Science.gov

Sample records for allostatic load parameters

  1. [Structure of allostatic load in railway workers].

    PubMed

    Gorokhova, S G; Pfaf, V F; Muraseyeva, E V; Akhsanova, E R; Prigorovskaya, T S; At'kov, O Yu

    2016-01-01

    The authors studied allostatic load in railway workers, as an indicator of stress effect. Analysis covered biomarkers that form allostatic load index, and their ratio for variable allostatic load index levels. Moderate allostatic load appeared to prevail in the examinees group. Findings are that systolic and diastolic blood pressure, general cholesterol and hemoglobin make major contribution into allostatic load index. Comparison covered models of allostatic load index calculation for variable biomarkers sets. PMID:27396144

  2. Allostatic Load and Preterm Birth

    PubMed Central

    Olson, David M.; Severson, Emily M.; Verstraeten, Barbara S. E.; Ng, Jane W. Y.; McCreary, J. Keiko; Metz, Gerlinde A. S.

    2015-01-01

    Preterm birth is a universal health problem that is one of the largest unmet medical needs contributing to the global burden of disease. Adding to its complexity is that there are no means to predict who is at risk when pregnancy begins or when women will actually deliver. Until these problems are addressed, there will be no interventions to reduce the risk because those who should be treated will not be known. Considerable evidence now exists that chronic life, generational or accumulated stress is a risk factor for preterm delivery in animal models and in women. This wear and tear on the body and mind is called allostatic load. This review explores the evidence that chronic stress contributes to preterm birth and other adverse pregnancy outcomes in animal and human studies. It explores how allostatic load can be used to, firstly, model stress and preterm birth in animal models and, secondly, how it can be used to develop a predictive model to assess relative risk among women in early pregnancy. Once care providers know who is in the highest risk group, interventions can be developed and applied to mitigate their risk. PMID:26694355

  3. Allostatic Load and Preterm Birth.

    PubMed

    Olson, David M; Severson, Emily M; Verstraeten, Barbara S E; Ng, Jane W Y; McCreary, J Keiko; Metz, Gerlinde A S

    2015-01-01

    Preterm birth is a universal health problem that is one of the largest unmet medical needs contributing to the global burden of disease. Adding to its complexity is that there are no means to predict who is at risk when pregnancy begins or when women will actually deliver. Until these problems are addressed, there will be no interventions to reduce the risk because those who should be treated will not be known. Considerable evidence now exists that chronic life, generational or accumulated stress is a risk factor for preterm delivery in animal models and in women. This wear and tear on the body and mind is called allostatic load. This review explores the evidence that chronic stress contributes to preterm birth and other adverse pregnancy outcomes in animal and human studies. It explores how allostatic load can be used to, firstly, model stress and preterm birth in animal models and, secondly, how it can be used to develop a predictive model to assess relative risk among women in early pregnancy. Once care providers know who is in the highest risk group, interventions can be developed and applied to mitigate their risk. PMID:26694355

  4. Allostasis and allostatic load: implications for neuropsychopharmacology.

    PubMed

    McEwen, B S

    2000-02-01

    The primary hormonal mediators of the stress response, glucocorticoids and catecholamines, have both protective and damaging effects on the body. In the short run, they are essential for adaptation, maintenance of homeostasis, and survival (allostasis). Yet, over longer time intervals, they exact a cost (allostatic load) that can accelerate disease processes. The concepts of allostasis and allostatic load center around the brain as interpreter and responder to environmental challenges and as a target of those challenges. In anxiety disorders, depressive illness, hostile and aggressive states, substance abuse, and post-traumatic stress disorder (PTSD), allostatic load takes the form of chemical imbalances as well as perturbations in the diurnal rhythm, and, in some cases, atrophy of brain structures. In addition, growing evidence indicates that depressive illness and hostility are both associated with cardiovascular disease (CVD) and other systemic disorders. A major risk factor for these conditions is early childhood experiences of abuse and neglect that increase allostatic load later in life and lead individuals into social isolation, hostility, depression, and conditions like extreme obesity and CVD. Animal models support the notion of lifelong influences of early experience on stress hormone reactivity. Whereas, depression and childhood abuse and neglect tend to be more prevalent in individuals at the lower end of the socioeconomic ladder, cardiovascular and other diseases follow a gradient across the full range of socioeconomic status (SES). An SES gradient is also evident for measures of allostatic load. Wide-ranging SES gradients have also been described for substance abuse and affective and anxiety disorders as a function of education. These aspects are discussed as important, emerging public health issues where the brain plays a key role. PMID:10649824

  5. Childhood maltreatment predicts allostatic load in adulthood.

    PubMed

    Widom, Cathy Spatz; Horan, Jacqueline; Brzustowicz, Linda

    2015-09-01

    Childhood maltreatment has been linked to numerous negative health outcomes. However, few studies have examined mediating processes using longitudinal designs or objectively measured biological data. This study sought to determine whether child abuse and neglect predicts allostatic load (a composite indicator of accumulated stress-induced biological risk) and to examine potential mediators. Using a prospective cohort design, children (ages 0-11) with documented cases of abuse and neglect were matched with non-maltreated children and followed up into adulthood with in-person interviews and a medical status exam (mean age 41). Allostatic load was assessed with nine physical health indicators. Child abuse and neglect predicted allostatic load, controlling for age, sex, and race. The direct effect of child abuse and neglect persisted despite the introduction of potential mediators of internalizing and externalizing problems in adolescence and social support and risky lifestyle in middle adulthood. These findings reveal the long-term impact of childhood abuse and neglect on physical health over 30 years later. PMID:25700779

  6. The cost of chronic stress in childhood: understanding and applying the concept of allostatic load.

    PubMed

    Katz, Debra A; Sprang, Ginny; Cooke, Circe

    2012-09-01

    This article explores the concept of allostatic load and its utility as an integrative framework for thinking about the impact of chronic stress on children and adolescents. Allostatic load refers to the failure or exhaustion of normal physiologic processes that occurs in response to severe, frequent, or chronic stressors. This persistent physiologic dysregulation may lead to secondary health problems such as immunosuppression, obesity, atherosclerosis, and hypertension. Allostatic load can be measured and followed as a composite index of a group of physiologic parameters which fall outside of a normal range. Although research regarding allostatic load in children is limited, this article explores relevant studies and identifies ways in which the concept of allostatic load can be used to broaden approaches to assessment, case formulation, and treatment in children. The concept of allostatic load may be of particular interest to psychodynamic psychiatrists in recognizing the ways in which chronic stress and adverse childhood experiences lead not only to negative psychological sequelae but also to long-term health consequences including the possibility of premature death. It underscores the importance of monitoring patients' physical as well as psychological health and thinking about the complex interrelations between the two. PMID:23002705

  7. Sibling competition and hunger increase allostatic load in spotted hyaenas.

    PubMed

    Benhaiem, Sarah; Hofer, Heribert; Dehnhard, Martin; Helms, Janine; East, Marion L

    2013-06-23

    Allostatis is the process of maintaining homeostatis through behavioural or physiological responses to challenges, and its cumulative energetic cost is termed allostatic load. The allostatic load hypothesis predicts that hunger and the mechanisms that establish and maintain social dominance should have a strong impact on allostatic load. In spotted hyaenas, dominance between twin siblings emerges during intense early competition for maternal milk and involves trained winner/loser effects. Conflict over access to teats declines with age as behavioural dominance conventions are established. In young litters, the allostatic load of subordinates measured in terms of faecal glucocorticoid metabolite concentrations (fGMCs) should be higher than that of dominants. When low milk provisioning threatens survival, hungry subordinates are more assertive, particularly when competing against a dominant sister. Dominants challenged by assertive subordinates should have allostatic loads and fGMCs above those of dominants with subordinates that adhere to dominance conventions. We show that in young litters, subordinates had significantly higher fGMCs than dominants, and dominant sisters had significantly higher fGMCs than dominant brothers. When hungry, both dominants and subordinates had significantly higher fGMCs than when fed. Our results provide evidence that hunger and sibling competition affect allostatic load in spotted hyaenas. PMID:23616643

  8. Sibling competition and hunger increase allostatic load in spotted hyaenas

    PubMed Central

    Benhaiem, Sarah; Hofer, Heribert; Dehnhard, Martin; Helms, Janine; East, Marion L.

    2013-01-01

    Allostatis is the process of maintaining homeostatis through behavioural or physiological responses to challenges, and its cumulative energetic cost is termed allostatic load. The allostatic load hypothesis predicts that hunger and the mechanisms that establish and maintain social dominance should have a strong impact on allostatic load. In spotted hyaenas, dominance between twin siblings emerges during intense early competition for maternal milk and involves trained winner/loser effects. Conflict over access to teats declines with age as behavioural dominance conventions are established. In young litters, the allostatic load of subordinates measured in terms of faecal glucocorticoid metabolite concentrations (fGMCs) should be higher than that of dominants. When low milk provisioning threatens survival, hungry subordinates are more assertive, particularly when competing against a dominant sister. Dominants challenged by assertive subordinates should have allostatic loads and fGMCs above those of dominants with subordinates that adhere to dominance conventions. We show that in young litters, subordinates had significantly higher fGMCs than dominants, and dominant sisters had significantly higher fGMCs than dominant brothers. When hungry, both dominants and subordinates had significantly higher fGMCs than when fed. Our results provide evidence that hunger and sibling competition affect allostatic load in spotted hyaenas. PMID:23616643

  9. Stress, allostatic load, catecholamines, and other neurotransmitters in neurodegenerative diseases.

    PubMed

    Goldstein, David S

    2012-07-01

    As populations age, the prevalence of geriatric neurodegenerative diseases will increase. These diseases generally are multifactorial, arising from complex interactions among genes, environment, concurrent morbidities,treatments, and time. This essay provides a concept for the pathogenesis of Lewy body diseases such as Parkinson disease, by considering them in the context of allostasis and allostatic load. Allostasis reflects active, adaptive processes that maintain apparent steady states, via multiple,interacting effectors regulated by homeostatic comparators—"homeostats". Stress can be defined as a condition or state in which a sensed discrepancy between afferent information and a setpoint for response leads to activation of effectors, reducing the discrepancy. "Allostatic load" refers to the consequences of sustained or repeated activation of mediators of allostasis. From the analogy of an idling car, the revolutions per minute of the engine can be maintained at any of a variety of levels (allostatic states).Just as allostatic load (cumulative wear and tear) reflects design and manufacturing variations, byproducts of combustion,and time, eventually leading to engine breakdown,allostatic load in catecholaminergic neurons might eventually lead to Lewy body diseases. Central to the argument is that catecholaminergic neurons leak vesicular contents into the cytoplasm continuously during life and that catecholaminesin the neuronal cytoplasm are autotoxic. These neurons therefore depend on vesicular sequestration to limit autotoxicity of cytosolic transmitter. Parkinson disease might be a disease of the elderly because of allostatic load, which depends on genetic predispositions,environmental exposures, repeated stress-related catecholamine release, and time. PMID:22297542

  10. Stress, allostatic load, catecholamines, and other neurotransmitters in neurodegenerative diseases.

    PubMed

    Goldstein, D S

    2011-04-01

    As populations age, the prevalence of geriatric neurodegenerative diseases will increase. These diseases generally are multifactorial, arising from complex interactions among genes, environment, concurrent morbidities, treatments, and time. This essay provides a concept for the pathogenesis of Lewy body diseases such as Parkinson disease, by considering them in the context of allostasis and allostatic load. Allostasis reflects active, adaptive processes that maintain apparent steady states, via multiple interacting effectors regulated by homeostatic comparators-"homeostats." Stress can be defined as a condition or state in which a sensed discrepancy between afferent information and a setpoint for response leads to activation of effectors, reducing the discrepancy. "Allostatic load" refers to the consequences of sustained or repeated activation of mediators of allostasis. From the analogy of an idling car, the revolutions per minute of the engine can be maintained at any of a variety of levels (allostatic states). Just as allostatic load (cumulative wear and tear) reflects design and manufacturing variations, byproducts of combustion, and time, eventually leading to engine breakdown, allostatic load in catecholaminergic neurons might eventually lead to Lewy body diseases. Central to the argument is that catecholamines in the neuronal cytoplasm are autotoxic and that catecholamines from storage visicles leak into the cytoplasm continuously during life. These neurons therefore depend on vesicular sequestration to limit autotoxicity of cytosolic transmitter. Parkinson disease might be a disease of the elderly because of allostatic load, which depends on genetic predispositions, environmental exposures, repeated stress-related catecholamine release, and time. PMID:21615193

  11. Stress, Allostatic Load, Catecholamines, and Other Neurotransmitters in Neurodegenerative Diseases

    PubMed Central

    2016-01-01

    As populations age, the prevalence of geriatric neurodegenerative diseases will increase. These diseases generally are multifactorial, arising from complex interactions among genes, environment, concurrent morbidities, treatments, and time. This essay provides a concept for the pathogenesis of Lewy body diseases such as Parkinson disease, by considering them in the context of allostasis and allostatic load. Allostasis reflects active, adaptive processes that maintain apparent steady states, via multiple, interacting effectors regulated by homeostatic comparators—“homeostats.” Stress can be defined as a condition or state in which a sensed discrepancy between afferent information and a setpoint for response leads to activation of effectors, reducing the discrepancy. “Allostatic load” refers to the consequences of sustained or repeated activation of mediators of allostasis. From the analogy of an idling car, the revolutions per minute of the engine can be maintained at any of a variety of levels (allostatic states). Just as allostatic load (cumulative wear and tear) reflects design and manufacturing variations, byproducts of combustion, and time, eventually leading to engine breakdown, allostatic load in catecholaminergic neurons might eventually lead to Lewy body diseases. Central to the argument is that catecholaminergic neurons leak vesicular contents into the cytoplasm continuously during life and that catecholamines in the neuronal cytoplasm are autotoxic. These neurons therefore depend on vesicular sequestration to limit autotoxicity of cytosolic transmitter. Parkinson disease might be a disease of the elderly because of allostatic load, which depends on genetic predispositions, environmental exposures, repeated stress-related catecholamine release, and time. PMID:22297542

  12. A Multimethodological Analysis of Cumulative Risk and Allostatic Load among Rural Children.

    ERIC Educational Resources Information Center

    Evans, Gary W.

    2003-01-01

    This study modeled physical and psychosocial aspects of home environment and personal characteristics in a cumulative risk heuristic. Found that elevated cumulative risk was associated with heightened cardiovascular and neuroendocrine parameters, increased deposition of body fat, and higher summary index of total allostatic load. Replicated…

  13. Allostatic Load and Health Status of African Americans and Whites

    ERIC Educational Resources Information Center

    Deuster, Patricia A.; Kim-Dorner, Su Jong; Remaley, Alan T.; Poth, Merrily

    2011-01-01

    Objectives: To compare health risks in 84 healthy African American and 45 white men and women after calculating allostatic load (AL) from biologic, psychosocial, and behavioral measures. Methods: Participants (18-45 years) ranging in weight from normal to obese and without hypertension or diabetes. Fitness, body fat, CRP, mood, social support,…

  14. Measuring allostatic load in the workforce: a systematic review

    PubMed Central

    MAUSS, Daniel; LI, Jian; SCHMIDT, Burkhard; ANGERER, Peter; JARCZOK, Marc N.

    2014-01-01

    The Allostatic Load Index (ALI) has been used to establish associations between stress and health-related outcomes. This review summarizes the measurement and methodological challenges of allostatic load in occupational settings. Databases of Medline, PubPsych, and Cochrane were searched to systematically explore studies measuring ALI in working adults following the PRISMA statement. Study characteristics, biomarkers and methods were tabulated. Methodological quality was evaluated using a standardized checklist. Sixteen articles (2003–2013) met the inclusion criteria, with a total of 39 (range 6–17) different variables used to calculate ALI. Substantial heterogeneity was observed in the number and type of biomarkers used, the analytic techniques applied and study quality. Particularly, primary mediators were not regularly included in ALI calculation. Consensus on methods to measure ALI in working populations is limited. Research should include longitudinal studies using multi-systemic variables to measure employees at risk for biological wear and tear. PMID:25224337

  15. Mitochondrial allostatic load puts the 'gluc' back in glucocorticoids.

    PubMed

    Picard, Martin; Juster, Robert-Paul; McEwen, Bruce S

    2014-05-01

    The link between chronic psychosocial and metabolic stress and the pathogenesis of disease has been extensively documented. Nevertheless, the cellular mechanisms by which stressful life experiences and their associated primary neuroendocrine mediators cause biological damage and increase disease risk remain poorly understood. The allostatic load model of chronic stress focuses on glucocorticoid dysregulation. In this Perspectives, we expand upon the metabolic aspects of this model-particularly glucose imbalance-and propose that mitochondrial dysfunction constitutes an early, modifiable target of chronic stress and stress-related health behaviours. Central to this process is mitochondrial regulation of energy metabolism and cellular signalling. Chronically elevated glucose levels damage both mitochondria and mitochondrial DNA, generating toxic products that can promote systemic inflammation, alter gene expression and hasten cell ageing. Consequently, the concept of 'mitochondrial allostatic load' defines the deleterious structural and functional changes that mitochondria undergo in response to elevated glucose levels and stress-related pathophysiology. PMID:24663223

  16. A multimethodological analysis of cumulative risk and allostatic load among rural children.

    PubMed

    Evans, Gary W

    2003-09-01

    This study merged two theoretical constructs: cumulative risk and allostatic load. Physical (crowding, noise, housing quality) and psychosocial (child separation, turmoil, violence) aspects of the home environment and personal characteristics (poverty, single parenthood, maternal highschool dropout status) were modeled in a cumulative risk heuristic. Elevated cumulative risk was associated with heightened cardiovascular and neuroendocrine parameters, increased deposition of body fat, and a higher summary index of total allostatic load. Previous findings that children who face more cumulative risk have greater psychological distress were replicated among a sample of rural children and shown to generalize to lower perceptions of self-worth. Prior cumulative risk research was further extended through demonstration of self-regulatory behavior problems and elevated learned helplessness. PMID:12952404

  17. Allostatic and Environmental Load in Toddlers Predicts Anxiety in Preschool and Kindergarten

    PubMed Central

    Buss, Kristin A.; Davis, Elizabeth L.; Kiel, Elizabeth J.

    2010-01-01

    Psychobiological models of allostatic load have delineated the effects of multiple processes that contribute to risk for psychopathology. This approach has been fruitful, but the interactive contributions of allostatic and environmental load remain understudied in early childhood. Because this developmental period encompasses the emergence of internalizing problems and biological sensitivity to early experiences, this is an important time to examine this process. In two studies, we examined allostatic and environmental load and links to subsequent internalizing and externalizing problems. Study 1 examined relations between load indices and maladjustment, concurrently and at multiple times between age 2 and kindergarten; Study 2 added more comprehensive risk indices in a sample following a group of highly fearful toddlers from 2 to 3 years of age. Results from both studies showed that increased allostatic load related to internalizing problems as environmental risk also increased. Study 2 additionally showed that fearfulness interacted with allostatic and environmental load indices to predict greater anxiety among the fearful children who had high levels of allostatic and environmental load. Taken together, findings support a model of risk for internalizing characterized by the interaction of biological and environmental stressors, and demonstrate the importance of considering individual differences and environmental context in applying models of allostatic load to developmental change in early childhood. PMID:22018082

  18. A Potential Role for Allostatic Load in Preeclampsia

    PubMed Central

    Hux, Vanessa J.; Roberts, James M.

    2014-01-01

    Objective Preeclampsia is a multisystemic disorder of pregnancy associated with maternal and fetal complications as well as later-life cardiovascular disease. Its exact cause is not known. We developed a pregnancy-specific multisystem index score of physiologic risk and chronic stress, allostatic load (AL), early in pregnancy. Our objective was to determine whether AL measured early in pregnancy was associated with increased odds of developing preeclampsia. Methods Data were from a single-center, prospectively collected database in a 1:2 individual-matched case control of women enrolled at <15 weeks gestation. We matched 38 preeclamptic cases to 75 uncomplicated, term deliveries on age, parity, and lifetime smoking status. AL was determined using 9 measures of cardiovascular, metabolic, and inflammatory function. Cases and matched controls were compared using conditional logistic regression. We compared the model's association with preeclampsia to that of obesity, a well-known risk factor for preeclampsia, by assessing goodness-of-fit by Akaike information criterion (AIC), where a difference >1-2 suggests better fit. Results Early pregnancy AL was higher in women with preeclampsia (1.25 +/- 0.68 vs. 0.83 +/- 0.62, p=0.002); women with higher AL had increasing odds of developing preeclampsia (OR 2.91, 95% CI 1.50-5.65). The difference between AIC for AL and obesity was >2 (AIC 74.4 vs. 84.4), indicating AL had a stronger association with preeclampsia. Conclusion Higher allostatic load in early pregnancy is associated with increasing odds of preeclampsia. This work supports a possible role of multiple maternal systems and chronic stress early in pregnancy in the development of preeclampsia. PMID:24939173

  19. Children's Emotionality Moderates the Association Between Maternal Responsiveness and Allostatic Load: Investigation Into Differential Susceptibility.

    PubMed

    Dich, Nadya; Doan, Stacey N; Evans, Gary W

    2015-01-01

    While emotionality is often thought of as a risk factor, differential susceptibility theory argues that emotionality reflects susceptibility to both positive and negative environmental influences. The present study explored whether emotional children might be more susceptible to the effects of both high and low maternal responsiveness on allostatic load, a physiological indicator of chronic stress. Participants were 226 mother and child dyads. Mothers reported on children's emotionality at child age 9. Maternal responsiveness was measured at age 13 using self-reports and behavioral observation. Allostatic load was measured at age 13 and 17 using neuroendocrine, cardiovascular, and metabolic biomarkers. Emotionality was associated with higher allostatic load if self-reported responsiveness was low, but with lower allostatic load, when self-reported responsiveness was high. PMID:25639147

  20. Does education lower allostatic load? A co-twin control study.

    PubMed

    Hamdi, Nayla R; South, Susan C; Krueger, Robert F

    2016-08-01

    Many studies have found that education is associated with better health, but the causal basis of this association is unclear. The current study used a co-twin control design to examine if differences in years of education within twin pairs predict allostatic load. The strength of this design is that it controls for genetic and other familial confounds shared between twins. The sample consisted of 381 twins (with 292 twins from 146 complete pairs; mean age=57; 61% female) who participated in the biomarker project of the Midlife Development in the United States (MIDUS) study. Individual-level analyses showed a significant, negative association between years of education and allostatic load, but this association was explained entirely by familial influences shared between twins. The results of this study suggest that schooling does not itself protect against allostatic load. PMID:26778778

  1. Obesity: the allostatic load of weight loss dieting.

    PubMed

    Tremblay, Angelo; Chaput, Jean-Philippe

    2012-04-12

    The obesity epidemic that is prevailing in most countries of the world is generally attributed to the increased amount of opportunities to be in positive energy balance in a context of modernity. This obviously refers not only to sedentariness and unhealthy eating that may dominate life habits of many individuals but also to unsuspected non-caloric factors which produce discrete allostatic changes in the body. In this paper, the focus is put on the impact of some of these factors with the preoccupation to document the allostatic burden of weight loss. Thus, beyond the fact that modernity favors opportunities to eat much and not to be active, the proposed conceptual integration leads to the conclusion that a modern lifestyle makes weight loss more difficult for obese individuals. In addition to the natural effects of weight loss favoring resistance to lose fat, a lifestyle promoting shorter sleep duration and more cognitive demand produces allostatic changes that may interfere with weight loss. The case of persistent organic pollutants (POPs) is also discussed as an example of the potential detrimental effects of a contaminated environment on metabolic processes involved in the control of energy expenditure. Taken together, these observations suggest that weight loss is more than ever a search for compromise between its metabolic benefits and its allostatic effects promoting body weight regain. PMID:21627975

  2. Children's Negative Emotionality Combined with Poor Self-Regulation Affects Allostatic Load in Adolescence

    ERIC Educational Resources Information Center

    Dich, Nadya; Doan, Stacey; Evans, Gary

    2015-01-01

    The present study examined the concurrent and prospective, longitudinal effects of childhood negative emotionality and self-regulation on allostatic load (AL), a physiological indicator of chronic stress. We hypothesized that negative emotionality in combination with poor self-regulation would predict elevated AL. Mothers reported on children's…

  3. Allostatic Load: Single Parents, Stress-Related Health Issues, and Social Care

    ERIC Educational Resources Information Center

    Johner, Randy L.

    2007-01-01

    This article explores the possible relationships between allostatic load (AL) and stress-related health issues in the low-income single-parent population, using both a population health perspective (PHP) and a biological framework. A PHP identifies associations among such factors as gender, income, employment, and social support and their…

  4. Perceived Discrimination among African American Adolescents and Allostatic Load: A Longitudinal Analysis with Buffering Effects

    ERIC Educational Resources Information Center

    Brody, Gene H.; Lei, Man-Kit; Chae, David H.; Yu, Tianyi; Kogan, Steven M.; Beach, Steven R. H.

    2014-01-01

    This study was designed to examine the prospective relations of perceived racial discrimination with allostatic load (AL), along with a possible buffer of the association. A sample of 331 African Americans in the rural South provided assessments of perceived discrimination from ages 16 to 18 years. When youth were 18 years, caregivers reported…

  5. Two key concepts in the life course approach in medicine: allostatic load and cumulative life course impairment.

    PubMed

    Offidani, Emanuela; Tomba, Elena; Linder, Michael Dennis

    2013-01-01

    According to the biopsychosocial model, psychosocial and biological factors interact in a number of ways influencing onset and course of medical disease. In a longitudinal perspective, such factors may elicit different effects on health depending on their accumulation mechanisms and timing of exposure over the life course. These aspects have become particularly relevant in the field of chronic diseases such as chronic dermatological conditions, where complete healing is unlikely to occur. Two key concepts may aid understanding of chronic medical conditions in a more comprehensive manner. In the first place, the concept of allostatic load may represent the link between the cumulative effect of various challenging situations and the disease onset through the progressive 'wear and tear' induced by chronic exposure to fluctuating allostatic responses. In addition, the allostatic overload model emphasizes the fact that the cumulative interaction of stressors, psychological symptoms and impaired psychological well-being may constitute a danger to health. In the second place, the concept of cumulative life course impairment, which takes into account the multiple dimensions of chronic disease, underlines the fact that illness is only one of many recordable parameters which ultimately determine, through their mutual interaction, the 'life trajectory of individuals'. In a broader sense, both concepts of allostatic load and cumulative life course impairment allow more light to be shed on a new perspective on illness - the life course perspective - and on its interactions with psychological, social and environmental factors. This perspective may ultimately result not only in a substantial improvement of clinical care, but also in a different and long-lasting approach to interventions in chronic illness, with wide economic, political and social consequences whose entity has yet to be appreciated. PMID:23796806

  6. Impact of alprazolam in allostatic load and neurocognition of patients with anxiety disorders and chronic stress (GEMA): observational study protocol

    PubMed Central

    Soria, Carlos A; Remedi, Carolina; Núñez, Daniel A; D'Alessio, Luciana; Roldán, Emilio J A

    2015-01-01

    Introduction The allostatic load model explains the additive effects of multiple biological processes that accelerate pathophysiology related to stress, particularly in the central nervous system. Stress-related mental conditions such as anxiety disorders and neuroticism (a well-known stress vulnerability factor), have been linked to disturbances of hypothalamo–pituitary–adrenal with cognitive implications. Nevertheless, there are controversial results in the literature and there is a need to determine the impact of the psychopharmacological treatment on allostatic load parameters and in cognitive functions. Gador study of Estres Modulation by Alprazolam, aims to determine the impact of medication on neurobiochemical variables related to chronic stress, metabolic syndrome, neurocognition and quality of life in patients with anxiety, allostatic load and neuroticism. Methods/analysis In this observational prospective phase IV study, highly sympthomatic patients with anxiety disorders (six or more points in the Hamilton-A scale), neuroticism (more than 18 points in the Neo five personality factor inventory (NEO-FFI) scale), an allostatic load (three positive clinical or biochemical items at Crimmins and Seeman criteria) will be included. Clinical variables of anxiety, neuroticism, allostatic load, neurobiochemical studies, neurocognition and quality of life will be determined prior and periodically (1, 2, 4, 8, and 12 weeks) after treatment (on demand of alprazolam from 0.75 mg/day to 3.0 mg/day). A sample of n=55/182 patients will be considered enough to detect variables higher than 25% (pretreatment vs post-treatment or significant correlations) with a 1-ß power of 0–80. t Test and/or non-parametric test, and Pearson's test for correlation analysis will be determined. Ethics and dissemination This study protocol was approved by an Independent Ethics Committee of FEFyM (Foundation for Pharmacological Studies and Drugs, Buenos Aires) and by regulatory

  7. Self Reported Childhood Difficulties, Adult Multimorbidity and Allostatic Load. A Cross-Sectional Analysis of the Norwegian HUNT Study

    PubMed Central

    Tomasdottir, Margret Olafia; Sigurdsson, Johann Agust; Petursson, Halfdan; Kirkengen, Anna Luise; Krokstad, Steinar; McEwen, Bruce; Hetlevik, Irene; Getz, Linn

    2015-01-01

    Background Multimorbidity receives increasing scientific attention. So does the detrimental health impact of adverse childhood experiences (ACE). Aetiological pathways from ACE to complex disease burdens are under investigation. In this context, the concept of allostatic overload is relevant, denoting the link between chronic detrimental stress, widespread biological perturbations and disease development. This study aimed to explore associations between self-reported childhood quality, biological perturbations and multimorbidity in adulthood. Materials and Methods We included 37 612 participants, 30–69 years, from the Nord-Trøndelag Health Study, HUNT3 (2006–8). Twenty one chronic diseases, twelve biological parameters associated with allostatic load and four behavioural factors were analysed. Participants were categorised according to the self-reported quality of their childhood, as reflected in one question, alternatives ranging from ‘very good’ to ‘very difficult’. The association between childhood quality, behavioural patterns, allostatic load and multimorbidity was compared between groups. Results Overall, 85.4% of participants reported a ‘good’ or ‘very good’ childhood; 10.6% average, 3.3% ‘difficult’ and 0.8% ‘very difficult’. Childhood difficulties were reported more often among women, smokers, individuals with sleep problems, less physical activity and lower education. In total, 44.8% of participants with a very good childhood had multimorbidity compared to 77.1% of those with a very difficult childhood (Odds ratio: 5.08; 95% CI: 3.63–7.11). Prevalences of individual diseases also differed significantly according to childhood quality; all but two (cancer and hypertension) showed a significantly higher prevalence (p<0.05) as childhood was categorised as more difficult. Eight of the 12 allostatic parameters differed significantly between childhood groups. Conclusions We found a general, graded association between self

  8. Is there an independent association between burnout and increased allostatic load? Testing the contribution of psychological distress and depression.

    PubMed

    Hintsa, Taina; Elovainio, Marko; Jokela, Markus; Ahola, Kirsi; Virtanen, Marianna; Pirkola, Sami

    2016-08-01

    Burnout has been suggested to be related to depression. We examined the relationship between burnout and allostatic load, and whether this association is independent of psychological distress and depression. We measured burnout psychological distress, depression, and allostatic load in 3283 participants. Higher burnout (β = 0.06, p =0.003) and cynicism (β = 0.03, p = 0.031) and decreased professional efficacy (β = 0.03, p = 0.007) were related to higher allostatic load independent of age, sex, education, occupation and psychological distress. Depression, however, explained 60 percent of the association. Burnout is related to higher allostatic load, and this association partly overlaps with co-occurring depression. PMID:25476575

  9. Evaluating the Effects of Coping Style on Allostatic Load, by Sex: The Jackson Heart Study, 2000–2004

    PubMed Central

    Loucks, Eric B.; Arheart, Kristopher L.; Hickson, DeMarc A.; Kohn, Robert; Buka, Stephen L.; Gjelsvik, Annie

    2015-01-01

    The objective of this study was to examine the cross-sectional association between coping styles and allostatic load among African American adults in the Jackson Heart Study (2000–2004). Coping styles were assessed using the Coping Strategies Inventory-Short Form; allostatic load was measured by using 9 biomarkers standardized into z-scores. Sex-stratified multivariable linear regressions indicated that females who used disengagement coping styles had significantly higher allostatic load scores (β = 0.016; 95% CI, 0.001–0.032); no such associations were found in males. Future longitudinal investigations should examine why disengagement coping style is linked to increased allostatic load to better inform effective interventions and reduce health disparities among African American women. PMID:26425869

  10. Evaluating the Effects of Coping Style on Allostatic Load, by Sex: The Jackson Heart Study, 2000-2004.

    PubMed

    Fernandez, Cristina A; Loucks, Eric B; Arheart, Kristopher L; Hickson, DeMarc A; Kohn, Robert; Buka, Stephen L; Gjelsvik, Annie

    2015-01-01

    The objective of this study was to examine the cross-sectional association between coping styles and allostatic load among African American adults in the Jackson Heart Study (2000-2004). Coping styles were assessed using the Coping Strategies Inventory-Short Form; allostatic load was measured by using 9 biomarkers standardized into z-scores. Sex-stratified multivariable linear regressions indicated that females who used disengagement coping styles had significantly higher allostatic load scores (β = 0.016; 95% CI, 0.001-0.032); no such associations were found in males. Future longitudinal investigations should examine why disengagement coping style is linked to increased allostatic load to better inform effective interventions and reduce health disparities among African American women. PMID:26425869

  11. Child maltreatment and allostatic load: consequences for physical and mental health in children from low-income families.

    PubMed

    Rogosch, Fred A; Dackis, Melissa N; Cicchetti, Dante

    2011-11-01

    Child maltreatment and biomarkers of allostatic load were investigated in relation to child health problems and psychological symptomatology. Participants attended a summer research day camp and included 137 maltreated and 110 nonmaltreated low-income children, who were aged 8 to 10 years (M = 9.42) and racially and ethnically diverse; 52% were male. Measurements obtained included salivary cortisol and dehydroepiandosterone, body mass index, waist-hip ratio, and blood pressure; these indicators provided a composite index of allostatic load. Child self-report and camp adult-rater reports of child symptomatology were obtained; mothers provided information on health problems. The results indicated that higher allostatic load and child maltreatment status independently predicted poorer health outcomes and greater behavior problems. Moderation effects indicated that allostatic load was related to somatic complaints, attention problems, and thought problems only among maltreated children. Risks associated with high waist-hip ratio, low morning cortisol, and high morning dehydroepiandosterone also were related to depressive symptoms only for maltreated children. The results support an allostatic load conceptualization of the impact of high environmental stress and child abuse and neglect on child health and behavioral outcomes and have important implications for long-term physical and mental health. PMID:22018084

  12. Child Maltreatment and Allostatic Load: Consequences for Physical and Mental Health in Children from Low-Income Families

    PubMed Central

    Rogosch, Fred A.; Dackis, Melissa N.; Cicchetti, Dante

    2012-01-01

    Child maltreatment and biomarkers of allostatic load were investigated in relation to child health problems and psychological symptomatology. Participants attended a summer research day camp and included 137 maltreated and 110 nonmaltreated low-income children, who were aged 8 to 10 years (M = 9.42) and racially and ethnically diverse; 52% were male. Measurements obtained included salivary cortisol and DHEA, body-mass index, waist-hip ratio, and blood pressure; these indicators provided a composite index of allostatic load. Child self-report and camp adult-rater reports of child symptomatology were obtained; mothers provided information on health problems. The results indicated that higher allostatic load and child maltreatment status independently predicted poorer health outcomes and greater behavior problems. Moderation effects indicated that allostatic load was related to somatic complaints, attention problems, and thought problems only among maltreated children. Risks associated with high waist-hip ratio, low morning cortisol, and high morning DHEA also were related to depressive symptoms only for maltreated children. The results support an allostatic load conceptualization of the impact of high environmental stress and child abuse and neglect on child health and behavioral outcomes and have important implications for long-term physical and mental health. PMID:22018084

  13. Neighborhood poverty, allostatic load, and birth outcomes in African American and white women: findings from the Bogalusa Heart Study.

    PubMed

    Wallace, Maeve; Harville, Emily; Theall, Katherine; Webber, Larry; Chen, Wei; Berenson, Gerald

    2013-11-01

    As a biologically-mediated pathway between adversity and declines in physical health, allostatic load has been frequently hypothesized as a potential contributor to racial disparities in birth outcomes, but an empirical evidence is lacking. The purpose of this study was to examine the relationships between maternal preconception allostatic load, race, and adverse birth outcomes within the context of neighborhood-level poverty using data from the Bogalusa Heart Study. Allostatic load was quantified as a count of regulatory biomarkers falling in the highest risk quartile of the sample distribution as measured from a physical examination that took place prior to conception. Consistent with previous findings, African American women resided in more impoverished neighborhoods and had higher allostatic load scores compared to whites; however, allostatic load was not associated with preterm birth or low birth weight in fully adjusted models. These results underscore a need for further refinement of both biologic and contextual measures that capture holistically the way in which stressful conditions and experiences encountered across the life-course influence health potentials and engender inequities in reproductive health outcomes. PMID:24184350

  14. A streamlined approach for assessing the Allostatic Load Index in industrial employees.

    PubMed

    Mauss, Daniel; Jarczok, Marc N; Fischer, Joachim E

    2015-01-01

    Work stress is common and can lead to various bodily dysfunctions. The Allostatic Load Index (ALI) is a tool to measure the wear and tear of the body caused by chronic stress. This cross-sectional study aimed to explore the association of work-related stress and ALI in German industrial employees. A short form ALI should be developed for practical use of company physicians. In this exploration of an industrial cohort (n = 3797; 79.3% male), work stress was measured by the effort-reward imbalance (ERI) questionnaire in 2009-2011. ALI was calculated using 15 variables including anthropometric data, heart rate variability, as well as blood and urine samples based on predefined subclinical cut-off values. Differences in ALI related to low (≤1) and high (>1) ERI categories were tested. Logistic regression models estimated odds ratios (ORs) and corresponding 95% confidence intervals (CIs) for the association between ALI and work stress controlling for multiple confounders. Employees exposed to high work stress showed higher ALI scores (p < 0.001) compared to those with low stress levels. In multivariable models, ALI was associated with work stress (OR 1.19 [95% CI: 1.00, 1.42]; p < 0.05) following adjustment for a range of potential confounders. By reducing ALI parameters to five variables this association increased modestly and remained statistically significant (OR 1.27 [95% CI: 1.05, 1.54]; p < 0.05). The results indicate that work stress is associated with ALI in German industrial employees. A short form index seems to be a promising approach for occupational health practitioners. The results should be validated in further longitudinal explorations defining a standard set of variables including gender-related thresholds. PMID:25976030

  15. Understanding behavioral effects of early life stress using the reactive scope and allostatic load models

    PubMed Central

    HOWELL, BRITTANY R.; SANCHEZ, MAR M.

    2015-01-01

    The mechanisms through which early life stress leads to psychopathology are thought to involve allostatic load, the “wear and tear” an organism is subjected to as a consequence of sustained elevated levels of glucocorticoids caused by repeated/prolonged stress activations. The allostatic load model described this phenomenon, but has been criticized as inadequate to explain alterations associated with early adverse experience in some systems, including behavior, which cannot be entirely explained from an energy balance perspective. The reactive scope model has been more recently proposed and focuses less on energy balance and more on dynamic ranges of physiological and behavioral mediators. In this review we examine the mechanisms underlying the behavioral consequences of early life stress in the context of both these models. We focus on adverse experiences that involve mother–infant relationship disruption, and dissect those mechanisms involving maternal care as a regulator of development of neural circuits that control emotional and social behaviors in the offspring. We also discuss the evolutionary purpose of the plasticity in behavioral development, which has a clear adaptive value in a changing environment. PMID:22018078

  16. Physiological dysregulation and somatic decline among elders: modeling, applying and re-interpreting allostatic load.

    PubMed

    Leahy, Rachael; Crews, Douglas E

    2012-03-01

    Mortality rates continue to decline among post-reproductive individuals. This makes understanding long-term physiological responses to stress increasingly important. Allostatic load (AL) was developed to assess detrimental effects on the soma of responding to multiple stressors over a lifetime. AL arises from developmental experiences, genetic predispositions, environmental, psychosocial, life style and other stressors. In early life stress responsive systems are initiated that produce hormones that maintain the soma through continual allostatic responses. Later in life, systems designed to mitigate stressors may fail or be compromised, promoting unwanted somatic changes and dysregulation. This places a load on the regulatory system that impedes day-to-day stress responses, predisposing to cellular damage and degenerative diseases. Here we review 44 peer-reviewed 2005-2010 publications reportedly examining relationships between AL and risk factors, chronic diseases, morbidity and mortality in samples of elderly adults. The sum of results suggests that AL does assess aspects of physiological dysregulation and somatic decline, predicts detrimental age-related declines, and is associated with negative sociocultural attributes and psychological outcomes. Such consistent results and wide application of AL, while it is still being modeled and re-interpreted, suggest its perceived usefulness as a research and clinical tool. AL provides a possible biomarker of senescence, assessing it over the life span will aid in predicting future negative health outcomes. PMID:22816193

  17. Adverse childhood experiences, allostasis, allostatic load, and age-related disease.

    PubMed

    Danese, Andrea; McEwen, Bruce S

    2012-04-12

    How do adverse childhood experiences get 'under the skin' and influence health outcomes through the life-course? Research reviewed here suggests that adverse childhood experiences are associated with changes in biological systems responsible for maintaining physiological stability through environmental changes, or allostasis. Children exposed to maltreatment showed smaller volume of the prefrontal cortex, greater activation of the HPA axis, and elevation in inflammation levels compared to non-maltreated children. Adults with a history of childhood maltreatment showed smaller volume of the prefrontal cortex and hippocampus, greater activation of the HPA axis, and elevation in inflammation levels compared to non-maltreated individuals. Despite the clear limitations in making longitudinal claims from cross-sectional studies, work so far suggests that adverse childhood experiences are associated with enduring changes in the nervous, endocrine, and immune systems. These changes are already observable in childhood years and remain apparent in adult life. Adverse childhood experiences induce significant biological changes in children (biological embedding), modifying the maturation and the operating balance of allostatic systems. Their chronic activation can lead to progressive wear and tear, or allostatic load and overload, and, thus, can exert long-term effects on biological aging and health. PMID:21888923

  18. Stress, Place, and Allostatic Load Among Mexican Immigrant Farmworkers in Oregon.

    PubMed

    McClure, Heather H; Josh Snodgrass, J; Martinez, Charles R; Squires, Erica C; Jiménez, Roberto A; Isiordia, Laura E; Eddy, J Mark; McDade, Thomas W; Small, Jeon

    2015-10-01

    Cumulative exposure to chronic stressors has been shown to contribute to immigrants' deteriorating health with more time in US residence. Few studies, however, have examined links among common psychosocial stressors for immigrants (e.g., acculturation-related) and contexts of immigrant settlement for physical health. The study investigated relationships among social stressors, stress buffers (e.g., family support), and allostatic load (AL)--a summary measure of physiological "wear and tear"--among 126 adult Mexican immigrant farm workers. Analyses examined social contributors to AL in two locales: (1) White, English-speaking majority sites, and (2) a Mexican immigrant enclave. Our six-point AL scale incorporated immune, cardiovascular, and metabolic measures. Among men and women, older age predicted higher AL. Among women, lower family support related to higher AL in White majority communities only. Findings suggest that Latino immigrants' cumulative experiences in the US significantly compromise their health, with important differences by community context. PMID:25724150

  19. Perceived discrimination among African American adolescents and allostatic load: a longitudinal analysis with buffering effects.

    PubMed

    Brody, Gene H; Lei, Man-Kit; Chae, David H; Yu, Tianyi; Kogan, Steven M; Beach, Steven R H

    2014-01-01

    This study was designed to examine the prospective relations of perceived racial discrimination with allostatic load (AL), along with a possible buffer of the association. A sample of 331 African Americans in the rural South provided assessments of perceived discrimination from ages 16 to 18 years. When youth were 18 years, caregivers reported parental emotional support and youth assessed peer emotional support. AL and potential confounder variables were assessed when youth were 20. Latent growth mixture modeling identified two perceived discrimination classes: high and stable, and low and increasing. Adolescents in the high and stable class evinced heightened AL even with confounder variables controlled. The racial discrimination to AL link was not significant for young adults who received high emotional support. PMID:24673162

  20. Perceived Discrimination among African American Adolescents and Allostatic Load: A Longitudinal Analysis with Buffering Effects

    PubMed Central

    Brody, Gene H.; Lei, Man-Kit; Chae, David H.; Yu, Tianyi; Kogan, Steven M.; Beach, Steven R. H.

    2013-01-01

    This study was designed to examine the prospective relations of perceived racial discrimination with allostatic load (AL), along with a possible buffer of the association. A sample of 331 African Americans in the rural South provided assessments of perceived discrimination from ages 16 to 18 years. When youths were 18, caregivers reported parental emotional support, and youths assessed peer emotional support. AL and potential confounder variables were assessed when youths were 20. Latent Growth Mixture Modeling identified two perceived discrimination classes: high and stable and low and increasing. Adolescents in the high and stable class evinced heightened AL even with confounder variables controlled. The racial discrimination to AL link was not significant for young adults who received high emotional support. PMID:24673162

  1. [Co-occurrence of anxiety and autism. The social error and allostatic load hypotheses].

    PubMed

    Paula-Perez, Isabel

    2013-02-22

    INTRODUCTION. The concept of comorbidity in neurodevelopmental disorders like autism is sometimes ambiguous. The co-occurrence of anxiety and autism is clinically significant, yet it is not always easy to determine whether it is a 'real' comorbidity, where the two comorbid conditions are phenotypically and aetiologically identical to what that anxiety would mean in persons with a neurotypical development, whether it is an anxiety that has been phenotypically modified by the pathological processes of the autism spectrum disorders, thus resulting in a specific variant of these latter, or whether we are dealing with a false comorbidity resulting from rather inaccurate differential diagnoses. DEVELOPMENT. The article puts forward two hypotheses to explain this co-occurrence, which provide each other with feedback and are little more than our reflections on the scientific evidence we have available today, but expressed aloud. The first is the 'social error' hypothesis, which considers that the maladjustments in the social behaviour of persons with autism (which arises from alterations affecting the processes involved in social cognition) help to aggravate anxiety in autism. The second hypothesis, referring to allostatic load, holds that anxiety is a response to chronic stress, wear or exhaustion that is produced by the hyperactivation of certain structures in the limbic system. CONCLUSIONS. The prototypical manifestations of anxiety present in the person with autism are not always related with the same biopsychosocial variables as those observed in persons without autism. Evidence points to hyper-reactive flee-or-fight responses (hypervigilance) when the person finds him or herself outside their comfort zone, and supports the hypotheses of 'social error' and of decompensation of the allostatic mechanism that makes it possible to cope with stress. PMID:23446724

  2. Life events trajectories, allostatic load, and the moderating role of age at arrival from Puerto Rico to the US mainland.

    PubMed

    Arévalo, Sandra P; Tucker, Katherine L; Falcón, Luis M

    2014-11-01

    Our aim was to examine the effects of trajectories of stressful life events on allostatic load, measured over a two year time period, and to investigate the roles of language acculturation and age at migration in this association, in a sample of Puerto Rican migrants. We used data from the Boston Puerto Rican Health Study; a population-based prospective cohort of older Puerto Ricans recruited between the ages of 45 and 75 years. The Institutional Review Boards at Tufts Medical Center and Northeastern University approved the study. We used latent growth mixture modeling (LGMM) to identify different classes of two-year trajectories of stressful life events; analysis of variance to examine group differences by stress trajectory; and linear regression to test for the modifying effects of age at arrival on the association of stress trajectory with allostatic load at follow-up. In LGMM analysis, we identified three distinct stress trajectories; low, moderate ascending, and high. Unexpectedly, participants in the low stress group had the highest allostatic load at follow-up (F=4.4, p=0.01) relative to the other two groups. Age at arrival had a statistically significant moderating effect on the association. A reported two year period of moderate but repetitive and increasingly bad life events was associated with increases in allostatic load for participants who arrived to the U.S. mainland after the age of 5 years, and was particularly strong for those arriving between 6 and 11 years, but not for those arriving earlier or later. Results from this study highlight the complex effects of stress during the life course, and point to certain vulnerable periods for immigrant children that could modify long term effects of stress. PMID:25265208

  3. Life Events Trajectories, Allostatic Load, and the Moderating Role of Age at Arrival from Puerto Rico to the US Mainland

    PubMed Central

    Arévalo, Sandra P.; Tucker, Katherine L; Falcon, Luis M

    2014-01-01

    Our aim was to examine the effects of trajectories of stressful life events on allostatic load, measured over a two year time period, and to investigate the roles of language acculturation and age at migration in this association, in a sample of Puerto Rican migrants. We used data from the Boston Puerto Rican Health Study; a population-based prospective cohort of older Puerto Ricans recruited between the ages of 45 and 75 years. The Institutional Review Boards at Tufts Medical Center and Northeastern University approved the study. We used latent growth mixture modeling (LGMM) to identify different classes of two-year trajectories of stressful life events; analysis of variance to examine group differences by stress trajectory; and linear regression to test for the modifying effects of age at arrival on the association of stress trajectory with allostatic load at follow-up. In LGMM analysis, we identified three distinct stress trajectories; low, moderate ascending, and high. Unexpectedly, participants in the low stress group had the highest allostatic load at follow-up (F=4.4, p=0.01) relative to the other two groups. Age at arrival had a statistically significant moderating effect on the association. A reported two year period of moderate but repetitive and increasingly bad life events was associated with increases in allostatic load for participants who arrived to the U.S. mainland after the age of 5 years, and was particularly strong for those arriving between 6–11 years, but not for those arriving earlier or later. Results from this study highlight the complex effects of stress during the life course, and point to certain vulnerable periods for immigrant children that could modify long term effects of stress. PMID:25265208

  4. The impact of allostatic load on maternal sympathovagal functioning in stressful child contexts: Implications for problematic parenting

    PubMed Central

    STURGE-APPLE, MELISSA L.; SKIBO, MICHAEL A.; ROGOSCH, FRED A.; IGNJATOVIC, ZELJKO; HEINZELMAN, WENDI

    2011-01-01

    The present study applies an allostatic load framework to an examination of the relationship between maternal psychosocial risk factors and maladaptive parenting behaviors. Specifically, the implications of low socioeconomic status and maternal depressive symptoms for maternal sympathovagal functioning during young children’s distress were examined, as well as whether that functioning was, in turn, associated with maternal insensitivity, hostility, intrusiveness, and disengagement during mother–child dyadic interaction. Consistent with an allostatic framework, three patterns of sympathovagal functioning were expected to emerge: normative arousal, hyperarousal, and hypoarousal profiles. Furthermore, meaningful associations between maternal psychosocial risk factors, maladaptive parenting behaviors, and the three profiles of sympathovagal functioning were anticipated. Participants included 153 mother–toddler dyads recruited proportionately from lower and middle socioeconomic status backgrounds. Mothers’ sympathovagal response to their child’s distress was assessed during the Strange Situation paradigm, and mothers’ parenting behavior was assessed during a dyadic free-play interaction. As hypothesized, normative arousal, hyperarousal, and hypoarousal profiles of maternal sympathovagal functioning were identified. Maternal depressive symptomatology predicted the hyperarousal profile, whereas socioeconomic adversity predicted hypoarousal. Moreover, allostatic load profiles were differentially associated with problematic parenting behaviors. These findings underscore the role of physiological dysregulation as a mechanism in the relationship between proximal risk factors and actual maladaptive parenting behaviors. PMID:21756435

  5. The role of material, psychosocial and behavioral factors in mediating the association between socioeconomic position and allostatic load (measured by cardiovascular, metabolic and inflammatory markers)

    PubMed Central

    Robertson, Tony; Benzeval, Michaela; Whitley, Elise; Popham, Frank

    2015-01-01

    Lower socioeconomic position (SEP), both accumulated across the life course and at different life-stages, has been found to be associated with higher cumulative physiological burden, as measured by allostatic load. This study aimed to identify what factors mediate the association between SEP and allostatic load, as measured through combining cardiovascular, metabolic and inflammatory markers. We explored the role of material, psychological and behavioral factors, accumulated across two periods in time, in mediating the association between SEP and allostatic load. Data are from the West of Scotland Twenty-07 Study, with respondents followed over five waves of data collection from ages 35 to 55 (n = 999). Allostatic load was measured by summing nine binary biomarker scores (‘1’ = in the highest-risk quartile) measured when respondents were 55 years old (wave 5). SEP was measured by a person’s accumulated social class over two periods All mediators and SEP were measured at baseline in 1987 and 20 years later and combined to form accumulated measures of risk. Material mediators included car and home ownership, and having low income. The General Health Questionnaire (GHQ-12) was used as the psychosocial mediator. Behavioral mediators included smoking, alcohol consumption, physical activity and diet. Path analysis using linear regressions adjusting for sex were performed for each of the potential mediators to assess evidence of attenuation in the association between lower SEP and higher allostatic load. Analyses by mediator type revealed that renting one’s home (approximately 78% attenuation) and having low income (approx. 62% attenuation) largely attenuated the SEP–allostatic load association. GHQ did not attenuate the association. Smoking had the strongest attenuating effect of all health behaviors (by 33%) with no other health behaviors attenuating the association substantially. Material factors, namely home tenure and income status, and smoking have

  6. Mismatch or allostatic load? Timing of life adversity differentially shapes gray matter volume and anxious temperament.

    PubMed

    Kuhn, Manuel; Scharfenort, Robert; Schümann, Dirk; Schiele, Miriam A; Münsterkötter, Anna L; Deckert, Jürgen; Domschke, Katharina; Haaker, Jan; Kalisch, Raffael; Pauli, Paul; Reif, Andreas; Romanos, Marcel; Zwanzger, Peter; Lonsdorf, Tina B

    2016-04-01

    Traditionally, adversity was defined as the accumulation of environmental events (allostatic load). Recently however, a mismatch between the early and the later (adult) environment (mismatch) has been hypothesized to be critical for disease development, a hypothesis that has not yet been tested explicitly in humans. We explored the impact of timing of life adversity (childhood and past year) on anxiety and depression levels (N = 833) and brain morphology (N = 129). Both remote (childhood) and proximal (recent) adversities were differentially mirrored in morphometric changes in areas critically involved in emotional processing (i.e. amygdala/hippocampus, dorsal anterior cingulate cortex, respectively). The effect of adversity on affect acted in an additive way with no evidence for interactions (mismatch). Structural equation modeling demonstrated a direct effect of adversity on morphometric estimates and anxiety/depression without evidence of brain morphology functioning as a mediator. Our results highlight that adversity manifests as pronounced changes in brain morphometric and affective temperament even though these seem to represent distinct mechanistic pathways. A major goal of future studies should be to define critical time periods for the impact of adversity and strategies for intervening to prevent or reverse the effects of adverse childhood life experiences. PMID:26568620

  7. Mismatch or allostatic load? Timing of life adversity differentially shapes gray matter volume and anxious temperament

    PubMed Central

    Kuhn, Manuel; Scharfenort, Robert; Schümann, Dirk; Schiele, Miriam A.; Münsterkötter, Anna L.; Deckert, Jürgen; Domschke, Katharina; Haaker, Jan; Kalisch, Raffael; Pauli, Paul; Reif, Andreas; Romanos, Marcel; Zwanzger, Peter

    2016-01-01

    Traditionally, adversity was defined as the accumulation of environmental events (allostatic load). Recently however, a mismatch between the early and the later (adult) environment (mismatch) has been hypothesized to be critical for disease development, a hypothesis that has not yet been tested explicitly in humans. We explored the impact of timing of life adversity (childhood and past year) on anxiety and depression levels (N = 833) and brain morphology (N = 129). Both remote (childhood) and proximal (recent) adversities were differentially mirrored in morphometric changes in areas critically involved in emotional processing (i.e. amygdala/hippocampus, dorsal anterior cingulate cortex, respectively). The effect of adversity on affect acted in an additive way with no evidence for interactions (mismatch). Structural equation modeling demonstrated a direct effect of adversity on morphometric estimates and anxiety/depression without evidence of brain morphology functioning as a mediator. Our results highlight that adversity manifests as pronounced changes in brain morphometric and affective temperament even though these seem to represent distinct mechanistic pathways. A major goal of future studies should be to define critical time periods for the impact of adversity and strategies for intervening to prevent or reverse the effects of adverse childhood life experiences. PMID:26568620

  8. The effects of allostatic load on neural systems subserving motivation, mood regulation, and social affiliation.

    PubMed

    Beauchaine, Theodore P; Neuhaus, Emily; Zalewski, Maureen; Crowell, Sheila E; Potapova, Natalia

    2011-11-01

    The term allostasis, which is defined as stability through change, has been invoked repeatedly by developmental psychopathologists to describe long-lasting and in some cases permanent functional alterations in limbic-hypothalamic-pituitary-adrenal axis responding following recurrent and/or prolonged exposure to stress. Increasingly, allostatic load models have also been invoked to describe psychological sequelae of abuse, neglect, and other forms of maltreatment. In contrast, neural adaptations to stress, including those incurred by monoamine systems implicated in (a) mood and emotion regulation, (b) behavioral approach, and (c) social affiliation and attachment, are usually not included in models of allostasis. Rather, structural and functional alterations in these systems, which are exquisitely sensitive to prolonged stress exposure, are usually explained as stress mediators, neural plasticity, and/or programming effects. Considering these mechanisms as distinct from allostasis is somewhat artificial given overlapping functions and intricate coregulation of monoamines and the limbic-hypothalamic-pituitary-adrenal axis. It also fractionates literatures that should be mutually informative. In this article, we describe structural and functional alterations in serotonergic, dopaminergic, and noradrenergic neural systems following both acute and prolonged exposure to stress. Through increases in behavioral impulsivity, trait anxiety, mood and emotion dysregulation, and asociality, alterations in monoamine functioning have profound effects on personality, attachment relationships, and the emergence of psychopathology. PMID:22018077

  9. Allostatic Load and Frailty in the Women’s Health and Aging Studies

    PubMed Central

    Szanton, S. L.; Allen, J. K.; Seplaki, C. L.; Bandeen-Roche, K.; Fried, L. P.

    2009-01-01

    Background Frailty involves decrements in many physiologic systems, is prevalent in older ages, and is characterized by increased vulnerability to disability and mortality. It is yet unclear how this geriatric syndrome relates to a preclinical cumulative marker of multisystem dysregulation. The purpose of this study was to evaluate whether allostatic load (AL) was associated with the geriatric syndrome of frailty in older community-dwelling women. Methods We examined the cross-sectional relationship between AL and a validated measure of frailty in the baseline examination of two complementary population-based cohort studies, the Women’s Health and Aging studies (WHAS) I and II. This sample of 728 women had an age range of 70–79. We used ordinal logistic regression to estimate the relationship between AL and frailty controlling for covariates. Results About 10% of women were frail and 46% were prefrail. AL ranged from 0 to 8 with 91% of participants scoring between 0 and 4. Regression models showed that a unit increase in the AL score was associated with increasing levels of frailty (OR = 1.16, 95% CI = 1.04–1.28) controlling for race, age, education, smoking status, and comorbidities. Conclusion This study suggests that frailty is associated with AL. The observed relationship provides some support for the hypothesis that accumulation of physiological dysregulation may be related to the loss of reserve characterized by frailty. PMID:18829589

  10. Sociodemographic, behavioral and genetic determinants of allostatic load in a Swiss population-based study.

    PubMed

    Petrovic, Dusan; Pivin, Edward; Ponte, Belen; Dhayat, Nasser; Pruijm, Menno; Ehret, Georg; Ackermann, Daniel; Guessous, Idris; Younes, Sandrine Estoppey; Pechère-Bertschi, Antoinette; Vogt, Bruno; Mohaupt, Markus; Martin, Pierre-Yves; Paccaud, Fred; Burnier, Michel; Bochud, Murielle; Stringhini, Silvia

    2016-05-01

    Allostatic load (AL) is a marker of physiological dysregulation which reflects exposure to chronic stress. High AL has been related to poorer health outcomes including mortality. We examine here the association of socioeconomic and lifestyle factors with AL. Additionally, we investigate the extent to which AL is genetically determined. We included 803 participants (52% women, mean age 48±16years) from a population and family-based Swiss study. We computed an AL index aggregating 14 markers from cardiovascular, metabolic, lipidic, oxidative, hypothalamus-pituitary-adrenal and inflammatory homeostatic axes. Education and occupational position were used as indicators of socioeconomic status. Marital status, stress, alcohol intake, smoking, dietary patterns and physical activity were considered as lifestyle factors. Heritability of AL was estimated by maximum likelihood. Women with a low occupational position had higher AL (low vs. high OR=3.99, 95%CI [1.22;13.05]), while the opposite was observed for men (middle vs. high OR=0.48, 95%CI [0.23;0.99]). Education tended to be inversely associated with AL in both sexes(low vs. high OR=3.54, 95%CI [1.69;7.4]/OR=1.59, 95%CI [0.88;2.90] in women/men). Heavy drinking men as well as women abstaining from alcohol had higher AL than moderate drinkers. Physical activity was protective against AL while high salt intake was related to increased AL risk. The heritability of AL was estimated to be 29.5% ±7.9%. Our results suggest that generalized physiological dysregulation, as measured by AL, is determined by both environmental and genetic factors. The genetic contribution to AL remains modest when compared to the environmental component, which explains approximately 70% of the phenotypic variance. PMID:26881833

  11. Rearing history and allostatic load in adult western lowland gorillas (Gorilla gorilla gorilla) in human care.

    PubMed

    Edes, Ashley N; Wolfe, Barbara A; Crews, Douglas E

    2016-01-01

    Disrupted rearing history is a psychological and physical stressor for nonhuman primates, potentially resulting in multiple behavioral and physiological changes. As a chronic, soma-wide stressor, altered rearing may be best assessed using a holistic tool such as allostatic load (AL). In humans, AL estimates outcomes of lifetime stress-induced damage. We predicted mother-reared gorillas would have lower AL than nursery-reared and wild-caught conspecifics. We estimated AL for 27 gorillas housed at the Columbus Zoo and Aquarium between 1956 and 2014. AL estimates were calculated using biomarkers obtained during previous anesthetic events. Biomarkers in the high-risk quartile were counted toward a gorilla's AL. Rearing history was categorized as mother-reared, nursery-reared, and wild-caught. Using ANCOVA, rearing history and AL are significantly associated when age and sex are entered as covariates. Wild-caught gorillas have significantly higher AL than mother-reared gorillas. Neither wild-caught nor mother-reared gorillas are significantly different from nursery-reared gorillas. When examined by sex, males of all rearing histories have significantly lower AL than females. We suggest males face few stressors in human care and ill effects of rearing history do not follow. Wild-caught females have significantly higher AL than mother-reared females, but neither is significantly different from nursery-reared females. Combined with our previous work on AL in this group, wherein females had twofold higher AL than males, we suggest females in human care face more stressors than males. Disrupted rearing history may exacerbate effects of these stressors. Providing opportunities for females to choose their distance from males may help reduce their AL. PMID:26881840

  12. Cumulative Neighborhood Risk of Psychosocial Stress and Allostatic Load in Adolescents

    PubMed Central

    Theall, Katherine P.; Drury, Stacy S.; Shirtcliff, Elizabeth A.

    2012-01-01

    The authors examined the impact of cumulative neighborhood risk of psychosocial stress on allostatic load (AL) among adolescents as a mechanism through which life stress, including neighborhood conditions, may affect health and health inequities. They conducted multilevel analyses, weighted for sampling and propensity score-matched, among adolescents aged 12–20 years in the National Health and Nutrition Examination Survey (1999–2006). Individuals (first level, n = 11,886) were nested within families/households (second level, n = 6,696) and then census tracts (third level, n = 2,191) for examination of the contextual effect of cumulative neighborhood risk environment on AL. Approximately 35% of adolescents had 2 or more biomarkers of AL. A significant amount of variance in AL was explained at the neighborhood level. The likelihood of having a high AL was approximately 10% higher for adolescents living in medium-cumulative-risk neighborhoods (adjusted odds ratio (OR) = 1.09, 95% confidence interval (CI): 1.08, 1.09), 28% higher for those living in high-risk neighborhoods (adjusted OR = 1.28, 95% CI: 1.27, 1.30), and 69% higher for those living in very-high-risk neighborhoods (adjusted OR = 1.69, 95% CI: 1.68, 1.70) as compared with adolescents living in low-risk areas. Effect modification was observed by both individual- and neighborhood-level sociodemographic factors. These findings offer support for the hypothesis that neighborhood risks may culminate in a range of biologically mediated negative health outcomes detectable in adolescents. PMID:23035140

  13. Marital Conflict, Allostatic Load, and the Development of Children's Fluid Cognitive Performance

    ERIC Educational Resources Information Center

    Hinnant, J. Benjamin; El-Sheikh, Mona; Keiley, Margaret; Buckhalt, Joseph A.

    2013-01-01

    Relations between marital conflict, children's respiratory sinus arrhythmia (RSA), and fluid cognitive performance were examined over 3 years to assess allostatic processes. Participants were 251 children reporting on marital conflict, baseline RSA, and RSA reactivity (RSA-R) to a lab challenge were recorded, and fluid cognitive performance…

  14. Intelligence and socioeconomic position in childhood in relation to frailty and cumulative allostatic load in later life: the Lothian Birth Cohort 1936

    PubMed Central

    Gale, Catharine R; Booth, Tom; Starr, John M; Deary, Ian J

    2016-01-01

    Background Information on childhood determinants of frailty or allostatic load in later life is sparse. We investigated whether lower intelligence and greater socioeconomic disadvantage in childhood increased the risk of frailty and higher allostatic load, and explored the mediating roles of adult socioeconomic position, educational attainment and health behaviours. Methods Participants were 876 members of the Lothian Birth Cohort 1936 whose intelligence was assessed at age 11. At age 70, frailty was assessed using the Fried criteria. Measurements were made of fibrinogen, triglyceride, total and high-density lipoprotein cholesterol, albumin, glycated haemoglobin, C reactive protein, body mass index and blood pressure, from which an allostatic load score was calculated. Results In sex-adjusted analyses, lower intelligence and lower social class in childhood were associated with an increased risk of frailty: relative risks (95% CIs) were 1.57 (1.21 to 2.03) for a SD decrease in intelligence and 1.48 (1.12 to 1.96) for a category decrease in social class. In the fully adjusted model, both associations ceased to be significant: relative risks were 1.13 (0.83 to 1.54) and 1.19 (0.86 to 1.61), respectively. Educational attainment had a significant mediating effect. Lower childhood intelligence in childhood, but not social class, was associated with higher allostatic load. The sex-adjusted coefficient for allostatic load for a SD decrease in intelligence was 0.10 (0.07 to 0.14). In the fully adjusted model, this association was attenuated but remained significant (0.05 (0.01 to 0.09)). Conclusions Further research will need to investigate the mechanisms whereby lower childhood intelligence is linked to higher allostatic load in later life. PMID:26700299

  15. Marital conflict, respiratory sinus arrhythmia, and allostatic load: Interrelations and associations with the development of children’s externalizing behavior

    PubMed Central

    El-Sheikh, Mona; Hinnant, J. Benjamin

    2011-01-01

    Allostatic load theory hypothesizes that stress and the body’s responses to stressors contribute to longer term physiological changes in multiple systems over time (allostasis), and that shifts in how these systems function have implications for adjustment and health. We investigated these hypotheses with longitudinal data from two independent samples (n = 413; 219 girls, 194 boys) with repeated measures at ages 8, 9, 10, and 11. Initial parental marital conflict and its change over time indexed children’s exposure to an important familial stressor, which was examined in interaction with children’s respiratory sinus arrhythmia (RSA) reactivity to laboratory tasks (stress response) to predict children’s basal levels of RSA over time. We also investigated children’s sex as an additional possible moderator. Our second research question focused on examining whether initial levels and changes in resting RSA over time predicted children’s externalizing behavior. Boys with a strong RSA suppression response to a frustrating laboratory task who experienced higher initial marital conflict or increasing marital conflict over time showed decreases in their resting RSA over time. In addition, boys’ initial resting RSA (but not changes in resting RSA over time) was negatively related to change over time in externalizing symptoms. Findings for girls were more mixed. Results are discussed in the context of developmental psychobiology, allostatic load, and implications for the development of psychopathology. PMID:21756434

  16. The APOA1/C3/A4/A5 cluster and markers of allostatic load in the Boston Puerto Rican Health Study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The APOA1/C3/A4/A5 cluster encodes key regulators of plasma lipids. Interactions between dietary factors and single nucleotide polymorphisms (SNPs) in the cluster have been reported. Allostatic load, or physiological dysregulation in response to stress, has been implicated in shaping health disparit...

  17. Mediators of the relationship between socioeconomic status and allostatic load in the Chicago Health, Aging, and Social Relations Study (CHASRS)

    PubMed Central

    Hawkley, Louise C.; Lavelle, Leah A.; Berntson, Gary G.; Cacioppo, John T.

    2011-01-01

    Low socioeconomic status (SES) has been associated with higher levels of allostatic load (AL). Posited mechanisms for this association include stress, personality, psychosocial variables, coping, social networks, and health behaviors. This study examines whether these variables explain the SES-AL relationship in a population-based sample of 208 51–69 year-old White, Black, and Hispanic adults in the Chicago Health, Aging, and Social Relations Study. AL was based on nine markers of physiological dysregulation. SES was inversely associated with a composite measure of AL; hostility and poor sleep quality helped to explain the association between AL and SES. Factor analyses revealed four AL components corresponding to the bodily systems of interest. SES was significantly associated with two AL components, suggesting that the effects of SES on physiological dysregulation are specific to certain systems in a middle to early-old age population. PMID:21342206

  18. Hypocortisolism as a potential marker of allostatic load in children: Associations with family risk and internalizing disorders

    PubMed Central

    Watamura, Sarah Enos; Hankin, Benjamin L.

    2014-01-01

    Although the majority of research attention to the HPA-axis in stress-related disorders and as a marker of allostatic load has focused on over-activation of this stress system, theory and data clearly indicate that under-activation is also an important type of dysregulation. In the current study, we focused on low cortisol, exploring a constellation of risk factors comprised of stress exposure, maternal depression, and attenuated basal and stress reactive cortisol in two samples of children. The first sample is 110 preschoolers living in high stress environments. Cortisol was assessed across the day at home and at child care as well as across two stress paradigms. These data were used to classify whether children’s HPA-axis activity was attenuated. Serious family financial strain, maternal depression, and attenuated cortisol all made unique contributions in models predicting current clinical levels of internalizing symptoms as rated by mothers and teachers. The second sample was 166 3rd, 6th, and 9th graders studied 5 times across a 1-year period. Maternal and child depression were determined through structured clinical interviews, and stress exposure was assessed via checklist and interview techniques with the child and the parent. Cortisol was assessed multiple times across a lab visit at time 1, and these data were combined into a single continuous measure. Cortisol concentrations across the lab visit interacted with stress exposure across the year such that children with lower average cortisol at time 1, maternal depressive symptoms, and increased stress across the 12 months showed increasing levels of internalizing symptoms. Based on these and related data we propose that prior to puberty, low cortisol may be an important marker of allostatic load, particularly for risk of depression and anxiety. PMID:21756439

  19. Allostatic Load in Women with a History of Low Birth Weight Infants: The National Health and Nutrition Examination Survey

    PubMed Central

    Catov, Janet M.; Roberts, James M.

    2014-01-01

    Abstract Background: The purpose of our study was to determine whether women of reproductive age with history of low birth weight (LBW) deliveries have higher allostatic load (AL), a measure of the cumulative toll of chronic stress, than those with normal-weight deliveries. Methods: We used data from women ages 17–35 who responded to the National Health and Nutrition Examination Survey (NHANES) reproductive-health questionnaire, 1999–2006. Women reported history of LBW infants and those who were preterm. We classified preterm-LBW and term-LBW as surrogates for preterm birth (PTB) and small for gestational age (SGA), respectively. Normal weight included those without LBW infant history. We utilized nine biomarkers measured in NHANES to determine AL and used linear regression to compare unadjusted and adjusted means. Results: We identified 877 women divided among SGA (2%), PTB (10%), and normal groups (88%). The SGA group had higher unadjusted and adjusted AL scores than did the normal group (2.82±0.35 vs. 1.92±0.07, p=0.011); women in the PTB group had higher AL scores than did the referent in adjusted analyses (2.58±0.21 vs. 1.92±0.07, p=0.001). Conclusions: Women with history of SGA or PTB had higher AL than did those with normal birth weight outcomes. This suggests a link between adverse pregnancy outcomes, chronic stress, and subclinical disease. PMID:25495368

  20. Cumulative Socioeconomic Status Risk, Allostatic Load, and Adjustment: A Prospective Latent Profile Analysis With Contextual and Genetic Protective Factors

    PubMed Central

    Brody, Gene H.; Yu, Tianyi; Chen, Yi-fu; Kogan, Steven M.; Evans, Gary W.; Beach, Steven R. H.; Windle, Michael; Simons, Ronald L.; Gerrard, Meg; Gibbons, Frederick X.; Philibert, Robert A.

    2012-01-01

    The health disparities literature identified a common pattern among middle-aged African Americans that includes high rates of chronic disease along with low rates of psychiatric disorders despite exposure to high levels of cumulative SES risk. The current study was designed to test hypotheses about the developmental precursors to this pattern. Hypotheses were tested with a representative sample of 443 African American youths living in the rural South. Cumulative SES risk and protective processes were assessed at 11-13 years; psychological adjustment was assessed at ages 14-18 years; genotyping at the 5-HTTLPR was conducted at age 16 years; and allostatic load (AL) was assessed at age 19 years. A Latent Profile Analysis identified 5 profiles that evinced distinct patterns of SES risk, AL, and psychological adjustment, with 2 relatively large profiles designated as focal profiles: a physical health vulnerability profile characterized by high SES risk/high AL/low adjustment problems, and a resilient profile characterized by high SES risk/low AL/low adjustment problems. The physical health vulnerability profile mirrored the pattern found in the adult health disparities literature. Multinomial logistic regression analyses indicated that carrying an s allele at the 5-HTTLPR and receiving less peer support distinguished the physical health vulnerability profile from the resilient profile. Protective parenting and planful self-regulation distinguished both focal profiles from the other 3 profiles. The results suggest the public health importance of preventive interventions that enhance coping and reduce the effects of stress across childhood and adolescence. PMID:22709130

  1. Racial and Ethnic Patterns of Allostatic Load Among Adult Women in the United States: Findings from the National Health and Nutrition Examination Survey 1999–2004

    PubMed Central

    Upchurch, Dawn M.

    2011-01-01

    Abstract Objective This study provides a descriptive sociodemographic profile of allostatic load (AL) among adult women of all age groups, focusing on how age patterns of AL vary across racial/ethnic groups. Allostatic load, an index of cumulative physiological dysregulation, captures how the cumulative impact of physiological stress responses from person-environment interactions causes wear and tear on the body's regulatory systems, which in turn can lead to disease outcomes and health disparities. Methods Using data from the National Health and Nutrition Examination Survey (NHANES) 1999–2004, this study examines AL in a nationally representative sample of women ≥18 years of age (n=5765). Measures of AL using 10 biomarkers representing cardiovascular, inflammatory, and metabolic system functioning were created. Multivariate negative binomial regression models were used, and predicted AL scores were computed. Results Black women had the highest predicted AL scores relative to other racial/ethnic groups, and a marked black/white gap in AL persisted across all age groups. Age by race/ethnicity interaction terms revealed significant racial/ethnic differences in AL patterns across age groups. Black women 40–49 years old had AL scores 1.14 times higher than white women 50–59 years old, suggesting earlier health deterioration. Mexican women not born in the United States had lower predicted AL scores than those born in the United States. Conclusions This study provides one of the first descriptive profiles of AL among a nationally representative sample of adult women in the United States and presents racial/ethnic trends in AL across age groups that are useful for identifying demographically and clinically important subgroups at risk of having high cumulative physiological dysregulation. PMID:21428732

  2. Mediating pathways between parental socio-economic position and allostatic load in mid-life: Findings from the 1958 British birth cohort.

    PubMed

    Barboza Solís, Cristina; Fantin, Romain; Castagné, Raphaële; Lang, Thierry; Delpierre, Cyrille; Kelly-Irving, Michelle

    2016-09-01

    Understanding how human environments affect our health by "getting under the skin" and penetrating the cells, organs and physiological systems of our bodies is a key tenet in public health research. Here, we examine the idea that early life socioeconomic position (SEP) can be biologically embodied, potentially leading to the production of health inequalities across population groups. Allostatic load (AL), a composite measure of overall physiological wear-and-tear, could allow for a better understanding of the potential biological pathways playing a role in the construction of the social gradient in adult health. We investigate the factors mediating the link between two components of parental SEP, maternal education (ME) and parental occupation (PO), and AL at 44 years. Data was used from 7573 members of the 1958 British birth cohort follow-up to age 44. AL was constructed using 14 biomarkers representing four physiological systems. We assessed the contribution of financial/materialist, psychological/psychosocial, educational, and health behaviors/BMI pathways over the life course, in mediating the associations between ME, PO and AL. ME and PO were mediated by three pathways: educational, material/financial, and health behaviors, for both men and women. A better understanding of embodiment processes leading to disease development may contribute to developing adapted public policies aiming to reduce health inequalities. PMID:27485729

  3. A Longitudinal Investigation of Race, Socioeconomic Status, and Psychosocial Mediators of Allostatic Load in Midlife Women: Findings from the Study of Women’s Health Across the Nation

    PubMed Central

    Upchurch, Dawn M.; Stein, Judith; Greendale, Gail A.; Chyu, Laura; Tseng, Chi-Hong; Huang, Mei-Hua; Lewis, Tené T.; Kravitz, Howard M.; Seeman, Teresa

    2015-01-01

    Objectives This research sought to assess racial and SES differences in level and change in allostatic load (AL) over time in midlife women and to test whether psychosocial factors mediate these relationships. These factors were: discrimination, perceived stress, and hostility. Methods Longitudinal data obtained from the Study of Women’s Health Across the Nation SWAN were used (n = 2063; mean age at baseline = 46.0). Latent growth curve (LGC) models evaluated the impact of demographic, menopausal, and psychosocial variables on level and change in AL over 8 years. Results Direct effects: High levels of discrimination and hostility significantly predicted higher AL (path coefficients 0.05, 0.05 respectively). High perceived stress significantly predicted a faster rate of increase of AL (path coefficient 0.06). Racial and socioeconomic status (SES) differentials were present, with African American race (path coefficient 0.23), low income (path coefficient −0.15), and low education (path coefficient −0.08) significantly predicted high AL level. Indirect effects: Significant indirect effects were found for African American race, less income, and lower education through higher discrimination, perceived stress, and hostility on level and rate of AL. Conclusion This was one of the first studies that investigated AL over multiple time periods and results supported AL as a cumulative phenomenon, affected by multiple psychosocial and demographic factors. The results suggest the complex ways in which race, SES, and psychosocial factors operate to influence AL. PMID:25886828

  4. Relationship of Serum Vitamin D Concentrations and Allostatic Load as a Measure of Cumulative Biological Risk among the US Population: A Cross-Sectional Study

    PubMed Central

    Frei, Regina; Haile, Sarah R.; Mutsch, Margot; Rohrmann, Sabine

    2015-01-01

    Introduction The allostatic load (AL) index is a multi-systemic measure of physiologic dysregulation known to be associated with chronic exposure to stress and adverse health outcomes. We examined the relationship between AL and serum 25-hydroxyvitamin D (25(OH)D) concentration in non-institutionalized US adults. Methods Data from the Third National Health and Nutrition Examination Survey (NHANES III, 1988–94) were used to calculate two versions of AL including 9 biomarkers and another two with 14 biomarkers (systolic and diastolic blood pressure, pulse rate, serum cholesterol, serum HDL-cholesterol, glycated hemoglobin, sex-specific waist-to-hip ratio, serum albumin, and serum C-reactive protein for AL1, and, additionally body mass index, serum triglyceride, serum creatinine, and serum herpes I & II antibodies for AL2), each set defined by predefined cut-offs or by quartiles. Serum vitamin D concentration was ranked into quartiles. Logistic regression, Poisson regression and linear regression were used to examine the association of serum 25(OH)D concentrations on AL, after adjusting for biological, physiological, socioeconomic, lifestyle, and health variables. Results Odds Ratios (OR) for high AL of the lowest 25(OH)D serum quartile were between 1.45 (95% CI: 1.28, 1.67) and 1.79 (95% CI: 1.39, 2.32) for the fully adjusted model, depending on AL version. Inverse relationships between vitamin D serum concentrations were observed for all AL versions and every adjustment. This relationship was consistent after stratification by sex, age or ethnic background. Sensitivity to low 25(OH)D concentrations was highest among the youngest group (20–39 years) with an OR of 2.11 (95% CI: 1.63, 2.73) for the lowest vitamin D quartile Q1. Conclusions Vitamin D had a consistent and statistically significant inverse association with all tested models of high AL, which remained consistent after adjusting for biological, socioeconomic, lifestyle and health variables. Our study

  5. Perinatal distress in women in low- and middle-income countries: allostatic load as a framework to examine the effect of perinatal distress on preterm birth and infant health.

    PubMed

    Premji, Shahirose

    2014-12-01

    In low- and middle-income countries (LMIC), determinants of women's and children's health are complex and differential vulnerability may exist to risk factors of perinatal distress and preterm birth. We examined the contribution of maternal perinatal distress on preterm birth and infant health in terms of infant survival and mother-infant interaction. A critical narrative and interpretive literature review was conducted. Peer-reviewed electronic databases (MEDLINE, Embase, Global Health, CINHAL), grey literature, and reference lists were searched, followed by a consultation exercise. The literature was predominantly from high-income countries. We identify determinants of perinatal distress and explicate changes in the hypothalamic-pituitary-adrenal axis, sympathetic, immune and cardiovascular systems, and behavioral responses resulting in pathophysiological effects. We suggest cultural-neutral composite measures of allostatic mediators (i.e., several biomarkers) of maternal perinatal distress as objective indicators of dysregulation in body systems in pregnant women in LMIC. Understanding causal links of maternal perinatal distress to preterm birth in women in LMIC should be a priority. The roles of allostasis and allostatic load are considered within the context of the health of pregnant women and fetuses/newborns in LMIC with emphasis on identifying objective indicators of the level of perinatal distress and protective factors or processes contributing to resilience while facing toxic stress. We propose a prospective study design with multiple measures across pregnancy and postpartum requiring complex statistical modeling. Building research capacity through partnering researchers in high-income countries and LMIC and reflecting on unique ethical challenges will be important to generating new knowledge in LMIC. PMID:24748241

  6. RTLS entry load relief parameter optimization

    NASA Technical Reports Server (NTRS)

    Crull, T. J.

    1975-01-01

    The results are presented of a study of a candidate load relief control law for use during the pullup phase of Return-to-Launch-Site (RTLS) abort entries. The control law parameters and cycle time which optimized performance of the normal load factor limiting phase (load relief phase) of an RTLS entry are examined. A set of control law gains, a smoothing parameter, and a normal force coefficient curve fit are established which resulted in good load relief performance considering the possible aerodynamic coefficient uncertainties defined. Also, the examination of various guidance cycle times revealed improved load relief performance with decreasing cycle time. A .5 second cycle provided smooth and adequate load relief in the presence of all the aerodynamic uncertainties examined.

  7. A groundwork for allostatic neuro-education

    PubMed Central

    Gerdes, Lee; Tegeler, Charles H.; Lee, Sung W.

    2015-01-01

    We propose to enliven educational practice by marrying a conception of education as guided human development, to an advanced scientific understanding of the brain known as allostasis (stability through change). The result is a groundwork for allostatic neuro-education (GANE). Education as development encompasses practices including the organic (homeschooling and related traditions), cognitive acquisition (emphasis on standards and testing), and the constructivist (aimed to support adaptive creativity for both learner and society). Allostasis views change to be the norm in biology, defines success in contexts of complex natural environments rather than controlled settings, and identifies the brain as the organ of central command. Allostatic neuro-education contrasts with education focused dominantly on testing, or neuroscience based on homeostasis (stability through constancy). The GANE perspective is to view learners in terms of their neurodevelopmental trajectories; its objective is to support authentic freedom, mediated by competent, integrated, and expansive executive functionality (concordant with the philosophy of freedom of Rudolf Steiner); and its strategy is to be attuned to rhythms in various forms (including those of autonomic arousal described in polyvagal theory) so as to enable experiential excitement for learning. The GANE presents a variety of testable hypotheses, and studies that explore prevention or mitigation of the effects of early life adversity or toxic stress on learning and development may be of particular importance. Case studies are presented illustrating use of allostatic neurotechnology by an adolescent male carrying diagnoses of Asperger’s syndrome and attention-deficit hyperactivity disorder, and a grade school girl with reading difficulties. The GANE is intended as a re-visioning of education that may serve both learners and society to be better prepared for the accelerating changes of the 21st century. PMID:26347688

  8. A groundwork for allostatic neuro-education.

    PubMed

    Gerdes, Lee; Tegeler, Charles H; Lee, Sung W

    2015-01-01

    We propose to enliven educational practice by marrying a conception of education as guided human development, to an advanced scientific understanding of the brain known as allostasis (stability through change). The result is a groundwork for allostatic neuro-education (GANE). Education as development encompasses practices including the organic (homeschooling and related traditions), cognitive acquisition (emphasis on standards and testing), and the constructivist (aimed to support adaptive creativity for both learner and society). Allostasis views change to be the norm in biology, defines success in contexts of complex natural environments rather than controlled settings, and identifies the brain as the organ of central command. Allostatic neuro-education contrasts with education focused dominantly on testing, or neuroscience based on homeostasis (stability through constancy). The GANE perspective is to view learners in terms of their neurodevelopmental trajectories; its objective is to support authentic freedom, mediated by competent, integrated, and expansive executive functionality (concordant with the philosophy of freedom of Rudolf Steiner); and its strategy is to be attuned to rhythms in various forms (including those of autonomic arousal described in polyvagal theory) so as to enable experiential excitement for learning. The GANE presents a variety of testable hypotheses, and studies that explore prevention or mitigation of the effects of early life adversity or toxic stress on learning and development may be of particular importance. Case studies are presented illustrating use of allostatic neurotechnology by an adolescent male carrying diagnoses of Asperger's syndrome and attention-deficit hyperactivity disorder, and a grade school girl with reading difficulties. The GANE is intended as a re-visioning of education that may serve both learners and society to be better prepared for the accelerating changes of the 21st century. PMID:26347688

  9. Tube-Load Model Parameter Estimation for Monitoring Arterial Hemodynamics

    PubMed Central

    Zhang, Guanqun; Hahn, Jin-Oh; Mukkamala, Ramakrishna

    2011-01-01

    A useful model of the arterial system is the uniform, lossless tube with parametric load. This tube-load model is able to account for wave propagation and reflection (unlike lumped-parameter models such as the Windkessel) while being defined by only a few parameters (unlike comprehensive distributed-parameter models). As a result, the parameters may be readily estimated by accurate fitting of the model to available arterial pressure and flow waveforms so as to permit improved monitoring of arterial hemodynamics. In this paper, we review tube-load model parameter estimation techniques that have appeared in the literature for monitoring wave reflection, large artery compliance, pulse transit time, and central aortic pressure. We begin by motivating the use of the tube-load model for parameter estimation. We then describe the tube-load model, its assumptions and validity, and approaches for estimating its parameters. We next summarize the various techniques and their experimental results while highlighting their advantages over conventional techniques. We conclude the review by suggesting future research directions and describing potential applications. PMID:22053157

  10. Minimizing Load Effects on NA4 Gear Vibration Diagnostic Parameter

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Zakrajsek, James J.

    2001-01-01

    NA4 is a vibration diagnostic parameter, developed by researchers at NASA Glenn Research Center, for health monitoring of gears in helicopter transmissions. The NA4 reacts to the onset of gear pitting damage and continues to react to the damage as it spreads. This research also indicates NA4 reacts similarly to load variations. The sensitivity of NA4 to load changes will substantially affect its performance on a helicopter gearbox that experiences continuously changing load throughout its flight regimes. The parameter NA4 has been used to monitor gear fatigue tests at constant load. At constant load, NA4 effectively detects the onset of pitting damage and tracks damage severity. Previous research also shows that NA4 reacts to changes in load applied to the gears in the same way it reacts to the onset of pitting damage. The method used to calculate NA4 was modified to minimize these load effects. The modified NA4 parameter was applied to four sets of experimental data. Results indicate the modified NA4 is no longer sensitive to load changes, but remains sensitive to pitting damage.

  11. Improving appearance and microbiologic quality of broiler carcasses with an allostatic modulator.

    PubMed

    Rubio-García, M E; Rubio-Lozano, M S; Ponce-Alquicira, E; Rosario-Cortes, C; Nava, G M; Castañeda-Serrano, M P

    2015-08-01

    An important priority of poultry producers is to guarantee animal welfare during animal production; however, broilers are exposed to unavoidable chronic stress (also known as allostasis) when they are captured, caged, and transported to the processing plant. This antemortem management causes allostatic load, animal injuries, and poor carcass quality. The aim of the present study was to evaluate the effects of an allostatic modulator (AM) on antemortem stress by measuring the appearance and microbiological quality of broiler carcasses. The AM consisted of a liquid formula containing ascorbic acid, acetyl salicylic acid, and electrolytes, administered orally 48 h before shipment to the processing plant. A total of 600 chickens (49-days-old) were used under a factorial arrangement 2 × 2 × 2 [2 commercial hybrid lines, 2 feed withdrawal programs (10 and 16 h), and 2 water treatments (control and AM)]. Each treatment included 25 chickens per pen and was carried out in triplicate. The broilers were shipped, slaughtered, and processed in a commercial processing plant where carcass defects (bruises and broken bones caused by antemortem management), crop pH, and carcass bacterial counts were evaluated in all experimental groups. Broilers under AM treatment showed a reduction in carcass defects (P = 0.015), crop pH (P = 0.0001), coliforms counts (P = 0.014), and total aerobic mesophilic bacteria (P = 0.0001) when compared to the control treatment. The present study indicates that the AM can be used to improve carcass quality in broilers. Our study provides a novel and economic alternative to reduce the allostatic load in broilers. PMID:26069253

  12. Continuous damage parameter calculation under thermo-mechanical random loading

    PubMed Central

    Nagode, Marko

    2014-01-01

    The paper presents a method on how the mean stress effect on fatigue damage can be taken into account under an arbitrary low cycle thermo-mechanical loading. From known stress, elastoplastic strain and temperature histories the cycle amplitudes and cycle mean values are extracted and the damage parameter is computed. In contrast to the existing methods the proposed method enables continuous damage parameter computation without the need of waiting for the cycles to close. The limitations of the standardized damage parameters are thus surpassed. The damage parameters derived initially for closed and isothermal cycles assuming that the elastoplastic stress–strain response follows the Masing and memory rules can now be used to take the mean stress effect into account under an arbitrary low cycle thermo-mechanical loading. The method includes:•stress and elastoplastic strain history transformation into the corresponding amplitude and mean values;•stress and elastoplastic strain amplitude and mean value transformation into the damage parameter amplitude history;•damage parameter amplitude history transformation into the damage parameter history. PMID:26150939

  13. Measurement of Automotive Catalyst Washcoat Loading Parameters by Microscopy Techniques

    NASA Astrophysics Data System (ADS)

    Plummer, H. K.; J., R., Jr.; Baird, R. H.; Hammerle, A. A.; Adamczyk, J. D.

    1999-07-01

    : Washcoat loading on automotive exhaust catalysts is normally determined, in production, by a weight gain procedure, which gives an accurate measure of washcoat weight present on an individual catalyst but does not address such parameters as uniformity of washcoat loading and geometric surface area within the monolith. Both issues are important factors that affect the catalytic activity (especially during catalyst lightoff) and catalyst cost (due to a thick, less functional washcoat) in an automotive exhaust system. Washcoat loading also plays a role in post-use analysis to determine possible reasons for changes (i.e., loss) in catalytic activity. For the post-use examinations weighing techniques are not useful since the washcoat cannot be preferentially removed and part of the weight gain is due to contamination from the combustion process. In the present work a combination of scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS) X-ray mapping, light microscopy, and digital image processing was used. Two methods have been demonstrated for the determination of the density of calcined alumina washcoats. Additionally, a method has been developed to determine catalyst washcoat loading, either on a sampling basis after manufacture or in studies of catalysts after use. Methods also have been developed to determine other important parameters such as monolith wall thickness, percent open area in a catalyst monolith, geometric surface area, and hydraulic diameter. A linear correlation has been shown between hydrocarbon conversion efficiency and measured geometric surface area, with a coefficient of determination (R2) of 0.84.

  14. Measurement of Automotive Catalyst Washcoat Loading Parameters by Microscopy Techniques.

    PubMed

    Plummer; Baird; Hammerle; Adamczyk; Pakko

    1999-07-01

    : Washcoat loading on automotive exhaust catalysts is normally determined, in production, by a weight gain procedure, which gives an accurate measure of washcoat weight present on an individual catalyst but does not address such parameters as uniformity of washcoat loading and geometric surface area within the monolith. Both issues are important factors that affect the catalytic activity (especially during catalyst lightoff) and catalyst cost (due to a thick, less functional washcoat) in an automotive exhaust system. Washcoat loading also plays a role in post-use analysis to determine possible reasons for changes (i.e., loss) in catalytic activity. For the post-use examinations weighing techniques are not useful since the washcoat cannot be preferentially removed and part of the weight gain is due to contamination from the combustion process. In the present work a combination of scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS) X-ray mapping, light microscopy, and digital image processing was used. Two methods have been demonstrated for the determination of the density of calcined alumina washcoats. Additionally, a method has been developed to determine catalyst washcoat loading, either on a sampling basis after manufacture or in studies of catalysts after use. Methods also have been developed to determine other important parameters such as monolith wall thickness, percent open area in a catalyst monolith, geometric surface area, and hydraulic diameter. A linear correlation has been shown between hydrocarbon conversion efficiency and measured geometric surface area, with a coefficient of determination (r(2)) of 0.84. PMID:10421811

  15. Gait analysis parameters of healthy human subjects with asymmetric loads.

    PubMed

    Berceanu, C; Marghitu, D B; Gudavalli, M R; Raju, P K; Vikas, Y

    2016-06-01

    This article focuses on the analysis of gait parameters, ground reaction forces (GRF), and motion signals, for the various asymmetric loads carried by healthy human subjects during walking. Eight asymptomatic human volunteers were enrolled in this study. They were asked to walk, at self-selected pace, with various weights ranging from 0 to 11.33 kg (25 lbs) in 2.26 kg (5 lbs) increments, in one hand on a wooden area equipped with a force platform. Moreover, motion data were recorded from lumbar L1 vertebrae at a frequency of 120 Hz. Three trials of data have been recorded for each subject. In order to quantify the effect of increasing loads on the GRF we define the compression area, restitution area, and coefficient of restitution (COR) for GRF curves. We observe an increase in the compression area with respect to the load and almost constant values for the COR. For motion signals analysis we employ wavelet theory. The signals obtained from the lumbar L1 sensor of the spine vertebrae show a decrease in the wavelet detail energy, for the levels 3, 4, and 5, with respect to increasing loads. PMID:26274771

  16. Sensitivity of lumbar spine loading to anatomical parameters.

    PubMed

    Putzer, Michael; Ehrlich, Ingo; Rasmussen, John; Gebbeken, Norbert; Dendorfer, Sebastian

    2016-04-11

    Musculoskeletal simulations of lumbar spine loading rely on a geometrical representation of the anatomy. However, this data has an inherent inaccuracy. This study evaluates the influence of defined geometrical parameters on lumbar spine loading utilising five parametrised musculoskeletal lumbar spine models for four different postures. The influence of the dimensions of vertebral body, disc, posterior parts of the vertebrae as well as the curvature of the lumbar spine was studied. Additionally, simulations with combinations of selected parameters were conducted. Changes in L4/L5 resultant joint force were used as outcome variable. Variations of the vertebral body height, disc height, transverse process width and the curvature of the lumbar spine were the most influential. These parameters can be easily acquired from X-rays and should be used to morph a musculoskeletal lumbar spine model for subject-specific approaches with respect to bone geometry. Furthermore, the model was very sensitive to uncommon configurations and therefore, it is advised that stiffness properties of discs and ligaments should be individualised. PMID:26680014

  17. Sediment load estimation using statistical distributions with streamflow dependent parameters

    NASA Astrophysics Data System (ADS)

    Mailhot, A.; Rousseau, A. N.; Talbot, G.; Quilbé, R.

    2005-12-01

    The classical approaches to estimate sediment and chemical loads are all deterministic: averaging methods, ratio estimators, regression methods (rating curves) and planning level load estimation methods. However, none of these methods is satisfactory since they are often inaccurate and do not take into account nor quantify uncertainty. To fill this gap, statistical methods have to be investigated. This presentation proposes a new statistical method in which sediment concentration is assimilated to a random variable and is described by distribution functions. Three types of distributions are considered: Log-Normal, Gamma and Weibull distributions. Correlation between sediment concentrations and streamflows is integrated to the model by assuming that distribution parameters (mean and coefficient of variation) are related to streamflow using several different functional forms: exponential, quadratic and power law forms for the mean, constant and linear for the coefficient of variation. Parameter estimation is realized through maximization of the likelihood function. This approach is applied on a data set (1989 to 2004) from the Beaurivage River (Quebec, Canada) with weekly to monthly sampling for sediment concentration. A comparison of different models (selection of a distribution function with functional forms relating the mean and the coefficient of variation to streamflow) shows that the Log-Normal distribution with power law mean and coefficient of variation independent of streamflow provides the best result. When comparing annual load results with those obtained using deterministic methods, we observe that ratio estimators values are rarely within the [0.1, 0.9] quantile interval. For the 1997-2004 period, ratio estimator values are almost systematically smaller than the 0.1 quantile. This could presumably be due to the small number of sediment concentration samples for these years. This study suggests that, if deterministic methods such as the ratio estimator

  18. Sleep Deprivation and Circadian Disruption: Stress, Allostasis, and Allostatic Load.

    PubMed

    McEwen, Bruce S; Karatsoreos, Ilia N

    2015-03-01

    Sleep has important homeostatic functions, and circadian rhythms organize physiology and behavior on a daily basis to insure optimal function. Sleep deprivation and circadian disruption can be stressors, enhancers of other stressors that have consequences for the brain and many body systems. Whether the origins of circadian disruption and sleep disruption and deprivation are from anxiety, depression, shift work, long-distance air travel, or a hectic lifestyle, there are consequences that impair brain functions and contribute to the cumulative wear and tear on body systems caused by too much stress and/or inefficient management of the systems that promote adaptation. PMID:26055668

  19. Cumulative Risk, Maternal Responsiveness, and Allostatic Load among Young Adolescents

    ERIC Educational Resources Information Center

    Evans, Gary W.; Kim, Pilyoung; Ting, Albert H.; Tesher, Harris B.; Shannis, Dana

    2007-01-01

    The purpose of this study was to examine the impact of cumulative risk exposure in concert with maternal responsiveness on physiological indicators of chronic stress in children and youth. Middle-school children exposed to greater accumulated psychosocial (e.g., family turmoil, poverty) and physical (e.g., crowding, substandard housing) risk…

  20. Allostatic Load: Definition and Relation to Disability in Hispanic Elders

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Health disparities among minority populations are important problems that may become amplified with age, contributing to development of physical disability. Surveys of Puerto Ricans in the US mainland have consistently shown high rates of disability. One hypothesis for this is lifelong exposure to s...

  1. On dynamic loads in parallel shaft transmissions. 2: Parameter study

    NASA Technical Reports Server (NTRS)

    Lin, Edward Hsiang-Hsi; Huston, Ronald L.; Coy, John J.

    1987-01-01

    Solutions to the governing equations of a spur gear transmission model, developed in NASA TM-100180 (AVSCOM TM-87-C-2), are presented. Factors affecting the dynamic load are identified. It is found that the dynamic load increases with operating speed up to a system natural frequency. At operating speeds beyond the natural frequency the dynamic load decreases dramatically. Also. it is found that the applied load and shaft inertia have little effect on the dynamic load. Damping and friction decrease the dynamic load. Finally, tooth stiffness has a significant effect on dynamic loading; the higher the stiffness, the lower the dynamic loading. Also, the higher the stiffness the higher the rotating speed required for dynamic response.

  2. Atmospheric pressure loading parameters from very long baseline interferometry observations

    NASA Technical Reports Server (NTRS)

    Macmillan, D. S.; Gipson, John M.

    1994-01-01

    Atmospheric mass loading produces a primarily vertical displacement of the Earth's crust. This displacement is correlated with surface pressure and is large enough to be detected by very long baseline interferometry (VLBI) measurements. Using the measured surface pressure at VLBI stations, we have estimated the atmospheric loading term for each station location directly from VLBI data acquired from 1979 to 1992. Our estimates of the vertical sensitivity to change in pressure range from 0 to -0.6 mm/mbar depending on the station. These estimates agree with inverted barometer model calculations (Manabe et al., 1991; vanDam and Herring, 1994) of the vertical displacement sensitivity computed by convolving actual pressure distributions with loading Green's functions. The pressure sensitivity tends to be smaller for stations near the coast, which is consistent with the inverted barometer hypothesis. Applying this estimated pressure loading correction in standard VLBI geodetic analysis improves the repeatability of estimated lengths of 25 out of 37 baselines that were measured at least 50 times. In a root-sum-square (rss) sense, the improvement generally increases with baseline length at a rate of about 0.3 to 0.6 ppb depending on whether the baseline stations are close to the coast. For the 5998-km baseline from Westford, Massachusetts, to Wettzell, Germany, the rss improvement is about 3.6 mm out of 11.0 mm. The average rss reduction of the vertical scatter for inland stations ranges from 2.7 to 5.4 mm.

  3. Using a Support Vector Machine (SVM) to Improve Generalization Ability of Load Model Parameters

    SciTech Connect

    Ma, Jian; Dong, Zhao Yang; Zhang, Pei

    2009-04-24

    Load modeling plays an important role in power system stability analysis and planning studies. The parameters of load models may experience variations in different application situations. Choosing appropriate parameters is critical for dynamic simulation and stability studies in power system. This paper presents a method to select the parameters with good generalization ability based on a given large number of available parameters that have been identified from dynamic simulation data in different scenarios. Principal component analysis is used to extract the major features of the given parameter sets. Reduced feature vectors are obtained by mapping the given parameter sets into principal component space. Then support vectors are found by implementing a classification problem. Load model parameters based on the obtained support vectors are built to reflect the dynamic property of the load. All of the given parameter sets were identified from simulation data based on the New England 10-machine 39-bus system, by taking into account different situations, such as load types, fault locations, fault types, and fault clearing time. The parameters obtained by support vector machine have good generalization capability, and can represent the load more accurately in most situations.

  4. Effects of fundamental structure parameters on dynamic responses of submerged floating tunnel under hydrodynamic loads

    NASA Astrophysics Data System (ADS)

    Long, Xu; Ge, Fei; Wang, Lei; Hong, Youshi

    2009-06-01

    This paper investigates the effects of structure parameters on dynamic responses of submerged floating tunnel (SFT) under hydrodynamic loads. The structure parameters includes buoyancy-weight ratio (BWR), stiffness coefficients of the cable systems, tunnel net buoyancy and tunnel length. First, the importance of structural damp in relation to the dynamic responses of SFT is demonstrated and the mechanism of structural damp effect is discussed. Thereafter, the fundamental structure parameters are investigated through the analysis of SFT dynamic responses under hydrodynamic loads. The results indicate that the BWR of SFT is a key structure parameter. When BWR is 1.2, there is a remarkable trend change in the vertical dynamic response of SFT under hydrodynamic loads. The results also indicate that the ratio of the tunnel net buoyancy to the cable stiffness coefficient is not a characteristic factor affecting the dynamic responses of SFT under hydrodynamic loads.

  5. Influences of aerodynamic loads on hunting stability of high-speed railway vehicles and parameter studies

    NASA Astrophysics Data System (ADS)

    Zeng, Xiao-Hui; Wu, Han; Lai, Jiang; Sheng, Hong-Zhi

    2014-12-01

    The influences of steady aerodynamic loads on hunting stability of high-speed railway vehicles were investigated in this study. A mechanism is suggested to explain the change of hunting behavior due to actions of aerodynamic loads: the aerodynamic loads can change the position of vehicle system (consequently the contact relations), the wheel/rail normal contact forces, the gravitational restoring forces/moments and the creep forces/moments. A mathematical model for hunting stability incorporating such influences was developed. A computer program capable of incorporating the effects of aerodynamic loads based on the model was written, and the critical speeds were calculated using this program. The dependences of linear and nonlinear critical speeds on suspension parameters considering aerodynamic loads were analyzed by using the orthogonal test method, the results were also compared with the situations without aerodynamic loads. It is shown that the most dominant factors affecting linear and nonlinear critical speeds are different whether the aerodynamic loads considered or not. The damping of yaw damper is the most dominant influencing factor for linear critical speeds, while the damping of lateral damper is most dominant for nonlinear ones. When the influences of aerodynamic loads are considered, the linear critical speeds decrease with the rise of crosswind velocity, whereas it is not the case for the nonlinear critical speeds. The variation trends of critical speeds with suspension parameters can be significantly changed by aerodynamic loads. Combined actions of aerodynamic loads and suspension parameters also affect the critical speeds. The effects of such joint action are more obvious for nonlinear critical speeds.

  6. Adult cyclical vomiting syndrome: a disorder of allostatic regulation?

    PubMed

    Levinthal, D J; Bielefeldt, K

    2014-08-01

    Cyclic vomiting syndrome (CVS) is an idiopathic illness characterized by stereotypic and sudden-onset episodes of intense retching and repetitive vomiting that are often accompanied by severe abdominal pain. Many associated factors that predict CVS attacks, such as prolonged periods of fasting, sleep deprivation, physical and emotional stress, or acute anxiety, implicate sympathetic nervous system activation as a mechanism that may contribute to CVS pathogenesis. Furthermore, adult patients with CVS tend to have a history of early adverse life events, mood disorders, chronic stress, and drug abuse-all associations that may potentiate sympathetic neural activity. In this review, we set forth a conceptual model in which CVS is viewed as a brain disorder involving maladaptive plasticity within central neural circuits important for allostatic regulation of the sympathetic nervous system. This model not only can account for the varied clinical observations that are linked with CVS, but also has implications for potential therapeutic interventions. Thus, it is likely that cognitive behavioral therapy, stress management ("mind-body") interventions, regular exercise, improved sleep, and avoidance of cannabis and opiate use could have positive influences on the clinical course for patients with CVS. PMID:24736863

  7. Effects of load carriage and footwear on spatiotemporal parameters, kinematics, and metabolic cost of walking.

    PubMed

    Dames, Kevin D; Smith, Jeremy D

    2015-07-01

    Gait patterns are commonly altered when walking or running barefoot compared to shod conditions. Although controversy exists as to whether barefoot conditions result in lower metabolic costs, it is clear that adding load to the body results in increased metabolic costs. The effects of footwear and backpack loading have been investigated separately, but it is unclear whether manipulating both simultaneously would cause similar outcomes. Twelve healthy individuals (7 female, 5 male) with no obvious gait abnormalities participated in this study (age=24±2 years, height=1.73±0.13 m, and mass=71.1±16.9 kg). Steady state metabolic data and 3D motion capture were collected during treadmill walking at 1.5 ms(-1) in four conditions: Barefoot Unloaded, Shod Unloaded, Barefoot Loaded, and Shod Loaded. Barefoot walking elicited shorter stride lengths, stance and double support times, as well as a slight (≈1%), but not significant, decrease in metabolic cost. Loading increased metabolic costs of walking but did not elicit spatiotemporal changes in either footwear condition. Lower limb kinematic differences were noted in response to both loading and footwear. Changes in spatiotemporal parameters observed when walking barefoot were not exacerbated by the addition of a backpack load. This suggests that the increased metabolic demand associated with the load is met with a similar spatiotemporal pattern whether a person wears a supportive shoe or not. Thus, the discomfort associated with foot strike while barefoot that promotes spatiotemporal changes seems to be independent of load. PMID:25985924

  8. Experimental Parameters Affecting Stripping of Rare Earth Elements from Loaded Sorptive Media in Simulated Geothermal Brines

    DOE Data Explorer

    Dean Stull

    2016-05-24

    Experimental results from several studies exploring the impact of pH and acid volume on the stripping of rare earth elements (REEs) loaded onto ligand-based media via an active column. The REEs in this experiment were loaded onto the media through exposure to a simulated geothermal brine with known mineral concentrations. The data include the experiment results, rare earth element concentrations, and the experimental parameters varied.

  9. Application of ANN to evaluate effective parameters affecting failure load and displacement of RC buildings

    NASA Astrophysics Data System (ADS)

    Hakan Arslan, M.

    2009-06-01

    This study investigated the efficiency of an artificial neural network (ANN) in predicting and determining failure load and failure displacement of multi story reinforced concrete (RC) buildings. The study modeled a RC building with four stories and three bays, with a load bearing system composed of columns and beams. Non-linear static pushover analysis of the key parameters in change defined in Turkish Earthquake Code (TEC-2007) for columns and beams was carried out and the capacity curves, failure loads and displacements were obtained. Totally 720 RC buildings were analyzed according to the change intervals of the parameters chosen. The input parameters were selected as longitudinal bar ratio (ρl) of columns, transverse reinforcement ratio (Asw/sc), axial load level (N/No), column and beam cross section, strength of concrete (fc) and the compression bar ratio (ρ'/ρ) on the beam supports. Data from the nonlinear analysis were assessed with ANN in terms of failure load and failure displacement. For all outputs, ANN was trained and tested using of 11 back-propagation methods. All of the ANN models were found to perform well for both failure loads and displacements. The analyses also indicated that a considerable portion of existing RC building stock in Turkey may not meet the safety standards of the Turkish Earthquake Code (TEC-2007).

  10. Parameter sensitivity analysis of tailored-pulse loading stimulation of Devonian gas shale

    SciTech Connect

    Barbour, T.G.; Mihalik, G.R.

    1980-11-01

    An evaluation of three tailored-pulse loading parameters has been undertaken to access their importance in gas well stimulation technology. This numerical evaluation was performed using STEALTH finite-difference codes and was intended to provide a measure of the effects of various tailored-pulse load configurations on fracture development in Devonian gas shale. The three parameters considered in the sensitivity analysis were: loading rate; decay rate; and sustained peak pressures. By varying these parameters in six computations and comparing the relative differences in fracture initiation and propagation the following conclusions were drawn: (1) Fracture initiation is directly related to the loading rate aplied to the wellbore wall. Loading rates of 10, 100 and 1000 GPa/sec were modeled. (2) If yielding of the rock can be prevented or minimized, by maintaining low peak pressures in the wellbore, increasing the pulse loading rate, to say 10,000 GPa/sec or more, should initiate additional multiple fractures. (3) Fracture initiation does not appear to be related to the tailored-pulse decay rate. Fracture extension may be influenced by the rate of decay. The slower the decay rate, the longer the crack extension. (4) Fracture initiation does not appear to be improved by a high pressure plateau in the tailored-pulse. Fracture propagation may be enhanced if the maintained wellbore pressure plateau is of sufficient magnitude to extent the range of the tangential tensile stresses to greater radial distances. 26 figures, 2 tables.

  11. The effect of military load carriage on 3-D lower limb kinematics and spatiotemporal parameters.

    PubMed

    Birrell, Stewart A; Haslam, Roger A

    2009-10-01

    The 3-D gait analysis of military load carriage is not well represented, if at all, within the available literature. This study collected 3-D lower limb kinematics and spatiotemporal parameters in order to assess the subsequent impact of carrying loads in a backpack of up to 32 kg. Results showed the addition of load significantly decreased the range of motion of flexion/extension of the knee and pelvic rotation. Also seen were increases in adduction/abduction and rotation of the hip and pelvis tilt. No changes to ankle kinematics were observed. Alterations to the spatiotemporal parameters of gait were also of considerable interest, namely, an increase in double support and a decrease in preferred stride length as carried load increased. Analysing kinematics during military or recreational load carriage broadens the knowledge regarding the development of exercise-related injuries, while helping to inform the human-centred design process for future load carrying systems. The importance of this study is that limited available research has investigated 3-D lower limb joint kinematics when carrying loads. PMID:19787507

  12. Comparison of vocal loading parameters in kindergarten and elementary school teachers.

    PubMed

    Remacle, Angélique; Morsomme, Dominique; Finck, Camille

    2014-04-01

    PURPOSE Although a global picture exists of teachers' voice demands in general, few studies have compared specific groups of teachers to determine whether some are more at risk than others. This study compared the vocal loadings of kindergarten and elementary school teachers; professional and nonprofessional vocal load were determined for both groups. METHOD Twelve kindergarten and 20 elementary school female teachers without voice problems were monitored during 1 workweek using the Ambulatory Phonation Monitor. Vocal loading parameters analyzed were F0, SPL, time dose, distance dose, and cycle dose. RESULTS Comparisons between the groups showed significantly higher cycle dose and distance dose for kindergarten teachers than for elementary school teachers, in both professional and nonprofessional environments. Professional and nonprofessional voice use comparisons showed significant differences for all parameters, indicating that vocal load was higher in the professional environment for both groups. CONCLUSIONS The higher vocal doses measured in kindergarten teachers suggest that particular attention should be paid to this specific group of teachers. Although nonprofessional vocal load is lower than professional vocal load, it is important to take both into account because of their cumulative effects. PMID:24129011

  13. Designing micellar nanocarriers with improved drug loading and stability based on solubility parameter.

    PubMed

    Tian, Ye; Shi, Chenjun; Sun, Yujiao; Zhu, Chengyun; Sun, Changquan Calvin; Mao, Shirui

    2015-03-01

    The objective of this study is to demonstrate the feasibility of using solubility parameter as guidance for the design and identification of a stable micellar system with a high drug loading capacity for oral drug delivery. Using hydroxycamptothecin (HCPT) as a model drug, the effect of three hydrophobic blocks (fatty glycerides) grafted onto chitosan on the drug loading and stability of HCPT-loaded micellar nanoparticles formed by pH precipitation method were studied systematically. The Flory-Huggins interaction parameter (χFH) calculated by the group contribution method (GCM) and molecular dynamics simulation (MDS) was used to assess the compatibility between HCPT and the copolymers. The predicted order of compatibility between three chitosan derivatives and HCPT was verified experimentally. A high drug loading and remarkably stable micellar system for oral administration based on succinylated glycerol monooleate-chitosan was discovered in this study. Our study suggests that the miscibility between drug and copolymer is crucial to drug loading and stability of the micellar system. Thus, the calculation of χFH using GCM and MDS methods is useful for guiding the design or screening of a suitable copolymer for preparing drug-loaded micellar nanocarrier systems. PMID:25587749

  14. Body segment inertial parameters and low back load in individuals with central adiposity.

    PubMed

    Pryce, Robert; Kriellaars, Dean

    2014-09-22

    There is a paucity of information regarding the impact of central adiposity on the inertial characteristics of body segments. Deriving low back loads during lifting requires accurate estimate of inertial parameters. The purpose was to determine the body segment inertial parameters of people with central adiposity using a photogrammetric technique, and then to evaluate the impact on lumbar spine loading. Five participants with central adiposity (waist:hip ratio>0.9, waist circumference>102 cm) were compared to a normal BMI group. A 3D wireframe model of the surface topography was constructed, partitioned into 8 body segments and then body segment inertial parameters were calculated using volumetric integration assuming uniform segment densities for the segments. Central adiposity dependent increases in body segment parameters ranged from 12 to 400%, varying across segments (greatest for trunk) and parameters. The increase in mass distribution to the trunk was accompanied by an anterior and inferior shift of the centre of mass. A proximal shift in centre of mass was detected for the extremities, along with a reduction in mass distribution to the lower extremity. L5/S1 torques (392 vs 263 Nm) and compressive forces (5918 vs 3986 N) were substantially elevated in comparison to the normal BMI group, as well as in comparison to torques and forces predicted using published BSIP equations. Central adiposity resulted in substantial but non-uniform increases in inertial parameters resulting in task specific increases in torque and compressive loads arising from different inertial and physical components. PMID:25047741

  15. Multi-objective parameter identification of Euler-Bernoulli beams under axial load

    NASA Astrophysics Data System (ADS)

    Talic, Emir; Schirrer, Alexander; Kozek, Martin; Jakubek, Stefan

    2015-04-01

    Identification of physical parameters of the partial differential equation describing transverse vibrations of an axially loaded Euler-Bernoulli beam (EBB) is proposed via a multi-objective optimization formulation and solved by a genetic algorithm. Conflicting objectives such as performance and stability are specifically formulated and optimized simultaneously. Stability is quantified in terms of the solution's time growth factor. Physical parameter sets in the resulting Pareto front approximation represent best trade-offs with respect to the multiple objectives. To compute output error performance objectives, the EBB equation is discretized via finite differences in space and time and reformulated to a state space system. Identifiability is verified by checking regularity of the so-called Fisher information matrix. The identification methodology is capable of determining material parameters, including damping, as well as the axial load from few, spatially concentrated measurements. Its features are demonstrated and successfully validated on specific simulation data and measurement data obtained from a laboratory testbed.

  16. Investigation of the effect of hub support parameters on two-bladed rotor oscillatory loads

    NASA Technical Reports Server (NTRS)

    Lee, C. D.; White, J. A.

    1974-01-01

    The results are presented of a test program and analysis to investigate the effects of inplane hub support parameters on the oscillatory chordwise loads of a two-bladed teetering rotor. The test program was conducted in two phases. The first consisted of a shake test to define the impedance of a number of test configurations as a function of frequency. The second phase was the test of these configurations in the NASA-Langley transonic dynamics tunnel. The test showed that the one-per-rev inplane bending moments could be changed by a factor of 2.0 as a function of the pylon configuration at the same aerodynamic operating condition. The higher harmonic inplane, flapwise, and torsional bending moments, and pitch link axial loads were not affected by changes in inplane hub impedance. The maximum inplane loads occurred for the pylon configuration with the minimum spring rate and maximum inertia.

  17. Derivatives of buckling loads and vibration frequencies with respect to stiffness and initial strain parameters

    NASA Technical Reports Server (NTRS)

    Haftka, Raphael T.; Cohen, Gerald A.; Mroz, Zenon

    1990-01-01

    A uniform variational approach to sensitivity analysis of vibration frequencies and bifurcation loads of nonlinear structures is developed. Two methods of calculating the sensitivities of bifurcation buckling loads and vibration frequencies of nonlinear structures, with respect to stiffness and initial strain parameters, are presented. A direct method requires calculation of derivatives of the prebuckling state with respect to these parameters. An adjoint method bypasses the need for these derivatives by using instead the strain field associated with the second-order postbuckling state. An operator notation is used and the derivation is based on the principle of virtual work. The derivative computations are easily implemented in structural analysis programs. This is demonstrated by examples using a general purpose, finite element program and a shell-of-revolution program.

  18. External Load Affects Ground Reaction Force Parameters Non-uniformly during Running in Weightlessness

    NASA Technical Reports Server (NTRS)

    DeWitt, John; Schaffner, Grant; Laughlin, Mitzi; Loehr, James; Hagan, R. Donald

    2004-01-01

    Long-term exposure to microgravity induces detrimefits to the musculcskdetal system (Schneider et al., 1995; LeBlanc et al., 2000). Treadmill exercise is used onboard the International Space Station as an exercise countermeasure to musculoskeletal deconditioning due to spaceflight. During locomotive exercise in weightlessness (0G), crewmembers wear a harness attached to an external loading mechanism (EL). The EL pulls the crewmember toward the treadmill, and provides resistive load during the impact and propulsive phases of gait. The resulting forces may be important in stimulating bone maintenance (Turner, 1998). The EL can be applied via a bungee and carabineer clip configuration attached to the harness and can be manipulated to create varying amounts of load levels during exercise. Ground-based research performed using a vertically mounted treadmill found that peak ground reaction forces (GRF) during running at an EL of less than one body weight (BW) are less than those that occur during running in normal gravity (1G) (Davis et al., 1996). However, it is not known how the GRF are affected by the EL in a true OG environment. Locomotion while suspended may result in biomechanics that differ from free running. The purpose of this investigation was to determine how EL affects peak impact force, peak propulsive force, loading rate, and impulse of the GRF during running in 0G. It was hypothesized that increasing EL would result in increases in each GRF parameter.

  19. An Underfrequency Load Shedding Scheme with Minimal Knowledge of System Parameters

    NASA Astrophysics Data System (ADS)

    Joe, Athbel; Krishna, S.

    2015-02-01

    Underfrequency load shedding (UFLS) is a common practice to protect a power system during large generation deficit. The adaptive UFLS schemes proposed in the literature have the drawbacks such as requirement of transmission of local frequency measurements to a central location and knowledge of system parameters, such as inertia constant H and load damping constant D. In this paper, a UFLS scheme that uses only the local frequency measurements is proposed. The proposed method does not require prior knowledge of H and D. The scheme is developed for power systems with and without spinning reserve. The proposed scheme requires frequency measurements free from the oscillations at the swing mode frequencies. Use of an elliptic low pass filter to remove these oscillations is proposed. The scheme is tested on a 2 generator system and the 10 generator New England system. Performance of the scheme with power system stabilizer is also studied.

  20. Fatigue life prediction for wind turbines: A case study on loading spectra and parameter sensitivity

    SciTech Connect

    Sutherland, H.J.; Veers, P.S.; Ashwill, T.D.

    1992-01-01

    Wind turbines are fatigue-critical machines used to produce electrical energy from the wind. These rotating machines are subjected to environmental loadings that are highly irregular in nature. Historical examples of fatigue problems in both research and commercial wind turbine development are presented. Some example data on wind turbine environments, loadings and material properties are also shown. Before a description of how the authors have chosen to attack the cumulative damage assessment, questions are presented for the reader's reflection. The solution technique used by the authors is then presented, followed by a case study applying the procedures to an actual wind turbine blade joint. The wind turbine is the 34-meter diameter vertical axis wind turbine (VAWT) erected by Sandia National Laboratories near Bushland, Texas. The case study examines parameter sensitivities for realistic uncertainties in inputs defining the turbine environment, stress response and material properties. The fatigue lifetimes are calculated using a fatigue analysis program, called LIFE2, which was developed at Sandia. The LIFE2 code, described in some detail in an appendix, is a PC-based, menu-driven package that leads the user through the steps required to characterize the loading and material properties, then uses Miner's rule or a linear crack propagation rule to numerically calculate the time to failure. Only S-n based cumulative damage applications are illustrated here. The LIFE2 code is available to educational institutions for use as a case study in describing complicated loading histories and for use by students in examining, hands on, parameter sensitivity of fatigue life analysis.

  1. Fatigue life prediction for wind turbines: A case study on loading spectra and parameter sensitivity

    NASA Astrophysics Data System (ADS)

    Sutherland, H. J.; Veers, P. S.; Ashwill, T. D.

    Wind turbines are fatigue-critical machines used to produce electrical energy from the wind. These rotating machines are subjected to environmental loadings that are highly irregular in nature. Historical examples of fatigue problems in both research and commercial wind turbine development are presented. Some example data on wind turbine environments, loadings and material properties are also shown. Before a description of how the authors have chosen to attack the cumulative damage assessment, questions are presented for the reader's reflection. The solution technique used by the authors is then presented, followed by a case study applying the procedures to an actual wind turbine blade joint. The wind turbine is the 34-meter diameter vertical axis wind turbine (VAWT) erected by Sandia National Laboratories near Bushland, Texas. The case study examines parameter sensitivities for realistic uncertainties in inputs defining the turbine environment, stress response and material properties. The fatigue lifetimes are calculated using a fatigue analysis program, called LIFE2, which was developed at Sandia. The LIFE2 code, described in some detail in an appendix, is a PC-based, menu-driven package that leads the user through the steps required to characterize the loading and material properties, then uses Miner's rule or a linear crack propagation rule to numerically calculate the time to failure. Only S-n based cumulative damage applications are illustrated here. The LIFE2 code is available to educational institutions for use as a case study in describing complicated loading histories and for use by students in examining, hands on, parameter sensitivity of fatigue life analysis.

  2. Optimization of experimental parameters for the production of LMWH-loaded polymeric microspheres

    PubMed Central

    Motlekar, Nusrat; Youan, Bi-Botti

    2008-01-01

    The present study reports on the production of low molecular weight heparin (LMWH) loaded polymeric microspheres for delivery via the oral route. The microspheres were prepared by the spray-drying technique using Eudragit® as the polymer. The objective of this study was to examine extensively the influence of formulation and process variables on the characteristics of the microspheres prepared. The effects of various experimental parameters such as polymer concentration, inlet temperature, and liquid feed flow rate on particle morphology, particle dimensions, and production yields were evaluated by means of experimental factorial designs. Electron microscopy, moisture content analysis, and fractal dimensional analysis were employed to characterize the microspheres. The inlet temperature and polymer concentration had the greatest effects on the production yield. Results showed that the polymer concentration affected the dimensions of the microspheres. Drug-loaded microspheres were spherical in shape and had a smooth surface with sizes ranging between 19–60 μm. Production yields were above 50% under most of the operating parameters studied. The selection of appropriate parameters yielded spray-dried microparticles characterized by smooth morphology and narrow dimensional distribution. PMID:19920892

  3. Effects of formulation parameters on encapsulation efficiency and release behavior of thienorphine loaded PLGA microspheres.

    PubMed

    Yang, Yang; Gao, Yongliang; Mei, Xingguo

    2013-01-01

    To develop a long-acting injectable thienorphine biodegradable poly (d, l-lactide-co-glycolide) (PLGA) microsphere for the therapy of opioid addiction, the effects of formulation parameters on encapsulation efficiency and release behavior were studied. The thienorphine loaded PLGA microspheres were prepared by o/w solvent evaporation method and characterized by HPLC, SEM, laser particle size analysis, residual solvent content and sterility testing. The microspheres were sterilized by gamma irradiation (2.5 kGy). The results indicated that the morphology of the thienorphine PLGA microspheres presented a spherical shape with smooth surface, the particle size was distributed from 30.19 ± 1.17 to 59.15 ± 0.67 μm and the drug encapsulation efficiency was influenced by drug/polymer ratio, homogeneous rotation speed, PVA concentration in the water phase and the polymer concentration in the oil phase. These changes were also reflected in drug release. The plasma drug concentration vs. time profiles were relatively smooth for about 25 days after injection of the thienorphine loaded PLGA microspheres to beagle dogs. In vitro and in vivo correlation was established. PMID:21967467

  4. Effective relative permittivity and characteristic impedance of graphene loaded microstrip line by scalar S-parameters

    NASA Astrophysics Data System (ADS)

    Patel, Kamlesh; Neha, Tyagi, Pawan K.

    2016-05-01

    Graphene film has particular applications at the microwave frequencies because as the number of layers increases, the permittivity and conductivity are modulated. Particularly, an effective relative permittivity of graphene is of high interest. In the present work, effective relative permittivity and characteristic impedance for three kind of structures where microstrip line is either in air or loaded by glass or by graphene film on the glass substrate have been determined. The scalar S-parameters have been measured by adopting both transmission-reflection and short-open methods. The propagation constant and effective relative permittivity have been calculated and found to be nearly same for the both methods with maximum difference of 0.27% and 1.87%, respectively. However, the characteristic impedance values have significant variations as high as 12.13%. Enhanced effective relative permittivity in the range of 3.7 to 4.12 has been observed in the frequency range 1 to 8 GHz, if graphene film on the glass substrate has been loaded on top of the microstrip line. In this value the contribution of stripline substrate includes. Relative permittivity of only monolayer graphene film on the glass substrate is determined in the range of 1.62 to 4.05, and dispersive in nature.

  5. Effects of process parameters on the properties of biocompatible ibuprofen-loaded microcapsules.

    PubMed

    Valot, P; Baba, M; Nedelec, J-M; Sintes-Zydowicz, N

    2009-03-18

    The objective of this study was to obtain an optimum formulation for microencapsulating Ibuprofen. This was achieved by investigating various factors which influenced the microcapsule size. Considering Ibuprofen as a lipophilic model drug, biocompatible Ibuprofen-loaded microcapsules in the size range of 20-60microm were prepared by the water in oil emulsion-solvent evaporation method. An aqueous surfactant phase was used as the continuous external phase (W), a biocompatible organic solvent dissolving Ibuprofen was used as oil phase (O), in addition with a low boiling solvent. The biocompatible polymeric microcapsule membrane was composed of Eudragit RSPO or Ethylcellulose. The influence of various process parameters, such as the volatile organic solvent, the oily core, the stirring rate, on the characteristics of microcapsules was investigated. The encapsulation yield of Ibuprofen close to 100%, whatever the polymer type, was determined by UV-vis experiments, in accordance with the results obtained by (13)C NMR spectroscopy. An innovative technique, DSC-based thermoporosimetry, was used for the estimation of the loading rate of Ibuprofen. The results indicated that this developed analytical method had to be improved since DSC-transitions accounted to free and enclosed Ibuprofen were observed and altered the accuracy of the results. PMID:19084583

  6. Parameters Associated with Marginal Bone Loss around Implant after Prosthetic Loading.

    PubMed

    Koller, Clarissa D; Pereira-Cenci, Tatiana; Boscato, Noéli

    2016-01-01

    This study evaluated retrospectively the association among occlusal, periodontal and implant-prosthetic parameters and marginal bone loss (MBL) around implants and survival rate at 5.7 ±3.2 years of follow-up after prosthetic loading. Eighty-two patients received 164 external hexagon implants. After the standard healing period (3 to 6 months), the implants were restored with single-tooth or up to three splinted crowns. All patients were followed according to a strict maintenance program with regular recalls and clinically evaluated by a calibrated examiner. The MBL measurements taken from standardized radiographs made at permanent crown placement (baseline) and after the last evaluation were calculated considering occlusal, periodontal and implant-prosthetic parameters. Veneer fractures and abutment loosening were not considered failure. Two implants failed during the follow-up period, resulting in a survival rate of 98.8%. Cox regression analyses showed MBL associated with non-working side contacts (p=0.047), inadequate anterior guidance (p=0.001), lateral group guidance involving teeth and implants (p=0.015), periimplant plaque index (p=0.035), prosthetic design (p=0.030) and retention (p=0.006). Inadequate occlusal pattern guide, presence of visible plaque, and cemented and splinted implant-supported restoration were associated with greater MBL around the implant. PMID:27224562

  7. Scaling up watershed model parameters--Flow and load simulations of the Edisto River Basin

    USGS Publications Warehouse

    Feaster, Toby D.; Benedict, Stephen T.; Clark, Jimmy M.; Bradley, Paul M.; Conrads, Paul A.

    2014-01-01

    The Edisto River is the longest and largest river system completely contained in South Carolina and is one of the longest free flowing blackwater rivers in the United States. The Edisto River basin also has fish-tissue mercury concentrations that are some of the highest recorded in the United States. As part of an effort by the U.S. Geological Survey to expand the understanding of relations among hydrologic, geochemical, and ecological processes that affect fish-tissue mercury concentrations within the Edisto River basin, analyses and simulations of the hydrology of the Edisto River basin were made with the topography-based hydrological model (TOPMODEL). The potential for scaling up a previous application of TOPMODEL for the McTier Creek watershed, which is a small headwater catchment to the Edisto River basin, was assessed. Scaling up was done in a step-wise process beginning with applying the calibration parameters, meteorological data, and topographic wetness index data from the McTier Creek TOPMODEL to the Edisto River TOPMODEL. Additional changes were made with subsequent simulations culminating in the best simulation, which included meteorological and topographic wetness index data from the Edisto River basin and updated calibration parameters for some of the TOPMODEL calibration parameters. Comparison of goodness-of-fit statistics between measured and simulated daily mean streamflow for the two models showed that with calibration, the Edisto River TOPMODEL produced slightly better results than the McTier Creek model, despite the significant difference in the drainage-area size at the outlet locations for the two models (30.7 and 2,725 square miles, respectively). Along with the TOPMODEL hydrologic simulations, a visualization tool (the Edisto River Data Viewer) was developed to help assess trends and influencing variables in the stream ecosystem. Incorporated into the visualization tool were the water-quality load models TOPLOAD, TOPLOAD-H, and LOADEST

  8. Plyometric Long Jump Training With Progressive Loading Improves Kinetic and Kinematic Swimming Start Parameters.

    PubMed

    Rebutini, Vanessa Z; Pereira, Gleber; Bohrer, Roberta C D; Ugrinowitsch, Carlos; Rodacki, André L F

    2016-09-01

    Rebutini, VZ, Pereira, G, Bohrer, RCD, Ugrinowitsch, C, and Rodacki, ALF. Plyometric long jump training with progressive loading improves kinetic and kinematic swimming start parameters. J Strength Cond Res 30(9): 2392-2398, 2016-This study was aimed to determine the effects of a plyometric long jump training program on torque around the lower limb joints and kinetic and kinematics parameters during the swimming jump start. Ten swimmers performed 3 identical assessment sessions, measuring hip and knee muscle extensors during maximal voluntary isometric contraction and kinetic and kinematics parameters during the swimming jump start, at 3 instants: INI (2 weeks before the training program, control period), PRE (2 weeks after INI measurements), and POST (24-48 hours after 9 weeks of training). There were no significant changes from INI to PRE measurements. However, the peak torque and rate of torque development increased significantly from PRE to POST measurements for both hip (47 and 108%) and knee (24 and 41%) joints. There were significant improvements to the horizontal force (7%), impulse (9%), and angle of resultant force (19%). In addition, there were significant improvements to the center of mass displacement (5%), horizontal takeoff velocity (16%), horizontal velocity at water entrance (22%), and peak angle velocity for the knee (15%) and hip joints (16%). Therefore, the plyometric long jump training protocol was effective to enhance torque around the lower limb joints and to control the resultant vector direction, to increase the swimming jump start performance. These findings suggest that coaches should use long jump training instead of vertical jump training to improve swimming start performance. PMID:24531431

  9. Disturbance of wildlife by outdoor winter recreation: allostatic stress response and altered activity-energy budgets.

    PubMed

    Arlettaz, Raphaël; Nusslé, Sébastien; Baltic, Marjana; Vogel, Peter; Palme, Rupert; Jenni-Eiermann, Susanne; Patthey, Patrick; Genoud, Michel

    2015-07-01

    Anthropogenic disturbance of wildlife is of growing conservation concern, but we lack comprehensive approaches of its multiple negative effects. We investigated several effects of disturbance by winter outdoor sports on free-ranging alpine Black Grouse by simultaneously measuring their physiological and behavioral responses. We experimentally flushed radio-tagged Black Grouse from their snow burrows, once a day, during several successive days, and quantified their stress hormone levels (corticosterone metabolites in feces [FCM] collected. from individual snow burrows). We also measured feeding time allocation (activity budgets reconstructed from radio-emitted signals) in response to anthropogenic disturbance. Finally, we estimated the related extra energy expenditure that may be incurred: based on activity budgets, energy expenditure was modeled from measures of metabolism obtained from captive birds subjected to different ambient temperatures. The pattern of FCM excretion indicated the existence of a funneling effect as predicted by the allostatic theory of stress: initial stress hormone concentrations showed a wide inter-individual variation, which decreased during experimental flushing. Individuals with low initial pre-flushing FCM values augmented their concentration, while individuals with high initial FCM values lowered it. Experimental disturbance resulted in an extension of feeding duration during the following evening foraging bout, confirming the prediction that Black Grouse must compensate for the extra energy expenditure elicited by human disturbance. Birds with low initial baseline FCM concentrations were those that spent more time foraging. These FCM excretion and foraging patterns suggest that birds with high initial FCM concentrations might have been experiencing a situation of allostatic overload. The energetic model provides quantitative estimates of extra energy expenditure. A longer exposure to ambient temperatures outside the shelter of snow

  10. Erythrocyte-mediated delivery of pravastatin: in vitro study of effect of hypotonic lysis on biochemical parameters and loading efficiency.

    PubMed

    Harisa, Gamaleldin I; Ibrahim, Mohamed F; Alanazi, Fars K

    2012-08-01

    Exposure of erythrocytes to hypotonic lysis creates pores in the cell membrane, through which pravastatin can enter and become trapped, after resealing them with a suitable buffer. We investigated the effects of tonicity, incubation time and drug concentration on drug loading into erythrocytes. Furthermore, we investigate the effects of pravastatin on erythrocyte oxidative stress markers and osmotic fragility behavior. Encapsulation was achieved using buffer solutions of different tonicities (0.5, 0.6 and 0.7% NaCl) and different drug concentrations (2, 4, 8 and 10 mg/mL) for a range of incubation times (15, 30, 60 and 120 min). The results demonstrated that controlled hypotonic lysis could entrap pravastatin in human erythrocytes, with acceptable loading parameters. The highest loading (34%) was achieved at 0.6% NaCl and 10 mg/mL pravastatin for 60 min incubation. At this pravastatin concentration, oxidative stress markers were similar to those seen in controls, and fragility and hematological parameters were unaffected in drug-loaded erythrocytes. These results indicate that the loading process and pravastatin concentration had no deleterious effects on the structure of pravastatin-loaded erythrocytes, suggesting that they may therefore have a similar life span to normal cells. Pravastatin-loaded erythrocytes may thus provide an effective extended-release-delivery system for pravastatin. PMID:22941486

  11. Fat or lean: adjustment of endogenous energy stores to predictable and unpredictable changes in allostatic load

    USGS Publications Warehouse

    Schultner, Jannik; Kitaysky, Alexander S.; Welcker, Jorg; Hatch, Scott

    2013-01-01

    6. Overall, results of this study support the ‘lean and fit’ hypothesis. We conclude that increased energy stores may not necessarily reflect better environmental conditions experienced by individuals or predict their higher fitness. A major advantage of adopting a lean physique when environmental conditions allow may be the avoidance of additional energetic costs for moving a heavy body. In breeding seabirds, this advantage may be more important during chick-rearing. In the focal species, the secretion of glucocorticoids might be involved in regulation of energy stores within a life history stage but does not appear to mediate an adaptive shift in energy stores between the incubating and chick-rearing stages of reproduction.

  12. Birth of the Allostatic Model: From Cannon's Biocracy to Critical Physiology.

    PubMed

    Arminjon, Mathieu

    2016-04-01

    Physiologists and historians are still debating what conceptually differentiates each of the three major modern theories of regulation: the constancy of the milieu intérieur, homeostasis and allostasis. Here I propose that these models incarnate two distinct regimes of politization of the life sciences. This perspective leads me to suggest that the historicization of physiological norms is intrinsic to the allostatic model, which thus divides it fundamentally from the two others. I analyze the allostatic model in the light of the Canguilhemian theory, showing how the former contributed to the development of a critical epistemology immune to both naturalist essentialism and social constructivism. With a unique clarity in the history of physiology, allostasis gives us a model of the convergence of historical epistemology and scientific practice. As such it played a key role in codifying the epistemological basis of certain current research programs that, in the fields of social epidemiology and feminist neuroscience, promote what we name here a critical physiology. PMID:26265027

  13. Nanoparticle Drug Loading as a Design Parameter to Improve Docetaxel Pharmacokinetics and Efficacy

    PubMed Central

    Chu, Kevin S.; Schorzman, Allison N.; Finniss, Mathew C.; Bowerman, Charles J.; Peng, Lei; Luft, J. Christopher; Madden, Andrew; Wang, Andrew Z.; Zamboni, William C.; DeSimone, Joseph M.

    2013-01-01

    Nanoparticle (NP) drug loading is one of the key defining characteristics of a NP formulation. However, the effect of NP drug loading on therapeutic efficacy and pharmacokinetics has not been thoroughly evaluated. Herein, we characterized the efficacy, toxicity and pharmacokinetic properties of NP docetaxel formulations that have differential drug loading but are otherwise identical. Particle Replication in Non-wetting Templates (PRINT®), a soft-lithography fabrication technique, was used to formulate NPs with identical size, shape and surface chemistry, but with variable docetaxel loading. The lower weight loading (9%-NP) of docetaxel was found to have a superior pharmacokinetic profile and enhanced efficacy in a murine cancer model when compared to that of a higher docetaxel loading (20%-NP). The 9%-NP docetaxel increased plasma and tumor docetaxel exposure and reduced liver, spleen and lung exposure when compared to that of 20%-NP docetaxel. PMID:23899444

  14. Comparison of Vocal Loading Parameters in Kindergarten and Elementary School Teachers

    ERIC Educational Resources Information Center

    Remacle, Angélique; Morsomme, Dominique; Finck, Camille

    2014-01-01

    Purpose: Although a global picture exists of teachers' voice demands in general, few studies have compared specific groups of teachers to determine whether some are more at risk than others. This study compared the vocal loadings of kindergarten and elementary school teachers; professional and nonprofessional vocal load were determined for…

  15. Material Parameter Determination of an L4-L5 Motion Segment Finite Element Model Under High Loading Rates.

    PubMed

    Pyles, C O; Zhang, J; Demetropoulos, C K; Bradfield, C A; Ott, K A; Armiger, R S; Merkle, A C

    2015-01-01

    Underbody blast (UBB) events impart vertical loads through a victim’s lumbar spine, resulting in fracture, paralysis, and disc rupture. Validated biofidelic lumbar models allow characterization of injury mechanisms and development of personal protective equipment. Previous studies have focused on lumbar mechanics under quasi-static loading. However, it is unclear how the role and response of individual spinal components of the lumbar spine change under dynamic loading. The present study leverages high-rate impacts of progressively dissected two-vertebra lumbar motion segments and Split-Hopkinson pressure bar tissue characterization to identify and validate material properties of a high-fidelity lumbar spine finite element model for UBB. The annulus fibrosus was modeled as a fiber-reinforced Mooney-Rivlin material, while ligaments were represented by nonlinear spring elements. Optimization and evaluation of material parameters was achieved by minimizing the root-mean-square (RMS) of compressive displacement and sagittal rotation for selected experimental conditions. Applying dynamic based material models and parameters resulted in a 0.42% difference between predicted and experiment axial compression during impact loading. This dynamically optimized lumbar model is suited for cross validation against whole-lumbar loading scenarios, and prediction of injury during UBB and other dynamic events. PMID:25996719

  16. Thermodynamic parameters for mixtures of quartz under shock wave loading in views of the equilibrium model

    SciTech Connect

    Maevskii, K. K. Kinelovskii, S. A.

    2015-10-27

    The numerical results of modeling of shock wave loading of mixtures with the SiO{sub 2} component are presented. The TEC (thermodynamic equilibrium component) model is employed to describe the behavior of solid and porous multicomponent mixtures and alloys under shock wave loading. State equations of a Mie–Grüneisen type are used to describe the behavior of condensed phases, taking into account the temperature dependence of the Grüneisen coefficient, gas in pores is one of the components of the environment. The model is based on the assumption that all components of the mixture under shock-wave loading are in thermodynamic equilibrium. The calculation results are compared with the experimental data derived by various authors. The behavior of the mixture containing components with a phase transition under high dynamic loads is described.

  17. Multi-parameter sensing with a single magnetoelastic sensor by applying loads on the null locations of multiple resonant modes

    NASA Astrophysics Data System (ADS)

    DeRouin, Andrew; Ghee Ong, Keat

    2016-03-01

    Magnetoelastic sensors are mass sensitive sensors commonly used for stress and pressure measurement, as well as chemical and biological monitoring when combined with a functionalized coating. Magnetoelastic sensors are typically made of free-standing, rectangular strips of magnetoelastic materials that exhibit longitudinal, extensional vibrations due to the excitation of magnetic fields. A single magnetoelastic sensor is generally used to monitor one parameter since only the fundamental resonant frequency is measured. Multiple-parameter sensing in close proximity has previously been achieved by using multiple magnetoelastic sensors of different dimensions and tracking their resonant frequencies independently. However, this requires a large surface area and inconvenient layout of dissimilarly shaped sensors. This paper presents a technique for monitoring multiple parameters with a single magnetoelastic sensor by applying separate mass loads at the null points (points of zero vibration) of multiple resonant modes. Applying a load at a null location does not affect the corresponding resonant mode but alters the resonant frequencies of other modes. Therefore, by isolating the variables of interest to multiple null points and simultaneously measuring the resonant frequency shifts of related resonant modes, the masses at each null location can be calculated. Results showed that changing the coverage at a null location along the width of the sensor can be used to minimize the loading effect on the corresponding resonant mode. In contrast, changing the lengthwise coverage can maximize the loading effect on other resonant modes, thus increasing the mass sensitivity of the sensor. Furthermore, simultaneously applying loads to null points of multiple resonant modes had a nearly additive effect, allowing detection of multiple parameters with a single magnetoelastic sensor.

  18. Testing the Nanoparticle-Allostatic Cross Adaptation-Sensitization Model for Homeopathic Remedy Effects

    PubMed Central

    Bell, Iris R.; Koithan, Mary; Brooks, Audrey J.

    2012-01-01

    Key concepts of the Nanoparticle-Allostatic Cross-Adaptation-Sensitization (NPCAS) Model for the action of homeopathic remedies in living systems include source nanoparticles as low level environmental stressors, heterotypic hormesis, cross-adaptation, allostasis (stress response network), time-dependent sensitization with endogenous amplification and bidirectional change, and self-organizing complex adaptive systems. The model accommodates the requirement for measurable physical agents in the remedy (source nanoparticles and/or source adsorbed to silica nanoparticles). Hormetic adaptive responses in the organism, triggered by nanoparticles; bipolar, metaplastic change, dependent on the history of the organism. Clinical matching of the patient’s symptom picture, including modalities, to the symptom pattern that the source material can cause (cross-adaptation and cross-sensitization). Evidence for nanoparticle-related quantum macro-entanglement in homeopathic pathogenetic trials. This paper examines research implications of the model, discussing the following hypotheses: Variability in nanoparticle size, morphology, and aggregation affects remedy properties and reproducibility of findings. Homeopathic remedies modulate adaptive allostatic responses, with multiple dynamic short- and long-term effects. Simillimum remedy nanoparticles, as novel mild stressors corresponding to the organism’s dysfunction initiate time-dependent cross-sensitization, reversing the direction of dysfunctional reactivity to environmental stressors. The NPCAS model suggests a way forward for systematic research on homeopathy. The central proposition is that homeopathic treatment is a form of nanomedicine acting by modulation of endogenous adaptation and metaplastic amplification processes in the organism to enhance long-term systemic resilience and health. PMID:23290882

  19. Relation between coda-Q and stress loaded to an elastic body ~state parameters derived by stochastic measurement~

    NASA Astrophysics Data System (ADS)

    Okamoto, K.; Mikada, H.; Goto, T.; Takekawa, J.

    2009-12-01

    Coda-wave is the summation of the scattered waves caused by scatterers such as cracks and medium inhomogeneities in the rock. Coda-wave is composed of P-wave, S-wave and variety of other waves. When the spatial scale of inhomogeneities become comparable with seismic wavelength, it becomes very difficult to analyze the coda-wave quantitatively in terms of the location of scatterers, scattering mechanisms, etc. As a consequence, it is very hard in general to apply a method of deterministic structural analysis to use coda waves. For inhomogeneous meda, it is natural to deal with stochastic methdologies to interpret seismic data. In this regard, coda-Q, i.e., parameters of attenuation or decay of energy scattered by medium inhomogeneities, has been frequently used as a stochastic measure of the medium in which seismic waves propagate. Since objectives of recent structural surveys include spatiotemporal or time-lapse variation of physical properties of underground medium, we would like to exploit the stochastic parameters if these parameters reflect any changes of physical state of the medium. The purpose of this study is to relate this parameter to non-stochastic propertyies of the underground property. In this study, we performed a simulation on seismic wave propagation in an elastic medium using a two-dimensional finite difference method. In our numerical calculatoins, seismic scatters were randomly placed in the simulation model. Coda-Q values are estimated using simulated waveforms for a set of various loading stresses that was applied to the model. Since the scatters are displaced due to loaded stresses, Coda-Q values are obtained against loading stresses and directions. In order to estimate the magnitude of stress and the direction of the principal stress, we used a variation of the envelope of coda-wave. Analysis of coda-wave revealed proportional relations between the loading stress and attenuation factor of the envelope. For the direction of the principal

  20. Relation of dynamic parameters of brick masonry fragment at fracture under static and dynamic loading

    NASA Astrophysics Data System (ADS)

    Kopanitsa, D. G.; Useinov, E. S.

    2015-01-01

    The article shows the results of experimental analysis of brick masonry fragments under static and dynamic loading. The measurements of fractures and natural vibration frequencies of samples have been carried out in the course of tests. It has been shown that at appearance of inelastic deformations and cracks, there is a change in natural vibration frequencies, received from the analysis of the corresponding spectra. Comparison of results of experiments of brick masonry fragments, received under action of static and dynamic loads has been carried out.

  1. The necessity of physiological muscle parameters for computing the muscle forces: application to lower extremity loading during pedalling.

    PubMed

    Cadová, Michala; Vilímek, Miloslav

    2009-01-01

    The aim of this study is to determine how the use of physiological parameters of muscles is important. This work is focused on musculoskeletal loading analysis during pedalling adopting two approaches: without (1) and with (2) the use of physiological parameters of muscles. The static-optimization approach together with the inverse dynamics problem makes it possible to obtain forces in individual muscles of the lower extremity. Input kinematics variables were examined in a cycling experiment. The significant difference in the resultant forces in one-joint and two-joint muscles using the two different approaches was observed. PMID:20131752

  2. Mathematical model for studying the variation of the electrical parameters in functioning of nonlinear loads

    NASA Astrophysics Data System (ADS)

    Rob, Raluca; Rat, Cezara

    2013-10-01

    This paper presents a study concerning the variation of the most important electrical parameters, measured during the functioning of an electrothermal installation with electromagnetic induction. Two measuring methods are described: the first method consists in using a power and energy quality analyzer and the second uses a data acquisition system that contains an adapting interface and a data acquisition board connected to a computer. In order to compute the electrical parameters, a LabVIEW application was designed. The data acquisition system is able to measure in real time the variation of the parameters and also to save the obtained information.

  3. The Relationship between MR Parameters and Biomechanical Quantities of Loaded Human Articular Cartilage in Osteoarthritis: An In-Vitro Study

    NASA Astrophysics Data System (ADS)

    Juráš, V.; Szomolányi, P.; Gäbler, S.; Frollo, I.; Trattnig, S.

    2009-01-01

    The aim of this study was to assess the changes in MRI parameters during applied load directly in MR scanner and correlate these changes with biomechanical parameters of human articular cartilage. Cartilage explants from patients who underwent total knee replacement were examined in the micro-imaging system in 3T scanner. Respective MRI parameters (T1 without- and T1 with contrast agent as a marker of proteoglycan content, T2 as a marker of collagen network anisotropy and ADC as a measure of diffusivity) were calculated in pre- and during compression state. Subsequently, these parameters were compared to the biomechanical properties of articular cartilage, instantaneous modulus (I), equilibrium modulus (Eq) and time of tissue relaxation (τ). Significant load-induced changes of T2 and ADC were recorded. High correlation between T1Gd and I (r = 0.6324), and between ADC and Eq (r = -0.4884) was found. Multi-parametric MRI may have great potential in analyzing static and dynamic biomechanical behavior of articular cartilage in early stages of osteoarthritis (OA).

  4. The Accuracy of Parameter Estimation in System Identification of Noisy Aircraft Load Measurement. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Kong, Jeffrey

    1994-01-01

    This thesis focuses on the subject of the accuracy of parameter estimation and system identification techniques. Motivated by a complicated load measurement from NASA Dryden Flight Research Center, advanced system identification techniques are needed. The objective of this problem is to accurately predict the load experienced by the aircraft wing structure during flight determined from a set of calibrated load and gage response relationship. We can then model the problem as a black box input-output system identification from which the system parameter has to be estimated. Traditional LS (Least Square) techniques and the issues of noisy data and model accuracy are addressed. A statistical bound reflecting the change in residual is derived in order to understand the effects of the perturbations on the data. Due to the intrinsic nature of the LS problem, LS solution faces the dilemma of the trade off between model accuracy and noise sensitivity. A method of conflicting performance indices is presented, thus allowing us to improve the noise sensitivity while at the same time configuring the degredation of the model accuracy. SVD techniques for data reduction are studied and the equivalence of the Correspondence Analysis (CA) and Total Least Squares Criteria are proved. We also looked at nonlinear LS problems with NASA F-111 data set as an example. Conventional methods are neither easily applicable nor suitable for the specific load problem since the exact model of the system is unknown. Neural Network (NN) does not require prior information on the model of the system. This robustness motivated us to apply the NN techniques on our load problem. Simulation results for the NN methods used in both the single load and the 'warning signal' problems are both useful and encouraging. The performance of the NN (for single load estimate) is better than the LS approach, whereas no conventional approach was tried for the 'warning signals' problems. The NN design methodology is also

  5. Using gait parameters to detect fatigue and responses to ice slurry during prolonged load carriage.

    PubMed

    Tay, Cheryl S; Lee, Jason K W; Teo, Ya S; Foo, Phildia Q Z; Tan, Pearl M S; Kong, Pui W

    2016-01-01

    This study examined (1) if changes in gait characteristics could indicate the exertional heat stress experienced during prolonged load carriage, and (2) if gait characteristics were responsive to a heat mitigation strategy. In an environmental chamber replicating tropical climatic conditions (ambient temperature 32°C, 70% relative humidity), 16 males aged 21.8 (1.2) years performed two trials of a work-rest cycle protocol consisting two bouts of 4-km treadmill walks with 30-kg load at 5.3km/h separated by a 15-min rest period. Ice slurry (ICE) or room temperature water (29°C) as a control (CON) was provided in 200-ml aliquots. The fluids were given 10min before the start, at the 15(th) and 30(th) min of each work cycle, and during each rest period. Spatio-temporal gait characteristics were obtained at the start and end of each work-rest cycle using a floor-based photocell system (OptoGait) and a high-speed video camera at 120Hz. Repeated-measure analysis of variance (trial×time) showed that with time, step width decreased (p=.024) while percent crossover steps increased (p=.008) from the 40(th) min onwards. Reduced stance time variability (-11.1%, p=.029) step width variability (-8.2%, p=.001), and percent crossover step (-18.5%, p=.010) were observed in ICE compared with CON. No differences in step length and most temporal variables were found. In conclusion, changes in frontal plane gait characteristics may indicate exertional heat stress during prolonged load carriage, and some of these changes may be mitigated with ice slurry ingestion. PMID:26669946

  6. Practical implementation of the corrected force analysis technique to identify the structural parameter and load distributions

    NASA Astrophysics Data System (ADS)

    Leclère, Quentin; Ablitzer, Frédéric; Pézerat, Charles

    2015-09-01

    The paper aims to combine two objectives of the Force Analysis Technique (FAT): vibration source identification and material characterization from the same set of measurement. Initially, the FAT was developed for external load location and identification. It consists in injecting measured vibration displacements in the discretized equation of motion. Two developments exist: FAT and CFAT (Corrected Force Analysis Technique) where two finite difference schemes are used. Recently, the FAT was adapted for the identification of elastic and damping properties in a structure. The principal interests are that the identification is local and allows mapping of material characteristics, the identification can be made at all frequencies, especially in medium and high frequency domains. The paper recalls the development of FAT and CFAT on beams and plates and how it can be possible to extract material characteristics in areas where no external loads are applied. Experimental validations are shown on an aluminum plate with arbitrary boundary conditions, excited by a point force and where a piece of foam is glued on a sub-surface of the plate. Contactless measurements were made using a scanning laser vibrometer. The results of FAT and CFAT are compared and discussed for material property identifications in the regions with and without foam. The excitation force identification is finally made by using the identified material properties. CFAT gives excellent results comparable to a direct measurement obtained by a piezoelectric sensor. The relevance of the corrected scheme is then underlined for both source identification and material characterization from the same measurements.

  7. Evaluating the effects of loading parameters on single-crystal slip in tantalum using molecular mechanics

    NASA Astrophysics Data System (ADS)

    Alleman, Coleman; Ghosh, Somnath; Luscher, D. J.; Bronkhorst, Curt A.

    2014-01-01

    This study is aimed at developing a physics-based crystal plasticity finite element model for body-centred cubic (BCC) metals, through the introduction of atomic-level deformation information from molecular dynamics (MD) investigations of dislocation motion at the onset of plastic flow. In this study, three critical variables governing crystal plasticity mediated by dislocation motion are considered. MD simulations are first performed across a range of finite temperatures up to 600K to quantify the temperature dependence of critical stress required for slip initiation. An important feature of slip in BCC metals is that it is not solely dependent on the Schmid law measure of resolved shear stress, commonly employed in crystal plasticity models. The configuration of a screw dislocation and its subsequent motion is studied under different load orientations to quantify these non-Schmid effects. Finally, the influence of strain rates on thermal activation is studied by inducing higher stresses during activation at higher applied strain rates. Functional dependence of the critical resolved shear stress on temperature, loading orientation and strain rate is determined from the MD simulation results. The functional forms are derived from the thermal activation mechanisms that govern the plastic behaviour and quantification of relevant deformation variables. The resulting physics-based rate-dependent crystal plasticity model is implemented in a crystal plasticity finite element code. Uniaxial simulations reveal orientation-dependent tension-compression asymmetry of yield that more accurately represents single-crystal experimental results than standard models.

  8. Prediction of tip vortex self-induced motion parameters in terms of rotor blade loading

    NASA Technical Reports Server (NTRS)

    Bliss, Donald B.

    1987-01-01

    The self-induced motion of curved vortex filaments at the tip of a helicopter rotor blade is investigated analytically. The derivation of a method for inviscid roll-up (IRU) is presented in detail, with attention to the cutoff-distance reformulation of the problem, a control-volume analysis of the self-induction properties of the vortex core, the adaptation of the roll-up method of Betz (1932) to IRU in three dimensions, the treatment of linear and elliptic loading, vortices with turbulent central cores, and the effect of cutoff distance on helicopter free-wake computations. Numerical results showing the significant effect of core properties on the geometry of a rotor wake in hover are presented in graphs and briefly characterized.

  9. Uncertainty-accounted calculational-experimental approach for improved conservative evaluations of VVER RPV radiation loading parameters

    SciTech Connect

    Borodkin, P.G.; Borodkin, G.I.; Khrennikov, N.N.

    2011-07-01

    The approach of improved uncertainty-accounted conservative evaluation of vodo-vodyanoi energetichesky reactor (VVER) (reactor-) pressure-vessel (RPV) radiation loading parameters has been proposed. This approach is based on the calculational-experimental procedure, which takes into account C/E ratio, depending on over- or underestimation, and uncertainties of measured and calculated results. An application of elaborated approach to the full-scale ex-vessel neutron dosimetry experiments on Russian VVERs combined with neutron-transport calculations has been demonstrated in the paper. (authors)

  10. Quantifiable patterns of limb loading and unloading during hemiparetic gait: Relation to kinetic and kinematic parameters

    PubMed Central

    Raja, Bhavana; Neptune, Richard R.; Kautz, Steven A.

    2016-01-01

    Persons with poststroke hemiparesis are characterized by asymmetry in limb loading (LL) and limb unloading (LU), which has been reported in static and quasi-static tasks but has not been quantified during walking. The purpose of this study was to determine the asymmetry in magnitude and duration of LL and LU in individuals with hemiparesis and its relationship with functional walking status and specific kinematic and kinetic variables during walking. Forty-four participants with chronic hemiparesis walked at their self-selected speeds and eighteen nondisabled control subjects of similar ages walked at predetermined matched speeds while three-dimensional ground reaction forces and body-segment kinematics were recorded. Magnitude of paretic LL was reduced, while duration was increased compared with the nonparetic leg and nondisabled controls walking at matched speeds. The paretic LL and LU was significantly correlated with average leg angle, while the nonparetic leg significantly correlated with average knee angle. Three different patterns of LL and LU were identified (concave, convex, and linear). Individuals with hemiparesis make several biomechanical adjustments that minimize LL of the paretic leg. LL deviations were more pronounced with increased lateral placement of the paretic foot and with decreased functional gait speed. Characterization of these deviations may inspire new strategies for rehabilitation. PMID:23408212

  11. Determination of dual parameter auto-sampling trigger thresholds for pollutant load monitoring in various land uses.

    PubMed

    Nnadi, Fidelia; Gurr, Eric

    2015-05-01

    Environmental pollutants are health hazards and are typically transported during runoff events. Monitoring the loadings of these pollutants with auto-samplers require precise trigger thresholds to effectively account for total maximum daily loads (TMDLs) entering natural water bodies. Traditionally, auto-samplers are triggered by delaying the start of sampling until pollutant wave is present during rainfall event. The rainfall-related triggers are typically limited to small watersheds, where lag and travel times are consistent and predictable. However, in large and more complex watersheds, flow or stage is typically used either by a set threshold on change in instantaneous flow rate or water level. Generally, trigger thresholds are difficult to establish due to seasonal fluctuations in stream flow and variations in rainfall. This study investigated dual parameter trigger based on instantaneous change and variance from a moving average for flow and stage. Nineteen auto-samplers, installed within six watersheds of varying land uses in City of Kissimmee, FL, were evaluated over 3-year period. The results suggested that using 20- to 30-min moving average of 5-min sampling interval for both parameters was sufficient to detect pollutant waves with minimal false triggers. Also, change from average flow rate (∆Qave) and a percent change from average stage (∆Have%) were found to the preferred parameters. The ∆Have% values ranging from -0.012 to 0.20% and ∆Qave ranging from 0.014 to 0.850 m(3)/s were found to give effective results for all stations in the study area. It was also observed that these trigger thresholds varied with land use, stream flow condition, and auto-sampler locations within the watershed. PMID:25838061

  12. Relation between Coda-Q and stress loaded to an elastic body. -parameters of material conditions derived by stochastic measurement-

    NASA Astrophysics Data System (ADS)

    Okamoto, K.; Mikada, H.; Goto, T.; Takekawa, J.

    2010-12-01

    Seismic coda is formed by superposed signals caused by scatterers. When heterogeneous condition is changed due to crustal deformations, coda-Q should vary reflecting the physical state if the materials. When the spatial scale of scatters in a medium becomes comparable with or smaller then the wavelength of seismic waves traveling through, it becomes very difficult to analyze the coda-wave quantitatively in terms of the location of scatterers, scattering mechanisms, etc. For inhomogeneous medium, it is natural to deal with stochastic methodologies to interpret seismic data. In this regard coda-Q has been frequently used as a stochastic measure of the medium in which seismic waves propagate. Since objectives of recent structural surveys include spatiotemporal or time-lapse variation of physical properties of underground medium, we propose a new geophysical monitoring method using the stochastic parameters if these parameters reflect changes of physical state of the medium. Several observed examples are reported that the relationship between the coda-Q and the number of earthquakes (e.g., Aki,2004). Aki (2004) said that the interrelation between the coda-Q and the number of earthquakes might be a key to understand the change in the state of crustal stress field. Here, we hypothesize that the change of the coda- Q reflects that of the stress magnitude and direction and try to focus on the relationship between the coda-Q and loaded stress which could cause earthquakes. The purpose of this study is to relate this relationship to non-stochastic quantity of the underground physical state, i.e., the stress to test our hypothesis. We employ two methods to achieve our objectives. One is Finite Difference Method (FDM), and the other is Boundary Integral Equation Method (BIEM). FDM is superior in the calculation of large field and saving calculation time. BIEM is superior in the free shape of boundaries. These two methods are applied to a numerical model of elastic body

  13. Stress-resultant models for ultimate load design of reinforced concrete frames and multi-scale parameter estimates

    NASA Astrophysics Data System (ADS)

    Pham, B. H.; Brancherie, D.; Davenne, L.; Ibrahimbegovic, A.

    2013-03-01

    In this work, we present a new finite element for (geometrically linear) Timoshenko beam model for ultimate load computation of reinforced concrete frames. The proposed model combines the descriptions of the diffuse plastic failure in the beam-column followed by the creation of plastic hinges due to the failure or collapse of the concrete and of the re-bars. A modified multi-scale analysis is performed in order to identify the parameters for stress-resultant-based macro model, which is used to described the behavior of the Timoshenko beam element. For clarity, we focus upon the micro-scale models using the multi-fiber elements with embedded displacement discontinuities in mode I, which would typically be triggered by bending failure mode. More general case of micro-scale model capable of describing shear failure is described by Ibrahimbegovic et al. (Int J Numer Methods Eng 83(4):452-481, 2010).

  14. Characterization of load bearing metrological parameters in reptilian exuviae in comparison to precision-finished cylinder liner surfaces

    NASA Astrophysics Data System (ADS)

    Abdel-Aal, H. A.; El Mansori, M.

    2014-10-01

    Design of precise functional surfaces is essential for many future applications. In the technological realm, the accumulated experience with construction of such surfaces is not sufficient. Nature provides many examples of dynamic surfaces worthy of study and adoption, at least in concept, within human engineering. This work probes the load-bearing metrological features of the ventral skin in snakes. We examine the structure of two snake species that mainly move by rectilinear locomotion. These are Python regius (Pythonidae) and Bitis gabonica (Vipridae). To this end, we focus on the load-bearing characteristics of the ventral skin surface (i.e., the Sk family of parameters). Therefore, detailed comparison is drawn between the metrological structure of the reptilian surfaces and two sets of technological data. The first set pertains to an actual commercial cylinder liner, whereas the second set is a summary of recommended surface finish metrological values for several commercial cylinder liner manufacturers. The results highlight several similarities between the two types of surfaces. In particular, it is shown that there is a striking correspondence between the sense of texture morphology within both surfaces (although their construction evolved along entirely different paths). It is also shown that reptilian surfaces manifest a high degree of specialization with respect to habitat constraints on wear resistance and adhesive effects. In particular, their surface displays a high degree of pre-conditioning to functional requirements, which eliminates the need for a running-in period.

  15. HIRREM™: a noninvasive, allostatic methodology for relaxation and auto-calibration of neural oscillations.

    PubMed

    Gerdes, Lee; Gerdes, Peter; Lee, Sung W; H Tegeler, Charles

    2013-03-01

    Disturbances of neural oscillation patterns have been reported with many disease states. We introduce methodology for HIRREM™ (high-resolution, relational, resonance-based electroencephalic mirroring), also known as Brainwave Optimization™, a noninvasive technology to facilitate relaxation and auto-calibration of neural oscillations. HIRREM is a precision-guided technology for allostatic therapeutics, intended to help the brain calibrate its own functional set points to optimize fitness. HIRREM technology collects electroencephalic data through two-channel recordings and delivers a series of audible musical tones in near real time. Choices of tone pitch and timing are made by mathematical algorithms, principally informed by the dominant frequency in successive instants of time, to permit resonance between neural oscillatory frequencies and the musical tones. Relaxation of neural oscillations through HIRREM appears to permit auto-calibration toward greater hemispheric symmetry and more optimized proportionation of regional spectral power. To illustrate an application of HIRREM, we present data from a randomized clinical trial of HIRREM as an intervention for insomnia (n = 19). On average, there was reduction of right-dominant temporal lobe high-frequency (23-36 Hz) EEG asymmetry over the course of eight successive HIRREM sessions. There was a trend for correlation between reduction of right temporal lobe dominance and magnitude of insomnia symptom reduction. Disturbances of neural oscillation have implications for both neuropsychiatric health and downstream peripheral (somatic) physiology. The possibility of noninvasive optimization for neural oscillatory set points through HIRREM suggests potentially multitudinous roles for this technology. Research is currently ongoing to further explore its potential applications and mechanisms of action. PMID:23532171

  16. HIRREM™: a noninvasive, allostatic methodology for relaxation and auto-calibration of neural oscillations

    PubMed Central

    Gerdes, Lee; Gerdes, Peter; Lee, Sung W; H Tegeler, Charles

    2013-01-01

    Disturbances of neural oscillation patterns have been reported with many disease states. We introduce methodology for HIRREM™ (high-resolution, relational, resonance-based electroencephalic mirroring), also known as Brainwave Optimization™, a noninvasive technology to facilitate relaxation and auto-calibration of neural oscillations. HIRREM is a precision-guided technology for allostatic therapeutics, intended to help the brain calibrate its own functional set points to optimize fitness. HIRREM technology collects electroencephalic data through two-channel recordings and delivers a series of audible musical tones in near real time. Choices of tone pitch and timing are made by mathematical algorithms, principally informed by the dominant frequency in successive instants of time, to permit resonance between neural oscillatory frequencies and the musical tones. Relaxation of neural oscillations through HIRREM appears to permit auto-calibration toward greater hemispheric symmetry and more optimized proportionation of regional spectral power. To illustrate an application of HIRREM, we present data from a randomized clinical trial of HIRREM as an intervention for insomnia (n = 19). On average, there was reduction of right-dominant temporal lobe high-frequency (23–36 Hz) EEG asymmetry over the course of eight successive HIRREM sessions. There was a trend for correlation between reduction of right temporal lobe dominance and magnitude of insomnia symptom reduction. Disturbances of neural oscillation have implications for both neuropsychiatric health and downstream peripheral (somatic) physiology. The possibility of noninvasive optimization for neural oscillatory set points through HIRREM suggests potentially multitudinous roles for this technology. Research is currently ongoing to further explore its potential applications and mechanisms of action. PMID:23532171

  17. Methods for combining payload parameter variations with input environment. [calculating design limit loads compatible with probabilistic structural design criteria

    NASA Technical Reports Server (NTRS)

    Merchant, D. H.

    1976-01-01

    Methods are presented for calculating design limit loads compatible with probabilistic structural design criteria. The approach is based on the concept that the desired limit load, defined as the largest load occurring in a mission, is a random variable having a specific probability distribution which may be determined from extreme-value theory. The design limit load, defined as a particular of this random limit load, is the value conventionally used in structural design. Methods are presented for determining the limit load probability distributions from both time-domain and frequency-domain dynamic load simulations. Numerical demonstrations of the method are also presented.

  18. Production of BSA-loaded alginate microcapsules: influence of spray dryer parameters on the microcapsule characteristics and BSA release.

    PubMed

    Benchabane, Samir; Subirade, Muriel; Vandenberg, Grant W

    2007-09-01

    The aim of this study was to optimize the production of BSA-loaded alginate microcapsules by spray drying and to study the release of bovine serum albumin fraction V (BSA) under gastric simulated conditions. Microcapsule yield, BSA release, microcapsule size and size distribution were characterized following the application of different production parameters including inlet air temperature, inlet air pressure and liquid feed rate. The microcapsules were incubated in 0.1 N HCl and BSA release was quantified over time. The yields were higher with the pressure of 3 bar compared to 4 bar and with a feed rate of 0.45 vs. 0.2 ml s(-1). A high feed rate (0.45 vs. 0.2 ml s(-1)) allows one to obtain microcapsules with a low BSA release (p = 0.0327). The increase of the atomizer inlet temperature leads to microcapsules with a higher BSA release (p = 0.0230). A higher air pressure of 4 bar compared to 3 bar resulted in a lower microcapsule size (2.55 vs. 2.80 microm) and led to a narrower size distribution (0.92 vs. 1.07). In conclusion, the spray dryer parameters influenced the alginate microcapsule characteristics as well as subsequent protein release into a simulated gastric medium. PMID:17654176

  19. Scaling up watershed model parameters: flow and load simulations of the Edisto River Basin, South Carolina, 2007-09

    USGS Publications Warehouse

    Feaster, Toby D.; Benedict, Stephen T.; Clark, Jimmy M.; Bradley, Paul M.; Conrads, Paul A.

    2014-01-01

    As part of an ongoing effort by the U.S. Geological Survey to expand the understanding of relations among hydrologic, geochemical, and ecological processes that affect fish-tissue mercury concentrations within the Edisto River Basin, analyses and simulations of the hydrology of the Edisto River Basin were made using the topography-based hydrological model (TOPMODEL). A primary focus of the investigation was to assess the potential for scaling up a previous application of TOPMODEL for the McTier Creek watershed, which is a small headwater catchment to the Edisto River Basin. Scaling up was done in a step-wise manner, beginning with applying the calibration parameters, meteorological data, and topographic-wetness-index data from the McTier Creek TOPMODEL to the Edisto River TOPMODEL. Additional changes were made for subsequent simulations, culminating in the best simulation, which included meteorological and topographic wetness index data from the Edisto River Basin and updated calibration parameters for some of the TOPMODEL calibration parameters. The scaling-up process resulted in nine simulations being made. Simulation 7 best matched the streamflows at station 02175000, Edisto River near Givhans, SC, which was the downstream limit for the TOPMODEL setup, and was obtained by adjusting the scaling factor, including streamflow routing, and using NEXRAD precipitation data for the Edisto River Basin. The Nash-Sutcliffe coefficient of model-fit efficiency and Pearson’s correlation coefficient for simulation 7 were 0.78 and 0.89, respectively. Comparison of goodness-of-fit statistics between measured and simulated daily mean streamflow for the McTier Creek and Edisto River models showed that with calibration, the Edisto River TOPMODEL produced slightly better results than the McTier Creek model, despite the substantial difference in the drainage-area size at the outlet locations for the two models (30.7 and 2,725 square miles, respectively). Along with the TOPMODEL

  20. Effect of the Initial Load Parameters on the K-shell Output of Al Planar Wire Arrays Operating in the Microsecond Implosion Regime

    SciTech Connect

    Shishlov, A.; Chaikovsky, S.; Fedunin, A.; Fursov, F.; Kokshenev, V.; Kurmaev, N.; Labetsky, A.; Oreshkin, V.; Rousskikh, A.; Labetskaya, N.

    2009-01-21

    A set of microsecond implosion experiments was carried on the GIT-12 generator to study the radiative performance of Al planar wire arrays. The load parameters such as a wire diameter, a gap between the wires, the number of wires, and the total planar wire mass and width were varied during the experiments, however the implosion time and the peak implosion current were almost the same for all load configurations. This ensured equal energy deposition to the plasma due to kinetic mechanisms for all load configurations. Two implosion regimes with the implosion times of 1050 ns and 850 ns were investigated. The experimental data on the K-shell radiation yield and power at varying load parameters are presented.

  1. Effect of the Initial Load Parameters on the K-shell Output of Al Planar Wire Arrays Operating in the Microsecond Implosion Regime

    NASA Astrophysics Data System (ADS)

    Shishlov, A.; Chaikovsky, S.; Fedunin, A.; Fursov, F.; Kokshenev, V.; Kurmaev, N.; Labetsky, A.; Oreshkin, V.; Rousskikh, A.; Labetskaya, N.

    2009-01-01

    A set of microsecond implosion experiments was carried on the GIT-12 generator to study the radiative performance of Al planar wire arrays. The load parameters such as a wire diameter, a gap between the wires, the number of wires, and the total planar wire mass and width were varied during the experiments, however the implosion time and the peak implosion current were almost the same for all load configurations. This ensured equal energy deposition to the plasma due to kinetic mechanisms for all load configurations. Two implosion regimes with the implosion times of 1050 ns and 850 ns were investigated. The experimental data on the K-shell radiation yield and power at varying load parameters are presented.

  2. Application of quality by design approach to optimize process and formulation parameters of rizatriptan loaded chitosan nanoparticles

    PubMed Central

    Shirsat, Ajinath Eknath; Chitlange, Sohan S.

    2015-01-01

    The purpose of present study was to optimize rizatriptan (RZT) chitosan (CS) nanoparticles using ionic gelation method by application of quality by design (QbD) approach. Based on risk assessment, effect of three variables, that is CS %, tripolyphosphate % and stirring speed were studied on critical quality attributes (CQAs); particle size and entrapment efficiency. Central composite design (CCD) was implemented for design of experimentation with 20 runs. RZT CS nanoparticles were characterized for particle size, polydispersity index, entrapment efficiency, in-vitro release study, differential scanning calorimetric, X-ray diffraction, scanning electron microscopy (SEM). Based on QbD approach, design space (DS) was optimized with a combination of selected variables with entrapment efficiency > 50% w/w and a particle size between 400 and 600 nm. Validation of model was performed with 3 representative formulations from DS for which standard error of − 0.70–3.29 was observed between experimental and predicted values. In-vitro drug release followed initial burst release 20.26 ± 2.34% in 3–4 h with sustained drug release of 98.43 ± 2.45% in 60 h. Lower magnitude of standard error for CQAs confirms the validation of selected CCD model for optimization of RZT CS nanoparticles. In-vitro drug release followed dual mechanism via, diffusion and polymer erosion. RZT CS nanoparticles were prepared successfully using QbD approach with the understanding of the high risk process and formulation parameters involved and optimized DS with a multifactorial combination of critical parameters to obtain predetermined RZT loaded CS nanoparticle specifications. PMID:26317071

  3. Selective ensemble modeling load parameters of ball mill based on multi-scale frequency spectral features and sphere criterion

    NASA Astrophysics Data System (ADS)

    Tang, Jian; Yu, Wen; Chai, Tianyou; Liu, Zhuo; Zhou, Xiaojie

    2016-01-01

    It is difficult to model multi-frequency signal, such as mechanical vibration and acoustic signals of wet ball mill in the mineral grinding process. In this paper, these signals are decomposed into multi-scale intrinsic mode functions (IMFs) by the empirical mode decomposition (EMD) technique. A new adaptive multi-scale spectral features selection approach based on sphere criterion (SC) is applied to these IMFs frequency spectra. The candidate sub-models are constructed by the partial least squares (PLS) with the selected features. Finally, the branch and bound based selective ensemble (BBSEN) algorithm is applied to select and combine these ensemble sub-models. This method can be easily extended to regression and classification problems with multi-time scale signal. We successfully apply this approach to a laboratory-scale ball mill. The shell vibration and acoustic signals are used to model mill load parameters. The experimental results demonstrate that this novel approach is more effective than the other modeling methods based on multi-scale frequency spectral features.

  4. Effect of the loading duration on the linear viscoelastic parameters of tropical wood: case of Tectona grandis L.f (Teak) and Diospyros mespiliformis (Ebony) of Benin Republic.

    PubMed

    Houanou, Agapi Kocouvi; Tchéhouali, Adolphe Dèfodji; Foudjet, Amos Erick

    2014-01-01

    Judicious and regulated use of wood as a building material is better than that of many other conventional materials in terms of environmental issues of this century. The study of the behavior of wood requires a better understanding of the characteristics in different possible cases of loading including loads applied instantly, loads applied for a short time and loads applied for a long time. The purpose of this study is to evaluate the influence of the loading duration on the linear viscoelastic parameters of tropical wood in creep test. Creep tests conducted on two species of tropical wood, Tectona grandis L.f and Diospyros mespiliformis, were carried out for a total loading duration of 15 hours by subjecting samples to bending test through with equal strain in all sections. After measuring the instantaneous deflection, the other measurements were carried out at regular time each 30 minutes. Each recorded deflection was converted into longitudinal deformation and the data were analyzed by considering fourteen loading durations. Using the least squares method, the dynamic modulus of elasticity and the modulus of dynamic viscosity were determined for each loading time. The results showed that the loading time has no influence on the modulus of dynamic viscosity. On the other hand, the dynamic modulus of elasticity decreases and tends towards zero. Good agreement between creep test data and dynamic modulus of elasticity was found using mathematical function in power. Suitably, the "power" function established between the elastic dynamic modulus and the loading duration can be used to extrapolate deformations values. PMID:24567881

  5. Cumulative Socioeconomic Status Risk, Allostatic Load, and Adjustment: A Prospective Latent Profile Analysis with Contextual and Genetic Protective Factors

    ERIC Educational Resources Information Center

    Brody, Gene H.; Yu, Tianyi; Chen, Yi-Fu; Kogan, Steven M.; Evans, Gary W.; Beach, Steven R. H.; Windle, Michael; Simons, Ronald L.; Gerrard, Meg; Gibbons, Frederick X.; Philibert, Robert A.

    2013-01-01

    The health disparities literature has identified a common pattern among middle-aged African Americans that includes high rates of chronic disease along with low rates of psychiatric disorders despite exposure to high levels of cumulative socioeconomic status (SES) risk. The current study was designed to test hypotheses about the developmental…

  6. Quantifying Chronic Stress Exposure for Cumulative Risk Assessment: Lessons Learned from a Case Study of Allostatic Load

    EPA Science Inventory

    Although multiple methods of quantifying environmental chemical exposures have been validated for use in human health risk assessment, quantifying chronic stress exposure is more challenging. Stress is a consequence of perceiving an “exposure” (e.g., violence, poverty...

  7. Quantifying Chronic Stress Exposure for Cumulative Risk Assessment: Lessons Learned from a Case Study of Allostatic Load

    EPA Science Inventory

    Although multiple methods of quantifying environmental chemical exposures have been validated for use in human health risk assessment, quantifying chronic stress exposure is more challenging. Stress is a consequence of perceiving an “exposure” (e.g., violence, poverty) as more th...

  8. Parameter Estimation of Actuators for Benchmark Active Control Technology (BACT) Wind Tunnel Model with Analysis of Wear and Aerodynamic Loading Effects

    NASA Technical Reports Server (NTRS)

    Waszak, Martin R.; Fung, Jimmy

    1998-01-01

    This report describes the development of transfer function models for the trailing-edge and upper and lower spoiler actuators of the Benchmark Active Control Technology (BACT) wind tunnel model for application to control system analysis and design. A simple nonlinear least-squares parameter estimation approach is applied to determine transfer function parameters from frequency response data. Unconstrained quasi-Newton minimization of weighted frequency response error was employed to estimate the transfer function parameters. An analysis of the behavior of the actuators over time to assess the effects of wear and aerodynamic load by using the transfer function models is also presented. The frequency responses indicate consistent actuator behavior throughout the wind tunnel test and only slight degradation in effectiveness due to aerodynamic hinge loading. The resulting actuator models have been used in design, analysis, and simulation of controllers for the BACT to successfully suppress flutter over a wide range of conditions.

  9. Assessment of the effect of anthropometric data on the alterations of cardiovascular parameters in Lithuanian elite male basketball players during physical load.

    PubMed

    Žumbakytė-Šermukšnienė, Renata; Kajėnienė, Alma; Berškienė, Kristina; Daunoravičienė, Algė; Sederevičiūtė-Kandratavičienė, Rasa

    2012-01-01

    OBJECTIVES. The aim of the study was to assess the effect of the anthropometric data of basketball players on the alterations of cardiovascular parameters during the physical load applying the model of integrated evaluation. MATERIAL AND METHODS. The research sample consisted of 113 healthy Caucasian male basketball players, candidates of the Lithuanian National men's basketball teams. Basketball players were divided into 2 groups: 69 taller and heavier male basketball players (with a higher percentage of body fat) (TMB) and 44 shorter and less heavy male basketball players (with a lower percentage of body fat) (SMB). The amount of fat, expressed in percentage, was measured using the body composition analyzer TBF-300. "Kaunas-Load," a computerized ECG analysis system, was used to evaluate the functional condition of the cardiovascular system during the load. RESULTS. The TMB group had a lower heart rate during the warming-up phase and the steady state of the load as compared with the SMB group (P<0.05). The JT interval in the TMB group was greater during the warming-up and the steady state as compared with the SMB group (P<0.05). The JT/RR ratio index in the TMB group was found to be lower in the warming-up phase and in the steady state compared with the respective parameter in the SMB group (P<0.05). CONCLUSIONS. The cardiovascular system of taller and heavier male basketball players with a greater relative amount of body fat functioned more economically. PMID:23455891

  10. Modal parameter identification of a compression-loaded CFRP stiffened plate and correlation with its buckling behaviour

    NASA Astrophysics Data System (ADS)

    Chaves-Vargas, M.; Dafnis, A.; Reimerdes, H.-G.; Schröder, K.-U.

    2015-10-01

    In order to study the dynamic response and the buckling behaviour of several load-carrying structural components of civil aircraft when subjected to transient load scenarios such as gusts or a landing impact, a generic mid-size aircraft is defined within the European research project DAEDALOS. From this aircraft, several sections or panels in different regions such as wing, vertical tailplane and fuselage are defined. The stiffened carbon-fibre-reinforced plastic (CFRP) plate investigated within the present work represents a simplified version of the wing panel selected from the generic aircraft. As part of the current work, the buckling behaviour and the modal properties of the stiffened plate under the effect of a static in-plane compression load are studied. This is accomplished by means of a test series including quasi-static buckling tests and an experimental modal analysis (EMA). One of the key objectives pursued is the correlation of the modal properties to the buckling behaviour by studying the relationship between the natural frequencies of the stiffened plate and its corresponding buckling load. The experimental work is verified by a finite element analysis.

  11. Impact of virus load on immunocytological and histopathological parameters during clinical chicken anemia virus (CAV) infection in poultry.

    PubMed

    Wani, Mohd Yaqoob; Dhama, Kuldeep; Malik, Yashpal Singh

    2016-07-01

    Chicken anemia virus (CAV) is one the important pathogen affecting commercial poultry sector globally by causing mortality, production losses, immunosuppression, aggravating co-infections and vaccination failures. Here, we describe the effects of CAV load on hematological, histopathological and immunocytochemical alterations in 1-day old infected chicks. The effects of CAV on cytokine expression profiles and generation of virus specific antibody titer were also studied and compared with viral clearance in various tissues. The results clearly confirmed that peak viral load was achieved mainly in lymphoid tissues between 10 and 20 days post infection (dpi), being highest in the blood (log1010.63 ±0.87/ml) and thymus (log1010.29 ±0.94/g) followed by spleen, liver, bone marrow and bursa. The histopathology and immunoflowcytometric analysis indicated specific degeneration of T lymphoid cells in the thymus, spleen and blood at 15 dpi. While the transcript levels of interleukin (IL)-1, IL-2, IL-12 decreased at all dpi, interferon (IFN)-γ increased (3-15 fold) during early stages of infection and the appearance of virus specific antibodies were found to be strongly associated with virus clearance in all the tissues. Our findings support the immunosuppressive nature of CAV and provide the relation between the virus load in the various body tissues and the immunopathological changes during clinical CAV infections. PMID:27165537

  12. Seasonal variation in coat characteristics, tick loads, cortisol levels, some physiological parameters and temperature humidity index on Nguni cows raised in low- and high-input farms

    NASA Astrophysics Data System (ADS)

    Katiyatiya, C. L. F.; Muchenje, V.; Mushunje, A.

    2015-06-01

    Seasonal variations in hair length, tick loads, cortisol levels, haematological parameters (HP) and temperature humidity index (THI) in Nguni cows of different colours raised in two low-input farms, and a commercial stud was determined. The sites were chosen based on their production systems, climatic characteristics and geographical locations. Zazulwana and Komga are low-input, humid-coastal areas, while Honeydale is a high-input, dry-inland Nguni stud farm. A total of 103 cows, grouped according to parity, location and coat colour, were used in the study. The effects of location, coat colour, hair length and season were used to determine tick loads on different body parts, cortisol levels and HP in blood from Nguni cows. Highest tick loads were recorded under the tail and the lowest on the head of each of the animals ( P < 0.05). Zazulwana cows recorded the highest tick loads under the tails of all the cows used in the study from the three farms ( P < 0.05). High tick loads were recorded for cows with long hairs. Hair lengths were longest during the winter season in the coastal areas of Zazulwana and Honeydale ( P < 0.05). White and brown-white patched cows had significantly longer ( P < 0.05) hair strands than those having a combination of red, black and white colour. Cortisol and THI were significantly lower ( P < 0.05) in summer season. Red blood cells, haematoglobin, haematocrit, mean cell volumes, white blood cells, neutrophils, lymphocytes, eosinophils and basophils were significantly different ( P < 0.05) as some associated with age across all seasons and correlated to THI. It was concluded that the location, coat colour and season had effects on hair length, cortisol levels, THI, HP and tick loads on different body parts and heat stress in Nguni cows.

  13. Seasonal variation in coat characteristics, tick loads, cortisol levels, some physiological parameters and temperature humidity index on Nguni cows raised in low- and high-input farms

    NASA Astrophysics Data System (ADS)

    Katiyatiya, C. L. F.; Muchenje, V.; Mushunje, A.

    2014-08-01

    Seasonal variations in hair length, tick loads, cortisol levels, haematological parameters (HP) and temperature humidity index (THI) in Nguni cows of different colours raised in two low-input farms, and a commercial stud was determined. The sites were chosen based on their production systems, climatic characteristics and geographical locations. Zazulwana and Komga are low-input, humid-coastal areas, while Honeydale is a high-input, dry-inland Nguni stud farm. A total of 103 cows, grouped according to parity, location and coat colour, were used in the study. The effects of location, coat colour, hair length and season were used to determine tick loads on different body parts, cortisol levels and HP in blood from Nguni cows. Highest tick loads were recorded under the tail and the lowest on the head of each of the animals (P < 0.05). Zazulwana cows recorded the highest tick loads under the tails of all the cows used in the study from the three farms (P < 0.05). High tick loads were recorded for cows with long hairs. Hair lengths were longest during the winter season in the coastal areas of Zazulwana and Honeydale (P < 0.05). White and brown-white patched cows had significantly longer (P < 0.05) hair strands than those having a combination of red, black and white colour. Cortisol and THI were significantly lower (P < 0.05) in summer season. Red blood cells, haematoglobin, haematocrit, mean cell volumes, white blood cells, neutrophils, lymphocytes, eosinophils and basophils were significantly different (P < 0.05) as some associated with age across all seasons and correlated to THI. It was concluded that the location, coat colour and season had effects on hair length, cortisol levels, THI, HP and tick loads on different body parts and heat stress in Nguni cows.

  14. The identification of inflow fluid dynamics parameters that can be used to scale fatigue loading spectra of wind turbine structural components

    NASA Astrophysics Data System (ADS)

    Kelley, N. D.

    1993-11-01

    We have recently shown that the alternating load fatigue distributions measured at several locations on a wind turbine operating in a turbulent flow can be described by a mixture of at least three parametric statistical models. The rainflow cycle counting of the horizontal and vertical inflow components results in a similar mixture describing the cyclic content of the wind. We believe such a description highlights the degree of non-Gaussian characteristics of the flow. We present evidence that the severity of the low-cycle, high-amplitude alternating stress loads seen by wind turbine components are a direct consequence of the degree of departure from normality in the inflow. We have examined the details of the turbulent inflow associated with series large loading events that took place on two adjacent wind turbines installed in a large wind park in San Gorgonio Pass, California. In this paper, we describe what we believe to be the agents in the flow that induced such events. We also discuss the atmospheric mechanisms that influence the low-cycle, high-amplitude range loading seen by a number of critical wind turbine components. We further present results that can be used to scale the specific distribution shape as functions of measured inflow fluid dynamics parameters.

  15. Effect of an allostatic modulator on stress blood indicators and meat quality of commercial young bulls in Mexico.

    PubMed

    Rubio Lozano, M S; Méndez Medina, R D; Reyes Mayorga, K; Rubio García, M E; Ovando, M A; Ngapo, T M; Galindo Maldonado, F A

    2015-07-01

    To assess the effect of an allostatic modulator (AM) on stress blood indicators and meat quality traits, the feed of 80 non-castrated 18-20 month-old bulls was supplemented with 10 g/day of an AM for 30 days before slaughter. Another 80 bulls served as control animals. The AM was comprised of ascorbic acid, acetoxybenzoic acid and sodium and potassium chloride. Blood samples were taken at slaughter for analyses of hematocrit value, erythrocyte and leukocyte counts, and glucose, lactate and cortisol concentrations. Post-mortem measures of meat color and pH were made at 24h and color, shear force and cooking loss on meat from 20 animals at 28 days. The AM supplementation resulted in lower hematocrit value, erythrocyte count and glucose level (P<0.05), higher a* (P<0.0001) and b* (P<0.0001) at 24h and lower b* (P<0.05) at 28 days. Thus AM treatment improved some stress blood indicators and meat color and therefore merits further investigation. PMID:25817802

  16. Water quality parameters and total aerobic bacterial and vibrionaceae loads in eastern oysters (Crassostrea virginica) from oyster gardening sites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oyster gardening is a practice designed to restore habitat for marine life and to improve water quality. This study determined physical and chemical water quality parameters at two oyster gardening sites in the Delaware Inland Bays and compared them with total aerobic bacteria and Vibrionaceae conc...

  17. Immediate Provisionalization and Nonfunctional Loading of a Single Implant in the Maxillary Esthetic Zone: A Clinical Presentation and Parameters for Consideration

    PubMed Central

    Michalakis, Konstantinos X.; Kalpidis, Christos D. R.; Kirmanidou, Yvone; Hirayama, Hiroshi; Calvani, Pasquale Lino; Pissiotis, Argiris L.

    2013-01-01

    Restoration of single tooth loss with implant supported prosthesis is now considered a highly predictable treatment. However, the maxillary anterior region still presents a challenge for both the prosthodontist and the periodontist because of the inherent difficulties encountered in the provisionalization and harmonic incorporation of the definitive prosthesis into patient's dentogingival complex. This paper presents a clinical case of a single implant placed immediately after the extraction of a maxillary central incisor, followed by immediate provisionalization and nonfunctional loading. The surgical and the restorative techniques are described, and the parameters of consideration for this approach are presented. PMID:24383012

  18. Increases in mature brain-derived neurotrophic factor protein in the frontal cortex and basal forebrain during chronic sleep restriction in rats: possible role in initiating allostatic adaptation.

    PubMed

    Wallingford, J K; Deurveilher, S; Currie, R W; Fawcett, J P; Semba, K

    2014-09-26

    Chronic sleep restriction (CSR) has various negative consequences on cognitive performance and health. Using a rat model of CSR that uses alternating cycles of 3h of sleep deprivation (using slowly rotating activity wheels) and 1h of sleep opportunity continuously for 4 days ('3/1' protocol), we previously observed not only homeostatic but also allostatic (adaptive) sleep responses to CSR. In particular, non-rapid eye movement sleep (NREMS) electroencephalogram (EEG) delta power, an index of sleep intensity, increased initially and then declined gradually during CSR, with no rebound during a 2-day recovery period. To study underlying mechanisms of these allostatic responses, we examined the levels of brain-derived neurotrophic factor (BDNF), which is known to regulate NREMS EEG delta activity, during the same CSR protocol. Mature BDNF protein levels were measured in the frontal cortex and basal forebrain, two brain regions involved in sleep and EEG regulation, and the hippocampus, using Western blot analysis. Adult male Wistar rats were housed in motorized activity wheels, and underwent the 3/1 CSR protocol for 27 h, for 99 h, or for 99 h followed by 24h of recovery. Additional rats were housed in either locked wheels (locked wheel controls [LWCs]) or unlocked wheels that rats could rotate freely (wheel-running controls [WRCs]). BDNF levels did not differ between WRC and LWC groups. BDNF levels were increased, compared to the control levels, in all three brain regions after 27 h, and were increased less strongly after 99 h, of CSR. After 24h of recovery, BDNF levels were at the control levels. This time course of BDNF levels parallels the previously reported changes in NREMS delta power during the same CSR protocol. Changes in BDNF protein levels in the cortex and basal forebrain may be part of the molecular mechanisms underlying allostatic sleep responses to CSR. PMID:25010399

  19. A model for homeopathic remedy effects: low dose nanoparticles, allostatic cross-adaptation, and time-dependent sensitization in a complex adaptive system

    PubMed Central

    2012-01-01

    Background This paper proposes a novel model for homeopathic remedy action on living systems. Research indicates that homeopathic remedies (a) contain measurable source and silica nanoparticles heterogeneously dispersed in colloidal solution; (b) act by modulating biological function of the allostatic stress response network (c) evoke biphasic actions on living systems via organism-dependent adaptive and endogenously amplified effects; (d) improve systemic resilience. Discussion The proposed active components of homeopathic remedies are nanoparticles of source substance in water-based colloidal solution, not bulk-form drugs. Nanoparticles have unique biological and physico-chemical properties, including increased catalytic reactivity, protein and DNA adsorption, bioavailability, dose-sparing, electromagnetic, and quantum effects different from bulk-form materials. Trituration and/or liquid succussions during classical remedy preparation create “top-down” nanostructures. Plants can biosynthesize remedy-templated silica nanostructures. Nanoparticles stimulate hormesis, a beneficial low-dose adaptive response. Homeopathic remedies prescribed in low doses spaced intermittently over time act as biological signals that stimulate the organism’s allostatic biological stress response network, evoking nonlinear modulatory, self-organizing change. Potential mechanisms include time-dependent sensitization (TDS), a type of adaptive plasticity/metaplasticity involving progressive amplification of host responses, which reverse direction and oscillate at physiological limits. To mobilize hormesis and TDS, the remedy must be appraised as a salient, but low level, novel threat, stressor, or homeostatic disruption for the whole organism. Silica nanoparticles adsorb remedy source and amplify effects. Properly-timed remedy dosing elicits disease-primed compensatory reversal in direction of maladaptive dynamics of the allostatic network, thus promoting resilience and recovery from

  20. Coupled finite-element/state-space modeling of turbogenerators in the ABC frame of reference -- The short-circuit and load cases including saturated parameters

    SciTech Connect

    Chaudhry, S.R.; Ahmed-Zaid, S.; Demerdash, N.A.

    1995-03-01

    In this paper, a coupled finite-element/state-space modeling technique is applied in the determination of the steady-state parameters of a 733-MVA turbogenerator in the abc frame of reference. In this modeling environment, the forward rotor stepping-finite element procedure described in a companion paper is used to obtain the various machine self and mutual inductances under short-circuit and load conditions. A fourth-order state-space model of the armature and field winding flux linkages in the ABC frame of reference is then used to obtain the next set of flux linkages and forcing function currents for the finite-element model. In this process, one iterates between the finite-element and state-space techniques until the terminal conditions converge to specified values. This method is applied to the determination of the short-circuit, and reduced and rated-voltage load characteristics, and the corresponding machine inductances. The spatial harmonics of these inductances are analyzed via Fourier analysis to reveal the impact of machine geometry and stator-to-rotor relative motion, winding layout, magnetic saturation, and other effects. In the full-load infinite-bus case, it is found that, while the three-phase terminal voltages are pure sinusoidal waveforms, the steady-state armature phase currents are non-sinusoidal and contain a substantial amount of odd harmonics which cannot be obtained using the traditional two-axis analysis.

  1. Loading effect of a self-consistent equilibrium ocean pole tide on the gravimetric parameters of the gravity pole tides at superconducting gravimeter stations

    NASA Astrophysics Data System (ADS)

    Chen, Xiaodong; Ducarme, Bernard; Sun, Heping; Xu, Jianqiao

    2008-05-01

    The gravimetric parameters of the gravity pole tide are the amplitude factor δ, which is the ratio of gravity variations induced by polar motion for a real Earth to variations computed for a rigid one, and the phase difference κ between the observed and the rigid gravity pole tide. They can be estimated from the records of superconducting gravimeters (SGs). However, they are affected by the loading effect of the ocean pole tide. Recent results from TOPEX/Poseidon (TP) altimeter confirm that the ocean pole tide has a self-consistent equilibrium response. Accordingly, we calculate the gravity loading effects as well as their influence on the gravimetric parameters of gravity pole tide at all the 26 SG stations in the world on the assumption of a self-consistent equilibrium ocean pole tide model. The gravity loading effect is evaluated between 1 January 1997 and 31 December 2006. Numerical results show that the amplitude of the gravity loading effect reaches 10 -9 m s -2, which is larger than the accuracy (10 -10 m s -2) of a SG. The gravimetric factor δ is 1% larger at all SG stations. Then, the contribution of a self-consistent ocean pole tide to the pole tide gravimetric parameters cannot be ignored as it exceeds the current accuracy of the estimation of the pole tide gravity factors. For the nine stations studied in Ducarme et al. [Ducarme, B., Venedikov, A.P., Arnoso, J., et al., 2006. Global analysis of the GGP superconducting gravimeters network for the estimation of the pole tide gravimetric amplitude factor. J. Geodyn. 41, 334-344.], the mean of the modeled tidal factors δm = 1.1813 agrees very well with the result of a global analysis δCH = 1.1816 ± 0.0047 in that paper. On the other hand, the modeled phase difference κm varies from -0.273° to 0.351°. Comparing to the two main periods of the gravity pole tide, annual period and Chandler period, κm is too small to be considered. Therefore, The computed time difference κL induced by a self

  2. Performance of the load-in-the-loop single Op-Amp voltage Controlled current source from the Op-Amp Parameters

    NASA Astrophysics Data System (ADS)

    Macías, R.; Seoane, F.; Bragós, R.

    2010-04-01

    In recent years, Electrical Bioimpedance (EBI) methods have gained importance. These methods are often based on obtaining impedance spectrum in the range of β-dispersion, i.e. from a few kHz up to some MHz. To measure EBI a constant current is often injected and the voltage across the tissue under study is recorded. Due to the performance of the current source influences the performance of the entire system, in terms of frequency range, several designs have been implemented and studied. In this paper the basic structure of a Voltage-Controlled Current Source based on a single Op-Amp in inverter configuration with a floating load, known as load-in-the-loop current source, is revisited and studied deeply. We focus on the dependence of the output impedance with the circuit parameters, i.e. the feedback resistor and the inverter-input resistor, and the Op-Amp main parameters, i.e. open loop gain, CMRR and input impedance. After obtaining the experimental results, using modern Op-Amps, and comparing to the theoretical and simulated ones, they confirm the design under study can be a good solution for multi-frequency wideband EBI applications because of higher values of the output impedance than 100kΩ at 1MHz are obtained. Furthermore, an enhancement of the basic design, using a current conveyor as a first stage, is proposed, studied and implemented.

  3. The effect of electrodeposition process parameters on residual stress-induced self-assembly under external load

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Hyun; Woo, Yoonhwan; Boyd, James G.

    2014-11-01

    The authors (Boyd et al 2007 J. Micromech. Microeng. 17 452-61http://iopscience.iop.org/0960-1317/17/3/006/) presented a methodology for using residual stresses due to mismatch strains as a means of self-assembling microstructures under external loading during material deposition. Assembly of two components was considered: one component was subjected to deposition and was modeled as an Euler-Bernoulli beam, and the other component was not deposited and was modeled as a linear spring. This work experimentally extends Boyd et al (2007 J. Micromech. Microeng. 17 452-61http://iopscience.iop.org/0960-1317/17/3/006/) to account for the effects of process conditions, specifically the electrodeposition current density and temperature, which affect both the Young’s modulus and the mismatch strain. First, nickel was electrodeposited onto an atomic force microscope (AFM) cantilever, and the cantilever deflections at various current densities and temperatures were measured by using the resonance method of AFM and the measured deformation of the cantilever was converted into the quantitative mismatch strain by appropriate mechanics. For a given deposition thickness, the magnitude of the mismatch strain increased with increasing current density or plating temperature. The Young’s modulus decreased with increasing current density and increased slightly with increasing temperature. Next, the self-assembly model was experimentally verified by electrodepositing nickel onto an AFM cantilever beam in contact with a second AFM beam, serving as the spring, that does not undergo deposition. For a given deposition thickness, the spring deflection increased with increasing current density and increasing deposition temperature.

  4. Time-of-day modulation of homeostatic and allostatic sleep responses to chronic sleep restriction in rats.

    PubMed

    Deurveilher, S; Rusak, B; Semba, K

    2012-06-15

    To study sleep responses to chronic sleep restriction (CSR) and time-of-day influences on these responses, we developed a rat model of CSR that takes into account the polyphasic sleep patterns in rats. Adult male rats underwent cycles of 3 h of sleep deprivation (SD) and 1 h of sleep opportunity (SO) continuously for 4 days, beginning at the onset of the 12-h light phase ("3/1" protocol). Electroencephalogram (EEG) and electromyogram (EMG) recordings were made before, during, and after CSR. During CSR, total sleep time was reduced by ∼60% from baseline levels. Both rapid eye movement sleep (REMS) and non-rapid eye movement sleep (NREMS) during SO periods increased initially relative to baseline and remained elevated for the rest of the CSR period. In contrast, NREMS EEG delta power (a measure of sleep intensity) increased initially, but then declined gradually, in parallel with increases in high-frequency power in the NREMS EEG. The amplitude of daily rhythms in NREMS and REMS amounts was maintained during SO periods, whereas that of NREMS delta power was reduced. Compensatory responses during the 2-day post-CSR recovery period were either modest or negative and gated by time of day. NREMS, REMS, and EEG delta power lost during CSR were not recovered by the end of the second recovery day. Thus the "3/1" CSR protocol triggered both homeostatic responses (increased sleep amounts and intensity during SOs) and allostatic responses (gradual decline in sleep intensity during SOs and muted or negative post-CSR sleep recovery), and both responses were modulated by time of day. PMID:22492816

  5. Drug-induced regulatory overcompensation has motivational consequences: Implications for homeostatic and allostatic models of drug addiction

    PubMed Central

    Ramsay, Douglas S.; Woods, Stephen C.; Kaiyala, Karl J.

    2015-01-01

    Initial administration of 60% nitrous oxide (N2O) at 21°C ambient temperature (Ta) reduces core temperature (Tc) in rats, but tolerance develops to this hypothermic effect over several administrations. After additional N2O administrations, a hyperthermic overcompensation (sign-reversal) develops such that Tc exceeds control levels during N2O inhalation. This study investigated whether rats would employ behavioral thermoregulation to facilitate, or oppose, a previously acquired hyperthermic overcompensation during N2O administration. To establish a hyperthermic sign-reversal, male Long-Evans rats (N=12) received ten 3-h administrations of 60% N2O while housed in a gas-tight, live-in, “inactive” thermal gradient (~21°C). Following the tenth N2O exposure, the thermal gradient was activated (range of 10–37°C), and rats received both a control gas session and a 60% N2O test session in counterbalanced order. Mean Tc during N2O inhalation in the inactive gradient was reliably hypothermic during the first exposure but was reliably hyperthermic by the tenth exposure. When subsequently exposed to 60% N2O in the active gradient, rats selected a cooler Ta, which blunted the hyperthermic sign-reversal and lowered Tc throughout the remainder of the N2O exposure. Thus, autonomic heat production effectors mediating the hyperthermia were opposed by a behavioral effector that promoted increased heat loss via selection of a cooler ambient temperature. These data are compatible with an allostatic model of drug addiction that suggests that dysregulatory overcompensation in the drugged-state may motivate behaviors (e.g., drug taking) that oppose the overcompensation, thereby creating a vicious cycle of escalating drug consumption and recurring dysregulation. PMID:25938126

  6. Exploring the relationship between hydrologic parameters and nutrient loads using digital elevation model and GIS - a case study from Sugarcreek headwaters, Ohio, U.S.A.

    PubMed

    Prasad, V Krishna; Ortiz, Ariel; Stinner, Ben; McCartney, David; Parker, Jason; Hudgins, Deana; Hoy, Casey; Moore, Richard

    2005-11-01

    Ohio is typical among the Midwestern and Eastern United States with high levels of water pollutants, the main sources being from agriculture. In this study, we used a digital elevation model in conjunction with hydrological indices to determine the role of landscape complexity affecting the spatial and temporal variation in pollutant levels, in one of the most impaired headwater streams in Ohio. More than eighty five percent of the study area is dominated by agriculture. Spatial distribution of slope (S), altitude and wetness index along with other watershed parameters such as flow direction, flow accumulation, stream networks, flow stream orders and erosion index were used within a Geographic Information Systems framework to quantify variation in nitrate and phosphate loads to headwater streams. Stream monitoring data for nutrient loads were used to correlate the observed spatial and temporal patterns with hydrological parameters using multiple linear regressions. Results from the wetness index calculated from a digital elevation model suggested a range of 0.10-16.39, with more than 35% having values less than 4.0. A Revised Universal Soil Loss Equation (RUSLE) predicted soil loss in the range of 0.01-4.0 t/ha/yr. Nitrate nitrogen levels in the study area paralleled precipitation patterns over time, with higher nitrate levels corresponding to high precipitation. Atmospheric deposition through precipitation could explain approximately 35% of total nitrate levels observed in streams. Among the different topographic variables and hydrological indices, results from the step-wise multiple regression suggested the following best predictors, (1) elevation range and upstream flow length for nitrate, (2) flow direction and upstream flow length for ammonia-nitrogen and slope, and (3) elevation range for phosphate levels. Differences in the landscape models observed for nitrate, phosphate and ammonia-nitrogen in the surface waters were attributed partly to differences in the

  7. Constitutive modeling of the human Anterior Cruciate Ligament (ACL) under uniaxial loading using viscoelastic prony series and hyperelastic five parameter Mooney-Rivlin model

    NASA Astrophysics Data System (ADS)

    Chakraborty, Souvik; Mondal, Debabrata; Motalab, Mohammad

    2016-07-01

    In this present study, the stress-strain behavior of the Human Anterior Cruciate Ligament (ACL) is studied under uniaxial loads applied with various strain rates. Tensile testing of the human ACL samples requires state of the art test facilities. Furthermore, difficulty in finding human ligament for testing purpose results in very limited archival data. Nominal Stress vs. deformation gradient plots for different strain rates, as found in literature, is used to model the material behavior either as a hyperelastic or as a viscoelastic material. The well-known five parameter Mooney-Rivlin constitutivemodel for hyperelastic material and the Prony Series model for viscoelastic material are used and the objective of the analyses comprises of determining the model constants and their variation-trend with strain rates for the Human Anterior Cruciate Ligament (ACL) material using the non-linear curve fitting tool. The relationship between the model constants and strain rate, using the Hyperelastic Mooney-Rivlin model, has been obtained. The variation of the values of each coefficient with strain rates, obtained using Hyperelastic Mooney-Rivlin model are then plotted and variation of the values with strain rates are obtained for all the model constants. These plots are again fitted using the software package MATLAB and a power law relationship between the model constants and strain rates is obtained for each constant. The obtained material model for Human Anterior Cruciate Ligament (ACL) material can be implemented in any commercial finite element software package for stress analysis.

  8. Time-domain parameter identification of aeroelastic loads by forced-vibration method for response of flexible structures subject to transient wind

    NASA Astrophysics Data System (ADS)

    Cao, Bochao

    Slender structures representing civil, mechanical and aerospace systems such as long-span bridges, high-rise buildings, stay cables, power-line cables, high light mast poles, crane-booms and aircraft wings could experience vortex-induced and buffeting excitations below their design wind speeds and divergent self-excited oscillations (flutter) beyond a critical wind speed because these are flexible. Traditional linear aerodynamic theories that are routinely applied for their response prediction are not valid in the galloping, or near-flutter regime, where large-amplitude vibrations could occur and during non-stationary and transient wind excitations that occur, for example, during hurricanes, thunderstorms and gust fronts. The linear aerodynamic load formulation for lift, drag and moment are expressed in terms of aerodynamic functions in frequency domain that are valid for straight-line winds which are stationary or weakly-stationary. Application of the frequency domain formulation is restricted from use in the nonlinear and transient domain because these are valid for linear models and stationary wind. The time-domain aerodynamic force formulations are suitable for finite element modeling, feedback-dependent structural control mechanism, fatigue-life prediction, and above all modeling of transient structural behavior during non-stationary wind phenomena. This has motivated the developing of time-domain models of aerodynamic loads that are in parallel to the existing frequency-dependent models. Parameters defining these time-domain models can be now extracted from wind tunnel tests, for example, the Rational Function Coefficients defining the self-excited wind loads can be extracted using section model tests using the free vibration technique. However, the free vibration method has some limitations because it is difficult to apply at high wind speeds, in turbulent wind environment, or on unstable cross sections with negative aerodynamic damping. In the current

  9. Use of an allostatic neurotechnology by adolescents with postural orthostatic tachycardia syndrome (POTS) is associated with improvements in heart rate variability and changes in temporal lobe electrical activity.

    PubMed

    Fortunato, John E; Tegeler, Catherine L; Gerdes, Lee; Lee, Sung W; Pajewski, Nicholas M; Franco, Meghan E; Cook, Jared F; Shaltout, Hossam A; Tegeler, Charles H

    2016-03-01

    Autonomic dysregulation and heterogeneous symptoms characterize postural orthostatic tachycardia syndrome (POTS). This study evaluated the effect of high-resolution, relational, resonance-based, electroencephalic mirroring (HIRREM(®)), a noninvasive, allostatic neurotechnology for relaxation and auto-calibration of neural oscillations, on heart rate variability, brain asymmetry, and autonomic symptoms, in adolescents with POTS. Seven subjects with POTS (three males, ages 15-18) underwent a median of 14 (10-16) HIRREM sessions over 13 (8-17) days. Autonomic function was assessed from 10-min continuous heart rate and blood pressure recordings, pre- and post-HIRREM. One-minute epochs of temporal high-frequency (23-36 Hz) brain electrical activity data (T3 and T4, eyes closed) were analyzed from baseline HIRREM assessment and subsequent sessions. Subjects rated autonomic symptoms before and after HIRREM. Four of seven were on fludrocortisone, which was stopped before or during their sessions. Heart rate variability in the time domain (standard deviation of the beat-to-beat interval) increased post-HIRREM (mean increase 51%, range 10-143, p = 0.03), as did baroreflex sensitivity (mean increase in high-frequency alpha 65%, range -6 to 180, p = 0.05). Baseline temporal electrical asymmetry negatively correlated with change in asymmetry from assessment to the final HIRREM session (p = 0.01). Summed high-frequency amplitudes at left and right temporal lobes decreased a median of 3.8 μV (p = 0.02). There was a trend for improvements in self-reported symptoms related to the autonomic nervous system. Use of HIRREM was associated with reduced sympathetic bias in autonomic cardiovascular regulation, greater symmetry and reduced amplitudes in temporal lobe high-frequency electrical activity, and a trend for reduced autonomic symptoms. Data suggest the potential for allostatic neurotechnology to facilitate increased flexibility in autonomic cardiovascular regulation, possibly

  10. Effect of Food Load on Activities of Enzymes of the Main Metabolic Pathways in Blood Lymphocytes in Girls with Different Anthropometric Parameters.

    PubMed

    Fefelova, V V; Fefelova, Yu A; Kazakova, T V; Koloskova, T P; Sergeeva, E Yu

    2015-07-01

    Changes in enzyme activities reflecting functioning of the basic metabolic pathways in cells (Krebs cycle, glycolysis, pentose phosphate pathway) were evaluated in blood lymphocytes of girls of different somatotypes with different body composition under conditions of food load. A common regularity was found: a decrease in succinate dehydrogenase activity after meal in girls of all somatotypes. Specific features of individual somatotypes were also revealed. Only girls of athletic somatotype showed increased lactate dehydrogenase level after food load. Activity of glucose-6-phosphate dehydrogenase increased (more than twice) after food load only in girls of euryplastic somatotype. This somatotype is characterized by maximum values of fat and other components of the body. Glucose-6-phosphate dehydrogenase is the first enzyme of the pentose phosphate pathway; activation of this pathway accompanies enhancement of synthetic processes, including lipid synthesis. This can contribute to accumulation of the fat component (and other components) due to redistribution of substrate flows between metabolic pathways. PMID:26205721

  11. Effect of Monotherapy with Darunavir/Ritonavir on Viral Load in Seminal Fluid, and Quality Parameters of Semen in HIV-1-Positive Patients.

    PubMed

    Lopez-Ruz, Miguel A; Navas, Purificación; López-Zúñiga, Miguel A; Gonzalvo, María Carmen; Sampedro, Antonio; Pasquau, Juan; Hidalgo-Tenorio, Carmen; Javier, Rosario; Castilla, José A

    2016-01-01

    Patients with human immunodeficiency virus type 1 (HIV-1) who receive antiretroviral therapy (ART) often achieve increased survival and improved quality of life. In this respect, monotherapy with darunavir/ritonavir (mDRV/r) can be a useful treatment strategy. This prospective study analyses the effect of mDRV/r on sperm quality and viral load in a group of 28 patients who had previously been given conventional ART and who had recorded a viral load <20 copies/mL for at least six months. These patients were given mDRV/r at a dose of 800/100 mg for 48 weeks. At baseline (V0), CD4, CD8, FSH, LH and testosterone levels were measured, together with HIV-1 viral load in plasma and semen. In addition, seminal fluid quality was studied before mDRV/r treatment was prescribed. At week 48 (V1), HIV-1 viral load in plasma and semen and the quality of the seminal fluid were again measured. The results obtained indicate that at V0, 10% of the patients with ART had a positive viral load in seminal fluid (>20 copies/ml), and that at V1, after mDRV/r treatment, this figure had fallen to 3%. The quality of seminal fluid was close to normal in 57% of patients at V0 and in 62% at V1. We conclude that, similar to ART, mDRV/r maintains HIV-1 viral load in most patients, and that there is no worsening in seminal fluid quality. PMID:27442068

  12. Effect of Monotherapy with Darunavir/Ritonavir on Viral Load in Seminal Fluid, and Quality Parameters of Semen in HIV-1-Positive Patients

    PubMed Central

    Lopez-Ruz, Miguel A.; Navas, Purificación; López-Zúñiga, Miguel A.; Gonzalvo, María Carmen; Sampedro, Antonio; Pasquau, Juan; Hidalgo-Tenorio, Carmen; Javier, Rosario; Castilla, José A.

    2016-01-01

    Patients with human immunodeficiency virus type 1 (HIV-1) who receive antiretroviral therapy (ART) often achieve increased survival and improved quality of life. In this respect, monotherapy with darunavir/ritonavir (mDRV/r) can be a useful treatment strategy. This prospective study analyses the effect of mDRV/r on sperm quality and viral load in a group of 28 patients who had previously been given conventional ART and who had recorded a viral load <20 copies/mL for at least six months. These patients were given mDRV/r at a dose of 800/100 mg for 48 weeks. At baseline (V0), CD4, CD8, FSH, LH and testosterone levels were measured, together with HIV-1 viral load in plasma and semen. In addition, seminal fluid quality was studied before mDRV/r treatment was prescribed. At week 48 (V1), HIV-1 viral load in plasma and semen and the quality of the seminal fluid were again measured. The results obtained indicate that at V0, 10% of the patients with ART had a positive viral load in seminal fluid (>20 copies/ml), and that at V1, after mDRV/r treatment, this figure had fallen to 3%. The quality of seminal fluid was close to normal in 57% of patients at V0 and in 62% at V1. We conclude that, similar to ART, mDRV/r maintains HIV-1 viral load in most patients, and that there is no worsening in seminal fluid quality. PMID:27442068

  13. Tank tests to determine the effect of varying design parameters of planing-tail hulls II : effect of varying depth of step, angle of after- body keel, length of afterbody chine, and gross load

    NASA Technical Reports Server (NTRS)

    Dawson, John R; Mckann, Robert; Hay, Elizabeth S

    1946-01-01

    The second part of a series of tests made in Langley tank no. 2 to determine the effect of varying design parameters of planing-tail hulls is presented. Results are given to show the effects on resistance characteristics of varying angle of afterbody keel, depth of step, and length of afterbody chine. The effect of varying the gross load is shown for one configuration. The resistance characteristics of planing-tail hulls are compared with those of a conventional flying-boat hull. The forces on the forebody and afterbody of one configuration are compared with the forces on a conventional hull. Increasing the angle of afterbody keel had small effect on hump resistance and no effect on high-speed resistance but increased free-to-trim resistance at intermediate speeds. Increasing the depth of step increased hump resistance, had little effect on high-speed resistance, and increased free-to-trim resistance at intermediate speeds. Omitting the chines on the forward 25 percent of the afterbody had no appreciable effect on resistance. Omitting 70 percent of the chine length had almost no effect on maximum resistance but broadened the hump and increased spray around the afterbody. Load-resistance ratio at the hump decreased more rapidly with increasing load coefficient for the planing-tail hull than for the representative conventional hull, although the load-resistance ratio at the hump was greater for the planing-tail hull than for the conventional hull throughout the range of loads tested. At speeds higher than hump speed, load-resistance ratio for the planing-tail hull was a maximum at a particular gross load and was slightly less at heavier and lighter gross loads. The planing-tail hull was found to have lower resistance than the conventional hull at both the hump and at high speeds, but at intermediate speeds there was little difference. The lower hump resistance of the planing-tail hull was attributed to the ability of the afterbody to carry a greater percentage of the

  14. Computation of load performance and other parameters of extra high speed modified Lundell alternators from 3D-FE magnetic field solutions

    NASA Technical Reports Server (NTRS)

    Wang, R.; Demerdash, N. A.

    1992-01-01

    The combined magnetic vector potential - magnetic scalar potential method of computation of 3D magnetic fields by finite elements, introduced in a companion paper, in combination with state modeling in the abc-frame of reference, are used for global 3D magnetic field analysis and machine performance computation under rated load and overload condition in an example 14.3 kVA modified Lundell alternator. The results vividly demonstrate the 3D nature of the magnetic field in such machines, and show how this model can be used as an excellent tool for computation of flux density distributions, armature current and voltage waveform profiles and harmonic contents, as well as computation of torque profiles and ripples. Use of the model in gaining insight into locations of regions in the magnetic circuit with heavy degrees of saturation is demonstrated. Experimental results which correlate well with the simulations of the load case are given.

  15. Exposure to environmental stressors result in increased viral load and further reduction of production parameters in pigs experimentally infected with PCV2b

    PubMed Central

    Patterson, Robert; Nevel, Amanda; Diaz, Adriana V.; Martineau, Henny M.; Demmers, Theo; Browne, Christopher; Mavrommatis, Bettina; Werling, Dirk

    2015-01-01

    Porcine circovirus type 2 (PCV2) has been identified as the essential, but not sole, underlying infectious component for PCV-associated diseases (PCVAD). Several co-factors have been suggested to convert an infection with PCV2 into the clinical signs of PCVAD, including co-infection with a secondary pathogen and the genetic background of the pig. In the present study, we investigated the role of environmental stressors in the form of changes in environmental temperature and increased stocking-density on viral load in serum and tissue, average daily weight gain (ADG) and food conversion rate (FCR) of pigs experimentally infected with a defined PCV2b strain over an eight week period. These stressors were identified recently as risk factors leading to the occurrence of severe PCVAD on a farm level. In the current study, PCV2-free pigs were housed in separate, environmentally controlled rooms, and the experiment was performed in a 2 × 2 factorial design. In general, PCV2b infection reduced ADG and increased FCR, and these were further impacted on by the environmental stressors. Furthermore, all stressors led to an increased viral load in serum and tissue as assessed by qPCR, although levels did not reach statistical significance. Our data suggest that there is no need for an additional pathogen to develop PCVAD in conventional status pigs, and growth retardation and clinical signs can be induced in PCV2 infected pigs that are exposed to environmental stressors alone. PMID:25866129

  16. Exposure to environmental stressors result in increased viral load and further reduction of production parameters in pigs experimentally infected with PCV2b.

    PubMed

    Patterson, Robert; Nevel, Amanda; Diaz, Adriana V; Martineau, Henny M; Demmers, Theo; Browne, Christopher; Mavrommatis, Bettina; Werling, Dirk

    2015-06-12

    Porcine circovirus type 2 (PCV2) has been identified as the essential, but not sole, underlying infectious component for PCV-associated diseases (PCVAD). Several co-factors have been suggested to convert an infection with PCV2 into the clinical signs of PCVAD, including co-infection with a secondary pathogen and the genetic background of the pig. In the present study, we investigated the role of environmental stressors in the form of changes in environmental temperature and increased stocking-density on viral load in serum and tissue, average daily weight gain (ADG) and food conversion rate (FCR) of pigs experimentally infected with a defined PCV2b strain over an eight week period. These stressors were identified recently as risk factors leading to the occurrence of severe PCVAD on a farm level. In the current study, PCV2-free pigs were housed in separate, environmentally controlled rooms, and the experiment was performed in a 2×2 factorial design. In general, PCV2b infection reduced ADG and increased FCR, and these were further impacted on by the environmental stressors. Furthermore, all stressors led to an increased viral load in serum and tissue as assessed by qPCR, although levels did not reach statistical significance. Our data suggest that there is no need for an additional pathogen to develop PCVAD in conventional status pigs, and growth retardation and clinical signs can be induced in PCV2 infected pigs that are exposed to environmental stressors alone. PMID:25866129

  17. Detection of the multiple spallation parameters and the internal structure of a particle cloud during shock-wave loading of a metal

    NASA Astrophysics Data System (ADS)

    Fedorov, A. V.; Mikhailov, A. L.; Finyushin, S. A.; Kalashnikov, D. A.; Chudakov, E. A.; Butusov, E. I.; Gnutov, I. S.

    2016-04-01

    The results of experiments on studying spallation and the ejection of particles from the surfaces of copper and lead samples are presented. A laser interferometry method is used to detect the particle cloud velocity and the multiple spallation parameters. Angular detectors are used to detect the depth profile of the particle cloud velocity dispersion and the structure of metal spallation.

  18. Influence of early life stress on later hypothalamic–pituitary–adrenal axis functioning and its covariation with mental health symptoms: A study of the allostatic process from childhood into adolescence

    PubMed Central

    Essex, Marilyn J.; Shirtcliff, Elizabeth A.; Burk, Linnea R.; Ruttle, Paula L.; Klein, Marjorie H.; Slattery, Marcia J.; Kalin, Ned H.; Armstrong, Jeffrey M.

    2012-01-01

    The hypothalamic-pituitary-adrenal (HPA) axis is a primary mechanism in the allostatic process through which early life stress (ELS) contributes to disease. Studies of the influence of ELS on children’s HPA axis functioning have yielded inconsistent findings. To address this issue, the present study considers multiple types of ELS (maternal depression, paternal depression, and family expressed anger), mental health symptoms, and two components of HPA functioning (trait-like and epoch-specific activity) in a long-term prospective community study of 357 children. ELS was assessed during the infancy and preschool periods; mental health symptoms and cortisol were assessed at child ages 9, 11, 13, and 15 years. A 3-level hierarchical linear model addressed questions regarding the influences of ELS on HPA functioning and its co-variation with mental health symptoms. ELS influenced trait-like cortisol level and slope, with both hyper- and hypo-arousal evident depending on type of ELS. Further, type(s) of ELS influenced co-variation of epoch-specific HPA functioning and mental health symptoms, with a tighter coupling of HPA alterations with symptom severity among children exposed previously to ELS. Results highlight the importance of examining multiple types of ELS and dynamic HPA functioning in order to capture the allostatic process unfolding across the transition into adolescence. PMID:22018080

  19. Load cell

    DOEpatents

    Spletzer, Barry L.

    2001-01-01

    A load cell combines the outputs of a plurality of strain gauges to measure components of an applied load. Combination of strain gauge outputs allows measurement of any of six load components without requiring complex machining or mechanical linkages to isolate load components. An example six axis load cell produces six independent analog outputs which can be combined to determine any one of the six general load components.

  20. Load cell

    DOEpatents

    Spletzer, B.L.

    1998-12-15

    A load cell combines the outputs of a plurality of strain gauges to measure components of an applied load. Combination of strain gauge outputs allows measurement of any of six load components without requiring complex machining or mechanical linkages to isolate load components. An example six axis load cell produces six independent analog outputs, each directly proportional to one of the six general load components. 16 figs.

  1. Load cell

    DOEpatents

    Spletzer, Barry L.

    1998-01-01

    A load cell combines the outputs of a plurality of strain gauges to measure components of an applied load. Combination of strain gauge outputs allows measurement of any of six load components without requiring complex machining or mechanical linkages to isolate load components. An example six axis load cell produces six independent analog outputs, each directly proportional to one of the six general load components.

  2. A precise experimental study of various affecting operational parameters in electrocoagulation-flotation process of high-load compost leachate in a batch reactor.

    PubMed

    Amani, T; Veysi, K; Elyasi, S; Dastyar, W

    2014-01-01

    The present study treated compost leachate, a high load organic and inorganic wastewater, using a batch electrocoagulation-flotation (ECF) process. ECF is an effective, fast, reliable, feasible, and economic technique for wastewater treatment. The interactive effects of operational factors such as influent chemical oxygen demand (COD), voltage, electrolysis time (ET), and electrodes distance (ED) on the efficiency of COD and total suspended solid (TSS) removal for various electrodes configurations (Al-Al, Al-Fe, Fe-Al, Fe-Fe) were analyzed and correlated. Al-Al was found to be the best configuration based on maximum removal of COD and TSS. Ultimately, analysis of associated results indicated that the best arrangement (Al-Al) possessed the following optimal factors: influent COD = 12,627 mg/L, voltage = 19 V, ET = 75 min, and ED = 3 cm for maximum removal of COD (96%) and TSS (99%). Confirmation tests indicated a 95% confidence interval for good agreement of the experimental results and predicted values from fitted correlations. Analysis of outcomes demonstrated that COD concentration was the most effective variable for COD and TSS removal, and, in addition, an increase in ET and a decrease in ED had positive effects. Total corrosion on the Al and Fe plates was 34.8 and 146.6 g, respectively. PMID:25353934

  3. Damage Monitoring of Unidirectional C/SiC Ceramic-Matrix Composite under Cyclic Fatigue Loading using A Hysteresis Loss Energy-Based Damage Parameter at Room and Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Longbiao, Li

    2015-12-01

    The damage evolution of unidirectional C/SiC ceramic-matrix composite (CMC) under cyclic fatigue loading has been investigated using a hysteresis loss energy-based damage parameter at room and elevated temperatures. The experimental fatigue hysteresis modulus and fatigue hysteresis loss energy versus cycle number have been analyzed. By comparing the experimental fatigue hysteresis loss energy with theoretical computational values, the interface shear stress corresponding to different cycle number and peak stress has been estimated. The experimental evolution of fatigue hysteresis loss energy and fatigue hysteresis loss energy-based damage parameter versus cycle number has been predicted for unidirectional C/SiC composite at room and elevated temperatures. The predicted results of interface shear stress degradation, stress-strain hysteresis loops corresponding to different number of applied cycles, fatigue hysteresis loss energy and fatigue hysteresis loss energy-based damage parameter as a functions of cycle number agreed with experimental data. It was found that the fatigue hysteresis energy-based parameter can be used to monitor the fatigue damage evolution and predict the fatigue life of fiber-reinforced CMCs.

  4. Damage Monitoring of Unidirectional C/SiC Ceramic-Matrix Composite under Cyclic Fatigue Loading using A Hysteresis Loss Energy-Based Damage Parameter at Room and Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Longbiao, Li

    2016-06-01

    The damage evolution of unidirectional C/SiC ceramic-matrix composite (CMC) under cyclic fatigue loading has been investigated using a hysteresis loss energy-based damage parameter at room and elevated temperatures. The experimental fatigue hysteresis modulus and fatigue hysteresis loss energy versus cycle number have been analyzed. By comparing the experimental fatigue hysteresis loss energy with theoretical computational values, the interface shear stress corresponding to different cycle number and peak stress has been estimated. The experimental evolution of fatigue hysteresis loss energy and fatigue hysteresis loss energy-based damage parameter versus cycle number has been predicted for unidirectional C/SiC composite at room and elevated temperatures. The predicted results of interface shear stress degradation, stress-strain hysteresis loops corresponding to different number of applied cycles, fatigue hysteresis loss energy and fatigue hysteresis loss energy-based damage parameter as a functions of cycle number agreed with experimental data. It was found that the fatigue hysteresis energy-based parameter can be used to monitor the fatigue damage evolution and predict the fatigue life of fiber-reinforced CMCs.

  5. Water-quality parameters and total aerobic bacterial and Vibrionaceae loads in Eastern oysters (Crassostrea virginica) from oyster-gardening sites.

    PubMed

    Fay, Johnna P; Richards, Gary P; Ozbay, Gulnihal

    2012-05-01

    Oyster gardening is a practice designed to restore habitat for marine life and to improve water quality. This study determined physical and chemical water-quality parameters at two oyster gardening sites in the Delaware Inland Bays and compared them with total aerobic bacteria and Vibrionaceae concentrations in Eastern oysters (Crassostrea virginica). One site was located at the end of a man-made canal, whereas the other was located in an open bay. Measured water parameters included temperature, dissolved oxygen (DO), salinity, pH, total nitrogen, nitrate, nitrite, total phosphorus, and total suspended solids. The highest Vibrionaceae levels, as determined by the colony overlay procedure for peptidases, were at the canal site in September (3.5 × 10(5) g(-1)) and at the bay site in August (1.9 × 10(5) g(-1)). Vibrionaceae levels were significantly greater during the duration of the study at the canal site (P = 0.01). This study provides the first baseline levels for total Vibrionaceae in the Delaware Inland Bays. Minimum DO readings at the bay and canal sites were 3.0 and 2.3 mg l(-1), respectively, far less than the state-targeted minimum threshold of 5.0 mg l(-1). Total phosphorus levels exceeded recommendations of ≤0.1 mg l(-1) at the bay and canal sites for all monthly samplings, with mean monthly highs at both sites ≥0.68 mg l(-1) in August. Nitrogen occasionally exceeded the recommended level of 1.0 mg l(-1) at both sites. Overall, waters were highly degraded from high phosphates, nitrogen, and total suspended solids as well as low DO. PMID:22183874

  6. Research of some operating parameters and the emissions level variation in a spark ignited engine through on-board investigation methods in different loading conditions

    NASA Astrophysics Data System (ADS)

    Iosif, Ferenti; Baldean, Doru Laurean

    2014-06-01

    The present paper shows research made on a spark ignited engine with port fuel injection in different operation conditions in order to improve the comprehension about the cold start sequence, acceleration when changing the gear ratios, quality of combustion process and also any measures to be taken for pollutant reduction in such cases. The engineering endeavor encompasses the pollutants investigation during the operation time of gasoline supplied engine with four inline cylinders in different conditions. The temperature and any other parameters were measured with specific sensors installed on the engine or in the exhaust pipes. All the data collected has been evaluated using electronic investigation systems and highly developed equipment. In this manner it has enabled the outline of the idea of how pollutants of engine vary in different operating conditions. Air quality in the everyday environment is very important for the human health, and thus the ambient air quality has a well-known importance in the European pollution standards and legislation. The high level of attention directed to the pollution problem in the European lifestyle is a driving force for all kinds of studies in the field of the reduction of engine emission.

  7. A Load Frequency Control in an Off-Grid Sustainable Power System Based on a Parameter Adaptive PID-Type Fuzzy Controller

    NASA Astrophysics Data System (ADS)

    Ronilaya, Ferdian; Miyauchi, Hajime

    2014-10-01

    This paper presents a new implementation of a parameter adaptive PID-type fuzzy controller (PAPIDfc) for a grid-supporting inverter of battery to alleviate frequency fluctuations in a wind-diesel power system. A variable speed wind turbine that drives a permanent magnet synchronous generator is assumed for demonstrations. The PAPIDfc controller is built from a set of control rules that adopts the droop method and uses only locally measurable frequency signal. The output control signal is determined from the knowledge base and the fuzzy inference. The input-derivative gain and the output-integral gain of the PAPIDfc are tuned online. To ensure safe battery operating limits, we also propose a protection scheme called intelligent battery protection (IBP). Several simulation experiments are performed by using MATLAB®/SimPowersystems™. Next, to verify the scheme's effectiveness, the simulation results are compared with the results of conventional controllers. The results demonstrate the effectiveness of the PAPIDfc scheme to control a grid-supporting inverter of the battery in the reduction of frequency fluctuations.

  8. Suspended Load

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The suspended load of rivers and streams consists of the sediments that are kept in the water column by the upward components of the flow velocity. Suspended load may be divided into cohesive and non-cohesive loads which are primarily discriminated by sediment particle size. Non-cohesive sediment ...

  9. Statistical load data processing

    NASA Technical Reports Server (NTRS)

    Vandijk, G. M.

    1972-01-01

    A recorder system has been installed on two operational fighter aircrafts. Signal values from a c.g.-acceleration transducer and a strain-gage installation at the wing root were sampled and recorded in digital format on the recorder system. To analyse such load-time histories for fatigue evaluation purposes, a number of counting methods are available in which level crossings, peaks, or ranges are counted. Ten different existing counting principles are defined. The load-time histories are analysed to evaluate these counting methods. For some of the described counting methods, the counting results might be affected by arbitrarily chosen parameters such as the magnitude of load ranges that will be neglected and other secondary counting restrictions. Such influences might invalidate the final counting results entirely. The evaluation shows that for the type of load-time histories associated with most counting methods, a sensible value of the parameters involved can be found.

  10. Composite Load Model Evaluation

    SciTech Connect

    Lu, Ning; Qiao, Hong

    2007-09-30

    The WECC load modeling task force has dedicated its effort in the past few years to develop a composite load model that can represent behaviors of different end-user components. The modeling structure of the composite load model is recommended by the WECC load modeling task force. GE Energy has implemented this composite load model with a new function CMPLDW in its power system simulation software package, PSLF. For the last several years, Bonneville Power Administration (BPA) has taken the lead and collaborated with GE Energy to develop the new composite load model. Pacific Northwest National Laboratory (PNNL) and BPA joint force and conducted the evaluation of the CMPLDW and test its parameter settings to make sure that: • the model initializes properly, • all the parameter settings are functioning, and • the simulation results are as expected. The PNNL effort focused on testing the CMPLDW in a 4-bus system. An exhaustive testing on each parameter setting has been performed to guarantee each setting works. This report is a summary of the PNNL testing results and conclusions.

  11. Determination of coil defrosting loads. Part 5: Analysis of loads

    SciTech Connect

    Al-Mutawa, N.K.; Sherif, S.A.

    1998-10-01

    This paper (Part 5) provides load analysis for a hot-gas defrosted finned-tube freezer coil for entering air dry-bulb temperatures of {minus}8 F and {minus}13 F. The load analysis covers the total refrigeration load rate, average load sensible heat ratio, defrost heat input, defrost efficiency, and other relevant parameters that lead to the determination of the heat loads due to coil hot-gas defrosting. The intent is to provide some insight into the energy penalty associated with defrosting these types of coils using the hot-gas refrigerant method.

  12. Effects of Childhood Stress Can Accumulate in the Body. Science Brief

    ERIC Educational Resources Information Center

    National Scientific Council on the Developing Child, 2008

    2008-01-01

    This brief presents the findings of a study that examined the effects of "allostatic load" on children in poverty at age 9 and 13. "Allostatic load" refers to the measurement of the cumulative wear and tear on the body that results from experiencing stress. Research shows that high allostatic load in childhood is associated with long-term…

  13. Load-strengthening versus load-weakening faulting

    NASA Astrophysics Data System (ADS)

    Sibson, Richard H.

    1993-02-01

    Increases in shear stress (τ) along a fault during loading to failure cannot generally occur without changes in the normal stress across the fault (σ n). The fault loading parameter ( ∂δ' n/ ∂τ = ∂δn/ ∂τ - ∂Pf/ ∂τ) distinguishes situations of load-strengthening ( ∂δ' n/ ∂τ > 0), where the frictional shear strength of faults increases as tectonic shear stress rises, from load-weakening environments ( ∂δ' n/ t6 τ < 0) where it decreases. Compressional faulting in tectonic regimes with δv = δ3 is always load-strengthening unless fluid pressure is rapidly increasing. Extensional faulting in regimes where δv = δ1 is load-weakening unless fluid pressure is dropping rapidly. Strike-slip faulting in terrains where δv = δ2 can be either load-weakening or load-strengthening. The particular case where ∂δ' n/ ∂τ = 0, so that frictional shear strength stays constant during fault loading, is a very special situation corresponding to direct shear. Load-strengthening strike-slip faulting appears to correlate with tectonic transpression and load-weakening with transtension. Differing loading characteristics of faults in different tectonic regimes must induce varying patterns of cyclic fluid redistribution accompanying the seismic cycle, with implications for earthquake recurrence and precursory groundwater phenomena.

  14. LOADING DEVICE

    DOEpatents

    Ohlinger, L.A.

    1958-10-01

    A device is presented for loading or charging bodies of fissionable material into a reactor. This device consists of a car, mounted on tracks, into which the fissionable materials may be placed at a remote area, transported to the reactor, and inserted without danger to the operating personnel. The car has mounted on it a heavily shielded magazine for holding a number of the radioactive bodies. The magazine is of a U-shaped configuration and is inclined to the horizontal plane, with a cap covering the elevated open end, and a remotely operated plunger at the lower, closed end. After the fissionable bodies are loaded in the magazine and transported to the reactor, the plunger inserts the body at the lower end of the magazine into the reactor, then is withdrawn, thereby allowing gravity to roll the remaining bodies into position for successive loading in a similar manner.

  15. Load controller and method to enhance effective capacity of a photovoltaic power supply using a dynamically determined expected peak loading

    DOEpatents

    Perez, Richard

    2005-05-03

    A load controller and method are provided for maximizing effective capacity of a non-controllable, renewable power supply coupled to a variable electrical load also coupled to a conventional power grid. Effective capacity is enhanced by monitoring power output of the renewable supply and loading, and comparing the loading against the power output and a load adjustment threshold determined from an expected peak loading. A value for a load adjustment parameter is calculated by subtracting the renewable supply output and the load adjustment parameter from the current load. This value is then employed to control the variable load in an amount proportional to the value of the load control parameter when the parameter is within a predefined range. By so controlling the load, the effective capacity of the non-controllable, renewable power supply is increased without any attempt at operational feedback control of the renewable supply.

  16. Combined loading criterial influence on structural performance

    NASA Technical Reports Server (NTRS)

    Kuchta, B. J.; Sealey, D. M.; Howell, L. J.

    1972-01-01

    An investigation was conducted to determine the influence of combined loading criteria on the space shuttle structural performance. The study consisted of four primary phases: Phase (1) The determination of the sensitivity of structural weight to various loading parameters associated with the space shuttle. Phase (2) The determination of the sensitivity of structural weight to various levels of loading parameter variability and probability. Phase (3) The determination of shuttle mission loading parameters variability and probability as a function of design evolution and the identification of those loading parameters where inadequate data exists. Phase (4) The determination of rational methods of combining both deterministic time varying and probabilistic loading parameters to provide realistic design criteria. The study results are presented.

  17. Carbohydrate Loading.

    ERIC Educational Resources Information Center

    Csernus, Marilyn

    Carbohydrate loading is a frequently used technique to improve performance by altering an athlete's diet. The objective is to increase glycogen stored in muscles for use in prolonged strenuous exercise. For two to three days, the athlete consumes a diet that is low in carbohydrates and high in fat and protein while continuing to exercise and…

  18. Use of Flexible Body Coupled Loads in Assessment of Day of Launch Flight Loads

    NASA Technical Reports Server (NTRS)

    Starr, Brett R.; Yunis, Isam; Olds, Aaron D.

    2011-01-01

    A Day of Launch flight loads assessment technique that determines running loads calculated from flexible body coupled loads was developed for the Ares I-X Flight Test Vehicle. The technique was developed to quantify DOL flight loads in terms of structural load components rather than the typically used q-alpha metric to provide more insight into the DOL loads. In this technique, running loads in the primary structure are determined from the combination of quasi-static aerodynamic loads and dynamic loads. The aerodynamic loads are calculated as a function of time using trajectory parameters passed from the DOL trajectory simulation and are combined with precalculated dynamic loads using a load combination equation. The potential change in aerodynamic load due to wind variability during the countdown is included in the load combination. In the event of a load limit exceedance, the technique allows the identification of what load component is exceeded, a quantification of how much the load limit is exceeded, and where on the vehicle the exceedance occurs. This technique was used to clear the Ares I-X FTV for launch on October 28, 2009. This paper describes the use of coupled loads in the Ares I-X flight loads assessment and summarizes the Ares I-X load assessment results.

  19. LOADED WAVEGUIDES

    DOEpatents

    Mullett, L.B.; Loach, B.G.; Adams, G.L.

    1958-06-24

    >Loaded waveguides are described for the propagation of electromagnetic waves with reduced phase velocities. A rectangular waveguide is dimensioned so as to cut-off the simple H/sub 01/ mode at the operating frequency. The waveguide is capacitance loaded, so as to reduce the phase velocity of the transmitted wave, by connecting an electrical conductor between directly opposite points in the major median plane on the narrower pair of waveguide walls. This conductor may take a corrugated shape or be an aperature member, the important factor being that the electrical length of the conductor is greater than one-half wavelength at the operating frequency. Prepared for the Second U.N. International ConferThe importance of nuclear standards is duscussed. A brief review of the international callaboration in this field is given. The proposal is made to let the International Organization for Standardization (ISO) coordinate the efforts from other groups. (W.D.M.)

  20. Critical load and buckling of the single pile foundation subjected to the vertical load

    NASA Astrophysics Data System (ADS)

    Ma, Jianjun; Peng, Jian; Wang, Lianhua; Zhao, Yueyu

    2013-07-01

    In this study, the critical load and buckling of the single pile foundation subjected to the vertical load are investigated. Considering the second-order moment of the soil-structure interaction, the refined model of the single pile foundation is derived. Then, the critical load and buckling phenomenon of the single pile foundation is examined. Moreover, the effects of the vertical load and the foundation parameters on the critical load and buckling of the single pile foundation are systematically investigated.

  1. Space Shuttle fatigue loads spectra for prelaunch and liftoff loads

    NASA Technical Reports Server (NTRS)

    Goldish, Judith; Ortasse, Raphael

    1994-01-01

    Fatigue loads spectra for the prelaunch and liftoff flight segments of the Space Shuttle were developed. A variety o methods were used to determine the distributions of several important parameters, such as time of exposure on the launch, pad, month of launch, and wind speed. Also, some lessons learned that would be applicable to development of fatigue loads spectra for other reusable space vehicles are presented.

  2. Essentials of filoviral load quantification.

    PubMed

    Cnops, Lieselotte; van Griensven, Johan; Honko, Anna N; Bausch, Daniel G; Sprecher, Armand; Hill, Charles E; Colebunders, Robert; Johnson, Joshua C; Griffiths, Anthony; Palacios, Gustavo F; Kraft, Colleen S; Kobinger, Gary; Hewlett, Angela; Norwood, David A; Sabeti, Pardis; Jahrling, Peter B; Formenty, Pierre; Kuhn, Jens H; Ariën, Kevin K

    2016-07-01

    Quantitative measurement of viral load is an important parameter in the management of filovirus disease outbreaks because viral load correlates with severity of disease, survival, and infectivity. During the ongoing Ebola virus disease outbreak in parts of Western Africa, most assays used in the detection of Ebola virus disease by more than 44 diagnostic laboratories yielded qualitative results. Regulatory hurdles involved in validating quantitative assays and the urgent need for a rapid Ebola virus disease diagnosis precluded development of validated quantitative assays during the outbreak. Because of sparse quantitative data obtained from these outbreaks, opportunities for study of correlations between patient outcome, changes in viral load during the course of an outbreak, disease course in asymptomatic individuals, and the potential for virus transmission between infected patients and contacts have been limited. We strongly urge the continued development of quantitative viral load assays to carefully evaluate these parameters in future outbreaks of filovirus disease. PMID:27296694

  3. Load Diffusion in Composite Structures

    NASA Technical Reports Server (NTRS)

    Horgan, Cornelius O.; Simmonds, J. G.

    2000-01-01

    This research has been concerned with load diffusion in composite structures. Fundamental solid mechanics studies were carried out to provide a basis for assessing the complicated modeling necessary for large scale structures used by NASA. An understanding of the fundamental mechanisms of load diffusion in composite subcomponents is essential in developing primary composite structures. Analytical models of load diffusion behavior are extremely valuable in building an intuitive base for developing refined modeling strategies and assessing results from finite element analyses. The decay behavior of stresses and other field quantities provides a significant aid towards this process. The results are also amendable to parameter study with a large parameter space and should be useful in structural tailoring studies.

  4. The effect of operating conditions on resistance parameters of filter media and limestone dust cake for uniformly loaded needle felts in a pilot scale test facility at ambient conditions.

    PubMed

    Saleem, Mahmood; Krammer, Gernot; Tahir, M Suleman

    2012-09-01

    Resistance parameters are essential for the prediction of pressure drop in bag filters. The reported values for limestone dust differ in magnitude and also depend on operating parameters. In this work, experimental data is provided from a pilot scale pulse-jet regenerated bag filter test facility for three types of needle felts using air and limestone dust at ambient conditions. Results reveal that specific resistance of filter media is independent of velocity while the specific resistance of filter cake increases linearly with filtration velocity. Residual pressure drop is almost constant, independent of upper pressure drop limit. The cake resistance at constant velocity fits to a second degree polynomial whereas it increases linearly with the velocity. A linear relation is reported here for all the cases. The resistance of filter cake decreases at higher upper pressure drop limit. PMID:24415803

  5. Acoustic emission characterization using AE (parameter) delay

    NASA Technical Reports Server (NTRS)

    Williams, J. H., Jr.; Lee, S. S.

    1983-01-01

    The acoustic emission (AE) parameter delay concept is defined as that particular measured value of a parameter at which a specified baseline level of cumulative AE activity is reached. The parameter can be from any of a broad range of elastic, plastic, viscoelastic, and fracture mechanics parameters, as well as their combinations. Such parameters include stress, load, strain, displacement, time, temperature, loading cycle, unloading stress, stress intensity factor, strain energy release rate, and crack tip plasticity zone size, while the AE activity may be AE event counts, ringdown counts, energy, event duration, etc., as well as their combinations. Attention is given to examples for the AE parameter delay concept, together with various correlations.

  6. Load controller and method to enhance effective capacity of a photovotaic power supply using a dynamically determined expected peak loading

    DOEpatents

    Perez, Richard

    2003-04-01

    A load controller and method are provided for maximizing effective capacity of a non-controllable, renewable power supply coupled to a variable electrical load also coupled to a conventional power grid. Effective capacity is enhanced by monitoring power output of the renewable supply and loading, and comparing the loading against the power output and a load adjustment threshold determined from an expected peak loading. A value for a load adjustment parameter is calculated by subtracting the renewable supply output and the load adjustment parameter from the current load. This value is then employed to control the variable load in an amount proportional to the value of the load control parameter when the parameter is within a predefined range. By so controlling the load, the effective capacity of the non-controllable, renewable power supply is increased without any attempt at operational feedback control of the renewable supply. The expected peak loading of the variable load can be dynamically determined within a defined time interval with reference to variations in the variable load.

  7. Vehicle track loading simulation

    NASA Astrophysics Data System (ADS)

    Chalupa, Milan; Severa, Libor; Vlach, Radek

    2011-12-01

    The paper describes possible design of the vehicle track computational model and basic testing procedure of the track dynamic loading simulation. The proposed approach leads to an improvement of track vehicle course stability. The computational model is built for MSC. ADAMS, AVT computational simulating system. Model, which is intended for MSC computational system, is built from two basic parts. The first one is represented by geometrical part, while the second one by contact computational part of the model. The aim of the simulating calculation consist in determination of change influence of specific vehicle track constructive parameters on changes of examined qualities of the vehicle track link and changes of track vehicle course stability. The work quantifies the influence of changes of track preloading values on the demanded torque changes of driving sprocket. Further research possibilities and potential are also presented.

  8. Plutonium immobilization -- Can loading

    SciTech Connect

    Kriikku, E.

    2000-02-17

    The Savannah River Site (SRS) will immobilize excess plutonium in the proposed Plutonium Immobilization Project (PIP). The PIP adds the excess plutonium to ceramic pucks, loads the pucks into cans, and places the cans into DWPF canisters. This paper discusses the PIP process steps, the can loading conceptual design, can loading equipment design, and can loading work completed.

  9. Mass-loading at interplanetary shocks

    NASA Technical Reports Server (NTRS)

    Zank, G. P.

    1992-01-01

    Mass-loading fronts represent a new class of shocks which is found frequently in the solar system, both at the head of comets and upstream of weakly and nonmagnetized planets, and which has not yet been investigated in great detail. Here, a general theoretical description of mass-loading shocks (MLSs) in the heliosphere is presented and the difference between MLSs and classical nonreacting MHD shock are elucidated. It is found that the momentum contribution of added mass within the shock represents a physically important effect, particularly in the shock strength regime observed at Comets Halley and GZ. The mass-loading MHD Rankine-Hugoniot conditions are not tangentially invariant, so mass-loading fronts are subjected to shearing stresses, greatly curtailing the upstream parameter regime for which stable transitions are possible. The existence of fast and slow mode compound mass-loading fronts is predicted. Other forms of mass-loading fronts exist for which no classical MHD counterparts exist.

  10. Horizontal tail loads in maneuvering flight

    NASA Technical Reports Server (NTRS)

    Pearson, Henry A; Mcgowan, William A; Donegan, James J

    1951-01-01

    A method is given for determining the horizontal tail loads in maneuvering flight. The method is based upon the assignment of a load-factor variation with time and the determination of a minimum time to reach peak load factor. The tail load is separated into various components. Examination of these components indicated that one of the components was so small that it could be neglected for most conventional airplanes; therefore, the number of aerodynamic parameters needed in this computation of tail loads was reduced to a minimum. In order to illustrate the method, as well as to show the effect of the main variables, a number of examples are given. Some discussion is given regarding the determination of maximum tail loads, maximum pitching accelerations, and maximum pitching velocities obtainable.

  11. Intelligent electrical outlet for collective load control

    SciTech Connect

    Lentine, Anthony L.; Ford, Justin R.; Spires, Shannon V.; Goldsmith, Steven Y.

    2015-10-27

    Various technologies described herein pertain to an electrical outlet that autonomously manages loads in a microgrid. The electrical outlet can provide autonomous load control in response to variations in electrical power generation supply in the microgrid. The electrical outlet includes a receptacle, a sensor operably coupled to the receptacle, and an actuator configured to selectively actuate the receptacle. The sensor measures electrical parameters at the receptacle. Further, a processor autonomously controls the actuator based at least in part on the electrical parameters measured at the receptacle, electrical parameters from one or more disparate electrical outlets in the microgrid, and a supply of generated electric power in the microgrid at a given time.

  12. High Power Disk Loaded Guide Load

    SciTech Connect

    Farkas, Z.D.; /SLAC

    2006-02-22

    A method to design a matching section from a smooth guide to a disk-loaded guide, using a variation of broadband matching, [1, 2] is described. Using this method, we show how to design high power loads. The load consists of a disk-loaded coaxial guide operating in the TE{sub 01}-mode. We use this mode because it has no electric field terminating on a conductor, has no axial currents, and has no current at the cylinder-disk interface. A high power load design that has -35 dB reflection and a 200 MHz, -20 dB bandwidth, is presented. It is expected that it will carry the 600 MW output peak power of the pulse compression network. We use coaxial geometry and stainless steel material to increase the attenuation per cell.

  13. Optical components damage parameters database system

    NASA Astrophysics Data System (ADS)

    Tao, Yizheng; Li, Xinglan; Jin, Yuquan; Xie, Dongmei; Tang, Dingyong

    2012-10-01

    Optical component is the key to large-scale laser device developed by one of its load capacity is directly related to the device output capacity indicators, load capacity depends on many factors. Through the optical components will damage parameters database load capacity factors of various digital, information technology, for the load capacity of optical components to provide a scientific basis for data support; use of business processes and model-driven approach, the establishment of component damage parameter information model and database systems, system application results that meet the injury test optical components business processes and data management requirements of damage parameters, component parameters of flexible, configurable system is simple, easy to use, improve the efficiency of the optical component damage test.

  14. Load sensing system

    DOEpatents

    Sohns, Carl W.; Nodine, Robert N.; Wallace, Steven Allen

    1999-01-01

    A load sensing system inexpensively monitors the weight and temperature of stored nuclear material for long periods of time in widely variable environments. The system can include an electrostatic load cell that encodes weight and temperature into a digital signal which is sent to a remote monitor via a coaxial cable. The same cable is used to supply the load cell with power. When multiple load cells are used, vast

  15. A measure of glucocorticoid load provided by DNA methylation of Fkbp5 in mice

    PubMed Central

    Lee, R. S.; Tamashiro, K. L. K.; Purcell, R. H.; Huo, Y.; Rongione, M.; Potash, J. B.; Yang, X.; Wand, G. S.

    2014-01-01

    Rationale Given the contribution of cortisol dysregulation to neuropsychiatric and metabolic disorders, it is important to be able to accurately compute glucocorticoid burden, a measure of allostatic load. One major problem in calculating cortisol burden is that existing measures reflect cortisol exposure over a short duration and have not been proven to reliably quantify cortisol burden over weeks or months. Method We treated two cohorts of mice with corticosterone in the drinking water and determined the relationship between serial plasma corticosterone levels drawn over 4 weeks and the whole-blood DNA methylation (DNAm) changes in a specific glucocorticoid-sensitive gene, Fkbp5, determined at the end of the treatment period. Results We observed that the percent reduction in DNAm in the intron 1 region of Fkbp5 determined from a single blood draw strongly reflected average glucocorticoid burden generated weekly during the prior month of glucocorticoid exposure. There were also strong correlations in DNAm with glucocorticoid-induced end organ changes in spleen weight and visceral fat. We tested a subset of these animals for anxiety-like behavior in the elevated plus maze and found that DNAm in the blood also has predictive value in determining the behavioral consequences of glucocorticoid exposure. Conclusion A whole-blood assessment of Fkbp5 gene methylation is a biomarker that integrates 4 weeks of glucocorticoid exposure and may be a useful measure in states of excess exposure. It will be important to determine if Fkbp5 DNAm changes can also be a biomarker of glucocorticoid burden during chronic social stress. PMID:21509501

  16. Load Leveling Battery System Costs

    1994-10-12

    SYSPLAN evaluates capital investment in customer side of the meter load leveling battery systems. Such systems reduce the customer's monthly electrical demand charge by reducing the maximum power load supplied by the utility during the customer's peak demand. System equipment consists of a large array of batteries, a current converter, and balance of plant equipment and facilities required to support the battery and converter system. The system is installed on the customer's side of themore » meter and controlled and operated by the customer. Its economic feasibility depends largely on the customer's load profile. Load shape requirements, utility rate structures, and battery equipment cost and performance data serve as bases for determining whether a load leveling battery system is economically feasible for a particular installation. Life-cycle costs for system hardware include all costs associated with the purchase, installation, and operation of battery, converter, and balance of plant facilities and equipment. The SYSPLAN spreadsheet software is specifically designed to evaluate these costs and the reduced demand charge benefits; it completes a 20 year period life cycle cost analysis based on the battery system description and cost data. A built-in sensitivity analysis routine is also included for key battery cost parameters. The life cycle cost analysis spreadsheet is augmented by a system sizing routine to help users identify load leveling system size requirements for their facilities. The optional XSIZE system sizing spreadsheet which is included can be used to identify a range of battery system sizes that might be economically attractive. XSIZE output consisting of system operating requirements can then be passed by the temporary file SIZE to the main SYSPLAN spreadsheet.« less

  17. Supergranular Parameters

    NASA Astrophysics Data System (ADS)

    Udayashankar, Paniveni

    2016-07-01

    I study the complexity of supergranular cells using intensity patterns from Kodaikanal solar observatory. The chaotic and turbulent aspect of the solar supergranulation can be studied by examining the interrelationships amongst the parameters characterizing supergranular cells namely size, horizontal flow field, lifetime and physical dimensions of the cells and the fractal dimension deduced from the size data. The findings are supportive of Kolmogorov's theory of turbulence. The Data consists of visually identified supergranular cells, from which a fractal dimension 'D' for supergranulation is obtained according to the relation P α AD/2 where 'A' is the area and 'P' is the perimeter of the supergranular cells. I find a fractal dimension close to about 1.3 which is consistent with that for isobars and suggests a possible turbulent origin. The cell circularity shows a dependence on the perimeter with a peak around (1.1-1.2) x 105 m. The findings are supportive of Kolmogorov's theory of turbulence.

  18. Methods for Analyzing Electric Load Shape and its Variability

    SciTech Connect

    Price, Philip

    2010-05-12

    Current methods of summarizing and analyzing electric load shape are discussed briefly and compared. Simple rules of thumb for graphical display of load shapes are suggested. We propose a set of parameters that quantitatively describe the load shape in many buildings. Using the example of a linear regression model to predict load shape from time and temperature, we show how quantities such as the load?s sensitivity to outdoor temperature, and the effectiveness of demand response (DR), can be quantified. Examples are presented using real building data.

  19. Taking a Load Off.

    ERIC Educational Resources Information Center

    Kenny, John

    1995-01-01

    Discusses the snow -load capacity of school roofs and how understanding this data aids in planning preventive measures and easing fear of roof collapse. Describes how to determine snow-load capacity, and explains the load-bearing behavior of flat versus sloped roofs. Collapse prevention measures are highlighted. (GR)

  20. Load distribution between threads in threaded connections

    SciTech Connect

    Grewal, A.S.; Sabbaghian, M.

    1997-02-01

    Threaded connections are commonly employed in axial load-bearing equipment and pressure vessel components. There are a number of parameters that affect the load distribution between the threads and the stress concentration at the thread roots. These include the thread form, the thickness of walls supporting the threads, the pitch of threads, number of threads engaged, and the boundary conditions. In this paper, the influence of these parameters on the load distribution between threads is reported. Load distribution analyses in threaded connections is performed by analytical and by finite element methods. Square and buttress-type threads have been considered. Three-dimensional nonlinear finite element analyses on threaded connections have been performed using MSC/NASTRAN finite element code. The effect of clearance between the nonmating faces of threads as well as the presence of a flexible media between the mating faces of threads are investigated.

  1. The effect of load distribution within military load carriage systems on the kinetics of human gait.

    PubMed

    Birrell, Stewart A; Haslam, Roger A

    2010-07-01

    Military personnel carry their equipment in load carriage systems (LCS) which consists of webbing and a Bergen (aka backpack). In scientific terms it is most efficient to carry load as close to the body's centre of mass (CoM) as possible, this has been shown extensively with physiological studies. However, less is known regarding the kinetic effects of load distribution. Twelve experienced load carriers carried four different loads (8, 16, 24 and 32 kg) in three LCS (backpack, standard and AirMesh). The three LCS represented a gradual shift to a more even load distribution around the CoM. Results from the study suggest that shifting the CoM posteriorly by carrying load solely in a backpack significantly reduced the force produced at toe-off, whilst also decreasing stance time at the heavier loads. Conversely, distributing load evenly on the trunk significantly decreased the maximum braking force by 10%. No other interactions between LCS and kinetic parameters were observed. Despite this important findings were established, in particular the effect of heavy load carriage on maximum braking force. Although the total load carried is the major cause of changes to gait patterns, the scientific testing of, and development of, future LCS can modify these risks. PMID:20060096

  2. Heat Load Estimator for Smoothing Pulsed Heat Loads on Supercritical Helium Loops

    NASA Astrophysics Data System (ADS)

    Hoa, C.; Lagier, B.; Rousset, B.; Bonnay, P.; Michel, F.

    Superconducting magnets for fusion are subjected to large variations of heat loads due to cycling operation of tokamaks. The cryogenic system shall operate smoothly to extract the pulsed heat loads by circulating supercritical helium into the coils and structures. However the value of the total heat loads and its temporal variation are not known before the plasma scenario starts. A real-time heat load estimator is of interest for the process control of the cryogenic system in order to anticipate the arrival of pulsed heat loads to the refrigerator and finally to optimize the operation of the cryogenic system. The large variation of the thermal loads affects the physical parameters of the supercritical helium loop (pressure, temperature, mass flow) so those signals can be used for calculating instantaneously the loads deposited into the loop. The methodology and algorithm are addressed in the article for estimating the heat load deposition before it reaches the refrigerator. The CEA patented process control has been implemented in a Programmable Logic Controller (PLC) and has been successfully validated on the HELIOS test facility at CEA Grenoble. This heat load estimator is complementary to pulsed load smoothing strategies providing an estimation of the optimized refrigeration power. It can also effectively improve the process control during the transient between different operating modes by adjusting the refrigeration power to the need. This way, the heat load estimator participates to the safe operation of the cryogenic system.

  3. Load Model Data Tool

    SciTech Connect

    David Chassin, Pavel Etingov

    2013-04-30

    The LMDT software automates the process of the load composite model data preparation in the format supported by the major power system software vendors (GE and Siemens). Proper representation of the load composite model in power system dynamic analysis is very important. Software tools for power system simulation like GE PSLF and Siemens PSSE already include algorithms for the load composite modeling. However, these tools require that the input information on composite load to be provided in custom formats. Preparation of this data is time consuming and requires multiple manual operations. The LMDT software enables to automate this process. Software is designed to generate composite load model data. It uses the default load composition data, motor information, and bus information as an input. Software processes the input information and produces load composition model. Generated model can be stored in .dyd format supported by GE PSLF package or .dyr format supported by Siemens PSSE package.

  4. Load Model Data Tool

    2013-04-30

    The LMDT software automates the process of the load composite model data preparation in the format supported by the major power system software vendors (GE and Siemens). Proper representation of the load composite model in power system dynamic analysis is very important. Software tools for power system simulation like GE PSLF and Siemens PSSE already include algorithms for the load composite modeling. However, these tools require that the input information on composite load to bemore » provided in custom formats. Preparation of this data is time consuming and requires multiple manual operations. The LMDT software enables to automate this process. Software is designed to generate composite load model data. It uses the default load composition data, motor information, and bus information as an input. Software processes the input information and produces load composition model. Generated model can be stored in .dyd format supported by GE PSLF package or .dyr format supported by Siemens PSSE package.« less

  5. Optimal airframe synthesis for gust loads

    NASA Technical Reports Server (NTRS)

    Hajela, P.

    1986-01-01

    An optimization capability for sizing airframe structures that are subjected to a combination of deterministic and random flight loads was established. The random vibration environment introduces the need for selecting a statistical process that best describes the random loads and permits computation of the dynamic response parameters of interest. Furthermore, it requires a formulation of design constraints that would minimize the conservativeness in the design and retain computational viability. The random loads are treated as a stationary, homogeneous process with a Gaussian probability distribution. The formulation of the analysis problem, the structure of the optimization programming system and a representative numerical example are discussed.

  6. Influence parameters of impact grinding mills

    NASA Technical Reports Server (NTRS)

    Hoeffl, K.; Husemann, K.; Goldacker, H.

    1984-01-01

    Significant parameters for impact grinding mills were investigated. Final particle size was used to evaluate grinding results. Adjustment of the parameters toward increased charge load results in improved efficiency; however, it was not possible to define a single, unified set to optimum grinding conditions.

  7. Phalange Tactile Load Cell

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Diftler, Myron A. (Inventor); Linn, Douglas Martin (Inventor); Platt, Robert (Inventor); Griffith, Bryan Kristian (Inventor)

    2010-01-01

    A tactile load cell that has particular application for measuring the load on a phalange in a dexterous robot system. The load cell includes a flexible strain element having first and second end portions that can be used to mount the load cell to the phalange and a center portion that can be used to mount a suitable contact surface to the load cell. The strain element also includes a first S-shaped member including at least three sections connected to the first end portion and the center portion and a second S-shaped member including at least three sections coupled to the second end portion and the center portion. The load cell also includes eight strain gauge pairs where each strain gauge pair is mounted to opposing surfaces of one of the sections of the S-shaped members where the strain gauge pairs provide strain measurements in six-degrees of freedom.

  8. Flight loads and control

    NASA Technical Reports Server (NTRS)

    Mowery, D. K.; Winder, S. W.

    1972-01-01

    The prediction of flight loads and their potential reduction, using various control logics for the space shuttle vehicles, is very complex. Some factors, not found on previous launch vehicles, that increase the complexity are large lifting surfaces, unsymmetrical structure, unsymmetrical aerodynamics, trajectory control system coupling, and large aeroelastic effects. Discussed are these load producing factors and load reducing techniques. Identification of potential technology areas is included.

  9. Load regulating expansion fixture

    DOEpatents

    Wagner, Lawrence M.; Strum, Michael J.

    1998-01-01

    A free standing self contained device for bonding ultra thin metallic films, such as 0.001 inch beryllium foils. The device will regulate to a predetermined load for solid state bonding when heated to a bonding temperature. The device includes a load regulating feature, whereby the expansion stresses generated for bonding are regulated and self adjusting. The load regulator comprises a pair of friction isolators with a plurality of annealed copper members located therebetween. The device, with the load regulator, will adjust to and maintain a stress level needed to successfully and economically complete a leak tight bond without damaging thin foils or other delicate components.

  10. Load regulating expansion fixture

    DOEpatents

    Wagner, L.M.; Strum, M.J.

    1998-12-15

    A free standing self contained device for bonding ultra thin metallic films, such as 0.001 inch beryllium foils is disclosed. The device will regulate to a predetermined load for solid state bonding when heated to a bonding temperature. The device includes a load regulating feature, whereby the expansion stresses generated for bonding are regulated and self adjusting. The load regulator comprises a pair of friction isolators with a plurality of annealed copper members located therebetween. The device, with the load regulator, will adjust to and maintain a stress level needed to successfully and economically complete a leak tight bond without damaging thin foils or other delicate components. 1 fig.

  11. Load sensing system

    DOEpatents

    Sohns, C.W.; Nodine, R.N.; Wallace, S.A.

    1999-05-04

    A load sensing system inexpensively monitors the weight and temperature of stored nuclear material for long periods of time in widely variable environments. The system can include an electrostatic load cell that encodes weight and temperature into a digital signal which is sent to a remote monitor via a coaxial cable. The same cable is used to supply the load cell with power. When multiple load cells are used, vast inventories of stored nuclear material can be continuously monitored and inventoried of minimal cost. 4 figs.

  12. Compact X-band high power load using magnetic stainless steel

    SciTech Connect

    Tantawi, S.G. |; Vlieks, A.E.

    1995-05-01

    We present design and experimental results of a high power X-band load. The load is formed as a disk-loaded waveguide structure using lossy, Type 430 stainless steel. The design parameters have been optimized using the recently developed mode-matching code MLEGO. The load has been designed for compactness while maintaining a band width greater than 300 MHz.

  13. Microbial load monitor

    NASA Technical Reports Server (NTRS)

    Caplin, R. S.; Royer, E. R.

    1977-01-01

    Design analysis of a microbial load monitor system flight engineering model was presented. Checkout of the card taper and media pump system was fabricated as well as the final two incubating reading heads, the sample receiving and card loading device assembly, related sterility testing, and software. Progress in these areas was summarized.

  14. Combined Load Test Fixture

    NASA Technical Reports Server (NTRS)

    Baker, Donald J.

    2010-01-01

    A test fixture has been developed at NASA Langley Research Center that has the capability of applying compression load and shear load simultaneously to a test specimen. The test specimen size is 24-inches by 28-inches. This report describes the test specimen design, test specimen preparation, fixture assembly in the test machine, and a test operation plan.

  15. Strip and load data

    NASA Technical Reports Server (NTRS)

    Jones, R. H.

    1984-01-01

    The method of taking batch data files and loading these files into the ADABAS data base management system (DBMS) is examined. This strip and load process allows the user to quickly become productive. Techniques for data fields and files definition are also included.

  16. Electronic Load Bank

    NASA Technical Reports Server (NTRS)

    Huston, Steven W.

    1992-01-01

    Electronic load-bank circuit provides pulsed or continuous low-resistance load to imitate effect of short circuit on Ni/H2 or other electrochemical power cells. Includes safety/warning feature and taps for measurement of cell-output voltage and current.

  17. Water impact loads

    NASA Technical Reports Server (NTRS)

    Sanders, D. H.; Safronski, S. G.

    1972-01-01

    Computer program to generate time history of load factor and pressure on conical body of revolution during impact with water is discussed. Program calculates depth of penetration, velocity, force, load factor, maximum pressure at water line, and average pressure. Program is written in FORTRAN 4 Level H for IBM 360/85/195 Release 20.1 computer.

  18. CRITICAL LOADS METHODS

    EPA Science Inventory

    I summarize the results of an interagency project that 1) defines a generic approach to quantifying and reporting critical loads, and 2) exercises that generic approach by examining a data rich system -- the critical loads of sulfur deposition and it's effect on the chronic acidi...

  19. Lightening the Load

    PubMed Central

    Remington, Anna M.; Swettenham, John G.; Lavie, Nilli

    2012-01-01

    Autism spectrum disorder (ASD) research portrays a mixed picture of attentional abilities with demonstrations of enhancements (e.g., superior visual search) and deficits (e.g., higher distractibility). Here we test a potential resolution derived from the Load Theory of Attention (e.g., Lavie, 2005). In Load Theory, distractor processing depends on the perceptual load of the task and as such can only be eliminated under high load that engages full capacity. We hypothesize that ASD involves enhanced perceptual capacity, leading to the superior performance and increased distractor processing previously reported. Using a signal-detection paradigm, we test this directly and demonstrate that, under higher levels of load, perceptual sensitivity was reduced in typical adults but not in adults with ASD. These findings confirm our hypothesis and offer a promising solution to the previous discrepancies by suggesting that increased distractor processing in ASD results not from a filtering deficit but from enhanced perceptual capacity. PMID:22428792

  20. Evaluation of a shorter methionine loading test.

    PubMed

    de Jonge, Robert; Griffioen, Pieter H; van Zelst, Bertrand; Brouns, R Montserrate; Visser, Willy; Lindemans, Jan

    2004-01-01

    We validated whether a shorter methionine loading test is as accurate as the original 6-h test in identifying hyperhomocysteinemic patients and investigated determinants of fasting and post-load homocysteine concentration. Plasma homocysteine was determined in EDTA-blood from women with a history of pre-eclampsia (n=106) after 12 h fasting and 3 and 6 h after an oral methionine load (0.1 g/kg body weight). The 677C>T polymorphism in the methylenetetrahydrofolate reductase (MTHFR) gene, vitamin B6, vitamin B12, folate and creatinine were measured as determinants of homocysteine concentration. Good correlation and agreement between 3-h and 6-h plasma concentration of post-load (r=0.93, Kendall's tau-b=0.85) and delta (post-load minus the fasting value; r=0.90, Kendall's tau-b=0.79) homocysteine was observed and gross misclassification did not occur after division of 3-h and 6-h homocysteine scores into quartiles. Multiple linear regression revealed MTHFR 677 TT (p=0.01), folate (p=0.04) and vitamin B12 (p=0.06) as determinants of fasting homocysteine concentration; only MTHFR 677TT was related to 3-h (p=0.04) and 6-h (p=0.004) post-load homocysteine concentration. The MTHFR 677TT genotype resulted in >30% higher fasting and 3-h and 6-h post-load homocysteine concentrations compared to the wild-type CC genotype. This study shows that the 3-h methionine loading test is as good as the 6-h methionine loading test in identifying hyperhomocysteinemic patients. Furthermore, remethylation parameters (MTHFR 677C>T) strongly affect both fasting and post-load homocysteine. PMID:15497468

  1. Climatic indicators for estimating residential heating and cooling loads

    SciTech Connect

    Huang, Y.J.; Ritschard, R.; Bull, J.; Chang, L.

    1986-11-01

    An extensive data base of residential energy use generated with the DOE-2.1A simulation code provides an opportunity for correlating building loads predicted by an hourly simulation model to commonly used climatic parameters such as heating and cooling degree-days, and to newer parameters such as insolation-days and latent enthalpy-days. The identification of reliable climatic parameters for estimating cooling loads and the incremental loads for individual building components, such as changing ceiling and wall R-values, infiltration rates or window areas is emphasized.

  2. Compensator configurations for load currents' symmetrization

    NASA Astrophysics Data System (ADS)

    Rusinaru, D.; Manescu, L. G.; Dinu, R. C.

    2016-02-01

    This paper approaches aspects regarding the mitigation effects of asymmetries in 3-phase 3-wire networks. The measure consisting in connecting of load current symmetrization devices at the load coupling point is presented. A time-variation of compensators parameters is determined as a function of the time-recorded electrical values. The general sizing principle of the load current symmetrization reactive components is based on a simple equivalent model of the unbalanced 3-phase loads. By using these compensators a certain control of the power components transits is ensured in the network. The control is based on the variations laws of the compensators parameters as functions of the recorded electrical values: [B] = [T]·[M]. The link between compensator parameters and measured values is ensured by a transformation matrix [T] for each operation conditions of the supply network. Additional conditions for improving of energy and efficiency performance of the compensator are considered: i.e. reactive power compensation. The compensator sizing algorithm was implemented into a MATLAB environment software, which generate the time-evolution of the parameters of load current symmetrization device. The input data of application takes into account time-recording of the electrical values. By using the compensator sizing software, some results were achieved for the case of a consumer connected at 20 kV busbar of a distribution substation, during 24 hours measurement session. Even the sizing of the compensators aimed some additional network operation aspects (power factor correction) correlated with the total or major load symmetrizations, the harmonics aspects of the network values were neglected.

  3. Mechanical Predictors of Discomfort during Load Carriage.

    PubMed

    Wettenschwiler, Patrick D; Lorenzetti, Silvio; Stämpfli, Rolf; Rossi, René M; Ferguson, Stephen J; Annaheim, Simon

    2015-01-01

    Discomfort during load carriage is a major issue for activities using backpacks (e.g. infantry maneuvers, children carrying school supplies, or outdoor sports). It is currently unclear which mechanical parameters are responsible for subjectively perceived discomfort. The aim of this study was to identify objectively measured mechanical predictors of discomfort during load carriage. We compared twelve different configurations of a typical load carriage system, a commercially available backpack with a hip belt. The pressure distribution under the hip belt and the shoulder strap, as well as the tensile force in the strap and the relative motion of the backpack were measured. Multiple linear regression analyses were conducted to investigate possible predictors of discomfort. The results demonstrate that static peak pressure, or alternatively, static strap force is a significant (p<0.001) predictor of discomfort during load carriage in the shoulder and hip region, accounting for 85% or more of the variation in discomfort. As an additional finding, we discovered that the regression coefficients of these predictors are significantly smaller for the hip than for the shoulder region. As static peak pressure is measured directly on the body, it is less dependent on the type of load carriage system than static strap force. Therefore, static peak pressure is well suited as a generally applicable, objective mechanical parameter for the optimization of load carriage system design. Alternatively, when limited to load carriage systems of the type backpack with hip belt, static strap force is the most valuable predictor of discomfort. The regionally differing regression coefficients of both predictors imply that the hip region is significantly more tolerant than the shoulder region. In order to minimize discomfort, users should be encouraged to shift load from the shoulders to the hip region wherever possible, at the same time likely decreasing the risk of low back pain or injury

  4. Mechanical Predictors of Discomfort during Load Carriage

    PubMed Central

    Wettenschwiler, Patrick D.; Lorenzetti, Silvio; Stämpfli, Rolf; Rossi, René M.; Ferguson, Stephen J.; Annaheim, Simon

    2015-01-01

    Discomfort during load carriage is a major issue for activities using backpacks (e.g. infantry maneuvers, children carrying school supplies, or outdoor sports). It is currently unclear which mechanical parameters are responsible for subjectively perceived discomfort. The aim of this study was to identify objectively measured mechanical predictors of discomfort during load carriage. We compared twelve different configurations of a typical load carriage system, a commercially available backpack with a hip belt. The pressure distribution under the hip belt and the shoulder strap, as well as the tensile force in the strap and the relative motion of the backpack were measured. Multiple linear regression analyses were conducted to investigate possible predictors of discomfort. The results demonstrate that static peak pressure, or alternatively, static strap force is a significant (p<0.001) predictor of discomfort during load carriage in the shoulder and hip region, accounting for 85% or more of the variation in discomfort. As an additional finding, we discovered that the regression coefficients of these predictors are significantly smaller for the hip than for the shoulder region. As static peak pressure is measured directly on the body, it is less dependent on the type of load carriage system than static strap force. Therefore, static peak pressure is well suited as a generally applicable, objective mechanical parameter for the optimization of load carriage system design. Alternatively, when limited to load carriage systems of the type backpack with hip belt, static strap force is the most valuable predictor of discomfort. The regionally differing regression coefficients of both predictors imply that the hip region is significantly more tolerant than the shoulder region. In order to minimize discomfort, users should be encouraged to shift load from the shoulders to the hip region wherever possible, at the same time likely decreasing the risk of low back pain or injury

  5. Cable load sensing device

    DOEpatents

    Beus, Michael J.; McCoy, William G.

    1998-01-01

    Apparatus for sensing the magnitude of a load on a cable as the cable is employed to support the load includes a beam structure clamped to the cable so that a length of the cable lies along the beam structure. A spacer associated with the beam structure forces a slight curvature in a portion of the length of cable under a cable "no-load" condition so that the portion of the length of cable is spaced from the beam structure to define a cable curved portion. A strain gauge circuit including strain gauges is secured to the beam structure by welding. As the cable is employed to support a load the load causes the cable curved portion to exert a force normal to the cable through the spacer and on the beam structure to deform the beam structure as the cable curved portion attempts to straighten under the load. As this deformation takes place, the resistance of the strain gauges is set to a value proportional to the magnitude of the normal strain on the beam structure during such deformation. The magnitude of the normal strain is manipulated in a control device to generate a value equal to the magnitude or weight of the load supported by the cable.

  6. Load Balancing Scientific Applications

    SciTech Connect

    Pearce, Olga Tkachyshyn

    2014-12-01

    The largest supercomputers have millions of independent processors, and concurrency levels are rapidly increasing. For ideal efficiency, developers of the simulations that run on these machines must ensure that computational work is evenly balanced among processors. Assigning work evenly is challenging because many large modern parallel codes simulate behavior of physical systems that evolve over time, and their workloads change over time. Furthermore, the cost of imbalanced load increases with scale because most large-scale scientific simulations today use a Single Program Multiple Data (SPMD) parallel programming model, and an increasing number of processors will wait for the slowest one at the synchronization points. To address load imbalance, many large-scale parallel applications use dynamic load balance algorithms to redistribute work evenly. The research objective of this dissertation is to develop methods to decide when and how to load balance the application, and to balance it effectively and affordably. We measure and evaluate the computational load of the application, and develop strategies to decide when and how to correct the imbalance. Depending on the simulation, a fast, local load balance algorithm may be suitable, or a more sophisticated and expensive algorithm may be required. We developed a model for comparison of load balance algorithms for a specific state of the simulation that enables the selection of a balancing algorithm that will minimize overall runtime.

  7. Cable load sensing device

    SciTech Connect

    Beus, M.J.; McCoy, W.G.

    1996-12-31

    Apparatus for sensing the magnitude of a load on a cable as the cable is employed to support the load includes a beam structure clamped to the cable so that a length of the cable lies along the beam structure. A spacer associated with the beam structure forces a slight curvature in a portion of the length of cable under a cable no-load condition so that the portion of the length of cable is spaced from the beam structure to define a cable curved portion. A strain gauge circuit including strain gauges is secured to the beam structure by welding. As the cable is employed to support a load the load causes the cable curved portion to exert a force normal to the cable through the spacer and on the beam structure to deform the beam structure as the cable curved portion attempts to straighten under the load. As this deformation takes place, the resistance of the strain gauges is set to a value proportional to the magnitude of the normal strain on the beam structure during such deformation. The magnitude of the normal strain is manipulated in a control device to generate a value equal to the magnitude or weight of the load supported by the cable.

  8. Dynamic load simulator

    NASA Technical Reports Server (NTRS)

    Joncas, K. P.

    1972-01-01

    Concepts and techniques for identifying and simulating both the steady state and dynamic characteristics of electrical loads for use during integrated system test and evaluation are discussed. The investigations showed that it is feasible to design and develop interrogation and simulation equipment to perform the desired functions. During the evaluation, actual spacecraft loads were interrogated by stimulating the loads with their normal input voltage and measuring the resultant voltage and current time histories. Elements of the circuits were optimized by an iterative process of selecting element values and comparing the time-domain response of the model with those obtained from the real equipment during interrogation.

  9. LOADING SIMULATION PROGRAM C

    EPA Science Inventory

    LSPC is the Loading Simulation Program in C++, a watershed modeling system that includes streamlined Hydrologic Simulation Program Fortran (HSPF) algorithms for simulating hydrology, sediment, and general water quality on land as well as a simplified stream transport model. LSPC ...

  10. Load proportional safety brake

    NASA Technical Reports Server (NTRS)

    Cacciola, M. J.

    1979-01-01

    This brake is a self-energizing mechanical friction brake and is intended for use in a rotary drive system. It incorporates a torque sensor which cuts power to the power unit on any overload condition. The brake is capable of driving against an opposing load or driving, paying-out, an aiding load in either direction of rotation. The brake also acts as a no-back device when torque is applied to the output shaft. The advantages of using this type of device are: (1) low frictional drag when driving; (2) smooth paying-out of an aiding load with no runaway danger; (3) energy absorption proportional to load; (4) no-back activates within a few degrees of output shaft rotation and resets automatically; and (5) built-in overload protection.

  11. LOADING MACHINE FOR REACTORS

    DOEpatents

    Simon, S.L.

    1959-07-01

    An apparatus is described for loading or charging slugs of fissionable material into a nuclear reactor. The apparatus of the invention is a "muzzle loading" type comprising a delivery tube or muzzle designed to be brought into alignment with any one of a plurality of fuel channels. The delivery tube is located within the pressure shell and it is also disposed within shielding barriers while the fuel cantridges or slugs are forced through the delivery tube by an externally driven flexible ram.

  12. Rim loaded reflector antennas

    NASA Astrophysics Data System (ADS)

    Bucci, O. M.; Franceschetti, G.

    1980-05-01

    A general theory of reflector antennas loaded by surface impedances is presented. Spatial variation of primary illumination is taken into account using a generalized slope diffraction coefficient. The theory is experimentally checked on surface loaded square plate scatterers and then used for computing the radiation diagram of parabolic and hyperbolic dishes. Computer programs and computed diagrams refer to the case of focal illumination and negligible tapering of primary illumination.

  13. Load research manual. Volume 3. Load research for advanced technologies

    SciTech Connect

    Brandenburg, L.; Clarkson, G.; Grund, Jr., C.; Leo, J.; Asbury, J.; Brandon-Brown, F.; Derderian, H.; Mueller, R.; Swaroop, R.

    1980-11-01

    This three-volume manual presents technical guidelines for electric utility load research. Special attention is given to issues raised by the load data reporting requirements of the Public Utility Regulatory Policies Act of 1978 and to problems faced by smaller utilities that are initiating load research programs. The manual includes guides to load research literature and glossaries of load research and statistical terms. In Volume 3, special load research procedures are presented for solar, wind, and cogeneration technologies.

  14. THREE MILE CREEK TOTAL MAXIMUM DAILY LOAD STUDY

    EPA Science Inventory

    The pupose of this project is to establish the allowable loading of pollutants, or other quantifiable parameters for Threemile Creek. These funds will assist ADEM in the preparation of Total Maximum Daily Loads (TMDL) for the reduction and elimination of pollution in Threemile C...

  15. Unsteady aerodynamic load estimates on turning vanes in the national full-scale aerodynamic complex

    NASA Technical Reports Server (NTRS)

    Norman, Thomas R.

    1986-01-01

    Unsteady aerodynamic design loads have been estimated for each of the vane sets in the National Full-Scale Aerodynamic Complex (NFAC). These loads include estimates of local loads over one vane section and global loads over an entire vane set. The analytical methods and computer programs used to estimate these loads are discussed. In addition, the important computer input parameters are defined and the rationale used to estimate them is discussed. Finally, numerical values are presented for both the computer input parameters and the calculated design loads for each vane set.

  16. Predicting Lifetime of a Thermomechanically Loaded Component

    NASA Technical Reports Server (NTRS)

    Murthy, Pappu L. N.; Gyekenyesi, John Z.; Mital, Subodh; Brewer, David N.

    2006-01-01

    NASALIFE is a computer program for predicting the lifetime, as affected by low cycle fatigue (LCF) and creep rupture, of a structural component subject to temporally varying, multiaxial thermomechanical loads. The component could be, for example, part of an aircraft turbine engine. Empirical data from LCF tests, creep rupture tests, and static tensile tests are used as references for predicting the number of missions the component can withstand under a given thermomechanical loading condition. The user prepares an input file containing the creep-rupture and cyclic-fatigue information, temperature-dependent material properties, and mission loading and control flags. The creep rupture information can be entered in tabular form as stress versus life or by means of parameters of the Larson-Miller equation. The program uses the Walker mean-stress model to adjust predicted life for ranges of the ratio between the maximum and minimum stresses. Data representing complex load cycles are reduced by the rainflow counting method. Miner's rule is utilized to combine the damage at different load levels. Finally, the program determines the total damage due to creep and combines it with the fatigue damage due to the cyclic loading and predicts the approximate number of missions a component can endure before failing.

  17. A load factor formula

    NASA Technical Reports Server (NTRS)

    Miller, Roy G

    1927-01-01

    The ultimate test of a load factor formula is experience. The chief advantages of a semi rational formula over arbitrary factors are that it fairs in between points of experience and it differentiates according to variables within a type. Structural failure of an airplane apparently safe according to the formula would call for a specific change in the formula. The best class of airplanes with which to check a load factor formula seems to be those which have experienced structural failure. Table I comprises a list of the airplanes which have experienced failure in flight traceable to the wing structure. The load factor by formula is observed to be greater than the designed strength in each case, without a single exception. Table II comprises the load factor by formula with the designed strength of a number of well-known service types. The formula indicates that by far the majority of these have ample structural strength. One case considered here in deriving a suitable formula is that of a heavy load carrier of large size and practically no reserve power.

  18. Phloem Loading of Sucrose

    PubMed Central

    Giaquinta, Robert

    1977-01-01

    Autoradiographic, plasmolysis, and 14C-metabolite distribution studies indicate that the majority of exogenously supplied 14C-sucrose enters the phloem directly from the apoplast in source leaf discs of Beta vulgaris. Phloem loading of sucrose is pH-dependent, being markedly inhibited at an apoplast pH of 8 compared to pH 5. Kinetic analyses indicate that the apparent Km of the loading process increases at the alkaline pH while the maximum velocity, Vmax, is pH-independent. The pH dependence of sucrose loading into source leaf discs translates to phloem loading in and translocation of sucrose from intact source leaves. Studies using asymmetrically labeled sucrose 14C-fructosyl-sucrose, show that sucrose is accumulated intact from the apoplast and not hydrolyzed to its hexose moieties by invertase prior to uptake. The results are discussed in terms of sucrose loading being coupled to the co-transport of protons (and membrane potential) in a manner consistent with the chemiosmotic hypothesis of nonelectrolyte transport. Images PMID:16659931

  19. E-2C Loads Calibration in DFRC Flight Loads Lab

    NASA Technical Reports Server (NTRS)

    Schuster, Lawrence S.

    2008-01-01

    Objectives: a) Safely and efficiently perform structural load tests on NAVAIR E-2C aircraft to calibrate strain gage instrumentation installed by NAVAIR; b) Collect load test data and derive loads equations for use in NAVAIR flight tests; and c) Assist flight test team with use of loads equations measurements at PAX River.

  20. Elastomeric load sharing device

    NASA Technical Reports Server (NTRS)

    Isabelle, Charles J. (Inventor); Kish, Jules G. (Inventor); Stone, Robert A. (Inventor)

    1992-01-01

    An elastomeric load sharing device, interposed in combination between a driven gear and a central drive shaft to facilitate balanced torque distribution in split power transmission systems, includes a cylindrical elastomeric bearing and a plurality of elastomeric bearing pads. The elastomeric bearing and bearing pads comprise one or more layers, each layer including an elastomer having a metal backing strip secured thereto. The elastomeric bearing is configured to have a high radial stiffness and a low torsional stiffness and is operative to radially center the driven gear and to minimize torque transfer through the elastomeric bearing. The bearing pads are configured to have a low radial and torsional stiffness and a high axial stiffness and are operative to compressively transmit torque from the driven gear to the drive shaft. The elastomeric load sharing device has spring rates that compensate for mechanical deviations in the gear train assembly to provide balanced torque distribution between complementary load paths of split power transmission systems.

  1. Microbial load monitor

    NASA Technical Reports Server (NTRS)

    Caplin, R. S.; Royer, E. R.

    1978-01-01

    Attempts are made to provide a total design of a Microbial Load Monitor (MLM) system flight engineering model. Activities include assembly and testing of Sample Receiving and Card Loading Devices (SRCLDs), operator related software, and testing of biological samples in the MLM. Progress was made in assembling SRCLDs with minimal leaks and which operate reliably in the Sample Loading System. Seven operator commands are used to control various aspects of the MLM such as calibrating and reading the incubating reading head, setting the clock and reading time, and status of Card. Testing of the instrument, both in hardware and biologically, was performed. Hardware testing concentrated on SRCLDs. Biological testing covered 66 clinical and seeded samples. Tentative thresholds were set and media performance listed.

  2. Shuttle car loading system

    NASA Technical Reports Server (NTRS)

    Collins, E. R., Jr. (Inventor)

    1985-01-01

    A system is described for loading newly mined material such as coal, into a shuttle car, at a location near the mine face where there is only a limited height available for a loading system. The system includes a storage bin having several telescoping bin sections and a shuttle car having a bottom wall that can move under the bin. With the bin in an extended position and filled with coal the bin sections can be telescoped to allow the coal to drop out of the bin sections and into the shuttle car, to quickly load the car. The bin sections can then be extended, so they can be slowly filled with more while waiting another shuttle car.

  3. Ocean Tide Loading Computation

    NASA Technical Reports Server (NTRS)

    Agnew, Duncan Carr

    2005-01-01

    September 15,2003 through May 15,2005 This grant funds the maintenance, updating, and distribution of programs for computing ocean tide loading, to enable the corrections for such loading to be more widely applied in space- geodetic and gravity measurements. These programs, developed under funding from the CDP and DOSE programs, incorporate the most recent global tidal models developed from Topex/Poscidon data, and also local tide models for regions around North America; the design of the algorithm and software makes it straightforward to combine local and global models.

  4. Estimating turbine limit load

    NASA Technical Reports Server (NTRS)

    Glassman, Arthur J.

    1993-01-01

    A method for estimating turbine limit-load pressure ratio from turbine map information is presented and demonstrated. It is based on a mean line analysis at the last-rotor exit. The required map information includes choke flow rate at all speeds as well as pressure ratio and efficiency at the onset of choke at design speed. One- and two-stage turbines are analyzed to compare the results with those from a more rigorous off-design flow analysis and to show the sensitivities of the computed limit-load pressure ratios to changes in the key assumptions.

  5. Dielectrically loaded horns

    NASA Astrophysics Data System (ADS)

    Tun, S. M.; Bustamante, R.; Williams, N.

    Dielectrically loaded horns have been proposed as alternatives to conical corrugated horns in high-performance primary feeds in virtue both of their lower cost and theoretical indications of superior operational bandwidth performance, while retaining circularly symmetric radiation, low sidelobes, and low cross-polarization. A prototype dielectric core-loaded horn, and a dual-band transmit/receive horn antenna incorporating a dielectric rod inside a small corrugated horn, have been developed and tested; the dielectric used for the rod is Rexolite. The high performance obtainable by this inexpensive technology has been experimentally demonstrated.

  6. Experimental investigation on single person's jumping load model

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Wang, Haoqi; Wang, Ling

    2015-12-01

    This paper presents a modified half-sine-squared load model of the jumping impulses for a single person. The model is based on a database of 22,921 experimentally measured single jumping load cycles from 100 test subjects. Threedimensional motion capture technology in conjunction with force plates was employed in the experiment to record jumping loads. The variation range and probability distribution of the controlling parameters for the load model such as the impact factor, jumping frequency and contact ratio, are discussed using the experimental data. Correlation relationships between the three parameters are investigated. The contact ratio and jumping frequency are identified as independent model parameters, and an empirical frequency-dependent function is derived for the impact factor. The feasibility of the proposed load model is established by comparing the simulated load curves with measured ones, and by comparing the acceleration responses of a single-degree-of-freedom system to the simulated and measured jumping loads. The results show that a realistic individual jumping load can be generated by the proposed method. This can then be used to assess the dynamic response of assembly structures.

  7. Tectonics of planetary loading - A general model and results

    NASA Technical Reports Server (NTRS)

    Janes, D. M.; Melosh, H. J.

    1990-01-01

    The tectonics of planetary loading is investigated using an analytical model for determining the stresses in an arbitrarily thick spherical shell due to an idealized axisymmetric load. The model includes the flat plate and thin shell membrane approximations as end members, and makes it possible to determine the nature of the transition between them. Using this model, the stress states and the resulting tectonic patterns due to an idealized exponential load are determined as functions of five dimensionless parameters: the ratio of the lithospheric thickness to the planetary radius; the decay width of the load; the 'support parameter', which is the ratio of the buoyancy to the flexural support; the angular distance from the load center; and the normalized radial distance from the planet center.

  8. Cyclic loading of an elastic-plastic adhesive spherical microcontact

    NASA Astrophysics Data System (ADS)

    Kadin, Y.; Kligerman, Y.; Etsion, I.

    2008-10-01

    A previous study of a single load-unload cycle of an adhesive contact between an elastic-plastic microscopic sphere and a rigid flat is extended here for several load-unload cycles. The interacting forces between the sphere and the flat obey the Lennard-Jones potential. Kinematic hardening is assumed for the sphere material to account for possible plastic shakedown, and the difference between kinematic and isotropic hardenings is discussed. The main goal of the current work is to investigate the evolution of the load-approach curves for the elastic-plastic spherical contact during its cyclic loading-unloading. These curves are presented for different physical conditions, represented by three main dimensionless parameters, which affect the behavior of the elastic-plastic adhesive contact. A transition value of the Tabor parameter is found, below which the load-approach curves are always continuous and jump-in and jump-out instabilities are not expected.

  9. Transfer Mechanisms for Heavy Loads

    NASA Technical Reports Server (NTRS)

    Cassisi, V.

    1986-01-01

    Soft hydraulic system gently maneuvers loads. Upper and lower load-transfer mechanisms attach through mounting holes in vertical beam adjustable or gross positioning. Fine positioning of load accomplished by hydraulic cylinders that move trunnion support and trunnion clamp through short distances. Useful in transferring large loads in railroads, agriculture, shipping, manufacturing, and even precision assembly of large items.

  10. Sagittal rotational stiffness and damping increase in a porcine lumbar spine with increased or prolonged loading.

    PubMed

    Zondervan, Robert L; Popovich, John M; Radcliffe, Clark J; Pathak, Pramod K; Reeves, N Peter

    2016-02-29

    While the impact of load magnitude on spine dynamic parameters (stiffness and damping) has been reported, it is unclear how load history (exposure to prolonged loading) affects spine dynamic parameters in sagittal rotation. Furthermore, it is unknown if both spine stiffness and damping are equally affected to prolonged loading. Using a pendulum testing apparatus, the effect of load magnitude and load history on spine sagittal rotational stiffness and damping was assessed. Nine porcine lumbar functional spine units (FSUs) were tested in an increasing compressive load phase (ICP: 44.85, 68.55, 91.75, 114.6kg) and then a decreasing compressive load phase (DCP: 91.75, 68.55, and 44.85kg). Each trial consisted of flexing the FSU 5° and allowing it to oscillate unconstrained. During the ICP, both stiffness and damping linearly increased with load. However, in the DCP, stiffness and damping values were significantly higher than the identical load collected during the ICP, suggesting load history affects sagittal rotational dynamic parameters. In addition, spine damping was more affected by load history than spine stiffness. These results highlight the importance of controlling load magnitude and history when assessing spine dynamic parameters. PMID:26892899

  11. Reconstruction of Orion Engineering Development Unit (EDU) Parachute Inflation Loads

    NASA Technical Reports Server (NTRS)

    Ray, Eric S.

    2013-01-01

    The process of reconstructing inflation loads of Capsule Parachute Assembly System (CPAS) has been updated as the program transitioned to testing Engineering Development Unit (EDU) hardware. The equations used to reduce the test data have been re-derived based on the same physical assumptions made by simulations. Due to instrumentation challenges, individual parachute loads are determined from complementary accelerometer and load cell measurements. Cluster inflations are now simulated by modeling each parachute individually to better represent different inflation times and non-synchronous disreefing. The reconstruction procedure is tailored to either infinite mass or finite mass events based on measurable characteristics from the test data. Inflation parameters are determined from an automated optimization routine to reduce subjectivity. Infinite mass inflation parameters have been re-defined to avoid unrealistic interactions in Monte Carlo simulations. Sample cases demonstrate how best-fit inflation parameters are used to generate simulated drag areas and loads which favorably agree with test data.

  12. Measuring Transient Memory Load

    ERIC Educational Resources Information Center

    Wanner, Eric; Shiner, Sandra

    1976-01-01

    Two experiments are reported in which subjects performed simple mental arithmetic problems which were presented visually in a sequential fashion. At some point in the presentation of each problem, the sequential display was interrupted and a memory task introduced. The purpose was to validate a measure of transient memory load. (Author/RM)

  13. Multidimensional spectral load balancing

    DOEpatents

    Hendrickson, Bruce A.; Leland, Robert W.

    1996-12-24

    A method of and apparatus for graph partitioning involving the use of a plurality of eigenvectors of the Laplacian matrix of the graph of the problem for which load balancing is desired. The invention is particularly useful for optimizing parallel computer processing of a problem and for minimizing total pathway lengths of integrated circuits in the design stage.

  14. LOADING AND UNLOADING DEVICE

    DOEpatents

    Treshow, M.

    1960-08-16

    A device for loading and unloading fuel rods into and from a reactor tank through an access hole includes parallel links carrying a gripper. These links enable the gripper to go through the access hole and then to be moved laterally from the axis of the access hole to the various locations of the fuel rods in the reactor tank.

  15. Five-Parameter Bivariate Probability Distribution

    NASA Technical Reports Server (NTRS)

    Tubbs, J.; Brewer, D.; Smith, O. W.

    1986-01-01

    NASA technical memorandum presents four papers about five-parameter bivariate gamma class of probability distributions. With some overlap of subject matter, papers address different aspects of theories of these distributions and use in forming statistical models of such phenomena as wind gusts. Provides acceptable results for defining constraints in problems designing aircraft and spacecraft to withstand large wind-gust loads.

  16. The effect of physical loading on calcaneus quantitative ultrasound measurement: a cross-section study

    PubMed Central

    2012-01-01

    Background Physical loading leads to a deformation of bone microstructure and may influence quantitative ultrasound (QUS) parameters. This study aims at evaluating the effect of physical loading on bone QUS measurement, and further, on the potential of diagnosing osteoporosis using QUS method under physical loading condition. Methods 16 healthy young females (control group) and 45 postmenopausal women (divided into 3 groups according to the years since menopause (YSM)) were studied. QUS parameters were measured at calcaneus under self-weight loading (standing) and no loading (sitting) conditions. Weight-normalized QUS parameter (QUS parameter measured under loading condition divided by the weight of the subject) was proposed to evaluate the influence of loading. T-test, One-Way analysis of variance (one way ANOVA) and receiver operating characteristic (ROC) analysis were applied for analysis. Results In QUS parameters, mainly normalized broadband ultrasound attenuation (nBUA), measured with loading significantly differed from those measured without loading (p < 0.05). The relative changes of weight-normalized QUS parameters on postmenopausal women with respect to premenopausal women under loading condition were larger than those on traditional QUS parameters measured without loading. In ROC analysis, weight-normalized QUS parameters showed their stronger discriminatory ability for menopause. Conclusions Physical loading substantially influenced bone QUS measurement (mainly nBUA). Weight-normalized QUS parameters can discriminate menopause more effectively. By considering the high relationship between menopause and osteoporosis, an inference was drawn that adding physical loading during measurement may be a probable way to improve the QUS based osteoporosis diagnosis. PMID:22584084

  17. Dynamic Strength Ceramic Nanocomposites Under Pulse Loading

    NASA Astrophysics Data System (ADS)

    Skripnyak, Evgeniya G.; Skripnyak, Vladimir V.; Vaganova, Irina K.; Skripnyak, Vladimir A.

    2015-06-01

    Multi-scale computer simulation approach has been applied to research of strength of nanocomposites under dynamic loading. The influence of mesoscopic substructures on the dynamic strength of ceramic and hybrid nanocomposites, which can be formed using additive manufacturing were numerically investigated. At weak shock wave loadings the shear strength and the spall strength of ceramic and hybrid nanocomposites depends not only phase concentration and porosity, but size parameters of skeleton substructures. The influence of skeleton parameter on the shear strength and the spall strength of ceramic nanocomposites with the same concentration of phases decreases with increasing amplitude of the shock pulse of microsecond duration above the double amplitude of the Hugoniot elastic limit of nanocomposites. This research carried out in 2014 -2015 was supported by grant from The Tomsk State University Academic D.I. Mendeleev Fund Program and also Ministry of Sciences and Education of Russian Federation (State task 2014/223, project 1943, Agreement 14.132.

  18. Load research manual. Volume 1. Load research procedures

    SciTech Connect

    Brandenburg, L.; Clarkson, G.; Grund, Jr., C.; Leo, J.; Asbury, J.; Brandon-Brown, F.; Derderian, H.; Mueller, R.; Swaroop, R.

    1980-11-01

    This three-volume manual presents technical guidelines for electric utility load research. Special attention is given to issues raised by the load data reporting requirements of the Public Utility Regulatory Policies Act of 1978 and to problems faced by smaller utilities that are initiating load research programs. In Volumes 1 and 2, procedures are suggested for determining data requirements for load research, establishing the size and customer composition of a load survey sample, selecting and using equipment to record customer electricity usage, processing data tapes from the recording equipment, and analyzing the data. Statistical techniques used in customer sampling are discussed in detail. The costs of load research also are estimated, and ongoing load research programs at three utilities are described. The manual includes guides to load research literature and glossaries of load research and statistical terms.

  19. Measuring alignment of loading fixture

    DOEpatents

    Scavone, Donald W.

    1989-01-01

    An apparatus and method for measuring the alignment of a clevis and pin type loading fixture for compact tension specimens include a pair of substantially identical flat loading ligaments. Each loading ligament has two apertures for the reception of a respective pin of the loading fixture and a thickness less than one-half of a width of the clevis opening. The pair of loading ligaments are mounted in the clevis openings at respective sides thereof. The loading ligaments are then loaded by the pins of the loading fixture and the strain in each loading ligament is measured. By comparing the relative strain of each loading ligament, the alignment of the loading fixture is determined. Preferably, a suitable strain gage device is located at each longitudinal edge of a respective loading ligament equidistant from the two apertures in order to determine the strain thereat and hence the strain of each ligament. The loading ligaments are made substantially identical by jig grinding the loading ligaments as a matched set. Each loading ligament can also be individually calibrated prior to the measurement.

  20. The composite load spectra project

    NASA Technical Reports Server (NTRS)

    Newell, J. F.; Ho, H.; Kurth, R. E.

    1990-01-01

    Probabilistic methods and generic load models capable of simulating the load spectra that are induced in space propulsion system components are being developed. Four engine component types (the transfer ducts, the turbine blades, the liquid oxygen posts and the turbopump oxidizer discharge duct) were selected as representative hardware examples. The composite load spectra that simulate the probabilistic loads for these components are typically used as the input loads for a probabilistic structural analysis. The knowledge-based system approach used for the composite load spectra project provides an ideal environment for incremental development. The intelligent database paradigm employed in developing the expert system provides a smooth coupling between the numerical processing and the symbolic (information) processing. Large volumes of engine load information and engineering data are stored in database format and managed by a database management system. Numerical procedures for probabilistic load simulation and database management functions are controlled by rule modules. Rules were hard-wired as decision trees into rule modules to perform process control tasks. There are modules to retrieve load information and models. There are modules to select loads and models to carry out quick load calculations or make an input file for full duty-cycle time dependent load simulation. The composite load spectra load expert system implemented today is capable of performing intelligent rocket engine load spectra simulation. Further development of the expert system will provide tutorial capability for users to learn from it.

  1. CHOICE OF PROTON DRIVER PARAMETERS FOR A NEUTRINO FACTORY.

    SciTech Connect

    KIRK, H.G.; BERG, J.S.; FERNOW, R.C.; GALLARDO, J.C.; SIMOS, N.; WENG, W.

    2006-06-23

    We discuss criteria for designing an optimal ''green field'' proton driver for a neutrino factory. The driver parameters are determined by considerations of space charge, power capabilities of the target, beam loading and available RF peak power.

  2. Modeling Aircraft Wing Loads from Flight Data Using Neural Networks

    NASA Technical Reports Server (NTRS)

    Allen, Michael J.; Dibley, Ryan P.

    2003-01-01

    Neural networks were used to model wing bending-moment loads, torsion loads, and control surface hinge-moments of the Active Aeroelastic Wing (AAW) aircraft. Accurate loads models are required for the development of control laws designed to increase roll performance through wing twist while not exceeding load limits. Inputs to the model include aircraft rates, accelerations, and control surface positions. Neural networks were chosen to model aircraft loads because they can account for uncharacterized nonlinear effects while retaining the capability to generalize. The accuracy of the neural network models was improved by first developing linear loads models to use as starting points for network training. Neural networks were then trained with flight data for rolls, loaded reversals, wind-up-turns, and individual control surface doublets for load excitation. Generalization was improved by using gain weighting and early stopping. Results are presented for neural network loads models of four wing loads and four control surface hinge moments at Mach 0.90 and an altitude of 15,000 ft. An average model prediction error reduction of 18.6 percent was calculated for the neural network models when compared to the linear models. This paper documents the input data conditioning, input parameter selection, structure, training, and validation of the neural network models.

  3. Plutonium Immobilization Canister Loading

    SciTech Connect

    Hamilton, E.L.

    1999-01-26

    This disposition of excess plutonium is determined by the Surplus Plutonium Disposition Environmental Impact Statement (SPD-EIS) being prepared by the Department of Energy. The disposition method (Known as ''can in canister'') combines cans of immobilized plutonium-ceramic disks (pucks) with vitrified high-level waste produced at the SRS Defense Waste Processing Facility (DWPF). This is intended to deter proliferation by making the plutonium unattractive for recovery or theft. The envisioned process remotely installs cans containing plutonium-ceramic pucks into storage magazines. Magazines are then remotely loaded into the DWPF canister through the canister neck with a robotic arm and locked into a storage rack inside the canister, which holds seven magazines. Finally, the canister is processed through DWPF and filled with high-level waste glass, thereby surrounding the product cans. This paper covers magazine and rack development and canister loading concepts.

  4. Load controller and method to enhance effective capacity of a photovoltaic power supply

    DOEpatents

    Perez, Richard

    2000-01-01

    A load controller and method are provided for maximizing effective capacity of a non-controllable, renewable power supply coupled to a variable electrical load also coupled to a conventional power grid. Effective capacity is enhanced by monitoring power output of the renewable supply and loading, and comparing the loading against the power output and a load adjustment threshold determined from an expected peak loading. A value for a load adjustment parameter is calculated by subtracting the renewable supply output and the load adjustment parameter from the current load. This value is then employed to control the variable load in an amount proportional to the value of the load control parameter when the parameter is within a predefined range. By so controlling the load, the effective capacity of the non-controllable, renewable power supply is increased without any attempt at operational feedback control of the renewable supply. The renewable supply may comprise, for example, a photovoltaic power supply or a wind-based power supply.

  5. Load responsive hydrodynamic bearing

    DOEpatents

    Kalsi, Manmohan S.; Somogyi, Dezso; Dietle, Lannie L.

    2002-01-01

    A load responsive hydrodynamic bearing is provided in the form of a thrust bearing or journal bearing for supporting, guiding and lubricating a relatively rotatable member to minimize wear thereof responsive to relative rotation under severe load. In the space between spaced relatively rotatable members and in the presence of a liquid or grease lubricant, one or more continuous ring shaped integral generally circular bearing bodies each define at least one dynamic surface and a plurality of support regions. Each of the support regions defines a static surface which is oriented in generally opposed relation with the dynamic surface for contact with one of the relatively rotatable members. A plurality of flexing regions are defined by the generally circular body of the bearing and are integral with and located between adjacent support regions. Each of the flexing regions has a first beam-like element being connected by an integral flexible hinge with one of the support regions and a second beam-like element having an integral flexible hinge connection with an adjacent support region. A least one local weakening geometry of the flexing region is located intermediate the first and second beam-like elements. In response to application of load from one of the relatively rotatable elements to the bearing, the beam-like elements and the local weakening geometry become flexed, causing the dynamic surface to deform and establish a hydrodynamic geometry for wedging lubricant into the dynamic interface.

  6. Buffet Load Alleviation

    NASA Technical Reports Server (NTRS)

    Ryall, T. G.; Moses, R. W.; Hopkins, M. A.; Henderson, D.; Zimcik, D. G.; Nitzsche, F.

    2004-01-01

    High performance aircraft are, by their very nature, often required to undergo maneuvers involving high angles of attack. Under these conditions unsteady vortices emanating from the wing and the fuselage will impinge on the twin fins (required for directional stability) causing excessive buffet loads, in some circumstances, to be applied to the aircraft. These loads result in oscillatory stresses, which may cause significant amounts of fatigue damage. Active control is a possible solution to this important problem. A full-scale test was carried out on an F/A-18 fuselage and fins using piezoceramic actuators to control the vibrations. Buffet loads were simulated using very powerful electromagnetic shakers. The first phase of this test was concerned with the open loop system identification whereas the second stage involved implementing linear time invariant control laws. This paper looks at some of the problems encountered as well as the corresponding solutions and some results. It is expected that flight trials of a similar control system to alleviate buffet will occur as early as 2001.

  7. Load regulating latch

    NASA Technical Reports Server (NTRS)

    Appleberry, W. T. (Inventor)

    1977-01-01

    A load regulating mechanical latch is described that has a pivotally mounted latch element having a hook-shaped end with a strike roller-engaging laterally open hook for engaging a stationary strike roller. The latch element or hook is pivotally mounted in a clevis end of an elongated latch stem that is adapted for axial movement through an opening in a support plate or bracket mounted to a structural member. A coil spring is disposed over and around the extending latch stem and the lower end of the coil spring engages the support bracket. A thrust washer is removably attached to the other end of the latch stem and engages the other end of the coil spring and compresses the coil spring thereby preloading the spring and the latch element carried by the latch stem. The hook-shaped latch element has a limited degree of axial travel for loading caused by structural distortion which may change the relative positions of the latch element hook and the strike roller. Means are also provided to permit limited tilt of the latch element due to loading of the hook.

  8. 32. VAL, DETAIL SHOWING LOADING PLATFORM, PROJECTILE LOADING CAR, LAUNCHER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. VAL, DETAIL SHOWING LOADING PLATFORM, PROJECTILE LOADING CAR, LAUNCHER SLAB AND UNDERSIDE OF LAUNCHER BRIDGE LOOKING SOUTHWEST. - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  9. Electrical Load Modeling and Simulation

    SciTech Connect

    Chassin, David P.

    2013-01-01

    Electricity consumer demand response and load control are playing an increasingly important role in the development of a smart grid. Smart grid load management technologies such as Grid FriendlyTM controls and real-time pricing are making their way into the conventional model of grid planning and operations. However, the behavior of load both affects, and is affected by load control strategies that are designed to support electric grid planning and operations. This chapter discussed the natural behavior of electric loads, how it interacts with various load control and demand response strategies, what the consequences are for new grid operation concepts and the computing issues these new technologies raise.

  10. Eccentric loading of microtensile specimens

    NASA Technical Reports Server (NTRS)

    Trapp, Mark A.

    2004-01-01

    Ceramic materials have a lower density than most metals and are capable of performing at extremely high temperatures. The utility of these materials is obvious; however, the fracture strength of brittle materials is not easily predicted and often varies greatly. Characteristically, brittle materials lack ductility and do not yield as other materials. Ceramics materials are naturally populated with microscopic cracks due to fabrication techniques. Upon application of a load, stress concentration occurs at the root of these cracks and fracture will eventually occur at some not easily predicted strength. In order to use ceramics in any application some design methodology must exist from which a component can be placed into service. This design methodology is CARES/LIFE (Ceramics Analysis and Reliability Evaluation of Structures) which has been developed and refined at NASA over the last several decades. The CARES/LIFE computer program predicts the probability of failure of a ceramic component over its service life. CARES combines finite element results from a commercial FE (finite element) package such as ANSYS and experimental results to compute the abovementioned probability of failure. Over the course of several tests CARES has had great success in predicting the life of various ceramic components and has been used throughout industry. The latest challenge is to verify that CARES is valid for MEMS (Micro-Electro Mechanical Systems). To investigate a series of microtensile specimens were fractured in the laboratory. From this data, material parameters were determined and used to predict a distribution of strength for other specimens that exhibit a known stress concentration. If the prediction matches the experimental results then these parameters can be applied to a desired component outside of the laboratory. During testing nearly half of the tensile Specimens fractured at a location that was not expected and hence not captured in the FE model. It has been my duty

  11. Mechanical loading, damping, and load-driven bone formation in mouse tibiae.

    PubMed

    Dodge, Todd; Wanis, Mina; Ayoub, Ramez; Zhao, Liming; Watts, Nelson B; Bhattacharya, Amit; Akkus, Ozan; Robling, Alexander; Yokota, Hiroki

    2012-10-01

    Mechanical loads play a pivotal role in the growth and maintenance of bone and joints. Although loading can activate anabolic genes and induce bone remodeling, damping is essential for preventing traumatic bone injury and fracture. In this study we investigated the damping capacity of bone, joint tissue, muscle, and skin using a mouse hindlimb model of enhanced loading in conjunction with finite element modeling to model bone curvature. Our hypothesis was that loads were primarily absorbed by the joints and muscle tissue, but that bone also contributed to damping through its compression and natural bending. To test this hypothesis, fresh mouse distal lower limb segments were cyclically loaded in axial compression in sequential bouts, with each subsequent bout having less surrounding tissue. A finite element model was generated to model effects of bone curvature in silico. Two damping-related parameters (phase shift angle and energy loss) were determined from the output of the loading experiments. Interestingly, the experimental results revealed that the knee joint contributed to the largest portion of the damping capacity of the limb, and bone itself accounted for approximately 38% of the total phase shift angle. Computational results showed that normal bone curvature enhanced the damping capacity of the bone by approximately 40%, and the damping effect grew at an accelerated pace as curvature was increased. Although structural curvature reduces critical loads for buckling in beam theory, evolution apparently favors maintaining curvature in the tibia. Histomorphometric analysis of the tibia revealed that in response to axial loading, bone formation was significantly enhanced in the regions that were predicted to receive a curvature-induced bending moment. These results suggest that in addition to bone's compressive damping capacity, surrounding tissues, as well as naturally-occurring bone curvature, also contribute to mechanical damping, which may ultimately affect

  12. Redefining solubility parameters: the partial solvation parameters.

    PubMed

    Panayiotou, Costas

    2012-03-21

    The present work reconsiders a classical and universally accepted concept of physical chemistry, the solubility parameter. Based on the insight derived from modern quantum chemical calculations, a new definition of solubility parameter is proposed, which overcomes some of the inherent restrictions of the original definition and expands its range of applications. The original single solubility parameter is replaced by four partial solvation parameters reflecting the dispersion, the polar, the acidic and the basic character of the chemical compounds as expressed either in their pure state or in mixtures. Simple rules are adopted for the definition and calculation of these four parameters and their values are tabulated for a variety of common substances. In contrast, however, to the well known Hansen solubility parameters, their design and evaluation does not rely exclusively on the basic rule of "similarity matching" for solubility but it makes also use of the other basic rule of compatibility, namely, the rule of "complementarity matching". This complementarity matching becomes particularly operational with the sound definition of the acidic and basic components of the solvation parameter based on the third σ-moments of the screening charge distributions of the quantum mechanics-based COSMO-RS theory. The new definitions are made in a simple and straightforward manner, thus, preserving the strength and appeal of solubility parameter stemming from its simplicity. The new predictive method has been applied to a variety of solubility data for systems of pharmaceuticals and polymers. The results from quantum mechanics calculations are critically compared with the results from Abraham's acid/base descriptors. PMID:22327537

  13. Elevated Temperature Slow Crack Growth of Silicon Nitride Under Dynamic, Static and Cyclic Flexural Loading

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Salem, Jonathan A.; Nemeth, Noel; Gyekenyesi, John P.

    1994-01-01

    The slow crack growth parameters of a hot-pressed silicon nitride were determined at 1200 and 1300 C in air by statically, dynamically and cyclicly loading bend specimens. The fatigue parameters were estimated using the recently developed CARES/Life computer code. Good agreement exists between the flexural results. However, fatigue susceptibility under static uniaxial tensile loading, reported elsewhere, was greater than in flexure. Cyclic flexural loading resulted in the lowest apparent flexural fatigue susceptibility.

  14. Assessment of LWR piping design loading based on plant operating experience

    SciTech Connect

    Svensson, P. O.

    1980-08-01

    The objective of this study has been to: (1) identify current Light Water Reactor (LWR) piping design load parameters, (2) identify significant actual LWR piping loads from plant operating experience, (3) perform a comparison of these two sets of data and determine the significance of any differences, and (4) make an evaluation of the load representation in current LWR piping design practice, in view of plant operating experience with respect to piping behavior and response to loading.

  15. Flow processes in overexpanded chemical rocket nozzles. Part 2: Side loads due to asymmetric separation

    NASA Technical Reports Server (NTRS)

    Schmucker, R. H.

    1984-01-01

    Methods for measuring the lateral forces, occurring as a result of asymmetric nozzle flow separation, are discussed. The effect of some parameters on the side load is explained. A new method was developed for calculation of the side load. The values calculated are compared with side load data of the J-2 engine. Results are used for predicting side loads of the space shuttle main engine.

  16. Plug Loads Conservation Measures

    2010-12-31

    This software requires inputs of simple plug loads inventory information and calculates the energy and cost benefits of various retrofit opportunities. This tool includes energy conservation measures for: Vending Machine Misers, Delamp Vending Machine, Desktop to Laptop retrofit, CRT to LCD monitors retrofit, Computer Power Management Settings, and Energy Star Refrigerator retrofit. This tool calculates energy savings, demand reduction, cost savings, building life cycle costs including: simple payback, discounted payback, net-present value, and savings tomore » investment ratio. In addition this tool also displays the environmental benefits of a project.« less

  17. Multidimensional spectral load balancing

    SciTech Connect

    Hendrickson, B.; Leland, R.

    1993-01-01

    We describe an algorithm for the static load balancing of scientific computations that generalizes and improves upon spectral bisection. Through a novel use of multiple eigenvectors, our new spectral algorithm can divide a computation into 4 or 8 pieces at once. These multidimensional spectral partitioning algorithms generate balanced partitions that have lower communication overhead and are less expensive to compute than those produced by spectral bisection. In addition, they automatically work to minimize message contention on a hypercube or mesh architecture. These spectral partitions are further improved by a multidimensional generalization of the Kernighan-Lin graph partitioning algorithm. Results on several computational grids are given and compared with other popular methods.

  18. Plug Loads Conservation Measures

    SciTech Connect

    Ian Metzger, Jesse Dean

    2010-12-31

    This software requires inputs of simple plug loads inventory information and calculates the energy and cost benefits of various retrofit opportunities. This tool includes energy conservation measures for: Vending Machine Misers, Delamp Vending Machine, Desktop to Laptop retrofit, CRT to LCD monitors retrofit, Computer Power Management Settings, and Energy Star Refrigerator retrofit. This tool calculates energy savings, demand reduction, cost savings, building life cycle costs including: simple payback, discounted payback, net-present value, and savings to investment ratio. In addition this tool also displays the environmental benefits of a project.

  19. Microbial Load Monitor

    NASA Technical Reports Server (NTRS)

    Gibson, S. F.; Royer, E. R.

    1979-01-01

    The Microbial Load Monitor (MLM) is an automated and computerized system for detection and identification of microorganisms. Additionally, the system is designed to enumerate and provide antimicrobic susceptibility profiles for medically significant bacteria. The system is designed to accomplish these tasks in a time of 13 hours or less versus the traditional time of 24 hours for negatives and 72 hours or more for positives usually required for standard microbiological analysis. The MLM concept differs from other methods of microbial detection in that the system is designed to accept raw untreated clinical samples and to selectively identify each group or species that may be present in a polymicrobic sample.

  20. Variable loading roller

    DOEpatents

    Williams, D.M.

    1988-01-21

    An automatic loading roller for transmitting torque in traction drive devices in manipulator arm joints includes a two-part camming device having a first cam portion rotatable in place on a shaft by an input torque and a second cam portion coaxially rotatable and translatable having a rotating drive surface thereon for engaging the driven surface of an output roller with a resultant force proportional to the torque transmitted. Complementary helical grooves in the respective cam portions interconnected through ball bearings interacting with those grooves effect the rotation and translation of the second cam portion in response to rotation of the first. 14 figs.

  1. Variable loading roller

    DOEpatents

    Williams, Daniel M.

    1989-01-01

    An automatic loading roller for transmitting torque in traction drive devices in manipulator arm joints includes a two-part camming device having a first cam portion rotatable in place on a shaft by an input torque and a second cam portion coaxially rotatable and translatable having a rotating drive surface thereon for engaging the driven surface of an output roller with a resultant force proportional to the torque transmitted. Complementary helical grooves on the respective cam portions interconnected through ball bearings interacting with those grooves effect the rotation and translation of the second cam portion in response to rotation of the first.

  2. Some properties of a 5-parameter bivariate probability distribution

    NASA Technical Reports Server (NTRS)

    Tubbs, J. D.; Brewer, D. W.; Smith, O. E.

    1983-01-01

    A five-parameter bivariate gamma distribution having two shape parameters, two location parameters and a correlation parameter was developed. This more general bivariate gamma distribution reduces to the known four-parameter distribution. The five-parameter distribution gives a better fit to the gust data. The statistical properties of this general bivariate gamma distribution and a hypothesis test were investigated. Although these developments have come too late in the Shuttle program to be used directly as design criteria for ascent wind gust loads, the new wind gust model has helped to explain the wind profile conditions which cause large dynamic loads. Other potential applications of the newly developed five-parameter bivariate gamma distribution are in the areas of reliability theory, signal noise, and vibration mechanics.

  3. Load Diffusion in Composite and Smart Structures

    NASA Technical Reports Server (NTRS)

    Horgan, Cornelius O.; Ambur, D. (Technical Monitor); Nemeth, M. P. (Technical Monitor)

    2003-01-01

    The research carried out here builds on our previous NASA supported research on the general topic of edge effects and load diffusion in composite structures. Further fundamental solid mechanics studies were carried out to provide a basis for assessing the complicated modeling necessary for the multi-functional large scale structures used by NASA. An understanding of the fundamental mechanisms of load diffusion in composite subcomponents is essential in developing primary composite structures. Some specific problems recently considered were those of end effects in smart materials and structures, study of the stress response of pressurized linear piezoelectric cylinders for both static and steady rotating configurations, an analysis of the effect of pre-stressing and pre-polarization on the decay of end effects in piezoelectric solids and investigation of constitutive models for hardening rubber-like materials. Our goal in the study of load diffusion is the development of readily applicable results for the decay lengths in terms of non-dimensional material and geometric parameters. Analytical models of load diffusion behavior are extremely valuable in building an intuitive base for developing refined modeling strategies and assessing results from finite element analyses.

  4. Load Control System Reliability

    SciTech Connect

    Trudnowski, Daniel

    2015-04-03

    This report summarizes the results of the Load Control System Reliability project (DOE Award DE-FC26-06NT42750). The original grant was awarded to Montana Tech April 2006. Follow-on DOE awards and expansions to the project scope occurred August 2007, January 2009, April 2011, and April 2013. In addition to the DOE monies, the project also consisted of matching funds from the states of Montana and Wyoming. Project participants included Montana Tech; the University of Wyoming; Montana State University; NorthWestern Energy, Inc., and MSE. Research focused on two areas: real-time power-system load control methodologies; and, power-system measurement-based stability-assessment operation and control tools. The majority of effort was focused on area 2. Results from the research includes: development of fundamental power-system dynamic concepts, control schemes, and signal-processing algorithms; many papers (including two prize papers) in leading journals and conferences and leadership of IEEE activities; one patent; participation in major actual-system testing in the western North American power system; prototype power-system operation and control software installed and tested at three major North American control centers; and, the incubation of a new commercial-grade operation and control software tool. Work under this grant certainly supported the DOE-OE goals in the area of “Real Time Grid Reliability Management.”

  5. Pushing high-heat-load optics to the limit

    SciTech Connect

    Fernandez, P. B.

    1999-11-08

    A cryogenically cooled silicon monochromator and a water-cooled diamond monochromator have been tested under twice the standard power load conditions at the Advanced Photon Source. Both monochromators performed satisfactorily under these extreme power loads (several hundred watts of incident power and up to 300 W/mm{sup 2} of incident normal peak power density). The experimental data and the parameters derived to predict the performance limits of the cryogenic silicon monochromator are presented.

  6. [Criteria for determining the adaptation of children to studying loads].

    PubMed

    Potupchik, T V; Makarova, M V; Prakhin, E I; Evert, L S; Baksheeva, S S

    2011-01-01

    Three hundred and two Krasnoyarsk gymnasium students were examined to define criteria for determining the adaptation to high schooling loads. The values of the emotional status and adaptive processes were studied in children with varying resistance and varying mastering capacities; the impact of cardiovascular parameters on their adaptive process was defined The criteria for estimating the adaptation to high schooling loads were the presence or absence of acute chills and neurotic reactions, cardiovascular performance, and psychoemotional status. PMID:22250390

  7. Load Component Database of Household Appliances and Small Office Equipment

    SciTech Connect

    Lu, Ning; Xie, YuLong; Huang, Zhenyu; Puyleart, Francis; Yang, Steve

    2008-07-24

    This paper discusses the development of a load component database for household appliances and office equipment. To develop more accurate load models at both transmission and distribution level, a better understanding on the individual behaviors of home appliances and office equipment under power system voltage and frequency variations becomes more and more critical. Bonneville Power Administration (BPA) has begun a series of voltage and frequency tests against home appliances and office equipments since 2005. Since 2006, Researchers at Pacific Northwest National Laboratory has collaborated with BPA personnel and developed a load component database based on these appliance testing results to facilitate the load model validation work for the Western Electricity Coordinating Council (WECC). In this paper, the testing procedure and testing results are first presented. The load model parameters are then derived and grouped. Recommendations are given for aggregating the individual appliance models to feeder level, the models of which are used for distribution and transmission level studies.

  8. Deformation parameters influencing prepreg tack

    SciTech Connect

    Ahn, K.J.; Seferis, J.C. ); Pelton, T.; Wilhelm, M. )

    1992-01-01

    A compression to tension apparatus and a methodology capable of measuring prepreg tack have been analyzed in detail in order to establish fundamental material and operating characteristics. Both intrinsic and extrinsic parameters influencing prepreg tack were identified and analyzed using commercially available carbon fiber/epoxy prepregs and mechanical testing equipment. Two different factors, (1) contact (or wetting) area of adjacent prepreg plies and (2) viscoelastic properties of the prepreg, were found to control prepreg tack. At low temperatures, contact area was the main deformation controlling step, while at high temperatures, the viscoelastic property of the prepreg was found to be dominant. Both interlaminar and intralaminar deformations were observed depending on the prepreg systems examined as well as the operating conditions of the test. In addition, hold time, hold pressure, loading rate, resin content, and out-time were also found to affect prepreg tack. Energy of separation, which may be viewed as a descriptor of prepreg tack, was observed to increase with increasing hold time, hold pressure, and loading rate. Energy of separation also showed a maximum value at a specific resin content for a specific prepreg system, while it decreased with increasing prepreg out-time due to prepreg surface characteristic change rather than bulk physical aging. Conclusively, it was observed that prepreg tack must be viewed as an extrinsic, bulk, but surface-sensitive, viscoelastic property which depends on material as well as operating conditions.

  9. Random loading fatigue crack growth: Crack closure considerations

    NASA Technical Reports Server (NTRS)

    Ortiz, Keith

    1987-01-01

    The prediction of fatigue crack growth is an important element of effective fracture control for metallic structures and mechanical components, especially in the aerospace industry. The prediction techniques available and applied today are mostly based on fatigue crack growth measurements determined in constant amplitude testing. However, while many service loadings are constant amplitude, many more loadings are random amplitude. An investigation to determine which statistics of random loadings are relevant to fatigue crack closure was conducted. The fundamentals of random processes and crack closure are briefly reviewed, then the relevance of certain random process parameters to the crack closure calculation are discussed qualitatively. A course for further research is outlined.

  10. Improved Program For Calculation Of Heat-Load Multiplier

    NASA Technical Reports Server (NTRS)

    D'Valentine, Mark

    1995-01-01

    PRM1940 computer program computes heat-load multiplier for use in Power Balance Model (PBM) computer program which calculates hundreds of operating parameters of main engine of space shuttle from relatively few measurement data. PRM1940 is stand-alone program which incorporates only those PBM calculations necessary to compute heat-load multiplier. Developed to accelerate and partly automate calculation of heat-load multiplier. Although programs specific to space shuttle application, also of interest to engineers concerned with monitoring of conditions in turbines, chemical-processing plants, and other high-temperature flow machinery.

  11. Parameter Estimation of Partial Differential Equation Models

    PubMed Central

    Xun, Xiaolei; Cao, Jiguo; Mallick, Bani; Carroll, Raymond J.; Maity, Arnab

    2013-01-01

    Partial differential equation (PDE) models are commonly used to model complex dynamic systems in applied sciences such as biology and finance. The forms of these PDE models are usually proposed by experts based on their prior knowledge and understanding of the dynamic system. Parameters in PDE models often have interesting scientific interpretations, but their values are often unknown, and need to be estimated from the measurements of the dynamic system in the present of measurement errors. Most PDEs used in practice have no analytic solutions, and can only be solved with numerical methods. Currently, methods for estimating PDE parameters require repeatedly solving PDEs numerically under thousands of candidate parameter values, and thus the computational load is high. In this article, we propose two methods to estimate parameters in PDE models: a parameter cascading method and a Bayesian approach. In both methods, the underlying dynamic process modeled with the PDE model is represented via basis function expansion. For the parameter cascading method, we develop two nested levels of optimization to estimate the PDE parameters. For the Bayesian method, we develop a joint model for data and the PDE, and develop a novel hierarchical model allowing us to employ Markov chain Monte Carlo (MCMC) techniques to make posterior inference. Simulation studies show that the Bayesian method and parameter cascading method are comparable, and both outperform other available methods in terms of estimation accuracy. The two methods are demonstrated by estimating parameters in a PDE model from LIDAR data. PMID:24363476

  12. Parameter Estimation of Partial Differential Equation Models.

    PubMed

    Xun, Xiaolei; Cao, Jiguo; Mallick, Bani; Carroll, Raymond J; Maity, Arnab

    2013-01-01

    Partial differential equation (PDE) models are commonly used to model complex dynamic systems in applied sciences such as biology and finance. The forms of these PDE models are usually proposed by experts based on their prior knowledge and understanding of the dynamic system. Parameters in PDE models often have interesting scientific interpretations, but their values are often unknown, and need to be estimated from the measurements of the dynamic system in the present of measurement errors. Most PDEs used in practice have no analytic solutions, and can only be solved with numerical methods. Currently, methods for estimating PDE parameters require repeatedly solving PDEs numerically under thousands of candidate parameter values, and thus the computational load is high. In this article, we propose two methods to estimate parameters in PDE models: a parameter cascading method and a Bayesian approach. In both methods, the underlying dynamic process modeled with the PDE model is represented via basis function expansion. For the parameter cascading method, we develop two nested levels of optimization to estimate the PDE parameters. For the Bayesian method, we develop a joint model for data and the PDE, and develop a novel hierarchical model allowing us to employ Markov chain Monte Carlo (MCMC) techniques to make posterior inference. Simulation studies show that the Bayesian method and parameter cascading method are comparable, and both outperform other available methods in terms of estimation accuracy. The two methods are demonstrated by estimating parameters in a PDE model from LIDAR data. PMID:24363476

  13. Ozone depletion and chlorine loading potentials

    NASA Technical Reports Server (NTRS)

    Pyle, John A.; Wuebbles, Donald J.; Solomon, Susan; Zvenigorodsky, Sergei; Connell, Peter; Ko, Malcolm K. W.; Fisher, Donald A.; Stordal, Frode; Weisenstein, Debra

    1991-01-01

    The recognition of the roles of chlorine and bromine compounds in ozone depletion has led to the regulation or their source gases. Some source gases are expected to be more damaging to the ozone layer than others, so that scientific guidance regarding their relative impacts is needed for regulatory purposes. Parameters used for this purpose include the steady-state and time-dependent chlorine loading potential (CLP) and the ozone depletion potential (ODP). Chlorine loading potentials depend upon the estimated value and accuracy of atmospheric lifetimes and are subject to significant (approximately 20-50 percent) uncertainties for many gases. Ozone depletion potentials depend on the same factors, as well as the evaluation of the release of reactive chlorine and bromine from each source gas and corresponding ozone destruction within the stratosphere.

  14. Load leveling on industrial refrigeration systems

    NASA Astrophysics Data System (ADS)

    Bierenbaum, H. S.; Kraus, A. D.

    1982-01-01

    A computer model was constructed of a brewery with a 2000 horsepower compressor/refrigeration system. The various conservation and load management options were simulated using the validated model. The savings available for implementing the most promising options were verified by trials in the brewery. Result show that an optimized methodology for implementing load leveling and energy conservation consisted of: (1) adjusting (or tuning) refrigeration systems controller variables to minimize unnecessary compressor starts, (2) The primary refrigeration system operating parameters, compressor suction pressure, and discharge pressure are carefully controlled (modulated) to satisfy product quality constraints (as well as in-process material cooling rates and temperature levels) and energy evaluating the energy cost savings associated with reject heat recovery, and (4) a decision is made to implement the reject heat recovery system based on a cost/benefits analysis.

  15. Respiratory Changes in Response to Cognitive Load: A Systematic Review.

    PubMed

    Grassmann, Mariel; Vlemincx, Elke; von Leupoldt, Andreas; Mittelstädt, Justin M; Van den Bergh, Omer

    2016-01-01

    When people focus attention or carry out a demanding task, their breathing changes. But which parameters of respiration vary exactly and can respiration reliably be used as an index of cognitive load? These questions are addressed in the present systematic review of empirical studies investigating respiratory behavior in response to cognitive load. Most reviewed studies were restricted to time and volume parameters while less established, yet meaningful parameters such as respiratory variability have rarely been investigated. The available results show that respiratory behavior generally reflects cognitive processing and that distinct parameters differ in sensitivity: While mentally demanding episodes are clearly marked by faster breathing and higher minute ventilation, respiratory amplitude appears to remain rather stable. The present findings further indicate that total variability in respiratory rate is not systematically affected by cognitive load whereas the correlated fraction decreases. In addition, we found that cognitive load may lead to overbreathing as indicated by decreased end-tidal CO2 but is also accompanied by elevated oxygen consumption and CO2 release. However, additional research is needed to validate the findings on respiratory variability and gas exchange measures. We conclude by outlining recommendations for future research to increase the current understanding of respiration under cognitive load. PMID:27403347

  16. Respiratory Changes in Response to Cognitive Load: A Systematic Review

    PubMed Central

    Grassmann, Mariel; Vlemincx, Elke; von Leupoldt, Andreas; Mittelstädt, Justin M.

    2016-01-01

    When people focus attention or carry out a demanding task, their breathing changes. But which parameters of respiration vary exactly and can respiration reliably be used as an index of cognitive load? These questions are addressed in the present systematic review of empirical studies investigating respiratory behavior in response to cognitive load. Most reviewed studies were restricted to time and volume parameters while less established, yet meaningful parameters such as respiratory variability have rarely been investigated. The available results show that respiratory behavior generally reflects cognitive processing and that distinct parameters differ in sensitivity: While mentally demanding episodes are clearly marked by faster breathing and higher minute ventilation, respiratory amplitude appears to remain rather stable. The present findings further indicate that total variability in respiratory rate is not systematically affected by cognitive load whereas the correlated fraction decreases. In addition, we found that cognitive load may lead to overbreathing as indicated by decreased end-tidal CO2 but is also accompanied by elevated oxygen consumption and CO2 release. However, additional research is needed to validate the findings on respiratory variability and gas exchange measures. We conclude by outlining recommendations for future research to increase the current understanding of respiration under cognitive load. PMID:27403347

  17. MEASUREMENT OF WASTE LOADING IN SALTSTONE

    SciTech Connect

    Harbour, J; Vickie Williams, V

    2008-07-18

    One of the goals of the Saltstone variability study is to identify the operational and compositional variables that control or influence the important processing and performance properties of Saltstone grout mixtures. One of those properties of importance is the Waste Loading (WL) of the decontaminated salt solution (DSS) in the Saltstone waste form. Waste loading is a measure of the amount of waste that can be incorporated within a waste form. The value of the Saltstone waste loading ultimately determines the number of vaults that will be required to disposition all of the DSS. In this report, the waste loading is defined as the volume in milliliters of DSS per liter of Saltstone waste form. The two most important parameters that determine waste loading for Saltstone are water to cementitious material (w/cm) ratio and the cured grout density. Data are provided that show the dependence of waste loading on the w/cm ratio for a fixed DSS composition using the current premix material (45% Blast Furnace Slag (BFS), 45% Fly Ash (FA) and 10% Ordinary Portland Cement (OPC)). The impact of cured grout density on waste loading was also demonstrated. Mixes (at 0.60 w/cm) made with a Modular Caustic side extraction Unit (MCU) simulant and either OPC or BFS have higher cured grout densities than mixes made with premix and increase the WL to 709 mL/L for the OPC mix and 689 mL/L for the BFS mix versus the value of 653 mL/L for MCU in premix at 0.60 w/cm ratio. Bleed liquid reduces the waste loading and lowers the effective w/cm ratio of Saltstone. A method is presented (and will be used in future tasks) for correcting the waste loading and the w/cm ratio of the as-batched mixes in those cases where bleed liquid is present. For example, the Deliquification, Dissolution and Adjustment (DDA) mix at an as-batched 0.60 w/cm ratio, when corrected for % bleed, gives a mix with a 0.55 w/cm ratio and a WL that has been reduced from 662 to 625 mL/L. An example is provided that

  18. A Comprehensive Robust Adaptive Controller for Gust Load Alleviation

    PubMed Central

    Quagliotti, Fulvia

    2014-01-01

    The objective of this paper is the implementation and validation of an adaptive controller for aircraft gust load alleviation. The contribution of this paper is the design of a robust controller that guarantees the reduction of the gust loads, even when the nominal conditions change. Some preliminary results are presented, considering the symmetric aileron deflection as control device. The proposed approach is validated on subsonic transport aircraft for different mass and flight conditions. Moreover, if the controller parameters are tuned for a specific gust model, even if the gust frequency changes, no parameter retuning is required. PMID:24688411

  19. Cyclic-loading Induced Lattice-Strain Asymmetry in Loading and Transverse Directions

    SciTech Connect

    Huang, E-Wen; Barabash, Rozaliya; Clausen, Bjorn; Liaw, Peter K

    2012-01-01

    Cyclic-loading effects on a nickel-based superalloy are investigated with in-situ neutron-diffraction measurements. The thermoelastic-temperature evolution subjected to cyclic loading is estimated based on the lattice-strain evolution. The atomic thermoelastic responses are compared with the measured bulk temperature evolution. Two transitions in the temperature-evolution are observed. The first transition, observed with the neutron-measurement results, is associated with the cyclic hardening/softening-structural transformation. The second transition is observed at larger number of fatigue cycles. It has a distinct origin and is related to the start of irreversible structural transformations during fatigue. A lattice-strain asymmetry behavior is observed. The lattice-strain asymmetry is quantified as a grain-orientation-dependent transverse/loading parameter (P-ratio). The P-ratio parameter evolution reveals the irreversible plastic deformation subjected to the fatigue. The irreversible fatigue phenomena might relate to the formation of the microcracks. At elevated temperatures the cyclic hardening/softening transition starts at lower fatigue cycles as compared to room temperature. A comparison between the room-temperature and the elevated-temperature fatigue experiments is performed. The P-ratio parameters show the same irreversible trends at both the room and the elevated temperatures.

  20. Testing for Heterogeneous Factor Loadings Using Mixtures of Confirmatory Factor Analysis Models

    PubMed Central

    Buzick, Heather M.

    2010-01-01

    The current study assessed the viability of mixture confirmatory factor analysis (CFA) for measurement invariance testing by evaluating the ability of mixture CFA models to identify differences in factor loadings across populations with identical mean structures. Using simulated data from a model with known parameters, convergence rates, parameter recovery, and the power of the likelihood-ratio test were investigated as impacted by sample size, latent class proportions, magnitude of factor loading differences, percentage of non-invariant factor loadings, and pattern of non-invariant factor loadings. Results suggest that mixture CFA models may be a viable option for testing the invariance of factor loadings; however, without differences in latent means and measurement intercepts, results suggest that larger sample sizes, more non-invariant factor loadings, and larger amounts of heterogeneity are needed to successfully estimate parameters and detect differences across latent classes. PMID:21833229

  1. Optimum matching of direct-coupled electromechanical loads to a photovoltaic generator

    SciTech Connect

    Khouzam, K.; Khouzam, L. . School of Electrical and Electronic Systems Engineering)

    1993-09-01

    The objective of the paper is to present a general mathematical formulation for matching electromechanical loads connected to a photovoltaic array. An optimization method is then used to solve the matching problem with the objective of maximizing the gross mechanical energy. The analysis is extended to obtain the sizing of the array and the battery in the direct-coupled system. Results show that optimum matching can be achieved by carefully selecting the PV array rated parameters with respect to the load parameters. The rated power of the array is twice that of the load. The field constant that maximizes the gross mechanical energy can be obtained given the parameters of the load and the array temperature. The separately excited motor offers higher matching performance compared to the series motor. The rotodynamic load offers better matching compared to the viscous friction load.

  2. Load Diffusion in Composite and Smart Structures

    NASA Technical Reports Server (NTRS)

    Horgan, C. O.

    2003-01-01

    The research carried out here builds on our previous NASA supported research on the general topic of edge effects and load diffusion in composite structures. Further fundamental solid mechanics studies were carried out to provide a basis for assessing the complicated modeling necessary for the multi-functional large scale structures used by NASA. An understanding of the fundamental mechanisms of load diffusion in composite subcomponents is essential in developing primary composite structures. Some specific problems recently considered were those of end effects in smart materials and structures, study of the stress response of pressurized linear piezoelectric cylinders for both static and steady rotating configurations, an analysis of the effect of pre-stressing and pre-polarization on the decay of end effects in piezoelectric solids and investigation of constitutive models for hardening rubber-like materials. Our goal in the study of load diffusion is the development of readily applicable results for the decay lengths in terms of non-dimensional material and geometric parameters. Analytical models of load diffusion behavior are extremely valuable in building an intuitive base for developing refined modeling strategies and assessing results from finite element analyses. The decay behavior of stresses and other field quantities provides a significant aid towards this process. The analysis is also amenable to parameter study with a large parameter space and should be useful in structural tailoring studies. Special purpose analytical models of load diffusion behavior are extremely valuable in building an intuitive base for developing refined modeling strategies and in assessing results from general purpose finite element analyses. For example, a rational basis is needed in choosing where to use three-dimensional to two-dimensional transition finite elements in analyzing stiffened plates and shells. The decay behavior of stresses and other field quantities furnished by

  3. Neuromuscular impairment following backpack load carriage.

    PubMed

    Blacker, Sam D; Fallowfield, Joanne L; Bilzon, James L J; Willems, Mark E T

    2013-01-01

    Load Carriage using backpacks is an occupational task and can be a recreational pursuit. The aim of this study was to investigate the mechanisms responsible for changes in neuromuscular function of the m. quadriceps femoris following load carriage. The physiological responses of 10 male participants to voluntary and electrically stimulated isometric contractions were measured before and immediately after two hours of treadmill walking at 6.5 km•h(-1) during level walking with no load [LW], and level walking with load carriage (25 kg backpack) [LC]. Maximal voluntary contraction force decreased by 15 ± 11 % following LC (p=0.006), with no change following LW (p=0.292). Voluntary activation decreased after LW and LC (p=0.033) with no difference between conditions (p=0.405). Doublet contraction time decreased after both LW and LC (p=0.002), with no difference between conditions (p=0.232). There were no other changes in electrically invoked doublet parameters in either condition. The 20:50 Hz ratio did not change following LW (p=0.864) but decreased from 0.88 ± 0.04 to 0.84 ± 0.04 after LC (p=0.011) indicating reduced Ca2+ release from the sarcoplasmic reticulum during excitation contraction coupling. In conclusion, two hours of load carriage carrying a 25 kg back pack caused neuromuscular impairment through a decrease in voluntary activation (i.e. central drive) and fatigue or damage to the peripheral muscle, including impairment of the excitation contraction coupling process. This may reduce physical performance and increase the risk of musculoskeletal injury. PMID:24146709

  4. Neuromuscular Impairment Following Backpack Load Carriage

    PubMed Central

    Blacker, Sam D.; Fallowfield, Joanne L.; Bilzon, James L.J.; Willems, Mark E.T.

    Load Carriage using backpacks is an occupational task and can be a recreational pursuit. The aim of this study was to investigate the mechanisms responsible for changes in neuromuscular function of the m. quadriceps femoris following load carriage. The physiological responses of 10 male participants to voluntary and electrically stimulated isometric contractions were measured before and immediately after two hours of treadmill walking at 6.5 km•h −1 during level walking with no load [LW], and level walking with load carriage (25 kg backpack) [LC]. Maximal voluntary contraction force decreased by 15 ± 11 % following LC (p=0.006), with no change following LW (p=0.292). Voluntary activation decreased after LW and LC (p=0.033) with no difference between conditions (p=0.405). Doublet contraction time decreased after both LW and LC (p=0.002), with no difference between conditions (p=0.232). There were no other changes in electrically invoked doublet parameters in either condition. The 20:50 Hz ratio did not change following LW (p=0.864) but decreased from 0.88 ± 0.04 to 0.84 ± 0.04 after LC (p=0.011) indicating reduced Ca2+ release from the sarcoplasmic reticulum during excitation contraction coupling. In conclusion, two hours of load carriage carrying a 25 kg back pack caused neuromuscular impairment through a decrease in voluntary activation (i.e. central drive) and fatigue or damage to the peripheral muscle, including impairment of the excitation contraction coupling process. This may reduce physical performance and increase the risk of musculoskeletal injury. PMID:24146709

  5. Estimation of dynamic rotor loads for the rotor systems research aircraft: Methodology development and validation

    NASA Technical Reports Server (NTRS)

    Duval, R. W.; Bahrami, M.

    1985-01-01

    The Rotor Systems Research Aircraft uses load cells to isolate the rotor/transmission systm from the fuselage. A mathematical model relating applied rotor loads and inertial loads of the rotor/transmission system to the load cell response is required to allow the load cells to be used to estimate rotor loads from flight data. Such a model is derived analytically by applying a force and moment balance to the isolated rotor/transmission system. The model is tested by comparing its estimated values of applied rotor loads with measured values obtained from a ground based shake test. Discrepancies in the comparison are used to isolate sources of unmodeled external loads. Once the structure of the mathematical model has been validated by comparison with experimental data, the parameters must be identified. Since the parameters may vary with flight condition it is desirable to identify the parameters directly from the flight data. A Maximum Likelihood identification algorithm is derived for this purpose and tested using a computer simulation of load cell data. The identification is found to converge within 10 samples. The rapid convergence facilitates tracking of time varying parameters of the load cell model in flight.

  6. PSS Parameters Tuning Using Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Abdulrahim, M.; Almoula, Zakaria Fadl; Al-Hafid, Hafid

    2008-10-01

    Optimal tuning of power system stabilizer (PSS) parameters using genetic algorithm with single objective function is presented in this paper. A Single Machine Infinite Bus (SMIB) system is considered. The main objective of this research paper is to investigate the suitability of genetic algorithm for effective tuning of parameters of the power system stabilizer in a single machine infinite bus system. A conventional speed based lead-lag PSS is used. A simple and effective method of tuning the parameters of PSS is proposed which is posed as an optimization formulation by maximizing the damping of modes of oscillations of the SMIB system over a wide range of loading conditions and different system configurations. It is found that GA based PSS with single objective design shows improved dynamic performance over Conventional PSS over a wide range of operating conditions and different system parameters.

  7. Blast wave parameters at diminished ambient pressure

    NASA Astrophysics Data System (ADS)

    Silnikov, M. V.; Chernyshov, M. V.; Mikhaylin, A. I.

    2015-04-01

    Relation between blast wave parameters resulted from a condensed high explosive (HE) charge detonation and a surrounding gas (air) pressure has been studied. Blast wave pressure and impulse differences at compression and rarefaction phases, which traditionally determine damage explosive effect, has been analyzed. An initial pressure effect on a post-explosion quasi-static component of the blast load has been investigated. The analysis is based on empirical relations between blast parameters and non-dimensional similarity criteria. The results can be directly applied to flying vehicle (aircraft or spacecraft) blast safety analysis.

  8. New methods for computing a closest saddle node bifurcation and worst case load power margin for voltage collapse

    SciTech Connect

    Dobson, I. ); Lu, Liming )

    1993-08-01

    Voltage collapse and blackout can occur in an electric power system when load powers vary so that the system loses stability in a saddle node bifurcation. The authors propose new iterative and direct methods to compute load powers at which bifurcation occurs and which are locally closest to the current operating load powers. The distance in load power parameter space to this locally closest bifurcation is an index of voltage collapse. The pattern of load power increase need not be predicted; instead the index is a worst case load power margin. The computations are illustrated in the 6 dimensional load power parameter space of a 5 bus power system. The normal vector and curvature of a hypersurface of critical load powers at which bifurcation occurs are also computed. The sensitivity of the index to parameters and controls is easily obtained from the normal vector.

  9. Anatomy of a blast muckpile: Influence on loading machine performance

    SciTech Connect

    Hanspal, S.; Scoble, M.; Lizotte, Y.

    1995-12-31

    This paper reviews the physical, chemical and mechanical components of what is considered to be the anatomy of a blast muckpile. These relate principally to geometry, floor, fragment size and shape distribution, density, hydrology, weathering, and diggability characteristics. The muckpile anatomy, the loading machine specifications and the loading practice all interact in determining the performance of a loading system. The paper reports on current field studies of blast muckpiles and loading systems performance. This work attempts to explore means for muckpile characterization which should reduce the subjectivity in blast and loading design and control. Data from two mines is reviewed in a preliminary analysis which shows the particular control exerted by size distribution and compaction on loading performance. The intent is to relate the muckpile anatomy back to both the inherent geology and the blast design, and forward to the loading system performance. The latter may include operating cost, productivity, reliability, maintenance, selectivity and agility parameters. Optimum blasting should encompass the design of a muckpile which is tailored to suit the loading machine-system.

  10. Load-induced inattentional deafness.

    PubMed

    Raveh, Dana; Lavie, Nilli

    2015-02-01

    High perceptual load in a task is known to reduce the visual perception of unattended items (e.g., Lavie, Beck, & Konstantinou, 2014). However, it remains an open question whether perceptual load in one modality (e.g., vision) can affect the detection of stimuli in another modality (e.g., hearing). We report four experiments that establish that high visual perceptual load leads to reduced detection sensitivity in hearing. Participants were requested to detect a tone that was presented during performance of a visual search task of either low or high perceptual load (varied through item similarity). The findings revealed that auditory detection sensitivity was consistently reduced with higher load, and that this effect persisted even when the auditory detection response was made first (before the search response) and when the auditory stimulus was highly expected (50 % present). These findings demonstrate a phenomenon of load-induced deafness and provide evidence for shared attentional capacity across vision and hearing. PMID:25287617

  11. Power system very short-term load prediction

    SciTech Connect

    Trudnowski, D.J.; Johnson, J.M.; Whitney, P.

    1997-02-01

    A fundamental objective of a power-system operating and control scheme is to maintain a match between the system`s overall real-power load and generation. To accurately maintain this match, modern energy management systems require estimates of the future total system load. Several strategies and tools are available for estimating system load. Nearly all of these estimate the future load in 1-hour steps over several hours (or time frames very close to this). While hourly load estimates are very useful for many operation and control decisions, more accurate estimates at closer intervals would also be valuable. This is especially true for emerging Area Generation Control (AGC) strategies such as look-ahead AGC. For these short-term estimation applications, future load estimates out to several minutes at intervals of 1 to 5 minutes are required. The currently emerging operation and control strategies being developed by the BPA are dependent on accurate very short-term load estimates. To meet this need, the BPA commissioned the Pacific Northwest National Laboratory (PNNL) and Montana Tech (an affiliate of the University of Montana) to develop an accurate load prediction algorithm and computer codes that automatically update and can reliably perform in a closed-loop controller for the BPA system. The requirements include accurate load estimation in 5-minute steps out to 2 hours. This report presents the results of this effort and includes: a methodology and algorithms for short-term load prediction that incorporates information from a general hourly forecaster; specific algorithm parameters for implementing the predictor in the BPA system; performance and sensitivity studies of the algorithms on BPA-supplied data; an algorithm for filtering power system load samples as a precursor to inputting into the predictor; and FORTRAN 77 subroutines for implementing the algorithms.

  12. Dynamic load balancing of applications

    DOEpatents

    Wheat, Stephen R.

    1997-01-01

    An application-level method for dynamically maintaining global load balance on a parallel computer, particularly on massively parallel MIMD computers. Global load balancing is achieved by overlapping neighborhoods of processors, where each neighborhood performs local load balancing. The method supports a large class of finite element and finite difference based applications and provides an automatic element management system to which applications are easily integrated.

  13. Dynamic load balancing of applications

    DOEpatents

    Wheat, S.R.

    1997-05-13

    An application-level method for dynamically maintaining global load balance on a parallel computer, particularly on massively parallel MIMD computers is disclosed. Global load balancing is achieved by overlapping neighborhoods of processors, where each neighborhood performs local load balancing. The method supports a large class of finite element and finite difference based applications and provides an automatic element management system to which applications are easily integrated. 13 figs.

  14. Structural dynamics payload loads estimates

    NASA Technical Reports Server (NTRS)

    Engels, R. C.

    1982-01-01

    Methods for the prediction of loads on large space structures are discussed. Existing approaches to the problem of loads calculation are surveyed. A full scale version of an alternate numerical integration technique to solve the response part of a load cycle is presented, and a set of short cut versions of the algorithm developed. The implementation of these techniques using the software package developed is discussed.

  15. System Measures Loads In Bolts

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G.

    1994-01-01

    Improved technique for ultrasonic nondestructive measurement of loads in bolts involves use of pulsed phase-locked loop interferometer. Provides for correction of errors and for automatic readout of loads in bolts. Actual bolt load measured, using transducers rebonded after bolts tightened. Calibration block and thermometer added. Technique applicable to critical fasteners in aerospace applications, nuclear reactors, petroleum and other chemical processing plants, steel bridges, and other structures.

  16. High-Power Rf Load

    DOEpatents

    Tantawi, Sami G.; Vlieks, Arnold E.

    1998-09-01

    A compact high-power RF load comprises a series of very low Q resonators, or chokes [16], in a circular waveguide [10]. The sequence of chokes absorb the RF power gradually in a short distance while keeping the bandwidth relatively wide. A polarizer [12] at the input end of the load is provided to convert incoming TE.sub.10 mode signals to circularly polarized TE.sub.11 mode signals. Because the load operates in the circularly polarized mode, the energy is uniformly and efficiently absorbed and the load is more compact than a rectangular load. Using these techniques, a load having a bandwidth of 500 MHz can be produced with an average power dissipation level of 1.5 kW at X-band, and a peak power dissipation of 100 MW. The load can be made from common lossy materials, such as stainless steel, and is less than 15 cm in length. These techniques can also produce loads for use as an alternative to ordinary waveguide loads in small and medium RF accelerators, in radar systems, and in other microwave applications. The design is easily scalable to other RF frequencies and adaptable to the use of other lossy materials.

  17. Residential-appliance load characteristics

    NASA Astrophysics Data System (ADS)

    Kohler, J.

    1982-04-01

    The performance of residential photovoltaic systems in combination with energy efficient appliances is examined. The load characteristics are presented for several types of major residential appliances. Load characteristics consist of the average energy use of each appliance, the power demand while the appliance is operating, and a typical use schedule. Potential energy conserving features are investigated for each appliance and used to identify a best available model and maximum feasible energy efficient appliance. Load characteristics of these energy conserving designs are then compared with the load characteristics of a standard model. The feasibility of converting appliances to dc power for use with photovoltaic systems is also discussed.

  18. Libra: Scalable Load Balance Analysis

    SciTech Connect

    2009-09-16

    Libra is a tool for scalable analysis of load balance data from all processes in a parallel application. Libra contains an instrumentation module that collects model data from parallel applications and a parallel compression mechanism that uses distributed wavelet transforms to gather load balance model data in a scalable fashion. Data is output to files, and these files can be viewed in a GUI tool by Libra users. The GUI tool associates particular load balance data with regions for code, emabling users to view the load balance properties of distributed "slices" of their application code.

  19. Libra: Scalable Load Balance Analysis

    2009-09-16

    Libra is a tool for scalable analysis of load balance data from all processes in a parallel application. Libra contains an instrumentation module that collects model data from parallel applications and a parallel compression mechanism that uses distributed wavelet transforms to gather load balance model data in a scalable fashion. Data is output to files, and these files can be viewed in a GUI tool by Libra users. The GUI tool associates particular load balancemore » data with regions for code, emabling users to view the load balance properties of distributed "slices" of their application code.« less

  20. Alaska Village Electric Load Calculator

    SciTech Connect

    Devine, M.; Baring-Gould, E. I.

    2004-10-01

    As part of designing a village electric power system, the present and future electric loads must be defined, including both seasonal and daily usage patterns. However, in many cases, detailed electric load information is not readily available. NREL developed the Alaska Village Electric Load Calculator to help estimate the electricity requirements in a village given basic information about the types of facilities located within the community. The purpose of this report is to explain how the load calculator was developed and to provide instructions on its use so that organizations can then use this model to calculate expected electrical energy usage.

  1. Estimating Nitrogen Loads, BMPs, and Target Loads Exceedance Risks

    EPA Science Inventory

    The Wabash River (WR) watershed, IN, drains two-thirds of the state’s 92 counties and has primarily agricultural land use. The nutrient and sediment loads of the WR significantly increase loads of the Ohio River ultimately polluting the Gulf of Mexico. The objective of this study...

  2. TE_01 High Power Disk Loaded Guide Load

    SciTech Connect

    Farkas, Z.D.; /SLAC

    2005-06-01

    A method to design a matching section from a smooth guide to a disk-loaded guide, using a variation of broadband matching, [1, 2] is described. Using this method, we show how to design high power loads, attenuators and filters. The load consists of a disk-loaded coaxial guide operating in the TE{sub 01}-mode. We use this mode because it has no electric field terminating on a conductor, has no axial currents, and has no current at the cylinder-disk interface. A high power load design that has -35 dB reflection and a 200 MHz, -20 dB bandwidth, is presented. It is expected that it will carry the 600 MW output peak power of the pulse compression network. We use coaxial geometry and stainless steel material to increase the attenuation per cell.

  3. Crane-Load Contact Sensor

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert; Mata, Carlos; Cox, Robert

    2005-01-01

    An electronic instrument has been developed as a prototype of a portable crane-load contact sensor. Such a sensor could be helpful in an application in which the load rests on a base in a horizontal position determined by vertical alignment pins (see Figure 1). If the crane is not positioned to lift the load precisely vertically, then the load can be expected to swing once it has been lifted clear of the pins. If the load is especially heavy, large, and/or fragile, it could hurt workers and/or damage itself and nearby objects. By indicating whether the load remains in contact with the pins when it has been lifted a fraction of the length of the pins, the crane-load contact sensor helps the crane operator determine whether it is safe to lift the load clear of the pins: If there is contact, then the load is resting against the sides of the pins and, hence, it may not be safe to lift; if contact is occasionally broken, then the load is probably not resting against the pins, so it should be safe to lift. It is assumed that the load and base, or at least the pins and the surfaces of the alignment holes in the load, are electrically conductive, so the instrument can use electrical contact to indicate mechanical contact. However, DC resistance cannot be used as an indicator of contact for the following reasons: The load and the base are both electrically grounded through cables (the load is grounded through the lifting cable of the crane) to prevent discharge of static electricity. In other words, the DC resistance between the load and the pins is always low, as though they were always in direct contact. Therefore, instead of DC resistance, the instrument utilizes the AC electrical impedance between the pins and the load. The signal frequency used in the measurement is high enough (.1 MHz) that the impedance contributed by the cables and the electrical ground network of the building in which the crane and the base are situated is significantly greater than the contact

  4. Mass loading induced dephasing in nanomechanical resonators

    NASA Astrophysics Data System (ADS)

    Atalaya, Juan

    2012-11-01

    This paper presents a study of dephasing of an underdamped nanomechanical resonator subject to random mass loading of small particles. A frequency noise model is presented which describes dephasing due to the attachment and detachment of particles at random points and particle diffusion along the resonator. This situation is commonly encountered in current mass measurement experiments using nanoelectromechanical (NEM) resonators. The conditions which can lead to inhomogeneous broadening and fine structure in the modes’ absorption spectra are discussed. It is also shown that the spectra of the higher-order cumulants of the (complex) vibrational mode amplitude are sensitive to the parameters characterizing the frequency noise process. Hence, measurement of these cumulants can provide information not only about the mass but also about other parameters of the particles (diffusion coefficient and attachment-detachment rates).

  5. Shear Load Transfer in High and Low Stress Tendons

    PubMed Central

    Kondratko-Mittnacht, Jaclyn; Duenwald-Kuehl, Sarah; Lakes, Roderic; Vanderby, Ray

    2016-01-01

    Background Tendon is an integral part of joint movement and stability, as it functions to transmit load from muscle to bone. It has an anisotropic, fibrous hierarchical structure that is generally loaded in the direction of its fibers/fascicles. Internal load distributions are altered when joint motion rotates an insertion site or when local damage disrupts fibers/fascicles, potentially causing inter-fiber (or inter-fascicular) shear. Tendons with different microstructure (helical versus linear) may redistribute loads differently. Method of Approach This study explored how shear redistributes axial loads in rat tail tendon (low stress tendons with linear microstructure) and porcine flexor tendon (high stress with helical microstructure) by creating lacerations on opposite sides of the tendon, ranging from about 20-60% of the tendon width, to create various magnitudes of shear. Differences in fascicular orientation were quantified using polarized light microscopy. Results and Conclusions Unexpectedly, both tendon types maintained about 20% of pre-laceration stress values after overlapping cuts of 60% of tendon width (no intact fibers end to end) suggesting that shear stress transfer can contribute more to overall tendon strength and stiffness than previously reported. All structural parameters for both tendon types decreased linearly with increasing laceration depth. The tail tendon had a more rapid decline in post-laceration elastic stress and modulus parameters as well as a more linear and less tightly packed fascicular structure, suggesting that positional tendons may be less well suited to redistribute loads via a shear mechanism. PMID:25700261

  6. Adaptive load sharing in heterogeneous distributed systems

    NASA Astrophysics Data System (ADS)

    Mirchandaney, Ravi; Towsley, Don; Stankovic, John A.

    1990-08-01

    In this paper, we study the performance characteristics of simple load sharing algorithms for heterogeneous distributed systems. We assume that nonnegligible delays are encountered in transferring jobs from one node to another. We analyze the effects of these delays on the performance of two threshold-based algorithms called Forward and Reverse. We formulate queuing theoretic models for each of the algorithms operating in heterogeneous systems under the assumption that the job arrival process at each node in Poisson and the service times and job transfer times are exponentially distributed. The models are solved using the Matrix-Geometric solution technique. These models are used to study the effects of different parameters and algorithm variations on the mean job response time: e.g., the effects of varying the thresholds, the impact of changing the probe limit, the impact of biasing the probing, and the optimal response times over a large range of loads and delays. Wherever relevant, the results of the models are compared with the M/M/ 1 model, representing no load balancing (hereafter referred to as NLB), and the M/M/K model, which is an achievable lower bound (hereafter referred to as LB).

  7. Cognitive load affects postural control in children.

    PubMed

    Schmid, Maurizio; Conforto, Silvia; Lopez, Luisa; D'Alessio, Tommaso

    2007-05-01

    Inferring relations between cognitive processes and postural control is a relatively topical challenge in developmental neurology. This study investigated the effect of a concurrent cognitive task on postural control in a sample of 50 nine-year-old children. Each subject completed two balance trials of 60 s, one with a concurrent cognitive task (cognitive load) and another with no cognitive load. The concurrent cognitive task consisted of mentally counting backwards in steps of 2. Twelve posturographic parameters (PPs) were extracted from the centre of pressure (CoP) trajectory obtained through a load cell force plate. Analysis of variance revealed significant differences in the majority of the extracted PPs. CoP was found to travel faster, farther, and with substantially different features demonstrating an overall broadening of the spectrum in the frequency domain. Nonlinear stability factors revealed significant differences when exposed to a concurrent cognitive task, showing an increase of instability in the intervention rate of the postural control system. By grouping children through selected items from Teachers Ratings and PANESS assessment, specific significant differences were also found both in time and frequency domain PPs, thus confirming the hypothesis of an interaction between cognitive processes (and their development), and postural control. PMID:17136524

  8. Inexpensive Bolt-Load Gage

    NASA Technical Reports Server (NTRS)

    Long, M. J.

    1983-01-01

    "Built-in" gage determines whether large bolt or stud has been torqued to desired load and provides for continuous inspection to ensure proper load is being maintained. Gage detects longitudinal stress/strain bolt; requires no electronic or sonic test equipment.

  9. Cognitive Load: Updating the Theory?

    ERIC Educational Resources Information Center

    Valcke, Martin

    2002-01-01

    Comments on this special issue on cognitive load theory and suggests three new basic directions for research: (1) the potential of cognitive load theory (CLT) to ground approaches to learning and instruction; (2) monitoring activities that occur in the learning process; and (3) the study of the notion of prior knowledge in the context of CLT. (SLD)

  10. Spring loaded locator pin assembly

    DOEpatents

    Groll, T.A.; White, J.P.

    1998-03-03

    This invention deals with spring loaded locator pins. Locator pins are sometimes referred to as captured pins. This is a mechanism which locks two items together with the pin that is spring loaded so that it drops into a locator hole on the work piece. 5 figs.

  11. Spring loaded locator pin assembly

    DOEpatents

    Groll, Todd A.; White, James P.

    1998-01-01

    This invention deals with spring loaded locator pins. Locator pins are sometimes referred to as captured pins. This is a mechanism which locks two items together with the pin that is spring loaded so that it drops into a locator hole on the work piece.

  12. Perceptual Load Alters Visual Excitability

    ERIC Educational Resources Information Center

    Carmel, David; Thorne, Jeremy D.; Rees, Geraint; Lavie, Nilli

    2011-01-01

    Increasing perceptual load reduces the processing of visual stimuli outside the focus of attention, but the mechanism underlying these effects remains unclear. Here we tested an account attributing the effects of perceptual load to modulations of visual cortex excitability. In contrast to stimulus competition accounts, which propose that load…

  13. Wind load reduction for heliostats

    SciTech Connect

    Peterka, J.A.; Hosoya, N.; Bienkiewicz, B.; Cermak, J.E.

    1986-05-01

    This report presents the results of wind-tunnel tests supported through the Solar Energy Research Institute (SERI) by the Office of Solar Thermal Technology of the US Department of Energy as part of the SERI research effort on innovative concentrators. As gravity loads on drive mechanisms are reduced through stretched-membrane technology, the wind-load contribution of the required drive capacity increases in percentage. Reduction of wind loads can provide economy in support structure and heliostat drive. Wind-tunnel tests have been directed at finding methods to reduce wind loads on heliostats. The tests investigated primarily the mean forces, moments, and the possibility of measuring fluctuating forces in anticipation of reducing those forces. A significant increase in ability to predict heliostat wind loads and their reduction within a heliostat field was achieved.

  14. Umbilical cable recovery load analysis

    NASA Astrophysics Data System (ADS)

    Yan, Shu-wang; Jia, Zhao-lin; Feng, Xiao-wei; Li, Shi-tao

    2013-06-01

    Umbilical cable is a kind of integrated subsea cable widely used in the exploration and exploitation of oil and gas field. The severe ocean environment makes great challenges to umbilical maintenance and repair work. Damaged umbilical is usually recovered for the regular operation of the offshore production system. Analysis on cables in essence is a two-point boundary problem. The tension load at the mudline must be known first, and then the recovery load and recovery angle on the vessel can be solved by use of catenary equation. The recovery analysis also involves umbilical-soil interaction and becomes more complicated. Calculation methods for recovery load of the exposed and buried umbilical are established and the relationship between the position of touch down point and the recovery load as well as the recovery angle and recovery load are analyzed. The analysis results provide a theoretical reference for offshore on-deck operation.

  15. A model of human walking energetics with an elastically-suspended load.

    PubMed

    Ackerman, Jeffrey; Seipel, Justin

    2014-06-01

    Elastically-suspended loads have been shown to reduce the peak forces acting on the body while walking with a load when the suspension stiffness and damping are minimized. However, it is not well understood how elastically-suspended loads can affect the energetic cost of walking. Prior work shows that elastically suspending a load can yield either an increase or decrease in the energetic cost of human walking, depending primarily on the suspension stiffness, load, and walking speed. It would be useful to have a simple explanation that reconciles apparent differences in existing data. The objective of this paper is to help explain different energetic outcomes found with experimental load suspension backpacks and to systematically investigate the effect of load suspension parameters on the energetic cost of human walking. A simple two-degree-of-freedom model is used to approximate the energetic cost of human walking with a suspended load. The energetic predictions of the model are consistent with existing experimental data and show how the suspension parameters, load mass, and walking speed can affect the energetic cost of walking. In general, the energetic cost of walking with a load is decreased compared to that of a stiffly-attached load when the natural frequency of a load suspension is tuned significantly below the resonant walking frequency. The model also shows that a compliant load suspension is more effective in reducing the energetic cost of walking with low suspension damping, high load mass, and fast walking speed. This simple model could improve our understanding of how elastic load-carrying devices affect the energetic cost of walking with a load. PMID:24709566

  16. Self-excitation in Francis runner during load rejection

    NASA Astrophysics Data System (ADS)

    Moisan, É.; Giacobbi, D.-B.; Gagnon, M.; Léonard, F.

    2014-03-01

    Typically, transients such as load rejection generate only a few high vibration cycles in Francis runners. However, in the cases presented in this study, a sustained vibration around a natural frequency was observed on three (3) homologous Francis runners of different sizes during such events. The first two (2) runners were equipped with strain gauges on the blades and displacement sensors positioned circumferentially in the bottom ring and head cover around the runner labyrinth seals. The third runner was monitored only with displacement sensors on non-rotating components. The data from the first two (2) runners provided a better understanding of the parameters influencing the appearance of the high amplitude vibrations and allowed the implementation of a test plan to circumvent the phenomenon during commissioning of the third runner. Based on the measured data, the distributor's closing parameters were optimized to eliminate the vibration observed during load rejection on most of the operating range and reduce it significantly at full load.

  17. Neutron wall loading of Tokamak reactors

    NASA Astrophysics Data System (ADS)

    Wong, C. P. C.

    2000-12-01

    Neutron wall loading (Γn) is a key parameter for the selection of fusion power core component materials. It also impacts the economic, performance, design, safety and environmental aspect of the fusion power plant. This paper reports the determination of the range of Γn for economically competitive fusion power plants based on the analysis that couples the MHD stability physics results to a system design code. Cost of electricity (COE) was selected as the parameter to be minimized. For both normal conducting and superconducting coil options, at thermal efficiency of 46% and at the power output range of 1-2 GW(e) the average neutron wall loading is 4-7 MW/m2. For a given power output, higher thermal efficiency will allow lower Γn. At the above range of Γn, in order to have economical fusion power reactors, for the solid first wall design option, high thermal efficiency of 46% to 57.5% requires the use of alloys like V and W-alloy, respectively. The corresponding COE can be projected to be in the economically competitive range of 62-54.6 mill/kWh.

  18. Load models for fatigue reliability from limited data

    SciTech Connect

    Winterstein, S.R.; Lange, C.H.

    1995-09-01

    Probability distributions of wind turbine loads are estimated from limited data. The impact of different models on fatigue damage is shown. Common one-parameter probability models, such as the Rayleigh and exponential, are found to give significantly different estimates of load distributions and damage. Greatest differences occur in materials with relatively high values of the S-N exponent b, such as composites. In such cases more accurate damage estimates are found by matching at least two moments of the load data (Weibull model), or still higher moments as well. For this purpose, a new, four-moment ``generalized Weibull`` model is introduced. For edge-wise loads it appears a notable improvement over the basic Weibull model, while it supports the Weibull model in the flapwise case. Uncertainty in damage estimates is also quantified, along with the implied data needs.

  19. A comparison of atmospheric loading models applied to SLR data

    NASA Astrophysics Data System (ADS)

    Koenig, Rolf; Dill, Robert; Raimondo, Jean-Claude; Vei, Margarita

    2016-04-01

    We compute displacements of global SLR station coordinates by atmospheric loading based on surface pressure data from European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-interim data. Inhouse we generate two branches: firstly straightforward following Farrel's theory but using updated load Love numbers, secondly from utilizing localized Green's functions instead of global ones. Externally provided displacements are available f.i. from the International Mass Loading Service (IMLS) based on different input data and modeling. We compare these displacements and apply them to Satellite Laser Ranging (SLR) data processing of a recent six years period of the LAGEOS, LARES, AJISAI, STARLETTE and STELLA geodetic missions. We assess the impact of the loading models on precise orbit determination and Earth parameters of interest.

  20. Integrated loading rate determination for wastewater infiltration system sizing

    SciTech Connect

    Jenssen, P.D. . Centre for Soil and Environmental Research); Siegrist, R.L. )

    1991-01-01

    One of the principal parameters used in wastewater system design is the hydraulic loading rate. Historically the determination of the loading rate has been a straight forward process involving selection of a rate based on soil texture or water percolation rate. Research and experience over the past decade has provided additional insight into the complex processes occurring within wastewater-amended soil systems and has suggested the fallacy of this approach. A mean grain size vs. sorting (MESO) diagram constitutes a new basis for soil classification for wastewater infiltration system design. Crude characterization of the soil hydraulic properties is possible according to the MESO Diagram and loading rate as well as certain purification aspects can be assessed from the diagram. In this paper, an approach is described based on the MESO Diagram that integrates soil properties and wastewater pretreatment to yield a loading rate. 53 refs., 3 figs., 2 tabs.

  1. Issues related to SPR joints subjected to fatigue loads

    NASA Astrophysics Data System (ADS)

    De Luca, A.; Senatore, F.; Greco, A.

    2016-05-01

    SPR joints will represent an alternative solution to spot welding in automotive field. However, their fatigue behavior shows several critical issues. After a brief introduction of this new solution, different crack modes are described, emphasizing the parameters that characterize them, i.e. the applied loads, the geometry of the joint and other phenomenon as fretting, vibration and corrosion.

  2. Buckling behavior of long anisotropic plates subjected to combined loads

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.

    1995-01-01

    A parametric study is presented of the buckling behavior of infinitely long symmetrically laminated anisotropic plates subjected to combined loads. The study focuses on the interaction of a subcritical (stable) secondary loading state of constant magnitude and a primary destabilizing load that is increased in magnitude until buckling occurs. The loads, considered in this report are uniform axial compression, pure in-plane bending, transverse tension and compression, and shear. Results are presented that were obtained by using a special purpose nondimensional analysis that is well suited for parametric studies of clamped and simply supported plates. In particular, results are presented for a +/- 45(sub S) graphite-epoxy laminate that is highly anisotropic and representative of a laminate used for spacecraft applications. In addition, generic buckling-design charts are presented for a wide range of nondimensional parameters that are applicable to a broad class of laminate constructions. These results show the general behavioral trends of specially orthotropic plates and the effects of flexural anisotropy on plates subjected to various combined loading conditions. An important finding of the present study is that the effects of flexural anisotropy on the buckling resistance of a plate can be significantly more important for plates subjected to combined loads than for plates subjected to single-component loads.

  3. In Vivo Axial Loading of the Mouse Tibia

    PubMed Central

    Melville, Katherine M.; Robling, Alexander G.

    2015-01-01

    Summary Non-invasive methods to apply controlled, cyclic loads to the living skeleton are used as an anabolic agent to stimulate new bone formation in adults and enhance bone mass accrual in growing animals. These methods are also invaluable for understanding bone signaling pathways. Our focus here is on a particular loading model: in vivo axial compression of the mouse tibia. An advantage of loading the tibia is that changes are present in both the cancellous envelope of the proximal tibia and the cortical bone of the tibial diaphysis. To load the tibia of the mouse axially in vivo, a cyclic compressive load is applied up to five times a week to a single tibia per mouse for a duration lasting from 1 day to 6 weeks. With the contralateral limb as an internal control, the anabolic response of the skeleton to mechanical stimuli can be studied in a pairwise experimental design. Here, we describe the key parameters that must be considered before beginning an in vivo mouse tibial loading experiment, including methods for in vivo strain gauging of the tibial midshaft, and then we describe general methods for loading the mouse tibia for an experiment lasting multiple days. PMID:25331046

  4. Parameter estimating state reconstruction

    NASA Technical Reports Server (NTRS)

    George, E. B.

    1976-01-01

    Parameter estimation is considered for systems whose entire state cannot be measured. Linear observers are designed to recover the unmeasured states to a sufficient accuracy to permit the estimation process. There are three distinct dynamics that must be accommodated in the system design: the dynamics of the plant, the dynamics of the observer, and the system updating of the parameter estimation. The latter two are designed to minimize interaction of the involved systems. These techniques are extended to weakly nonlinear systems. The application to a simulation of a space shuttle POGO system test is of particular interest. A nonlinear simulation of the system is developed, observers designed, and the parameters estimated.

  5. RESRAD parameter sensitivity analysis

    SciTech Connect

    Cheng, J.J.; Yu, C.; Zielen, A.J.

    1991-08-01

    Three methods were used to perform a sensitivity analysis of RESRAD code input parameters -- enhancement of RESRAD by the Gradient Enhanced Software System (GRESS) package, direct parameter perturbation, and graphic comparison. Evaluation of these methods indicated that (1) the enhancement of RESRAD by GRESS has limitations and should be used cautiously, (2) direct parameter perturbation is tedious to implement, and (3) the graphics capability of RESRAD 4.0 is the most direct and convenient method for performing sensitivity analyses. This report describes procedures for implementing these methods and presents a comparison of results. 3 refs., 9 figs., 8 tabs.

  6. Cognitive Load Theory: How Many Types of Load Does It Really Need?

    ERIC Educational Resources Information Center

    Kalyuga, Slava

    2011-01-01

    Cognitive load theory has been traditionally described as involving three separate and additive types of load. Germane load is considered as a learning-relevant load complementing extraneous and intrinsic load. This article argues that, in its traditional treatment, germane load is essentially indistinguishable from intrinsic load, and therefore…

  7. Selection of operating machinery parameters for a bucket excavator

    SciTech Connect

    Fabrichnyi, Y.F.; Baboshin, K.V.; Etinger, I.M.; Mekk, V.A.

    1985-05-01

    The mining industry uses extensively single-bucket excavators of the straight shovel type, like the EKG-4.6, as the most effective way of loading previously loosened hard and abrasive excavated rocks. Therefore, an increase in their working efficiency, mainly as regards increasing productivity, reducing load on the operating machinery, and reducing wear of the operating machinery elements, is of particular importance. Analysis shows that the possibilities for this lie in the correct selection of movement trajectory parameters for the excavator bucket, which for existing excavators are inadequate for loading excavated rock. The authors study here the effect of trajectory parameters on excavator bucket filling, and on their basis they select parameters for the operating machinery.

  8. Shield-loading studies at an eastern Appalachian minesite. Report of Investigations/1987

    SciTech Connect

    Barczak, T.M.; Kravits, S.J.

    1987-01-01

    Four longwall shield supports were instrumented with an eight-transducer instrumentation array to measure leg, canopy capsule, and compression lemniscate link forces from which resultant shield loading was determined. The instrumented supports were monitored over a 4-month period, producing over 75 shield cycles of resultant shield loading. Resultant loading is the true measure of support resistance, providing both roof-to-floor and face-to-waste support reactions as well as the location of the reaction on the shield canopy. Observed roof support reactions were analyzed, with particular emphasis on horizontal shield loading, since it is the least-understood design parameter. Average, peak, and change in shield loading during the mining cycle are discussed. Correlations among data parameters are examined, as is the distribution of support loading at the headgate and midface. Conclusions are drawn as to the effectiveness of the shield support at the installation. Recommendations are made for further research needs.

  9. SSME/side loads analysis for flight configuration, revision A. [structural analysis of space shuttle main engine under side load excitation

    NASA Technical Reports Server (NTRS)

    Holland, W.

    1974-01-01

    This document describes the dynamic loads analysis accomplished for the Space Shuttle Main Engine (SSME) considering the side load excitation associated with transient flow separation on the engine bell during ground ignition. The results contained herein pertain only to the flight configuration. A Monte Carlo procedure was employed to select the input variables describing the side load excitation and the loads were statistically combined. This revision includes an active thrust vector control system representation and updated orbiter thrust structure stiffness characteristics. No future revisions are planned but may be necessary as system definition and input parameters change.

  10. Hydrodynamic loading of tensegrity structures

    NASA Astrophysics Data System (ADS)

    Wroldsen, Anders S.; Johansen, Vegar; Skelton, Robert E.; Sørensen, Asgeir J.

    2006-03-01

    This paper introduces hydrodynamic loads for tensegrity structures, to examine their behavior in marine environments. Wave compliant structures are of general interest when considering large marine structures, and we are motivated by the aquaculture industry where new concepts are investigated in order to make offshore installations for seafood production. This paper adds to the existing models and software simulations of tensegrity structures exposed to environmental loading from waves and current. A number of simulations are run to show behavior of the structure as a function of pretension level and string stiffness for a given loading condition.

  11. Spinning Reserve from Responsive Load

    SciTech Connect

    Kueck, John D; Kirby, Brendan J; Laughner, T; Morris, K

    2009-01-01

    As power system costs rise and capacity is strained demand response can provide a significant system reliability benefit at a potentially attractive cost. The 162 room Music Road Hotel in Pigeon Forge Tennessee agreed to host a spinning reserve test. The Tennessee Valley Authority (TVA) supplied real-time metering and monitoring expertise to record total hotel load during both normal operations and testing. Preliminary testing showed that hotel load can be curtailed by 22% to 37% depending on the outdoor temperature and the time of day. The load drop was very rapid, essentially as fast as the 2 second metering could detect.

  12. Reassessment of safeguards parameters

    SciTech Connect

    Hakkila, E.A.; Richter, J.L.; Mullen, M.F.

    1994-07-01

    The International Atomic Energy Agency is reassessing the timeliness and goal quantity parameters that are used in defining safeguards approaches. This study reviews technology developments since the parameters were established in the 1970s and concludes that there is no reason to relax goal quantity or conversion time for reactor-grade plutonium relative to weapons-grade plutonium. For low-enriched uranium, especially in countries with advanced enrichment capability there may be an incentive to shorten the detection time.

  13. Investigating and Analyzing Applied Loads Higher Than Limit Loads

    NASA Technical Reports Server (NTRS)

    Karkehabadi, R.; Rhew, R. D.

    2004-01-01

    The results of the analysis for Balance 1621 indicate that the stresses are high near sharp corners. It is important to increase the size of the fillets to relieve some of the high stresses for the balances that will be designed. For the existing balances, the stresses are high and do not satisfy the established criteria. Two options are considered here. One is a possible modification of the existing balances, and two is to consider other load options. Redesigning a balance can be done in order to enhance the structural integrity of the balance. Because an existing balance needs to be modified, it is not possible to increase the fillet sizes without some further modifications to the balance. It is required that some materials be extracted from the balance in order to have larger fillet sizes. Researchers are interested in being able to apply some components of the load on the balance above the limit loads assigned. Is it possible to enhance the load on the same balance and maintain the factor of safety required? Some loads were increased above their limit loads and analyzed here.

  14. Design smartness for tackling unanticipated loads

    NASA Astrophysics Data System (ADS)

    Badari Narayanan, V. T.; Natarajan, C.; Rajaraman, Arunachalam

    2003-10-01

    studies that there is no unique design that satisfies all parameter simultaneously. A section that performs well in terms of cost and weight may yet fail in terms of buffer or utilization of steel upto its limit. Whereas a section that performs moderately in every one of the parameter may still be a better option. Depending upon the requirement, weightages for performance with respect to resisting moment, cost weight and additional buffer capacity must be specified. The section that best satisfies all the above criteria could be chosen as the ideal section. Section design done by varying other parameters such as grade of steel and concrete can also be studied. Strain hardening in steel can also be investigated to arrive at the greater carrying capacity of the sections. For example, it may even be possible for a structure to be designed purely for dead load and live load. But inherent smartness can be induced to take care of seismic loads either partly or even completely.

  15. On dynamic loads in parallel shaft transmissions. 1: Modelling and analysis

    NASA Technical Reports Server (NTRS)

    Lin, Edward Hsiang-Hsi; Huston, Ronald L.; Coy, John J.

    1987-01-01

    A model of a simple parallel-shaft, spur-gear transmission is presented. The model is developed to simulate dynamic loads in power transmissions. Factors affecting these loads are identified. Included are shaft stiffness, local compliance due to contact stress, load sharing, and friction. Governing differential equations are developed and a solution procedure is outlined. A parameter study of the solutions is presented in NASA TM-100181 (AVSCOM TM-87-C-3).

  16. 14 CFR 23.421 - Balancing loads.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Balancing loads. 23.421 Section 23.421... Balancing Surfaces § 23.421 Balancing loads. (a) A horizontal surface balancing load is a load necessary to... balancing surfaces must be designed for the balancing loads occurring at any point on the limit...

  17. 14 CFR 23.421 - Balancing loads.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Balancing loads. 23.421 Section 23.421... Balancing Surfaces § 23.421 Balancing loads. (a) A horizontal surface balancing load is a load necessary to... balancing surfaces must be designed for the balancing loads occurring at any point on the limit...

  18. 14 CFR 23.425 - Gust loads.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Balancing Surfaces § 23.425 Gust loads. (a) Each horizontal surface, other than a main wing, must be... for the conditions specified in paragraph (a) of this section, the initial balancing loads for steady... load resulting from the gusts must be added to the initial balancing load to obtain the total load....

  19. 14 CFR 23.425 - Gust loads.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Balancing Surfaces § 23.425 Gust loads. (a) Each horizontal surface, other than a main wing, must be... for the conditions specified in paragraph (a) of this section, the initial balancing loads for steady... load resulting from the gusts must be added to the initial balancing load to obtain the total load....

  20. The effects of a suspended-load backpack on gait.

    PubMed

    Xu, Xu; Hsiang, Simon M; Mirka, Gary A

    2009-01-01

    A suspended-load backpack is a device that is designed to capture the mechanical energy created as a suspended backpack load oscillates vertically on the back during gait. The objective of the current study was to evaluate the effect of a suspended-load backpack system on selected temporal and kinetics parameters describing gait. Nine male participants carried a suspended-load backpack as they walked on an instrumented treadmill with varied levels of load (no backpack, 22.5 kg, and 29.3 kg) and walking speed (1.16 m/s, 1.43 m/s, 1.70 m/s). As the participants performed this treadmill task, ground reaction forces were collected from an instrumented treadmill system. From these data, temporal variables (cycle time, single support time, and double support time) and kinetic variables (normalized weight acceptance force, normalized push-off force, and normalized mid-stance force) were derived. The results showed that the response of the temporal variables were consistent with previous studies of conventional (i.e. stable load) backpacks. The response of the normalized push-off force, however, showed that increasing walking speed significantly (p<0.05) decreased the magnitude of this force, a result contrary to the literature concerning conventional backpacks where this force has been shown to significantly increase. Further evaluation revealed that this reduction in force was the result of a phase shift between the movement of the carried load and the movement of the torso. This suggests that the motion of the load in a suspended-load backpack influences the gait biomechanics and should be considered as this technology advances. PMID:18693016

  1. Plutonium Immobilization Can Loading Concepts

    SciTech Connect

    Kriikku, E.; Ward, C.; Stokes, M.; Randall, B.; Steed, J.; Jones, R.; Hamilton, L.; Rogers, L.; Fiscus, J.; Dyches, G.

    1998-05-01

    The Plutonium Immobilization Facility will encapsulate plutonium in ceramic pucks and seal the pucks inside welded cans. Remote equipment will place these cans in magazines and the magazines in a Defense Waste Processing Facility (DWPF) canister. The DWPF will fill the canister with glass for permanent storage. This report discusses five can loading conceptual designs and the lists the advantages and disadvantages for each concept. This report identifies loading pucks into cans and backfilling cans with helium as the top priority can loading development areas. The can loading welder and cutter are very similar to the existing Savannah River Site (SRS) FB-Line bagless transfer welder and cutter and thus they are a low priority development item.

  2. Flight Loads and Environments Initiative

    NASA Technical Reports Server (NTRS)

    Kaufman, Daniel; Kern, Dennis

    2005-01-01

    A viewgraph presentation on the design of a lightweight non-intrusive force measurement device (FMD) to reduce the cost per effective payload (PL) mass into orbit (CPMO) by improving launch vehicle (LV) loads and environments.

  3. Loading and conjugating cavity biostructures

    DOEpatents

    Hainfeld, J.F.

    1997-11-25

    Methods for the preparation and use of a biological delivery system are disclosed. The method of preparation includes the loading of a non-biological material into a biostructure having a load-bearing structure. The method also includes the removal of some of the biostructure`s contents and the loading of a non-biological material into the biostructure. The biostructure is biologically compatible with the host, and preferably is derived from the host, the host`s species or a related species. The loaded biostructure is used directly, or it can be targeted to specific cells, tissues and/or organs within a host. The targeted biostructure can be used to deliver the non-biological material to a specified tissue, organ or cell within a host for diagnostic, therapeutic or other purposes. 11 figs.

  4. Loading and conjugating cavity biostructures

    DOEpatents

    Hainfeld, J.F.

    1995-08-22

    Methods for the preparation and use of a biological delivery system are disclosed. The method of preparation includes the loading of a non-biological material into a biostructure having a load-bearing structure. The method also includes the removal of some of the biostructure`s contents and the loading of a non-biological material into the biostructure. The biostructure is biologically compatible with the host, and preferably is derived from the host, the host`s species or a related species. The loaded biostructure is used directly, or it can be targeted to specific cells, tissues and/or organs within a host. The targeted biostructure can be used to deliver the non-biological material to a specified tissue, organ or cell within a host for diagnostic, therapeutic or other purposes. 11 figs.

  5. Loading and conjugating cavity biostructures

    DOEpatents

    Hainfeld, James F.

    1997-11-25

    Methods for the preparation and use of a biological delivery system are disclosed. The method of preparation includes the loading of a non-biological material into a biostructure having a load-bearing structure. The method also includes the removal of some of the biostructure's contents and the loading of a non-biological material into the biostructure. The biostructure is biologically compatible with the host, and preferably is derived from the host, the host's species or a related species. The loaded biostructure is used directly, or it can be targeted to specific cells, tissues and/or organs within a host. The targeted biostructure can be used to deliver the non-biological material to a specified tissue, organ or cell within a host for diagnostic, therapeutic or other purposes.

  6. Loading and conjugating cavity biostructures

    DOEpatents

    Hainfeld, James F.

    1995-08-22

    Methods for the preparation and use of a biological delivery system are disclosed. The method of preparation includes the loading of a non-biological material into a biostructure having a load-bearing structure. The method also includes the removal of some of the biostructure's contents and the loading of a non-biological material into the biostructure. The biostructure is biologically compatible with the host, and preferably is derived from the host, the host's species or a related species. The loaded biostructure is used directly, or it can be targeted to specific cells, tissues and/or organs within a host. The targeted biostructure can be used to deliver the non-biological material to a specified tissue, organ or cell within a host for diagnostic, therapeutic or other purposes.

  7. Sandia Wind Turbine Loads Database

    DOE Data Explorer

    The Sandia Wind Turbine Loads Database is divided into six files, each corresponding to approximately 16 years of simulation. The files are text files with data in columnar format. The 424MB zipped file containing six data files can be downloaded by the public. The files simulate 10-minute maximum loads for the NREL 5MW wind turbine. The details of the loads simulations can be found in the paper: “Decades of Wind Turbine Loads Simulations”, M. Barone, J. Paquette, B. Resor, and L. Manuel, AIAA2012-1288 (3.69MB PDF). Note that the site-average wind speed is 10 m/s (class I-B), not the 8.5 m/s reported in the paper.

  8. Maximizing TDRS Command Load Lifetime

    NASA Technical Reports Server (NTRS)

    Brown, Aaron J.

    2002-01-01

    The GNC software onboard ISS utilizes TORS command loads, and a simplistic model of TORS orbital motion to generate onboard TORS state vectors. Each TORS command load contains five "invariant" orbital elements which serve as inputs to the onboard propagation algorithm. These elements include semi-major axis, inclination, time of last ascending node crossing, right ascension of ascending node, and mean motion. Running parallel to the onboard software is the TORS Command Builder Tool application, located in the JSC Mission Control Center. The TORS Command Builder Tool is responsible for building the TORS command loads using a ground TORS state vector, mirroring the onboard propagation algorithm, and assessing the fidelity of current TORS command loads onboard ISS. The tool works by extracting a ground state vector at a given time from a current TORS ephemeris, and then calculating the corresponding "onboard" TORS state vector at the same time using the current onboard TORS command load. The tool then performs a comparison between these two vectors and displays the relative differences in the command builder tool GUI. If the RSS position difference between these two vectors exceeds the tolerable lim its, a new command load is built using the ground state vector and uplinked to ISS. A command load's lifetime is therefore defined as the time from when a command load is built to the time the RSS position difference exceeds the tolerable limit. From the outset of TORS command load operations (STS-98), command load lifetime was limited to approximately one week due to the simplicity of both the onboard propagation algorithm, and the algorithm used by the command builder tool to generate the invariant orbital elements. It was soon desired to extend command load lifetime in order to minimize potential risk due to frequent ISS commanding. Initial studies indicated that command load lifetime was most sensitive to changes in mean motion. Finding a suitable value for mean motion

  9. Effects of military load carriage on kinematics of gait.

    PubMed

    Majumdar, Deepti; Pal, Madhu Sudan; Majumdar, Dhurjati

    2010-06-01

    Manual load carriage is a universal activity and an inevitable part of the daily schedule of a soldier. Indian Infantry soldiers carry loads on the waist, back, shoulders and in the hands for a marching order. There is no reported study on the effects of load on gait in this population. It is important to evaluate their kinematic responses to existing load carriage operations and to provide guidelines towards the future design of heavy military backpacks (BPs) for optimising soldiers' performance. Kinematic changes of gait parameters in healthy male infantry soldiers whilst carrying no load (NL) and military loads of 4.2-17.5 kg (6.5-27.2% body weight) were investigated. All comparisons were conducted at a self-selected speed. Soldier characteristics were: mean (SD) age 23.3 (2.6) years; height 172.0 (3.8) cm; weight 64.3 (7.4) kg. Walk trials were collected using a 3-D Motion Analysis System. Results were subjected to one-way ANOVA followed by Dunnett post hoc test. There were increases in step length, stride length, cadence and midstance with the addition of a load compared to NL. These findings were resultant of an adaptive phenomenon within the individual to counterbalance load effect along with changes in speed. Ankle and hip ranges of motion (ROM) were significant. The ankle was more dorsiflexed, the knee and hip were more flexed during foot strike and helped in absorption of the load. The trunk showed more forward leaning with the addition of a load to adjust the centre of mass of the body and BP system back to the NL condition. Significant increases in ankle and hip ROM and trunk forward inclination (> or =10 degrees ) with lighter loads, such as a BP (10.7 kg), BP with rifle (14.9 kg) and BP with a light machine gun (17.5 kg), may cause joint injuries. It is concluded that the existing BP needs design improvisation specifically for use in low intensity conflict environments. STATEMENT OF RELEVANCE: The present study evaluates spatial, temporal and angular

  10. Controller for thermostatically controlled loads

    DOEpatents

    Lu, Ning; Zhang, Yu; Du, Pengwei; Makarov, Yuri V.

    2016-06-07

    A system and method of controlling aggregated thermostatically controlled appliances (TCAs) for demand response is disclosed. A targeted load profile is formulated and a forecasted load profile is generated. The TCAs within an "on" or "off" control group are prioritized based on their operating temperatures. The "on" or "off" status of the TCAs is determined. Command signals are sent to turn on or turn off the TCAs.

  11. Split torque transmission load sharing

    NASA Technical Reports Server (NTRS)

    Krantz, T. L.; Rashidi, M.; Kish, J. G.

    1992-01-01

    Split torque transmissions are attractive alternatives to conventional planetary designs for helicopter transmissions. The split torque designs can offer lighter weight and fewer parts but have not been used extensively for lack of experience, especially with obtaining proper load sharing. Two split torque designs that use different load sharing methods have been studied. Precise indexing and alignment of the geartrain to produce acceptable load sharing has been demonstrated. An elastomeric torque splitter that has large torsional compliance and damping produces even better load sharing while reducing dynamic transmission error and noise. However, the elastomeric torque splitter as now configured is not capable over the full range of operating conditions of a fielded system. A thrust balancing load sharing device was evaluated. Friction forces that oppose the motion of the balance mechanism are significant. A static analysis suggests increasing the helix angle of the input pinion of the thrust balancing design. Also, dynamic analysis of this design predicts good load sharing and significant torsional response to accumulative pitch errors of the gears.

  12. Drug Loading of Mesoporous Silicon

    NASA Astrophysics Data System (ADS)

    Moffitt, Anne; Coffer, Jeff; Wang, Mengjia

    2011-03-01

    The nanostructuring of crystalline solids with low aqueous solubilities by their incorporation into mesoporous host materials is one route to improve the bioavailability of such solids. Earlier studies suggest that mesoporous Si (PSi), with pore widths in the range of 5-50 nm, is a candidate for such an approach. In this presentation, we describe efforts to load curcumin into free-standing microparticles of PSi. Curcumin is a compound extracted from turmeric root, which is an ingredient of curry. Curucmin has shown activity against selected cancer cell lines, bacteria, and other medical conditions. However, curcumin has a very low bioavailability due to its extremely low water solubility (0.6 μ g/mL). Incorporation of curcumin was achieved by straightforward loading of the molten solid at 185circ; C. Loading experiments were performed using PSi particles of two different size ranges, 45-75 μ m and 150-250 μ m. Longer loading times and ratio of curcumin to PSi leads to a higher percentage of loaded curcumin in both PSi particle sizes (as determined by weight difference). The extent of curcumin crystallinity was assessed by x-ray diffraction (XRD). The solubility and release kinetics of loaded curcumin from the PSi was determined by extraction into water at 37circ; C, with analysis using UV-VIS spectrometry. NSF-REU and TCU.

  13. Estimation of forest fuel load from radar remote sensing

    USGS Publications Warehouse

    Saatchi, S.; Halligan, K.; Despain, D.G.; Crabtree, R.L.

    2007-01-01

    Understanding fire behavior characteristics and planning for fire management require maps showing the distribution of wildfire fuel loads at medium to fine spatial resolution across large landscapes. Radar sensors from airborne or spaceborne platforms have the potential of providing quantitative information about the forest structure and biomass components that can be readily translated to meaningful fuel load estimates for fire management. In this paper, we used multifrequency polarimetric synthetic aperture radar (SAR) imagery acquired over a large area of the Yellowstone National Park by the Airborne SAR sensor to estimate the distribution of forest biomass and canopy fuel loads. Semiempirical algorithms were developed to estimate crown and stem biomass and three major fuel load parameters, namely: 1) canopy fuel weight; 2) canopy bulk density; and 3) foliage moisture content. These estimates, when compared directly to measurements made at plot and stand levels, provided more than 70% accuracy and, when partitioned into fuel load classes, provided more than 85% accuracy. Specifically, the radar-generated fuel parameters were in good agreement with the field-based fuel measurements, resulting in coefficients of determination of R2 = 85 for the canopy fuel weight, R 2 = 0.84 for canopy bulk density, and R2 =0.78 for the foliage biomass. ?? 2007 IEEE.

  14. Estimation of Forest Fuel Load from Radar Remote Sensing

    NASA Technical Reports Server (NTRS)

    Saatchi, Sassan; Despain, Don G.; Halligan, Kerry; Crabtree, Robert

    2007-01-01

    Understanding fire behavior characteristics and planning for fire management require maps showing the distribution of wildfire fuel loads at medium to fine spatial resolution across large landscapes. Radar sensors from airborne or spaceborne platforms have the potential of providing quantitative information about the forest structure and biomass components that can be readily translated to meaningful fuel load estimates for fire management. In this paper, we used multifrequency polarimetric synthetic aperture radar imagery acquired over a large area of the Yellowstone National Park (YNP) by the AIRSAR sensor, to estimate the distribution of forest biomass and canopy fuel loads. Semi-empirical algorithms were developed to estimate crown and stem biomass and three major fuel load parameters, canopy fuel weight, canopy bulk density, and foliage moisture content. These estimates when compared directly to measurements made at plot and stand levels, provided more than 70% accuracy, and when partitioned into fuel load classes, provided more than 85% accuracy. Specifically, the radar generated fuel parameters were in good agreement with the field-based fuel measurements, resulting in coefficients of determination of R(sup 2) = 85 for the canopy fuel weight, R(sup 2)=.84 for canopy bulk density and R(sup 2) = 0.78 for the foliage biomass.

  15. Parameter estimation through ignorance.

    PubMed

    Du, Hailiang; Smith, Leonard A

    2012-07-01

    Dynamical modeling lies at the heart of our understanding of physical systems. Its role in science is deeper than mere operational forecasting, in that it allows us to evaluate the adequacy of the mathematical structure of our models. Despite the importance of model parameters, there is no general method of parameter estimation outside linear systems. A relatively simple method of parameter estimation for nonlinear systems is introduced, based on variations in the accuracy of probability forecasts. It is illustrated on the logistic map, the Henon map, and the 12-dimensional Lorenz96 flow, and its ability to outperform linear least squares in these systems is explored at various noise levels and sampling rates. As expected, it is more effective when the forecast error distributions are non-Gaussian. The method selects parameter values by minimizing a proper, local skill score for continuous probability forecasts as a function of the parameter values. This approach is easier to implement in practice than alternative nonlinear methods based on the geometry of attractors or the ability of the model to shadow the observations. Direct measures of inadequacy in the model, the "implied ignorance," and the information deficit are introduced. PMID:23005513

  16. Aircraft parameter estimation

    NASA Technical Reports Server (NTRS)

    Iliff, Kenneth W.

    1987-01-01

    The aircraft parameter estimation problem is used to illustrate the utility of parameter estimation, which applies to many engineering and scientific fields. Maximum likelihood estimation has been used to extract stability and control derivatives from flight data for many years. This paper presents some of the basic concepts of aircraft parameter estimation and briefly surveys the literature in the field. The maximum likelihood estimator is discussed, and the basic concepts of minimization and estimation are examined for a simple simulated aircraft example. The cost functions that are to be minimized during estimation are defined and discussed. Graphic representations of the cost functions are given to illustrate the minimization process. Finally, the basic concepts are generalized, and estimation from flight data is discussed. Some of the major conclusions for the simulated example are also developed for the analysis of flight data from the F-14, highly maneuverable aircraft technology (HiMAT), and space shuttle vehicles.

  17. Target parameter estimation

    NASA Technical Reports Server (NTRS)

    Hocking, W. K.

    1989-01-01

    The objective of any radar experiment is to determine as much as possible about the entities which scatter the radiation. This review discusses many of the various parameters which can be deduced in a radar experiment, and also critically examines the procedures used to deduce them. Methods for determining the mean wind velocity, the RMS fluctuating velocities, turbulence parameters, and the shapes of the scatterers are considered. Complications with these determinations are discussed. It is seen throughout that a detailed understanding of the shape and cause of the scatterers is important in order to make better determinations of these various quantities. Finally, some other parameters, which are less easily acquired, are considered. For example, it is noted that momentum fluxes due to buoyancy waves and turbulence can be determined, and on occasions radars can be used to determine stratospheric diffusion coefficients and even temperature profiles in the atmosphere.

  18. Buckling Behavior of Long Symmetrically Laminated Plates Subjected to Shear and Linearly Varying Axial Edge Loads

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.

    1997-01-01

    A parametric study of the buckling behavior of infinitely long symmetrically laminated anisotropic plates that are subjected to linearly varying edge loads, uniform shear loads, or combinations of these loads is presented. The study focuses on the effects of the shape of linearly varying edge load distribution, plate orthotropy, and plate flexural anisotropy on plate buckling behavior. In addition, the study exmines the interaction of linearly varying edge loads and uniform shear loads with plate flexural anisotropy and orthotropy. Results obtained by using a special purpose nondimensional analysis that is well suited for parametric studies of clamped and simply supported plates are presented for [+/- theta](sub s), thin graphite-epoxy laminates that are representative of spacecraft structural components. Also, numerous generic buckling-design charts are presented for a wide range of nondimensional parameters that are applicable to a broad class of laminate constructions. These charts show explicitly the effects of flexural orthotropy and flexural anisotropy on plate buckling behavior for linearly varying edge loads, uniform shear loads, or combinations of these loads. The most important finding of the present study is that specially orthotropic and flexurally anisotropic plates that are subjected to an axial edge load distribution that is tension dominated can support shear loads that are larger in magnitude than the shear buckling load.

  19. 14 CFR 25.509 - Towing loads.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... wheel to which the load is applied. Enough airplane inertia to achieve equilibrium must be applied. (ii) The loads must be reacted by airplane inertia. (d) The prescribed towing loads are as follows:...

  20. The effects of load drop, uniform load and concentrated loads on waste tanks

    SciTech Connect

    Marusich, R.M., Westinghouse Hanford

    1996-09-06

    This document provides the supporting calculations performed by others specifically for the TWRS FSAR and more detailed summaries of the important references issued in the past regarding the effects of various loads.

  1. The effects of load drop, uniform load and concentrated loads on waste tanks

    SciTech Connect

    Marusich, R.M.

    1996-09-27

    This document provides the supporting calculations performed by others specifically for the TWRS FSAR and more detailed summaries of the important references issued in the past regarding the effects of various loads.

  2. Differences in Obesity Rates Among Minority and White Women: The Latent Role of Maternal Stress.

    PubMed

    Patchen, Loral; Rebok, George; Astone, Nan M

    2016-07-01

    White and minority women experience different rates of obesity in the United States. Yet our understanding of the dynamics that give rise to this gap remains limited. This article presents a conceptual framework that considers pathways leading to these different rates. It draws upon the life-course perspective, allostatic load, and the weathering hypothesis to identify pathways linking childbearing, stress, and obesity. This conceptual framework extends prior work by identifying age at first birth as an important parameter that influences these pathways. Empirical evidence to test these pathways is needed. PMID:27355406

  3. Analyzing Static Loading of Complex Structures

    NASA Technical Reports Server (NTRS)

    Gallear, D. C.

    1986-01-01

    Critical loading conditions determined from analysis of each structural element. Automated Thrust Structures Loads and Stresses (ATLAS) system is series of programs developed to analyze elements of complex structure under static-loading conditions. ATLAS calculates internal loads, beam-bending loads, column- and web-buckling loads, beam and panel stresses, and beam-corner stresses. Programs written in FORTRAN IV and Assembler for batch execution.

  4. Guidelines for transmission line structural loading

    SciTech Connect

    Not Available

    1984-01-01

    This guide provides methods for the selection of design loads and load factors. This is accomplished by the presentation of a Load Resistance Factor Design (LRFD) procedure. The basic formula for wind force is discussed. This include basic wind speed, terrain and height coefficients, gust response factors, and pressure coefficients. Information is also provided on ice loads, tornadoes, hurricanes, longitudinal loads, construction, and maintenance loads.

  5. Power flow in long MITLs with high-inductance loads

    SciTech Connect

    Poukey, J.W.; Mazarkis, M.G.

    1994-12-31

    The authors are using the 2-D TWOQUICK simulation code to study a system consisting of a voltage adder, a long magnetically-insulated transmission line (MITL), and a large-inductance load which includes a conducting foil (short circuit). The object of this work is to produce a voltage pulse of typically 10 MV and several hundred ns which travels down a MITL of about 10 meters length and 5--10 ohms vacuum impedance, and then couples efficiently to a load of a few hundred nH inductance. They discuss modeling issues such as the use of simple transmission lines for parts of the system, and methods for representing the load. Important physics issues include voltage-pulse erosion in long MITLs, effects of reflected waves from the highly overmatched load impedance, and energy fraction delivered to the load. They calculate electron losses in all parts of the system. Parameter variations of interest include input voltage waveform, adder geometry, MITL length and impedance, and loaded configuration and inductance. Comparisons with circuit models (SCREAMER) will be shown.

  6. Buckling Behavior of Long Anisotropic Plates Subjected to Combined Loads

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.

    1995-01-01

    A parametric study of the buckling behavior of infinitely long symmetrically laminated anisotropic plates subjected to combined loads is presented. The study focuses on the interaction of a stable subcritical secondary loading state of constant magnitude and a primary destabilizing load that is increased in magnitude until buckling occurs. The loads considered are uniform axial compression, pure inplane bending, transverse tension and compression, and shear. Results obtained using a special purpose plates with a significant potential for reducing structural nondimensional analysis that is well suited for parametric studies are presented for clamped and simply supported plates. In particular, results are presented for a (+/- 45)(sub s) graphite-epoxy laminate, and generic buckling design charts are presented for a wide range of non-dimensional parameters that are applicable to a broad class of laminate constructions. These results show the effects of flexural orthotropy and flexural anisotropy on plates subjected to various combined loading conditions. An important finding of the present study is that the effect of flexural anisotropy herein as flexural anisotropy on the buckling resistance of a plate can be increased significantly for certain types of combined loads.

  7. Viral load of patients with hantavirus pulmonary syndrome in Argentina.

    PubMed

    Bellomo, Carla María; Pires-Marczeski, Fanny Clara; Padula, Paula Julieta

    2015-11-01

    Hantavirus causes severe illness including pneumonia, which leads to hospitalization and often death. At present, there is no specific treatment available. The hantavirus pathogenesis is not well understood, but most likely both virus-mediated and host-mediated mechanisms, are involved. The aim of this study was to correlate viral load in samples of hantavirus pulmonary syndrome cases and hantavirus infected individuals, with clinical epidemiological parameters and disease outcome. The variables that could potentially be related with viral load were analyzed. The retrospective study included 73 cases or household contacts, with different clinical evolution. Viral load was measured by reverse-transcription and real time polymerase chain reaction. There was no statistically significant association between blood viral RNA levels and severity of disease. However, viral load was inversely correlated with IgG response in a statistically significant manner. The level of viral RNA was significantly higher in patients infected with Andes virus South lineage, and was markedly low in persons infected with Laguna Negra virus. These results suggest that the infecting viral genotype is associated with disease severity, and that high viral load is associated with a low specific IgG response. Sex, age and disease severity were not related with viral load. Further investigations increasing strikingly the number of cases and also limiting the variables to be studied are necessary. PMID:26087934

  8. Effects of state recovery on creep buckling under variable loading

    NASA Technical Reports Server (NTRS)

    Robinson, D. N.; Arnold, S. M.

    1988-01-01

    Structural alloys embody internal mechanisms that allow recovery of state with varying stress and elevated temperature, i.e., they can return to a softer state following periods of hardening. Such material behavior is known to strongly influence structural response under some important thermomechanical loadings, for example, that involving thermal ratchetting. The influence of dynamic and thermal recovery on the creep buckling of a column under variable loading is investigated. The column is taken as the idealized (Shanley) sandwich column. The constitutive model, unlike the commonly employed Norton creep model, incorporates a representation of both dynamic and thermal (state) recovery. The material parameters of the constitutive model are chosen to characterize Narloy Z, a representative copper alloy used in thrust nozzle liners of reusable rocket engines. Variable loading histories include rapid cyclic unloading/reloading sequences and intermittent reductions of load for extended periods of time; these are superimposed on a constant load. The calculated results show that state recovery significantly affects creep buckling under variable loading.

  9. Engine System Loads Analysis Compared to Hot-Fire Data

    NASA Technical Reports Server (NTRS)

    Frady, Gregory P.; Jennings, John M.; Mims, Katherine; Brunty, Joseph; Christensen, Eric R.; McConnaughey, Paul R. (Technical Monitor)

    2002-01-01

    Early implementation of structural dynamics finite element analyses for calculation of design loads is considered common design practice for high volume manufacturing industries such as automotive and aeronautical industries. However with the rarity of rocket engine development programs starts, these tools are relatively new to the design of rocket engines. In the NASA MC-1 engine program, the focus was to reduce the cost-to-weight ratio. The techniques for structural dynamics analysis practices, were tailored in this program to meet both production and structural design goals. Perturbation of rocket engine design parameters resulted in a number of MC-1 load cycles necessary to characterize the impact due to mass and stiffness changes. Evolution of loads and load extraction methodologies, parametric considerations and a discussion of load path sensitivities are important during the design and integration of a new engine system. During the final stages of development, it is important to verify the results of an engine system model to determine the validity of the results. During the final stages of the MC-1 program, hot-fire test results were obtained and compared to the structural design loads calculated by the engine system model. These comparisons are presented in this paper.

  10. Critical-load studies of a shield support

    SciTech Connect

    Barczak, T.M.; Schwemmer, D.E.

    1987-01-01

    One of the primary goals of Bureau of Mines research is to reduce the cost of coal mining by improving the efficiency of longwall supports. One method of achieving this goal is the optimization of stress distribution within the support structure, resulting in a lower over-all weight, more fully stressed shield. However, before stress optimization can be initiated, load conditions must be defined that cause maximum stress in the various support components. A finite-element model of a longwall shield was used to identify these critical load conditions. These load conditions were then evaluated in the Bureau's mine roof simulator by instrumentation of a longwall shield and measurement of strains in each of the shield components. The critical (canopy-base contact) load conditions were identified that can cause structural failure at less than rated shield (hydraulic yield) capacity. Comparisons were made between full-contact and partial-contact load conditions. Other parameters investigated included the stiffness of the contact material, changes in shield geometry, rate of load application, and effects of horizontal constraint. Conclusions are drawn regarding the structural integrity of the major shield components and potential for stress optimization.

  11. Effects of state recovery on creep buckling under variable loading

    NASA Technical Reports Server (NTRS)

    Robinson, D. N.; Arnold, S. M.

    1986-01-01

    Structural alloys embody internal mechanisms that allow recovery of state with varying stress and elevated temperature, i.e., they can return to a softer state following periods of hardening. Such material behavior is known to strongly influence structural response under some important thermomechanical loadings, for example, that involving thermal ratchetting. The influence of dynamic and thermal recovery on the creep buckling of a column under variable loading is investigated. The column is taken as the idealized (Shanley) sandwich column. The constitutive model, unlike the commonly employed Norton creep model, incorporates a representation of both dynamic and thermal (state) recovery. The material parameters of the constitutive model are chosen to characterize Narloy Z, a representative copper alloy used in thrust nozzle liners of reusable rocket engines. Variable loading histories include rapid cyclic unloading/reloading sequences and intermittent reductions of load for extended periods of time; these are superimposed on a constant load. The calculated results show that state recovery significantly affects creep buckling under variable loading. Structural alloys embody internal mechanisms that allow recovery of state with varying stress and time.

  12. Micromechanical stimulator for localized cell loading: fabrication and strain analysis

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Zhang, Xu; Zhao, Yi

    2013-01-01

    Mechanical stimuli regulate cell structure and function during physiological processes. To understand the role of mechanical stimuli, engineered devices are developed to deliver controllable mechanical signals to cells cultured in vitro. Localized mechanical loading on selected cells are preferred when investigating intercellular communication. In this work, we fabricated and characterized a polydimethylsiloxane (PDMS) micro-device for applying controlled compressive/tensile loads to selected live cells. The device consists of nine circular PDMS membranes serving as the loading sites; the loading parameters at each site are individually controllable. The in-plane strain upon PDMS membrane deflection was experimentally characterized. The result showed that for a circular membrane with 500 µm in diameter and 60 µm thick, the radial strain from -6% (compressive) to 25% (tensile) can be achieved at the membrane center. This device allows localized cell loading with minimal fabrication/operation complexity and ease of scaling-up. It is expected to foster the development of high throughput mechanical loading systems for a broad array of cellular mechanobiological studies.

  13. Realizing load reduction functions by aperiodic switching of load groups

    SciTech Connect

    Navid-Azarbaijani, N.; Banakar, M.H.

    1996-05-01

    This paper investigates the problem of scheduling ON/OFF switching of residential appliances under the control of a Load Management System (LMS). The scheduling process is intended to reduce the controlled appliances` power demand in accordance with a predefined load reduction profile. To solve this problem, a solution approach, based on the methodology of Pulse Width Modulation (PWM), is introduced. This approach provides a flexible mathematical basis for studying different aspects of the scheduling problem. The conventional practices in this area are shown to be special cases of the PWM technique. By applying the PWM-based technique to the scheduling problem, important classes of scheduling errors are identified and analytical expressions describing them are derived. These expressions are shown to provide sufficient information to compensate for the errors. Detailed simulations of load groups` response to switching actions are use to support conclusions of this study.

  14. Self-aligning biaxial load frame

    DOEpatents

    Ward, M.B.; Epstein, J.S.; Lloyd, W.R.

    1994-01-18

    An self-aligning biaxial loading apparatus for use in testing the strength of specimens while maintaining a constant specimen centroid during the loading operation. The self-aligning biaxial loading apparatus consists of a load frame and two load assemblies for imparting two independent perpendicular forces upon a test specimen. The constant test specimen centroid is maintained by providing elements for linear motion of the load frame relative to a fixed cross head, and by alignment and linear motion elements of one load assembly relative to the load frame. 3 figures.

  15. Self-aligning biaxial load frame

    DOEpatents

    Ward, Michael B.; Epstein, Jonathan S.; Lloyd, W. Randolph

    1994-01-01

    An self-aligning biaxial loading apparatus for use in testing the strength of specimens while maintaining a constant specimen centroid during the loading operation. The self-aligning biaxial loading apparatus consists of a load frame and two load assemblies for imparting two independent perpendicular forces upon a test specimen. The constant test specimen centroid is maintained by providing elements for linear motion of the load frame relative to a fixed crosshead, and by alignment and linear motion elements of one load assembly relative to the load frame.

  16. Phenological Parameters Estimation Tool

    NASA Technical Reports Server (NTRS)

    McKellip, Rodney D.; Ross, Kenton W.; Spruce, Joseph P.; Smoot, James C.; Ryan, Robert E.; Gasser, Gerald E.; Prados, Donald L.; Vaughan, Ronald D.

    2010-01-01

    The Phenological Parameters Estimation Tool (PPET) is a set of algorithms implemented in MATLAB that estimates key vegetative phenological parameters. For a given year, the PPET software package takes in temporally processed vegetation index data (3D spatio-temporal arrays) generated by the time series product tool (TSPT) and outputs spatial grids (2D arrays) of vegetation phenological parameters. As a precursor to PPET, the TSPT uses quality information for each pixel of each date to remove bad or suspect data, and then interpolates and digitally fills data voids in the time series to produce a continuous, smoothed vegetation index product. During processing, the TSPT displays NDVI (Normalized Difference Vegetation Index) time series plots and images from the temporally processed pixels. Both the TSPT and PPET currently use moderate resolution imaging spectroradiometer (MODIS) satellite multispectral data as a default, but each software package is modifiable and could be used with any high-temporal-rate remote sensing data collection system that is capable of producing vegetation indices. Raw MODIS data from the Aqua and Terra satellites is processed using the TSPT to generate a filtered time series data product. The PPET then uses the TSPT output to generate phenological parameters for desired locations. PPET output data tiles are mosaicked into a Conterminous United States (CONUS) data layer using ERDAS IMAGINE, or equivalent software package. Mosaics of the vegetation phenology data products are then reprojected to the desired map projection using ERDAS IMAGINE

  17. MISR Parameter Definitions

    Atmospheric Science Data Center

    2013-03-26

    MISR Parameter Definitions Stereo Height BestWinds:  Stereoscopic height determined using the Best ... wind was not available (Feature-referenced). Stereo Height WithoutWinds:  Stereoscopic height calculated without a wind correction (Feature-referenced). Stereo Height prelimER_BestWinds:  Preliminary stereoscopic height derived ...

  18. The Gaia Parameter Database

    NASA Astrophysics Data System (ADS)

    de Bruijne, J. H. J.; Lammers, U.; Perryman, M. A. C.

    2005-01-01

    The parallel development of many aspects of a complex mission like Gaia, which includes numerous participants in ESA, industrial companies, and a large and active scientific collaboration throughout Europe, makes keeping track of the many design changes, instrument and operational complexities, and numerical values for the data analysis a very challenging problem. A comprehensive, easily-accessible, up-to-date, and definitive compilation of a large range of numerical quantities is required, and the Gaia parameter database has been established to satisfy these needs. The database is a centralised repository containing, besides mathematical, physical, and astronomical constants, many satellite and subsystem design parameters. At the end of 2004, more than 1600 parameters had been included. Version control has been implemented, providing, next to a `live' version with the most recent parameters, well-defined reference versions of the full database contents. The database can be queried or browsed using a regular Web browser (http://www.rssd.esa.int/Gaia/paramdb). Query results are formated by default in HTML. Data can also be retrieved as Fortran-77, Fortran-90, Java, ANSIC, C++, or XML structures for direct inclusion into software codes in these languages. The idea is that all collaborating scientists can use the database parameters and values, once retrieved, directly linked to computational routines. An off-line access mode is also available, enabling users to automatically download the contents of the database. The database will be maintained actively, and significant extensions of the contents are planned. Consistent use in the future of the database by the Gaia community at large, including all industrial teams, will ensure correct numerical values throughout the complex software systems being built up as details of the Gaia design develop. The database is already being used for the telemetry simulation chain in ESTEC, and in the data simulations for GDAAS2.

  19. Structural load control during construction

    NASA Technical Reports Server (NTRS)

    Mikulas, Martin M., Jr.

    1991-01-01

    In the absence of gravitational pull, the major design considerations for large space structures are stiffness for controllability, and transient dynamic loadings (as opposed to the traditional static load associated with earth-based structures). Because of the absence of gravitational loading, space structures can be designed to be significantly lighter than their counterparts on Earth. For example, the Space Shuttle manipulator arm is capable of moving and positioning a 60,000 lb payload, yet weighs less than 1,000 lbs. A recent design for the Space Station which had a total weight of about 500,000 lbs. used a primary loadcarrying keel beam which weighed less than 10,000 lbs. For many large space structures designs it is quite common for the load-carrying structure to have a mass fraction on the order of one or two percent of the total spacecraft mass. This significant weight reduction for large space structures is commonly accompanied by very low natural frequencies. These low frequencies cause an unprecedented level of operational complexity for mission applications which require a high level of positioning and control accuracy. This control problem is currently the subject of considerable research directed towards reducing the flexibility problem. In addition, however, the small mass fraction typically results in structures which are quite unforgiving to inadvertent high loadings. In other words, the structures are 'fragile.' In order to deal with the fragility issue CSC developed a load-limiting concept for space truss structures. This concept is aimed at limiting the levels of load which can occur in a large space structure during the construction process as well as during subsequent operations. Currently, the approach for dealing with large loadings is to make the structure larger. The impact this has on construction is significant. The larger structures are more difficult to package in the launch vehicle, and in fact in some instances the concept must be

  20. Pattern fuel assembly loading system

    SciTech Connect

    Ahmed, H.J.; Gerkey, K.S.; Miller, T.W.; Wylie, M.E.

    1986-12-02

    This patent describes an interactive system for facilitating preloading of fuel rods into magazines, which comprises: an operator work station adapted for positioning between a supply of fuel rods of predetermined types, and the magazine defining grid locations for a predetermined fuel assembly; display means associated with the work station; scanner means associated with the work station and adapted for reading predetermined information accompanying the fuel rods; a rectangular frame adapted for attachment to one end of the fuel assembly loading magazine; prompter/detector means associated with the frame for detecting insertion of a fuel rod into the magazine; and processing means responsive to the scanner means and the sensing means for prompting the operator via the display means to pre-load the fuel rods into desired grid locations in the magazine. An apparatus is described for facilitating pre-loading of fuel rods in predetermined grid locations of a fuel assembly loading magazine, comprising: a rectangular frame adapted for attachment to one end of the fuel assembly loading magazine; and means associated with the frame for detecting insertion of fuel rods into the magazine.

  1. A gravity loading countermeasure skinsuit

    NASA Astrophysics Data System (ADS)

    Waldie, James M.; Newman, Dava J.

    2011-04-01

    Despite the use of several countermeasures, significant physiological deconditioning still occurs during long duration spaceflight. Bone loss - primarily due to the absence of loading in microgravity - is perhaps the greatest challenge to resolve. This paper describes a conceptual Gravity Loading Countermeasure Skinsuit (GLCS) that induces loading on the body to mimic standing and - when integrated with other countermeasures - exercising on Earth. Comfort, mobility and other operational issues were explored during a pilot study carried out in parabolic flight for prototype suits worn by three subjects. Compared to the 1- or 2-stage Russian Pingvin Suits, the elastic mesh of the GLCS can create a loading regime that gradually increases in hundreds of stages from the shoulders to the feet, thereby reproducing the weight-bearing regime normally imparted by gravity with much higher resolution. Modelling shows that the skinsuit requires less than 10 mmHg (1.3 kPa) of compression for three subjects of varied gender, height and mass. Negligible mobility restriction and excellent comfort properties were found during the parabolic flights, which suggests that crewmembers should be able to work normally, exercise or sleep while wearing the suit. The suit may also serve as a practical 1 g harness for exercise countermeasures and vibration applications to improve dynamic loading.

  2. Peak load management: Potential options

    SciTech Connect

    Englin, J.E.; De Steese, J.G.; Schultz, R.W.; Kellogg, M.A.

    1989-10-01

    This report reviews options that may be alternatives to transmission construction (ATT) applicable both generally and at specific locations in the service area of the Bonneville Power Administration (BPA). Some of these options have potential as specific alternatives to the Shelton-Fairmount 230-kV Reinforcement Project, which is the focus of this study. A listing of 31 peak load management (PLM) options is included. Estimated costs and normalized hourly load shapes, corresponding to the respective base load and controlled load cases, are considered for 15 of the above options. A summary page is presented for each of these options, grouped with respect to its applicability in the residential, commercial, industrial, and agricultural sectors. The report contains comments on PLM measures for which load shape management characteristics are not yet available. These comments address the potential relevance of the options and the possible difficulty that may be encountered in characterizing their value should be of interest in this investigation. The report also identifies options that could improve the efficiency of the three customer utility distribution systems supplied by the Shelton-Fairmount Reinforcement Project. Potential cogeneration options in the Olympic Peninsula are also discussed. These discussions focus on the options that appear to be most promising on the Olympic Peninsula. Finally, a short list of options is recommended for investigation in the next phase of this study. 9 refs., 24 tabs.

  3. Optically Loaded Semiconductor Quantum Memory Register

    NASA Astrophysics Data System (ADS)

    Kim, Danny; Kiselev, Andrey A.; Ross, Richard S.; Rakher, Matthew T.; Jones, Cody; Ladd, Thaddeus D.

    2016-02-01

    We propose and analyze an optically loaded quantum memory that exploits capacitive coupling between self-assembled quantum-dot molecules and electrically gated quantum-dot molecules. The self-assembled dots are used for spin-photon entanglement, which is transferred to the gated dots for long-term storage or processing via a teleportation process heralded by single-photon detection. We illustrate a device architecture enabling this interaction and outline both its operation and fabrication. We provide self-consistent Poisson-Schrödinger simulations to establish the design viability, to refine the design, and to estimate the physical coupling parameters and their sensitivities to dot placement. The device we propose generates heralded copies of an entangled state between a photonic qubit and a solid-state qubit with a rapid reset time upon failure. The resulting fast rate of entanglement generation is of high utility for heralded quantum networking scenarios involving lossy optical channels.

  4. Microcracking in composite laminates under thermal and mechanical loading. Thesis

    SciTech Connect

    Maddocks, J.R.

    1995-05-01

    Composites used in space structures are exposed to both extremes in temperature and applied mechanical loads. Cracks in the matrix form, changing the laminate thermoelastic properties. The goal of the present investigation is to develop a predictive methodology to quantify microcracking in general composite laminates under both thermal and mechanical loading. This objective is successfully met through a combination of analytical modeling and experimental investigation. In the analysis, the stress and displacement distributions in the vicinity of a crack are determined using a shear lag model. These are incorporated into an energy based cracking criterion to determine the favorability of crack formation. A progressive damage algorithm allows the inclusion of material softening effects and temperature-dependent material properties. The analysis is implemented by a computer code which gives predicted crack density and degraded laminate properties as functions of any thermomechanical load history. Extensive experimentation provides verification of the analysis. AS4/3501-6 graphite/epoxy laminates are manufactured with three different layups to investigate ply thickness and orientation effects. Thermal specimens are cooled to progressively lower temperatures down to {minus}184 C. After conditioning the specimens to each temperature, cracks are counted on their edges using optical microscopy and in their interiors by sanding to incremental depths. Tensile coupons are loaded monotonically to progressively higher loads until failure. Cracks are counted on the coupon edges after each loading. A data fit to all available results provides input parameters for the analysis and shows them to be material properties, independent of geometry and loading. Correlation between experiment and analysis is generally very good under both thermal and mechanical loading, showing the methodology to be a powerful, unified tool.

  5. Loading effects in GPS vertical displacement time series

    NASA Astrophysics Data System (ADS)

    Memin, A.; Boy, J. P.; Santamaría-Gómez, A.; Watson, C.; Gravelle, M.; Tregoning, P.

    2015-12-01

    Surface deformations due to loading, with yet no comprehensive representation, account for a significant part of the variability in geodetic time series. We assess effects of loading in GPS vertical displacement time series at several frequency bands. We compare displacement derived from up-to-date loading models to two global sets of positioning time series, and investigate how they are reduced looking at interannual periods (> 2 months), intermediate periods (> 7 days) and the whole spectrum (> 1day). We assess the impact of interannual loading on estimating velocities. We compute atmospheric loading effects using surface pressure fields from the ECMWF. We use the inverted barometer (IB) hypothesis valid for periods exceeding a week to describe the ocean response to the pressure forcing. We used general circulation ocean model (ECCO and GLORYS) to account for wind, heat and fresh water flux. We separately use the Toulouse Unstructured Grid Ocean model (TUGO-m), forced by air pressure and winds, to represent the dynamics of the ocean response at high frequencies. The continental water storage is described using GLDAS/Noah and MERRA-land models. Non-hydrology loading reduces the variability of the observed vertical displacement differently according to the frequency band. The hydrology loading leads to a further reduction mostly at annual periods. ECMWF+TUGO-m better agrees with vertical surface motion than the ECMWF+IB model at all frequencies. The interannual deformation is time-correlated at most of the locations. It is adequately described by a power-law process of spectral index varying from -1.5 to -0.2. Depending on the power-law parameters, the predicted non-linear deformation due to mass loading variations leads to vertical velocity biases up to 0.7 mm/yr when estimated from 5 years of continuous observations. The maximum velocity bias can reach up to 1 mm/yr in regions around the southern Tropical band.

  6. Femoral neck version affects medial femorotibial loading.

    PubMed

    Papaioannou, T A; Digas, Georgios; Bikos, Ch; Karamoulas, V; Magnissalis, E A

    2013-01-01

    The aim of this study was to provide a preliminary evaluation of the possible effect that femoral version may have on the bearing equilibrium conditions developed on the medial tibiofemoral compartment. A digital 3D solid model of the left physiological adult femur was used to create morphological variations of different neck-shaft angles (varus 115, normal 125, and valgus 135 degrees) and version angles (-10, 0, and +10 degrees). By means of finite element modeling and analysis techniques (FEM-FEA), a virtual experiment was executed with the femoral models aligned in a neutral upright position, distally supported on a fully congruent tibial tray and proximally loaded with a vertical only hip joint load of 2800 N. Equivalent stresses and their distribution on the medial compartment were computed and comparatively evaluated. Within our context, the neck-shaft angle proved to be of rather indifferent influence. Reduction of femoral version, however, appeared as the most influencing parameter regarding the tendency of the medial compartment to establish its bearing equilibrium towards posteromedial directions, as a consequence of the corresponding anteroposterior changes of the hip centre over the horizontal tibiofemoral plane. We found a correlation between femoral anteversion and medial tibiofemoral compartment contact pressure. Our findings will be further elucidated by more sophisticated FEM-FEA and by clinical studies that are currently planned. PMID:24959355

  7. Thermal loading study for FY 1995

    SciTech Connect

    1996-01-31

    This report provides the results of sensitivity analyses designed to assist the test planners in focusing their in-situ measurements on parameters that appear to be important to waste isolation. Additionally, the study provides a preliminary assessment of the feasibility of certain thermal management options. A decision on thermal loading is a critical part of the scientific and engineering basis for evaluating regulatory compliance of the potential repository for waste isolation. To show, with reasonable assurance, that the natural and engineered barriers will perform adequately under expected repository conditions (thermally perturbed) will require an integrated approach based on thermal testing (laboratory, and in-situ), natural analog observations, and analytic modeling. The Office of Civilian Radioactive Waste Management needed input to assist in the planning of the thermal testing program. Additionally, designers required information on the viability of various thermal management concepts. An approximately 18-month Thermal Loading Study was conducted from March, 1994 until September 30, 1995 to address these issues. This report documents the findings of that study. 89 refs., 71 figs., 33 tabs.

  8. Probabilistic load simulation: Code development status

    NASA Technical Reports Server (NTRS)

    Newell, J. F.; Ho, H.

    1991-01-01

    The objective of the Composite Load Spectra (CLS) project is to develop generic load models to simulate the composite load spectra that are included in space propulsion system components. The probabilistic loads thus generated are part of the probabilistic design analysis (PDA) of a space propulsion system that also includes probabilistic structural analyses, reliability, and risk evaluations. Probabilistic load simulation for space propulsion systems demands sophisticated probabilistic methodology and requires large amounts of load information and engineering data. The CLS approach is to implement a knowledge based system coupled with a probabilistic load simulation module. The knowledge base manages and furnishes load information and expertise and sets up the simulation runs. The load simulation module performs the numerical computation to generate the probabilistic loads with load information supplied from the CLS knowledge base.

  9. Effect of a circular hole on the buckling of cylindrical shells loaded by axial compression.

    NASA Technical Reports Server (NTRS)

    Starnes, J. H., Jr.

    1972-01-01

    An experimental and analytical investigation of the effect of a circular hole on the buckling of thin cylindrical shells under axial compression was carried out. The experimental results were obtained from tests performed on seamless electroformed copper shells and Mylar shells with a lap joint seam. These results indicated that the character of the shell buckling was dependent on a parameter which is proportional to the hole radius divided by the square root of the product of the shell radius and thickness. For small values of this parameter, there was no apparent effect of the hole on the buckling load. For slightly larger values of the parameter, the shells still buckled into a general collapse configuration, but the buckling loads were sharply reduced as the parameter increased. For still larger values of the parameter, the buckling loads were further reduced, and the shells buckled into a stable local buckling configuration.

  10. Scientific ballooning payload termination loads

    NASA Astrophysics Data System (ADS)

    Robbins, E.

    1993-02-01

    NASA's high altitude balloon borne scientific payloads are typically suspended from a deployed flat circular parachute. At flight termination, the recovery train is pyrotechnically separated at the parachute apex and balloon nadir interface. The release of elastic energy stored in the parachute at zero initial virtical velocity in the rarefied atmosphere produces high canopy opening forces that subject the gondola to potentially damaging shock loads. Data from terminations occuring at altitudes to 40 km with payloads up to 2500 kg on parachutes up to 40 m in diameter are presented. Measured loads are markedly larger than encountered via packed parachute deployment for similar canopy loadings. Canopy inflation is significantly surpressed in the early stages and then accelerated during final blossoming. Data interpretation and behavioral phenomena are discussed along with proposed shock attenuation techniques.

  11. Plutonium Immobilization Project -- Can loading

    SciTech Connect

    Kriikku, E.

    2000-01-18

    The Savannah River Site (SRS) will immobilize excess plutonium in the proposed Plutonium Immobilization Project (PIP). The PIP scope includes unloading transportation containers, preparing the feed streams, converting the metal feed to an oxide, adding the ceramic precursors, pressing the pucks, inspecting pucks, and sintering pucks. The PIP scope also includes loading the pucks into metal cans, sealing the cans, inspecting the cans, loading the cans into magazines, loading magazines into Defense Waste Processing Facility (DWPF) canisters, and transporting the canisters to the DWPF. The DWPF fills the canister with a mixture of high level radioactive waste and glass for permanent storage. Due to the radiation, remote equipment must perform PIP operations in a contained environment.

  12. Scientific ballooning payload termination loads

    NASA Technical Reports Server (NTRS)

    Robbins, E.

    1993-01-01

    NASA's high altitude balloon borne scientific payloads are typically suspended from a deployed flat circular parachute. At flight termination, the recovery train is pyrotechnically separated at the parachute apex and balloon nadir interface. The release of elastic energy stored in the parachute at zero initial vertical velocity in the rarefied atmosphere produces high canopy opening forces that subject the gondola to potentially damaging shock loads. Data from terminations occurring at altitudes to 40 km with payloads up to 2500 kg on parachutes up to 40 m in diameter are presented. Measured loads are markedly larger than encountered via packed parachute deployment for similar canopy loadings. Canopy inflation is significantly suppressed in the early stages and then accelerated during final blossoming. Data interpretation and behavioral phenomena are discussed along with proposed shock attenuation techniques.

  13. Fifty years of genetic load

    SciTech Connect

    Wallace, B.

    1991-01-01

    This book discusses the radiation effects on Drosophila. It was originally thought that irradiating Drosophila would decrease the average fitness of the population, thereby leading to information about the detrimental effects of mutations. Surprisingly, the fitness of the irradiated population turned out to be higher than that of the control population. The original motivation for the experiment was as a test of genetic load theory. The average fitness of a population is depressed by deleterious alleles held in the population by the balance between mutation and natural selection. The depression is called the genetic load of the population. The load dose not depend on the magnitude of the deleterious effect of alleles, but only on the mutation rate.

  14. The effect of load in a contact with boundary lubrication. [reduction of coefficient of friction

    NASA Technical Reports Server (NTRS)

    Georges, J. M.; Lamy, B.; Daronnat, M.; Moro, S.

    1978-01-01

    The effect of the transition load on the wear in a contact with boundary lubrication was investigated. An experimental method was developed for this purpose, and parameters affecting the boundary lubrication under industrial operating conditions were identified. These parameters are the adsorbed boundary film, the contact microgeometry (surface roughness), macrogeometry, and hardness of materials used. It was found that the curve of the tops of the surface protrustion affect the transition load, and thus the boundary lubrication. The transition load also depends on the chemical nature of the contact and its geometrical and mechanical aspects.

  15. Analysis of a slot loaded microstrip disk antenna for circular polarisation

    NASA Technical Reports Server (NTRS)

    Rao, Y. R.; Deshpande, Manohar D.

    1991-01-01

    A method is presented to analyze a circular microstrip disk antenna loaded with a narrow, inclined slot at its center and fed by a coaxial probe. Making use of the exact dyadic Green's functions for a grounded dielectric slab due to electric and magnetic currents, Richmond's reaction integral equation in conjunction with the method of moments (Galerkin), a generalized h-parameter equivalent network for the loaded patch is obtained. An expression for the input impedance of a slot loaded microstrip patch is obtained from the equivalent parameters. The theoretical results are compared with the experiment.

  16. Symplastic phloem loading in poplar.

    PubMed

    Zhang, Cankui; Han, Lu; Slewinski, Thomas L; Sun, Jianlei; Zhang, Jing; Wang, Zeng-Yu; Turgeon, Robert

    2014-09-01

    Sap is driven through phloem sieve tubes by an osmotically generated pressure gradient between source and sink tissues. In many plants, source pressure results from thermodynamically active loading in which energy is used to transfer sucrose (Suc) from mesophyll cells to the phloem of leaf minor veins against a concentration gradient. However, in some species, almost all trees, correlative evidence suggests that sugar migrates passively through plasmodesmata from mesophyll cells into the sieve elements. The possibility of alternate loading mechanisms has important ramifications for the regulation of phloem transport and source-sink interactions. Here, we provide experimental evidence that, in gray poplar (Populus tremula × Populus alba), Suc enters the phloem through plasmodesmata. Transgenic plants were generated with yeast invertase in the cell walls to prevent Suc loading by this route. The constructs were driven either by the constitutive 35S promoter or the minor vein-specific galactinol synthase promoter. Transgenic plants grew at the same rate as the wild type without symptoms of loading inhibition, such as accumulation of carbohydrates or leaf chlorosis. Rates of photosynthesis were normal. In contrast, alfalfa (Medicago sativa) plants, which have limited numbers of plasmodesmata between mesophyll and phloem, displayed typical symptoms of loading inhibition when transformed with the same DNA constructs. The results are consistent with passive loading of Suc through plasmodesmata in poplar. We also noted defense-related symptoms in leaves of transgenic poplar when the plants were abruptly exposed to excessively high temperatures, adding to evidence that hexose is involved in triggering the hypersensitive response. PMID:25056922

  17. Parameter Estimation for Viscoplastic Material Modeling

    NASA Technical Reports Server (NTRS)

    Saleeb, Atef F.; Gendy, Atef S.; Wilt, Thomas E.

    1997-01-01

    A key ingredient in the design of engineering components and structures under general thermomechanical loading is the use of mathematical constitutive models (e.g. in finite element analysis) capable of accurate representation of short and long term stress/deformation responses. In addition to the ever-increasing complexity of recent viscoplastic models of this type, they often also require a large number of material constants to describe a host of (anticipated) physical phenomena and complicated deformation mechanisms. In turn, the experimental characterization of these material parameters constitutes the major factor in the successful and effective utilization of any given constitutive model; i.e., the problem of constitutive parameter estimation from experimental measurements.

  18. Analysis of Modeling Parameters on Threaded Screws.

    SciTech Connect

    Vigil, Miquela S.; Brake, Matthew Robert; Vangoethem, Douglas

    2015-06-01

    Assembled mechanical systems often contain a large number of bolted connections. These bolted connections (joints) are integral aspects of the load path for structural dynamics, and, consequently, are paramount for calculating a structure's stiffness and energy dissipation prop- erties. However, analysts have not found the optimal method to model appropriately these bolted joints. The complexity of the screw geometry cause issues when generating a mesh of the model. This paper will explore different approaches to model a screw-substrate connec- tion. Model parameters such as mesh continuity, node alignment, wedge angles, and thread to body element size ratios are examined. The results of this study will give analysts a better understanding of the influences of these parameters and will aide in finding the optimal method to model bolted connections.

  19. Effect of suspension-line viscous damping on parachute opening load amplification.

    NASA Technical Reports Server (NTRS)

    Poole, L. R.

    1973-01-01

    A digital computer program was used to investigate the effects of suspension-line viscous damping on the opening loads of a high-altitude parachute system having a specified configuration. It was found (1) that the nonlinear elastic characteristics of the suspension system produce an amplification of the opening load when the viscous damping is negligible, (2) that the load amplification is markedly reduced when the suspension-line viscous damping coefficient is increased, and (3) that the suspension-line viscous damping is an important parameter of opening load amplification for high-velocity parachute inflations.

  20. Determining safe limits for significant task parameters during manual lifting.

    PubMed

    Singh, Ravindra Pratrap; Batish, Ajay; Singh, Tejinder Pal

    2014-04-01

    This experimental study investigated the effect of lifting task parameters (i.e., lifting weight, frequency, coupling, asymmetric angle, and vertical, horizontal, and travel distances) for various dynamic human lifting activities on the ground reaction forces of workers. Ten male workers loaded containers from different levels asymmetrically during experimental trials. The experimental design evolved using Taguchi's Fractional Factorial Experiments. Three factors (lifting weight, frequency, and vertical distance) were observed to be significant. The results showed that vertical reaction forces increase when workers lift weight from floor to shoulder height frequently. It was also observed that instantaneous loading rate increases with more weight, vertical distance, and frequency; a significant extra loading rate is required to change the lower level of load, frequency, and vertical distance to higher levels. Safe limits for significant factors were determined to result in optimal performance of the manual lifting task. PMID:24702682

  1. Analysis of high load dampers

    NASA Technical Reports Server (NTRS)

    Bhat, S. T.; Buono, D. F.; Hibner, D. H.

    1981-01-01

    High load damping requirements for modern jet engines are discussed. The design of damping systems which could satisfy these requirements is also discusseed. In order to evaluate high load damping requirements, engines in three major classes were studied; large transport engines, small general aviation engines, and military engines. Four damper concepts applicable to these engines were evaluated; multi-ring, cartridge, curved beam, and viscous/friction. The most promising damper concept was selected for each engine and performance was assessed relative to conventional dampers and in light of projected damping requirements for advanced jet engines.

  2. Beam Loading Studies at CEBAF

    SciTech Connect

    G.A. Krafft; S.N. Simrock; K.L. Mahoney

    1990-09-10

    When the CEBAF accelerator operates at 200 {mu}A beam current, the superconducting cavities run with high beam loading. The CEBAF RF system (including the cavities, klystrons, and control systems) has been measured to obtain the response to low frequency current fluctuations and to obtain the transient response to rapid changes in the beam current. The data were collected both through RF tests where beam pulses are simulated by RF pulses and through beam tests. Both closed loop and open loop measurements were made, and the results are compared to detailed SPICE numerical simulations. It is concluded that CEBAF will operate with high control under a wide variety of loads.

  3. Material behavior under complex loading

    SciTech Connect

    Breuer, H.J.; Raule, G.; Rodig, M.

    1984-09-01

    Studies of material behavior under complex loading form a bridge between standard material testing methods and the stress analysis calculations for reactor components at high temperatures. The aim of these studies is to determine the influence of typical load change sequences on material properties, to derive the equations required for stress analyses, to carry out tests under multiaxial conditions, and to investigate the structural deformation mechanisms of creep buckling and ratcheting. The present state of the investigations within the high-temperature gas-cooled reactor materials program is described, with emphasis on the experimental apparatus, the scope of the program, and the initial results obtained.

  4. Method for loading resin beds

    DOEpatents

    Notz, Karl J.; Rainey, Robert H.; Greene, Charles W.; Shockley, William E.

    1978-01-01

    An improved method of preparing nuclear reactor fuel by carbonizing a uranium loaded cation exchange resin provided by contacting a H.sup.+ loaded resin with a uranyl nitrate solution deficient in nitrate, comprises providing the nitrate deficient solution by a method comprising the steps of reacting in a reaction zone maintained between about 145.degree.-200.degree. C, a first aqueous component comprising a uranyl nitrate solution having a boiling point of at least 145.degree. C with a second aqueous component to provide a gaseous phase containing HNO.sub.3 and a reaction product comprising an aqueous uranyl nitrate solution deficient in nitrate.

  5. Multiplicity Control in Structural Equation Modeling: Incorporating Parameter Dependencies

    ERIC Educational Resources Information Center

    Smith, Carrie E.; Cribbie, Robert A.

    2013-01-01

    When structural equation modeling (SEM) analyses are conducted, significance tests for all important model relationships (parameters including factor loadings, covariances, etc.) are typically conducted at a specified nominal Type I error rate ([alpha]). Despite the fact that many significance tests are often conducted in SEM, rarely is…

  6. The Constraining of Parameters in Restricted Factor Analysis.

    ERIC Educational Resources Information Center

    Hattie, John; Fraser, Colin

    1988-01-01

    In restricted factor analysis, each element of the matrices of factor loadings and correlations and unique variances and covariances can be constrained. It is argued that the practice of constraining some parameters at zero is not psychologically meaningful. Alternative procedures are presented and illustrated. (TJH)

  7. Military display performance parameters

    NASA Astrophysics Data System (ADS)

    Desjardins, Daniel D.; Meyer, Frederick

    2012-06-01

    The military display market is analyzed in terms of four of its segments: avionics, vetronics, dismounted soldier, and command and control. Requirements are summarized for a number of technology-driving parameters, to include luminance, night vision imaging system compatibility, gray levels, resolution, dimming range, viewing angle, video capability, altitude, temperature, shock and vibration, etc., for direct-view and virtual-view displays in cockpits and crew stations. Technical specifications are discussed for selected programs.

  8. Prediction of psychoacoustic parameters

    NASA Astrophysics Data System (ADS)

    Genuit, Klaus; Fiebig, Andre

    2005-09-01

    Noise is defined as an audible sound which either disturbs the silence, or an intentional sound that listening to leads to annoyance. Thus, it is clearly defined that the assignment of noise cannot be reduced to simple determining objective parameters like the A-weighted SPL. The question whether a sound is judged as noise can only be answered after the transformation from the sound event into an hearing event has been accomplished. The evaluation of noise depends on the physical characteristics of the sound event, on the psychoacoustical features of the human ear as well as on the psychological aspects of men. The subjectively felt noise quality depends not only on the A-weighted sound-pressure level, but also on other psychoacoustical parameters such as loudness, roughness, sharpness, etc. The known methods for the prediction of the spatial A-weighted SPL distribution in dependence on the propagation are not suitable to predict psychoacoustic parameters in an adequate way. Especially, the roughness provoked by modulation or the sharpness generated by an accumulation of high, frequent sound energy cannot offhandedly be predicted as distance dependent.

  9. Novel fenofibric acid-loaded controlled release pellet bioequivalent to choline fenofibrate-loaded commercial product in beagle dogs.

    PubMed

    Kim, Kyung Soo; Jin, Sung Giu; Mustapha, Omer; Yousaf, Abid Mehmood; Kim, Dong Wuk; Kim, Young Hun; Kim, Jong Oh; Yong, Chul Soon; Woo, Jong Soo; Choi, Han-Gon

    2015-07-25

    The objective of this study was to develop a novel fenofibric acid-loaded controlled release pellet showing enhanced, or equivalent to, bioavailability compared with two commercially available products containing fenofibrate or choline fenofibrate. The effect of solubilizing agents on drug solubility and the impact of fillers on core properties were investigated. Among them, magnesium carbonate most improved drug solubility, and κ-carrageenan provided the best spherical cores. The fenofibric acid-loaded pellet was prepared with magnesium carbonate and κ-carrageenan employing the extrusion/spheronizing technique followed by coating with ethylcellulose. Furthermore, dissolution and pharmacokinetic study in beagle dogs were performed compared to the fenofibrate-loaded commercial tablet (FCT) and choline fenofibrate-loaded commercial mini-tablet (CFCM). This fenofibric acid-loaded pellet showed controlled release of the drug in phosphate buffer (pH 6.8) and 0.025 M sodium laurylsulfate within 4h. Furthermore, this pellet and CFCM exhibited similar dissolution profiles. Plasma concentrations greater than 1,000 ng/ml were maintained from 30 min to 8h, suggesting a sustained release pattern. Also, the fenofibric acid-loaded pellet gave significantly higher AUC and Cmax values than FCT, indicating that it improved the bioavailability of fenofibrate due to enhanced solubility and sustained release. In addition, this pellet and CFCM were not significantly different in terms of pharmacokinetic parameters including AUC, Cmax and Tmax. Thus, this pellet was bioequivalent to CFCM in beagle dogs. In conclusion, this fenofibric acid-loaded controlled release pellet would be a potential alternative to the choline fenofibrate-loaded commercial product. PMID:26024820

  10. An analysis on the load balancing strategies in wavelength-routed optical networks

    NASA Astrophysics Data System (ADS)

    Liu, Kai; Fu, Minglei; Le, Zichun

    2008-11-01

    Routing and wavelength assignment (RWA) is one of the key issues in the wavelength-routed optical networks. Although some RWA algorithms have been well performed to meet the need of certain networks requirement, they usually neglect the performance of the whole networks, especially the load balancing of the whole networks. This is quite likely to lead to some links bearing excessive ligthpaths and traffic load, while other links being at an idle state. In this paper, the load distribution vector ( LDV ) is introduced to describe the links load of the networks firstly. Then by means of minimizing the LDV of the networks, the load balancing of the whole networks is tried to improve. Based on this, a heuristic load balancing (HLB) strategy is presented. Moreover, a novel RWA algorithm adopting the heuristic load balancing strategy is developed, as well as two other RWA algorithms adopting other load balancing strategies. At last, the simulations of the three RWA algorithms with different load balancing strategies are done for comparison on the basis of both the regular topology and the irregular topology networks. The simulation results show that the key performance parameters such as the average variance of links, the maximum link load and the number of established lightpath are improved by means of our novel RWA algorithm with the heuristic load balancing strategy.

  11. Application of measured loads to wind turbine fatigue and reliability analysis

    SciTech Connect

    Veers, P.S.; Winterstein, S.R.

    1997-01-01

    Cyclic loadings produce progressive damage that can ultimately result in wind turbine structural failure. There are many issues that must be dealt with in turning load measurements into estimates of component fatigue life. This paper deals with how the measured loads can be analyzed and processed to meet the needs of both fatigue life calculations and reliability estimates. It is recommended that moments of the distribution of rainflow-range load amplitudes be calculated and used to characterize the fatigue loading. These moments reflect successively more detailed physical characteristics of the loading (mean, spread, tail behavior). Moments can be calculated from data samples and functional forms can be fitted to wind conditions, such as wind speed and turbulence intensity, with standard recession techniques. Distributions of load amplitudes that accurately reflect the damaging potential of the loadings can be estimated from the moments at any, wind condition of interest. Fatigue life can then be calculated from the estimated load distributions, and the overall, long-term, or design spectrum can be generated for any particular wind-speed distribution. Characterizing the uncertainty in the distribution of cyclic loads is facilitated by using a small set of descriptive statistics for which uncertainties can be estimated. The effects of loading parameter uncertainty can then be transferred to the fatigue life estimate and compared with other uncertainties, such as material durability.

  12. A new Markov model for base-loaded units for use in production costing

    SciTech Connect

    Ansari, S.H.; Patton, A.D. )

    1990-08-01

    This paper describes a new Markov model for base-loaded units henceforth to be called the LLM (load linked Markov) model for use in a probabilistic production costing algorithm. This new LLM model recognizes the relationship between the need for operating a base-loaded unit and the system load cycle. A comparison of the results obtained by using a traditional production costing method, the Opcost method with explicit consideration of unit duty cycle effects and the new method using the LLM model for base-loaded units to be called Procop method show significant differences in the energies produced by the base-loaded units and consequently the other units. The linkage of a base-loaded unit's need for operation to the load cycle avoids the assumption of the traditional model that the base-loaded units are equally needed all times. It also avoids the ad hoc treatment of outage postponability of base-loaded units. Hence the Procop method is more physically based and is likely to be more accurately responsive to changes in the load cycle and other system parameters.

  13. Postural effects of symmetrical and asymmetrical loads on the spines of schoolchildren.

    PubMed

    Negrini, Stefano; Negrini, Alberto

    2007-01-01

    The school backpack constitutes a daily load for schoolchildren: we set out to analyse the postural effects of this load, considering trunk rotation, shoulder asymmetry, thoracic kyphosis, lumbar lordosis, and sagittal and frontal decompensation from the plumbline. A group of 43 subjects (mean age = 12.5 +/- 0.5 years) were considered: average backpack loads and average time spent getting to/from home/school (7 min) had been determined in a previous study conducted on this population. Children were evaluated by means of an optoelectronic device in different conditions corresponding to their usual everyday school backpack activities: without load; bearing 12 (week maximum) and 8 (week average) kg symmetrical loads; bearing an 8 kg asymmetrical load; after fatigue due to backpack carrying (a 7-minute treadmill walking session bearing an 8 kg symmetrical load). Both types of load induce changes in posture: the symmetrical one in the sagittal plane, without statistical significant differences between 8 and 12 kg, and the asymmetrical one in all anatomical planes. Usual fatigue accentuates sagittal effects, but recovery of all parameters (except lumbar lordosis) follows removal of the load. The backpack load effect on schoolchildren posture should be more carefully evaluated in the future, even if we must bear in mind that laws protect workers to carry heavy loads but not children, and results in the literature support the hypothesis that back pain in youngsters is correlated with back pain in adulthood. PMID:17620121

  14. Passively Shunted Piezoelectric Damping of Centrifugally-Loaded Plates

    NASA Technical Reports Server (NTRS)

    Duffy, Kirsten P.; Provenza, Andrew J.; Trudell, Jeffrey J.; Min, James B.

    2009-01-01

    Researchers at NASA Glenn Research Center have been investigating shunted piezoelectric circuits as potential damping treatments for turbomachinery rotor blades. This effort seeks to determine the effects of centrifugal loading on passively-shunted piezoelectric - damped plates. Passive shunt circuit parameters are optimized for the plate's third bending mode. Tests are performed both non-spinning and in the Dynamic Spin Facility to verify the analysis, and to determine the effectiveness of the damping under centrifugal loading. Results show that a resistive shunt circuit will reduce resonant vibration for this configuration. However, a tuned shunt circuit will be required to achieve the desired damping level. The analysis and testing address several issues with passive shunt circuit implementation in a rotating system, including piezoelectric material integrity under centrifugal loading, shunt circuit implementation, and tip mode damping.

  15. Thermal-structural combined loads design criteria study

    NASA Technical Reports Server (NTRS)

    Deriugin, V.; Brogren, E. W.; Jaeck, C. L.; Brown, A. L.; Clingan, B. E.

    1972-01-01

    A study was conducted to determine methodology for combining thermal structural loads and assessing the effects of the combined loads on the design of a thermal protection system and a hot structure of a high cross range delta wing space shuttle orbiter vehicle. The study presents guidelines for establishing a basis for predicting thermal and pressure environments and for determining limit and ultimate design loads on the vehicle during reentry. Limit trajectories were determined by using dispersions on a representative nominal mission and system parameters expected during the life of the vehicle. Nine chosen locations on the vehicle surface having TPS or hot structures were examined, and weight sensitivity analyses were performed for each location.

  16. Multi-band Monopole Antennas Loaded with Metamaterial TL

    NASA Astrophysics Data System (ADS)

    Song, Zhi-jie; Liang, Jian-gang

    2015-05-01

    A novel metamaterial transmission line (TL) by loading complementary single Archimedean spiral resonator pair (CSASRP) is investigated and used to design a set of multi-frequency monopole antennas. The particularity is that the CSASRP which features dual-shunt branches in the equivalent circuit model is directly etched in the signal strip. By smartly controlling the element parameters, three antennas are designed and one of them covering UMTS and Bluetooth bands is fabricated and measured. The antenna exhibits impedance matching better than -10 dB and normal monopolar radiation patterns at working bands of 1.9-2.22 and 2.38-2.5 GHz. Moreover, the loaded element also contributes to the radiation, which is the major advantage of this prescription over previous lumped-element loadings. The proposed antenna is also more compact over previous designs.

  17. Beam loading and cavity compensation for the ground test accelerator

    SciTech Connect

    Jachim, S.P.; Natter, E.F.

    1989-01-01

    The Ground Test Accelerator (GTA) will be a heavily beam-loaded H/sup minus/ linac with tight tolerances on accelerating field parameters. The methods used in modeling the effects of beam loading in this machine are described. The response of the cavity to both beam and radio-frequency (RF) drive stimulus is derived, including the effects of cavity detuning. This derivation is not restricted to a small-signal approximation. An analytical method for synthesizing a predistortion network that decouples the amplitude and phase responses of the cavity is also outlined. Simulation of performance, including beam loading, is achieved through use of a control system analysis software package. A straightforward method is presented for extrapolating this work to model large coupled structures with closely spaced parasitic modes. Results to date have enabled the RF control system designs for GTA to be optimized and have given insight into their operation. 6 refs., 10 figs.

  18. Modeling the responses of TSM resonators under various loading conditions

    SciTech Connect

    BANDEY,HELEN L.; MARTIN,STEPHEN J.; CERNOSEK,RICHARD W.; HILLMAN,A. ROBERT

    1999-03-01

    The authors developed a general model that describes the electrical responses of thickness shear mode resonators subject to a variety of surface conditions. The model incorporates a physically diverse set of single component loadings, including rigid solids, viscoelastic media, and fluids (Newtonian or Maxwellian). The model allows any number of these components to be combined in any configuration. Such multiple loadings are representative of a variety of physical situations encountered in electrochemical and other liquid phase applications, as well as gas phase applications. In the general case, the response of the composite load is not a linear combination of the individual component responses. The authors discuss application of the model in a qualitative diagnostic fashion to gain insight into the nature of the interfacial structure, and in a quantitative fashion to extract appropriate physical parameters such as liquid viscosity and density, and polymer shear moduli.

  19. Airloads research study. Volume 1: Flight test loads acquisition

    NASA Technical Reports Server (NTRS)

    Bartlett, M. D.; Feltz, T. F.; Olsen, A. D., Jr.; Smith, D. B.; Wildermuth, P. F.

    1984-01-01

    The acquisition of B-1 aircraft flight loads data for use in subsequent tasks of the Airloads Research Study is described. The basic intent is to utilize data acquired during B-1 aircraft tests, analyze these data beyond the scope of Air Force requirements, and prepare research reports that will add to the technology base for future large flexible aircraft. Flight test data obtained during the airloads survey program included condition-describing parameters, surface pressures, strain gage outputs, and loads derived from pressure and strain gauges. Descriptions of the instrumentation, data processing, and flight load survey program are included. Data from windup-turn and steady yaw maneuvers cover a Mach number range from 0.7 to 2.0 for a wing sweep position of 67.5 deg.

  20. Influence of plasma loading in a hybrid muon cooling channel

    SciTech Connect

    Freemire, B.; Stratakis, D.; Yonehara, K.

    2015-05-03

    In a hybrid 6D cooling channel, cooling is accomplished by reducing the beam momentum through ionization energy loss in wedge absorbers and replenishing the momentum loss in the longitudinal direction with gas-filled rf cavities. While the gas acts as a buffer to prevent rf breakdown, gas ionization also occurs as the beam passes through the pressurized cavity. The resulting plasma may gain substantial energy from the rf electric field which it can transfer via collisions to the gas, an effect known as plasma loading. In this paper, we investigate the influence of plasma loading on the cooling performance of a rectilinear hybrid channel. With the aid of numerical simulations we examine the sensitivity in cooling performance and plasma loading to key parameters such as the rf gradient and gas pressure.

  1. Investigation of CSRR loaded waveguide for accelerator applications

    NASA Astrophysics Data System (ADS)

    Sharples, E.; Letizia, R.

    2014-11-01

    In this paper, a design for a metamaterial loaded rectangular metal waveguide is investigated for applications in accelerators and as coherent radiation sources. The loaded waveguide structure is designed to operate between 4 GHz and 6 GHz, with optimal operation at 5.47 GHz. The metallic waveguide structure is loaded with sheets of complementary split ring resonators (CSRRs), which act like narrow patterned waveguides, confining the transverse magnetic (TM) modes which gives rise to left handed behaviour. Numerical simulations of the resulting electromagnetic modes within the structure are reported and analytical calculations of the beam coupling parameters performed. A TM-like mode is identified at 5.47 GHz for a phase advance of 10° and through analytical analysis is shown to have an R/Q of 26.40Ω and a shunt impedance of 43.76 kΩ and thus is suitable for applications in acceleration and Cherenkov based detectors.

  2. Upper extremity hemodynamics and sensation with backpack loads.

    PubMed

    Kim, Sae Hoon; Neuschwander, Timothy B; Macias, Brandon R; Bachman, Larry; Hargens, Alan R

    2014-05-01

    Heavy backpacks are often used in extreme environments, for example by military during combat, therefore completion of tasks quickly and efficiently is of operational relevance. The purpose of this study was to quantify hemodynamic parameters (brachial artery Doppler and microvascular flow by photoplethysmography; tissue oxygenation by near-infrared spectroscopy; arterial oxygen saturation by pulse oximeter) and sensation in upper extremities and hands (Semmes-Weinstein monofilament test and 2-point discrimination test) while wearing a loaded backpack (12 kg) in healthy adults for 10 min. All values were compared to baseline before wearing a backpack. Moderate weight loaded backpack loads significantly decreased upper extremity sensation as well as all macrovascular and microvascular hemodynamic values. Decreased macrovascular and microvascular hemodynamics may produce neurological dysfunction and consequently, probably affect fine motor control of the hands. PMID:24075289

  3. Adaptive and injury response of bone to mechanical loading

    PubMed Central

    McBride, Sarah H; Silva, Matthew J

    2012-01-01

    Bone responds to supraphysiological mechanical loads by increasing bone formation. Depending on the applied strain magnitude (and other loading parameters) the response can be either adaptive (mostly lamellar bone) or injury (mostly woven bone). Seminal studies of Hert, Lanyon and Rubin originally established the basic 'rules' of bone mechanosensitivity. These were reinforced by subsequent studies using noninvasive rodent loading models, most notably by Turner et al. More recent works with these models have been able to explore the structural, transcriptional and molecular mechanisms which distinguish the two responses (lamellar vs woven). Wnt/Lrp signaling has emerged as a key mechanoresponsive pathway for lamellar bone. However, there is still much to study with regard to effects of ageing, osteocytes, other signaling pathways, and the molecular regulation that modulates lamellar vs woven bone formation. This review summarizes not only the historical findings but also the current data for these topics. PMID:23505338

  4. Buckling of Laminated Composite Stiffened Panels Subjected to Linearly Varying In-Plane Edge Loading

    NASA Astrophysics Data System (ADS)

    Mallela, Upendra K.; Upadhyay, Akhil

    2014-01-01

    The presence of in-plane loading may cause buckling of stiffened panels. An accurate knowledge of critical buckling load and mode shapes is essential for reliable and lightweight structural design. This paper presents parametric studies on simply supported laminated composite blade-stiffened panels subjected to linearly varying in-plane edge/compressive loading. Studies are carried out by changing the panel orthotropy ratio, stiffener depth, pitch length (number of stiffeners), smeared extensional stiffness ratio of stiffener to that of the plate and load distribution parameter. Based on the studies, a few important parameters influencing the buckling behavior are identified and their significance is discussed. Further, the interaction equations for combined loadings are validated by carrying out numerical studies.

  5. A criterion for high-cycle fatigue life and fatigue limit prediction in biaxial loading conditions

    NASA Astrophysics Data System (ADS)

    Pejkowski, Łukasz; Skibicki, Dariusz

    2016-08-01

    This paper presents a criterion for high-cycle fatigue life and fatigue strength estimation under periodic proportional and non-proportional cyclic loading. The criterion is based on the mean and maximum values of the second invariant of the stress deviator. Important elements of the criterion are: function of the non-proportionality of fatigue loading and the materials parameter that expresses the materials sensitivity to non-proportional loading. The methods for the materials parameters determination uses three S-N curves: tension-compression, torsion, and any non-proportional loading proposed. The criterion has been verified using experimental data, and the results are included in the paper. These results should be considered as promising. The paper also includes a proposal for multiaxial fatigue models classification due to the approach for the non-proportionality of loading.

  6. Design of Albumin-Coated Microbubbles Loaded With Polylactide Nanoparticles

    PubMed Central

    Gauthier, Marianne; Yin, Qian; Cheng, Jianjun; O'Brien, William D.

    2015-01-01

    Objectives A protocol was designed to produce albumin-coated microbubbles (MBs) loaded with functionalized polylactide (PLA) nanoparticles (NPs) for future drug delivery studies. Methods Microbubbles resulted from the sonication of 5% bovine serum albumin and 15% dextrose solution. Functionalized NPs were produced by mixing fluorescent PLA and PLA-polyethylene glycol-carboxylate conjugates. Nanoparticle-loaded MBs resulted from the covalent conjugation of functionalized NPs and MBs. Three NP/MB volume ratios (1/1, 1/10, and 1/100) and unloaded MBs were produced and compared. Statistical evaluations were based on quantitative analysis of 3 parameters at 4 time points (1, 4, 5, and 6 days post MB fabrication): MB diameter using a circle detection routine based on the Hough transform, MB number density using a hemocytometer, and NP-loading yield based on MB counts from fluorescence and light microscopic images. Loading capacity of the albumin-coated MBs was evaluated by fluorescence. Results Loaded MB sizes were stable over 6 days after production and were not significantly different from that of time-matched unloaded MBs. Number density evaluation showed that only 1/1 NP/MB volume ratio and unloaded MB number densities were stable over time, and that the 1/1 MB number density evaluated at each time point was not significantly different from that of unloaded MBs. The 1/10 and 1/100 NP/MB volume ratios had unstable number densities that were significantly different from that of unloaded MBs (P < .05). Fluorescence evaluation suggested that 1/1 MBs had a higher NP-loading yield than 1/10 and 1/100 MBs. Quantitative loading evaluation suggested that the 1/1 MBs had a loading capacity of 3700 NPs/MB. Conclusions A protocol was developed to load albumin MBs with functionalized PLA NPs for further drug delivery studies. The 1/1 NP/MB volume ratio appeared to be the most efficient to produce stable loaded MBs with a loading capacity of 3700 NPs/MB. PMID:26206822

  7. Plutonium immobilization -- Can loading. Revision 1

    SciTech Connect

    Kriikku, E.

    2000-03-13

    The Savannah River Site (SRS) will immobilize excess plutonium in the proposed Plutonium Immobilization Project (PIP). The PIP adds the excess plutonium to ceramic pucks, loads the pucks into cans, and places the cans into DWPF canisters. This paper discusses the PIP process steps, the can loading conceptual design, can loading equipment design, and can loading work completed.

  8. 46 CFR 122.335 - Loading doors.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Loading doors. 122.335 Section 122.335 Shipping COAST... Requirements § 122.335 Loading doors. (a) Except as allowed by paragraph (b) of this section, the master of a vessel fitted with loading doors shall assure that all loading doors are closed and secured during...

  9. 46 CFR 122.335 - Loading doors.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Loading doors. 122.335 Section 122.335 Shipping COAST... Requirements § 122.335 Loading doors. (a) Except as allowed by paragraph (b) of this section, the master of a vessel fitted with loading doors shall assure that all loading doors are closed and secured during...

  10. 46 CFR 122.335 - Loading doors.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Loading doors. 122.335 Section 122.335 Shipping COAST... Requirements § 122.335 Loading doors. (a) Except as allowed by paragraph (b) of this section, the master of a vessel fitted with loading doors shall assure that all loading doors are closed and secured during...

  11. 46 CFR 122.335 - Loading doors.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Loading doors. 122.335 Section 122.335 Shipping COAST... Requirements § 122.335 Loading doors. (a) Except as allowed by paragraph (b) of this section, the master of a vessel fitted with loading doors shall assure that all loading doors are closed and secured during...

  12. 46 CFR 122.335 - Loading doors.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Loading doors. 122.335 Section 122.335 Shipping COAST... Requirements § 122.335 Loading doors. (a) Except as allowed by paragraph (b) of this section, the master of a vessel fitted with loading doors shall assure that all loading doors are closed and secured during...

  13. Stiffness characteristics of airfoils under pulse loading

    NASA Astrophysics Data System (ADS)

    Turner, Kevin Eugene

    The turbomachinery industry continually struggles with the adverse effects of contact rubs between airfoils and casings. The key parameter controlling the severity of a given rub event is the contact load produced when the airfoil tips incur into the casing. These highly non-linear and transient forces are difficult to calculate and their effects on the static and rotating components are not well understood. To help provide this insight, experimental and analytical capabilities have been established and exercised through an alliance between GE Aviation and The Ohio State University Gas Turbine Laboratory. One of the early findings of the program is the influence of blade flexibility on the physics of rub events. The core focus of the work presented in this dissertation is to quantify the influence of airfoil flexibility through a novel modeling approach that is based on the relationship between applied force duration and maximum tip deflection. This relationship is initially established using a series of forward, non-linear and transient analyses in which simulated impulse rub loads are applied. This procedure, although effective, is highly inefficient and costly to conduct by requiring numerous explicit simulations. To alleviate this issue, a simplified model, named the pulse magnification model, is developed that only requires a modal analysis and a static analyses to fully describe how the airfoil stiffness changes with respect to load duration. Results from the pulse magnification model are compared to results from the full transient simulation method and to experimental results, providing sound verification for the use of the modeling approach. Furthermore, a unique and highly efficient method to model airfoil geometries was developed and is outlined in this dissertation. This method produces quality Finite Element airfoil definitions directly from a fully parameterized mathematical model. The effectiveness of this approach is demonstrated by comparing modal

  14. Evaluation of the Hinge Moment and Normal Force Aerodynamic Loads from a Seamless Adaptive Compliant Trailing Edge Flap in Flight

    NASA Technical Reports Server (NTRS)

    Miller, Eric J.; Cruz, Josue; Lung, Shun-Fat; Kota, Sridhar; Ervin, Gregory; Lu, Kerr-Jia; Flick, Pete

    2016-01-01

    A seamless adaptive compliant trailing edge (ACTE) flap was demonstrated in flight on a Gulfstream III aircraft at the NASA Armstrong Flight Research Center. The trailing edge flap was deflected between minus 2 deg up and plus 30 deg down in flight. The safety-of-flight parameters for the ACTE flap experiment require that flap-to-wing interface loads be sensed and monitored in real time to ensure that the structural load limits of the wing are not exceeded. The attachment fittings connecting the flap to the aircraft wing rear spar were instrumented with strain gages and calibrated using known loads for measuring hinge moment and normal force loads in flight. The safety-of-flight parameters for the ACTE flap experiment require that flap-to-wing interface loads be sensed and monitored in real time to ensure that the structural load limits of the wing are not exceeded. The attachment fittings connecting the flap to the aircraft wing rear spar were instrumented with strain gages and calibrated using known loads for measuring hinge moment and normal force loads in flight. The interface hardware instrumentation layout and load calibration are discussed. Twenty-one applied calibration test load cases were developed for each individual fitting. The 2-sigma residual errors for the hinge moment was calculated to be 2.4 percent, and for normal force was calculated to be 7.3 percent. The hinge moment and normal force generated by the ACTE flap with a hinge point located at 26-percent wing chord were measured during steady state and symmetric pitch maneuvers. The loads predicted from analysis were compared to the loads observed in flight. The hinge moment loads showed good agreement with the flight loads while the normal force loads calculated from analysis were over-predicted by approximately 20 percent. Normal force and hinge moment loads calculated from the pressure sensors located on the ACTE showed good agreement with the loads calculated from the installed strain gages.

  15. Loads and calculations of army airplanes

    NASA Technical Reports Server (NTRS)

    Stelmachowski, Ing

    1921-01-01

    By comparing airplanes of known strength that have resisted all the usual and even extreme air loads with those that under like conditions were found to be insufficiently strong, the researchers, aided by scientific investigations, developed standards which are satisfactory for the calculation of airplane structures. Given here are standards applicable to loads on wing trusses, load factors for use in stress analysis, load factors required in sand testing, loads on control surfaces, loads on wing ribs, loads on landing gear, and rigidity of materials.

  16. [Physiological-occupational assessment of acoustic load with equal energy but different time and informational characteristics].

    PubMed

    Suvorov, G A; Shkarinov, L N; Kravchenko, O K; Kur'erov, N N

    1999-01-01

    The article deals with results of experimental study comparing effects of 4 types of acoustic load--noise (constant and impulse) and music (electronic symphonic one and rap)--on hearing sensitivity, processes in nervous system and subjective evaluation. All types of acoustic load were equal in energy (on evaluation according to equivalent level during the experiment). The study included 2 levels of load--90 and 95 dB. The differences revealed demonstrate importance of impulse parameters of noise and musical load for reactions of acoustic analyzer and central nervous system. The experiments show that evaluation of harm caused by temporary and impulse noises should be based not only on assessment of specific (hearing) function, but also on parameters of central nervous system state. The authors found that music of certain acoustic and informational parameters may harm hearing function. PMID:10420710

  17. PRB rail loadings shatter record

    SciTech Connect

    Buchsbaum, L.

    2008-09-15

    Rail transport of coal in the Powder River Basin has expanded, with a record 2,197 trains loaded in a month. Arch Coal's Thunder basin mining complex has expanded by literally bridging the joint line railway. The dry fork mine has also celebrated its safety achievements. 4 photos.

  18. Behavior of soil anchors under dynamic loads

    SciTech Connect

    Picornell, M.; Olague, B.

    1997-07-01

    Helical anchors placed in a cohesionless soil in a laboratory setting were tested under static and dynamic loads. The dynamic tests were performed after subjecting the anchors to a seating load. The dynamic load had an intensity that changed in sinusoidal fashion and was superimposed to the static seating loads. Although, the anchors have a static pull-out capacity, when the dynamic loads are applied the anchor experiences additional deformations for each load cycle. The deformations per cycle are initially high but then decrease to a nearly constant rate. Eventually, the constant rate increases suddenly accelerating until failure. This failure can take place even at small fractions of the static pull-out capacity. The rate of deformation per load cycle is found to increase for larger seating loads and for larger dynamic pulsating loads. The results of this study shows that the designer can only adjust loads to decrease the deformation rate to suit the design life of the structure.

  19. Response of fiber reinforced sandwich structures subjected to explosive loading

    SciTech Connect

    Perotti, Luigi E.; El Sayed, Tamer; Deiterding, Ralf; Ortiz, Michael

    2011-01-01

    The capability to numerically simulate the response of sandwich structures to explosive loading constitutes a powerful tool to analyze and optimize their design by investigating the influence of different parameters. In order to achieve this objective, the necessary models for foam core and fiber reinforced materials in finite kinematics have been developed together with a finite element scheme which includes C1 finite elements for shells and cohesive elements able to capture the fracture propagation in composite fiber reinforced materials. This computational capability has been used to investigate the response of fiber reinforced sandwich shells to explosive loading. Based on the dissipated fracture energy resulting from these simulations, a factorial design has been carried out to assess the effect of different parameters on the sandwich shell response creating a tool for its optimization.

  20. Analysis of concrete containment structures under severe accident loading conditions

    SciTech Connect

    Porter, V.L.

    1993-12-31

    One of the areas of current interest in the nuclear power industry is the response of containment buildings to internal pressures that may exceed design pressure levels. Evaluating the response of structures under these conditions requires computing beyond design load to the ultimate load of the containment. For concrete containments, this requirement means computing through severe concrete cracking and into the regime of wide-spread plastic rebar and/or tendon response. In this regime of material response, an implicit code can have trouble converging. This paper describes some of the author`s experiences with Version 5.2 of ABAQUS Standard and the ABAQUS concrete model in computing the axisymmetric response of a prestressed concrete containment to ultimate global structural failure under high internal pressures. The effects of varying the tension stiffening parameter in the concrete material model and variations of the parameters for the CONTROLS option are discussed.

  1. The efficiency of ultrasonic oscillations transfer into the load

    NASA Astrophysics Data System (ADS)

    Abramov, O. V.; Abramov, V. O.; Mullakaev, M. S.; Artem'ev, V. V.

    2009-11-01

    The results of ultrasonic action to the substances have been presented. It is examined, the correlation between the electrical parameters of ultrasonic equipment and acoustic performances of the ultrasonic field in treating the medium, the efficiency of ultrasonic technological facility, and the peculiarities of oscillations introduced into the load under cavitation development. The correlation between the acoustic powers of oscillations securing the needed level of cavitation and desired technological effect, and the electrical parameters of the ultrasonic facility, first of all, the power, is established. The peculiarities of cavitation development in liquids with different physical-chemical properties (including the molten low-melting metals) have been studied, and the acoustic power of oscillations introduced into the load under input variation of electric power to the generator has been also estimated.

  2. Determination of Load Angle for Salient-pole Synchronous Machine

    NASA Astrophysics Data System (ADS)

    Sumina, D.; Šala, A.; Malarić, R.

    2010-01-01

    This paper presents two methods for load angle determination for salient-pole synchronous generator. The first method uses optical encoder to detect the rotor position. In some cases the end of the rotor shaft is not free to be used and mounting of an encoder is impossible. Therefore, the second method proposes estimation of the load angle based on the measured electrical values that have been already used in excitation control system of the synchronous generator. Estimation method uses corresponding voltage-current vector diagram and parameters of the synchronous generator, transformer and transmission lines. Both methods were experimentally verified on the digital control system and synchronous generator connected to power system. The estimation and measured results were compared. The accuracy of load angle estimation method depends on voltage and current measurement accuracy as well as generator, transformer and transmission line parameter accuracy. The estimation method gives satisfactory accuracy for load angles less than 120° el. Thus, it can be applied in excitation control system to provide stable work of synchronous generator in under-excitation operating area.

  3. A novel two-axis load sensor designed for in situ scratch testing inside scanning electron microscopes.

    PubMed

    Huang, Hu; Zhao, Hongwei; Wu, Boda; Wan, Shunguang; Shi, Chengli

    2013-01-01

    Because of a lack of available miniaturized multiaxial load sensors to measure the normal load and the lateral load simultaneously, quantitative in situ scratch devices inside scanning electron microscopes and the transmission electron microscopes have barely been developed up to now. A novel two-axis load sensor was designed in this paper. With an I-shaped structure, the sensor has the function of measuring the lateral load and the normal load simultaneously, and at the same time it has compact dimensions. Finite element simulations were carried out to evaluate stiffness and modal characteristics. A decoupling algorithm was proposed to resolve the cross-coupling between the two-axis loads. Natural frequency of the sensor was tested. Linearity and decoupling parameters were obtained from the calibration experiments, which indicate that the sensor has good linearity and the cross-coupling between the two axes is not strong. Via the decoupling algorithm and the corresponding decoupling parameters, simultaneous measurement of the lateral load and the normal load can be realized via the developed two-axis load sensor. Preliminary applications of the load sensor for scratch testing indicate that the load sensor can work well during the scratch testing. Taking advantage of the compact structure, it has the potential ability for applications in quantitative in situ scratch testing inside SEMs. PMID:23429516

  4. NICMOS Defocus parameter test

    NASA Astrophysics Data System (ADS)

    Dashevsky, Ilana

    2007-07-01

    This proposal tests the new NICMOS non-nominal focus positions, which are implemented in the front-end systems and are specified in the Phase II using the CAMERA-FOCUS=DEFOCUS Optional Parameter. The targets from Proposals 9832 and 11063 are used in this Proposal. The GO Proposal 9832 is an example of how GOs may use the new non-nominal focus implementation for detector 3. Proposal 11063 is the NICMOS focus monitor, which will be used to verify the non-nominal focus for all 3 detectors.

  5. Infrared Drying Parameter Optimization

    NASA Astrophysics Data System (ADS)

    Jackson, Matthew R.

    In recent years, much research has been done to explore direct printing methods, such as screen and inkjet printing, as alternatives to the traditional lithographic process. The primary motivation is reduction of the material costs associated with producing common electronic devices. Much of this research has focused on developing inkjet or screen paste formulations that can be printed on a variety of substrates, and which have similar conductivity performance to the materials currently used in the manufacturing of circuit boards and other electronic devices. Very little research has been done to develop a process that would use direct printing methods to manufacture electronic devices in high volumes. This study focuses on developing and optimizing a drying process for conductive copper ink in a high volume manufacturing setting. Using an infrared (IR) dryer, it was determined that conductive copper prints could be dried in seconds or minutes as opposed to tens of minutes or hours that it would take with other drying devices, such as a vacuum oven. In addition, this study also identifies significant parameters that can affect the conductivity of IR dried prints. Using designed experiments and statistical analysis; the dryer parameters were optimized to produce the best conductivity performance for a specific ink formulation and substrate combination. It was determined that for an ethylene glycol, butanol, 1-methoxy 2- propanol ink formulation printed on Kapton, the optimal drying parameters consisted of a dryer height of 4 inches, a temperature setting between 190 - 200°C, and a dry time of 50-65 seconds depending on the printed film thickness as determined by the number of print passes. It is important to note that these parameters are optimized specifically for the ink formulation and substrate used in this study. There is still much research that needs to be done into optimizing the IR dryer for different ink substrate combinations, as well as developing a

  6. CELSS engineering parameters

    NASA Technical Reports Server (NTRS)

    Drysdale, Alan; Sager, John; Wheeler, Ray; Fortson, Russ; Chetirkin, Peter

    1993-01-01

    The most important Controlled Ecological Life Support System (CELSS) engineering parameters are, in order of decreasing importance, manpower, mass, and energy. The plant component is a significant contributor to the total system equivalent mass. In this report, a generic plant component is described and the relative equivalent mass and productivity are derived for a number of instances taken from the KSC CELSS Breadboard Project data and literature. Typical specific productivities (edible biomass produced over 10 years divided by system equivalent mass) for closed systems are of the order of 0.2.

  7. A variable parameter parametric snake method

    NASA Astrophysics Data System (ADS)

    Marouf, A.; Houacine, A.

    2015-12-01

    In this paper, we introduce a new approach to parametric snake method by using variable snake parameters. Adopting fixed parameter values for all points of the snake, as usual, constitutes by itself a limitation that leads to poor performances in terms of convergence and tracking properties. A more adapted choice should be the one that allows selection depending on the image region properties as on the contour shape and position. However, such variability is not an easy task in general and a precise method need to be defined to assure contour point dependent tuning at iterations. We were particularly interested in applying this idea to the recently presented parametric method [1]. In the work mentioned, an attraction term is used to improve the convergence of the standard parametric snake without a significant increase in computational load. We show here, that improved performances can ensue from applying variable parameter concepts. For this purpose, the method is first analyzed and then a procedure is developed to assure an automatic variable parameter tuning. The interest of our approach is illustrated through object segmentation results.

  8. Strain Gage Load Calibration of the Wing Interface Fittings for the Adaptive Compliant Trailing Edge Flap Flight Test

    NASA Technical Reports Server (NTRS)

    Miller, Eric J.; Holguin, Andrew C.; Cruz, Josue; Lokos, William A.

    2014-01-01

    The safety-of-flight parameters for the Adaptive Compliant Trailing Edge (ACTE) flap experiment require that flap-to-wing interface loads be sensed and monitored in real time to ensure that the structural load limits of the wing are not exceeded. This paper discusses the strain gage load calibration testing and load equation derivation methodology for the ACTE interface fittings. Both the left and right wing flap interfaces were monitored; each contained four uniquely designed and instrumented flap interface fittings. The interface hardware design and instrumentation layout are discussed. Twenty-one applied test load cases were developed using the predicted in-flight loads. Pre-test predictions of strain gage responses were produced using finite element method models of the interface fittings. Predicted and measured test strains are presented. A load testing rig and three hydraulic jacks were used to apply combinations of shear, bending, and axial loads to the interface fittings. Hardware deflections under load were measured using photogrammetry and transducers. Due to deflections in the interface fitting hardware and test rig, finite element model techniques were used to calculate the reaction loads throughout the applied load range, taking into account the elastically-deformed geometry. The primary load equations were selected based on multiple calibration metrics. An independent set of validation cases was used to validate each derived equation. The 2-sigma residual errors for the shear loads were less than eight percent of the full-scale calibration load; the 2-sigma residual errors for the bending moment loads were less than three percent of the full-scale calibration load. The derived load equations for shear, bending, and axial loads are presented, with the calculated errors for both the calibration cases and the independent validation load cases.

  9. Prototype automated post-MECO ascent I-load Verification Data Table

    NASA Technical Reports Server (NTRS)

    Lardas, George D.

    1990-01-01

    A prototype automated processor for quality assurance of Space Shuttle post-Main Engine Cut Off (MECO) ascent initialization parameters (I-loads) is described. The processor incorporates Clips rules adapted from the quality assurance criteria for the post-MECO ascent I-loads. Specifically, the criteria are implemented for nominal and abort targets, as given in the 'I-load Verification Data Table, Part 3, Post-MECO Ascent, Version 2.1, December 1989.' This processor, ivdt, compares a given l-load set with the stated mission design and quality assurance criteria. It determines which I-loads violate the stated criteria, and presents a summary of I-loads that pass or fail the tests.

  10. Evaluation of a load cell model for dynamic calibration of the rotor systems research aircraft

    NASA Technical Reports Server (NTRS)

    Duval, R. W.; Bahrami, H.; Wellman, B.

    1985-01-01

    The Rotor Systems Research Aircraft uses load cells to isolate the rotor/transmission system from the fuselage. An analytical model of the relationship between applied rotor loads and the resulting load cell measurements is derived by applying a force-and-moment balance to the isolated rotor/transmission system. The model is then used to estimate the applied loads from measured load cell data, as obtained from a ground-based shake test. Using nominal design values for the parameters, the estimation errors, for the case of lateral forcing, were shown to be on the order of the sensor measurement noise in all but the roll axis. An unmodeled external load appears to be the source of the error in this axis.

  11. Analysis Of The Interface Behavior Under Cyclic Loading

    SciTech Connect

    Mortara, Giuseppe

    2008-07-08

    This paper analyses the frictional behavior between soil and structures under cyclic loading conditions. In particular, the attention is focused on the stress degradation occurring in sand-metal interface tests and on the relevant parameters playing a role in such kind of tests. Also, the paper reports the analysis of the experimental data from the constitutive point of view with a two-surface elastoplastic model.

  12. Robust Load-Sharing Control of Spacecraft Formations

    NASA Technical Reports Server (NTRS)

    Garcia-Sanz, M.; Hadaegh, Fred Y.

    2005-01-01

    This paper focuses on the design of autonomous and collaborative control strategies to govern the relative distances among multiple spacecraft in formation with no ground intervention. A coordinate load-sharing control structure for formation flying and a methodology to control their dynamic models with slow time-varying and uncertain parameters are the main objectives of this work. The method is applied to a deep space formation example, where the uncertainty in spacecraft fuel masses is also considered.

  13. Computer aided design of three-dimensional waveguide loaded cavities

    SciTech Connect

    Goren, Y.; Yu, D.U.L.

    1989-02-01

    We have developed two simple methods to calculate the power transport through an external waveguide of a loaded cavity utilizing the RF parameters obtained from the frequency domain codes. In the first method the external power loss through an open waveguide is expressed in terms of equivalent circuit coupling parameters between a closed waveguide and a cavity to which it is connected. As we shall see, this equivalent circuit approach is limited in it applicability only to structures with high loaded Q values, say Q/sub L/ < 200. In the second method, the power flow through an external waveguide is calculated from an analysis of the electromagnetic field components of the standing waves in the closed waveguide-cavity structure. Our models make use of the MAFIA code to obtain values of structural parameters and fields when an external waveguide is abruptly terminated with a metal surface. A typical model consists of an output cavity attached via an iris to a short waveguide section ended with a conducting cap. Our methodologies of calculating the loaded Q/sub L/ in terms of the parameters of the closed waveguide-cavity model are described in the following sections. We have obtained reasonable and encouraging results for several loaded cavities whose values of Q/sub L/ have been experimentally measured. Of particular interest is the application to low-Q structures such as the relativistic klystron output cavities. The electromagnetic field method yields good agreement with experimental measurements. This method has also been successfully applied to high gradient accelerating structures with slots for damping out higher modes as recently proposed by Palmer. 5 refs., 9 figs., 2 tabs.

  14. Testing for Random Limit Load Versus Static Limit Load

    NASA Technical Reports Server (NTRS)

    Lee, H. M.

    1997-01-01

    This document is an effort to report the basic test findings in an ongoing quest for understanding how random load factors should be applied to structural components in order to verify the strength of space flight hardware. A Spacelab experiment known as the Atmospheric Emission Photometric Imager (AEPI) was subjected to both an expected flight random environment and the associated Miles' equation equivalent static load. During each of these tests, the fiberglass pedestal was instrumented with 16 triaxial strain gauges around its base. Component strains and invariant stresses were compared. As seen previously in other hardware tests, the stress distribution from the random environment was an order of magnitude below the comparable static stresses. With a proposed data acquisition system, a strain database will be developed that will quantify an empirical relationship between dynamic and static limit stresses. This event will allow a more accurate estimate of launch environment effects on new technology structural components.

  15. Calculation of shielding parameters

    NASA Astrophysics Data System (ADS)

    Montoya, Zeferino Jorge

    Within the nuclear reaction exists three types of energy producing reactions: (1) radioactive disintegration; (2) fission; and (3) fusion. Besides the radiation produced in these reactions there are radioactive emissions of a different type, and in some of these cases they are of great penetration power and scope. The radiation produces great damage when interacted with materials, in particular the most dangerous are neutrons and gamma photons. For this reason it is necessary to protect people who work in places which operate with radioactive sources from the radiation, in addition to reducing the radiation doses to the most reasonably possible, considering the circumstances of the installations. The three determining factors in the proposition of reducing exposure to radiation are: (1) to maintain control over the reduced exposure in the time of the permanence in the irradiated areas; (2) to increase the distance between the source and the operating personnel as much as possible; and (3) to place an armor-plate between the source and the receptor. The work described in this paper has its objective a calculation of the parameters of an armor-plate in radioactive sources, with the goal of estimating the doses of radiation in protecting people and other biological systems from exposure to radiation produced during the nuclear reactions. The parameters to be principally considered are: (1) characteristics of the source; (2) geometry of the source at the point of exposure; and (3) material and thickness of the armor-plate.

  16. Parameters for burst detection

    PubMed Central

    Bakkum, Douglas J.; Radivojevic, Milos; Frey, Urs; Franke, Felix; Hierlemann, Andreas; Takahashi, Hirokazu

    2014-01-01

    Bursts of action potentials within neurons and throughout networks are believed to serve roles in how neurons handle and store information, both in vivo and in vitro. Accurate detection of burst occurrences and durations are therefore crucial for many studies. A number of algorithms have been proposed to do so, but a standard method has not been adopted. This is due, in part, to many algorithms requiring the adjustment of multiple ad-hoc parameters and further post-hoc criteria in order to produce satisfactory results. Here, we broadly catalog existing approaches and present a new approach requiring the selection of only a single parameter: the number of spikes N comprising the smallest burst to consider. A burst was identified if N spikes occurred in less than T ms, where the threshold T was automatically determined from observing a probability distribution of inter-spike-intervals. Performance was compared vs. different classes of detectors on data gathered from in vitro neuronal networks grown over microelectrode arrays. Our approach offered a number of useful features including: a simple implementation, no need for ad-hoc or post-hoc criteria, and precise assignment of burst boundary time points. Unlike existing approaches, detection was not biased toward larger bursts, allowing identification and analysis of a greater range of neuronal and network dynamics. PMID:24567714

  17. Loading of Launch Vehicle when Launching from Floating Launch Platform

    NASA Astrophysics Data System (ADS)

    Agarkov, A. V.; Pyrig, V. A.

    2002-01-01

    equator, which is a most effective way from payload capability standpoint. But mobility of the Launch Platform conditions an increase in LV loading as compared with onground launch. Therefore, to provide efficiency of lounching from LP requires solving certain issues to minimize LV loading at launch processing. The paper at hand describes ways to solve these issues while creating and operating the international space launch system Sea Launch, which provides commercial spacecraft launches onboard Zenit-3SL launch vehicle from the floating launch platform located at the equator in the Pacific. Methods to decrease these loads by selecting the optimum position of LP and by correcting LP trim and heel were described. In order to account for impact of weather changing (i.e. waves and winds) and launch support operations on the launch capability, a system of predicted load calculation was designed. By measuring LP roll and pitch parameters as well as wind speed and direction, the system defines loading at LV root section, compares it with the allowable value and, based on the compavision, forms a conclusion on launch capability. launches by Sea Launch.

  18. Computational evaluation of load carriage effects on gait balance stability.

    PubMed

    Mummolo, Carlotta; Park, Sukyung; Mangialardi, Luigi; Kim, Joo H

    2016-08-01

    Evaluating the effects of load carriage on gait balance stability is important in various applications. However, their quantification has not been rigorously addressed in the current literature, partially due to the lack of relevant computational indices. The novel Dynamic Gait Measure (DGM) characterizes gait balance stability by quantifying the relative effects of inertia in terms of zero-moment point, ground projection of center of mass, and time-varying foot support region. In this study, the DGM is formulated in terms of the gait parameters that explicitly reflect the gait strategy of a given walking pattern and is used for computational evaluation of the distinct balance stability of loaded walking. The observed gait adaptations caused by load carriage (decreased single support duration, inertia effects, and step length) result in decreased DGM values (p < 0.0001), which indicate that loaded walking motions are more statically stable compared with the unloaded normal walking. Comparison of the DGM with other common gait stability indices (the maximum Floquet multiplier and the margin of stability) validates the unique characterization capability of the DGM, which is consistently informative of the presence of the added load. PMID:26691823

  19. Changes in Frequency of Electromagnetic Radiation from Loaded Coal Rock

    NASA Astrophysics Data System (ADS)

    Song, Dazhao; Wang, Enyuan; Song, Xiaoyan; Jin, Peijian; Qiu, Liming

    2016-01-01

    To understand the relationship between the frequency of electromagnetic radiation (EMR) emitted from loaded coal rock and the micro-crack structures inside it, and assess the stress state and the stability of coal rock by analyzing frequency changes in characteristics of its emitted EMR, we first experimentally studied the changes in time sequence and the frequency spectrum characteristics of EMR during uniaxial compression, then theoretically derived the relationship between the principal frequency of EMR signals and the mechanical parameters of coal crack and analyzed the major factors causing the changes in the principal frequency, and lastly verified the results at Nuodong Coal Mine, Guizhou Province, China. The experimental results showed that (1) EMR intensity increased with the applied stress on loaded coal rock during its deformation and failure and could qualitatively reflect the coal's stress status; (2) with the applied stress increasing, the principal frequency gradually increased from near zero to about 60 kHz and then dropped to less than 20 kHz. During this period, coal rock first stepped into the linearly and elastically deformed stage and then ruptured around the peak load. Theoretical analysis showed that there was a negative correlation between the principle frequency and the size of internal cracks. Field detection showed that a lower principle frequency was generated from coal rock applied by a greater load, while a higher principal frequency was generated from coal rocks suffering a weaker load.

  20. Optimization Research of Mine Skip Quantitative Loading System

    NASA Astrophysics Data System (ADS)

    Wang, Shuang; Hu, Kun; Cheng, Gang; Li, De-yong

    2016-06-01

    The size and change of the impact load of coal material applied to the skip are studied aiming at the quantitative loading system of the skip. Based on the impulse theorem and with reasonable assumption, the calculation formula for impact force of the coal material is deducted and the impact characteristic of the impact force to the quantitative loading system of the skip is analyzed. The process of the coal material falling from quantitative conveyor to skip is analyzed with the discrete element simulation so that the distributed load of the impact force of the coal material at the skip bottom is obtained. The results show that the coal material produces large impact force (687 N) to the skip bottom the moment the coal material falls into the skip, and then the force decreases rapidly to about 245 N and increases gradually during the fluctuation; the impact force applied to the skip bottom increases with the increase of the coal transportation speed and the size of discharging port of the chute, but it is not in direct proportional relationship. The simulation results are basically the same as the experimental results. Finally the optimization parameters of the speed of quantitative conveyor and the size of the discharging port of the chute are searched for so as to improve the capacity of the conveyor and impact load assumed by the skip bottom.