disease.

    PubMed

    Brody, Gene H; Yu, Tianyi; Beach, Steven R H

    2016-11-01

    For the past quarter century, scientists at the Center for Family Research at the University of Georgia have conducted research designed to promote understanding of normative developmental trajectories among low socioeconomic status African American children, youths, and young adults. In this paper, we describe a recent expansion of this research program using longitudinal, epidemiological studies and randomized prevention trials to test hypotheses about the origins of disease among rural African American youths. The contributions of economic hardship, downward mobility, neighborhood poverty, and racial discrimination to allostatic load and epigenetic aging are illustrated. The health benefits of supportive family relationships in protecting youths from these challenges are also illustrated. A cautionary set of studies is presented showing that some psychosocially resilient youths demonstrate high allostatic loads and accelerated epigenetic aging, suggesting that, for some, "resilience is just skin deep." Finally, we end on an optimistic note by demonstrating that family-centered prevention programs can have health benefits by reducing inflammation, helping to preserve telomere length, and inhibiting epigenetic aging.

  10. Resilience to Adversity and the Early Origins of Disease

    PubMed Central

    Brody, Gene H.; Yu, Tianyi; Beach, Steven R. H.

    2016-01-01

    For the past quarter century, scientists at the Center for Family Research at the University of Georgia have conducted research designed to promote understanding of normative developmental trajectories among low-SES African American children, youths, and young adults. In this paper, we describe a recent expansion of this research program using longitudinal, epidemiological studies and randomized prevention trials to tests hypotheses about the origins of disease among rural African American youths. The contributions of economic hardship, downward mobility, neighborhood poverty, and racial discrimination to allostatic load and epigenetic aging are illustrated. The health benefits of supportive family relationships in protecting youths from these challenges are also illustrated. A cautionary set of studies is presented showing that some psychosocially resilient youths demonstrate high allostatic loads and accelerated epigenetic aging, suggesting that, for some, “resilience is just skin deep.” Finally, we end on an optimistic note by demonstrating that family-centered prevention programs can have health benefits by reducing inflammation, helping to preserve telomere length, and inhibiting epigenetic aging. PMID:27692007

  11. Assessment of New Load Schedules for the Machine Calibration of a Force Balance

    NASA Technical Reports Server (NTRS)

    Ulbrich, N.; Gisler, R.; Kew, R.

    2015-01-01

    New load schedules for the machine calibration of a six-component force balance are currently being developed and evaluated at the NASA Ames Balance Calibration Laboratory. One of the proposed load schedules is discussed in the paper. It has a total of 2082 points that are distributed across 16 load series. Several criteria were applied to define the load schedule. It was decided, for example, to specify the calibration load set in force balance format as this approach greatly simplifies the definition of the lower and upper bounds of the load schedule. In addition, all loads are assumed to be applied in a calibration machine by using the one-factor-at-a-time approach. At first, all single-component loads are applied in six load series. Then, three two-component load series are applied. They consist of the load pairs (N1, N2), (S1, S2), and (RM, AF). Afterwards, four three-component load series are applied. They consist of the combinations (N1, N2, AF), (S1, S2, AF), (N1, N2, RM), and (S1, S2, RM). In the next step, one four-component load series is applied. It is the load combination (N1, N2, S1, S2). Finally, two five-component load series are applied. They are the load combination (N1, N2, S1, S2, AF) and (N1, N2, S1, S2, RM). The maximum difference between loads of two subsequent data points of the load schedule is limited to 33 % of capacity. This constraint helps avoid unwanted load "jumps" in the load schedule that can have a negative impact on the performance of a calibration machine. Only loadings of the single- and two-component load series are loaded to 100 % of capacity. This approach was selected because it keeps the total number of calibration points to a reasonable limit while still allowing for the application of some of the more complex load combinations. Data from two of NASA's force balances is used to illustrate important characteristics of the proposed 2082-point calibration load schedule.

  12. CFD-based design load analysis of 5MW offshore wind turbine

    NASA Astrophysics Data System (ADS)

    Tran, T. T.; Ryu, G. J.; Kim, Y. H.; Kim, D. H.

    2012-11-01

    The structure and aerodynamic loads acting on NREL 5MW reference wind turbine blade are calculated and analyzed based on advanced Computational Fluid Dynamics (CFD) and unsteady Blade Element Momentum (BEM). A detailed examination of the six force components has been carried out (three force components and three moment components). Structure load (gravity and inertia load) and aerodynamic load have been obtained by additional structural calculations (CFD or BEM, respectively,). In CFD method, the Reynolds Average Navier-Stokes approach was applied to solve the continuity equation of mass conservation and momentum balance so that the complex flow around wind turbines was modeled. Written in C programming language, a User Defined Function (UDF) code which defines transient velocity profile according to the Extreme Operating Gust condition was compiled into commercial FLUENT package. Furthermore, the unsteady BEM with 3D stall model has also adopted to investigate load components on wind turbine rotor. The present study introduces a comparison between advanced CFD and unsteady BEM for determining load on wind turbine rotor. Results indicate that there are good agreements between both present methods. It is importantly shown that six load components on wind turbine rotor is significant effect under Extreme Operating Gust (EOG) condition. Using advanced CFD and additional structural calculations, this study has succeeded to construct accuracy numerical methodology to estimate total load of wind turbine that compose of aerodynamic load and structure load.

  13. Composite load spectra for select space propulsion structural components

    NASA Technical Reports Server (NTRS)

    Newell, James F.; Ho, Hing W.

    1991-01-01

    This report summarizes the development for: (1) correlation fields; (2) applications to liquid oxygen post; (3) models for pressure fluctuatios and vibration loads fluctuations; (4) additions to expert systems; and (5) scaling criteria. Implementation to computer code is also described. Demonstration sample cases are included with additional applications to engine duct and pipe bend.

  14. Load regulating expansion fixture

    DOEpatents

    Wagner, Lawrence M.; Strum, Michael J.

    1998-01-01

    A free standing self contained device for bonding ultra thin metallic films, such as 0.001 inch beryllium foils. The device will regulate to a predetermined load for solid state bonding when heated to a bonding temperature. The device includes a load regulating feature, whereby the expansion stresses generated for bonding are regulated and self adjusting. The load regulator comprises a pair of friction isolators with a plurality of annealed copper members located therebetween. The device, with the load regulator, will adjust to and maintain a stress level needed to successfully and economically complete a leak tight bond without damaging thin foils or other delicate components.

  15. Load regulating expansion fixture

    DOEpatents

    Wagner, L.M.; Strum, M.J.

    1998-12-15

    A free standing self contained device for bonding ultra thin metallic films, such as 0.001 inch beryllium foils is disclosed. The device will regulate to a predetermined load for solid state bonding when heated to a bonding temperature. The device includes a load regulating feature, whereby the expansion stresses generated for bonding are regulated and self adjusting. The load regulator comprises a pair of friction isolators with a plurality of annealed copper members located therebetween. The device, with the load regulator, will adjust to and maintain a stress level needed to successfully and economically complete a leak tight bond without damaging thin foils or other delicate components. 1 fig.

  16. Factor Analysis via Components Analysis

    ERIC Educational Resources Information Center

    Bentler, Peter M.; de Leeuw, Jan

    2011-01-01

    When the factor analysis model holds, component loadings are linear combinations of factor loadings, and vice versa. This interrelation permits us to define new optimization criteria and estimation methods for exploratory factor analysis. Although this article is primarily conceptual in nature, an illustrative example and a small simulation show…

  17. Performance of Steel Stud Walls Subjected to Blast Loads

    DTIC Science & Technology

    2010-02-01

    be used as load-bearing components or non-load-bearing components, and a variety of exterior finishes and internal sheathing may be used. From an...common sheathing materials such as drywall , oriented strand board (OSB), stucco, etc., utilizing conventional structural connections (e.g., slip

  18. Use of an allostatic neurotechnology by adolescents with postural orthostatic tachycardia syndrome (POTS) is associated with improvements in heart rate variability and changes in temporal lobe electrical activity.

    PubMed

    Fortunato, John E; Tegeler, Catherine L; Gerdes, Lee; Lee, Sung W; Pajewski, Nicholas M; Franco, Meghan E; Cook, Jared F; Shaltout, Hossam A; Tegeler, Charles H

    2016-03-01

    Autonomic dysregulation and heterogeneous symptoms characterize postural orthostatic tachycardia syndrome (POTS). This study evaluated the effect of high-resolution, relational, resonance-based, electroencephalic mirroring (HIRREM(®)), a noninvasive, allostatic neurotechnology for relaxation and auto-calibration of neural oscillations, on heart rate variability, brain asymmetry, and autonomic symptoms, in adolescents with POTS. Seven subjects with POTS (three males, ages 15-18) underwent a median of 14 (10-16) HIRREM sessions over 13 (8-17) days. Autonomic function was assessed from 10-min continuous heart rate and blood pressure recordings, pre- and post-HIRREM. One-minute epochs of temporal high-frequency (23-36 Hz) brain electrical activity data (T3 and T4, eyes closed) were analyzed from baseline HIRREM assessment and subsequent sessions. Subjects rated autonomic symptoms before and after HIRREM. Four of seven were on fludrocortisone, which was stopped before or during their sessions. Heart rate variability in the time domain (standard deviation of the beat-to-beat interval) increased post-HIRREM (mean increase 51%, range 10-143, p = 0.03), as did baroreflex sensitivity (mean increase in high-frequency alpha 65%, range -6 to 180, p = 0.05). Baseline temporal electrical asymmetry negatively correlated with change in asymmetry from assessment to the final HIRREM session (p = 0.01). Summed high-frequency amplitudes at left and right temporal lobes decreased a median of 3.8 μV (p = 0.02). There was a trend for improvements in self-reported symptoms related to the autonomic nervous system. Use of HIRREM was associated with reduced sympathetic bias in autonomic cardiovascular regulation, greater symmetry and reduced amplitudes in temporal lobe high-frequency electrical activity, and a trend for reduced autonomic symptoms. Data suggest the potential for allostatic neurotechnology to facilitate increased flexibility in autonomic cardiovascular regulation, possibly

  19. Probabilistic load simulation: Code development status

    NASA Astrophysics Data System (ADS)

    Newell, J. F.; Ho, H.

    1991-05-01

    The objective of the Composite Load Spectra (CLS) project is to develop generic load models to simulate the composite load spectra that are included in space propulsion system components. The probabilistic loads thus generated are part of the probabilistic design analysis (PDA) of a space propulsion system that also includes probabilistic structural analyses, reliability, and risk evaluations. Probabilistic load simulation for space propulsion systems demands sophisticated probabilistic methodology and requires large amounts of load information and engineering data. The CLS approach is to implement a knowledge based system coupled with a probabilistic load simulation module. The knowledge base manages and furnishes load information and expertise and sets up the simulation runs. The load simulation module performs the numerical computation to generate the probabilistic loads with load information supplied from the CLS knowledge base.

  20. NASALIFE - Component Fatigue and Creep Life Prediction Program

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, John Z.; Murthy, Pappu L. N.; Mital, Subodh K.

    2014-01-01

    NASALIFE is a life prediction program for propulsion system components made of ceramic matrix composites (CMC) under cyclic thermo-mechanical loading and creep rupture conditions. Although the primary focus was for CMC components, the underlying methodologies are equally applicable to other material systems as well. The program references empirical data for low cycle fatigue (LCF), creep rupture, and static material properties as part of the life prediction process. Multiaxial stresses are accommodated by Von Mises based methods and a Walker model is used to address mean stress effects. Varying loads are reduced by the Rainflow counting method or a peak counting type method. Lastly, damage due to cyclic loading and creep is combined with Minor's Rule to determine damage due to cyclic loading, damage due to creep, and the total damage per mission and the number of potential missions the component can provide before failure.

  1. Cumulative Risk, Maternal Responsiveness, and Allostatic Load among Young Adolescents

    ERIC Educational Resources Information Center

    Evans, Gary W.; Kim, Pilyoung; Ting, Albert H.; Tesher, Harris B.; Shannis, Dana

    2007-01-01

    The purpose of this study was to examine the impact of cumulative risk exposure in concert with maternal responsiveness on physiological indicators of chronic stress in children and youth. Middle-school children exposed to greater accumulated psychosocial (e.g., family turmoil, poverty) and physical (e.g., crowding, substandard housing) risk…

  2. Load Modeling – A Review

    DOE PAGES

    Arif, Anmar; Wang, Zhaoyu; Wang, Jianhui; ...

    2017-05-02

    Load modeling has significant impact on power system studies. This paper presents a review on load modeling and identification techniques. Load models can be classified into two broad categories: static and dynamic models, while there are two types of approaches to identify model parameters: measurement-based and component-based. Load modeling has received more attention in recent years because of the renewable integration, demand-side management, and smart metering devices. However, the commonly used load models are outdated, and cannot represent emerging loads. There is a need to systematically review existing load modeling techniques and suggest future research directions to meet the increasingmore » interests from industry and academia. In this study, we provide a thorough survey on the academic research progress and industry practices, and highlight existing issues and new trends in load modeling.« less

  3. Load Modeling – A Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arif, Anmar; Wang, Zhaoyu; Wang, Jianhui

    Load modeling has significant impact on power system studies. This paper presents a review on load modeling and identification techniques. Load models can be classified into two broad categories: static and dynamic models, while there are two types of approaches to identify model parameters: measurement-based and component-based. Load modeling has received more attention in recent years because of the renewable integration, demand-side management, and smart metering devices. However, the commonly used load models are outdated, and cannot represent emerging loads. There is a need to systematically review existing load modeling techniques and suggest future research directions to meet the increasingmore » interests from industry and academia. In this study, we provide a thorough survey on the academic research progress and industry practices, and highlight existing issues and new trends in load modeling.« less

  4. Nontidal Loading Applied in VLBI Geodetic Analysis

    NASA Astrophysics Data System (ADS)

    MacMillan, D. S.

    2015-12-01

    We investigate the application of nontidal atmosphere pressure, hydrology, and ocean loading series in the analysis of VLBI data. The annual amplitude of VLBI scale variation is reduced to less than 0.1 ppb, a result of the annual components of the vertical loading series. VLBI site vertical scatter and baseline length scatter is reduced when these loading models are applied. We operate nontidal loading services for hydrology loading (GLDAS model), atmospheric pressure loading (NCEP), and nontidal ocean loading (JPL ECCO model). As an alternative validation, we compare these loading series with corresponding series generated by other analysis centers.

  5. Successful use of closed-loop allostatic neurotechnology for post-traumatic stress symptoms in military personnel: self-reported and autonomic improvements.

    PubMed

    Tegeler, Catherine L; Gerdes, Lee; Shaltout, Hossam A; Cook, Jared F; Simpson, Sean L; Lee, Sung W; Tegeler, Charles H

    2017-12-22

    Military-related post-traumatic stress (PTS) is associated with numerous symptom clusters and diminished autonomic cardiovascular regulation. High-resolution, relational, resonance-based, electroencephalic mirroring (HIRREM®) is a noninvasive, closed-loop, allostatic, acoustic stimulation neurotechnology that produces real-time translation of dominant brain frequencies into audible tones of variable pitch and timing to support the auto-calibration of neural oscillations. We report clinical, autonomic, and functional effects after the use of HIRREM® for symptoms of military-related PTS. Eighteen service members or recent veterans (15 active-duty, 3 veterans, most from special operations, 1 female), with a mean age of 40.9 (SD = 6.9) years and symptoms of PTS lasting from 1 to 25 years, undertook 19.5 (SD = 1.1) sessions over 12 days. Inventories for symptoms of PTS (Posttraumatic Stress Disorder Checklist - Military version, PCL-M), insomnia (Insomnia Severity Index, ISI), depression (Center for Epidemiologic Studies Depression Scale, CES-D), and anxiety (Generalized Anxiety Disorder 7-item scale, GAD-7) were collected before (Visit 1, V1), immediately after (Visit 2, V2), and at 1 month (Visit 3, V3), 3 (Visit 4, V4), and 6 (Visit 5, V5) months after intervention completion. Other measures only taken at V1 and V2 included blood pressure and heart rate recordings to analyze heart rate variability (HRV) and baroreflex sensitivity (BRS), functional performance (reaction and grip strength) testing, blood and saliva for biomarkers of stress and inflammation, and blood for epigenetic testing. Paired t-tests, Wilcoxon signed-rank tests, and a repeated-measures ANOVA were performed. Clinically relevant, significant reductions in all symptom scores were observed at V2, with durability through V5. There were significant improvements in multiple measures of HRV and BRS [Standard deviation of the normal beat to normal beat interval (SDNN), root mean square of the

  6. An analysis of available data on effects of wing-fuselage-tail and wing-nacelle interference on the distribution of the air load among components of airplanes

    NASA Technical Reports Server (NTRS)

    Wollner, Bertram C

    1949-01-01

    Available information on the effects of wing-fuselage-tail and wing-nacelle interference on the distribution of the air load among components of airplanes is analyzed. The effects of wing and nacelle incidence, horizontal andvertical position of wing and nacelle, fuselage shape, wing section and filleting are considered. Where sufficient data were unavailable to determine the distribution of the air load, the change in lift caused by interference between wing and fuselage was found. This increment is affected to the greatest extent by vertical wing position.

  7. Prestressing Shock Resistant Mechanical Components and Mechanisms Made from Hard, Superelastic Materials

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher (Inventor)

    2014-01-01

    A method and an apparatus confer full superelastic properties to the active surface of a mechanical component constructed of a superelastic material prior to service. A compressive load is applied to the active surface of the mechanical component followed by removing the compressive load from the active surface whereby substantially all load strain is recoverable after applying and removing of subsequent compressive loads.

  8. Autonomic and Adrenocortical Interactions Predict Mental Health in Late Adolescence: The TRAILS Study.

    PubMed

    Nederhof, Esther; Marceau, Kristine; Shirtcliff, Elizabeth A; Hastings, Paul D; Oldehinkel, Albertine J

    2015-07-01

    The present study is informed by the theory of allostatic load to examine how multiple stress responsive biomarkers are related to mental health outcomes. Data are from the TRAILS study, a large prospective population study of 715 Dutch adolescents (50.9 % girls), assessed at 16.3 and 19.1 years. Reactivity measures of the hypothalamic pituitary-adrenal (HPA) axis and autonomic nervous system (ANS) biomarkers (heart rate, HR; respiratory sinus arrhythmia, RSA; and pre-ejection period, PEP) to a social stress task were used to predict concurrent and longitudinal changes in internalizing and externalizing symptoms. Hierarchical linear modeling revealed relatively few single effects for each biomarker with the exception that high HR reactivity predicted concurrent internalizing problems in boys. More interestingly, interactions were found between HPA-axis reactivity and sympathetic and parasympathetic reactivity. Boys with high HPA reactivity and low RSA reactivity had the largest increases in internalizing problems from 16 to 19 years. Youth with low HPA reactivity along with increased ANS activation characterized by both decreases in RSA and decreases in PEP had the most concurrent externalizing problems, consistent with broad theories of hypo-arousal. Youth with high HPA reactivity along with increases in RSA but decreases in PEP also had elevated concurrent externalizing problems, which increased over time, especially within boys. This profile illustrates the utility of examining the parasympathetic and sympathetic components of the ANS which can act in opposition to one another to achieve, overall, stress responsivity. The framework of allostasis and allostatic load is supported in that examination of multiple biomarkers working together in concert was of value in understanding mental health problems concurrently and longitudinally. Findings argue against an additive panel of risk and instead illustrate the dynamic interplay of stress physiology systems.

  9. On load paths and load bearing topology from finite element analysis

    NASA Astrophysics Data System (ADS)

    Kelly, D.; Reidsema, C.; Lee, M.

    2010-06-01

    Load paths can be mapped from vector plots of 'pointing stress vectors'. They define a path along which a component of load remains constant as it traverses the solution domain. In this paper the theory for the paths is first defined. Properties of the plots that enable a designer to interpret the structural behavior from the contours are then identified. Because stress is a second order tensor defined on an orthogonal set of axes, the vector plots define separate paths for load transfer in each direction of the set of axes. An algorithm is therefore presented that combines the vectors to define a topology to carry the loads. The algorithm is shown to straighten the paths reducing bending moments and removing stress concentration. Application to a bolted joint, a racing car body and a yacht hull demonstrate the usefulness of the plots.

  10. ADAPTION OF NONSTANDARD PIPING COMPONENTS INTO PRESENT DAY SEISMIC CODES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. T. Clark; M. J. Russell; R. E. Spears

    2009-07-01

    With spiraling energy demand and flat energy supply, there is a need to extend the life of older nuclear reactors. This sometimes requires that existing systems be evaluated to present day seismic codes. Older reactors built in the 1960s and early 1970s often used fabricated piping components that were code compliant during their initial construction time period, but are outside the standard parameters of present-day piping codes. There are several approaches available to the analyst in evaluating these non-standard components to modern codes. The simplest approach is to use the flexibility factors and stress indices for similar standard components withmore » the assumption that the non-standard component’s flexibility factors and stress indices will be very similar. This approach can require significant engineering judgment. A more rational approach available in Section III of the ASME Boiler and Pressure Vessel Code, which is the subject of this paper, involves calculation of flexibility factors using finite element analysis of the non-standard component. Such analysis allows modeling of geometric and material nonlinearities. Flexibility factors based on these analyses are sensitive to the load magnitudes used in their calculation, load magnitudes that need to be consistent with those produced by the linear system analyses where the flexibility factors are applied. This can lead to iteration, since the magnitude of the loads produced by the linear system analysis depend on the magnitude of the flexibility factors. After the loading applied to the nonstandard component finite element model has been matched to loads produced by the associated linear system model, the component finite element model can then be used to evaluate the performance of the component under the loads with the nonlinear analysis provisions of the Code, should the load levels lead to calculated stresses in excess of Allowable stresses. This paper details the application of component

  11. Method for loading resin beds

    DOEpatents

    Notz, Karl J.; Rainey, Robert H.; Greene, Charles W.; Shockley, William E.

    1978-01-01

    An improved method of preparing nuclear reactor fuel by carbonizing a uranium loaded cation exchange resin provided by contacting a H.sup.+ loaded resin with a uranyl nitrate solution deficient in nitrate, comprises providing the nitrate deficient solution by a method comprising the steps of reacting in a reaction zone maintained between about 145.degree.-200.degree. C, a first aqueous component comprising a uranyl nitrate solution having a boiling point of at least 145.degree. C with a second aqueous component to provide a gaseous phase containing HNO.sub.3 and a reaction product comprising an aqueous uranyl nitrate solution deficient in nitrate.

  12. Compression Strength of Composite Primary Structural Components

    NASA Technical Reports Server (NTRS)

    Johnson, Eric R.; Starnes, James H., Jr. (Technical Monitor)

    2000-01-01

    The focus of research activities under NASA Grant NAG-1-2035 was the response and failure of thin-walled structural components. The research is applicable to the primary load carrying structure of flight vehicles, with particular emphasis on fuselage and wing'structure. Analyses and tests were performed that are applicable to the following structural components an aft pressure bulkhead, or a composite pressure dome, pressure cabin damage containment, and fuselage frames subject to crash-type loads.

  13. Experiment and simulation study on unidirectional carbon fiber composite component under dynamic 3 point bending loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Guowei; Sun, Qingping; Zeng, Danielle

    In current work, unidirectional (UD) carbon fiber composite hatsection component with two different layups are studied under dynamic 3 point bending loading. The experiments are performed at various impact velocities, and the effects of impactor velocity and layup on acceleration histories are compared. A macro model is established with LS-Dyna for more detailed study. The simulation results show that the delamination plays an important role during dynamic 3 point bending test. Based on the analysis with high speed camera, the sidewall of hatsection shows significant buckling rather than failure. Without considering the delamination, current material model cannot capture the postmore » failure phenomenon correctly. The sidewall delamination is modeled by assumption of larger failure strain together with slim parameters, and the simulation results of different impact velocities and layups match the experimental results reasonable well.« less

  14. Components of working memory and visual selective attention.

    PubMed

    Burnham, Bryan R; Sabia, Matthew; Langan, Catherine

    2014-02-01

    Load theory (Lavie, N., Hirst, A., De Fockert, J. W., & Viding, E. [2004]. Load theory of selective attention and cognitive control. Journal of Experimental Psychology: General, 133, 339-354.) proposes that control of attention depends on the amount and type of load that is imposed by current processing. Specifically, perceptual load should lead to efficient distractor rejection, whereas working memory load (dual-task coordination) should hinder distractor rejection. Studies support load theory's prediction that working memory load will lead to larger distractor effects; however, these studies used secondary tasks that required only verbal working memory and the central executive. The present study examined which other working memory components (visual, spatial, and phonological) influence visual selective attention. Subjects completed an attentional capture task alone (single-task) or while engaged in a working memory task (dual-task). Results showed that along with the central executive, visual and spatial working memory influenced selective attention, but phonological working memory did not. Specifically, attentional capture was larger when visual or spatial working memory was loaded, but phonological working memory load did not affect attentional capture. The results are consistent with load theory and suggest specific components of working memory influence visual selective attention. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  15. Improved estimation of random vibration loads in launch vehicles

    NASA Technical Reports Server (NTRS)

    Mehta, R.; Erwin, E.; Suryanarayan, S.; Krishna, Murali M. R.

    1993-01-01

    Random vibration induced load is an important component of the total design load environment for payload and launch vehicle components and their support structures. The current approach to random vibration load estimation is based, particularly at the preliminary design stage, on the use of Miles' equation which assumes a single degree-of-freedom (DOF) system and white noise excitation. This paper examines the implications of the use of multi-DOF system models and response calculation based on numerical integration using the actual excitation spectra for random vibration load estimation. The analytical study presented considers a two-DOF system and brings out the effects of modal mass, damping and frequency ratios on the random vibration load factor. The results indicate that load estimates based on the Miles' equation can be significantly different from the more accurate estimates based on multi-DOF models.

  16. Thermal load leveling during silicon crystal growth from a melt using anisotropic materials

    DOEpatents

    Carlson, Frederick M.; Helenbrook, Brian T.

    2016-10-11

    An apparatus for growing a silicon crystal substrate comprising a heat source, an anisotropic thermal load leveling component, a crucible, and a cold plate component is disclosed. The anisotropic thermal load leveling component possesses a high thermal conductivity and may be positioned atop the heat source to be operative to even-out temperature and heat flux variations emanating from the heat source. The crucible may be operative to contain molten silicon in which the top surface of the molten silicon may be defined as a growth interface. The crucible may be substantially surrounded by the anisotropic thermal load leveling component. The cold plate component may be positioned above the crucible to be operative with the anisotropic thermal load leveling component and heat source to maintain a uniform heat flux at the growth surface of the molten silicon.

  17. Normal Component of Induced Velocity for Entire Field of a Uniformly Loaded Lifting Rotor with Highly Swept Wake as Determined by Electromagnetic Analog

    NASA Technical Reports Server (NTRS)

    Castles, Walter, Jr.; Durham, Howard L., Jr.; Kevorkian, Jirair

    1959-01-01

    Values of the normal component of induced velocity throughout the entire field of a uniformly loaded r(rotor at high high speed are presented in the form of charts and tables. Many points were found by an electromagnetic analog, details of which are given. Comparisons of computed and analog values for the induced velocity indicate that the latter are sufficiently accurate for engineering purposes.

  18. Age Life Evaluation of Space Shuttle Crew Escape System Pyrotechnic Components Loaded with Hexanitrostilbene (HNS)

    NASA Technical Reports Server (NTRS)

    Hoffman, William C., III

    1996-01-01

    Determining deterioration characteristics of the Space Shuttle crew escape system pyrotechnic components loaded with hexanitrostilbene would enable us to establish a hardware life-limit for these items, so we could better plan our equipment use and, possibly, extend the useful life of the hardware. We subjected components to accelerated-age environments to determine degradation characteristics and established a hardware life-limit based upon observed and calculated trends. We extracted samples using manufacturing lots currently installed in the Space Shuttle crew escape system and from other NASA programs. Hardware included in the study consisted of various forms and ages of mild detonating fuse, linear shaped charge, and flexible confined detonating cord. The hardware types were segregated into 5 groups. One was subjected to detonation velocity testing for a baseline. Two were first subjected to prolonged 155 F heat exposure, and the other two were first subjected to 255 F, before undergoing detonation velocity testing and/or chromatography analysis. Test results showed no measurable changes in performance to allow a prediction of an end of life given the storage and elevated temperature environments the hardware experiences. Given the lack of a definitive performance trend, coupled with previous tests on post-flight Space Shuttle hardware showing no significant changes in chemical purity or detonation velocity, we recommend a safe increase in the useful life of the hardware to 20 years, from the current maximum limits of 10 and 15 years, depending on the hardware.

  19. 78 FR 28896 - Design Limits and Loading Combinations for Metal Primary Reactor Containment System Components

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-16

    ... NUCLEAR REGULATORY COMMISSION [NRC-2013-0095] Design Limits and Loading Combinations for Metal... Regulatory Guide (RG) 1.57, ``Design Limits and Loading Combinations for Metal Primary Reactor Containment... the NRC staff considers acceptable for design limits and loading combinations for metal primary...

  20. Stress analysis under component relative interference fit

    NASA Technical Reports Server (NTRS)

    Taylor, C. M.

    1978-01-01

    Finite-element computer program enables analysis of distortions and stresses occurring in components having relative interference. Program restricts itself to simple elements and axisymmetric loading situations. External inertial and thermal loads may be applied in addition to forces arising from interference conditions.

  1. Pre-loading of components during laser peenforming

    DOEpatents

    Hackel, Lloyd A [Livermore, CA; Halpin, John M [Tracy, CA; Harris, Fritz B [Rocklin, CA

    2003-12-30

    A method and apparatus are provided for forming shapes and contours in metal sections by prestressing a workpiece and generating laser induced compressive stress on the surface of the metal workpiece. The step of prestressing the workpiece is carried out with a jig. The laser process can generate deep compressive stresses to shape even thick components without inducing unwanted tensile stress at the metal surface. The precision of the laser-induced stress enables exact prediction and subsequent contouring of parts.

  2. Lifetime Reliability Prediction of Ceramic Structures Under Transient Thermomechanical Loads

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.; Jadaan, Osama J.; Gyekenyesi, John P.

    2005-01-01

    An analytical methodology is developed to predict the probability of survival (reliability) of ceramic components subjected to harsh thermomechanical loads that can vary with time (transient reliability analysis). This capability enables more accurate prediction of ceramic component integrity against fracture in situations such as turbine startup and shutdown, operational vibrations, atmospheric reentry, or other rapid heating or cooling situations (thermal shock). The transient reliability analysis methodology developed herein incorporates the following features: fast-fracture transient analysis (reliability analysis without slow crack growth, SCG); transient analysis with SCG (reliability analysis with time-dependent damage due to SCG); a computationally efficient algorithm to compute the reliability for components subjected to repeated transient loading (block loading); cyclic fatigue modeling using a combined SCG and Walker fatigue law; proof testing for transient loads; and Weibull and fatigue parameters that are allowed to vary with temperature or time. Component-to-component variation in strength (stochastic strength response) is accounted for with the Weibull distribution, and either the principle of independent action or the Batdorf theory is used to predict the effect of multiaxial stresses on reliability. The reliability analysis can be performed either as a function of the component surface (for surface-distributed flaws) or component volume (for volume-distributed flaws). The transient reliability analysis capability has been added to the NASA CARES/ Life (Ceramic Analysis and Reliability Evaluation of Structures/Life) code. CARES/Life was also updated to interface with commercially available finite element analysis software, such as ANSYS, when used to model the effects of transient load histories. Examples are provided to demonstrate the features of the methodology as implemented in the CARES/Life program.

  3. High power s-band vacuum load

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neubauer, Michael; Dudas, Alan; Krasnykh, Anatoly

    Through a combination of experimentation and calculation the components of a novel room temperature dry load were successfully fabricated. These components included lossy ceramic cylinders of various lengths, thicknesses, and percent of silicon carbide (SiC). The cylinders were then assembled into stainless steel compression rings by differential heating of the parts and a special fixture. Post machining of this assembly provided a means for a final weld. The ring assemblies were then measured for S-parameters, individually and in pairs using a low-cost TE10 rectangular to TE01 circular waveguide adapter specially designed to be part of the final load assembly. Matchedmore » pairs of rings were measured for assembly into the final load, and a sliding short designed and fabricated to assist in determining the desired short location in the final assembly. The plan for the project was for Muons, Inc. to produce prototype loads for long-term testing at SLAC. The STTR funds for SLAC were to upgrade and operate their test station to ensure that the loads would satisfy their requirements. Phase III was to be the sale to SLAC of loads that Muons, Inc. would manufacture. However, an alternate solution that involved a rebuild of the old loads, reduced SLAC budget projections, and a relaxed time for the replacement of all loads meant that in-house labor will be used to do the upgrade without the need for the loads developed in this project. Consequently, the project was terminated before the long term testing was initiated. However, SLAC can use the upgraded test stand to compare the long-term performance of the ones produced in this project with their rebuilt loads when they are available.« less

  4. Improving prediction accuracy of cooling load using EMD, PSR and RBFNN

    NASA Astrophysics Data System (ADS)

    Shen, Limin; Wen, Yuanmei; Li, Xiaohong

    2017-08-01

    To increase the accuracy for the prediction of cooling load demand, this work presents an EMD (empirical mode decomposition)-PSR (phase space reconstruction) based RBFNN (radial basis function neural networks) method. Firstly, analyzed the chaotic nature of the real cooling load demand, transformed the non-stationary cooling load historical data into several stationary intrinsic mode functions (IMFs) by using EMD. Secondly, compared the RBFNN prediction accuracies of each IMFs and proposed an IMF combining scheme that is combine the lower-frequency components (called IMF4-IMF6 combined) while keep the higher frequency component (IMF1, IMF2, IMF3) and the residual unchanged. Thirdly, reconstruct phase space for each combined components separately, process the highest frequency component (IMF1) by differential method and predict with RBFNN in the reconstructed phase spaces. Real cooling load data of a centralized ice storage cooling systems in Guangzhou are used for simulation. The results show that the proposed hybrid method outperforms the traditional methods.

  5. Loading, electromyograph, and motion during exercise

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando

    1993-01-01

    A system is being developed to gather kineto-dynamic data for a study to determine the load vectors applied to bone during exercise on equipment similar to that used in space. This information will quantify bone loading for exercise countermeasures development. Decreased muscle loading and external loading of bone during weightlessness results in cancellous bone loss of 1 percent per month in the lower extremities and 2 percent per month in the calcaneous. It is hypothesized that loading bone appropriately during exercise may prevent the bone loss. The system consists of an ergometer instrumented to provide position of the pedal (foot), pedaling forces on the foot (on the sagittal plane), and force on the seat. Accelerometers attached to the limbs will provide acceleration. These data will be used as input to an analytical model of the limb to determine forces on the bones and on groups of muscles. EMG signals from activity in the muscles will also be used in conjunction with the equations of mechanics of motion to be able to discern forces exerted by specific muscles. The tasks to be carried out include: design of various mechanical components to mount transducers, specification of mechanical components, specification of position transducers, development of a scheme to control the data acquisition instruments (TEAC recorder and optical encoder board), development of a dynamic model of the limbs in motion, and development of an overall scheme for data collection analysis and presentation. At the present time, all the hardware components of the system are operational, except for a computer board to gather position data from the pedals and crank. This board, however, may be put to use by anyone with background in computer based instrumentation. The software components are not all done. Software to transfer data recorded from the EMG measurements is operational, software to drive the optical encoder card is mostly done. The equations to model the kinematics and

  6. Particle loading rates for HVAC filters, heat exchangers, and ducts.

    PubMed

    Waring, M S; Siegel, J A

    2008-06-01

    The rate at which airborne particulate matter deposits onto heating, ventilation, and air-conditioning (HVAC) components is important from both indoor air quality (IAQ) and energy perspectives. This modeling study predicts size-resolved particle mass loading rates for residential and commercial filters, heat exchangers (i.e. coils), and supply and return ducts. A parametric analysis evaluated the impact of different outdoor particle distributions, indoor emission sources, HVAC airflows, filtration efficiencies, coils, and duct system complexities. The median predicted residential and commercial loading rates were 2.97 and 130 g/m(2) month for the filter loading rates, 0.756 and 4.35 g/m(2) month for the coil loading rates, 0.0051 and 1.00 g/month for the supply duct loading rates, and 0.262 g/month for the commercial return duct loading rates. Loading rates are more dependent on outdoor particle distributions, indoor sources, HVAC operation strategy, and filtration than other considered parameters. The results presented herein, once validated, can be used to estimate filter changing and coil cleaning schedules, energy implications of filter and coil loading, and IAQ impacts associated with deposited particles. The results in this paper suggest important factors that lead to particle deposition on HVAC components in residential and commercial buildings. This knowledge informs the development and comparison of control strategies to limit particle deposition. The predicted mass loading rates allow for the assessment of pressure drop and indoor air quality consequences that result from particle mass loading onto HVAC system components.

  7. Stress Analysis of B-52B and B-52H Air-Launching Systems Failure-Critical Structural Components

    NASA Technical Reports Server (NTRS)

    Ko, William L.

    2005-01-01

    The operational life analysis of any airborne failure-critical structural component requires the stress-load equation, which relates the applied load to the maximum tangential tensile stress at the critical stress point. The failure-critical structural components identified are the B-52B Pegasus pylon adapter shackles, B-52B Pegasus pylon hooks, B-52H airplane pylon hooks, B-52H airplane front fittings, B-52H airplane rear pylon fitting, and the B-52H airplane pylon lower sway brace. Finite-element stress analysis was performed on the said structural components, and the critical stress point was located and the stress-load equation was established for each failure-critical structural component. The ultimate load, yield load, and proof load needed for operational life analysis were established for each failure-critical structural component.

  8. Vibration Testing of Electrical Cables to Quantify Loads at Tie-Down Locations

    NASA Technical Reports Server (NTRS)

    Dutson, Joseph D.

    2013-01-01

    The standard method for defining static equivalent structural load factors for components is based on Mile s equation. Unless test data is available, 5% critical damping is assumed for all components when calculating loads. Application of this method to electrical cable tie-down hardware often results in high loads, which often exceed the capability of typical tie-down options such as cable ties and P-clamps. Random vibration testing of electrical cables was used to better understand the factors that influence component loads: natural frequency, damping, and mass participation. An initial round of vibration testing successfully identified variables of interest, checked out the test fixture and instrumentation, and provided justification for removing some conservatism in the standard method. Additional testing is planned that will include a larger range of cable sizes for the most significant contributors to load as variables to further refine loads at cable tie-down points. Completed testing has provided justification to reduce loads at cable tie-downs by 45% with additional refinement based on measured cable natural frequencies.

  9. Effects of acute and chronic stress on telencephalic neurochemistry and gene expression in rainbow trout (Oncorhynchus mykiss).

    PubMed

    Moltesen, Maria; Laursen, Danielle Caroline; Thörnqvist, Per-Ove; Andersson, Madelene Åberg; Winberg, Svante; Höglund, Erik

    2016-12-15

    By filtering relevant sensory inputs and initiating stress responses, the brain is an essential organ in stress coping and adaptation. However, exposure to chronic or repeated stress can lead to allostatic overload, where neuroendocrinal and behavioral reactions to stress become maladaptive. This work examines forebrain mechanisms involved in allostatic processes in teleost fishes. Plasma cortisol, forebrain serotonergic (5-HTergic) neurochemistry, and mRNA levels of corticotropin-releasing factor (CRF), CRF-binding protein (CRF-BP), CRF receptors (CRFR1 and CRFR2), mineralocorticoid receptor (MR), glucocorticoid receptors (GR1 and GR2) and serotonin type 1A (5-HT 1A ) receptors (5-HT 1Aα and 5-HT 1Aβ ) were investigated at 1 h before and 0, 1 and 4 h after acute stress, in two groups of rainbow trout held in densities of 25 and 140 kg m -3 for 28 days. Generally, being held at 140 kg m -3 resulted in a less pronounced cortisol response. This effect was also reflected in lower forebrain 5-HTergic turnover, but not in mRNA levels in any of the investigated genes. This lends further support to reports that allostatic load causes fish to be incapable of mounting a proper cortisol response to an acute stressor, and suggests that changes in forebrain 5-HT metabolism are involved in allostatic processes in fish. Independent of rearing densities, mRNA levels of 5-HT 1Aα and MR were downregulated 4 h post-stress compared with values 1 h post-stress, suggesting that these receptors are under feedback control and take part in the downregulation of the hypothalamic-pituitary-interrenal (HPI) axis after exposure to an acute stressor. © 2016. Published by The Company of Biologists Ltd.

  10. Combined wind turbine fatigue and ultimate load reduction by individual blade control

    NASA Astrophysics Data System (ADS)

    Han, Y.; Leithead, W. E.

    2014-06-01

    If each blade of the wind turbine has individual pitch actuator, there is possibility of employing the pitch system to mitigate structural loads through advanced control methods. Previously, considerable reduction of blade lifetime equivalent fatigue loads has been achieved by Individual Blade Control (IBC) and in addition, it has also been shown the potential in blade ultimate loads reduction. However, both fatigue and ultimate loads impact on the design and life of wind turbine blades. In this paper, the design and application of IBC that concurrently reduce both blade fatigue and ultimate loads is investigated. The contributions of blade load spectral components, which are 1P, 2P and edgewise mode from blade in-plane and/or out-of-plane bending moments, are firstly explored. Four different control options for reducing various combinations of these load components are compared. In response to the different spectral peaks of both fatigue and ultimate loads, the controller has been designed so that it can act on different frequency components which vary with wind speed. The performance of the IBC controller on fatigue and ultimate load reduction is assessed by simulating a 5MW exemplar wind turbine. Simulation results show that with a proper selection of controlling inputs at different wind speed, the use of a single combined IBC can achieve satisfactory reduction on both fatigue and ultimate loads.

  11. Extended Aging Theories for Predictions of Safe Operational Life of Critical Airborne Structural Components

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Chen, Tony

    2006-01-01

    The previously developed Ko closed-form aging theory has been reformulated into a more compact mathematical form for easier application. A new equivalent loading theory and empirical loading theories have also been developed and incorporated into the revised Ko aging theory for the prediction of a safe operational life of airborne failure-critical structural components. The new set of aging and loading theories were applied to predict the safe number of flights for the B-52B aircraft to carry a launch vehicle, the structural life of critical components consumed by load excursion to proof load value, and the ground-sitting life of B-52B pylon failure-critical structural components. A special life prediction method was developed for the preflight predictions of operational life of failure-critical structural components of the B-52H pylon system, for which no flight data are available.

  12. Damage detection methodology under variable load conditions based on strain field pattern recognition using FBGs, nonlinear principal component analysis, and clustering techniques

    NASA Astrophysics Data System (ADS)

    Sierra-Pérez, Julián; Torres-Arredondo, M.-A.; Alvarez-Montoya, Joham

    2018-01-01

    Structural health monitoring consists of using sensors integrated within structures together with algorithms to perform load monitoring, damage detection, damage location, damage size and severity, and prognosis. One possibility is to use strain sensors to infer structural integrity by comparing patterns in the strain field between the pristine and damaged conditions. In previous works, the authors have demonstrated that it is possible to detect small defects based on strain field pattern recognition by using robust machine learning techniques. They have focused on methodologies based on principal component analysis (PCA) and on the development of several unfolding and standardization techniques, which allow dealing with multiple load conditions. However, before a real implementation of this approach in engineering structures, changes in the strain field due to conditions different from damage occurrence need to be isolated. Since load conditions may vary in most engineering structures and promote significant changes in the strain field, it is necessary to implement novel techniques for uncoupling such changes from those produced by damage occurrence. A damage detection methodology based on optimal baseline selection (OBS) by means of clustering techniques is presented. The methodology includes the use of hierarchical nonlinear PCA as a nonlinear modeling technique in conjunction with Q and nonlinear-T 2 damage indices. The methodology is experimentally validated using strain measurements obtained by 32 fiber Bragg grating sensors bonded to an aluminum beam under dynamic bending loads and simultaneously submitted to variations in its pitch angle. The results demonstrated the capability of the methodology for clustering data according to 13 different load conditions (pitch angles), performing the OBS and detecting six different damages induced in a cumulative way. The proposed methodology showed a true positive rate of 100% and a false positive rate of 1.28% for a

  13. Combined seismic plus live-load analysis of highway bridges.

    DOT National Transportation Integrated Search

    2011-10-01

    "The combination of seismic and vehicle live loadings on bridges is an important design consideration. There are well-established design : provisions for how the individual loadings affect bridge response: structural components that carry vertical li...

  14. Extreme load alleviation using industrial implementation of active trailing edge flaps in a full design load basis

    NASA Astrophysics Data System (ADS)

    Barlas, Thanasis; Pettas, Vasilis; Gertz, Drew; Madsen, Helge A.

    2016-09-01

    The application of active trailing edge flaps in an industrial oriented implementation is evaluated in terms of capability of alleviating design extreme loads. A flap system with basic control functionality is implemented and tested in a realistic full Design Load Basis (DLB) for the DTU 10MW Reference Wind Turbine (RWT) model and for an upscaled rotor version in DTU's aeroelastic code HAWC2. The flap system implementation shows considerable potential in reducing extreme loads in components of interest including the blades, main bearing and tower top, with no influence on fatigue loads and power performance. In addition, an individual flap controller for fatigue load reduction in above rated power conditions is also implemented and integrated in the general controller architecture. The system is shown to be a technology enabler for rotor upscaling, by combining extreme and fatigue load reduction.

  15. Fractographic study of epoxy fractured under mode I loading and mixed mode I/III loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Fei; Wang, Jy-An John; Bertelsen, Williams D.

    2011-01-01

    Fiber reinforced polymeric composite materials are widely used in structural components such as wind turbine blades, which are typically subject to complicated loading conditions. Thus, material response under mixed mode loading is of great significance to the reliability of these structures. Epoxy is a thermosetting polymer that is currently used in manufacturing wind turbine blades. The fracture behavior of epoxy is relevant to the mechanical integrity of the wind turbine composite materials. In this study, a novel fracture testing methodology, the spiral notch torsion test (SNTT), was applied to study the fracture behavior of an epoxy material. SNTT samples weremore » tested using either monotonic loading or cyclic loading, while both mode I and mixed mode I/III loading conditions were used. Fractographic examination indicated the epoxy samples included in this study were prone to mode I failure even when the samples were subject to mixed mode loading. Different fatigue precracks were observed on mode I and mixed mode samples, i.e. precracks appeared as a uniform band under mode I loading, and a semi-ellipse under mixed mode loading. Fracture toughness was also estimated using quantitative fractography.« less

  16. Drug-induced regulatory overcompensation has motivational consequences: Implications for homeostatic and allostatic models of drug addiction

    PubMed Central

    Ramsay, Douglas S; Woods, Stephen C; Kaiyala, Karl J

    2014-01-01

    Initial administration of 60% nitrous oxide (N2O) at 21°C ambient temperature reduces core temperature (Tc) in rats, but tolerance develops to this hypothermic effect over several administrations. After additional N2O administrations, a hyperthermic overcompensation (sign-reversal) develops such that Tc exceeds control levels during N2O inhalation. This study investigated whether rats would employ behavioral thermoregulation to facilitate, or oppose, a previously acquired hyperthermic overcompensation during N2O administration. To establish a hyperthermic sign-reversal, male Long-Evans rats (N = 12) received 10 3-h administrations of 60% N2O while housed in a gas-tight, live-in, “inactive” thermal gradient (∼21°C). Following the tenth N2O exposure, the thermal gradient was activated (range of 10–37°C), and rats received both a control gas session and a 60% N2O test session in counterbalanced order. Mean Tc during N2O inhalation in the inactive gradient was reliably hypothermic during the first exposure but was reliably hyperthermic by the tenth exposure. When subsequently exposed to 60% N2O in the active gradient, rats selected a cooler Ta, which blunted the hyperthermic sign-reversal and lowered Tc throughout the remainder of the N2O exposure. Thus, autonomic heat production effectors mediating the hyperthermia were opposed by a behavioral effector that promoted increased heat loss via selection of a cooler ambient temperature. These data are compatible with an allostatic model of drug addiction that suggests that dysregulatory overcompensation in the drugged-state may motivate behaviors (e.g., drug taking) that oppose the overcompensation, thereby creating a vicious cycle of escalating drug consumption and recurring dysregulation. PMID:25938126

  17. Shape optimization of tibial prosthesis components

    NASA Technical Reports Server (NTRS)

    Saravanos, D. A.; Mraz, P. J.; Davy, D. T.

    1993-01-01

    NASA technology and optimal design methodologies originally developed for the optimization of composite structures (engine blades) are adapted and applied to the optimization of orthopaedic knee implants. A method is developed enabling the shape tailoring of the tibial components of a total knee replacement implant for optimal interaction within the environment of the tibia. The shape of the implant components are optimized such that the stresses in the bone are favorably controlled to minimize bone degradation, to improve the mechanical integrity of the implant/interface/bone system, and to prevent failures of the implant components. A pilot tailoring system is developed and the feasibility of the concept is demonstrated and evaluated. The methodology and evolution of the existing aerospace technology from which this pilot optimization code was developed is also presented and discussed. Both symmetric and unsymmetric in-plane loading conditions are investigated. The results of the optimization process indicate a trend toward wider and tapered posts as well as thicker backing trays. Unique component geometries were obtained for the different load cases.

  18. Effects of Cognitive Load on Trust

    DTIC Science & Technology

    2013-10-01

    that may be affected by load  Build a parsing tool to extract relevant features  Statistical analysis of results (by load components) Achieved...for a business application. Participants assessed potential job candidates and reviewed the applicants’ virtual resume which included standard...substantially different from each other that would make any confounding problems or other issues. Some statistics of the Australian data collection are

  19. Allostasis as a Conceptual Framework Linking Bipolar Disorder and Addiction

    PubMed Central

    Pettorruso, Mauro; De Risio, Luisa; Di Nicola, Marco; Martinotti, Giovanni; Conte, Gianluigi; Janiri, Luigi

    2014-01-01

    Bipolar disorders (BDs) and addictions constitute reciprocal risk factors and are best considered under a unitary perspective. The concepts of allostasis and allostatic load (AL) may contribute to the understanding of the complex relationships between BD and addictive behaviors. Allostasis entails the safeguarding of reward function stability by recruitment of changes in the reward and stress system neurocircuitry and it may help to elucidate neurobiological underpinnings of vulnerability to addiction in BD patients. Conceptualizing BD as an illness involving the cumulative build-up of allostatic states, we hypothesize a progressive dysregulation of reward circuits clinically expressed as negative affective states (i.e., anhedonia). Such negative affective states may render BD patients more vulnerable to drug addiction, fostering a very rapid transition from occasional drug use to addiction, through mechanisms of negative reinforcement. The resulting addictive behavior-related ALs, in turn, may contribute to illness progression. This framework could have a heuristic value to enhance research on pathophysiology and treatment of BD and addiction comorbidity. PMID:25520673

  20. Bearing-Load Modeling and Analysis Study for Mechanically Connected Structures

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.

    2006-01-01

    Bearing-load response for a pin-loaded hole is studied within the context of two-dimensional finite element analyses. Pin-loaded-hole configurations are representative of mechanically connected structures, such as a stiffener fastened to a rib of an isogrid panel, that are idealized as part of a larger structural component. Within this context, the larger structural component may be idealized as a two-dimensional shell finite element model to identify load paths and high stress regions. Finite element modeling and analysis aspects of a pin-loaded hole are considered in the present paper including the use of linear and nonlinear springs to simulate the pin-bearing contact condition. Simulating pin-connected structures within a two-dimensional finite element analysis model using nonlinear spring or gap elements provides an effective way for accurate prediction of the local effective stress state and peak forces.

  1. Indexing Mount For Rotation Of Optical Component

    NASA Technical Reports Server (NTRS)

    Reichle, Donald J., Jr.; Barnes, Norman P.

    1993-01-01

    Indexing mount for polarizer, wave plate, birefringent plate, or other optical component facilitates rotation of component to one or more preset angles. Includes hexagonal nut holding polarizer or other optical component. Ball bearing loaded by screw engages notch on cylindrical extension of nut engaging bracket. Time-consuming and tedious angular adjustment unnecessary: component turned quickly and easily, by hand or by use of wrench, to preset angular positions maintained by simple ball-detent mechanism.

  2. The effect of inertial loading on wrist postural tremor in essential tremor.

    PubMed

    Héroux, M E; Pari, G; Norman, K E

    2009-05-01

    Determine the effect of inertial loading on the strength of motor unit entrainment and the synergistic/competitive interaction between central and mechanical reflex tremor components in subjects with essential tremor (ET). Twenty-three subjects with ET and 22 controls held their hand in an outstretched position while supporting sub-maximal loads (no-load, 5%, 15% and 25% 1-repetition maximum). Hand postural tremor and wrist extensor neuromuscular activity were recorded. Inertial loading resulted in a reduction in postural tremor in all ET subjects. The largest reduction in tremor amplitude occurred between 5% and 15% loads, which was associated with spectral separation of the mechanical reflex and central tremor components in a large number of ET subjects. Despite an increase in overall neuromuscular activity with inertial loading, EMG tremor spectral power did not increase with loading. The effect of inertial loading on postural tremor amplitude appears to be mediated in large part by its effect on the interaction between mechanical reflex and central tremor components. Also, ET is associated with a constant absolute level of motor unit entrainment. The amplitude of postural tremor is dependent on both central and peripheral factors, with proportionally greater motor unit entrainment occurring at low contraction intensities.

  3. Design procedures for fiber composite structural components - Rods, beams, and beam columns

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1984-01-01

    Step by step procedures are described which are used to design structural components (rods, columns, and beam columns) subjected to steady state mechanical loads and hydrothermal environments. Illustrative examples are presented for structural components designed for static tensile and compressive loads, and fatigue as well as for moisture and temperature effects. Each example is set up as a sample design illustrating the detailed steps that are used to design similar components.

  4. Design procedures for fiber composite structural components: Rods, columns and beam columns

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1983-01-01

    Step by step procedures are described which are used to design structural components (rods, columns, and beam columns) subjected to steady state mechanical loads and hydrothermal environments. Illustrative examples are presented for structural components designed for static tensile and compressive loads, and fatigue as well as for moisture and temperature effects. Each example is set up as a sample design illustrating the detailed steps that are used to design similar components.

  5. Working memory load modulates the neural response to other's pain: Evidence from an ERP study.

    PubMed

    Cui, Fang; Zhu, Xiangru; Luo, Yuejia; Cheng, Jiaping

    2017-03-22

    The present study investigated the time course of processing other's pain under different conditions of working memory (WM) load. Event-related potentials (ERPs) were recorded while the participants held two digits (low WM load) or six digits (high WM load) in WM and viewed pictures that showed others who were in painful or non-painful situations. Robust WM-load×Picture interactions were found for the N2 and LPP components. In the high WM-load condition, painful pictures elicited significantly larger amplitudes than non-painful pictures. In the low WM load condition, the difference between the painful and non-painful pictures was not significant. These ERP results indicate that WM load can influence both the early automatic N2 component and late cognitive LPP component. Compared with high WM load, low WM load reduced affective arousal and emotional sharing in response to other's pain and weakened the cognitive evaluation of task irrelevant stimuli. These findings are explained from the load theory perspective. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Assessment of the Uniqueness of Wind Tunnel Strain-Gage Balance Load Predictions

    NASA Technical Reports Server (NTRS)

    Ulbrich, N.

    2016-01-01

    A new test was developed to assess the uniqueness of wind tunnel strain-gage balance load predictions that are obtained from regression models of calibration data. The test helps balance users to gain confidence in load predictions of non-traditional balance designs. It also makes it possible to better evaluate load predictions of traditional balances that are not used as originally intended. The test works for both the Iterative and Non-Iterative Methods that are used in the aerospace testing community for the prediction of balance loads. It is based on the hypothesis that the total number of independently applied balance load components must always match the total number of independently measured bridge outputs or bridge output combinations. This hypothesis is supported by a control volume analysis of the inputs and outputs of a strain-gage balance. It is concluded from the control volume analysis that the loads and bridge outputs of a balance calibration data set must separately be tested for linear independence because it cannot always be guaranteed that a linearly independent load component set will result in linearly independent bridge output measurements. Simple linear math models for the loads and bridge outputs in combination with the variance inflation factor are used to test for linear independence. A highly unique and reversible mapping between the applied load component set and the measured bridge output set is guaranteed to exist if the maximum variance inflation factor of both sets is less than the literature recommended threshold of five. Data from the calibration of a six{component force balance is used to illustrate the application of the new test to real-world data.

  7. Radiopure Metal-Loaded Liquid Scintillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosero, Richard; Yeh, Minfang

    2015-03-18

    Metal-loaded liquid scintillator plays a key role in particle and nuclear physics experiments. The applications of metal ions in various neutrino experiments and the purification methods for different scintillator components are discussed in this paper.

  8. Radiopure metal-loaded liquid scintillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosero, Richard; Yeh, Minfang, E-mail: yeh@bnl.gov

    2015-08-17

    Metal-loaded liquid scintillator plays a key role in particle and nuclear physics experiments. The applications of metal ions in various neutrino experiments and the purification methods for different scintillator components are discussed in this paper.

  9. Optically-programmable nonlinear photonic component for dielectric-loaded plasmonic circuitry.

    PubMed

    Krasavin, Alexey V; Randhawa, Sukanya; Bouillard, Jean-Sebastien; Renger, Jan; Quidant, Romain; Zayats, Anatoly V

    2011-12-05

    We demonstrate both experimentally and numerically a compact and efficient, optically tuneable plasmonic component utilizing a surface plasmon polariton ring resonator with nonlinearity based on trans-cis isomerization in a polymer material. We observe more than 3-fold change between high and low transmission states of the device at milliwatt control powers (∼100 W/cm2 by intensity), with the performance limited by switching speed of the material. Such plasmonic components can be employed in optically programmable and reconfigurable integrated photonic circuitry.

  10. Tailoring the Employment of Offshore Wind Turbine Support Structure Load Mitigation Controllers

    NASA Astrophysics Data System (ADS)

    Shrestha, Binita; Kühn, Martin

    2016-09-01

    The currently available control concepts to mitigate aerodynamic and hydrodynamic induced support structure loads reduce either fore-aft or side-to-side damage under certain operational conditions. The load reduction is achieved together with an increase in loads in other components of the turbine e.g. pitch actuators or drive train, increasing the risk of unscheduled maintenance. The main objective of this paper is to demonstrate a methodology for reduction of support structure damage equivalent loads (DEL) in fore-aft and side-to-side directions using already available control concepts. A multi-objective optimization problem is formulated to minimize the DELs, while limiting the collateral effects of the control algorithms for load reduction. The optimization gives trigger values of sea state condition for the activation or deactivation of certain control concepts. As a result, by accepting the consumption of a small fraction of the load reserve in the design load envelope of other turbine components, a considerable reduction of the support structure loads is facilitated.

  11. Characterizing the uncertainty in holddown post load measurements

    NASA Technical Reports Server (NTRS)

    Richardson, J. A.; Townsend, J. S.

    1993-01-01

    In order to understand unexpectedly erratic load measurements in the launch-pad supports for the space shuttle, the sensitivities of the load cells in the supports were analyzed using simple probabilistic techniques. NASA engineers use the loads in the shuttle's supports to calculate critical stresses in the shuttle vehicle just before lift-off. The support loads are measured with 'load cells' which are actually structural components of the mobile launch platform which have been instrumented with strain gauges. Although these load cells adequately measure vertical loads, the horizontal load measurements have been erratic. The load measurements were simulated in this study using Monte Carlo simulation procedures. The simulation studies showed that the support loads are sensitive to small deviations in strain and calibration. In their current configuration, the load cells will not measure loads with sufficient accuracy to reliably calculate stresses in the shuttle vehicle. A simplified model of the holddown post (HDP) load measurement system was used to study the effect on load measurement accuracy for several factors, including load point deviations, gauge heights, and HDP geometry.

  12. Monitoring Wind Turbine Loading Using Power Converter Signals

    NASA Astrophysics Data System (ADS)

    Rieg, C. A.; Smith, C. J.; Crabtree, C. J.

    2016-09-01

    The ability to detect faults and predict loads on a wind turbine drivetrain's mechanical components cost-effectively is critical to making the cost of wind energy competitive. In order to investigate whether this is possible using the readily available power converter current signals, an existing permanent magnet synchronous generator based wind energy conversion system computer model was modified to include a grid-side converter (GSC) for an improved converter model and a gearbox. The GSC maintains a constant DC link voltage via vector control. The gearbox was modelled as a 3-mass model to allow faults to be included. Gusts and gearbox faults were introduced to investigate the ability of the machine side converter (MSC) current (I q) to detect and quantify loads on the mechanical components. In this model, gearbox faults were not detectable in the I q signal due to shaft stiffness and damping interaction. However, a model that predicts the load change on mechanical wind turbine components using I q was developed and verified using synthetic and real wind data.

  13. Loading Mode Optimization and Structure Tailoring in Spark Plasma Sintering of Monocarbide Powder-based Components for High Temperature Applications

    NASA Astrophysics Data System (ADS)

    Wei, Xialu

    In this study, the spark plasma sintering (SPS) is employed to consolidate poorly sinter-able ultra-high temperature ceramic (UHTC) powders due to the fact that the conjoint application of electric current and mechanical pressure during SPS can largely offset the required processing temperature. Zirconium carbide (ZrC) is selected as target material as it broadly represents properties of typical UHTCs. Investigations on SPS of ZrC are concurrently conducted in two correlated regimes: One regime is used to optimize the SPS densification efficiency by manipulating the loading schematics. The other regime is used to produce complex shape carbide components for high temperature applications via SPS. Both theoretical and experimental studies are involved in the achievement of the formulated research objectives. Consolidation of ZrC has been carried out to form a densification map with determining the optimal processing parameters. The densification of ZrC is studied through the continuum theory of sintering, in which the ZrC power-law creep parameters have been determined through the clarification of electrical and thermal aspects of the employed SPS system. Then the SPS-forging setup is proposed as it is theoretically and experimentally proven to be able to render more densification than the regular SPS. SPS-forging and regular SPS are eventually integrated into a hybrid loading mode SPS regime to combine the advantages of the individual setups to obtain the optimal densification kinetics. Annular shape ZrC pellets have been fabricated using SPS. Finite element modeling framework is constructed to manifest the thermomechanical interactions during the SPS of annular shape ZrC specimens. The fabrication procedures are practically adapted to produce also annular shape carbide composites with excellent high temperature structural strength being used as alternative SPS tooling components. The applicability of annular shape fuel pellet to accommodate volume swelling under

  14. Blast Design of Reinforced Concrete and Masonry Components Retrofitted with FRP

    DTIC Science & Technology

    2010-07-01

    1 BLAST DESIGN OF REINFORCED CONCRETE AND MASONRY COMPONENTS RETROFITTED WITH FRP Marlon L. Bazan, Ph.D. and Charles J. Oswald, P.E., Ph.D...as an alternative to traditional methods for strengthening and retrofitting concrete and masonry structures to resist blast loads. The development...and experimental validation of a methodology for modeling the response of blast loaded concrete and masonry structural components retrofitted with FRP

  15. Life Predicted in a Probabilistic Design Space for Brittle Materials With Transient Loads

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.; Palfi, Tamas; Reh, Stefan

    2005-01-01

    Analytical techniques have progressively become more sophisticated, and now we can consider the probabilistic nature of the entire space of random input variables on the lifetime reliability of brittle structures. This was demonstrated with NASA s CARES/Life (Ceramic Analysis and Reliability Evaluation of Structures/Life) code combined with the commercially available ANSYS/Probabilistic Design System (ANSYS/PDS), a probabilistic analysis tool that is an integral part of the ANSYS finite-element analysis program. ANSYS/PDS allows probabilistic loads, component geometry, and material properties to be considered in the finite-element analysis. CARES/Life predicts the time dependent probability of failure of brittle material structures under generalized thermomechanical loading--such as that found in a turbine engine hot-section. Glenn researchers coupled ANSYS/PDS with CARES/Life to assess the effects of the stochastic variables of component geometry, loading, and material properties on the predicted life of the component for fully transient thermomechanical loading and cyclic loading.

  16. Rambling and trembling in response to body loading.

    PubMed

    Tahayor, Behdad; Riley, Zachary A; Mahmoudian, Armaghan; Koceja, David M; Hong, Siang Lee

    2012-04-01

    Various studies have suggested that postural sway is controlled by at least two subsystems. Rambling-Trembling analysis is a widely accepted methodology to dissociate the signals generated by these two hypothetical subsystems. The core assumption of this method is based on the equilibrium point hypothesis which suggests that the central nervous system preserves upright standing by transiently shifting the center of pressure (COP) from one equilibrium point to another. The trajectory generated by this shifting is referred to as rambling and its difference from the original COP signal is referred to as trembling. In this study we showed that these two components of COP are differentially affected when standing with external loads. Using Detrended Fluctuation analysis, we compared the pattern of these two signals in different configurations of body loading. Our findings suggest that by applying an external load, the dynamics of the trembling component is altered independently of the area of postural sway and also independently of the rambling component. The dynamics of rambling changed only during the backloading condition in which the postural sway area also substantially increased. It can be suggested that during loaded standing, the trembling mechanism (which is suggested to be activated by peripheral mechanisms and reflexes) is altered without affecting the central influence on the shifts of the equilibrium point.

  17. Load positioning system with gravity compensation

    NASA Technical Reports Server (NTRS)

    Hollow, R. H.

    1984-01-01

    A load positioning system with gravity compensation has a servomotor, position sensing feedback potentiometer and velocity sensing tachometer in a conventional closed loop servo arrangement to cause a lead screw and a ball nut to vertically position a load. Gravity compensating components comprise the DC motor, gears, which couple torque from the motor to the lead screw, and constant current power supply. The constant weight of the load applied to the lead screw via the ball nut tend to cause the lead screw to rotate, the constant torque of which is opposed by the constant torque produced by the motor when fed from the constant current source. The constant current is preset as required by the potentiometer to effect equilibration of the load which thereby enables the positioning servomotor to see the load as weightless under both static and dynamic conditions. Positioning acceleration and velocity performance are therefore symmetrical.

  18. Comparison of common components analysis with principal components analysis and independent components analysis: Application to SPME-GC-MS volatolomic signatures.

    PubMed

    Bouhlel, Jihéne; Jouan-Rimbaud Bouveresse, Delphine; Abouelkaram, Said; Baéza, Elisabeth; Jondreville, Catherine; Travel, Angélique; Ratel, Jérémy; Engel, Erwan; Rutledge, Douglas N

    2018-02-01

    The aim of this work is to compare a novel exploratory chemometrics method, Common Components Analysis (CCA), with Principal Components Analysis (PCA) and Independent Components Analysis (ICA). CCA consists in adapting the multi-block statistical method known as Common Components and Specific Weights Analysis (CCSWA or ComDim) by applying it to a single data matrix, with one variable per block. As an application, the three methods were applied to SPME-GC-MS volatolomic signatures of livers in an attempt to reveal volatile organic compounds (VOCs) markers of chicken exposure to different types of micropollutants. An application of CCA to the initial SPME-GC-MS data revealed a drift in the sample Scores along CC2, as a function of injection order, probably resulting from time-related evolution in the instrument. This drift was eliminated by orthogonalization of the data set with respect to CC2, and the resulting data are used as the orthogonalized data input into each of the three methods. Since the first step in CCA is to norm-scale all the variables, preliminary data scaling has no effect on the results, so that CCA was applied only to orthogonalized SPME-GC-MS data, while, PCA and ICA were applied to the "orthogonalized", "orthogonalized and Pareto-scaled", and "orthogonalized and autoscaled" data. The comparison showed that PCA results were highly dependent on the scaling of variables, contrary to ICA where the data scaling did not have a strong influence. Nevertheless, for both PCA and ICA the clearest separations of exposed groups were obtained after autoscaling of variables. The main part of this work was to compare the CCA results using the orthogonalized data with those obtained with PCA and ICA applied to orthogonalized and autoscaled variables. The clearest separations of exposed chicken groups were obtained by CCA. CCA Loadings also clearly identified the variables contributing most to the Common Components giving separations. The PCA Loadings did not

  19. Allocation of Load-Loss Cost Caused by Voltage Sag

    NASA Astrophysics Data System (ADS)

    Gao, X.

    2017-10-01

    This paper focuses on the allocation of load-loss cost caused by voltage sag in the environment of electricity market. To compensate the loss of loads due to voltage sags, the load-loss cost is allocated to both sources and power consumers. On the basis of Load Drop Cost (LDC), a quantitative evaluation index of load-loss cost caused by voltage sag is identified. The load-loss cost to be allocated to power consumers themselves is calculated according to load classification. Based on the theory of power component the quantitative relation between sources and loads is established, thereby a quantitative calculation method for load-loss cost allocated to each source is deduced and the quantitative compensation from individual source to load is proposed. A simple five-bus system illustrates the main features of the proposed method.

  20. 16 CFR 1509.5 - Component-spacing test apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Component-spacing test apparatus. 1509.5 Section 1509.5 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS REQUIREMENTS FOR NON-FULL-SIZE BABY CRIBS § 1509.5 Component-spacing test apparatus. (a) Loading...

  1. 16 CFR 1509.5 - Component-spacing test apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Component-spacing test apparatus. 1509.5 Section 1509.5 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS REQUIREMENTS FOR NON-FULL-SIZE BABY CRIBS § 1509.5 Component-spacing test apparatus. (a) Loading...

  2. Space Shuttle Transportation (Roll-Out) Loads Diagnostics

    NASA Technical Reports Server (NTRS)

    Elliott, Kenny B.; Buehrle, Ralph D.; James, George H.; Richart, Jene A.

    2005-01-01

    The Space Transportation System (STS) consists of three primary components; an Orbiter Vehicle, an External Fuel Tank, and two Solid Rocket Boosters. The Orbiter Vehicle and Solid Rocket Boosters are reusable components, and as such, they are susceptible to durability issues. Recently, the fatigue load spectra for these components have been updated to include load histories acquired during the rollout phase of the STS processing for flight. Using traditional program life assessment techniques, the incorporation of these "rollout" loads produced unacceptable life estimates for certain Orbiter structural members. As a result, the Space Shuttle System Engineering and Integration Office has initiated a program to re-assess the method used for developing the "rollout" loads and performing the life assessments. In the fall of 2003 a set of tests were preformed to provide information to either validate existing load spectra estimation techniques or generate new load spectra estimation methods. Acceleration and strain data were collected from two rollouts of a partial-stack configuration of the Space Shuttle. The partial stack configuration consists of two Solid Rocket Boosters tied together at the upper External Tank attachment locations mounted on the Mobile Launch Platform carried by a Crawler Transporter (CT). In the current analysis, the data collected from this test is examined for consistency in speed, surface condition effects, and the characterization of the forcing function. It is observed that the speed of the CT is relatively stable. The dynamic response acceleration of the partial-stack is slightly sensitive to the surface condition of the road used for transport, and the dynamic response acceleration of the partial-stack generally increases as the transport speed increases. However, the speed sensitivity is dependent on the measurement location. Finally, the character of the forcing function is narrow-banded with the primary drivers being harmonics of two CT

  3. Attentional sets influence perceptual load effects, but not dilution effects.

    PubMed

    Benoni, Hanna; Zivony, Alon; Tsal, Yehoshua

    2014-01-01

    Perceptual load theory [Lavie, N. (1995). Perceptual load as a necessary condition for selective attention. Journal of Experimental Psychology: Human Perception and Performance, 21, 451-468.; Lavie, N., & Tsal, Y. (1994) Perceptual load as a major determinant of the locus of selection in visual attention. Perception & Psychophysics, 56, 183-197.] proposes that interference from distractors can only be avoided in situations of high perceptual load. This theory has been supported by blocked design manipulations separating low load (when the target appears alone) and high load (when the target is embedded among neutral letters). Tsal and Benoni [(2010a). Diluting the burden of load: Perceptual load effects are simply dilution effects. Journal of Experimental Psychology: Human Perception and Performance, 36, 1645-1656.; Benoni, H., & Tsal, Y. (2010). Where have we gone wrong? Perceptual load does not affect selective attention. Vision Research, 50, 1292-1298.] have recently shown that these manipulations confound perceptual load with "dilution" (the mere presence of additional heterogeneous items in high-load situations). Theeuwes, Kramer, and Belopolsky [(2004). Attentional set interacts with perceptual load in visual search. Psychonomic Bulletin & Review, 11, 697-702.] independently questioned load theory by suggesting that attentional sets might also affect distractor interference. When high load and low load were intermixed, and participants could not prepare for the presentation that followed, both the low-load and high-load trials showed distractor interference. This result may also challenge the dilution account, which proposes a stimulus-driven mechanism. In the current study, we presented subjects with both fixed and mixed blocks, including a mix of dilution trials with low-load trials and with high-load trials. We thus separated the effect of dilution from load and tested the influence of attentional sets on each component. The results revealed that whereas

  4. Comparison of three-dimensional orthodontic load systems of different commercial archwires for space closure.

    PubMed

    Gajda, Steven; Chen, Jie

    2012-03-01

    To experimentally quantify the effects of the loop design on three-dimensional orthodontic load systems of two types of commercial closing loop archwires: Teardrop and Keyhole. An orthodontic force tester and custom-made dentoform were used to measure the load systems produced on two teeth during simulated space closure. The system included three force components along and three moment components about three clinically defined axes on two target teeth: the left maxillary canine and the lateral incisor. The archwires were attached to the dentoform and were activated following a standard clinical procedure. The resulting six load components produced by the two archwires were reported and compared. The results were also compared with those of the T-loop archwire published previously. The three designs deliver similar loading patterns; however, the component magnitudes are dependent on the design. All of the designs result in lingual tipping of the teeth, canine lingual-mesial displacement, canine crown-mesial-in rotation, and incisor crown-distal-in rotation.

  5. Design and analysis of a novel mechanical loading machine for dynamic in vivo axial loading

    NASA Astrophysics Data System (ADS)

    Macione, James; Nesbitt, Sterling; Pandit, Vaibhav; Kotha, Shiva

    2012-02-01

    This paper describes the construction of a loading machine for performing in vivo, dynamic mechanical loading of the rodent forearm. The loading machine utilizes a unique type of electromagnetic actuator with no mechanically resistive components (servotube), allowing highly accurate loads to be created. A regression analysis of the force created by the actuator with respect to the input voltage demonstrates high linear correlation (R2 = 1). When the linear correlation is used to create dynamic loading waveforms in the frequency (0.5-10 Hz) and load (1-50 N) range used for in vivo loading, less than 1% normalized root mean square error (NRMSE) is computed. Larger NRMSE is found at increased frequencies, with 5%-8% occurring at 40 Hz, and reasons are discussed. Amplifiers (strain gauge, linear voltage displacement transducer (LVDT), and load cell) are constructed, calibrated, and integrated, to allow well-resolved dynamic measurements to be recorded at each program cycle. Each of the amplifiers uses an active filter with cutoff frequency at the maximum in vivo loading frequencies (50 Hz) so that electronic noise generated by the servo drive and actuator are reduced. The LVDT and load cell amplifiers allow evaluation of stress-strain relationships to determine if in vivo bone damage is occurring. The strain gauge amplifier allows dynamic force to strain calibrations to occur for animals of different sex, age, and strain. Unique features are integrated into the loading system, including a weightless mode, which allows the limbs of anesthetized animals to be quickly positioned and removed. Although the device is constructed for in vivo axial bone loading, it can be used within constraints, as a general measurement instrument in a laboratory setting.

  6. Design and analysis of a novel mechanical loading machine for dynamic in vivo axial loading.

    PubMed

    Macione, James; Nesbitt, Sterling; Pandit, Vaibhav; Kotha, Shiva

    2012-02-01

    This paper describes the construction of a loading machine for performing in vivo, dynamic mechanical loading of the rodent forearm. The loading machine utilizes a unique type of electromagnetic actuator with no mechanically resistive components (servotube), allowing highly accurate loads to be created. A regression analysis of the force created by the actuator with respect to the input voltage demonstrates high linear correlation (R(2) = 1). When the linear correlation is used to create dynamic loading waveforms in the frequency (0.5-10 Hz) and load (1-50 N) range used for in vivo loading, less than 1% normalized root mean square error (NRMSE) is computed. Larger NRMSE is found at increased frequencies, with 5%-8% occurring at 40 Hz, and reasons are discussed. Amplifiers (strain gauge, linear voltage displacement transducer (LVDT), and load cell) are constructed, calibrated, and integrated, to allow well-resolved dynamic measurements to be recorded at each program cycle. Each of the amplifiers uses an active filter with cutoff frequency at the maximum in vivo loading frequencies (50 Hz) so that electronic noise generated by the servo drive and actuator are reduced. The LVDT and load cell amplifiers allow evaluation of stress-strain relationships to determine if in vivo bone damage is occurring. The strain gauge amplifier allows dynamic force to strain calibrations to occur for animals of different sex, age, and strain. Unique features are integrated into the loading system, including a weightless mode, which allows the limbs of anesthetized animals to be quickly positioned and removed. Although the device is constructed for in vivo axial bone loading, it can be used within constraints, as a general measurement instrument in a laboratory setting.

  7. A model for the progressive failure of laminated composite structural components

    NASA Technical Reports Server (NTRS)

    Allen, D. H.; Lo, D. C.

    1991-01-01

    Laminated continuous fiber polymeric composites are capable of sustaining substantial load induced microstructural damage prior to component failure. Because this damage eventually leads to catastrophic failure, it is essential to capture the mechanics of progressive damage in any cogent life prediction model. For the past several years the authors have been developing one solution approach to this problem. In this approach the mechanics of matrix cracking and delamination are accounted for via locally averaged internal variables which account for the kinematics of microcracking. Damage progression is predicted by using phenomenologically based damage evolution laws which depend on the load history. The result is a nonlinear and path dependent constitutive model which has previously been implemented to a finite element computer code for analysis of structural components. Using an appropriate failure model, this algorithm can be used to predict component life. In this paper the model will be utilized to demonstrate the ability to predict the load path dependence of the damage and stresses in plates subjected to fatigue loading.

  8. Compression-bending of multi-component semi-rigid columns in response to axial loads and conjugate reciprocal extension-prediction of mechanical behaviours and implications for structural design.

    PubMed

    Lau, Ernest W

    2013-01-01

    The mathematical modelling of column buckling or beam bending under an axial or transverse load is well established. However, the existent models generally assume a high degree of symmetry in the structure of the column and minor longitudinal and transverse displacements. The situation when the column is made of several components with different mechanical properties asymmetrically distributed in the transverse section, semi-rigid, and subjected to multiple axial loads with significant longitudinal and transverse displacements through compression and bending has not been well characterised. A more comprehensive theoretical model allowing for these possibilities and assuming a circular arc contour for the bend is developed, and used to establish the bending axes, balance between compression and bending, and equivalent stiffness of the column. In certain situations, such as with pull cable catheters commonly used for minimally invasive surgical procedures, the compression loads are applied via cables running through channels inside a semi-rigid column. The model predicts the mathematical relationships between the radius of curvature of the bend and the tension in and normal force exerted by such cables. Conjugate extension with reciprocal compression-bending is a special structural arrangement for a semi-rigid column such that extension of one segment is linked to compression-bending of another by inextensible cables running between them. Leads are cords containing insulated electrical conductor coil and cables between the heart muscle and cardiac implantable electronic devices. Leads can behave like pull cable catheters through differential component pulling, providing a possible mechanism for inside-out abrasion and conductor cable externalisation. Certain design features may predispose to this mode of structural failure. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Emotion, cognitive load and learning outcomes during simulation training.

    PubMed

    Fraser, Kristin; Ma, Irene; Teteris, Elise; Baxter, Heather; Wright, Bruce; McLaughlin, Kevin

    2012-11-01

    Simulation training has emerged as an effective way to complement clinical training of medical students. Yet outcomes from simulation training must be considered suboptimal when 25-30% of students fail to recognise a cardiac murmur on which they were trained 1 hour previously. There are several possible explanations for failure to improve following simulation training, which include the impact of heightened emotions on learning and cognitive overload caused by interactivity with high-fidelity simulators. This study was conducted to assess emotion during simulation training and to explore the relationships between emotion and cognitive load, and diagnostic performance. We trained 84 Year 1 medical students on a scenario of chest pain caused by symptomatic aortic stenosis. After training, students were asked to rate their emotional state and cognitive load. We then provided training on a dyspnoea scenario before asking participants to diagnose the murmur in which they had been trained (aortic stenosis) and a novel murmur (mitral regurgitation). We used factor analysis to identify the principal components of emotion, and then studied the associations between these components of emotion and cognitive load and diagnostic performance. We identified two principal components of emotion, which we felt represented invigoration and tranquillity. Both of these were associated with cognitive load with adjusted regression coefficients of 0.63 (95% confidence interval [CI] 0.28-0.99; p = 0.001) and - 0.44 (95% CI - 0.77 to - 0.10; p = 0.009), respectively. We found a significant negative association between cognitive load and the odds of subsequently identifying the trained murmur (odds ratio 0.27, 95% CI 0.11-0.67; p = 0.004). We found that increased invigoration and reduced tranquillity during simulation training were associated with increased cognitive load, and that the likelihood of correctly identifying a trained murmur declined with increasing cognitive load. Further

  10. PLUM: Parallel Load Balancing for Adaptive Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Oliker, Leonid; Biswas, Rupak; Saini, Subhash (Technical Monitor)

    1998-01-01

    Mesh adaption is a powerful tool for efficient unstructured-grid computations but causes load imbalance among processors on a parallel machine. We present a novel method called PLUM to dynamically balance the processor workloads with a global view. This paper presents the implementation and integration of all major components within our dynamic load balancing strategy for adaptive grid calculations. Mesh adaption, repartitioning, processor assignment, and remapping are critical components of the framework that must be accomplished rapidly and efficiently so as not to cause a significant overhead to the numerical simulation. A data redistribution model is also presented that predicts the remapping cost on the SP2. This model is required to determine whether the gain from a balanced workload distribution offsets the cost of data movement. Results presented in this paper demonstrate that PLUM is an effective dynamic load balancing strategy which remains viable on a large number of processors.

  11. Neural effects of cognitive control load on auditory selective attention.

    PubMed

    Sabri, Merav; Humphries, Colin; Verber, Matthew; Liebenthal, Einat; Binder, Jeffrey R; Mangalathu, Jain; Desai, Anjali

    2014-08-01

    Whether and how working memory disrupts or alters auditory selective attention is unclear. We compared simultaneous event-related potentials (ERP) and functional magnetic resonance imaging (fMRI) responses associated with task-irrelevant sounds across high and low working memory load in a dichotic-listening paradigm. Participants performed n-back tasks (1-back, 2-back) in one ear (Attend ear) while ignoring task-irrelevant speech sounds in the other ear (Ignore ear). The effects of working memory load on selective attention were observed at 130-210ms, with higher load resulting in greater irrelevant syllable-related activation in localizer-defined regions in auditory cortex. The interaction between memory load and presence of irrelevant information revealed stronger activations primarily in frontal and parietal areas due to presence of irrelevant information in the higher memory load. Joint independent component analysis of ERP and fMRI data revealed that the ERP component in the N1 time-range is associated with activity in superior temporal gyrus and medial prefrontal cortex. These results demonstrate a dynamic relationship between working memory load and auditory selective attention, in agreement with the load model of attention and the idea of common neural resources for memory and attention. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Neural effects of cognitive control load on auditory selective attention

    PubMed Central

    Sabri, Merav; Humphries, Colin; Verber, Matthew; Liebenthal, Einat; Binder, Jeffrey R.; Mangalathu, Jain; Desai, Anjali

    2014-01-01

    Whether and how working memory disrupts or alters auditory selective attention is unclear. We compared simultaneous event-related potentials (ERP) and functional magnetic resonance imaging (fMRI) responses associated with task-irrelevant sounds across high and low working memory load in a dichotic-listening paradigm. Participants performed n-back tasks (1-back, 2-back) in one ear (Attend ear) while ignoring task-irrelevant speech sounds in the other ear (Ignore ear). The effects of working memory load on selective attention were observed at 130-210 msec, with higher load resulting in greater irrelevant syllable-related activation in localizer-defined regions in auditory cortex. The interaction between memory load and presence of irrelevant information revealed stronger activations primarily in frontal and parietal areas due to presence of irrelevant information in the higher memory load. Joint independent component analysis of ERP and fMRI data revealed that the ERP component in the N1 time-range is associated with activity in superior temporal gyrus and medial prefrontal cortex. These results demonstrate a dynamic relationship between working memory load and auditory selective attention, in agreement with the load model of attention and the idea of common neural resources for memory and attention. PMID:24946314

  13. Sources and Trends of Nitrogen Loading to New England Estuaries

    EPA Science Inventory

    A database of nitrogen (N) loading components to estuaries of the conterminous United States has been developed through application of regional SPARROW models. The original SPARROW models predict average detrended loads by source based on average flow conditions and 2002 source t...

  14. Static Indentation Load Capacity of the Superelastic 60NiTi for Rolling Element Bearings

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Moore, Lewis E., III; Clifton, Joshua S.

    2012-01-01

    The nickel-rich, binary nickel-titanium alloys, such as 60NiTi (60Ni-40Ti by wt%), are emerging as viable materials for use in mechanical components like rolling element bearings and gears. 60NiTi is a superelastic material that simultaneously exhibits high hardness and a relatively low elastic modulus (approx.100 GPa). These properties result in the potential to endure extremely high indentation loads such as those encountered in bearings, gears and other mechanical components. In such applications, quantifying the load that results in permanent deformation that can affect component performance and life is important. In this paper, the static load capacity is measured by conducting indentation experiments in which 12.7 mm diameter balls made from the ceramic Si3N4 are pressed into highly polished, hardened 60NiTi flat plates. Hertz stress calculations are used to estimate contact stress. The results show that the 60NiTi surface can withstand an approximately 3400 kN load before significant denting (>0.6 microns deep) occurs. This load capacity is approximately twice that of high performance bearing steels suggesting that the potential exists to make highly resilient bearings and components from such materials.

  15. Advanced Electrical Materials and Components Being Developed

    NASA Technical Reports Server (NTRS)

    Schwarze, Gene E.

    2004-01-01

    All aerospace systems require power management and distribution (PMAD) between the energy and power source and the loads. The PMAD subsystem can be broadly described as the conditioning and control of unregulated power from the energy source and its transmission to a power bus for distribution to the intended loads. All power and control circuits for PMAD require electrical components for switching, energy storage, voltage-to-current transformation, filtering, regulation, protection, and isolation. Advanced electrical materials and component development technology is a key technology to increasing the power density, efficiency, reliability, and operating temperature of the PMAD. The primary means to develop advanced electrical components is to develop new and/or significantly improved electronic materials for capacitors, magnetic components, and semiconductor switches and diodes. The next important step is to develop the processing techniques to fabricate electrical and electronic components that exceed the specifications of presently available state-of-the-art components. The NASA Glenn Research Center's advanced electrical materials and component development technology task is focused on the following three areas: 1) New and/or improved dielectric materials for the development of power capacitors with increased capacitance volumetric efficiency, energy density, and operating temperature; 2) New and/or improved high-frequency, high-temperature soft magnetic materials for the development of transformers and inductors with increased power density, energy density, electrical efficiency, and operating temperature; 3) Packaged high-temperature, high-power density, high-voltage, and low-loss SiC diodes and switches.

  16. Concepts of scientific integrative medicine applied to the physiology and pathophysiology of catecholamine systems.

    PubMed

    Goldstein, David S

    2013-10-01

    This review presents concepts of scientific integrative medicine and relates them to the physiology of catecholamine systems and to the pathophysiology of catecholamine-related disorders. The applications to catecholamine systems exemplify how scientific integrative medicine links systems biology with integrative physiology. Concepts of scientific integrative medicine include (i) negative feedback regulation, maintaining stability of the body's monitored variables; (ii) homeostats, which compare information about monitored variables with algorithms for responding; (iii) multiple effectors, enabling compensatory activation of alternative effectors and primitive specificity of stress response patterns; (iv) effector sharing, accounting for interactions among homeostats and phenomena such as hyperglycemia attending gastrointestinal bleeding and hyponatremia attending congestive heart failure; (v) stress, applying a definition as a state rather than as an environmental stimulus or stereotyped response; (vi) distress, using a noncircular definition that does not presume pathology; (vii) allostasis, corresponding to adaptive plasticity of feedback-regulated systems; and (viii) allostatic load, explaining chronic degenerative diseases in terms of effects of cumulative wear and tear. From computer models one can predict mathematically the effects of stress and allostatic load on the transition from wellness to symptomatic disease. The review describes acute and chronic clinical disorders involving catecholamine systems-especially Parkinson disease-and how these concepts relate to pathophysiology, early detection, and treatment and prevention strategies in the post-genome era. Published 2013. Compr Physiol 3:1569-1610, 2013.

  17. Concepts of Scientific Integrative Medicine Applied to the Physiology and Pathophysiology of Catecholamine Systems

    PubMed Central

    Goldstein, David S.

    2016-01-01

    This review presents concepts of scientific integrative medicine and relates them to the physiology of catecholamine systems and to the pathophysiology of catecholamine-related disorders. The applications to catecholamine systems exemplify how scientific integrative medicine links systems biology with integrative physiology. Concepts of scientific integrative medicine include (i) negative feedback regulation, maintaining stability of the body’s monitored variables; (ii) homeostats, which compare information about monitored variables with algorithms for responding; (iii) multiple effectors, enabling compensatory activation of alternative effectors and primitive specificity of stress response patterns; (iv) effector sharing, accounting for interactions among homeostats and phenomena such as hyperglycemia attending gastrointestinal bleeding and hyponatremia attending congestive heart failure; (v) stress, applying a definition as a state rather than as an environmental stimulus or stereotyped response; (vi) distress, using a noncircular definition that does not presume pathology; (vii) allostasis, corresponding to adaptive plasticity of feedback-regulated systems; and (viii) allostatic load, explaining chronic degenerative diseases in terms of effects of cumulative wear and tear. From computer models one can predict mathematically the effects of stress and allostatic load on the transition from wellness to symptomatic disease. The review describes acute and chronic clinical disorders involving catecholamine systems—especially Parkinson disease—and how these concepts relate to pathophysiology, early detection, and treatment and prevention strategies in the post-genome era. PMID:24265239

  18. EU Development of High Heat Flux Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linke, J.; Lorenzetto, P.; Majerus, P.

    2005-04-15

    The development of plasma facing components for next step fusion devices in Europe is strongly focused to ITER. Here a wide spectrum of different design options for the divertor target and the first wall have been investigated with tungsten, CFC, and beryllium armor. Electron beam simulation experiments have been used to determine the performance of high heat flux components under ITER specific thermal loads. Beside thermal fatigue loads with power density levels up to 20 MWm{sup -2}, off-normal events are a serious concern for the lifetime of plasma facing components. These phenomena are expected to occur on a time scalemore » of a few milliseconds (plasma disruptions) or several hundred milliseconds (vertical displacement events) and have been identified as a major source for the production of neutron activated metallic or tritium enriched carbon dust which is of serious importance from a safety point of view.The irradiation induced material degradation is another critical concern for future D-T-burning fusion devices. In ITER the integrated neutron fluence to the first wall and the divertor armour will remain in the order of 1 dpa and 0.7 dpa, respectively. This value is low compared to future commercial fusion reactors; nevertheless, a nonnegligible degradation of the materials has been detected, both for mechanical and thermal properties, in particular for the thermal conductivity of carbon based materials. Beside the degradation of individual material properties, the high heat flux performance of actively cooled plasma facing components has been investigated under ITER specific thermal and neutron loads.« less

  19. Failure behavior of generic metallic and composite aircraft structural components under crash loads

    NASA Technical Reports Server (NTRS)

    Carden, Huey D.; Robinson, Martha P.

    1990-01-01

    Failure behavior results are presented from crash dynamics research using concepts of aircraft elements and substructure not necessarily designed or optimized for energy absorption or crash loading considerations. To achieve desired new designs incorporating improved energy absorption capabilities often requires an understanding of how more conventional designs behave under crash loadings. Experimental and analytical data are presented which indicate some general trends in the failure behavior of a class of composite structures including individual fuselage frames, skeleton subfloors with stringers and floor beams without skin covering, and subfloors with skin added to the frame-stringer arrangement. Although the behavior is complex, a strong similarity in the static/dynamic failure behavior among these structures is illustrated through photographs of the experimental results and through analytical data of generic composite structural models.

  20. Cognitive load, emotion, and performance in high-fidelity simulation among beginning nursing students: a pilot study.

    PubMed

    Schlairet, Maura C; Schlairet, Timothy James; Sauls, Denise H; Bellflowers, Lois

    2015-03-01

    Establishing the impact of the high-fidelity simulation environment on student performance, as well as identifying factors that could predict learning, would refine simulation outcome expectations among educators. The purpose of this quasi-experimental pilot study was to explore the impact of simulation on emotion and cognitive load among beginning nursing students. Forty baccalaureate nursing students participated in teaching simulations, rated their emotional state and cognitive load, and completed evaluation simulations. Two principal components of emotion were identified representing the pleasant activation and pleasant deactivation components of affect. Mean rating of cognitive load following simulation was high. Linear regression identiffed slight but statistically nonsignificant positive associations between principal components of emotion and cognitive load. Logistic regression identified a negative but statistically nonsignificant effect of cognitive load on assessment performance. Among lower ability students, a more pronounced effect of cognitive load on assessment performance was observed; this also was statistically non-significant. Copyright 2015, SLACK Incorporated.

  1. A Baseline Load Schedule for the Manual Calibration of a Force Balance

    NASA Technical Reports Server (NTRS)

    Ulbrich, N.; Gisler, R.

    2013-01-01

    A baseline load schedule for the manual calibration of a force balance is defined that takes current capabilities at the NASA Ames Balance Calibration Laboratory into account. The chosen load schedule consists of 18 load series with a total of 194 data points. It was designed to satisfy six requirements: (i) positive and negative loadings should be applied for each load component; (ii) at least three loadings should be applied between 0 % and 100 % load capacity; (iii) normal and side force loadings should be applied at the forward gage location, aft gage location, and the balance moment center; (iv) the balance should be used in "up" and "down" orientation to get positive and negative axial force loadings; (v) the constant normal and side force approaches should be used to get the rolling moment loadings; (vi) rolling moment loadings should be obtained for 0, 90, 180, and 270 degrees balance orientation. In addition, three different approaches are discussed in the paper that may be used to independently estimate the natural zeros, i.e., the gage outputs of the absolute load datum of the balance. These three approaches provide gage output differences that can be used to estimate the weight of both the metric and non-metric part of the balance. Data from the calibration of a six-component force balance will be used in the final manuscript of the paper to illustrate characteristics of the proposed baseline load schedule.

  2. Working memory and the memory distortion component of hindsight bias.

    PubMed

    Calvillo, Dustin P

    2012-01-01

    One component of hindsight bias is memory distortion: Individuals' recollections of their predictions are biased towards known outcomes. The present study examined the role of working memory in the memory distortion component of hindsight bias. Participants answered almanac-like questions, completed a measure of working memory capacity, were provided with the correct answers, and attempted to recollect their original judgements in two conditions: with and without a concurrent working memory load. Participants' recalled judgements were more biased by feedback when they recalled these judgements with a concurrent memory load and working memory capacity was negatively correlated with memory distortion. These findings are consistent with reconstruction accounts of the memory distortion component of hindsight bias and, more generally, with dual process theories of cognition. These results also relate the memory distortion component of hindsight bias with other cognitive errors, such as source monitoring errors, the belief bias in syllogistic reasoning and anchoring effects. Implications for the separate components view of hindsight bias are discussed.

  3. Comparison of three-dimensional orthodontic load systems of different commercial archwires for space closure

    PubMed Central

    Gajda, Steven; Chen, Jie

    2014-01-01

    Objective To experimentally quantify the effects of the loop design on three-dimensional orthodontic load systems of two types of commercial closing loop archwires: Teardrop and Keyhole. Materials and Methods An orthodontic force tester and custom-made dentoform were used to measure the load systems produced on two teeth during simulated space closure. The system included three force components along and three moment components about three clinically defined axes on two target teeth: the left maxillary canine and the lateral incisor. The archwires were attached to the dentoform and were activated following a standard clinical procedure. Results The resulting six load components produced by the two archwires were reported and compared. The results were also compared with those of the T-loop archwire published previously. Conclusions The three designs deliver similar loading patterns; however, the component magnitudes are dependent on the design. All of the designs result in lingual tipping of the teeth, canine lingual-mesial displacement, canine crown-mesial-in rotation, and incisor crown-distal-in rotation. PMID:21879793

  4. Peak exposures to main components of ash and gaseous diesel exhausts in closed and open ash loading stations at biomass-fuelled power plants.

    PubMed

    Laitinen, Juha; Koponen, Hanna; Sippula, Olli; Korpijärvi, Kirsi; Jumpponen, Mika; Laitinen, Sirpa; Aatamila, Marjaleena; Tissari, Jarkko; Karhunen, Tommi; Ojanen, Kari; Jokiniemi, Jorma; Korpinen, Leena

    2017-10-01

    Fly and bottom ashes are collected at power plants to reduce the environmental effects of energy production. However, handling the ashes causes health problems for operators, maintenance workers and truck drivers at the power plants. Hence, we evaluated ash loaders' peak inhalation exposures to the chemical components of ash and diesel exhausts in open and closed ash loading stations at biomass-fuelled combined heat and power plants. We also carried out chemical and morphological analyses of the ashes to evaluate their health hazard potential in order to find practical technical measures to reduce workers' exposure. On the basis of X-ray diffraction analyses, the main respirable crystalline ash compounds were SiO 2 , CaSO 4 , CaO, Ca 2 Al 2 SiO 7 , NaCl and Ca 3 Al 2 O 6 in the fly ashes and SiO 2 , KAlSi 3 O 8 , NaAlSi 3 O 8 and Ca 2 Al 2 SiO 7 in the bottom ashes. The short-term exposure levels of respirable crystalline silica, inhalable inorganic dust, Cr, Mn, Ni and nitric oxide exceeded their Finnish eight hours occupational exposure limit values in the closed ash loading station. According to our observations, more attention should be paid to the ash-moistening process, the use of tank trucks instead of open cassette flatbed trucks, and the sealing of the loading line from the silo to the truck which would prevent spreading the ash into the air. The idling time of diesel trucks should also be limited, and ash loading stations should be equipped with exhaust gas ventilators. If working conditions make it impossible to keep to the OEL values, workers must use respirators and protect their eyes and skin. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Overview of Aerothermodynamic Loads Definition Study

    NASA Technical Reports Server (NTRS)

    Povinelli, L. A.

    1985-01-01

    The Aerothermodynamic Loads Definition were studied to develop methods to more accurately predict the operating environment in the space shuttle main engine (SSME) components. Development of steady and time-dependent, three-dimensional viscous computer codes and experimental verification and engine diagnostic testing are considered. The steady, nonsteady, and transient operating loads are defined to accurately predict powerhead life. Improvements in the structural durability of the SSME turbine drive systems depends on the knowledge of the aerothermodynamic behavior of the flow through the preburner, turbine, turnaround duct, gas manifold, and injector post regions.

  6. Simulating tokamak PFC performance using simultaneous dual beam particle loading with pulsed heat loading

    NASA Astrophysics Data System (ADS)

    Sinclair, Gregory; Gonderman, Sean; Tripathi, Jitendra; Ray, Tyler; Hassanein, Ahmed

    2017-10-01

    The performance of plasma facing components (PFCs) in a fusion device are expected to change due to high flux particle loading during operation. Tungsten (W) is a promising PFC candidate material, due to its high melting point, high thermal conductivity, and low tritium retention. However, ion irradiation of D and He have each shown to diminish the thermal strength of W. This work investigates the synergistic effect between ion species, using dual beam irradiation, on the thermal response of W during ELM-like pulsed heat loading. Experiments studied three different loading conditions: laser, laser + He+, and laser + He+ + D+. 100 eV He+ and D+ exposures used a flux of 3.0-3.5 x 1020 m-2 s-1. ELM-like loading was applied using a pulsed Nd:YAG laser at an energy density of 0.38-1.51 MJ m-2 (3600 1 ms pulses at 1 Hz). SEM imaging revealed that laser + He+ loading at 0.76 MJ m-2 caused surface melting, inhibiting fuzz formation. Increasing the laser fluence decreased grain size and increased surface pore density. Thermally-enhanced migration of trapped gases appear to reflect resultant molten morphology. This work was supported by the National Science Foundation PIRE project.

  7. Device and Component Testing | Water Power | NREL

    Science.gov Websites

    actuators. Specialized component validation of blades may be accomplished by applying loads at the system's during this time has assessed hundreds of wind blades. The NWTC has pioneered the development of

  8. NASALife-Component Fatigue and Creep Life Prediction Program and Illustrative Examples

    NASA Technical Reports Server (NTRS)

    Murthy, Pappu L. N.; Mital, Subodh K.; Gyekenyesi, John Z.

    2005-01-01

    NASALife is a life prediction program for propulsion system components made of ceramic matrix composites (CMC) under cyclic thermo-mechanical loading and creep rupture conditions. Although, the primary focus was for CMC components the underlying methodologies are equally applicable to other material systems as well. The program references data for low cycle fatigue (LCF), creep rupture, and static material properties as part of the life prediction process. Multiaxial stresses are accommodated by Von Mises based methods and a Walker model is used to address mean stress effects. Varying loads are reduced by the Rainflow counting method. Lastly, damage due to cyclic loading (Miner s rule) and creep are combined to determine the total damage per mission and the number of missions the component can survive before failure are calculated. Illustration of code usage is provided through example problem of a CMC turbine stator vane made of melt-infiltrated, silicon carbide fiber-reinforced, silicon carbide matrix composite (MI SiC/SiC)

  9. The prediction of nonlinear dynamic loads on helicopters from flight variables using artificial neural networks

    NASA Technical Reports Server (NTRS)

    Cook, A. B.; Fuller, C. R.; O'Brien, W. F.; Cabell, R. H.

    1992-01-01

    A method of indirectly monitoring component loads through common flight variables is proposed which requires an accurate model of the underlying nonlinear relationships. An artificial neural network (ANN) model learns relationships through exposure to a database of flight variable records and corresponding load histories from an instrumented military helicopter undergoing standard maneuvers. The ANN model, utilizing eight standard flight variables as inputs, is trained to predict normalized time-varying mean and oscillatory loads on two critical components over a range of seven maneuvers. Both interpolative and extrapolative capabilities are demonstrated with agreement between predicted and measured loads on the order of 90 percent to 95 percent. This work justifies pursuing the ANN method of predicting loads from flight variables.

  10. Resonant loading of aircraft secondary structure panels for use with thermoelastic stress analysis and digital image correlation

    NASA Astrophysics Data System (ADS)

    Waugh, Rachael C.; Dulieu-Barton, Janice M.; Quinn, S.

    2015-03-01

    Thermoelastic stress analysis (TSA) is an established active thermographic approach which uses the thermoelastic effect to correlate the temperature change that occurs as a material is subjected to elastic cyclic loading to the sum of the principal stresses on the surface of the component. Digital image correlation (DIC) tracks features on the surface of a material to establish a displacement field of a component subjected to load, which can then be used to calculate the strain field. The application of both DIC and TSA on a composite plate representative of aircraft secondary structure subject to resonant frequency loading using a portable loading device, i.e. `remote loading' is described. Laboratory based loading for TSA and DIC is typically imparted using a test machine, however in the current work a vibration loading system is used which is able to excite the component of interest at resonant frequency which enables TSA and DIC to be carried out. The accuracy of the measurements made under remote loading of both of the optical techniques applied is discussed. The data are compared to extract complimentary information from the two techniques. This work forms a step towards a combined strain based non-destructive evaluation procedure able to identify and quantify the effect of defects more fully, particularly when examining component performance in service applications.

  11. Physiological pump loading of isolated cardiac muscle.

    PubMed

    Paulus, W J; Claes, V A; Brutsaert, D L

    1976-05-01

    Cat papillary muscles were subjected to a continuously changing load, resulting from an analysis of the left ventricle as a muscle pump system. The papillary muscle was assumed to be part of a circumferential bundle of muscle fibers of a simplified ejecting ventricle. The load included the pressure--stress relationship of this ventricle and the peripheral vascular load with its inertial, resistive and capacitive components. When this loading function was imposed on a shortening muscle through an electronic feedback circuit, the time course of force development and the velocity versus force plots closely resembled data obtained in the intact heart. Analysis of mechanical work (delta 1 X f) and power (V X f) and their respective time course permitted distinction between changes of contractile performance due to (1) positive or negative inotropic interventions, (2) altered hypothetical ventricular dimensions and changed preload, and (3) the long-term load-dependent memory of cardiac muscle.

  12. MSAT boom joint testing and load absorber design

    NASA Technical Reports Server (NTRS)

    Klinker, D. H.; Shuey, K.; St.clair, D. R.

    1994-01-01

    Through a series of component and system-level tests, the torque margin for the MSAT booms is being determined. The verification process has yielded a number of results and lessons that can be applied to many other types of deployable spacecraft mechanisms. The MSAT load absorber has proven to be an effective way to provide high energy dissipation using crushable honeycomb. Using two stages of crushable honeycomb and a fusible link, a complex crush load profile has been designed and implemented. The design features of the load absorber lend themselves to use in other spacecraft applications.

  13. Assessing Footwear Effects from Principal Features of Plantar Loading during Running.

    PubMed

    Trudeau, Matthieu B; von Tscharner, Vinzenz; Vienneau, Jordyn; Hoerzer, Stefan; Nigg, Benno M

    2015-09-01

    The effects of footwear on the musculoskeletal system are commonly assessed by interpreting the resultant force at the foot during the stance phase of running. However, this approach overlooks loading patterns across the entire foot. An alternative technique for assessing foot loading across different footwear conditions is possible using comprehensive analysis tools that extract different foot loading features, thus enhancing the functional interpretation of the differences across different interventions. The purpose of this article was to use pattern recognition techniques to develop and use a novel comprehensive method for assessing the effects of different footwear interventions on plantar loading. A principal component analysis was used to extract different loading features from the stance phase of running, and a support vector machine (SVM) was used to determine whether and how these loading features were different across three shoe conditions. The results revealed distinct loading features at the foot during the stance phase of running. The loading features determined from the principal component analysis allowed successful classification of all three shoe conditions using the SVM. Several differences were found in the location and timing of the loading across each pairwise shoe comparison using the output from the SVM. The analysis approach proposed can successfully be used to compare different loading patterns with a much greater resolution than has been reported previously. This study has several important applications. One such application is that it would not be relevant for a user to select a shoe or for a manufacturer to alter a shoe's construction if the classification across shoe conditions would not have been significant.

  14. Heat-load simulator for heat sink design

    NASA Technical Reports Server (NTRS)

    Dunleavy, A. M.; Vaughn, T. J.

    1968-01-01

    Heat-load simulator is fabricated from 1/4-inch aluminum plate with a contact surface equal in dimensions and configuration to those of the electronic installation. The method controls thermal output to simulate actual electronic component thermal output.

  15. Probabilistic evaluation of SSME structural components

    NASA Astrophysics Data System (ADS)

    Rajagopal, K. R.; Newell, J. F.; Ho, H.

    1991-05-01

    The application is described of Composite Load Spectra (CLS) and Numerical Evaluation of Stochastic Structures Under Stress (NESSUS) family of computer codes to the probabilistic structural analysis of four Space Shuttle Main Engine (SSME) space propulsion system components. These components are subjected to environments that are influenced by many random variables. The applications consider a wide breadth of uncertainties encountered in practice, while simultaneously covering a wide area of structural mechanics. This has been done consistent with the primary design requirement for each component. The probabilistic application studies are discussed using finite element models that have been typically used in the past in deterministic analysis studies.

  16. Assessment of hemodynamic load components affecting optimization of cardiac resynchronization therapy by lumped parameter mode.

    PubMed

    Xu, Ke; Butlin, Mark; Avolio, Alberto P

    2012-01-01

    Timing of biventricular pacing devices employed in cardiac resynchronization therapy (CRT) is a critical determinant of efficacy of the procedure. Optimization is done by maximizing function in terms of arterial pressure (BP) or cardiac output (CO). However, BP and CO are also determined by the hemodynamic load of the pulmonary and systemic vasculature. This study aims to use a lumped parameter circulatory model to assess the influence of the arterial load on the atrio-ventricular (AV) and inter-ventricular (VV) delay for optimal CRT performance.

  17. 1.5 MW RF Load for ITER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ives, Robert Lawrence; Marsden, David; Collins, George

    Calabazas Creek Research, Inc. developed a 1.5 MW RF load for the ITER fusion research facility currently under construction in France. This program leveraged technology developed in two previous SBIR programs that successfully developed high power RF loads for fusion research applications. This program specifically focused on modifications required by revised technical performance, materials, and assembly specification for ITER. This program implemented an innovative approach to actively distribute the RF power inside the load to avoid excessive heating or arcing associated with constructive interference. The new design implemented materials and assembly changes required to meet specifications. Critical components were builtmore » and successfully tested during the program.« less

  18. Rotor blade assembly having internal loading features

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soloway, Daniel David

    Rotor blade assemblies and wind turbines are provided. A rotor blade assembly includes a rotor blade having exterior surfaces defining a pressure side, a suction side, a leading edge and a trailing edge each extending between a tip and a root, the rotor blade defining a span and a chord, the exterior surfaces defining an interior of the rotor blade. The rotor blade assembly further includes a loading assembly, the loading assembly including a weight disposed within the interior and movable generally along the span of the rotor blade, the weight connected to a rotor blade component such that movementmore » of the weight towards the tip causes application of a force to the rotor blade component by the weight. Centrifugal force due to rotation of the rotor blade biases the weight towards the tip.« less

  19. Applications of magnetostrictive materials in the real-time monitoring of vehicle suspension components

    NASA Astrophysics Data System (ADS)

    Estrada, Raul

    The purpose of this project is to explore applications of magnetostrictive materials for real-time monitoring of railroad suspension components, in particular bearings. Monitoring of such components typically requires the tracking of temperature vibration and load. In addition, real-time, long-term monitoring can be greatly facilitated through the use of wireless, self-powered sensors. Magnetostrictive materials, such as Terfenol-D, have the potential to address both requirements. Currently, piezoelectrics are used for many load and energy harvesting applications; however, they are fragile and are difficult to use for static load measurements. Magnetostrictive metals are tougher, and their property of variable permeability when stressed can be utilized to measure static loads. A prototype load sensor was successfully fabricated and characterized yielding less than 10% error under normal operating conditions. Energy harvesting experiments generated a little over 80 mW of power, which is sufficient to run low-power condition monitoring systems.

  20. Power converter using near-load output capacitance, direct inductor contact, and/or remote current sense

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coteus, Paul W.; Ferencz, Andrew; Hall, Shawn A.

    An apparatus includes a first circuit board including first components including a load, and a second circuit board including second components including switching power devices and an output inductor. Ground and output voltage contacts between the circuit boards are made through soldered or connectorized interfaces. Certain components on the first circuit board and certain components, including the output inductor, on the second circuit board act as a DC-DC voltage converter for the load. An output capacitance for the conversion is on the first circuit board with no board-to-board interface between the output capacitance and the load. The inductance of themore » board-to-board interface functions as part of the output inductor's inductance and not as a parasitic inductance. Sense components for sensing current through the output inductor are located on the first circuit board. Parasitic inductance of the board-to-board interface has less effect on a sense signal provided to a controller.« less

  1. Influence of load by high power on the optical coupler

    NASA Astrophysics Data System (ADS)

    Bednarek, Lukas; Poboril, Radek; Vanderka, Ales; Hajek, Lukas; Nedoma, Jan; Vasinek, Vladimir

    2016-12-01

    Nowadays, aging of the optical components is a very current topic. Therefore, some investigations are focused on this area, so that the aging of the optical components is accelerated by thermal, high power and gamma load. This paper deals by findings of the influence of the load by laser with high optical power on the transmission parameters of the optical coupler. The investigated coupler has one input and eight outputs (1x8). Load by laser with high optical power is realized using a fiber laser with a cascade configuration EDFA amplifiers. The output power of the amplifier is approximately 250 mW. Duration of the load is moving from 104 hours to 139 hours. After each load, input power and output powers of all branches are measured. Following parameters of the optical coupler are calculated using formulas: the insertion losses of the individual branches, split ratio, total losses, homogeneity of the losses and cross-talk between different branches. All measurements are performed at wavelengths 1310 nm and 1550 nm. Individual optical powers are measured 20 times, due to the exclusion of statistical error of the measurement. After measuring, the coupler is connected to the amplifier for next cycle of the load. The paper contains an evaluation of the results of the coupler before and after four cycles of the burden.

  2. Inducer Hydrodynamic Load Measurement Devices

    NASA Technical Reports Server (NTRS)

    Skelley, Stephen E.; Zoladz, Thomas F.

    2002-01-01

    Marshall Space Flight Center (MSFC) has demonstrated two measurement devices for sensing and resolving the hydrodynamic loads on fluid machinery. The first - a derivative of the six component wind tunnel balance - senses the forces and moments on the rotating device through a weakened shaft section instrumented with a series of strain gauges. This "rotating balance" was designed to directly measure the steady and unsteady hydrodynamic loads on an inducer, thereby defining both the amplitude and frequency content associated with operating in various cavitation modes. The second device - a high frequency response pressure transducer surface mounted on a rotating component - was merely an extension of existing technology for application in water. MSFC has recently completed experimental evaluations of both the rotating balance and surface-mount transducers in a water test loop. The measurement bandwidth of the rotating balance was severely limited by the relative flexibility of the device itself, resulting in an unexpectedly low structural bending mode and invalidating the higher frequency response data. Despite these limitations, measurements confirmed that the integrated loads on the four-bladed inducer respond to both cavitation intensity and cavitation phenomena. Likewise, the surface-mount pressure transducers were subjected to a range of temperatures and flow conditions in a non-rotating environment to record bias shifts and transfer functions between the transducers and a reference device. The pressure transducer static performance was within manufacturer's specifications and dynamic response accurately followed that of the reference.

  3. Inducer Hydrodynamic Load Measurement Devices

    NASA Technical Reports Server (NTRS)

    Skelley, Stephen E.; Zoladz, Thomas F.; Turner, Jim (Technical Monitor)

    2002-01-01

    Marshall Space Flight Center (MSFC) has demonstrated two measurement devices for sensing and resolving the hydrodynamic loads on fluid machinery. The first - a derivative of the six-component wind tunnel balance - senses the forces and moments on the rotating device through a weakened shaft section instrumented with a series of strain gauges. This rotating balance was designed to directly measure the steady and unsteady hydrodynamic loads on an inducer, thereby defining both the amplitude and frequency content associated with operating in various cavitation modes. The second device - a high frequency response pressure transducer surface mounted on a rotating component - was merely an extension of existing technology for application in water. MSFC has recently completed experimental evaluations of both the rotating balance and surface-mount transducers in a water test loop. The measurement bandwidth of the rotating balance was severely limited by the relative flexibility of the device itself, resulting in an unexpectedly low structural bending mode and invalidating the higher-frequency response data. Despite these limitations, measurements confirmed that the integrated loads on the four-bladed inducer respond to both cavitation intensity and cavitation phenomena. Likewise, the surface-mount pressure transducers were subjected to a range of temperatures and flow conditions in a non-rotating environment to record bias shifts and transfer functions between the transducers and a reference device. The pressure transducer static performance was within manufacturer's specifications and dynamic response accurately followed that of the reference.

  4. Load Sharing Behavior of Star Gearing Reducer for Geared Turbofan Engine

    NASA Astrophysics Data System (ADS)

    Mo, Shuai; Zhang, Yidu; Wu, Qiong; Wang, Feiming; Matsumura, Shigeki; Houjoh, Haruo

    2017-07-01

    Load sharing behavior is very important for power-split gearing system, star gearing reducer as a new type and special transmission system can be used in many industry fields. However, there is few literature regarding the key multiple-split load sharing issue in main gearbox used in new type geared turbofan engine. Further mechanism analysis are made on load sharing behavior among star gears of star gearing reducer for geared turbofan engine. Comprehensive meshing error analysis are conducted on eccentricity error, gear thickness error, base pitch error, assembly error, and bearing error of star gearing reducer respectively. Floating meshing error resulting from meshing clearance variation caused by the simultaneous floating of sun gear and annular gear are taken into account. A refined mathematical model for load sharing coefficient calculation is established in consideration of different meshing stiffness and supporting stiffness for components. The regular curves of load sharing coefficient under the influence of interactions, single action and single variation of various component errors are obtained. The accurate sensitivity of load sharing coefficient toward different errors is mastered. The load sharing coefficient of star gearing reducer is 1.033 and the maximum meshing force in gear tooth is about 3010 N. This paper provides scientific theory evidences for optimal parameter design and proper tolerance distribution in advanced development and manufacturing process, so as to achieve optimal effects in economy and technology.

  5. I/O load balancing for big data HPC applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, Arnab K.; Goyal, Arpit; Wang, Feiyi

    High Performance Computing (HPC) big data problems require efficient distributed storage systems. However, at scale, such storage systems often experience load imbalance and resource contention due to two factors: the bursty nature of scientific application I/O; and the complex I/O path that is without centralized arbitration and control. For example, the extant Lustre parallel file system-that supports many HPC centers-comprises numerous components connected via custom network topologies, and serves varying demands of a large number of users and applications. Consequently, some storage servers can be more loaded than others, which creates bottlenecks and reduces overall application I/O performance. Existing solutionsmore » typically focus on per application load balancing, and thus are not as effective given their lack of a global view of the system. In this paper, we propose a data-driven approach to load balance the I/O servers at scale, targeted at Lustre deployments. To this end, we design a global mapper on Lustre Metadata Server, which gathers runtime statistics from key storage components on the I/O path, and applies Markov chain modeling and a minimum-cost maximum-flow algorithm to decide where data should be placed. Evaluation using a realistic system simulator and a real setup shows that our approach yields better load balancing, which in turn can improve end-to-end performance.« less

  6. The Competitive Influences of Perceptual Load and Working Memory Guidance on Selective Attention.

    PubMed

    Tan, Jinfeng; Zhao, Yuanfang; Wang, Lijun; Tian, Xia; Cui, Yan; Yang, Qian; Pan, Weigang; Zhao, Xiaoyue; Chen, Antao

    2015-01-01

    The perceptual load theory in selective attention literature proposes that the interference from task-irrelevant distractor is eliminated when perceptual capacity is fully consumed by task-relevant information. However, the biased competition model suggests that the contents of working memory (WM) can guide attentional selection automatically, even when this guidance is detrimental to visual search. An intriguing but unsolved question is what will happen when selective attention is influenced by both perceptual load and WM guidance. To study this issue, behavioral performances and event-related potentials (ERPs) were recorded when participants were presented with a cue to either identify or hold in memory and had to perform a visual search task subsequently, under conditions of low or high perceptual load. Behavioural data showed that high perceptual load eliminated the attentional capture by WM. The ERP results revealed an obvious WM guidance effect in P1 component with invalid trials eliciting larger P1 than neutral trials, regardless of the level of perceptual load. The interaction between perceptual load and WM guidance was significant for the posterior N1 component. The memory guidance effect on N1 was eliminated by high perceptual load. Standardized Low Resolution Electrical Tomography Analysis (sLORETA) showed that the WM guidance effect and the perceptual load effect on attention can be localized into the occipital area and parietal lobe, respectively. Merely identifying the cue produced no effect on the P1 or N1 component. These results suggest that in selective attention, the information held in WM could capture attention at the early stage of visual processing in the occipital cortex. Interestingly, this initial capture of attention by WM could be modulated by the level of perceptual load and the parietal lobe mediates target selection at the discrimination stage.

  7. The Competitive Influences of Perceptual Load and Working Memory Guidance on Selective Attention

    PubMed Central

    Tan, Jinfeng; Zhao, Yuanfang; Wang, Lijun; Tian, Xia; Cui, Yan; Yang, Qian; Pan, Weigang; Zhao, Xiaoyue; Chen, Antao

    2015-01-01

    The perceptual load theory in selective attention literature proposes that the interference from task-irrelevant distractor is eliminated when perceptual capacity is fully consumed by task-relevant information. However, the biased competition model suggests that the contents of working memory (WM) can guide attentional selection automatically, even when this guidance is detrimental to visual search. An intriguing but unsolved question is what will happen when selective attention is influenced by both perceptual load and WM guidance. To study this issue, behavioral performances and event-related potentials (ERPs) were recorded when participants were presented with a cue to either identify or hold in memory and had to perform a visual search task subsequently, under conditions of low or high perceptual load. Behavioural data showed that high perceptual load eliminated the attentional capture by WM. The ERP results revealed an obvious WM guidance effect in P1 component with invalid trials eliciting larger P1 than neutral trials, regardless of the level of perceptual load. The interaction between perceptual load and WM guidance was significant for the posterior N1 component. The memory guidance effect on N1 was eliminated by high perceptual load. Standardized Low Resolution Electrical Tomography Analysis (sLORETA) showed that the WM guidance effect and the perceptual load effect on attention can be localized into the occipital area and parietal lobe, respectively. Merely identifying the cue produced no effect on the P1 or N1 component. These results suggest that in selective attention, the information held in WM could capture attention at the early stage of visual processing in the occipital cortex. Interestingly, this initial capture of attention by WM could be modulated by the level of perceptual load and the parietal lobe mediates target selection at the discrimination stage. PMID:26098079

  8. Robotic application of a dynamic resultant force vector using real-time load-control: simulation of an ideal follower load on Cadaveric L4-L5 segments.

    PubMed

    Bennett, Charles R; Kelly, Brian P

    2013-08-09

    Standard in-vitro spine testing methods have focused on application of isolated and/or constant load components while the in-vivo spine is subject to multiple components that can be resolved into resultant dynamic load vectors. To advance towards more in-vivo like simulations the objective of the current study was to develop a methodology to apply robotically-controlled, non-zero, real-time dynamic resultant forces during flexion-extension on human lumbar motion segment units (MSU) with initial application towards simulation of an ideal follower load (FL) force vector. A proportional-integral-derivative (PID) controller with custom algorithms coordinated the motion of a Cartesian serial manipulator comprised of six axes each capable of position- or load-control. Six lumbar MSUs (L4-L5) were tested with continuously increasing sagittal plane bending to 8 Nm while force components were dynamically programmed to deliver a resultant 400 N FL that remained normal to the moving midline of the intervertebral disc. Mean absolute load-control tracking errors between commanded and experimental loads were computed. Global spinal ranges of motion and sagittal plane inter-body translations were compared to previously published values for non-robotic applications. Mean TEs for zero-commanded force and moment axes were 0.7 ± 0.4N and 0.03 ± 0.02 Nm, respectively. For non-zero force axes mean TEs were 0.8 ± 0.8 N, 1.3 ± 1.6 Nm, and 1.3 ± 1.6N for Fx, Fz, and the resolved ideal follower load vector FL(R), respectively. Mean extension and flexion ranges of motion were 2.6° ± 1.2° and 5.0° ± 1.7°, respectively. Relative vertebral body translations and rotations were very comparable to data collected with non-robotic systems in the literature. The robotically coordinated Cartesian load controlled testing system demonstrated robust real-time load-control that permitted application of a real-time dynamic non-zero load vector during flexion-extension. For single MSU

  9. System for loading executable code into volatile memory in a downhole tool

    DOEpatents

    Hall, David R.; Bartholomew, David B.; Johnson, Monte L.

    2007-09-25

    A system for loading an executable code into volatile memory in a downhole tool string component comprises a surface control unit comprising executable code. An integrated downhole network comprises data transmission elements in communication with the surface control unit and the volatile memory. The executable code, stored in the surface control unit, is not permanently stored in the downhole tool string component. In a preferred embodiment of the present invention, the downhole tool string component comprises boot memory. In another embodiment, the executable code is an operating system executable code. Preferably, the volatile memory comprises random access memory (RAM). A method for loading executable code to volatile memory in a downhole tool string component comprises sending the code from the surface control unit to a processor in the downhole tool string component over the network. A central processing unit writes the executable code in the volatile memory.

  10. Life Assessment of Steam Turbine Components Based on Viscoplastic Analysis

    NASA Astrophysics Data System (ADS)

    Choi, Woo-Sung; Fleury, Eric; Kim, Bum-Shin; Hyun, Jung-Seob

    Unsteady thermal and mechanical loading in turbine components is caused due to the transient regimes arising during start-ups and shut-downs and due to changes in the operating regime in steam power plants; this results in nonuniform strain and stress distribution. Thus, an accurate knowledge of the stresses caused by various loading conditions is required to ensure the integrity and to ensure an accurate life assessment of the components of a turbine. Although the materials of the components of the steam turbine deform inelastically at a high temperature, currently, only elastic calculations are performed for safety and simplicity. Numerous models have been proposed to describe the viscoplastic (time-dependent) behavior; these models are rather elaborate and it is difficult to incorporate them into a finite element code in order to simulate the loading of complex structures. In this paper, the total lifetime of the components of a steam turbine was calculated by combining the viscoplastic constitutive equation with the ABAQUS finite element code. Viscoplastic analysis was conducted by focusing mainly on simplified constitutive equations with linear kinematic hardening, which is simple enough to be used effectively in computer simulation. The von Mises stress distribution of an HIP turbine rotor was calculated during the cold start-up operation of the rotor, and a reasonable number of cycles were obtained from the equation of Langer.

  11. Localized cervical facet joint kinematics under physiological and whiplash loading.

    PubMed

    Stemper, Brian D; Yoganandan, Narayan; Gennarelli, Thomas A; Pintar, Frank A

    2005-12-01

    Although facet joints have been implicated in the whiplash injury mechanism, no investigators have determined the degree to which joint motions in whiplash are nonphysiological. The purpose of this investigation was to quantify the correlation between facet joint and segmental motions under physiological and whiplash loading. Human cadaveric cervical spine specimens were exercise tested under physiological extension loading, and intact human head-neck complexes were exercise tested under whiplash loading to correlate the localized component motions of the C4-5 facet joint with segmental extension. Facet joint shear and distraction kinematics demonstrated a linear correlation with segmental extension under both loading modes. Facet joints responded differently to whiplash and physiological loading, with significantly increased kinematics for the same-segmental angulation. The limitations of this study include removal of superficial musculature and the limited sample size for physiological testing. The presence of increased facet joint motions indicated that synovial joint soft-tissue components (that is, synovial membrane and capsular ligament) sustain increased distortion that may subject these tissues to a greater likelihood of injury. This finding is supported by clinical investigations in which lower cervical facet joint injury resulted in similar pain patterns due to the most commonly reported whiplash symptoms.

  12. Perceptual load, voluntary attention, and aging: an event-related potential study

    PubMed Central

    Wang, Yan; Fu, Shimin; Greenwood, Pamela; Luo, Yuejia; Parasuraman, Raja

    2012-01-01

    The locus of attentional selection is known to vary with perceptual load (Lavie et al., 2004). Under voluntary attention, perceptual load modulates selective visual processing at an early cortical stage, as reflected in the posterior P1 and N1 components of the event-related potentials (ERPs). Adult aging also affects both behavioral and ERP signs of attentional selection. However, it is not known whether perceptual load modulates this relationship. Accordingly, in the present study ERPs were recorded in a voluntary attention task. Young and old participants were asked to discriminate the direction of a target line embedded within a display of four lines that appeared in the left or right visual field. Participants responded faster and more accurately to valid relative to invalid trials and to low-load relative to high-load condition. Older participants responded more slowly and with lower accuracy than young participants in all conditions. The amplitudes of the posterior contralateral P1 and N1 components in valid trials were larger than that in invalid trials in all conditions. N1 amplitude was larger under the high load condition than that in the low load condition. Moreover, in the high perceptual load condition, the old group had a larger N1 than the young group at contralateral sites. The findings suggest that under voluntary attention, perceptual load and aging modulates attentional selection at an early but not the earliest stage, during the N1 (120–200ms) time range. Increased N1 amplitude in older adults may reflect increased demands on target discrimination in high perceptual load. PMID:22248536

  13. Time-dependent reliability analysis of ceramic engine components

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.

    1993-01-01

    The computer program CARES/LIFE calculates the time-dependent reliability of monolithic ceramic components subjected to thermomechanical and/or proof test loading. This program is an extension of the CARES (Ceramics Analysis and Reliability Evaluation of Structures) computer program. CARES/LIFE accounts for the phenomenon of subcritical crack growth (SCG) by utilizing either the power or Paris law relations. The two-parameter Weibull cumulative distribution function is used to characterize the variation in component strength. The effects of multiaxial stresses are modeled using either the principle of independent action (PIA), the Weibull normal stress averaging method (NSA), or the Batdorf theory. Inert strength and fatigue parameters are estimated from rupture strength data of naturally flawed specimens loaded in static, dynamic, or cyclic fatigue. Two example problems demonstrating proof testing and fatigue parameter estimation are given.

  14. Development of the Rules Governing the Strength of Airplanes. Part I : German Loading Conditions up to 1926

    NASA Technical Reports Server (NTRS)

    Kussner, H G; Thalau, Karl

    1933-01-01

    Load factors and loading conditions are presented for German aircraft. Loading conditions under various stress factors are presented along with a breakdown of individual aircraft components such as landing gear, wings, etc.

  15. A Risk-Based Approach to Variable Load Configuration Validation in Steam Sterilization: Application of PDA Technical Report 1 Load Equivalence Topic.

    PubMed

    Pavell, Anthony; Hughes, Keith A

    2010-01-01

    This article describes a method for achieving the load equivalence model, described in Parenteral Drug Association Technical Report 1, using a mass-based approach. The item and load bracketing approach allows for mixed equipment load size variation for operational flexibility along with decreased time to introduce new items to the operation. The article discusses the utilization of approximately 67 items/components (Table IV) identified for routine sterilization with varying quantities required weekly. The items were assessed for worst-case identification using four temperature-related criteria. The criteria were used to provide a data-based identification of worst-case items, and/or item equivalence, to carry forward into cycle validation using a variable load pattern. The mass approach to maximum load determination was used to bracket routine production use and allows for variable loading patterns. The result of the item mapping and load bracketing data is "a proven acceptable range" of sterilizing conditions including loading configuration and location. The application of these approaches, while initially more time/test-intensive than alternate approaches, provides a method of cycle validation with long-term benefit of ease of ongoing qualification, minimizing time and requirements for new equipment qualification for similar loads/use, and for rapid and rigorous assessment of new items for sterilization.

  16. Reliability Constrained Priority Load Shedding for Aerospace Power System Automation

    NASA Technical Reports Server (NTRS)

    Momoh, James A.; Zhu, Jizhong; Kaddah, Sahar S.; Dolce, James L. (Technical Monitor)

    2000-01-01

    The need for improving load shedding on board the space station is one of the goals of aerospace power system automation. To accelerate the optimum load-shedding functions, several constraints must be involved. These constraints include congestion margin determined by weighted probability contingency, component/system reliability index, generation rescheduling. The impact of different faults and indices for computing reliability were defined before optimization. The optimum load schedule is done based on priority, value and location of loads. An optimization strategy capable of handling discrete decision making, such as Everett optimization, is proposed. We extended Everett method to handle expected congestion margin and reliability index as constraints. To make it effective for real time load dispatch process, a rule-based scheme is presented in the optimization method. It assists in selecting which feeder load to be shed, the location of the load, the value, priority of the load and cost benefit analysis of the load profile is included in the scheme. The scheme is tested using a benchmark NASA system consisting of generators, loads and network.

  17. A Tool for Model-Based Generation of Scenario-driven Electric Power Load Profiles

    NASA Technical Reports Server (NTRS)

    Rozek, Matthew L.; Donahue, Kenneth M.; Ingham, Michel D.; Kaderka, Justin D.

    2015-01-01

    Power consumption during all phases of spacecraft flight is of great interest to the aerospace community. As a result, significant analysis effort is exerted to understand the rates of electrical energy generation and consumption under many operational scenarios of the system. Previously, no standard tool existed for creating and maintaining a power equipment list (PEL) of spacecraft components that consume power, and no standard tool existed for generating power load profiles based on this PEL information during mission design phases. This paper presents the Scenario Power Load Analysis Tool (SPLAT) as a model-based systems engineering tool aiming to solve those problems. SPLAT is a plugin for MagicDraw (No Magic, Inc.) that aids in creating and maintaining a PEL, and also generates a power and temporal variable constraint set, in Maple language syntax, based on specified operational scenarios. The constraint set can be solved in Maple to show electric load profiles (i.e. power consumption from loads over time). SPLAT creates these load profiles from three modeled inputs: 1) a list of system components and their respective power modes, 2) a decomposition hierarchy of the system into these components, and 3) the specification of at least one scenario, which consists of temporal constraints on component power modes. In order to demonstrate how this information is represented in a system model, a notional example of a spacecraft planetary flyby is introduced. This example is also used to explain the overall functionality of SPLAT, and how this is used to generate electric power load profiles. Lastly, a cursory review of the usage of SPLAT on the Cold Atom Laboratory project is presented to show how the tool was used in an actual space hardware design application.

  18. Assessment of the Applicability of Hertzian Contact Theory to Edge-Loaded Prosthetic Hip Bearings

    PubMed Central

    Sanders, Anthony P.; Brannon, Rebecca M.

    2011-01-01

    The components of prosthetic hip bearings may experience in-vivo subluxation and edge loading on the acetabular socket as a result of joint laxity, causing abnormally high, damaging contact stresses. In this research, edge-loaded contact of prosthetic hips is examined analytically and experimentally in the most commonly used categories of material pairs. In edge-loaded ceramic-on-ceramic hips, Hertzian contact theory yields accurate (conservatively, <10% error) predictions of the contact dimensions. Moreover, Hertzian theory successfully captures slope and curvature trends in the dependence of contact patch geometry on the applied load. In an edge-loaded ceramic-on-metal pair, a similar degree of accuracy is observed in the contact patch length; however, the contact width is less accurately predicted due to the onset of subsurface plasticity, which is predicted for loads >400 N. Hertzian contact theory is shown to be ill-suited to edge-loaded ceramic-on-polyethylene pairs due to polyethylene’s nonlinear material behavior. This work elucidates the methods and the accuracy of applying classical contact theory to edge-loaded hip bearings. The results help to define the applicability of Hertzian theory to the design of new components and materials to better resist severe edge loading contact stresses. PMID:21962465

  19. Estimation of joint stiffness with a compliant load.

    PubMed

    Ludvig, Daniel; Kearney, Robert E

    2009-01-01

    Joint stiffness defines the dynamic relationship between the position of the joint and the torque acting about it. It consists of two components: intrinsic and reflex stiffness. Many previous studies have investigated joint stiffness in an open-loop environment, because the current algorithm in use is an open-loop algorithm. This paper explores issues related to the estimation of joint stiffness when subjects interact with compliant loads. First, we show analytically how the bias in closed-loop estimates of joint stiffness depends on the properties of the load, the noise power, and length of the estimated impulse response functions (IRF). We then demonstrate with simulations that the open-loop analysis will fail completely for an elastic load but may succeed for an inertial load. We further show that the open-loop analysis can yield unbiased results with an inertial load and document IRF length, signal-to-noise ratio needed, and minimum inertia needed for the analysis to succeed. Thus, by using a load with a properly selected inertia, open-loop analysis can be used under closed-loop conditions.

  20. A comparison of five sampling techniques to estimate surface fuel loading in montane forests

    Treesearch

    Pamela G. Sikkink; Robert E. Keane

    2008-01-01

    Designing a fuel-sampling program that accurately and efficiently assesses fuel load at relevant spatial scales requires knowledge of each sample method's strengths and weaknesses.We obtained loading values for six fuel components using five fuel load sampling techniques at five locations in western Montana, USA. The techniques included fixed-area plots, planar...

  1. Improving Thermal Insulation Properties for Prefabricated Wall Components Made Of Lightweight Aggregate Concrete with Open Structure

    NASA Astrophysics Data System (ADS)

    Abramski, Marcin

    2017-10-01

    Porous concrete is commonly used in civil engineering due to its good thermal insulation properties in comparison with normal concrete and high compression strength in comparison with other building materials. Reducing of the concrete density can be obviously obtained by using lightweight aggregate (e.g. pumice). The concrete density can be further minimized by using specially graded coarse aggregate and little-to-no fine aggregates. In this way a large number of air voids arise. The aggregate particles are coated by a cement paste and bonded together with it just in contact points. Such an extremely porous concrete, called ‘lightweight aggregate concrete with open structure’ (LAC), is used in some German plants to produce prefabricated wall components. They are used mainly in hall buildings, e.g. supermarkets. The need of improving thermal insulation properties was an inspiration for the prefabrication plant managers, engineers and a scientific staff of the Technical University of Kaiserslautern / Germany to realise an interesting project. Its aim was to reduce the heat transfer coefficient for the wall components. Three different wall structure types were designed and compared in full-scale laboratory tests with originally produced wall components in terms of load-carrying capacity and stiffness. The load was applied perpendicularly to the wall plane. As the components are not originally used for load-bearing walls, but for curtain walls only, the wind load is the main load for them. The wall components were tested in horizontal position and the load was applied vertically. Totally twelve wall components 8.00 × 2.00 × 0.25m (three for every series) were produced in the prefabrication plant and tested in the University of Kaiserslautern laboratory. The designed and tested components differed from each other in the amount of expanded polystyrene (EPS), which was placed in the plant inside the wall structure. The minimal amount of it was designed in the

  2. Engine structures analysis software: Component Specific Modeling (COSMO)

    NASA Astrophysics Data System (ADS)

    McKnight, R. L.; Maffeo, R. J.; Schwartz, S.

    1994-08-01

    A component specific modeling software program has been developed for propulsion systems. This expert program is capable of formulating the component geometry as finite element meshes for structural analysis which, in the future, can be spun off as NURB geometry for manufacturing. COSMO currently has geometry recipes for combustors, turbine blades, vanes, and disks. Component geometry recipes for nozzles, inlets, frames, shafts, and ducts are being added. COSMO uses component recipes that work through neutral files with the Technology Benefit Estimator (T/BEST) program which provides the necessary base parameters and loadings. This report contains the users manual for combustors, turbine blades, vanes, and disks.

  3. Engine Structures Analysis Software: Component Specific Modeling (COSMO)

    NASA Technical Reports Server (NTRS)

    Mcknight, R. L.; Maffeo, R. J.; Schwartz, S.

    1994-01-01

    A component specific modeling software program has been developed for propulsion systems. This expert program is capable of formulating the component geometry as finite element meshes for structural analysis which, in the future, can be spun off as NURB geometry for manufacturing. COSMO currently has geometry recipes for combustors, turbine blades, vanes, and disks. Component geometry recipes for nozzles, inlets, frames, shafts, and ducts are being added. COSMO uses component recipes that work through neutral files with the Technology Benefit Estimator (T/BEST) program which provides the necessary base parameters and loadings. This report contains the users manual for combustors, turbine blades, vanes, and disks.

  4. Radio-frequency and microwave load comprising a carbon-bonded carbon fiber composite

    DOEpatents

    Lauf, R.J.; McMillan, A.D.; Johnson, A.C.; Everleigh, C.A.; Moorhead, A.J.

    1998-04-21

    A billet of low-density carbon-bonded carbon fiber (CBCF) composite is machined into a desired attenuator or load element shape (usually tapering). The CBCF composite is used as a free-standing load element or, preferably, brazed to the copper, brass or aluminum components of coaxial transmission lines or microwave waveguides. A novel braze method was developed for the brazing step. The resulting attenuator and/or load devices are robust, relatively inexpensive, more easily fabricated, and have improved performance over conventional graded-coating loads. 9 figs.

  5. Radio-frequency and microwave load comprising a carbon-bonded carbon fiber composite

    DOEpatents

    Lauf, Robert J.; McMillan, April D.; Johnson, Arvid C.; Everleigh, Carl A.; Moorhead, Arthur J.

    1998-01-01

    A billet of low-density carbon-bonded carbon fiber (CBCF) composite is machined into a desired attenuator or load element shape (usually tapering). The CBCF composite is used as a free-standing load element or, preferably, brazed to the copper, brass or aluminum components of coaxial transmission lines or microwave waveguides. A novel braze method was developed for the brazing step. The resulting attenuator and/or load devices are robust, relatively inexpensive, more easily fabricated, and have improved performance over conventional graded-coating loads.

  6. Sex and the Migraine Brain

    PubMed Central

    Borsook, D; Erpelding, N; Lebel, A; Linnman, C; Veggeberg, R; Grant, PE; Buettner, C; Becerra, L; Burstein, R

    2014-01-01

    The brain responds differently to environmental and internal signals that relates to the stage of development of neural systems. While genetic and epigenetic factors contribute to a premorbid state, hormonal fluctuations in women may alter the set point of migraine. The cyclic surges of gonadal hormones may directly alter neuronal, glial and astrocyte function throughout the brain. Estrogen is mainly excitatory and progesterone inhibitory on brain neuronal systems. These changes contribute to the allostatic load of the migraine condition that most notably starts at puberty in girls. PMID:24662368

  7. Childhood poverty and adult psychological well-being

    PubMed Central

    Evans, Gary W.

    2016-01-01

    Childhood disadvantage has repeatedly been linked to adult physical morbidity and mortality. We show in a prospective, longitudinal design that childhood poverty predicts multimethodological indices of adult (24 y of age) psychological well-being while holding constant similar childhood outcomes assessed at age 9. Adults from low-income families manifest more allostatic load, an index of chronic physiological stress, higher levels of externalizing symptoms (e.g., aggression) but not internalizing symptoms (e.g., depression), and more helplessness behaviors. In addition, childhood poverty predicts deficits in adult short-term spatial memory. PMID:27956615

  8. Transient loads identification for a standoff metallic thermal protection system panel.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hundhausen, R. J.; Adams, Douglas E.; Derriso, Mark

    2004-01-01

    Standoff thermal protection system (TPS) panels are critical structural components in future aerospace vehicles because they protect the vehicle from the hostile environment encountered during space launch and reentry. Consequently, the panels are exposed to a variety of loads including high temperature thermal stresses, thermal shock, acoustic pressure, and foreign object impacts. Transient impacts are especially detrimental because they can cause immediate and severe degradation of the panel in the form of, for example, debonding and buckling of the face sheet, cracking of the fasteners, or deformation of the standoffs. Loads identification methods for determining the magnitude and location ofmore » impact loads provide an indication of TPS components that may be more susceptible to failure. Furthermore, a historical database of impact loads encountered can be retained for use in the development of statistical models that relate impact loading to panel life. In this work, simulated inservice transient loads are identified experimentally using two methods: a physics-based approach and an inverse Frequency Response Function (FRF) approach. It is shown that by applying the inverse FRF method, the location and magnitude of these simulated impacts can be identified with a high degree of accuracy. The identified force levels vary significantly with impact location due to the differences in panel deformation at the impact site indicating that resultant damage due to impacts would vary with location as well.« less

  9. Mapping Wind Farm Loads and Power Production - A Case Study on Horns Rev 1

    NASA Astrophysics Data System (ADS)

    Galinos, Christos; Dimitrov, Nikolay; Larsen, Torben J.; Natarajan, Anand; Hansen, Kurt S.

    2016-09-01

    This paper describes the development of a wind turbine (WT) component lifetime fatigue load variation map within an offshore wind farm. A case study on the offshore wind farm Horns Rev I is conducted with this purpose, by quantifying wake effects using the Dynamic Wake Meandering (DWM) method, which has previously been validated based on CFD, Lidar and full scale load measurements. Fully coupled aeroelastic load simulations using turbulent wind conditions are conducted for all wind directions and mean wind speeds between cut-in and cut-out using site specific turbulence level measurements. Based on the mean wind speed and direction distribution, the representative 20-year lifetime fatigue loads are calculated. It is found that the heaviest loaded WT is not the same when looking at blade root, tower top or tower base components. The blade loads are mainly dominated by the wake situations above rated wind speed and the highest loaded blades are in the easternmost row as the dominating wind direction is from West. Regarding the tower components, the highest loaded WTs are also located towards the eastern central location. The turbines with highest power production are, not surprisingly, the ones facing a free sector towards west and south. The power production results of few turbines are compared with SCADA data. The results of this paper are expected to have significance for operation and maintenance planning, where the schedules for inspection and service activities can be adjusted to the requirements arising from the varying fatigue levels. Furthermore, the results can be used in the context of remaining fatigue lifetime assessment and planning of decommissioning.

  10. A Load-Based Temperature Prediction Model for Anomaly Detection

    NASA Astrophysics Data System (ADS)

    Sobhani, Masoud

    Electric load forecasting, as a basic requirement for the decision-making in power utilities, has been improved in various aspects in the past decades. Many factors may affect the accuracy of the load forecasts, such as data quality, goodness of the underlying model and load composition. Due to the strong correlation between the input variables (e.g., weather and calendar variables) and the load, the quality of input data plays a vital role in forecasting practices. Even if the forecasting model were able to capture most of the salient features of the load, a low quality input data may result in inaccurate forecasts. Most of the data cleansing efforts in the load forecasting literature have been devoted to the load data. Few studies focused on weather data cleansing for load forecasting. This research proposes an anomaly detection method for the temperature data. The method consists of two components: a load-based temperature prediction model and a detection technique. The effectiveness of the proposed method is demonstrated through two case studies: one based on the data from the Global Energy Forecasting Competition 2014, and the other based on the data published by ISO New England. The results show that by removing the detected observations from the original input data, the final load forecast accuracy is enhanced.

  11. Global versus Tract-Specific Components of Cerebral White Matter Integrity: Relation to Adult Age and Perceptual-Motor Speed

    PubMed Central

    Johnson, Micah A.; Diaz, Michele T.; Madden, David J.

    2014-01-01

    Although age-related differences in white matter have been well documented, the degree to which regional, tract-specific effects can be distinguished from global, brain-general effects is not yet clear. Similarly, the manner in which global and regional differences in white matter integrity contribute to age-related differences in cognition has not been well established. To address these issues, we analyzed diffusion tensor imaging measures from 52 younger adults (18–28) and 64 older adults (60–85). We conducted principal component analysis on each diffusion measure, using data from eight individual tracts. Two components were observed for fractional anisotropy: The first comprised high loadings from the superior longitudinal fasciculi and corticospinal tracts, and the second comprised high loadings from the optic radiations. In contrast, variation in axial, radial, and mean diffusivities yielded a single-component solution in each case, with high loadings from most or all tracts. For fractional anisotropy, the complementary results of multiple components and variability in component loadings across tracts suggest regional variation. However, for the diffusivity indices, the single component with high loadings from most or all of the tracts suggests primarily global, brain-general variation. Further analyses indicated that age was a significant mediator of the relation between each component and perceptual-motor speed. These data suggest that individual differences in white matter integrity, and their relation to age-related differences in perceptual-motor speed, represent influences that are beyond the level of individual tracts, but the extent to which regional or global effects predominate may differ between anisotropy and diffusivity measures. PMID:24972959

  12. Thyroid Allostasis–Adaptive Responses of Thyrotropic Feedback Control to Conditions of Strain, Stress, and Developmental Programming

    PubMed Central

    Chatzitomaris, Apostolos; Hoermann, Rudolf; Midgley, John E.; Hering, Steffen; Urban, Aline; Dietrich, Barbara; Abood, Assjana; Klein, Harald H.; Dietrich, Johannes W.

    2017-01-01

    The hypothalamus–pituitary–thyroid feedback control is a dynamic, adaptive system. In situations of illness and deprivation of energy representing type 1 allostasis, the stress response operates to alter both its set point and peripheral transfer parameters. In contrast, type 2 allostatic load, typically effective in psychosocial stress, pregnancy, metabolic syndrome, and adaptation to cold, produces a nearly opposite phenotype of predictive plasticity. The non-thyroidal illness syndrome (NTIS) or thyroid allostasis in critical illness, tumors, uremia, and starvation (TACITUS), commonly observed in hospitalized patients, displays a historically well-studied pattern of allostatic thyroid response. This is characterized by decreased total and free thyroid hormone concentrations and varying levels of thyroid-stimulating hormone (TSH) ranging from decreased (in severe cases) to normal or even elevated (mainly in the recovery phase) TSH concentrations. An acute versus chronic stage (wasting syndrome) of TACITUS can be discerned. The two types differ in molecular mechanisms and prognosis. The acute adaptation of thyroid hormone metabolism to critical illness may prove beneficial to the organism, whereas the far more complex molecular alterations associated with chronic illness frequently lead to allostatic overload. The latter is associated with poor outcome, independently of the underlying disease. Adaptive responses of thyroid homeostasis extend to alterations in thyroid hormone concentrations during fetal life, periods of weight gain or loss, thermoregulation, physical exercise, and psychiatric diseases. The various forms of thyroid allostasis pose serious problems in differential diagnosis of thyroid disease. This review article provides an overview of physiological mechanisms as well as major diagnostic and therapeutic implications of thyroid allostasis under a variety of developmental and straining conditions. PMID:28775711

  13. Unique failure behavior of metal/composite aircraft structural components under crash type loads

    NASA Technical Reports Server (NTRS)

    Carden, Huey D.

    1990-01-01

    Failure behavior results are presented on some of the crash dynamics research conducted with concepts of aircraft elements and substructure which have not necessarily been designed or optimized for energy absorption or crash loading considerations. To achieve desired new designs which incorporate improved energy absorption capabilities often requires an understanding of how more conventional designs behave under crash type loadings. Experimental and analytical data are presented which indicate some general trends in the failure behavior of a class of composite structures which include individual fuselage frames, skeleton subfloors with stringers and floor beams but without skin covering, and subfloors with skin added to the frame-stringer arrangement. Although the behavior is complex, a strong similarity in the static/dynamic failure behavior among these structures is illustrated through photographs of the experimental results and through analytical data of generic composite structural models. It is believed that the thread of similarity in behavior is telling the designer and dynamists a great deal about what to expect in the crash behavior of these structures and can guide designs for improving the energy absorption and crash behavior of such structures.

  14. Acute Stress and Perceptual Load Consume the Same Attentional Resources: A Behavioral-ERP Study

    PubMed Central

    Tiferet-Dweck, Chen; Hensel, Michael; Kirschbaum, Clemens; Tzelgov, Joseph; Friedman, Alon; Salti, Moti

    2016-01-01

    Stress and perceptual load affect selective attention in a paradoxical manner. They can facilitate selectivity or disrupt it. This EEG study was designed to examine the reciprocal relations between stress, load and attention. Two groups of subjects, one that performed the Trier Social Stress Test (TSST), and a control group, were asked to respond to a target letter under low and high perceptual load in the absence or presence of a distractor. In the control group, the distractor increased response times (RTs) for high and low load. In the TSST group, distractor increased RTs under low load only. ERPs showed that distractor’s presentation attenuated early visual P1 component and shortened its latency. In the TSST group, distractor reduced P1 component under high load but did not affect its latency. Source localization demonstrated reduced activation in V1 in response to distractors presence in the P1 time window for the TSST group compared to the control group. A behavioral replication revealed that in the TSST group distractors were less perceived under high load. Taken together, our results show that stress and perceptual load affect selectivity through the early stages of visual processing and might increase selectivity in a manner that would block conscious perception of irrelevant stimuli. PMID:27196027

  15. Wind Turbine Load Mitigation based on Multivariable Robust Control and Blade Root Sensors

    NASA Astrophysics Data System (ADS)

    Díaz de Corcuera, A.; Pujana-Arrese, A.; Ezquerra, J. M.; Segurola, E.; Landaluze, J.

    2014-12-01

    This paper presents two H∞ multivariable robust controllers based on blade root sensors' information for individual pitch angle control. The wind turbine of 5 MW defined in the Upwind European project is the reference non-linear model used in this research work, which has been modelled in the GH Bladed 4.0 software package. The main objective of these controllers is load mitigation in different components of wind turbines during power production in the above rated control zone. The first proposed multi-input multi-output (MIMO) individual pitch H" controller mitigates the wind effect on the tower side-to-side acceleration and reduces the asymmetrical loads which appear in the rotor due to its misalignment. The second individual pitch H" multivariable controller mitigates the loads on the three blades reducing the wind effect on the bending flapwise and edgewise momentums in the blades. The designed H" controllers have been validated in GH Bladed and an exhaustive analysis has been carried out to calculate fatigue load reduction on wind turbine components, as well as to analyze load mitigation in some extreme cases.

  16. Cardiorespiratory interactions during resistive load breathing.

    PubMed

    Calabrese, P; Perrault, H; Dinh, T P; Eberhard, A; Benchetrit, G

    2000-12-01

    The addition to the respiratory system of a resistive load results in breathing pattern changes and in negative intrathoracic pressure increases. The aim of this study was to use resistive load breathing as a stimulus to the cardiorespiratory interaction and to examine the extent of the changes in heart rate variability (HRV) and respiratory sinus arrhythmia (RSA) in relation to the breathing pattern changes. HRV and RSA were studied in seven healthy subjects where four resistive loads were applied in a random order during the breath and 8-min recording made in each condition. The HRV spectral power components were computed from the R-R interval sequences, and the RSA amplitude and phase were computed from the sinusoid fitting the instantaneous heart rate within each breath. Adding resistive loads resulted in 1) increasing respiratory period, 2) unchanging heart rate, and 3) increasing HRV and changing RSA characteristics. HRV and RSA characteristics are linearly correlated to the respiratory period. These modifications appear to be linked to load-induced changes in the respiratory period in each individual, because HRV and RSA characteristics are similar at a respiratory period obtained either by loading or by imposed frequency breathing. The present results are discussed with regard to the importance of the breathing cycle duration in these cardiorespiratory interactions, suggesting that these interactions may depend on the time necessary for activation and dissipation of neurotransmitters involved in RSA.

  17. Durability evaluation of ceramic components using CARES/LIFE

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.; Powers, Lynn M.; Janosik, Lesley A.; Gyekenyesi, John P.

    1994-01-01

    The computer program CARES/LIFE calculates the time-dependent reliability of monolithic ceramic components subjected to thermomechanical and/or proof test loading. This program is an extension of the CARES (Ceramics Analysis and Reliability Evaluation of Structures) computer program. CARES/LIFE accounts for the phenomenon of subcritical crack growth (SCG) by utilizing the power law, Paris law, or Walker equation. The two-parameter Weibull cumulative distribution function is used to characterize the variation in component strength. The effects of multiaxial stresses are modeled using either the principle of independent action (PIA), the Weibull normal stress averaging method (NSA), or the Batdorf theory. Inert strength and fatigue parameters are estimated from rupture strength data of naturally flawed specimens loaded in static, dynamic, or cyclic fatigue. Application of this design methodology is demonstrated using experimental data from alumina bar and disk flexure specimens which exhibit SCG when exposed to water.

  18. Wear Scar Similarities between Retrieved and Simulator-Tested Polyethylene TKR Components: An Artificial Neural Network Approach

    PubMed Central

    2016-01-01

    The aim of this study was to determine how representative wear scars of simulator-tested polyethylene (PE) inserts compare with retrieved PE inserts from total knee replacement (TKR). By means of a nonparametric self-organizing feature map (SOFM), wear scar images of 21 postmortem- and 54 revision-retrieved components were compared with six simulator-tested components that were tested either in displacement or in load control according to ISO protocols. The SOFM network was then trained with the wear scar images of postmortem-retrieved components since those are considered well-functioning at the time of retrieval. Based on this training process, eleven clusters were established, suggesting considerable variability among wear scars despite an uncomplicated loading history inside their hosts. The remaining components (revision-retrieved and simulator-tested) were then assigned to these established clusters. Six out of five simulator components were clustered together, suggesting that the network was able to identify similarities in loading history. However, the simulator-tested components ended up in a cluster at the fringe of the map containing only 10.8% of retrieved components. This may suggest that current ISO testing protocols were not fully representative of this TKR population, and protocols that better resemble patients' gait after TKR containing activities other than walking may be warranted. PMID:27597955

  19. Evaluation of beryllium for space shuttle components

    NASA Technical Reports Server (NTRS)

    Trapp, A. E.

    1972-01-01

    Application of beryllium to specific full-scale space shuttle structural components and assemblies was studied. Material evaluations were conducted to check the mechanical properties of as-received material to gain design information on characteristics needed for the material in the space shuttle environment, and to obtain data needed for evaluating component and panel tests. Four beryllium structural assemblies were analyzed and designed. Selected components of these assemblies, representing areas of critical loading or design/process uncertainty, were designed and tested, and two panel assemblies were fabricated. Trends in cost and weight factors were determined by progressive estimation at key points of preliminary design, final design, and fabrication to aid in a cost/weight evaluation of the use of beryllium.

  20. Reliability and Creep/Fatigue Analysis of a CMC Component

    NASA Technical Reports Server (NTRS)

    Murthy, Pappu L. N.; Mital, Subodh K.; Gyekenyesi, John Z.; Gyekenyesi, John P.

    2007-01-01

    High temperature ceramic matrix composites (CMC) are being explored as viable candidate materials for hot section gas turbine components. These advanced composites can potentially lead to reduced weight and enable higher operating temperatures requiring less cooling; thus leading to increased engine efficiencies. There is a need for convenient design tools that can accommodate various loading conditions and material data with their associated uncertainties to estimate the minimum predicted life as well as the failure probabilities of a structural component. This paper presents a review of the life prediction and probabilistic analyses performed for a CMC turbine stator vane. A computer code, NASALife, is used to predict the life of a 2-D woven silicon carbide fiber reinforced silicon carbide matrix (SiC/SiC) turbine stator vane due to a mission cycle which induces low cycle fatigue and creep. The output from this program includes damage from creep loading, damage due to cyclic loading and the combined damage due to the given loading cycle. Results indicate that the trends predicted by NASALife are as expected for the loading conditions used for this study. In addition, a combination of woven composite micromechanics, finite element structural analysis and Fast Probability Integration (FPI) techniques has been used to evaluate the maximum stress and its probabilistic distribution in a CMC turbine stator vane. Input variables causing scatter are identified and ranked based upon their sensitivity magnitude. Results indicate that reducing the scatter in proportional limit strength of the vane material has the greatest effect in improving the overall reliability of the CMC vane.

  1. Estimation of the Unsteady Aerodynamic Load on Space Shuttle External Tank Protuberances from a Component Wind Tunnel Test

    NASA Technical Reports Server (NTRS)

    Panda, Jayatana; Martin, Fred W.; Sutliff, Daniel L.

    2008-01-01

    At the wake of the Columbia (STS-107) accident it was decided to remove the Protuberance Aerodynamic Load (PAL) Ramp that was originally intended to protect various protuberances outside of the Space Shuttle External Tank from high buffet load induced by cross-flows at transonic speed. In order to establish the buffet load without the PAL ramp, a wind tunnel test was conducted where segments of the protuberances were instrumented with dynamic pressure transducers; and power-spectra of sectional lift and drag forces at various span-wise locations between two adjacent support brackets were measured under different cross flow angles, Mach number and other conditions. Additionally, frequency-dependent spatial correlations between the sectional forces were also established. The sectional forces were then adjusted by the correlation length to establish span-averaged spectra of normal and lateral forces that can be suitably "added" to various other unsteady forces encountered by the protuberance. This paper describes the methodology used for calculating the correlation-adjusted power spectrum of the buffet load. A second part of the paper describes wind-tunnel results on the difference in the buffet load on the protuberances with and without the PAL ramp. In general when the ramp height is the same as that of the protuberance height, such as that found on the liquid Oxygen part of the tank, the ramp is found to cause significant reduction of the unsteady aerodynamic load. However, on the liquid Hydrogen part of the tank, where the Oxygen feed-line is far larger in diameter than the height of the PAL ramp, little protection is found to be available to all but the Cable Tray.

  2. Initial stability of press-fit acetabular components under rotational forces.

    PubMed

    Fehring, Keith A; Owen, John R; Kurdin, Anton A; Wayne, Jennifer S; Jiranek, William A

    2014-05-01

    The primary goal of this study was to determine the initial press-fit stability in acetabular components without screw fixation. Mechanical testing was performed with the implantation of press-fit acetabular components in cadaveric specimens. No significant difference was found in load to failure testing between 1 and 2 mm of under-reaming. However, there was significant variability in bending forces required to create 150 μm of micromotion ranging from 49.3 N to 214.4 N. This study shows that cups implanted in a press-fit fashion, which are felt to be clinically stable, have high degrees of variability in resisting load and may be at risk for loosening. There is a need for more objective intra-operative techniques to test cup stability. © 2014.

  3. Component technology for stirling power converters

    NASA Technical Reports Server (NTRS)

    Thieme, Lanny G.

    1991-01-01

    NASA Lewis Research Center has organized a component technology program as part of the efforts to develop Stirling converter technology for space power applications. The Stirling Space Power Program is part of the NASA High Capacity Power Project of the Civil Space Technology Initiative (CSTI). NASA Lewis is also providing technical management for the DOE/Sandia program to develop Stirling converters for solar terrestrial power producing electricity for the utility grid. The primary contractors for the space power and solar terrestrial programs develop component technologies directly related to their goals. This Lewis component technology effort, while coordinated with the main programs, aims at longer term issues, advanced technologies, and independent assessments. An overview of work on linear alternators, engine/alternator/load interactions and controls, heat exchangers, materials, life and reliability, and bearings is presented.

  4. HOTCFGM-2D: A Coupled Higher-Order Theory for Cylindrical Structural Components with Bi-Directionally Components with Bi-Directionally Graded Microstructures

    NASA Technical Reports Server (NTRS)

    Pindera, Marek-Jerzy; Aboudi, Jacob

    2000-01-01

    The objective of this two-year project was to develop and deliver to the NASA-Glenn Research Center a two-dimensional higher-order theory, and related computer codes, for the analysis and design of cylindrical functionally graded materials/structural components for use in advanced aircraft engines (e.g., combustor linings, rotor disks, heat shields, brisk blades). To satisfy this objective, two-dimensional version of the higher-order theory, HOTCFGM-2D, and four computer codes based on this theory, for the analysis and design of structural components functionally graded in the radial and circumferential directions were developed in the cylindrical coordinate system r-Theta-z. This version of the higher-order theory is a significant generalization of the one-dimensional theory, HOTCFGM-1D, developed during the FY97 for the analysis and design of cylindrical structural components with radially graded microstructures. The generalized theory is applicable to thin multi-phased composite shells/cylinders subjected to steady-state thermomechanical, transient thermal and inertial loading applied uniformly along the axial direction such that the overall deformation is characterized by a constant average axial strain. The reinforcement phases are uniformly distributed in the axial direction, and arbitrarily distributed in the radial and circumferential direction, thereby allowing functional grading of the internal reinforcement in the r-Theta plane. The four computer codes fgmc3dq.cylindrical.f, fgmp3dq.cylindrical.f, fgmgvips3dq.cylindrical.f, and fgmc3dq.cylindrical.transient.f are research-oriented codes for investigating the effect of functionally graded architectures, as well as the properties of the multi-phase reinforcement, in thin shells subjected to thermomechanical and inertial loading, on the internal temperature, stress and (inelastic) strain fields. The reinforcement distribution in the radial and circumferential directions is specified by the user. The thermal

  5. Rocket Engine Nozzle Side Load Transient Analysis Methodology: A Practical Approach

    NASA Technical Reports Server (NTRS)

    Shi, John J.

    2005-01-01

    At the sea level, a phenomenon common with all rocket engines, especially for a highly over-expanded nozzle, during ignition and shutdown is that of flow separation as the plume fills and empties the nozzle, Since the flow will be separated randomly. it will generate side loads, i.e. non-axial forces. Since rocket engines are designed to produce axial thrust to power the vehicles, it is not desirable to be excited by non-axial input forcing functions, In the past, several engine failures were attributed to side loads. During the development stage, in order to design/size the rocket engine components and to reduce the risks, the local dynamic environments as well as dynamic interface loads have to be defined. The methodology developed here is the way to determine the peak loads and shock environments for new engine components. In the past it is not feasible to predict the shock environments, e.g. shock response spectra, from one engine to the other, because it is not scaleable. Therefore, the problem has been resolved and the shock environments can be defined in the early stage of new engine development. Additional information is included in the original extended abstract.

  6. Development of an Aeroelastic Modeling Capability for Transient Nozzle Side Load Analysis

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen

    2013-01-01

    Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development. Currently there is no fully coupled computational tool to analyze this fluid/structure interaction process. The objective of this study was to develop a fully coupled aeroelastic modeling capability to describe the fluid/structure interaction process during the transient nozzle operations. The aeroelastic model composes of three components: the computational fluid dynamics component based on an unstructured-grid, pressure-based computational fluid dynamics formulation, the computational structural dynamics component developed in the framework of modal analysis, and the fluid-structural interface component. The developed aeroelastic model was applied to the transient nozzle startup process of the Space Shuttle Main Engine at sea level. The computed nozzle side loads and the axial nozzle wall pressure profiles from the aeroelastic nozzle are compared with those of the published rigid nozzle results, and the impact of the fluid/structure interaction on nozzle side loads is interrogated and presented.

  7. A life prediction model for laminated composite structural components

    NASA Technical Reports Server (NTRS)

    Allen, David H.

    1990-01-01

    A life prediction methodology for laminated continuous fiber composites subjected to fatigue loading conditions was developed. A summary is presented of research completed. A phenomenological damage evolution law was formulated for matrix cracking which is independent of stacking sequence. Mechanistic and physical support was developed for the phenomenological evolution law proposed above. The damage evolution law proposed above was implemented to a finite element computer program. And preliminary predictions were obtained for a structural component undergoing fatigue loading induced damage.

  8. Perceptual load influences selective attention across development.

    PubMed

    Couperus, Jane W

    2011-09-01

    Research suggests that visual selective attention develops across childhood. However, there is relatively little understanding of the neurological changes that accompany this development, particularly in the context of adult theories of selective attention, such as N. Lavie's (1995) perceptual load theory of attention. This study examined visual selective attention across development from 7 years of age to adulthood. Specifically, the author examined if changes in processing as a function of selective attention are similarly influenced by perceptual load across development. Participants were asked to complete a task at either low or high perceptual load while processing of an unattended probe stimulus was examined using event related potentials. Similar to adults, children and teens showed reduced processing of the unattended stimulus as perceptual load increased at the P1 visual component. However, although there were no qualitative differences in changes in processing, there were quantitative differences, with shorter P1 latencies in teens and adults compared with children, suggesting increases in the speed of processing across development. In addition, younger children did not need as high a perceptual load to achieve the same difference in performance between low and high perceptual load as adults. Thus, this study demonstrates that although there are developmental changes in visual selective attention, the mechanisms by which visual selective attention is achieved in children may share similarities with adults.

  9. Integrity of Ceramic Parts Predicted When Loads and Temperatures Fluctuate Over Time

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.

    2004-01-01

    Brittle materials are being used, and being considered for use, for a wide variety of high performance applications that operate in harsh environments, including static and rotating turbine parts for unmanned aerial vehicles, auxiliary power units, and distributed power generation. Other applications include thermal protection systems, dental prosthetics, fuel cells, oxygen transport membranes, radomes, and microelectromechanical systems (MEMS). In order for these high-technology ceramics to be used successfully for structural applications that push the envelope of materials capabilities, design engineers must consider that brittle materials are designed and analyzed differently than metallic materials. Unlike ductile metals, brittle materials display a stochastic strength response because of the combination of low fracture toughness and the random nature of the size, orientation, and distribution of inherent microscopic flaws. This plus the fact that the strength of a component under load may degrade over time because of slow crack growth means that a probabilistic-based life-prediction methodology must be used when the tradeoffs of failure probability, performance, and useful life are being optimized. The CARES/Life code (which was developed at the NASA Glenn Research Center) predicts the probability of ceramic components failing from spontaneous catastrophic rupture when these components are subjected to multiaxial loading and slow crack growth conditions. Enhancements to CARES/Life now allow for the component survival probability to be calculated when loading and temperature vary over time.

  10. Lateral ring metal elastic wheel absorbs shock loading

    NASA Technical Reports Server (NTRS)

    Galan, L.

    1966-01-01

    Lateral ring metal elastic wheel absorbs practically all shock loading when operated over extremely rough terrain and delivers only a negligible shock residue to associated suspension components. The wheel consists of a rigid aluminum assembly to which lateral titanium ring flexible elements with treads are attached.

  11. Durability evaluation of ceramic components using CARES/LIFE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nemeth, N.N.; Janosik, L.A.; Gyekenyesi, J.P.

    1996-01-01

    The computer program CARES/LIFE calculates the time-dependent reliability of monolithic ceramic components subjected to thermomechanical and/or proof test loading. This program is an extension of the CARES (Ceramics Analysis and Reliability Evaluation of Structures) computer program. CARES/LIFE accounts for the phenomenon of subcritical crack growth (SCG) by utilizing the power law, Paris law, or Walker equation. The two-parameter Weibull cumulative distribution function is used to characterize the variation in component strength. The effects of multiaxial stresses are modeled using either the principle of independent action (PIA), the Weibull normal stress averaging method (NSA), or the Batdorf theory. Inert strength andmore » fatigue parameters are estimated from rupture strength data of naturally flawed specimens loaded in static, dynamic, or cyclic fatigue. Application of this design methodology is demonstrated using experimental data from alumina bar and disk flexure specimens, which exhibit SCG when exposed to water.« less

  12. Life Prediction for a CMC Component Using the NASALIFE Computer Code

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, John Z.; Murthy, Pappu L. N.; Mital, Subodh K.

    2005-01-01

    The computer code, NASALIFE, was used to provide estimates for life of an SiC/SiC stator vane under varying thermomechanical loading conditions. The primary intention of this effort is to show how the computer code NASALIFE can be used to provide reasonable estimates of life for practical propulsion system components made of advanced ceramic matrix composites (CMC). Simple loading conditions provided readily observable and acceptable life predictions. Varying the loading conditions such that low cycle fatigue and creep were affected independently provided expected trends in the results for life due to varying loads and life due to creep. Analysis was based on idealized empirical data for the 9/99 Melt Infiltrated SiC fiber reinforced SiC.

  13. Characterization of salinity loads and selenium loads in the Smith Fork Creek region of the Lower Gunnison River Basin, western Colorado, 2008-2009

    USGS Publications Warehouse

    Richards, Rodney J.; Linard, Joshua I.; Hobza, Christopher M.

    2014-01-01

    The lower Gunnison River Basin of the Colorado River Basin has elevated salinity and selenium levels. The Colorado River Basin Salinity Control Act of June 24, 1974 (Public Law 93–320, amended by Public Law 98–569), authorized investigation of the Lower Gunnison Basin Unit Salinity Control Project by the U.S. Department of the Interior. The Bureau of Reclamation (Reclamation) and the Natural Resources Conservation Service are responsible for assessing and implementing measures to reduce salinity and selenium loading in the Colorado River Basin. Cost-sharing programs help farmers, ranchers, and canal companies improve the efficiency of water delivery systems and irrigation practices. The delivery systems (irrigation canals) have been identified as potential sources of seepage, which can contribute to salinity loading. Reclamation wants to identify seepage from irrigation systems in order to maximize the effectiveness of the various salinity-control methods, such as polyacrylamide lining and piping of irrigation canals programs. The U.S. Geological Survey, in cooperation with Reclamation, developed a study to characterize the salinity and selenium loading of seven subbasins in the Smith Fork Creek region and identify where control efforts can be maximized to reduce salinity and selenium loading. Total salinity loads ranged from 27.9±19.1 tons per year (t/yr) to 87,500±80,500 t/yr. The four natural subbasins—BkKm, RCG1, RCG2, and SF1—had total salinity loads of 27.9±19.1 t/yr, 371±248 t/yr, 2,180±1,590 t/yr, and 4,200±2,720 t/yr, respectively. The agriculturally influenced sites had salinity loads that ranged from 7,580±6,900 t/yr to 87,500±80,500 t/yr. Salinity loads for the subbasins AL1, B1, CK1, SF2, and SF3 were 7,580±6,900 t/yr; 28,300±26,700 t/yr; 48,700±36,100 t/yr; 87,500±80,900 t/yr; and 52,200±31,800 t/yr, respectively. The agricultural salinity load was separated into three components: tail water, deep percolation, and canal seepage

  14. Does adult attachment style mediate the relationship between childhood maltreatment and mental and physical health outcomes?

    PubMed

    Widom, Cathy Spatz; Czaja, Sally J; Kozakowski, Sandra Sepulveda; Chauhan, Preeti

    2018-02-01

    Attachment theory has been proposed as one explanation for the relationship between childhood maltreatment and problematic mental and physical health outcomes in adulthood. This study seeks to determine whether: (1) childhood physical abuse and neglect lead to different attachment styles in adulthood, (2) adult attachment styles predict subsequent mental and physical health outcomes, and (3) adult attachment styles mediate the relationship between childhood physical abuse and neglect and mental and physical health outcomes. Children with documented cases of physical abuse and neglect (ages 0-11) were matched with children without these histories and followed up in adulthood. Adult attachment style was assessed at mean age 39.5 and outcomes at 41.1. Separate path models examined mental and physical health outcomes. Individuals with histories of childhood neglect and physical abuse had higher levels of anxious attachment style in adulthood, whereas neglect predicted avoidant attachment as well. Both adult attachment styles (anxious and avoidant) predicted mental health outcomes (higher levels of anxiety and depression and lower levels of self-esteem), whereas only anxious adult attachment style predicted higher levels of allostatic load. Path analyses revealed that anxious attachment style in adulthood in part explained the relationship between childhood neglect and physical abuse to depression, anxiety, and self-esteem, but not the relationship to allostatic load. Childhood neglect and physical abuse have lasting effects on adult attachment styles and anxious and avoidant adult attachment styles contribute to understanding the negative mental health consequences of childhood neglect and physical abuse 30 years later in adulthood. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Determinants of self-rated health and the role of acculturation: implications for health inequalities.

    PubMed

    Todorova, Irina L G; Tucker, Katherine L; Jimenez, Marcia Pescador; Lincoln, Alisa K; Arevalo, Sandra; Falcón, Luis M

    2013-01-01

    Self-rated health (SRH) is an important indicator of overall health, predicting morbidity and mortality. This paper investigates what individuals incorporate into their self-assessments of health and how acculturation plays a part in this assessment. The relationship of acculturation to SRH and whether it moderates the association between indicators of health and SRH is also examined. The paper is based on data from adults in the Boston Puerto Rican Health Study, living in the greater Boston area (n=1357) mean age 57.2 (SD = 7.6). We used multiple regression analysis and testing for moderation effects. The strongest predictors of poor SRH were the number of existing medical conditions, functional problems, allostatic load and depressive symptoms. Poor SRH was also associated with being female, fewer years of education, heavy alcohol use, smoking, poverty, and low emotional support. More acculturated Puerto Rican adults rated their health more positively, which corresponded to better indicators of physical and psychological health. Additionally, acculturation moderated the association between some indicators of morbidity (functional status and depressive symptoms) and SRH.Self-assessments of overall health integrate diverse indicators, including psychological symptoms, functional status and objective health indicators such as chronic conditions and allostatic load. However, adults' assessments of overall health differed by acculturation, which moderated the association between health indicators and SRH. The data suggest that when in poor health, those less acculturated may understate the severity of their health problems when rating their overall health, thus SRH might thus conceal disparities. Using SRH can have implications for assessing health disparities in this population.

  16. Materials properties, loads, and stress analysis, Spartan REM: Appendix A

    NASA Technical Reports Server (NTRS)

    Marlowe, D. S.; West, E. J.

    1984-01-01

    The mechanical properties, load tests, and stress analysis of the Spartan Release Engagement Mechanism (REM) is presented. The fracture properties of the components of the unit are also discussed. Detailed engineering drawings are included.

  17. Inelastic behavior of structural components

    NASA Technical Reports Server (NTRS)

    Hussain, N.; Khozeimeh, K.; Toridis, T. G.

    1980-01-01

    A more accurate procedure was developed for the determination of the inelastic behavior of structural components. The actual stress-strain curve for the mathematical of the structure was utilized to generate the force-deformation relationships for the structural elements, rather than using simplified models such as elastic-plastic, bilinear and trilinear approximations. relationships were generated for beam elements with various types of cross sections. In the generational of these curves, stress or load reversals, kinematic hardening and hysteretic behavior were taken into account. Intersections between loading and unloading branches were determined through an iterative process. Using the inelastic properties obtained, the plastic static response of some simple structural systems composed of beam elements was computed. Results were compared with known solutions, indicating a considerable improvement over response predictions obtained by means of simplified approximations used in previous investigations.

  18. Long-term monitoring FBG-based cable load sensor

    NASA Astrophysics Data System (ADS)

    Zhang, Zhichun; Zhou, Zhi; Wang, Chuan; Ou, Jinping

    2006-03-01

    Stay cables are the main load-bearing components of stayed-cable bridges. The cables stress status is an important factor to the stayed-cable bridge structure safety evaluation. So it's very important not only to the bridge construction, but also to the long-term safety evaluation for the bridge structure in-service. The accurate measurement for cable load depends on an effective sensor, especially to meet the long time durability and measurement demand. FBG, for its great advantage of corrosion resistance, absolute measurement, high accuracy, electro-magnetic resistance, quasi-distribution sensing, absolute measurement and so on, is the most promising sensor, which can cater for the cable force monitoring. In this paper, a load sensor has been developed, which is made up of a bushing elastic supporting body, 4 FBGs uniformly-spaced attached outside of the bushing supporting body, and a temperature compensation FBG for other four FBGs, moreover a cover for protection of FBGs. Firstly, the sensor measuring principle is analyzed, and relationship equation of FBG wavelength shifts and extrinsic load has also been gotten. And then the sensor calibration experiments of a steel cable stretching test with the FBG load sensor and a reference electric pressure sensor is finished, and the results shows excellent linearity of extrinsic load and FBG wavelength shifts, and good repeatability, which indicates that such kind of FBG-based load sensor is suitable for load measurement, especially for long-term, real time monitoring of stay-cables.

  19. The impact of luminance on tonic and phasic pupillary responses to sustained cognitive load.

    PubMed

    Peysakhovich, Vsevolod; Vachon, François; Dehais, Frédéric

    2017-02-01

    Pupillary reactions independent of light conditions have been linked to cognition for a long time. However, the light conditions can impact the cognitive pupillary reaction. Previous studies underlined the impact of luminance on pupillary reaction, but it is still unclear how luminance modulates the sustained and transient components of pupillary reaction - tonic pupil diameter and phasic pupil response. In the present study, we investigated the impact of the luminance on these two components under sustained cognitive load. Fourteen participants performed a novel working memory task combining mathematical computations with a classic n-back task. We studied both tonic pupil diameter and phasic pupil response under low (1-back) and high (2-back) working memory load and two luminance levels (gray and white). We found that the impact of working memory load on the tonic pupil diameter was modulated by the level of luminance, the increase in tonic pupil diameter with the load being larger under lower luminance. In contrast, the smaller phasic pupil response found under high load remained unaffected by luminance. These results showed that luminance impacts the cognitive pupillary reaction - tonic pupil diameter (phasic pupil response) being modulated under sustained (respectively, transient) cognitive load. These findings also support the relationship between the locus-coeruleus system, presumably functioning in two firing modes - tonic and phasic - and the pupil diameter. We suggest that the tonic pupil diameter tracks the tonic activity of the locus-coeruleus while phasic pupil response reflects its phasic activity. Besides, the designed novel cognitive paradigm allows the simultaneous manipulation of sustained and transient components of the cognitive load and is useful for dissociating the effects on the tonic pupil diameter and phasic pupil response. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Improvement of the Measurement Range and Temperature Characteristics of a Load Sensor Using a Quartz Crystal Resonator with All Crystal Layer Components.

    PubMed

    Murozaki, Yuichi; Sakuma, Shinya; Arai, Fumihito

    2017-05-08

    Monitoring multiple biosignals, such as heart rate, respiration cycle, and weight transitions, contributes to the health management of individuals. Specifically, it is possible to measure multiple biosignals using load information obtained through contact with the environment, such as a chair and bed, in daily use. A wide-range load sensor is essential since load information contains multiple biosignals with various load ranges. In this study, a load sensor is presented by using a quartz crystal resonator (QCR) with a wide measurement range of 1.5 × 10⁶ (0.4 mN to 600 N), and its temperature characteristic of load is improved to -7 Hz/°C (-18 mN/°C). In order to improve the measurement range of the load, a design method of this sensor is proposed by restraining the buckling of QCR and by using a thinner QCR. The proposed sensor allows a higher allowable load with high sensitivity. The load sensor mainly consists of three layers, namely a QCR layer and two holding layers. As opposed to the conventional holding layer composed of silicon, quartz crystal is utilized for the holding layers to improve the temperature characteristic of the load sensor. In the study, multiple biosignals, such as weight and pulse, are detected by using a fabricated sensor.

  1. Efficient Load Balancing and Data Remapping for Adaptive Grid Calculations

    NASA Technical Reports Server (NTRS)

    Oliker, Leonid; Biswas, Rupak

    1997-01-01

    Mesh adaption is a powerful tool for efficient unstructured- grid computations but causes load imbalance among processors on a parallel machine. We present a novel method to dynamically balance the processor workloads with a global view. This paper presents, for the first time, the implementation and integration of all major components within our dynamic load balancing strategy for adaptive grid calculations. Mesh adaption, repartitioning, processor assignment, and remapping are critical components of the framework that must be accomplished rapidly and efficiently so as not to cause a significant overhead to the numerical simulation. Previous results indicated that mesh repartitioning and data remapping are potential bottlenecks for performing large-scale scientific calculations. We resolve these issues and demonstrate that our framework remains viable on a large number of processors.

  2. Biofiltration of paint solvent mixtures in two reactor types: overloading by polar components.

    PubMed

    Paca, Jan; Halecky, Martin; Misiaczek, Ondrej; Kozliak, Evguenii I; Jones, Kim

    2012-01-01

    Steady-state performances of a trickle bed reactor (TBR) and a biofilter (BF) in loading experiments with increasing inlet concentrations of polar solvents, acetone, methyl ethyl ketone, methyl isobutyl ketone and n-butyl acetate, were investigated, along with the system's dynamic responses. Throughout the entire experimentation time, a constant loading rate of aromatic components of 4 g(c)·m(-3)·h(-1) was maintained to observe the interactions between the polar substrates and aromatic hydrocarbons. Under low combined substrate loadings, the BF outperformed TBR not only in the removal of aromatic hydrocarbons but also in the removal of polar substrates. However, increasing the loading rate of polar components above the threshold value of 31-36 g(c)·m(-3)·h(-1) resulted in a steep and significant drop in the removal efficiencies of both polar (except for butyl acetate) and hydrophobic components, which was more pronounced in the BF; so the relative TBR/BF efficiency became reversed under such overloading conditions. A step-drop of the overall OL(POLAR) (combined loading by polar air pollutants) from overloading values to 7 g(c)·m(-3)·h(-1) resulted in an increase of all pollutant removal efficiencies, although in TBR the recovery was preceded by lag periods lasting between 5 min (methyl ethyl ketone) to 3.7 h (acetone). The occurrence of lag periods in the TBR recovery was, in part, due to the saturation of mineral medium with water-soluble polar solvents, particularly, acetone. The observed bioreactor behavior was consistent with the biological steps being rate-limiting.

  3. Describing the interplay between anxiety and cognition: From impaired performance under low cognitive load to reduced anxiety under high load

    PubMed Central

    Vytal, Katherine; Cornwell, Brian; Arkin, Nicole; Grillon, Christian

    2012-01-01

    Anxiety impairs the ability to think and concentrate, suggesting that the interaction between emotion and cognition may elucidate the debilitating nature of pathological anxiety. Using a verbal n-back task that parametrically modulated cognitive load, we explored the effect of experimentally-induced anxiety on task performance and the startle reflex. Findings suggest there is a crucial inflection point between moderate and high cognitive load, where resources shift from anxious apprehension to focus on task demands. Specifically, we demonstrate that anxiety impairs performance under low-load, but is reduced when subjects engage in a difficult task that occupies executive resources. We propose a two-component model of anxiety that describes a cognitive mechanism behind performance impairment and an automatic response that supports sustained anxiety-potentiated startle. Implications for therapeutic interventions and emotional pathology are discussed. PMID:22332819

  4. Inferior tilt fixation of the glenoid component in reverse total shoulder arthroplasty: A biomechanical study.

    PubMed

    Chae, S W; Lee, J; Han, S H; Kim, S-Y

    2015-06-01

    Glenoid component fixation with an inferior tilt has been suggested to decrease scapular notching, but this remains controversial. We aimed here to evaluate the effect of glenoid component inferior tilt in reverse total shoulder arthroplasty (RSA) on micromotion and loss of fixation of the glenoid component by biomechanical testing. Increased inferior reaming of the glenoid for inferiorly tilted implantation of the glenoid component will decrease glenoid bone stock and compromise the fixation of RSA. The micromotions of the glenoid components attached to 14 scapulae from fresh frozen cadavers were measured and compared between neutral and 10° inferior tilts in 0.7- and 1-body weight cyclic loading tests using digital-image analysis. The incidence of bone breakage or loss of fixation was assessed in the 1-body weight fatigue-loading test. Micromotion was higher with a 10° inferior tilt than with a neutral tilt during both the 0.7-body weight (36 ± 11 μm vs. 22 ± 5 μm; P = 0.028) and 1-body weight (44 ± 16 μm vs. 28 ± 9 μm; P = 0.045) cyclic loading. The incidence of bone breakage or loss of fixation was 17% and 60% with a neutral and 10° inferior tilt, respectively. Glenoid component inferior tilt fixation in RSA may reduce primary stability and increase mechanical failure of the glenoid component, thereby reducing longevity of the prosthesis. Accordingly, we recommend careful placement of the glenoid component when an inferior tilt is used. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  5. Centaur Standard Shroud (CSS) static ultimate load structural tests

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A series of tests were conducted on the jettisonable metallic shroud used on the Titan/Centaur launch vehicle to verify its structural capabilities and to evaluate its structural interaction with the Centaur stage. A flight configured shroud and the interfacing Titan/Centaur structural assemblies were subjected to tests consisting of combinations of applied axial and shear loads to design ultimate values, including a set of tests on thermal conditions and two dynamic response tests to verify the analytical stiffness model. The strength capabilities were demonstrated at ultimate (125 percent of design limit) loads. It was also verified that the spring rate of the flight configured shroud-to-Centaur forward structural deflections of the specimen became nonlinear, as expected, above limit load values. This test series qualification program verified that the Titan/Centaur shroud and the Centaur and Titan interface components are qualified structurally at design ultimate loads.

  6. The role of mechanical loading in ligament tissue engineering.

    PubMed

    Benhardt, Hugh A; Cosgriff-Hernandez, Elizabeth M

    2009-12-01

    Tissue-engineered ligaments have received growing interest as a promising alternative for ligament reconstruction when traditional transplants are unavailable or fail. Mechanical stimulation was recently identified as a critical component in engineering load-bearing tissues. It is well established that living tissue responds to altered loads through endogenous changes in cellular behavior, tissue organization, and bulk mechanical properties. Without the appropriate biomechanical cues, new tissue formation lacks the necessary collagenous organization and alignment for sufficient load-bearing capacity. Therefore, tissue engineers utilize mechanical conditioning to guide tissue remodeling and improve the performance of ligament grafts. This review provides a comparative analysis of the response of ligament and tendon fibroblasts to mechanical loading in current bioreactor studies. The differential effect of mechanical stimulation on cellular processes such as protease production, matrix protein synthesis, and cell proliferation is examined in the context of tissue engineering design.

  7. Evaluating Stress during Pregnancy: Do We Have the Right Conceptions and the Correct Tools to Assess It?

    PubMed

    González-Ochoa, Raquel; Sánchez-Rodríguez, Elly N; Chavarría, Anahi; Gutiérrez-Ospina, Gabriel; Romo-González, Tania

    2018-01-01

    Gestational stress is believed to increase the risk of pregnancy failure and perinatal and adult morbidity and mortality in both the mother and her child or children. However, some contradictions might arise from methodological issues or even from differences in the philosophical grounds that guide the studies on gestational stress. Biased perspectives could lead us to use and/or design inadequate/incomplete panels of biochemical determinations and/or psychological instruments to diagnose it accurately during pregnancy, a psychoneuroimmune-endocrine state in which allostatic loads may be significant. Here, we review these notions and propose a model to evaluate and diagnose stress during pregnancy.

  8. The Interaction Between Chronic Stress and Pregnancy: Preterm Birth from A Biobehavioral Perspective

    PubMed Central

    Latendresse, Gwen

    2009-01-01

    Women's health care providers are increasingly aware that chronic stressors—such as poverty, ongoing perceived stress and anxiety, intimate partner violence, and experiences of racism—are associated with an increased incidence of preterm birth in the United States. It is important to increase our understanding of the explanatory pathways involved in these associations. This article discusses the concepts of stress, chronic stress response, allostatic load, the physiology of labor initiation, and the pathophysiologic interactions that may contribute to the occurrence of chronic stress-related preterm birth. Implications for future research and interventions are explored. PMID:19114234

  9. Long-term consequences of pain in human neonates.

    PubMed

    Grunau, Ruth E; Holsti, Liisa; Peters, Jeroen W B

    2006-08-01

    The low tactile threshold in preterm infants when they are in the neonatal intensive care unit (NICU), while their physiological systems are unstable and immature, potentially renders them more vulnerable to the effects of repeated invasive procedures. There is a small but growing literature on pain and tactile responsivity following procedural pain in the NICU, or early surgery. Long-term effects of repeated pain in the neonatal period on neurodevelopment await further research. However, there are multiple sources of stress in the NICU, which contribute to inducing high overall 'allostatic load', therefore determining specific effects of neonatal pain in human infants is challenging.

  10. Rocket Engine Nozzle Side Load Transient Analysis Methodology: A Practical Approach

    NASA Technical Reports Server (NTRS)

    Shi, John J.

    2005-01-01

    During the development stage, in order to design/to size the rocket engine components and to reduce the risks, the local dynamic environments as well as dynamic interface loads must be defined. There are two kinds of dynamic environment, i.e. shock transients and steady-state random and sinusoidal vibration environments. Usually, the steady-state random and sinusoidal vibration environments are scalable, but the shock environments are not scalable. In other words, based on similarities only random vibration environments can be defined for a new engine. The methodology covered in this paper provides a way to predict the shock environments and the dynamic loads for new engine systems and new engine components in the early stage of new engine development or engine nozzle modifications.

  11. Reliability-Based Design Optimization of a Composite Airframe Component

    NASA Technical Reports Server (NTRS)

    Pai, Shantaram S.; Coroneos, Rula; Patnaik, Surya N.

    2011-01-01

    A stochastic optimization methodology (SDO) has been developed to design airframe structural components made of metallic and composite materials. The design method accommodates uncertainties in load, strength, and material properties that are defined by distribution functions with mean values and standard deviations. A response parameter, like a failure mode, has become a function of reliability. The primitive variables like thermomechanical loads, material properties, and failure theories, as well as variables like depth of beam or thickness of a membrane, are considered random parameters with specified distribution functions defined by mean values and standard deviations.

  12. Lighten the Load: Scaffolding Visual Literacy in Biochemistry and Molecular Biology

    PubMed Central

    Offerdahl, Erika G.; Arneson, Jessie B.; Byrne, Nicholas

    2017-01-01

    The development of scientific visual literacy has been identified as critical to the training of tomorrow’s scientists and citizens alike. Within the context of the molecular life sciences in particular, visual representations frequently incorporate various components, such as discipline-specific graphical and diagrammatic features, varied levels of abstraction, and spatial arrangements of visual elements to convey information. Visual literacy is achieved when an individual understands the various ways in which a discipline uses these components to represent a particular way of knowing. Owing to the complex nature of visual representations, the activities through which visual literacy is developed have high cognitive load. Cognitive load can be reduced by first helping students to become fluent with the discrete components of visual representations before asking them to simultaneously integrate these components to extract the intended meaning of a representation. We present a taxonomy for characterizing one component of visual representations—the level of abstraction—as a first step in understanding the opportunities afforded students to develop fluency. Further, we demonstrate how our taxonomy can be used to analyze course assessments and spur discussions regarding the extent to which the development of visual literacy skills is supported by instruction within an undergraduate biochemistry curriculum. PMID:28130273

  13. Inflow characteristics associated with high-blade-loading events in a wind farm

    NASA Astrophysics Data System (ADS)

    Kelley, N. D.

    1993-07-01

    The stochastic characteristics of the turbulent inflow have been shown to be of major significance in the accumulation of fatigue in wind turbines. Because most of the wind turbine installations in the U.S. have taken place in multi-turbine or windfarm configurations, the fatigue damage associated with the higher turbulence levels within such arrangements must be taken into account when making estimates of component service lifetimes. The simultaneous monitoring of two adjacent wind turbines over a wide range of turbulent inflow conditions has given the authors more confidence in describing the structural load distributions that can be expected in such an environment. The adjacent testing of the two turbines allowed the authors to postulate that observed similarities in the response dynamics and load distributions could be considered quasi-universal, while the dissimilarities could be considered to result from the differing design of the rotors. The format has also allowed them to begin to define appropriate statistical load distribution models for many of the critical components in which fatigue is a major driver of the design. In addition to the adjacent turbine measurements, they also briefly discuss load distributions measured on a teetered-hub turbine.

  14. Quantifying the Influence of Lightning Strike Pressure Loading on Composite Specimen Damage

    NASA Astrophysics Data System (ADS)

    Foster, P.; Abdelal, G.; Murphy, A.

    2018-04-01

    Experimental work has shown that a component of lightning strike damage is caused by a mechanical loading. As the profile of the pressure loading is unknown a number of authors propose different pressure loads, varying in form, application area and magnitude. The objective of this paper is to investigate the potential contribution of pressure loading to composite specimen damage. This is achieved through a simulation study using an established modelling approach for composite damage prediction. The study examines the proposed shockwave loads from the literature. The simulation results are compared with measured test specimen damage examining the form and scale of damage. The results for the first time quantify the significance of pressure loading, demonstrating that although a pressure load can cause damage consistent with that measured experimentally, it has a negligible contribution to the overall scale of damage. Moreover the requirements for a pressure to create the damage behaviours typically witnessed in testing requires that the pressure load be within a very precise window of magnitude and loading area.

  15. Characterization of low-dose doxorubicin-loaded silica-based nanocomposites

    NASA Astrophysics Data System (ADS)

    Prokopowicz, Magdalena

    2018-01-01

    In this study, we synthesized multicomponent solid films of low-dose doxorubicin (DOX)-loaded polydimethylsiloxane (PDMS)-SiO2/CaP nanocomposites via sol-gel process combined with the method of evaporation-induced self-assembly (EISA) at low temperature. Nanomechanical properties (elasticity and adhesion) of the synthesized multicomponent films were determined by using atomic force microscopy with a PeakForce™ quantitative nanomechanical mapping imaging technique. Solid state of DOX in the synthesized films was studied by using UV-vis and fluorescence spectroscopy. The release profile of different concentrations of DOX loaded (1, 3, and 5 wt%) on the multicomponent films was assessed using USP Apparatus 4 and via UV-vis end analysis. Results indicate drug-component interactions on the overall morphology of domains (size and shape), nanomechanical properties, and release behavior of the DOX-loaded nanocomposites. We observed a progressive increase in surface roughness and mean adhesive value with increasing concentration of DOX loaded (0-5 wt%). In addition, for all the different concentrations of DOX-loaded, we observed a diffusion-controlled drug release.

  16. Gaussian vs non-Gaussian turbulence: impact on wind turbine loads

    NASA Astrophysics Data System (ADS)

    Berg, J.; Mann, J.; Natarajan, A.; Patton, E. G.

    2014-12-01

    In wind energy applications the turbulent velocity field of the Atmospheric Boundary Layer (ABL) is often characterised by Gaussian probability density functions. When estimating the dynamical loads on wind turbines this has been the rule more than anything else. From numerous studies in the laboratory, in Direct Numerical Simulations, and from in-situ measurements of the ABL we know, however, that turbulence is not purely Gaussian: the smallest and fastest scales often exhibit extreme behaviour characterised by strong non-Gaussian statistics. In this contribution we want to investigate whether these non-Gaussian effects are important when determining wind turbine loads, and hence of utmost importance to the design criteria and lifetime of a wind turbine. We devise a method based on Principal Orthogonal Decomposition where non-Gaussian velocity fields generated by high-resolution pseudo-spectral Large-Eddy Simulation (LES) of the ABL are transformed so that they maintain the exact same second-order statistics including variations of the statistics with height, but are otherwise Gaussian. In that way we can investigate in isolation the question whether it is important for wind turbine loads to include non-Gaussian properties of atmospheric turbulence. As an illustration the Figure show both a non-Gaussian velocity field (left) from our LES, and its transformed Gaussian Counterpart (right). Whereas the horizontal velocity components (top) look close to identical, the vertical components (bottom) are not: the non-Gaussian case is much more fluid-like (like in a sketch by Michelangelo). The question is then: Does the wind turbine see this? Using the load simulation software HAWC2 with both the non-Gaussian and newly constructed Gaussian fields, respectively, we show that the Fatigue loads and most of the Extreme loads are unaltered when using non-Gaussian velocity fields. The turbine thus acts like a low-pass filter which average out the non-Gaussian behaviour on time

  17. Manipulation of cognitive load variables and impact on auscultation test performance.

    PubMed

    Chen, Ruth; Grierson, Lawrence; Norman, Geoffrey

    2015-10-01

    Health profession educators have identified auscultation skill as a learning need for health professional students. This article explores the application of cognitive load theory (CLT) to designing cardiac and respiratory auscultation skill instruction for senior-level undergraduate nursing students. Three experiments assessed student auscultation performance following instructional manipulations of the three primary components of cognitive load: intrinsic, extraneous, and germane load. Study 1 evaluated the impact of intrinsic cognitive load by varying the number of diagnoses learned in one instruction session; Study 2 evaluated the impact of extraneous cognitive load by providing students with single or multiple examples of diagnoses during instruction; and Study 3 evaluated the impact of germane cognitive load by employing mixed or blocked sequences of diagnostic examples to students. Each of the three studies presents results that support CLT as explaining the influence of different types of cognitive processing on auscultation skill acquisition. We conclude with a discussion regarding CLT's usefulness as a framework for education and education research in the health professions.

  18. Effect of component compression on the initial performance of an IPV nickel-hydrogen cell

    NASA Technical Reports Server (NTRS)

    Gahn, Randall F.

    1987-01-01

    An experimental method was developed for evaluating the effect of component compression on the charge and discharge voltage characteristics of a 3 1/2 in. diameter boiler plate cell. A standard boiler plate pressure vessel was modified by the addition of a mechanical feedthrough on the bottom of the vessel which permitted different compressions to be applied to the components without disturbing the integrity of the stack. Compression loadings from 0.94 to 27.4 psi were applied by suspending weights from the feedthrough rod. Cell voltages were measured for 0.96-C, 55-min charge and for 1.37-C, 35-min and 2-C, 24-min discharges. An initial change in voltage performance on both charge and discharge as the loading increased was attributed to seating of the components. Subsequent variation of the compression from 2.97 to 27.4 psi caused only minor changes in either the charge or the discharge voltages. Several one month open-circuit voltage stands and 1100 cycles under LEO conditions at the maximum loading have produced no change in performance.

  19. Engaging Tenants in Reducing Plug Load Energy Use

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schantz, Marta; Langner, Rois

    Plug and Process Loads (PPLs) account for an increasingly large percentage of commercial building energy use in the U.S. due to the rising number of energy intensive plug-in devices. In addition, buildings are becoming more and more efficient and plug load energy use has become an increasingly pertinent component to achieving aggressive energy targets and netzero energy status. For multi-tenant buildings, controlling plug loads in tenant spaces can be a significant challenge. Luckily, there are a number of PPL reduction strategies, best practices, and lessons learned from numerous commercial real estate and higher education leaders who have successfully engaged buildingmore » occupants and tenants in reducing PPL energy use. This paper provides actionable PPL reduction strategies and best practices that building owners and managers can immediately apply to their own buildings.« less

  20. Deflection-Based Aircraft Structural Loads Estimation with Comparison to Flight

    NASA Technical Reports Server (NTRS)

    Lizotte, Andrew M.; Lokos, William A.

    2005-01-01

    Traditional techniques in structural load measurement entail the correlation of a known load with strain-gage output from the individual components of a structure or machine. The use of strain gages has proved successful and is considered the standard approach for load measurement. However, remotely measuring aerodynamic loads using deflection measurement systems to determine aeroelastic deformation as a substitute to strain gages may yield lower testing costs while improving aircraft performance through reduced instrumentation weight. With a reliable strain and structural deformation measurement system this technique was examined. The objective of this study was to explore the utility of a deflection-based load estimation, using the active aeroelastic wing F/A-18 aircraft. Calibration data from ground tests performed on the aircraft were used to derive left wing-root and wing-fold bending-moment and torque load equations based on strain gages, however, for this study, point deflections were used to derive deflection-based load equations. Comparisons between the strain-gage and deflection-based methods are presented. Flight data from the phase-1 active aeroelastic wing flight program were used to validate the deflection-based load estimation method. Flight validation revealed a strong bending-moment correlation and slightly weaker torque correlation. Development of current techniques, and future studies are discussed.

  1. Real-time anomaly detection for very short-term load forecasting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Jian; Hong, Tao; Yue, Meng

    Although the recent load information is critical to very short-term load forecasting (VSTLF), power companies often have difficulties in collecting the most recent load values accurately and timely for VSTLF applications. This paper tackles the problem of real-time anomaly detection in most recent load information used by VSTLF. This paper proposes a model-based anomaly detection method that consists of two components, a dynamic regression model and an adaptive anomaly threshold. The case study is developed using the data from ISO New England. This paper demonstrates that the proposed method significantly outperforms three other anomaly detection methods including two methods commonlymore » used in the field and one state-of-the-art method used by a winning team of the Global Energy Forecasting Competition 2014. Lastly, a general anomaly detection framework is proposed for the future research.« less

  2. Real-time anomaly detection for very short-term load forecasting

    DOE PAGES

    Luo, Jian; Hong, Tao; Yue, Meng

    2018-01-06

    Although the recent load information is critical to very short-term load forecasting (VSTLF), power companies often have difficulties in collecting the most recent load values accurately and timely for VSTLF applications. This paper tackles the problem of real-time anomaly detection in most recent load information used by VSTLF. This paper proposes a model-based anomaly detection method that consists of two components, a dynamic regression model and an adaptive anomaly threshold. The case study is developed using the data from ISO New England. This paper demonstrates that the proposed method significantly outperforms three other anomaly detection methods including two methods commonlymore » used in the field and one state-of-the-art method used by a winning team of the Global Energy Forecasting Competition 2014. Lastly, a general anomaly detection framework is proposed for the future research.« less

  3. Oscillating load-induced acoustic emission in laboratory experiment

    USGS Publications Warehouse

    Ponomarev, Alexander; Lockner, David A.; Stroganova, S.; Stanchits, S.; Smirnov, Vladmir

    2010-01-01

    Spatial and temporal patterns of acoustic emission (AE) were studied. A pre-fractured cylinder of granite was loaded in a triaxial machine at 160 MPa confining pressure until stick-slip events occurred. The experiments were conducted at a constant strain rate of 10−7 s−1 that was modulated by small-amplitude sinusoidal oscillations with periods of 175 and 570 seconds. Amplitude of the oscillations was a few percent of the total load and was intended to simulate periodic loading observed in nature (e.g., earth tides or other sources). An ultrasonic acquisition system with 13 piezosensors recorded acoustic emissions that were generated during deformation of the sample. We observed a correlation between AE response and sinusoidal loading. The effect was more pronounced for higher frequency of the modulating force. A time-space spectral analysis for a “point” process was used to investigate details of the periodic AE components. The main result of the study was the correlation of oscillations of acoustic activity synchronized with the applied oscillating load. The intensity of the correlated AE activity was most pronounced in the “aftershock” sequences that followed large-amplitude AE events. We suggest that this is due to the higher strain-sensitivity of the failure area when the sample is in a transient, unstable mode. We also found that the synchronization of AE activity with the oscillating external load nearly disappeared in the period immediately after the stick-slip events and gradually recovered with further loading.

  4. Load compensating reactions to perturbations at wrist joint in normal man

    NASA Technical Reports Server (NTRS)

    Jaeger, R. J.; Agarwell, G. C.; Gottlieb, G. L.

    1981-01-01

    The electromyographic responses to step torque loads were studied in flexors and extensors at the human wrist. Based on temporal bursting patterns and functional behavior, the response was divided into four temporal components. Two early components, the myotatic (30-60 ms) late myotatic (60-120 ms) appears to be reflex response. The third postmyotatic component (120-200 ms) appear to be a triggered reaction, preceeding the fourth, stabilizing component (200-400 ms). A comparison of response at the wrist with similar data at the ankle provides the basis for a generalized classification of the response in various muscles to torque step perturbations.

  5. Load Forecasting in Electric Utility Integrated Resource Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carvallo, Juan Pablo; Larsen, Peter H.; Sanstad, Alan H

    Integrated resource planning (IRP) is a process used by many vertically-integrated U.S. electric utilities to determine least-cost/risk supply and demand-side resources that meet government policy objectives and future obligations to customers and, in many cases, shareholders. Forecasts of energy and peak demand are a critical component of the IRP process. There have been few, if any, quantitative studies of IRP long-run (planning horizons of two decades) load forecast performance and its relationship to resource planning and actual procurement decisions. In this paper, we evaluate load forecasting methods, assumptions, and outcomes for 12 Western U.S. utilities by examining and comparing plansmore » filed in the early 2000s against recent plans, up to year 2014. We find a convergence in the methods and data sources used. We also find that forecasts in more recent IRPs generally took account of new information, but that there continued to be a systematic over-estimation of load growth rates during the period studied. We compare planned and procured resource expansion against customer load and year-to-year load growth rates, but do not find a direct relationship. Load sensitivities performed in resource plans do not appear to be related to later procurement strategies even in the presence of large forecast errors. These findings suggest that resource procurement decisions may be driven by other factors than customer load growth. Our results have important implications for the integrated resource planning process, namely that load forecast accuracy may not be as important for resource procurement as is generally believed, that load forecast sensitivities could be used to improve the procurement process, and that management of load uncertainty should be prioritized over more complex forecasting techniques.« less

  6. Test-Anchored Vibration Response Predictions for an Acoustically Energized Curved Orthogrid Panel with Mounted Components

    NASA Technical Reports Server (NTRS)

    Frady, Gregory P.; Duvall, Lowery D.; Fulcher, Clay W. G.; Laverde, Bruce T.; Hunt, Ronald A.

    2011-01-01

    rich body of vibroacoustic test data was recently generated at Marshall Space Flight Center for component-loaded curved orthogrid panels typical of launch vehicle skin structures. The test data were used to anchor computational predictions of a variety of spatially distributed responses including acceleration, strain and component interface force. Transfer functions relating the responses to the input pressure field were generated from finite element based modal solutions and test-derived damping estimates. A diffuse acoustic field model was applied to correlate the measured input sound pressures across the energized panel. This application quantifies the ability to quickly and accurately predict a variety of responses to acoustically energized skin panels with mounted components. Favorable comparisons between the measured and predicted responses were established. The validated models were used to examine vibration response sensitivities to relevant modeling parameters such as pressure patch density, mesh density, weight of the mounted component and model form. Convergence metrics include spectral densities and cumulative root-mean squared (RMS) functions for acceleration, velocity, displacement, strain and interface force. Minimum frequencies for response convergence were established as well as recommendations for modeling techniques, particularly in the early stages of a component design when accurate structural vibration requirements are needed relatively quickly. The results were compared with long-established guidelines for modeling accuracy of component-loaded panels. A theoretical basis for the Response/Pressure Transfer Function (RPTF) approach provides insight into trends observed in the response predictions and confirmed in the test data. The software developed for the RPTF method allows easy replacement of the diffuse acoustic field with other pressure fields such as a turbulent boundary layer (TBL) model suitable for vehicle ascent. Structural responses

  7. Load-induced modulation of signal transduction networks.

    PubMed

    Jiang, Peng; Ventura, Alejandra C; Sontag, Eduardo D; Merajver, Sofia D; Ninfa, Alexander J; Del Vecchio, Domitilla

    2011-10-11

    Biological signal transduction networks are commonly viewed as circuits that pass along information--in the process amplifying signals, enhancing sensitivity, or performing other signal-processing tasks--to transcriptional and other components. Here, we report on a "reverse-causality" phenomenon, which we call load-induced modulation. Through a combination of analytical and experimental tools, we discovered that signaling was modulated, in a surprising way, by downstream targets that receive the signal and, in doing so, apply what in physics is called a load. Specifically, we found that non-intuitive changes in response dynamics occurred for a covalent modification cycle when load was present. Loading altered the response time of a system, depending on whether the activity of one of the enzymes was maximal and the other was operating at its minimal rate or whether both enzymes were operating at submaximal rates. These two conditions, which we call "limit regime" and "intermediate regime," were associated with increased or decreased response times, respectively. The bandwidth, the range of frequency in which the system can process information, decreased in the presence of load, suggesting that downstream targets participate in establishing a balance between noise-filtering capabilities and a circuit's ability to process high-frequency stimulation. Nodes in a signaling network are not independent relay devices, but rather are modulated by their downstream targets.

  8. Ad hoc Laser networks component technology for modular spacecraft

    NASA Astrophysics Data System (ADS)

    Huang, Xiujun; Shi, Dele; Ma, Zongfeng; Shen, Jingshi

    2016-03-01

    Distributed reconfigurable satellite is a new kind of spacecraft system, which is based on a flexible platform of modularization and standardization. Based on the module data flow analysis of the spacecraft, this paper proposes a network component of ad hoc Laser networks architecture. Low speed control network with high speed load network of Microwave-Laser communication mode, no mesh network mode, to improve the flexibility of the network. Ad hoc Laser networks component technology was developed, and carried out the related performance testing and experiment. The results showed that ad hoc Laser networks components can meet the demand of future networking between the module of spacecraft.

  9. Ad hoc laser networks component technology for modular spacecraft

    NASA Astrophysics Data System (ADS)

    Huang, Xiujun; Shi, Dele; Shen, Jingshi

    2017-10-01

    Distributed reconfigurable satellite is a new kind of spacecraft system, which is based on a flexible platform of modularization and standardization. Based on the module data flow analysis of the spacecraft, this paper proposes a network component of ad hoc Laser networks architecture. Low speed control network with high speed load network of Microwave-Laser communication mode, no mesh network mode, to improve the flexibility of the network. Ad hoc Laser networks component technology was developed, and carried out the related performance testing and experiment. The results showed that ad hoc Laser networks components can meet the demand of future networking between the module of spacecraft.

  10. Design Environment for Multifidelity and Multidisciplinary Components

    NASA Technical Reports Server (NTRS)

    Platt, Michael

    2014-01-01

    One of the greatest challenges when developing propulsion systems is predicting the interacting effects between the fluid loads, thermal loads, and structural deflection. The interactions between technical disciplines often are not fully analyzed, and the analysis in one discipline often uses a simplified representation of other disciplines as an input or boundary condition. For example, the fluid forces in an engine generate static and dynamic rotor deflection, but the forces themselves are dependent on the rotor position and its orbit. It is important to consider the interaction between the physical phenomena where the outcome of each analysis is heavily dependent on the inputs (e.g., changes in flow due to deflection, changes in deflection due to fluid forces). A rigid design process also lacks the flexibility to employ multiple levels of fidelity in the analysis of each of the components. This project developed and validated an innovative design environment that has the flexibility to simultaneously analyze multiple disciplines and multiple components with multiple levels of model fidelity. Using NASA's open-source multidisciplinary design analysis and optimization (OpenMDAO) framework, this multifaceted system will provide substantially superior capabilities to current design tools.

  11. Load research manual. Volume 1. Load research procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandenburg, L.; Clarkson, G.; Grund, Jr., C.

    1980-11-01

    This three-volume manual presents technical guidelines for electric utility load research. Special attention is given to issues raised by the load data reporting requirements of the Public Utility Regulatory Policies Act of 1978 and to problems faced by smaller utilities that are initiating load research programs. In Volumes 1 and 2, procedures are suggested for determining data requirements for load research, establishing the size and customer composition of a load survey sample, selecting and using equipment to record customer electricity usage, processing data tapes from the recording equipment, and analyzing the data. Statistical techniques used in customer sampling are discussedmore » in detail. The costs of load research also are estimated, and ongoing load research programs at three utilities are described. The manual includes guides to load research literature and glossaries of load research and statistical terms.« less

  12. Adhesive strength of total knee endoprostheses to bone cement - analysis of metallic and ceramic femoral components under worst-case conditions.

    PubMed

    Bergschmidt, Philipp; Dammer, Rebecca; Zietz, Carmen; Finze, Susanne; Mittelmeier, Wolfram; Bader, Rainer

    2016-06-01

    Evaluation of the adhesive strength of femoral components to the bone cement is a relevant parameter for predicting implant safety. In the present experimental study, three types of cemented femoral components (metallic, ceramic and silica/silane-layered ceramic) of the bicondylar Multigen Plus knee system, implanted on composite femora were analysed. A pull-off test with the femoral components was performed after different load and several cementing conditions (four groups and n=3 components of each metallic, ceramic and silica/silane-layered ceramic in each group). Pull-off forces were comparable for the metallic and the silica/silane-layered ceramic femoral components (mean 4769 N and 4298 N) under standard test condition, whereas uncoated ceramic femoral components showed reduced pull-off forces (mean 2322 N). Loading under worst-case conditions led to decreased adhesive strength by loosening of the interface implant and bone cement using uncoated metallic and ceramic femoral components, respectively. Silica/silane-coated ceramic components were stably fixed even under worst-case conditions. Loading under high flexion angles can induce interfacial tensile stress, which could promote early implant loosening. In conclusion, a silica/silane-coating layer on the femoral component increased their adhesive strength to bone cement. Thicker cement mantles (>2 mm) reduce adhesive strength of the femoral component and can increase the risk of cement break-off.

  13. Limit load solution for electron beam welded joints with single edge weld center crack in tension

    NASA Astrophysics Data System (ADS)

    Lu, Wei; Shi, Yaowu; Li, Xiaoyan; Lei, Yongping

    2012-05-01

    Limit loads are widely studied and several limit load solutions are proposed to some typical geometry of weldments. However, there are no limit load solutions exist for the single edge crack weldments in tension (SEC(T)), which is also a typical geometry in fracture analysis. The mis-matching limit load for thick plate with SEC(T) are investigated and the special limit load solutions are proposed based on the available mis-matching limit load solutions and systematic finite element analyses. The real weld configurations are simplified as a strip, and different weld strength mis-matching ratio M, crack depth/width ratio a/ W and weld width 2H are in consideration. As a result, it is found that there exists excellent agreement between the limit load solutions and the FE results for almost all the mis-matching ration M, a/ W and ligament-to-weld width ratio ( W-a)/ H. Moreover, useful recommendations are given for evaluating the limit loads of the EBW structure with SEC(T). For the EBW joints with SEC(T), the mis-matching limit loads can be obtained assuming that the components are wholly made of base metal, when M changing from 1.6 to 0.6. When M decreasing to 0.4, the mis-matching limit loads can be obtained assuming that the components are wholly made of base metal only for large value of ( W-a)/ H. The recommendations may be useful for evaluating the limit loads of the EBW structures with SEC(T). The engineering simplifications are given for assessing the limit loads of electron beam welded structure with SEC(T).

  14. Self-regulating control of parasitic loads in a fuel cell power system

    NASA Technical Reports Server (NTRS)

    Vasquez, Arturo (Inventor)

    2011-01-01

    A fuel cell power system comprises an internal or self-regulating control of a system or device requiring a parasitic load. The internal or self-regulating control utilizes certain components and an interconnection scheme to produce a desirable, variable voltage potential (i.e., power) to a system or device requiring parasitic load in response to varying operating conditions or requirements of an external load that is connected to a primary fuel cell stack of the system. Other embodiments comprise a method of designing such a self-regulated control scheme and a method of operating such a fuel cell power system.

  15. Load power device, system and method of load control and management employing load identification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yi; Luebke, Charles John; Schoepf, Thomas J.

    A load power device includes a power input, at least one power output for at least one load, a plurality of sensors structured to sense voltage and current at the at least one power output, and a processor. The processor provides: (a) load identification based upon the sensed voltage and current, and (b) load control and management based upon the load identification.

  16. Characterisation of the joining zone of serially arranged hybrid semi-finished components

    NASA Astrophysics Data System (ADS)

    Behrens, B.-A.; Chugreev, A.; Matthias, T.

    2018-05-01

    Forming of already joined semi-finished products is an innovative approach to manufacture components which are well-adapted to external loads. This approach results in an economically and ecologically improved production by the targeted use of high-quality materials in component areas, which undergo high stresses. One possible production method for hybrid semi-finished products is friction welding. This welding method allows for the production of hybrid semi-finished products made of aluminium and steel as well as steel and steel. In this paper, the thermomechanical tensile and shear stresses causing a failure of the joined zone are experimentally determined through tension tests. These tests are performed with specimens whose joint zones are aligned with different angles to the load direction.

  17. The Same Story or a Unique Novel? Within-Participant Principle Component Analysis of Training Load Measures in Professional Rugby Union Skills Training.

    PubMed

    Weaving, Dan; Dalton, Nicholas E; Black, Christopher; Darrall-Jones, Joshua; Phibbs, Padraic J; Gray, Michael; Jones, Ben; Roe, Gregory A B

    2018-03-27

    The study aimed to identify which combination of external and internal training load (TL) metrics capture similar or unique information for individual professional players during skills training in rugby union using principal component analysis (PCA). TL data were collected from twenty-one male professional rugby union players across a competitive season. This included PlayerLoad™, total distance (TD), and individualised high-speed distance (HSD; >61% maximal velocity; all external TL) obtained from a micro-technology device worn by each player (Optimeye X4, Catapult Innovations, Melbourne, Australia) and the session-rating of perceived exertion (sRPE; internal TL). PCA was conducted on each individual to extract the underlying combinations of the four TL measures that best describe the total information (variance) provided by the measures. TL measures with PC "loadings" (PC L ) above 0.7 were deemed to possess well-defined relationships with the extracted PC. The findings show that from the four TL measures, the majority of an individual's TL information (1 st PC: 55 to 70%) during skills training can be explained by either sRPE (PC L : 0.72 to 0.95), TD (PC L : 0.86 to 0.98) or PlayerLoad™ (PC L : 0.71 to 0.98). HSD was the only variable to relate to the 2nd PC (PC L : 0.72 to 1.00), which captured additional TL information (+19 to 28%). Findings suggest practitioners could quantify the TL of rugby union skills training with one of PlayerLoad™, TD, or sRPE plus HSD whilst limiting omitted information of the TL imposed during professional rugby union skills training.

  18. Fixation strength of a polyetheretherketone femoral component in total knee arthroplasty.

    PubMed

    de Ruiter, Lennert; Janssen, Dennis; Briscoe, Adam; Verdonschot, Nico

    2017-11-01

    Introducing polyetheretherketone (PEEK) polymer as a material for femoral components in total knee arthroplasty (TKA) could potentially lead to a reduction of the cemented fixation strength. A PEEK implant is more likely to deform under high loads, rendering geometrical locking features less effective. Fixation strength may be enhanced by adding more undercuts or specific surface treatments. The aim of this study is to measure the initial fixation strength and investigate the associated failure patterns of three different iterations of PEEK-OPTIMA ® implants compared with a Cobalt-Chromium (CoCr) component. Femoral components were cemented onto trabecular bone analogue foam blocks and preconditioned with 86,400 cycles of compressive loading (2600 N-260 N at 1 Hz). They were then extracted while the force was measured and the initial failure mechanism was recorded. Four groups were compared: CoCr, regular PEEK, PEEK with an enhanced cement-bonding surface and the latter with additional surface primer. The mean pull-off forces for the four groups were 3814 N, 688 N, 2525 N and 2552 N, respectively. The initial failure patterns for groups 1, 3 and 4 were the same; posterior condylar foam fracture and cement-bone debonding. Implants from group 2 failed at the cement-implant interface. This study has shown that a PEEK-OPTIMA ® femoral TKA component with enhanced macro- and microtexture is able to replicate the main failure mechanism of a conventional CoCr femoral implant. The fixation strength is lower than for a CoCr implant, but substantially higher than loads occurring under in-vivo conditions. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  19. Vibration Response Predictions for Heavy Panel Mounted Components from Panel Acreage Environment Specifications

    NASA Technical Reports Server (NTRS)

    Harrison, Phillip; Frady, Greg; Duvall, Lowery; Fulcher, Clay; LaVerde, Bruce

    2010-01-01

    The development of new launch vehicles in the Aerospace industry often relies on response measurements taken from previously developed vehicles during various stages of liftoff and ascent, and from wind tunnel models. These measurements include sound pressure levels, dynamic pressures in turbulent boundary layers and accelerations. Rigorous statistical scaling methods are applied to the data to derive new environments and estimate the performance of new skin panel structures. Scaling methods have proven to be reliable, particularly for designs similar to the vehicles used as the basis for scaling, and especially in regions of smooth acreage without exterior protuberances or heavy components mounted to the panel. To account for response attenuation of a panel-mounted component due to its apparent mass at higher frequencies, the vibroacoustics engineer often reduces the acreage vibration according to a weight ratio first suggested by Barrett. The accuracy of the reduction is reduced with increased weight of the panel-mounted component, and does not account for low-frequency amplification of the component/panel response as a system. A method is proposed that combines acreage vibration from scaling methods with finite element analysis to account for the frequency-dependent dynamics of heavy panel-mounted components. Since the acreage and mass-loaded skins respond to the same dynamic input pressure, such pressure may be eliminated in favor of a frequency-dependent scaling function applied to the acreage vibration to predict the mass-loaded panel response. The scaling function replaces the Barrett weight ratio, and contains all of the dynamic character of the loaded and unloaded skin panels. The solution simplifies for spatially uncorrelated and fully correlated input pressures. Since the prediction uses finite element models of the loaded and unloaded skins, a rich suite of response data are available to the design engineer, including interface forces, stress and strain

  20. Analysis of pollen load based on color, physicochemical composition and botanical source.

    PubMed

    Modro, Anna F H; Silva, Izabel C; Luz, Cynthia F P; Message, Dejair

    2009-06-01

    Pollen load samples from 10 hives of Apis mellifera (L.) were analyzed based on their physicochemical composition and botanical source, considering color as a parameter for quality control. In seven samples it was possible to establish the occurrence of more than 80% of a single pollen type, characterizing them as unifloral but with protein content variation. One of the samples was exclusively composed of saprophytic fungi (Cladosporium sp.). Comparing the mean results of the fungi loads with those of the nutritional components of pollen load, the former presented higher protein, mineral matter and dry matter and lower organic matter, ethereal extract and total carbohydrate values. The monochromatic samples met the physicochemical specifications regulating pollen load quality. The results showed that homogeneous coloration of the pollen load was not found to be a good indication of unifloral pollen, confirming the importance of physicochemical analysis and melissopalynological analysis for characterization of the quality of commercial pollen load.

  1. Composite components under impact load and effects of defects on the loading capacity. [Alpha Jet tail assembly

    NASA Technical Reports Server (NTRS)

    Aoki, R.; Wurzel, D.

    1979-01-01

    Investigations were carried out on a horizontal tail assembly made of carbon fiber reinforced plastic for the Alpha Jet. The possibility of obtaining a leading edge nose design lighter but not more expensive than a metal version was studied. An important consideration was sufficient resistance of the leading edge against impact of stones and hailstones combined with high degree of stiffness. The improvement of energy reception characteristics of the materials through suitable laminate design was considered. Since certain defects occur in structural components, the effects of such defects on the characteristics of the parts were also studied.

  2. Load-dependent assembly of the bacterial flagellar motor.

    PubMed

    Tipping, Murray J; Delalez, Nicolas J; Lim, Ren; Berry, Richard M; Armitage, Judith P

    2013-08-20

    It is becoming clear that the bacterial flagellar motor output is important not only for bacterial locomotion but also for mediating the transition from liquid to surface living. The output of the flagellar motor changes with the mechanical load placed on it by the external environment: at a higher load, the motor runs more slowly and produces higher torque. Here we show that the number of torque-generating units bound to the flagellar motor also depends on the external mechanical load, with fewer stators at lower loads. Stalled motors contained at least as many stators as rotating motors at high load, indicating that rotation is unnecessary for stator binding. Mutant stators incapable of generating torque could not be detected around the motor. We speculate that a component of the bacterial flagellar motor senses external load and mediates the strength of stator binding to the rest of the motor. The transition between liquid living and surface living is important in the life cycles of many bacteria. In this paper, we describe how the flagellar motor, used by bacteria for locomotion through liquid media and across solid surfaces, is capable of adjusting the number of bound stator units to better suit the external load conditions. By stalling motors using external magnetic fields, we also show that rotation is not required for maintenance of stators around the motor; instead, torque production is the essential factor for motor stability. These new results, in addition to previous data, lead us to hypothesize that the motor stators function as mechanosensors as well as functioning as torque-generating units.

  3. Factors Controlling Sediment Load in The Central Anatolia Region of Turkey: Ankara River Basin

    NASA Astrophysics Data System (ADS)

    Duru, Umit; Wohl, Ellen; Ahmadi, Mehdi

    2017-05-01

    Better understanding of the factors controlling sediment load at a catchment scale can facilitate estimation of soil erosion and sediment transport rates. The research summarized here enhances understanding of correlations between potential control variables on suspended sediment loads. The Soil and Water Assessment Tool was used to simulate flow and sediment at the Ankara River basin. Multivariable regression analysis and principal component analysis were then performed between sediment load and controlling variables. The physical variables were either directly derived from a Digital Elevation Model or from field maps or computed using established equations. Mean observed sediment rate is 6697 ton/year and mean sediment yield is 21 ton/y/km² from the gage. Soil and Water Assessment Tool satisfactorily simulated observed sediment load with Nash-Sutcliffe efficiency, relative error, and coefficient of determination ( R²) values of 0.81, -1.55, and 0.93, respectively in the catchment. Therefore, parameter values from the physically based model were applied to the multivariable regression analysis as well as principal component analysis. The results indicate that stream flow, drainage area, and channel width explain most of the variability in sediment load among the catchments. The implications of the results, efficient siltation management practices in the catchment should be performed to stream flow, drainage area, and channel width.

  4. Analysis of axial compressive loaded beam under random support excitations

    NASA Astrophysics Data System (ADS)

    Xiao, Wensheng; Wang, Fengde; Liu, Jian

    2017-12-01

    An analytical procedure to investigate the response spectrum of a uniform Bernoulli-Euler beam with axial compressive load subjected to random support excitations is implemented based on the Mindlin-Goodman method and the mode superposition method in the frequency domain. The random response spectrum of the simply supported beam subjected to white noise excitation and to Pierson-Moskowitz spectrum excitation is investigated, and the characteristics of the response spectrum are further explored. Moreover, the effect of axial compressive load is studied and a method to determine the axial load is proposed. The research results show that the response spectrum mainly consists of the beam's additional displacement response spectrum when the excitation is white noise; however, the quasi-static displacement response spectrum is the main component when the excitation is the Pierson-Moskowitz spectrum. Under white noise excitation, the amplitude of the power spectral density function decreased as the axial compressive load increased, while the frequency band of the vibration response spectrum increased with the increase of axial compressive load.

  5. Analysis of the Thermal Loads on the KSTAR Cryogenic System

    NASA Astrophysics Data System (ADS)

    Kim, Y. S.; Oh, Y. K.; Kim, W. C.; Park, Y. M.; Lee, Y. J.; Jin, S. B.; Sa, J. W.; Choi, C. H.; Cho, K. W.; Bak, J. S.; Lee, G. S.

    2004-06-01

    A large-scale helium refrigeration system is one of the key components for the KSTAR (Korea Superconducting Tokamak Advanced Research) device. In the design of the refrigeration system, an estimation of the thermal loads on the cold mass is an important issue according to the operation scenario. The cold mass of the KSTAR device is about 250 tons including 30 superconducting (SC) coils and the magnet structure. In addition to the static thermal loads, pulsed thermal loads to the refrigeration system have been considered in the operation stage. The main pulsed thermal loads on magnet system are AC losses in the SC coils and eddy current losses in the magnet structure that depend on the magnetic field variation rate. The nuclear radiation loss due to plasma pulse operation is also considered. The designed cooling capacity of the refrigeration system is estimated to be about 9 kW at 4.5 K isothermal. In this paper, calculation of the various kinds of thermal loads on KSTAR cryogenic system and design of the large-scale helium refrigeration system are presented.

  6. 29 CFR 1919.32 - Specially designed blocks and components.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Specially designed blocks and components. 1919.32 Section 1919.32 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) GEAR CERTIFICATION Certification of Vessels: Tests and Proof Loads; Heat Treatment; Competent Persons § 1919.32...

  7. Iron overload diseases: the chemical speciation of non-heme iron deposits in iron loaded mammalian tissues

    NASA Astrophysics Data System (ADS)

    St. Pierre, T. G.; Chua-Anusorn, W.; Webb, J.; Macey, D. J.

    2000-07-01

    57Fe Mössbauer spectra of iron overloaded human spleen, rat spleen and rat liver tissue samples at 78 K were found to consist of a quadrupole doublet (major component) with magnetic sextet (minor component with fractional spectral area F s). The distributions of F s for spleen tissue from two different clinically identifiable groups (n = 7 and n = 12) of thalassemic patients were found to be significantly different. The value of F s for dietary-iron loaded rat liver was found to rise significantly with age/duration (up to 24 months) of iron loading.

  8. Limitations of subjective cognitive load measures in simulation-based procedural training.

    PubMed

    Naismith, Laura M; Cheung, Jeffrey J H; Ringsted, Charlotte; Cavalcanti, Rodrigo B

    2015-08-01

    The effective implementation of cognitive load theory (CLT) to optimise the instructional design of simulation-based training requires sensitive and reliable measures of cognitive load. This mixed-methods study assessed relationships between commonly used measures of total cognitive load and the extent to which these measures reflected participants' experiences of cognitive load in simulation-based procedural skills training. Two groups of medical residents (n = 38) completed three questionnaires after participating in simulation-based procedural skills training sessions: the Paas Cognitive Load Scale; the NASA Task Load Index (TLX), and a cognitive load component (CLC) questionnaire we developed to assess total cognitive load as the sum of intrinsic load (how complex the task is), extraneous load (how the task is presented) and germane load (how the learner processes the task for learning). We calculated Pearson's correlation coefficients to assess agreement among these instruments. Group interviews explored residents' perceptions about how the simulation sessions contributed to their total cognitive load. Interviews were audio-recorded, transcribed and subjected to qualitative content analysis. Total cognitive load scores differed significantly according to the instrument used to assess them. In particular, there was poor agreement between the Paas Scale and the TLX. Quantitative and qualitative findings supported intrinsic cognitive load as synonymous with mental effort (Paas Scale), mental demand (TLX) and task difficulty and complexity (CLC questionnaire). Additional qualitative themes relating to extraneous and germane cognitive loads were not reflected in any of the questionnaires. The Paas Scale, TLX and CLC questionnaire appear to be interchangeable as measures of intrinsic cognitive load, but not of total cognitive load. A more complete understanding of the sources of extraneous and germane cognitive loads in simulation-based training contexts is

  9. A Baseline Load Schedule for the Manual Calibration of a Force Balance

    NASA Technical Reports Server (NTRS)

    Ulbrich, N.; Gisler, R.

    2013-01-01

    A baseline load schedule for the manual calibration of a force balance was developed that takes current capabilities at the NASA Ames Balance Calibration Laboratory into account. The load schedule consists of 18 load series with a total of 194 data points. It was designed to satisfy six requirements: (i) positive and negative loadings should be applied for each load component; (ii) at least three loadings should be applied between 0 % and 100 % load capacity; (iii) normal and side force loadings should be applied at the forward gage location, the aft gage location, and the balance moment center; (iv) the balance should be used in UP and DOWN orientation to get axial force loadings; (v) the constant normal and side force approaches should be used to get the rolling moment loadings; (vi) rolling moment loadings should be obtained for 0, 90, 180, and 270 degrees balance orientation. Three different approaches are also reviewed that may be used to independently estimate the natural zeros of the balance. These three approaches provide gage output differences that may be used to estimate the weight of both the metric and non-metric part of the balance. Manual calibration data of NASA s MK29A balance and machine calibration data of NASA s MC60D balance are used to illustrate and evaluate different aspects of the proposed baseline load schedule design.

  10. Load measurement system with load cell lock-out mechanism

    NASA Technical Reports Server (NTRS)

    Le, Thang; Carroll, Monty; Liu, Jonathan

    1995-01-01

    In the frame work of the project Shuttle Plume Impingement Flight Experiment (SPIFEX), a Load Measurement System was developed and fabricated to measure the impingement force of Shuttle Reaction Control System (RCS) jets. The Load Measurement System is a force sensing system that measures any combination of normal and shear forces up to 40 N (9 lbf) in the normal direction and 22 N (5 lbf) in the shear direction with an accuracy of +/- 0.04 N (+/- 0.01 lbf) Since high resolution is required for the force measurement, the Load Measurement System is built with highly sensitive load cells. To protect these fragile load cells in the non-operational mode from being damaged due to flight loads such as launch and landing loads of the Shuttle vehicle, a motor driven device known as the Load Cell Lock-Out Mechanism was built. This Lock-Out Mechanism isolates the load cells from flight loads and re-engages the load cells for the force measurement experiment once in space. With this highly effective protection system, the SPIFEX load measurement experiment was successfully conducted on STS-44 in September 1994 with all load cells operating properly and reading impingement forces as expected.

  11. Expected load spectra of prototype Francis turbines in low-load operation using numerical simulations and site measurements

    NASA Astrophysics Data System (ADS)

    Eichhorn, M.; Taruffi, A.; Bauer, C.

    2017-04-01

    The operators of hydropower plants are forced to extend the existing operating ranges of their hydraulic machines to remain competitive on the energy market due to the rising amount of wind and solar power. Faster response times and a higher flexibility towards part- and low-load conditions enable a better electric grid control and assure therefore an economic operation of the power plant. The occurring disadvantage is a higher dynamic excitation of affected machine components, especially Francis turbine runners, due to pressure pulsations induced by unsteady flow phenomena (e.g. draft tube vortex ropes). Therefore, fatigue analysis becomes more important even in the design phase of the hydraulic machines to evaluate the static and dynamic load in different operating conditions and to reduce maintenance costs. An approach including a one-way coupled fluid-structure interaction has been already developed using unsteady CFD simulations and transient FEM computations. This is now applied on two Francis turbines with different specific speeds and power ranges, to obtain the load spectra of both machines. The results are compared to strain gauge measurements on the according Francis turbines to validate the overall procedure.

  12. A methodology to model physical contact between structural components in NASTRAN

    NASA Technical Reports Server (NTRS)

    Prabhu, Annappa A.

    1993-01-01

    Two components of a structure which are located side by side, will come in contact by certain force and will transfer the compressive force along the contact area. If the force acts in the opposite direction, the elements will separate and no force will be transferred. If this contact is modeled, the load path will be correctly represented, and the load redistribution results in more realistic stresses in the structure. This is accomplished by using different sets of rigid elements for different loading conditions, or by creating multipoint constraint sets. Comparison of these two procedures is presented for a 4 panel unit (PU) stowage drawer installed in an experiment rack in the Spacelab Life Sciences (SLS-2) payload.

  13. Predicting the Reliability of Brittle Material Structures Subjected to Transient Proof Test and Service Loading

    NASA Astrophysics Data System (ADS)

    Nemeth, Noel N.; Jadaan, Osama M.; Palfi, Tamas; Baker, Eric H.

    Brittle materials today are being used, or considered, for a wide variety of high tech applications that operate in harsh environments, including static and rotating turbine parts, thermal protection systems, dental prosthetics, fuel cells, oxygen transport membranes, radomes, and MEMS. Designing brittle material components to sustain repeated load without fracturing while using the minimum amount of material requires the use of a probabilistic design methodology. The NASA CARES/Life 1 (Ceramic Analysis and Reliability Evaluation of Structure/Life) code provides a general-purpose analysis tool that predicts the probability of failure of a ceramic component as a function of its time in service. This capability includes predicting the time-dependent failure probability of ceramic components against catastrophic rupture when subjected to transient thermomechanical loads (including cyclic loads). The developed methodology allows for changes in material response that can occur with temperature or time (i.e. changing fatigue and Weibull parameters with temperature or time). For this article an overview of the transient reliability methodology and how this methodology is extended to account for proof testing is described. The CARES/Life code has been modified to have the ability to interface with commercially available finite element analysis (FEA) codes executed for transient load histories. Examples are provided to demonstrate the features of the methodology as implemented in the CARES/Life program.

  14. Determinants of self-rated health and the role of acculturation: Implications for health inequalities

    PubMed Central

    Todorova, Irina L.G.; Tucker, Katherine L.; Jimenez, Marcia Pescador; Lincoln, Alisa K.; Arevalo, Sandra; Falcón, Luis M.

    2013-01-01

    Objectives Self-rated health (SRH) is an important indicator of overall health, predicting morbidity and mortality. This paper investigates what individuals incorporate into their self-assessments of health and how acculturation plays a part in this assessment. The relationship of acculturation to SRH and whether it moderates the association between indicators of health and SRH is also examined. Design The paper is based on data from adults in the Boston Puerto Rican Health Study, living in the greater Boston area (n=1357) mean age 57.2 (SD=7.6). We used multiple regression analysis and testing for moderation effects. Results The strongest predictors of poor self-rated health were the number of existing medical conditions, functional problems, allostatic load and depressive symptoms. Poor self-rated health was also associated with being female, fewer years of education, heavy alcohol use, smoking, poverty, and low emotional support. More acculturated Puerto Rican adults rated their health more positively, which corresponded to better indicators of physical and psychological health. Additionally, acculturation moderated the association between some indicators of morbidity (functional status and depressive symptoms) and self-rated health. Conclusions Self-assessments of overall health integrate diverse indicators, including psychological symptoms, functional status and objective health indicators such as chronic conditions and allostatic load. However, adults’ assessments of overall health differed by acculturation, which moderated the association between health indicators and SRH. The data suggest that when in poor health, those less acculturated may understate the severity of their health problems when rating their overall health, thus SRH might thus conceal disparities. Using SRH can have implications for assessing health disparities in this population. PMID:23425383

  15. Pressure and shear stress in trabecular bone marrow during whole bone loading.

    PubMed

    Metzger, Thomas A; Schwaner, Stephen A; LaNeve, Anthony J; Kreipke, Tyler C; Niebur, Glen L

    2015-09-18

    Skeletal adaptation to mechanical loading is controlled by mechanobiological signaling. Osteocytes are highly responsive to applied strains, and are the key mechanosensory cells in bone. However, many cells residing in the marrow also respond to mechanical cues such as hydrostatic pressure and shear stress, and hence could play a role in skeletal adaptation. Trabecular bone encapsulates marrow, forming a poroelastic solid. According to the mechanical theory, deformation of the pores induces motion in the fluid-like marrow, resulting in pressure and velocity gradients. The latter results in shear stress acting between the components of the marrow. To characterize the mechanical environment of trabecular bone marrow in situ, pore pressure within the trabecular compartment of whole porcine femurs was measured with miniature pressure transducers during stress-relaxation and cyclic loading. Pressure gradients ranging from 0.013 to 0.46 kPa/mm were measured during loading. This range was consistent with calculated pressure gradients from continuum scale poroelastic models with the same permeability. Micro-scale computational fluid dynamics models created from computed tomography images were used to calculate the micromechanical stress in the marrow using the measured pressure differentials as boundary conditions. The volume averaged shear stress in the marrow ranged from 1.67 to 24.55 Pa during cyclic loading, which exceeds the mechanostimulatory threshold for mesenchymal lineage cells. Thus, the loading of bone through activities of daily living may be an essential component of bone marrow health and mechanobiology. Additional studies of cell-level interactions during loading in healthy and disease conditions will provide further incite into marrow mechanobiology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Self-excitation in Francis runner during load rejection

    NASA Astrophysics Data System (ADS)

    Moisan, É.; Giacobbi, D.-B.; Gagnon, M.; Léonard, F.

    2014-03-01

    Typically, transients such as load rejection generate only a few high vibration cycles in Francis runners. However, in the cases presented in this study, a sustained vibration around a natural frequency was observed on three (3) homologous Francis runners of different sizes during such events. The first two (2) runners were equipped with strain gauges on the blades and displacement sensors positioned circumferentially in the bottom ring and head cover around the runner labyrinth seals. The third runner was monitored only with displacement sensors on non-rotating components. The data from the first two (2) runners provided a better understanding of the parameters influencing the appearance of the high amplitude vibrations and allowed the implementation of a test plan to circumvent the phenomenon during commissioning of the third runner. Based on the measured data, the distributor's closing parameters were optimized to eliminate the vibration observed during load rejection on most of the operating range and reduce it significantly at full load.

  17. EEG correlates of finger movements with different inertial load conditions as revealed by averaging techniques.

    PubMed

    Slobounov, S; Tutwiler, R; Rearick, M; Challis, J H

    1999-10-01

    The present study was aimed to further address the general empirical question regarding the sensitivity of EEG correlates toward specific kinematic and/or kinetic movement parameters. In particular, we examined whether adding different inertial loads to the index finger, while a subject produced various amplitudes of discrete finger movements, influenced the movement-related potentials (MRP). Our experimental design systematically controlled the angular displacement, velocity and acceleration (kinematic) profiles of finger movement while torque (kinetics) was varied by adding different external loads opposing finger flexion movement. We applied time-domain averaging of EEG single trials in order to extract three movement-related potentials (BP-600 to -500 BP-100 to 0 and N0 to 100) preceding and accompanying 25, 50 and 75 degrees unilateral finger movements with no inertial load, small (100 g) and large (200 g) loading. It was shown that both inertial load and the degree of angular displacement of index finger flexion increased the amplitude of late components of MRP (BP-100 to 0 and N0 to 100) over frontal and precentral areas. In contrast, the external load and movement amplitude manipulations did not influence the earlier component of the MRP (BP- 600 to -500). Overall, the data demonstrate that adding inertial load to the finger with larger angular displacements involves systematic increase in activation across frontal and precentral areas that are related to movement initiation as reflected in BP-100 to 0 and N0 to 100.

  18. Global seasonal strain and stress models derived from GRACE loading, and their impact on seismicity

    NASA Astrophysics Data System (ADS)

    Chanard, K.; Fleitout, L.; Calais, E.; Craig, T. J.; Rebischung, P.; Avouac, J. P.

    2017-12-01

    Loading by continental water, atmosphere and oceans deforms the Earth at various spatio-temporal scales, inducing crustal and mantelic stress perturbations that may play a role in earthquake triggering.Deformation of the Earth by this surface loading is observed in GNSS position time series. While various models predict well vertical observations, explaining horizontal displacements remains challenging. We model the elastic deformation induced by loading derived from GRACE for coefficients 2 and higher. We estimate the degree-1 deformation field by comparison between predictions of our model and IGS-repro2 solutions at a globally distributed network of 700 GNSS sites, separating the horizontal and vertical components to avoid biases between components. The misfit between model and data is reduced compared to previous studies, particularly on the horizontal component. The associated geocenter motion time series are consistent with results derived from other datasets. We also discuss the impact on our results of systematic errors in GNSS geodetic products, in particular of the draconitic error.We then compute stress tensors time series induced by GRACE loads and discuss the potential link between large scale seasonal mass redistributions and seismicity. Within the crust, we estimate hydrologically induced stresses in the intraplate New Madrid Seismic Zone, where secular stressing rates are unmeasurably low. We show that a significant variation in the rate of micro-earthquakes at annual and multi-annual timescales coincides with stresses induced by hydrological loading in the upper Mississippi embayment, with no significant phase-lag, directly modulating regional seismicity. We also investigate pressure variations in the mantle transition zone and discuss potential correlations between the statistically significant observed seasonality of deep-focus earthquakes, most likely due to mineralogical transformations, and surface hydrological loading.

  19. Sclerostin's role in bone's adaptive response to mechanical loading.

    PubMed

    Galea, Gabriel L; Lanyon, Lance E; Price, Joanna S

    2017-03-01

    Mechanical loading is the primary functional determinant of bone mass and architecture, and osteocytes play a key role in translating mechanical signals into (re)modelling responses. Although the precise mechanisms remain unclear, Wnt signalling pathway components, and the anti-osteogenic canonical Wnt inhibitor Sost/sclerostin in particular, play an important role in regulating bone's adaptive response to loading. Increases in loading-engendered strains down-regulate osteocyte sclerostin expression, whereas reduced strains, as in disuse, are associated with increased sclerostin production and bone loss. However, while sclerostin up-regulation appears to be necessary for the loss of bone with disuse, the role of sclerostin in the osteogenic response to loading is more complex. While mice unable to down-regulate sclerostin do not gain bone with loading, Sost knockout mice have an enhanced osteogenic response to loading. The molecular mechanisms by which osteocytes sense and transduce loading-related stimuli into changes in sclerostin expression remain unclear but include several, potentially interlinked, signalling cascades involving periostin/integrin, prostaglandin, estrogen receptor, calcium/NO and Igf signalling. Deciphering the mechanisms by which changes in the mechanical environment regulate sclerostin production may lead to the development of therapeutic strategies that can reverse the skeletal structural deterioration characteristic of disuse and age-related osteoporosis and enhance bones' functional adaptation to loading. By enhancing the osteogenic potential of the context in which individual therapies such as sclerostin antibodies act it may become possible to both prevent and reverse the age-related skeletal structural deterioration characteristic of osteoporosis. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Load-Following Power Timeline Analyses for the International Space Station

    NASA Technical Reports Server (NTRS)

    Fincannon, James; Delleur, Ann; Green, Robert; Hojnicki, Jeffrey

    1996-01-01

    Spacecraft are typically complex assemblies of interconnected systems and components that have highly time-varying thermal communications, and power requirements. It is essential that systems designers be able to assess the capability of the spacecraft to meet these requirements which should represent a realistic projection of demand for these resources once the vehicle is on-orbit. To accomplish the assessment from the power standpoint, a computer code called ECAPS has been developed at NASA Lewis Research Center that performs a load-driven analysis of a spacecraft power system given time-varying distributed loading and other mission data. This program is uniquely capable of synthesizing all of the changing spacecraft conditions into a single, seamless analysis for a complete mission. This paper presents example power load timelines with which numerous data are integrated to provide a realistic assessment of the load-following capabilities of the power system. Results of analyses show how well the power system can meet the time-varying power resource demand.

  1. Psychosis following traumatic brain injury and cannabis use in late adolescence.

    PubMed

    Rabner, Jonathan; Gottlieb, Sarah; Lazdowsky, Lori; LeBel, Alyssa

    2016-03-01

    Both cannabis and traumatic brain injury (TBI) pose risks on the developing brain, including a potential increased vulnerability for developing psychosis. Recent reports detail an upward trend in both adolescent cannabis use and the concentration of THC, the most potent psychoactive component in cannabis. Similarly, it is estimated that 1.7 million Americans incur a TBI each year. Previously trivialized as a minor nuisance, attitudes towards TBIs are changing as researchers and the public recognize TBIs' possible long-lasting sequelae. Two cases are presented of adolescent patients with histories of TBI and self-reported heavy, recreational cannabis use who developed symptoms of psychosis. Similar neuronal signaling pathways involved in cannabis ingestion and TBI recovery, specifically CB1 receptors of the endocannabinoid system, as well as the allostatic load model provide context for the two presented cases. Given the cases and theories presented, we believe that cannabis use may act as a neurological stressor and risk factor for psychosis outweighing its possible benefits as a therapeutic solution for pain in late adolescent and young adult populations. The presented cases provide further support for the compounded risk of developing psychosis following TBI and cannabis use. © American Academy of Addiction Psychiatry.

  2. Bayesian Modeling of the Assimilative Capacity Component of Stream Nutrient Export

    EPA Science Inventory

    Implementing stream restoration techniques and best management practices to reduce nonpoint source nutrients implies enhancement of the assimilative capacity for the stream system. In this paper, a Bayesian method for evaluating this component of a TMDL load capacity is developed...

  3. Skin, Stringer, and Fastener Loads in Buckled Fuselage Panels

    NASA Technical Reports Server (NTRS)

    Young, Richard D.; Rose, Cheryl A.; Starnes, James H., Jr.

    2001-01-01

    The results of a numerical study to assess the effect of skin buckling on the internal load distribution in a stiffened fuselage panel, with and without longitudinal cracks, are presented. In addition, the impact of changes in the internal loads on the fatigue life and residual strength of a fuselage panel is assessed. A generic narrow-body fuselage panel is considered. The entire panel is modeled using shell elements and considerable detail is included to represent the geometric-nonlinear response of the buckled skin, cross section deformation of the stiffening components, and details of the skin-string attachment with discrete fasteners. Results are presented for a fixed internal pressure and various combinations of axial tension or compression loads. Results illustrating the effect of skin buckling on the stress distribution in the skin and stringer, and fastener loads are presented. Results are presented for the pristine structure, and for cases where damage is introduced in the form of a longitudinal crack adjacent to the stringer, or failed fastener elements. The results indicate that axial compression loads and skin buckling can have a significant effect on the circumferential stress in the skin, and fastener loads, which will influence damage initiation, and a comparable effect on stress intensity factors for cases with cracks. The effects on stress intensity factors will influence damage propagation rates and the residual strength of the panel.

  4. The photoload sampling technique: estimating surface fuel loadings from downward-looking photographs of synthetic fuelbeds

    Treesearch

    Robert E. Keane; Laura J. Dickinson

    2007-01-01

    Fire managers need better estimates of fuel loading so they can more accurately predict the potential fire behavior and effects of alternative fuel and ecosystem restoration treatments. This report presents a new fuel sampling method, called the photoload sampling technique, to quickly and accurately estimate loadings for six common surface fuel components (1 hr, 10 hr...

  5. Mechanism isolates load weighing cell during lifting of load

    NASA Technical Reports Server (NTRS)

    Haigler, J. S.

    1966-01-01

    Load weighing cell used in conjuction with a hoist is isolated during lifting and manipulation of the load. A simple mechanism, attached to a crane hook, provides a screw adjustment for engaging the load cell during weighing of the load and isolating it from lift forces during hoisting of the load.

  6. Evaluating Stress during Pregnancy: Do We Have the Right Conceptions and the Correct Tools to Assess It?

    PubMed Central

    González-Ochoa, Raquel; Sánchez-Rodríguez, Elly N.; Chavarría, Anahi; Gutiérrez-Ospina, Gabriel

    2018-01-01

    Gestational stress is believed to increase the risk of pregnancy failure and perinatal and adult morbidity and mortality in both the mother and her child or children. However, some contradictions might arise from methodological issues or even from differences in the philosophical grounds that guide the studies on gestational stress. Biased perspectives could lead us to use and/or design inadequate/incomplete panels of biochemical determinations and/or psychological instruments to diagnose it accurately during pregnancy, a psychoneuroimmune-endocrine state in which allostatic loads may be significant. Here, we review these notions and propose a model to evaluate and diagnose stress during pregnancy. PMID:29484210

  7. Energy efficient engine: Low-pressure turbine subsonic cascade component development and integration program

    NASA Technical Reports Server (NTRS)

    Sharma, O. P.; Kopper, F. C.; Knudsen, L. K.; Yustinich, J. B.

    1982-01-01

    A subsonic cascade test program was conducted to provide technical data for optimizing the blade and vane airfoil designs for the Energy Efficient Engine Low-Pressure Turbine component. The program consisted of three parts. The first involved an evaluation of the low-chamber inlet guide vane. The second, was an evaluation of two candidate aerodynamic loading philosophies for the fourth blade root section. The third part consisted of an evaluation of three candidate airfoil geometries for the fourth blade mean section. The performance of each candidate airfoil was evaluated in a linear cascade configuration. The overall results of this study indicate that the aft-loaded airfoil designs resulted in lower losses which substantiated Pratt & Whitney Aircraft's design philosophy for the Energy Efficient Engine low-pressure turbine component.

  8. Relationship between current load and temperature for quasi-steady state and transient conditions

    NASA Astrophysics Data System (ADS)

    Lyon, Bernard R., Jr.; Orlove, Gary L.; Peters, Donna L.

    2000-03-01

    Infrared thermographers involved in predictive maintenance programs often use temperature measurement as a means of quantifying the severity of a problem. Temperature is certainly an important factor in evaluating equipment. However, if you follow guidelines that are based solely on absolute temperature measurement--or on a temperature rise (Delta T)--you run the risk of incorrectly diagnosing your problems. The consequences of such actions can lead to a false sense of security, equipment failure, fire, and even the possibility of personal injury. Understanding the additional factors involved in diagnosis is essential for obtaining productive results. One of these factors is the load or current flowing through conductors. The load can have a drastic effect on the temperature of a component. Changing loads can cause additional concerns because temperature changes lag behind load changes. The purpose of this paper is to illustrate the relationship between load and temperature of a faulty connection. The thermal response of a changing load is also investigated.

  9. Architecture, component, and microbiome of biofilm involved in the fouling of membrane bioreactors.

    PubMed

    Inaba, Tomohiro; Hori, Tomoyuki; Aizawa, Hidenobu; Ogata, Atsushi; Habe, Hiroshi

    2017-01-01

    Biofilm formation on the filtration membrane and the subsequent clogging of membrane pores (called biofouling) is one of the most persistent problems in membrane bioreactors for wastewater treatment and reclamation. Here, we investigated the structure and microbiome of fouling-related biofilms in the membrane bioreactor using non-destructive confocal reflection microscopy and high-throughput Illumina sequencing of 16S rRNA genes. Direct confocal reflection microscopy indicated that the thin biofilms were formed and maintained regardless of the increasing transmembrane pressure, which is a common indicator of membrane fouling, at low organic-loading rates. Their solid components were primarily extracellular polysaccharides and microbial cells. In contrast, high organic-loading rates resulted in a rapid increase in the transmembrane pressure and the development of the thick biofilms mainly composed of extracellular lipids. High-throughput sequencing revealed that the biofilm microbiomes, including major and minor microorganisms, substantially changed in response to the organic-loading rates and biofilm development. These results demonstrated for the first time that the architectures, chemical components, and microbiomes of the biofilms on fouled membranes were tightly associated with one another and differed considerably depending on the organic-loading conditions in the membrane bioreactor, emphasizing the significance of alternative indicators other than the transmembrane pressure for membrane biofouling.

  10. Exploring the Cognitive Loads of High-School Students as They Learn Concepts in Web-Based Environments

    ERIC Educational Resources Information Center

    Chang, Cheng-Chieh; Yang, Fang-Ying

    2010-01-01

    This study measured high-school learners' cognitive load as they interacted with different web-based curriculum components, and examined the interactions between cognitive load and web-based concept learning. Participants in this study were 105 11th graders from an academic senior high school in Taiwan. An online, multimedia curriculum on the…

  11. Development of an Aeroelastic Modeling Capability for Transient Nozzle Side Load Analysis

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen

    2013-01-01

    Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development during test. While three-dimensional, transient, turbulent, chemically reacting computational fluid dynamics methodology has been demonstrated to capture major side load physics with rigid nozzles, hot-fire tests often show nozzle structure deformation during major side load events, leading to structural damages if structural strengthening measures were not taken. The modeling picture is incomplete without the capability to address the two-way responses between the structure and fluid. The objective of this study is to develop a coupled aeroelastic modeling capability by implementing the necessary structural dynamics component into an anchored computational fluid dynamics methodology. The computational fluid dynamics component is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, while the computational structural dynamics component is developed in the framework of modal analysis. Transient aeroelastic nozzle startup analyses of the Block I Space Shuttle Main Engine at sea level were performed. The computed results from the aeroelastic nozzle modeling are presented.

  12. Estimation of Forest Fuel Load from Radar Remote Sensing

    NASA Technical Reports Server (NTRS)

    Saatchi, Sassan; Despain, Don G.; Halligan, Kerry; Crabtree, Robert

    2007-01-01

    Understanding fire behavior characteristics and planning for fire management require maps showing the distribution of wildfire fuel loads at medium to fine spatial resolution across large landscapes. Radar sensors from airborne or spaceborne platforms have the potential of providing quantitative information about the forest structure and biomass components that can be readily translated to meaningful fuel load estimates for fire management. In this paper, we used multifrequency polarimetric synthetic aperture radar imagery acquired over a large area of the Yellowstone National Park (YNP) by the AIRSAR sensor, to estimate the distribution of forest biomass and canopy fuel loads. Semi-empirical algorithms were developed to estimate crown and stem biomass and three major fuel load parameters, canopy fuel weight, canopy bulk density, and foliage moisture content. These estimates when compared directly to measurements made at plot and stand levels, provided more than 70% accuracy, and when partitioned into fuel load classes, provided more than 85% accuracy. Specifically, the radar generated fuel parameters were in good agreement with the field-based fuel measurements, resulting in coefficients of determination of R(sup 2) = 85 for the canopy fuel weight, R(sup 2)=.84 for canopy bulk density and R(sup 2) = 0.78 for the foliage biomass.

  13. Degradation forecast for PEMFC cathode-catalysts under cyclic loads

    NASA Astrophysics Data System (ADS)

    Moein-Jahromi, M.; Kermani, M. J.; Movahed, S.

    2017-08-01

    Degradation of Fuel Cell (FC) components under cyclic loads is one of the biggest bottlenecks in FC commercialization. In this paper, a novel experimental based algorithm is presented to predict the Catalyst Layer (CL) performance loss during cyclic load. The algorithm consists of two models namely Models 1 and 2. The Model 1 calculates the Electro-Chemical Surface Area (ECSA) and agglomerate size (e.g. agglomerate radius, rt,agg) for the catalyst layer under cyclic load. The Model 2 is the already-existing model from our earlier studies that computes catalyst performance with fixed structural parameters. Combinations of these two Models predict the CL performance under an arbitrary cyclic load. A set of parametric/sensitivity studies is performed to investigate the effects of operating parameters on the percentage of Voltage Degradation Rate (VDR%) with rank 1 for the most influential one. Amongst the considered parameters (such as: temperature, relative humidity, pressure, minimum and maximum voltage of the cyclic load), the results show that temperature and pressure have the most and the least influences on the VDR%, respectively. So that, increase of temperature from 60 °C to 80 °C leads to over 20% VDR intensification, the VDR will also reduce 1.41% by increasing pressure from 2 atm to 4 atm.

  14. Estimation of forest fuel load from radar remote sensing

    USGS Publications Warehouse

    Saatchi, S.; Halligan, K.; Despain, Don G.; Crabtree, R.L.

    2007-01-01

    Understanding fire behavior characteristics and planning for fire management require maps showing the distribution of wildfire fuel loads at medium to fine spatial resolution across large landscapes. Radar sensors from airborne or spaceborne platforms have the potential of providing quantitative information about the forest structure and biomass components that can be readily translated to meaningful fuel load estimates for fire management. In this paper, we used multifrequency polarimetric synthetic aperture radar (SAR) imagery acquired over a large area of the Yellowstone National Park by the Airborne SAR sensor to estimate the distribution of forest biomass and canopy fuel loads. Semiempirical algorithms were developed to estimate crown and stem biomass and three major fuel load parameters, namely: 1) canopy fuel weight; 2) canopy bulk density; and 3) foliage moisture content. These estimates, when compared directly to measurements made at plot and stand levels, provided more than 70% accuracy and, when partitioned into fuel load classes, provided more than 85% accuracy. Specifically, the radar-generated fuel parameters were in good agreement with the field-based fuel measurements, resulting in coefficients of determination of R2 = 85 for the canopy fuel weight, R 2 = 0.84 for canopy bulk density, and R2 =0.78 for the foliage biomass. ?? 2007 IEEE.

  15. Factors Controlling Sediment Load in The Central Anatolia Region of Turkey: Ankara River Basin.

    PubMed

    Duru, Umit; Wohl, Ellen; Ahmadi, Mehdi

    2017-05-01

    Better understanding of the factors controlling sediment load at a catchment scale can facilitate estimation of soil erosion and sediment transport rates. The research summarized here enhances understanding of correlations between potential control variables on suspended sediment loads. The Soil and Water Assessment Tool was used to simulate flow and sediment at the Ankara River basin. Multivariable regression analysis and principal component analysis were then performed between sediment load and controlling variables. The physical variables were either directly derived from a Digital Elevation Model or from field maps or computed using established equations. Mean observed sediment rate is 6697 ton/year and mean sediment yield is 21 ton/y/km² from the gage. Soil and Water Assessment Tool satisfactorily simulated observed sediment load with Nash-Sutcliffe efficiency, relative error, and coefficient of determination (R²) values of 0.81, -1.55, and 0.93, respectively in the catchment. Therefore, parameter values from the physically based model were applied to the multivariable regression analysis as well as principal component analysis. The results indicate that stream flow, drainage area, and channel width explain most of the variability in sediment load among the catchments. The implications of the results, efficient siltation management practices in the catchment should be performed to stream flow, drainage area, and channel width.

  16. Open Architecture Data System for NASA Langley Combined Loads Test System

    NASA Technical Reports Server (NTRS)

    Lightfoot, Michael C.; Ambur, Damodar R.

    1998-01-01

    The Combined Loads Test System (COLTS) is a new structures test complex that is being developed at NASA Langley Research Center (LaRC) to test large curved panels and cylindrical shell structures. These structural components are representative of aircraft fuselage sections of subsonic and supersonic transport aircraft and cryogenic tank structures of reusable launch vehicles. Test structures are subjected to combined loading conditions that simulate realistic flight load conditions. The facility consists of two pressure-box test machines and one combined loads test machine. Each test machine possesses a unique set of requirements or research data acquisition and real-time data display. Given the complex nature of the mechanical and thermal loads to be applied to the various research test articles, each data system has been designed with connectivity attributes that support both data acquisition and data management functions. This paper addresses the research driven data acquisition requirements for each test machine and demonstrates how an open architecture data system design not only meets those needs but provides robust data sharing between data systems including the various control systems which apply spectra of mechanical and thermal loading profiles.

  17. Load Variation Influences on Joint Work During Squat Exercise in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    DeWitt, John K.; Fincke, Renita S.; Logan, Rachel L.; Guilliams, Mark E.; Ploutz-Snyder, Lori L.

    2011-01-01

    Resistance exercises that load the axial skeleton, such as the parallel squat, are incorporated as a critical component of a space exercise program designed to maximize the stimuli for bone remodeling and muscle loading. Astronauts on the International Space Station perform regular resistance exercise using the Advanced Resistive Exercise Device (ARED). Squat exercises on Earth entail moving a portion of the body weight plus the added bar load, whereas in microgravity the body weight is 0, so all load must be applied via the bar. Crewmembers exercising in microgravity currently add approx.70% of their body weight to the bar load as compensation for the absence of the body weight. This level of body weight replacement (BWR) was determined by crewmember feedback and personal experience without any quantitative data. The purpose of this evaluation was to utilize computational simulation to determine the appropriate level of BWR in microgravity necessary to replicate lower extremity joint work during squat exercise in normal gravity based on joint work. We hypothesized that joint work would be positively related to BWR load.

  18. Assessment of Wind Parameter Sensitivity on Extreme and Fatigue Wind Turbine Loads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, Amy N; Sethuraman, Latha; Jonkman, Jason

    Wind turbines are designed using a set of simulations to ascertain the structural loads that the turbine could encounter. While mean hub-height wind speed is considered to vary, other wind parameters such as turbulence spectra, sheer, veer, spatial coherence, and component correlation are fixed or conditional values that, in reality, could have different characteristics at different sites and have a significant effect on the resulting loads. This paper therefore seeks to assess the sensitivity of different wind parameters on the resulting ultimate and fatigue loads on the turbine during normal operational conditions. Eighteen different wind parameters are screened using anmore » Elementary Effects approach with radial points. As expected, the results show a high sensitivity of the loads to the turbulence standard deviation in the primary wind direction, but the sensitivity to wind shear is often much greater. To a lesser extent, other wind parameters that drive loads include the coherence in the primary wind direction and veer.« less

  19. Development of Electronic Load Controllers for Free-Piston Stirling Convertors Aided by Stirling Simulation Model

    NASA Technical Reports Server (NTRS)

    Regan, Timothy F.

    2004-01-01

    The free-piston Stirling convertor end-to-end modeling effort at the NASA Glenn Research Center has produced a software-based test bed in which free-piston Stirling convertors can be simulated and evaluated. The simulation model includes all the components of the convertor: the Stirling cycle engine, heat source, linear alternator, controller, and load. So far, it has been used in evaluating the performance of electronic controller designs. Three different controller design concepts were simulated using the model: 1) Controllers with parasitic direct current loading. 2) Controllers with parasitic alternating current loading. 3) Controllers that maintain a reference current. The free-piston Stirling convertor is an electromechanical device that operates at resonance. It is the function of the electronic load controller to ensure that the electrical load seen by the machine is always great enough to keep the amplitude of the piston and alternator oscillation at the rated value. This is done by regulating the load on the output bus. The controller monitors the instantaneous voltage, regulating it by switching loads called parasitic loads onto the bus whenever the bus voltage is too high and removing them whenever the voltage is too low. In the first type of controller, the monitor-ing and switching are done on the direct-current (dc) bus. In the second type, the alternating current bus is used. The model allows designers to test a controller concept before investing time in hardware. The simulation code used to develop the model also offers detailed models of digital and analog electronic components so that the resulting designs are realistic enough to translate directly into hardware circuits.

  20. Thermo-Mechanical Analyses of Dynamically Loaded Rubber Cylinders

    NASA Technical Reports Server (NTRS)

    Johnson, Arthur R.; Chen, Tzi-Kang

    2002-01-01

    Thick rubber components are employed by the Army to carry large loads. In tanks, rubber covers road wheels and track systems to protect roadways. It is difficult for design engineers to simulate the details of the hysteretic heating for large strain viscoelastic deformations. In this study, an approximation to the viscoelastic energy dissipated per unit time is investigated for use in estimating mechanically induced viscoelastic heating. Coupled thermo-mechanical simulations of large cyclic deformations of rubber cylinders are presented. The cylinders are first compressed axially and then cyclically loaded about the compressed state. Details of the algorithm and some computational issues are discussed. The coupled analyses are conducted for tall and short rubber cylinders both with and without imbedded metal disks.

  1. Quantifying and Reducing Uncertainty in Correlated Multi-Area Short-Term Load Forecasting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yannan; Hou, Zhangshuan; Meng, Da

    2016-07-17

    In this study, we represent and reduce the uncertainties in short-term electric load forecasting by integrating time series analysis tools including ARIMA modeling, sequential Gaussian simulation, and principal component analysis. The approaches are mainly focusing on maintaining the inter-dependency between multiple geographically related areas. These approaches are applied onto cross-correlated load time series as well as their forecast errors. Multiple short-term prediction realizations are then generated from the reduced uncertainty ranges, which are useful for power system risk analyses.

  2. Fatigue response of notched laminates subjected to tension-compression cyclic loads

    NASA Technical Reports Server (NTRS)

    Bakis, C. E.; Stinchcomb, W. W.

    1986-01-01

    The fatigue response of a ((0/45/90/-45)(sub s))(sub 4) T300-5208 graphite-epoxy laminate with a drilled center-hole subjected to various components of tensile and compressive cyclic loads was investigated. Damage evaluation techniques such as stiffness monitoring, penetrant-enhanced X-ray radiography, C-scan, laminate deply and residual strength measurement were used to establish the mechanisms of damage development as well as the effect of such damage on the laminate strength, stiffness and life. Damage modes consisted of transverse matrix cracks, initiating at the hole, in all plies, followed by delamination between plies of different orientation. A characteristic stiffness repsonse during cyclic loading at two load levels was identified and utilized a more reliable indicator of material and residual properties than accumulated cycles. For the load ratios of tension-compression loading, residual tensile strength increased significantly above the virgin strength early in the fatigue life and remained approximately constant to near the end of life. A technique developed for predicting delamination initiation sites along the hole boundary correlated well with experimental evidence.

  3. Effect of skull flexural properties on brain response during dynamic head loading - biomed 2013.

    PubMed

    Harrigan, T P; Roberts, J C; Ward, E E; Carneal, C M; Merkle, A C

    2013-01-01

    The skull-brain complex is typically modeled as an integrated structure, similar to a fluid-filled shell. Under dynamic loads, the interaction of the skull and the underlying brain, cerebrospinal fluid, and other tissue produces the pressure and strain histories that are the basis for many theories meant to describe the genesis of traumatic brain injury. In addition, local bone strains are of interest for predicting skull fracture in blunt trauma. However, the role of skull flexure in the intracranial pressure response to blunt trauma is complex. Since the relative time scales for pressure and flexural wave transmission across the skull are not easily separated, it is difficult to separate out the relative roles of the mechanical components in this system. This study uses a finite element model of the head, which is validated for pressure transmission to the brain, to assess the influence of skull table flexural stiffness on pressure in the brain and on strain within the skull. In a Human Head Finite Element Model, the skull component was modified by attaching shell elements to the inner and outer surfaces of the existing solid elements that modeled the skull. The shell elements were given the properties of bone, and the existing solid elements were decreased so that the overall stiffness along the surface of the skull was unchanged, but the skull table bending stiffness increased by a factor of 2.4. Blunt impact loads were applied to the frontal bone centrally, using LS-Dyna. The intracranial pressure predictions and the strain predictions in the skull were compared for models with and without surface shell elements, showing that the pressures in the mid-anterior and mid-posterior of the brain were very similar, but the strains in the skull under the loads and adjacent to the loads were decreased 15% with stiffer flexural properties. Pressure equilibration to nearly hydrostatic distributions occurred, indicating that the important frequency components for typical

  4. Dorsolateral Prefrontal Cortex GABA Concentration in Humans Predicts Working Memory Load Processing Capacity.

    PubMed

    Yoon, Jong H; Grandelis, Anthony; Maddock, Richard J

    2016-11-16

    The discovery of neural mechanisms of working memory (WM) would significantly enhance our understanding of complex human behaviors and guide treatment development for WM-related impairments found in neuropsychiatric conditions and aging. Although the dorsolateral prefrontal cortex (DLPFC) has long been considered critical for WM, we still know little about the neural elements and pathways within the DLPFC that support WM in humans. In this study, we tested whether an individual's DLPFC gamma-aminobutryic acid (GABA) content predicts individual differences in WM task performance using a novel behavioral approach. Twenty-three healthy adults completed a task that measured the unique contribution of major WM components (memory load, maintenance, and distraction resistance) to performance. This was done to address the possibility that components have differing GABA dependencies and the failure to parse WM into components would lead to missing true associations with GABA. The subjects then had their DLPFC GABA content measured by single-voxel proton magnetic spectroscopy. We found that individuals with lower DLPFC GABA showed greater performance degradation with higher load, accounting for 31% of variance, p (corrected) = 0.015. This relationship was component, neurochemical, and brain region specific. DLPFC GABA content did not predict performance sensitivity to other components tested; DLPFC glutamate + glutamine and visual cortical GABA content did not predict load sensitivity. These results confirm the involvement of DLPFC GABA in WM load processing in humans and implicate factors controlling DLPFC GABA content in the neural mechanisms of WM and its impairments. This study demonstrated for the first time that the amount of gamma-aminobutryic acid (GABA), the major inhibitory neurotransmitter of the brain, in an individual's prefrontal cortex predicts working memory (WM) task performance. Given that WM is required for many of the most characteristic cognitive and

  5. Lifing of Engine Components

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The successful development of advanced aerospace engines depends greatly on the capabilities of high performance materials and structures. Advanced materials, such as nickel based single crystal alloys, metal foam, advanced copper alloys, and ceramics matrix composites, have been engineered to provide higher engine temperature and stress capabilities. Thermal barrier coatings have been developed to improve component durability and fuel efficiency, by reducing the substrate hot wall metal temperature and protecting against oxidation and blanching. However, these coatings are prone to oxidation and delamination failures. In order to implement the use of these materials in advanced engines, it is necessary to understand and model the evolution of damage of the metal substrate as well as the coating under actual engine conditions. The models and the understanding of material behavior are utilized in the development of a life prediction methodology for hot section components. The research activities were focused on determining the stress and strain fields in an engine environment under combined thermo-mechanical loads to develop life prediction methodologies consistent with the observed damage formation of the coating and the substrates.

  6. A Component-Based Study of the Effect of Diameter on Bond and Anchorage Characteristics of Blind-Bolted Connections

    PubMed Central

    Amin, Muhammad Nasir; Zaheer, Salman; Alazba, Abdulrahman Ali; Saleem, Muhammad Umair; Niazi, Muhammad Umar Khan; Khurram, Nauman; Amin, Muhammad Tahir

    2016-01-01

    Structural hollow sections are gaining worldwide importance due to their structural and architectural advantages over open steel sections. The only obstacle to their use is their connection with other structural members. To overcome the obstacle of tightening the bolt from one side has given birth to the concept of blind bolts. Blind bolts, being the practical solution to the connection hindrance for the use of hollow and concrete filled hollow sections play a vital role. Flowdrill, the Huck High Strength Blind Bolt and the Lindapter Hollobolt are the well-known commercially available blind bolts. Although the development of blind bolts has largely resolved this issue, the use of structural hollow sections remains limited to shear resistance. Therefore, a new modified version of the blind bolt, known as the “Extended Hollo-Bolt” (EHB) due to its enhanced capacity for bonding with concrete, can overcome the issue of low moment resistance capacity associated with blind-bolted connections. The load transfer mechanism of this recently developed blind bolt remains unclear, however. This study uses a parametric approach to characterising the EHB, using diameter as the variable parameter. Stiffness and load-carrying capacity were evaluated at two different bolt sizes. To investigate the load transfer mechanism, a component-based study of the bond and anchorage characteristics was performed by breaking down the EHB into its components. The results of the study provide insight into the load transfer mechanism of the blind bolt in question. The proposed component-based model was validated by a spring model, through which the stiffness of the EHB was compared to that of its components combined. The combined stiffness of the components was found to be roughly equivalent to that of the EHB as a whole, validating the use of this component-based approach. PMID:26901866

  7. A Component-Based Study of the Effect of Diameter on Bond and Anchorage Characteristics of Blind-Bolted Connections.

    PubMed

    Amin, Muhammad Nasir; Zaheer, Salman; Alazba, Abdulrahman Ali; Saleem, Muhammad Umair; Niazi, Muhammad Umar Khan; Khurram, Nauman; Amin, Muhammad Tahir

    2016-01-01

    Structural hollow sections are gaining worldwide importance due to their structural and architectural advantages over open steel sections. The only obstacle to their use is their connection with other structural members. To overcome the obstacle of tightening the bolt from one side has given birth to the concept of blind bolts. Blind bolts, being the practical solution to the connection hindrance for the use of hollow and concrete filled hollow sections play a vital role. Flowdrill, the Huck High Strength Blind Bolt and the Lindapter Hollobolt are the well-known commercially available blind bolts. Although the development of blind bolts has largely resolved this issue, the use of structural hollow sections remains limited to shear resistance. Therefore, a new modified version of the blind bolt, known as the "Extended Hollo-Bolt" (EHB) due to its enhanced capacity for bonding with concrete, can overcome the issue of low moment resistance capacity associated with blind-bolted connections. The load transfer mechanism of this recently developed blind bolt remains unclear, however. This study uses a parametric approach to characterising the EHB, using diameter as the variable parameter. Stiffness and load-carrying capacity were evaluated at two different bolt sizes. To investigate the load transfer mechanism, a component-based study of the bond and anchorage characteristics was performed by breaking down the EHB into its components. The results of the study provide insight into the load transfer mechanism of the blind bolt in question. The proposed component-based model was validated by a spring model, through which the stiffness of the EHB was compared to that of its components combined. The combined stiffness of the components was found to be roughly equivalent to that of the EHB as a whole, validating the use of this component-based approach.

  8. A study of facilities and fixtures for testing of a high speed civil transport wing component

    NASA Technical Reports Server (NTRS)

    Cerro, J. A.; Vause, R. F.; Bowman, L. M.; Jensen, J. K.; Martin, C. J., Jr.; Stockwell, A. E.; Waters, W. A., Jr.

    1996-01-01

    A study was performed to determine the feasibility of testing a large-scale High Speed Civil Transport wing component in the Structures and Materials Testing Laboratory in Building 1148 at NASA Langley Research Center. The report includes a survey of the electrical and hydraulic resources and identifies the backing structure and floor hard points which would be available for reacting the test loads. The backing structure analysis uses a new finite element model of the floor and backstop support system in the Structures Laboratory. Information on the data acquisition system and the thermal power requirements is also presented. The study identified the hardware that would be required to test a typical component, including the number and arrangement of hydraulic actuators required to simulate expected flight loads. Load introduction and reaction structure concepts were analyzed to investigate the effects of experimentally induced boundary conditions.

  9. A calibration rig for multi-component internal strain gauge balance using the new design-of-experiment (DOE) approach

    NASA Astrophysics Data System (ADS)

    Nouri, N. M.; Mostafapour, K.; Kamran, M.

    2018-02-01

    In a closed water-tunnel circuit, the multi-component strain gauge force and moment sensor (also known as balance) are generally used to measure hydrodynamic forces and moments acting on scaled models. These balances are periodically calibrated by static loading. Their performance and accuracy depend significantly on the rig and the method of calibration. In this research, a new calibration rig was designed and constructed to calibrate multi-component internal strain gauge balances. The calibration rig has six degrees of freedom and six different component-loading structures that can be applied separately and synchronously. The system was designed based on the applicability of formal experimental design techniques, using gravity for balance loading and balance positioning and alignment relative to gravity. To evaluate the calibration rig, a six-component internal balance developed by Iran University of Science and Technology was calibrated using response surface methodology. According to the results, calibration rig met all design criteria. This rig provides the means by which various methods of formal experimental design techniques can be implemented. The simplicity of the rig saves time and money in the design of experiments and in balance calibration while simultaneously increasing the accuracy of these activities.

  10. Analog synthesized fast-variable linear load

    NASA Technical Reports Server (NTRS)

    Niedra, Janis M.

    1991-01-01

    A several kilowatt power level, fast-variable linear resistor was synthesized by using analog components to control the conductance of power MOSFETs. Risetimes observed have been as short as 500 ns with respect to the control signal and 1 to 2 microseconds with respect to the power source voltage. A variant configuration of this load that dissipates a constant power set by a control signal is indicated. Replacement of the MOSFETs by static induction transistors (SITs) to increase power handling, speed and radiation hardness is discussed.

  11. High-temperature, high-pressure bonding of nested tubular metallic components

    DOEpatents

    Quinby, T.C.

    A tool is described for effecting high-temperature, high-compression bonding between the confronting faces of nested, tubular, metallic components. In a typical application, the tool is used to produce tubular target assemblies for irradiation in nuclear reactors or particle accelerators. The target assembly comprising a uranum foil and an aluninum-alloy substrate. The tool is composed of graphite. It comprises a tubular restraining member in which a mechanically expandable tubular core is mounted to form an annulus. The components to be bonded are mounted in nested relation in the annulus. The expandable core is formed of individually movable, axially elongated segments whose outer faces cooperatively define a cylindrical pressing surface and whose inner faces cooperatively define two opposed, inwardly tapered, axial bores. Tapered rams extend into the bores. The loaded tool is mounted in a conventional hot-press provided with evacuation means, heaters for maintaining its interior at bonding temperature, and hydraulic cylinders for maintaining a selected inwardly directed pressure on the tapered rams. With the hot-press evacuated and the loaded tool at the desired temperature, the cylinders are actuated to apply the selected pressure to the rams. The rams in turn expand the segmented core to maintain the nested components in compression against the restraining member. These conditions are maintained until the confronting faces of the nested components are joined in a continuous, uniform bond characterized by high thermal conductivity.

  12. High-temperature, high-pressure bonding of nested tubular metallic components

    DOEpatents

    Quinby, Thomas C.

    1980-01-01

    This invention is a tool for effecting high-temperature, high-compression bonding between the confronting faces of nested, tubular, metallic components. In a typical application, the tool is used to produce tubular target assemblies for irradiation in nuclear reactors or particle accelerators, the target assembly comprising a uranium foil and an aluminum-alloy substrate. The tool preferably is composed throughout of graphite. It comprises a tubular restraining member in which a mechanically expandable tubular core is mounted to form an annulus with the member. The components to be bonded are mounted in nested relation in the annulus. The expandable core is formed of individually movable, axially elongated segments whose outer faces cooperatively define a cylindrical pressing surface and whose inner faces cooperatively define two opposed, inwardly tapered, axial bores. Tapered rams extend respectively into the bores. The loaded tool is mounted in a conventional hot-press provided with evacuation means, heaters for maintaining its interior at bonding temperature, and hydraulic cylinders for maintaining a selected inwardly directed pressure on the tapered rams. With the hot-press evacuated and the loaded tool at the desired temperature, the cylinders are actuated to apply the selected pressure to the rams. The rams in turn expand the segmented core to maintain the nested components in compression against the restraining member. These conditions are maintained until the confronting faces of the nested components are joined in a continuous, uniform bond characterized by high thermal conductivity.

  13. Development of a 5-Component Balance for Water Tunnel Applications

    NASA Technical Reports Server (NTRS)

    Suarez, Carlos J.; Kramer, Brian R.; Smith, Brooke C.

    1999-01-01

    The principal objective of this research/development effort was to develop a multi-component strain gage balance to measure both static and dynamic forces and moments on models tested in flow visualization water tunnels. A balance was designed that allows measuring normal and side forces, and pitching, yawing and rolling moments (no axial force). The balance mounts internally in the model and is used in a manner typical of wind tunnel balances. The key differences between a water tunnel balance and a wind tunnel balance are the requirement for very high sensitivity since the loads are very low (typical normal force is 90 grams or 0.2 lbs), the need for water proofing the gage elements, and the small size required to fit into typical water tunnel models. The five-component balance was calibrated and demonstrated linearity in the responses of the primary components to applied loads, very low interactions between the sections and no hysteresis. Static experiments were conducted in the Eidetics water tunnel with delta wings and F/A-18 models. The data were compared to forces and moments from wind tunnel tests of the same or similar configurations. The comparison showed very good agreement, providing confidence that loads can be measured accurately in the water tunnel with a relatively simple multi-component internal balance. The success of the static experiments encouraged the use of the balance for dynamic experiments. Among the advantages of conducting dynamic tests in a water tunnel are less demanding motion and data acquisition rates than in a wind tunnel test (because of the low-speed flow) and the capability of performing flow visualization and force/moment (F/M) measurements simultaneously with relative simplicity. This capability of simultaneous flow visualization and for F/M measurements proved extremely useful to explain the results obtained during these dynamic tests. In general, the development of this balance should encourage the use of water tunnels for a

  14. Effect of ELMs on deuterium-loaded-tungsten plasma facing components

    NASA Astrophysics Data System (ADS)

    Umstadter, K. R.; Rudakov, D. L.; Wampler, W.; Watkins, J. G.; Wong, C. P. C.

    2011-08-01

    Prior heat pulse testing of plasma facing components (PFCs) has been completed in vacuum environments without the presence of background plasma. Edge localized modes (ELMs) will not be this kind of isolated event and one should know the effect of a plasma background during these transients. Heat-pulse experiments have been conducted in the PISCES-A device utilizing laser heating in a divertor-like plasma background. Initial results indicate that the erosion of PFCs is enhanced as compared to heat pulse or plasma only tests. To determine if the enhanced erosion effect is a phenomena only witnessed in the laboratory PISCES device, tungsten and graphite samples were exposed to plasmas in the lower divertor of the DIII-D tokamak using the Divertor Material Evaluation System (DiMES). Mass loss analysis indicates that materials that contain significant deuterium prior to experiencing a transient heating event will erode faster than those that have no or little retained deuterium.

  15. Creep Life Prediction of Ceramic Components Using the Finite Element Based Integrated Design Program (CARES/Creep)

    NASA Technical Reports Server (NTRS)

    Jadaan, Osama M.; Powers, Lynn M.; Gyekenyesi, John P.

    1997-01-01

    The desirable properties of ceramics at high temperatures have generated interest in their use for structural applications such as in advanced turbine systems. Design lives for such systems can exceed 10,000 hours. Such long life requirements necessitate subjecting the components to relatively low stresses. The combination of high temperatures and low stresses typically places failure for monolithic ceramics in the creep regime. The objective of this work is to present a design methodology for predicting the lifetimes of structural components subjected to multiaxial creep loading. This methodology utilizes commercially available finite element packages and takes into account the time varying creep stress distributions (stress relaxation). In this methodology, the creep life of a component is divided into short time steps, during which, the stress and strain distributions are assumed constant. The damage, D, is calculated for each time step based on a modified Monkman-Grant creep rupture criterion. For components subjected to predominantly tensile loading, failure is assumed to occur when the normalized accumulated damage at any point in the component is greater than or equal to unity.

  16. Footwear Matters: Influence of Footwear and Foot Strike on Load Rates during Running.

    PubMed

    Rice, Hannah M; Jamison, Steve T; Davis, Irene S

    2016-12-01

    Running with a forefoot strike (FFS) pattern has been suggested to reduce the risk of overuse running injuries, due to a reduced vertical load rate compared with rearfoot strike (RFS) running. However, resultant load rate has been reported to be similar between foot strikes when running in traditional shoes, leading to questions regarding the value of running with a FFS. The influence of minimal footwear on the resultant load rate has not been considered. This study aimed to compare component and resultant instantaneous loading rate (ILR) between runners with different foot strike patterns in their habitual footwear conditions. Twenty-nine injury-free participants (22 men, seven women) ran at 3.13 m·s along a 30-m runway, with their habitual foot strike and footwear condition. Ground reaction force data were collected. Peak ILR values were compared between three conditions; those who habitually run with an RFS in standard shoes, with an FFS in standard shoes, and with an FFS in minimal shoes. Peak resultant, vertical, lateral, and medial ILR were lower (P < 0.001) when running in minimal shoes with an FFS than in standard shoes with either foot strike. When running with an FFS, peak posterior ILR were lower (P < 0.001) in minimal than standard shoes. When running in a standard shoe, peak resultant and component ILR were similar between footstrike patterns. However, load rates were lower when running in minimal shoes with a FFS, compared with running in standard shoes with either foot strike. Therefore, it appears that footwear alters the load rates during running, even with similar foot strike patterns.

  17. Effect of component compression on the initial performance of an IPV nickel-hydrogen cell. [Individual Pressure Vessel

    NASA Technical Reports Server (NTRS)

    Gahn, Randall F.

    1987-01-01

    An experimental method was developed for evaluating the effect of component compression on the charge and discharge voltage characteristics of a 3 1/2 in. diameter boiler plate cell. A standard boiler plate pressure vessel was modified by the addition of a mechanical feedthrough on the bottom of the vessel which permitted different compressions to be applied to the components without disturbing the integrity of the stack. Compression loadings from 0.94 to 27.4 psi were applied by suspending weights from the feedthrough rod. Cell voltages were measured for 0.96-C, 55-min charge and for 1.37-C, 35-min and 2-C, 24-min discharges. An initial change in voltage performance on both charge and discharge as the loading increased was attributed to seating of the components. Subsequent variation of the compression from 2.97 to 27.4 psi caused only minor changes in either the charge or the discharge voltages. Several one month open-circuit voltage stands and 1100 cycles under LEO conditions at the maximum loading have produced no change in performance.

  18. Analysis of transient state in HTS tapes under ripple DC load current

    NASA Astrophysics Data System (ADS)

    Stepien, M.; Grzesik, B.

    2014-05-01

    The paper concerns the analysis of transient state (quench transition) in HTS tapes loaded with the current having DC component together with a ripple component. Two shapes of the ripple were taken into account: sinusoidal and triangular. Very often HTS tape connected to a power electronic current supply (i.e. superconducting coil for SMES) that delivers DC current with ripples and it needs to be examined under such conditions. Additionally, measurements of electrical (and thermal) parameters under such ripple excitation is useful to tape characterization in broad range of load currents. The results presented in the paper were obtained using test bench which contains programmable DC supply and National Instruments data acquisition system. Voltage drops and load currents were measured vs. time. Analysis of measured parameters as a function of the current was used to tape description with quench dynamics taken into account. Results of measurements were also used to comparison with the results of numerical modelling based on FEM. Presented provisional results show possibility to use results of measurements in transient state to prepare inverse models of superconductors and their detailed numerical modelling.

  19. A new crank arm based load cell, with built-in conditioning circuit and strain gages, to measure the components of the force applied by a cyclist.

    PubMed

    Pigatto, Andre V; Moura, Karina O A; Favieiro, Gabriela W; Balbinot, Alexandre

    2016-08-01

    This report describes the development of a force platform based on instrumented load cells with built-in conditioning circuit and strain gages to measure and acquire the components of the force that is applied to the bike crank arm during pedaling in real conditions, and save them on a SD Card. To accomplish that, a complete new crank arm 3D solid model was developed in the SolidWorks, with dimensions equivalent to a commercial crank set and compatible with a conventional road bike, but with a compartment to support all the electronics necessary to measure 3 components of the force applied to the pedal during pedaling. After that, a 6082 T6 Aluminum Crankset based on the solid model was made and instrumented with three Wheatstone bridges each. The signals were conditioned on a printed circuit board, made on SMD technology, and acquired using a microcontroller with a DAC. Static deformation analysis showed a linearity error below 0.6% for all six channels. Dynamic analysis showed a natural frequency above 136Hz. A one-factor experiment design was performed with 5 amateur cyclists. ANOVA showed that the cyclist weight causes significant variation on the force applied to the bicycle pedal and its bilateral symmetry.

  20. Load theory behind the wheel; perceptual and cognitive load effects.

    PubMed

    Murphy, Gillian; Greene, Ciara M

    2017-09-01

    Perceptual Load Theory has been proposed as a resolution to the longstanding early versus late selection debate in cognitive psychology. There is much evidence in support of Load Theory but very few applied studies, despite the potential for the model to shed light on everyday attention and distraction. Using a driving simulator, the effect of perceptual and cognitive load on drivers' visual search was assessed. The findings were largely in line with Load Theory, with reduced distractor processing under high perceptual load, but increased distractor processing under high cognitive load. The effect of load on driving behaviour was also analysed, with significant differences in driving behaviour under perceptual and cognitive load. In addition, the effect of perceptual load on drivers' levels of awareness was investigated. High perceptual load significantly increased inattentional blindness and deafness, for stimuli that were both relevant and irrelevant to driving. High perceptual load also increased RTs to hazards. The current study helps to advance Load Theory by illustrating its usefulness outside of traditional paradigms. There are also applied implications for driver safety and roadway design, as the current study suggests that perceptual and cognitive load are important factors in driver attention. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  1. In-Situ Load System for Calibrating and Validating Aerodynamic Properties of Scaled Aircraft in Ground-Based Aerospace Testing Applications

    NASA Technical Reports Server (NTRS)

    Lynn, Keith C. (Inventor); Acheson, Michael J. (Inventor); Commo, Sean A. (Inventor); Landman, Drew (Inventor)

    2016-01-01

    An In-Situ Load System for calibrating and validating aerodynamic properties of scaled aircraft in ground-based aerospace testing applications includes an assembly having upper and lower components that are pivotably interconnected. A test weight can be connected to the lower component to apply a known force to a force balance. The orientation of the force balance can be varied, and the measured forces from the force balance can be compared to applied loads at various orientations to thereby develop calibration factors.

  2. Nuclear component horizontal seismic restraint

    DOEpatents

    Snyder, Glenn J.

    1988-01-01

    A nuclear component horizontal seismic restraint. Small gaps limit horizontal displacement of components during a seismic occurrence and therefore reduce dynamic loadings on the free lower end. The reactor vessel and reactor guard vessel use thicker section roll-forged rings welded between the vessel straight shell sections and the bottom hemispherical head sections. The inside of the reactor guard vessel ring forging contains local vertical dovetail slots and upper ledge pockets to mount and retain field fitted and installed blocks. As an option, the horizontal displacement of the reactor vessel core support cone can be limited by including shop fitted/installed local blocks in opposing alignment with the reactor vessel forged ring. Beams embedded in the wall of the reactor building protrude into apertures in the thermal insulation shell adjacent the reactor guard vessel ring and have motion limit blocks attached thereto to provide to a predetermined clearance between the blocks and reactor guard vessel ring.

  3. Strain Rate Sensitivity of Epoxy Resin in Tensile and Shear Loading

    NASA Technical Reports Server (NTRS)

    Gilat, Amos; Goldberg, Robert K.; Roberts, Gary D.

    2005-01-01

    The mechanical response of E-862 and PR-520 resins is investigated in tensile and shear loadings. At both types of loading the resins are tested at strain rates of about 5x10(exp 5), 2, and 450 to 700 /s. In addition, dynamic shear modulus tests are carried out at various frequencies and temperatures, and tensile stress relaxation tests are conducted at room temperature. The results show that the toughened PR-520 resin can carry higher stresses than the untoughened E-862 resin. Strain rate has a significant effect on the response of both resins. In shear both resins show a ductile response with maximum stress that is increasing with strain rate. In tension a ductile response is observed at low strain rate (approx. 5x10(exp 5) /s), and brittle response is observed at the medium and high strain rates (2, and 700 /s). The hydrostatic component of the stress in the tensile tests causes premature failure in the E-862 resin. Localized deformation develops in the PR-520 resin when loaded in shear. An internal state variable constitutive model is proposed for modeling the response of the resins. The model includes a state variable that accounts for the effect of the hydrostatic component of the stress on the deformation.

  4. Data Partitioning and Load Balancing in Parallel Disk Systems

    NASA Technical Reports Server (NTRS)

    Scheuermann, Peter; Weikum, Gerhard; Zabback, Peter

    1997-01-01

    Parallel disk systems provide opportunities for exploiting I/O parallelism in two possible waves, namely via inter-request and intra-request parallelism. In this paper we discuss the main issues in performance tuning of such systems, namely striping and load balancing, and show their relationship to response time and throughput. We outline the main components of an intelligent, self-reliant file system that aims to optimize striping by taking into account the requirements of the applications and performs load balancing by judicious file allocation and dynamic redistributions of the data when access patterns change. Our system uses simple but effective heuristics that incur only little overhead. We present performance experiments based on synthetic workloads and real-life traces.

  5. Eccentric loading of microtensile specimens

    NASA Technical Reports Server (NTRS)

    Trapp, Mark A.

    2004-01-01

    Ceramic materials have a lower density than most metals and are capable of performing at extremely high temperatures. The utility of these materials is obvious; however, the fracture strength of brittle materials is not easily predicted and often varies greatly. Characteristically, brittle materials lack ductility and do not yield as other materials. Ceramics materials are naturally populated with microscopic cracks due to fabrication techniques. Upon application of a load, stress concentration occurs at the root of these cracks and fracture will eventually occur at some not easily predicted strength. In order to use ceramics in any application some design methodology must exist from which a component can be placed into service. This design methodology is CARES/LIFE (Ceramics Analysis and Reliability Evaluation of Structures) which has been developed and refined at NASA over the last several decades. The CARES/LIFE computer program predicts the probability of failure of a ceramic component over its service life. CARES combines finite element results from a commercial FE (finite element) package such as ANSYS and experimental results to compute the abovementioned probability of failure. Over the course of several tests CARES has had great success in predicting the life of various ceramic components and has been used throughout industry. The latest challenge is to verify that CARES is valid for MEMS (Micro-Electro Mechanical Systems). To investigate a series of microtensile specimens were fractured in the laboratory. From this data, material parameters were determined and used to predict a distribution of strength for other specimens that exhibit a known stress concentration. If the prediction matches the experimental results then these parameters can be applied to a desired component outside of the laboratory. During testing nearly half of the tensile Specimens fractured at a location that was not expected and hence not captured in the FE model. It has been my duty

  6. A design procedure for the phase-controlled parallel-loaded resonant inverter

    NASA Technical Reports Server (NTRS)

    King, Roger J.

    1989-01-01

    High-frequency-link power conversion and distribution based on a resonant inverter (RI) has been recently proposed. The design of several topologies is reviewed, and a simple approximate design procedure is developed for the phase-controlled parallel-loaded RI. This design procedure seeks to ensure the benefits of resonant conversion and is verified by data from a laboratory 2.5 kVA, 20-kHz converter. A simple phasor analysis is introduced as a useful approximation for design purposes. The load is considered to be a linear impedance (or an ac current sink). The design procedure is verified using a 2.5-kVA 20-kHz RI. Also obtained are predictable worst-case ratings for each component of the resonant tank circuit and the inverter switches. For a given load VA requirement, below-resonance operation is found to result in a significantly lower tank VA requirement. Under transient conditions such as load short-circuit, a reversal of the expected commutation sequence is possible.

  7. Weight minimization of structural components for launch in space shuttle

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Gendy, Atef S.; Hopkins, Dale A.; Berke, Laszlo

    1994-01-01

    Minimizing the weight of structural components of the space station launched into orbit in a space shuttle can save cost, reduce the number of space shuttle missions, and facilitate on-orbit fabrication. Traditional manual design of such components, although feasible, cannot represent a minimum weight condition. At NASA Lewis Research Center, a design capability called CometBoards (Comparative Evaluation Test Bed of Optimization and Analysis Routines for the Design of Structures) has been developed especially for the design optimization of such flight components. Two components of the space station - a spacer structure and a support system - illustrate the capability of CometBoards. These components are designed for loads and behavior constraints that arise from a variety of flight accelerations and maneuvers. The optimization process using CometBoards reduced the weights of the components by one third from those obtained with traditional manual design. This paper presents a brief overview of the design code CometBoards and a description of the space station components, their design environments, behavior limitations, and attributes of their optimum designs.

  8. The impact of microwave stray radiation to in-vessel diagnostic components

    NASA Astrophysics Data System (ADS)

    Hirsch, M.; Laqua, H. P.; Hathiramani, D.; Oosterbeek, J.; Baldzuhn, J.; Biedermann, C.; v d Brand, H.; Cardella, A.; Erckmann, V.; Jimenez, R.; König, R.; Köppen, M.; Parquay, S.; Zhang, D.; W7-X Team

    2014-08-01

    Microwave stray radiation resulting from unabsorbed multiple reflected ECRH / ECCD beams may cause severe heating of microwave absorbing in-vessel components such as gaskets, bellows, windows, ceramics and cable insulations. In view of long-pulse operation of WENDELSTEIN-7X the MIcrowave STray RAdiation Launch facility, MISTRAL, allows to test in-vessel components in the environment of isotropic 140 GHz microwave radiation at power load of up to 50 kW/m2 over 30 min. The results show that both, sufficient microwave shielding measures and cooling of all components are mandatory. If shielding/cooling measures of in-vessel diagnostic components are not efficient enough, the level of stray radiation may be (locally) reduced by dedicated absorbing ceramic coatings on cooled structures.

  9. Damage and failure behavior of metal matrix composites under biaxial loads

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, Steven Wayne

    Metal matrix composites (MMCs) are being considered for increased use in structures that require the ductility and damage tolerance of the metal matrix and the enhanced strength and creep resistance at elevated temperatures of high performance fibers. Particularly promising for advanced aerospace engines and airframes are SiC fiber/titanium matrix composites (TMCs). A large program was undertaken in the Air Force to characterize the deformation and failure behaviors of TMCs and to develop computational models that can be used for component design. The effort reported here focused on a SiC SCS-6/Timetal 21S composite under biaxial loading conditions. Biaxial loading conditions are important because multiaxial stresses have been shown to influence the strength and ductility of engineering materials and, in general, structural components are subjected to multiaxial loads. The TMC material response, including stress-strain curves and failure surfaces, was measured using a combination of off-axis uniaxial tension and compression tests and biaxial cruciform tests. The off-axis tests produce combinations of in-plane tension, compression, and shear stresses, the mix of which are controlled by the relative angle between the fiber and specimen axes. The biaxial cruciform tests allowed independent control over the tensile or compressive loads in the fiber and transverse directions. The results of these characterization tests were used to develop a microstructural constitutive model and failure criteria. The basis of the micromechanical constitutive model is a representative unit volume of the MMC with a periodic array of fibers. The representative unit volume is divided into a fiber and three matrix cells for which the microstructural equilibrium and compatibility equations can be analyzed. The resulting constitutive model and associated failure criteria can be used to predict the material behavior under general loading conditions.

  10. Load research manual. Volume 3: Load research for advanced technologies

    NASA Astrophysics Data System (ADS)

    1980-11-01

    Technical guidelines for electric utility load research are presented. Special attention is given to issues raised by the load reporting requirements of the Public Utility Regulatory Policies Act of 1978 and to problems faced by smaller utilities that are initiating load research programs. The manual includes guides to load research literature and glossaries of load research and statistical terms. Special load research procedures are presented for solar, wind, and cogeneration technologies.

  11. Estimating Viscoelastic Deformation Due to Seasonal Loading

    NASA Technical Reports Server (NTRS)

    Sauber, Jeanne

    2015-01-01

    Scientists have been making summer-­-time geodetic measurements in south central Alaska for decades to estimate the rate at which a continental-­-ocean terrane is accreting to the North American continent. Southern Alaska has big earthquakes every century and large, rapidly changing glaciers. In the last decade, primarily as part of the EarthScope Plate Boundary Observatory project, continuous GPS measurements have recorded the response of sites such as the near-­-coastal geodetic site, AB35 to competing processes: uplift and movement to the northwest due to tectonic forces and the response of the solid Earth to seasonal and longer-­-term changes in the cryosphere (snow and ice) surrounding the site. Which process causes the largest displacements of the site? Figure 1 (Blewitt, Nevada Geodetic Lab, 2015) shows the Northward, Eastward, and Upward motion of AB35 between 2007 and 2015. The site is moving rapidly to the north and west reflecting the tectonic convergence of site toward interior Alaska but there is small wiggle on the North component reflecting seasonal displacements of the site associated with snow loading and unloading. However, the Up component, shows a large seasonal signal due to snow loading in the winter (down) and ice and snow melting in the warmer months (site goes up). Between 2007 and the present, the site position is slowly moving upward, due to tectonic forcing but probably associated with longer-­- term ice melting as well. We are using the CIG finite element modeling (FEM) program Pylith to estimate the surface displacements and stresses associated with seasonal loading changes (top figure and Figure 2 far right) for water year 2012, 2011.8 - 2012.8) and the longer-­-term retreat of the surrounding glaciers.

  12. Evaluation of flawed composite structural components under static and cyclic loading. [fatigue life of graphite-epoxy composite materials

    NASA Technical Reports Server (NTRS)

    Porter, T. R.

    1979-01-01

    The effects of initial defects on the fatigue and fracture response of graphite-epoxy composite laminates are presented. The structural laminates investigated were a typical angle ply laminate, a polar/hoop wound pressure vessel laminate, and a typical engine fan blade laminate. Defects investigated were full and half penetration circular holes, full and half penetration slits, and countersink holes. The effects of the defect size and type on the static fracture strength, fatigue performance, and residual static strength are shown as well as the results of loadings on damage propagation in composite laminates. The data obtained were used to define proof test levels as a qualification procedure in composite structure subjected to cyclic loading.

  13. Opposite effects of capacity load and resolution load on distractor processing.

    PubMed

    Zhang, Weiwei; Luck, Steven J

    2015-02-01

    According to the load theory of attention, an increased perceptual load reduces distractor processing whereas an increased working memory load facilitates distractor processing. Here we raise the possibility that the critical distinction may instead be between an emphasis on resolution and an emphasis on capacity. That is, perceptual load manipulations typically emphasize resolution (fine-grained discriminations), whereas working memory load manipulations typically emphasize capacity (simultaneous processing of multiple relevant stimuli). To test the plausibility of this hypothesis, we used a visual working memory task that emphasized either the number of items to be stored (capacity load, retaining 2 vs. 4 colors) or the precision of the representations (resolution load, detecting small vs. large color changes). We found that an increased capacity load led to increased flanker interference (a measure of distractor processing), whereas an increased resolution load led to reduced flanker interference. These opposite effects of capacity load and resolution load on distractor processing mirror the previously described opposite effects of perceptual load and working memory load.

  14. A Universal Threshold for the Assessment of Load and Output Residuals of Strain-Gage Balance Data

    NASA Technical Reports Server (NTRS)

    Ulbrich, N.; Volden, T.

    2017-01-01

    A new universal residual threshold for the detection of load and gage output residual outliers of wind tunnel strain{gage balance data was developed. The threshold works with both the Iterative and Non{Iterative Methods that are used in the aerospace testing community to analyze and process balance data. It also supports all known load and gage output formats that are traditionally used to describe balance data. The threshold's definition is based on an empirical electrical constant. First, the constant is used to construct a threshold for the assessment of gage output residuals. Then, the related threshold for the assessment of load residuals is obtained by multiplying the empirical electrical constant with the sum of the absolute values of all first partial derivatives of a given load component. The empirical constant equals 2.5 microV/V for the assessment of balance calibration or check load data residuals. A value of 0.5 microV/V is recommended for the evaluation of repeat point residuals because, by design, the calculation of these residuals removes errors that are associated with the regression analysis of the data itself. Data from a calibration of a six-component force balance is used to illustrate the application of the new threshold definitions to real{world balance calibration data.

  15. Community-driven demand creation for the use of routine viral load testing: a model to scale up routine viral load testing.

    PubMed

    Killingo, Bactrin M; Taro, Trisa B; Mosime, Wame N

    2017-11-01

    HIV treatment outcomes are dependent on the use of viral load measurement. Despite global and national guidelines recommending the use of routine viral load testing, these policies alone have not translated into widespread implementation or sufficiently increased access for people living with HIV (PLHIV). Civil society and communities of PLHIV recognize the need to close this gap and to enable the scale up of routine viral load testing. The International Treatment Preparedness Coalition (ITPC) developed an approach to community-led demand creation for the use of routine viral load testing. Using this Community Demand Creation Model, implementers follow a step-wise process to capacitate and empower communities to address their most pressing needs. This includes utlizing a specific toolkit that includes conducting a baseline assessment, developing a treatment education toolkit, organizing mobilization workshops for knowledge building, provision of small grants to support advocacy work and conducting benchmark evaluations. The Community Demand Creation Model to increase demand for routine viral load testing services by PLHIV has been delivered in diverse contexts including in the sub-Saharan African, Asian, Latin American and the Caribbean regions. Between December 2015 and December 2016, ITPC trained more than 240 PLHIV activists, and disbursed US$90,000 to network partners in support of their national advocacy work. The latter efforts informed a regional, community-driven campaign calling for domestic investment in the expeditious implementation of national viral load testing guidelines. HIV treatment education and community mobilization are critical components of demand creation for access to optimal HIV treatment, especially for the use of routine viral load testing. ITPC's Community Demand Creation Model offers a novel approach to achieving this goal. © 2017 The Authors. Journal of the International AIDS Society published by John Wiley & sons Ltd on behalf of

  16. The contact mechanics and occurrence of edge loading in modular metal-on-polyethylene total hip replacement during daily activities.

    PubMed

    Hua, Xijin; Li, Junyan; Jin, Zhongmin; Fisher, John

    2016-06-01

    The occurrence of edge loading in hip joint replacement has been associated with many factors such as prosthetic design, component malposition and activities of daily living. The present study aimed to quantify the occurrence of edge loading/contact at the articulating surface and to evaluate the effect of cup angles and edge loading on the contact mechanics of a modular metal-on-polyethylene (MoP) total hip replacement (THR) during different daily activities. A three-dimensional finite element model was developed based on a modular MoP bearing system. Different cup inclination and anteversion angles were modelled and six daily activities were considered. The results showed that edge loading was predicted during normal walking, ascending and descending stairs activities under steep cup inclination conditions (≥55°) while no edge loading was observed during standing up, sitting down and knee bending activities. The duration of edge loading increased with increased cup inclination angles and was affected by the cup anteversion angles. Edge loading caused elevated contact pressure at the articulating surface and substantially increased equivalent plastic strain of the polyethylene liner. The present study suggested that correct positioning the component to avoid edge loading that may occur during daily activities is important for MoP THR in clinical practice. Copyright © 2016. Published by Elsevier Ltd.

  17. Telomere length in bipolar disorder and lithium response.

    PubMed

    Squassina, Alessio; Pisanu, Claudia; Corbett, Nathan; Alda, Martin

    2017-06-01

    Telomeres consist of exanucleotide tandem repeats and proteins complexes at the end of chromosome ends. Telomeres shorten at each cell division, and as such telomere length is a marker of cellular age. Accelerated telomere shortening and cell senescence have been associated with a number of chronic medical conditions, including psychiatric disorders, where increased prevalence of age-related disorders and shorter telomere length have been reported. Shorter telomeres in psychiatric patients are thought to be the consequence of allostatic load, consisting in the overactivation of allostatic systems due to chronic exposure to severe medical conditions and failure to adapt to chronic stressful stimuli. Most of the studies on telomere length in psychiatry have focused on major depressive disorder, but recent findings have shown shorter leukocyte telomere length in bipolar disorder patients and suggested that lithium may counteract telomeres shortening. These findings provided new insights into the pathophysiology of bipolar disorder and the mechanism of action of lithium. In this review we will present findings from the literature on telomere length in bipolar disorder, with a specific focus on lithium. We will also discuss advances and limitations of published work as well as methodological issues and potential confounding factors that should be taken into account when designing research protocols to study telomere length. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  18. [Development of biphasic drug-loading lipid emulsion of Salvia miltiorrhiza and its quality evaluation].

    PubMed

    Wang, Yin-Yan; Li, Xi; Lai, Xiu-Jun; Li, Wei; Yang, Ya-Jing; Chu, Ting; Mao, Sheng-Jun

    2014-10-01

    The feasibility of simultaneously loading both liposoluble and water-soluble components of Salvia miltiorrhiza in emulsion was discussed, in order to provide new ideas in comprehensive application of effective components in S. miltiorrhiza in terms of technology of pharmaceutics. With tanshinone II (A) and salvianolic acid B as raw materials, soybean phospholipid and poloxamer 188 as emulsifiers, and glycerin as isoosmotic regulator, the central composite design-response surface method was employed to optimize the prescription. The coarse emulsion was prepared with the high-speed shearing method and then homogenized in the high pressure homogenizer. The biphasic drug-loading intravenous emulsion was prepared to investigate its pharmaceutical properties and stability. The prepared emulsion is orange-yellow, with the average diameter of 241 nm and Zeta potential of -35.3 mV. Specifically, the drug loading capacity of tanshinone II (A) and salvianolic acid B were 0.5 g x L(-1) and 1 g x L(-1), respectively, with a good stability among long-term retention samples. According to the results, the prepared emulsion could load liposoluble tanshinone II (A) and water-soluble salvianolic acid B simultaneously, which lays a pharmaceutical foundation for giving full play to the efficacy of S. miltiorrhiza.

  19. Characterization of Femoral Component Initial Stability and Cortical Strain in a Reduced Stem-Length Design.

    PubMed

    Small, Scott R; Hensley, Sarah E; Cook, Paige L; Stevens, Rebecca A; Rogge, Renee D; Meding, John B; Berend, Michael E

    2017-02-01

    Short-stemmed femoral components facilitate reduced exposure surgical techniques while preserving native bone. A clinically successful stem should ideally reduce risk for stress shielding while maintaining adequate primary stability for biological fixation. We asked (1) how stem-length changes cortical strain distribution in the proximal femur in a fit-and-fill geometry and (2) if short-stemmed components exhibit primary stability on par with clinically successful designs. Cortical strain was assessed via digital image correlation in composite femurs implanted with long, medium, and short metaphyseal fit-and-fill stem designs in a single-leg stance loading model. Strain was compared to a loaded, unimplanted femur. Bone-implant micromotion was then compared with reduced lateral shoulder short stem and short tapered-wedge designs in cyclic axial and torsional testing. Femurs implanted with short-stemmed components exhibited cortical strain response most closely matching that of the intact femur model, theoretically reducing the potential for proximal stress shielding. In micromotion testing, no difference in primary stability was observed as a function of reduced stem length within the same component design. Our findings demonstrate that within this fit-and-fill stem design, reduction in stem length improved proximal cortical strain distribution and maintained axial and torsional stability on par with other stem designs in a composite femur model. Short-stemmed implants may accommodate less invasive surgical techniques while facilitating more physiological femoral loading without sacrificing primary implant stability. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Multi-load Groups Coordinated Load Control Strategy Considering Power Network Constraints

    NASA Astrophysics Data System (ADS)

    Liu, Meng; Zhao, Binchao; Wang, Jun; Zhang, Guohui; Wang, Xin

    2017-05-01

    Loads with energy storage property can actively participate in power balance for power systems, this paper takes air conditioner as a controllable load example, proposing a multi-load groups coordinated load control strategy considering power network constraints. Firstly, two load control modes considering recovery of load diversity are designed, blocking power oscillation of aggregated air conditioners. As the same time, air conditioner temperature setpoint recovery control strategy is presented to avoid power recovery peak. Considering inherent characteristics of two load control modes, an coordinated load control mode is designed by combining the both. Basing on this, a multi-load groups coordinated load control strategy is proposed. During the implementing of load control, power network constraints should be satisfied. An indice which can reflect the security of power system operating is defined. By minimizing its value through optimization, the change of air conditioning loads’ aggregated power on each load bus can be calculated. Simulations are conducted on an air conditioners group and New England 10-generator 39-bus system, verifying the effectiveness of the proposed multi-load groups coordinated load control strategy considering power network constraints.