Science.gov

Sample records for allosteric cgmp binding

  1. Allosteric Dynamic Control of Binding

    PubMed Central

    Sumbul, Fidan; Acuner-Ozbabacan, Saliha Ece; Haliloglu, Turkan

    2015-01-01

    Proteins have a highly dynamic nature and there is a complex interrelation between their structural dynamics and binding behavior. By assuming various conformational ensembles, they perform both local and global fluctuations to interact with other proteins in a dynamic infrastructure adapted to functional motion. Here, we show that there is a significant association between allosteric mutations, which lead to high-binding-affinity changes, and the hinge positions of global modes, as revealed by a large-scale statistical analysis of data in the Structural Kinetic and Energetic Database of Mutant Protein Interactions (SKEMPI). We further examined the mechanism of allosteric dynamics by conducting studies on human growth hormone (hGH) and pyrin domain (PYD), and the results show how mutations at the hinge regions could allosterically affect the binding-site dynamics or induce alternative binding modes by modifying the ensemble of accessible conformations. The long-range dissemination of perturbations in local chemistry or physical interactions through an impact on global dynamics can restore the allosteric dynamics. Our findings suggest a mechanism for the coupling of structural dynamics to the modulation of protein interactions, which remains a critical phenomenon in understanding the effect of mutations that lead to functional changes in proteins. PMID:26338442

  2. Allosteric binding sites on muscarinic acetylcholine receptors.

    PubMed

    Wess, Jürgen

    2005-12-01

    In this issue of Molecular Pharmacology, Tränkle et al. (p. 1597) present new findings regarding the existence of a second allosteric site on the M2 muscarinic acetylcholine receptor (M2 mAChR). The M2 mAChR is a prototypic class A G protein-coupled receptor (GPCR) that has proven to be a very useful model system to study the molecular mechanisms involved in the binding of allosteric GPCR ligands. Previous studies have identified several allosteric muscarinic ligands, including the acetylcholinesterase inhibitor tacrine and the bis-pyridinium derivative 4,4'-bis-[(2,6-dichloro-benzyloxy-imino)-methyl]-1,1'-propane-1,3-diyl-bis-pyridinium dibromide (Duo3), which, in contrast to conventional allosteric muscarinic ligands, display concentration-effect curves with slope factors >1. By analyzing the interactions of tacrine and Duo3 with other allosteric muscarinic agents predicted to bind to the previously identified ;common' allosteric binding site, Tränkle et al. provide evidence suggesting that two allosteric agents and one orthosteric ligand may be able to bind to the M2 mAChR simultaneously. Moreover, studies with mutant mAChRs indicated that the M2 receptor epitopes involved in the binding of tacrine and Duo3 may not be identical. Molecular modeling and ligand docking studies suggested that the additional allosteric site probably represents a subdomain of the receptor's allosteric binding cleft. Because allosteric binding sites have been found on many other GPCRs and drugs interacting with these sites are thought to have great therapeutic potential, the study by Tränkle et al. should be of considerable general interest.

  3. cGMP Binding Sites on Photoreceptor Phosphodiesterase: Role in Feedback Regulation of Visual Transduction

    NASA Astrophysics Data System (ADS)

    Cote, Rick H.; Deric Bownds, M.; Arshavsky, Vadim Y.

    1994-05-01

    A central step in vertebrate visual transduction is the rapid drop in cGMP levels that causes cGMP-gated ion channels in the photoreceptor cell membrane to close. It has long been a puzzle that the cGMP phosphodiesterase (PDE) whose activation causes this decrease contains not only catalytic sites for cGMP hydrolysis but also noncatalytic cGMP binding sites. Recent work has shown that occupancy of these noncatalytic sites slows the rate of PDE inactivation. We report here that PDE activation induced by activated transducin lowers the cGMP binding affinity for noncatalytic sites on PDE and accelerates the dissociation of cGMP from these sites. These sites can exist in three states: high affinity (K_d = 60 nM) for the nonactivated PDE, intermediate affinity (K_d ≈ 180 nM) when the enzyme is activated in a complex with transducin, and low affinity (K_d > 1 μM) when transducin physically removes the inhibitory subunits of PDE from the PDE catalytic subunits. Activation of PDE by transducin causes a 10-fold increase in the rate of cGMP dissociation from one of the two noncatalytic sites; physical removal of the inhibitory subunits from the PDE catalytic subunits further accelerates the cGMP dissociation rate from both sites >50-fold. Because PDE molecules lacking bound cGMP inactivate more rapidly, this suggests that a prolonged cGMP decrease may act as a negative feedback regulator to generate the faster, smaller photoresponses characteristic of light-adapted photoreceptors.

  4. Ligand Binding to Macromolecules: Allosteric and Sequential Models of Cooperativity.

    ERIC Educational Resources Information Center

    Hess, V. L.; Szabo, Attila

    1979-01-01

    A simple model is described for the binding of ligands to macromolecules. The model is applied to the cooperative binding by hemoglobin and aspartate transcarbamylase. The sequential and allosteric models of cooperative binding are considered. (BB)

  5. Solution Structure of the cGMP Binding GAF Domain from Phosphodiesterase 5: Insights into Nucleotide Specificity, Dimerization, and cGMP-Dependent Conformational Change

    SciTech Connect

    Heikaus, Clemens C.; Stout, Joseph R.; Sekharan, Monica R.; Eakin, Catherine M.; Rajagopal, Ponni; Brzovic, Peter S.; Beavo, Joseph A.; Klevit, Rachel E.

    2008-08-15

    Phosphodiesterase 5 (PDE5) controls intracellular levels of cGMP through its regulation of cGMP hydrolysis. Hydrolytic activity of the C-terminal catalytic domain is increased by cGMP binding to the N-terminal GAF A domain. We present the NMR solution structure of the cGMP-bound PDE5A GAF A domain. The cGMP orientation in the buried binding pocket was defined through 37 intermolecular NOEs.

  6. Use of binding enthalpy to drive an allosteric transition.

    PubMed

    Brown, Patrick H; Beckett, Dorothy

    2005-03-01

    The Escherichia coli biotin repressor is an allosteric DNA binding protein and is activated by the small molecule bio-5'-AMP. Binding of this small molecule promotes transcription repression complex assembly between the repressor and the biotin operator of the biotin biosynthetic operon. The ability of the adenylate to activate the assembly process reflects its effect on biotin repressor dimerization. Thus concomitant with small molecule binding the free energy of repressor dimerization becomes more favorable by approximately -4 kcal/mol. The structural, dynamic, and energetic changes in the repressor monomer that accompany allosteric activation are not known. In this work the thermodynamics of binding of four allosteric activators to the repressor have been characterized by isothermal titration calorimetry. While binding of two of the effectors results in relatively modest activation of the dimerization process, binding of the other two small molecules, including the physiological effector, leads to large changes in repressor dimerization energetics. Results of the calorimetric measurements indicate that strong effector binding is accompanied by an enthalpically costly transition in the protein. This transition is "paid for" by the enthalpy that would have otherwise been realized from the formation of noncovalent bonds between the ligand and repressor monomer.

  7. Activated G-protein releases cGMP from high affinity binding sites on PDE from toad rod outer segments (ROS)

    SciTech Connect

    Yuen, P.S.T.; Walseth, T.F.; Panter, S.S.; Sundby, S.R.; Graeff, R.M.; Goldberg, N.D.

    1987-05-01

    cGMP binding proteins in toad ROS were identified by direct photoaffinity labeling (PAL) with /sup 32/P-cGMP and quantified by retention of complexes on nitrocellulose filters. By PAL, high affinity sites were present on the ..cap alpha.. and ..beta.. subunits of the cGMP-specific phosphodiesterase (PDE) which have MW/sub app/ of 94 and 90 kDa. A doublet was deduced from its photolabeling properties to represent PDE/sub ..gamma../ photocrosslinked with PDE/sub ..cap alpha../ or PDE/sub ..beta../, respectively. cGMP prebound to these high affinity sites was released by light-activated G-protein or its ..cap alpha.. subunit complexed with GTP..gamma..S; this inhibition of cGMP binding to PDE did not result from decreased cGMP availability due to enhanced hydrolysis. A low affinity cGMP binding component identified by PAL is tightly associated with ROS membranes. Apparent ATP/light-dependent stimulation of cGMP binding was shown to result from light activated cGMP hydrolysis in conjunction with ATP-promoted conversion of GMP to GDP/GTP and increased GDP/GTP binding. These findings coincide with a model for light-related regulation of cGMP binding and metabolism predicted from intact and cellfree kinetic measurements: in the dark state the cGMP hydrolic rate is constrained by the availability of cGMP because of its binding to high affinity sites on PDE. Light activated G-protein releases cGMP from these sites and allows for its redistribution to lower affinity sites represented by PDE catalytic site(s) and possible cGMP-dependent membrane cation channels.

  8. Light-activated DNA binding in a designed allosteric protein

    SciTech Connect

    Strickland, Devin; Moffat, Keith; Sosnick, Tobin R.

    2008-09-03

    An understanding of how allostery, the conformational coupling of distant functional sites, arises in highly evolvable systems is of considerable interest in areas ranging from cell biology to protein design and signaling networks. We reasoned that the rigidity and defined geometry of an {alpha}-helical domain linker would make it effective as a conduit for allosteric signals. To test this idea, we rationally designed 12 fusions between the naturally photoactive LOV2 domain from Avena sativa phototropin 1 and the Escherichia coli trp repressor. When illuminated, one of the fusions selectively binds operator DNA and protects it from nuclease digestion. The ready success of our rational design strategy suggests that the helical 'allosteric lever arm' is a general scheme for coupling the function of two proteins.

  9. Taurine allosterically modulates flunitrazepam binding to synaptic membranes.

    PubMed

    Quinn, M R; Miller, C L

    1992-09-01

    Taurine is hypothesized to exert its inhibitory neuromodulatory effects, in part, by interaction with the GABAA receptor. Although taurine displaces GABA agonist binding to synaptic membranes, its allosteric effects on the benzodiazepine recognition site of the GABAA receptor complex is unsettled. We determined the effects of taurine on [3H]flunitrazepam (Flu) binding to well-washed, frozen-thawed synaptic membranes prepared from rat cortex. Comparative binding studies were conducted at 37 degrees C and on ice (0-4 degrees C). At 37 degrees C taurine increased Flu binding in a concentration dependent way by interaction with a bicuculline sensitive site, similar to GABA. Taurine increased Flu binding by causing a decrease in KD. The maximal effectiveness of taurine on Flu binding could not be increased further by addition of GABA. In contrast, the maximal stimulation of Flu binding by GABA was decreased by addition of taurine to the level attained by taurine alone. These mixed agonist/antagonist effects of taurine are pharmacologically specific and qualify taurine as a partial GABA agonist in this type of allosteric interaction. However, taurine causes opposite effects on Flu binding when measured at 0-4 degrees C: taurine interacts with a bicuculline insensitive site to inhibit Flu binding by increasing the KD. Taurine inhibition of Flu binding is not overcome by increasing concentrations of GABA. Although the mechanism of taurine inhibition of Flu binding at 0-4 degrees C is unclear, it may be an indirect effect of taurine interaction with membrane phospholipids.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. A new nonhydrolyzable reactive cGMP analogue, (Rp)-Guanosine-3′, 5′-cyclic-S-(4-bromo-2, 3-dioxobutyl)monophosphorothioate, which targets the cGMP binding site of human platelet PDE3A

    PubMed Central

    Hung, Su H.; Liu, Andy H.; Pixley, Robin A.; Francis, Penelope; Williams, LaTeeka D.; Matsko, Christopher M.; Barnes, Karine D.; Sivendran, Sharmila; Colman, Roberta F.; Colman, Robert W.

    2008-01-01

    The amino acids involved in substrate (cAMP) binding to human platelet cGMP-inhibited cAMP phosphodiesterase (PDE3A) are identified. Less is known about the inhibitor (cGMP) binding site. We have now synthesized a nonhydrolyzable reactive cGMP analog, Rp-guanosine-3′, 5′-cyclic-S-(4-bromo-2, 3-dioxobutyl)monophosphorothioate (Rp-cGMPS-BDB). Rp-cGMPS-BDB irreversibly inactivates PDE3A (KI = 43.4 ± 7.2 μM and kcart = 0.007 ± 0.0006 min−1). The effectiveness of protectants in decreasing the rate of inactivation by Rp-cGMPS-BDB is: Rp-cGMPS (Kd = 72 μM) > Sp-cGMPS (124), Sp-cAMPS (182) > GMP (1517), Rp-cAMPS (3762), AMP (4370 μM). NAD+, neither a substrate nor an inhibitor of PDE3A, does not protect. Nonhydrolyzable cGMP analogs exhibit greater affinity than the cAMP analogs. These results indicate that Rp-cGMPS-BDB targets favorably the cGMP binding site consistent with a docking model of PDE3A-Rp-cGMPS-BDB active site. We conclude that Rp-cGMPS-BDB is an effective active site-directed affinity label for PDE3A with potential for other cGMP-dependent enzymes. PMID:18394675

  11. Light regulation of cGMP metabolism in toad rod outer segments (ROS) deduced from intact photoreceptor and cellfree kinetics

    SciTech Connect

    Dawis, S.M.; Graeff, R.M.; Heyman, R.A.; Walseth, T.F.; Butz, E.A.

    1987-05-01

    The rate of cGMP hydrolysis by phosphodiesterase (PDE) in intact ROS, monitored in dark-adapted isolated toad retina by the rate of /sup 18/O appearance in guanine nucleotide ..cap alpha..-phosphoryls, is 1/360th of that observed in disrupted ROS at a substrate concentration equivalent to the total (cGMP) in ROS. Low to moderate photic stimuli increase this cGMP hydrolytic rate up to 10-fold in intact ROS with little or no change in total (cGMP). G-protein activation determined in intact ROS by the fraction of GDP labeled with /sup 18/O corresponds with light-related increases in cGMP flux. In contrast, relatively high intensities and extended illumination cause attenuation of maximal cGMP hydrolysis with proportionate reductions in total (cGMP). From these observations combined with the effects of activated G-protein on kinetics and cGMP binding of ROS PDE the following model for light-regulation of cGMP metabolism was deduced: cGMP flux in intact ROS is severely restricted in the dark state because approximately 99% of the cGMP is bound to high affinity sites on the non-stimulated form of PDE. This constraint is relieved when activated G-protein converts the cGMP-binding form of PDE to a high K/sub m/ catalytic form. cGMP is then redistributed to a dynamic pool where it is available to PDE catalytic sites and lower affinity allosteric sites. The (cGMP) in the dynamic pool is maintained or further increased or decreased by modulating the activity of an apparently light-sensitive guanylyl cyclase.

  12. Studying the binding interactions of allosteric agonists and antagonists of the CXCR4 receptor.

    PubMed

    Planesas, Jesús M; Pérez-Nueno, Violeta I; Borrell, José I; Teixidó, Jordi

    2015-07-01

    Several examples of allosteric modulators of GPCRs have been reported recently in the literature, but understanding their molecular mechanism presents a new challenge for medicinal chemistry. For the specific case of the cellular receptor CXCR4, it is known that pepducins (lipidated fragments of intracellular GPCR loops) such as ATI-2341 modulate CXCR4 activity agonistically via an allosteric mechanism. Moreover, there are also examples of small organic molecules such as AMD11070 and GSK812397 which may also act as allosteric antagonists. However, incomplete knowledge of the ligand-binding sites has hampered a detailed molecular understanding of how these inhibitors work. Here, we attempt to answer this question by analysing the binding interactions between the CXCR4 receptor and the above-mentioned allosteric modulators. We propose two different allosteric binding sites, one located in the intracellular loops 1, 2 and 3 (ICL1, ICL2 and ICL3) which binds the pepducin agonist ATI-2341, and the other at a subsite of the main extracellular orthosteric binding pocket between extracellular loops 1 and 2 and the N-terminus, which binds the antagonists AMD11070 and GSK812397. Allosteric interactions between the CXCR4 and ATI-2341 were predicted by combining different modeling approaches. First, a rotational blind docking search was applied and the best poses were subsequently refined using flexible docking methods and molecular dynamic simulations. For the AMD11070 and GSK812397 antagonists, the entire CXCR4 protein surface was explored by blind docking in order to define the binding region. A second docking analysis by subsites was then performed to refine the allosteric interactions. Finally, we identified the binding residues that appear to be essential for CXCR4 allosteric modulators.

  13. Differentiating a Ligand's Chemical Requirements for Allosteric Interactions from Those for Protein Binding. Phenylalanine Inhibition of Pyruvate Kinase

    SciTech Connect

    Williams,R.; Holyoak, T.; McDonald, G.; Gui, C.; Fenton, A.

    2006-01-01

    The isoform of pyruvate kinase from brain and muscle of mammals (M1-PYK) is allosterically inhibited by phenylalanine. Initial observations in this model allosteric system indicate that Ala binds competitively with Phe, but elicits a minimal allosteric response. Thus, the allosteric ligand of this system must have requirements for eliciting an allosteric response in addition to the requirements for binding. Phe analogues have been used to dissect what chemical properties of Phe are responsible for eliciting the allosteric response. We first demonstrate that the L-2-aminopropanaldehyde substructure of the amino acid ligand is primarily responsible for binding to M1-PYK. Since the allosteric response to Ala is minimal and linear addition of methyl groups beyond the -carbon increase the magnitude of the allosteric response, we conclude that moieties beyond the -carbon are primarily responsible for allostery. Instead of an all-or-none mechanism of allostery, these findings support the idea that the bulk of the hydrophobic side chain, but not the aromatic nature, is the primary determinant of the magnitude of the observed allosteric inhibition. The use of these results to direct structural studies has resulted in a 1.65 Angstroms structure of M1-PYK with Ala bound. The coordination of Ala in the allosteric amino acid binding site confirms the binding role of the L-2-aminopropanaldehyde substructure of the ligand. Collectively, this study confirms that a ligand can have chemical regions specific for eliciting the allosteric signal in addition to the chemical regions necessary for binding.

  14. Allosteric-Site and Catalytic-Site Ligand Effects on PDE5 Functions are Associated with Distinct Changes in Physical Form of the Enzyme

    PubMed Central

    Corbin, Jackie D.; Zoraghi, Roya; Francis, Sharron H.

    2009-01-01

    Native phosphodiesterase-5 (PDE5) homodimer contains distinct non-catalytic cGMP allosteric sites and catalytic sites for cGMP hydrolysis. Purified recombinant PDE5 was activated by pre-incubation with cGMP. Relatively low concentrations of cGMP produced a Native PAGE gel-shift of PDE5 from a single band position (lower band) to a band with decreased mobility (upper band); higher concentrations of cGMP produced a band of intermediate mobility (middle band) in addition to the upper band. Two point mutations (G659A and G659P) near the catalytic site that reduced affinity for cGMP substrate retained allosteric cGMP-binding affinity like that of WT PDE5 but displayed cGMP-induced gel-shift only to the middle-band position. The upper band could represent a form produced by cGMP binding to the catalytic site, while the middle band could represent a form produced by cGMP binding to the allosteric site. Millimolar cGMP was required for gel-shift of PDE5 when added to the pre-incubation before native PAGE, presumably due to removal of most of the cGMP during electrophoresis, but micromolar cGMP was sufficient for this effect if cGMP was included in the native gel buffer. cGMP-induced gel-shift was associated with stimulation of PDE5 catalytic activity, and the rates of onset and reversibility of this effect suggested that it was due to cGMP binding to the allosteric site. Incubation of PDE5 with non-hydrolyzable, catalytic site-specific, substrate analogs such as the inhibitors sildenafil and tadalafil, followed by dilution, did not produce activation of catalytic activity like that obtained with cGMP, although both inhibitors produced a similar gel-shift to the upper band as that obtained with cGMP. This implied that occupation of the catalytic site alone can produce a gel-shift to the upper band. PDE5 activation or gel-shift was reversed by lowering cGMP with dilution followed by at least one hour of incubation. Such slow reversibility could prolong effects of cGMP on PDE

  15. Proposed Mode of Binding and Action of Positive Allosteric Modulators at Opioid Receptors

    PubMed Central

    2016-01-01

    Available crystal structures of opioid receptors provide a high-resolution picture of ligand binding at the primary (“orthosteric”) site, that is, the site targeted by endogenous ligands. Recently, positive allosteric modulators of opioid receptors have also been discovered, but their modes of binding and action remain unknown. Here, we use a metadynamics-based strategy to efficiently sample the binding process of a recently discovered positive allosteric modulator of the δ-opioid receptor, BMS-986187, in the presence of the orthosteric agonist SNC-80, and with the receptor embedded in an explicit lipid–water environment. The dynamics of BMS-986187 were enhanced by biasing the potential acting on the ligand–receptor distance and ligand–receptor interaction contacts. Representative lowest-energy structures from the reconstructed free-energy landscape revealed two alternative ligand binding poses at an allosteric site delineated by transmembrane (TM) helices TM1, TM2, and TM7, with some participation of TM6. Mutations of amino acid residues at these proposed allosteric sites were found to either affect the binding of BMS-986187 or its ability to modulate the affinity and/or efficacy of SNC-80. Taken together, these combined experimental and computational studies provide the first atomic-level insight into the modulation of opioid receptor binding and signaling by allosteric modulators. PMID:26841170

  16. Towards the identification of the allosteric Phe-binding site in phenylalanine hydroxylase.

    PubMed

    Carluccio, Carla; Fraternali, Franca; Salvatore, Francesco; Fornili, Arianna; Zagari, Adriana

    2016-01-01

    The enzyme phenylalanine hydroxylase (PAH) is defective in the inherited disorder phenylketonuria. PAH, a tetrameric enzyme, is highly regulated and displays positive cooperativity for its substrate, Phe. Whether Phe binds to an allosteric site is a matter of debate, despite several studies worldwide. To address this issue, we generated a dimeric model for Phe-PAH interactions, by performing molecular docking combined with molecular dynamics simulations on human and rat wild-type sequences and also on a human G46S mutant. Our results suggest that the allosteric Phe-binding site lies at the dimeric interface between the regulatory and the catalytic domains of two adjacent subunits. The structural and dynamical features of the site were characterized in depth and described. Interestingly, our findings provide evidence for lower allosteric Phe-binding ability of the G46S mutant than the human wild-type enzyme. This also explains the disease-causing nature of this mutant.

  17. A dynamically coupled allosteric network underlies binding cooperativity in Src kinase

    PubMed Central

    Foda, Zachariah H.; Shan, Yibing; Kim, Eric T.; Shaw, David E.; Seeliger, Markus A.

    2015-01-01

    Protein tyrosine kinases are attractive drug targets because many human diseases are associated with the deregulation of kinase activity. However, how the catalytic kinase domain integrates different signals and switches from an active to an inactive conformation remains incompletely understood. Here we identify an allosteric network of dynamically coupled amino acids in Src kinase that connects regulatory sites to the ATP- and substrate-binding sites. Surprisingly, reactants (ATP and peptide substrates) bind with negative cooperativity to Src kinase while products (ADP and phosphopeptide) bind with positive cooperativity. We confirm the molecular details of the signal relay through the allosteric network by biochemical studies. Experiments on two additional protein tyrosine kinases indicate that the allosteric network may be largely conserved among these enzymes. Our work provides new insights into the regulation of protein tyrosine kinases and establishes a potential conduit by which resistance mutations to ATP-competitive kinase inhibitors can affect their activity. PMID:25600932

  18. A dynamically coupled allosteric network underlies binding cooperativity in Src kinase.

    PubMed

    Foda, Zachariah H; Shan, Yibing; Kim, Eric T; Shaw, David E; Seeliger, Markus A

    2015-01-20

    Protein tyrosine kinases are attractive drug targets because many human diseases are associated with the deregulation of kinase activity. However, how the catalytic kinase domain integrates different signals and switches from an active to an inactive conformation remains incompletely understood. Here we identify an allosteric network of dynamically coupled amino acids in Src kinase that connects regulatory sites to the ATP- and substrate-binding sites. Surprisingly, reactants (ATP and peptide substrates) bind with negative cooperativity to Src kinase while products (ADP and phosphopeptide) bind with positive cooperativity. We confirm the molecular details of the signal relay through the allosteric network by biochemical studies. Experiments on two additional protein tyrosine kinases indicate that the allosteric network may be largely conserved among these enzymes. Our work provides new insights into the regulation of protein tyrosine kinases and establishes a potential conduit by which resistance mutations to ATP-competitive kinase inhibitors can affect their activity.

  19. Common Internal Allosteric Network Links Anesthetic Binding Sites in a Pentameric Ligand-Gated Ion Channel

    PubMed Central

    Joseph, Thomas T.

    2016-01-01

    General anesthetics bind reversibly to ion channels, modifying their global conformational distributions, but the underlying atomic mechanisms are not completely known. We examine this issue by way of the model protein Gloeobacter violaceous ligand-gated ion channel (GLIC) using computational molecular dynamics, with a coarse-grained model to enhance sampling. We find that in flooding simulations, both propofol and a generic particle localize to the crystallographic transmembrane anesthetic binding region, and that propofol also localizes to an extracellular region shared with the crystallographic ketamine binding site. Subsequent simulations to probe these binding modes in greater detail demonstrate that ligand binding induces structural asymmetry in GLIC. Consequently, we employ residue interaction correlation analysis to describe the internal allosteric network underlying the coupling of ligand and distant effector sites necessary for conformational change. Overall, the results suggest that the same allosteric network may underlie the actions of various anesthetics, regardless of binding site. PMID:27403526

  20. Guanine nucleotide binding to the Bateman domain mediates the allosteric inhibition of eukaryotic IMP dehydrogenases

    NASA Astrophysics Data System (ADS)

    Buey, Rubén M.; Ledesma-Amaro, Rodrigo; Velázquez-Campoy, Adrián; Balsera, Mónica; Chagoyen, Mónica; de Pereda, José M.; Revuelta, José L.

    2015-11-01

    Inosine-5'-monophosphate dehydrogenase (IMPDH) plays key roles in purine nucleotide metabolism and cell proliferation. Although IMPDH is a widely studied therapeutic target, there is limited information about its physiological regulation. Using Ashbya gossypii as a model, we describe the molecular mechanism and the structural basis for the allosteric regulation of IMPDH by guanine nucleotides. We report that GTP and GDP bind to the regulatory Bateman domain, inducing octamers with compromised catalytic activity. Our data suggest that eukaryotic and prokaryotic IMPDHs might have developed different regulatory mechanisms, with GTP/GDP inhibiting only eukaryotic IMPDHs. Interestingly, mutations associated with human retinopathies map into the guanine nucleotide-binding sites including a previously undescribed non-canonical site and disrupt allosteric inhibition. Together, our results shed light on the mechanisms of the allosteric regulation of enzymes mediated by Bateman domains and provide a molecular basis for certain retinopathies, opening the door to new therapeutic approaches.

  1. Guanine nucleotide binding to the Bateman domain mediates the allosteric inhibition of eukaryotic IMP dehydrogenases

    PubMed Central

    Buey, Rubén M.; Ledesma-Amaro, Rodrigo; Velázquez-Campoy, Adrián; Balsera, Mónica; Chagoyen, Mónica; de Pereda, José M.; Revuelta, José L.

    2015-01-01

    Inosine-5′-monophosphate dehydrogenase (IMPDH) plays key roles in purine nucleotide metabolism and cell proliferation. Although IMPDH is a widely studied therapeutic target, there is limited information about its physiological regulation. Using Ashbya gossypii as a model, we describe the molecular mechanism and the structural basis for the allosteric regulation of IMPDH by guanine nucleotides. We report that GTP and GDP bind to the regulatory Bateman domain, inducing octamers with compromised catalytic activity. Our data suggest that eukaryotic and prokaryotic IMPDHs might have developed different regulatory mechanisms, with GTP/GDP inhibiting only eukaryotic IMPDHs. Interestingly, mutations associated with human retinopathies map into the guanine nucleotide-binding sites including a previously undescribed non-canonical site and disrupt allosteric inhibition. Together, our results shed light on the mechanisms of the allosteric regulation of enzymes mediated by Bateman domains and provide a molecular basis for certain retinopathies, opening the door to new therapeutic approaches. PMID:26558346

  2. Characterization of the allosteric anion-binding site of O-acetylserine sulfhydrylase.

    PubMed

    Tai, C H; Burkhard, P; Gani, D; Jenn, T; Johnson, C; Cook, P F

    2001-06-26

    A new crystal structure of the A-isozyme of O-acetylserine sulfhydrylase-A (OASS) with chloride bound to an allosteric site located at the dimer interface has recently been determined [Burkhard, P., Tai, C.-H., Jansonius, J. N., and Cook, P. F. (2000) J. Mol. Biol. 303, 279-286]. Data have been obtained from steady state and presteady-state kinetic studies and from UV-visible spectral studies to characterize the allosteric anion-binding site. Data obtained with chloride and sulfate as inhibitors indicate the following: (i) chloride and sulfate prevent the formation of the external aldimines with L-cysteine or L-serine; (ii) chloride and sulfate increase the external aldimine dissociation constants for O-acetyl-L-serine, L-methionine, and 5-oxo-L-norleucine; (iii) chloride and sulfate bind to the allosteric site in the internal aldimine and alpha-aminoacrylate external aldimine forms of OASS; (iv) sulfate also binds to the active site. Sulfide behaves in a manner identical to chloride and sulfate in preventing the formation of the L-serine external aldimine. The binding of chloride to the allosteric site is pH independent over the pH range 7-9, suggesting no ionizable enzyme side chains ionize over this pH range. Inhibition by sulfide is potent (K(d) is 25 microM at pH 8) suggesting that SH(-) is the physiologic inhibitory species.

  3. Crystal Structure of Human Soluble Adenylate Cyclase Reveals a Distinct, Highly Flexible Allosteric Bicarbonate Binding Pocket

    PubMed Central

    Saalau-Bethell, Susanne M; Berdini, Valerio; Cleasby, Anne; Congreve, Miles; Coyle, Joseph E; Lock, Victoria; Murray, Christopher W; O'Brien, M Alistair; Rich, Sharna J; Sambrook, Tracey; Vinkovic, Mladen; Yon, Jeff R; Jhoti, Harren

    2014-01-01

    Soluble adenylate cyclases catalyse the synthesis of the second messenger cAMP through the cyclisation of ATP and are the only known enzymes to be directly activated by bicarbonate. Here, we report the first crystal structure of the human enzyme that reveals a pseudosymmetrical arrangement of two catalytic domains to produce a single competent active site and a novel discrete bicarbonate binding pocket. Crystal structures of the apo protein, the protein in complex with α,β-methylene adenosine 5′-triphosphate (AMPCPP) and calcium, with the allosteric activator bicarbonate, and also with a number of inhibitors identified using fragment screening, all show a flexible active site that undergoes significant conformational changes on binding of ligands. The resulting nanomolar-potent inhibitors that were developed bind at both the substrate binding pocket and the allosteric site, and can be used as chemical probes to further elucidate the function of this protein. PMID:24616449

  4. Identification of an allosteric binding site for RORγt inhibition

    PubMed Central

    Scheepstra, Marcel; Leysen, Seppe; van Almen, Geert C.; Miller, J. Richard; Piesvaux, Jennifer; Kutilek, Victoria; van Eenennaam, Hans; Zhang, Hongjun; Barr, Kenneth; Nagpal, Sunil; Soisson, Stephen M.; Kornienko, Maria; Wiley, Kristen; Elsen, Nathaniel; Sharma, Sujata; Correll, Craig C.; Trotter, B. Wesley; van der Stelt, Mario; Oubrie, Arthur; Ottmann, Christian; Parthasarathy, Gopal; Brunsveld, Luc

    2015-01-01

    RORγt is critical for the differentiation and proliferation of Th17 cells associated with several chronic autoimmune diseases. We report the discovery of a novel allosteric binding site on the nuclear receptor RORγt. Co-crystallization of the ligand binding domain (LBD) of RORγt with a series of small-molecule antagonists demonstrates occupancy of a previously unreported allosteric binding pocket. Binding at this non-canonical site induces an unprecedented conformational reorientation of helix 12 in the RORγt LBD, which blocks cofactor binding. The functional consequence of this allosteric ligand-mediated conformation is inhibition of function as evidenced by both biochemical and cellular studies. RORγt function is thus antagonized in a manner molecularly distinct from that of previously described orthosteric RORγt ligands. This brings forward an approach to target RORγt for the treatment of Th17-mediated autoimmune diseases. The elucidation of an unprecedented modality of pharmacological antagonism establishes a mechanism for modulation of nuclear receptors. PMID:26640126

  5. The GTP binding protein-dependent activation and deactivation of cGMP phosphodiesterase in rod photoreceptors

    SciTech Connect

    Yamazaki, Akio.

    1989-01-01

    Cyclic GMP (cGMP) has a crucial role in visual transduction. Recent electrophysiological studies clearly indicate the existence of cGMP-activated conductance in photoreceptor plasma membranes. In darkness, Na{sup +}, Ca{sup ++}, and Mg{sup ++} enter rod outer segments (ROS) through cGMP-activated channels while light closes channels by lowering cGMP concentrations through activation of cGMP phosphodiesterase (PDE). Many excellent reviews reference the mechanism of PDE activation in photoreceptors. However, recent progress in understanding the mechanisms regulating cGMP hydrolysis has raised an important question in the PDE-regulation: how does the three-dimensional movement of a subunit of transducin (retinal G protein) relate to the PDE activation Associated with that question, the mechanism of PDE regulation appears to vary at different stages of evolution, for example, frog and bovine photoreceptors. This review examines recent progress of the cGMP hydrolysis mechanism by focusing on the subunit interactions between transducin and PDE. 36 refs., 2 figs.

  6. Furoates and thenoates inhibit pyruvate dehydrogenase kinase 2 allosterically by binding to its pyruvate regulatory site.

    PubMed

    Masini, Tiziana; Birkaya, Barbara; van Dijk, Simon; Mondal, Milon; Hekelaar, Johan; Jäger, Manuel; Terwisscha van Scheltinga, Anke C; Patel, Mulchand S; Hirsch, Anna K H; Moman, Edelmiro

    2016-01-01

    The last decade has witnessed the reawakening of cancer metabolism as a therapeutic target. In particular, inhibition of pyruvate dehydrogenase kinase (PDK) holds remarkable promise. Dichloroacetic acid (DCA), currently undergoing clinical trials, is a unique PDK inhibitor in which it binds to the allosteric pyruvate site of the enzyme. However, the safety of DCA as a drug is compromised by its neurotoxicity, whereas its usefulness as an investigative tool is limited by the high concentrations required to exert observable effects in cell culture. Herein, we report the identification - by making use of saturation-transfer difference NMR spectroscopy, enzymatic assays and computational methods - of furoate and thenoate derivatives as allosteric pyruvate-site-binding PDK2 inhibitors. This work substantiates the pyruvate regulatory pocket as a druggable target.

  7. Allosteric models for multimeric proteins: oxygen-linked effector binding in hemocyanin.

    PubMed

    Menze, Michael A; Hellmann, Nadja; Decker, Heinz; Grieshaber, Manfred K

    2005-08-02

    In many crustaceans, changing concentrations of several low molecular weight compounds modulates hemocyanin oxygen binding, resulting in lower or higher oxygen affinities of the pigment. The nonphysiological effector caffeine and the physiological modulator urate, the latter accumulating in the hemolymph of the lobster Homarus vulgaris during hypoxia, increase hemocyanin oxygen affinity and decrease cooperativity of oxygen binding. To derive a model that describes the mechanism of allosteric interaction between hemocyanin and oxygen in the presence of urate or caffeine, studies of oxygen, urate, and caffeine binding to hemocyanin were performed. Exposure of lobster hemocyanin to various pH values between 7.25 and 8.15 resulted in a decrease of p50. In this pH interval, p50 decreases from 95 to 11 Torr without effectors and from 49 to 6 Torr and from 34 to 5 Torr in the presence of 1 mM urate or caffeine, respectively. Thus, the allosteric effects induced by protons and urate or caffeine are coupled. In contrast, isothermal titration calorimetry did not reveal any differences in binding enthalpy (DeltaH degrees ) for urate or caffeine under either normoxic or hypoxic conditions at different pH values. Despite these apparently conflicting results, they can be explained by the nested MWC model if two different types of modulator binding sites are assumed, an allosteric and a nonallosteric type of site. Simulations of in vivo conditions with this model indicate that the naturally occurring modulator urate is physiologically relevant in H. vulgaris only during hypoxic conditions, i.e., either during environmental oxygen limitation or extensive exercise.

  8. The role of a parasite-specific allosteric site in the distinctive activation behavior of Eimeria tenella cGMP-dependent protein kinase.

    PubMed

    Salowe, Scott P; Wiltsie, Judyann; Liberator, Paul A; Donald, Robert G K

    2002-04-02

    A cGMP-dependent protein kinase (PKG) was recently identified as an anticoccidial target for the apicomplexan parasite Eimeria tenella [Gurnett, A., Liberator, P. A., Dulski, P., Salowe, S., Donald, R. G. K., Anderson, J., Wiltsie, J., Diaz, C., Harris, G., Chang, B., Darkin-Rattray, S. J., Nare, B., Crumley, T., Blum, P., Misura, A., Tamas, T., Sardana, M., Yuan, J., Biftu, T., and Schmatz, D. (2002) J. Biol. Chem. (in press)]. Unlike the PKGs of higher organisms that have two cGMP binding sites in their regulatory domain, the PKG from Eimeria tenella (Et-PKG) contains three putative cGMP binding sites and has distinctive activation properties, including a very large stimulation by cGMP ( approximately 1000-fold) with significant cooperativity (Hill coefficient of 1.7). During our investigation of Et-PKG activation, we found that 8-substituted cGMP analogues are weak partial activators. For example, 8-NBD-cGMP provides a maximal stimulation of activity of only 20-fold with little evident cooperativity, although cGMP can synergize with the analogue to provide full activation. The results suggest that partial activation is a consequence of restricted binding of 8-NBD-cGMP to a subset of cGMP sites in the enzyme. Site-directed mutagenesis of conserved arginine and glutamate residues in the parasite-specific third cGMP site confirms that this site is an important functional participant in the allosteric regulation of the kinase and that it exhibits very high selectivity against 8-NBD-cGMP. Since the results are consistent with full activation of Et-PKG requiring cyclic nucleotide binding in all three allosteric sites, one role for the additional cGMP site may be to establish a stricter regulatory mechanism for the kinase activity than is present in the PKGs of higher organisms containing only two allosteric sites.

  9. Allosteric Modulation of Hormone Release from Thyroxine and Corticosteroid-binding Globulins*

    PubMed Central

    Qi, Xiaoqiang; Loiseau, François; Chan, Wee Lee; Yan, Yahui; Wei, Zhenquan; Milroy, Lech-Gustav; Myers, Rebecca M.; Ley, Steven V.; Read, Randy J.; Carrell, Robin W.; Zhou, Aiwu

    2011-01-01

    The release of hormones from thyroxine-binding globulin (TBG) and corticosteroid-binding globulin (CBG) is regulated by movement of the reactive center loop in and out of the β-sheet A of the molecule. To investigate how these changes are transmitted to the hormone-binding site, we developed a sensitive assay using a synthesized thyroxine fluorophore and solved the crystal structures of reactive loop cleaved TBG together with its complexes with thyroxine, the thyroxine fluorophores, furosemide, and mefenamic acid. Cleavage of the reactive loop results in its complete insertion into the β-sheet A and a substantial but incomplete decrease in binding affinity in both TBG and CBG. We show here that the direct interaction between residue Thr342 of the reactive loop and Tyr241 of the hormone binding site contributes to thyroxine binding and release following reactive loop insertion. However, a much larger effect occurs allosterically due to stretching of the connecting loop to the top of the D helix (hD), as confirmed in TBG with shortening of the loop by three residues, making it insensitive to the S-to-R transition. The transmission of the changes in the hD loop to the binding pocket is seen to involve coherent movements in the s2/3B loop linked to the hD loop by Lys243, which is, in turn, linked to the s4/5B loop, flanking the thyroxine-binding site, by Arg378. Overall, the coordinated movements of the reactive loop, hD, and the hormone binding site allow the allosteric regulation of hormone release, as with the modulation demonstrated here in response to changes in temperature. PMID:21325280

  10. Allosteric antagonist binding sites in class B GPCRs: corticotropin receptor 1

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Supriyo; Subramanian, Govindan; Hall, Spencer; Lin, Jianping; Laoui, Abdelazize; Vaidehi, Nagarajan

    2010-08-01

    The 41 amino acid neuropeptide, corticotropin-releasing factor (CRF) and its associated receptors CRF1-R and CRF2-R have been targeted for treating stress related disorders. Both CRF1-R and CRF2-R belong to the class B G-protein coupled receptors for which little information is known regarding the small molecule antagonist binding characteristics. However, it has been shown recently that different non-peptide allosteric ligands stabilize different receptor conformations for CRF1-R and hence an understanding of the ligand induced receptor conformational changes is important in the pharmacology of ligand binding. In this study, we modeled the receptor and identified the binding sites of representative small molecule allosteric antagonists for CRF1-R. The predicted binding sites of the investigated compounds are located within the transmembrane (TM) domain encompassing TM helices 3, 5 and 6. The docked compounds show strong interactions with H228 on TM3 and M305 on TM5 that have also been implicated in the binding by site directed mutation studies. H228 forms a hydrogen bond of varied strengths with all the antagonists in this study and this is in agreement with the decreased binding affinity of several compounds with H228F mutation. Also mutating M305 to Ile showed a sharp decrease in the calculated binding energy whereas the binding energy loss on M305 to Leu was less significant. These results are in qualitative agreement with the decrease in binding affinities observed experimentally. We further predicted the conformational changes in CRF1-R induced by the allosteric antagonist NBI-27914. Movement of TM helices 3 and 5 are dominant and generates three degenerate conformational states two of which are separated by an energy barrier from the third, when bound to NBI-27914. Binding of NBI-27914 was predicted to improve the interaction of the ligand with M305 and also enhanced the aromatic stacking between the ligand and F232 on TM3. A virtual ligand screening of 13

  11. Identification of novel allosteric modulator binding sites in NMDA receptors: A molecular modeling study.

    PubMed

    Kane, Lucas T; Costa, Blaise M

    2015-09-01

    The dysfunction of N-methyl-d-Aspartate receptors (NMDARs), a subtype of glutamate receptors, is correlated with schizophrenia, stroke, and many other neuropathological disorders. However, not all NMDAR subtypes equally contribute towards these disorders. Since NMDARs composed of different GluN2 subunits (GluN2A-D) confer varied physiological properties and have different distributions in the brain, pharmacological agents that target NMDARs with specific GluN2 subunits have significant potential for therapeutic applications. In our previous research, we have identified a family of novel allosteric modulators that differentially potentiate and/or inhibit NMDARs of differing GluN2 subunit composition. To further elucidate their molecular mechanisms, in the present study, we have identified four potential binding sites for novel allosteric modulators by performing molecular modeling, docking, and in silico mutations. The molecular determinants of the modulator binding sites (MBS), analysis of particular MBS electrostatics, and the specific loss or gain of binding after mutations have revealed modulators that have strong potential affinities for specific MBS on given subunits and the role of key amino acids in either promoting or obstructing modulator binding. These findings will help design higher affinity GluN2 subunit-selective pharmaceuticals, which are currently unavailable to treat psychiatric and neurological disorders.

  12. Allosteric role of the large-scale domain opening in biological catch-binding

    NASA Astrophysics Data System (ADS)

    Pereverzev, Yuriy V.; Prezhdo, Oleg V.; Sokurenko, Evgeni V.

    2009-05-01

    The proposed model demonstrates the allosteric role of the two-domain region of the receptor protein in the increased lifetimes of biological receptor/ligand bonds subjected to an external force. The interaction between the domains is represented by a bounded potential, containing two minima corresponding to the attached and separated conformations of the two protein domains. The dissociative potential with a single minimum describing receptor/ligand binding fluctuates between deep and shallow states, depending on whether the domains are attached or separated. A number of valuable analytic expressions are derived and are used to interpret experimental data for two catch bonds. The P-selectin/P-selectin-glycoprotein-ligand-1 (PSGL-1) bond is controlled by the interface between the epidermal growth factor (EGF) and lectin domains of P-selectin, and the type 1 fimbrial adhesive protein (FimH)/mannose bond is governed by the interface between the lectin and pilin domains of FimH. Catch-binding occurs in these systems when the external force stretches the receptor proteins and increases the interdomain distance. The allosteric effect is supported by independent measurements, in which the domains are kept separated by attachment of another ligand. The proposed model accurately describes the experimentally observed anomalous behavior of the lifetimes of the P-selectin/PSGL-1 and FimH/mannose complexes as a function of applied force and provides valuable insights into the mechanism of catch-binding.

  13. Comparison of crystal and solution hemoglobin binding of selected antigelling agents and allosteric modifiers

    SciTech Connect

    Mehanna, A.S.; Abraham, D.J. )

    1990-04-24

    This paper details comprehensive binding studies (solution and X-ray) of human hemoglobin A with a group of halogenated carboxylic acids that were investigated as potential antisickling agents. It is, to our knowledge, the first study to compare solution and crystal binding for a series of compounds under similar high-salt conditions used for cocrystallization. The compounds include ((3,4-dichlorobenzyl)oxy)acetic acid, ((p-bromobenzyl)oxy)acetic acid, clofibric acid, and bezafibrate. The location and stereochemistry of binding sites have been established by X-ray crystallography, while the number of binding sites and affinity constants were measured by using equilibrium dialysis. The observed crystal structures are consistent with the binding observed in solution and that the number of binding sites is independent of salt concentration, while the binding constant increases with increasing salt concentration. The studies also reveal that relatively small changes in the chemical structure of a drug molecule can result in entirely different binding sites on the protein. Moreover, the X-ray studies provide a possible explanation for the multiplicity in function exhibited by these compounds as allosteric modulators and/or antisickling agents. Finally, the studies indicate that these compounds bind differently to the R and T states of hemoglobin, and observation of special significance to the original design of these agents.

  14. Mass spectrometry locates local and allosteric conformational changes that occur on cofactor binding

    PubMed Central

    Beveridge, Rebecca; Migas, Lukasz G.; Payne, Karl A. P.; Scrutton, Nigel S.; Leys, David; Barran, Perdita E.

    2016-01-01

    Fdc1 is a decarboxylase enzyme that requires the novel prenylated FMN cofactor for activity. Here, we use it as an exemplar system to show how native top-down and bottom-up mass spectrometry can measure the structural effect of cofactor binding by a protein. For Fdc1Ubix, the cofactor confers structural stability to the enzyme. IM–MS shows the holo protein to exist in four closely related conformational families, the populations of which differ in the apo form; the two smaller families are more populated in the presence of the cofactor and depopulated in its absence. These findings, supported by MD simulations, indicate a more open structure for the apo form. HDX-MS reveals that while the dominant structural changes occur proximal to the cofactor-binding site, rearrangements on cofactor binding are evident throughout the protein, predominantly attributable to allosteric conformational tightening, consistent with IM–MS data. PMID:27418477

  15. Divergence of allosteric effects of rapacuronium on binding and function of muscarinic receptors

    PubMed Central

    2009-01-01

    Background Many neuromuscular blockers act as negative allosteric modulators of muscarinic acetylcholine receptors by decreasing affinity and potency of acetylcholine. The neuromuscular blocker rapacuronium has been shown to have facilitatory effects at muscarinic receptors leading to bronchospasm. We examined the influence of rapacuronium on acetylcholine (ACh) binding to and activation of individual subtypes of muscarinic receptors expressed in Chinese hamster ovary cells to determine its receptor selectivity. Results At equilibrium rapacuronium bound to all subtypes of muscarinic receptors with micromolar affinity (2.7-17 μM) and displayed negative cooperativity with both high- and low-affinity ACh binding states. Rapacuronium accelerated [3H]ACh association with and dissociation from odd-numbered receptor subtypes. With respect to [35S]GTPγS binding rapacuronium alone behaved as an inverse agonist at all subtypes. Rapacuronium concentration-dependently decreased the potency of ACh-induced [35S]GTPγS binding at M2 and M4 receptors. In contrast, 0.1 μM rapacuronium significantly increased ACh potency at M1, M3, and M5 receptors. Kinetic measurements at M3 receptors showed acceleration of the rate of ACh-induced [35S]GTPγS binding by rapacuronium. Conclusions Our data demonstrate a novel dichotomy in rapacuronium effects at odd-numbered muscarinic receptors. Rapacuronium accelerates the rate of ACh binding but decreases its affinity under equilibrium conditions. This results in potentiation of receptor activation at low concentrations of rapacuronium (1 μM) but not at high concentrations (10 μM). These observations highlight the relevance and necessity of performing physiological tests under non-equilibrium conditions in evaluating the functional effects of allosteric modulators at muscarinic receptors. They also provide molecular basis for potentiating M3 receptor-mediated bronchoconstriction. PMID:20038295

  16. Allosteric transition and substrate binding are entropy-driven in glucosamine-6-phosphate deaminase from Escherichia coli.

    PubMed

    Bustos-Jaimes, I; Calcagno, M L

    2001-10-15

    Glucosamine-6P-deaminase (EC 3.5.99.6, formerly glucosamine-6-phosphate isomerase, EC 5.3.1.10) from Escherichia coli is an attractive experimental model for the study of allosteric transitions because it is both kinetically and structurally well-known, and follows rapid equilibrium random kinetics, so that the kinetic K(m) values are true thermodynamic equilibrium constants. The enzyme is a typical allosteric K-system activated by N-acetylglucosamine 6-P and displays an allosteric behavior that can be well described by the Monod-Wyman-Changeux model. This thermodynamic study based on the temperature dependence of allosteric parameters derived from this model shows that substrate binding and allosteric transition are both entropy-driven processes in E. coli GlcN6P deaminase. The analysis of this result in the light of the crystallographic structure of the enzyme implicates the active-site lid as the structural motif that could contribute significantly to this entropic component of the allosteric transition because of the remarkable change in its crystallographic B factors.

  17. Evidence for allosteric interactions of antagonist binding to the smoothened receptor.

    PubMed

    Rominger, Cynthia M; Bee, Wei-Lin Tiger; Copeland, Robert A; Davenport, Elizabeth A; Gilmartin, Aidan; Gontarek, Richard; Hornberger, Keith R; Kallal, Lorena A; Lai, Zhihong; Lawrie, Kenneth; Lu, Quinn; McMillan, Lynette; Truong, Maggie; Tummino, Peter J; Turunen, Brandon; Will, Matthew; Zuercher, William J; Rominger, David H

    2009-06-01

    The Smoothened receptor (Smo) mediates hedgehog (Hh) signaling critical for development, cell growth, and migration, as well as stem cell maintenance. Aberrant Hh signaling pathway activation has been implicated in a variety of cancers, and small-molecule antagonists of Smo have entered human clinical trials for the treatment of cancer. Here, we report the biochemical characterization of allosteric interactions of agonists and antagonists for Smo. Binding of two radioligands, [(3)H]3-chloro-N-[trans-4-(methylamino)cyclohexyl]-N-{[3-(4-pyridinyl)-phenyl]methyl}-1-benzothiophene-2-carboxamide (SAG-1.3) (agonist) and [(3)H]cyclopamine (antagonist), was characterized using human Smo expressed in human embryonic kidney 293F membranes. We observed full displacement of [(3)H]cyclopamine by all Smo agonist and antagonist ligands examined. N-[(1E)-(3,5-Dimethyl-1-phenyl-1H-pyrazol-4-yl)methylidene]-4-(phenylmethyl)-1-piperazinamine (SANT-1), an antagonist, did not fully inhibit the binding of [(3)H]SAG-1.3. In a functional cell-based beta-lactamase reporter gene assay, SANT-1 and N-[3-(1H-benzimidazol-2-yl)-4-chlorophenyl]-3,4,5-tris(ethyloxy)-benzamide (SANT-2) fully inhibited 3-chloro-4,7-difluoro-N-[trans-4-(methylamino)cyclohexyl]-N-{[3-(4-pyridinyl)phenyl]methyl}-1-benzothiophene-2-carboxamide (SAG-1.5)-induced Hh pathway activation. Detailed "Schild-type" radioligand binding analysis with [(3)H]SAG-1.3 revealed that two structurally distinct Smoothened receptor antagonists, SANT-1 and SANT-2, bound in a manner consistent with that of allosteric modulation. Our mechanism of action characterization of radioligand binding to Smo combined with functional data provides a better understanding of small-molecule interactions with Smo and their influence on the Hh pathway.

  18. Discovery of a novel allosteric inhibitor-binding site in ERK5: comparison with the canonical kinase hinge ATP-binding site

    PubMed Central

    Chen, Hongming; Tucker, Julie; Wang, Xiaotao; Gavine, Paul R.; Phillips, Chris; Augustin, Martin A.; Schreiner, Patrick; Steinbacher, Stefan; Preston, Marian; Ogg, Derek

    2016-01-01

    MAP kinases act as an integration point for multiple biochemical signals and are involved in a wide variety of cellular processes such as proliferation, differentiation, regulation of transcription and development. As a member of the MAP kinase family, ERK5 (MAPK7) is involved in the downstream signalling pathways of various cell-surface receptors, including receptor tyrosine kinases and G protein-coupled receptors. In the current study, five structures of the ERK5 kinase domain co-crystallized with ERK5 inhibitors are reported. Interestingly, three of the compounds bind at a novel allosteric binding site in ERK5, while the other two bind at the typical ATP-binding site. Binding of inhibitors at the allosteric site is accompanied by displacement of the P-loop into the ATP-binding site and is shown to be ATP-competitive in an enzymatic assay of ERK5 kinase activity. Kinase selectivity data show that the most potent allosteric inhibitor exhibits superior kinase selectivity compared with the two inhibitors that bind at the canonical ATP-binding site. An analysis of these structures and comparison with both a previously published ERK5–inhibitor complex structure (PDB entry 4b99) and the structures of three other kinases (CDK2, ITK and MEK) in complex with allosteric inhibitors are presented. PMID:27139631

  19. HPC Analysis of Multiple Binding Sites Communication and Allosteric Modulations in Drug Design: The HSP Case Study.

    PubMed

    Chiappori, Federica; Milanesi, Luciano; Merelli, Ivan

    2016-01-01

    Allostery is a long-range macromolecular mechanism of internal regulation, in which the binding of a ligand in an allosteric site induces distant conformational changes in a distant portion of the protein, modifying its activity. From the drug design point of view, this mechanism can be exploited to achieve important therapeutic effects, since ligands able to bind allosteric sites may be designed to regulate target proteins. Computational tools are a valid support in this sense, since they allow the characterization of allosteric communications within proteins, which are essential to design modulator ligands. While considering long-range interactions in macromolecules, the principal drug design tool available to researcher is molecular dynamics, and related applications, since it allows the evaluation of conformational changes of a protein bound to a ligand. In particular, all-atoms molecular dynamics is suitable to verify the internal mechanisms that orchestrate allosteric communications, in order to identify key residues and internal pathways that modify the protein behaviour. The problem is that these techniques are heavily time-consuming and computationally intensive, thus high performance computing systems, including parallel computing and GPU-accelerated computations, are necessary to achieve results in a reasonable time. In this review, we will discuss how it is possible to exploit in silico approaches to characterize allosteric modulations and long-range interactions within proteins, describing the case study of the Heat Shock Proteins, a class of chaperons regulated by stress conditions, which is particularly important since it is involved in many cancers and neurodegenerative diseases.

  20. Selective binding modes and allosteric inhibitory effects of lupane triterpenes on protein tyrosine phosphatase 1B

    PubMed Central

    Jin, Tiantian; Yu, Haibo; Huang, Xu-Feng

    2016-01-01

    Protein Tyrosine Phosphatase 1B (PTP1B) has been recognized as a promising therapeutic target for treating obesity, diabetes, and certain cancers for over a decade. Previous drug design has focused on inhibitors targeting the active site of PTP1B. However, this has not been successful because the active site is positively charged and conserved among the protein tyrosine phosphatases. Therefore, it is important to develop PTP1B inhibitors with alternative inhibitory strategies. Using computational studies including molecular docking, molecular dynamics simulations, and binding free energy calculations, we found that lupane triterpenes selectively inhibited PTP1B by targeting its more hydrophobic and less conserved allosteric site. These findings were verified using two enzymatic assays. Furthermore, the cell culture studies showed that lupeol and betulinic acid inhibited the PTP1B activity stimulated by TNFα in neurons. Our study indicates that lupane triterpenes are selective PTP1B allosteric inhibitors with significant potential for treating those diseases with elevated PTP1B activity. PMID:26865097

  1. Allosteric modulation of neurotoxin binding to voltage-sensitive sodium channels by Ptychodiscus brevis toxin 2.

    PubMed

    Sharkey, R G; Jover, E; Couraud, F; Baden, D G; Catterall, W A

    1987-03-01

    The effects of Ptychodiscus brevis toxin 2 (PbTx-2) on the binding of neurotoxins at four different neurotoxin receptor sites on voltage-sensitive sodium channels in rat brain synaptosomes were examined. Binding of saxitoxin at neurotoxin receptor site 1 and Leiurus quinquestriatus alpha-scorpion toxin (LqTx) at neurotoxin receptor site 3 was unaffected. PbTx-2 enhanced binding of batrachotoxinin A 20-alpha-benzoate (BTX-B) to neurotoxin receptor site 2 and Centruroides suffusus suffusus beta-scorpion toxin (CsTx II) to site 4 on sodium channels. These results support the proposal that PbTx-2 and related toxins act at a new receptor site (site 5) that has not been previously analyzed in binding experiments. Half-maximal effects of PbTx-2 were observed in the range of 20-50 nM PbTx-2. The enhancement of BTX-B binding was reduced by depolarization. Saturating concentrations of PbTx-2 reduced KD values for binding of BTX-B and CsTx-II 2.9-fold and 2.6-fold, respectively. The effects of PbTx-2 and LqTx in enhancing BTX-B binding were synergistic. A model involving both preferential binding of BTX-B, PbTx-2, LqTx, and CsTx II to active states of sodium channels and allosteric interactions among the four receptor sites at which these toxins act accommodates these and previous results.

  2. Structural and dynamic studies of the transcription factor ERG reveal DNA binding is allosterically autoinhibited.

    PubMed

    Regan, Michael C; Horanyi, Peter S; Pryor, Edward E; Sarver, Jessica L; Cafiso, David S; Bushweller, John H

    2013-08-13

    The Ets-Related Gene (ERG) belongs to the Ets family of transcription factors and is critically important for maintenance of the hematopoietic stem cell population. A chromosomal translocation observed in the majority of human prostate cancers leads to the aberrant overexpression of ERG. We have identified regions flanking the ERG Ets domain responsible for autoinhibition of DNA binding and solved crystal structures of uninhibited, autoinhibited, and DNA-bound ERG. NMR-based measurements of backbone dynamics show that uninhibited ERG undergoes substantial dynamics on the millisecond-to-microsecond timescale but autoinhibited and DNA-bound ERG do not. We propose a mechanism whereby the allosteric basis of ERG autoinhibition is mediated predominantly by the regulation of Ets-domain dynamics with only modest structural changes.

  3. Computational analysis of negative and positive allosteric modulator binding and function in metabotropic glutamate receptor 5 (in)activation.

    PubMed

    Dalton, James A R; Gómez-Santacana, Xavier; Llebaria, Amadeu; Giraldo, Jesús

    2014-05-27

    Metabotropic glutamate receptors (mGluRs) are high-profile G-protein coupled receptors drug targets because of their involvement in several neurological disease states, and mGluR5 in particular is a subtype whose controlled allosteric modulation, both positive and negative, can potentially be useful for the treatment of schizophrenia and relief of chronic pain, respectively. Here we model mGluR5 with a collection of positive and negative allosteric modulators (PAMs and NAMs) in both active and inactive receptor states, in a manner that is consistent with experimental information, using a specialized protocol that includes homology to increase docking accuracy, and receptor relaxation to generate an individual induced fit with each allosteric modulator. Results implicate two residues in particular for NAM and PAM function: NAM interaction with W785 for receptor inactivation, and NAM/PAM H-bonding with S809 for receptor (in)activation. Models suggest the orientation of the H-bond between allosteric modulator and S809, controlled by PAM/NAM chemistry, influences the position of TM7, which in turn influences the shape of the allosteric site, and potentially the receptor state. NAM-bound and PAM-bound mGluR5 models also reveal that although PAMs and NAMs bind in the same pocket and share similar binding modes, they have distinct effects on the conformation of the receptor. Our models, together with the identification of a possible activation mechanism, may be useful in the rational design of new allosteric modulators for mGluR5.

  4. A threonine turnstile defines a dynamic amphiphilic binding motif in the AAA ATPase p97 allosteric binding site.

    PubMed

    Burnett, James C; Lim, Chaemin; Peyser, Brian D; Samankumara, Lalith P; Kovaliov, Marina; Colombo, Raffaele; Bulfer, Stacie L; LaPorte, Matthew G; Hermone, Ann R; McGrath, Connor F; Arkin, Michelle R; Gussio, Rick; Huryn, Donna M; Wipf, Peter

    2017-03-29

    The turnstile motion of two neighboring threonines sets up a dynamic side chain interplay that can accommodate both polar and apolar ligands in a small molecule allosteric protein binding site. A computational model based on SAR data and both X-ray and cryo-EM structures of the AAA ATPase p97 was used to analyze the effects of paired threonines at the inhibitor site. Specifically, the Thr side chain hydroxyl groups form a hydrogen bonding network that readily accommodates small, highly polar ligand substituents. Conversely, diametric rotation of the χ1 torsion by 150-180° orients the side chain β-methyl groups into the binding cleft, creating a hydrophobic pocket that can accommodate small, apolar substituents. This motif was found to be critical for rationalizing the affinities of a structurally focused set of inhibitors of p97 covering a > 2000-fold variation in potencies, with a preference for either small-highly polar or small-apolar groups. The threonine turnstile motif was further validated by a PDB search that identified analogous binding modes in ligand interactions in PKB, as well as by an analysis of NMR structures demonstrating additional gear-like interactions between adjacent Thr pairs. Combined, these data suggest that the threonine turnstile motif may be a general feature of interest in protein binding pockets.

  5. On the functional role of Arg172 in substrate binding and allosteric transition in Escherichia coli glucosamine-6-phosphate deaminase.

    PubMed

    Lucumí-Moreno, Armando; Calcagno, Mario L

    2005-10-01

    Glucosamine-6-phosphate deaminase from Escherichia coli (EC 3.5.99.6) is an allosteric enzyme, activated by N-acetylglucosamine 6-phosphate, which converts glucosamine-6-phosphate into fructose 6-phosphate and ammonia. X-ray crystallographic structural models have showed that Arg172 and Lys208, together with the segment 41-44 of the main chain backbone, are involved in binding the substrate phospho group when the enzyme is in the R activated state. A set of mutants of the enzyme involving the targeted residues were constructed to analyze the role of Arg172 and Lys208 in deaminase allosteric function. The mutant enzymes were characterized by kinetic, chemical, and spectrometric methods, revealing conspicuous changes in their allosteric properties. The study of these mutants indicated that Arg172 which is located in the highly flexible motif 158-187 forming the active site lid has a specific role in binding the substrate to the enzyme in the T state. The possible role of this interaction in the conformational coupling of the active and the allosteric sites is discussed.

  6. Allosteric Model of Maraviroc Binding to CC Chemokine Receptor 5 (CCR5)*

    PubMed Central

    Garcia-Perez, Javier; Rueda, Patricia; Alcami, Jose; Rognan, Didier; Arenzana-Seisdedos, Fernando; Lagane, Bernard; Kellenberger, Esther

    2011-01-01

    Maraviroc is a nonpeptidic small molecule human immunodeficiency virus type 1 (HIV-1) entry inhibitor that has just entered the therapeutic arsenal for the treatment of patients. We recently demonstrated that maraviroc binding to the HIV-1 coreceptor, CC chemokine receptor 5 (CCR5), prevents it from binding the chemokine CCL3 and the viral envelope glycoprotein gp120 by an allosteric mechanism. However, incomplete knowledge of ligand-binding sites and the lack of CCR5 crystal structures have hampered an in-depth molecular understanding of how the inhibitor works. Here, we addressed these issues by combining site-directed mutagenesis (SDM) with homology modeling and docking. Six crystal structures of G-protein-coupled receptors were compared for their suitability for CCR5 modeling. All CCR5 models had equally good geometry, but that built from the recently reported dimeric structure of the other HIV-1 coreceptor CXCR4 bound to the peptide CVX15 (Protein Data Bank code 3OE0) best agreed with the SDM data and discriminated CCR5 from non-CCR5 binders in a virtual screening approach. SDM and automated docking predicted that maraviroc inserts deeply in CCR5 transmembrane cavity where it can occupy three different binding sites, whereas CCL3 and gp120 lie on distinct yet overlapped regions of the CCR5 extracellular loop 2. Data suggesting that the transmembrane cavity remains accessible for maraviroc in CCL3-bound and gp120-bound CCR5 help explain our previous observation that the inhibitor enhances dissociation of preformed ligand-CCR5 complexes. Finally, we identified residues in the predicted CCR5 dimer interface that are mandatory for gp120 binding, suggesting that receptor dimerization might represent a target for new CCR5 entry inhibitors. PMID:21775441

  7. Structural Basis of the Lactate-dependent Allosteric Regulation of Oxygen Binding in Arthropod Hemocyanin*

    PubMed Central

    Hirota, Shun; Tanaka, Naoki; Mičetić, Ivan; Di Muro, Paolo; Nagao, Satoshi; Kitagishi, Hiroaki; Kano, Koji; Magliozzo, Richard S.; Peisach, Jack; Beltramini, Mariano; Bubacco, Luigi

    2010-01-01

    Hemocyanin (Hc) is an oxygen carrier protein in which oxygen binding is regulated by allosteric effectors such as H+ and l-lactate. Isothermal titration calorimetric measurements showed that l-lactate binds to dodecameric and heterohexameric Hc and to the CaeSS3 homohexamer but not to the CaeSS2 monomer. The binding of lactate caused no change in the optical absorption and x-ray absorption spectra of either oxy- or deoxy-Hc, suggesting that no structural rearrangement of the active site occurred. At pH 6.5, the oxygen binding rate constant kobs obtained by flash photolysis showed a significant increase upon addition of l-lactate, whereas l-lactate addition had little effect at pH 8.3. Lactate binding caused a concentration-dependent shift in the interhexameric distances at pH 6.5 based on small angle x-ray scattering measurements. These results show that l-lactate affects oxygen affinity at pH 6.5 by modulating the global structure of Hc without affecting its binuclear copper center (the active site). In contrast to this, the active site structure of deoxy-Hc is affected by changes in pH (Hirota, S., Kawahara, T., Beltramini, M., Di Muro, P., Magliozzo, R. S., Peisach, J., Powers, L. S., Tanaka, N., Nagao, S., and Bubacco, L. (2008) J. Biol. Chem. 283, 31941–31948). Upon addiction of lactate, the kinetic behavior of oxygen rebinding for Hc was heterogeneous under low oxygen concentrations at pH 6.5 due to changes in the T and R state populations, and the equilibrium was found to shift from the T toward the R state with addition of lactate. PMID:20406810

  8. Structural Basis of the Lactate-dependent Allosteric Regulation of Oxygen Binding in Arthropod Hemocyanin

    SciTech Connect

    Hirota, S.; Tanaka, N; Micetic, I; Di Muro, P; Nagao, S; Kitagishi, H; Magliozzo, R; Peisach, J; Beltramini, M; Bubacco, L

    2010-01-01

    Hemocyanin (Hc) is an oxygen carrier protein in which oxygen binding is regulated by allosteric effectors such as H{sup +} and L-lactate. Isothermal titration calorimetric measurements showed that L-lactate binds to dodecameric and heterohexameric Hc and to the CaeSS3 homohexamer but not to the CaeSS2 monomer. The binding of lactate caused no change in the optical absorption and x-ray absorption spectra of either oxy- or deoxy-Hc, suggesting that no structural rearrangement of the active site occurred. At pH 6.5, the oxygen binding rate constant k{sub obs} obtained by flash photolysis showed a significant increase upon addition of L-lactate, whereas L-lactate addition had little effect at pH 8.3. Lactate binding caused a concentration-dependent shift in the interhexameric distances at pH 6.5 based on small angle x-ray scattering measurements. These results show that L-lactate affects oxygen affinity at pH 6.5 by modulating the global structure of Hc without affecting its binuclear copper center (the active site). In contrast to this, the active site structure of deoxy-Hc is affected by changes in pH (Hirota, S., Kawahara, T., Beltramini, M., Di Muro, P., Magliozzo, R. S., Peisach, J., Powers, L. S., Tanaka, N., Nagao, S., and Bubacco, L. (2008) J. Biol. Chem. 283, 31941-31948). Upon addiction of lactate, the kinetic behavior of oxygen rebinding for Hc was heterogeneous under low oxygen concentrations at pH 6.5 due to changes in the T and R state populations, and the equilibrium was found to shift from the T toward the R state with addition of lactate.

  9. Allosteric communication between DNA-binding and light-responsive domains of diatom class I aureochromes

    PubMed Central

    Banerjee, Ankan; Herman, Elena; Serif, Manuel; Maestre-Reyna, Manuel; Hepp, Sebastian; Pokorny, Richard; Kroth, Peter G.; Essen, Lars-Oliver; Kottke, Tilman

    2016-01-01

    The modular architecture of aureochrome blue light receptors, found in several algal groups including diatoms, is unique by having the LOV-type photoreceptor domain fused to the C-terminus of its putative effector, an N-terminal DNA-binding bZIP module. The structural and functional understanding of aureochromes’ light-dependent signaling mechanism is limited, despite their promise as an optogenetic tool. We show that class I aureochromes 1a and 1c from the diatom Phaeodactylum tricornutum are regulated in a light-independent circadian rhythm. These aureochromes are capable to form functional homo- and heterodimers, which recognize the ACGT core sequence within the canonical ‘aureo box’, TGACGT, in a light-independent manner. The bZIP domain holds a more folded and less flexible but extended conformation in the duplex DNA-bound state. FT-IR spectroscopy in the absence and the presence of DNA shows light-dependent helix unfolding in the LOV domain, which leads to conformational changes in the bZIP region. The solution structure of DNA bound to aureochrome points to a tilted orientation that was further validated by molecular dynamics simulations. We propose that aureochrome signaling relies on an allosteric pathway from LOV to bZIP that results in conformational changes near the bZIP-DNA interface without major effects on the binding affinity. PMID:27179025

  10. Allosteric inhibition of a stem cell RNA-binding protein by an intermediary metabolite

    PubMed Central

    Clingman, Carina C; Deveau, Laura M; Hay, Samantha A; Genga, Ryan M; Shandilya, Shivender MD; Massi, Francesca; Ryder, Sean P

    2014-01-01

    Gene expression and metabolism are coupled at numerous levels. Cells must sense and respond to nutrients in their environment, and specialized cells must synthesize metabolic products required for their function. Pluripotent stem cells have the ability to differentiate into a wide variety of specialized cells. How metabolic state contributes to stem cell differentiation is not understood. In this study, we show that RNA-binding by the stem cell translation regulator Musashi-1 (MSI1) is allosterically inhibited by 18–22 carbon ω-9 monounsaturated fatty acids. The fatty acid binds to the N-terminal RNA Recognition Motif (RRM) and induces a conformational change that prevents RNA association. Musashi proteins are critical for development of the brain, blood, and epithelium. We identify stearoyl-CoA desaturase-1 as a MSI1 target, revealing a feedback loop between ω-9 fatty acid biosynthesis and MSI1 activity. We propose that other RRM proteins could act as metabolite sensors to couple gene expression changes to physiological state. DOI: http://dx.doi.org/10.7554/eLife.02848.001 PMID:24935936

  11. Inhibiting Helicobacter pylori HtrA protease by addressing a computationally predicted allosteric ligand binding site

    PubMed Central

    Perna, Anna Maria; Reisen, Felix; Schmidt, Thomas P.; Geppert, Tim; Pillong, Max; Weisel, Martin; Hoy, Benjamin; Simister, Philip C.; Feller, Stephan M.; Wessler, Silja; Schneider, Gisbert

    2016-01-01

    Helicobacter pylori is associated with inflammatory diseases and can cause gastric cancer and mucosa-associated lymphoma. One of the bacterium’s key proteins is high temperature requirement A (HpHtrA) protein, an extracellular serine protease that cleaves E-cadherin of gastric epithelial cells, which leads to loss of cell-cell adhesion. Inhibition of HpHtrA may constitute an intervention strategy against H. pylori infection. Guided by the computational prediction of hypothetical ligand binding sites on the surface of HpHtrA, we performed residue mutation experiments that confirmed the functional relevance of an allosteric region. We virtually screened for potential ligands addressing this surface cleft located between the catalytic and PDZ1 domains. Our receptor-based computational method represents protein surface pockets in terms of graph frameworks and retrieves small molecules that satisfy the constraints given by the pocket framework. A new chemical entity was identified that blocked E-cadherin cleavage in vitro by direct binding to HpHtrA, and efficiently blocked pathogen transmigration across the gastric epithelial barrier. A preliminary crystal structure of HpHtrA confirms the validity of a comparative “homology” model of the enzyme, which we used for the computational study. The results of this study demonstrate that addressing orphan protein surface cavities of target macromolecules can lead to new bioactive ligands. PMID:26819700

  12. Allosteric FBPase inhibitors gain 10(5) times in potency when simultaneously binding two neighboring AMP sites.

    PubMed

    Hebeisen, Paul; Kuhn, Bernd; Kohler, Philipp; Gubler, Marcel; Huber, Walter; Kitas, Eric; Schott, Brigitte; Benz, Jörg; Joseph, Catherine; Ruf, Armin

    2008-08-15

    Human fructose-1,6-bisphosphatase (FBPase, EC 3.1.3.11) is a key gluconeogenic enzyme, responsible for the hydrolysis of fructose-1,6-bisphosphate to fructose-6-phosphate, and thus presents an opportunity for the development of novel therapeutics focused on lowering the hepatic glucose production in type 2 diabetics. In its active form FBPase exists as a homotetramer and is allosterically regulated by AMP. In an HTS campaign aromatic sulfonylureas have been identified as FBPase inhibitors mimicking AMP. By bridging two adjacent allosteric binding sites using two aromatic sulfonylureas as anchor units and covalently linking them, it was possible to obtain dual binding AMP site inhibitors that exhibit a strong inhibitory effect.

  13. How allosteric control of Staphylococcus aureus penicillin binding protein 2a enables methicillin resistance and physiological function.

    PubMed

    Otero, Lisandro H; Rojas-Altuve, Alzoray; Llarrull, Leticia I; Carrasco-López, Cesar; Kumarasiri, Malika; Lastochkin, Elena; Fishovitz, Jennifer; Dawley, Matthew; Hesek, Dusan; Lee, Mijoon; Johnson, Jarrod W; Fisher, Jed F; Chang, Mayland; Mobashery, Shahriar; Hermoso, Juan A

    2013-10-15

    The expression of penicillin binding protein 2a (PBP2a) is the basis for the broad clinical resistance to the β-lactam antibiotics by methicillin-resistant Staphylococcus aureus (MRSA). The high-molecular mass penicillin binding proteins of bacteria catalyze in separate domains the transglycosylase and transpeptidase activities required for the biosynthesis of the peptidoglycan polymer that comprises the bacterial cell wall. In bacteria susceptible to β-lactam antibiotics, the transpeptidase activity of their penicillin binding proteins (PBPs) is lost as a result of irreversible acylation of an active site serine by the β-lactam antibiotics. In contrast, the PBP2a of MRSA is resistant to β-lactam acylation and successfully catalyzes the DD-transpeptidation reaction necessary to complete the cell wall. The inability to contain MRSA infection with β-lactam antibiotics is a continuing public health concern. We report herein the identification of an allosteric binding domain--a remarkable 60 Å distant from the DD-transpeptidase active site--discovered by crystallographic analysis of a soluble construct of PBP2a. When this allosteric site is occupied, a multiresidue conformational change culminates in the opening of the active site to permit substrate entry. This same crystallographic analysis also reveals the identity of three allosteric ligands: muramic acid (a saccharide component of the peptidoglycan), the cell wall peptidoglycan, and ceftaroline, a recently approved anti-MRSA β-lactam antibiotic. The ability of an anti-MRSA β-lactam antibiotic to stimulate allosteric opening of the active site, thus predisposing PBP2a to inactivation by a second β-lactam molecule, opens an unprecedented realm for β-lactam antibiotic structure-based design.

  14. How allosteric control of Staphylococcus aureus penicillin binding protein 2a enables methicillin resistance and physiological function

    PubMed Central

    Otero, Lisandro H.; Rojas-Altuve, Alzoray; Llarrull, Leticia I.; Carrasco-López, Cesar; Kumarasiri, Malika; Lastochkin, Elena; Fishovitz, Jennifer; Dawley, Matthew; Hesek, Dusan; Lee, Mijoon; Johnson, Jarrod W.; Fisher, Jed F.; Chang, Mayland; Mobashery, Shahriar; Hermoso, Juan A.

    2013-01-01

    The expression of penicillin binding protein 2a (PBP2a) is the basis for the broad clinical resistance to the β-lactam antibiotics by methicillin-resistant Staphylococcus aureus (MRSA). The high-molecular mass penicillin binding proteins of bacteria catalyze in separate domains the transglycosylase and transpeptidase activities required for the biosynthesis of the peptidoglycan polymer that comprises the bacterial cell wall. In bacteria susceptible to β-lactam antibiotics, the transpeptidase activity of their penicillin binding proteins (PBPs) is lost as a result of irreversible acylation of an active site serine by the β-lactam antibiotics. In contrast, the PBP2a of MRSA is resistant to β-lactam acylation and successfully catalyzes the dd-transpeptidation reaction necessary to complete the cell wall. The inability to contain MRSA infection with β-lactam antibiotics is a continuing public health concern. We report herein the identification of an allosteric binding domain—a remarkable 60 Å distant from the dd-transpeptidase active site—discovered by crystallographic analysis of a soluble construct of PBP2a. When this allosteric site is occupied, a multiresidue conformational change culminates in the opening of the active site to permit substrate entry. This same crystallographic analysis also reveals the identity of three allosteric ligands: muramic acid (a saccharide component of the peptidoglycan), the cell wall peptidoglycan, and ceftaroline, a recently approved anti-MRSA β-lactam antibiotic. The ability of an anti-MRSA β-lactam antibiotic to stimulate allosteric opening of the active site, thus predisposing PBP2a to inactivation by a second β-lactam molecule, opens an unprecedented realm for β-lactam antibiotic structure-based design. PMID:24085846

  15. An Allosteric Pathway Revealed in the Ribosome Binding Stress Factor BipA

    SciTech Connect

    Makanji, H.; deLivron, M; Robinson, V

    2009-01-01

    BipA is a highly conserved prokaryotic GTPase that functions as a master regulator of stress and virulence processes in bacteria. It is a member of the translational factor family of GTPases along with EF-G, IF-2 and LepA. Structural and biochemical data suggest that ribosome binding specificity for each member of this family lies in an effector domain. As with other bacterial GTPases, the ribosome binding and GTPase activities of this protein are tightly coupled. However, the mechanism by which this occurs is still unknown. A series of experiments have been designed to probe structural features of the protein to see if we can pinpoint specific areas of BipA, perhaps even individual residues, which are important to its association with the ribosome. Included in the list are the C-terminal effector domain of the protein, which is distinct to the BipA family of proteins, and amino acid residues in the switch I and II regions of the G domain. Using sucrose density gradients, we have shown that the C-terminal domain is required in order for BipA to bind to the ribosome. Moreover, deletion of this domain increases the GTP hydrolysis rates of the protein, likely through relief of inhibitory contacts. Additional evidence has revealed an allosteric connection between the conformationally flexible switch II region and the C-terminal domain of BipA. Site directed mutagenesis, sucrose gradients and malachite green assays are being used to elucidate the details of this coupling.

  16. Allosteric Coupling between the Intracellular Coupling Helix 4 and Regulatory Sites of the First Nucleotide-binding Domain of CFTR

    PubMed Central

    Dawson, Jennifer E.; Farber, Patrick J.; Forman-Kay, Julie D.

    2013-01-01

    Cystic fibrosis is caused by mutations in CFTR (cystic fibrosis transmembrane conductance regulator), leading to folding and processing defects and to chloride channel gating misfunction. CFTR is regulated by ATP binding to its cytoplasmic nucleotide-binding domains, NBD1 and NBD2, and by phosphorylation of the NBD1 regulatory insert (RI) and the regulatory extension (RE)/R region. These regulatory effects are transmitted to the rest of the channel via NBD interactions with intracellular domain coupling helices (CL), particularly CL4. Using a sensitive method for detecting inter-residue correlations between chemical shift changes in NMR spectra, an allosteric network was revealed within NBD1, with a construct lacking RI. The CL4-binding site couples to the RI-deletion site and the C-terminal residues of NBD1 that precede the R region in full-length CFTR. Titration of CL4 peptide into NBD1 perturbs the conformational ensemble in these sites with similar titration patterns observed in F508del, the major CF-causing mutant, and in suppressor mutants F494N, V510D and Q637R NBD1, as well as in a CL4-NBD1 fusion construct. Reciprocally, the C-terminal mutation, Q637R, perturbs dynamics in these three sites. This allosteric network suggests a mechanism synthesizing diverse regulatory NBD1 interactions and provides biophysical evidence for the allosteric coupling required for CFTR function. PMID:24058550

  17. Allosteric Regulation in the Ligand Binding Domain of Retinoic Acid Receptorγ

    PubMed Central

    Amal, Ismail; Lutzing, Régis; Stote, Roland H.; Rochette-Egly, Cécile; Rochel, Natacha; Dejaegere, Annick

    2017-01-01

    Retinoic acid (RA) plays key roles in cell differentiation and growth arrest through nuclear retinoic acid receptors (RARs), which are ligand-dependent transcription factors. While the main trigger of RAR activation is the binding of RA, phosphorylation of the receptors has also emerged as an important regulatory signal. Phosphorylation of the RARγ N-terminal domain (NTD) is known to play a functional role in neuronal differentiation. In this work, we investigated the phosphorylation of RARγ ligand binding domain (LBD), and present evidence that the phosphorylation status of the LBD affects the phosphorylation of the NTD region. We solved the X-ray structure of a phospho-mimetic mutant of the LBD (RARγ S371E), which we used in molecular dynamics simulations to characterize the consequences of the S371E mutation on the RARγ structural dynamics. Combined with simulations of the wild-type LBD, we show that the conformational equilibria of LBD salt bridges (notably R387-D340) are affected by the S371E mutation, which likely affects the recruitment of the kinase complex that phosphorylates the NTD. The molecular dynamics simulations also showed that a conservative mutation in this salt bridge (R387K) affects the dynamics of the LBD without inducing large conformational changes. Finally, cellular assays showed that the phosphorylation of the NTD of RARγ is differentially regulated by retinoic acid in RARγWT and in the S371N, S371E and R387K mutants. This multidisciplinary work highlights an allosteric coupling between phosphorylations of the LBD and the NTD of RARγ and supports the importance of structural dynamics involving electrostatic interactions in the regulation of RARs activity. PMID:28125680

  18. Discovery of Allosteric Modulators of Factor XIa by Targeting Hydrophobic Domains Adjacent to its Heparin-Binding Site

    PubMed Central

    Karuturi, Rajesh; Al-Horani, Rami A.; Mehta, Shrenik C.; Gailani, David; Desai, Umesh R.

    2013-01-01

    To discover promising sulfated allosteric modulators (SAMs) of glycosaminoglycan-binding proteins (GBPs), such as human factor XIa (FXIa), we screened a library of 26 synthetic, sulfated quinazolin-4(3H)-ones (QAOs) resulting in the identification of six molecules that reduced the VMAX of substrate hydrolysis without influencing the KM. Mutagenesis of residues of the heparin-binding site of FXIa introduced a nearly 5-fold loss in inhibition potency supporting recognition of an allosteric site. Fluorescence studies showed a sigmoidal binding profile indicating highly cooperative binding. Competition with a positively-charged, heparin-binding polymer did not fully nullify inhibition suggesting importance of hydrophobic forces to binding. This discovery suggest the operation of a dual-element recognition process, which relies on an initial Coulombic attraction of anionic SAMs to the cationic HBS of FXIa that forms a locked complex through tight interaction with an adjacent hydrophobic patch. The dual-element strategy may be widely applicable for discovering SAMs of other GBPs. PMID:23451707

  19. Ionic contacts at DnaK substrate binding domain involved in the allosteric regulation of lid dynamics.

    PubMed

    Fernández-Sáiz, Vanesa; Moro, Fernando; Arizmendi, Jesus M; Acebrón, Sergio P; Muga, Arturo

    2006-03-17

    To gain further insight into the interactions involved in the allosteric transition of DnaK we have characterized wild-type (wt) protein and three mutants in which ionic interactions at the interface between the two subdomains of the substrate binding domain, and within the lid subdomain have been disrupted. Our data show that ionic contacts, most likely forming an electrically charged network, between the N-terminal region of helix B and an inner loop of the beta-sandwich are involved in maintaining the position of the lid relative to the beta-subdomain in the ADP state but not in the ATP state of the protein. Disruption of the ionic interactions between the C-terminal region of helix B and the outer loops of the beta-sandwich, known as the latch, does not have the same conformational consequences but results equally in an inactive protein. This indicates that a variety of mechanisms can inactivate this complex allosteric machine. Our results identify the ionic contacts at the subdomain and interdomain interfaces that are part of the hinge region involved in the ATP-induced allosteric displacement of the lid away from the peptide binding site. These interactions also stabilize peptide-Hsp70 complexes at physiological (37 degrees C) and stress (42 degrees C) temperatures, a requirement for productive substrate (re)folding.

  20. Development of a radioligand, [(3)H]LY2119620, to probe the human M(2) and M(4) muscarinic receptor allosteric binding sites.

    PubMed

    Schober, Douglas A; Croy, Carrie H; Xiao, Hongling; Christopoulos, Arthur; Felder, Christian C

    2014-07-01

    In this study, we characterized a muscarinic acetylcholine receptor (mAChR) potentiator, LY2119620 (3-amino-5-chloro-N-cyclopropyl-4-methyl-6-[2-(4-methylpiperazin-1-yl)-2-oxoethoxy]thieno[2,3-b]pyridine-2-carboxamide) as a novel probe of the human M2 and M4 allosteric binding sites. Since the discovery of allosteric binding sites on G protein-coupled receptors, compounds targeting these novel sites have been starting to emerge. For example, LY2033298 (3-amino-5-chloro-6-methoxy-4-methyl-thieno(2,3-b)pyridine-2-carboxylic acid cyclopropylamid) and a derivative of this chemical scaffold, VU152100 (3-amino-N-(4-methoxybenzyl)-4,6-dim​ethylthieno[2,3-b]pyridine carboxamide), bind to the human M4 mAChR allosteric pocket. In the current study, we characterized LY2119620, a compound similar in structure to LY2033298 and binds to the same allosteric site on the human M4 mAChRs. However, LY2119620 also binds to an allosteric site on the human M2 subtype. [(3)H]NMS ([(3)H]N-methylscopolamine) binding experiments confirm that LY2119620 does not compete for the orthosteric binding pocket at any of the five muscarinic receptor subtypes. Dissociation kinetic studies using [(3)H]NMS further support that LY2119620 binds allosterically to the M2 and M4 mAChRs and was positively cooperative with muscarinic orthosteric agonists. To probe directly the allosteric sites on M2 and M4, we radiolabeled LY2119620. Cooperativity binding of [(3)H]LY2119620 with mAChR orthosteric agonists detects significant changes in Bmax values with little change in Kd, suggesting a G protein-dependent process. Furthermore, [(3)H]LY2119620 was displaced by compounds of similar chemical structure but not by previously described mAChR allosteric compounds such as gallamine or WIN 62,577 (17-β-hydroxy-17-α-ethynyl-δ-4-androstano[3,2-b]pyrimido[1,2-a]benzimidazole). Our results therefore demonstrate the development of a radioligand, [(3)H]LY2119620 to probe specifically the human M2 and M4 muscarinic

  1. Allosteric binding site in a Cys-loop receptor ligand-binding domain unveiled in the crystal structure of ELIC in complex with chlorpromazine

    PubMed Central

    Nys, Mieke; Wijckmans, Eveline; Farinha, Ana; Yoluk, Özge; Andersson, Magnus; Brams, Marijke; Spurny, Radovan; Peigneur, Steve; Tytgat, Jan; Lindahl, Erik; Ulens, Chris

    2016-01-01

    Pentameric ligand-gated ion channels or Cys-loop receptors are responsible for fast inhibitory or excitatory synaptic transmission. The antipsychotic compound chlorpromazine is a widely used tool to probe the ion channel pore of the nicotinic acetylcholine receptor, which is a prototypical Cys-loop receptor. In this study, we determine the molecular determinants of chlorpromazine binding in the Erwinia ligand-gated ion channel (ELIC). We report the X-ray crystal structures of ELIC in complex with chlorpromazine or its brominated derivative bromopromazine. Unexpectedly, we do not find a chlorpromazine molecule in the channel pore of ELIC, but behind the β8–β9 loop in the extracellular ligand-binding domain. The β8–β9 loop is localized downstream from the neurotransmitter binding site and plays an important role in coupling of ligand binding to channel opening. In combination with electrophysiological recordings from ELIC cysteine mutants and a thiol-reactive derivative of chlorpromazine, we demonstrate that chlorpromazine binding at the β8–β9 loop is responsible for receptor inhibition. We further use molecular-dynamics simulations to support the X-ray data and mutagenesis experiments. Together, these data unveil an allosteric binding site in the extracellular ligand-binding domain of ELIC. Our results extend on previous observations and further substantiate our understanding of a multisite model for allosteric modulation of Cys-loop receptors. PMID:27791038

  2. Allosteric regulation of the glucose:H+ symporter of Lactobacillus brevis: cooperative binding of glucose and HPr(ser-P).

    PubMed Central

    Ye, J J; Saier, M H

    1995-01-01

    Lactobacillus brevis transports glucose and the nonmetabolizable glucose analog 2-deoxyglucose via a proton symport mechanism that is allosterically inhibited by the seryl-phosphorylated derivative of HPr, the small phosphocarrier protein of the phosphotransferase system. We have demonstrate that S46DHPr, a mutant analog of HPr which conformationally resembles HPr(ser-P) but not free HPr, specifically binds to membranes derived from glucose-grown L. brevis cells if and only if a substrate of the glucose permease is also present. PMID:7896720

  3. Piracetam Defines a New Binding Site for Allosteric Modulators of α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors§

    PubMed Central

    Ahmed, Ahmed H.; Oswald, Robert E.

    2010-01-01

    Glutamate receptors are the most prevalent excitatory neurotransmitter receptors in the vertebrate central nervous system and are important potential drug targets for cognitive enhancement and the treatment of schizophrenia. Allosteric modulators of AMPA receptors promote dimerization by binding to a dimer interface and reducing desensitization and deactivation. The pyrrolidine allosteric modulators, piracetam and aniracetam, were among the first of this class of drugs to be discovered. We have determined the structure of the ligand binding domain of the AMPA receptor subtypes GluA2 and GluA3 with piracetam and a corresponding structure of GluA3 with aniracetam. Both drugs bind to both GluA2 and GluA3 in a very similar manner, suggesting little subunit specificity. However, the binding sites for piracetam and aniracetam differ considerably. Aniracetam binds to a symmetrical site at the center of the dimer interface. Piracetam binds to multiple sites along the dimer interface with low occupation, one of which is a unique binding site for potential allosteric modulators. This new site may be of importance in the design of new allosteric regulators. PMID:20163115

  4. Piracetam defines a new binding site for allosteric modulators of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors.

    PubMed

    Ahmed, Ahmed H; Oswald, Robert E

    2010-03-11

    Glutamate receptors are the most prevalent excitatory neurotransmitter receptors in the vertebrate central nervous system and are important potential drug targets for cognitive enhancement and the treatment of schizophrenia. Allosteric modulators of AMPA receptors promote dimerization by binding to a dimer interface and reducing desensitization and deactivation. The pyrrolidine allosteric modulators, piracetam and aniracetam, were among the first of this class of drugs to be discovered. We have determined the structure of the ligand binding domain of the AMPA receptor subtypes GluA2 and GluA3 with piracetam and a corresponding structure of GluA3 with aniracetam. Both drugs bind to GluA2 and GluA3 in a very similar manner, suggesting little subunit specificity. However, the binding sites for piracetam and aniracetam differ considerably. Aniracetam binds to a symmetrical site at the center of the dimer interface. Piracetam binds to multiple sites along the dimer interface with low occupation, one of which is a unique binding site for potential allosteric modulators. This new site may be of importance in the design of new allosteric regulators.

  5. Structure of a small-molecule inhibitor complexed with GlmU from Haemophilus influenzae reveals an allosteric binding site

    SciTech Connect

    Mochalkin, Igor; Lightle, Sandra; Narasimhan, Lakshmi; Bornemeier, Dirk; Melnick, Michael; VanderRoest, Steven; McDowell, Laura

    2008-04-02

    N-Acetylglucosamine-1-phosphate uridyltransferase (GlmU) is an essential enzyme in aminosugars metabolism and an attractive target for antibiotic drug discovery. GlmU catalyzes the formation of uridine-diphospho-N-acetylglucosamine (UDP-GlcNAc), an important precursor in the peptidoglycan and lipopolisaccharide biosynthesis in both Gram-negative and Gram-positive bacteria. Here we disclose a 1.9 {angstrom} resolution crystal structure of a synthetic small-molecule inhibitor of GlmU from Haemophilus influenzae (hiGlmU). The compound was identified through a high-throughput screening (HTS) configured to detect inhibitors that target the uridyltransferase active site of hiGlmU. The original HTS hit exhibited a modest micromolar potency (IC{sub 50} - 18 {mu}M in a racemic mixture) against hiGlmU and no activity against Staphylococcus aureus GlmU (saGlmU). The determined crystal structure indicated that the inhibitor occupies an allosteric site adjacent to the GlcNAc-1-P substrate-binding region. Analysis of the mechanistic model of the uridyltransferase reaction suggests that the binding of this allosteric inhibitor prevents structural rearrangements that are required for the enzymatic reaction, thus providing a basis for structure-guided design of a new class of mechanism-based inhibitors of GlmU.

  6. In vitro binding of a radio-labeled positive allosteric modulator for metabotropic glutamate receptor subtype 5.

    PubMed

    Zysk, John R; Spear, Nathan; Fieles, William; Stein, Mark M; Sygowski, Linda S; King, Megan M; Hoesch, Valerie; Hastings, Richard; Brockel, Becky; Do, Mylinh; Ström, Peter; Gadient, Reto; Chhajlani, Vijay; Elmore, Charles S; Maier, Donna L

    2013-03-01

    The positive allosteric modulator (PAM) binding site for metabotropic glutamate receptor subtype 5 (mGlu(5)) lacks a readily available radio-labeled tracer fordetailed structure-activity studies. This communication describes a selective mGlu(5) compound, 7-methyl-2-(4-(pyridin-2-yloxy)benzyl)-5-(pyridin-3-yl)isoindolin-1-one (PBPyl) that binds with high affinity to human mGlu(5) and exhibits functional PAM activity. Analysis of PBPyl by FLIPR revealed an EC(50) of 87 nM with an 89% effect in transfected HEK293 cells and an EC(50) of 81 nM with a 42% effect in rat primary neurons. PBPyl exhibited 5-fold higher functional selectivity for mGlu(5) in a full mGlu receptor panel. Unlabeled PBPyl was tested for specific binding using a liquid chromatography mass spectrometry (LC/MS/MS)-based filtration binding assay and exhibited 40% specific binding in recombinant membranes, a value higher than any candidate compound tested. In competition binding studies with [(3)H]MPEP, the mGlu(5) receptor negative allosteric modulator (NAM), PBPyl exhibited a k(i) value of 34 nM. PBPyl also displaced [(3)H]ABP688, a mGluR(5) receptor NAM, in tissue sections from mouse and rat brain using autoradiography. Areas of specific binding included the frontal cortex, striatum and nucleus accumbens. PBPyl was radiolabeled to a specific activity of 15 Ci/mmol and tested for specific binding in a filter plate format. In recombinant mGlu(5b) membranes, [(3)H] PBPyl exhibited saturable binding with a K(d) value of 18.6 nM. In competition binding experiments, [(3)H] PBPyl was displaced by high affinity mGlu(5) positive and negative modulators. Further tests showed that PBPyl displays less than optimal characteristics as an in vivo tool, including a high volume of distribution and ClogP, making it more suitable as an in vitro compound. However, as a first report of direct binding of an mGlu(5) receptor PAM, this study offers value toward the development of novel PET imaging agents for this important

  7. An allosteric binding site at the human serotonin transporter mediates the inhibition of escitalopram by R-citalopram: kinetic binding studies with the ALI/VFL-SI/TT mutant.

    PubMed

    Zhong, Huailing; Hansen, Kasper B; Boyle, Noel J; Han, Kiho; Muske, Galina; Huang, Xinyan; Egebjerg, Jan; Sánchez, Connie

    2009-10-25

    The human serotonin transporter (hSERT) has primary and allosteric binding sites for escitalopram and R-citalopram. Previous studies have established that the interaction of these two compounds at a low affinity allosteric binding site of hSERT can affect the dissociation of [(3)H]escitalopram from hSERT. The allosteric binding site involves a series of residues in the 10th, 11th, and 12th trans-membrane domains of hSERT. The low affinity allosteric activities of escitalopram and R-citalopram are essentially eliminated in a mutant hSERT with changes in some of these residues, namely A505V, L506F, I507L, S574T, I575T, as measured in dissociation binding studies. We confirm that in association binding experiments, R-citalopram at clinically relevant concentrations reduces the association rate of [(3)H]escitalopram as a ligand to wild type hSERT. We demonstrate that the ability of R-citalopram to reduce the association rate of escitalopram is also abolished in the mutant hSERT (A505V, L506F, I507L, S574T, I575T), along with the expected disruption the low affinity allosteric function on dissociation binding. This suggests that the allosteric binding site mediates both the low affinity and higher affinity interactions between R-citalopram, escitalopram, and hSERT. Our data add an additional structural basis for the different efficacies of escitalopram compared to racemic citalopram reported in animal studies and clinical trials, and substantiate the hypothesis that hSERT has complex allosteric mechanisms underlying the unexplained in vivo activities of its inhibitors.

  8. Conformational Changes in the Activation Loop of Mitochondrial Glutaminase C: A Direct Fluorescence Read-Out that Distinguishes the Binding of Allosteric Inhibitors from Activators.

    PubMed

    Stalnecker, Clint A; Erickson, Jon W; Cerione, Richard A

    2017-02-14

    The first step in glutamine catabolism is catalyzed by the mitochondrial enzyme glutaminase, with a specific isoform, glutaminase C (GAC), being highly expressed in cancer cells. GAC activation requires the formation of homo-tetramers, promoted by anionic allosteric activators such as inorganic phosphate. This leads to the proper orientation of a flexible loop proximal to the dimer-dimer interface that is essential for catalysis (i.e. the activation loop). A major class of allosteric inhibitors of GAC, with the prototype being BPTES (bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide), and the related molecule CB-839, binds to the activation loop and induces the formation of an inactive tetramer (2 inhibitors bound per active tetramer). Here, we describe a direct readout for monitoring the dynamics of the activation loop of GAC in response to these allosteric inhibitors, as well as allosteric activators, through the substitution of phenylalanine at position 327 with tryptophan (F327W). The tryptophan fluorescence of the GAC(F327W) mutant undergoes a marked quenching upon the binding of BPTES or CB-839, yielding titration profiles that make it possible to measure the binding affinities of these inhibitors for the enzyme. Allosteric activators like phosphate induce the opposite effect (i.e. a fluorescence enhancement). These results describe direct read-outs for the binding of the BPTES-class of allosteric inhibitors, as well as for inorganic phosphate and related activators of GAC, which should facilitate screening for additional modulators of this important metabolic enzyme.

  9. Positive allosteric modulation of the GHB high-affinity binding site by the GABAA receptor modulator monastrol and the flavonoid catechin.

    PubMed

    Eghorn, Laura F; Hoestgaard-Jensen, Kirsten; Kongstad, Kenneth T; Bay, Tina; Higgins, David; Frølund, Bente; Wellendorph, Petrine

    2014-10-05

    γ-Hydroxybutyric acid (GHB) is a metabolite of γ-aminobutyric acid (GABA) and a proposed neurotransmitter in the mammalian brain. We recently identified α4βδ GABAA receptors as possible high-affinity GHB targets. GABAA receptors are highly sensitive to allosteric modulation. Thus to investigate whether GHB high-affinity binding sites are also sensitive to allosteric modulation, we screened both known GABAA receptor ligands and a library of natural compounds in the rat cortical membrane GHB specific high-affinity [3H]NCS-382 binding assay. Two hits were identified: Monastrol, a positive allosteric modulator of GABA function at δ-containing GABAA receptors, and the naturally occurring flavonoid catechin. These compounds increased [3H]NCS-382 binding to 185-272% in high micromolar concentrations. Monastrol and (+)-catechin significantly reduced [3H]NCS-382 dissociation rates and induced conformational changes in the binding site, demonstrating a positive allosteric modulation of radioligand binding. Surprisingly, binding of [3H]GHB and the GHB high-affinity site-specific radioligands [125I]BnOPh-GHB and [3H]HOCPCA was either decreased or only weakly increased, indicating that the observed modulation was critically probe-dependent. Both monastrol and (+)-catechin were agonists at recombinant α4β3δ receptors expressed in Xenopus laevis oocytes. When monastrol and GHB were co-applied no changes were seen compared to the individual responses. In summary, we have identified the compounds monastrol and catechin as the first allosteric modulators of GHB high-affinity binding sites. Despite their relatively weak affinity, these compounds may aid in further characterization of the GHB high-affinity sites that are likely to represent certain GABAA receptors.

  10. Free energy changes and components implicit in the MWC allosteric model for the cooperative oxygen binding of hemoglobin.

    PubMed

    Bucci, Enrico; Pucciarelli, Stefania; Angeletti, Mauro

    2013-06-18

    Hill's plots of oxygen binding isotherms reveal the presence of a transition between two different oxygen affinities at the beginning and end of the isotherm. They correspond to the two conformations anticipated by the MWC model, namely, the T and R conformations at the beginning and end of oxygen binding, when the lower affinity of the T form develops into the higher affinity of the R form. The difference between the binding Gibbs free energy changes of the two affinities (Δ G(L)) is the free energy of binding cooperativity. Notably, Δ G(L) is positive in favor of the T form, which moves to a higher energy level upon oxygen release. Osmotic stress reveals a higher volume/surface ratio of deoxyhemoglobin, with a positive Δ G(W) also in favor of the T form. An increasing protein concentration shifts the isotherms to the right, indicating the formation of intermediate polymeric forms. The enthalpy of the intermediates shows a strong absorption of heat at the third oxygenation step because of polymer formation with quinary, and higher-order, structures. The disassembly of intermediate polymers releases energy with a negative Δ G that compensates and allows the positive values of Δ G(L). High-energy polymers are the barrier preventing the relaxation of the T and R conformations into one another. The MWC allosteric model is the best justification of oxygen binding cooperativity.

  11. Allosteric regulation by cooperative conformational changes of actin filaments drives mutually exclusive binding with cofilin and myosin.

    PubMed

    Ngo, Kien Xuan; Umeki, Nobuhisa; Kijima, Saku T; Kodera, Noriyuki; Ueno, Hiroaki; Furutani-Umezu, Nozomi; Nakajima, Jun; Noguchi, Taro Q P; Nagasaki, Akira; Tokuraku, Kiyotaka; Uyeda, Taro Q P

    2016-10-20

    Heavy meromyosin (HMM) of myosin II and cofilin each binds to actin filaments cooperatively and forms clusters along the filaments, but it is unknown whether the two cooperative bindings are correlated and what physiological roles they have. Fluorescence microscopy demonstrated that HMM-GFP and cofilin-mCherry each bound cooperatively to different parts of actin filaments when they were added simultaneously in 0.2 μM ATP, indicating that the two cooperative bindings are mutually exclusive. In 0.1 mM ATP, the motor domain of myosin (S1) strongly inhibited the formation of cofilin clusters along actin filaments. Under this condition, most actin protomers were unoccupied by S1 at any given moment, suggesting that transiently bound S1 alters the structure of actin filaments cooperatively and/or persistently to inhibit cofilin binding. Consistently, cosedimentation experiments using copolymers of actin and actin-S1 fusion protein demonstrated that the fusion protein affects the neighboring actin protomers, reducing their affinity for cofilin. In reciprocal experiments, cofilin-actin fusion protein reduced the affinity of neighboring actin protomers for S1. Thus, allosteric regulation by cooperative conformational changes of actin filaments contributes to mutually exclusive cooperative binding of myosin II and cofilin to actin filaments, and presumably to the differential localization of both proteins in cells.

  12. Allosteric regulation by cooperative conformational changes of actin filaments drives mutually exclusive binding with cofilin and myosin

    PubMed Central

    Ngo, Kien Xuan; Umeki, Nobuhisa; Kijima, Saku T.; Kodera, Noriyuki; Ueno, Hiroaki; Furutani-Umezu, Nozomi; Nakajima, Jun; Noguchi, Taro Q. P.; Nagasaki, Akira; Tokuraku, Kiyotaka; Uyeda, Taro Q. P.

    2016-01-01

    Heavy meromyosin (HMM) of myosin II and cofilin each binds to actin filaments cooperatively and forms clusters along the filaments, but it is unknown whether the two cooperative bindings are correlated and what physiological roles they have. Fluorescence microscopy demonstrated that HMM-GFP and cofilin-mCherry each bound cooperatively to different parts of actin filaments when they were added simultaneously in 0.2 μM ATP, indicating that the two cooperative bindings are mutually exclusive. In 0.1 mM ATP, the motor domain of myosin (S1) strongly inhibited the formation of cofilin clusters along actin filaments. Under this condition, most actin protomers were unoccupied by S1 at any given moment, suggesting that transiently bound S1 alters the structure of actin filaments cooperatively and/or persistently to inhibit cofilin binding. Consistently, cosedimentation experiments using copolymers of actin and actin-S1 fusion protein demonstrated that the fusion protein affects the neighboring actin protomers, reducing their affinity for cofilin. In reciprocal experiments, cofilin-actin fusion protein reduced the affinity of neighboring actin protomers for S1. Thus, allosteric regulation by cooperative conformational changes of actin filaments contributes to mutually exclusive cooperative binding of myosin II and cofilin to actin filaments, and presumably to the differential localization of both proteins in cells. PMID:27762277

  13. Lack of conventional oxygen-linked proton and anion binding sites does not impair allosteric regulation of oxygen binding in dwarf caiman hemoglobin

    PubMed Central

    Fago, Angela; Malte, Hans; Storz, Jay F.; Gorr, Thomas A.

    2013-01-01

    In contrast to other vertebrate hemoglobins (Hbs) whose high intrinsic O2 affinities are reduced by red cell allosteric effectors (mainly protons, CO2, organic phosphates, and chloride ions), crocodilian Hbs exhibit low sensitivity to organic phosphates and high sensitivity to bicarbonate (HCO3−), which is believed to augment Hb-O2 unloading during diving and postprandial alkaline tides when blood HCO3− levels and metabolic rates increase. Examination of α- and β-globin amino acid sequences of dwarf caiman (Paleosuchus palpebrosus) revealed a unique combination of substitutions at key effector binding sites compared with other vertebrate and crocodilian Hbs: β82Lys→Gln, β143His→Val, and β146His→Tyr. These substitutions delete positive charges and, along with other distinctive changes in residue charge and polarity, may be expected to disrupt allosteric regulation of Hb-O2 affinity. Strikingly, however, P. palpebrosus Hb shows a strong Bohr effect, and marked deoxygenation-linked binding of organic phosphates (ATP and DPG) and CO2 as carbamate (contrasting with HCO3− binding in other crocodilians). Unlike other Hbs, it polymerizes to large complexes in the oxygenated state. The highly unusual properties of P. palpebrosus Hb align with a high content of His residues (potential sites for oxygenation-linked proton binding) and distinctive surface Cys residues that may form intermolecular disulfide bridges upon polymerization. On the basis of its singular properties, P. palpebrosus Hb provides a unique opportunity for studies on structure-function coupling and the evolution of compensatory mechanisms for maintaining tissue O2 delivery in Hbs that lack conventional effector-binding residues. PMID:23720132

  14. Analysis of oxygen binding to Panulirus japonicus hemocyanin. The effect of divalent cations on the allosteric transition.

    PubMed

    Makino, N

    1986-01-02

    The effects of H+ and divalent cations on the O2 equilibrium of hexameric hemocyanin from a spiny lobster, Panulirus japonicus, were examined. The hemocyanin showed the normal Bohr effect. When divalent cations were removed by EDTA treatment, the protein showed a fivefold increase in the O2 affinity and a considerable decrease in the cooperativity. Several cooperativity models were tested for the conformity with the observed O2-binding isotherms by the least-square curve fitting. Among the models examined, the three-state concerted model was found to be most consistent with the results. It was postulated that in the absence of divalent cations deoxyhemocyanin is mainly in the intermediate-affinity state. The arthropod hemocyanins were found to be classifiable into two groups according to their functional responses to the divalent cations. It was suggested that the cations act differently on the allosteric transitions of the two groups of hemocyanins.

  15. Anti-tumor agent calixarene 0118 targets human galectin-1 as an allosteric inhibitor of carbohydrate binding

    PubMed Central

    Dings, Ruud P.M.; Miller, Michelle C.; Nesmelova, Irina; Astorgues-Xerri, Lucile; Kumar, Nigam; Serova, Maria; Chen, Xuimei; Raymond, Eric; Hoye, Thomas R.; Mayo, Kevin H.

    2012-01-01

    Calix[4]arene compound 0118 is an angiostatic agent that inhibits tumor growth in mice. Although 0118 is a topomimetic of galectin-1-targeting angiostatic amphipathic peptide anginex, we had yet to prove that 0118 targets galectin-1. Galectin-1 is involved in pathological disorders like tumor endothelial cell adhesion and migration and therefore presents a relevant target for therapeutic intervention against cancer. Here, 15N-1H HSQC NMR spectroscopy demonstrates that 0118 indeed targets galectin-1 at a site away from the lectin’s carbohydrate binding site, and thereby attenuates lactose binding to the lectin. Flow cytometry and agglutination assays show that 0118 attenuates binding of galectin-1 to cell surface glycans, and the inhibition of cell proliferation by 0118 is found to be correlated with the cellular expression of the lectin. In general, our data indicate that 0118 targets galectin-1 as an allosteric inhibitor of glycan/carbohydrate binding. This work contributes to the clinical development of anti-tumor calixarene compound 0118. PMID:22575017

  16. Rafoxanide and Closantel Inhibit SPAK and OSR1 Kinases by Binding to a Highly Conserved Allosteric Site on Their C-terminal Domains.

    PubMed

    AlAmri, Mubarak A; Kadri, Hachemi; Alderwick, Luke J; Simpkins, Nigel S; Mehellou, Youcef

    2017-03-31

    SPAK and OSR1 are two protein kinases that have emerged as attractive targets in the discovery of novel antihypertensive agents due to their role in regulating electrolyte balance in vivo. Herein we report the identification of an allosteric pocket on the highly conserved C-terminal domains of these two kinases, which influences their activity. We also show that some known WNK signaling inhibitors bind to this allosteric site. Using in silico screening, we identified the antiparasitic agent rafoxanide as a novel allosteric inhibitor of SPAK and OSR1. Collectively, this work will facilitate the rational design of novel SPAK and OSR1 kinase inhibitors that could be useful antihypertensive agents.

  17. The Allosteric Site for the Nascent Cell Wall in Penicillin-Binding Protein 2a: An Achilles' Heel of Methicillin-Resistant Staphylococcus aureus.

    PubMed

    Acebrón, Iván; Chang, Mayland; Mobashery, Shahriar; Hermoso, Juan A

    2015-01-01

    The ability to resist the effect of a wide range of antibiotics makes methicillin-resistant Staphylococcus aureus (MRSA) a leading global human pathogen. A key determinant of resistance to β-lactam antibiotics in this organism is penicillin-binding protein 2a (PBP2a), an enzyme that catalyzes the crosslinking reaction between two adjacent peptide stems during the peptidoglycan biosynthesis. The recently published crystal structure of the complex of PBP2a with ceftaroline, a cephalosporin antibiotic that shows efficacy against MRSA, has revealed the allosteric site at 60-Å distance from the transpeptidase domain. Binding of ceftaroline to the allosteric site of PBP2a triggers conformational changes that lead to the opening of the active site from a closed conformation, where a second molecule of ceftaroline binds to give inhibition of the enzyme. The discovery of allostery in MRSA remains the only known example of such regulation of cellwall biosynthesis and represents a new paradigm in fighting MRSA. This review summarizes the present knowledge of the allosteric mechanism, the conformational changes allowing PBP2a catalysis and the means by which some clinical strains have acquired resistance to ceftaroline by disrupting the allosteric mechanism.

  18. Structural basis for allosteric cross-talk between the asymmetric nucleotide binding sites of a heterodimeric ABC exporter

    PubMed Central

    Hohl, Michael; Hürlimann, Lea M.; Böhm, Simon; Schöppe, Jendrik; Grütter, Markus G.; Bordignon, Enrica; Seeger, Markus A.

    2014-01-01

    ATP binding cassette (ABC) transporters mediate vital transport processes in every living cell. ATP hydrolysis, which fuels transport, displays positive cooperativity in numerous ABC transporters. In particular, heterodimeric ABC exporters exhibit pronounced allosteric coupling between a catalytically impaired degenerate site, where nucleotides bind tightly, and a consensus site, at which ATP is hydrolyzed in every transport cycle. Whereas the functional phenomenon of cooperativity is well described, its structural basis remains poorly understood. Here, we present the apo structure of the heterodimeric ABC exporter TM287/288 and compare it to the previously solved structure with adenosine 5′-(β,γ-imido)triphosphate (AMP-PNP) bound at the degenerate site. In contrast to other ABC exporter structures, the nucleotide binding domains (NBDs) of TM287/288 remain in molecular contact even in the absence of nucleotides, and the arrangement of the transmembrane domains (TMDs) is not influenced by AMP-PNP binding, a notion confirmed by double electron-electron resonance (DEER) measurements. Nucleotide binding at the degenerate site results in structural rearrangements, which are transmitted to the consensus site via two D-loops located at the NBD interface. These loops owe their name from a highly conserved aspartate and are directly connected to the catalytically important Walker B motif. The D-loop at the degenerate site ties the NBDs together even in the absence of nucleotides and substitution of its aspartate by alanine is well-tolerated. By contrast, the D-loop of the consensus site is flexible and the aspartate to alanine mutation and conformational restriction by cross-linking strongly reduces ATP hydrolysis and substrate transport. PMID:25030449

  19. An Allosteric Cross-Talk Between the Activation Loop and the ATP Binding Site Regulates the Activation of Src Kinase

    PubMed Central

    Pucheta-Martínez, Encarna; Saladino, Giorgio; Morando, Maria Agnese; Martinez-Torrecuadrada, Jorge; Lelli, Moreno; Sutto, Ludovico; D’Amelio, Nicola; Gervasio, Francesco Luigi

    2016-01-01

    Phosphorylation of the activation loop is a fundamental step in the activation of most protein kinases. In the case of the Src tyrosine kinase, a prototypical kinase due to its role in cancer and its historic importance, phosphorylation of tyrosine 416 in the activation loop is known to rigidify the structure and contribute to the switch from the inactive to a fully active form. However, whether or not phosphorylation is able per-se to induce a fully active conformation, that efficiently binds ATP and phosphorylates the substrate, is less clear. Here we employ a combination of solution NMR and enhanced-sampling molecular dynamics simulations to fully map the effects of phosphorylation and ATP/ADP cofactor loading on the conformational landscape of Src tyrosine kinase. We find that both phosphorylation and cofactor binding are needed to induce a fully active conformation. What is more, we find a complex interplay between the A-loop and the hinge motion where the phosphorylation of the activation-loop has a significant allosteric effect on the dynamics of the C-lobe. PMID:27063862

  20. An Allosteric Cross-Talk Between the Activation Loop and the ATP Binding Site Regulates the Activation of Src Kinase

    NASA Astrophysics Data System (ADS)

    Pucheta-Martínez, Encarna; Saladino, Giorgio; Morando, Maria Agnese; Martinez-Torrecuadrada, Jorge; Lelli, Moreno; Sutto, Ludovico; D’Amelio, Nicola; Gervasio, Francesco Luigi

    2016-04-01

    Phosphorylation of the activation loop is a fundamental step in the activation of most protein kinases. In the case of the Src tyrosine kinase, a prototypical kinase due to its role in cancer and its historic importance, phosphorylation of tyrosine 416 in the activation loop is known to rigidify the structure and contribute to the switch from the inactive to a fully active form. However, whether or not phosphorylation is able per-se to induce a fully active conformation, that efficiently binds ATP and phosphorylates the substrate, is less clear. Here we employ a combination of solution NMR and enhanced-sampling molecular dynamics simulations to fully map the effects of phosphorylation and ATP/ADP cofactor loading on the conformational landscape of Src tyrosine kinase. We find that both phosphorylation and cofactor binding are needed to induce a fully active conformation. What is more, we find a complex interplay between the A-loop and the hinge motion where the phosphorylation of the activation-loop has a significant allosteric effect on the dynamics of the C-lobe.

  1. Mapping Cannabinoid 1 Receptor Allosteric Site(s): Critical Molecular Determinant and Signaling Profile of GAT100, a Novel, Potent, and Irreversibly Binding Probe.

    PubMed

    Laprairie, Robert B; Kulkarni, Abhijit R; Kulkarni, Pushkar M; Hurst, Dow P; Lynch, Diane; Reggio, Patricia H; Janero, David R; Pertwee, Roger G; Stevenson, Lesley A; Kelly, Melanie E M; Denovan-Wright, Eileen M; Thakur, Ganesh A

    2016-06-15

    agonism associated with Org27569 and PSNCBAM-1. Computational docking studies implicate C7.38(382) as a key feature of GAT100 ligand-binding motif. These data help inform the engineering of newer-generation, druggable CB1R allosteric modulators and demonstrate the utility of GAT100 as a covalent probe for mapping structure-function correlates characteristic of the druggable CB1R allosteric space.

  2. Design of fluorescence resonance energy transfer (FRET)-based cGMP indicators: a systematic approach.

    PubMed

    Russwurm, Michael; Mullershausen, Florian; Friebe, Andreas; Jäger, Ronald; Russwurm, Corina; Koesling, Doris

    2007-10-01

    The intracellular signalling molecule cGMP regulates a variety of physiological processes, and so the ability to monitor cGMP dynamics in living cells is highly desirable. Here, we report a systematic approach to create FRET (fluorescence resonance energy transfer)-based cGMP indicators from two known types of cGMP-binding domains which are found in cGMP-dependent protein kinase and phosphodiesterase 5, cNMP-BD [cyclic nucleotide monophosphate-binding domain and GAF [cGMP-specific and -stimulated phosphodiesterases, Anabaena adenylate cyclases and Escherichia coli FhlA] respectively. Interestingly, only cGMP-binding domains arranged in tandem configuration as in their parent proteins were cGMP-responsive. However, the GAF-derived sensors were unable to be used to study cGMP dynamics because of slow response kinetics to cGMP. Out of 24 cGMP-responsive constructs derived from cNMP-BDs, three were selected to cover a range of cGMP affinities with an EC50 between 500 nM and 6 microM. These indicators possess excellent specifity for cGMP, fast binding kinetics and twice the dynamic range of existing cGMP sensors. The in vivo performance of these new indicators is demonstrated in living cells and validated by comparison with cGMP dynamics as measured by radioimmunoassays.

  3. Controlling allosteric networks in proteins

    NASA Astrophysics Data System (ADS)

    Dokholyan, Nikolay

    2013-03-01

    We present a novel methodology based on graph theory and discrete molecular dynamics simulations for delineating allosteric pathways in proteins. We use this methodology to uncover the structural mechanisms responsible for coupling of distal sites on proteins and utilize it for allosteric modulation of proteins. We will present examples where inference of allosteric networks and its rewiring allows us to ``rescue'' cystic fibrosis transmembrane conductance regulator (CFTR), a protein associated with fatal genetic disease cystic fibrosis. We also use our methodology to control protein function allosterically. We design a novel protein domain that can be inserted into identified allosteric site of target protein. Using a drug that binds to our domain, we alter the function of the target protein. We successfully tested this methodology in vitro, in living cells and in zebrafish. We further demonstrate transferability of our allosteric modulation methodology to other systems and extend it to become ligh-activatable.

  4. A Transient Interaction between the Phosphate Binding Loop and Switch I Contributes to the Allosteric Network between Receptor and Nucleotide in Gαi1*

    PubMed Central

    Thaker, Tarjani M.; Sarwar, Maruf; Preininger, Anita M.; Hamm, Heidi E.; Iverson, T. M.

    2014-01-01

    Receptor-mediated activation of the Gα subunit of heterotrimeric G proteins requires allosteric communication between the receptor binding site and the guanine nucleotide binding site, which are separated by >30 Å. Structural changes in the allosteric network connecting these sites are predicted to be transient in the wild-type Gα subunit, making studies of these connections challenging. In the current work, site-directed mutants that alter the energy barriers between the activation states are used as tools to better understand the transient features of allosteric signaling in the Gα subunit. The observed differences in relative receptor affinity for intact Gαi1 subunits versus C-terminal Gαi1 peptides harboring the K345L mutation are consistent with this mutation modulating the allosteric network in the protein subunit. Measurement of nucleotide exchange rates, affinity for metarhodopsin II, and thermostability suggest that the K345L Gαi1 variant has reduced stability in both the GDP-bound and nucleotide-free states as compared with wild type but similar stability in the GTPγS-bound state. High resolution x-ray crystal structures reveal conformational changes accompanying the destabilization of the GDP-bound state. Of these, the conformation for Switch I was stabilized by an ionic interaction with the phosphate binding loop. Further site-directed mutagenesis suggests that this interaction between Switch I and the phosphate binding loop is important for receptor-mediated nucleotide exchange in the wild-type Gαi1 subunit. PMID:24596087

  5. Fully activated MEK1 exhibits compromised affinity for binding of allosteric inhibitors U0126 and PD0325901.

    PubMed

    Sheth, Payal R; Liu, Yuqi; Hesson, Thomas; Zhao, Jia; Vilenchik, Lev; Liu, Yan-Hui; Mayhood, Todd W; Le, Hung V

    2011-09-20

    Kinases catalyze the transfer of γ-phosphate from ATP to substrate protein residues triggering signaling pathways responsible for a plethora of cellular events. Isolation and production of homogeneous preparations of kinases in their fully active forms is important for accurate in vitro measurements of activity, stability, and ligand binding properties of these proteins. Previous studies have shown that MEK1 can be produced in its active phosphorylated form by coexpression with RAF1 in insect cells. In this study, using activated MEK1 produced by in vitro activation by RAF1 (pMEK1(in vitro)), we demonstrate that the simultaneous expression of RAF1 for production of activated MEK1 does not result in stoichiometric phosphorylation of MEK1. The pMEK1(in vitro) showed higher specific activity toward ERK2 protein substrate compared to the pMEK1 that was activated via coexpression with RAF1 (pMEK1(in situ)). The two pMEK1 preparations showed quantitative differences in the phosphorylation of T-loop residue serine 222 by Western blotting and mass spectrometry. Finally, pMEK1(in vitro) showed marked differences in the ligand binding properties compared to pMEK1(in situ). Contrary to previous findings, pMEK1(in vitro) bound allosteric inhibitors U0126 and PD0325901 with a significantly lower affinity than pMEK1(in situ) as well as its unphosphorylated counterpart (npMEK1) as demonstrated by thermal-shift, AS-MS, and calorimetric studies. The differences in inhibitor binding affinity provide direct evidence that unphosphorylated and RAF1-phosphorylated MEK1 form distinct inhibitor sites.

  6. Allosteric communication between the nucleotide binding domains of caseinolytic peptidase B.

    PubMed

    Fernández-Higuero, José Ángel; Acebrón, Sergio P; Taneva, Stefka G; Del Castillo, Urko; Moro, Fernando; Muga, Arturo

    2011-07-22

    ClpB is a hexameric chaperone that solubilizes and reactivates protein aggregates in cooperation with the Hsp70/DnaK chaperone system. Each of the identical protein monomers contains two nucleotide binding domains (NBD), whose ATPase activity must be coupled to exert on the substrate the mechanical work required for its reactivation. However, how communication between these sites occurs is at present poorly understood. We have studied herein the affinity of each of the NBDs for nucleotides in WT ClpB and protein variants in which one or both sites are mutated to selectively impair nucleotide binding or hydrolysis. Our data show that the affinity of NBD2 for nucleotides (K(d) = 3-7 μm) is significantly higher than that of NBD1. Interestingly, the affinity of NBD1 depends on nucleotide binding to NBD2. Binding of ATP, but not ADP, to NBD2 increases the affinity of NBD1 (the K(d) decreases from ≈160-300 to 50-60 μm) for the corresponding nucleotide. Moreover, filling of the NBD2 ring with ATP allows the cooperative binding of this nucleotide and substrates to the NBD1 ring. Data also suggest that a minimum of four subunits cooperate to bind and reactivate two different aggregated protein substrates.

  7. A Novel Allosteric Mechanism of NF-κB Dimerization and DNA Binding Targeted by an Anti-Inflammatory Drug

    PubMed Central

    Ashkenazi, Shaked; Plotnikov, Alexander; Bahat, Anat; Ben-Zeev, Efrat; Warszawski, Shira

    2016-01-01

    The NF-κB family plays key roles in immune and stress responses, and its deregulation contributes to several diseases. Therefore its modulation has become an important therapeutic target. Here, we used a high-throughput screen for small molecules that directly inhibit dimerization of the NF-κB protein p65. One of the identified inhibitors is withaferin A (WFA), a documented anticancer and anti-inflammatory compound. Computational modeling suggests that WFA contacts the dimerization interface on one subunit and surface residues E285 and Q287 on the other. Despite their locations far from the dimerization site, E285 and Q287 substitutions diminished both dimerization and the WFA effect. Further investigation revealed that their effects on dimerization are associated with their proximity to a conserved hydrophobic core domain (HCD) that is crucial for dimerization and DNA binding. Our findings established NF-κB dimerization as a drug target and uncovered an allosteric domain as a target of WFA action. PMID:26830231

  8. Allosteric Regulation of Fibronectin/α5β1 Interaction by Fibronectin-Binding MSCRAMMs

    PubMed Central

    Liang, Xiaowen; Garcia, Brandon L.; Visai, Livia; Prabhakaran, Sabitha; Meenan, Nicola A. G.; Potts, Jennifer R.; Humphries, Martin J.; Höök, Magnus

    2016-01-01

    Adherence of microbes to host tissues is a hallmark of infectious disease and is often mediated by a class of adhesins termed MSCRAMMs (Microbial Surface Components Recognizing Adhesive Matrix Molecules). Numerous pathogens express MSCRAMMs that specifically bind the heterodimeric human glycoprotein fibronectin (Fn). In addition to roles in adhesion, Fn-binding MSCRAMMs exploit physiological Fn functions. For example, several pathogens can invade host cells by a mechanism whereby MSCRAMM-bound Fn bridges interaction with α5β1 integrin. Here, we investigate two Fn-binding MSCRAMMs, FnBPA (Staphylococcus aureus) and BBK32 (Borrelia burgdorferi) to probe structure-activity relationships of MSCRAMM-induced Fn/α5β1integrin activation. Circular dichroism, fluorescence resonance energy transfer, and dynamic light scattering techniques uncover a conformational rearrangement of Fn involving domains distant from the MSCRAMM binding site. Surface plasmon resonance experiments demonstrate a significant enhancement of Fn/α5β1 integrin affinity in the presence of FnBPA or BBK32. Detailed kinetic analysis of these interactions reveal that this change in affinity can be attributed solely to an increase in the initial Fn/α5β1 on-rate and that this rate-enhancement is dependent on high-affinity Fn-binding by MSCRAMMs. These data implicate MSCRAMM-induced perturbation of specific intramolecular contacts within the Fn heterodimer resulting in activation by exposing previously cryptic α5β1 interaction motifs. By correlating structural changes in Fn to a direct measurement of increased Fn/α5β1 affinity, this work significantly advances our understanding of the structural basis for the modulation of integrin function by Fn-binding MSCRAMMs. PMID:27434228

  9. The nucleotide switch in Cdc42 modulates coupling between the GTPase-binding and allosteric equilibria of Wiskott–Aldrich syndrome protein

    PubMed Central

    Leung, Daisy W.; Rosen, Michael K.

    2005-01-01

    The GTP/GDP nucleotide switch in Ras superfamily GTPases generally involves differential affinity toward downstream effectors, with the GTP-bound state having a higher affinity for effector than the GDP-bound state. We have developed a quantitative model of allosteric regulation of the Wiskott–Aldrich syndrome protein (WASP) by the Rho GTPase Cdc42 to better understand how GTPase binding is coupled to effector activation. The model accurately predicts WASP affinity for Cdc42, activity toward Arp2/3 complex, and activation by Cdc42 as functions of a two-state allosteric equilibrium in WASP. The ratio of GTPase affinities for the inactive and active states of WASP is appreciably larger for Cdc42–GTP than for Cdc42–GDP. The greater ability to distinguish between the two states of WASP makes Cdc42–GTP a full WASP agonist, whereas Cdc42–GDP is only a partial agonist. Thus, the nucleotide switch controls not only the affinity of Cdc42 for its effector but also the efficiency of coupling between the Cdc42-binding and allosteric equilibria in WASP. This effect can ensure high fidelity and specificity in Cdc42 signaling in crowded membrane environments. PMID:15821030

  10. Hemoglobin isoform differentiation and allosteric regulation of oxygen binding in the turtle, Trachemys scripta

    PubMed Central

    Damsgaard, Christian; Storz, Jay F.; Hoffmann, Federico G.

    2013-01-01

    When freshwater turtles acclimatize to winter hibernation, there is a gradual transition from aerobic to anaerobic metabolism, which may require adjustments of blood O2 transport before turtles become anoxic. Here, we report the effects of protons, anionic cofactors, and temperature on the O2-binding properties of isolated hemoglobin (Hb) isoforms, HbA and HbD, in the turtle Trachemys scripta. We determined the primary structures of the constituent subunits of the two Hb isoforms, and we related the measured functional properties to differences in O2 affinity between untreated hemolysates from turtles that were acclimated to normoxia and anoxia. Our data show that HbD has a consistently higher O2 affinity compared with HbA, whereas Bohr and temperature effects, as well as thiol reactivity, are similar. Although sequence data show amino acid substitutions at two known β-chain ATP-binding site positions, we find high ATP affinities for both Hb isoforms, suggesting an alternative and stronger binding site for ATP. The high ATP affinities indicate that, although ATP levels decrease in red blood cells of turtles acclimating to anoxia, the O2 affinity would remain largely unchanged, as confirmed by O2-binding measurements of untreated hemolysates from normoxic and anoxic turtles. Thus, the increase in blood-O2 affinity that accompanies winter acclimation is mainly attributable to a decrease in temperature rather than in concentrations of organic phosphates. This is the first extensive study on freshwater turtle Hb isoforms, providing molecular evidence for adaptive changes in O2 transport associated with acclimation to severe hypoxia. PMID:23986362

  11. A strategy to identify linker-based modules for the allosteric regulation of antibody-antigen binding affinities of different scFvs

    PubMed Central

    Thie, Holger

    2017-01-01

    ABSTRACT Antibody single-chain variable fragments (scFvs) are used in a variety of applications, such as for research, diagnosis and therapy. Essential for these applications is the extraordinary specificity, selectivity and affinity of antibody paratopes, which can also be used for efficient protein purification. However, this use is hampered by the high affinity for the protein to be purified because harsh elution conditions, which may impair folding, integrity or viability of the eluted biomaterials, are typically required. In this study, we developed a strategy to obtain structural elements that provide allosteric modulation of the affinities of different antibody scFvs for their antigen. To identify suitable allosteric modules, a complete set of cyclic permutations of calmodulin variants was generated and tested for modulation of the affinity when substituting the linker between VH and VL. Modulation of affinity induced by addition of different calmodulin-binding peptides at physiologic conditions was demonstrated for 5 of 6 tested scFvs of different specificities and antigens ranging from cell surface proteins to haptens. In addition, a variety of different modulator peptides were tested. Different structural solutions were found in respect of the optimal calmodulin permutation, the optimal peptide and the allosteric effect for scFvs binding to different antigen structures. Significantly, effective linker modules were identified for scFvs with both VH-VL and VL-VH architecture. The results suggest that this approach may offer a rapid, paratope-independent strategy to provide allosteric regulation of affinity for many other antibody scFvs. PMID:28055297

  12. H3K4me3 induces allosteric conformational changes in the DNA-binding and catalytic regions of the V(D)J recombinase

    PubMed Central

    Bettridge, John; Na, Chan Hyun; Desiderio, Stephen

    2017-01-01

    V(D)J recombination is initiated by the recombination-activating gene (RAG) recombinase, consisting of RAG-1 and RAG-2 subunits. The susceptibility of gene segments to cleavage by RAG is associated with histone modifications characteristic of active chromatin, including trimethylation of histone H3 at lysine 4 (H3K4me3). Binding of H3K4me3 by a plant homeodomain (PHD) in RAG-2 stimulates substrate binding and catalysis, which are functions of RAG-1. This has suggested an allosteric mechanism in which information regarding occupancy of the RAG-2 PHD is transmitted to RAG-1. To determine whether the conformational distribution of RAG is altered by H3K4me3, we mapped changes in solvent accessibility of cysteine thiols by differential isotopic chemical footprinting. Binding of H3K4me3 to the RAG-2 PHD induces conformational changes in RAG-1 within a DNA-binding domain and in the ZnH2 domain, which acts as a scaffold for the catalytic center. Thus, engagement of H3K4me3 by the RAG-2 PHD is associated with dynamic conformational changes in RAG-1, consistent with allosteric control by active chromatin. PMID:28174273

  13. A structure-guided fragment-based approach for the discovery of allosteric inhibitors targeting the lipophilic binding site of transcription factor EthR.

    PubMed

    Surade, Sachin; Ty, Nancy; Hengrung, Narin; Lechartier, Benoit; Cole, Stewart T; Abell, Chris; Blundell, Tom L

    2014-03-01

    A structure-guided fragment-based approach was used to target the lipophilic allosteric binding site of Mycobacterium tuberculosis EthR. This elongated channel has many hydrophobic residues lining the binding site, with few opportunities for hydrogen bonding. We demonstrate that a fragment-based approach involving the inclusion of flexible fragments in the library leads to an efficient exploration of chemical space, that fragment binding can lead to an extension of the cavity, and that fragments are able to identify hydrogen-bonding opportunities in this hydrophobic environment that are not exploited in Nature. In the present paper, we report the identification of a 1 μM affinity ligand obtained by structure-guided fragment linking.

  14. Identification of an Allosteric Binding Site on Human Lysosomal Alpha-Galactosidase Opens the Way to New Pharmacological Chaperones for Fabry Disease

    PubMed Central

    den-Haan, Helena; Pérez-Sánchez, Horacio; Del Prete, Rosita; Liguori, Ludovica; Cimmaruta, Chiara; Lukas, Jan; Andreotti, Giuseppina

    2016-01-01

    Personalized therapies are required for Fabry disease due to its large phenotypic spectrum and numerous different genotypes. In principle, missense mutations that do not affect the active site could be rescued with pharmacological chaperones. At present pharmacological chaperones for Fabry disease bind the active site and couple a stabilizing effect, which is required, to an inhibitory effect, which is deleterious. By in silico docking we identified an allosteric hot-spot for ligand binding where a drug-like compound, 2,6-dithiopurine, binds preferentially. 2,6-dithiopurine stabilizes lysosomal alpha-galactosidase in vitro and rescues a mutant that is not responsive to a mono-therapy with previously described pharmacological chaperones, 1-deoxygalactonojirimycin and galactose in a cell based assay. PMID:27788225

  15. Pumiliotoxin B binds to a site on the voltage-dependent sodium channel that is allosterically coupled to other binding sites.

    PubMed Central

    Gusovsky, F; Rossignol, D P; McNeal, E T; Daly, J W

    1988-01-01

    Pumiliotoxin B (PTX-B), an alkaloid that has cardiotonic and myotonic activity, increases sodium influx in guinea pig cerebral cortical synaptoneurosomes. In the presence of scorpion venom (Leiurus) or purified alpha-scorpion toxin, the PTX-B-induced sodium influx is enhanced severalfold. PTX-B alone has no effect on sodium flux in N18 neuroblastoma cells but, in the presence of alpha-scorpion toxin, stimulation of sodium influx by PTX-B reaches levels comparable to that attained with the sodium channel activator veratridine. In neuroblastoma LV9 cells, a variant mutant that lacks sodium channels, neither veratridine nor PTX-B induces sodium fluxes in either the presence or absence of alpha-scorpion toxin. In synaptoneurosomes and in N18 cells, the sodium influx induced by the combination of PTX-B and alpha-scorpion toxin is inhibited by tetrodotoxin and local anesthetics. PTX-B does not interact with two of the known toxin sites on the sodium channel, as evidenced by a lack of effect on binding of [3H]saxitoxin or [3H]batrachotoxinin A benzoate to brain synaptoneurosomes. Synergistic effects on sodium influx with alpha-scorpion toxin, beta-scorpion toxin, and brevetoxin indicate that PTX-B does not interact directly with three other toxin sites on the sodium channel. Thus, PTX-B appears to activate sodium influx by interacting with yet another site on the voltage-dependent sodium channel, a site that is coupled allosterically to sites for alpha-scorpion toxin, beta-scorpion toxin, and brevetoxin. PMID:2448797

  16. The S-enantiomer of R,S-citalopram, increases inhibitor binding to the human serotonin transporter by an allosteric mechanism. Comparison with other serotonin transporter inhibitors.

    PubMed

    Chen, Fenghua; Larsen, Mads Breum; Sánchez, Connie; Wiborg, Ove

    2005-03-01

    The interaction of the S- and R-enantiomers (escitalopram and R-citalopram) of citalopram, with high- and low-affinity binding sites in COS-1 cell membranes expressing human SERT (hSERT) were investigated. Escitalopram affinity for hSERT and its 5-HT uptake inhibitory potency was in the nanomolar range and approximately 40-fold more potent than R-citalopram. Escitalopram considerably stabilised the [3H]-escitalopram/SERT complex via an allosteric effect at a low-affinity binding site. The stereoselectivity between escitalopram and R-citalopram was approximately 3:1 for the [3H]-escitalopram/hSERT complex. The combined effect of escitalopram and R-citalopram was additive. Paroxetine and sertraline mainly stabilised the [3H]-paroxetine/hSERT complex. Fluoxetine, duloxetine and venlafaxine have only minor effects. 5-HT stabilised the [125I]-RTI-55, [3H]-MADAM, [3H]-paroxetine, [3H]-fluoxetine and [3H]-venlafaxine/SERT complex to some extent. Thus, escitalopram shows a unique interaction with the hSERT compared with other 5-HT reuptake inhibitors (SSRIs) and, in addition to its 5-HT reuptake inhibitory properties, displays a pronounced effect via an affinity-modulating allosteric site.

  17. Structure and Energetics of Allosteric Regulation of HCN2 Ion Channels by Cyclic Nucleotides*

    PubMed Central

    DeBerg, Hannah A.; Brzovic, Peter S.; Flynn, Galen E.; Zagotta, William N.; Stoll, Stefan

    2016-01-01

    Hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels play an important role in regulating electrical activity in the heart and brain. They are gated by the binding of cyclic nucleotides to a conserved, intracellular cyclic nucleotide-binding domain (CNBD), which is connected to the channel pore by a C-linker region. Binding of cyclic nucleotides increases the rate and extent of channel activation and shifts it to less hyperpolarized voltages. We probed the allosteric mechanism of different cyclic nucleotides on the CNBD and on channel gating. Electrophysiology experiments showed that cAMP, cGMP, and cCMP were effective agonists of the channel and produced similar increases in the extent of channel activation. In contrast, electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) on the isolated CNBD indicated that the induced conformational changes and the degrees of stabilization of the active conformation differed for the three cyclic nucleotides. We explain these results with a model where different allosteric mechanisms in the CNBD all converge to have the same effect on the C-linker and render all three cyclic nucleotides similarly potent activators of the channel. PMID:26559974

  18. Allosteric remodelling of the histone H3 binding pocket in the Pygo2 PHD finger triggered by its binding to the B9L/BCL9 co-factor.

    PubMed

    Miller, Thomas C R; Rutherford, Trevor J; Johnson, Christopher M; Fiedler, Marc; Bienz, Mariann

    2010-09-03

    The Zn-coordinated PHD fingers of Pygopus (Pygo) proteins are critical for beta-catenin-dependent transcriptional switches in normal and malignant tissues. They bind to methylated histone H3 tails, assisted by their BCL9 co-factors whose homology domain 1 (HD1) binds to the rear PHD surface. Although histone-binding residues are identical between the two human Pygo paralogs, we show here that Pygo2 complexes exhibit slightly higher binding affinities for methylated histone H3 tail peptides than Pygo1 complexes. We solved the crystal structure of the Pygo2 PHD-BCL9-2 HD1 complex, which revealed paralog-specific interactions in its PHD-HD1 interface that could contribute indirectly to its elevated affinity for the methylated histone H3 tail. Interestingly, using NMR spectroscopy, we discovered that HD1 binding to PHD triggers an allosteric communication with a conserved isoleucine residue that lines the binding channel for histone H3 threonine 3 (T3), the link between the two adjacent binding pockets accommodating histone H3 alanine 1 and methylated lysine 4, respectively. This modulates the surface of the T3 channel, providing a plausible explanation as to how BCL9 co-factors binding to Pygo PHD fingers impact indirectly on their histone binding affinity. Intriguingly, this allosteric modulation of the T3 channel is propagated through the PHD structural core by a highly conserved tryptophan, the signature residue defining the PHD subclass of Zn fingers, which suggests that other PHD proteins may also be assisted by co-factors in their decoding of modified histone H3 tails.

  19. Selective Inhibition of Mutant Isocitrate Dehydrogenase 1 (IDH1) via Disruption of a Metal Binding Network by an Allosteric Small Molecule

    PubMed Central

    Deng, Gejing; Shen, Junqing; Yin, Ming; McManus, Jessica; Mathieu, Magali; Gee, Patricia; He, Timothy; Shi, Chaomei; Bedel, Olivier; McLean, Larry R.; Le-Strat, Frank; Zhang, Ying; Marquette, Jean-Pierre; Gao, Qiang; Zhang, Bailin; Rak, Alexey; Hoffmann, Dietmar; Rooney, Eamonn; Vassort, Aurelie; Englaro, Walter; Li, Yi; Patel, Vinod; Adrian, Francisco; Gross, Stefan; Wiederschain, Dmitri; Cheng, Hong; Licht, Stuart

    2015-01-01

    Cancer-associated point mutations in isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) confer a neomorphic enzymatic activity: the reduction of α-ketoglutarate to d-2-hydroxyglutaric acid, which is proposed to act as an oncogenic metabolite by inducing hypermethylation of histones and DNA. Although selective inhibitors of mutant IDH1 and IDH2 have been identified and are currently under investigation as potential cancer therapeutics, the mechanistic basis for their selectivity is not yet well understood. A high throughput screen for selective inhibitors of IDH1 bearing the oncogenic mutation R132H identified compound 1, a bis-imidazole phenol that inhibits d-2-hydroxyglutaric acid production in cells. We investigated the mode of inhibition of compound 1 and a previously published IDH1 mutant inhibitor with a different chemical scaffold. Steady-state kinetics and biophysical studies show that both of these compounds selectively inhibit mutant IDH1 by binding to an allosteric site and that inhibition is competitive with respect to Mg2+. A crystal structure of compound 1 complexed with R132H IDH1 indicates that the inhibitor binds at the dimer interface and makes direct contact with a residue involved in binding of the catalytically essential divalent cation. These results show that targeting a divalent cation binding residue can enable selective inhibition of mutant IDH1 and suggest that differences in magnesium binding between wild-type and mutant enzymes may contribute to the inhibitors' selectivity for the mutant enzyme. PMID:25391653

  20. High affinity and temperature sensitivity of blood oxygen binding in Pangasianodon hypophthalmus due to lack of chloride-hemoglobin allosteric interaction.

    PubMed

    Damsgaard, Christian; Phuong, Le My; Huong, Do Thi Thanh; Jensen, Frank B; Wang, Tobias; Bayley, Mark

    2015-06-01

    Air-breathing fishes represent interesting organisms in terms of understanding the physiological changes associated with the terrestrialization of vertebrates, and, further, are of great socio-economic importance for aquaculture in Southeast Asia. To understand how environmental factors, such as high temperature, affect O2 transport in air-breathing fishes, this study assessed the effects of temperature on O2 binding of blood and Hb in the economically important air-breathing fish Pangasianodon hypophthalmus. To determine blood O2 binding properties, blood was drawn from resting cannulated fishes and O2 binding curves made at 25°C and 35°C. To determine the allosteric regulation and thermodynamics of Hb O2 binding, Hb was purified, and O2 equilibria were recorded at five temperatures in the absence and presence of ATP and Cl(-). Whole blood had a high O2 affinity (O2 tension at half saturation P50 = 4.6 mmHg at extracellular pH 7.6 and 25°C), a high temperature sensitivity of O2 binding (apparent heat of oxygenation ΔH(app) = -28.3 kcal/mol), and lacked a Root effect. Further, the data on Hb revealed weak ATP binding and a complete lack of Cl(-) binding to Hb, which, in part, explains the high O2 affinity and high temperature sensitivity of blood O2 binding. This study demonstrates how a potent mechanism for increasing O2 affinity is linked to increased temperature sensitivity of O2 transport and provides a basic framework for a better understanding of how hypoxia-adapted species will react to increasing temperatures.

  1. Allosteric Modulation of Chemoattractant Receptors

    PubMed Central

    Allegretti, Marcello; Cesta, Maria Candida; Locati, Massimo

    2016-01-01

    Chemoattractants control selective leukocyte homing via interactions with a dedicated family of related G protein-coupled receptor (GPCR). Emerging evidence indicates that the signaling activity of these receptors, as for other GPCR, is influenced by allosteric modulators, which interact with the receptor in a binding site distinct from the binding site of the agonist and modulate the receptor signaling activity in response to the orthosteric ligand. Allosteric modulators have a number of potential advantages over orthosteric agonists/antagonists as therapeutic agents and offer unprecedented opportunities to identify extremely selective drug leads. Here, we resume evidence of allosterism in the context of chemoattractant receptors, discussing in particular its functional impact on functional selectivity and probe/concentration dependence of orthosteric ligands activities. PMID:27199992

  2. The Role of Hydration on the Mechanism of Allosteric Regulation: In Situ Measurements of the Oxygen-Linked Kinetics of Water Binding to Hemoglobin

    PubMed Central

    Salvay, Andrés G.; Grigera, J. Raúl; Colombo, Marcio F.

    2003-01-01

    We report here the first direct measurements of changes in protein hydration triggered by a functional binding. This task is achieved by weighing hemoglobin (Hb) and myoglobin films exposed to an atmosphere of 98% relative humidity during oxygenation. The binding of the first oxygen molecules to Hb tetramer triggers a change in protein conformation, which increases binding affinity to the remaining empty sites giving rise to the appearance of cooperative phenomena. Although crystallographic data have evidenced that this structural change increases the protein water-accessible surface area, isobaric osmotic stress experiments in aqueous cosolutions have shown that water binding is linked to Hb oxygenation. Now we show that the differential hydration between fully oxygenated and fully deoxygenated states of these proteins, determined by weighing protein films with a quartz crystal microbalance, agree with the ones determined by osmotic stress in aqueous cosolutions, from the linkage between protein oxygen affinity and water activity. The agreements prove that the changes in water activity brought about by adding osmolytes to the buffer solution shift biochemical equilibrium in proportion to the number of water molecules associated with the reaction. The concomitant kinetics of oxygen and of water binding to Hb have been also determined. The data show that the binding of water molecules to the extra protein surface exposed on the transition from the low-affinity T to the high-affinity R conformations of hemoglobin is the rate-limiting step of Hb cooperative reaction. This evidences that water binding is a crucial step on the allosteric mechanism regulating cooperative interactions, and suggests the possibility that environmental water activity might be engaged in the kinetic control of some important reactions in vivo. PMID:12524309

  3. The role of hydration on the mechanism of allosteric regulation: in situ measurements of the oxygen-linked kinetics of water binding to hemoglobin.

    PubMed

    Salvay, Andrés G; Grigera, J Raúl; Colombo, Marcio F

    2003-01-01

    We report here the first direct measurements of changes in protein hydration triggered by a functional binding. This task is achieved by weighing hemoglobin (Hb) and myoglobin films exposed to an atmosphere of 98% relative humidity during oxygenation. The binding of the first oxygen molecules to Hb tetramer triggers a change in protein conformation, which increases binding affinity to the remaining empty sites giving rise to the appearance of cooperative phenomena. Although crystallographic data have evidenced that this structural change increases the protein water-accessible surface area, isobaric osmotic stress experiments in aqueous cosolutions have shown that water binding is linked to Hb oxygenation. Now we show that the differential hydration between fully oxygenated and fully deoxygenated states of these proteins, determined by weighing protein films with a quartz crystal microbalance, agree with the ones determined by osmotic stress in aqueous cosolutions, from the linkage between protein oxygen affinity and water activity. The agreements prove that the changes in water activity brought about by adding osmolytes to the buffer solution shift biochemical equilibrium in proportion to the number of water molecules associated with the reaction. The concomitant kinetics of oxygen and of water binding to Hb have been also determined. The data show that the binding of water molecules to the extra protein surface exposed on the transition from the low-affinity T to the high-affinity R conformations of hemoglobin is the rate-limiting step of Hb cooperative reaction. This evidences that water binding is a crucial step on the allosteric mechanism regulating cooperative interactions, and suggests the possibility that environmental water activity might be engaged in the kinetic control of some important reactions in vivo.

  4. Computational fragment-based drug design to explore the hydrophobic sub-pocket of the mitotic kinesin Eg5 allosteric binding site

    NASA Astrophysics Data System (ADS)

    Oguievetskaia, Ksenia; Martin-Chanas, Laetitia; Vorotyntsev, Artem; Doppelt-Azeroual, Olivia; Brotel, Xavier; Adcock, Stewart A.; de Brevern, Alexandre G.; Delfaud, Francois; Moriaud, Fabrice

    2009-08-01

    Eg5, a mitotic kinesin exclusively involved in the formation and function of the mitotic spindle has attracted interest as an anticancer drug target. Eg5 is co-crystallized with several inhibitors bound to its allosteric binding pocket. Each of these occupies a pocket formed by loop 5/helix α2 (L5/α2). Recently designed inhibitors additionally occupy a hydrophobic pocket of this site. The goal of the present study was to explore this hydrophobic pocket with our MED-SuMo fragment-based protocol, and thus discover novel chemical structures that might bind as inhibitors. The MED-SuMo software is able to compare and superimpose similar interaction surfaces upon the whole protein data bank (PDB). In a fragment-based protocol, MED-SuMo retrieves MED-Portions that encode protein-fragment binding sites and are derived from cross-mining protein-ligand structures with libraries of small molecules. Furthermore we have excluded intra-family MED-Portions derived from Eg5 ligands that occupy the hydrophobic pocket and predicted new potential ligands by hybridization that would fill simultaneously both pockets. Some of the latter having original scaffolds and substituents in the hydrophobic pocket are identified in libraries of synthetically accessible molecules by the MED-Search software.

  5. Allosteric modulation of [3H]-CGP39653 binding through the glycine site of the NMDA receptor: further studies in rat and human brain

    PubMed Central

    Mugnaini, Manolo; Meoni, Paolo; Bunnemann, Bernd; Corsi, Mauro; Bowery, Norman G

    2001-01-01

    Binding of D,L-(E)-2-amino-4-[3H]-propyl-5-phosphono-3-pentenoic acid ([3H]-CGP39653), a selective antagonist at the glutamate site of the NMDA receptor, is modulated by glycine in rat brain tissue. We have further investigated this phenomenon in rodent and human brain by means of receptor binding and quantitative autoradiography techniques.In rat cerebral cortical membranes the glycine antagonist 3-[2-(Phenylaminocarbonyl)ethenyl]-4,6-dichloro-indole-2-carboxylic acid sodium salt (GV150526A) did not change basal [3H]-CGP39653 binding, but competitively reversed the high affinity component of [3H]-CGP39653 binding inhibition by glycine, with a pKB value of 8.38, in line with its affinity for the glycine site (pKi=8.49 vs [3H]-glycine). Glycine (10 μM) significantly decreased [3H]-CGP39653 affinity for the NMDA receptor (with no change in the Bmax), whereas enhanced L-glutamate affinity (P<0.05, paired-samples Student's t-test).In rat brain sections the addition of GV150526A (30 μM) to the incubation medium increased [3H]-CGP39653 binding to 208% of control (average between areas), indicating the presence of endogenous glycine. The enhancement presented significant regional differences (P<0.05, two-way ANOVA), with striatum higher than cerebral cortex (282 and 187% of control, respectively; P<0.05, Fisher's LSD). On the contrary, there was not any significant variation in affinity values of [3H]-CGP39653, L-glutamate, glycine and GV150526A in striatal and cortical membranes. These results confirmed the existence of regionally distinct NMDA receptors subtypes with different glycine/glutamate allosteric modulation.Whole brain autoradiography revealed an uneven distribution of [3H]-CGP39653 binding sites in human brain. High levels of binding were determined in hippocampus and in cingulate, frontoparietal and insular cortex. Intermediate to low levels of binding were found in diencephalic nuclei and basal ganglia. [3H]-CGP39653 binding was increased to 216% of

  6. cGMP and Brown Adipose Tissue.

    PubMed

    Hoffmann, Linda S; Larson, Christopher J; Pfeifer, Alexander

    2016-01-01

    The second messenger cyclic guanosine monophosphate (cGMP) is a key mediator in physiological processes such as vascular tone, and its essential involvement in pathways regulating metabolism has been recognized in recent years. Here, we focus on the fundamental role of cGMP in brown adipose tissue (BAT) differentiation and function. In contrast to white adipose tissue (WAT), which stores energy in the form of lipids, BAT consumes energy stored in lipids to generate heat. This so-called non-shivering thermogenesis takes place in BAT mitochondria, which express the specific uncoupling protein 1 (UCP1). The energy combusting properties of BAT render it a promising target in antiobesity strategies in which BAT could burn the surplus energy that has accumulated in obese and overweight individuals. cGMP is generated by guanylyl cyclases upon activation by nitric oxide or natriuretic peptides. It affects several downstream molecules including cGMP-receptor proteins such as cGMP-dependent protein kinase and is degraded by phosphodiesterases. The cGMP pathway contains several signaling molecules that can increase cGMP signaling, resulting in activation and recruitment of brown adipocytes, and hence can enhance the energy combusting features of BAT. In this review we highlight recent results showing the physiological significance of cGMP signaling in BAT, as well as pharmacological options targeting cGMP signaling that bear a high potential to become BAT-centered therapies for the treatment of obesity.

  7. Modulation of the conformational state of the SV2A protein by an allosteric mechanism as evidenced by ligand binding assays

    PubMed Central

    Daniels, V; Wood, M; Leclercq, K; Kaminski, R M; Gillard, M

    2013-01-01

    Background and Purpose Synaptic vesicle protein 2A (SV2A) is the specific binding site of the anti-epileptic drug levetiracetam (LEV) and its higher affinity analogue UCB30889. Moreover, the protein has been well validated as a target for anticonvulsant therapy. Here, we report the identification of UCB1244283 acting as a SV2A positive allosteric modulator of UCB30889. Experimental Approach UCB1244283 was characterized in vitro using radioligand binding assays with [3H]UCB30889 on recombinant SV2A expressed in HEK cells and on rat cortex. In vivo, the compound was tested in sound-sensitive mice. Key Results Saturation binding experiments in the presence of UCB1244283 demonstrated a fivefold increase in the affinity of [3H]UCB30889 for human recombinant SV2A, combined with a twofold increase of the total number of binding sites. Similar results were obtained on rat cortex. In competition binding experiments, UCB1244283 potentiated the affinity of UCB30889 while the affinity of LEV remained unchanged. UCB1244283 significantly slowed down both the association and dissociation kinetics of [3H]UCB30889. Following i.c.v. administration in sound-sensitive mice, UCB1244283 showed a clear protective effect against both tonic and clonic convulsions. Conclusions and Implications These results indicate that UCB1244283 can modulate the conformation of SV2A, thereby inducing a higher affinity state for UCB30889. Our results also suggest that the conformation of SV2A per se might be an important determinant of its functioning, especially during epileptic seizures. Therefore, agents that act on the conformation of SV2A might hold great potential in the search for new SV2A-based anticonvulsant therapies. PMID:23530581

  8. Binding of the sphingolipid S1P to hTERT stabilizes telomerase at the nuclear periphery by allosterically mimicking protein phosphorylation.

    PubMed

    Panneer Selvam, Shanmugam; De Palma, Ryan M; Oaks, Joshua J; Oleinik, Natalia; Peterson, Yuri K; Stahelin, Robert V; Skordalakes, Emmanuel; Ponnusamy, Suriyan; Garrett-Mayer, Elizabeth; Smith, Charles D; Ogretmen, Besim

    2015-06-16

    During DNA replication, the enzyme telomerase maintains the ends of chromosomes, called telomeres. Shortened telomeres trigger cell senescence, and cancer cells often have increased telomerase activity to promote their ability to proliferate indefinitely. The catalytic subunit, human telomerase reverse transcriptase (hTERT), is stabilized by phosphorylation. We found that the lysophospholipid sphingosine 1-phosphate (S1P), generated by sphingosine kinase 2 (SK2), bound hTERT at the nuclear periphery in human and mouse fibroblasts. Docking predictions and mutational analyses revealed that binding occurred between a hydroxyl group (C'3-OH) in S1P and Asp(684) in hTERT. Inhibiting or depleting SK2 or mutating the S1P binding site decreased the stability of hTERT in cultured cells and promoted senescence and loss of telomere integrity. S1P binding inhibited the interaction of hTERT with makorin ring finger protein 1 (MKRN1), an E3 ubiquitin ligase that tags hTERT for degradation. Murine Lewis lung carcinoma (LLC) cells formed smaller tumors in mice lacking SK2 than in wild-type mice, and knocking down SK2 in LLC cells before implantation into mice suppressed their growth. Pharmacologically inhibiting SK2 decreased the growth of subcutaneous A549 lung cancer cell-derived xenografts in mice, and expression of wild-type hTERT, but not an S1P-binding mutant, restored tumor growth. Thus, our data suggest that S1P binding to hTERT allosterically mimicks phosphorylation, promoting telomerase stability and hence telomere maintenance, cell proliferation, and tumor growth.

  9. Occupancy of the Zinc-binding Site by Transition Metals Decreases the Substrate Affinity of the Human Dopamine Transporter by an Allosteric Mechanism*

    PubMed Central

    Li, Yang; Mayer, Felix P.; Hasenhuetl, Peter S.; Burtscher, Verena; Schicker, Klaus; Sitte, Harald H.; Freissmuth, Michael; Sandtner, Walter

    2017-01-01

    The human dopamine transporter (DAT) has a tetrahedral Zn2+-binding site. Zn2+-binding sites are also recognized by other first-row transition metals. Excessive accumulation of manganese or of copper can lead to parkinsonism because of dopamine deficiency. Accordingly, we examined the effect of Mn2+, Co2+, Ni2+, and Cu2+ on transport-associated currents through DAT and DAT-H193K, a mutant with a disrupted Zn2+-binding site. All transition metals except Mn2+ modulated the transport cycle of wild-type DAT with affinities in the low micromolar range. In this concentration range, they were devoid of any action on DAT-H193K. The active transition metals reduced the affinity of DAT for dopamine. The affinity shift was most pronounced for Cu2+, followed by Ni2+ and Zn2+ (= Co2+). The extent of the affinity shift and the reciprocal effect of substrate on metal affinity accounted for the different modes of action: Ni2+ and Cu2+ uniformly stimulated and inhibited, respectively, the substrate-induced steady-state currents through DAT. In contrast, Zn2+ elicited biphasic effects on transport, i.e. stimulation at 1 μm and inhibition at 10 μm. A kinetic model that posited preferential binding of transition metal ions to the outward-facing apo state of DAT and a reciprocal interaction of dopamine and transition metals recapitulated all experimental findings. Allosteric activation of DAT via the Zn2+-binding site may be of interest to restore transport in loss-of-function mutants. PMID:28096460

  10. Allosteric regulation of helicase core activities of the DEAD-box helicase YxiN by RNA binding to its RNA recognition motif.

    PubMed

    Samatanga, Brighton; Andreou, Alexandra Z; Klostermeier, Dagmar

    2017-01-23

    DEAD-box proteins share a structurally similar core of two RecA-like domains (RecA_N and RecA_C) that contain the conserved motifs for ATP-dependent RNA unwinding. In many DEAD-box proteins the helicase core is flanked by ancillary domains. To understand the regulation of the DEAD-box helicase YxiN by its C-terminal RNA recognition motif (RRM), we investigated the effect of RNA binding to the RRM on its position relative to the core, and on core activities. RRM/RNA complex formation substantially shifts the RRM from a position close to the RecA_C to the proximity of RecA_N, independent of RNA contacts with the core. RNA binding to the RRM is communicated to the core, and stimulates ATP hydrolysis and RNA unwinding. The conformational space of the core depends on the identity of the RRM-bound RNA. Allosteric regulation of core activities by RNA-induced movement of ancillary domains may constitute a general regulatory mechanism of DEAD-box protein activity.

  11. The N-terminal peptide of mammalian GTP cyclohydrolase I is an autoinhibitory control element and contributes to binding the allosteric regulatory protein GFRP.

    PubMed

    Higgins, Christina E; Gross, Steven S

    2011-04-08

    GTP cyclohydrolase I (GTPCH) is the rate-limiting enzyme for biosynthesis of tetrahydrobiopterin (BH4), an obligate cofactor for NO synthases and aromatic amino acid hydroxylases. BH4 can limit its own synthesis by triggering decameric GTPCH to assemble in an inhibitory complex with two GTPCH feedback regulatory protein (GFRP) pentamers. Subsequent phenylalanine binding to the GTPCH·GFRP inhibitory complex converts it to a stimulatory complex. An N-terminal inhibitory peptide in GTPCH may also contribute to autoregulation of GTPCH activity, but mechanisms are undefined. To characterize potential regulatory actions of the N-terminal peptide in rat GTPCH, we expressed, purified, and characterized a truncation mutant, devoid of 45 N-terminal amino acids (Δ45-GTPCH) and contrasted its catalytic and GFRP binding properties to wild type GTPCH (wt-GTPCH). Contrary to prior reports, we show that GFRP binds wt-GTPCH in the absence of any small molecule effector, resulting in allosteric stimulation of GTPCH activity: a 20% increase in Vmax, 50% decrease in KmGTP, and increase in Hill coefficient to 1.6, from 1.0. These features of GFRP-stimulated wt-GTPCH activity were phenocopied by Δ45-GTPCH in the absence of bound GFRP. Addition of GFRP to Δ45-GTPCH failed to elicit complex formation or a substantial further increase in GTPCH catalytic activity. Expression of Δ45-GTPCH in HEK-293 cells elicited 3-fold greater BH4 accumulation than an equivalent of wt-GTPCH. Together, results indicate that the N-terminal peptide exerts autoinhibitory control over rat GTPCH and is required for GFRP binding on its own. Displacement of the autoinhibitory peptide provides a molecular mechanism for physiological up-regulation of GTPCH activity.

  12. Allosteric Modulation of Purine and Pyrimidine Receptors

    PubMed Central

    Jacobson, Kenneth A.; Gao, Zhan-Guo; Göblyös, Anikó; IJzerman, Adriaan P.

    2011-01-01

    Among the purine and pyrimidine receptors, the discovery of small molecular allosteric modulators has been most highly advanced for the A1 and A3 ARs. These AR modulators have allosteric effects that are structurally separated from the orthosteric effects in SAR studies. The benzoylthiophene derivatives tend to act as allosteric agonists, as well as selective positive allosteric modulators (PAMs) of the A1 AR. A 2-amino-3-aroylthiophene derivative T-62 has been under development as a PAM of the A1 AR for the treatment of chronic pain. Several structurally distinct classes of allosteric modulators of the human A3 AR have been reported: 3-(2-pyridinyl)isoquinolines, 2,4-disubstituted quinolines, 1H-imidazo-[4,5-c]quinolin-4-amines, endocannabinoid 2-arachidonylglycerol and the food dye Brilliant Black BN. Site-directed mutagenesis of A1 and A3 ARs has identified residues associated with the allosteric effect, distinct from those that affect orthosteric binding. A few small molecular allosteric modulators have been reported for several of the P2X ligand-gated ion channels and the G protein-coupled P2Y receptor nucleotides. Metal ion modulation of the P2X receptors has been extensively explored. The allosteric approach to modulation of purine and pyrimidine receptors looks promising for development of drugs that are event-specific and site-specific in action. PMID:21586360

  13. cGMP-Dependent Protein Kinases and cGMP Phosphodiesterases in Nitric Oxide and cGMP Action

    PubMed Central

    Busch, Jennifer L.; Corbin, Jackie D.

    2010-01-01

    To date, studies suggest that biological signaling by nitric oxide (NO) is primarily mediated by cGMP, which is synthesized by NO-activated guanylyl cyclases and broken down by cyclic nucleotide phosphodiesterases (PDEs). Effects of cGMP occur through three main groups of cellular targets: cGMP-dependent protein kinases (PKGs), cGMP-gated cation channels, and PDEs. cGMP binding activates PKG, which phosphorylates serines and threonines on many cellular proteins, frequently resulting in changes in activity or function, subcellular localization, or regulatory features. The proteins that are so modified by PKG commonly regulate calcium homeostasis, calcium sensitivity of cellular proteins, platelet activation and adhesion, smooth muscle contraction, cardiac function, gene expression, feedback of the NO-signaling pathway, and other processes. Current therapies that have successfully targeted the NO-signaling pathway include nitrovasodilators (nitroglycerin), PDE5 inhibitors [sildenafil (Viagra and Revatio), vardenafil (Levitra), and tadalafil (Cialis and Adcirca)] for treatment of a number of vascular diseases including angina pectoris, erectile dysfunction, and pulmonary hypertension; the PDE3 inhibitors [cilostazol (Pletal) and milrinone (Primacor)] are used for treatment of intermittent claudication and acute heart failure, respectively. Potential for use of these medications in the treatment of other maladies continues to emerge. PMID:20716671

  14. A Charge-inverting Mutation in the “Linker” Region of α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptors Alters Agonist Binding and Gating Kinetics Independently of Allosteric Modulators*

    PubMed Central

    Harms, Jonathan E.; Benveniste, Morris; Kessler, Markus; Stone, Leslie M.; Arai, Amy C.; Partin, Kathryn M.

    2014-01-01

    AMPA receptors are gated through binding of glutamate to a solvent-accessible ligand-binding domain. Upon glutamate binding, these receptors undergo a series of conformational rearrangements regulating channel function. Allosteric modulators can bind within a pocket adjacent to the ligand-binding domain to stabilize specific conformations and prevent desensitization. Yelshansky et al. (Yelshansky, M. V., Sobolevsky, A. I., Jatzke, C., and Wollmuth, L. P. (2004) J. Neurosci. 24, 4728–4736) described a model of an electrostatic interaction between the ligand-binding domain and linker region to the pore that regulated channel desensitization. To test this hypothesis, we have conducted a series of experiments focusing on the R628E mutation. Using ultrafast perfusion with voltage clamp, we applied glutamate to outside-out patches pulled from transiently transfected HEK 293 cells expressing wild type or R628E mutant GluA2. In response to a brief pulse of glutamate (1 ms), mutant receptors deactivated with significantly slower kinetics than wild type receptors. In addition, R628E receptors showed significantly more steady-state current in response to a prolonged (500-ms) glutamate application. These changes in receptor kinetics occur through a pathway that is independent of that of allosteric modulators, which show an additive effect on R628E receptors. In addition, ligand binding assays revealed the R628E mutation to have increased affinity for agonist. Finally, we reconciled experimental data with computer simulations that explicitly model mutant and modulator interactions. Our data suggest that R628E stabilizes the receptor closed cleft conformation by reducing agonist dissociation and the transition to the desensitized state. These results suggest that the AMPA receptor external vestibule is a viable target for new positive allosteric modulators. PMID:24550387

  15. A charge-inverting mutation in the "linker" region of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors alters agonist binding and gating kinetics independently of allosteric modulators.

    PubMed

    Harms, Jonathan E; Benveniste, Morris; Kessler, Markus; Stone, Leslie M; Arai, Amy C; Partin, Kathryn M

    2014-04-11

    AMPA receptors are gated through binding of glutamate to a solvent-accessible ligand-binding domain. Upon glutamate binding, these receptors undergo a series of conformational rearrangements regulating channel function. Allosteric modulators can bind within a pocket adjacent to the ligand-binding domain to stabilize specific conformations and prevent desensitization. Yelshansky et al. (Yelshansky, M. V., Sobolevsky, A. I., Jatzke, C., and Wollmuth, L. P. (2004) J. Neurosci. 24, 4728-4736) described a model of an electrostatic interaction between the ligand-binding domain and linker region to the pore that regulated channel desensitization. To test this hypothesis, we have conducted a series of experiments focusing on the R628E mutation. Using ultrafast perfusion with voltage clamp, we applied glutamate to outside-out patches pulled from transiently transfected HEK 293 cells expressing wild type or R628E mutant GluA2. In response to a brief pulse of glutamate (1 ms), mutant receptors deactivated with significantly slower kinetics than wild type receptors. In addition, R628E receptors showed significantly more steady-state current in response to a prolonged (500-ms) glutamate application. These changes in receptor kinetics occur through a pathway that is independent of that of allosteric modulators, which show an additive effect on R628E receptors. In addition, ligand binding assays revealed the R628E mutation to have increased affinity for agonist. Finally, we reconciled experimental data with computer simulations that explicitly model mutant and modulator interactions. Our data suggest that R628E stabilizes the receptor closed cleft conformation by reducing agonist dissociation and the transition to the desensitized state. These results suggest that the AMPA receptor external vestibule is a viable target for new positive allosteric modulators.

  16. Reversibly Bound Chloride in the Atrial Natriuretic Peptide Receptor Hormone Binding Domain: Possible Allosteric Regulation and a Conserved Structural Motif for the Chloride-binding Site

    SciTech Connect

    Ogawa, H.; Qiu, Y; Philo, J; Arakawa, T; Ogata, C; Misono, K

    2010-01-01

    The binding of atrial natriuretic peptide (ANP) to its receptor requires chloride, and it is chloride concentration dependent. The extracellular domain (ECD) of the ANP receptor (ANPR) contains a chloride near the ANP-binding site, suggesting a possible regulatory role. The bound chloride, however, is completely buried in the polypeptide fold, and its functional role has remained unclear. Here, we have confirmed that chloride is necessary for ANP binding to the recombinant ECD or the full-length ANPR expressed in CHO cells. ECD without chloride (ECD(-)) did not bind ANP. Its binding activity was fully restored by bromide or chloride addition. A new X-ray structure of the bromide-bound ECD is essentially identical to that of the chloride-bound ECD. Furthermore, bromide atoms are localized at the same positions as chloride atoms both in the apo and in the ANP-bound structures, indicating exchangeable and reversible halide binding. Far-UV CD and thermal unfolding data show that ECD(-) largely retains the native structure. Sedimentation equilibrium in the absence of chloride shows that ECD(-) forms a strongly associated dimer, possibly preventing the structural rearrangement of the two monomers that is necessary for ANP binding. The primary and tertiary structures of the chloride-binding site in ANPR are highly conserved among receptor-guanylate cyclases and metabotropic glutamate receptors. The chloride-dependent ANP binding, reversible chloride binding, and the highly conserved chloride-binding site motif suggest a regulatory role for the receptor bound chloride. Chloride-dependent regulation of ANPR may operate in the kidney, modulating ANP-induced natriuresis.

  17. Identification of four candidate cGMP targets in Dictyostelium

    PubMed Central

    Goldberg, Jonathan M.; Bosgraaf, Leonard; Van Haastert, Peter J. M.; Smith, Janet L.

    2002-01-01

    In Dictyostelium, a transient increase in intracellular cGMP is important for cytoskeletal rearrangements during chemotaxis. There must be cGMP-binding proteins in Dictyostelium that regulate key cytoskeletal components after treatment with chemoattractants, but to date, no such proteins have been identified. Using a bioinformatics approach, we have found four candidate cGMP-binding proteins (GbpA–D). GbpA and -B have two tandem cGMP-binding sites downstream of a metallo β-lactamase domain, a superfamily that includes cAMP phosphodiesterases. GbpC contains the following nine domains (in order): leucine-rich repeats, Ras, MEK kinase, Ras guanine nucleotide exchange factor N-terminal (RasGEF-N), DEP, RasGEF, cGMP-binding, GRAM, and a second cGMP-binding domain. GbpD is related to GbpC, but is much shorter; it begins with the RasGEF-N domain, and lacks the DEP domain. Disruption of the gbpC gene results in loss of all high-affinity cGMP-binding activity present in the soluble cellular fraction. GbpC mRNA levels increase dramatically 8 h after starvation is initiated. GbpA, -B, and -D mRNA levels show less dramatic changes, with gbpA mRNA levels highest 4 h into starvation, gbpB mRNA levels highest in vegetative cells, and gbpD levels highest at 8 h. The identification of these genes is the first step in a molecular approach to studying downstream effects of cGMP signaling in Dictyostelium. PMID:12011437

  18. Inhibition of muscarinic K+ current in guinea-pig atrial myocytes by PD 81,723, an allosteric enhancer of adenosine binding to A1 receptors

    PubMed Central

    Brandts, B; Bünemann, M; Hluchy, J; Sabin, G V; Pott, L

    1997-01-01

    PD 81,723 has been shown to enhance binding of adenosine to A1 receptors by stabilizing G protein-receptor coupling (‘allosteric enhancement'). Evidence has been provided that in the perfused hearts and isolated atria PD 81,723 causes a sensitization to adenosine via this mechanism. We have studied the effect of PD 81,723 in guinea-pig isolated atrial myocytes by use of whole-cell measurement of the muscarinic K+ current (IK(ACh)) activated by different Gi-coupled receptors (A1, M2, sphingolipid). PD 81,273 caused inhibition of IK(ACh) (IC50≃5 μM) activated by either of the three receptors. Receptor-independent IK(ACh) in cells loaded with GTP-γ-S and background IK(ACh), which contributes to the resting conductance of atrial myocytes, were equally sensitive to PD 81,723. At no combination of concentrations of adenosine and PD 81,723 could an enhancing effect be detected. The compound was active from the outside only. Loading of the cells with PD 81,723 (50 μM) via the patch pipette did not affect either IK(ACh) or its sensitivity to adenosine. We suggest that PD 81,723 acts as an inhibitor of inward rectifying K+ channels; this is supported by the finding that ventricular IK1, which shares a large degree of homology with the proteins (GIRK1/GIRK4) forming IK(ACh) but is not G protein-gated, was also blocked by this compound. It is concluded that the functional effects of PD 81,723 described in the literature are not mediated by the A1 adenosine receptor-Gi-IK(ACh) pathway. PMID:9249260

  19. Structural basis of allosteric and synergistic activation of AMPK by furan-2-phosphonic derivative C2 binding

    PubMed Central

    Langendorf, Christopher G.; Ngoei, Kevin R. W.; Scott, John W.; Ling, Naomi X. Y.; Issa, Sam M. A.; Gorman, Michael A.; Parker, Michael W.; Sakamoto, Kei; Oakhill, Jonathan S.; Kemp, Bruce E.

    2016-01-01

    The metabolic stress-sensing enzyme AMP-activated protein kinase (AMPK) is responsible for regulating metabolism in response to energy supply and demand. Drugs that activate AMPK may be useful in the treatment of metabolic diseases including type 2 diabetes. We have determined the crystal structure of AMPK in complex with its activator 5-(5-hydroxyl-isoxazol-3-yl)-furan-2-phosphonic acid (C2), revealing two C2-binding sites in the γ-subunit distinct from nucleotide sites. C2 acts synergistically with the drug A769662 to activate AMPK α1-containing complexes independent of upstream kinases. Our results show that dual drug therapies could be effective AMPK-targeting strategies to treat metabolic diseases. PMID:26952388

  20. Exploiting protein flexibility to predict the location of allosteric sites

    PubMed Central

    2012-01-01

    Background Allostery is one of the most powerful and common ways of regulation of protein activity. However, for most allosteric proteins identified to date the mechanistic details of allosteric modulation are not yet well understood. Uncovering common mechanistic patterns underlying allostery would allow not only a better academic understanding of the phenomena, but it would also streamline the design of novel therapeutic solutions. This relatively unexplored therapeutic potential and the putative advantages of allosteric drugs over classical active-site inhibitors fuel the attention allosteric-drug research is receiving at present. A first step to harness the regulatory potential and versatility of allosteric sites, in the context of drug-discovery and design, would be to detect or predict their presence and location. In this article, we describe a simple computational approach, based on the effect allosteric ligands exert on protein flexibility upon binding, to predict the existence and position of allosteric sites on a given protein structure. Results By querying the literature and a recently available database of allosteric sites, we gathered 213 allosteric proteins with structural information that we further filtered into a non-redundant set of 91 proteins. We performed normal-mode analysis and observed significant changes in protein flexibility upon allosteric-ligand binding in 70% of the cases. These results agree with the current view that allosteric mechanisms are in many cases governed by changes in protein dynamics caused by ligand binding. Furthermore, we implemented an approach that achieves 65% positive predictive value in identifying allosteric sites within the set of predicted cavities of a protein (stricter parameters set, 0.22 sensitivity), by combining the current analysis on dynamics with previous results on structural conservation of allosteric sites. We also analyzed four biological examples in detail, revealing that this simple coarse

  1. Kinetic analysis of ligand binding to the Ehrlich cell nucleoside transporter: Pharmacological characterization of allosteric interactions with the sup 3 Hnitrobenzylthioinosine binding site

    SciTech Connect

    Hammond, J.R. )

    1991-06-01

    Kinetic analysis of the binding of {sup 3}Hnitrobenzylthioinosine ({sup 3}H NBMPR) to Ehrlich ascites tumor cell plasma membranes was conducted in the presence and absence of a variety of nucleoside transport inhibitors and substrates. The association of {sup 3}H NBMPR with Ehrlich cell membranes occurred in two distinct phases, possibly reflecting functional conformation changes in the {sup 3}HNBMPR binding site/nucleoside transporter complex. Inhibitors of the equilibrium binding of {sup 3}HNBMPR, tested at submaximal inhibitory concentrations, generally decreased the rate of association of {sup 3}HNBMPR, but the magnitude of this effect varied significantly with the agent tested. Adenosine and diazepam had relatively minor effects on the association rate, whereas dipyridamole and mioflazine slowed the rate dramatically. Inhibitors of nucleoside transport also decreased the rate of dissociation of {sup 3}HNBMPR, with an order of potency significantly different from their relative potencies as inhibitors of the equilibrium binding of {sup 3}HNBMPR. Dilazep, dipyridamole, and mioflazine were effective inhibitors of both {sup 3}HNBMPR dissociation and equilibrium binding. The lidoflazine analogue R75231, on the other hand, had no effect on the rate of dissociation of {sup 3}HNBMPR at concentrations below 300 microM, even though it was one of the most potent inhibitors of {sup 3}HNBMPR binding tested (Ki less than 100 nM). In contrast, a series of natural substrates for the nucleoside transport system enhanced the rate of dissociation of {sup 3}HNBMPR with an order of effectiveness that paralleled their relative affinities for the permeant site of the transporter. The most effective enhancers of {sup 3}HNBMPR dissociation, however, were the benzodiazepines diazepam, chlordiazepoxide, and triazolam.

  2. Molecular Recognition of the Catalytic Zinc(II) Ion in MMP-13: Structure-Based Evolution of an Allosteric Inhibitor to Dual Binding Mode Inhibitors with Improved Lipophilic Ligand Efficiencies

    PubMed Central

    Fischer, Thomas; Riedl, Rainer

    2016-01-01

    Matrix metalloproteinases (MMPs) are a class of zinc dependent endopeptidases which play a crucial role in a multitude of severe diseases such as cancer and osteoarthritis. We employed MMP-13 as the target enzyme for the structure-based design and synthesis of inhibitors able to recognize the catalytic zinc ion in addition to an allosteric binding site in order to increase the affinity of the ligand. Guided by molecular modeling, we optimized an initial allosteric inhibitor by addition of linker fragments and weak zinc binders for recognition of the catalytic center. Furthermore we improved the lipophilic ligand efficiency (LLE) of the initial inhibitor by adding appropriate zinc binding fragments to lower the clogP values of the inhibitors, while maintaining their potency. All synthesized inhibitors showed elevated affinity compared to the initial hit, also most of the novel inhibitors displayed better LLE. Derivatives with carboxylic acids as the zinc binding fragments turned out to be the most potent inhibitors (compound 3 (ZHAWOC5077): IC50 = 134 nM) whereas acyl sulfonamides showed the best lipophilic ligand efficiencies (compound 18 (ZHAWOC5135): LLE = 2.91). PMID:26938528

  3. Molecular Recognition of the Catalytic Zinc(II) Ion in MMP-13: Structure-Based Evolution of an Allosteric Inhibitor to Dual Binding Mode Inhibitors with Improved Lipophilic Ligand Efficiencies.

    PubMed

    Fischer, Thomas; Riedl, Rainer

    2016-03-01

    Matrix metalloproteinases (MMPs) are a class of zinc dependent endopeptidases which play a crucial role in a multitude of severe diseases such as cancer and osteoarthritis. We employed MMP-13 as the target enzyme for the structure-based design and synthesis of inhibitors able to recognize the catalytic zinc ion in addition to an allosteric binding site in order to increase the affinity of the ligand. Guided by molecular modeling, we optimized an initial allosteric inhibitor by addition of linker fragments and weak zinc binders for recognition of the catalytic center. Furthermore we improved the lipophilic ligand efficiency (LLE) of the initial inhibitor by adding appropriate zinc binding fragments to lower the clogP values of the inhibitors, while maintaining their potency. All synthesized inhibitors showed elevated affinity compared to the initial hit, also most of the novel inhibitors displayed better LLE. Derivatives with carboxylic acids as the zinc binding fragments turned out to be the most potent inhibitors (compound 3 (ZHAWOC5077): IC50 = 134 nM) whereas acyl sulfonamides showed the best lipophilic ligand efficiencies (compound 18 (ZHAWOC5135): LLE = 2.91).

  4. Allosteric Modulation of Metabotropic Glutamate Receptors

    PubMed Central

    Sheffler, Douglas J.; Gregory, Karen J.; Rook, Jerri M.; Conn, P. Jeffrey

    2013-01-01

    The development of receptor subtype-selective ligands by targeting allosteric sites of G protein-coupled receptors (GPCRs) has proven highly successful in recent years. One GPCR family that has greatly benefited from this approach is the metabotropic glutamate receptors (mGlus). These family C GPCRs participate in the neuromodulatory actions of glutamate throughout the CNS, where they play a number of key roles in regulating synaptic transmission and neuronal excitability. A large number of mGlu subtype-selective allosteric modulators have been identified, the majority of which are thought to bind within the transmembrane regions of the receptor. These modulators can either enhance or inhibit mGlu functional responses and, together with mGlu knockout mice, have furthered the establishment of the physiologic roles of many mGlu subtypes. Numerous pharmacological and receptor mutagenesis studies have been aimed at providing a greater mechanistic understanding of the interaction of mGlu allosteric modulators with the receptor, which have revealed evidence for common allosteric binding sites across multiple mGlu subtypes and the presence for multiple allosteric sites within a single mGlu subtype. Recent data have also revealed that mGlu allosteric modulators can display functional selectivity toward particular signal transduction cascades downstream of an individual mGlu subtype. Studies continue to validate the therapeutic utility of mGlu allosteric modulators as a potential therapeutic approach for a number of disorders including anxiety, schizophrenia, Parkinson’s disease, and Fragile X syndrome. PMID:21907906

  5. Isolated regulatory domains of cGMP-dependent protein kinase Ialpha and Ibeta retain dimerization and native cGMP-binding properties and undergo isoform-specific conformational changes.

    PubMed

    Richie-Jannetta, Robyn; Busch, Jennifer L; Higgins, Kristin A; Corbin, Jackie D; Francis, Sharron H

    2006-03-17

    Molecular mechanisms that provide for cGMP activation of cGMP-dependent protein kinase (PKG) are unknown. PKGs are dimeric; each monomer contains a regulatory (R) and catalytic (C) domain. In this study, isolated recombinant R domains of PKGIalpha-(Delta349-670) and PKGIbeta-(Delta364-685) containing the dimerization and autoinhibitory subdomains and two allosteric cGMP-binding sites were expressed in Sf9 cells. Both R domains were dimers with elongated conformations (Stokes radii of 44 and 51 A, respectively, and frictional coefficients of 1.6 and 1.8, respectively). Exchange dissociation kinetics and K(D) values for cGMP were similar for each holoenzyme and its isolated R domain, indicating that under these conditions the C domain does not appreciably alter cGMP-binding functions of the R domain. As determined by gel filtration chromatography, cGMP binding caused elongation of the PKGIalpha-isolated R domain and contraction of the PKGIbeta-isolated R domain. Cyclic GMP-bound forms of the isoforms have similar physical dimensions that may reflect a common conformation of active isoforms. Elongation of the PKGIbeta holoenzyme associated with cGMP binding and PKG activation cannot be explained solely by conformational change in its R domain, but elongation of the PKGIalpha R domain may partially account for the elongation of wild type PKGIalpha associated with cGMP binding. The cGMP-induced conformational changes in the respective R domains are likely to be critical for kinase activation.

  6. Bovine cone photoreceptor cGMP phosphodiesterase structure deduced from a cDNA clone.

    PubMed Central

    Li, T S; Volpp, K; Applebury, M L

    1990-01-01

    A full-length cDNA clone encoding the alpha' subunit of cGMP phosphodiesterase (PDE) from bovine cone photoreceptors was selected by probing a retinal library with a DNA fragment encoding the catalytic core of the rod cGMP PDE alpha subunit. Identity of the clone was confirmed by comparing its deduced sequence with cone PDE peptide sequences determined by Charbonneau et al. [Charbonneau, H., Prusti, R. K., LeTrong, H., Sonnenburg, W. K., Mullaney, P. J., Walsh, K. A. & Beavo, J. A. (1990) Proc. Natl. Acad. Sci. USA, pp. 288-292]. The cone PDE alpha' and the rod PDE alpha and beta subunits are encoded by distinct genes. cGMP PDE subunits share a common ancestry with cAMP PDEs and cyclic nucleotide-binding proteins. Sequence comparisons predict the presence of a catalytic core and possible secondary sites for noncatalytic cGMP binding. The presence of a C-terminal CAAX (Cys-aliphatic-aliphatic-Xaa) motif suggests the cone enzyme may be posttranslationally modified by proteolysis, methylation, and isoprenylation. Images PMID:2153291

  7. Direct Activation of cGMP-Dependent Channels of Retinal Rods by the cGMP Phosphodiesterase

    NASA Astrophysics Data System (ADS)

    Bennett, Nelly; Ildefonse, Michele; Crouzy, Serge; Chapron, Yves; Clerc, Armel

    1989-05-01

    The cationic conductances of purified bovine retinal rod membranes were studied by incorporation of vesicles into planar lipid bilayers. When the membranes were stripped of all peripheral proteins [guanine nucleotide-binding protein (G protein) and cGMP phosphodiesterase (3',5'-cyclic-GMP 5'-nucleotidohydrolase), EC 3.1.4.35], sodium and calcium fluxes were almost only observed in the presence of cGMP. Reconstitution experiments in which purified cGMP phosphodiesterase alone or with G protein were reassociated to the vesicles in proportions similar to those found in the native rod provide evidence for a direct interaction between the cGMP-dependent channel protein and the phosphodiesterase. (i) In its inhibited state, phosphodiesterase markedly stimulates the activity of the channels in the presence of cGMP (situation in the dark-adapted rod) but is not capable of activating the channels in the absence of cGMP. (ii) In the absence of cGMP, activation of the phosphodiesterase by G protein with GTP bound (equivalent to photoexcitation) induces the opening of cation channels that have the same conductance for sodium ions as cGMP-activated channels (20-22 pS, with two sublevels of about 7 pS and 13 pS).

  8. Virtual screening with AutoDock Vina and the common pharmacophore engine of a low diversity library of fragments and hits against the three allosteric sites of HIV integrase: participation in the SAMPL4 protein-ligand binding challenge

    NASA Astrophysics Data System (ADS)

    Perryman, Alexander L.; Santiago, Daniel N.; Forli, Stefano; Santos-Martins, Diogo; Olson, Arthur J.

    2014-04-01

    To rigorously assess the tools and protocols that can be used to understand and predict macromolecular recognition, and to gain more structural insight into three newly discovered allosteric binding sites on a critical drug target involved in the treatment of HIV infections, the Olson and Levy labs collaborated on the SAMPL4 challenge. This computational blind challenge involved predicting protein-ligand binding against the three allosteric sites of HIV integrase (IN), a viral enzyme for which two drugs (that target the active site) have been approved by the FDA. Positive control cross-docking experiments were utilized to select 13 receptor models out of an initial ensemble of 41 different crystal structures of HIV IN. These 13 models of the targets were selected using our new "Rank Difference Ratio" metric. The first stage of SAMPL4 involved using virtual screens to identify 62 active, allosteric IN inhibitors out of a set of 321 compounds. The second stage involved predicting the binding site(s) and crystallographic binding mode(s) for 57 of these inhibitors. Our team submitted four entries for the first stage that utilized: (1) AutoDock Vina (AD Vina) plus visual inspection; (2) a new common pharmacophore engine; (3) BEDAM replica exchange free energy simulations, and a Consensus approach that combined the predictions of all three strategies. Even with the SAMPL4's very challenging compound library that displayed a significantly lower amount of structural diversity than most libraries that are conventionally employed in prospective virtual screens, these approaches produced hit rates of 24, 25, 34, and 27 %, respectively, on a set with 19 % declared binders. Our only entry for the second stage challenge was based on the results of AD Vina plus visual inspection, and it ranked third place overall according to several different metrics provided by the SAMPL4 organizers. The successful results displayed by these approaches highlight the utility of the computational

  9. Virtual screening with AutoDock Vina and the common pharmacophore engine of a low diversity library of fragments and hits against the three allosteric sites of HIV integrase: participation in the SAMPL4 protein-ligand binding challenge.

    PubMed

    Perryman, Alexander L; Santiago, Daniel N; Forli, Stefano; Santos-Martins, Diogo; Olson, Arthur J

    2014-04-01

    To rigorously assess the tools and protocols that can be used to understand and predict macromolecular recognition, and to gain more structural insight into three newly discovered allosteric binding sites on a critical drug target involved in the treatment of HIV infections, the Olson and Levy labs collaborated on the SAMPL4 challenge. This computational blind challenge involved predicting protein-ligand binding against the three allosteric sites of HIV integrase (IN), a viral enzyme for which two drugs (that target the active site) have been approved by the FDA. Positive control cross-docking experiments were utilized to select 13 receptor models out of an initial ensemble of 41 different crystal structures of HIV IN. These 13 models of the targets were selected using our new "Rank Difference Ratio" metric. The first stage of SAMPL4 involved using virtual screens to identify 62 active, allosteric IN inhibitors out of a set of 321 compounds. The second stage involved predicting the binding site(s) and crystallographic binding mode(s) for 57 of these inhibitors. Our team submitted four entries for the first stage that utilized: (1) AutoDock Vina (AD Vina) plus visual inspection; (2) a new common pharmacophore engine; (3) BEDAM replica exchange free energy simulations, and a Consensus approach that combined the predictions of all three strategies. Even with the SAMPL4's very challenging compound library that displayed a significantly lower amount of structural diversity than most libraries that are conventionally employed in prospective virtual screens, these approaches produced hit rates of 24, 25, 34, and 27 %, respectively, on a set with 19 % declared binders. Our only entry for the second stage challenge was based on the results of AD Vina plus visual inspection, and it ranked third place overall according to several different metrics provided by the SAMPL4 organizers. The successful results displayed by these approaches highlight the utility of the computational

  10. The N-Terminal Domain of the E. coli PriA Helicase Contains Both the DNA- and the Nucleotide-Binding Sites. Energetics of Domain-DNA Interactions and Allosteric Effect of the Nucleotide Cofactors§

    PubMed Central

    Szymanski, Michal R.; Bujalowski, Paul J.; Jezewska, Maria J.; Gmyrek, Aleksandra M.; Bujalowski, Wlodzimierz

    2011-01-01

    Functional interactions of the E. coli PriA helicase 181N-terminal domain with the DNA and nucleotide cofactors have been quantitatively examined. The isolated 181N-terminal domain forms a stable dimer in solution, most probably reflecting the involvement of the domain in specific cooperative interactions of the intact PriA protein - dsDNA complex. Only one monomer of the domain dimer binds the DNA, i.e., the dimer has one effective DNA-binding site. Although the total site-size of the dimer - ssDNA complex is ~13 nucleotides, the DNA-binding subsite engages in direct interactions ~5 nucleotides. A small number of interacting nucleotides indicates that the DNA-binding subsites of the PriA helicase, i.e., the strong subsite on the helicase domain and the weak subsite on the N-terminal domain, are spatially separated in the intact enzyme. Contrary to current views, the subsite has only a slight preference for the 3′-end OH group of the ssDNA and lacks any significant base specificity, although it has a significant dsDNA affinity. Unlike the intact helicase, the DNA-binding subsite of the isolated domain is in an open conformation, indicating the presence of the direct helicase domain - N-terminal domain interactions. The discovery that the 181N-terminal domain possesses a nucleotide-binding site places the allosteric, weak nucleotide-binding site of the intact PriA on the N-terminal domain. The specific ADP effect on the domain DNA-binding subsite indicates that in the intact helicase, the bound ADP not only opens the DNA-binding subsite but also increases its intrinsic DNA affinity. PMID:21888358

  11. Positive and Negative Allosteric Modulation of an α1β3γ2 γ-Aminobutyric Acid Type A (GABAA) Receptor by Binding to a Site in the Transmembrane Domain at the γ+-β− Interface*

    PubMed Central

    Jayakar, Selwyn S.; Zhou, Xiaojuan; Savechenkov, Pavel Y.; Chiara, David C.; Desai, Rooma; Bruzik, Karol S.; Miller, Keith W.; Cohen, Jonathan B.

    2015-01-01

    In the process of developing safer general anesthetics, isomers of anesthetic ethers and barbiturates have been discovered that act as convulsants and inhibitors of γ-aminobutyric acid type A receptors (GABAARs) rather than potentiators. It is unknown whether these convulsants act as negative allosteric modulators by binding to the intersubunit anesthetic-binding sites in the GABAAR transmembrane domain (Chiara, D. C., Jayakar, S. S., Zhou, X., Zhang, X., Savechenkov, P. Y., Bruzik, K. S., Miller, K. W., and Cohen, J. B. (2013) J. Biol. Chem. 288, 19343–19357) or to known convulsant sites in the ion channel or extracellular domains. Here, we show that S-1-methyl-5-propyl-5-(m-trifluoromethyl-diazirynylphenyl) barbituric acid (S-mTFD-MPPB), a photoreactive analog of the convulsant barbiturate S-MPPB, inhibits α1β3γ2 but potentiates α1β3 GABAAR responses. In the α1β3γ2 GABAAR, S-mTFD-MPPB binds in the transmembrane domain with high affinity to the γ+-β− subunit interface site with negative energetic coupling to GABA binding in the extracellular domain at the β+-α− subunit interfaces. GABA inhibits S-[3H]mTFD-MPPB photolabeling of γ2Ser-280 (γM2–15′) in this site. In contrast, within the same site GABA enhances photolabeling of β3Met-227 in βM1 by an anesthetic barbiturate, R-[3H]methyl-5-allyl-5-(m-trifluoromethyl-diazirynylphenyl)barbituric acid (mTFD-MPAB), which differs from S-mTFD-MPPB in structure only by chirality and two hydrogens (propyl versus allyl). S-mTFD-MPPB and R-mTFD-MPAB are predicted to bind in different orientations at the γ+-β− site, based upon the distance in GABAAR homology models between γ2Ser-280 and β3Met-227. These results provide an explanation for S-mTFD-MPPB inhibition of α1β3γ2 GABAAR function and provide a first demonstration that an intersubunit-binding site in the GABAAR transmembrane domain binds negative and positive allosteric modulators. PMID:26229099

  12. Emerging Computational Methods for the Rational Discovery of Allosteric Drugs

    PubMed Central

    2016-01-01

    Allosteric drug development holds promise for delivering medicines that are more selective and less toxic than those that target orthosteric sites. To date, the discovery of allosteric binding sites and lead compounds has been mostly serendipitous, achieved through high-throughput screening. Over the past decade, structural data has become more readily available for larger protein systems and more membrane protein classes (e.g., GPCRs and ion channels), which are common allosteric drug targets. In parallel, improved simulation methods now provide better atomistic understanding of the protein dynamics and cooperative motions that are critical to allosteric mechanisms. As a result of these advances, the field of predictive allosteric drug development is now on the cusp of a new era of rational structure-based computational methods. Here, we review algorithms that predict allosteric sites based on sequence data and molecular dynamics simulations, describe tools that assess the druggability of these pockets, and discuss how Markov state models and topology analyses provide insight into the relationship between protein dynamics and allosteric drug binding. In each section, we first provide an overview of the various method classes before describing relevant algorithms and software packages. PMID:27074285

  13. Conformation Changes N-terminal Involvement and cGMP Signal Relay in the Phosphodiesterase-5 GAF Domain

    SciTech Connect

    H Wang; H Robinson; H Ke

    2011-12-31

    The activity of phosphodiesterase-5 (PDE5) is specific for cGMP and is regulated by cGMP binding to GAF-A in its regulatory domain. To better understand the regulatory mechanism, x-ray crystallographic and biochemical studies were performed on constructs of human PDE5A1 containing the N-terminal phosphorylation segment, GAF-A, and GAF-B. Superposition of this unliganded GAF-A with the previously reported NMR structure of cGMP-bound PDE5 revealed dramatic conformational differences and suggested that helix H4 and strand B3 probably serve as two lids to gate the cGMP-binding pocket in GAF-A. The structure also identified an interfacial region among GAF-A, GAF-B, and the N-terminal loop, which may serve as a relay of the cGMP signal from GAF-A to GAF-B. N-terminal loop 98-147 was physically associated with GAF-B domains of the dimer. Biochemical analyses showed an inhibitory effect of this loop on cGMP binding and its involvement in the cGMP-induced conformation changes.

  14. Conformation changes, N-terminal involvement and cGMP signal relay in phosphodiesterase-5 GAF domain

    SciTech Connect

    Wang, H.; Robinson, H.; Ke, H.

    2010-12-03

    The activity of phosphodiesterase-5 (PDE5) is specific for cGMP and is regulated by cGMP binding to GAF-A in its regulatory domain. To better understand the regulatory mechanism, x-ray crystallographic and biochemical studies were performed on constructs of human PDE5A1 containing the N-terminal phosphorylation segment, GAF-A, and GAF-B. Superposition of this unliganded GAF-A with the previously reported NMR structure of cGMP-bound PDE5 revealed dramatic conformational differences and suggested that helix H4 and strand B3 probably serve as two lids to gate the cGMP-binding pocket in GAF-A. The structure also identified an interfacial region among GAF-A, GAF-B, and the N-terminal loop, which may serve as a relay of the cGMP signal from GAF-A to GAF-B. N-terminal loop 98-147 was physically associated with GAF-B domains of the dimer. Biochemical analyses showed an inhibitory effect of this loop on cGMP binding and its involvement in the cGMP-induced conformation changes.

  15. cGMP levels in chronic cadmium disease and osteoarthritis.

    PubMed Central

    Kagamimori, S.; Williams, W. R.; Watanabe, M.

    1986-01-01

    To investigate the effect of cadmium on guanyl cyclase activity, urine levels of the nucleotide cGMP were measured in patients with bone and renal lesions resulting from chronic cadmium exposure, in patients with osteoarthritis and in a normal age-matched control population. The effects of cadmium, zinc and mercury salts on blood mononuclear cell cGMP production were also studied in vitro. The two patient groups exhibited clear differences in cGMP excretion. Lower urine cGMP (59%, P less than 0.01) and creatinine values (43%, P less than 0.01) were found in cadmium-exposed patients and higher cGMP values (56%, P less than 0.05) in patients with osteoarthritis, compared to the control group. Creatinine adjusted cGMP values were also lower in cadmium-exposed patients (28%, P less than 0.05) and higher in patients with osteoarthritis (130%, P less than 0.01). In vitro, a 10 h exposure of mononuclear cells to cadmium or mercury salts depressed guanyl cyclase activity in most experiments. At 10(-4) M, mercury was consistently more inhibitory in all cultures (95%, P less than 0.01). As cadmium has a potential for inhibiting guanyl cyclase activity in human tissue, the low urine cGMP values found in patients with cadmium disease may be attributable to chronic cadmium exposure. High guanyl cyclase activity in patients with osteoarthritis may be associated with inflammation. PMID:2874827

  16. Computational Tools for Allosteric Drug Discovery: Site Identification and Focus Library Design.

    PubMed

    Huang, Wenkang; Nussinov, Ruth; Zhang, Jian

    2017-01-01

    Allostery is an intrinsic phenomenon of biological macromolecules involving regulation and/or signal transduction induced by a ligand binding to an allosteric site distinct from a molecule's active site. Allosteric drugs are currently receiving increased attention in drug discovery because drugs that target allosteric sites can provide important advantages over the corresponding orthosteric drugs including specific subtype selectivity within receptor families. Consequently, targeting allosteric sites, instead of orthosteric sites, can reduce drug-related side effects and toxicity. On the down side, allosteric drug discovery can be more challenging than traditional orthosteric drug discovery due to difficulties associated with determining the locations of allosteric sites and designing drugs based on these sites and the need for the allosteric effects to propagate through the structure, reach the ligand binding site and elicit a conformational change. In this study, we present computational tools ranging from the identification of potential allosteric sites to the design of "allosteric-like" modulator libraries. These tools may be particularly useful for allosteric drug discovery.

  17. New paradigm for allosteric regulation of Escherichia coli aspartate transcarbamoylase.

    PubMed

    Cockrell, Gregory M; Zheng, Yunan; Guo, Wenyue; Peterson, Alexis W; Truong, Jennifer K; Kantrowitz, Evan R

    2013-11-12

    For nearly 60 years, the ATP activation and the CTP inhibition of Escherichia coli aspartate transcarbamoylase (ATCase) has been the textbook example of allosteric regulation. We present kinetic data and five X-ray structures determined in the absence and presence of a Mg(2+) concentration within the physiological range. In the presence of 2 mM divalent cations (Mg(2+), Ca(2+), Zn(2+)), CTP does not significantly inhibit the enzyme, while the allosteric activation by ATP is enhanced. The data suggest that the actual allosteric inhibitor of ATCase in vivo is the combination of CTP, UTP, and a divalent cation, and the actual allosteric activator is a divalent cation with ATP or ATP and GTP. The structural data reveals that two NTPs can bind to each allosteric site with a divalent cation acting as a bridge between the triphosphates. Thus, the regulation of ATCase is far more complex than previously believed and calls many previous studies into question. The X-ray structures reveal that the catalytic chains undergo essentially no alternations; however, several regions of the regulatory chains undergo significant structural changes. Most significant is that the N-terminal region of the regulatory chains exists in different conformations in the allosterically activated and inhibited forms of the enzyme. Here, a new model of allosteric regulation is proposed.

  18. Prediction of allosteric sites on protein surfaces with an elastic-network-model-based thermodynamic method

    NASA Astrophysics Data System (ADS)

    Su, Ji Guo; Qi, Li Sheng; Li, Chun Hua; Zhu, Yan Ying; Du, Hui Jing; Hou, Yan Xue; Hao, Rui; Wang, Ji Hua

    2014-08-01

    Allostery is a rapid and efficient way in many biological processes to regulate protein functions, where binding of an effector at the allosteric site alters the activity and function at a distant active site. Allosteric regulation of protein biological functions provides a promising strategy for novel drug design. However, how to effectively identify the allosteric sites remains one of the major challenges for allosteric drug design. In the present work, a thermodynamic method based on the elastic network model was proposed to predict the allosteric sites on the protein surface. In our method, the thermodynamic coupling between the allosteric and active sites was considered, and then the allosteric sites were identified as those where the binding of an effector molecule induces a large change in the binding free energy of the protein with its ligand. Using the proposed method, two proteins, i.e., the 70 kD heat shock protein (Hsp70) and GluA2 alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor, were studied and the allosteric sites on the protein surface were successfully identified. The predicted results are consistent with the available experimental data, which indicates that our method is a simple yet effective approach for the identification of allosteric sites on proteins.

  19. THE ANTIPSYCHOTIC POTENTIAL OF MUSCARINIC ALLOSTERIC MODULATION

    PubMed Central

    Bridges, Thomas M.; LeBois, Evan P.; Hopkins, Corey R.; Wood, Michael R.; Jones, Carrie K.; Conn, P. Jeffrey; Lindsley, Craig W.

    2016-01-01

    SUMMARY The cholinergic hypothesis of schizophrenia emerged over 50 years ago based on clinical observations with both anticholinergics and pan-muscarinic agonists. Not until the 1990s did the cholinergic hypothesis of schizophrenia receive renewed enthusiasm based on clinical data with xanomeline, a muscarinic acetylcholine receptor M1/M4-preferring orthosteric agonist. In a clinical trial with Alzheimer’s patients, xanomeline not only improved cognitive performance, but also reduced psychotic behaviors. This encouraging data spurred a second clinical trial in schizophrenic patients, wherein xanomeline significantly improved the positive, negative and cognitive symptom clusters. However, the question remained: Was the antipsychotic efficacy due to activation of M1, M4 or both M1/M4? Classical orthosteric ligands lacked the muscarinic receptor subtype selectivity required to address this key question. More recently, functional assays have allowed for the discovery of ligands that bind at allosteric sites, binding sites distinct from the orthosteric (acetylcholine) site, which are structurally less conserved and thereby afford high levels of receptor subtype selectivity. Recently, allosteric ligands, with unprecedented selectivity for either M1 or M4, have been discovered and have demonstrated comparable efficacy to xanomeline in preclinical antipsychotic and cognition models. These data suggest that selective allosteric activation of either M1 or M4 has antipsychotic potential through distinct, yet complimentary mechanisms. PMID:20520852

  20. The Second Extracellular Loop of the Adenosine A1 Receptor Mediates Activity of Allosteric Enhancers

    PubMed Central

    Kennedy, Dylan P.; McRobb, Fiona M.; Leonhardt, Susan A.; Purdy, Michael; Figler, Heidi; Marshall, Melissa A.; Chordia, Mahendra; Figler, Robert; Linden, Joel

    2014-01-01

    Allosteric enhancers of the adenosine A1 receptor amplify signaling by orthosteric agonists. Allosteric enhancers are appealing drug candidates because their activity requires that the orthosteric site be occupied by an agonist, thereby conferring specificity to stressed or injured tissues that produce adenosine. To explore the mechanism of allosteric enhancer activity, we examined their action on several A1 receptor constructs, including (1) species variants, (2) species chimeras, (3) alanine scanning mutants, and (4) site-specific mutants. These findings were combined with homology modeling of the A1 receptor and in silico screening of an allosteric enhancer library. The binding modes of known docked allosteric enhancers correlated with the known structure-activity relationship, suggesting that these allosteric enhancers bind to a pocket formed by the second extracellular loop, flanked by residues S150 and M162. We propose a model in which this vestibule controls the entry and efflux of agonists from the orthosteric site and agonist binding elicits a conformational change that enables allosteric enhancer binding. This model provides a mechanism for the observations that allosteric enhancers slow the dissociation of orthosteric agonists but not antagonists. PMID:24217444

  1. An engineered chorismate mutase with allosteric regulation.

    PubMed

    Zhang, Sheng; Wilson, David B; Ganem, Bruce

    2003-07-17

    Besides playing a central role in phenylalanine biosynthesis, the bifunctional P-protein in Eschericia coli provides a unique model system for investigating whether allosteric effects can be engineered into protein catalysts using modular regulatory elements. Previous studies have established that the P-protein contains three distinct domains whose functions are preserved, even when separated: chorismate mutase (residues 1-109), prephenate dehydratase (residues 101-285), and an allosteric domain (residues 286-386) for feedback inhibition by phenylalanine. By deleting the prephenate dehydrase domain, a functional chorismate mutase linked directly to the phenylalanine binding domain has been engineered and overexpressed. This manuscript reports the catalytic properties of the mutase in the absence and presence of phenylalanine.

  2. Allosteric inhibition of HIV-1 integrase activity

    PubMed Central

    Engelman, Alan; Kessl, Jacques J.; Kvaratskhelia, Mamuka

    2013-01-01

    HIV-1 integrase is an important therapeutic target in the fight against HIV/AIDS. Integrase strand transfer inhibitors (INSTIs), which target the enzyme active site, have witnessed clinical success over the past 5 years, but the generation of drug resistance poses challenges to INSTI-based therapies moving forward. Integrase is a dynamic protein, and its ordered multimerization is critical to enzyme activity. The integrase tetramer, bound to viral DNA, interacts with host LEDGF/p75 protein to tether integration to active genes. Allosteric integrase inhibitors (ALLINIs) that compete with LEDGF/p75 for binding to integrase disrupt integrase assembly with viral DNA and allosterically inhibit enzyme function. ALLINIs display steep dose response curves and synergize with INSTIs ex vivo, highlighting this novel inhibitor class for clinical development. PMID:23647983

  3. NMR reveals a dynamic allosteric pathway in thrombin

    PubMed Central

    Handley, Lindsey D.; Fuglestad, Brian; Stearns, Kyle; Tonelli, Marco; Fenwick, R. Bryn; Markwick, Phineus R. L.; Komives, Elizabeth A.

    2017-01-01

    Although serine proteases are found ubiquitously in both eukaryotes and prokaryotes, and they comprise the largest of all of the peptidase families, their dynamic motions remain obscure. The backbone dynamics of the coagulation serine protease, apo-thrombin (S195M-thrombin), were compared to the substrate-bound form (PPACK-thrombin). R1, R2, 15N-{1H}NOEs, and relaxation dispersion NMR experiments were measured to capture motions across the ps to ms timescale. The ps-ns motions were not significantly altered upon substrate binding. The relaxation dispersion data revealed that apo-thrombin is highly dynamic, with μs-ms motions throughout the molecule. The region around the N-terminus of the heavy chain, the Na+-binding loop, and the 170 s loop, all of which are implicated in allosteric coupling between effector binding sites and the active site, were dynamic primarily in the apo-form. Most of the loops surrounding the active site become more ordered upon PPACK-binding, but residues in the N-terminal part of the heavy chain, the γ-loop, and anion-binding exosite 1, the main allosteric binding site, retain μs-ms motions. These residues form a dynamic allosteric pathway connecting the active site to the main allosteric site that remains in the substrate-bound form. PMID:28059082

  4. Discovery of Novel Allosteric Effectors Based on the Predicted Allosteric Sites for Escherichia coli D-3-Phosphoglycerate Dehydrogenase

    PubMed Central

    Wang, Qian; Qi, Yifei; Yin, Ning; Lai, Luhua

    2014-01-01

    D-3-phosphoglycerate dehydrogenase (PGDH) from Escherichia coli catalyzes the first critical step in serine biosynthesis, and can be allosterically inhibited by serine. In a previous study, we developed a computational method for allosteric site prediction using a coarse-grained two-state Gō Model and perturbation. Two potential allosteric sites were predicted for E. coli PGDH, one close to the active site and the nucleotide binding site (Site I) and the other near the regulatory domain (Site II). In the present study, we discovered allosteric inhibitors and activators based on site I, using a high-throughput virtual screen, and followed by using surface plasmon resonance (SPR) to eliminate false positives. Compounds 1 and 2 demonstrated a low-concentration activation and high-concentration inhibition phenomenon, with IC50 values of 34.8 and 58.0 µM in enzymatic bioassays, respectively, comparable to that of the endogenous allosteric effector, L-serine. For its activation activity, compound 2 exhibited an AC50 value of 34.7 nM. The novel allosteric site discovered in PGDH was L-serine- and substrate-independent. Enzyme kinetics studies showed that these compounds influenced Km, kcat, and kcat/Km. We have also performed structure-activity relationship studies to discover high potency allosteric effectors. Compound 2-2, an analog of compound 2, showed the best in vitro activity with an IC50 of 22.3 µM. Compounds targeting this site can be used as new chemical probes to study metabolic regulation in E. coli. Our study not only identified a novel allosteric site and effectors for PGDH, but also provided a general strategy for designing new regulators for metabolic enzymes. PMID:24733054

  5. Allosteric modulators of the hERG K{sup +} channel

    SciTech Connect

    Yu, Zhiyi Klaasse, Elisabeth Heitman, Laura H. IJzerman, Adriaan P.

    2014-01-01

    Drugs that block the cardiac K{sup +} channel encoded by the human ether-à-go-go gene (hERG) have been associated with QT interval prolongation leading to proarrhythmia, and in some cases, sudden cardiac death. Because of special structural features of the hERG K{sup +} channel, it has become a promiscuous target that interacts with pharmaceuticals of widely varying chemical structures and a reason for concern in the pharmaceutical industry. The structural diversity suggests that multiple binding sites are available on the channel with possible allosteric interactions between them. In the present study, three reference compounds and nine compounds of a previously disclosed series were evaluated for their allosteric effects on the binding of [{sup 3}H]astemizole and [{sup 3}H]dofetilide to the hERG K{sup +} channel. LUF6200 was identified as an allosteric inhibitor in dissociation assays with both radioligands, yielding similar EC{sub 50} values in the low micromolar range. However, potassium ions increased the binding of the two radioligands in a concentration-dependent manner, and their EC{sub 50} values were not significantly different, indicating that potassium ions behaved as allosteric enhancers. Furthermore, addition of potassium ions resulted in a concentration-dependent leftward shift of the LUF6200 response curve, suggesting positive cooperativity and distinct allosteric sites for them. In conclusion, our investigations provide evidence for allosteric modulation of the hERG K{sup +} channel, which is discussed in the light of findings on other ion channels. - Highlights: • Allosteric modulators on the hERG K{sup +} channel were evaluated in binding assays. • LUF6200 was identified as a potent allosteric inhibitor. • Potassium ions were found to behave as allosteric enhancers. • Positive cooperativity and distinct allosteric sites for them were proposed.

  6. The M1 muscarinic receptor allosteric agonists AC-42 and 1-[1'-(2-methylbenzyl)-1,4'-bipiperidin-4-yl]-1,3-dihydro-2H-benzimidazol-2-one bind to a unique site distinct from the acetylcholine orthosteric site.

    PubMed

    Jacobson, Marlene A; Kreatsoulas, Constantine; Pascarella, Danette M; O'Brien, Julie A; Sur, Cyrille

    2010-10-01

    Activation of M1 muscarinic receptors occurs through orthosteric and allosteric binding sites. To identify critical residues, site-directed mutagenesis and chimeric receptors were evaluated in functional calcium mobilization assays to compare orthosteric agonists, acetylcholine and xanomeline, M1 allosteric agonists AC-42 (4-n-butyl-1-[4-(2-methylphenyl)-4-oxo-1-butyl]-piperidine hydrogen chloride), TBPB (1-[1'-(2-methylbenzyl)-1,4'-bipiperidin-4-yl]-1,3-dihydro-2H-benzimidazol-2-one), and the clozapine metabolite N-desmethylclozapine. A minimal epitope has been defined for AC-42 that comprises the first 45 amino acids, the third extracellular loop, and seventh transmembrane domain (Mol Pharmacol 61:1297-1302, 2002). Using chimeric M1 and M3 receptor constructs, the AC-42 minimal epitope has been extended to also include transmembrane II. Phe77 was identified as a critical residue for maintenance of AC-42 and TBPB agonist activity. In contrast, the functional activity of N-desmethylclozapine did not require Phe77. To further map the binding site of AC-42, TBPB, and N-desmethylclozapine, point mutations previously reported to affect activities of M1 orthosteric agonists and antagonists were studied. Docking into an M1 receptor homology model revealed that AC-42 and TBPB share a similar binding pocket adjacent to the orthosteric binding site at the opposite face of Trp101. In contrast, the activity of N-desmethylclozapine was generally unaffected by the point mutations studied, and the docking indicated that N-desmethylclozapine bound to a site distinct from AC-42 and TBPB overlapping with the orthosteric site. These results suggest that structurally diverse allosteric agonists AC-42, TBPB, and N-desmethylclozapine may interact with different subsets of residues, supporting the hypothesis that M1 receptor activation can occur through at least three different binding domains.

  7. Discovery of multiple hidden allosteric sites by combining Markov state models and experiments.

    PubMed

    Bowman, Gregory R; Bolin, Eric R; Hart, Kathryn M; Maguire, Brendan C; Marqusee, Susan

    2015-03-03

    The discovery of drug-like molecules that bind pockets in proteins that are not present in crystallographic structures yet exert allosteric control over activity has generated great interest in designing pharmaceuticals that exploit allosteric effects. However, there have only been a small number of successes, so the therapeutic potential of these pockets--called hidden allosteric sites--remains unclear. One challenge for assessing their utility is that rational drug design approaches require foreknowledge of the target site, but most hidden allosteric sites are only discovered when a small molecule is found to stabilize them. We present a means of decoupling the identification of hidden allosteric sites from the discovery of drugs that bind them by drawing on new developments in Markov state modeling that provide unprecedented access to microsecond- to millisecond-timescale fluctuations of a protein's structure. Visualizing these fluctuations allows us to identify potential hidden allosteric sites, which we then test via thiol labeling experiments. Application of these methods reveals multiple hidden allosteric sites in an important antibiotic target--TEM-1 β-lactamase. This result supports the hypothesis that there are many as yet undiscovered hidden allosteric sites and suggests our methodology can identify such sites, providing a starting point for future drug design efforts. More generally, our results demonstrate the power of using Markov state models to guide experiments.

  8. Targeting allosteric disulphide bonds in cancer.

    PubMed

    Hogg, Philip J

    2013-06-01

    Protein action in nature is generally controlled by the amount of protein produced and by chemical modification of the protein, and both are often perturbed in cancer. The amino acid side chains and the peptide and disulphide bonds that bind the polypeptide backbone can be post-translationally modified. Post-translational cleavage or the formation of disulphide bonds are now being identified in cancer-related proteins and it is timely to consider how these allosteric bonds could be targeted for new therapies.

  9. cGMP Signaling, Phosphodiesterases and Major Depressive Disorder

    PubMed Central

    Reierson, Gillian W; Guo, Shuyu; Mastronardi, Claudio; Licinio, Julio; Wong, Ma-Li

    2011-01-01

    Deficits in neuroplasticity are hypothesized to underlie the pathophysiology of major depressive disorder (MDD): the effectiveness of antidepressants is thought to be related to the normalization of disrupted synaptic transmission and neurogenesis. The cyclic adenosine monophosphate (cAMP) signaling cascade has received considerable attention for its role in neuroplasticity and MDD. However components of a closely related pathway, the cyclic guanosine monophosphate (cGMP) have been studied with much lower intensity, even though this signaling transduction cascade is also expressed in the brain and the activity of this pathway has been implicated in learning and memory processes. Cyclic GMP acts as a second messenger; it amplifies signals received at postsynaptic receptors and activates downstream effector molecules resulting in gene expression changes and neuronal responses. Phosphodiesterase (PDE) enzymes degrade cGMP into 5’GMP and therefore they are involved in the regulation of intracellular levels of cGMP. Here we review a growing body of evidence suggesting that the cGMP signaling cascade warrants further investigation for its involvement in MDD and antidepressant action. PMID:22654729

  10. The hypotriglyceridemic effect of biotin supplementation involves increased levels of cGMP and AMPK activation.

    PubMed

    Aguilera-Méndez, Asdrúbal; Fernández-Mejía, Cristina

    2012-01-01

    In addition to its role as a carboxylase cofactor, biotin modifies gene expression and has manifold effects on systemic processes. Several studies have shown that biotin supplementation reduces hypertriglyceridemia. We have previously reported that this effect is related to decreased expression of lipogenic genes. In the present work, we analyzed signaling pathways and posttranscriptional mechanisms involved in the hypotriglyceridemic effects of biotin. Male BALB/cAnN Hsd mice were fed a control or a biotin-supplemented diet (1.76 or 97.7 mg of free biotin/kg diet, respectively for 8 weeks after weaning. The abundance of mature sterol regulatory element-binding protein (SREBP-1c), fatty-acid synthase (FAS), total acetyl-CoA carboxylase-1 (ACC-1) and its phosphorylated form, and AMP-activated protein kinase (AMPK) were evaluated in the liver. We also determined the serum triglyceride concentrations and the hepatic levels of triglycerides and cyclic GMP (cGMP). Compared to the control group, biotin-supplemented mice had lower serum and hepatic triglyceride concentrations. Biotin supplementation increased the levels of cGMP and the phosphorylated forms of AMPK and ACC-1 and decreased the abundance of the mature form of SREBP-1c and FAS. These data provide evidence that the mechanisms by which biotin supplementation reduces lipogenesis involve increased cGMP content and AMPK activation. In turn, these changes lead to augmented ACC-1 phosphorylation and decreased expression of both the mature form of SREBP-1c and FAS. Our results demonstrate for the first time that AMPK is involved in the effects of biotin supplementation and offer new insights into the mechanisms of biotin-mediated hypotriglyceridemic effects.

  11. Identification of a noncatalytic cGMP-binding domain conserved in both the cGMP-stimulated and photoreceptor cyclic nucleotide phosphodiesterases.

    PubMed Central

    Charbonneau, H; Prusti, R K; LeTrong, H; Sonnenburg, W K; Mullaney, P J; Walsh, K A; Beavo, J A

    1990-01-01

    Partial amino acid sequence has been determined for the cone, alpha' subunit of the bovine photoreceptor cyclic nucleotide phosphodiesterase (PDE) and deduced from nucleotide sequences of a partial cDNA clone. These sequences identify the alpha' subunit as the product of a gene that is distinct from those encoding the alpha or beta subunits of the membrane-associated rod photoreceptor PDE. Comparisons between the recently determined cGMP-stimulated-PDE sequence and those of the alpha and alpha' photoreceptor PDE subunits reveal an unexpected sequence similarity. In addition to the catalytic domain conserved in eukaryotic PDEs, all three PDEs possess a second conserved segment of approximately 340 residues that contains two internally homologous repeats. Limited proteolysis and direct photolabeling studies indicate that the noncatalytic, cGMP-binding site(s) in the cGMP-stimulated PDE is located within this conserved domain, suggesting that it also may serve this function in the photoreceptor PDEs. Moreover, other PDEs that do not bind cGMP at noncatalytic sites do not contain this conserved domain. The function of the conserved segment in the photoreceptor PDEs is not known, but the homology to allosteric sites of the cGMP-stimulated PDE suggests a role in cGMP binding and modulation of enzyme activity. Images PMID:2153290

  12. Allosteric mechanisms can be distinguished using structural mass spectrometry

    PubMed Central

    Dyachenko, Andrey; Gruber, Ranit; Shimon, Liat; Horovitz, Amnon; Sharon, Michal

    2013-01-01

    The activity of many proteins, including metabolic enzymes, molecular machines, and ion channels, is often regulated by conformational changes that are induced or stabilized by ligand binding. In cases of multimeric proteins, such allosteric regulation has often been described by the concerted Monod–Wyman–Changeux and sequential Koshland–Némethy–Filmer classic models of cooperativity. Despite the important functional implications of the mechanism of cooperativity, it has been impossible in many cases to distinguish between these various allosteric models using ensemble measurements of ligand binding in bulk protein solutions. Here, we demonstrate that structural MS offers a way to break this impasse by providing the full distribution of ligand-bound states of a protein complex. Given this distribution, it is possible to determine all the binding constants of a ligand to a highly multimeric cooperative system, and thereby infer its allosteric mechanism. Our approach to the dissection of allosteric mechanisms relies on advances in MS—which provide the required resolution of ligand-bound states—and in data analysis. We validated our approach using the well-characterized Escherichia coli chaperone GroEL, a double-heptameric ring containing 14 ATP binding sites, which has become a paradigm for molecular machines. The values of the 14 binding constants of ATP to GroEL were determined, and the ATP-loading pathway of the chaperone was characterized. The methodology and analyses presented here are directly applicable to numerous other cooperative systems and are therefore expected to promote further research on allosteric systems. PMID:23589876

  13. A novel allosteric mechanism in the cysteine peptidase cathepsin K discovered by computational methods

    NASA Astrophysics Data System (ADS)

    Novinec, Marko; Korenč, Matevž; Caflisch, Amedeo; Ranganathan, Rama; Lenarčič, Brigita; Baici, Antonio

    2014-02-01

    Allosteric modifiers have the potential to fine-tune enzyme activity. Therefore, targeting allosteric sites is gaining increasing recognition as a strategy in drug design. Here we report the use of computational methods for the discovery of the first small-molecule allosteric inhibitor of the collagenolytic cysteine peptidase cathepsin K, a major target for the treatment of osteoporosis. The molecule NSC13345 is identified by high-throughput docking of compound libraries to surface sites on the peptidase that are connected to the active site by an evolutionarily conserved network of residues (protein sector). The crystal structure of the complex shows that NSC13345 binds to a novel allosteric site on cathepsin K. The compound acts as a hyperbolic mixed modifier in the presence of a synthetic substrate, it completely inhibits collagen degradation and has good selectivity for cathepsin K over related enzymes. Altogether, these properties qualify our methodology and NSC13345 as promising candidates for allosteric drug design.

  14. Extracellular Loop 2 of the Free Fatty Acid Receptor 2 Mediates Allosterism of a Phenylacetamide Ago-Allosteric ModulatorS⃞

    PubMed Central

    Smith, Nicola J.; Ward, Richard J.; Stoddart, Leigh A.; Hudson, Brian D.; Kostenis, Evi; Ulven, Trond; Morris, Joanne C.; Tränkle, Christian; Tikhonova, Irina G.; Adams, David R.

    2011-01-01

    Allosteric agonists are powerful tools for exploring the pharmacology of closely related G protein-coupled receptors that have nonselective endogenous ligands, such as the short chain fatty acids at free fatty acid receptors 2 and 3 (FFA2/GPR43 and FFA3/GPR41, respectively). We explored the molecular mechanisms mediating the activity of 4-chloro-α-(1-methylethyl)-N-2-thiazolylbenzeneacetamide (4-CMTB), a recently described phenylacetamide allosteric agonist and allosteric modulator of endogenous ligand function at human FFA2, by combining our previous knowledge of the orthosteric binding site with targeted examination of 4-CMTB structure-activity relationships and mutagenesis and chimeric receptor generation. Here we show that 4-CMTB is a selective agonist for FFA2 that binds to a site distinct from the orthosteric site of the receptor. Ligand structure-activity relationship studies indicated that the N-thiazolyl amide is likely to provide hydrogen bond donor/acceptor interactions with the receptor. Substitution at Leu173 or the exchange of the entire extracellular loop 2 of FFA2 with that of FFA3 was sufficient to reduce or ablate, respectively, allosteric communication between the endogenous and allosteric agonists. Thus, we conclude that extracellular loop 2 of human FFA2 is required for transduction of cooperative signaling between the orthosteric and an as-yet-undefined allosteric binding site of the FFA2 receptor that is occupied by 4-CMTB. PMID:21498659

  15. Inhibitory Mechanism of an Allosteric Antibody Targeting the Glucagon Receptor*

    PubMed Central

    Mukund, Susmith; Shang, Yonglei; Clarke, Holly J.; Madjidi, Azadeh; Corn, Jacob E.; Kates, Lance; Kolumam, Ganesh; Chiang, Vicky; Luis, Elizabeth; Murray, Jeremy; Zhang, Yingnan; Hötzel, Isidro; Koth, Christopher M.; Allan, Bernard B.

    2013-01-01

    Elevated glucagon levels and increased hepatic glucagon receptor (GCGR) signaling contribute to hyperglycemia in type 2 diabetes. We have identified a monoclonal antibody that inhibits GCGR, a class B G-protein coupled receptor (GPCR), through a unique allosteric mechanism. Receptor inhibition is mediated by the binding of this antibody to two distinct sites that lie outside of the glucagon binding cleft. One site consists of a patch of residues that are surface-exposed on the face of the extracellular domain (ECD) opposite the ligand-binding cleft, whereas the second binding site consists of residues in the αA helix of the ECD. A docking model suggests that the antibody does not occlude the ligand-binding cleft. We solved the crystal structure of GCGR ECD containing a naturally occurring G40S mutation and found a shift in the register of the αA helix that prevents antibody binding. We also found that alterations in the αA helix impact the normal function of GCGR. We present a model for the allosteric inhibition of GCGR by a monoclonal antibody that may form the basis for the development of allosteric modulators for the treatment of diabetes and other class B GPCR-related diseases. PMID:24189067

  16. Inhibitory mechanism of an allosteric antibody targeting the glucagon receptor.

    PubMed

    Mukund, Susmith; Shang, Yonglei; Clarke, Holly J; Madjidi, Azadeh; Corn, Jacob E; Kates, Lance; Kolumam, Ganesh; Chiang, Vicky; Luis, Elizabeth; Murray, Jeremy; Zhang, Yingnan; Hötzel, Isidro; Koth, Christopher M; Allan, Bernard B

    2013-12-13

    Elevated glucagon levels and increased hepatic glucagon receptor (GCGR) signaling contribute to hyperglycemia in type 2 diabetes. We have identified a monoclonal antibody that inhibits GCGR, a class B G-protein coupled receptor (GPCR), through a unique allosteric mechanism. Receptor inhibition is mediated by the binding of this antibody to two distinct sites that lie outside of the glucagon binding cleft. One site consists of a patch of residues that are surface-exposed on the face of the extracellular domain (ECD) opposite the ligand-binding cleft, whereas the second binding site consists of residues in the αA helix of the ECD. A docking model suggests that the antibody does not occlude the ligand-binding cleft. We solved the crystal structure of GCGR ECD containing a naturally occurring G40S mutation and found a shift in the register of the αA helix that prevents antibody binding. We also found that alterations in the αA helix impact the normal function of GCGR. We present a model for the allosteric inhibition of GCGR by a monoclonal antibody that may form the basis for the development of allosteric modulators for the treatment of diabetes and other class B GPCR-related diseases.

  17. Molecular dynamics approach to probe the allosteric inhibition of PTP1B by chlorogenic and cichoric acid.

    PubMed

    Baskaran, Sarath Kumar; Goswami, Nabajyoti; Selvaraj, Sudhagar; Muthusamy, Velusamy Shanmuganathan; Lakshmi, Baddireddi Subhadra

    2012-08-27

    Protein tyrosine phosphatase 1B (PTP1B), a major negative regulator of the insulin and leptin signaling pathway, is a potential target for therapeutic intervention against diabetes and obesity. The recent discovery of an allosteric site in PTP1B has created an alternate strategy in the development of PTP1B targeted therapy. The current study investigates the molecular interactions between the allosteric site of PTP1B with two caffeoyl derivatives, chlorogenic acid (CGA) and cichoric acid (CHA), using computational strategies. Molecular docking analysis with CGA and CHA at the allosteric site of PTP1B were performed and the resulting protein-ligand complexes used for molecular dynamics simulation studies for a time scale of 10 ns. Results show stable binding of CGA and CHA at the allosteric site of PTP1B. The flexibility of the WPD loop was observed to be constrained by CGA and CHA in the open (inactive), providing molecular mechanism of allosteric inhibition. The allosteric inhibition of CGA and CHA of PTP1B was shown to be favorable due to no restriction by the α-7 helix in the binding of CGA and CHA at the allosteric binding site. In conclusion, our results exhibit an inhibitory pattern of CGA and CHA against PTP1B through potent binding at the allosteric site.

  18. Differences in Allosteric Communication Pipelines in the Inactive and Active States of a GPCR

    PubMed Central

    Bhattacharya, Supriyo; Vaidehi, Nagarajan

    2014-01-01

    G-protein-coupled receptors (GPCRs) are membrane proteins that allosterically transduce the signal of ligand binding in the extracellular (EC) domain to couple to proteins in the intracellular (IC) domain. However, the complete pathway of allosteric communication from the EC to the IC domain, including the role of individual amino acids in the pathway is not known. Using the correlation in torsion angle movements calculated from microseconds-long molecular-dynamics simulations, we elucidated the allosteric pathways in three different conformational states of β2-adrenergic receptor (β2AR): 1), the inverse-agonist-bound inactive state; 2), the agonist-bound intermediate state; and (3), the agonist- and G-protein-bound fully active state. The inactive state is less dynamic compared with the intermediate and active states, showing dense clusters of allosteric pathways (allosteric pipelines) connecting the EC with the IC domain. The allosteric pipelines from the EC domain to the IC domain are weakened in the intermediate state, thus decoupling the EC domain from the IC domain and making the receptor more dynamic compared with the other states. Also, the orthosteric ligand-binding site becomes the initiator region for allosteric communication in the intermediate state. This finding agrees with the paradigm that the nature of the agonist governs the specific signaling state of the receptor. These results provide an understanding of the mechanism of allosteric communication in class A GPCRs. In addition, our analysis shows that mutations that affect the ligand efficacy, but not the binding affinity, are located in the allosteric pipelines. This clarifies the role of such mutations, which has hitherto been unexplained. PMID:25028884

  19. Allosteric mechanisms of nuclear receptors: insights from computational simulations.

    PubMed

    Mackinnon, Jonathan A G; Gallastegui, Nerea; Osguthorpe, David J; Hagler, Arnold T; Estébanez-Perpiñá, Eva

    2014-08-05

    The traditional structural view of allostery defines this key regulatory mechanism as the ability of one conformational event (allosteric site) to initiate another in a separate location (active site). In recent years computational simulations conducted to understand how this phenomenon occurs in nuclear receptors (NRs) has gained significant traction. These results have yield insights into allosteric changes and communication mechanisms that underpin ligand binding, coactivator binding site formation, post-translational modifications, and oncogenic mutations. Moreover, substantial efforts have been made in understanding the dynamic processes involved in ligand binding and coregulator recruitment to different NR conformations in order to predict cell/tissue-selective pharmacological outcomes of drugs. They also have improved the accuracy of in silico screening protocols so that nowadays they are becoming part of optimisation protocols for novel therapeutics. Here we summarise the important contributions that computational simulations have made towards understanding the structure/function relationships of NRs and how these can be exploited for rational drug design.

  20. Allosteric Modulation of Metabotropic Glutamate Receptors: Structural Insights and Therapeutic Potential

    PubMed Central

    Gregory, Karen J.; Dong, Elizabeth N.; Meiler, Jens; Conn, P. Jeffrey

    2010-01-01

    Allosteric modulation of G protein-coupled receptors (GPCRs) represents a novel approach to the development of probes and therapeutics that is expected to enable subtype-specific regulation of central nervous system target receptors. The metabotropic glutamate receptors (mGlus) are class C GPCRs that play important neuromodulatory roles throughout the brain, as such they are attractive targets for therapeutic intervention for a number of psychiatric and neurological disorders including anxiety, depression, Fragile X Syndrome, Parkinson’s disease and schizophrenia. Over the last fifteen years, selective allosteric modulators have been identified for many members of the mGlu family. The vast majority of these allosteric modulators are thought to bind within the transmembrane-spanning domains of the receptors to enhance or inhibit functional responses. A combination of mutagenesis-based studies and pharmacological approaches are beginning to provide a better understanding of mGlu allosteric sites. Collectively, when mapped onto a homology model of the different mGlu subtypes based on the β2-adrenergic receptor, the previous mutagenesis studies suggest commonalities in the location of allosteric sites across different members of the mGlu family. In addition, there is evidence for multiple allosteric binding pockets within the transmembrane region that can interact to modulate one another. In the absence of a class C GPCR crystal structure, this approach has shown promise with respect to the interpretation of mutagenesis data and understanding structure-activity relationships of allosteric modulator pharmacophores. PMID:20637216

  1. An allosteric conduit facilitates dynamic multisite substrate recognition by the SCFCdc4 ubiquitin ligase

    NASA Astrophysics Data System (ADS)

    Csizmok, Veronika; Orlicky, Stephen; Cheng, Jing; Song, Jianhui; Bah, Alaji; Delgoshaie, Neda; Lin, Hong; Mittag, Tanja; Sicheri, Frank; Chan, Hue Sun; Tyers, Mike; Forman-Kay, Julie D.

    2017-01-01

    The ubiquitin ligase SCFCdc4 mediates phosphorylation-dependent elimination of numerous substrates by binding one or more Cdc4 phosphodegrons (CPDs). Methyl-based NMR analysis of the Cdc4 WD40 domain demonstrates that Cyclin E, Sic1 and Ash1 degrons have variable effects on the primary Cdc4WD40 binding pocket. Unexpectedly, a Sic1-derived multi-CPD substrate (pSic1) perturbs methyls around a previously documented allosteric binding site for the chemical inhibitor SCF-I2. NMR cross-saturation experiments confirm direct contact between pSic1 and the allosteric pocket. Phosphopeptide affinity measurements reveal negative allosteric communication between the primary CPD and allosteric pockets. Mathematical modelling indicates that the allosteric pocket may enhance ultrasensitivity by tethering pSic1 to Cdc4. These results suggest negative allosteric interaction between two distinct binding pockets on the Cdc4WD40 domain may facilitate dynamic exchange of multiple CPD sites to confer ultrasensitive dependence on substrate phosphorylation.

  2. An allosteric conduit facilitates dynamic multisite substrate recognition by the SCFCdc4 ubiquitin ligase

    PubMed Central

    Csizmok, Veronika; Orlicky, Stephen; Cheng, Jing; Song, Jianhui; Bah, Alaji; Delgoshaie, Neda; Lin, Hong; Mittag, Tanja; Sicheri, Frank; Chan, Hue Sun; Tyers, Mike; Forman-Kay, Julie D.

    2017-01-01

    The ubiquitin ligase SCFCdc4 mediates phosphorylation-dependent elimination of numerous substrates by binding one or more Cdc4 phosphodegrons (CPDs). Methyl-based NMR analysis of the Cdc4 WD40 domain demonstrates that Cyclin E, Sic1 and Ash1 degrons have variable effects on the primary Cdc4WD40 binding pocket. Unexpectedly, a Sic1-derived multi-CPD substrate (pSic1) perturbs methyls around a previously documented allosteric binding site for the chemical inhibitor SCF-I2. NMR cross-saturation experiments confirm direct contact between pSic1 and the allosteric pocket. Phosphopeptide affinity measurements reveal negative allosteric communication between the primary CPD and allosteric pockets. Mathematical modelling indicates that the allosteric pocket may enhance ultrasensitivity by tethering pSic1 to Cdc4. These results suggest negative allosteric interaction between two distinct binding pockets on the Cdc4WD40 domain may facilitate dynamic exchange of multiple CPD sites to confer ultrasensitive dependence on substrate phosphorylation. PMID:28045046

  3. Insight into the structural mechanism for PKBα allosteric inhibition by molecular dynamics simulations and free energy calculations.

    PubMed

    Chen, Shi-Feng; Cao, Yang; Han, Shuang; Chen, Jian-Zhong

    2014-03-01

    Protein kinase B (PKB/Akt) is an attractive target for the treatment of tumor. Unlike PKB's ATP-competitive inhibitors, its allosteric inhibitors can maintain PKB's inactive state via its binding in a pocket between PH domain and kinase domain, which specifically inhibit PKB by preventing the phosphorylations of Thr308 and Ser473. In the present studies, MD simulations were performed on three allosteric inhibitors with different inhibitory potencies (IC50) to investigate the interaction modes between the inhibitors and PKBα. MM/GB(PB)SA were further applied to calculate the binding free energies of these inhibitors binding to PKBα. The computed binding free energies were consistent with the ranking of their experimental bioactivities. The key residues of PKBα interacting with the allosteric inhibitor were further discussed by analyzing the different interaction modes of these three inhibitors binding to PKBα and by calculating binding free energy contributions of corresponding residues around the binding pocket. The structural requirements were then summarized for the allosteric inhibitor binding to PKBα. A possible structural mechanism of PKBα inhibition induced by the binding of allosteric inhibitor was formulated. The current studies indicate that there should be an optimum balance between the van der Waals and total electrostatic interactions for further designing of PKBα allosteric inhibitors.

  4. Structural basis for modulation of a G-protein-coupled receptor by allosteric drugs.

    PubMed

    Dror, Ron O; Green, Hillary F; Valant, Celine; Borhani, David W; Valcourt, James R; Pan, Albert C; Arlow, Daniel H; Canals, Meritxell; Lane, J Robert; Rahmani, Raphaël; Baell, Jonathan B; Sexton, Patrick M; Christopoulos, Arthur; Shaw, David E

    2013-11-14

    The design of G-protein-coupled receptor (GPCR) allosteric modulators, an active area of modern pharmaceutical research, has proved challenging because neither the binding modes nor the molecular mechanisms of such drugs are known. Here we determine binding sites, bound conformations and specific drug-receptor interactions for several allosteric modulators of the M2 muscarinic acetylcholine receptor (M2 receptor), a prototypical family A GPCR, using atomic-level simulations in which the modulators spontaneously associate with the receptor. Despite substantial structural diversity, all modulators form cation-π interactions with clusters of aromatic residues in the receptor extracellular vestibule, approximately 15 Å from the classical, 'orthosteric' ligand-binding site. We validate the observed modulator binding modes through radioligand binding experiments on receptor mutants designed, on the basis of our simulations, either to increase or to decrease modulator affinity. Simulations also revealed mechanisms that contribute to positive and negative allosteric modulation of classical ligand binding, including coupled conformational changes of the two binding sites and electrostatic interactions between ligands in these sites. These observations enabled the design of chemical modifications that substantially alter a modulator's allosteric effects. Our findings thus provide a structural basis for the rational design of allosteric modulators targeting muscarinic and possibly other GPCRs.

  5. Structural basis for modulation of a G-protein-coupled receptor by allosteric drugs

    NASA Astrophysics Data System (ADS)

    Dror, Ron O.; Green, Hillary F.; Valant, Celine; Borhani, David W.; Valcourt, James R.; Pan, Albert C.; Arlow, Daniel H.; Canals, Meritxell; Lane, J. Robert; Rahmani, Raphaël; Baell, Jonathan B.; Sexton, Patrick M.; Christopoulos, Arthur; Shaw, David E.

    2013-11-01

    The design of G-protein-coupled receptor (GPCR) allosteric modulators, an active area of modern pharmaceutical research, has proved challenging because neither the binding modes nor the molecular mechanisms of such drugs are known. Here we determine binding sites, bound conformations and specific drug-receptor interactions for several allosteric modulators of the M2 muscarinic acetylcholine receptor (M2 receptor), a prototypical family A GPCR, using atomic-level simulations in which the modulators spontaneously associate with the receptor. Despite substantial structural diversity, all modulators form cation-π interactions with clusters of aromatic residues in the receptor extracellular vestibule, approximately 15Å from the classical, `orthosteric' ligand-binding site. We validate the observed modulator binding modes through radioligand binding experiments on receptor mutants designed, on the basis of our simulations, either to increase or to decrease modulator affinity. Simulations also revealed mechanisms that contribute to positive and negative allosteric modulation of classical ligand binding, including coupled conformational changes of the two binding sites and electrostatic interactions between ligands in these sites. These observations enabled the design of chemical modifications that substantially alter a modulator's allosteric effects. Our findings thus provide a structural basis for the rational design of allosteric modulators targeting muscarinic and possibly other GPCRs.

  6. A Random Forest Model for Predicting Allosteric and Functional Sites on Proteins.

    PubMed

    Chen, Ava S-Y; Westwood, Nicholas J; Brear, Paul; Rogers, Graeme W; Mavridis, Lazaros; Mitchell, John B O

    2016-04-01

    We created a computational method to identify allosteric sites using a machine learning method trained and tested on protein structures containing bound ligand molecules. The Random Forest machine learning approach was adopted to build our three-way predictive model. Based on descriptors collated for each ligand and binding site, the classification model allows us to assign protein cavities as allosteric, regular or orthosteric, and hence to identify allosteric sites. 43 structural descriptors per complex were derived and were used to characterize individual protein-ligand binding sites belonging to the three classes, allosteric, regular and orthosteric. We carried out a separate validation on a further unseen set of protein structures containing the ligand 2-(N-cyclohexylamino) ethane sulfonic acid (CHES).

  7. Biased signalling and allosteric machines: new vistas and challenges for drug discovery.

    PubMed

    Kenakin, Terry P

    2012-03-01

    Seven transmembrane receptors (7TMRs) are nature's prototype allosteric proteins made to bind molecules at one location to subsequently change their shape to affect the binding of another molecule at another location. This paper attempts to describe the divergent 7TMR behaviours (i.e. third party allostery, receptor oligomerization, biased agonism) observed in pharmacology in terms of a homogeneous group of allosteric behaviours. By considering the bodies involved as a vector defined by a modulator, conduit and guest, these activities can all be described by a simple model of functional allostery made up of the Ehlert allosteric model and the Black/Leff operational model. It will be shown how this model yields parameters that can be used to characterize the activity of any ligand or protein producing effect through allosteric interaction with a 7TMR.

  8. Strain analysis of protein structures and low dimensionality of mechanical allosteric couplings.

    PubMed

    Mitchell, Michael R; Tlusty, Tsvi; Leibler, Stanislas

    2016-10-04

    In many proteins, especially allosteric proteins that communicate regulatory states from allosteric to active sites, structural deformations are functionally important. To understand these deformations, dynamical experiments are ideal but challenging. Using static structural information, although more limited than dynamical analysis, is much more accessible. Underused for protein analysis, strain is the natural quantity for studying local deformations. We calculate strain tensor fields for proteins deformed by ligands or thermal fluctuations using crystal and NMR structure ensembles. Strains-primarily shears-show deformations around binding sites. These deformations can be induced solely by ligand binding at distant allosteric sites. Shears reveal quasi-2D paths of mechanical coupling between allosteric and active sites that may constitute a widespread mechanism of allostery. We argue that strain-particularly shear-is the most appropriate quantity for analysis of local protein deformations. This analysis can reveal mechanical and biological properties of many proteins.

  9. Crystal structure of Sulfolobus acidocaldarius aspartate carbamoyltransferase in complex with its allosteric activator CTP.

    PubMed

    De Vos, Dirk; Xu, Ying; Aerts, Tony; Van Petegem, Filip; Van Beeumen, Jozef J

    2008-07-18

    Aspartate carbamoyltransferase (ATCase) is a paradigm for allosteric regulation of enzyme activity. B-class ATCases display very similar homotropic allosteric behaviour, but differ extensively in their heterotropic patterns. The ATCase from the thermoacidophilic archaeon Sulfolobus acidocaldarius, for example, is strongly activated by its metabolic pathway's end product CTP, in contrast with Escherichia coli ATCase which is inhibited by CTP. To investigate the structural basis of this property, we have solved the crystal structure of the S. acidocaldarius enzyme in complex with CTP. Structure comparison reveals that effector binding does not induce similar large-scale conformational changes as observed for the E. coli ATCase. However, shifts in sedimentation coefficients upon binding of the bi-substrate analogue PALA show the existence of structurally distinct allosteric states. This suggests that the so-called "Nucleotide-Perturbation model" for explaining heterotropic allosteric behaviour, which is based on global conformational strain, is not a general mechanism of B-class ATCases.

  10. ASBench: benchmarking sets for allosteric discovery.

    PubMed

    Huang, Wenkang; Wang, Guanqiao; Shen, Qiancheng; Liu, Xinyi; Lu, Shaoyong; Geng, Lv; Huang, Zhimin; Zhang, Jian

    2015-08-01

    Allostery allows for the fine-tuning of protein function. Targeting allosteric sites is gaining increasing recognition as a novel strategy in drug design. The key challenge in the discovery of allosteric sites has strongly motivated the development of computational methods and thus high-quality, publicly accessible standard data have become indispensable. Here, we report benchmarking data for experimentally determined allosteric sites through a complex process, including a 'Core set' with 235 unique allosteric sites and a 'Core-Diversity set' with 147 structurally diverse allosteric sites. These benchmarking sets can be exploited to develop efficient computational methods to predict unknown allosteric sites in proteins and reveal unique allosteric ligand-protein interactions to guide allosteric drug design.

  11. In Vivo Investigation of Escitalopram’s Allosteric Site on the Serotonin Transporter

    PubMed Central

    Murray, Karen E.; Ressler, Kerry J.; Owens, Michael J.

    2015-01-01

    Escitalopram is a commonly prescribed antidepressant of the selective serotonin reuptake inhibitor class. Clinical evidence and mapping of the serotonin transporter (SERT) identified that escitalopram, in addition to its binding to a primary uptake-blocking site, is capable of binding to the SERT via an allosteric site that is hypothesized to alter escitalopram’s kinetics at the SERT. The studies reported here examined the in vivo role of the SERT allosteric site in escitalopram action. A knockin mouse model that possesses an allosteric-null SERT was developed. Autoradiographic studies indicated that the knockin protein was expressed at a lower density than endogenous mouse SERT (approximately 10–30% of endogenous mouse SERT), but the knockin mice are a viable tool to study the allosteric site. Microdialysis studies in the ventral hippocampus found no measurable decrease in extracellular serotonin response after local escitalopram challenge in mice without the allosteric site compared to mice with the site (p = 0.297). In marble burying assays there was a modest effect of the absence of the allosteric site, with a larger systemic dose of escitalopram (10-fold) necessary for the same effect as in mice with intact SERT (p = 0.023). However, there was no effect of the allosteric site in the tail suspension test. Together these data suggest that there may be a regional specificity in the role of the allosteric site. The lack of a robust effect overall suggests that the role of the allosteric site for escitalopram on the SERT may not produce meaningful in vivo effects. PMID:26621784

  12. Allosteric inhibition of Aurora-A kinase by a synthetic vNAR domain

    PubMed Central

    Burgess, Selena G.; Oleksy, Arkadiusz; Cavazza, Tommaso; Richards, Mark W.; Vernos, Isabelle; Matthews, David

    2016-01-01

    The vast majority of clinically approved protein kinase inhibitors target the ATP-binding pocket directly. Consequently, many inhibitors have broad selectivity profiles and most have significant off-target effects. Allosteric inhibitors are generally more selective, but are difficult to identify because allosteric binding sites are often unknown or poorly characterized. Aurora-A is activated through binding of TPX2 to an allosteric site on the kinase catalytic domain, and this knowledge could be exploited to generate an inhibitor. Here, we generated an allosteric inhibitor of Aurora-A kinase based on a synthetic, vNAR single domain scaffold, vNAR-D01. Biochemical studies and a crystal structure of the Aurora-A/vNAR-D01 complex show that the vNAR domain overlaps with the TPX2 binding site. In contrast with the binding of TPX2, which stabilizes an active conformation of the kinase, binding of the vNAR domain stabilizes an inactive conformation, in which the αC-helix is distorted, the canonical Lys-Glu salt bridge is broken and the regulatory (R-) spine is disrupted by an additional hydrophobic side chain from the activation loop. These studies illustrate how single domain antibodies can be used to characterize the regulatory mechanisms of kinases and provide a rational basis for structure-guided design of allosteric Aurora-A kinase inhibitors. PMID:27411893

  13. Allosteric inhibition of Aurora-A kinase by a synthetic vNAR domain.

    PubMed

    Burgess, Selena G; Oleksy, Arkadiusz; Cavazza, Tommaso; Richards, Mark W; Vernos, Isabelle; Matthews, David; Bayliss, Richard

    2016-07-01

    The vast majority of clinically approved protein kinase inhibitors target the ATP-binding pocket directly. Consequently, many inhibitors have broad selectivity profiles and most have significant off-target effects. Allosteric inhibitors are generally more selective, but are difficult to identify because allosteric binding sites are often unknown or poorly characterized. Aurora-A is activated through binding of TPX2 to an allosteric site on the kinase catalytic domain, and this knowledge could be exploited to generate an inhibitor. Here, we generated an allosteric inhibitor of Aurora-A kinase based on a synthetic, vNAR single domain scaffold, vNAR-D01. Biochemical studies and a crystal structure of the Aurora-A/vNAR-D01 complex show that the vNAR domain overlaps with the TPX2 binding site. In contrast with the binding of TPX2, which stabilizes an active conformation of the kinase, binding of the vNAR domain stabilizes an inactive conformation, in which the αC-helix is distorted, the canonical Lys-Glu salt bridge is broken and the regulatory (R-) spine is disrupted by an additional hydrophobic side chain from the activation loop. These studies illustrate how single domain antibodies can be used to characterize the regulatory mechanisms of kinases and provide a rational basis for structure-guided design of allosteric Aurora-A kinase inhibitors.

  14. Allosteric Inhibitors Have Distinct Effects, but Also Common Modes of Action, in the HCV Polymerase

    PubMed Central

    Davis, Brittny C.; Brown, Jodian A.; Thorpe, Ian F.

    2015-01-01

    The RNA-dependent RNA polymerase from the Hepatitis C Virus (gene product NS5B) is a validated drug target because of its critical role in genome replication. There are at least four distinct allosteric sites on the polymerase to which several small molecule inhibitors bind. In addition, numerous crystal structures have been solved with different allosteric inhibitors bound to the polymerase. However, the molecular mechanisms by which these small molecules inhibit the enzyme have not been fully elucidated. There is evidence that allosteric inhibitors alter the intrinsic motions and distribution of conformations sampled by the enzyme. In this study we use molecular dynamics simulations to understand the structural and dynamic changes that result when inhibitors are bound at three different allosteric binding sites on the enzyme. We observe that ligand binding at each site alters the structure and dynamics of NS5B in a distinct manner. Nonetheless, our studies also highlight commonalities in the mechanisms of action of the different inhibitors. Each inhibitor alters the conformational states sampled by the enzyme, either by rigidifying the enzyme and preventing transitions between functional conformational states or by destabilizing the enzyme and preventing functionally relevant conformations from being adequately sampled. By illuminating the molecular mechanisms of allosteric inhibition, these studies delineate the intrinsic functional properties of the enzyme and pave the way for designing novel and more effective polymerase inhibitors. This information may also be important to understand how allosteric regulation occurs in related viral polymerases and other enzymes. PMID:25863069

  15. Allosteric Pathways in the PPARγ-RXRα nuclear receptor complex

    NASA Astrophysics Data System (ADS)

    Ricci, Clarisse G.; Silveira, Rodrigo L.; Rivalta, Ivan; Batista, Victor S.; Skaf, Munir S.

    2016-01-01

    Understanding the nature of allostery in DNA-nuclear receptor (NR) complexes is of fundamental importance for drug development since NRs regulate the transcription of a myriad of genes in humans and other metazoans. Here, we investigate allostery in the peroxisome proliferator-activated/retinoid X receptor heterodimer. This important NR complex is a target for antidiabetic drugs since it binds to DNA and functions as a transcription factor essential for insulin sensitization and lipid metabolism. We find evidence of interdependent motions of Ω-loops and PPARγ-DNA binding domain with contacts susceptible to conformational changes and mutations, critical for regulating transcriptional functions in response to sequence-dependent DNA dynamics. Statistical network analysis of the correlated motions, observed in molecular dynamics simulations, shows preferential allosteric pathways with convergence centers comprised of polar amino acid residues. These findings are particularly relevant for the design of allosteric modulators of ligand-dependent transcription factors.

  16. [G-protein-coupled receptors targeting: the allosteric approach].

    PubMed

    Sebag, Julien A; Pantel, Jacques

    2012-10-01

    G-protein-coupled receptors (GPCR) are a major family of drug targets. Essentially all drugs targeting these receptors on the market compete with the endogenous ligand (agonists or antagonists) for binding the receptor. Recently, non-competitive compounds binding to distinct sites from the cognate ligand were documented in various classes of these receptors. These compounds, called allosteric modulators, generally endowed of a better selectivity are able to modulate specifically the endogenous signaling of the receptor. To better understand the promising potential of this class of GPCRs targeting compounds, this review highlights the properties of allosteric modulators, the strategies used to identify them and the challenges associated with the development of these compounds.

  17. Allosteric Pathways in the PPARγ-RXRα nuclear receptor complex

    PubMed Central

    Ricci, Clarisse G.; Silveira, Rodrigo L.; Rivalta, Ivan; Batista, Victor S.; Skaf, Munir S.

    2016-01-01

    Understanding the nature of allostery in DNA-nuclear receptor (NR) complexes is of fundamental importance for drug development since NRs regulate the transcription of a myriad of genes in humans and other metazoans. Here, we investigate allostery in the peroxisome proliferator-activated/retinoid X receptor heterodimer. This important NR complex is a target for antidiabetic drugs since it binds to DNA and functions as a transcription factor essential for insulin sensitization and lipid metabolism. We find evidence of interdependent motions of Ω-loops and PPARγ-DNA binding domain with contacts susceptible to conformational changes and mutations, critical for regulating transcriptional functions in response to sequence-dependent DNA dynamics. Statistical network analysis of the correlated motions, observed in molecular dynamics simulations, shows preferential allosteric pathways with convergence centers comprised of polar amino acid residues. These findings are particularly relevant for the design of allosteric modulators of ligand-dependent transcription factors. PMID:26823026

  18. Allosteric Modulation: An Alternate Approach Targeting the Cannabinoid CB1 Receptor.

    PubMed

    Nguyen, Thuy; Li, Jun-Xu; Thomas, Brian F; Wiley, Jenny L; Kenakin, Terry P; Zhang, Yanan

    2016-11-23

    The cannabinoid CB1 receptor is a G protein coupled receptor and plays an important role in many biological processes and physiological functions. A variety of CB1 receptor agonists and antagonists, including endocannabinoids, phytocannabinoids, and synthetic cannabinoids, have been discovered or developed over the past 20 years. In 2005, it was discovered that the CB1 receptor contains allosteric site(s) that can be recognized by small molecules or allosteric modulators. A number of CB1 receptor allosteric modulators, both positive and negative, have since been reported and importantly, they display pharmacological characteristics that are distinct from those of orthosteric agonists and antagonists. Given the psychoactive effects commonly associated with CB1 receptor agonists and antagonists/inverse agonists, allosteric modulation may offer an alternate approach to attain potential therapeutic benefits while avoiding inherent side effects of orthosteric ligands. This review details the complex pharmacological profiles of these allosteric modulators, their structure-activity relationships, and efforts in elucidating binding modes and mechanisms of actions of reported CB1 allosteric modulators. The ultimate development of CB1 receptor allosteric ligands could potentially lead to improved therapies for CB1-mediated neurological disorders.

  19. Guanine nucleotide regulation of receptor binding of thyrotropin-releasing hormone (TRH) in rat brain regions, retina and pituitary.

    PubMed

    Sharif, N A; Burt, D R

    1987-10-29

    Guanine nucleotides inhibited the specific binding of [3H](3-Me-His2)thyrotropin-releasing hormone ([3H]MeTRH) to receptors for TRH in washed homogenates of rat anterior pituitary gland in a dose-related manner. The order of potency (at 100 and 500 microM final) was Gpp(NH)p (a stable analog of GTP) greater than GTP much greater than GDP much greater than cGMP (with the adenine nucleotides being inactive) in the pituitary and various brain regions. Gpp(NH)p at 1 mM caused 17-35% inhibition of [3H]MeTRH binding to different tissues including the pituitary, hypothalamus, retina and nucleus accumbens. A statistically significant nucleotide effect was not observed, however, in the olfactory bulb and medulla/pons membranes. Gpp(NH)p (1 mM) increased the dissociation constants for [3H]MeTRH binding by 1.9- to 2.4-fold in the pituitary, n. accumbens and retinal preparations without altering the apparent binding capacity. These data suggest that TRH receptor binding can be allosterically regulated by guanine nucleotides and provide further evidence for the existence of guanine nucleotide binding protein(s) coupled to the TRH receptor.

  20. Prepaying the entropic cost for allosteric regulation in KIX.

    PubMed

    Law, Sean M; Gagnon, Jessica K; Mapp, Anna K; Brooks, Charles L

    2014-08-19

    The kinase-inducible domain interacting (KIX) domain of the CREB binding protein (CBP) is capable of simultaneously binding two intrinsically disordered transcription factors, such as the mixed-lineage leukemia (MLL) and c-Myb peptides, at isolated interaction sites. In vitro, the affinity for binding c-Myb is approximately doubled when KIX is in complex with MLL, which suggests a positive cooperative binding mechanism, and the affinity for MLL is also slightly increased when KIX is first bound by c-Myb. Expanding the scope of recent NMR and computational studies, we explore the allosteric mechanism at a detailed molecular level that directly connects the microscopic structural dynamics to the macroscopic shift in binding affinities. To this end, we have performed molecular dynamics simulations of free KIX, KIX-c-Myb, MLL-KIX, and MLL-KIX-c-Myb using a topology-based Gō-like model. Our results capture an increase in affinity for the peptide in the allosteric site when KIX is prebound by a complementary effector and both peptides follow an effector-independent folding-and-binding mechanism. More importantly, we discover that MLL binding lowers the entropic cost for c-Myb binding, and vice versa, by stabilizing the L12-G2 loop and the C-terminal region of the α3 helix on KIX. This work demonstrates the importance of entropy in allosteric signaling between promiscuous molecular recognition sites and can inform the rational design of small molecule stabilizers to target important regions of conformationally dynamic proteins.

  1. Allosteric regulation of phenylalanine hydroxylase.

    PubMed

    Fitzpatrick, Paul F

    2012-03-15

    The liver enzyme phenylalanine hydroxylase is responsible for conversion of excess phenylalanine in the diet to tyrosine. Phenylalanine hydroxylase is activated by phenylalanine; this activation is inhibited by the physiological reducing substrate tetrahydrobiopterin. Phosphorylation of Ser16 lowers the concentration of phenylalanine for activation. This review discusses the present understanding of the molecular details of the allosteric regulation of the enzyme.

  2. Zinc as Allosteric Ion Channel Modulator: Ionotropic Receptors as Metalloproteins.

    PubMed

    Peralta, Francisco Andrés; Huidobro-Toro, Juan Pablo

    2016-07-02

    Zinc is an essential metal to life. This transition metal is a structural component of many proteins and is actively involved in the catalytic activity of cell enzymes. In either case, these zinc-containing proteins are metalloproteins. However, the amino acid residues that serve as ligands for metal coordination are not necessarily the same in structural proteins compared to enzymes. While crystals of structural proteins that bind zinc reveal a higher preference for cysteine sulfhydryls rather than histidine imidazole rings, catalytic enzymes reveal the opposite, i.e., a greater preference for the histidines over cysteines for catalysis, plus the influence of carboxylic acids. Based on this paradigm, we reviewed the putative ligands of zinc in ionotropic receptors, where zinc has been described as an allosteric modulator of channel receptors. Although these receptors do not strictly qualify as metalloproteins since they do not normally bind zinc in structural domains, they do transitorily bind zinc at allosteric sites, modifying transiently the receptor channel's ion permeability. The present contribution summarizes current information showing that zinc allosteric modulation of receptor channels occurs by the preferential metal coordination to imidazole rings as well as to the sulfhydryl groups of cysteine in addition to the carboxyl group of acid residues, as with enzymes and catalysis. It is remarkable that most channels, either voltage-sensitive or transmitter-gated receptor channels, are susceptible to zinc modulation either as positive or negative regulators.

  3. Zinc as Allosteric Ion Channel Modulator: Ionotropic Receptors as Metalloproteins

    PubMed Central

    Peralta, Francisco Andrés; Huidobro-Toro, Juan Pablo

    2016-01-01

    Zinc is an essential metal to life. This transition metal is a structural component of many proteins and is actively involved in the catalytic activity of cell enzymes. In either case, these zinc-containing proteins are metalloproteins. However, the amino acid residues that serve as ligands for metal coordination are not necessarily the same in structural proteins compared to enzymes. While crystals of structural proteins that bind zinc reveal a higher preference for cysteine sulfhydryls rather than histidine imidazole rings, catalytic enzymes reveal the opposite, i.e., a greater preference for the histidines over cysteines for catalysis, plus the influence of carboxylic acids. Based on this paradigm, we reviewed the putative ligands of zinc in ionotropic receptors, where zinc has been described as an allosteric modulator of channel receptors. Although these receptors do not strictly qualify as metalloproteins since they do not normally bind zinc in structural domains, they do transitorily bind zinc at allosteric sites, modifying transiently the receptor channel’s ion permeability. The present contribution summarizes current information showing that zinc allosteric modulation of receptor channels occurs by the preferential metal coordination to imidazole rings as well as to the sulfhydryl groups of cysteine in addition to the carboxyl group of acid residues, as with enzymes and catalysis. It is remarkable that most channels, either voltage-sensitive or transmitter-gated receptor channels, are susceptible to zinc modulation either as positive or negative regulators. PMID:27384555

  4. Structural basis for cAMP-mediated allosteric control of the catabolite activator protein.

    PubMed

    Popovych, Nataliya; Tzeng, Shiou-Ru; Tonelli, Marco; Ebright, Richard H; Kalodimos, Charalampos G

    2009-04-28

    The cAMP-mediated allosteric transition in the catabolite activator protein (CAP; also known as the cAMP receptor protein, CRP) is a textbook example of modulation of DNA-binding activity by small-molecule binding. Here we report the structure of CAP in the absence of cAMP, which, together with structures of CAP in the presence of cAMP, defines atomic details of the cAMP-mediated allosteric transition. The structural changes, and their relationship to cAMP binding and DNA binding, are remarkably clear and simple. Binding of cAMP results in a coil-to-helix transition that extends the coiled-coil dimerization interface of CAP by 3 turns of helix and concomitantly causes rotation, by approximately 60 degrees , and translation, by approximately 7 A, of the DNA-binding domains (DBDs) of CAP, positioning the recognition helices in the DBDs in the correct orientation to interact with DNA. The allosteric transition is stabilized further by expulsion of an aromatic residue from the cAMP-binding pocket upon cAMP binding. The results define the structural mechanisms that underlie allosteric control of this prototypic transcriptional regulatory factor and provide an illustrative example of how effector-mediated structural changes can control the activity of regulatory proteins.

  5. Novel Electrophilic and Photoaffinity Covalent Probes for Mapping the Cannabinoid 1 Receptor Allosteric Site(s)

    PubMed Central

    2015-01-01

    Undesirable side effects associated with orthosteric agonists/antagonists of cannabinoid 1 receptor (CB1R), a tractable target for treating several pathologies affecting humans, have greatly limited their translational potential. Recent discovery of CB1R negative allosteric modulators (NAMs) has renewed interest in CB1R by offering a potentially safer therapeutic avenue. To elucidate the CB1R allosteric binding motif and thereby facilitate rational drug discovery, we report the synthesis and biochemical characterization of first covalent ligands designed to bind irreversibly to the CB1R allosteric site. Either an electrophilic or a photoactivatable group was introduced at key positions of two classical CB1R NAMs: Org27569 (1) and PSNCBAM-1 (2). Among these, 20 (GAT100) emerged as the most potent NAM in functional assays, did not exhibit inverse agonism, and behaved as a robust positive allosteric modulator of binding of orthosteric agonist CP55,940. This novel covalent probe can serve as a useful tool for characterizing CB1R allosteric ligand-binding motifs. PMID:26529344

  6. Allosteric regulation of rhomboid intramembrane proteolysis.

    PubMed

    Arutyunova, Elena; Panwar, Pankaj; Skiba, Pauline M; Gale, Nicola; Mak, Michelle W; Lemieux, M Joanne

    2014-09-01

    Proteolysis within the lipid bilayer is poorly understood, in particular the regulation of substrate cleavage. Rhomboids are a family of ubiquitous intramembrane serine proteases that harbour a buried active site and are known to cleave transmembrane substrates with broad specificity. In vitro gel and Förster resonance energy transfer (FRET)-based kinetic assays were developed to analyse cleavage of the transmembrane substrate psTatA (TatA from Providencia stuartii). We demonstrate significant differences in catalytic efficiency (kcat/K0.5) values for transmembrane substrate psTatA (TatA from Providencia stuartii) cleavage for three rhomboids: AarA from P. stuartii, ecGlpG from Escherichia coli and hiGlpG from Haemophilus influenzae demonstrating that rhomboids specifically recognize this substrate. Furthermore, binding of psTatA occurs with positive cooperativity. Competitive binding studies reveal an exosite-mediated mode of substrate binding, indicating allostery plays a role in substrate catalysis. We reveal that exosite formation is dependent on the oligomeric state of rhomboids, and when dimers are dissociated, allosteric substrate activation is not observed. We present a novel mechanism for specific substrate cleavage involving several dynamic processes including positive cooperativity and homotropic allostery for this interesting class of intramembrane proteases.

  7. The allosteric switching mechanism in bacteriophage MS2

    NASA Astrophysics Data System (ADS)

    Perkett, Matthew R.; Mirijanian, Dina T.; Hagan, Michael F.

    2016-07-01

    We use all-atom simulations to elucidate the mechanisms underlying conformational switching and allostery within the coat protein of the bacteriophage MS2. Assembly of most icosahedral virus capsids requires that the capsid protein adopts different conformations at precise locations within the capsid. It has been shown that a 19 nucleotide stem loop (TR) from the MS2 genome acts as an allosteric effector, guiding conformational switching of the coat protein during capsid assembly. Since the principal conformational changes occur far from the TR binding site, it is important to understand the molecular mechanism underlying this allosteric communication. To this end, we use all-atom simulations with explicit water combined with a path sampling technique to sample the MS2 coat protein conformational transition, in the presence and absence of TR-binding. The calculations find that TR binding strongly alters the transition free energy profile, leading to a switch in the favored conformation. We discuss changes in molecular interactions responsible for this shift. We then identify networks of amino acids with correlated motions to reveal the mechanism by which effects of TR binding span the protein. We find that TR binding strongly affects residues located at the 5-fold and quasi-sixfold interfaces in the assembled capsid, suggesting a mechanism by which the TR binding could direct formation of the native capsid geometry. The analysis predicts amino acids whose substitution by mutagenesis could alter populations of the conformational substates or their transition rates.

  8. Design of CGMP Production of 18F- and 68Ga-Radiopharmaceuticals

    PubMed Central

    Chu, Pei-Chun; Chao, Hao-Yu; Shieh, Wei-Chen; Chen, Chuck C.

    2014-01-01

    Objective. Radiopharmaceutical production process must adhere to current good manufacturing process (CGMP) compliance to ensure the quality of precursor, prodrug (active pharmaceutical ingredient, API), and the final drug product that meet acceptance criteria. We aimed to develop an automated system for production of CGMP grade of PET radiopharmaceuticals. Methods. The hardware and software of the automated synthesizer that fit in the hot cell under cGMP requirement were developed. Examples of production yield and purity for 68Ga-DOTATATE and 18F-FDG at CGMP facility were optimized. Analytical assays and acceptance criteria for cGMP grade of 68Ga-DOTATATE and 18F-FDG were established. Results. CGMP facility for the production of PET radiopharmaceuticals has been established. Radio-TLC and HPLC analyses of 68Ga-DOTATATE and 18F-FDG showed that the radiochemical purity was 92% and 96%, respectively. The products were sterile and pyrogenic-free. Conclusion. CGMP compliance of radiopharmaceuticals has been reviewed. 68Ga-DOTATATE and 18F-FDG were synthesized with high radiochemical yield under CGMP process. PMID:25276810

  9. An emerging role of cGMP in the treatment of schizophrenia: A review.

    PubMed

    Shim, Seong; Shuman, Michael; Duncan, Erica

    2016-01-01

    Schizophrenia is a progressive psychotic disorder with devastating effects on the broad aspects of human emotion, perception, thought, and psychosocial interactions. Although treatment with antipsychotic drugs, the mainstay in the treatment of schizophrenia, the large number of patients with schizophrenia respond poorly to the pharmacological and, the large number of patients with schizophrenia poorly respond to the pharmacological treatment. Although a variety of novel therapeutics have long been tested, to date, no drugs clinically efficacious for schizophrenia are available. The multiple lines of evidence strongly suggest that the modulation of cyclic guanosine monophosphate (cGMP) is a promising target in promoting the novel therapeutic strategies of schizophrenia beyond the "receptor-dependent" psychopharmacology. cGMP is modulated via regulating its synthesis by N-methyl-d-aspartate receptor (NMDAR) and nitric oxide (NO), which regulate guannylyl cyclase (GC), the enzyme producing cGMP. cGMP is also regulated by phosphodiesterase (PDE), the enzyme hydrolyzing cGMP. In this review, we critically evaluate the therapeutic potential of agents modulating cGMP activity by regulating cGMP synthesis including NMDAR enhancers, NO enhancers, NO inhibitors including minocycline with anti-inflammatory properties and PDE inhibitors in improving the negative, cognitive and positive symptoms of schizophrenia. We also discuss the possible mechanisms by which these agents produce therapeutic effects on schizophrenia including cGMP signaling pathways, oxidative stress, and neuroinflammation.

  10. Intracellular photoactivation of caged cGMP induces myosin II and actin responses in motile cells.

    PubMed

    Pfannes, Eva K B; Anielski, Alexander; Gerhardt, Matthias; Beta, Carsten

    2013-12-01

    Cyclic GMP (cGMP) is a ubiquitous second messenger in eukaryotic cells. It is assumed to regulate the association of myosin II with the cytoskeleton of motile cells. When cells of the social amoeba Dictyostelium discoideum are exposed to chemoattractants or to increased osmotic stress, intracellular cGMP levels rise, preceding the accumulation of myosin II in the cell cortex. To directly investigate the impact of intracellular cGMP on cytoskeletal dynamics in a living cell, we released cGMP inside the cell by laser-induced photo-cleavage of a caged precursor. With this approach, we could directly show in a live cell experiment that an increase in intracellular cGMP indeed induces myosin II to accumulate in the cortex. Unexpectedly, we observed for the first time that also the amount of filamentous actin in the cell cortex increases upon a rise in the cGMP concentration, independently of cAMP receptor activation and signaling. We discuss our results in the light of recent work on the cGMP signaling pathway and suggest possible links between cGMP signaling and the actin system.

  11. Effect of sildenafil on platelet function and platelet cGMP of patients with erectile dysfunction.

    PubMed

    Akand, M; Gencer, E; Yaman, Ö; Erişgen, G; Tekin, D; Özdiler, E

    2015-12-01

    To investigate the effect of sildenafil on platelet function and cyclic guanosine monophosphate (cGMP) levels in patients with erectile dysfunction, we evaluated the association between erectile function and platelet responses after administration of 100 mg sildenafil. Erectile responses were monitored after 8 daily doses of the drug. Adenosine diphosphate (ADP) and collagen-induced platelet aggregation and simultaneous adenosine triphosphate (ATP) release and cGMP levels were determined before and after sildenafil therapy. Basal levels for platelet aggregation, ATP release and cGMP were compared with age-matched controls. There was no difference among basal levels of platelet responses between patients and controls, except for ADP-induced platelet aggregation (P = 0.04). It was significantly higher in the patient group. Analysis of the responses to sildenafil revealed that for the patients who showed a positive erectile response, there was a significant increase in platelet cGMP (P = 0.028) and a decrease in ADP-induced platelet aggregation (P = 0.04). However, for those who showed a negative or poor erectile response, there was no change in platelet cGMP levels and platelet functions. Sildenafil did not affect collagen-induced platelet responses although cGMP levels of the responders increased. It is concluded that sildenafil increases platelet cGMP in the patients with positive erectile response. Therefore, it has been speculated that platelet cGMP may be used as an index for erectile response.

  12. Coarse-grained molecular simulations of allosteric cooperativity

    NASA Astrophysics Data System (ADS)

    Nandigrami, Prithviraj; Portman, John J.

    2016-03-01

    Interactions between a protein and a ligand are often accompanied by a redistribution of the population of thermally accessible conformations. This dynamic response of the protein's functional energy landscape enables a protein to modulate binding affinities and control binding sensitivity to ligand concentration. In this paper, we investigate the structural origins of binding affinity and allosteric cooperativity of binding two Ca2+ ions to each domain of Calmodulin (CaM) through simulations of a simple coarse-grained model. In this model, the protein's conformational transitions between open and closed conformational ensembles are simulated explicitly and ligand binding and unbinding are treated implicitly within the grand canonical ensemble. Ligand binding is cooperative because the binding sites are coupled through a shift in the dominant conformational ensemble upon binding. The classic Monod-Wyman-Changeux model of allostery with appropriate binding free energies to the open and closed ensembles accurately describes the simulated binding thermodynamics. The simulations predict that the two domains of CaM have distinct binding affinity and cooperativity. In particular, the C-terminal domain binds Ca2+ with higher affinity and greater cooperativity than the N-terminal domain. From a structural point of view, the affinity of an individual binding loop depends sensitively on the loop's structural compatibility with the ligand in the bound ensemble, as well as the conformational flexibility of the binding site in the unbound ensemble.

  13. Discovery of a Negative Allosteric Modulator of GABAB Receptors

    PubMed Central

    2014-01-01

    Initialized from the scaffold of CGP7930, an allosteric agonist of GABAB receptors, a series of noncompetitive antagonists were discovered. Among these compounds, compounds 3, 6, and 14 decreased agonist GABA-induced maximal effect of IP3 production in HEK293 cells overexpressing GABAB receptors and Gqi9 proteins without changing the EC50. Compounds 3, 6, and 14 not only inhibited agonist baclofen-induced ERK1/2 phosphorylation but also blocked CGP7930-induced ERK1/2 phosphorylation in HEK293 cells overexpressing GABAB receptors. The results suggested that compounds 3, 6, and 14 are negative allosteric modulators of GABAB receptors. The representative compound 14 decreased GABA-induced IP3 production with IC50 of 37.9 μM and had no effect on other GPCR Class C members such as mGluR1, mGluR2, and mGluR5. Finally, we showed that compound 14 did not bind to the orthosteric binding sites of GABAB receptors, demonstrating that compound 14 negatively modulated GABAB receptors activity as a negative allosteric modulator. PMID:25050158

  14. Allosteric indicator displacement enzyme assay for a cyanogenic glycoside.

    PubMed

    Jose, D Amilan; Elstner, Martin; Schiller, Alexander

    2013-10-18

    Indicator displacement assays (IDAs) represent an elegant approach in supramolecular analytical chemistry. Herein, we report a chemical biosensor for the selective detection of the cyanogenic glycoside amygdalin in aqueous solution. The hybrid sensor consists of the enzyme β-glucosidase and a boronic acid appended viologen together with a fluorescent reporter dye. β-Glucosidase degrades the cyanogenic glycoside amygdalin into hydrogen cyanide, glucose, and benzaldehyde. Only the released cyanide binds at the allosteric site of the receptor (boronic acid) thereby inducing changes in the affinity of a formerly bound fluorescent indicator dye at the other side of the receptor. Thus, the sensing probe performs as allosteric indicator displacement assay (AIDA) for cyanide in water. Interference studies with inorganic anions and glucose revealed that cyanide is solely responsible for the change in the fluorescent signal. DFT calculations on a model compound revealed a 1:1 binding ratio of the boronic acid and cyanide ion. The fluorescent enzyme assay for β-glucosidase uses amygdalin as natural substrate and allows measuring Michaelis-Menten kinetics in microtiter plates. The allosteric indicator displacement assay (AIDA) probe can also be used to detect cyanide traces in commercial amygdalin samples.

  15. Conformationally Selective RNA Aptamers Allosterically Modulate the β2-Adrenoceptor

    PubMed Central

    Kahsai, Alem W.; Wisler, James W.; Lee, Jungmin; Ahn, Seungkirl; Cahill, Thomas J.; Dennison, S. Moses; Staus, Dean P.; Thomsen, Alex R. B.; Anasti, Kara M.; Pani, Biswaranjan; Wingler, Laura M.; Desai, Hemant; Bompiani, Kristin M.; Strachan, Ryan T.; Qin, Xiaoxia; Alam, S. Munir; Sullenger, Bruce A.; Lefkowitz, Robert J.

    2016-01-01

    G-protein-coupled receptor (GPCR) ligands function by stabilizing multiple, functionally distinct receptor conformations. This property underlies how “biased agonists” activate specific subsets of a given receptor’s signaling profile. However, stabilization of distinct active GPCR conformations to enable structural characterization of mechanisms underlying GPCR activation remains difficult. These challenges have accentuated the need for receptor tools that allosterically stabilize and regulate receptor function via unique, previously unappreciated mechanisms. Here, utilizing a highly diverse RNA library combined with advanced selection strategies involving state-of-the-art next-generation sequencing and bioinformatics analyses, we identify RNA aptamers that bind a prototypical GPCR, β2-adrenoceptor (β2AR). Using biochemical, pharmacological, and biophysical approaches, we demonstrate that these aptamers bind with nanomolar affinity at defined surfaces of the receptor, allosterically stabilizing active, inactive, and ligand-specific receptor conformations. The discovery of RNA aptamers as allosteric GPCR modulators significantly expands the diversity of ligands available to study the structural and functional regulation of GPCRs. PMID:27398998

  16. Ensemble Properties of Network Rigidity Reveal Allosteric Mechanisms

    PubMed Central

    Jacobs, Donald J.; Livesay, Dennis R.; Mottonen, James M.; Vorov, Oleg K.; Istomin, Andrei Y.; Verma, Deeptak

    2015-01-01

    The distance constraint model (DCM) is a unique computational modeling paradigm that integrates mechanical and thermodynamic descriptions of macromolecular structure. That is, network rigidity calculations are used to account for nonadditivity within entropy components, thus restoring the utility of free energy decomposition. The DCM outputs a large number of structural characterizations that collectively allow for quantified stability/flexibility relationships (QSFR) to be identified. In this review, we describe the theoretical underpinnings of the DCM and introduce several common QSFR metrics. Application of the DCM across protein families highlights the sensitivity within the set of protein structure residue-to-residue couplings. Further, we have developed a perturbation method to identify putative allosteric sites, where large changes in QSFR upon rigidification (mimicking ligand-binding) detect sites likely to invoke allosteric changes. PMID:22052496

  17. Nitric Oxide Mediates Glutamate-Linked Enhancement of cGMP Levels in the Cerebellum

    NASA Astrophysics Data System (ADS)

    Bredt, David S.; Snyder, Solomon H.

    1989-11-01

    Nitric oxide, which mediates influences of numerous neurotransmitters and modulators on vascular smooth muscle and leukocytes, can be formed in the brain from arginine by an enzymatic activity that stoichiometrically generates citrulline. We show that glutamate and related amino acids, such as N-methyl-D-aspartate, markedly stimulate arginine-citrulline transformation in cerebellar slices stoichiometrically with enhancement of cGMP levels. Nω-monomethyl-L-arginine blocks the augmentation both of citrulline and cGMP with identical potencies. Arginine competitively reverses both effects of Nω-monomethyl-L-arginine with the same potencies. Hemoglobin, which complexes nitric oxide, prevents the stimulation by N-methyl-D-aspartate of cGMP levels, and superoxide dismutase, which elevates nitric oxide levels, increases cGMP formation. These data establish that nitric oxide mediates the stimulation by glutamate of cGMP formation.

  18. Nitric oxide mediates glutamate-linked enhancement of cGMP levels in the cerebellum.

    PubMed

    Bredt, D S; Snyder, S H

    1989-11-01

    Nitric oxide, which mediates influences of numerous neurotransmitters and modulators on vascular smooth muscle and leukocytes, can be formed in the brain from arginine by an enzymatic activity that stoichiometrically generates citrulline. We show that glutamate and related amino acids, such as N-methyl-D-aspartate, markedly stimulate arginine--citrulline transformation in cerebellar slices stoichiometrically with enhancement of cGMP levels. N omega-monomethyl-L-arginine blocks the augmentation both of citrulline and cGMP with identical potencies. Arginine competitively reverses both effects of N omega-monomethyl-L-arginine with the same potencies. Hemoglobin, which complexes nitric oxide, prevents the stimulation by N-methyl-D-aspartate of cGMP levels, and superoxide dismutase, which elevates nitric oxide levels, increases cGMP formation. These data establish that nitric oxide mediates the stimulation by glutamate of cGMP formation.

  19. Nitric oxide mediates glutamate-linked enhancement of cGMP levels in the cerebellum

    SciTech Connect

    Bredt, D.S.; Snyder, S.H. )

    1989-11-01

    Nitric oxide, which mediates influences of numerous neurotransmitters and modulators on vascular smooth muscle and leukocytes, can be formed in the brain from arginine by an enzymatic activity that stoichiometrically generates citrulline. The authors show that glutamate and related amino acids, such as N-methyl-D-aspartate, markedly stimulate arginine-citrulline transformation in cerebellar slices stoichiometrically with enhancement of cGMP levels. N{sup {omega}}-monomethyl-L-arginine blocks the augmentation both of citrulline and cGMP with identical potencies. Arginine competitively reverses both effects of N{sup {omega}}-monomethyl-L-arginine with the same potencies. Hemoglobin, which complexes nitric oxide, prevents the stimulation by N-methyl-D-aspartate of cGMP levels, and superoxide dismutase, which elevates nitric oxide levels, increases cGMP formation. These data establish that nitric oxide mediates the stimulation by glutamate of cGMP formation.

  20. Allosteric modulation of glycine receptors is more efficacious for partial rather than full agonists.

    PubMed

    Bíró, Tímea; Maksay, Gábor

    2004-06-01

    Allosteric modulation of [3H]strychnine binding to glycine receptors (GlyRs) was examined in synaptosomal membranes of rat spinal cord. An allosteric model enabled us to determine the cooperativity factors of the allosteric agents with [3H]strychnine and glycine bindings (alpha and beta, respectively). We modified the allosteric model with a slope factor because the slope values of the displacement curves of partial agonists (beta-alanine, taurine and gamma-aminobutyric acid) were beyond unity. The slope factor was reduced only by 100 microM propofol. Further, propofol showed positive cooperativity (beta < 1) stronger with taurine than with glycine. The extent of the positive cooperativity of propofol was nearly independent from the potencies and structures of partial agonists. The steroidal alphaxalone and minaxolone also potentiated taurine better than glycine. Alphaxalone exerted weak negative cooperativity with [3H]strychnine binding. Displacement by taurine is attenuated by granisetron and m-chlorophenylbiguanide representing negative cooperativity (beta > 1) greater than with glycine. The results suggest a developmental role of elevated perinatal levels of taurine and neurosteroids as well as a better allosteric modulation of decreased agonist efficacies for impaired glycine receptor-ionophores.

  1. Probing the Sophisticated Synergistic Allosteric Regulation of Aromatic Amino Acid Biosynthesis in Mycobacterium tuberculosis Using ᴅ-Amino Acids

    PubMed Central

    Reichau, Sebastian; Blackmore, Nicola J.; Jiao, Wanting; Parker, Emily J.

    2016-01-01

    Chirality plays a major role in recognition and interaction of biologically important molecules. The enzyme 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAH7PS) is the first enzyme of the shikimate pathway, which is responsible for the synthesis of aromatic amino acids in bacteria and plants, and a potential target for the development of antibiotics and herbicides. DAH7PS from Mycobacterium tuberculosis (MtuDAH7PS) displays an unprecedented complexity of allosteric regulation, with three interdependent allosteric binding sites and a ternary allosteric response to combinations of the aromatic amino acids l-Trp, l-Phe and l-Tyr. In order to further investigate the intricacies of this system and identify key residues in the allosteric network of MtuDAH7PS, we studied the interaction of MtuDAH7PS with aromatic amino acids that bear the non-natural d-configuration, and showed that the d-amino acids do not elicit an allosteric response. We investigated the binding mode of d-amino acids using X-ray crystallography, site directed mutagenesis and isothermal titration calorimetry. Key differences in the binding mode were identified: in the Phe site, a hydrogen bond between the amino group of the allosteric ligands to the side chain of Asn175 is not established due to the inverted configuration of the ligands. In the Trp site, d-Trp forms no interaction with the main chain carbonyl group of Thr240 and less favourable interactions with Asn237 when compared to the l-Trp binding mode. Investigation of the MtuDAH7PSN175A variant further supports the hypothesis that the lack of key interactions in the binding mode of the aromatic d-amino acids are responsible for the absence of an allosteric response, which gives further insight into which residues of MtuDAH7PS play a key role in the transduction of the allosteric signal. PMID:27128682

  2. Probing the Sophisticated Synergistic Allosteric Regulation of Aromatic Amino Acid Biosynthesis in Mycobacterium tuberculosis Using ᴅ-Amino Acids.

    PubMed

    Reichau, Sebastian; Blackmore, Nicola J; Jiao, Wanting; Parker, Emily J

    2016-01-01

    Chirality plays a major role in recognition and interaction of biologically important molecules. The enzyme 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAH7PS) is the first enzyme of the shikimate pathway, which is responsible for the synthesis of aromatic amino acids in bacteria and plants, and a potential target for the development of antibiotics and herbicides. DAH7PS from Mycobacterium tuberculosis (MtuDAH7PS) displays an unprecedented complexity of allosteric regulation, with three interdependent allosteric binding sites and a ternary allosteric response to combinations of the aromatic amino acids l-Trp, l-Phe and l-Tyr. In order to further investigate the intricacies of this system and identify key residues in the allosteric network of MtuDAH7PS, we studied the interaction of MtuDAH7PS with aromatic amino acids that bear the non-natural d-configuration, and showed that the d-amino acids do not elicit an allosteric response. We investigated the binding mode of d-amino acids using X-ray crystallography, site directed mutagenesis and isothermal titration calorimetry. Key differences in the binding mode were identified: in the Phe site, a hydrogen bond between the amino group of the allosteric ligands to the side chain of Asn175 is not established due to the inverted configuration of the ligands. In the Trp site, d-Trp forms no interaction with the main chain carbonyl group of Thr240 and less favourable interactions with Asn237 when compared to the l-Trp binding mode. Investigation of the MtuDAH7PSN175A variant further supports the hypothesis that the lack of key interactions in the binding mode of the aromatic d-amino acids are responsible for the absence of an allosteric response, which gives further insight into which residues of MtuDAH7PS play a key role in the transduction of the allosteric signal.

  3. Monitoring allostery in D2O: a necessary control in studies using hydrogen/deuterium exchange to characterize allosteric regulation.

    PubMed

    Prasannan, Charulata B; Artigues, Antonio; Fenton, Aron W

    2011-08-01

    There is currently a renewed focus aimed at understanding allosteric mechanisms at atomic resolution. This current interest seeks to understand how both changes in protein conformations and changes in protein dynamics contribute to relaying an allosteric signal between two ligand binding sites on a protein (e.g., active and allosteric sites). Both nuclear magnetic resonance (NMR), by monitoring protein dynamics directly, and hydrogen/deuterium exchange, by monitoring solvent accessibility of backbone amides, offer insights into protein dynamics. Unfortunately, many allosteric proteins exceed the size limitations of standard NMR techniques. Although hydrogen/deuterium exchange as detected by mass spectrometry (H/DX-MS) offers an alternative evaluation method, any application of hydrogen/deuterium exchange requires that the property being measured functions in both H(2)O and D(2)O. Due to the promising future H/DX-MS has in the evaluation of allosteric mechanisms in large proteins, we demonstrate an evaluation of allosteric regulation in D(2)O. Exemplified using phenylalanine inhibition of rabbit muscle pyruvate kinase, we find that binding of the inhibitor is greatly reduced in D(2)O, but the effector continues to elicit an allosteric response.

  4. Regulation of GABA-modulin phosphorylation and GABA receptor binding by excitatory amino acids

    SciTech Connect

    Vaccarino, F.; Guidotti, A.

    1987-05-01

    Primary cultures of cerebellar granule cells phosphorylate numerous proteins including GABA-modulin (GM), which is a putative allosteric modulator of GABA receptors. Cell depolarization and treatment with dicarboxylic excitatory amino acids, which activate PI turnover, Ca/sup 2 +/ influx and guanylate cyclase in granule cells increase the phosphorylation of specific proteins. To determine GM phosphorylation by endogenous protein kinases in living granule cell cultures, GM was isolated by immunoprecipitation and reverse-phase HPLC. High K/sup +/, veratridine, glutamate and NMDA treatment stimulated GM phosphorylation over 2-fold. This increase was abolished by the absence of extracellular Ca/sup 2 +/ and was antagonized by Mg/sup 2 +/ ions and by AVP. The excitatory amino acid action was mimicked by phorbol esters but not by forskolin or by cGMP, and thus may be mediated by an activation of protein kinase C (PKC). Moreover, excitatory amino acids increase /sup 3/H-labelled phorbol ester binding sites in granule cell membrane. The same cultures, treated with glutamate or kainate, showed a 50-fold greater efficacy of muscimol for the stimulation of benzodiazepine (BZ) binding. These data-suggest that excitatory amino acid stimulation of neurons triggers PKC translocation and the activated enzyme phosphorylates GM. The extent of GM phosphorylation may regulate the coupling between GABA and BZ binding sites.

  5. Dynamic Coupling and Allosteric Networks in the α Subunit of Heterotrimeric G Proteins*

    PubMed Central

    Yao, Xin-Qiu; Malik, Rabia U.; Griggs, Nicholas W.; Skjærven, Lars; Traynor, John R.; Sivaramakrishnan, Sivaraj; Grant, Barry J.

    2016-01-01

    G protein α subunits cycle between active and inactive conformations to regulate a multitude of intracellular signaling cascades. Important structural transitions occurring during this cycle have been characterized from extensive crystallographic studies. However, the link between observed conformations and the allosteric regulation of binding events at distal sites critical for signaling through G proteins remain unclear. Here we describe molecular dynamics simulations, bioinformatics analysis, and experimental mutagenesis that identifies residues involved in mediating the allosteric coupling of receptor, nucleotide, and helical domain interfaces of Gαi. Most notably, we predict and characterize novel allosteric decoupling mutants, which display enhanced helical domain opening, increased rates of nucleotide exchange, and constitutive activity in the absence of receptor activation. Collectively, our results provide a framework for explaining how binding events and mutations can alter internal dynamic couplings critical for G protein function. PMID:26703464

  6. Allosteric activation of membrane-bound glutamate receptors using coordination chemistry within living cells

    NASA Astrophysics Data System (ADS)

    Kiyonaka, Shigeki; Kubota, Ryou; Michibata, Yukiko; Sakakura, Masayoshi; Takahashi, Hideo; Numata, Tomohiro; Inoue, Ryuji; Yuzaki, Michisuke; Hamachi, Itaru

    2016-10-01

    The controlled activation of proteins in living cells is an important goal in protein-design research, but to introduce an artificial activation switch into membrane proteins through rational design is a significant challenge because of the structural and functional complexity of such proteins. Here we report the allosteric activation of two types of membrane-bound neurotransmitter receptors, the ion-channel type and the G-protein-coupled glutamate receptors, using coordination chemistry in living cells. The high programmability of coordination chemistry enabled two His mutations, which act as an artificial allosteric site, to be semirationally incorporated in the vicinity of the ligand-binding pockets. Binding of Pd(2,2‧-bipyridine) at the allosteric site enabled the active conformations of the glutamate receptors to be stabilized. Using this approach, we were able to activate selectively a mutant glutamate receptor in live neurons, which initiated a subsequent signal-transduction pathway.

  7. Tuning the endocannabinoid system: allosteric modulators of the CB1 receptor.

    PubMed

    Ross, R A

    2007-11-01

    Cannabinoid CB1 receptor antagonists are novel therapeutics with potential for the treatment of a number of conditions including obesity, nicotine addition and metabolic syndrome. In 2005, Price et al. demonstrated that the cannabinoid CB1 receptor contains an allosteric-binding site which binds synthetic small molecules. In this issue of the British Journal of Pharmacology, Horswill et al. have extended these observations. They demonstrate that a structurally similar small molecule allosterically modulates the cannabinoid CB1 receptor and reduces body weight and food intake in an acute feeding model. Allosteric modulation now contends as a new strategy in the therapeutic exploitation of cannabinoid receptors that may offer certain advantages over the more familiar small molecules targeting the orthosteric site.

  8. Decreased atrial natriuretic factor receptors and impaired cGMP generation in glomeruli from the cardiomyopathic hamster.

    PubMed

    Levin, E R; Frank, H J; Chaudhari, A; Kirschenbaum, M A; Bandt, A; Mills, S

    1989-03-15

    To determine a possible basis for the decreased action of atrial natriuretic factors (ANF) in congestive heart failure, we compared the cardiomyopathic hamster (CMH) in frank congestive failure, and the age-matched, normal, F1B strain of Golden Syrian Hamsters. Scatchard analysis of competitive binding studies revealed two classes of glomerular receptors. The CMH exhibited decreased binding overall and a markedly decreased number of high affinity receptors but comparable receptor affinity compared to the F1B. In contrast, the low affinity receptor population in the CMH had a much greater affinity compared to the F1B while receptor number was similar. Plasma ANF levels were substantially elevated in the CMH compared to the F1B and in-vitro generation of cGMP was significantly lower in the CMH. Such abnormalities could contribute to the resistance to ANF in this disease.

  9. Signal peptides are allosteric activators of the protein translocase

    PubMed Central

    Gouridis, Giorgos; Karamanou, Spyridoula; Gelis, Ioannis; Kalodimos, Charalampos G.; Economou, Anastassios

    2010-01-01

    Extra-cytoplasmic polypeptides are usually synthesized as “preproteins” carrying aminoterminal, cleavable signal peptides1 and secreted across membranes by translocases. The main bacterial translocase comprises the SecYEG protein-conducting channel and the peripheral ATPase motor SecA2,3. Most proteins destined for the periplasm and beyond are exported post-translationally by SecA2,3. Preprotein targeting to SecA is thought to involve signal peptides4 and chaperones like SecB5,6. Here we reveal that signal peptides have a novel role beyond targeting: they are essential allosteric activators of the translocase. Upon docking on their binding groove on SecA, signal peptides act in trans to drive three successive states: first, “triggering” that drives the translocase to a lower activation energy state; then “trapping” that engages non-native preprotein mature domains docked with high affinity on the secretion apparatus and, finally, “secretion” during which trapped mature domains undergo multiple turnovers of translocation in segments7. A significant contribution by mature domains renders signal peptides less critical in bacterial secretory protein targeting than currently assumed. Rather, it is their function as allosteric activators of the translocase that renders signal peptides essential for protein secretion. A role for signal peptides and targeting sequences as allosteric activators may be universal in protein translocases. PMID:19924216

  10. CGP7930: a positive allosteric modulator of the GABAB receptor.

    PubMed

    Adams, C L; Lawrence, A J

    2007-01-01

    CGP7930 (3-(3',5'-Di-tert-butyl-4'-hydroxy)phenyl-2,2-dimethylpropanol) is a positive allosteric modulator of the metabotropic GABAB receptor. CGP7930 has been found to modulate the GABAB receptor in the open, or high affinity, state increasing agonist affinity for the receptor and signal transduction efficacy following agonist stimulation. The GABAB heteromeric subunit B2, involved in signal transduction but not ligand binding, seems to be the site of action of CGP7930 and similar allosteric modulators. When administered alone in naïve animals, CGP7930 acts as an anxiolytic in rodents without other overt behavioral effects and has also been demonstrated to reduce self-administration of nicotine, cocaine, or alcohol in rodents, suggesting that "fine tuning" of the GABAB receptor by positive allosteric modulators may be able to regulate abuse of these drugs. Baclofen, the GABAB agonist, is currently finding use in treating addiction and various other disorders, but this can result in off-target effects and tolerance. CGP7930 when co-administered with baclofen enhances its potency, which could in theory minimize deleterious effects. Further study of CGP7930 is required, but this compound, and others like it, holds potential in a clinical setting.

  11. A novel allosteric inhibitor of macrophage migration inhibitory factor (MIF).

    PubMed

    Bai, Fengwei; Asojo, Oluwatoyin A; Cirillo, Pier; Ciustea, Mihai; Ledizet, Michel; Aristoff, Paul A; Leng, Lin; Koski, Raymond A; Powell, Thomas J; Bucala, Richard; Anthony, Karen G

    2012-08-31

    Macrophage migration inhibitory factor (MIF) is a catalytic cytokine and an upstream mediator of the inflammatory pathway. MIF has broad regulatory properties, dysregulation of which has been implicated in the pathology of multiple immunological diseases. Inhibition of MIF activity with small molecules has proven beneficial in a number of disease models. Known small molecule MIF inhibitors typically bind in the tautomerase site of the MIF trimer, often covalently modifying the catalytic proline. Allosteric MIF inhibitors, particularly those that associate with the protein by noncovalent interactions, could reveal novel ways to block MIF activity for therapeutic benefit and serve as chemical probes to elucidate the structural basis for the diverse regulatory properties of MIF. In this study, we report the identification and functional characterization of a novel allosteric MIF inhibitor. Identified from a high throughput screening effort, this sulfonated azo compound termed p425 strongly inhibited the ability of MIF to tautomerize 4-hydroxyphenyl pyruvate. Furthermore, p425 blocked the interaction of MIF with its receptor, CD74, and interfered with the pro-inflammatory activities of the cytokine. Structural studies revealed a unique mode of binding for p425, with a single molecule of the inhibitor occupying the interface of two MIF trimers. The inhibitor binds MIF mainly on the protein surface through hydrophobic interactions that are stabilized by hydrogen bonding with four highly specific residues from three different monomers. The mode of p425 binding reveals a unique way to block the activity of the cytokine for potential therapeutic benefit in MIF-associated diseases.

  12. CB(1) receptor allosteric modulators display both agonist and signaling pathway specificity.

    PubMed

    Baillie, Gemma L; Horswill, James G; Anavi-Goffer, Sharon; Reggio, Patricia H; Bolognini, Daniele; Abood, Mary E; McAllister, Sean; Strange, Phillip G; Stephens, Gary J; Pertwee, Roger G; Ross, Ruth A

    2013-02-01

    We have previously identified allosteric modulators of the cannabinoid CB(1) receptor (Org 27569, PSNCBAM-1) that display a contradictory pharmacological profile: increasing the specific binding of the CB(1) receptor agonist [(3)H]CP55940 but producing a decrease in CB(1) receptor agonist efficacy. Here we investigated the effect one or both compounds in a broad range of signaling endpoints linked to CB(1) receptor activation. We assessed the effect of these compounds on CB(1) receptor agonist-induced [(35)S]GTPγS binding, inhibition, and stimulation of forskolin-stimulated cAMP production, phosphorylation of extracellular signal-regulated kinases (ERK), and β-arrestin recruitment. We also investigated the effect of these allosteric modulators on CB(1) agonist binding kinetics. Both compounds display ligand dependence, being significantly more potent as modulators of CP55940 signaling as compared with WIN55212 and having little effect on [(3)H]WIN55212 binding. Org 27569 displays biased antagonism whereby it inhibits: agonist-induced guanosine 5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTPγS) binding, simulation (Gα(s)-mediated), and inhibition (Gα(i)-mediated) of cAMP production and β-arrestin recruitment. In contrast, it acts as an enhancer of agonist-induced ERK phosphorylation. Alone, the compound can act also as an allosteric agonist, increasing cAMP production and ERK phosphorylation. We find that in both saturation and kinetic-binding experiments, the Org 27569 and PSNCBAM-1 appeared to influence only orthosteric ligand maximum occupancy rather than affinity. The data indicate that the allosteric modulators share a common mechanism whereby they increase available high-affinity CB(1) agonist binding sites. The receptor conformation stabilized by the allosterics appears to induce signaling and also selectively traffics orthosteric agonist signaling via the ERK phosphorylation pathway.

  13. Allosteric properties of PH domains in Arf regulatory proteins.

    PubMed

    Roy, Neeladri Sekhar; Yohe, Marielle E; Randazzo, Paul A; Gruschus, James M

    2016-01-01

    Pleckstrin Homology (PH) domains bind phospholipids and proteins. They are critical regulatory elements of a number enzymes including guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) for Ras-superfamily guanine nucleotide binding proteins such as ADP-ribosylation factors (Arfs). Recent studies have indicated that many PH domains may bind more than one ligand cooperatively. Here we discuss the molecular basis of PH domain-dependent allosteric behavior of 2 ADP-ribosylation factor exchange factors, Grp1 and Brag2, cooperative binding of ligands to the PH domains of Grp1 and the Arf GTPase-activating protein, ASAP1, and the consequences for activity of the associated catalytic domains.

  14. Characterization of the novel positive allosteric modulator, LY2119620, at the muscarinic M(2) and M(4) receptors.

    PubMed

    Croy, Carrie H; Schober, Douglas A; Xiao, Hongling; Quets, Anne; Christopoulos, Arthur; Felder, Christian C

    2014-07-01

    The M(4) receptor is a compelling therapeutic target, as this receptor modulates neural circuits dysregulated in schizophrenia, and there is clinical evidence that muscarinic agonists possess both antipsychotic and procognitive efficacy. Recent efforts have shifted toward allosteric ligands to maximize receptor selectivity and manipulate endogenous cholinergic and dopaminergic signaling. In this study, we present the pharmacological characterization of LY2119620 (3-amino-5-chloro-N-cyclopropyl-4-methyl-6-[2-(4-methylpiperazin-1-yl)-2-oxoethoxy] thieno[2,3-b]pyridine-2-carboxamide), a M(2)/M(4) receptor-selective positive allosteric modulator (PAM), chemically evolved from hits identified through a M4 allosteric functional screen. Although unsuitable as a therapeutic due to M(2) receptor cross-reactivity and, thus, potential cardiovascular liability, LY2119620 surpassed previous congeners in potency and PAM activity and broadens research capabilities through its development into a radiotracer. Characterization of LY2119620 revealed evidence of probe dependence in both binding and functional assays. Guanosine 5'-[γ-(35)S]-triphosphate assays displayed differential potentiation depending on the orthosteric-allosteric pairing, with the largest cooperativity observed for oxotremorine M (Oxo-M) LY2119620. Further [(3)H]Oxo-M saturation binding, including studies with guanosine-5'-[(β,γ)-imido]triphosphate, suggests that both the orthosteric and allosteric ligands can alter the population of receptors in the active G protein-coupled state. Additionally, this work expands the characterization of the orthosteric agonist, iperoxo, at the M(4) receptor, and demonstrates that an allosteric ligand can positively modulate the binding and functional efficacy of this high efficacy ligand. Ultimately, it was the M(2) receptor pharmacology and PAM activity with iperoxo that made LY2119620 the most suitable allosteric partner for the M(2) active-state structure recently solved

  15. Novel selective allosteric and bitopic ligands for the S1P(3) receptor.

    PubMed

    Jo, Euijung; Bhhatarai, Barun; Repetto, Emanuela; Guerrero, Miguel; Riley, Sean; Brown, Steven J; Kohno, Yasushi; Roberts, Edward; Schürer, Stephan C; Rosen, Hugh

    2012-12-21

    Sphingosine 1-phosphate (S1P) is a lysophospholipid signaling molecule that regulates important biological functions, including lymphocyte trafficking and vascular development, by activating G protein-coupled receptors for S1P, namely, S1P(1) through S1P(5). Here, we map the S1P(3) binding pocket with a novel allosteric agonist (CYM-5541), an orthosteric agonist (S1P), and a novel bitopic antagonist (SPM-242). With a combination of site-directed mutagenesis, ligand competition assay, and molecular modeling, we concluded that S1P and CYM-5541 occupy different chemical spaces in the ligand binding pocket of S1P(3). CYM-5541 allowed us to identify an allosteric site where Phe263 is a key gate-keeper residue for its affinity and efficacy. This ligand lacks a polar moiety, and the novel allosteric hydrophobic pocket permits S1P(3) selectivity of CYM-5541 within the highly similar S1P receptor family. However, a novel S1P(3)-selective antagonist, SPM-242, in the S1P(3) pocket occupies the ligand binding spaces of both S1P and CYM-5541, showing its bitopic mode of binding. Therefore, our coordinated approach with biochemical data and molecular modeling, based on our recently published S1P(1) crystal structure data in a highly conserved set of related receptors with a shared ligand, provides a strong basis for the successful optimization of orthosteric, allosteric, and bitopic modulators of S1P(3).

  16. Allosteric modulation of ATP-gated P2X receptor channels

    PubMed Central

    Coddou, Claudio; Stojilkovic, Stanko S.; Huidobro-Toro, J. Pablo

    2013-01-01

    Seven mammalian purinergic receptor subunits, denoted P2X1 to P2X7, and several spliced forms of these subunits have been cloned. When heterologously expressed, these cDNAs encode ATP-gated non-selective cation channels organized as trimers. All activated receptors produce cell depolarization and promote Ca2+ influx through their pores and indirectly by activating voltage-gated calcium channels. However, the biophysical and pharmacological properties of these receptors differ considerably, and the majority of these subunits are also capable of forming heterotrimers with other members of the P2X receptor family, which confers further different properties. These channels have three ATP binding domains, presumably located between neighboring subunits, and occupancy of at least two binding sites is needed for their activation. In addition to the orthosteric binding sites for ATP, these receptors have additional allosteric sites that modulate the agonist action at receptors, including sites for trace metals, protons, neurosteroids, reactive oxygen species and phosphoinositides. The allosteric regulation of P2X receptors is frequently receptor-specific and could be a useful tool to identify P2X members in native tissues and their roles in signaling. The focus of this review is on common and receptor-specific allosteric modulation of P2X receptors and the molecular base accounting for allosteric binding sites. PMID:21639805

  17. cGMP in mouse rods: the spatiotemporal dynamics underlying single photon responses

    PubMed Central

    Pugh Jr., Edward N.; Burns, Marie E.

    2015-01-01

    Vertebrate vision begins when retinal photoreceptors transduce photons into electrical signals that are then relayed to other neurons in the eye, and ultimately to the brain. In rod photoreceptors, transduction of single photons is achieved by a well-understood G-protein cascade that modulates cGMP levels, and in turn, cGMP-sensitive inward current. The spatial extent and depth of the decline in cGMP during the single photon response (SPR) have been major issues in phototransduction research since the discovery that single photons elicit substantial and reproducible changes in membrane current. The spatial profile of cGMP decline during the SPR affects signal gain, and thus may contribute to reduction of trial-to-trial fluctuations in the SPR. Here we summarize the general principles of rod phototransduction, emphasizing recent advances in resolving the spatiotemporal dynamics of cGMP during the SPR. PMID:25788876

  18. Discovery and Characterization of Allosteric WNK Kinase Inhibitors.

    PubMed

    Yamada, Ken; Zhang, Ji-Hu; Xie, Xiaoling; Reinhardt, Juergen; Xie, Amy Qiongshu; LaSala, Daniel; Kohls, Darcy; Yowe, David; Burdick, Debra; Yoshisue, Hajime; Wakai, Hiromichi; Schmidt, Isabel; Gunawan, Jason; Yasoshima, Kayo; Yue, Q Kimberley; Kato, Mitsunori; Mogi, Muneto; Idamakanti, Neeraja; Kreder, Natasha; Drueckes, Peter; Pandey, Pramod; Kawanami, Toshio; Huang, Waanjeng; Yagi, Yukiko I; Deng, Zhan; Park, Hyi-Man

    2016-12-16

    Protein kinases are known for their highly conserved adenosine triphosphate (ATP)-binding site, rendering the discovery of selective inhibitors a major challenge. In theory, allosteric inhibitors can achieve high selectivity by targeting less conserved regions of the kinases, often with an added benefit of retaining efficacy under high physiological ATP concentration. Although often overlooked in favor of ATP-site directed approaches, performing a screen at high ATP concentration or stringent hit triaging with high ATP concentration offers conceptually simple methods of identifying inhibitors that bind outside the ATP pocket. Here, we applied the latter approach to the With-No-Lysine (K) (WNK) kinases to discover lead molecules for a next-generation antihypertensive that requires a stringent safety profile. This strategy yielded several ATP noncompetitive WNK1-4 kinase inhibitors, the optimization of which enabled cocrystallization with WNK1, revealing an allosteric binding mode consistent with the observed exquisite specificity for WNK1-4 kinases. The optimized compound inhibited rubidium uptake by sodium chloride cotransporter 1 (NKCC1) in HT29 cells, consistent with the reported physiology of WNK kinases in renal electrolyte handling.

  19. Modulation of hemoglobin dynamics by an allosteric effector

    PubMed Central

    Maccarini, Marco; Fouquet, Peter; Ho, Nancy T.; Ho, Chien; Makowski, Lee

    2017-01-01

    Abstract Hemoglobin (Hb) is an extensively studied paradigm of proteins that alter their function in response to allosteric effectors. Models of its action have been used as prototypes for structure‐function relationships in many proteins, and models for the molecular basis of its function have been deeply studied and extensively argued. Recent reports suggest that dynamics may play an important role in its function. Relatively little is known about the slow, correlated motions of hemoglobin subunits in various structural states because experimental and computational strategies for their characterization are challenging. Allosteric effectors such as inositol hexaphosphate (IHP) bind to both deoxy‐Hb and HbCO, albeit at different sites, leading to a lowered oxygen affinity. The manner in which these effectors impact oxygen binding is unclear and may involve changes in structure, dynamics or both. Here we use neutron spin echo measurements accompanied by wide‐angle X‐ray scattering to show that binding of IHP to HbCO results in an increase in the rate of coordinated motions of Hb subunits relative to one another with little if any change in large scale structure. This increase of large‐scale dynamics seems to be coupled with a decrease in the average magnitude of higher frequency modes of individual residues. These observations indicate that enhanced dynamic motions contribute to the functional changes induced by IHP and suggest that they may be responsible for the lowered oxygen affinity triggered by these effectors. PMID:27977887

  20. Optimization of a Dibenzodiazepine Hit to a Potent and Selective Allosteric PAK1 Inhibitor

    PubMed Central

    2015-01-01

    The discovery of inhibitors targeting novel allosteric kinase sites is very challenging. Such compounds, however, once identified could offer exquisite levels of selectivity across the kinome. Herein we report our structure-based optimization strategy of a dibenzodiazepine hit 1, discovered in a fragment-based screen, yielding highly potent and selective inhibitors of PAK1 such as 2 and 3. Compound 2 was cocrystallized with PAK1 to confirm binding to an allosteric site and to reveal novel key interactions. Compound 3 modulated PAK1 at the cellular level and due to its selectivity enabled valuable research to interrogate biological functions of the PAK1 kinase. PMID:26191365

  1. Regulatory network of the allosteric ATP inhibition of E. coli phosphofructokinase-2 studied by hybrid dimers.

    PubMed

    Villalobos, Pablo; Soto, Francisco; Baez, Mauricio; Babul, Jorge

    2016-01-01

    We have proposed an allosteric ATP inhibition mechanism of Pfk-2 determining the structure of different forms of the enzyme together with a kinetic enzyme analysis. Here we complement the mechanism by using hybrid oligomers of the homodimeric enzyme to get insights about the allosteric communication pathways between the same sites or different ones located in different subunits. Kinetic analysis of the hybrid enzymes indicate that homotropic interactions between allosteric sites for ATP or between substrate sites for fructose-6-P have a minor effect on the enzymatic inhibition induced by ATP. In fact, the sigmoid response for fructose-6-P observed at elevated ATP concentrations can be eliminated even though the enzymatic inhibition is still operative. Nevertheless, leverage coupling analysis supports heterotropic interactions between the allosteric ATP and fructose-6-P binding occurring between and within each subunit.

  2. Cyclic di-GMP allosterically inhibits the CRP-like protein (Clp) of Xanthomonas axonopodis pv. citri.

    PubMed

    Leduc, Jason L; Roberts, Gary P

    2009-11-01

    The protein Clp from Xanthomonas axonopodis pv. citri regulates pathogenesis and is a member of the CRP (cyclic AMP receptor protein) superfamily. We show that unlike the DNA-binding activity of other members of this family, the DNA-binding activity of Clp is allosterically inhibited by its effector and that cyclic di-GMP serves as that effector at physiological concentrations.

  3. Sulfated Pentagalloylglucoside is a Potent, Allosteric, and Selective Inhibitor of Factor XIa

    PubMed Central

    Al-Horani, Rami A.; Ponnusamy, Pooja; Mehta, Akul Y.; Gailani, David; Desai, Umesh R.

    2013-01-01

    Inhibition of factor XIa (FXIa) is a novel paradigm for developing anticoagulants without major bleeding consequences. We present the discovery of sulfated pentagalloylglucoside (6) as a highly selective inhibitor of human FXIa. Biochemical screening of a focused library led to the identification of 6, a sulfated aromatic mimetic of heparin. Inhibitor 6 displayed a potency of 551 nM against FXIa, which was at least 200-fold more selective than other relevant enzymes. It also prevented activation of factor IX and prolonged human plasma and whole blood clotting. Inhibitor 6 reduced VMAX of FXIa hydrolysis of chromogenic substrate without affecting the KM suggesting an allosteric mechanism. Competitive studies showed that 6 bound in the heparin-binding site of FXIa. No allosteric small molecule has been discovered to date that exhibits equivalent potency against FXIa. Inhibitor 6 is expected to open up a major route to allosteric FXIa anticoagulants with clinical relevance. PMID:23316863

  4. Allosteric cross-talk in chromatin can mediate drug-drug synergy

    PubMed Central

    Adhireksan, Zenita; Palermo, Giulia; Riedel, Tina; Ma, Zhujun; Muhammad, Reyhan; Rothlisberger, Ursula; Dyson, Paul J.; Davey, Curt A.

    2017-01-01

    Exploitation of drug–drug synergism and allostery could yield superior therapies by capitalizing on the immensely diverse, but highly specific, potential associated with the biological macromolecular landscape. Here we describe a drug–drug synergy mediated by allosteric cross-talk in chromatin, whereby the binding of one drug alters the activity of the second. We found two unrelated drugs, RAPTA-T and auranofin, that yield a synergistic activity in killing cancer cells, which coincides with a substantially greater number of chromatin adducts formed by one of the compounds when adducts from the other agent are also present. We show that this occurs through an allosteric mechanism within the nucleosome, whereby defined histone adducts of one drug promote reaction of the other drug at a distant, specific histone site. This opens up possibilities for epigenetic targeting and suggests that allosteric modulation in nucleosomes may have biological relevance and potential for therapeutic interventions. PMID:28358030

  5. SAR studies on carboxylic acid series M(1) selective positive allosteric modulators (PAMs).

    PubMed

    Kuduk, Scott D; Beshore, Douglas C

    2014-01-01

    There is mounting evidence from preclinical and early proof-of-concept studies suggesting that selective modulation of the M1 muscarinic receptor is efficacious in cognitive models of Alzheimer's disease (AD). A number of nonselective M1 muscarinic agonists have previously shown positive effects on cognitive function in AD patients, but were limited due to cholinergic adverse events thought to be mediated by pan activation of the M2 to M5 sub-types. Thus, there is a need to identify selective activators of the M1 receptor to evaluate their potential in cognitive disorders. One strategy to confer selectivity for M1 is the identification of allosteric agonists or positive allosteric modulators, which would target an allosteric site on the M1 receptor rather than the highly conserved orthosteric acetylcholine binding site. BQCA has been identified as a highly selective carboxylic acid M1 PAM and this review focuses on an extensive lead optimization campaign undertaken on this compound.

  6. An allosteric model for ribonuclease.

    PubMed Central

    Walker, E J; Ralston, G B; Darvey, I G

    1975-01-01

    Data from two assay systems show that the kinetics of the hydrolysis of cytidine 2':3'-cyclic monophosphate by bovine pancreatic RNAase (ribonuclease) is not consistent with conventional models. An allosteric model involving a substrate-dependent change in the equilibrium between two enzyme conformations is proposed. Such a model gives rise to a calculated curve of velocity versus substrate concentration which fits the experimental data. The model is also consistent with the results of an examination of the tryptic digestion of RNAase. Substrate analogues are able to protect RNAase against hydrolysis by trypsin and the percentage of RNAase activity which remains after digestion increases sigmoidally as the analogue concentration is increased. The model also explains the pattern seen in the Km values quoted in the literature and is consistent with strong physical evidence for a ligand-induced conformational change for RNAase reported in the literature. PMID:1167152

  7. Allosteric Partial Inhibition of Monomeric Proteases. Sulfated Coumarins Induce Regulation, not just Inhibition, of Thrombin

    PubMed Central

    Verespy III, Stephen; Mehta, Akul Y.; Afosah, Daniel; Al-Horani, Rami A.; Desai, Umesh R.

    2016-01-01

    Allosteric partial inhibition of soluble, monomeric proteases can offer major regulatory advantages, but remains a concept on paper to date; although it has been routinely documented for receptors and oligomeric proteins. Thrombin, a key protease of the coagulation cascade, displays significant conformational plasticity, which presents an attractive opportunity to discover small molecule probes that induce sub-maximal allosteric inhibition. We synthesized a focused library of some 36 sulfated coumarins to discover two agents that display sub-maximal efficacy (~50%), high potency (<500 nM) and high selectivity for thrombin (>150-fold). Michaelis-Menten, competitive inhibition, and site-directed mutagenesis studies identified exosite 2 as the site of binding for the most potent sulfated coumarin. Stern-Volmer quenching of active site-labeled fluorophore suggested that the allosteric regulators induce intermediate structural changes in the active site as compared to those that display ~80–100% efficacy. Antithrombin inactivation of thrombin was impaired in the presence of the sulfated coumarins suggesting that allosteric partial inhibition arises from catalytic dysfunction of the active site. Overall, sulfated coumarins represent first-in-class, sub-maximal inhibitors of thrombin. The probes establish the concept of allosteric partial inhibition of soluble, monomeric proteins. This concept may lead to a new class of anticoagulants that are completely devoid of bleeding. PMID:27053426

  8. Scalable rule-based modelling of allosteric proteins and biochemical networks.

    PubMed

    Ollivier, Julien F; Shahrezaei, Vahid; Swain, Peter S

    2010-11-04

    Much of the complexity of biochemical networks comes from the information-processing abilities of allosteric proteins, be they receptors, ion-channels, signalling molecules or transcription factors. An allosteric protein can be uniquely regulated by each combination of input molecules that it binds. This "regulatory complexity" causes a combinatorial increase in the number of parameters required to fit experimental data as the number of protein interactions increases. It therefore challenges the creation, updating, and re-use of biochemical models. Here, we propose a rule-based modelling framework that exploits the intrinsic modularity of protein structure to address regulatory complexity. Rather than treating proteins as "black boxes", we model their hierarchical structure and, as conformational changes, internal dynamics. By modelling the regulation of allosteric proteins through these conformational changes, we often decrease the number of parameters required to fit data, and so reduce over-fitting and improve the predictive power of a model. Our method is thermodynamically grounded, imposes detailed balance, and also includes molecular cross-talk and the background activity of enzymes. We use our Allosteric Network Compiler to examine how allostery can facilitate macromolecular assembly and how competitive ligands can change the observed cooperativity of an allosteric protein. We also develop a parsimonious model of G protein-coupled receptors that explains functional selectivity and can predict the rank order of potency of agonists acting through a receptor. Our methodology should provide a basis for scalable, modular and executable modelling of biochemical networks in systems and synthetic biology.

  9. Mechanisms of Allosteric Activation and Inhibition of the Deoxyribonucleoside Triphosphate Triphosphohydrolase from Enterococcus faecalis*♦

    PubMed Central

    Vorontsov, Ivan I.; Wu, Ying; DeLucia, Maria; Minasov, George; Mehrens, Jennifer; Shuvalova, Ludmilla; Anderson, Wayne F.; Ahn, Jinwoo

    2014-01-01

    EF1143 from Enterococcus faecalis, a life-threatening pathogen that is resistant to common antibiotics, is a homo-tetrameric deoxyribonucleoside triphosphate (dNTP) triphosphohydrolase (dNTPase), converting dNTPs into the deoxyribonucleosides and triphosphate. The dNTPase activity of EF1143 is regulated by canonical dNTPs, which simultaneously act as substrates and activity modulators. Previous crystal structures of apo-EF1143 and the protein bound to both dGTP and dATP suggested allosteric regulation of its enzymatic activity by dGTP binding at four identical allosteric sites. However, whether and how other canonical dNTPs regulate the enzyme activity was not defined. Here, we present the crystal structure of EF1143 in complex with dGTP and dTTP. The new structure reveals that the tetrameric EF1143 contains four additional secondary allosteric sites adjacent to the previously identified dGTP-binding primary regulatory sites. Structural and enzyme kinetic studies indicate that dGTP binding to the first allosteric site, with nanomolar affinity, is a prerequisite for substrate docking and hydrolysis. Then, the presence of a particular dNTP in the second site either enhances or inhibits the dNTPase activity of EF1143. Our results provide the first mechanistic insight into dNTP-mediated regulation of dNTPase activity. PMID:24338016

  10. FUNCTIONAL INSIGHT INTO DEVELOPMENT OF POSITIVE ALLOSTERIC MODULATORS OF AMPA RECEPTORS

    PubMed Central

    Weeks, Autumn M.; Harms, Jonathan E.; Partin, Kathryn M.; Benveniste, Morris

    2014-01-01

    Positive allosteric modulators of α-amino-3-hydroxy-5-methyl-isoxazole-propionic acid (AMPA) ionotropic glutamate receptors facilitate synaptic plasticity and contribute essentially to learning and memory, properties which make AMPA receptors targets for drug discovery and development. One region at which several different classes of positive allosteric modulators bind lies at the dimer interface between the ligand-binding core of the second, membrane-proximal, extracellular domain of AMPA receptors. This solvent-accessible binding pocket has been the target of drug discovery efforts, leading to the recent delineation of five “subsites” which differentially allow access to modulator moieties, and for which distinct modulator affinities and apparent efficacies are attributed. Here we use the voltage-clamp technique in conjunction with rapid drug application to study the effects of mutants lining subsites “A” and “B” of the allosteric modulator pocket to assess affinity and efficacy of allosteric modulation by cyclothiazide, CX614, CMPDA and CMPDB. A novel analysis of the decay of current produced by the onset of desensitization has allowed us to estimate both affinity and efficacy from single concentrations of modulator. Such an approach may be useful for effective high throughput screening of new target compounds. PMID:24878241

  11. Functional insight into development of positive allosteric modulators of AMPA receptors.

    PubMed

    Weeks, Autumn M; Harms, Jonathan E; Partin, Kathryn M; Benveniste, Morris

    2014-10-01

    Positive allosteric modulators of α-amino-3-hydroxy-5-methyl-isoxazole-propionic acid (AMPA) ionotropic glutamate receptors facilitate synaptic plasticity and contribute essentially to learning and memory, properties which make AMPA receptors targets for drug discovery and development. One region at which several different classes of positive allosteric modulators bind lies at the dimer interface between the ligand-binding core of the second, membrane-proximal, extracellular domain of AMPA receptors. This solvent-accessible binding pocket has been the target of drug discovery efforts, leading to the recent delineation of five "subsites" which differentially allow access to modulator moieties, and for which distinct modulator affinities and apparent efficacies are attributed. Here we use the voltage-clamp technique in conjunction with rapid drug application to study the effects of mutants lining subsites "A" and "B" of the allosteric modulator pocket to assess affinity and efficacy of allosteric modulation by cyclothiazide, CX614, CMPDA and CMPDB. A novel analysis of the decay of current produced by the onset of desensitization has allowed us to estimate both affinity and efficacy from single concentrations of modulator. Such an approach may be useful for effective high throughput screening of new target compounds.

  12. Supramolecular Allosteric Cofacial Porphyrin Complexes

    SciTech Connect

    Oliveri, Christopher G.; Gianneschi, Nathan C.; Nguyen, Son Binh T.; Mirkin, Chad A.; Stern, Charlotte L.; Wawrzak, Zdzislaw; Pink, Maren

    2008-04-12

    Nature routinely uses cooperative interactions to regulate cellular activity. For years, chemists have designed synthetic systems that aim toward harnessing the reactivity common to natural biological systems. By learning how to control these interactions in situ, one begins to allow for the preparation of man-made biomimetic systems that can efficiently mimic the interactions found in Nature. To this end, we have designed a synthetic protocol for the preparation of flexible metal-directed supramolecular cofacial porphyrin complexes which are readily obtained in greater than 90% yield through the use of new hemilabile porphyrin ligands with bifunctional ether-phosphine or thioether-phosphine substituents at the 5 and 15 positions on the porphyrin ring. The resulting architectures contain two hemilabile ligand-metal domains (Rh{sup I} or Cu{sup I} sites) and two cofacially aligned porphyrins (Zn{sup II} sites), offering orthogonal functionalities and allowing these multimetallic complexes to exist in two states, 'condensed' or 'open'. Combining the ether-phosphine ligand with the appropriate Rh{sup I} or Cu{sup I} transition-metal precursors results in 'open' macrocyclic products. In contrast, reacting the thioether-phosphine ligand with RhI or CuI precursors yields condensed structures that can be converted into their 'open' macrocyclic forms via introduction of additional ancillary ligands. The change in cavity size that occurs allows these structures to function as allosteric catalysts for the acyl transfer reaction between X-pyridylcarbinol (where X = 2, 3, or 4) and 1-acetylimidazole. For 3- and 4-pyridylcarbinol, the 'open' macrocycle accelerates the acyl transfer reaction more than the condensed analogue and significantly more than the porphyrin monomer. In contrast, an allosteric effect was not observed for 2-pyridylcarbinol, which is expected to be a weaker binder and is unfavorably constrained inside the macrocyclic cavity.

  13. Dancing through Life: Molecular Dynamics Simulations and Network-Centric Modeling of Allosteric Mechanisms in Hsp70 and Hsp110 Chaperone Proteins

    PubMed Central

    Stetz, Gabrielle; Verkhivker, Gennady M.

    2015-01-01

    Hsp70 and Hsp110 chaperones play an important role in regulating cellular processes that involve protein folding and stabilization, which are essential for the integrity of signaling networks. Although many aspects of allosteric regulatory mechanisms in Hsp70 and Hsp110 chaperones have been extensively studied and significantly advanced in recent experimental studies, the atomistic picture of signal propagation and energetics of dynamics-based communication still remain unresolved. In this work, we have combined molecular dynamics simulations and protein stability analysis of the chaperone structures with the network modeling of residue interaction networks to characterize molecular determinants of allosteric mechanisms. We have shown that allosteric mechanisms of Hsp70 and Hsp110 chaperones may be primarily determined by nucleotide-induced redistribution of local conformational ensembles in the inter-domain regions and the substrate binding domain. Conformational dynamics and energetics of the peptide substrate binding with the Hsp70 structures has been analyzed using free energy calculations, revealing allosteric hotspots that control negative cooperativity between regulatory sites. The results have indicated that cooperative interactions may promote a population-shift mechanism in Hsp70, in which functional residues are organized in a broad and robust allosteric network that can link the nucleotide-binding site and the substrate-binding regions. A smaller allosteric network in Hsp110 structures may elicit an entropy-driven allostery that occurs in the absence of global structural changes. We have found that global mediating residues with high network centrality may be organized in stable local communities that are indispensable for structural stability and efficient allosteric communications. The network-centric analysis of allosteric interactions has also established that centrality of functional residues could correlate with their sensitivity to mutations

  14. Investigating Metabotropic Glutamate Receptor 5 Allosteric Modulator Cooperativity, Affinity, and Agonism: Enriching Structure-Function Studies and Structure-Activity Relationships

    PubMed Central

    Gregory, Karen J.; Noetzel, Meredith J.; Rook, Jerri M.; Vinson, Paige N.; Stauffer, Shaun R.; Rodriguez, Alice L.; Emmitte, Kyle A.; Zhou, Ya; Chun, Aspen C.; Felts, Andrew S.; Chauder, Brian A.; Lindsley, Craig W.; Niswender, Colleen M.

    2012-01-01

    Drug discovery programs increasingly are focusing on allosteric modulators as a means to modify the activity of G protein-coupled receptor (GPCR) targets. Allosteric binding sites are topographically distinct from the endogenous ligand (orthosteric) binding site, which allows for co-occupation of a single receptor with the endogenous ligand and an allosteric modulator that can alter receptor pharmacological characteristics. Negative allosteric modulators (NAMs) inhibit and positive allosteric modulators (PAMs) enhance the affinity and/or efficacy of orthosteric agonists. Established approaches for estimation of affinity and efficacy values for orthosteric ligands are not appropriate for allosteric modulators, and this presents challenges for fully understanding the actions of novel modulators of GPCRs. Metabotropic glutamate receptor 5 (mGlu5) is a family C GPCR for which a large array of allosteric modulators have been identified. We took advantage of the many tools for probing allosteric sites on mGlu5 to validate an operational model of allosterism that allows quantitative estimation of modulator affinity and cooperativity values. Affinity estimates derived from functional assays fit well with affinities measured in radioligand binding experiments for both PAMs and NAMs with diverse chemical scaffolds and varying degrees of cooperativity. We observed modulation bias for PAMs when we compared mGlu5-mediated Ca2+ mobilization and extracellular signal-regulated kinase 1/2 phosphorylation data. Furthermore, we used this model to quantify the effects of mutations that reduce binding or potentiation by PAMs. This model can be applied to PAM and NAM potency curves in combination with maximal fold-shift data to derive reliable estimates of modulator affinities. PMID:22863693

  15. Molecular mechanism of the allosteric regulation of the αγ heterodimer of human NAD-dependent isocitrate dehydrogenase

    PubMed Central

    Ma, Tengfei; Peng, Yingjie; Huang, Wei; Ding, Jianping

    2017-01-01

    Human NAD-dependent isocitrate dehydrogenase catalyzes the decarboxylation of isocitrate (ICT) into α-ketoglutarate in the Krebs cycle. It exists as the α2βγ heterotetramer composed of the αβ and αγ heterodimers. Previously, we have demonstrated biochemically that the α2βγ heterotetramer and αγ heterodimer can be allosterically activated by citrate (CIT) and ADP. In this work, we report the crystal structures of the αγ heterodimer with the γ subunit bound without or with different activators. Structural analyses show that CIT, ADP and Mg2+ bind adjacent to each other at the allosteric site. The CIT binding induces conformational changes at the allosteric site, which are transmitted to the active site through the heterodimer interface, leading to stabilization of the ICT binding at the active site and thus activation of the enzyme. The ADP binding induces no further conformational changes but enhances the CIT binding through Mg2+-mediated interactions, yielding a synergistic activation effect. ICT can also bind to the CIT-binding subsite, which induces similar conformational changes but exhibits a weaker activation effect. The functional roles of the key residues are verified by mutagenesis, kinetic and structural studies. Our structural and functional data together reveal the molecular mechanism of the allosteric regulation of the αγ heterodimer. PMID:28098230

  16. The Rational Design of Allosteric Interactions in a Monomeric Protein and its Applications to the Construction of Biosensors

    NASA Astrophysics Data System (ADS)

    Marvin, J. S.; Corcoran, E. E.; Hattangadi, N. A.; Zhang, J. V.; Gere, S. A.; Hellinga, H. W.

    1997-04-01

    Rational protein design is an emerging approach for testing general theories of structure and function. The ability to manipulate function rationally also offers the possibility of creating new proteins of biotechnological value. Here we use the design approach to test the current understanding of the structural principles of allosteric interactions in proteins and demonstrate how a simple allosteric system can form the basis for the construction of a generic biosensor molecular engineering system. We have identified regions in Escherichia coli maltose-binding protein that are predicted to be allosterically linked to its maltose-binding site. Environmentally sensitive fluorophores were covalently attached to unique thiols introduced by cysteine mutations at specific sites within these regions. The fluorescence of such conjugates changes cooperatively with respect to maltose binding, as predicted. Spatial separation of the binding site and reporter groups allows the intrinsic properties of each to be manipulated independently. Provided allosteric linkage is maintained, ligand binding can therefore be altered without affecting transduction of the binding event by fluorescence. To demonstrate applicability to biosensor technology, we have introduced a series of point mutations in the maltose-binding site that lower the affinity of the protein for its ligand. These mutant proteins have been combined in a composite biosensor capable of measuring substrate concentration within 5% accuracy over a concentration range spanning five orders of magnitude.

  17. Phosphodiesterase 9A Controls Nitric-oxide Independent cGMP and Hypertrophic Heart Disease

    PubMed Central

    Lee, Dong I.; Zhu, Guangshuo; Sasaki, Takashi; Cho, Gun-Sik; Hamdani, Nazha; Holewinski, Ronald; Jo, Su-Hyun; Danner, Thomas; Zhang, Manling; Rainer, Peter P.; Bedja, Djahida; Kirk, Jonathan A.; Ranek, Mark J.; Dostmann, Wolfgang R.; Kwon, Chulan; Margulies, Kenneth B.; Van Eyk, Jennifer E.; Paulus, Walter J.; Takimoto, Eiki; Kass, David A.

    2015-01-01

    Cyclic guanosine monophosphate (cGMP) is a second messenger molecule that transduces nitric oxide (NO) and natriuretic peptide (NP) coupled signaling, stimulating phosphorylation changes by protein kinase G (PKG). Enhancing cGMP synthesis or blocking its degradation by phosphodiesterase type 5A (PDE5A) protects against cardiovascular disease1,2. However, cGMP stimulation alone is limited by counter-adaptions including PDE upregulation3. Furthermore, though PDE5A regulates NO-generated cGMP4,5, NO-signaling is often depressed by heart disease6. PDEs controlling NP-coupled cGMP remain uncertain. Here we show that cGMP-selective PDE9A7,8 is expressed in mammalian heart including humans, and is upregulated by hypertrophy and cardiac failure. PDE9A regulates NP rather than NO-stimulated cGMP in heart myocytes and muscle, and its genetic or selective pharmacological inhibition protects against pathological responses to neuro-hormones, and sustained pressure-overload stress. PDE9A inhibition reverses pre-established heart disease independent of NO-synthase (NOS) activity, whereas PDE5A inhibition requires active NOS. Transcription factor activation and phospho-proteome analyses of myocytes with each PDE selectively inhibited reveals substantial differential targeting, with phosphorylation changes from PDE5A inhibition being more sensitive to NOS activation. Thus, unlike PDE5A, PDE9A can regulate cGMP signaling independent of the NO-pathway, and its role in stress-induced heart disease suggests potential as a therapeutic target. PMID:25799991

  18. Development of a whole cell pneumococcal vaccine: BPL inactivation, cGMP production, and stability.

    PubMed

    Gonçalves, Viviane M; Dias, Waldely O; Campos, Ivana B; Liberman, Celia; Sbrogio-Almeida, Maria E; Silva, Eliane P; Cardoso, Celso P; Alderson, Mark; Robertson, George; Maisonneuve, Jean-François; Tate, Andrea; Anderson, Porter; Malley, Richard; Fratelli, Fernando; Leite, Luciana C C

    2014-02-19

    Pneumococcal infections impose a large burden of disease on the human population, mainly in developing countries, and the current pneumococcal vaccines offer serotype-specific protection, but do not cover all pathogenic strains, leaving populations vulnerable to disease caused by non-vaccine serotypes. The pneumococcal whole cell vaccine is a low-cost strategy based on non-capsular antigens common to all strains, inducing serotype-independent immunity. Therefore, we developed the process for the cGMP production of this cellular vaccine. Initially, three engineering runs and two cGMP runs were performed in 60-L bioreactors, demonstrating the consistency of the production process, as evaluated by the growth curves, glucose consumption and metabolite formation (lactate and acetate). Cell recovery by tangential filtration was 92 ± 13 %. We optimized the conditions for beta-propiolactone (BPL) inactivation of the bacterial suspensions, establishing a maximum cell density of OD600 between 27 and 30, with a BPL concentration of 1:4000 (v/v) at 150 rpm and 4 °C for 30 h. BPL was hydrolyzed by heating for 2h at 37 °C. The criteria and methods for quality control were defined using the engineering runs and the cGMP Lots passed all specifications. cGMP vaccine Lots displayed high potency, inducing between 80 and 90% survival in immunized mice when challenged with virulent pneumococci. Sera from mice immunized with the cGMP Lots recognized several pneumococcal proteins in the extract of encapsulated strains by Western blot. The cGMP whole cell antigen bulk and whole cell vaccine product lots were shown to be stable for up to 12 and 18 months, respectively, based upon survival assays following i.p. challenge. Our results show the consistency and stability of the cGMP whole cell pneumococcal vaccine lots and demonstrate the feasibility of production in a developing country setting.

  19. Boronic acids as probes for investigation of allosteric modulation of the chemokine receptor CXCR3.

    PubMed

    Bernat, Viachaslau; Admas, Tizita Haimanot; Brox, Regine; Heinemann, Frank W; Tschammer, Nuska

    2014-11-21

    The chemokine receptor CXCR3 is a G protein-coupled receptor, which conveys extracellular signals into cells by changing its conformation upon agonist binding. To facilitate the mechanistic understanding of allosteric modulation of CXCR3, we combined computational modeling with the synthesis of novel chemical tools containing boronic acid moiety, site-directed mutagenesis, and detailed functional characterization. The design of boronic acid derivatives was based on the predictions from homology modeling and docking. The choice of the boronic acid moiety was dictated by its unique ability to interact with proteins in a reversible covalent way, thereby influencing conformational dynamics of target biomolecules. During the synthesis of the library we have developed a novel approach for the purification of drug-like boronic acids. To validate the predicted binding mode and to identify amino acid residues responsible for the transduction of signal through CXCR3, we conducted a site-directed mutagenesis study. With the use of allosteric radioligand RAMX3 we were able to establish the existence of a second allosteric binding pocket in CXCR3, which enables different binding modes of structurally closely related allosteric modulators of CXCR3. We have also identified residues Trp109(2.60) and Lys300(7.35) inside the transmembrane bundle of the receptor as crucial for the regulation of the G protein activation. Furthermore, we report the boronic acid 14 as the first biased negative allosteric modulator of the receptor. Overall, our data demonstrate that boronic acid derivatives represent an outstanding tool for determination of key receptor-ligand interactions and induction of ligand-biased signaling.

  20. Allosteric "beta-blocker" isolated from a DNA-encoded small molecule library.

    PubMed

    Ahn, Seungkirl; Kahsai, Alem W; Pani, Biswaranjan; Wang, Qin-Ting; Zhao, Shuai; Wall, Alissa L; Strachan, Ryan T; Staus, Dean P; Wingler, Laura M; Sun, Lillian D; Sinnaeve, Justine; Choi, Minjung; Cho, Ted; Xu, Thomas T; Hansen, Gwenn M; Burnett, Michael B; Lamerdin, Jane E; Bassoni, Daniel L; Gavino, Bryant J; Husemoen, Gitte; Olsen, Eva K; Franch, Thomas; Costanzi, Stefano; Chen, Xin; Lefkowitz, Robert J

    2017-02-14

    The β2-adrenergic receptor (β2AR) has been a model system for understanding regulatory mechanisms of G-protein-coupled receptor (GPCR) actions and plays a significant role in cardiovascular and pulmonary diseases. Because all known β-adrenergic receptor drugs target the orthosteric binding site of the receptor, we set out to isolate allosteric ligands for this receptor by panning DNA-encoded small-molecule libraries comprising 190 million distinct compounds against purified human β2AR. Here, we report the discovery of a small-molecule negative allosteric modulator (antagonist), compound 15 [([4-((2S)-3-(((S)-3-(3-bromophenyl)-1-(methylamino)-1-oxopropan-2-yl)amino)-2-(2-cyclohexyl-2-phenylacetamido)-3-oxopropyl)benzamide], exhibiting a unique chemotype and low micromolar affinity for the β2AR. Binding of 15 to the receptor cooperatively enhances orthosteric inverse agonist binding while negatively modulating binding of orthosteric agonists. Studies with a specific antibody that binds to an intracellular region of the β2AR suggest that 15 binds in proximity to the G-protein binding site on the cytosolic surface of the β2AR. In cell-signaling studies, 15 inhibits cAMP production through the β2AR, but not that mediated by other Gs-coupled receptors. Compound 15 also similarly inhibits β-arrestin recruitment to the activated β2AR. This study presents an allosteric small-molecule ligand for the β2AR and introduces a broadly applicable method for screening DNA-encoded small-molecule libraries against purified GPCR targets. Importantly, such an approach could facilitate the discovery of GPCR drugs with tailored allosteric effects.

  1. Allosteric “beta-blocker” isolated from a DNA-encoded small molecule library

    PubMed Central

    Ahn, Seungkirl; Kahsai, Alem W.; Pani, Biswaranjan; Wang, Qin-Ting; Zhao, Shuai; Wall, Alissa L.; Strachan, Ryan T.; Staus, Dean P.; Wingler, Laura M.; Sun, Lillian D.; Sinnaeve, Justine; Choi, Minjung; Cho, Ted; Xu, Thomas T.; Hansen, Gwenn M.; Burnett, Michael B.; Lamerdin, Jane E.; Bassoni, Daniel L.; Gavino, Bryant J.; Husemoen, Gitte; Olsen, Eva K.; Franch, Thomas; Costanzi, Stefano; Chen, Xin; Lefkowitz, Robert J.

    2017-01-01

    The β2-adrenergic receptor (β2AR) has been a model system for understanding regulatory mechanisms of G-protein–coupled receptor (GPCR) actions and plays a significant role in cardiovascular and pulmonary diseases. Because all known β-adrenergic receptor drugs target the orthosteric binding site of the receptor, we set out to isolate allosteric ligands for this receptor by panning DNA-encoded small-molecule libraries comprising 190 million distinct compounds against purified human β2AR. Here, we report the discovery of a small-molecule negative allosteric modulator (antagonist), compound 15 [([4-((2S)-3-(((S)-3-(3-bromophenyl)-1-(methylamino)-1-oxopropan-2-yl)amino)-2-(2-cyclohexyl-2-phenylacetamido)-3-oxopropyl)benzamide], exhibiting a unique chemotype and low micromolar affinity for the β2AR. Binding of 15 to the receptor cooperatively enhances orthosteric inverse agonist binding while negatively modulating binding of orthosteric agonists. Studies with a specific antibody that binds to an intracellular region of the β2AR suggest that 15 binds in proximity to the G-protein binding site on the cytosolic surface of the β2AR. In cell-signaling studies, 15 inhibits cAMP production through the β2AR, but not that mediated by other Gs-coupled receptors. Compound 15 also similarly inhibits β-arrestin recruitment to the activated β2AR. This study presents an allosteric small-molecule ligand for the β2AR and introduces a broadly applicable method for screening DNA-encoded small-molecule libraries against purified GPCR targets. Importantly, such an approach could facilitate the discovery of GPCR drugs with tailored allosteric effects. PMID:28130548

  2. Internalization of the chemokine receptor CCR4 can be evoked by orthosteric and allosteric receptor antagonists.

    PubMed

    Ajram, Laura; Begg, Malcolm; Slack, Robert; Cryan, Jenni; Hall, David; Hodgson, Simon; Ford, Alison; Barnes, Ashley; Swieboda, Dawid; Mousnier, Aurelie; Solari, Roberto

    2014-04-15

    The chemokine receptor CCR4 has at least two natural agonist ligands, MDC (CCL22) and TARC (CCL17) which bind to the same orthosteric site with a similar affinity. Both ligands are known to evoke chemotaxis of CCR4-bearing T cells and also elicit CCR4 receptor internalization. A series of small molecule allosteric antagonists have been described which displace the agonist ligand, and inhibit chemotaxis. The aim of this study was to determine which cellular coupling pathways are involved in internalization, and if antagonists binding to the CCR4 receptor could themselves evoke receptor internalization. CCL22 binding coupled CCR4 efficiently to β-arrestin and stimulated GTPγS binding however CCL17 did not couple to β-arrestin and only partially stimulated GTPγS binding. CCL22 potently induced internalization of almost all cell surface CCR4, while CCL17 showed only weak effects. We describe four small molecule antagonists that were demonstrated to bind to two distinct allosteric sites on the CCR4 receptor, and while both classes inhibited agonist ligand binding and chemotaxis, one of the allosteric sites also evoked receptor internalization. Furthermore, we also characterize an N-terminally truncated version of CCL22 which acts as a competitive antagonist at the orthosteric site, and surprisingly also evokes receptor internalization without demonstrating any agonist activity. Collectively this study demonstrates that orthosteric and allosteric antagonists of the CCR4 receptor are capable of evoking receptor internalization, providing a novel strategy for drug discovery against this class of target.

  3. Crystal structure of human phosphoribosylpyrophosphate synthetase 1 reveals a novel allosteric site.

    PubMed

    Li, Sheng; Lu, Yongcheng; Peng, Baozhen; Ding, Jianping

    2007-01-01

    PRPP (phosphoribosylpyrophosphate) is an important metabolite essential for nucleotide synthesis and PRS (PRPP synthetase) catalyses synthesis of PRPP from R5P (ribose 5-phosphate) and ATP. The enzymatic activity of PRS is regulated by phosphate ions, divalent metal cations and ADP. In the present study we report the crystal structures of recombinant human PRS1 in complexes with SO4(2-) ions alone and with ATP, Cd2+ and SO4(2-) ions respectively. The AMP moiety of ATP binds at the ATP-binding site, and a Cd2+ ion binds at the active site and in a position to interact with the beta- and gamma-phosphates of ATP. A SO4(2-) ion, an analogue of the activator phosphate, was found to bind at both the R5P-binding site and the allosteric site defined previously. In addi-tion, an extra SO4(2-) binds at a site at the dimer interface between the ATP-binding site and the allosteric site. Binding of this SO4(2-) stabilizes the conformation of the flexible loop at the active site, leading to the formation of the active, open conformation which is essential for binding of ATP and initiation of the catalytic reaction. This is the first time that structural stabilization at the active site caused by binding of an activator has been observed. Structural and biochemical data show that mutations of some residues at this site influence the binding of SO4(2-) and affect the enzymatic activity. The results in the present paper suggest that this new SO4(2-)-binding site is a second allosteric site to regulate the enzymatic activity which might also exist in other eukaryotic PRSs (except plant PRSs of class II), but not in bacterial PRSs.

  4. Auxin-induced nitric oxide, cGMP and gibberellins were involved in the gravitropism

    NASA Astrophysics Data System (ADS)

    Cai, Weiming; Hu, Liwei; Hu, Xiangyang; Cui, Dayong; Cai, Weiming

    Gravitropism is the asymmetric growth or curvature of plant organs in response to gravistimulation. There is a complex signal transduction cascade which involved in the differential growth of plants in response to changes in the gravity vector. The role of auxin in gravitropism has been demonstrated by many experiments, but little is known regarding the molecular details of such effects. In our studies before, mediation of the gravitropic bending of soybean roots and rice leaf sheath bases by nitric oxide, cGMP and gibberellins, are induced by auxin. The asymmetrical distribution of nitric oxide, cGMP and gibberellins resulted from the asymmetrical synthesis of them in bending sites. In soybean roots, inhibitions of NO and cGMP synthesis reduced differential NO and cGMP accumulation respectively, which both of these effects can lead to the reduction of gravitropic bending. Gibberellin-induced OsXET, OsEXPA4 and OsRWC3 were also found involved in the gravitropic bending. These data indicated that auxin-induced nitric oxide, cGMP and gibberellins were involved in the gravitropism. More experiments need to prove the more detailed mechanism of them.

  5. Global Low Frequency Protein Motions in Long-Range Allosteric Signaling

    NASA Astrophysics Data System (ADS)

    McLeish, Tom; Rogers, Thomas; Townsend, Philip; Burnell, David; Pohl, Ehmke; Wilson, Mark; Cann, Martin; Richards, Shane; Jones, Matthew

    2015-03-01

    We present a foundational theory for how allostery can occur as a function of low frequency dynamics without a change in protein structure. Elastic inhomogeneities allow entropic ``signalling at a distance.'' Remarkably, many globular proteins display just this class of elastic structure, in particular those that support allosteric binding of substrates (long-range co-operative effects between the binding sites of small molecules). Through multi-scale modelling of global normal modes we demonstrate negative co-operativity between the two cAMP ligands without change to the mean structure. Crucially, the value of the co-operativity is itself controlled by the interactions around a set of third allosteric ``control sites.'' The theory makes key experimental predictions, validated by analysis of variant proteins by a combination of structural biology and isothermal calorimetry. A quantitative description of allostery as a free energy landscape revealed a protein ``design space'' that identified the key inter- and intramolecular regulatory parameters that frame CRP/FNR family allostery. Furthermore, by analyzing naturally occurring CAP variants from diverse species, we demonstrate an evolutionary selection pressure to conserve residues crucial for allosteric control. The methodology establishes the means to engineer allosteric mechanisms that are driven by low frequency dynamics.

  6. Coupled Dynamics and Entropic Contribution to the Allosteric Mechanism of Pin1.

    PubMed

    Barman, Arghya; Hamelberg, Donald

    2016-08-25

    Allosteric communication in proteins regulates a plethora of downstream processes in subcellular signaling pathways. Describing the effects of cooperative ligand binding on the atomic level is a key to understanding many regulatory processes involving biomolecules. Here, we use microsecond-long molecular dynamics simulations to investigate the allosteric mechanism of Pin1, a potential therapeutic target and a phosphorylated-Ser/Thr dependent peptidyl-prolyl cis-trans isomerase that regulates several subcellular processes and has been implicated in many diseases, including cancer and Alzheimer's. Experimental studies suggest that the catalytic domain and the noncatalytic WW domain are allosterically coupled; however, an atomic level description of the dynamics associated with the interdomain communication is lacking. We show that binding of the substrate to the WW domain is directly coupled to the dynamics of the catalytic domain, causing rearrangement of the residue-residue contact dynamics from the WW domain to the catalytic domain. The binding affinity of the substrate in the catalytic domain is also enhanced upon binding of the substrate to the WW domain. Modulation of the dynamics of the catalytic domain upon binding of the substrate to the WW domain leads to prepayment of the entropic cost of binding the substrate to the catalytic domain. This study shows that Ile 28 at the interfacial region between the catalytic and WW domains is certainly one of the residues responsible for bridging the communication between the two domains. The results complement previous experiments and provide valuable atomistic insights into the role of dynamics and possible entropic contribution to the allosteric mechanism of proteins.

  7. Exclusion of five subunits of cGMP phosphodiesterase in Leber's congenital amaurosis.

    PubMed

    Perrault, I; Châtelin, S; Nancy, V; Rozet, J M; Gerber, S; Ghazi, I; Souied, E; Dufier, J L; Munnich, A; de Gunzburg, J; Kaplan, J

    1998-03-01

    Leber's congenital amaurosis (LCA) is the earliest and most severe of all inherited retinal dystrophies. Recently, we mapped an LCA gene to chromosome 17p13.1 (LCA1) and ascribed the disease to mutations of the retinal guanylate cyclase (ret GC) gene in a subset of families of North African ancestry. Owing to the genetic heterogeneity of LCA and considering that LCA1 results from an impaired production of cGMP in the retina (with permanent closure of cGMP-gated cation channels), we hypothesized that the activation of the cGMP phosphodiesterase (PDE) could trigger the disease by lowering the intracellular cGMP level in the retina. The rod and cone cGMP-PDE inhibitory subunits were regarded therefore as candidate genes in LCA. Here, we report the exclusion of five rod and cone cGMP-PDE subunits in LCA families unlinked to chromosome 17p13.

  8. Salvinorin A: allosteric interactions at the mu-opioid receptor.

    PubMed

    Rothman, Richard B; Murphy, Daniel L; Xu, Heng; Godin, Jonathan A; Dersch, Christina M; Partilla, John S; Tidgewell, Kevin; Schmidt, Matthew; Prisinzano, Thomas E

    2007-02-01

    Salvinorin A [(2S,4aR,6aR,7R,9S,10aS,10bR)-9-(acetyloxy)-2-(3-furanyl)-dodecahydro-6a,10b-dimethyl-4,10-dioxo-2h-naphtho[2,1-c]pyran-7-carboxylic acid methyl ester] is a hallucinogenic kappa-opioid receptor agonist that lacks the usual basic nitrogen atom present in other known opioid ligands. Our first published studies indicated that Salvinorin A weakly inhibited mu-receptor binding, and subsequent experiments revealed that Salvinorin A partially inhibited mu-receptor binding. Therefore, we hypothesized that Salvinorin A allosterically modulates mu-receptor binding. To test this hypothesis, we used Chinese hamster ovary cells expressing the cloned human opioid receptor. Salvinorin A partially inhibited [(3)H]Tyr-D-Ala-Gly-N-Me-Phe-Gly-ol (DAMGO) (0.5, 2.0, and 8.0 nM) binding with E(MAX) values of 78.6, 72.1, and 45.7%, respectively, and EC(50) values of 955, 1124, and 4527 nM, respectively. Salvinorin A also partially inhibited [(3)H]diprenorphine (0.02, 0.1, and 0.5 nM) binding with E(MAX) values of 86.2, 64, and 33.6%, respectively, and EC(50) values of 1231, 866, and 3078 nM, respectively. Saturation binding studies with [(3)H]DAMGO showed that Salvinorin A (10 and 30 microM) decreased the mu-receptor B(max) and increased the K(d) in a dose-dependent nonlinear manner. Saturation binding studies with [(3)H]diprenorphine showed that Salvinorin A (10 and 40 microM) decreased the mu-receptor B(max) and increased the K(d) in a dose-dependent nonlinear manner. Similar findings were observed in rat brain with [(3)H]DAMGO. Kinetic experiments demonstrated that Salvinorin A altered the dissociation kinetics of both [(3)H]DAMGO and [(3)H]diprenorphine binding to mu receptors. Furthermore, Salvinorin A acted as an uncompetitive inhibitor of DAMGO-stimulated guanosine 5'-O-(3-[(35)S]thio)-triphosphate binding. Viewed collectively, these data support the hypothesis that Salvinorin A allosterically modulates the mu-opioid receptor.

  9. Receptors and cGMP signalling mechanism for E. coli enterotoxin in opossum kidney

    SciTech Connect

    Forte, L.R.; Krause, W.J.; Freeman, R.H. Harry S. Truman Memorial Veterans Medical Center, Columbia, MO )

    1988-11-01

    Receptors for the heat-stable enterotoxin produced by Escherichia coli were found in the kidney and intestine of the North American opossum and in cultured renal cell lines. The enterotoxin markedly increased guanosine 3{prime},5{prime}-cyclic monophosphate (cGMP) production in slices of kidney cortex and medulla, in suspensions of intestinal mucosa, and in the opossum kidney (OK) and rat kangaroo kidney (PtK-2) cell lines. In contrast, atrial natriuretic factor elicited much smaller increases in cGMP levels of kidney, intestine, or cultured kidney cell lines. The enterotoxin receptors in OK cells had a molecular mass of approximately 120 kDa when measured by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of receptors crosslinked with {sup 125}I-enterotoxin. The occurrence of receptors for the E. coli peptide in OK implies that these receptors may be involved in the regulation of renal tubular function in the opossum. E. coli enterotoxin caused a much larger increase in urine cGMP excretion than did atrial natriuretic factor when these peptides were injected intravenously into opossums. However, atrial natriuretic factor elicited a marked diuresis, natriuresis, and increased urinary excretion of calcium, phosphate, potassium, and magnesium. In contrast, the enterotoxin did not acutely influence OK fluid and electrolyte excretion. Thus the substantial increase in cGMP synthesis produced by the bacterial peptide in OK cortex and medulla in vitro and the increased renal excretion of cGMP in vivo were not associated with changes in electrolyte or water excretion. Whether cGMP represents a second messenger molecule in the kidney is an interesting question that was raised but not answered in this series of experiments.

  10. Biophysical techniques for detection of cAMP and cGMP in living cells.

    PubMed

    Sprenger, Julia U; Nikolaev, Viacheslav O

    2013-04-12

    Cyclic nucleotides cAMP and cGMP are ubiquitous second messengers which regulate myriads of functions in virtually all eukaryotic cells. Their intracellular effects are often mediated via discrete subcellular signaling microdomains. In this review, we will discuss state-of-the-art techniques to measure cAMP and cGMP in biological samples with a particular focus on live cell imaging approaches, which allow their detection with high temporal and spatial resolution in living cells and tissues. Finally, we will describe how these techniques can be applied to the analysis of second messenger dynamics in subcellular signaling microdomains.

  11. Elucidation of direct competition and allosteric modulation of small-molecular-weight protein ligands using surface plasmon resonance methods.

    PubMed

    Huber, Walter; Sinopoli, Alessandro; Kohler, Josiane; Hug, Melanie; Ruf, Armin; Huber, Sylwia

    2015-08-01

    The present work introduces a surface plasmon resonance-based method for the discrimination of direct competition and allosteric effects that occur in ternary systems comprising a receptor protein and two small-molecular-weight ligands that bind to it. Fatty acid binding protein 4, fructose-1,6-bisphosphatase and human serum albumin were used as model receptor molecules to demonstrate the performance of the method. For each of the receptor molecules, pairs of ligand molecules were selected for which either direct competition or an allosteric effect had already been determined by other methods. The method of discrimination introduced here is based on the surface plasmon resonance responses observed at equilibrium when an immobilized receptor protein is brought into contact with binary mixtures of interacting ligands. These experimentally determined responses are compared with the responses calculated using a theoretical model that considers both direct competition and allosteric ligand interaction modes. This study demonstrates that the allosteric ternary complex model, which enables calculation of the fractional occupancy of the protein by each ligand in such ternary systems, is well suited for the theoretical calculation of these types of responses. For all of the ternary systems considered in this work, the experimental and calculated responses in the chosen concentration ratio range were identical within a five-σ confidence interval when the calculations considered the correct interaction mode of the ligands (direct competition or different types of allosteric regulation), and in case of allosteric modulation, also the correct strength of this effect. This study also demonstrates that the allosteric ternary complex model-based calculations are well suited to predict the ideal concentration ratio range or even single concentration ratios that can serve as hot spots for discrimination, and such hot spots can drastically reduce the numbers of measurements needed

  12. Structural Analysis of Iac Repressor Bound to Allosteric Effectors

    SciTech Connect

    Daber,R.; Stayrook, S.; Rosenberg, A.; Lewis, M.

    2007-01-01

    The lac operon is a model system for understanding how effector molecules regulate transcription and are necessary for allosteric transitions. The crystal structures of the lac repressor bound to inducer and anti-inducer molecules provide a model for how these small molecules can modulate repressor function. The structures of the apo repressor and the repressor bound to effector molecules are compared in atomic detail. All effectors examined here bind to the repressor in the same location and are anchored to the repressor through hydrogen bonds to several hydroxyl groups of the sugar ring. Inducer molecules form a more extensive hydrogen-bonding network compared to anti-inducers and neutral effector molecules. The structures of these effector molecules suggest that the O6 hydroxyl on the galactoside is essential for establishing a water-mediated hydrogen bonding network that bridges the N-terminal and C-terminal sub-domains. The altered hydrogen bonding can account in part for the different structural conformations of the repressor, and is vital for the allosteric transition.

  13. Multimodal mechanism of action of allosteric HIV-1 integrase inhibitors

    PubMed Central

    Jurado, Kellie Ann; Engelman, Alan

    2013-01-01

    Integrase (IN) is required for lentivirus replication and is a proven drug target for the prevention of AIDS in HIV-1 infected patients. While clinical strand transfer inhibitors disarm the IN active site, allosteric inhibition of enzyme activity through the disruption of IN-IN protein interfaces holds great therapeutic potential. A promising class of allosteric IN inhibitors (ALLINIs), 2-(quinolin-3-yl) acetic acid derivatives, engage the IN catalytic core domain dimerization interface at the binding site for the host integration co-factor LEDGF/p75. ALLINIs promote IN multimerization and, independent of LEDGF/p75 protein, block the formation of the active IN-DNA complex, as well as inhibit the IN-LEDGF/p75 interaction in vitro. Yet, rather unexpectedly, the full inhibitory effect of these compounds is exerted during the late phase of HIV-1 replication. ALLINIs impair particle core maturation as well as reverse transcription and integration during the subsequent round of virus infection. Recapitulating the pleiotropic phenotypes observed with numerous IN mutant viruses, ALLINIs provide insight into underlying aspects of IN biology that extend beyond its catalytic activity. Therefore, in addition to the potential to expand our repertoire of HIV-1 antiretrovirals, ALLINIs afford important structural probes to dissect the multifaceted nature of the IN protein throughout the course of HIV-1 replication. PMID:24274067

  14. Allosteric activation of ADAMTS13 by von Willebrand factor.

    PubMed

    Muia, Joshua; Zhu, Jian; Gupta, Garima; Haberichter, Sandra L; Friedman, Kenneth D; Feys, Hendrik B; Deforche, Louis; Vanhoorelbeke, Karen; Westfield, Lisa A; Roth, Robyn; Tolia, Niraj Harish; Heuser, John E; Sadler, J Evan

    2014-12-30

    The metalloprotease ADAMTS13 cleaves von Willebrand factor (VWF) within endovascular platelet aggregates, and ADAMTS13 deficiency causes fatal microvascular thrombosis. The proximal metalloprotease (M), disintegrin-like (D), thrombospondin-1 (T), Cys-rich (C), and spacer (S) domains of ADAMTS13 recognize a cryptic site in VWF that is exposed by tensile force. Another seven T and two complement C1r/C1s, sea urchin epidermal growth factor, and bone morphogenetic protein (CUB) domains of uncertain function are C-terminal to the MDTCS domains. We find that the distal T8-CUB2 domains markedly inhibit substrate cleavage, and binding of VWF or monoclonal antibodies to distal ADAMTS13 domains relieves this autoinhibition. Small angle X-ray scattering data indicate that distal T-CUB domains interact with proximal MDTCS domains. Thus, ADAMTS13 is regulated by substrate-induced allosteric activation, which may optimize VWF cleavage under fluid shear stress in vivo. Distal domains of other ADAMTS proteases may have similar allosteric properties.

  15. Allosteric Inhibition of Macrophage Migration Inhibitory Factor Revealed by Ibudilast

    SciTech Connect

    Cho, Y.; Crichlow, G; Vermeire, J; Leng, L; Du, X; Hodsdon, M; Bucala, R; Cappello, M; Gross, M; et al.

    2010-01-01

    AV411 (ibudilast; 3-isobutyryl-2-isopropylpyrazolo-[1,5-a]pyridine) is an antiinflammatory drug that was initially developed for the treatment of bronchial asthma but which also has been used for cerebrovascular and ocular indications. It is a nonselective inhibitor of various phosphodiesterases (PDEs) and has varied antiinflammatory activity. More recently, AV411 has been studied as a possible therapeutic for the treatment of neuropathic pain and opioid withdrawal through its actions on glial cells. As described herein, the PDE inhibitor AV411 and its PDE-inhibition-compromised analog AV1013 inhibit the catalytic and chemotactic functions of the proinflammatory protein, macrophage migration inhibitory factor (MIF). Enzymatic analysis indicates that these compounds are noncompetitive inhibitors of the p-hydroxyphenylpyruvate (HPP) tautomerase activity of MIF and an allosteric binding site of AV411 and AV1013 is detected by NMR. The allosteric inhibition mechanism is further elucidated by X-ray crystallography based on the MIF/AV1013 binary and MIF/AV1013/HPP ternary complexes. In addition, our antibody experiments directed against MIF receptors indicate that CXCR2 is the major receptor for MIF-mediated chemotaxis of peripheral blood mononuclear cells.

  16. Development of a photoactivatable allosteric ligand for the m1 muscarinic acetylcholine receptor.

    PubMed

    Davie, Briana J; Sexton, Patrick M; Capuano, Ben; Christopoulos, Arthur; Scammells, Peter J

    2014-10-15

    The field of G protein-coupled receptor drug discovery has benefited greatly from the structural and functional insights afforded by photoactivatable ligands. One G protein-coupled receptor subfamily for which photoactivatable ligands have been developed is the muscarinic acetylcholine receptor family, though, to date, all such ligands have been designed to target the orthosteric (endogenous ligand) binding site of these receptors. Herein we report the synthesis and pharmacological investigation of a novel photoaffinity label, MIPS1455 (4), designed to bind irreversibly to an allosteric site of the M1 muscarinic acetylcholine receptor; a target of therapeutic interest for the treatment of cognitive deficits. MIPS1455 may be a valuable molecular tool for further investigating allosteric interactions at this receptor.

  17. Computer Simulations of the Retinoid X Receptor: Conformational Dynamics and Allosteric Networks.

    PubMed

    van der Vaart, Arjan; Lorkowski, Alexander; Ma, Ning; Gray, Geoffrey M

    2017-01-01

    As the heterodimerization partner for a large number of nuclear receptors, the retinoid X receptor (RXR) is important for a large and diverse set of biochemical pathways. Activation and regulation of RXR heterodimers is achieved by complex allosteric mechanisms, which involve the binding of ligands, DNA, coactivators and corepressors, and entail large and subtle conformational motions. Complementing experiments, computer simulations have provided detailed insights into the origins of the allostery by investigating the changes in structure, motion, and interactions upon dimerization, ligand and cofactor binding. This review will summarize a number of simulation studies that have furthered the understanding of the conformational dynamics and the allosteric activation and control of RXR complexes. While the review focuses on the RXR and RXR heterodimers, relevant simulation studies of other nuclear receptors will be discussed as well.

  18. Cardioprotective cGMP favors exogenous fatty acid incorporation into tyiglycerides over direct beta-oxidation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While cardiac hypertrophy has been associated with a shift in substrate selection for energy production from fatty acids (FA) to carbohydrates (CHO), it remains controversial whether this shift is adaptive or maladaptive. Since enhanced cGMP signalling can prevent hypertrophy, we hypothesized that t...

  19. cGMP modulates responses to queen mandibular pheromone in worker honey bees

    PubMed Central

    Fussnecker, Brendon L.; McKenzie, Alexander M.; Grozinger, Christina M.

    2013-01-01

    Responses to social cues, such as pheromones, can be modified by genotype, physiology, or environmental context. Honey bee queens produce a pheromone (queen mandibular pheromone; QMP) which regulates aspects of worker bee behavior and physiology. Forager bees are less responsive to QMP than young bees engaged in brood care, suggesting that physiological changes associated with behavioral maturation modulate response to this pheromone. Since 3′, 5′-cyclic guanosine monophosphate (cGMP) is a major regulator of behavioral maturation in workers, we examined its role in modulating worker responses to QMP. Treatment with a cGMP analog resulted in significant reductions in both behavioral and physiological responses to QMP in young caged workers. Treatment significantly reduced attraction to QMP and inhibited the QMP-mediated increase in vitellogenin RNA levels in the fat bodies of worker bees. Genome-wide analysis of brain gene expression patterns demonstrated that cGMP has a larger effect on expression levels than QMP, and that QMP has specific effects in the presence of cGMP, suggesting that some responses to QMP may be dependent on an individual bees' physiological state. Our data suggest that cGMP-mediated processes play a role in modulating responses to QMP in honey bees at the behavioral, physiological, and molecular levels. PMID:21626397

  20. A Short History of cGMP, Guanylyl Cyclases, and cGMP-Dependent Protein Kinases

    PubMed Central

    Kots, Alexander Y.; Martin, Emil; Sharina, Iraida G.

    2014-01-01

    Here, we review the early studies on cGMP, guanylyl cyclases, and cGMP-dependent protein kinases to facilitate understanding of development of this exciting but complex field of research encompassing pharmacology, biochemistry, physiology, and molecular biology of these important regulatory molecules. PMID:19089322

  1. Identification of the Allosteric Site for Phenylalanine in Rat Phenylalanine Hydroxylase.

    PubMed

    Zhang, Shengnan; Fitzpatrick, Paul F

    2016-04-01

    Liver phenylalanine hydroxylase (PheH) is an allosteric enzyme that requires activation by phenylalanine for full activity. The location of the allosteric site for phenylalanine has not been established. NMR spectroscopy of the isolated regulatory domain (RDPheH(25-117) is the regulatory domain of PheH lacking residues 1-24) of the rat enzyme in the presence of phenylalanine is consistent with formation of a side-by-side ACT dimer. Six residues in RDPheH(25-117) were identified as being in the phenylalanine-binding site on the basis of intermolecular NOEs between unlabeled phenylalanine and isotopically labeled protein. The location of these residues is consistent with two allosteric sites per dimer, with each site containing residues from both monomers. Site-specific variants of five of the residues (E44Q, A47G, L48V, L62V, and H64N) decreased the affinity of RDPheH(25-117) for phenylalanine based on the ability to stabilize the dimer. Incorporation of the A47G, L48V, and H64N mutations into the intact protein increased the concentration of phenylalanine required for activation. The results identify the location of the allosteric site as the interface of the regulatory domain dimer formed in activated PheH.

  2. Prediction of allosteric sites and mediating interactions through bond-to-bond propensities

    PubMed Central

    Amor, B. R. C.; Schaub, M. T.; Yaliraki, S. N.; Barahona, M.

    2016-01-01

    Allostery is a fundamental mechanism of biological regulation, in which binding of a molecule at a distant location affects the active site of a protein. Allosteric sites provide targets to fine-tune protein activity, yet we lack computational methodologies to predict them. Here we present an efficient graph-theoretical framework to reveal allosteric interactions (atoms and communication pathways strongly coupled to the active site) without a priori information of their location. Using an atomistic graph with energy-weighted covalent and weak bonds, we define a bond-to-bond propensity quantifying the non-local effect of instantaneous bond fluctuations propagating through the protein. Significant interactions are then identified using quantile regression. We exemplify our method with three biologically important proteins: caspase-1, CheY, and h-Ras, correctly predicting key allosteric interactions, whose significance is additionally confirmed against a reference set of 100 proteins. The almost-linear scaling of our method renders it suitable for high-throughput searches for candidate allosteric sites. PMID:27561351

  3. Entropy Transfer between Residue Pairs and Allostery in Proteins: Quantifying Allosteric Communication in Ubiquitin

    PubMed Central

    2017-01-01

    It has recently been proposed by Gunasakaran et al. that allostery may be an intrinsic property of all proteins. Here, we develop a computational method that can determine and quantify allosteric activity in any given protein. Based on Schreiber's transfer entropy formulation, our approach leads to an information transfer landscape for the protein that shows the presence of entropy sinks and sources and explains how pairs of residues communicate with each other using entropy transfer. The model can identify the residues that drive the fluctuations of others. We apply the model to Ubiquitin, whose allosteric activity has not been emphasized until recently, and show that there are indeed systematic pathways of entropy and information transfer between residues that correlate well with the activities of the protein. We use 600 nanosecond molecular dynamics trajectories for Ubiquitin and its complex with human polymerase iota and evaluate entropy transfer between all pairs of residues of Ubiquitin and quantify the binding susceptibility changes upon complex formation. We explain the complex formation propensities of Ubiquitin in terms of entropy transfer. Important residues taking part in allosteric communication in Ubiquitin predicted by our approach are in agreement with results of NMR relaxation dispersion experiments. Finally, we show that time delayed correlation of fluctuations of two interacting residues possesses an intrinsic causality that tells which residue controls the interaction and which one is controlled. Our work shows that time delayed correlations, entropy transfer and causality are the required new concepts for explaining allosteric communication in proteins. PMID:28095404

  4. Allosteric Inhibition via R-state Destabilization in ATP Sulfurylase from Penicillium chrysogenum

    SciTech Connect

    MacRae, I. J.

    2002-01-01

    The structure of the cooperative hexameric enzyme ATP sulfurylase from Penicillium chrysogenum bound to its allosteric inhibitor, 3'-phosphoadenosine-5'-phosphosulfate (PAPS), was determined to 2.6 {angstrom} resolution. This structure represents the low substrate-affinity T-state conformation of the enzyme. Comparison with the high substrate-affinity R-state structure reveals that a large rotational rearrangement of domains occurs as a result of the R-to-T transition. The rearrangement is accompanied by the 17 {angstrom} movement of a 10-residue loop out of the active site region, resulting in an open, product release-like structure of the catalytic domain. Binding of PAPS is proposed to induce the allosteric transition by destabilizing an R-state-specific salt linkage between Asp 111 in an N-terminal domain of one subunit and Arg 515 in the allosteric domain of a trans-triad subunit. Disrupting this salt linkage by site-directed mutagenesis induces cooperative inhibition behavior in the absence of an allosteric effector, confirming the role of these two residues.

  5. Prediction of allosteric sites and mediating interactions through bond-to-bond propensities

    NASA Astrophysics Data System (ADS)

    Amor, B. R. C.; Schaub, M. T.; Yaliraki, S. N.; Barahona, M.

    2016-08-01

    Allostery is a fundamental mechanism of biological regulation, in which binding of a molecule at a distant location affects the active site of a protein. Allosteric sites provide targets to fine-tune protein activity, yet we lack computational methodologies to predict them. Here we present an efficient graph-theoretical framework to reveal allosteric interactions (atoms and communication pathways strongly coupled to the active site) without a priori information of their location. Using an atomistic graph with energy-weighted covalent and weak bonds, we define a bond-to-bond propensity quantifying the non-local effect of instantaneous bond fluctuations propagating through the protein. Significant interactions are then identified using quantile regression. We exemplify our method with three biologically important proteins: caspase-1, CheY, and h-Ras, correctly predicting key allosteric interactions, whose significance is additionally confirmed against a reference set of 100 proteins. The almost-linear scaling of our method renders it suitable for high-throughput searches for candidate allosteric sites.

  6. Controlling the rate of organic reactions: rational design of allosteric Diels-Alderase ribozymes

    PubMed Central

    Amontov, Sergey; Jäschke, Andres

    2006-01-01

    Allosteric mechanisms are widely used in nature to control the rates of enzymatic reactions, but little is known about RNA catalysts controlled by these principles. The only natural allosteric ribozyme reported to date catalyzes an RNA cleavage reaction, and so do almost all artificial systems. RNA has, however, been shown to accelerate a much wider range of chemical reactions. Here we report that RNA catalysts for organic reactions can be put under the stringent control of effector molecules by straight-forward rational design. This approach uses known RNA sequences with catalytic and ligand-binding properties, and exploits weakly conserved sequence elements and available structural information to induce the formation of alternative, catalytically inactive structures. The potential and general applicability is demonstrated by the design of three different systems in which the rate of a catalytic carbon–carbon bond forming reaction is positively regulated up to 2100-fold by theophylline, tobramycin and a specific mRNA sequence, respectively. Although smaller in size than a tRNA, all three ribozymes show typical features of allosteric metabolic enzymes, namely high rate acceleration and tight allosteric regulation. Not only do these findings demonstrate RNA's power as a catalyst, but also highlight on RNA's capabilities as signaling components in regulatory networks. PMID:16990253

  7. Controlling the rate of organic reactions: rational design of allosteric Diels-Alderase ribozymes.

    PubMed

    Amontov, Sergey; Jäschke, Andres

    2006-01-01

    Allosteric mechanisms are widely used in nature to control the rates of enzymatic reactions, but little is known about RNA catalysts controlled by these principles. The only natural allosteric ribozyme reported to date catalyzes an RNA cleavage reaction, and so do almost all artificial systems. RNA has, however, been shown to accelerate a much wider range of chemical reactions. Here we report that RNA catalysts for organic reactions can be put under the stringent control of effector molecules by straight-forward rational design. This approach uses known RNA sequences with catalytic and ligand-binding properties, and exploits weakly conserved sequence elements and available structural information to induce the formation of alternative, catalytically inactive structures. The potential and general applicability is demonstrated by the design of three different systems in which the rate of a catalytic carbon-carbon bond forming reaction is positively regulated up to 2100-fold by theophylline, tobramycin and a specific mRNA sequence, respectively. Although smaller in size than a tRNA, all three ribozymes show typical features of allosteric metabolic enzymes, namely high rate acceleration and tight allosteric regulation. Not only do these findings demonstrate RNA's power as a catalyst, but also highlight on RNA's capabilities as signaling components in regulatory networks.

  8. Mimicking the Regulation Step of Fe-Monooxygenases: Allosteric Modulation of Fe(IV) -Oxo Formation by Guest Binding in a Dinuclear Zn(II) -Fe(II) Calix[6]arene-Based Funnel Complex.

    PubMed

    Ségaud, Nathalie; De Thomasson, Constance; Daverat, Caroline; Sénéchal-David, Katell; Dos Santos, Amandine; Steinmetz, Vincent; Maître, Philippe; Rebilly, Jean-Noël; Banse, Frédéric; Reinaud, Olivia

    2017-02-24

    A heteroditopic ligand associated with a calix[6]arene scaffold bearing a tris(imidazole) coordinating site at its small rim and an amine/pyridine ligand at its large rim has been prepared, and its regioselective coordination to Zn(II) at the small rim and Fe(II) in the amine/pyridine ligand has been achieved. The heterodinuclear complex obtained displays an overall cone conformation capped by the tris(imidazole)Zn(II) moiety and bears a non-heme Fe(II) complex at its base. Each of the metal centers exhibits one labile position, allowing the coordination inside the cavity of a guest alkylamine at Zn(II) and the generation of reaction intermediates (Fe(III) (OOH) and Fe(IV) O) at the large rim. A dependence between the chain length of the encapsulated alkylamine and the distribution of Fe(III) (OOH) intermediates and Fe(III) (OMe) is observed. In addition, it is shown that the generation of the Fe(IV) O intermediate is enhanced by addition of the alkylamine guest. Hence, this supramolecular system gathers the three levels of reactivity control encountered in oxidoreductases: i) control of the Fe(II) redox properties through its first coordination sphere, allowing us to generate high valent reactive species; ii) control of guest binding through a hydrophobic funnel that drives its alkyl chain next to the reactive iron complex, thus mimicking the binding pocket of natural systems; iii) guest-modulated reactivity of the Fe(II) center towards oxidants.

  9. Pharmacological and molecular characterization of the positive allosteric modulators of metabotropic glutamate receptor 2.

    PubMed

    Lundström, L; Bissantz, C; Beck, J; Dellenbach, M; Woltering, T J; Wichmann, J; Gatti, S

    2017-02-16

    The metabotropic glutamate receptor 2 (mGlu2) plays an important role in the presynaptic control of glutamate release and several mGlu2 positive allosteric modulators (PAMs) have been under assessment for their potential as antipsychotics. The binding mode of mGlu2 PAMs is better characterized in functional terms while few data are available on the relationship between allosteric and orthosteric binding sites. Pharmacological studies characterizing binding and effects of two different chemical series of mGlu2 PAMs are therefore carried out here using the radiolabeled mGlu2 agonist (3)[H]-LY354740 and mGlu2 PAM (3)[H]-2,2,2-TEMPS. A multidimensional approach to the PAM mechanism of action shows that mGlu2 PAMs increase the affinity of (3)[H]-LY354740 for the orthosteric site of mGlu2 as well as the number of (3)[H]-LY354740 binding sites. (3)[H]-2,2,2-TEMPS binding is also enhanced by the presence of LY354740. New residues in the allosteric rat mGlu2 binding pocket are identified to be crucial for the PAMs ligand binding, among these Tyr(3.40) and Asn(5.46). Also of remark, in the described experimental conditions S731A (Ser(5.42)) residue is important only for the mGlu2 PAM LY487379 and not for the compound PAM-1: an example of the structural differences among these mGlu2 PAMs. This study provides a summary of the information generated in the past decade on mGlu2 PAMs adding a detailed molecular investigation of PAM binding mode. Differences among mGlu2 PAM compounds are discussed as well as the mGlu2 regions interacting with mGlu2 PAM and NAM agents and residues driving mGlu2 PAM selectivity.

  10. Pharmacological and molecular characterization of the positive allosteric modulators of metabotropic glutamate receptor 2.

    PubMed

    Lundström, L; Bissantz, C; Beck, J; Dellenbach, M; Woltering, T J; Wichmann, J; Gatti, S

    2016-12-01

    The metabotropic glutamate receptor 2 (mGlu2) plays an important role in the presynaptic control of glutamate release and several mGlu2 positive allosteric modulators (PAMs) have been under assessment for their potential as antipsychotics. The binding mode of mGlu2 PAMs is better characterized in functional terms while few data are available on the relationship between allosteric and orthosteric binding sites. Pharmacological studies characterizing binding and effects of two different chemical series of mGlu2 PAMs are therefore carried out here using the radiolabeled mGlu2 agonist (3)[H]-LY354740 and mGlu2 PAM (3)[H]-2,2,2-TEMPS. A multidimensional approach to the PAM mechanism of action shows that mGlu2 PAMs increase the affinity of (3)[H]-LY354740 for the orthosteric site of mGlu2 as well as the number of (3)[H]-LY354740 binding sites. (3)[H]-2,2,2-TEMPS binding is also enhanced by the presence of LY354740. New residues in the allosteric rat mGlu2 binding pocket are identified to be crucial for the PAMs ligand binding, among these Tyr(3.40) and Asn(5.46). Also of remark, in the described experimental conditions S731A (Ser(5.42)) residue is important only for the mGlu2 PAM LY487379 and not for the compound PAM-1: an example of the structural differences among these mGlu2 PAMs. This study provides a summary of the information generated in the past decade on mGlu2 PAMs adding a detailed molecular investigation of PAM binding mode. Differences among mGlu2 PAM compounds are discussed as well as the mGlu2 regions interacting with mGlu2 PAM and NAM agents and residues driving mGlu2 PAM selectivity.

  11. cGMP phosphodiesterase inhibition improves the vascular and metabolic actions of insulin in skeletal muscle.

    PubMed

    Genders, A J; Bradley, E A; Rattigan, S; Richards, S M

    2011-08-01

    There is considerable support for the concept that insulin-mediated increases in microvascular blood flow to muscle impact significantly on muscle glucose uptake. Since the microvascular blood flow increases with insulin have been shown to be nitric oxide-dependent inhibition of cGMP-degrading phosphodiesterases (cGMP PDEs) is predicted to enhance insulin-mediated increases in microvascular perfusion and muscle glucose uptake. Therefore, we studied the effects of the pan-cGMP PDE inhibitor zaprinast on the metabolic and vascular actions of insulin in muscle. Hyperinsulinemic euglycemic clamps (3 mU·min(-1)·kg(-1)) were performed in anesthetized rats and changes in microvascular blood flow assessed from rates of 1-methylxanthine metabolism across the muscle bed by capillary xanthine oxidase in response to insulin and zaprinast. We also characterized cGMP PDE isoform expression in muscle by real-time PCR and immunostaining of frozen muscle sections. Zaprinast enhanced insulin-mediated microvascular perfusion by 29% and muscle glucose uptake by 89%, while whole body glucose infusion rate during insulin infusion was increased by 33% at 2 h. PDE2, -9, and -10 were the major isoforms expressed at the mRNA level in muscle, while PDE1B, -9A, -10A, and -11A proteins were expressed in blood vessels. Acute administration of the cGMP PDE inhibitor zaprinast enhances muscle microvascular blood flow and glucose uptake response to insulin. The expression of a number of cGMP PDE isoforms in skeletal muscle suggests that targeting specific cGMP PDE isoforms may provide a promising avenue for development of a novel class of therapeutics for enhancing muscle insulin sensitivity.

  12. Engineering an allosteric transcription factor to respond to new ligands.

    PubMed

    Taylor, Noah D; Garruss, Alexander S; Moretti, Rocco; Chan, Sum; Arbing, Mark A; Cascio, Duilio; Rogers, Jameson K; Isaacs, Farren J; Kosuri, Sriram; Baker, David; Fields, Stanley; Church, George M; Raman, Srivatsan

    2016-02-01

    Genetic regulatory proteins inducible by small molecules are useful synthetic biology tools as sensors and switches. Bacterial allosteric transcription factors (aTFs) are a major class of regulatory proteins, but few aTFs have been redesigned to respond to new effectors beyond natural aTF-inducer pairs. Altering inducer specificity in these proteins is difficult because substitutions that affect inducer binding may also disrupt allostery. We engineered an aTF, the Escherichia coli lac repressor, LacI, to respond to one of four new inducer molecules: fucose, gentiobiose, lactitol and sucralose. Using computational protein design, single-residue saturation mutagenesis or random mutagenesis, along with multiplex assembly, we identified new variants comparable in specificity and induction to wild-type LacI with its inducer, isopropyl β-D-1-thiogalactopyranoside (IPTG). The ability to create designer aTFs will enable applications including dynamic control of cell metabolism, cell biology and synthetic gene circuits.

  13. Structural Basis for Allosteric Regulation of GPCRs by Sodium Ions

    SciTech Connect

    Liu, Wei; Chun, Eugene; Thompson, Aaron A.; Chubukov, Pavel; Xu, Fei; Katritch, Vsevolod; Han, Gye Won; Roth, Christopher B.; Heitman, Laura H.; IJzerman, Adriaan P.; Cherezov, Vadim; Stevens, Raymond C.

    2012-08-31

    Pharmacological responses of G protein-coupled receptors (GPCRs) can be fine-tuned by allosteric modulators. Structural studies of such effects have been limited due to the medium resolution of GPCR structures. We reengineered the human A{sub 2A} adenosine receptor by replacing its third intracellular loop with apocytochrome b{sub 562}RIL and solved the structure at 1.8 angstrom resolution. The high-resolution structure allowed us to identify 57 ordered water molecules inside the receptor comprising three major clusters. The central cluster harbors a putative sodium ion bound to the highly conserved aspartate residue Asp{sup 2.50}. Additionally, two cholesterols stabilize the conformation of helix VI, and one of 23 ordered lipids intercalates inside the ligand-binding pocket. These high-resolution details shed light on the potential role of structured water molecules, sodium ions, and lipids/cholesterol in GPCR stabilization and function.

  14. Allosteric Inhibition Through Core Disruption

    SciTech Connect

    Horn, James R.; Shoichet, Brian K.

    2010-03-05

    Although inhibitors typically bind pre-formed sites on proteins, it is theoretically possible to inhibit by disrupting the folded structure of a protein or, in the limit, to bind preferentially to the unfolded state. Equilibria defining how such molecules act are well understood, but structural models for such binding are unknown. Two novel inhibitors of {beta}-lactamase were found to destabilize the enzyme at high temperatures, but at lower temperatures showed no preference for destabilized mutant enzymes versus stabilized mutants. X-ray crystal structures showed that both inhibitors bound to a cryptic site in {beta}-lactamase, which the inhibitors themselves created by forcing apart helixes 11 and 12. This opened up a portion of the hydrophobic core of the protein, into which these two inhibitors bind. Although this binding site is 16 {angstrom} from the center of the active site, the conformational changes were transmitted through a sequence of linked motions to a key catalytic residue, Arg244, which in the complex adopts conformations very different from those in catalytically competent enzyme conformations. These structures offer a detailed view of what has heretofore been a theoretical construct, and suggest the possibility for further design against this novel site.

  15. Allosteric Site Variants of Haemophilus influenzae β-Carbonic Anhdyrase†, ‡

    PubMed Central

    Rowlett, Roger S.; Tu, Chingkuang; Lee, Joseph; Herman, Ariel G.; Chapnick, Douglas A.; Shah, Shalini H.; Gareiss, Peter C.

    2009-01-01

    Haemophilus influenzae β-carbonic anhydrase (HICA) is hypothesized to be an allosteric protein that is regulated by the binding of bicarbonate ion to a non-catalytic (inhibitory) site that controls the ligation of Asp44 to the catalytically essential zinc ion. We report here the X-ray crystallographic structures of two variants (W39F and Y181F) involved in the binding of bicarbonate ion in the non-catalytic site and an active site variant (D44N) that is incapable of forming a strong zinc ligand. The alteration of Trp39 to Phe increases the apparent Ki for bicarbonate inhibition by 4.8-fold. While the structures of W39F and Y181F are very similar to the wild-type enzyme, the X-ray crystal structure of the D44N variant reveals that it has adopted an active site conformation nearly identical to that of non-allosteric β-carbonic anhydrases. We propose that the structure of the D44N variant is likely to be representative of the active conformation of the enzyme. These results lend additional support to the hypothesis that HICA is an allosteric enzyme that can adopt active and inactive conformations, the latter of which is stabilized by bicarbonate ion binding to a non-catalytic site. PMID:19459702

  16. Allosteric drugs: the interaction of antitumor compound MKT-077 with human Hsp70 chaperones.

    PubMed

    Rousaki, Aikaterini; Miyata, Yoshinari; Jinwal, Umesh K; Dickey, Chad A; Gestwicki, Jason E; Zuiderweg, Erik R P

    2011-08-19

    Hsp70 (heat shock protein 70 kDa) chaperones are key to cellular protein homeostasis. However, they also have the ability to inhibit tumor apoptosis and contribute to aberrant accumulation of hyperphosphorylated tau in neuronal cells affected by tauopathies, including Alzheimer's disease. Hence, Hsp70 chaperones are increasingly becoming identified as targets for therapeutic intervention in these widely abundant diseases. Hsp70 proteins are allosteric machines and offer, besides classical active-site targets, also opportunities to target the mechanism of allostery. In this work, it is demonstrated that the action of the potent anticancer compound MKT-077 (1-ethyl-2-[[3-ethyl-5-(3-methylbenzothiazolin-2-yliden)]-4-oxothiazolidin-2-ylidenemethyl] pyridinium chloride) occurs through a differential interaction with Hsp70 allosteric states. MKT-077 is therefore an "allosteric drug." Using NMR spectroscopy, we identify the compound's binding site on human HSPA8 (Hsc70). The binding pose is obtained from NMR-restrained docking calculations, subsequently scored by molecular-dynamics-based energy and solvation computations. Suggestions for the improvement of the compound's properties are made on the basis of the binding location and pose.

  17. Structural basis for drug-induced allosteric changes to human β-cardiac myosin motor activity

    PubMed Central

    Winkelmann, Donald A.; Forgacs, Eva; Miller, Matthew T.; Stock, Ann M.

    2015-01-01

    Omecamtiv Mecarbil (OM) is a small molecule allosteric effector of cardiac myosin that is in clinical trials for treatment of systolic heart failure. A detailed kinetic analysis of cardiac myosin has shown that the drug accelerates phosphate release by shifting the equilibrium of the hydrolysis step towards products, leading to a faster transition from weak to strong actin-bound states. The structure of the human β-cardiac motor domain (cMD) with OM bound reveals a single OM-binding site nestled in a narrow cleft separating two domains of the human cMD where it interacts with the key residues that couple lever arm movement to the nucleotide state. In addition, OM induces allosteric changes in three strands of the β-sheet that provides the communication link between the actin-binding interface and the nucleotide pocket. The OM-binding interactions and allosteric changes form the structural basis for the kinetic and mechanical tuning of cardiac myosin. PMID:26246073

  18. Structural basis for drug-induced allosteric changes to human β-cardiac myosin motor activity.

    PubMed

    Winkelmann, Donald A; Forgacs, Eva; Miller, Matthew T; Stock, Ann M

    2015-08-06

    Omecamtiv Mecarbil (OM) is a small molecule allosteric effector of cardiac myosin that is in clinical trials for treatment of systolic heart failure. A detailed kinetic analysis of cardiac myosin has shown that the drug accelerates phosphate release by shifting the equilibrium of the hydrolysis step towards products, leading to a faster transition from weak to strong actin-bound states. The structure of the human β-cardiac motor domain (cMD) with OM bound reveals a single OM-binding site nestled in a narrow cleft separating two domains of the human cMD where it interacts with the key residues that couple lever arm movement to the nucleotide state. In addition, OM induces allosteric changes in three strands of the β-sheet that provides the communication link between the actin-binding interface and the nucleotide pocket. The OM-binding interactions and allosteric changes form the structural basis for the kinetic and mechanical tuning of cardiac myosin.

  19. Structural basis for drug-induced allosteric changes to human β-cardiac myosin motor activity

    NASA Astrophysics Data System (ADS)

    Winkelmann, Donald A.; Forgacs, Eva; Miller, Matthew T.; Stock, Ann M.

    2015-08-01

    Omecamtiv Mecarbil (OM) is a small molecule allosteric effector of cardiac myosin that is in clinical trials for treatment of systolic heart failure. A detailed kinetic analysis of cardiac myosin has shown that the drug accelerates phosphate release by shifting the equilibrium of the hydrolysis step towards products, leading to a faster transition from weak to strong actin-bound states. The structure of the human β-cardiac motor domain (cMD) with OM bound reveals a single OM-binding site nestled in a narrow cleft separating two domains of the human cMD where it interacts with the key residues that couple lever arm movement to the nucleotide state. In addition, OM induces allosteric changes in three strands of the β-sheet that provides the communication link between the actin-binding interface and the nucleotide pocket. The OM-binding interactions and allosteric changes form the structural basis for the kinetic and mechanical tuning of cardiac myosin.

  20. Development of Photoactivatable Allosteric Modulators for the Chemokine Receptor CXCR3.

    PubMed

    Admas, Tizita Haimanot; Bernat, Viachaslau; Heinrich, Markus R; Tschammer, Nuska

    2016-03-17

    The CXCR3 receptor, a class A G protein-coupled receptor (GPCR), is involved in the regulation and trafficking of various immune cells. CXCR3 antagonists have been proposed to be beneficial for the treatment of a wide range of disorders including but not limited to inflammatory and autoimmune diseases. The structure-based design of CXCR3 ligands remains, however, hampered by a lack of structural information describing in detail the interactions between an allosteric ligand and the receptor. We designed and synthesized photoactivatable probes for the structural and functional characterization, using photoaffinity labeling followed by mass spectrometry, of the CXCR3 allosteric binding pocket of AMG 487 and RAMX3, two potent and selective CXCR3 negative allosteric modulators. Photoaffinity labeling is a common approach to elucidate binding modes of small-molecule ligands of GPCRs through the aid of photoactivatable probes that convert to extremely reactive intermediates upon photolysis. The photolabile probe N-[({1-[3-(4-ethoxyphenyl)-4-oxo-3,4-dihydropyrido[2,3-d]pyrimidin-2-yl]ethyl}-2-[4-fluoro-3-(trifluoromethyl)phenyl]-N-{1-[4-(3-(trifluoromethyl)-3H-diazirin-3-yl]benzyl}piperidin-4-yl)methyl]acetamide (10) showed significant labeling of the CXCR3 receptor (80%) in a [(3) H]RAMX3 radioligand displacement assay. Compound 10 will serve as an important tool compound for the detailed investigation of the binding pocket of CXCR3 by mass spectrometry.

  1. Allosteric transitions of the maltose transporter studied by an elastic network model.

    PubMed

    Li, Chun Hua; Yang, Yong Xiao; Su, Ji Guo; Liu, Bin; Tan, Jian Jun; Zhang, Xiao Yi; Wang, Cun Xin

    2014-07-01

    The maltose transporter from Escherichia coli is one of the ATP-binding cassette (ABC) transporters that utilize the energy from ATP hydrolysis to translocate substrates across cellular membranes. Until 2011, three crystal structures have been determined for maltose transporter at different states in the process of transportation. Here, based on these crystal structures, the allosteric pathway from the resting state (inward-facing) to the catalytic intermediate state (outward-facing) is studied by applying an adaptive anisotropic network model. The results suggest that the allosteric transitions proceed in a coupled way. The closing of the nucleotide-binding domains occurs first, and subsequently this conformational change is propagated to the transmembrane domains (TMD) via the EAA and EAS loops, and then to the maltose-binding protein, which facilitates the translocation of the maltose. It is also found that there exist nonrigid-body and asymmetric movements in the TMD. The cytoplasmic gate may only play the role of allosteric propagation during the transition from the pretranslocation to outward-facing states. In addition, the results show that the movment of the helical subdomain towards the RecA-like subdomain mainly occurs in the earlier stages of the transition. These results can provide some insights into the understanding of the mechanism of ABC transporters.

  2. Allosteric Small-Molecule Inhibitors of the AKT Kinase

    NASA Astrophysics Data System (ADS)

    Dalafave, D. S.

    This research addresses computational design of small druglike molecules for possible anticancer applications. AKT and SGK are kinases that control important cellular functions. They are highly homologous, having similar activators and targets. Cancers with increased SGK activity may develop resistance to AKT-specific inhibitors. Our goal was to design new molecules that would bind both AKT and SGK, thus preventing the development of drug resistance. Most kinase inhibitors target the kinase ATP-binding site. However, the high similarity in this site among kinases makes it difficult to target specifically. Furthermore, mutations in this site can cause resistance to ATP-competitive kinase inhibitors. We used existing AKT inhibitors as initial templates to design molecules that could potentially bind the allosteric sites of both AKT and SGK. Molecules with no implicit toxicities and optimal drug-like properties were used for docking studies. Binding energies of the stable complexes that the designed molecules formed with AKT and SGK were calculated. Possible applications of the designed putative inhibitors against cancers with overexpressed AKT/SGK is discussed.

  3. Allosteric Inhibition of Anti-Apoptotic MCL-1

    PubMed Central

    Lee, Susan; Wales, Thomas E.; Escudero, Silvia; Cohen, Daniel T.; Luccarelli, James; Gallagher, Catherine; Cohen, Nicole A.; Huhn, Annissa J.; Bird, Gregory H.; Engen, John R.; Walensky, Loren D.

    2016-01-01

    MCL-1 is an anti-apoptotic BCL-2 family protein that has emerged as a major pathogenic factor in human cancer. Like BCL-2, MCL-1 bears a surface groove whose function is to sequester the BH3 killer domains of pro-apoptotic BCL-2 family members, a mechanism harnessed by cancer cells to establish formidable apoptotic blockades. Whereas drugging the BH3-binding groove has been achieved for BCL-2, translating this approach to MCL-1 has been challenging. Here, we report an alternative mechanism for MCL-1 inhibition by small molecule covalent modification of C286 at a novel interaction site distant from the BH3-binding groove. Our structure-function analyses revealed that the BH3-binding capacity of MCL-1 and its suppression of BAX are impaired by molecular engagement, a phenomenon recapitulated by C286W mutagenic mimicry in vitro and in cells. Thus, we characterize an allosteric mechanism for disrupting the anti-apoptotic, BH3-binding activity of MCL-1, informing a new strategy for disarming MCL-1 in cancer. PMID:27159560

  4. Allosteric control in a metalloprotein dramatically alters function

    PubMed Central

    Baxter, Elizabeth Leigh; Zuris, John A.; Wang, Charles; Vo, Phu Luong T.; Axelrod, Herbert L.; Cohen, Aina E.; Paddock, Mark L.; Nechushtai, Rachel; Onuchic, Jose N.; Jennings, Patricia A.

    2013-01-01

    Metalloproteins (MPs) comprise one-third of all known protein structures. This diverse set of proteins contain a plethora of unique inorganic moieties capable of performing chemistry that would otherwise be impossible using only the amino acids found in nature. Most of the well-studied MPs are generally viewed as being very rigid in structure, and it is widely thought that the properties of the metal centers are primarily determined by the small fraction of amino acids that make up the local environment. Here we examine both theoretically and experimentally whether distal regions can influence the metal center in the diabetes drug target mitoNEET. We demonstrate that a loop (L2) 20 Å away from the metal center exerts allosteric control over the cluster binding domain and regulates multiple properties of the metal center. Mutagenesis of L2 results in significant shifts in the redox potential of the [2Fe-2S] cluster and orders of magnitude effects on the rate of [2Fe-2S] cluster transfer to an apo-acceptor protein. These surprising effects occur in the absence of any structural changes. An examination of the native basin dynamics of the protein using all-atom simulations shows that twisting in L2 controls scissoring in the cluster binding domain and results in perturbations to one of the cluster-coordinating histidines. These allosteric effects are in agreement with previous folding simulations that predicted L2 could communicate with residues surrounding the metal center. Our findings suggest that long-range dynamical changes in the protein backbone can have a significant effect on the functional properties of MPs. PMID:23271805

  5. Synthesis, structural activity-relationships, and biological evaluation of novel amide-based allosteric binding site antagonists in NR1A/NR2B N-methyl-D-aspartate receptors☆

    PubMed Central

    Mosley, Cara A.; Myers, Scott J.; Murray, Ernest E.; Santangelo, Rose; Tahirovic, Yesim A.; Kurtkaya, Natalie; Mullasseril, Praseeda; Yuan, Hongjie; Lyuboslavsky, Polina; Le, Phuong; Wilson, Lawrence J.; Yepes, Manuel; Dingledine, Ray; Traynelis, Stephen F.; Liotta, Dennis C.

    2010-01-01

    The synthesis and structure–activity relationship analysis of a novel class of amide-based biaryl NR2B-selective NMDA receptor antagonists are presented. Some of the studied compounds are potent, selective, non-competitive, and voltage-independent antagonists of NR2B-containing NMDA receptors. Like the founding member of this class of antagonists (ifenprodil), several interesting compounds of the series bind to the amino terminal domain of the NR2B subunit to inhibit function. Analogue potency is modu-lated by linker length, flexibility, and hydrogen bonding opportunities. However, unlike previously described classes of NR2B-selective NMDA antagonists that exhibit off-target activity at a variety of monoamine receptors, the compounds described herein show much diminished effects against the hERG channel and α1-adrenergic receptors. Selections of the compounds discussed have acceptable half-lives in vivo and are predicted to permeate the blood–brain barrier. These data together suggest that masking charged atoms on the linker region of NR2B-selective antagonists can decrease undesirable side effects while still maintaining on-target potency. PMID:19648014

  6. Human eosinophil major basic protein is an endogenous allosteric antagonist at the inhibitory muscarinic M2 receptor.

    PubMed Central

    Jacoby, D B; Gleich, G J; Fryer, A D

    1993-01-01

    The effect of human eosinophil major basic protein (MBP) as well as other eosinophil proteins, on binding of [3H]N-methyl-scopolamine ([3H]NMS: 1 x 10(-10) M) to muscarinic M2 receptors in heart membranes and M3 receptors in submandibular gland membranes was studied. MBP inhibited specific binding of [3H]NMS to M2 receptors but not to M3 receptors. MBP also inhibited atropine-induced dissociation of [3H]NMS-receptor complexes in a dose-dependent fashion, demonstrating that the interaction of MBP with the M2 muscarinic receptor is allosteric. This effect of MBP suggests that it may function as an endogenous allosteric inhibitor of agonist binding to the M2 muscarinic receptor. Inhibition of [3H]NMS binding by MBP was reversible by treatment with heparin, which binds and neutralizes MBP. Eosinophil peroxidase (EPO) also inhibited specific binding of [3H]NMS to M2 receptors but not to M3 receptors and inhibited atropine-induced dissociation of [3H]NMS-receptor complexes. On a molar basis, EPO is less potent than MBP. Neither eosinophil cationic protein nor eosinophil-derived neurotoxin affected binding of [3H]NMS to M2 receptors. Thus both MBP and EPO are selective allosteric antagonists at M2 receptors. The effects of these proteins may be important causes of M2 receptor dysfunction and enhanced vagally mediated bronchoconstriction in asthma. Images PMID:8473484

  7. [Effect of the active nitrogen and oxygen metabolities on the level of cGMP in uterus myocytes].

    PubMed

    Danylovych, Iu V; Tuhaĭ, V A

    2006-01-01

    The level of cGMP in myocytes of uterus of rats at an action active metabolities of nitrogen and oxygen (NO, NO2- and H2O2) in the conditions of influence of progesteron on myocytes was studied. Cell suspension was selected with the use of collagenase and soy-bean inhibitor of tripsin. Determining the amount of cGMP was conducted with the use of standard kit produced by "Amersham" (Great Britain). The basal level of cGMP in unactivated myocytes made 1.5 +/- 0.17 pmol cGMP/mg of protein (n = 5). It is shown that incubation of myocytes with 0.1 mM acetylcholin during 1 hour resulted in 2 times growth of cGMP content in suspension approximately, this increase is fully supressed in the presenced 0.1 mM methilene blue, that specifies activity of soluble cGMP in myocytes. Treatment of cells with 10 nM progesteron during 1 hour did not cause substantial changes in the level of cGMP. At the same time addition of 0.1 mM sodium nitroprussid or 10 nM H2O2 to suspension resulted in such conditions in the increase of level of cGMP to 3.1 +/- 0.6 and 6.8 +/- 0.4 pmol cGMP/mg of protein. Poor penetration of NO2- (10 nM) to the cells did not cause changes in the level of cGMP. The results got by us testify that the long-term influence of active metabolities of nitrogen and oxygen, instead of progesteron, provides the increase of the level of cGMP in the myometrium.

  8. Investigation of allosteric modulation mechanism of metabotropic glutamate receptor 1 by molecular dynamics simulations, free energy and weak interaction analysis

    PubMed Central

    Bai, Qifeng; Yao, Xiaojun

    2016-01-01

    Metabotropic glutamate receptor 1 (mGlu1), which belongs to class C G protein-coupled receptors (GPCRs), can be coupled with G protein to transfer extracellular signal by dimerization and allosteric regulation. Unraveling the dimer packing and allosteric mechanism can be of great help for understanding specific regulatory mechanism and designing more potential negative allosteric modulator (NAM). Here, we report molecular dynamics simulation studies of the modulation mechanism of FITM on the wild type, T815M and Y805A mutants of mGlu1 through weak interaction analysis and free energy calculation. The weak interaction analysis demonstrates that van der Waals (vdW) and hydrogen bonding play an important role on the dimer packing between six cholesterol molecules and mGlu1 as well as the interaction between allosteric sites T815, Y805 and FITM in wild type, T815M and Y805A mutants of mGlu1. Besides, the results of free energy calculations indicate that secondary binding pocket is mainly formed by the residues Thr748, Cys746, Lys811 and Ser735 except for FITM-bound pocket in crystal structure. Our results can not only reveal the dimer packing and allosteric regulation mechanism, but also can supply useful information for the design of potential NAM of mGlu1. PMID:26887338

  9. Investigation of allosteric modulation mechanism of metabotropic glutamate receptor 1 by molecular dynamics simulations, free energy and weak interaction analysis

    NASA Astrophysics Data System (ADS)

    Bai, Qifeng; Yao, Xiaojun

    2016-02-01

    Metabotropic glutamate receptor 1 (mGlu1), which belongs to class C G protein-coupled receptors (GPCRs), can be coupled with G protein to transfer extracellular signal by dimerization and allosteric regulation. Unraveling the dimer packing and allosteric mechanism can be of great help for understanding specific regulatory mechanism and designing more potential negative allosteric modulator (NAM). Here, we report molecular dynamics simulation studies of the modulation mechanism of FITM on the wild type, T815M and Y805A mutants of mGlu1 through weak interaction analysis and free energy calculation. The weak interaction analysis demonstrates that van der Waals (vdW) and hydrogen bonding play an important role on the dimer packing between six cholesterol molecules and mGlu1 as well as the interaction between allosteric sites T815, Y805 and FITM in wild type, T815M and Y805A mutants of mGlu1. Besides, the results of free energy calculations indicate that secondary binding pocket is mainly formed by the residues Thr748, Cys746, Lys811 and Ser735 except for FITM-bound pocket in crystal structure. Our results can not only reveal the dimer packing and allosteric regulation mechanism, but also can supply useful information for the design of potential NAM of mGlu1.

  10. Mapping of the Allosteric Site in Cholesterol Hydroxylase CYP46A1 for Efavirenz, a Drug That Stimulates Enzyme Activity.

    PubMed

    Anderson, Kyle W; Mast, Natalia; Hudgens, Jeffrey W; Lin, Joseph B; Turko, Illarion V; Pikuleva, Irina A

    2016-05-27

    Cytochrome P450 46A1 (CYP46A1) is a microsomal enzyme and cholesterol 24-hydroxylase that controls cholesterol elimination from the brain. This P450 is also a potential target for Alzheimer disease because it can be activated pharmacologically by some marketed drugs, as exemplified by efavirenz, the anti-HIV medication. Previously, we suggested that pharmaceuticals activate CYP46A1 allosterically through binding to a site on the cytosolic protein surface, which is different from the enzyme active site facing the membrane. Here we identified this allosteric site for efavirenz on CYP46A1 by using a combination of hydrogen-deuterium exchange coupled to MS, computational modeling, site-directed mutagenesis, and analysis of the CYP46A1 crystal structure. We also mapped the binding region for the CYP46A1 redox partner oxidoreductase and found that the allosteric and redox partner binding sites share a common border. On the basis of the data obtained, we propose the mechanism of CYP46A1 allostery and the pathway for the signal transmission from the P450 allosteric site to the active site.

  11. Discovery of Potential Orthosteric and Allosteric Antagonists of P2Y1R from Chinese Herbs by Molecular Simulation Methods

    PubMed Central

    Lu, Fang; Jiang, Lu-di; Qiao, Lian-sheng; Xiang, Yu-hong

    2016-01-01

    P2Y1 receptor (P2Y1R), which belongs to G protein-coupled receptors (GPCRs), is an important target in ADP-induced platelet aggregation. The crystal structure of P2Y1R has been solved recently, which revealed orthosteric and allosteric ligand-binding sites with the details of ligand-protein binding modes. And it suggests that P2Y1R antagonists, which recognize two distinct sites, could potentially provide an efficacious and safe antithrombotic profile. In present paper, 2D similarity search, pharmacophore based screening, and molecular docking were used to explore the potential natural P2Y1R antagonists. 2D similarity search was used to classify orthosteric and allosteric antagonists of P2Y1R. Based on the result, pharmacophore models were constructed and validated by the test set. Optimal models were selected to discover potential P2Y1R antagonists of orthosteric and allosteric sites from Traditional Chinese Medicine (TCM). And the hits were filtered by Lipinski's rule. Then molecular docking was used to refine the results of pharmacophore based screening and analyze the binding mode of the hits and P2Y1R. Finally, two orthosteric and one allosteric potential compounds were obtained, which might be used in future P2Y1R antagonists design. This work provides a reliable guide for discovering natural P2Y1R antagonists acting on two distinct sites from TCM. PMID:27635149

  12. Allosteric interactions at adenosine A1 and A3 receptors: new insights into the role of small molecules and receptor dimerization

    PubMed Central

    Hill, Stephen J; May, Lauren T; Kellam, Barrie; Woolard, Jeanette

    2014-01-01

    The purine nucleoside adenosine is present in all cells in tightly regulated concentrations. It is released under a variety of physiological and pathophysiological conditions to facilitate protection and regeneration of tissues. Adenosine acts via specific GPCRs to either stimulate cyclic AMP formation, as exemplified by Gs-protein-coupled adenosine receptors (A2A and A2B), or inhibit AC activity, in the case of Gi/o-coupled adenosine receptors (A1 and A3). Recent advances in our understanding of GPCR structure have provided insights into the conformational changes that occur during receptor activation following binding of agonists to orthosteric (i.e. at the same binding site as an endogenous modulator) and allosteric regulators to allosteric sites (i.e. at a site that is topographically distinct from the endogenous modulator). Binding of drugs to allosteric sites may lead to changes in affinity or efficacy, and affords considerable potential for increased selectivity in new drug development. Herein, we provide an overview of the properties of selective allosteric regulators of the adenosine A1 and A3 receptors, focusing on the impact of receptor dimerization, mechanistic approaches to single-cell ligand-binding kinetics and the effects of A1- and A3-receptor allosteric modulators on in vivo pharmacology. Linked ArticlesThis article is part of a themed section on Molecular Pharmacology of GPCRs. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-5 PMID:24024783

  13. cGMP modulates stem cells differentiation to neurons in brain in vivo.

    PubMed

    Gómez-Pinedo, U; Rodrigo, R; Cauli, O; Herraiz, S; Garcia-Verdugo, J-M; Pellicer, B; Pellicer, A; Felipo, V

    2010-02-17

    During brain development neural stem cells may differentiate to neurons or to other cell types. The aim of this work was to assess the role of cGMP (cyclic GMP) in the modulation of differentiation of neural stem cells to neurons or non-neuronal cells. cGMP in brain of fetuses was reduced to 46% of controls by treating pregnant rats with nitroarginine-methylester (L-NAME) and was restored by co-treatment with sildenafil.Reducing cGMP during brain development leads to reduced differentiation of stem cells to neurons and increased differentiation to non-neuronal cells. The number of neurons in the prefrontal cortex originated from stem cells proliferating on gestational day 14 was 715+/-14/mm(2) in control rats and was reduced to 440+/-29/mm(2) (61% of control) in rats treated with L-NAME. In rats exposed to L-NAME plus sildenafil, differentiation to neurons was completely normalized, reaching 683+/-11 neurons/mm(2). In rats exposed to sildenafil alone the number of cells labelled with bromodeoxyuridine (BrdU) and NeuN was 841+/-16/mm(2). In prefrontal cortex of control rats 48% of the neural stem cells proliferating in gestational day 14 differentiate to neurons, but only 24% in rats exposed to L-NAME. This was corrected by sildenafil, 40% of cells differentiate to neurons. Similar results were obtained for neurons proliferating during all developmental period. Treatment with L-NAME did not reduce the total number of cells labelled with BrdU, further supporting that L-NAME reduces selectively the differentiation of stem cells to neurons. Similar results were obtained in hippocampus. Treatment with L-NAME reduced the differentiation of neural stem cells to neurons, although the effect was milder than in prefrontal cortex. These results support that cGMP modulates the fate of neural stem cells in brain in vivo and suggest that high cGMP levels promote its differentiation to neurons while reduced cGMP levels promote differentiation to non-neuronal cells.

  14. Regulation of cGMP levels by guanylate cyclase in truncated frog rod outer segments

    PubMed Central

    1989-01-01

    Cyclic GMP is the second messenger in phototransduction and regulates the photoreceptor current. In the present work, we tried to understand the regulation mechanism of cytoplasmic cGMP levels in frog photoreceptors by measuring the photoreceptor current using a truncated rod outer segment (tROS) preparation. Since exogenously applied substance diffuses into tROS from the truncated end, we could examine the biochemical reactions relating to the cGMP metabolism by manipulating the cytoplasmic chemical condition. In tROS, exogenously applied GTP produced a dark current whose amplitude was half-maximal at approximately 0.4 mM GTP. The conductance for this current was suppressed by light in a fashion similar to when it is activated by cGMP. In addition, no current was produced in the absence of Mg2+, which is known to be necessary for the guanylate cyclase activity. These results indicate that guanylate cyclase was present in tROS and synthesized cGMP from exogenously applied GTP. The enzyme activity was distributed throughout the rod outer segment. The amount of synthesized cGMP increased as the cytoplasmic Ca2+ concentration of tROS decreased, which indicated the activation of guanylate cyclase at low Ca2+ concentrations. Half-maximal effect of Ca2+ was observed at approximately 100 nM. tROS contained the proteins involved in the phototransduction mechanism and therefore, we could examine the regulation of the light response waveform by Ca2+. At low Ca2+ concentrations, the time course of the light response was speeded up probably because cGMP recovery was facilitated by activation of the cyclase. Then, if the cytoplasmic Ca2+ concentration of a photoreceptor decreases during light stimulation, the Ca2+ decrease may explain the acceleration of the light response during light adaptation. In tROS, however, we did observe an acceleration during repetitive light flashes when the cytoplasmic Ca2+ concentration increased during the stimulation. This result suggests the

  15. Expression, purification and characterization of human glutamate dehydrogenase (GDH) allosteric regulatory mutations.

    PubMed Central

    Fang, Jie; Hsu, Betty Y L; MacMullen, Courtney M; Poncz, Mortimer; Smith, Thomas J; Stanley, Charles A

    2002-01-01

    Glutamate dehydrogenase (GDH) catalyses the reversible oxidative deamination of l-glutamate to 2-oxoglutarate in the mitochondrial matrix. In mammals, this enzyme is highly regulated by allosteric effectors. The major allosteric activator and inhibitor are ADP and GTP, respectively; allosteric activation by leucine may play an important role in amino acid-stimulated insulin secretion. The physiological significance of this regulation has been highlighted by the identification of children with an unusual hyperinsulinism/hyperammonaemia syndrome associated with dominant mutations in GDH that cause a loss in GTP inhibition. In order to determine the effects of these mutations on the function of the human GDH homohexamer, we studied the expression, purification and characterization of two of these regulatory mutations (H454Y, which affects the putative GTP-binding site, and S448P, which affects the antenna region) and a mutation designed to alter the putative binding site for ADP (R463A). The sensitivity to GTP inhibition was impaired markedly in the purified H454Y (ED(50), 210 microM) and S448P (ED(50), 3.1 microM) human GDH mutants compared with the wild-type human GDH (ED(50), 42 nM) or GDH isolated from heterozygous patient cells (ED(50), 290 and 280 nM, respectively). Sensitivity to ADP or leucine stimulation was unaffected by these mutations, confirming that they interfere specifically with the inhibitory GTP-binding site. Conversely, the R463A mutation completely eliminated ADP activation of human GDH, but had little effect on either GTP inhibition or leucine activation. The effects of these three mutations on ATP regulation indicated that this nucleotide inhibits human GDH through binding of its triphosphate tail to the GTP site and, at higher concentrations, activates the enzyme through binding of the nucleotide to the ADP site. These data confirm the assignment of the GTP and ADP allosteric regulatory sites on GDH based on X-ray crystallography and provide

  16. Binding of N-methylscopolamine to the extracellular domain of muscarinic acetylcholine receptors

    PubMed Central

    Jakubík, Jan; Randáková, Alena; Zimčík, Pavel; El-Fakahany, Esam E.; Doležal, Vladimír

    2017-01-01

    Interaction of orthosteric ligands with extracellular domain was described at several aminergic G protein-coupled receptors, including muscarinic acetylcholine receptors. The orthosteric antagonists quinuclidinyl benzilate (QNB) and N-methylscopolamine (NMS) bind to the binding pocket of the muscarinic acetylcholine receptor formed by transmembrane α-helices. We show that high concentrations of either QNB or NMS slow down dissociation of their radiolabeled species from all five subtypes of muscarinic acetylcholine receptors, suggesting allosteric binding. The affinity of NMS at the allosteric site is in the micromolar range for all receptor subtypes. Using molecular modelling of the M2 receptor we found that E172 and E175 in the second extracellular loop and N419 in the third extracellular loop are involved in allosteric binding of NMS. Mutation of these amino acids to alanine decreased affinity of NMS for the allosteric binding site confirming results of molecular modelling. The allosteric binding site of NMS overlaps with the binding site of some allosteric, ectopic and bitopic ligands. Understanding of interactions of NMS at the allosteric binding site is essential for correct analysis of binding and action of these ligands. PMID:28091608

  17. Binding of N-methylscopolamine to the extracellular domain of muscarinic acetylcholine receptors

    NASA Astrophysics Data System (ADS)

    Jakubík, Jan; Randáková, Alena; Zimčík, Pavel; El-Fakahany, Esam E.; Doležal, Vladimír

    2017-01-01

    Interaction of orthosteric ligands with extracellular domain was described at several aminergic G protein-coupled receptors, including muscarinic acetylcholine receptors. The orthosteric antagonists quinuclidinyl benzilate (QNB) and N-methylscopolamine (NMS) bind to the binding pocket of the muscarinic acetylcholine receptor formed by transmembrane α-helices. We show that high concentrations of either QNB or NMS slow down dissociation of their radiolabeled species from all five subtypes of muscarinic acetylcholine receptors, suggesting allosteric binding. The affinity of NMS at the allosteric site is in the micromolar range for all receptor subtypes. Using molecular modelling of the M2 receptor we found that E172 and E175 in the second extracellular loop and N419 in the third extracellular loop are involved in allosteric binding of NMS. Mutation of these amino acids to alanine decreased affinity of NMS for the allosteric binding site confirming results of molecular modelling. The allosteric binding site of NMS overlaps with the binding site of some allosteric, ectopic and bitopic ligands. Understanding of interactions of NMS at the allosteric binding site is essential for correct analysis of binding and action of these ligands.

  18. Structural dynamics and energetics underlying allosteric inactivation of the cannabinoid receptor CB1

    PubMed Central

    Fay, Jonathan F.; Farrens, David L.

    2015-01-01

    G protein-coupled receptors (GPCRs) are surprisingly flexible molecules that can do much more than simply turn on G proteins. Some even exhibit biased signaling, wherein the same receptor preferentially activates different G-protein or arrestin signaling pathways depending on the type of ligand bound. Why this behavior occurs is still unclear, but it can happen with both traditional ligands and ligands that bind allosterically outside the orthosteric receptor binding pocket. Here, we looked for structural mechanisms underlying these phenomena in the marijuana receptor CB1. Our work focused on the allosteric ligand Org 27569, which has an unusual effect on CB1—it simultaneously increases agonist binding, decreases G-protein activation, and induces biased signaling. Using classical pharmacological binding studies, we find that Org 27569 binds to a unique allosteric site on CB1 and show that it can act alone (without need for agonist cobinding). Through mutagenesis studies, we find that the ability of Org 27569 to bind is related to how much receptor is in an active conformation that can couple with G protein. Using these data, we estimated the energy differences between the inactive and active states. Finally, site-directed fluorescence labeling studies show the CB1 structure stabilized by Org 27569 is different and unique from that stabilized by antagonist or agonist. Specifically, transmembrane helix 6 (TM6) movements associated with G-protein activation are blocked, but at the same time, helix 8/TM7 movements are enhanced, suggesting a possible mechanism for the ability of Org 27569 to induce biased signaling. PMID:26100912

  19. The allosteric mechanism of yeast chorismate mutase: a dynamic analysis.

    PubMed

    Kong, Yifei; Ma, Jianpeng; Karplus, Martin; Lipscomb, William N

    2006-02-10

    The effector-regulated allosteric mechanism of yeast chorismate mutase (YCM) was studied by normal mode analysis and targeted molecular dynamics. The normal mode analysis shows that the conformational change between YCM in the R state and in the T state can be represented by a relatively small number of low-frequency modes. This suggests that the transition is coded in the structure and is likely to have a low energetic barrier. Quantitative comparisons (i.e. frequencies) between the low-frequency modes of YCM with and without effectors (modeled structures) reveal that the binding of Trp increases the global flexibility, whereas Tyr decreases global flexibility. The targeted molecular dynamics simulation of substrate analog release from the YCM active site suggests that a series of residues are critical for orienting and "recruiting" the substrate. The simulation led to the switching of a series of substrate-release-coupled salt-bridge partners in the ligand-binding domain; similar changes occur in the transition between YCM R-state and T-state crystal structures. Thus, the normal mode analysis and targeted molecular dynamics results provide evidence that the effectors regulate YCM activity by influencing the global flexibility. The change in flexibility is coupled to the binding of substrate to the T state and release of the product from the R state, respectively.

  20. Allosteric site-mediated active site inhibition of PBP2a using Quercetin 3-O-rutinoside and its combination.

    PubMed

    Rani, Nidhi; Vijayakumar, Saravanan; P T V, Lakshmi; Arunachalam, Annamalai

    2016-08-01

    Recent crystallographic study revealed the involvement of allosteric site in active site inhibition of penicillin binding protein (PBP2a), where one molecule of Ceftaroline (Cef) binds to the allosteric site of PBP2a and paved way for the other molecule (Cef) to bind at the active site. Though Cef has the potency to inhibit the PBP2a, its adverse side effects are of major concern. Previous studies have reported the antibacterial property of Quercetin derivatives, a group of natural compounds. Hence, the present study aims to evaluate the effect of Quercetin 3-o-rutinoside (Rut) in allosteric site-mediated active site inhibition of PBP2a. The molecular docking studies between allosteric site and ligands (Rut, Que, and Cef) revealed a better binding efficiency (G-score) of Rut (-7.790318) and Cef (-6.194946) with respect to Que (-5.079284). Molecular dynamic (MD) simulation studies showed significant changes at the active site in the presence of ligands (Rut and Cef) at allosteric site. Four different combinations of Rut and Cef were docked and their G-scores ranged between -6.320 and -8.623. MD studies revealed the stability of the key residue (Ser403) with Rut being at both sites, compared to other complexes. Morphological analysis through electron microscopy confirmed that combination of Rut and Cefixime was able to disturb the bacterial cell membrane in a similar fashion to that of Rut and Cefixime alone. The results of this study indicate that the affinity of Rut at both sites were equally good, with further validations Rut could be considered as an alternative for inhibiting MRSA growth.

  1. Modulation of global low-frequency motions underlies allosteric regulation: demonstration in CRP/FNR family transcription factors.

    PubMed

    Rodgers, Thomas L; Townsend, Philip D; Burnell, David; Jones, Matthew L; Richards, Shane A; McLeish, Tom C B; Pohl, Ehmke; Wilson, Mark R; Cann, Martin J

    2013-09-01

    Allostery is a fundamental process by which ligand binding to a protein alters its activity at a distinct site. There is growing evidence that allosteric cooperativity can be communicated by modulation of protein dynamics without conformational change. The mechanisms, however, for communicating dynamic fluctuations between sites are debated. We provide a foundational theory for how allostery can occur as a function of low-frequency dynamics without a change in structure. We have generated coarse-grained models that describe the protein backbone motions of the CRP/FNR family transcription factors, CAP of Escherichia coli and GlxR of Corynebacterium glutamicum. The latter we demonstrate as a new exemplar for allostery without conformation change. We observe that binding the first molecule of cAMP ligand is correlated with modulation of the global normal modes and negative cooperativity for binding the second cAMP ligand without a change in mean structure. The theory makes key experimental predictions that are tested through an analysis of variant proteins by structural biology and isothermal calorimetry. Quantifying allostery as a free energy landscape revealed a protein "design space" that identified the inter- and intramolecular regulatory parameters that frame CRP/FNR family allostery. Furthermore, through analyzing CAP variants from diverse species, we demonstrate an evolutionary selection pressure to conserve residues crucial for allosteric control. This finding provides a link between the position of CRP/FNR transcription factors within the allosteric free energy landscapes and evolutionary selection pressures. Our study therefore reveals significant features of the mechanistic basis for allostery. Changes in low-frequency dynamics correlate with allosteric effects on ligand binding without the requirement for a defined spatial pathway. In addition to evolving suitable three-dimensional structures, CRP/FNR family transcription factors have been selected to

  2. Molecular mechanism of the allosteric enhancement of the umami taste sensation.

    PubMed

    Mouritsen, Ole G; Khandelia, Himanshu

    2012-09-01

    The fifth taste quality, umami, arises from binding of glutamate to the umami receptor T1R1/T1R3. The umami taste is enhanced several-fold upon addition of free nucleotides such as guanosine-5'-monophosphate (GMP) to glutamate-containing food. GMP may operate via binding to the ligand-binding domain of the T1R1 part of the umami receptor at an allosteric site. Using molecular dynamics simulations, we show that GMP can stabilize the closed (active) state of T1R1 by binding to the outer vestibule of the so-called Venus flytrap domain of the receptor. The transition between the closed and open conformations was accessed in the simulations. Using principal component analysis, we show that the dynamics of the Venus flytrap domain along the hinge-bending motion that activates signaling is dampened significantly upon binding of glutamate, and further slows down upon binding of GMP at an allosteric site, thus suggesting a molecular mechanism of cooperativity between GMP and glutamate.

  3. 2-Aminothienopyridazines as Novel Adenosine A1 Receptor Allosteric Modulators and Antagonists

    PubMed Central

    Ferguson, Gemma N.; Valant, Celine; Horne, James; Figler, Heidi; Flynn, Bernard L.; Linden, Joel; Chalmers, David K.; Sexton, Patrick M.; Christopoulos, Arthur; Scammells, Peter J.

    2008-01-01

    A pharmacophore-based screen identified 32 compounds including ethyl 5-amino-3-(4-tert-butylphenyl)-4-oxo-3,4-dihydrothieno[3,4-d]pyridazine-1-carboxylate (8) as a new allosteric modulator of the adenosine A1 receptor (A1AR). On the basis of this lead, various derivatives were prepared and evaluated for activity at the human A1AR. A number of the test compounds allosterically stabilized agonist-receptor-G protein ternary complexes in dissociation kinetic assays, but were found to be more potent as antagonists in subsequent functional assays of ERK1/2 phosphorylation. Additional experiments on the most potent antagonist, 13b, investigating A1AR-mediated [35S]GTPγS binding and [3H]CCPA equilibrium binding confirmed its antagonistic mode of action and also identified inverse agonism. This study has thus identified a new class of A1AR antagonists that can also recognize the receptor’s allosteric site with lower potency. PMID:18771255

  4. Allosteric Mutant IDH1 Inhibitors Reveal Mechanisms for IDH1 Mutant and Isoform Selectivity.

    PubMed

    Xie, Xiaoling; Baird, Daniel; Bowen, Kimberly; Capka, Vladimir; Chen, Jinyun; Chenail, Gregg; Cho, YoungShin; Dooley, Julia; Farsidjani, Ali; Fortin, Pascal; Kohls, Darcy; Kulathila, Raviraj; Lin, Fallon; McKay, Daniel; Rodrigues, Lindsey; Sage, David; Touré, B Barry; van der Plas, Simon; Wright, Kirk; Xu, Ming; Yin, Hong; Levell, Julian; Pagliarini, Raymond A

    2017-03-07

    Oncogenic IDH1 and IDH2 mutations contribute to cancer via production of R-2-hydroxyglutarate (2-HG). Here, we characterize two structurally distinct mutant- and isoform-selective IDH1 inhibitors that inhibit 2-HG production. Both bind to an allosteric pocket on IDH1, yet shape it differently, highlighting the plasticity of this site. Oncogenic IDH1(R132H) mutation destabilizes an IDH1 "regulatory segment," which otherwise restricts compound access to the allosteric pocket. Regulatory segment destabilization in wild-type IDH1 promotes inhibitor binding, suggesting that destabilization is critical for mutant selectivity. We also report crystal structures of oncogenic IDH2 mutant isoforms, highlighting the fact that the analogous segment of IDH2 is not similarly destabilized. This intrinsic stability of IDH2 may contribute to observed inhibitor IDH1 isoform selectivity. Moreover, discrete residues in the IDH1 allosteric pocket that differ from IDH2 may also guide IDH1 isoform selectivity. These data provide a deeper understanding of how IDH1 inhibitors achieve mutant and isoform selectivity.

  5. Selective small molecule inhibitor of the Mycobacterium tuberculosis fumarate hydratase reveals an allosteric regulatory site

    PubMed Central

    Kasbekar, Monica; Fischer, Gerhard; Mott, Bryan T.; Yasgar, Adam; Hyvönen, Marko; Boshoff, Helena I. M.; Abell, Chris; Barry, Clifton E.; Thomas, Craig J.

    2016-01-01

    Enzymes in essential metabolic pathways are attractive targets for the treatment of bacterial diseases, but in many cases, the presence of homologous human enzymes makes them impractical candidates for drug development. Fumarate hydratase, an essential enzyme in the tricarboxylic acid (TCA) cycle, has been identified as one such potential therapeutic target in tuberculosis. We report the discovery of the first small molecule inhibitor, to our knowledge, of the Mycobacterium tuberculosis fumarate hydratase. A crystal structure at 2.0-Å resolution of the compound in complex with the protein establishes the existence of a previously unidentified allosteric regulatory site. This allosteric site allows for selective inhibition with respect to the homologous human enzyme. We observe a unique binding mode in which two inhibitor molecules interact within the allosteric site, driving significant conformational changes that preclude simultaneous substrate and inhibitor binding. Our results demonstrate the selective inhibition of a highly conserved metabolic enzyme that contains identical active site residues in both the host and the pathogen. PMID:27325754

  6. Discovery, synthesis, and molecular pharmacology of selective positive allosteric modulators of the δ-opioid receptor.

    PubMed

    Burford, Neil T; Livingston, Kathryn E; Canals, Meritxell; Ryan, Molly R; Budenholzer, Lauren M L; Han, Ying; Shang, Yi; Herbst, John J; O'Connell, Jonathan; Banks, Martyn; Zhang, Litao; Filizola, Marta; Bassoni, Daniel L; Wehrman, Tom S; Christopoulos, Arthur; Traynor, John R; Gerritz, Samuel W; Alt, Andrew

    2015-05-28

    Allosteric modulators of G protein-coupled receptors (GPCRs) have a number of potential advantages compared to agonists or antagonists that bind to the orthosteric site of the receptor. These include the potential for receptor selectivity, maintenance of the temporal and spatial fidelity of signaling in vivo, the ceiling effect of the allosteric cooperativity which may prevent overdose issues, and engendering bias by differentially modulating distinct signaling pathways. Here we describe the discovery, synthesis, and molecular pharmacology of δ-opioid receptor-selective positive allosteric modulators (δ PAMs). These δ PAMs increase the affinity and/or efficacy of the orthosteric agonists leu-enkephalin, SNC80 and TAN67, as measured by receptor binding, G protein activation, β-arrestin recruitment, adenylyl cyclase inhibition, and extracellular signal-regulated kinases (ERK) activation. As such, these compounds are useful pharmacological tools to probe the molecular pharmacology of the δ receptor and to explore the therapeutic potential of δ PAMs in diseases such as chronic pain and depression.

  7. Markov propagation of allosteric effects in biomolecular systems: application to GroEL–GroES

    PubMed Central

    Chennubhotla, Chakra; Bahar, Ivet

    2006-01-01

    We introduce a novel approach for elucidating the potential pathways of allosteric communication in biomolecular systems. The methodology, based on Markov propagation of ‘information' across the structure, permits us to partition the network of interactions into soft clusters distinguished by their coherent stochastics. Probabilistic participation of residues in these clusters defines the communication patterns inherent to the network architecture. Application to bacterial chaperonin complex GroEL–GroES, an allostery-driven structure, identifies residues engaged in intra- and inter-subunit communication, including those acting as hubs and messengers. A number of residues are distinguished by their high potentials to transmit allosteric signals, including Pro33 and Thr90 at the nucleotide-binding site and Glu461 and Arg197 mediating inter- and intra-ring communication, respectively. We propose two most likely pathways of signal transmission, between nucleotide- and GroES-binding sites across the cis and trans rings, which involve several conserved residues. A striking observation is the opposite direction of information flow within cis and trans rings, consistent with negative inter-ring cooperativity. Comparison with collective modes deduced from normal mode analysis reveals the propensity of global hinge regions to act as messengers in the transmission of allosteric signals. PMID:16820777

  8. Allosteric mechanisms of G protein coupled receptor signaling: a structural perspective

    PubMed Central

    Thaker, Tarjani M.; Kaya, Ali I.; Preininger, Anita M.; Hamm, Heidi E.; Iverson, T.M.

    2012-01-01

    G protein-Coupled Receptors (GPCRs) use a complex series of intramolecular conformational changes to couple agonist binding to the binding and activation of cognate heterotrimeric G protein (Gαβγ). The mechanisms underlying this long-range activation have been identified using a variety of biochemical and structural approaches and have primarily used visual signal transduction via the GPCR rhodopsin and cognate heterotrimeric G protein transducin (Gt) as a model system. In this chapter, we will review the methods that have revealed allosteric signaling through rhodopsin and transducin. These methods can be applied to a variety of GPCR-mediated signaling pathways. PMID:22052489

  9. Allosteric ACTion: the varied ACT domains regulating enzymes of amino-acid metabolism.

    PubMed

    Lang, Eric J M; Cross, Penelope J; Mittelstädt, Gerd; Jameson, Geoffrey B; Parker, Emily J

    2014-12-01

    Allosteric regulation of enzyme activity plays important metabolic roles. Here we review the allostery of enzymes of amino-acid metabolism conferred by a discrete domain known as the ACT domain. This domain of 60-70 residues has a βαββαβ topology leading to a four-stranded β4β1β3β2 antiparallel sheet with two antiparallel helices on one face. Extensive sequence variation requires a combined sequence/structure/function analysis for identification of the ACT domain. Common features include highly varied modes of self-association of ACT domains, ligand binding at domain interfaces, and transmittal of allosteric signals through conformational changes and/or the manipulation of quaternary equilibria. A recent example illustrates the relatively facile adoption of this versatile module of allostery by gene fusion.

  10. Allosteric modulation by benzodiazepines of GABA-gated chloride channels of an identified insect motor neurone.

    PubMed

    Buckingham, Steven D; Higashino, Yoshiaki; Sattelle, David B

    2009-11-01

    The actions of benzodiazepines were studied on the responses to GABA of the fast coxal depressor (D(f)) motor neurone of the cockroach, Periplaneta americana. Ro5-4864, diazepam and clonazepam were investigated. Responses to GABA receptors were enhanced by both Ro5-4864 and diazepam, whereas clonazepam, a potent-positive allosteric modulator of human GABA(A) receptors, was ineffective on the native insect GABA receptors of the D(f) motor neurone. Thus, clear pharmacological differences exist between insect and mammalian native GABA-gated chloride channels with respect to the actions of benzodiazepines. The results enhance our understanding of invertebrate GABA-gated chloride channels which have recently proved important in (a) comparative studies aimed at identifying human allosteric drug-binding sites and (b) understanding the actions of compounds used to control ectoparasites and insect crop pests.

  11. White - cGMP Interaction Promotes Fast Locomotor Recovery from Anoxia in Adult Drosophila

    PubMed Central

    2017-01-01

    Increasing evidence indicates that the white (w) gene in Drosophila possesses extra-retinal functions in addition to its classical role in eye pigmentation. We have previously shown that w+ promotes fast and consistent locomotor recovery from anoxia, but how w+ modulates locomotor recovery is largely unknown. Here we show that in the absence of w+, several PDE mutants, especially cyclic guanosine monophosphate (cGMP)-specific PDE mutants, display wildtype-like fast locomotor recovery from anoxia, and that during the night time, locomotor recovery was light-sensitive in white-eyed mutant w1118, and light-insensitive in PDE mutants under w1118 background. Data indicate the involvement of cGMP in the modulation of recovery timing and presumably, light-evoked cGMP fluctuation is associated with light sensitivity of locomotor recovery. This was further supported by the observations that w-RNAi-induced delay of locomotor recovery was completely eliminated by upregulation of cGMP through multiple approaches, including PDE mutation, simultaneous overexpression of an atypical soluble guanylyl cyclase Gyc88E, or sildenafil feeding. Lastly, prolonged sildenafil feeding promoted fast locomotor recovery from anoxia in w1118. Taken together, these data suggest that a White-cGMP interaction modulates the timing of locomotor recovery from anoxia. PMID:28060942

  12. The implementation of tissue banking experiences for setting up a cGMP cell manufacturing facility.

    PubMed

    Arjmand, Babak; Emami-Razavi, Seyed Hassan; Larijani, Bagher; Norouzi-Javidan, Abbas; Aghayan, Hamid Reza

    2012-12-01

    Cell manufacturing for clinical applications is a unique form of biologics manufacturing that relies on maintenance of stringent work practices designed to ensure product consistency and prevent contamination by microorganisms or by another patient's cells. More extensive, prolonged laboratory processes involve greater risk of complications and possibly adverse events for the recipient, and so the need for control is correspondingly greater. To minimize the associate risks of cell manufacturing adhering to international quality standards is critical. Current good tissue practice (cGTP) and current good manufacturing practice (cGMP) are examples of general standards that draw a baseline for cell manufacturing facilities. In recent years, stem cell researches have found great public interest in Iran and different cell therapy projects have been started in country. In this review we described the role of our tissue banking experiences in establishing a new cGMP cell manufacturing facility. The authors concluded that, tissue banks and tissue banking experts can broaden their roles from preparing tissue grafts to manufacturing cell and tissue engineered products for translational researches and phase I clinical trials. Also they can collaborate with cell processing laboratories to develop SOPs, implement quality management system, and design cGMP facilities.

  13. Transduction heats in retinal rods: tests of the role of cGMP by pyroelectric calorimetry.

    PubMed Central

    Hagins, W A; Ross, P D; Tate, R L; Yoshikami, S

    1989-01-01

    The sensory dark current of vertebrate retinal rods is believed to be controlled by light activation of a chain of coupled biochemical cycles that finally regulate the cationic conductance of the plasma membrane by hydrolytically reducing the level of cGMP in rod outer segment cytoplasm. The scheme has been tested by measuring heat production by live frog retinas when stimulated with sequences of light flashes of progressively increasing energy. Using pyroelectric poly(vinylidene 1,1-difluoride) detectors that simultaneously measure transretinal voltage and retinal temperature change, four heat effects assignable to known biochemical cycles in rods have been found. As the dark current shuts down after a flash causing 180-1800 rhodopsin photoisomerizations per rod, a heat burst, q1, raises the retinal temperature 1-2 microK. q1 is closely regulated in size and slightly precedes dark current shutdown. Isobutylmethylxanthine slows and enlarges q1, delaying the dark-current response. Increasing cytoplasmic Ca2+ stops the dark current without affecting q1. Although rod heat production is consistent with splitting of 1-3 microM of free cytoplasmic cGMP during transduction, the kinetics of the two processes do not match the predictions of current cGMP control models. PMID:2537492

  14. Inhibition of tumor angiogenesis and growth by a small-molecule multi-FGF receptor blocker with allosteric properties.

    PubMed

    Bono, Françoise; De Smet, Frederik; Herbert, Corentin; De Bock, Katrien; Georgiadou, Maria; Fons, Pierre; Tjwa, Marc; Alcouffe, Chantal; Ny, Annelii; Bianciotto, Marc; Jonckx, Bart; Murakami, Masahiro; Lanahan, Anthony A; Michielsen, Christof; Sibrac, David; Dol-Gleizes, Frédérique; Mazzone, Massimiliano; Zacchigna, Serena; Herault, Jean-Pascal; Fischer, Christian; Rigon, Patrice; Ruiz de Almodovar, Carmen; Claes, Filip; Blanc, Isabelle; Poesen, Koen; Zhang, Jie; Segura, Inmaculada; Gueguen, Geneviève; Bordes, Marie-Françoise; Lambrechts, Diether; Broussy, Roselyne; van de Wouwer, Marlies; Michaux, Corinne; Shimada, Toru; Jean, Isabelle; Blacher, Silvia; Noel, Agnès; Motte, Patrick; Rom, Eran; Rakic, Jean-Marie; Katsuma, Susumu; Schaeffer, Paul; Yayon, Avner; Van Schepdael, Ann; Schwalbe, Harald; Gervasio, Francesco Luigi; Carmeliet, Geert; Rozensky, Jef; Dewerchin, Mieke; Simons, Michael; Christopoulos, Arthur; Herbert, Jean-Marc; Carmeliet, Peter

    2013-04-15

    Receptor tyrosine kinases (RTK) are targets for anticancer drug development. To date, only RTK inhibitors that block orthosteric binding of ligands and substrates have been developed. Here, we report the pharmacologic characterization of the chemical SSR128129E (SSR), which inhibits fibroblast growth factor receptor (FGFR) signaling by binding to the extracellular FGFR domain without affecting orthosteric FGF binding. SSR exhibits allosteric properties, including probe dependence, signaling bias, and ceiling effects. Inhibition by SSR is highly conserved throughout the animal kingdom. Oral delivery of SSR inhibits arthritis and tumors that are relatively refractory to anti-vascular endothelial growth factor receptor-2 antibodies. Thus, orally-active extracellularly acting small-molecule modulators of RTKs with allosteric properties can be developed and may offer opportunities to improve anticancer treatment.

  15. Energetics of allosteric negative coupling in the zinc sensor S. aureus CzrA.

    PubMed

    Grossoehme, Nicholas E; Giedroc, David P

    2009-12-16

    The linked equilibria of an allosterically regulated protein are defined by the structures, residue-specific dynamics and global energetics of interconversion among all relevant allosteric states. Here, we use isothermal titration calorimetry (ITC) to probe the global thermodynamics of allosteric negative regulation of the binding of the paradigm ArsR-family zinc sensing repressor Staphylococcus aureus CzrA to the czr DNA operator (CzrO) by Zn(2+). Zn(2+) binds to the two identical binding sites on the free CzrA homodimer in two discernible steps. A larger entropic driving force Delta(-TDeltaS) of -4.7 kcal mol(-1) and a more negative DeltaC(p) characterize the binding of the first Zn(2+) relative to the second. These features suggest a modest structural transition in forming the Zn(1) state followed by a quenching of the internal dynamics on filling the second zinc site, which collectively drive homotropic negative cooperativity of Zn(2+) binding (Delta(DeltaG) = 1.8 kcal mol(-1)). Negative homotropic cooperativity also characterizes Zn(2+) binding to the CzrA*CzrO complex (Delta(DeltaG) = 1.3 kcal mol(-1)), although the underlying energetics are vastly different, with homotropic Delta(DeltaH) and Delta(-TDeltaS) values both small and slightly positive. In short, Zn(2+) binding to the complex fails to induce a large structural or dynamical change in the CzrA bound to the operator. The strong heterotropic negative linkage in this system (DeltaG(c)(t) = 6.3 kcal mol(-1)) therefore derives from the vastly different structures of the apo-CzrA and CzrA*CzrO reference states (DeltaH(c)(t) = 9.4 kcal mol(-1)) in a way that is reinforced by a global rigidification of the allosterically inhibited Zn(2) state off the DNA (TDeltaS(c)(t) = -3.1 kcal mol(-1), i.e., DeltaS(c)(t) > 0). The implications of these findings for other metalloregulatory proteins are discussed.

  16. A Structural Basis for the Allosteric Regulatin of Non-Hydrolysing UDP-G1cNAc 2-Epimerases

    SciTech Connect

    Velloso,L.; Bhaskaran, S.; Schuch, R.; Fischetti, V.; Stebbins, C.

    2008-01-01

    The non-hydrolysing bacterial UDP-N-acetylglucosamine 2-epimerase (UDP-GlcNAc 2-epimerase) catalyses the conversion of UDP-GlcNAc into UDP-N-acetylmannosamine, an intermediate in the biosynthesis of several cell-surface polysaccharides. This enzyme is allosterically regulated by its substrate UDP-GlcNAc. The structure of the ternary complex between the Bacillus anthracis UDP-GlcNAc 2-epimerase, its substrate UDP-GlcNAc and the reaction intermediate UDP, showed direct interactions between UDP and its substrate, and between the complex and highly conserved enzyme residues, identifying the allosteric site of the enzyme. The binding of UDP-GlcNAc is associated with conformational changes in the active site of the enzyme. Kinetic data and mutagenesis of the highly conserved UDP-GlcNAc-interacting residues confirm their importance in the substrate binding and catalysis of the enzyme. This constitutes the first example to our knowledge, of an enzymatic allosteric activation by direct interaction between the substrate and the allosteric activator.

  17. The First Negative Allosteric Modulator for Dopamine D2 and D3 Receptors SB269652 May Lead to a New Generation of Antipsychotic Drugs.

    PubMed

    Rossi, Mario; Fasciani, Irene; Marampon, Francesco; Maggio, Roberto; Scarselli, Marco

    2017-03-06

    D2 and D3 dopamine receptors belong to the largest family of cell surface proteins in eukaryotes, the G protein-coupled receptors (GPCRs). Considering their crucial physiological functions and their relatively accessible cellular locations, GPCRs represent one of the most important classes of therapeutic targets. Until recently, the only strategy to develop drugs regulating GPCR activity was through the identification of compounds that directly acted on the orthosteric sites for endogenous ligands. However, many efforts have recently been made in order to identify small molecules that are able to interact with allosteric sites. These sites are less well-conserved; therefore, allosteric ligands have greater selectivity on the specific receptor. Strikingly, the use of allosteric modulators can provide specific advantages, such as an increased selectivity for GPCR subunits and the ability to introduce specific beneficial therapeutic effects without disrupting the integrity of complex physiologically-regulated networks. In 2010, our group unexpectedly found that SB269652, a compound supposed to interact with the orthosteric binding site of dopamine receptors, was actually a negative allosteric modulator of D2 and D3 receptor dimers, thus identifying the first allosteric small molecule acting on these important therapeutic targets. This review addresses the progresses in the understanding of the molecular mechanisms of interaction between the negative modulator SB269652 and D2 and D3 dopamine receptor monomers and dimers, and also the perspectives of developing new dopamine receptor allosteric drugs based on SB269652 as the leading compound.

  18. Allosteric substrate inhibition of Arabidopsis NAD-dependent malic enzyme 1 is released by fumarate.

    PubMed

    Tronconi, Marcos Ariel; Wheeler, Mariel Claudia Gerrard; Martinatto, Andrea; Zubimendi, Juan Pablo; Andreo, Carlos Santiago; Drincovich, María Fabiana

    2015-03-01

    Plant mitochondria can use L-malate and fumarate, which accumulate in large levels, as respiratory substrates. In part, this property is due to the presence of NAD-dependent malic enzymes (NAD-ME) with particular biochemical characteristics. Arabidopsis NAD-ME1 exhibits a non-hyperbolic behavior for the substrate L-malate, and its activity is strongly stimulated by fumarate. Here, the possible structural connection between these properties was explored through mutagenesis, kinetics, and fluorescence studies. The results indicated that NAD-ME1 has a regulatory site for L-malate that can also bind fumarate. L-Malate binding to this site elicits a sigmoidal and low substrate-affinity response, whereas fumarate binding turns NAD-ME1 into a hyperbolic and high substrate affinity enzyme. This effect was also observed when the allosteric site was either removed or altered. Hence, fumarate is not really an activator, but suppresses the inhibitory effect of l-malate. In addition, residues Arg50, Arg80 and Arg84 showed different roles in organic acid binding. These residues form a triad, which is the basis of the homo and heterotrophic effects that characterize NAD-ME1. The binding of L-malate and fumarate at the same allosteric site is herein reported for a malic enzyme and clearly indicates an important role of NAD-ME1 in processes that control flow of C4 organic acids in Arabidopsis mitochondrial metabolism.

  19. Agonistic aptamer to the insulin receptor leads to biased signaling and functional selectivity through allosteric modulation

    PubMed Central

    Yunn, Na-Oh; Koh, Ara; Han, Seungmin; Lim, Jong Hun; Park, Sehoon; Lee, Jiyoun; Kim, Eui; Jang, Sung Key; Berggren, Per-Olof; Ryu, Sung Ho

    2015-01-01

    Due to their high affinity and specificity, aptamers have been widely used as effective inhibitors in clinical applications. However, the ability to activate protein function through aptamer-protein interaction has not been well-elucidated. To investigate their potential as target-specific agonists, we used SELEX to generate aptamers to the insulin receptor (IR) and identified an agonistic aptamer named IR-A48 that specifically binds to IR, but not to IGF-1 receptor. Despite its capacity to stimulate IR autophosphorylation, similar to insulin, we found that IR-A48 not only binds to an allosteric site distinct from the insulin binding site, but also preferentially induces Y1150 phosphorylation in the IR kinase domain. Moreover, Y1150-biased phosphorylation induced by IR-A48 selectively activates specific signaling pathways downstream of IR. In contrast to insulin-mediated activation of IR, IR-A48 binding has little effect on the MAPK pathway and proliferation of cancer cells. Instead, AKT S473 phosphorylation is highly stimulated by IR-A48, resulting in increased glucose uptake both in vitro and in vivo. Here, we present IR-A48 as a biased agonist able to selectively induce the metabolic activity of IR through allosteric binding. Furthermore, our study also suggests that aptamers can be a promising tool for developing artificial biased agonists to targeted receptors. PMID:26245346

  20. The membrane proximal region of the cannabinoid receptor CB1 N-terminus can allosterically modulate ligand affinity.

    PubMed

    Fay, Jonathan F; Farrens, David L

    2013-11-19

    The human cannabinoid receptor, CB1, a G protein-coupled receptor (GPCR), contains a relatively long (∼110 a.a.) amino terminus, whose function is still not defined. Here we explore a potential role for the CB1 N-terminus in modulating ligand binding to the receptor. Although most of the CB1 N-terminus is not necessary for ligand binding, previous studies have found that mutations introduced into its conserved membrane proximal region (MPR) do impair the receptors ability to bind ligand. Moreover, within the highly conserved MPR (∼ residues 90-110) lie two cysteine residues that are invariant in all CB1 receptors. We find these two cysteines (C98 and C107) form a disulfide in heterologously expressed human CB1, and this C98-C107 disulfide is much more accessible to reducing agents than the previously known disulfide in extracellular loop 2 (EL2). Interestingly, the presence of the C98-C107 disulfide modulates ligand binding to the receptor in a way that can be quantitatively analyzed by an allosteric model. The C98-C107 disulfide also alters the effects of allosteric ligands for CB1, Org 27569 and PSNCBAM-1. Together, these results provide new insights into how the N-terminal MPR and EL2 act together to influence the high-affinity orthosteric ligand binding site in CB1 and suggest that the CB1 N-terminal MPR may be an area through which allosteric modulators can act.

  1. Insights into the allosteric regulation of Syk association with receptor ITAM, a multi-state equilibrium.

    PubMed

    Feng, Chao; Post, Carol Beth

    2016-02-17

    The phosphorylation of interdomain A (IA), a linker region between tandem SH2 domains of Syk tyrosine kinase, regulates the binding affinity for association of Syk with doubly-phosphorylated ITAM regions of the B cell receptor. The mechanism of this allosteric regulation has been suggested to be a switch from the high-affinity bifunctional binding, mediated through both SH2 domains binding two phosphotyrosine residues of ITAM, to a substantially lower-affinity binding of only one SH2 domain. IA phosphorylation triggers the switch by inducing disorder in IA and weakening the SH2-SH2 interaction. The postulated switch to a single-SH2-domain binding mode is examined using NMR to monitor site-specific binding to each SH2 domain of Syk variants engineered to have IA regions that differ in conformational flexibility. The combined analysis of titration curves and NMR line-shapes provides sufficient information to determine the energetics of inter-molecular binding at each SH2 site along with an intra-molecular binding or isomerization step. A less favorable isomerization equilibrium associated with the changes in the SH2-SH2 conformational ensemble and IA flexibility accounts for the inhibition of Syk association with membrane ITAM regions when IA is phosphorylated, and refutes the proposed switch to single-SH2-domain binding. Syk localizes in the cell through its SH2 interactions, and this basis for allosteric regulation of ITAM association proposes for the first time a phosphorylation-dependent model to regulate Syk binding to alternate receptors and other signaling proteins that differ either in the number of residues separating ITAM phosphotyrosines or by having only one phosphotyrosine, a half ITAM.

  2. Accelerated structure-based design of chemically diverse allosteric modulators of a muscarinic G protein-coupled receptor

    PubMed Central

    Miao, Yinglong; Goldfeld, Dahlia Anne; Moo, Ee Von; Sexton, Patrick M.; Christopoulos, Arthur; McCammon, J. Andrew; Valant, Celine

    2016-01-01

    Design of ligands that provide receptor selectivity has emerged as a new paradigm for drug discovery of G protein-coupled receptors, and may, for certain families of receptors, only be achieved via identification of chemically diverse allosteric modulators. Here, the extracellular vestibule of the M2 muscarinic acetylcholine receptor (mAChR) is targeted for structure-based design of allosteric modulators. Accelerated molecular dynamics (aMD) simulations were performed to construct structural ensembles that account for the receptor flexibility. Compounds obtained from the National Cancer Institute (NCI) were docked to the receptor ensembles. Retrospective docking of known ligands showed that combining aMD simulations with Glide induced fit docking (IFD) provided much-improved enrichment factors, compared with the Glide virtual screening workflow. Glide IFD was thus applied in receptor ensemble docking, and 38 top-ranked NCI compounds were selected for experimental testing. In [3H]N-methylscopolamine radioligand dissociation assays, approximately half of the 38 lead compounds altered the radioligand dissociation rate, a hallmark of allosteric behavior. In further competition binding experiments, we identified 12 compounds with affinity of ≤30 μM. With final functional experiments on six selected compounds, we confirmed four of them as new negative allosteric modulators (NAMs) and one as positive allosteric modulator of agonist-mediated response at the M2 mAChR. Two of the NAMs showed subtype selectivity without significant effect at the M1 and M3 mAChRs. This study demonstrates an unprecedented successful structure-based approach to identify chemically diverse and selective GPCR allosteric modulators with outstanding potential for further structure-activity relationship studies. PMID:27601651

  3. Allosteric receptor activation by the plant peptide hormone phytosulfokine.

    PubMed

    Wang, Jizong; Li, Hongju; Han, Zhifu; Zhang, Heqiao; Wang, Tong; Lin, Guangzhong; Chang, Junbiao; Yang, Weicai; Chai, Jijie

    2015-09-10

    Phytosulfokine (PSK) is a disulfated pentapeptide that has a ubiquitous role in plant growth and development. PSK is perceived by its receptor PSKR, a leucine-rich repeat receptor kinase (LRR-RK). The mechanisms underlying the recognition of PSK, the activation of PSKR and the identity of the components downstream of the initial binding remain elusive. Here we report the crystal structures of the extracellular LRR domain of PSKR in free, PSK- and co-receptor-bound forms. The structures reveal that PSK interacts mainly with a β-strand from the island domain of PSKR, forming an anti-β-sheet. The two sulfate moieties of PSK interact directly with PSKR, sensitizing PSKR recognition of PSK. Supported by biochemical, structural and genetic evidence, PSK binding enhances PSKR heterodimerization with the somatic embryogenesis receptor-like kinases (SERKs). However, PSK is not directly involved in PSKR-SERK interaction but stabilizes PSKR island domain for recruitment of a SERK. Our data reveal the structural basis for PSKR recognition of PSK and allosteric activation of PSKR by PSK, opening up new avenues for the design of PSKR-specific small molecules.

  4. Ignavine: a novel allosteric modulator of the μ opioid receptor

    PubMed Central

    Ohbuchi, Katsuya; Miyagi, Chika; Suzuki, Yasuyuki; Mizuhara, Yasuharu; Mizuno, Keita; Omiya, Yuji; Yamamoto, Masahiro; Warabi, Eiji; Sudo, Yuka; Yokoyama, Akinobu; Miyano, Kanako; Hirokawa, Takatsugu; Uezono, Yasuhito

    2016-01-01

    Processed Aconiti tuber (PAT) is used to treat pain associated with various disorders. Although it has been demonstrated that the κ opioid receptor (KOR) signaling pathway is a mediator of the analgesic effect of PAT, active components affecting opioid signaling have not yet been identified. In this study, we explored candidate components of PAT by pharmacokinetic analysis and identified ignavine, which is a different structure from aconitine alkaloids. A receptor binding assay of opioid receptors showed that ignavine specifically binds the μ opioid receptor (MOR), not the KOR. Receptor internalization assay in MOR-expressing cell lines revealed that ignavine augmented the responses produced by D-Ala(2)-N-Me-Phe(4)-Gly-ol(5)-enkephalin (DAMGO), a representative MOR agonist, at a low concentration and inhibited it at a higher concentration. Ignavine also exerted positive modulatory activity for DAMGO, endomorphin-1 and morphine in cAMP assay. Additionally, ignavine alone showed an analgesic effect in vivo. In silico simulation analysis suggested that ignavine would induce a unique structural change distinguished from those induced by a representative MOR agonist and antagonist. These data collectively suggest the possibility that ignavine could be a novel allosteric modulator of the MOR. The present results may open the way for the development of a novel pain management strategy. PMID:27530869

  5. Disruption of integrin-fibronectin complexes by allosteric but not ligand-mimetic inhibitors.

    PubMed

    Mould, A Paul; Craig, Susan E; Byron, Sarah K; Humphries, Martin J; Jowitt, Thomas A

    2014-12-15

    Failure of Arg-Gly-Asp (RGD)-based inhibitors to reverse integrin-ligand binding has been reported, but the prevalence of this phenomenon among integrin heterodimers is currently unknown. In the present study we have investigated the interaction of four different RGD-binding integrins (α5β1, αVβ1, αVβ3 and αVβ6) with fibronectin (FN) using surface plasmon resonance. The ability of inhibitors to reverse ligand binding was assessed by their capacity to increase the dissociation rate of pre-formed integrin-FN complexes. For all four receptors we showed that RGD-based inhibitors (such as cilengitide) were completely unable to increase the dissociation rate. Formation of the non-reversible state occurred very rapidly and did not rely on the time-dependent formation of a high-affinity state of the integrin, or the integrin leg regions. In contrast with RGD-based inhibitors, Ca2+ (but not Mg2+) was able to greatly increase the dissociation rate of integrin-FN complexes, with a half-maximal response at ~0.4 mM Ca2+ for αVβ3-FN. The effect of Ca2+ was overcome by co-addition of Mn2+, but not Mg2+. A stimulatory anti-β1 monoclonal antibody (mAb) abrogated the effect of Ca2+ on α5β1-FN complexes; conversely, a function-blocking mAb mimicked the effect of Ca2+. These results imply that Ca2+ acts allosterically, probably through binding to the adjacent metal-ion-dependent adhesion site (ADMIDAS), and that the α1 helix in the β subunit I domain is the key element affected by allosteric modulators. The data suggest an explanation for the limited clinical efficacy of RGD-based integrin antagonists, and we propose that allosteric antagonists could prove to be of greater therapeutic benefit.

  6. Convergent Transmission of RNAi Guide-Target Mismatch Information across Argonaute Internal Allosteric Network

    PubMed Central

    Joseph, Thomas T.; Osman, Roman

    2012-01-01

    In RNA interference, a guide strand derived from a short dsRNA such as a microRNA (miRNA) is loaded into Argonaute, the central protein in the RNA Induced Silencing Complex (RISC) that silences messenger RNAs on a sequence-specific basis. The positions of any mismatched base pairs in an miRNA determine which Argonaute subtype is used. Subsequently, the Argonaute-guide complex binds and silences complementary target mRNAs; certain Argonautes cleave the target. Mismatches between guide strand and the target mRNA decrease cleavage efficiency. Thus, loading and silencing both require that signals about the presence of a mismatched base pair are communicated from the mismatch site to effector sites. These effector sites include the active site, to prevent target cleavage; the binding groove, to modify nucleic acid binding affinity; and surface allosteric sites, to control recruitment of additional proteins to form the RISC. To examine how such signals may be propagated, we analyzed the network of internal allosteric pathways in Argonaute exhibited through correlations of residue-residue interactions. The emerging network can be described as a set of pathways emanating from the core of the protein near the active site, distributed into the bulk of the protein, and converging upon a distributed cluster of surface residues. Nucleotides in the guide strand “seed region” have a stronger relationship with the protein than other nucleotides, concordant with their importance in sequence selectivity. Finally, any of several seed region guide-target mismatches cause certain Argonaute residues to have modified correlations with the rest of the protein. This arises from the aggregation of relatively small interaction correlation changes distributed across a large subset of residues. These residues are in effector sites: the active site, binding groove, and surface, implying that direct functional consequences of guide-target mismatches are mediated through the cumulative

  7. Chemical cross-linking of bovine retinal transducin and cGMP phosphodiesterase.

    PubMed

    Hingorani, V N; Tobias, D T; Henderson, J T; Ho, Y K

    1988-05-15

    The bifunctional reagents para-phenyldimaleimide and maleimidobenzoyl-N-hydroxysuccinimide ester were used to chemically cross-link the subunits of the transducin and cGMP phosphodiesterase (PDE) complexes of bovine rod photoreceptor cells. The cross-linked products were identified by Western immunoblotting using antisera against purified subunits of transducin (T alpha and T beta gamma) and PDE. Oligomeric cross-linked products of transducin subunits as large as (T alpha beta gamma)3 were observed in the latent form of transducin with bound GDP. In addition to the expected T alpha beta and T beta gamma cross-linked products, a (T alpha gamma)2 structure was detected. The close proximity of T alpha and T gamma suggests that T gamma may play a role in conferring the specificity of the interaction between T alpha and rhodopsin. Most of the oligomeric cross-linked structures between T alpha and T beta gamma were diminished in the activated form of transducin, with guanosine 5'-(beta, gamma-imidotriphosphate) (Gpp(NH)p) bound. However, cross-linking between T beta and T gamma was not altered. These results suggest that transducin exists as an oligomer in solution which dissociates upon the binding of Gpp(NH)p. To identify the possible interacting domains between the T alpha, T beta, and T gamma subunits, the cross-linked products were subjected to limited tryptic proteolysis. Several cross-linked tryptic peptides of transducin subunits were found and include the cross-linked products of the N terminus 15-kDa fragment of T beta and the C terminus 5-kDa fragment of T alpha, T gamma and the 12-kDa fragment of T alpha, T gamma and the 15-kDa as well as the 23-kDa fragments of T beta, and an intra-T alpha cross-linked product of the 2- and 21-kDa fragments. These results have allowed the construction of a topographical model for the transducin subunits. The organization of the subunits of PDE (P alpha, P beta, and P gamma) was also studied. The formation of the high

  8. Identification of natural allosteric inhibitor for Akt1 protein through computational approaches and in vitro evaluation.

    PubMed

    Pragna Lakshmi, T; Kumar, Amit; Vijaykumar, Veena; Natarajan, Sakthivel; Krishna, Ramadas

    2017-03-01

    Akt, a serine/threonine protein kinase, is often hyper activated in breast and prostate cancers, but with poor prognosis. Allosteric inhibitors regulate aberrant kinase activity by stabilizing the protein in inactive conformation. Several natural compounds have been reported as inhibitors for kinases. In this study, to identify potential natural allosteric inhibitor for Akt1, we generated a seven-point pharmacophore model and screened it through natural compound library. Quercetin-7-O-β-d-glucopyranoside or Q7G was found to be the best among selected molecules based on its hydrogen bond occupancy with key allosteric residues, persistent polar contacts and salt bridges that stabilize Akt1 in inactive conformation and minimum binding free energy during molecular dynamics simulation. Q7G induced dose-dependent inhibition of breast cancer cells (MDA MB-231) and arrested them in G1 and sub-G phase. This was associated with down-regulation of anti-apoptotic protein Bcl-2, up-regulation of cleaved caspase-3 and PARP. Expression of p-Akt (Ser473) was also down-regulated which might be due to Akt1 inhibition in inactive conformation. We further confirmed the Akt1 and Q7G interaction which was observed to have a dissociation constant (Kd) of 0.246μM. With these computational, biological and thermodynamic studies, we suggest Q7G as a lead molecule and propose for its further optimization.

  9. Enzymatic function of hemoglobin as a nitrite reductase that produces NO under allosteric control

    PubMed Central

    Huang, Zhi; Shiva, Sruti; Kim-Shapiro, Daniel B.; Patel, Rakesh P.; Ringwood, Lorna A.; Irby, Cynthia E.; Huang, Kris T.; Ho, Chien; Hogg, Neil; Schechter, Alan N.; Gladwin, Mark T.

    2005-01-01

    Hypoxic vasodilation is a fundamental, highly conserved physiological response that requires oxygen and/or pH sensing coupled to vasodilation. While this process was first characterized more than 80 years ago, the precise identity and mechanism of the oxygen sensor and mediators of vasodilation remain uncertain. In support of a possible role for hemoglobin (Hb) as a sensor and effector of hypoxic vasodilation, here we show biochemical evidence that Hb exhibits enzymatic behavior as a nitrite reductase, with maximal NO generation rates occurring near the oxy-to-deoxy (R-to-T) allosteric structural transition of the protein. The observed rate of nitrite reduction by Hb deviates from second-order kinetics, and sigmoidal reaction progress is determined by a balance between 2 opposing chemistries of the heme in the R (oxygenated conformation) and T (deoxygenated conformation) allosteric quaternary structures of the Hb tetramer — the greater reductive potential of deoxyheme in the R state tetramer and the number of unligated deoxyheme sites necessary for nitrite binding, which are more plentiful in the T state tetramer. These opposing chemistries result in a maximal nitrite reduction rate when Hb is 40–60% saturated with oxygen (near the Hb P50), an apparent ideal set point for hypoxia-responsive NO generation. These data suggest that the oxygen sensor for hypoxic vasodilation is determined by Hb oxygen saturation and quaternary structure and that the nitrite reductase activity of Hb generates NO gas under allosteric and pH control. PMID:16041407

  10. Allosteric Motions in Structures of Yeast NAD+-Specific Isocitrate Dehydrogenase

    SciTech Connect

    Taylor,A.; Hu, G.; Hart, P.; McAlister-Henn, L.

    2008-01-01

    Mitochondrial NAD+-specific isocitrate dehydrogenases (IDHs) are key regulators of flux through biosynthetic and oxidative pathways in response to cellular energy levels. Here we present the first structures of a eukaryotic member of this enzyme family, the allosteric, hetero-octameric, NAD+-specific IDH from yeast in three forms: (1) without ligands, (2) with bound analog citrate, and (3) with bound citrate + AMP. The structures reveal the molecular basis for ligand binding to homologous but distinct regulatory and catalytic sites positioned at the interfaces between IDH1 and IDH2 subunits and define pathways of communication between heterodimers and heterotetramers in the hetero-octamer. Disulfide bonds observed at the heterotetrameric interfaces in the unliganded IDH hetero-octamer are reduced in the ligand-bound forms, suggesting a redox regulatory mechanism that may be analogous to the 'on-off' regulation of non-allosteric bacterial IDHs via phosphorylation. The results strongly suggest that eukaryotic IDH enzymes are exquisitely tuned to ensure that allosteric activation occurs only when concentrations of isocitrate are elevated.

  11. Cholesterol-mediated allosteric regulation of the mitochondrial translocator protein structure

    PubMed Central

    Jaipuria, Garima; Leonov, Andrei; Giller, Karin; Vasa, Suresh Kumar; Jaremko, Łukasz; Jaremko, Mariusz; Linser, Rasmus; Becker, Stefan; Zweckstetter, Markus

    2017-01-01

    Cholesterol is an important regulator of membrane protein function. However, the exact mechanisms involved in this process are still not fully understood. Here we study how the tertiary and quaternary structure of the mitochondrial translocator protein TSPO, which binds cholesterol with nanomolar affinity, is affected by this sterol. Residue-specific analysis of TSPO by solid-state NMR spectroscopy reveals a dynamic monomer–dimer equilibrium of TSPO in the membrane. Binding of cholesterol to TSPO's cholesterol-recognition motif leads to structural changes across the protein that shifts the dynamic equilibrium towards the translocator monomer. Consistent with an allosteric mechanism, a mutation within the oligomerization interface perturbs transmembrane regions located up to 35 Å away from the interface, reaching TSPO's cholesterol-binding motif. The lower structural stability of the intervening transmembrane regions provides a mechanistic basis for signal transmission. Our study thus reveals an allosteric signal pathway that connects membrane protein tertiary and quaternary structure with cholesterol binding. PMID:28358007

  12. An allosteric inhibitor of substrate recognition by the SCF[superscript Cdc4] ubiquitin ligase

    SciTech Connect

    Orlicky, Stephen; Tang, Xiaojing; Neduva, Victor; Elowe, Nadine; Brown, Eric D.; Sicheri, Frank; Tyers, Mike

    2010-09-17

    The specificity of SCF ubiquitin ligase-mediated protein degradation is determined by F-box proteins. We identified a biplanar dicarboxylic acid compound, called SCF-I2, as an inhibitor of substrate recognition by the yeast F-box protein Cdc4 using a fluorescence polarization screen to monitor the displacement of a fluorescein-labeled phosphodegron peptide. SCF-I2 inhibits the binding and ubiquitination of full-length phosphorylated substrates by SCF{sup Cdc4}. A co-crystal structure reveals that SCF-I2 inserts itself between the {beta}-strands of blades 5 and 6 of the WD40 propeller domain of Cdc4 at a site that is 25 {angstrom} away from the substrate binding site. Long-range transmission of SCF-I2 interactions distorts the substrate binding pocket and impedes recognition of key determinants in the Cdc4 phosphodegron. Mutation of the SCF-I2 binding site abrogates its inhibitory effect and explains specificity in the allosteric inhibition mechanism. Mammalian WD40 domain proteins may exhibit similar allosteric responsiveness and hence represent an extensive class of druggable target.

  13. Identification of Allosteric Disulfides from Prestress Analysis

    PubMed Central

    Zhou, Beifei; Baldus, Ilona B.; Li, Wenjin; Edwards, Scott A.; Gräter, Frauke

    2014-01-01

    Disulfide bonds serve to form physical cross-links between residues in protein structures, thereby stabilizing the protein fold. Apart from this purely structural role, they can also be chemically active, participating in redox reactions, and they may even potentially act as allosteric switches controlling protein functions. Specific types of disulfide bonds have been identified in static protein structures from their distinctive pattern of dihedral bond angles, and the allosteric function of such bonds is purported to be related to the torsional strain they store. Using all-atom molecular-dynamics simulations for ∼700 disulfide bonded proteins, we analyzed the intramolecular mechanical forces in 20 classes of disulfide bonds. We found that two particular classes, the −RHStaple and the −/+RHHook disulfides, are indeed more stressed than other disulfide bonds, but the stress is carried primarily by stretching of the S-S bond and bending of the neighboring bond angles, rather than by dihedral torsion. This stress corresponds to a tension force of magnitude ∼200 pN, which is balanced by repulsive van der Waals interactions between the cysteine Cα atoms. We confirm stretching of the S-S bond to be a general feature of the −RHStaples and the −/+RHHooks by analyzing ∼20,000 static protein structures. Given that forced stretching of S-S bonds is known to accelerate their cleavage, we propose that prestress of allosteric disulfide bonds has the potential to alter the reactivity of a disulfide, thereby allowing us to readily switch between functional states. PMID:25099806

  14. Drugs modulate allosterically heme-Fe-recognition by human serum albumin and heme-fe-mediated reactivity.

    PubMed

    di Masi, Alessandra; Leboffe, Loris; Trezza, Viviana; Fanali, Gabriella; Coletta, Massimo; Fasano, Mauro; Ascenzi, Paolo

    2015-01-01

    Human serum albumin (HSA) represents an important determinant of plasma oncotic pressure and a relevant factor that modulates fluid distribution between the body compartments. Moreover, HSA (i) represents the depot and transporter of several compounds, both endogenous and exogenous, (ii) affects the pharmacokinetics of many drugs, (iii) regulates chemical modifications of some ligands, (iv) shows (pseudo-)enzymatic properties, (v) inactivates some toxic compounds, and (vi) displays anti-oxidant properties. HSA binding and (pseudo-)enzymatic properties are regulated competitively, allosterically, and by covalent modifications. While competitive inhibition of HSA binding properties is evident, allosteric mechanisms and covalent modifications affecting HSA reactivity are less clear. In several pathological conditions in which free heme-Fe levels increase, the buffering capacity of plasma hemopexin is overwhelmed and most of heme-Fe binds to the fatty acid site 1 of HSA. HSA-heme-Fe displays globin-like properties; in turn, heme-Fe modulates competitively and allosterically HSA binding and reactivity properties. Remarkably, heme-Fe-mediated HSA properties are time-dependent, representing a case for "chronosteric effects". Here, we review the drug-based modulation of (i) heme-Fe-recognition by HSA and (ii) heme-Fe-mediated reactivity.

  15. Molecular Basis of Enhanced Activity in Factor VIIa-Trypsin Variants Conveys Insights into Tissue Factor-mediated Allosteric Regulation of Factor VIIa Activity*

    PubMed Central

    Sorensen, Anders B.; Madsen, Jesper J.; Svensson, L. Anders; Pedersen, Anette A.; Østergaard, Henrik; Overgaard, Michael T.; Olsen, Ole H.; Gandhi, Prafull S.

    2016-01-01

    The complex of coagulation factor VIIa (FVIIa), a trypsin-like serine protease, and membrane-bound tissue factor (TF) initiates blood coagulation upon vascular injury. Binding of TF to FVIIa promotes allosteric conformational changes in the FVIIa protease domain and improves its catalytic properties. Extensive studies have revealed two putative pathways for this allosteric communication. Here we provide further details of this allosteric communication by investigating FVIIa loop swap variants containing the 170 loop of trypsin that display TF-independent enhanced activity. Using x-ray crystallography, we show that the introduced 170 loop from trypsin directly interacts with the FVIIa active site, stabilizing segment 215–217 and activation loop 3, leading to enhanced activity. Molecular dynamics simulations and novel fluorescence quenching studies support that segment 215–217 conformation is pivotal to the enhanced activity of the FVIIa variants. We speculate that the allosteric regulation of FVIIa activity by TF binding follows a similar path in conjunction with protease domain N terminus insertion, suggesting a more complete molecular basis of TF-mediated allosteric enhancement of FVIIa activity. PMID:26694616

  16. Nocturnal accumulation of cyclic 3',5'-guanosine monophosphate (cGMP) in the chick pineal organ is dependent on activation of guanylyl cyclase-B.

    PubMed

    Olcese, J; Majora, C; Stephan, A; Müller, D

    2002-01-01

    The role of cGMP in the avian pineal is not well understood. Although the light-sensitive secretion of melatonin is a well-known output of the circadian oscillator, pharmacologically elevated cGMP levels do not result in altered melatonin secretory amplitude or phase. This suggests that pineal cGMP signalling does not couple the endogenous circadian oscillator to the expression of melatonin rhythms. Nonetheless, the free-running rhythm of cGMP signalling implies a link to the circadian oscillator in chick pinealocytes. As the circadian rhythm of cGMP levels in vitro is not altered by pharmacological inhibition of phosphodiesterase activity, we infer that the synthesis, rather than the degradation of cGMP, is under circadian control. In vitro experiments with the nitric oxide synthase (NOS) inhibitor NG-nitro-L-arginine as well as with an inhibitor of the NO-sensitive soluble guanylyl cyclase (sGC), showed that the NOS-sGC pathway does not play a major role in the circadian control of cGMP generation. In organ culture experiments, we demonstrated that C-type natriuretic peptide (CNP), but not atrial natriuretic peptide (ANP), elevated daytime levels of cGMP. As CNP acts on the membrane guanylyl cyclase isoform B (GC-B), which is expressed at very high levels in mammalian pineals, we investigated the effect of the membrane GC-specific inhibitor HS-142 on chick pineal cGMP levels. CNP-induced daytime cGMP levels were reduced by HS-142. More importantly, 'spontaneously' high nocturnal levels of cGMP in vitro were reduced to daytime levels by acute addition of HS-142. These data implicate endogenous nocturnal CNP release and subsequent activation of GC-B as the major input driving cGMP synthesis in the chick pineal organ.

  17. Potentiation of alpha7 nicotinic acetylcholine receptors via an allosteric transmembrane site.

    PubMed

    Young, Gareth T; Zwart, Ruud; Walker, Alison S; Sher, Emanuele; Millar, Neil S

    2008-09-23

    Positive allosteric modulators of alpha7 nicotinic acetylcholine receptors (nAChRs) have attracted considerable interest as potential tools for the treatment of neurological and psychiatric disorders such as Alzheimer's disease and schizophrenia. However, despite the potential therapeutic usefulness of these compounds, little is known about their mechanism of action. Here, we have examined two allosteric potentiators of alpha7 nAChRs (PNU-120596 and LY-2087101). From studies with a series of subunit chimeras, we have identified the transmembrane regions of alpha7 as being critical in facilitating potentiation of agonist-evoked responses. Furthermore, we have identified five transmembrane amino acids that, when mutated, significantly reduce potentiation of alpha7 nAChRs. The amino acids we have identified are located within the alpha-helical transmembrane domains TM1 (S222 and A225), TM2 (M253), and TM4 (F455 and C459). Mutation of either A225 or M253 individually have particularly profound effects, reducing potentiation of EC(20) concentrations of acetylcholine to a tenth of the level seen with wild-type alpha7. Reference to homology models of the alpha7 nAChR, based on the 4A structure of the Torpedo nAChR, indicates that the side chains of all five amino acids point toward an intrasubunit cavity located between the four alpha-helical transmembrane domains. Computer docking simulations predict that the allosteric compounds such as PNU-120596 and LY-2087101 may bind within this intrasubunit cavity, much as neurosteroids and volatile anesthetics are thought to interact with GABA(A) and glycine receptors. Our findings suggest that this is a conserved modulatory allosteric site within neurotransmitter-gated ion channels.

  18. Overcoming EGFR T790M and C797S resistance with mutant-selective allosteric inhibitors

    PubMed Central

    Jia, Yong; Yun, Cai-Hong; Park, Eunyoung; Ercan, Dalia; Manuia, Mari; Juarez, Jose; Xu, Chunxiao; Rhee, Kevin; Chen, Ting; Zhang, Haikuo; Palakurthi, Sangeetha; Jang, Jaebong; Lelais, Gerald; DiDonato, Michael; Bursulaya, Badry; Michellys, Pierre-Yves; Epple, Robert; Marsilje, Thomas H.; McNeill, Matthew; Lu, Wenshuo; Harris, Jennifer; Bender, Steven; Wong, Kwok-Kin; Jänne, Pasi A.; Eck, Michael J.

    2016-01-01

    EGFR tyrosine kinase inhibitors (TKIs) gefitinib, erlotinib and afatinib are approved treatments for non-small cell lung cancers harboring activating mutations in the EGFR kinase1,2, but resistance arises rapidly, most frequently due to the secondary T790M mutation within the ATP-site of the receptor.3,4 Recently developed mutant-selective irreversible inhibitors are highly active against the T790M mutant5,6, but their efficacy can be compromised by acquired mutation of C797, the cysteine residue with which they form a key covalent bond7. All current EGFR TKIs target the ATP-site of the kinase, highlighting the need for therapeutic agents with alternate mechanisms of action. Here we describe rational discovery of EAI045, an allosteric inhibitor that targets selected drug-resistant EGFR mutants but spares the wild type receptor. A crystal structure shows that the compound binds an allosteric site created by the displacement of the regulatory C-helix in an inactive conformation of the kinase. The compound inhibits L858R/T790M-mutant EGFR with low-nanomolar potency in biochemical assays, but as a single agent is not effective in blocking EGFR-driven proliferation in cells due to differential potency on the two subunits of the dimeric receptor, which interact in an asymmetric manner in the active state8. We observe dramatic synergy of EAI045 with cetuximab, an antibody therapeutic that blocks EGFR dimerization9,10, rendering the kinase uniformly susceptible to the allosteric agent. EAI045 in combination with cetuximab is effective in mouse models of lung cancer driven by L858R/T790M EGFR and by L858R/T790M/C797S EGFR, a mutant that is resistant to all currently available EGFR TKIs. More generally, our findings illustrate the utility of purposefully targeting allosteric sites to obtain mutant-selective inhibitors. PMID:27251290

  19. Allosteric Inhibition of Factor XIIIa. Non-Saccharide Glycosaminoglycan Mimetics, but Not Glycosaminoglycans, Exhibit Promising Inhibition Profile

    PubMed Central

    Al-Horani, Rami A.; Karuturi, Rajesh; Lee, Michael; Afosah, Daniel K.

    2016-01-01

    Factor XIIIa (FXIIIa) is a transglutaminase that catalyzes the last step in the coagulation process. Orthostery is the only approach that has been exploited to design FXIIIa inhibitors. Yet, allosteric inhibition of FXIIIa is a paradigm that may offer a key advantage of controlled inhibition over orthosteric inhibition. Such an approach is likely to lead to novel FXIIIa inhibitors that do not carry bleeding risks. We reasoned that targeting a collection of basic amino acid residues distant from FXIIIa’s active site by using sulfated glycosaminoglycans (GAGs) or non-saccharide GAG mimetics (NSGMs) would lead to the discovery of the first allosteric FXIIIa inhibitors. We tested a library of 22 variably sulfated GAGs and NSGMs against human FXIIIa to discover promising hits. Interestingly, although some GAGs bound to FXIIIa better than NSGMs, no GAG displayed any inhibition. An undecasulfated quercetin analog was found to inhibit FXIIIa with reasonable potency (efficacy of 98%). Michaelis-Menten kinetic studies revealed an allosteric mechanism of inhibition. Fluorescence studies confirmed close correspondence between binding affinity and inhibition potency, as expected for an allosteric process. The inhibitor was reversible and at least 9-fold- and 26-fold selective over two GAG-binding proteins factor Xa (efficacy of 71%) and thrombin, respectively, and at least 27-fold selective over a cysteine protease papain. The inhibitor also inhibited the FXIIIa-mediated polymerization of fibrin in vitro. Overall, our work presents the proof-of-principle that FXIIIa can be allosterically modulated by sulfated non-saccharide agents much smaller than GAGs, which should enable the design of selective and safe anticoagulants. PMID:27467511

  20. Ligand-Based Discovery of a New Scaffold for Allosteric Modulation of the μ-Opioid Receptor.

    PubMed

    Bisignano, Paola; Burford, Neil T; Shang, Yi; Marlow, Brennica; Livingston, Kathryn E; Fenton, Abigail M; Rockwell, Kristin; Budenholzer, Lauren; Traynor, John R; Gerritz, Samuel W; Alt, Andrew; Filizola, Marta

    2015-09-28

    With the hope of discovering effective analgesics with fewer side effects, attention has recently shifted to allosteric modulators of the opioid receptors. In the past two years, the first chemotypes of positive or silent allosteric modulators (PAMs or SAMs, respectively) of μ- and δ-opioid receptor types have been reported in the literature. During a structure-guided lead optimization campaign with μ-PAMs BMS-986121 and BMS-986122 as starting compounds, we discovered a new chemotype that was confirmed to display μ-PAM or μ-SAM activity depending on the specific substitutions as assessed by endomorphin-1-stimulated β-arrestin2 recruitment assays in Chinese Hamster Ovary (CHO)-μ PathHunter cells. The most active μ-PAM of this series was analyzed further in competition binding and G-protein activation assays to understand its effects on ligand binding and to investigate the nature of its probe dependence.

  1. A secreted salivary inositol polyphosphate 5-phosphatase from a blood-feeding insect: allosteric activation by soluble phosphoinositides and phosphatidylserine.

    PubMed

    Andersen, John F; Ribeiro, José M C

    2006-05-02

    Type II inositol polyphosphate 5-phosphatases (IPPs) act on both soluble inositol phosphate and phosphoinositide substrates. In many cases, these enzymes occur as multidomain proteins in which the IPP domain is linked to lipid-binding or additional catalytic domains. Rhodnius prolixus IPPRp exists as an isolated IPP domain which is secreted into the saliva of this blood-feeding insect. It shows selectivity for soluble and lipid substrates having a 1,4,5-trisphosphate substitution pattern while only poorly hydrolyzing substrates containing a D3 phosphate. With soluble diC8 PI(4,5)P(2) as a substrate, sigmoidal kinetics were observed, suggesting the presence of allosteric activation sites. Surprisingly, IPPRp-mediated hydrolysis of PI(4,5)P(2) and PI(3,4,5)P(3) was also stimulated up to 100-fold by diC8 PI(4)P and diC8 phosphatidylserine (PS). The activation kinetics were again sigmoidal, demonstrating that the allosteric sites recognize nonsubstrate phospholipids. Activation was positively cooperative, and analysis by the Hill equation suggests that at least three to four allosteric sites are present. In a vesicular system, hydrolysis of PI(4,5)P(2) followed a surface dilution kinetic model, and as expected, PS was found to be strongly stimulatory. If allosteric activation of type II IPPs by PI(4)P and PS is a widespread feature of the group, it may represent a novel regulatory mechanism for these important enzymes.

  2. Novobiocin and Peptide Analogs of α-factor are Positive Allosteric Modulators of the Yeast G Protein-Coupled Receptor Ste2p

    PubMed Central

    Rymer, Jeffrey K.; Hauser, Melinda; Bourdon, Allen K.; Campagna, Shawn R.; Naider, Fred; Becker, Jeffrey M.

    2015-01-01

    G protein-coupled receptors (GPCRs) are the target of many drugs prescribed for human medicine and are therefore the subject of intense study. It has been recognized that compounds called allosteric modulators can regulate GPCR activity by binding to the receptor at sites distinct from, or overlapping with, that occupied by the orthosteric ligand. The purpose of this study was to investigate the nature of the interaction between putative allosteric modulators and Ste2p, a model GPCR expressed in the yeast Saccharomyces cerevisiae that binds the tridecapeptide mating pheromone α-factor. Biological assays demonstrated that an eleven amino acid α-factor analog and the antibiotic novobiocin were positive allosteric modulators of Ste2p. Both compounds enhanced the biological activity of α-factor, but did not compete with α-factor binding to Ste2p. To determine if novobiocin and the 11-mer shared a common allosteric binding site, a biologically-active analog of the 11-mer peptide ([Bio-DOPA]11-mer) was chemically cross-linked to Ste2p in the presence and absence of novobiocin. Immunoblots probing for the Ste2p-[Bio-DOPA]11-mer complex revealed that novobiocin markedly decreased cross-linking of the [Bio-DOPA]11-mer to the receptor, but cross-linking of the α-factor analog [Bio-DOPA]13-mer, which interacts with the orthosteric binding site of the receptor, was minimally altered. This finding suggests that both novobiocin and [Bio-DOPA]11-mer compete for an allosteric binding site on the receptor. These results indicate that Ste2p may provide an excellent model system for studying allostery in a GPCR. PMID:25576192

  3. Identification and Quantification of a New Family of Peptide Endocannabinoids (Pepcans) Showing Negative Allosteric Modulation at CB1 Receptors*

    PubMed Central

    Bauer, Mark; Chicca, Andrea; Tamborrini, Marco; Eisen, David; Lerner, Raissa; Lutz, Beat; Poetz, Oliver; Pluschke, Gerd; Gertsch, Jürg

    2012-01-01

    The α-hemoglobin-derived dodecapeptide RVD-hemopressin (RVDPVNFKLLSH) has been proposed to be an endogenous agonist for the cannabinoid receptor type 1 (CB1). To study this peptide, we have raised mAbs against its C-terminal part. Using an immunoaffinity mass spectrometry approach, a whole family of N-terminally extended peptides in addition to RVD-Hpα were identified in rodent brain extracts and human and mouse plasma. We designated these peptides Pepcan-12 (RVDPVNFKLLSH) to Pepcan-23 (SALSDLHAHKLRVDPVNFKLLSH), referring to peptide length. The most abundant Pepcans found in the brain were tested for CB1 receptor binding. In the classical radioligand displacement assay, Pepcan-12 was the most efficacious ligand but only partially displaced both [3H]CP55,940 and [3H]WIN55,212-2. The data were fitted with the allosteric ternary complex model, revealing a cooperativity factor value α < 1, thus indicating a negative allosteric modulation. Dissociation kinetic studies of [3H]CP55,940 in the absence and presence of Pepcan-12 confirmed these results by showing increased dissociation rate constants induced by Pepcan-12. A fluorescently labeled Pepcan-12 analog was synthesized to investigate the binding to CB1 receptors. Competition binding studies revealed Ki values of several Pepcans in the nanomolar range. Accordingly, using competitive ELISA, we found low nanomolar concentrations of Pepcans in human plasma and ∼100 pmol/g in mouse brain. Surprisingly, Pepcan-12 exhibited potent negative allosteric modulation of the orthosteric agonist-induced cAMP accumulation, [35S]GTPγS binding, and CB1 receptor internalization. Pepcans are the first endogenous allosteric modulators identified for CB1 receptors. Given their abundance in the brain, Pepcans could play an important physiological role in modulating endocannabinoid signaling. PMID:22952224

  4. Octahydropyrrolo[3,4-c]pyrrole negative allosteric modulators of mGlu1

    PubMed Central

    Manka, Jason T.; Rodriguez, Alice L.; Morrison, Ryan D.; Venable, Daryl F.; Cho, Hyekyung P.; Blobaum, Anna L.; Daniels, J. Scott; Niswender, Colleen M.; Conn, P. Jeffrey; Lindsley, Craig W.; Emmitte, Kyle A.

    2014-01-01

    Development of SAR in an octahydropyrrolo[3,4-c]pyrrole series of negative allosteric modulators of mGlu1 using a functional cell-based assay is described in this Letter. The octahydropyrrolo[3,4-c]pyrrole scaffold was chosen as an isosteric replacement for the piperazine ring found in the initial hit compound. Characterization of selected compounds in protein binding assays was used to identify the most promising analogs, which were then profiled in P450 inhibition assays in order to further assess the potential for drug-likeness within this series of compounds. PMID:23932792

  5. Allosteric Nanobodies Reveal the Dynamic Range and Diverse Mechanisms of GPCR Activation

    PubMed Central

    Staus, Dean P; Strachan, Ryan T; Manglik, Aashish; Pani, Biswaranjan; Kahsai, Alem W; Kim, Tae Hun; Wingler, Laura M; Ahn, Seungkirl; Chatterjee, Arnab; Masoudi, Ali; Kruse, Andrew C; Pardon, Els; Steyaert, Jan; Weis, William I; Prosser, R. Scott; Kobilka, Brian K; Costa, Tommaso; Lefkowitz, Robert J

    2016-01-01

    G-protein coupled receptors (GPCRs) modulate many physiological processes by transducing a variety of extracellular cues into intracellular responses. Ligand binding to an extracellular orthosteric pocket propagates conformational change to the receptor cytosolic region to promote binding and activation of downstream signaling effectors such as G proteins and β-arrestins. It is widely appreciated that different agonists can share the same binding pocket but evoke unique receptor conformations leading to a wide range of downstream responses (i.e., ‘efficacy’)1. Furthermore, mounting biophysical evidence, primarily using the β-adrenergic receptor (β2AR) as a model system, supports the existence of multiple active and inactive conformational states2–5. However, how agonists with varying efficacy modulate these receptor states to initiate cellular responses is not well understood. Here we report stabilization of two distinct β2AR conformations using single domain camelid antibodies (nanobodies): a previously described positive allosteric nanobody (Nb80) and a newly identified negative allosteric nanobody (Nb60)6,7. We show that Nb60 stabilizes a previously unappreciated low affinity receptor state which corresponds to one of two inactive receptor conformations as delineated by X-ray crystallography and NMR spectroscopy. We find that the agonist isoproterenol has a 15,000-fold higher affinity for the β2AR in the presence of Nb80 compared to Nb60, highlighting the full allosteric range of a GPCR. Assessing the binding of 17 ligands of varying efficacy to the β2AR in the absence and presence of Nb60 or Nb80 reveals large ligand-specific effects that can only be explained using an allosteric model which assumes equilibrium amongst at least three receptor states. Agonists generally exert efficacy by stabilizing the active Nb80-stabilized receptor state (R80). In contrast, for a number of partial agonists, both stabilization of R80 and destabilization of the

  6. Discovery and SAR of muscarinic receptor subtype 1 (M1) allosteric activators from a molecular libraries high throughput screen. Part 1: 2,5-dibenzyl-2H-pyrazolo[4,3-c]quinolin-3(5H)-ones as positive allosteric modulators.

    PubMed

    Han, Changho; Chatterjee, Arindam; Noetzel, Meredith J; Panarese, Joseph D; Smith, Emery; Chase, Peter; Hodder, Peter; Niswender, Colleen; Conn, P Jeffrey; Lindsley, Craig W; Stauffer, Shaun R

    2015-01-15

    Results from a 2012 high-throughput screen of the NIH Molecular Libraries Small Molecule Repository (MLSMR) against the human muscarinic receptor subtype 1 (M1) for positive allosteric modulators is reported. A content-rich screen utilizing an intracellular calcium mobilization triple-addition protocol allowed for assessment of all three modes of pharmacology at M1, including agonist, positive allosteric modulator, and antagonist activities in a single screening platform. We disclose a dibenzyl-2H-pyrazolo[4,3-c]quinolin-3(5H)-one hit (DBPQ, CID 915409) and examine N-benzyl pharmacophore/SAR relationships versus previously reported quinolin-3(5H)-ones and isatins, including ML137. SAR and consideration of recently reported crystal structures, homology modeling, and structure-function relationships using point mutations suggests a shared binding mode orientation at the putative common allosteric binding site directed by the pendant N-benzyl substructure.

  7. Neuronal nitric oxide contributes to neuroplasticity-associated protein expression through cGMP, protein kinase G, and extracellular signal-regulated kinase.

    PubMed

    Gallo, Eduardo F; Iadecola, Costantino

    2011-05-11

    Nitric oxide (NO) synthesized by neuronal NO synthase (nNOS) has long been implicated in brain plasticity. However, it is unclear how this short-lived mediator contributes to the long-term molecular changes underlying neuroplasticity, which typically require activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) signaling pathway and gene expression. To address this issue, we used a neuroplasticity model based on treatment of neuronal cultures with bicuculline and a model of experience-dependent plasticity in the barrel cortex. In neuronal cultures, NOS inhibition attenuated the bicuculline-induced activation of ERK and the expression of c-Fos, Egr-1, Arc, and brain-derived neurotrophic factor (BDNF), proteins essential for neuroplasticity. Furthermore, inhibition of the NO target soluble guanylyl cyclase or of the cGMP effector kinase protein kinase G (PKG) reduced both ERK activation and plasticity-related protein expression. NOS inhibition did not affect phosphorylation of cAMP response element-binding protein (CREB), a well-established ERK nuclear target, but it attenuated the nuclear accumulation of the CREB coactivator TORC1 and suppressed the activation of Elk-1, another transcription factor target of ERK. Consistent with these in vitro observations, induction of c-Fos, Egr-1, and BDNF was attenuated in the D1 cortical barrel of nNOS(-/-) mice subjected to single whisker experience. These results establish nNOS-derived NO as a key factor in the expression of proteins involved in neuroplasticity, an effect mediated through cGMP, PKG, and ERK signaling. These actions of NO do not depend on CREB phosphorylation but may involve TORC1 and Elk-1. Our data unveil a previously unrecognized link between neuronal NO and the molecular machinery responsible for the sustained synaptic changes underlying neuroplasticity.

  8. Allosteric drug discrimination is coupled to mechanochemical changes in the kinesin-5 motor core.

    PubMed

    Kim, Elizabeth D; Buckley, Rebecca; Learman, Sarah; Richard, Jessica; Parke, Courtney; Worthylake, David K; Wojcik, Edward J; Walker, Richard A; Kim, Sunyoung

    2010-06-11

    Essential in mitosis, the human Kinesin-5 protein is a target for >80 classes of allosteric compounds that bind to a surface-exposed site formed by the L5 loop. Not established is why there are differing efficacies in drug inhibition. Here we compare the ligand-bound states of two L5-directed inhibitors against 15 Kinesin-5 mutants by ATPase assays and IR spectroscopy. Biochemical kinetics uncovers functional differences between individual residues at the N or C termini of the L5 loop. Infrared evaluation of solution structures and multivariate analysis of the vibrational spectra reveal that mutation and/or ligand binding not only can remodel the allosteric binding surface but also can transmit long range effects. Changes in L5-localized 3(10) helix and disordered content, regardless of substitution or drug potency, are experimentally detected. Principal component analysis couples these local structural events to two types of rearrangements in beta-sheet hydrogen bonding. These transformations in beta-sheet contacts are correlated with inhibitory drug response and are corroborated by wild type Kinesin-5 crystal structures. Despite considerable evolutionary divergence, our data directly support a theorized conserved element for long distance mechanochemical coupling in kinesin, myosin, and F(1)-ATPase. These findings also suggest that these relatively rapid IR approaches can provide structural biomarkers for clinical determination of drug sensitivity and drug efficacy in nucleotide triphosphatases.

  9. Identifying paths of allosteric communication in the protein BirA through simulations

    NASA Astrophysics Data System (ADS)

    Custer, Gregory; Beckett, Dorothy; Matysiak, Silvina

    Biotin ligase/repressor (BirA) is a bifunctional enzyme which adenylates biotin and transfers the product, biotinyl-5'-AMP (bio-5'-AMP) to biotin carboxyl carrier protein (BCCP). In the absence of BCCP, bio-5'-AMP promotes the dimerization of BirA. In dimer form, the BirA.bio-5'-AMP complex is able to bind to the biotin operator and prevents further synthesis of biotin. The bio-5'-AMP binds away from the dimer interface, so it is acting as an allosteric activator. We perform all-atom molecular dynamics simulations with BirA to look at fluctuations within the protein at equilibrium. We simulate apoBirA, liganded BirA, as well as two mutants, M211A and V219A. In agreement with experimental observations, several loops of the protein become stabilized for the liganded BirA when compared to the apo protein. In addition, changes in the dimer interface are observed for the M211A and V219A mutations, which are located in the ligand binding region. Using inter-residue correlation coefficients and pair energies a communication network through the protein is constructed. With this network we have identified paths which have the potential to be important in allosteric activation of BirA. These paths and the methods we use to identify them will be presented.

  10. Mechanism of allosteric regulation of β2-adrenergic receptor by cholesterol

    PubMed Central

    Manna, Moutusi; Niemelä, Miia; Tynkkynen, Joona; Javanainen, Matti; Kulig, Waldemar; Müller, Daniel J; Rog, Tomasz; Vattulainen, Ilpo

    2016-01-01

    There is evidence that lipids can be allosteric regulators of membrane protein structure and activation. However, there are no data showing how exactly the regulation emerges from specific lipid-protein interactions. Here we show in atomistic detail how the human β2-adrenergic receptor (β2AR) – a prototypical G protein-coupled receptor – is modulated by cholesterol in an allosteric fashion. Extensive atomistic simulations show that cholesterol regulates β2AR by limiting its conformational variability. The mechanism of action is based on the binding of cholesterol at specific high-affinity sites located near the transmembrane helices 5–7 of the receptor. The alternative mechanism, where the β2AR conformation would be modulated by membrane-mediated interactions, plays only a minor role. Cholesterol analogues also bind to cholesterol binding sites and impede the structural flexibility of β2AR, however cholesterol generates the strongest effect. The results highlight the capacity of lipids to regulate the conformation of membrane receptors through specific interactions. DOI: http://dx.doi.org/10.7554/eLife.18432.001 PMID:27897972

  11. Unexpected Allosteric Network Contributes to LRH-1 Co-regulator Selectivity*

    PubMed Central

    Musille, Paul M.; Kossmann, Bradley R.; Kohn, Jeffrey A.; Ivanov, Ivaylo; Ortlund, Eric A.

    2016-01-01

    Phospholipids (PLs) are unusual signaling hormones sensed by the nuclear receptor liver receptor homolog-1 (LRH-1), which has evolved a novel allosteric pathway to support appropriate interaction with co-regulators depending on ligand status. LRH-1 plays an important role in controlling lipid and cholesterol homeostasis and is a potential target for the treatment of metabolic and neoplastic diseases. Although the prospect of modulating LRH-1 via small molecules is exciting, the molecular mechanism linking PL structure to transcriptional co-regulator preference is unknown. Previous studies showed that binding to an activating PL ligand, such as dilauroylphosphatidylcholine, favors LRH-1's interaction with transcriptional co-activators to up-regulate gene expression. Both crystallographic and solution-based structural studies showed that dilauroylphosphatidylcholine binding drives unanticipated structural fluctuations outside of the canonical activation surface in an alternate activation function (AF) region, encompassing the β-sheet-H6 region of the protein. However, the mechanism by which dynamics in the alternate AF influences co-regulator selectivity remains elusive. Here, we pair x-ray crystallography with molecular modeling to identify an unexpected allosteric network that traverses the protein ligand binding pocket and links these two elements to dictate selectivity. We show that communication between the alternate AF region and classical AF2 is correlated with the strength of the co-regulator interaction. This work offers the first glimpse into the conformational dynamics that drive this unusual PL-mediated nuclear hormone receptor activation. PMID:26553876

  12. Light-dependent channels from excised patches of Limulus ventral photoreceptors are opened by cGMP.

    PubMed Central

    Bacigalupo, J; Johnson, E C; Vergara, C; Lisman, J E

    1991-01-01

    The identity of the second messenger that directly activates the light-dependent conductance in invertebrate photoreceptors remains unclear; the available evidence provides some support for cGMP and Ca2+. To resolve this issue we have applied these second messengers to membrane patches excised from the light-sensitive lobe of Limulus ventral photoreceptors. Our results show that these patches contain channels that can be opened by cGMP, but not by Ca2+. These cGMP-activated channels closely resemble the channels activated by light in cell-attached patches. This evidence suggests that cGMP is the messenger that opens the light-dependent channel in invertebrate photoreceptors. PMID:1716765

  13. Allosteric activation of apicomplexan calcium-dependent protein kinases

    PubMed Central

    Ingram, Jessica R.; Knockenhauer, Kevin E.; Markus, Benedikt M.; Mandelbaum, Joseph; Ramek, Alexander; Shan, Yibing; Shaw, David E.; Schwartz, Thomas U.; Ploegh, Hidde L.; Lourido, Sebastian

    2015-01-01

    Calcium-dependent protein kinases (CDPKs) comprise the major group of Ca2+-regulated kinases in plants and protists. It has long been assumed that CDPKs are activated, like other Ca2+-regulated kinases, by derepression of the kinase domain (KD). However, we found that removal of the autoinhibitory domain from Toxoplasma gondii CDPK1 is not sufficient for kinase activation. From a library of heavy chain-only antibody fragments (VHHs), we isolated an antibody (1B7) that binds TgCDPK1 in a conformation-dependent manner and potently inhibits it. We uncovered the molecular basis for this inhibition by solving the crystal structure of the complex and simulating, through molecular dynamics, the effects of 1B7–kinase interactions. In contrast to other Ca2+-regulated kinases, the regulatory domain of TgCDPK1 plays a dual role, inhibiting or activating the kinase in response to changes in Ca2+ concentrations. We propose that the regulatory domain of TgCDPK1 acts as a molecular splint to stabilize the otherwise inactive KD. This dependence on allosteric stabilization reveals a novel susceptibility in this important class of parasite enzymes. PMID:26305940

  14. Allosteric activation of apicomplexan calcium-dependent protein kinases

    SciTech Connect

    Ingram, Jessica R.; Knockenhauer, Kevin E.; Markus, Benedikt M.; Mandelbaum, Joseph; Ramek, Alexander; Shan, Yibing; Shaw, David E.; Schwartz, Thomas U.; Ploegh, Hidde L.; Lourido, Sebastian

    2015-08-24

    Calcium-dependent protein kinases (CDPKs) comprise the major group of Ca2+-regulated kinases in plants and protists. It has long been assumed that CDPKs are activated, like other Ca2+-regulated kinases, by derepression of the kinase domain (KD). However, we found that removal of the autoinhibitory domain from Toxoplasma gondii CDPK1 is not sufficient for kinase activation. From a library of heavy chain-only antibody fragments (VHHs), we isolated an antibody (1B7) that binds TgCDPK1 in a conformation-dependent manner and potently inhibits it. We uncovered the molecular basis for this inhibition by solving the crystal structure of the complex and simulating, through molecular dynamics, the effects of 1B7–kinase interactions. In contrast to other Ca2+-regulated kinases, the regulatory domain of TgCDPK1 plays a dual role, inhibiting or activating the kinase in response to changes in Ca2+ concentrations. We propose that the regulatory domain of TgCDPK1 acts as a molecular splint to stabilize the otherwise inactive KD. This dependence on allosteric stabilization reveals a novel susceptibility in this important class of parasite enzymes.

  15. Allosteric activation of apicomplexan calcium-dependent protein kinases

    DOE PAGES

    Ingram, Jessica R.; Knockenhauer, Kevin E.; Markus, Benedikt M.; ...

    2015-08-24

    Calcium-dependent protein kinases (CDPKs) comprise the major group of Ca2+-regulated kinases in plants and protists. It has long been assumed that CDPKs are activated, like other Ca2+-regulated kinases, by derepression of the kinase domain (KD). However, we found that removal of the autoinhibitory domain from Toxoplasma gondii CDPK1 is not sufficient for kinase activation. From a library of heavy chain-only antibody fragments (VHHs), we isolated an antibody (1B7) that binds TgCDPK1 in a conformation-dependent manner and potently inhibits it. We uncovered the molecular basis for this inhibition by solving the crystal structure of the complex and simulating, through molecular dynamics,more » the effects of 1B7–kinase interactions. In contrast to other Ca2+-regulated kinases, the regulatory domain of TgCDPK1 plays a dual role, inhibiting or activating the kinase in response to changes in Ca2+ concentrations. We propose that the regulatory domain of TgCDPK1 acts as a molecular splint to stabilize the otherwise inactive KD. This dependence on allosteric stabilization reveals a novel susceptibility in this important class of parasite enzymes.« less

  16. Regulation of Hippocampal cGMP Levels as a Candidate to Treat Cognitive Deficits in Huntington’s Disease

    PubMed Central

    Saavedra, Ana; Giralt, Albert; Arumí, Helena; Alberch, Jordi; Pérez-Navarro, Esther

    2013-01-01

    Huntington’s disease (HD) patients and mouse models show learning and memory impairment associated with hippocampal dysfunction. The neuronal nitric oxide synthase/3',5'-cyclic guanosine monophosphate (nNOS/cGMP) pathway is implicated in synaptic plasticity, and in learning and memory processes. Here, we examined the nNOS/cGMP pathway in the hippocampus of HD mice to determine whether it can be a good therapeutic target for cognitive improvement in HD. We analyzed hippocampal nNOS and phosphodiesterase (PDE) 5 and 9 levels in R6/1 mice, and cGMP levels in the hippocampus of R6/1, R6/2 and HdhQ7/Q111 mice, and of HD patients. We also investigated whether sildenafil, a PDE5 inhibitor, could improve cognitive deficits in R6/1 mice. We found that hippocampal cGMP levels were 3-fold lower in 12-week-old R6/1 mice, when they show deficits in object recognition memory and in passive avoidance learning. Consistent with hippocampal cGMP levels, nNOS levels were down-regulated, while there were no changes in the levels of PDE5 and PDE9 in R6/1 mice. A single intraperitoneal injection of sildenafil (3 mg/Kg) immediately after training increased cGMP levels, and improved memory in R6/1 mice, as assessed by using the novel object recognition and the passive avoidance test. Importantly, cGMP levels were also reduced in R6/2 mouse and human HD hippocampus. Therefore, the regulation of hippocampal cGMP levels can be a suitable treatment for cognitive impairment in HD. PMID:24040016

  17. Hypergravity differentially modulates cGMP efflux in human melanocytic cells stimulated by nitric oxide and natriuretic peptides

    NASA Astrophysics Data System (ADS)

    Ivanova, K.; Stieber, C.; Lambers, B.; Block, I.; Krieg, R.; Wellmann, A.; Gerzer, R.

    Nitric oxide NO plays a key role in many patho physiologic processes including inflammation and skin cancer The diverse cellular effects of NO are mainly mediated by activation of the soluble guanylyl cyclase sGC isoform that leads to increases in intracellular cGMP levels whereas the membrane-bound isoforms serve as receptors for natriuretic peptides e g ANP In human skin epidermal melanocytes represent the principal cells for skin pigmentation by synthesizing the pigment melanin Melanin acts as a scavenger for free radicals that may arise during metabolic stress as a result of potentially harmful effects of the environment In previous studies we found that long-term exposure to hypergravity stimulated cGMP efflux in normal human melanocytes NHMs and non-metastatic melanoma cells at least partly by an enhanced expression of the multidrug resistance proteins MRP and cGMP transporters MRP4 5 The present study investigated whether hypergravity generated by centrifugal acceleration may modulate the cGMP efflux in NO-stimulated NHMs and melanoma cells MCs with different metastatic potential The NONOates PAPA-NO and DETA-NO were used as direct NO donors for cell stimulation In the presence of 0 1 mM DETA-NO t 1 2 sim 20 h long-term application of hypergravity up to 5 g for 24 h reduced intracellular cGMP levels by stimulating cGMP efflux in NHMs and non-metastatic MCs in comparison to 1 g whereas exposure to 5 g for 6 h in the presence of 0 1 mM PAPA-NO t 1 2 sim 30 min was not effective The hypergravity-stimulated

  18. Basal cGMP regulates the resting pacemaker potential frequency of cultured mouse colonic interstitial cells of Cajal.

    PubMed

    Shahi, Pawan Kumar; Choi, Seok; Jeong, Yu Jin; Park, Chan Guk; So, Insuk; Jun, Jae Yeoul

    2014-07-01

    Cyclic guanosine 3',5'-monophosphate (cGMP) inhibited the generation of pacemaker activity in interstitial cells of Cajal (ICCs) from the small intestine. However, cGMP role on pacemaker activity in colonic ICCs has not been reported yet. Thus, we investigated the role of cGMP in pacemaker activity regulation by colonic ICCs. We performed a whole-cell patch-clamp and Ca(2+) imaging in cultured ICCs from mouse colon. 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, an inhibitor of guanylate cyclase) increased the pacemaker potential frequency, whereas zaprinast (an inhibitor of phosphodiesterase) and cell-permeable 8-bromo-cGMP decreased the pacemaker potential frequency. KT-5823 (an inhibitor of protein kinase G [PKG]) did not affect the pacemaker potential. L-N(G)-nitroarginine methyl ester (L-NAME, an inhibitor of nitric oxide [NO] synthase) increased the pacemaker potential frequency, whereas (±)-S-nitroso-N-acetylpenicillamine (SNAP, a NO donor) decreased the pacemaker potential frequency. Glibenclamide (an ATP-sensitive K(+) channel blocker) did not block the effects of cell-permeable 8-bromo-cGMP and SNAP. Recordings of spontaneous intracellular Ca(2+) ([Ca(2+)]i) oscillations revealed that ODQ and L-NAME increased [Ca(2+)]i oscillations. In contrast, zaprinast, 8-bromo cGMP, and SNAP decreased the [Ca(2+)]i oscillations. Basal cGMP levels regulate the resting pacemaker potential frequency by the alteration on Ca(2+) release via a PKG-independent pathway. Additionally, the endogenous release of NO seems to be responsible maintaining basal cGMP levels in colonic ICCs.

  19. Structural Mechanism of Allosteric Activity Regulation in a Ribonucleotide Reductase with Double ATP Cones.

    PubMed

    Johansson, Renzo; Jonna, Venkateswara Rao; Kumar, Rohit; Nayeri, Niloofar; Lundin, Daniel; Sjöberg, Britt-Marie; Hofer, Anders; Logan, Derek T

    2016-06-07

    Ribonucleotide reductases (RNRs) reduce ribonucleotides to deoxyribonucleotides. Their overall activity is stimulated by ATP and downregulated by dATP via a genetically mobile ATP cone domain mediating the formation of oligomeric complexes with varying quaternary structures. The crystal structure and solution X-ray scattering data of a novel dATP-induced homotetramer of the Pseudomonas aeruginosa class I RNR reveal the structural bases for its unique properties, namely one ATP cone that binds two dATP molecules and a second one that is non-functional, binding no nucleotides. Mutations in the observed tetramer interface ablate oligomerization and dATP-induced inhibition but not the ability to bind dATP. Sequence analysis shows that the novel type of ATP cone may be widespread in RNRs. The present study supports a scenario in which diverse mechanisms for allosteric activity regulation are gained and lost through acquisition and evolutionary erosion of different types of ATP cone.

  20. Dynamic coupling and allosteric behavior in a non-allosteric protein†

    PubMed Central

    Clarkson, Michael W.; Gilmore, Steven A.; Edgell, Marshall H.; Lee, Andrew L.

    2008-01-01

    Long-range intraprotein interactions give rise to many important protein behaviors. Understanding how energy is transduced through protein structures to either transmit a signal or elicit conformational changes is therefore a current challenge in structural biology. In an effort to understand such linkages, multiple V→A mutations were made in the small globular protein eglin c. The physical responses, as mapped by NMR spin relaxation, residual dipolar couplings (RDCs), and scalar couplings, illustrate that the interior of this non-allosteric protein forms a dynamic network and that local perturbations are transmitted as dynamic and structural changes to distal sites as far as 16 Å away. Two basic types of propagation responses were observed: contiguous pathways of enhanced (attenuated) dynamics with no change in structure; and dispersed (non-contiguous) changes in methyl rotation rates that appear to result from subtle deformation of backbone structure. In addition, energy transmission is found to be unidirectional. In one mutant, an allosteric conformational change of a side chain is seen in the context of a pathway of propagated changes in ps-ns dynamics. The observation of so many long-range interactions in a small, rigid system lends experimental weight to the idea that all well-folded proteins inherently possess allosteric features [Gunasekaran et al. (2004) Proteins 57, 433−443], and that dynamics are a rich source of information for mapping and gaining mechanistic insight into communication pathways in individual proteins. PMID:16784220

  1. 5-Chloroindole: a potent allosteric modulator of the 5-HT3 receptor

    PubMed Central

    Newman, Amy S; Batis, Nikolaos; Grafton, Gillian; Caputo, Francesca; Brady, Catherine A; Lambert, Jeremy J; Peters, John A; Gordon, John; Brain, Keith L; Powell, Andrew D; Barnes, Nicholas M

    2013-01-01

    Background and Purpose The 5-HT3 receptor is a ligand-gated ion channel that is modulated allosterically by various compounds including colchicine, alcohols and volatile anaesthetics. However the positive allosteric modulators (PAMs) identified to date have low affinity, which hinders investigation because of non-selective effects at pharmacologically active concentrations. The present study identifies 5-chloroindole (Cl-indole) as a potent PAM of the 5-HT3 receptor. Experimental Approach 5-HT3 receptor function was assessed by the increase in intracellular calcium and single-cell electrophysiological recordings in HEK293 cells stably expressing the h5-HT3A receptor and also the mouse native 5-HT3 receptor that increases neuronal contraction of bladder smooth muscle. Key Results Cl-indole (1–100 μM) potentiated agonist (5-HT) and particularly partial agonist [(S)-zacopride, DDP733, RR210, quipazine, dopamine, 2-methyl-5-HT, SR57227A, meta chlorophenyl biguanide] induced h5-HT3A receptor-mediated responses. This effect of Cl-indole was also apparent at the mouse native 5-HT3 receptor. Radioligand-binding studies identified that Cl-indole induced a small (∼twofold) increase in the apparent affinity of 5-HT for the h5-HT3A receptor, whereas there was no effect upon the affinity of the antagonist, tropisetron. Cl-indole was able to reactivate desensitized 5-HT3 receptors. In contrast to its effect on the 5-HT3 receptor, Cl-indole did not alter human nicotinic α7 receptor responses. Conclusions and Implications The present study identifies Cl-indole as a relatively potent and selective PAM of the 5-HT3 receptor; such compounds will aid investigation of the molecular basis for allosteric modulation of the 5-HT3 receptor and may assist the discovery of novel therapeutic drugs targeting this receptor. Linked Articles Recent reviews on allosteric modulation can be found at: Kenakin, T (2013). New concepts in pharmacological efficacy at 7TM receptors: IUPHAR Review 2

  2. Dual allosteric activation mechanisms in monomeric human glucokinase.

    PubMed

    Whittington, A Carl; Larion, Mioara; Bowler, Joseph M; Ramsey, Kristen M; Brüschweiler, Rafael; Miller, Brian G

    2015-09-15

    Cooperativity in human glucokinase (GCK), the body's primary glucose sensor and a major determinant of glucose homeostatic diseases, is fundamentally different from textbook models of allostery because GCK is monomeric and contains only one glucose-binding site. Prior work has demonstrated that millisecond timescale order-disorder transitions within the enzyme's small domain govern cooperativity. Here, using limited proteolysis, we map the site of disorder in unliganded GCK to a 30-residue active-site loop that closes upon glucose binding. Positional randomization of the loop, coupled with genetic selection in a glucokinase-deficient bacterium, uncovers a hyperactive GCK variant with substantially reduced cooperativity. Biochemical and structural analysis of this loop variant and GCK variants associated with hyperinsulinemic hypoglycemia reveal two distinct mechanisms of enzyme activation. In α-type activation, glucose affinity is increased, the proteolytic susceptibility of the active site loop is suppressed and the (1)H-(13)C heteronuclear multiple quantum coherence (HMQC) spectrum of (13)C-Ile-labeled enzyme resembles the glucose-bound state. In β-type activation, glucose affinity is largely unchanged, proteolytic susceptibility of the loop is enhanced, and the (1)H-(13)C HMQC spectrum reveals no perturbation in ensemble structure. Leveraging both activation mechanisms, we engineer a fully noncooperative GCK variant, whose functional properties are indistinguishable from other hexokinase isozymes, and which displays a 100-fold increase in catalytic efficiency over wild-type GCK. This work elucidates specific structural features responsible for generating allostery in a monomeric enzyme and suggests a general strategy for engineering cooperativity into proteins that lack the structural framework typical of traditional allosteric systems.

  3. An allosteric role for receptor activity-modifying proteins in defining GPCR pharmacology

    PubMed Central

    J Gingell, Joseph; Simms, John; Barwell, James; Poyner, David R; Watkins, Harriet A; Pioszak, Augen A; Sexton, Patrick M; Hay, Debbie L

    2016-01-01

    G protein-coupled receptors are allosteric proteins that control transmission of external signals to regulate cellular response. Although agonist binding promotes canonical G protein signalling transmitted through conformational changes, G protein-coupled receptors also interact with other proteins. These include other G protein-coupled receptors, other receptors and channels, regulatory proteins and receptor-modifying proteins, notably receptor activity-modifying proteins (RAMPs). RAMPs have at least 11 G protein-coupled receptor partners, including many class B G protein-coupled receptors. Prototypic is the calcitonin receptor, with altered ligand specificity when co-expressed with RAMPs. To gain molecular insight into the consequences of this protein–protein interaction, we combined molecular modelling with mutagenesis of the calcitonin receptor extracellular domain, assessed in ligand binding and functional assays. Although some calcitonin receptor residues are universally important for peptide interactions (calcitonin, amylin and calcitonin gene-related peptide) in calcitonin receptor alone or with receptor activity-modifying protein, others have RAMP-dependent effects, whereby mutations decreased amylin/calcitonin gene-related peptide potency substantially only when RAMP was present. Remarkably, the key residues were completely conserved between calcitonin receptor and AMY receptors, and between subtypes of AMY receptor that have different ligand preferences. Mutations at the interface between calcitonin receptor and RAMP affected ligand pharmacology in a RAMP-dependent manner, suggesting that RAMP may allosterically influence the calcitonin receptor conformation. Supporting this, molecular dynamics simulations suggested that the calcitonin receptor extracellular N-terminal domain is more flexible in the presence of receptor activity-modifying protein 1. Thus, RAMPs may act in an allosteric manner to generate a spectrum of unique calcitonin receptor

  4. Identification of an allosteric modulator of the serotonin transporter with novel mechanism of action.

    PubMed

    Kortagere, Sandhya; Fontana, Andreia Cristina Karklin; Rose, Deja Renée; Mortensen, Ole Valente

    2013-09-01

    Serotonin transporters (SERTs) play an essential role in the termination and regulation of serotonin signaling in the brain. SERT is also the target of antidepressants and psychostimulants. Molecules with novel activities and modes of interaction with regard to SERT function are of great scientific and clinical interest. We explored structural regions outside the putative serotonin translocation pathway to identify potential binding sites for allosteric transporter modulators (ATMs). Mutational studies revealed a pocket of amino acids outside the orthosteric substrate binding sites located in the interface between extracellular loops 1 and 3 that when mutated affect transporter function. Using the structure of the bacterial transporter homolog leucine transporter as a template, we developed a structural model of SERT. We performed molecular dynamics simulations to further characterize the allosteric pocket that was identified by site-directed mutagenesis studies and employed this pocket in a virtual screen for small-molecule modulators of SERT function. In functional transport assays, we found that one of the identified molecules, ATM7, increased the reuptake of serotonin, possibly by facilitating the interaction of serotonin with transport-ready conformations of SERT when concentrations of serotonin were low and rate limiting. In addition, ATM7 potentiates 3,4-methylenedioxy-N-methylamphetamine (MDMA, "Ecstasy")-induced reversed transport by SERT. Taking advantage of a conformationally sensitive residue in transmembrane domain 6, we demonstrate that ATM7 mechanistically stabilizes an outward-facing conformation of SERT. Taken together these observations demonstrate that ATM7 acts through a novel mechanism that involves allosteric modulation of SERT function.

  5. Positive allosteric modulators of the μ-opioid receptor: a novel approach for future pain medications

    PubMed Central

    Burford, N T; Traynor, J R; Alt, A

    2015-01-01

    Morphine and other agonists of the μ-opioid receptor are used clinically for acute and chronic pain relief and are considered to be the gold standard for pain medication. However, these opioids also have significant side effects, which are also mediated via activation of the μ-opioid receptor. Since the latter half of the twentieth century, researchers have sought to tease apart the mechanisms underlying analgesia, tolerance and dependence, with the hope of designing drugs with fewer side effects. These efforts have revolved around the design of orthosteric agonists with differing pharmacokinetic properties and/or selectivity profiles for the different opioid receptor types. Recently, μ-opioid receptor-positive allosteric modulators (μ-PAMs) were identified, which bind to a (allosteric) site on the μ-opioid receptor separate from the orthosteric site that binds an endogenous agonist. These allosteric modulators have little or no detectable functional activity when bound to the receptor in the absence of orthosteric agonist, but can potentiate the activity of bound orthosteric agonist, seen as an increase in apparent potency and/or efficacy of the orthosteric agonist. In this review, we describe the potential advantages that a μ-PAM approach might bring to the design of novel therapeutics for pain that may lack the side effects currently associated with opioid therapy. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2 PMID:24460691

  6. Benzothiazole Derivative as a Novel Mycobacterium tuberculosis Shikimate Kinase Inhibitor: Identification and Elucidation of Its Allosteric Mode of Inhibition.

    PubMed

    Mehra, Rukmankesh; Rajput, Vikrant Singh; Gupta, Monika; Chib, Reena; Kumar, Amit; Wazir, Priya; Khan, Inshad Ali; Nargotra, Amit

    2016-05-23

    Mycobacterium tuberculosis shikimate kinase (Mtb-SK) is a key enzyme involved in the biosynthesis of aromatic amino acids through the shikimate pathway. Since it is proven to be essential for the survival of the microbe and is absent from mammals, it is a promising target for anti-TB drug discovery. In this study, a combined approach of in silico similarity search and pharmacophore building using already reported inhibitors was used to screen a procured library of 20,000 compounds of the commercially available ChemBridge database. From the in silico screening, 15 hits were identified, and these hits were evaluated in vitro for Mtb-SK enzyme inhibition. Two compounds presented significant enzyme inhibition with IC50 values of 10.69 ± 0.9 and 46.22 ± 1.2 μM. The best hit was then evaluated for the in vitro mode of inhibition where it came out to be an uncompetitive and noncompetitive inhibitor with respect to shikimate (SKM) and ATP, respectively, suggesting its binding at an allosteric site. Potential binding sites of Mtb-SK were identified which confirmed the presence of an allosteric binding pocket apart from the ATP and SKM binding sites. The docking simulations were performed at this pocket in order to find the mode of binding of the best hit in the presence of substrates and the products of the enzymatic reaction. Molecular dynamics (MD) simulations elucidated the probability of inhibitor binding at the allosteric site in the presence of ADP and shikimate-3-phosphate (S-3-P), that is, after the formation of products of the reaction. The inhibitor binding may prevent the release of the product from Mtb-SK, thereby inhibiting its activity. The binding stability and the key residue interactions of the inhibitor to this product complex were also revealed by the MD simulations. Residues ARG43, ILE45, and PHE57 were identified as crucial that were involved in interactions with the best hit. This is the first report of an allosteric binding site of Mtb-SK, which

  7. MECHANISM OF INHIBITION OF TUBULOGLOMERULAR FEEDBACK (TGF) BY CARBON MONOXIDE AND cGMP

    PubMed Central

    Ren, YiLin; D’Ambrosio, Martin A.; Garvin, Jeffrey L.; Wang, Hong; Carretero, Oscar A.

    2013-01-01

    Tubuloglomerular feedback (TGF) is a mechanism that senses NaCl in the macula densa (MD) and causes constriction of the afferent arteriole (Af-Art). Carbon monoxide (CO), either endogenous or exogenous, inhibits TGF at least in part via cGMP. We hypothesize that CO in the MD, acting via both cGMP-dependent and - independent mechanisms, attenuates TGF by acting downstream from depolarization and Ca entry into the MD cells. In vitro, microdissected rabbit Af-Arts and their MD were simultaneously perfused and TGF was measured as the decrease in Af-Art diameter. MD depolarization was induced with ionophores, while adding the CO-releasing molecule CORM-3 to the MD perfusate at non-toxic concentrations. CORM-3 blunted depolarization-induced TGF at 50 μM, from 3.6±0.4 to 2.5±0.4 μm (P<0.01), and abolished it at 100 μM, to 0.1±0.1 μm (P<0.001, n=6). When cGMP generation was blocked by guanylyl cyclase inhibitor LY-83583 added to the MD, CORM-3 no longer affected depolarization-induced TGF at 50 μM (2.9±0.4 vs. 3.0±0.4 μm), but partially inhibited TGF at 100 μM (to 1.3±0.2 μm, P<0.05, n=9). Experiments using ETYA and indomethacin suggest arachidonic acid metabolites do not mediate the cGMP-independent effect of CO. We then added the calcium ionophore A23187 to the macula densa, which caused TGF (4.1±0.6 μM); A23187-induced TGF was inhibited by CORM-3 at 50 μM (1.9±0.6 μM, P<0.01) and 100 μM (0.2±0.5 μM, P<0.001, n=6). We conclude that CO inhibits TGF acting downstream from depolarization and calcium entry, acting via cGMP at low concentrations, but additional mechanisms of action may be involved at higher concentrations. PMID:23648700

  8. Extracellular Calcium Modulates Actions of Orthosteric and Allosteric Ligands on Metabotropic Glutamate Receptor 1α*

    PubMed Central

    Jiang, Jason Y.; Nagaraju, Mulpuri; Meyer, Rebecca C.; Zhang, Li; Hamelberg, Donald; Hall, Randy A.; Brown, Edward M.; Conn, P. Jeffrey; Yang, Jenny J.

    2014-01-01

    Metabotropic glutamate receptor 1α (mGluR1α), a member of the family C G protein-coupled receptors, is emerging as a potential drug target for various disorders, including chronic neuronal degenerative diseases. In addition to being activated by glutamate, mGluR1α is also modulated by extracellular Ca2+. However, the underlying mechanism is unknown. Moreover, it has long been challenging to develop receptor-specific agonists due to homologies within the mGluR family, and the Ca2+-binding site(s) on mGluR1α may provide an opportunity for receptor-selective targeting by therapeutics. In the present study, we show that our previously predicted Ca2+-binding site in the hinge region of mGluR1α is adjacent to the site where orthosteric agonists and antagonists bind on the extracellular domain of the receptor. Moreover, we found that extracellular Ca2+ enhanced mGluR1α-mediated intracellular Ca2+ responses evoked by the orthosteric agonist l-quisqualate. Conversely, extracellular Ca2+ diminished the inhibitory effect of the mGluR1α orthosteric antagonist (S)-α-methyl-4-carboxyphenylglycine. In addition, selective positive (Ro 67-4853) and negative (7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxylate ethyl ester) allosteric modulators of mGluR1α potentiated and inhibited responses to extracellular Ca2+, respectively, in a manner similar to their effects on the response of mGluR1α to glutamate. Mutations at residues predicted to be involved in Ca2+ binding, including E325I, had significant effects on the modulation of responses to the orthosteric agonist l-quisqualate and the allosteric modulator Ro 67-4853 by extracellular Ca2+. These studies reveal that binding of extracellular Ca2+ to the predicted Ca2+-binding site in the extracellular domain of mGluR1α modulates not only glutamate-evoked signaling but also the actions of both orthosteric ligands and allosteric modulators on mGluR1α. PMID:24280223

  9. On the role of the conformational flexibility of the active-site lid on the allosteric kinetics of glucosamine-6-phosphate deaminase.

    PubMed

    Bustos-Jaimes, Ismael; Sosa-Peinado, Alejandro; Rudiño-Piñera, Enrique; Horjales, Eduardo; Calcagno, Mario L

    2002-05-24

    The active site of glucosamine-6-phosphate deaminase from Escherichia coli (GlcN6P deaminase, EC 3.5.99.6) has a complex lid formed by two antiparallel beta-strands connected by a helix-loop segment (158-187). This motif contains Arg172, which is a residue involved in binding the substrate in the active-site, and three residues that are part of the allosteric site, Arg158, Lys160 and Thr161. This dual binding role of the motif forming the lid suggests that it plays a key role in the functional coupling between active and allosteric sites. Previous crystallographic work showed that the temperature coefficients of the active-site lid are very large when the enzyme is in its T allosteric state. These coefficients decrease in the R state, thus suggesting that this motif changes its conformational flexibility as a consequence of the allosteric transition. In order to explore the possible connection between the conformational flexibility of the lid and the function of the deaminase, we constructed the site-directed mutant Phe174-Ala. Phe174 is located at the C-end of the lid helix and its side-chain establishes hydrophobic interactions with the remainder of the enzyme. The crystallographic structure of the T state of Phe174-Ala deaminase, determined at 2.02 A resolution, shows no density for the segment 162-181, which is part of the active-site lid (PDB 1JT9). This mutant form of the enzyme is essentially inactive in the absence of the allosteric activator, N-acetylglucosamine-6-P although it recovers its activity up to the wild-type level in the presence of this ligand. Spectrometric and binding studies show that inactivity is due to the inability of the active-site to bind ligands when the allosteric site is empty. These data indicate that the conformational flexibility of the active-site lid critically alters the binding properties of the active site, and that the occupation of the allosteric site restores the lid conformational flexibility to a functional state.

  10. Negative allosteric regulation of Enterococcus faecalis small alarmone synthetase RelQ by single-stranded RNA.

    PubMed

    Beljantseva, Jelena; Kudrin, Pavel; Andresen, Liis; Shingler, Victoria; Atkinson, Gemma C; Tenson, Tanel; Hauryliuk, Vasili

    2017-04-04

    The alarmone nucleotides guanosine pentaphosphate (pppGpp) and tetraphosphate (ppGpp), collectively referred to as (p)ppGpp, are key regulators of bacterial growth, stress adaptation, pathogenicity, and antibiotic tolerance. We show that the tetrameric small alarmone synthetase (SAS) RelQ from the Gram-positive pathogen Enterococcus faecalis is a sequence-specific RNA-binding protein. RelQ's enzymatic and RNA binding activities are subject to intricate allosteric regulation. (p)ppGpp synthesis is potently inhibited by the binding of single-stranded RNA. Conversely, RelQ's enzymatic activity destabilizes the RelQ:RNA complex. pppGpp, an allosteric activator of the enzyme, counteracts the effect of RNA. Tetramerization of RelQ is essential for this regulatory mechanism, because both RNA binding and enzymatic activity are abolished by deletion of the SAS-specific C-terminal helix 5α. The interplay of pppGpp binding, (p)ppGpp synthesis, and RNA binding unites two archetypal regulatory paradigms within a single protein. The mechanism is likely a prevalent but previously unappreciated regulatory switch used by the widely distributed bacterial SAS enzymes.

  11. Novel Inhibitors Complexed with Glutamate Dehydrogenase: ALLOSTERIC REGULATION BY CONTROL OF PROTEIN DYNAMICS

    SciTech Connect

    Li, Ming; Smith, Christopher J.; Walker, Matthew T.; Smith, Thomas J.

    2009-12-01

    Mammalian glutamate dehydrogenase (GDH) is a homohexameric enzyme that catalyzes the reversible oxidative deamination of L-glutamate to 2-oxoglutarate using NAD(P){sup +} as coenzyme. Unlike its counterparts from other animal kingdoms, mammalian GDH is regulated by a host of ligands. The recently discovered hyperinsulinism/hyperammonemia disorder showed that the loss of allosteric inhibition of GDH by GTP causes excessive secretion of insulin. Subsequent studies demonstrated that wild-type and hyperinsulinemia/hyperammonemia forms of GDH are inhibited by the green tea polyphenols, epigallocatechin gallate and epicatechin gallate. This was followed by high throughput studies that identified more stable inhibitors, including hexachlorophene, GW5074, and bithionol. Shown here are the structures of GDH complexed with these three compounds. Hexachlorophene forms a ring around the internal cavity in GDH through aromatic stacking interactions between the drug and GDH as well as between the drug molecules themselves. In contrast, GW5074 and bithionol both bind as pairs of stacked compounds at hexameric 2-fold axes between the dimers of subunits. The internal core of GDH contracts when the catalytic cleft closes during enzymatic turnover. None of the drugs cause conformational changes in the contact residues, but all bind to key interfaces involved in this contraction process. Therefore, it seems likely that the drugs inhibit enzymatic turnover by inhibiting this transition. Indeed, this expansion/contraction process may play a major role in the inter-subunit communication and allosteric regulation observed in GDH.

  12. Dynamical network of residue–residue contacts reveals coupled allosteric effects in recognition, catalysis, and mutation

    PubMed Central

    Doshi, Urmi; Holliday, Michael J.; Eisenmesser, Elan Z.; Hamelberg, Donald

    2016-01-01

    Detailed understanding of how conformational dynamics orchestrates function in allosteric regulation of recognition and catalysis remains ambiguous. Here, we simulate CypA using multiple-microsecond-long atomistic molecular dynamics in explicit solvent and carry out NMR experiments. We analyze a large amount of time-dependent multidimensional data with a coarse-grained approach and map key dynamical features within individual macrostates by defining dynamics in terms of residue–residue contacts. The effects of substrate binding are observed to be largely sensed at a location over 15 Å from the active site, implying its importance in allostery. Using NMR experiments, we confirm that a dynamic cluster of residues in this distal region is directly coupled to the active site. Furthermore, the dynamical network of interresidue contacts is found to be coupled and temporally dispersed, ranging over 4 to 5 orders of magnitude. Finally, using network centrality measures we demonstrate the changes in the communication network, connectivity, and influence of CypA residues upon substrate binding, mutation, and during catalysis. We identify key residues that potentially act as a bottleneck in the communication flow through the distinct regions in CypA and, therefore, as targets for future mutational studies. Mapping these dynamical features and the coupling of dynamics to function has crucial ramifications in understanding allosteric regulation in enzymes and proteins, in general. PMID:27071107

  13. Assembly of the Sos1-Grb2-Gab1 Ternary Signaling Complex Is Under Allosteric Control

    PubMed Central

    McDonald, Caleb B.; Seldeen, Kenneth L.; Deegan, Brian J.; Bhat, Vikas; Farooq, Amjad

    2009-01-01

    Allostery has evolved as a form of local communication between interacting protein partners allowing them to quickly sense changes in their immediate vicinity in response to external cues. Herein, using isothermal titration calorimetry (ITC) in conjunction with circular dichroism (CD) and macromolecular modeling (MM), we show that the binding of Grb2 adaptor — a key signaling molecule involved in the activation of Ras GTPase — to its downstream partners Sos1 guanine nucleotide exchange factor and Gab1 docker is under tight allosteric regulation. Specifically, our findings reveal that the binding of one molecule of Sos1 to the nSH3 domain allosterically induces a conformational change within Grb2 such that the loading of a second molecule of Sos1 onto the cSH3 domain is blocked and, in so doing, allows Gab1 access to the cSH3 domain in an exclusively non-competitive manner to generate the Sos1-Grb2-Gab1 ternary signaling complex. PMID:20005866

  14. Structure, Dynamics, and Allosteric Potential of Ionotropic Glutamate Receptor N-Terminal Domains

    PubMed Central

    Krieger, James; Bahar, Ivet; Greger, Ingo H.

    2015-01-01

    Ionotropic glutamate receptors (iGluRs) are tetrameric cation channels that mediate synaptic transmission and plasticity. They have a unique modular architecture with four domains: the intracellular C-terminal domain (CTD) that is involved in synaptic targeting, the transmembrane domain (TMD) that forms the ion channel, the membrane-proximal ligand-binding domain (LBD) that binds agonists such as L-glutamate, and the distal N-terminal domain (NTD), whose function is the least clear. The extracellular portion, comprised of the LBD and NTD, is loosely arranged, mediating complex allosteric regulation and providing a rich target for drug development. Here, we briefly review recent work on iGluR NTD structure and dynamics, and further explore the allosteric potential for the NTD in AMPA-type iGluRs using coarse-grained simulations. We also investigate mechanisms underlying the established NTD allostery in NMDA-type iGluRs, as well as the fold-related metabotropic glutamate and GABAB receptors. We show that the clamshell motions intrinsically favored by the NTD bilobate fold are coupled to dimeric and higher-order rearrangements that impact the iGluR LBD and ultimately the TMD. Finally, we explore the dynamics of intact iGluRs and describe how it might affect receptor operation in a synaptic environment. PMID:26255587

  15. Designing Allosteric Inhibitors of Factor XIa. Lessons from the Interactions of Sulfated Pentagalloylglucopyranosides

    PubMed Central

    2015-01-01

    We recently introduced sulfated pentagalloylglucopyranoside (SPGG) as an allosteric inhibitor of factor XIa (FXIa) (Al-Horani et al., J. Med Chem.2013, 56, 867–87823316863). To better understand the SPGG–FXIa interaction, we utilized eight SPGG variants and a range of biochemical techniques. The results reveal that SPGG’s sulfation level moderately affected FXIa inhibition potency and selectivity over thrombin and factor Xa. Variation in the anomeric configuration did not affect potency. Interestingly, zymogen factor XI bound SPGG with high affinity, suggesting its possible use as an antidote. Acrylamide quenching experiments suggested that SPGG induced significant conformational changes in the active site of FXIa. Inhibition studies in the presence of heparin showed marginal competition with highly sulfated SPGG variants but robust competition with less sulfated variants. Resolution of energetic contributions revealed that nonionic forces contribute nearly 87% of binding energy suggesting a strong possibility of specific interaction. Overall, the results indicate that SPGG may recognize more than one anion-binding, allosteric site on FXIa. An SPGG molecule containing approximately 10 sulfate groups on positions 2 through 6 of the pentagalloylglucopyranosyl scaffold may be the optimal FXIa inhibitor for further preclinical studies. PMID:24844380

  16. Novel inhibitors complexed with glutamate dehydrogenase: allosteric regulation by control of protein dynamics.

    PubMed

    Li, Ming; Smith, Christopher J; Walker, Matthew T; Smith, Thomas J

    2009-08-21

    Mammalian glutamate dehydrogenase (GDH) is a homohexameric enzyme that catalyzes the reversible oxidative deamination of l-glutamate to 2-oxoglutarate using NAD(P)(+) as coenzyme. Unlike its counterparts from other animal kingdoms, mammalian GDH is regulated by a host of ligands. The recently discovered hyperinsulinism/hyperammonemia disorder showed that the loss of allosteric inhibition of GDH by GTP causes excessive secretion of insulin. Subsequent studies demonstrated that wild-type and hyperinsulinemia/hyperammonemia forms of GDH are inhibited by the green tea polyphenols, epigallocatechin gallate and epicatechin gallate. This was followed by high throughput studies that identified more stable inhibitors, including hexachlorophene, GW5074, and bithionol. Shown here are the structures of GDH complexed with these three compounds. Hexachlorophene forms a ring around the internal cavity in GDH through aromatic stacking interactions between the drug and GDH as well as between the drug molecules themselves. In contrast, GW5074 and bithionol both bind as pairs of stacked compounds at hexameric 2-fold axes between the dimers of subunits. The internal core of GDH contracts when the catalytic cleft closes during enzymatic turnover. None of the drugs cause conformational changes in the contact residues, but all bind to key interfaces involved in this contraction process. Therefore, it seems likely that the drugs inhibit enzymatic turnover by inhibiting this transition. Indeed, this expansion/contraction process may play a major role in the inter-subunit communication and allosteric regulation observed in GDH.

  17. Dynamics Correlation Network for Allosteric Switching of PreQ1 Riboswitch

    PubMed Central

    Wang, Wei; Jiang, Cheng; Zhang, Jinmai; Ye, Wei; Luo, Ray; Chen, Hai-Feng

    2016-01-01

    Riboswitches are a class of metabolism control elements mostly found in bacteria. Due to their fundamental importance in bacteria gene regulation, riboswitches have been proposed as antibacterial drug targets. Prequeuosine (preQ1) is the last free precursor in the biosynthetic pathway of queuosine that is crucial for translation efficiency and fidelity. However, the regulation mechanism for the preQ1 riboswitch remains unclear. Here we constructed fluctuation correlation network based on all-atom molecular dynamics simulations to reveal the regulation mechanism. The results suggest that the correlation network in the bound riboswitch is distinctly different from that in the apo riboswitch. The community network indicates that the information freely transfers from the binding site of preQ1 to the expression platform of the P3 helix in the bound riboswitch and the P3 helix is a bottleneck in the apo riboswitch. Thus, a hypothesis of “preQ1-binding induced allosteric switching” is proposed to link riboswitch and translation regulation. The community networks of mutants support this hypothesis. Finally, a possible allosteric pathway of A50-A51-A52-U10-A11-G12-G56 was also identified based on the shortest path algorithm and confirmed by mutations and network perturbation. The novel fluctuation network analysis method can be used as a general strategy in studies of riboswitch structure-function relationship. PMID:27484311

  18. Dynamical network of residue-residue contacts reveals coupled allosteric effects in recognition, catalysis, and mutation.

    PubMed

    Doshi, Urmi; Holliday, Michael J; Eisenmesser, Elan Z; Hamelberg, Donald

    2016-04-26

    Detailed understanding of how conformational dynamics orchestrates function in allosteric regulation of recognition and catalysis remains ambiguous. Here, we simulate CypA using multiple-microsecond-long atomistic molecular dynamics in explicit solvent and carry out NMR experiments. We analyze a large amount of time-dependent multidimensional data with a coarse-grained approach and map key dynamical features within individual macrostates by defining dynamics in terms of residue-residue contacts. The effects of substrate binding are observed to be largely sensed at a location over 15 Å from the active site, implying its importance in allostery. Using NMR experiments, we confirm that a dynamic cluster of residues in this distal region is directly coupled to the active site. Furthermore, the dynamical network of interresidue contacts is found to be coupled and temporally dispersed, ranging over 4 to 5 orders of magnitude. Finally, using network centrality measures we demonstrate the changes in the communication network, connectivity, and influence of CypA residues upon substrate binding, mutation, and during catalysis. We identify key residues that potentially act as a bottleneck in the communication flow through the distinct regions in CypA and, therefore, as targets for future mutational studies. Mapping these dynamical features and the coupling of dynamics to function has crucial ramifications in understanding allosteric regulation in enzymes and proteins, in general.

  19. Modulation of γ-secretase specificity using small molecule allosteric inhibitors

    PubMed Central

    Shelton, Christopher C.; Zhu, Lei; Chau, Deming; Yang, Li; Wang, Rong; Djaballah, Hakim; Zheng, Hui; Li, Yue-Ming

    2009-01-01

    γ-Secretase cleaves multiple substrates within the transmembrane domain that include the amyloid precursor protein as well as the Notch family of receptors. These substrates are associated with Alzheimer disease and cancer. Despite extensive investigation of this protease, little is known regarding the regulation of γ-secretase specificity. To discover selective inhibitors for drug development and for probing the mechanisms of γ-secretase specificity, we screened chemical libraries and consequently developed a di-coumarin family of inhibitors that preferentially inhibit γ-secretase-mediated production of Aβ42 over other cleavage activities. These coumarin dimer-based compounds interact with γ-secretase by binding to an allosteric site. By developing a multiple photo-affinity probe approach, we demonstrate that this allosteric binding causes a conformational change within the active site of γ-secretase at the S2 and S1 sub-sites that leads to selective inhibition of Aβ42. In conclusion, by using these di-coumarin compounds, we reveal a mechanism by which γ-secretase specificity is regulated and provide insights into the molecular basis by which familial presenilin mutations may affect the active site and specificity of γ-secretase. Furthermore, this class of selective inhibitors provides the basis for development of Alzheimer disease therapeutic agents. PMID:19906985

  20. Internal calcium release and activation of sea urchin eggs by cGMP are independent of the phosphoinositide signaling pathway.

    PubMed Central

    Whalley, T; McDougall, A; Crossley, I; Swann, K; Whitaker, M

    1992-01-01

    We show that microinjecting cyclic GMP (cGMP) into unfertilized sea urchin eggs activates them by stimulating a rise in the intracellular free calcium ion concentration ([Ca2+]i). The increase in [Ca2+]i is similar in both magnitude and duration to the transient that activates the egg at fertilization. It is due to mobilization of calcium from intracellular stores but is not prevented by the inositol trisphosphate (InsP3) antagonist heparin. Furthermore, cGMP does not stimulate the eggs Na+/H+ antiport when the [Ca2+]i transient is blocked by the calcium chelator bis-(O-aminophenoxy)-N,N,N',N'-tetraacetic acid (BAPTA), suggesting that cGMP does not activate eggs by interacting with the their phosphoinositide signaling pathway. However, the [Ca2+]i increase and activation are prevented in eggs in which the InsP3-sensitive calcium stores have been emptied by the prior microinjection of the InsP3 analogue inositol 1,4,5-trisphosphorothioate. These data indicate that cGMP activates eggs by stimulating the release of calcium from an InsP3-sensitive calcium store via a novel, though unidentified, route independent of the InsP3 receptor. PMID:1320962

  1. 76 FR 14024 - Draft Guidance for Industry on Non-Penicillin Beta-Lactam Risk Assessment: A CGMP Framework...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-15

    ... HUMAN SERVICES Food and Drug Administration Draft Guidance for Industry on Non-Penicillin Beta-Lactam... guidance for industry entitled ``Non-Penicillin Beta-Lactam Risk Assessment: A CGMP Framework.'' This... non- penicillin beta-lactam antibiotics. The draft guidance is intended to assist manufacturers...

  2. Photosensory transduction in ciliates. II. Possible role of G-protein and cGMP in Stentor coeruleus.

    PubMed

    Fabczak, H; Park, P B; Fabczak, S; Song, P S

    1993-04-01

    The heterotrichous ciliate, Stentor coeruleus, exhibits a well-defined photophobic response to a sudden increase in the intensity of visible light. The phobic reactions usually appear with a latency period (i.e. a time delay between the onset of the stimulus and the stop response). This latency of phobic response was significantly increased when the cells were incubated with 8-bromo-guanosine 3',5'-cyclic monophosphate. In the presence of this nucleotide, a reduction of cell responsiveness (i.e. the number of photophobically responding cells) was also observed. Similar effects were observed when cells were treated with pertussis toxin, a G-protein activity modulator, and 3'-isobutyl-methylxanthine, an inhibitor of guanosine 3',5'-cyclic monophosphate (cGMP) phosphodiesterase. The G-protein activator fluoroaluminate and 6-anilino-5,8-quinolinedione (LY 83583) (an effective agent for lowering cellular cGMP levels) showed opposite effects on the cell photophobic response. These results indirectly suggest that the level of cytoplasmic cGMP, possibly modulated by a G-protein-coupled cGMP phosphodiesterase, plays a phototransducing role in Stentor. In addition, using an antiserum raised against bovine transducin, a cross-reacting protein with an apparent molecular mass of 39 kDa was detected on immunoblots. The alpha-subunit of a Stentor G-protein has also been partially cloned and sequenced. However, the possible coupling between the G-protein and the putative phosphodiesterase remains to be established.

  3. [Phosphodiesterase 3 mediates cross-talk between the protein kinase- and cGMP- dependent pathways and cyclic AMP metabolism].

    PubMed

    Makuch, Edyta; Matuszyk, Janusz

    2012-07-20

    PDE3 is a dual-substrate phosphodiesterase responsible for hydrolyzing both cAMP and cGMP whilst being simultaneously inhibited by cGMP. This feature is related to presence of the 44 amino acid insert in the catalytic domain, which determines the mechanism of introduction of the cyclic nucleotide into the catalytic pocket of the enzyme. Once bound in the catalytic site cGMP results in steric hindrance for cAMP to enter the site. The regulatory domain of PDE3 consists of two hydrophobic regions: NHR1 and NHR2. Their presence defines the enzyme's intracellular localization, thus determining its participation in particular signaling cascades. Due to the properties of PDE3 this enzyme has exceptional importance for the cross-talk between cAMP-dependent signaling and other cascades. There are two different mechanisms of action of PDE3 enzymes in cell signaling pathways. In many signaling cascades assembly of a signalosome is necessary for phosphorylation and activation of the PDE3 proteins. In response to certain hormones and growth factors, PDE3 merges the metabolism of cAMP with protein kinase-dependent signaling pathways. PDE3 also controls the level of cAMP with regard to the alternating concentration of cGMP. This effect occurs in signaling cascades activated by natriuretic peptide.

  4. cGMP Signalling Mediates Water Sensation (Hydrosensation) and Hydrotaxis in Caenorhabditis elegans

    PubMed Central

    Wang, Wei; Qin, Li-Wei; Wu, Tai-Hong; Ge, Chang-Li; Wu, Ya-Qian; Zhang, Qiang; Song, Yan-Xue; Chen, Yuan-Hua; Ge, Ming-Hai; Wu, Jing-Jing; Liu, Hui; Xu, Yao; Su, Chun-Ming; Li, Lan-Lan; Tang, Jing; Li, Zhao-Yu; Wu, Zheng-Xing

    2016-01-01

    Animals have developed the ability to sense the water content in their habitats, including hygrosensation (sensing humidity in the air) and hydrosensation (sensing the water content in other microenvironments), and they display preferences for specific water contents that influence their mating, reproduction and geographic distribution. We developed and employed four quantitative behavioural test paradigms to investigate the molecular and cellular mechanisms underlying sensing the water content in an agar substrate (hydrosensation) and hydrotaxis in Caenorhabditis elegans. By combining a reverse genetic screen with genetic manipulation, optogenetic neuronal manipulation and in vivo Ca2+ imaging, we demonstrate that adult worms avoid the wetter areas of agar plates and hypo-osmotic water droplets. We found that the cGMP signalling pathway in ciliated sensory neurons is involved in hydrosensation and hydrotaxis in Caenorhabditis elegans. PMID:26891989

  5. NMR reveals the allosteric opening and closing of Abelson tyrosine kinase by ATP-site and myristoyl pocket inhibitors

    PubMed Central

    Skora, Lukasz; Mestan, Jürgen; Fabbro, Doriano; Jahnke, Wolfgang; Grzesiek, Stephan

    2013-01-01

    Successful treatment of chronic myelogenous leukemia is based on inhibitors binding to the ATP site of the deregulated breakpoint cluster region (Bcr)–Abelson tyrosine kinase (Abl) fusion protein. Recently, a new type of allosteric inhibitors targeting the Abl myristoyl pocket was shown in preclinical studies to overcome ATP-site inhibitor resistance arising in some patients. Using NMR and small-angle X-ray scattering, we have analyzed the solution conformations of apo Abelson tyrosine kinase (c-Abl) and c-Abl complexes with ATP-site and allosteric inhibitors. Binding of the ATP-site inhibitor imatinib leads to an unexpected open conformation of the multidomain SH3-SH2-kinase c-Abl core, whose relevance is confirmed by cellular assays on Bcr-Abl. The combination of imatinib with the allosteric inhibitor GNF-5 restores the closed, inactivated state. Our data provide detailed insights on the poorly understood combined effect of the two inhibitor types, which is able to overcome drug resistance. PMID:24191057

  6. NMR reveals the allosteric opening and closing of Abelson tyrosine kinase by ATP-site and myristoyl pocket inhibitors.

    PubMed

    Skora, Lukasz; Mestan, Jürgen; Fabbro, Doriano; Jahnke, Wolfgang; Grzesiek, Stephan

    2013-11-19

    Successful treatment of chronic myelogenous leukemia is based on inhibitors binding to the ATP site of the deregulated breakpoint cluster region (Bcr)-Abelson tyrosine kinase (Abl) fusion protein. Recently, a new type of allosteric inhibitors targeting the Abl myristoyl pocket was shown in preclinical studies to overcome ATP-site inhibitor resistance arising in some patients. Using NMR and small-angle X-ray scattering, we have analyzed the solution conformations of apo Abelson tyrosine kinase (c-Abl) and c-Abl complexes with ATP-site and allosteric inhibitors. Binding of the ATP-site inhibitor imatinib leads to an unexpected open conformation of the multidomain SH3-SH2-kinase c-Abl core, whose relevance is confirmed by cellular assays on Bcr-Abl. The combination of imatinib with the allosteric inhibitor GNF-5 restores the closed, inactivated state. Our data provide detailed insights on the poorly understood combined effect of the two inhibitor types, which is able to overcome drug resistance.

  7. Positive allosteric modulators as an approach to nicotinic acetylcholine receptor-targeted therapeutics: advantages and limitations.

    PubMed

    Williams, Dustin K; Wang, Jingyi; Papke, Roger L

    2011-10-15

    Neuronal nicotinic acetylcholine receptors (nAChR), recognized targets for drug development in cognitive and neuro-degenerative disorders, are allosteric proteins with dynamic interconversions between multiple functional states. Activation of the nAChR ion channel is primarily controlled by the binding of ligands (agonists, partial agonists, competitive antagonists) at conventional agonist binding sites, but is also regulated in either negative or positive ways by the binding of ligands to other modulatory sites. In this review, we discuss models for the activation and desensitization of nAChR, and the discovery of multiple types of ligands that influence those processes in both heteromeric nAChR, such as the high-affinity nicotine receptors of the brain, and homomeric α7-type receptors. In recent years, α7 nAChRs have been identified as a potential target for therapeutic indications leading to the development of α7-selective agonists and partial agonists. However, unique properties of α7 nAChR, including low probability of channel opening and rapid desensitization, may limit the therapeutic usefulness of ligands binding exclusively to conventional agonist binding sites. New enthusiasm for the therapeutic targeting of α7 has come from the identification of α7-selective positive allosteric modulators (PAMs) that work effectively on the intrinsic factors that limit α7 ion channel activation. While these new drugs appear promising for therapeutic development, we also consider potential caveats and possible limitations for their use, including PAM-insensitive forms of desensitization and cytotoxicity issues.

  8. Structure of CC chemokine receptor 2 with orthosteric and allosteric antagonists

    SciTech Connect

    Zheng, Yi; Qin, Ling; Zacarías, Natalia V. Ortiz; de Vries, Henk; Han, Gye Won; Gustavsson, Martin; Dabros, Marta; Zhao, Chunxia; Cherney, Robert J.; Carter, Percy; Stamos, Dean; Abagyan, Ruben; Cherezov, Vadim; Stevens, Raymond C.; IJzerman, Adriaan P.; Heitman, Laura H.; Tebben, Andrew; Kufareva, Irina; Handel, Tracy M.

    2016-12-07

    CC chemokine receptor 2 (CCR2) is one of 19 members of the chemokine receptor subfamily of human class A G-protein-coupled receptors. CCR2 is expressed on monocytes, immature dendritic cells, and T-cell subpopulations, and mediates their migration towards endogenous CC chemokine ligands such as CCL2 (ref. 1). CCR2 and its ligands are implicated in numerous inflammatory and neurodegenerative diseases2 including atherosclerosis, multiple sclerosis, asthma, neuropathic pain, and diabetic nephropathy, as well as cancer3. These disease associations have motivated numerous preclinical studies and clinical trials4 (see http://www.clinicaltrials.gov) in search of therapies that target the CCR2–chemokine axis. To aid drug discovery efforts5, here we solve a structure of CCR2 in a ternary complex with an orthosteric (BMS-681 (ref. 6)) and allosteric (CCR2-RA-[R]7) antagonist. BMS-681 inhibits chemokine binding by occupying the orthosteric pocket of the receptor in a previously unseen binding mode. CCR2-RA-[R] binds in a novel, highly druggable pocket that is the most intracellular allosteric site observed in class A G-protein-coupled receptors so far; this site spatially overlaps the G-protein-binding site in homologous receptors. CCR2-RA-[R] inhibits CCR2 non-competitively by blocking activation-associated conformational changes and formation of the G-protein-binding interface. The conformational signature of the conserved microswitch residues observed in double-antagonist-bound CCR2 resembles the most inactive G-protein-coupled receptor structures solved so far. Like other protein–protein interactions, receptor–chemokine complexes are considered challenging therapeutic targets for small molecules, and the present structure suggests diverse pocket epitopes that can be exploited to overcome obstacles in drug design.

  9. Defining specificity determinants of cGMP mediated gustatory sensory transduction in Caenorhabditis elegans.

    PubMed

    Smith, Heidi K; Luo, Linjiao; O'Halloran, Damien; Guo, Dagang; Huang, Xin-Yun; Samuel, Aravinthan D T; Hobert, Oliver

    2013-08-01

    Cyclic guanosine monophosphate (cGMP) is a key secondary messenger used in signal transduction in various types of sensory neurons. The importance of cGMP in the ASE gustatory receptor neurons of the nematode Caenorhabditis elegans was deduced by the observation that multiple receptor-type guanylyl cyclases (rGCs), encoded by the gcy genes, and two presently known cyclic nucleotide-gated ion channel subunits, encoded by the tax-2 and tax-4 genes, are essential for ASE-mediated gustatory behavior. We describe here specific mechanistic features of cGMP-mediated signal transduction in the ASE neurons. First, we assess the specificity of the sensory functions of individual rGC proteins. We have previously shown that multiple rGC proteins are expressed in a left/right asymmetric manner in the functionally lateralized ASE neurons and are required to sense distinct salt cues. Through domain swap experiments among three different rGC proteins, we show here that the specificity of individual rGC proteins lies in their extracellular domains and not in their intracellular, signal-transducing domains. Furthermore, we find that rGC proteins are also sufficient to confer salt sensory responses to other neurons. Both findings support the hypothesis that rGC proteins are salt receptor proteins. Second, we identify a novel, likely downstream effector of the rGC proteins in gustatory signal transduction, a previously uncharacterized cyclic nucleotide-gated (CNG) ion channel, encoded by the che-6 locus. che-6 mutants show defects in gustatory sensory transduction that are similar to defects observed in animals lacking the tax-2 and tax-4 CNG channels. In contrast, thermosensory signal transduction, which also requires tax-2 and tax-4, does not require che-6, but requires another CNG, cng-3. We propose that CHE-6 may form together with two other CNG subunits, TAX-2 and TAX-4, a gustatory neuron-specific heteromeric CNG channel complex.

  10. Nitric-oxide inhibits nyctinastic closure through cGMP in Albizia lophantha leaflets.

    PubMed

    Bergareche, Carmen; Moysset, Luisa; Angelo, Alcira Paola; Chellik, Samira; Simón, Esther

    2014-09-01

    Nitric oxide (NO) is a highly reactive radical that acts as a direct or indirect cellular signalling molecule in plant growth, development and environmental responses. Here we studied the contribution of NO to the control of leaflet movements during nyctinastic closure. For this purpose, we tested the effect of NO donors and an NO scavenger, all supplied in light, on Albizia lophantha leaflet closure after transferral to darkness. Exogenous NO, applied as four donors [sodium nitroprusside (SNP), diethylammonium (Z)-1-(N,N-diethylamino) diazen-1-ium-1,2-diolate (DEA-NONOate), S-nitroso-N-acetylpenicillamine (SNAP) and S-nitrosoglutathione (GS-NO)], inhibited nyctinastic leaflet closure while the application of an NO scavenger [2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO)] plus SNP cancelled the effect of the latter. The inclusion of Nω-nitro-l-arginine methyl ester (l-NAME) or sodium tungstate in the incubation media enhanced nyctinastic closure and also resulted in a decrease in the nitrate plus nitrite released by leaflets into the incubation solution. These results support the notion that NO is involved in regulating the nyctinastic closure of A. lophantha leaflets. Cellular perception of NO did not appear to be mediated by calcium. Pharmacological application of inhibitors of soluble guanylate cyclase (sGC) [1H-[1,2,4]-oxadiazole-[4,3-a]-quinoxalin-1-one (ODQ) and 6-anilino-5,8-quinolinequinone (Ly83583)], phosphodiesterase type 5 (PDE5) (Sildenafil) and the cyclic guanosine monophosphate (cGMP) analogue 8-bromoguanosine-3',5'-cyclomonophosphate sodium salt (8-Br-cGMP) indicated that cGMP was downstream of the NO signalling cascade during nyctinastic closure.

  11. Chalcones as positive allosteric modulators of α7 nicotinic acetylcholine receptors: a new target for a privileged structure.

    PubMed

    Balsera, Beatriz; Mulet, José; Fernández-Carvajal, Asia; de la Torre-Martínez, Roberto; Ferrer-Montiel, Antonio; Hernández-Jiménez, José G; Estévez-Herrera, Judith; Borges, Ricardo; Freitas, Andiara E; López, Manuela G; García-López, M Teresa; González-Muñiz, Rosario; Pérez de Vega, María Jesús; Valor, Luis M; Svobodová, Lucie; Sala, Salvador; Sala, Francisco; Criado, Manuel

    2014-10-30

    The α7 acetylcholine nicotine receptor is a ligand-gated ion channel that is involved in cognition disorders, schizophrenia, pain and inflammation among other diseases. Therefore, the development of new agents that target this receptor has great significance. Positive allosteric modulators might be advantageous, since they facilitate receptor responses without directly interacting with the agonist binding site. Here we report the search for and further design of new positive allosteric modulators having the relatively simple chalcone structure. From the natural product isoliquiritigenin as starting point, chalcones substituted with hydroxyl groups at defined locations were identified as optimal and specific promoters of α7 nicotinic function. The most potent compound (2,4,2',5'-tetrahydroxychalcone, 111) was further characterized showing its potential as neuroprotective, analgesic and cognitive enhancer, opening the way for future developments around the chalcone structure.

  12. [Escitalopram: a selective inhibitor and allosteric modulator of the serotonin transporter].

    PubMed

    Mnie-Filali, O; El Mansari, M; Scarna, H; Zimmer, L; Sánchez, C; Haddjeri, N

    2007-12-01

    , while chronic treatment with R-citalopram did not modify the basal proliferation rate in the dentate gyrus, it blocked the increase induced by escitalopram when coadministered. This suggests that neuronal adaptive changes, which are essential for antidepressant response, are rapidly induced by escitalopram but prevented by R-citalopram coadministration. The attenuating effect of R-citalopram was suggested to underlie the delayed recovery of 5-HT neuronal activity following long-term treatment with citalopram versus escitalopram. This is confirmed since a treatment with R-citalopram antagonized the recovery of firing observed in escitalopram-treated rats. The exact mechanism by which R-citalopram exerts its action is not yet fully defined; however, an allosteric interaction between the enantiomers and the 5-HT transporter (SERT) has been proposed. In this context, in vitro studies have revealed the existence of at least two binding sites on SERT: (1) a primary high-affinity binding site or orthosteric site that mediates the inhibition of 5-HT reuptake and (2) an allosteric low-affinity binding site that modulates the binding of ligands at the primary site. In presence of escitalopram alone, both the primary and the allosteric sites are occupied. Thus, escitalopram exerts a stabilizing effect on this association to SERT, resulting in an effective inhibition of 5-HT reuptake activity. On the other hand, in the presence of the two enantiomers, R-citalopram binds to the allosteric site and decreases the escitalopram action on SERT. Such an innovative mechanism of action can constitute a basis for development of new allosteric antidepressants that demonstrate higher efficacy and earlier onset of therapeutic effect.

  13. The High-Affinity E. Coli Methionine ABC Transporter: Structure And Allosteric Regulation

    SciTech Connect

    Kadaba, N.S.; Kaiser, J.T.; Johnson, E.; Lee, A.; Rees, D.C.

    2009-05-18

    The crystal structure of the high-affinity Escherichia coli MetNI methionine uptake transporter, a member of the adenosine triphosphate (ATP)-binding cassette (ABC) family, has been solved to 3.7 angstrom resolution. The overall architecture of MetNI reveals two copies of the adenosine triphosphatase (ATPase) MetN in complex with two copies of the transmembrane domain MetI, with the transporter adopting an inward-facing conformation exhibiting widely separated nucleotide binding domains. Each MetI subunit is organized around a core of five transmembrane helices that correspond to a subset of the helices observed in the larger membrane-spanning subunits of the molybdate (ModBC) and maltose (MalFGK) ABC transporters. In addition to the conserved nucleotide binding domain of the ABC family, MetN contains a carboxyl-terminal extension with a ferredoxin-like fold previously assigned to a conserved family of regulatory ligand-binding domains. These domains separate the nucleotide binding domains and would interfere with their association required for ATP binding and hydrolysis. Methionine binds to the dimerized carboxyl-terminal domain and is shown to inhibit ATPase activity. These observations are consistent with an allosteric regulatory mechanism operating at the level of transport activity, where increased intracellular levels of the transported ligand stabilize an inward-facing, ATPase-inactive state of MetNI to inhibit further ligand translocation into the cell.

  14. Aging has the opposite effect on cAMP and cGMP circadian variations in rat Leydig cells.

    PubMed

    Baburski, Aleksandar Z; Sokanovic, Srdjan J; Andric, Silvana A; Kostic, Tatjana S

    2016-12-03

    The Leydig cell physiology displays a circadian rhythm driven by a complex interaction of the reproductive axis hormones and circadian system. The final output of this regulatory process is circadian pattern of steroidogenic genes expression and testosterone production. Aging gradually decreases robustness of rhythmic testosterone secretion without change in pattern of LH secretion. Here, we analyzed effect of aging on circadian variation of cAMP and cGMP signaling in Leydig cells. Results showed opposite effect of aging on cAMP and cGMP daily variation. Reduced amplitude of cAMP circadian oscillation was probably associated with changed expression of genes involved in cAMP production (increased circadian pattern of Adcy7, Adcy9, Adcy10 and decreased Adcy3); cAMP degradation (increased Pde4a, decreased Pde8b, canceled rhythm of Pde4d, completely reversed circadian pattern of Pde7b and Pde8a); and circadian expression of protein kinase A subunits (Prkac/PRKAC and Prkar2a). Aging stimulates expression of genes responsible for cGMP production (Nos2, Gucy1a3 and Gucy1b3/GUCYB3) and degradation (Pde5a, Pde6a and Pde6h) but the overall net effect is elevation of cGMP circadian oscillations in Leydig cells. In addition, the expression of cGMP-dependent kinase, Prkg1/PRKG1 is up-regulated. It seems that aging potentiate cGMP- and reduce cAMP-signaling in Leydig cells. Since both signaling pathways affect testosterone production and clockwork in the cells, further insights into these signaling pathways will help to unravel disorders linked to the circadian timing system, aging and reproduction.

  15. cGMP regulates hydrogen peroxide accumulation in calcium-dependent salt resistance pathway in Arabidopsis thaliana roots.

    PubMed

    Li, Jisheng; Wang, Xiaomin; Zhang, Yanli; Jia, Honglei; Bi, Yurong

    2011-10-01

    3',5'-cyclic guanosine monophosphate (cGMP) is an important second messenger in plants. In the present study, roles of cGMP in salt resistance in Arabidopsis roots were investigated. Arabidopsis roots were sensitive to 100 mM NaCl treatment, displaying a great increase in electrolyte leakage and Na(+)/K(+) ratio and a decrease in gene expression of the plasma membrane (PM) H(+)-ATPase. However, application of exogenous 8Br-cGMP (an analog of cGMP), H(2)O(2) or CaCl(2) alleviated the NaCl-induced injury by maintaining a lower Na(+)/K(+) ratio and increasing the PM H(+)-ATPase gene expression. In addition, the inhibition of root elongation and seed germination under salt stress was removed by 8Br-cGMP. Further study indicated that 8Br-cGMP-induced higher NADPH levels for PM NADPH oxidase to generate H(2)O(2) by regulating glucose-6-phosphate dehydrogenase (G6PDH) activity. The effect of 8Br-cGMP and H(2)O(2) on ionic homeostasis was abolished when Ca(2+) was eliminated by glycol-bis-(2-amino ethyl ether)-N,N,N',N'-tetraacetic acid (EGTA, a Ca(2+) chelator) in Arabidopsis roots under salt stress. Taken together, cGMP could regulate H(2)O(2) accumulation in salt stress, and Ca(2+) was necessary in the cGMP-mediated signaling pathway. H(2)O(2), as the downstream component of cGMP signaling pathway, stimulated PM H(+)-ATPase gene expression. Thus, ion homeostasis was modulated for salt tolerance.

  16. Angiotensin-(1-7) Downregulates Diabetes-Induced cGMP Phosphodiesterase Activation in Rat Corpus Cavernosum

    PubMed Central

    Benter, Ibrahim F.

    2017-01-01

    Molecular mechanisms of the beneficial effects of angiotensin-(1-7), Ang-(1-7), in diabetes-related complications, including erectile dysfunction, remain unclear. We examined the effect of diabetes and/or Ang-(1-7) treatment on vascular reactivity and cyclic guanosine monophosphate (cGMP) phosphodiesterase (PDE) in corpus cavernosum. Male Wistar rats were grouped as (1) control, (2) diabetic (streptozotocin, STZ, treated), (3) control + Ang-(1-7), and (4) diabetic + Ang-(1-7). Following 3 weeks of Ang-(1-7) treatment subsequent to induction of diabetes, rats were sacrificed. Penile cavernosal tissue was isolated to measure vascular reactivity, PDE gene expression and activity, and levels of p38MAP kinase, nitrites, and cGMP. Carbachol-induced vasorelaxant response after preincubation of corpus cavernosum with PE was significantly attenuated in diabetic rats, and Ang-(1-7) markedly corrected the diabetes-induced impairment. Gene expression and activity of PDE and p38MAP kinase were significantly increased in cavernosal tissue of diabetic rats, and Ang-(1-7) markedly attenuated STZ-induced effects. Ang-(1-7) significantly increased the levels of nitrite and cGMP in cavernosal tissue of control and diabetic rats. Cavernosal tissue of diabetic rats had significantly reduced cGMP levels and Ang-(1-7) markedly prevented the STZ-induced cGMP depletion. This study demonstrates that attenuation of diabetes-induced PDE activity might be one of the key mechanisms in the beneficial effects of Ang-(1-7). PMID:28299329

  17. Ryanodine Receptor Allosteric Coupling and the Dynamics of Calcium Sparks

    PubMed Central

    Groff, Jeffrey R.; Smith, Gregory D.

    2008-01-01

    Puffs and sparks are localized intracellular Ca2+ elevations that arise from the cooperative activity of Ca2+-regulated inositol 1,4,5-trisphosphate receptors and ryanodine receptors clustered at Ca2+ release sites on the surface of the endoplasmic reticulum or the sarcoplasmic reticulum. While the synchronous gating of Ca2+-regulated Ca2+ channels can be mediated entirely though the buffered diffusion of intracellular Ca2+, interprotein allosteric interactions also contribute to the dynamics of ryanodine receptor (RyR) gating and Ca2+ sparks. In this article, Markov chain models of Ca2+ release sites are used to investigate how the statistics of Ca2+ spark generation and termination are related to the coupling of RyRs via local [Ca2+] changes and allosteric interactions. Allosteric interactions are included in a manner that promotes the synchronous gating of channels by stabilizing neighboring closed-closed and/or open-open channel pairs. When the strength of Ca2+-mediated channel coupling is systematically varied (e.g., by changing the Ca2+ buffer concentration), simulations that include synchronizing allosteric interactions often exhibit more robust Ca2+ sparks; however, for some Ca2+ coupling strengths the sparks are less robust. We find no evidence that the distribution of spark durations can be used to distinguish between allosteric interactions that stabilize closed channel pairs, open channel pairs, or both in a balanced fashion. On the other hand, the changes in spark duration, interspark interval, and frequency observed when allosteric interactions that stabilize closed channel pairs are gradually removed from simulations are qualitatively different than the changes observed when open or both closed and open channel pairs are stabilized. Thus, our simulations clarify how changes in spark statistics due to pharmacological washout of the accessory proteins mediating allosteric coupling may indicate the type of synchronizing allosteric interactions exhibited

  18. Allosteric Voltage Gating of Potassium Channels I

    PubMed Central

    Horrigan, Frank T.; Cui, Jianmin; Aldrich, Richard W.

    1999-01-01

    Activation of large conductance Ca2+-activated K+ channels is controlled by both cytoplasmic Ca2+ and membrane potential. To study the mechanism of voltage-dependent gating, we examined mSlo Ca2+-activated K+ currents in excised macropatches from Xenopus oocytes in the virtual absence of Ca2+ (<1 nM). In response to a voltage step, IK activates with an exponential time course, following a brief delay. The delay suggests that rapid transitions precede channel opening. The later exponential time course suggests that activation also involves a slower rate-limiting step. However, the time constant of IK relaxation [τ(IK)] exhibits a complex voltage dependence that is inconsistent with models that contain a single rate limiting step. τ(IK) increases weakly with voltage from −500 to −20 mV, with an equivalent charge (z) of only 0.14 e, and displays a stronger voltage dependence from +30 to +140 mV (z = 0.49 e), which then decreases from +180 to +240 mV (z = −0.29 e). Similarly, the steady state GK–V relationship exhibits a maximum voltage dependence (z = 2 e) from 0 to +100 mV, and is weakly voltage dependent (z ≅ 0.4 e) at more negative voltages, where Po = 10−5–10−6. These results can be understood in terms of a gating scheme where a central transition between a closed and an open conformation is allosterically regulated by the state of four independent and identical voltage sensors. In the absence of Ca2+, this allosteric mechanism results in a gating scheme with five closed (C) and five open (O) states, where the majority of the channel's voltage dependence results from rapid C–C and O–O transitions, whereas the C–O transitions are rate limiting and weakly voltage dependent. These conclusions not only provide a framework for interpreting studies of large conductance Ca2+-activated K+ channel voltage gating, but also have important implications for understanding the mechanism of Ca2+ sensitivity. PMID:10436003

  19. Small Molecule-Induced Allosteric Activation of the Vibrio Cholerae RTX Cysteine Protease Domain

    SciTech Connect

    Lupardus, P.J.; Shen, A.; Bogyo, M.; Garcia, K.C.

    2009-05-19

    Vibrio cholerae RTX (repeats in toxin) is an actin-disrupting toxin that is autoprocessed by an internal cysteine protease domain (CPD). The RTX CPD is efficiently activated by the eukaryote-specific small molecule inositol hexakisphosphate (InsP{sub 6}), and we present the 2.1 angstrom structure of the RTX CPD in complex with InsP{sub 6}. InsP{sub 6} binds to a conserved basic cleft that is distant from the protease active site. Biochemical and kinetic analyses of CPD mutants indicate that InsP{sub 6} binding induces an allosteric switch that leads to the autoprocessing and intracellular release of toxin-effector domains.

  20. Human farnesyl pyrophosphate synthase is allosterically inhibited by its own product

    PubMed Central

    Park, Jaeok; Zielinski, Michal; Magder, Alexandr; Tsantrizos, Youla S.; Berghuis, Albert M.

    2017-01-01

    Farnesyl pyrophosphate synthase (FPPS) is an enzyme of the mevalonate pathway and a well-established therapeutic target. Recent research has focused around a newly identified druggable pocket near the enzyme's active site. Pharmacological exploitation of this pocket is deemed promising; however, its natural biological function, if any, is yet unknown. Here we report that the product of FPPS, farnesyl pyrophosphate (FPP), can bind to this pocket and lock the enzyme in an inactive state. The Kd for this binding is 5–6 μM, within a catalytically relevant range. These results indicate that FPPS activity is sensitive to the product concentration. Kinetic analysis shows that the enzyme is inhibited through FPP accumulation. Having a specific physiological effector, FPPS is a bona fide allosteric enzyme. This allostery offers an exquisite mechanism for controlling prenyl pyrophosphate levels in vivo and thus contributes an additional layer of regulation to the mevalonate pathway. PMID:28098152

  1. Allosteric Inhibition of a Semaphorin 4D Receptor Plexin B1 by a High-Affinity Macrocyclic Peptide.

    PubMed

    Matsunaga, Yukiko; Bashiruddin, Nasir K; Kitago, Yu; Takagi, Junichi; Suga, Hiroaki

    2016-11-17

    Semaphorin axonal guidance factors are multifunctional proteins that play important roles in immune response, cancer cell proliferation, and organogenesis, making semaphorins and their signaling receptor plexins important drug targets for various diseases. However, the large and flat binding surface of the semaphorin-plexin interaction interface is difficult to target by traditional small-molecule drugs. Here, we report the discovery of a high-affinity plexin B1 (PlxnB1)-binding macrocyclic peptide, PB1m6 (KD = 3.5 nM). PB1m6 specifically inhibited the binding of physiological ligand semaphorin 4D (Sema4D) in vitro and completely suppressed Sema4D-induced cell collapse. Structural studies revealed that PB1m6 binds at a groove between the fifth and sixth blades of the sema domain in PlxnB1 distant from the Sema4D-binding site, indicating the non-competitive and allosteric nature of the inhibitory activity. The discovery of this novel allosteric site can potentially be used to target plexin family proteins for the development of drugs that modulate semaphorin and plexin signaling.

  2. Allosteric modulation of sigma-1 receptors by SKF83959 inhibits microglia-mediated inflammation.

    PubMed

    Wu, Zhuang; Li, Linlang; Zheng, Long-Tai; Xu, Zhihong; Guo, Lin; Zhen, Xuechu

    2015-09-01

    Recent studies have shown that sigma-1 receptor orthodox agonists can inhibit neuroinflammation. SKF83959 (3-methyl-6-chloro-7,8-hydroxy-1-[3-methylphenyl]-2,3,4,5-tetrahydro-1H-3-benzazepine), an atypical dopamine receptor-1 agonist, has been recently identified as a potent allosteric modulator of sigma-1 receptor. Here, we investigated the anti-inflammatory effects of SKF83959 in lipopolysaccharide (LPS)-stimulated BV2 microglia. Our results indicated that SKF83959 significantly suppressed the expression/release of the pro-inflammatory mediators, such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), inducible nitric oxide synthase (iNOS), and inhibited the generation of reactive oxygen species. All of these responses were blocked by selective sigma-1 receptor antagonists (BD1047 or BD1063) and by ketoconazole (an inhibitor of enzyme cytochrome c17 to inhibit the synthesis of endogenous dehydroepiandrosterone, DHEA). Additionally, we found that SKF83959 promoted the binding activity of DHEA with sigma-1 receptors, and enhanced the inhibitory effects of DHEA on LPS-induced microglia activation in a synergic manner. Furthermore, in a microglia-conditioned media system, SKF83959 inhibited the cytotoxicity of conditioned medium generated by LPS-activated microglia toward HT-22 neuroblastoma cells. Taken together, our study provides the first evidence that allosteric modulation of sigma-1 receptors by SKF83959 inhibits microglia-mediated inflammation. SKF83959 is a potent allosteric modulator of sigma-1 receptor. Our results indicated that SKF83959 enhanced the activity of endogenous dehydroepiandrosterone (DHEA) in a synergic manner, and inhibited the activation of BV2 microglia and the expression/release of the pro-inflammatory mediators, such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), inducible nitric oxide synthase (iNOS).

  3. Critical Molecular Determinants of α7 Nicotinic Acetylcholine Receptor Allosteric Activation

    PubMed Central

    Horenstein, Nicole A.; Papke, Roger L.; Kulkarni, Abhijit R.; Chaturbhuj, Ganesh U.; Stokes, Clare; Manther, Khan; Thakur, Ganesh A.

    2016-01-01

    The α7 nicotinic acetylcholine receptors (nAChRs) are uniquely sensitive to selective positive allosteric modulators (PAMs), which increase the efficiency of channel activation to a level greater than that of other nAChRs. Although PAMs must work in concert with “orthosteric” agonists, compounds such as GAT107 ((3aR,4S,9bS)-4-(4-bromophenyl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline-8-sulfonamide) have the combined properties of agonists and PAMs (ago-PAM) and produce very effective channel activation (direct allosteric activation (DAA)) by operating at two distinct sites in the absence of added agonist. One site is likely to be the same transmembrane site where PAMs like PNU-120596 function. We show that the other site, required for direct activation, is likely to be solvent-accessible at the extracellular domain vestibule. We identify key attributes of molecules in this family that are able to act at the DAA site through variation at the aryl ring substituent of the tetrahydroquinoline ring system and with two different classes of competitive antagonists of DAA. Analyses of molecular features of effective allosteric agonists allow us to propose a binding model for the DAA site, featuring a largely non-polar pocket accessed from the extracellular vestibule with an important role for Asp-101. This hypothesis is supported with data from site-directed mutants. Future refinement of the model and the characterization of specific GAT107 analogs will allow us to define critical structural elements that can be mapped onto the receptor surface for an improved understanding of this novel way to target α7 nAChR therapeutically. PMID:26742843

  4. Allosteric Gating of a Large Conductance Ca-activated K+ Channel

    PubMed Central

    Cox, D.H.; Cui, J.; Aldrich, R.W.

    1997-01-01

    Large-conductance Ca-activated potassium channels (BK channels) are uniquely sensitive to both membrane potential and intracellular Ca2+. Recent work has demonstrated that in the gating of these channels there are voltage-sensitive steps that are separate from Ca2+ binding steps. Based on this result and the macroscopic steady state and kinetic properties of the cloned BK channel mslo, we have recently proposed a general kinetic scheme to describe the interaction between voltage and Ca2+ in the gating of the mslo channel (Cui, J., D.H. Cox, and R.W. Aldrich. 1997. J. Gen. Physiol. In press.). This scheme supposes that the channel exists in two main conformations, closed and open. The conformational change between closed and open is voltage dependent. Ca2+ binds to both the closed and open conformations, but on average binds more tightly to the open conformation and thereby promotes channel opening. Here we describe the basic properties of models of this form and test their ability to mimic mslo macroscopic steady state and kinetic behavior. The simplest form of this scheme corresponds to a voltage-dependent version of the Monod-Wyman-Changeux (MWC) model of allosteric proteins. The success of voltage-dependent MWC models in describing many aspects of mslo gating suggests that these channels may share a common molecular mechanism with other allosteric proteins whose behaviors have been modeled using the MWC formalism. We also demonstrate how this scheme can arise as a simplification of a more complex scheme that is based on the premise that the channel is a homotetramer with a single Ca2+ binding site and a single voltage sensor in each subunit. Aspects of the mslo data not well fitted by the simplified scheme will likely be better accounted for by this more general scheme. The kinetic schemes discussed in this paper may be useful in interpreting the effects of BK channel modifications or mutations. PMID:9276753

  5. Aspects of Protein, Chemistry, Part II: Oxygen-Binding Proteins

    ERIC Educational Resources Information Center

    Nixon, J. E.

    1977-01-01

    Compares differences in function and behavior of two oxygen-binding proteins, myoglobin found in muscle and hemoglobin found in blood. Describes the mechanism of oxygen-binding and allosteric effect in hemoglobin; also describes the effect of pH on the affinity of hemoglobin for oxygen. (CS)

  6. Probing a Conformational Change of a Photoswitchable Allosteric Protein with Ultrafast IR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Stucki-Buchli, Brigitte; Waldauer, Steven A.; Walser, Reto; Pfister, Rolf; Hamm, Peter

    2015-03-01

    By covalently linking an azobenzene photoswitch across the binding groove of an allosteric protein domain, a conformational transition can be initiated by a laser pulse.. This transition mimics the conformational change of the unmodified domain upon ligand binding. We have studied this light induced conformational change by ultrafast IR spectroscopy. So far, we have probed two IR absorption bands: First, the amide I band which arises from the carbonyl stretch vibration of all amide groups in the protein and is sensitive to overall structural changes, and second, a vibration localized on the photoswitch, which is sensitive to its local environment, namely the opening of the binding groove. We have found that the binding groove opens on a timescale of 100 ns in a non-exponential manner. Even after the binding groove has equilibrated, the protein conformation still continues to change elsewhere. Currently, we are incorporating site-specific IR labels, to learn more about the response of the protein to the perturbation of the binding groove.

  7. Allosteric Modulators for the Treatment of Schizophrenia: Targeting Glutamatergic Networks

    PubMed Central

    Menniti, Frank S.; Lindsley, Craig W.; Conn, P. Jeffrey; Pandit, Jayvardhan; Zagouras, Panayiotis; Volkmann, Robert A.

    2013-01-01

    Schizophrenia is a highly debilitating mental disorder which afflicts approximately 1% of the global population. Cognitive and negative deficits account for the lifelong disability associated with schizophrenia, whose symptoms are not effectively addressed by current treatments. New medicines are needed to treat these aspects of the disease. Neurodevelopmental, neuropathological, genetic, and behavioral pharmacological data indicate that schizophrenia stems from a dysfunction of glutamate synaptic transmission, particularly in frontal cortical networks. A number of novel pre- and postsynaptic mechanisms affecting glutamatergic synaptic transmission have emerged as viable targets for schizophrenia. While developing orthosteric glutamatergic agents for these targets has proven extremely difficult, targeting allosteric sites of these targets has emerged as a promising alternative. From a medicinal chemistry perspective, allosteric sites provide an opportunity of finding agents with better drug-like properties and greater target specificity. Furthermore, allosteric modulators are better suited to maintaining the highly precise temporal and spatial aspects of glutamatergic synaptic transmission. Herein, we review neuropathological and genomic/genetic evidence underscoring the importance of glutamate synaptic dysfunction in the etiology of schizophrenia and make a case for allosteric targets for therapeutic intervention. We review progress in identifying allosteric modulators of AMPA receptors, NMDA receptors, and metabotropic glutamate receptors, all with the aim of restoring physiological glutamatergic synaptic transmission. Challenges remain given the complexity of schizophrenia and the difficulty in studying cognition in animals and humans. Nonetheless, important compounds have emerged from these efforts and promising preclinical and variable clinical validation has been achieved. PMID:23409764

  8. Discovery of Peptidomimetic Ligands of EED as Allosteric Inhibitors of PRC2.

    PubMed

    Barnash, Kimberly D; The, Juliana; Norris-Drouin, Jacqueline L; Cholensky, Stephanie H; Worley, Beau M; Li, Fengling; Stuckey, Jacob I; Brown, Peter J; Vedadi, Masoud; Arrowsmith, Cheryl H; Frye, Stephen V; James, Lindsey I

    2017-03-13

    The function of EED within polycomb repressive complex 2 (PRC2) is mediated by a complex network of protein-protein interactions. Allosteric activation of PRC2 by binding of methylated proteins to the embryonic ectoderm development (EED) aromatic cage is essential for full catalytic activity, but details of this regulation are not fully understood. EED's recognition of the product of PRC2 activity, histone H3 lysine 27 trimethylation (H3K27me3), stimulates PRC2 methyltransferase activity at adjacent nucleosomes leading to H3K27me3 propagation and, ultimately, gene repression. By coupling combinatorial chemistry and structure-based design, we optimized a low-affinity methylated jumonji, AT-rich interactive domain 2 (Jarid2) peptide to a smaller, more potent peptidomimetic ligand (Kd = 1.14 ± 0.14 μM) of the aromatic cage of EED. Our strategy illustrates the effectiveness of applying combinatorial chemistry to achieve both ligand potency and property optimization. Furthermore, the resulting ligands, UNC5114 and UNC5115, demonstrate that targeted disruption of EED's reader function can lead to allosteric inhibition of PRC2 catalytic activity.

  9. Herbacetin is a novel allosteric inhibitor of ornithine decarboxylase with antitumor activity

    PubMed Central

    Lee, Mee-Hyun; Oi, Naomi; Lim, Do Young; Kim, Myoung Ok; Cho, Young-Yeon; Pugliese, Angelo; Shim, Jung-Hyun; Chen, Hanyong; Cho, Eun Jin; Kim, Jong-Eun; Kang, Sun Chul; Paul, Souren; Kang, Hee Eun; Jung, Ji Won; Lee, Sung-Young; Kim, Sung-Hyun; Reddy, Kanamata; Yeom, Young Il; Bode, Ann M; Dong, Zigang

    2015-01-01

    Ornithine decarboxylase (ODC) is a rate-limiting enzyme in the first step of polyamine biosynthesis that is associated with cell growth and tumor formation. Existing catalytic inhibitors of ODC have lacked efficacy in clinical testing or displayed unacceptable toxicity. In this study, we report the identification of an effective and nontoxic allosteric inhibitor of ODC. Using computer docking simulation and an in vitro ODC enzyme assay, we identified herbacetin, a natural compound found in flax and other plants, as a novel ODC inhibitor. Mechanistic investigations defined aspartate 44 in ODC as critical for binding. Herbacetin exhibited potent anticancer activity in colon cancer cell lines expressing high levels of ODC. Intraperitoneal or oral administration of herbacetin effectively suppressed HCT116 xenograft tumor growth and also reduced the number and size of polyps in a mouse model of APC-driven colon cancer (ApcMin/+). Unlike the well established ODC inhibitor DFMO, herbacetin treatment was not associated with hearing loss. Taken together, our findings defined the natural product herbacetin as an allosteric inhibitor of ODC with chemopreventive and antitumor activity in preclinical models of colon cancer, prompting its further investigation in clinical trials. PMID:26676750

  10. Catalytic mechanism and allosteric regulation of an oligomeric (p)ppGpp synthetase by an alarmone

    PubMed Central

    Steinchen, Wieland; Schuhmacher, Jan S.; Altegoer, Florian; Fage, Christopher D.; Srinivasan, Vasundara; Linne, Uwe; Marahiel, Mohamed A.; Bange, Gert

    2015-01-01

    Nucleotide-based second messengers serve in the response of living organisms to environmental changes. In bacteria and plant chloroplasts, guanosine tetraphosphate (ppGpp) and guanosine pentaphosphate (pppGpp) [collectively named “(p)ppGpp”] act as alarmones that globally reprogram cellular physiology during various stress conditions. Enzymes of the RelA/SpoT homology (RSH) family synthesize (p)ppGpp by transferring pyrophosphate from ATP to GDP or GTP. Little is known about the catalytic mechanism and regulation of alarmone synthesis. It also is unclear whether ppGpp and pppGpp execute different functions. Here, we unravel the mechanism and allosteric regulation of the highly cooperative alarmone synthetase small alarmone synthetase 1 (SAS1) from Bacillus subtilis. We determine that the catalytic pathway of (p)ppGpp synthesis involves a sequentially ordered substrate binding, activation of ATP in a strained conformation, and transfer of pyrophosphate through a nucleophilic substitution (SN2) reaction. We show that pppGpp—but not ppGpp—positively regulates SAS1 at an allosteric site. Although the physiological significance remains to be elucidated, we establish the structural and mechanistic basis for a biological activity in which ppGpp and pppGpp execute different functional roles. PMID:26460002

  11. Activation of nanoscale allosteric protein domain motion revealed by neutron spin echo spectroscopy

    NASA Astrophysics Data System (ADS)

    Bu, Zimei; Farago, Bela; Callaway, David

    2012-02-01

    NHERF1 is a multi-domain scaffolding protein that assembles the signaling complexes, and regulates the cell surface expression and endocytic recycling of a variety of membrane proteins. The ability of the two PDZ domains in NHERF1 to assemble protein complexes is allosterically modulated by a membrane-cytoskeleton linker protein ezrin, whose binding site is located as far as 110 angstroms away from the PDZ domains. Here, using neutron spin echo (NSE) spectroscopy, selective deuterium labeling, and theoretical analyses, we reveal the activation of interdomain motion in NHERF1 on nanometer length scales and on sub-microsecond time scales upon forming a complex with ezrin. We show that a much simplified coarse-grained model is sufficient to describe inter-domain motion of a multi-domain protein or protein complex. We expect that future NSE experiments will benefit by exploiting our approach of selective deuteration to resolve the specific domain motions of interest from a plethora of global translational and rotational motions. The results demonstrate that propagation of allosteric signals to distal sites involves the activation of long-range coupled domain motions on submicrosecond time scales, and that these coupled motions can be distinguished and characterized by NSE.

  12. Allosteric modulation of peroxisomal membrane protein recognition by farnesylation of the peroxisomal import receptor PEX19

    PubMed Central

    Emmanouilidis, Leonidas; Schütz, Ulrike; Tripsianes, Konstantinos; Madl, Tobias; Radke, Juliane; Rucktäschel, Robert; Wilmanns, Matthias; Schliebs, Wolfgang; Erdmann, Ralf; Sattler, Michael

    2017-01-01

    The transport of peroxisomal membrane proteins (PMPs) requires the soluble PEX19 protein as chaperone and import receptor. Recognition of cargo PMPs by the C-terminal domain (CTD) of PEX19 is required for peroxisome biogenesis in vivo. Farnesylation at a C-terminal CaaX motif in PEX19 enhances the PMP interaction, but the underlying molecular mechanisms are unknown. Here, we report the NMR-derived structure of the farnesylated human PEX19 CTD, which reveals that the farnesyl moiety is buried in an internal hydrophobic cavity. This induces substantial conformational changes that allosterically reshape the PEX19 surface to form two hydrophobic pockets for the recognition of conserved aromatic/aliphatic side chains in PMPs. Mutations of PEX19 residues that either mediate farnesyl contacts or are directly involved in PMP recognition abolish cargo binding and cannot complement a ΔPEX19 phenotype in human Zellweger patient fibroblasts. Our results demonstrate an allosteric mechanism for the modulation of protein function by farnesylation. PMID:28281558

  13. Thermal activation of 'allosteric-like' large-scale motions in a eukaryotic Lactate Dehydrogenase.

    PubMed

    Katava, Marina; Maccarini, Marco; Villain, Guillaume; Paciaroni, Alessandro; Sztucki, Michael; Ivanova, Oxana; Madern, Dominique; Sterpone, Fabio

    2017-01-23

    Conformational changes occurring during the enzymatic turnover are essential for the regulation of protein functionality. Individuating the protein regions involved in these changes and the associated mechanical modes is still a challenge at both experimental and theoretical levels. We present here a detailed investigation of the thermal activation of the functional modes and conformational changes in a eukaryotic Lactate Dehydrogenase enzyme (LDH). Neutron Spin Echo spectroscopy and Molecular Dynamics simulations were used to uncover the characteristic length- and timescales of the LDH nanoscale motions in the apo state. The modes involving the catalytic loop and the mobile region around the binding site are activated at room temperature, and match the allosteric reorganisation of bacterial LDHs. In a temperature window of about 15 degrees, these modes render the protein flexible enough and capable of reorganising the active site toward reactive configurations. On the other hand an excess of thermal excitation leads to the distortion of the protein matrix with a possible anti-catalytic effect. Thus, the temperature activates eukaryotic LDHs via the same conformational changes observed in the allosteric bacterial LDHs. Our investigation provides an extended molecular picture of eukaryotic LDH's conformational landscape that enriches the static view based on crystallographic studies alone.

  14. Biomimetic Design Results in a Potent Allosteric Inhibitor of Dihydrodipicolinate Synthase from Campylobacter jejuni.

    PubMed

    Skovpen, Yulia V; Conly, Cuylar J T; Sanders, David A R; Palmer, David R J

    2016-02-17

    Dihydrodipicolinate synthase (DHDPS), an enzyme required for bacterial peptidoglycan biosynthesis, catalyzes the condensation of pyruvate and β-aspartate semialdehyde (ASA) to form a cyclic product which dehydrates to form dihydrodipicolinate. DHDPS has, for several years, been considered a putative target for novel antibiotics. We have designed the first potent inhibitor of this enzyme by mimicking its natural allosteric regulation by lysine, and obtained a crystal structure of the protein-inhibitor complex at 2.2 Å resolution. This novel inhibitor, which we named "bislysine", resembles two lysine molecules linked by an ethylene bridge between the α-carbon atoms. Bislysine is a mixed partial inhibitor with respect to the first substrate, pyruvate, and a noncompetitive partial inhibitor with respect to ASA, and binds to all forms of the enzyme with a Ki near 200 nM, more than 300 times more tightly than lysine. Hill plots show that the inhibition is cooperative, indicating that the allosteric sites are not independent despite being located on opposite sides of the protein tetramer, separated by approximately 50 Å. A mutant enzyme resistant to lysine inhibition, Y110F, is strongly inhibited by this novel inhibitor, suggesting this may be a promising strategy for antibiotic development.

  15. Thermal activation of ‘allosteric-like’ large-scale motions in a eukaryotic Lactate Dehydrogenase

    PubMed Central

    Katava, Marina; Maccarini, Marco; Villain, Guillaume; Paciaroni, Alessandro; Sztucki, Michael; Ivanova, Oxana; Madern, Dominique; Sterpone, Fabio

    2017-01-01

    Conformational changes occurring during the enzymatic turnover are essential for the regulation of protein functionality. Individuating the protein regions involved in these changes and the associated mechanical modes is still a challenge at both experimental and theoretical levels. We present here a detailed investigation of the thermal activation of the functional modes and conformational changes in a eukaryotic Lactate Dehydrogenase enzyme (LDH). Neutron Spin Echo spectroscopy and Molecular Dynamics simulations were used to uncover the characteristic length- and timescales of the LDH nanoscale motions in the apo state. The modes involving the catalytic loop and the mobile region around the binding site are activated at room temperature, and match the allosteric reorganisation of bacterial LDHs. In a temperature window of about 15 degrees, these modes render the protein flexible enough and capable of reorganising the active site toward reactive configurations. On the other hand an excess of thermal excitation leads to the distortion of the protein matrix with a possible anti-catalytic effect. Thus, the temperature activates eukaryotic LDHs via the same conformational changes observed in the allosteric bacterial LDHs. Our investigation provides an extended molecular picture of eukaryotic LDH’s conformational landscape that enriches the static view based on crystallographic studies alone. PMID:28112231

  16. Seven Transmembrane Receptors as Shapeshifting Proteins: The Impact of Allosteric Modulation and Functional Selectivity on New Drug Discovery

    PubMed Central

    Miller, Laurence J.

    2010-01-01

    It is useful to consider seven transmembrane receptors (7TMRs) as disordered proteins able to allosterically respond to a number of binding partners. Considering 7TMRs as allosteric systems, affinity and efficacy can be thought of in terms of energy flow between a modulator, conduit (the receptor protein), and a number of guests. These guests can be other molecules, receptors, membrane-bound proteins, or signaling proteins in the cytosol. These vectorial flows of energy can yield standard canonical guest allostery (allosteric modification of drug effect), effects along the plane of the cell membrane (receptor oligomerization), or effects directed into the cytosol (differential signaling as functional selectivity). This review discusses these apparently diverse pharmacological effects in terms of molecular dynamics and protein ensemble theory, which tends to unify 7TMR behavior toward cells. Special consideration will be given to functional selectivity (biased agonism and biased antagonism) in terms of mechanism of action and potential therapeutic application. The explosion of technology that has enabled observation of diverse 7TMR behavior has also shown how drugs can have multiple (pluridimensional) efficacies and how this can cause paradoxical drug classification and nomenclatures. PMID:20392808

  17. Allosteric dynamics of SAMHD1 studied by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Patra, K. K.; Bhattacharya, A.; Bhattacharya, S.

    2016-10-01

    SAMHD1 is a human cellular enzyme that blocks HIV-1 infection in myeloid cells and non-cycling CD4+T cells. The enzyme is an allosterically regulated triphosphohydrolase that modulates the level of cellular dNTP. The virus restriction is attributed to the lowering of the pool of dNTP in the cell to a point where reverse-transcription is impaired. Mutations in SAMHD1 are also implicated in Aicardi-Goutieres syndrome. A mechanistic understanding of the allosteric activation of the enzyme is still elusive. We have performed molecular dynamics simulations to examine the allosteric site dynamics of the protein and to examine the connection between the stability of the tetrameric complex and the Allosite occupancy.

  18. Nucleoside Analogue Triphosphates Allosterically Regulate Human Ribonucleotide Reductase and Identify Chemical Determinants That Drive Substrate Specificity.

    PubMed

    Knappenberger, Andrew J; Ahmad, Md Faiz; Viswanathan, Rajesh; Dealwis, Chris G; Harris, Michael E

    2016-10-18

    Class I ribonucleotide reductase (RR) maintains balanced pools of deoxyribonucleotide substrates for DNA replication by converting ribonucleoside diphosphates (NDPs) to 2'-deoxyribonucleoside diphosphates (dNDPs). Binding of deoxynucleoside triphosphate (dNTP) effectors (ATP/dATP, dGTP, and dTTP) modulates the specificity of class I RR for CDP, UDP, ADP, and GDP substrates. Crystal structures of bacterial and eukaryotic RRs show that dNTP effectors and NDP substrates bind on either side of a flexible nine-amino acid loop (loop 2). Interactions with the effector nucleobase alter loop 2 geometry, resulting in changes in specificity among the four NDP substrates of RR. However, the functional groups proposed to drive specificity remain untested. Here, we use deoxynucleoside analogue triphosphates to determine the nucleobase functional groups that drive human RR (hRR) specificity. The results demonstrate that the 5-methyl, O4, and N3 groups of dTTP contribute to specificity for GDP. The O6 and protonated N1 of dGTP direct specificity for ADP. In contrast, the unprotonated N1 of adenosine is the primary determinant of ATP/dATP-directed specificity for CDP. Structural models from X-ray crystallography of eukaryotic RR suggest that the side chain of D287 in loop 2 is involved in binding of dGTP and dTTP, but not dATP/ATP. This feature is consistent with experimental results showing that a D287A mutant of hRR is deficient in allosteric regulation by dGTP and dTTP, but not ATP/dATP. Together, these data define the effector functional groups that are the drivers of human RR specificity and provide constraints for evaluating models of allosteric regulation.

  19. Nitric oxide and cGMP signaling in calcium-dependent development of cell polarity in Ceratopteris richardii.

    PubMed

    Salmi, Mari L; Morris, Kacey E; Roux, Stanley J; Porterfield, D Marshall

    2007-05-01

    Single-celled spores of the fern Ceratopteris richardii undergo gravity-directed cell polarity development that is driven by polar calcium currents. Here we present results that establish a role for nitric oxide (NO)/cGMP signaling in transducing the stimulus of gravity to directed polarization of the spores. Application of specific NO donors and scavengers inhibited the calcium-dependent gravity response in a dose-dependent manner. The effects of NO donor exposure were antagonized by application of NO scavenger compounds. Similarly, the guanylate cyclase inhibitors 6-anilino-5,8-quinolinedione and 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin, and the phosphodiesterase inhibitor Viagra, which modulate NO-dependent cGMP levels in the cells, disrupted gravity-directed cell polarity in a dose-dependent manner. Viagra effects were antagonized by application of NO scavengers, consistent with the postulate that NO and cGMP are linked in the signaling pathway. To identify other components of the signaling system we analyzed gene expression changes induced by Viagra treatment using microarrays and quantitative real-time reverse transcription-polymerase chain reaction. Preliminary microarray analysis revealed several genes whose expression was significantly altered by Viagra treatment. Three of these genes had strong sequence similarity to key signal transduction or stress response genes and quantitative real-time reverse transcription-polymerase chain reaction was used to more rigorously quantify the effects of Viagra on their expression in spores and to test how closely these effects could be mimicked by treatment with dibutyryl cGMP. Taken together our results implicate NO and cGMP as downstream effectors that help link the gravity stimulus to polarized growth in C. richardii spores. Sequence data from this article can be found in the GenBank/EMBL data libraries under accession numbers BE 640669 to BE 643506, BQ 086920 to BQ 087668, and CV 734654 to CV 736151.

  20. Development of M1 mAChR Allosteric and Bitopic Ligands: Prospective Therapeutics for the Treatment of Cognitive Deficits

    PubMed Central

    2013-01-01

    Since the cholinergic hypothesis of memory dysfunction was first reported, extensive research efforts have focused on elucidating the mechanisms by which this intricate system contributes to the regulation of processes such as learning, memory, and higher executive function. Several cholinergic therapeutic targets for the treatment of cognitive deficits, psychotic symptoms, and the underlying pathophysiology of neurodegenerative disorders, such as Alzheimer’s disease and schizophrenia, have since emerged. Clinically approved drugs now exist for some of these targets; however, they all may be considered suboptimal therapeutics in that they produce undesirable off-target activity leading to side effects, fail to address the wide variety of symptoms and underlying pathophysiology that characterize these disorders, and/or afford little to no therapeutic effect in subsets of patient populations. A promising target for which there are presently no approved therapies is the M1 muscarinic acetylcholine receptor (M1 mAChR). Despite avid investigation, development of agents that selectively activate this receptor via the orthosteric site has been hampered by the high sequence homology of the binding site between the five muscarinic receptor subtypes and the wide distribution of this receptor family in both the central nervous system (CNS) and the periphery. Hence, a plethora of ligands targeting less structurally conserved allosteric sites of the M1 mAChR have been investigated. This Review aims to explain the rationale behind allosterically targeting the M1 mAChR, comprehensively summarize and critically evaluate the M1 mAChR allosteric ligand literature to date, highlight the challenges inherent in allosteric ligand investigation that are impeding their clinical advancement, and discuss potential methods for resolving these issues. PMID:23659787

  1. Development of M1 mAChR allosteric and bitopic ligands: prospective therapeutics for the treatment of cognitive deficits.

    PubMed

    Davie, Briana J; Christopoulos, Arthur; Scammells, Peter J

    2013-07-17

    Since the cholinergic hypothesis of memory dysfunction was first reported, extensive research efforts have focused on elucidating the mechanisms by which this intricate system contributes to the regulation of processes such as learning, memory, and higher executive function. Several cholinergic therapeutic targets for the treatment of cognitive deficits, psychotic symptoms, and the underlying pathophysiology of neurodegenerative disorders, such as Alzheimer's disease and schizophrenia, have since emerged. Clinically approved drugs now exist for some of these targets; however, they all may be considered suboptimal therapeutics in that they produce undesirable off-target activity leading to side effects, fail to address the wide variety of symptoms and underlying pathophysiology that characterize these disorders, and/or afford little to no therapeutic effect in subsets of patient populations. A promising target for which there are presently no approved therapies is the M1 muscarinic acetylcholine receptor (M1 mAChR). Despite avid investigation, development of agents that selectively activate this receptor via the orthosteric site has been hampered by the high sequence homology of the binding site between the five muscarinic receptor subtypes and the wide distribution of this receptor family in both the central nervous system (CNS) and the periphery. Hence, a plethora of ligands targeting less structurally conserved allosteric sites of the M1 mAChR have been investigated. This Review aims to explain the rationale behind allosterically targeting the M1 mAChR, comprehensively summarize and critically evaluate the M1 mAChR allosteric ligand literature to date, highlight the challenges inherent in allosteric ligand investigation that are impeding their clinical advancement, and discuss potential methods for resolving these issues.

  2. Overcoming EGFR(T790M) and EGFR(C797S) resistance with mutant-selective allosteric inhibitors.

    PubMed

    Jia, Yong; Yun, Cai-Hong; Park, Eunyoung; Ercan, Dalia; Manuia, Mari; Juarez, Jose; Xu, Chunxiao; Rhee, Kevin; Chen, Ting; Zhang, Haikuo; Palakurthi, Sangeetha; Jang, Jaebong; Lelais, Gerald; DiDonato, Michael; Bursulaya, Badry; Michellys, Pierre-Yves; Epple, Robert; Marsilje, Thomas H; McNeill, Matthew; Lu, Wenshuo; Harris, Jennifer; Bender, Steven; Wong, Kwok-Kin; Jänne, Pasi A; Eck, Michael J

    2016-06-02

    The epidermal growth factor receptor (EGFR)-directed tyrosine kinase inhibitors (TKIs) gefitinib, erlotinib and afatinib are approved treatments for non-small cell lung cancers harbouring activating mutations in the EGFR kinase, but resistance arises rapidly, most frequently owing to the secondary T790M mutation within the ATP site of the receptor. Recently developed mutant-selective irreversible inhibitors are highly active against the T790M mutant, but their efficacy can be compromised by acquired mutation of C797, the cysteine residue with which they form a key covalent bond. All current EGFR TKIs target the ATP-site of the kinase, highlighting the need for therapeutic agents with alternative mechanisms of action. Here we describe the rational discovery of EAI045, an allosteric inhibitor that targets selected drug-resistant EGFR mutants but spares the wild-type receptor. The crystal structure shows that the compound binds an allosteric site created by the displacement of the regulatory C-helix in an inactive conformation of the kinase. The compound inhibits L858R/T790M-mutant EGFR with low-nanomolar potency in biochemical assays. However, as a single agent it is not effective in blocking EGFR-driven proliferation in cells owing to differential potency on the two subunits of the dimeric receptor, which interact in an asymmetric manner in the active state. We observe marked synergy of EAI045 with cetuximab, an antibody therapeutic that blocks EGFR dimerization, rendering the kinase uniformly susceptible to the allosteric agent. EAI045 in combination with cetuximab is effective in mouse models of lung cancer driven by EGFR(L858R/T790M) and by EGFR(L858R/T790M/C797S), a mutant that is resistant to all currently available EGFR TKIs. More generally, our findings illustrate the utility of purposefully targeting allosteric sites to obtain mutant-selective inhibitors.

  3. Physical limits on computation by assemblies of allosteric proteins

    NASA Astrophysics Data System (ADS)

    Robinson, John

    2009-03-01

    Assemblies of allosteric proteins are the principle information processing devices in biology. Using the Ca^2+-sensitive cardiac regulatory assembly as a paradigm for Brownian computation, we examine how system complexity and system resetting impose physical limits on computation. Nearest-neighbor-limited interactions among assembly components constrains the topology of the system's macrostate free energy landscape and produces degenerate transition probabilities. As a result, signaling fidelity and deactivation kinetics can not be simultaneously optimized. This imposes an upper limit on the rate of information processing by assemblies of allosteric proteins that couple to a single ligand type.

  4. Physical Limits on Computation by Assemblies of Allosteric Proteins

    NASA Astrophysics Data System (ADS)

    Robinson, John M.

    2008-10-01

    Assemblies of allosteric proteins are the principle information processing devices in biology. Using the Ca2+-sensitive cardiac regulatory assembly as a paradigm for Brownian computation, I examine how system complexity and system resetting impose physical limits on computation. Nearest-neighbor-limited interactions among assembly components constrain the topology of the system’s macrostate free energy landscape and produce degenerate transition probabilities. As a result, signaling fidelity and deactivation kinetics cannot be simultaneously optimized. This imposes an upper limit on the rate of information processing by assemblies of allosteric proteins that couple to a single ligand type.

  5. Effects of Na/sup +/ on ultraviolet light-induced photorelaxation and c-GMP levels in rabbit aorta

    SciTech Connect

    Aceto, J.F.; Raffa, R.B.; Tallarida, R.J.

    1986-03-05

    Isolated strips of rabbit aorta in a state of drug-induced contraction relax reversibly when irradiated with ultraviolet light. The authors previously found that the magnitude of the photorelaxation progressively diminished as the extracellular Na/sup +/ ion concentration was reduced from 145 mM to 85 mM. At 85 mM Na/sup +/, there was minimal photorelaxation, even though the preparation continued to respond to vasoconstricting agents. The reduction in photosensitivity is not an osmotic effect because restoration of osmolarity did not restore photosensitivity. Neither the mechanism underlaying photorelaxation nor its modification by Na/sup +/ is precisely known. In order to examine these further the authors measured cyclic GMP levels in the absence and presence of UV light at both normal and reduced Na/sup +/ levels. At 145 mM Na/sup +/, irradiation resulted in an increase of cGMP from 0.299 to 0.717 fmole/..mu..g protein. At 85 mM Na/sup +/, the corresponding levels were 0.541 and 1.24 fmole/..mu..g protein. Thus, cGMP levels increase (approximately double) with UV irradiation at both reduced and normal Na/sup +/ concentrations even though there is little or no photorelaxation in the reduced Na/sup +/ environment. The reduction in Na/sup +/ may uncouple a link between cGMP elevation and cytoplasmic calcium in the aortic cell.

  6. New fluorescent analogs of cAMP and cGMP available as substrates for cyclic nucleotide phosphodiesterase.

    PubMed

    Hiratsuka, T

    1982-11-25

    The synthesis of fluorescent derivatives of cAMP and cGMP, by reaction with isatoic anhydride in aqueous solution at mild pH and temperature, yielding 2'-O-anthraniloyl derivatives of cyclic nucleotides, is here described. 2'-O-(N-Methylanthraniloyl) derivatives were also synthesized by reaction with N-methylisatoic anhydride. Upon excitation at 330-350 nm, these derivatives exhibited maximum fluorescence emission at 430-445 nm in aqueous solution with quantum yields of 0.11-0.26. Their fluorescence was sensitive to the polarity of solvent; in N,N-dimethylformamide quantum yields of 0.8-0.95. The major differences between the two fluorophores were the longer wavelength of the emission maximum of the N-methylanthraniloyl group and its greater quantum yield. The derivatives were substrates for beef heart cyclic nucleotide phosphodiesterase, 15-24% as effective as the natural substrate cAMP. When combined with thin layer chromatography techniques, two apparent Km values (3-4 microM and 36-76 microM) for the cAMP derivatives and one value (10-18 microM) for the cGMP derivatives were obtained. The results indicate that these 2'-hydroxyl-modified cAMP and cGMP can be useful fluorescent substrate analogs for cyclic nucleotide phosphodiesterase.

  7. The Nitric oxide/CGMP/KATP pathway mediates systemic and central antinociception induced by resistance exercise in rats.

    PubMed

    Galdino, Giovane S; Xavier, Carlos H; Almeida, Renato; Silva, Grazielle; Fontes, Marcos A; Menezes, Gustavo; Duarte, Igor D; Perez, Andrea C

    2015-01-01

    Resistance exercise (RE) is characterized to increase strength, tone, mass, and/or muscular endurance and also for produces many beneficial effects, such as blood pressure and osteoporosis reduction, diabetes mellitus control, and analgesia. However, few studies have investigated endogenous mechanisms involved in the RE-induced analgesia. Thus, the aim of this study was evaluate the role of the NO/CGMP/KATP pathway in the antinociception induced by RE. Wistar rats were submitted to acute RE in a weight-lifting model. The nociceptive threshold was measured by mechanical nociceptive test (paw-withdrawal). To investigate the involvement of the NO/CGMP/KATP pathway the following nitric oxide synthase (NOS) non-specific and specific inhibitors were used: N-nitro-l-arginine (NOArg), Aminoguanidine, N5-(1-Iminoethyl)-l-ornithine dihydrocloride (l-NIO), Nω-Propyl-l-arginine (l-NPA); guanylyl cyclase inhibitor, 1H-[1,2,4]oxidiazolo[4,3-a]quinoxalin-1-one (ODQ); and KATP channel blocker, Glybenclamide; all administered subcutaneously, intrathecally and intracerebroventricularly. Plasma and cerebrospinal fluid (CSF) nitrite levels were determined by spectrophotometry. The RE protocol produced antinociception, which was significantly reversed by NOS specific and unspecific inhibitors, guanylyl cyclase inhibitor (ODQ) and KATP channel blocker (Glybenclamide). RE was also responsible for increasing nitrite levels in both plasma and CSF. These finding suggest that the NO/CGMP/KATP pathway participates in antinociception induced by RE.

  8. Evidence for two different mechanisms triggering the change in quaternary structure of the allosteric enzyme, glucosamine-6-phosphate deaminase.

    PubMed

    Bustos-Jaimes, Ismael; Ramírez-Costa, Montserrat; De Anda-Aguilar, Lorena; Hinojosa-Ocaña, Pilar; Calcagno, Mario L

    2005-02-01

    The generation and propagation of conformational changes associated with ligand binding in the allosteric enzyme glucosamine-6-phosphate deaminase (GlcN6P deaminase, EC 3.5.99.6) from Escherichia coli were analyzed by fluorescence measurements. Single-tryptophan mutant forms of the enzyme were constructed on the basis of previous structural and functional evidence and used as structural-change probes. The reporter residues were placed in the active-site lid (position 174) and in the allosteric site (254 and 234); in addition, signals from the natural Trp residues (15 and 224) were also studied as structural probes. The structural changes produced by the occupation of either the allosteric or the active site by site-specific ligands were monitored through changes in the spectral center of mass (SCM) of their steady-state emission fluorescence spectra. Binding of the allosteric activator produces only minimal signals in titration experiments. In contrast, measurable spectral signals were found when the active site was occupied by a dead-end inhibitor. The results reveal that the two binary complexes, enzyme-activator (R(A)) and enzyme-inhibitor (R(S)) complexes, have structural differences and that they also differ from the ternary complex (R(AS)). The mobility of the active-site lid motif is shown to be independent of the allosteric transition. The active-site ligand induces cooperative SCM changes even in the enzyme-activator complex, indicating that the propagation pathway of the conformational relaxation triggered from the active site is different from that involved in the heterotropic activation. Analysis of the complete set of mutants shows that the occupation of the active site generates structural perturbations, which are propagated to the whole of the monomer and extend to the other subunits. The accumulative effect of these propagated changes should be responsible for the change in the sign of the DeltaG degrees ' of the T to R transition associated with

  9. Extracellular cGMP Modulates Learning Biphasically by Modulating Glycine Receptors, CaMKII and Glutamate-Nitric Oxide-cGMP Pathway

    PubMed Central

    Cabrera-Pastor, Andrea; Malaguarnera, Michele; Taoro-Gonzalez, Lucas; Llansola, Marta; Felipo, Vicente

    2016-01-01

    It has been proposed that extracellular cGMP modulates the ability to learn a Y maze task, but the underlying mechanisms remained unknown. Here we show that extracellular cGMP, at physiological concentrations, modulates learning in the Y maze in a biphasic way by modulating the glutamate-nitric oxide-cGMP pathway in cerebellum. Extracellular cGMP reduces glycine receptors activation inducing a voltage-dependent calcium-channels-mediated increase of calcium in Purkinje neurons. This calcium increase modulates CaMKII phosphorylation in a biphasic way. When basal calcium concentration is low extracellular cGMP reduces CaMKII phosphorylation, increasing nitric oxide synthase activity, the glutamate-NO-cGMP pathway function and learning ability. When basal calcium is normal extracellular cGMP increases CaMKII phosphorylation, reducing nitric oxide synthase activity, the pathway function and learning. These data unveil new mechanisms modulating learning in the Y maze and likely other learning types which may be therapeutic targets to improve learning in pathological situations associated with altered cGMP levels. PMID:27634333

  10. Homology modeling, docking, and molecular dynamics simulation of the receptor GALR2 and its interactions with galanin and a positive allosteric modulator.

    PubMed

    Hui, Wen-Qi; Cheng, Qi; Liu, Tian-Yu; Ouyang, Qin

    2016-04-01

    Galanin receptor type 2 (GALR2) is a class A G-protein-coupled receptor (GPCR), and it has been reported that orthosteric ligands and positive allosteric modulators (PAMs) of GALR2 could potentially be used to treat epilepsy. So far, the X-ray structure of this receptor has not been resolved, and knowledge of the 3D structure of GALR2 may prove informative in attempts to design novel ligands and to explore the mechanism for the allosteric modulation of this receptor. In this study, homology modeling was used to obtain several GALR2 models using known templates. ProSA-web Z-scores and Ramachandran plots as well as pre-screening against a test dataset of known compounds were all utilized to select the best model of GALR2. Molecular dockings of galanin (a peptide) and a nonpeptide ligand were carried out to choose the (GALR2 model)-galanin complex that showed the closest agreement with the corresponding experimental data. Finally, a 50-ns MD simulation was performed to study the interactions between the GALR2 model and the synthetic and endogenous ligands. The results from docking and MD simulation showed that, besides the reported residues, Tyr160(4.60), Ile105(3.32), Ala274(7.35), and Tyr163(ECL2) also appear to play important roles in the binding of galanin. The potential allosteric binding pockets in the GALR2 model were then investigated via MD simulation. The results indicated that the mechanism for the allosteric modulation caused by PAMs is the binding of the PAM at pocket III, which is formed by galanin, ECL2, TM2, TM3, and ECL1; this results in the disruption of the Na(+)-binding site and/or the Na(+) ion pathway, leading to GALR2 agonism.

  11. Positional isomers of bispyridine benzene derivatives induce efficacy changes on mGlu5 negative allosteric modulation.

    PubMed

    Gómez-Santacana, Xavier; Dalton, James A R; Rovira, Xavier; Pin, Jean Philippe; Goudet, Cyril; Gorostiza, Pau; Giraldo, Jesús; Llebaria, Amadeu

    2017-02-15

    Modulation of metabotropic glutamate receptor 5 (mGlu5) with partial allosteric antagonists has received increased interest due to their favourable in vivo activity profiles compared to the unfavourable side-effects of full inverse agonists. Here we report on a series of bispyridine benzene derivatives with a functional molecular switch affecting antagonistic efficacy, shifting from inverse agonism to partial antagonism with only a single change in the substitution pattern of the benzene ring. These efficacy changes are explained through computational docking, revealing two different receptor conformations of different energetic stability and different positional isomer binding preferences.

  12. Allosteric transcriptional regulation via changes in the overall topology of the core promoter

    DOE PAGES

    Philips, Steven J.; Canalizo-Hernandez, Monica; Yildirim, Ilyas; ...

    2015-08-21

    Many transcriptional activators act at a distance from core promoter elements and work by recruiting RNA polymerase through protein-protein interactions. We show here how the prokaryotic regulatory protein CueR both represses and activates transcription by differentially modulating local DNA structure within the promoter. Structural studies reveal that the repressor state slightly bends the promoter DNA, precluding optimal RNA polymerase-promoter recognition. Upon binding a metal ion in the allosteric site, CueR switches into an activator conformation. It maintains all protein-DNA contacts but introduces torsional stresses that kink and undertwist the promoter, stabilizing an A-DNA-like conformation. Finally, these factors switch on andmore » off transcription by exerting dynamic control of DNA stereochemistry, reshaping the core promoter and making it a better or worse substrate for polymerase.« less

  13. DNA-PKcs structure suggests an allosteric mechanism modulating DNA double-strand break repair.

    PubMed

    Sibanda, Bancinyane L; Chirgadze, Dimitri Y; Ascher, David B; Blundell, Tom L

    2017-02-03

    DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is a central component of nonhomologous end joining (NHEJ), repairing DNA double-strand breaks that would otherwise lead to apoptosis or cancer. We have solved its structure in complex with the C-terminal peptide of Ku80 at 4.3 angstrom resolution using x-ray crystallography. We show that the 4128-amino acid structure comprises three large structural units: the N-terminal unit, the Circular Cradle, and the Head. Conformational differences between the two molecules in the asymmetric unit are correlated with changes in accessibility of the kinase active site, which are consistent with an allosteric mechanism to bring about kinase activation. The location of KU80ct194 in the vicinity of the breast cancer 1 (BRCA1) binding site suggests competition with BRCA1, leading to pathway selection between NHEJ and homologous recombination.

  14. Molecular mechanism of allosteric substrate activation in a thiamine diphosphate-dependent decarboxylase.

    PubMed

    Versées, Wim; Spaepen, Stijn; Wood, Martin D H; Leeper, Finian J; Vanderleyden, Jos; Steyaert, Jan

    2007-11-30

    Thiamine diphosphate-dependent enzymes are involved in a wide variety of metabolic pathways. The molecular mechanism behind active site communication and substrate activation, observed in some of these enzymes, has since long been an area of debate. Here, we report the crystal structures of a phenylpyruvate decarboxylase in complex with its substrates and a covalent reaction intermediate analogue. These structures reveal the regulatory site and unveil the mechanism of allosteric substrate activation. This signal transduction relies on quaternary structure reorganizations, domain rotations, and a pathway of local conformational changes that are relayed from the regulatory site to the active site. The current findings thus uncover the molecular mechanism by which the binding of a substrate in the regulatory site is linked to the mounting of the catalytic machinery in the active site in this thiamine diphosphate-dependent enzyme.

  15. Triazolopyridine ethers as potent, orally active mGlu2 positive allosteric modulators for treating schizophrenia.

    PubMed

    Higgins, Mendi A; Marcin, Lawrence R; Christopher Zusi, F; Gentles, Robert; Ding, Min; Pearce, Bradley C; Easton, Amy; Kostich, Walter A; Seager, Matthew A; Bourin, Clotilde; Bristow, Linda J; Johnson, Kim A; Miller, Regina; Hogan, John; Whiterock, Valerie; Gulianello, Michael; Ferrante, Meredith; Huang, Yanling; Hendricson, Adam; Alt, Andrew; Macor, John E; Bronson, Joanne J

    2017-01-15

    Triazolopyridine ethers with mGlu2 positive allosteric modulator (PAM) activity are disclosed. The synthesis, in vitro activity, and metabolic stability data for a series of analogs is provided. The effort resulted in the discovery of a potent, selective, and brain penetrant lead molecule BMT-133218 ((+)-7m). After oral administration at 10mg/kg, BMT-133218 demonstrated full reversal of PCP-stimulated locomotor activity and prevented MK-801-induced working memory deficits in separate mouse models. Also, reversal of impairments in executive function were observed in rat set-shifting studies at 3 and 10mg/kg (p.o.). Extensive plasma protein binding as the result of high lipophilicity likely limited activity at lower doses. Optimized triazolopyridine ethers offer utility as mGlu2 PAMs for the treatment of schizophrenia and merit further preclinical investigation.

  16. Allosteric Regulation of the Rotational Speed in a Light-Driven Molecular Motor

    PubMed Central

    2016-01-01

    The rotational speed of an overcrowded alkene-based molecular rotary motor, having an integrated 4,5-diazafluorenyl coordination motif, can be regulated allosterically via the binding of metal ions. DFT calculations have been used to predict the relative speed of rotation of three different (i.e., zinc, palladium, and platinum) metal dichloride complexes. The photochemical and thermal isomerization behavior of these complexes has been studied in detail using UV–vis and 1H NMR spectroscopy. Our results confirm that metal coordination induces a contraction of the diazafluorenyl lower half, resulting in a reduction of the steric hindrance in the “fjord” region of the molecule, which causes an increase of the rotational speed. Importantly, metal complexation can be accomplished in situ and is found to be reversible upon the addition of a competing ligand. Consequently, the rotational behavior of these molecular motors can be dynamically controlled with chemical additives. PMID:27669358

  17. Allosteric regulation of SecA: magnesium-mediated control of conformation and activity.

    PubMed

    Gold, Vicki A M; Robson, Alice; Clarke, Anthony R; Collinson, Ian

    2007-06-15

    In bacteria, the SecA protein associates with a ubiquitous protein channel SecYEG where it drives the post-translational secretion of pre-proteins across the plasma membrane. The high-resolution structures of both proteins have been determined in their resting states; however, the mechanism that couples ATP hydrolysis to active transport of substrate proteins through the membrane is not well understood. An analysis of the steady-state ATPase activity of the enzyme reveals that there is an allosteric binding site for magnesium distinct from that associated with hydrolysis of ATP. We have demonstrated that this regulation involves a large conformational change to the SecA dimer, which exerts a strong influence on the turnover and affinity for ATP, as well as the affinity for ADP. The strong inhibitory influence of magnesium on the ATPase activity can be countered by cardiolipin and conditions that promote protein translocation.

  18. An allosteric self-splicing ribozyme triggered by a bacterial second messenger.

    PubMed

    Lee, Elaine R; Baker, Jenny L; Weinberg, Zasha; Sudarsan, Narasimhan; Breaker, Ronald R

    2010-08-13

    Group I self-splicing ribozymes commonly function as components of selfish mobile genetic elements. We identified an allosteric group I ribozyme, wherein self-splicing is regulated by a distinct riboswitch class that senses the bacterial second messenger c-di-GMP. The tandem RNA sensory system resides in the 5' untranslated region of the messenger RNA for a putative virulence gene in the pathogenic bacterium Clostridium difficile. c-di-GMP binding by the riboswitch induces folding changes at atypical splice site junctions to modulate alternative RNA processing. Our findings indicate that some self-splicing ribozymes are not selfish elements but are harnessed by cells as metabolite sensors and genetic regulators.

  19. TRANSCRIPTION. Allosteric transcriptional regulation via changes in the overall topology of the core promoter.

    PubMed

    Philips, Steven J; Canalizo-Hernandez, Monica; Yildirim, Ilyas; Schatz, George C; Mondragón, Alfonso; O'Halloran, Thomas V

    2015-08-21

    Many transcriptional activators act at a distance from core promoter elements and work by recruiting RNA polymerase through protein-protein interactions. We show here how the prokaryotic regulatory protein CueR both represses and activates transcription by differentially modulating local DNA structure within the promoter. Structural studies reveal that the repressor state slightly bends the promoter DNA, precluding optimal RNA polymerase-promoter recognition. Upon binding a metal ion in the allosteric site, CueR switches into an activator conformation. It maintains all protein-DNA contacts but introduces torsional stresses that kink and undertwist the promoter, stabilizing an A-form DNA-like conformation. These factors switch on and off transcription by exerting dynamic control of DNA stereochemistry, reshaping the core promoter and making it a better or worse substrate for polymerase.

  20. Allosteric transcriptional regulation via changes in the overall topology of the core promoter

    SciTech Connect

    Philips, Steven J.; Canalizo-Hernandez, Monica; Yildirim, Ilyas; Schatz, George C.; Mondragon, Alfonso; O'Halloran, Thomas V.

    2015-08-21

    Many transcriptional activators act at a distance from core promoter elements and work by recruiting RNA polymerase through protein-protein interactions. We show here how the prokaryotic regulatory protein CueR both represses and activates transcription by differentially modulating local DNA structure within the promoter. Structural studies reveal that the repressor state slightly bends the promoter DNA, precluding optimal RNA polymerase-promoter recognition. Upon binding a metal ion in the allosteric site, CueR switches into an activator conformation. It maintains all protein-DNA contacts but introduces torsional stresses that kink and undertwist the promoter, stabilizing an A-DNA-like conformation. Finally, these factors switch on and off transcription by exerting dynamic control of DNA stereochemistry, reshaping the core promoter and making it a better or worse substrate for polymerase.

  1. Rational Design of Potent, Small, Synthetic Allosteric Inhibitors of Thrombin

    PubMed Central

    Sidhu, Preetpal Singh; Liang, Aiye; Mehta, Akul Y.; Abdel Aziz, May H.; Zhou, Qibing; Desai, Umesh R.

    2011-01-01

    Thrombin is a key enzyme targeted by the majority of current anticoagulants that are direct inhibitors. Allosteric inhibition of thrombin may offer a major advantage of finely tuned regulation. We present here sulfated benzofurans as the first examples of potent, small allosteric inhibitors of thrombin. A sulfated benzofuran library of 15 sulfated monomers and 13 sulfated dimers with different charged, polar and hydrophobic substituents was studied in this work. Synthesis of the sulfated benzofurans was achieved through a multiple step, highly branched strategy, which culminated with microwave-assisted chemical sulfation. Of the 28 potential inhibitors, eleven exhibited reasonable inhibition of human α-thrombin at pH 7.4. Structure activity relationship analysis indicated that sulfation at the 5-position of the benzofuran scaffold was essential for targeting thrombin. A t-butyl 5-sulfated benzofuran derivative was found to be the most potent thrombin inhibitor with an IC50 of 7.3 μM under physiologically relevant conditions. Michaelis-Menten studies showed an allosteric inhibition phenomenon. Plasma clotting assays indicate that the sulfated benzofurans prolong both the activated partial thromboplastin time and prothrombin time. Overall, this work puts forward sulfated benzofurans as the first small, synthetic molecules as powerful lead compounds for the design of a new class of allosteric inhibitors of thrombin. PMID:21714536

  2. Structural Features of Ion Transport and Allosteric Regulation in Sodium-Calcium Exchanger (NCX) Proteins

    PubMed Central

    Giladi, Moshe; Tal, Inbal; Khananshvili, Daniel

    2016-01-01

    Na+/Ca2+ exchanger (NCX) proteins extrude Ca2+ from the cell to maintain cellular homeostasis. Since NCX proteins contribute to numerous physiological and pathophysiological events, their pharmacological targeting has been desired for a long time. This intervention remains challenging owing to our poor understanding of the underlying structure-dynamic mechanisms. Recent structural studies have shed light on the structure-function relationships underlying the ion-transport and allosteric regulation of NCX. The crystal structure of an archaeal NCX (NCX_Mj) along with molecular dynamics simulations and ion flux analyses, have assigned the ion binding sites for 3Na+ and 1Ca2+, which are being transported in separate steps. In contrast with NCX_Mj, eukaryotic NCXs contain the regulatory Ca2+-binding domains, CBD1 and CBD2, which affect the membrane embedded ion-transport domains over a distance of ~80 Å. The Ca2+-dependent regulation is ortholog, isoform, and splice-variant dependent to meet physiological requirements, exhibiting either a positive, negative, or no response to regulatory Ca2+. The crystal structures of the two-domain (CBD12) tandem have revealed a common mechanism involving a Ca2+-driven tethering of CBDs in diverse NCX variants. However, dissociation kinetics of occluded Ca2+ (entrapped at the two-domain interface) depends on the alternative-splicing segment (at CBD2), thereby representing splicing-dependent dynamic coupling of CBDs. The HDX-MS, SAXS, NMR, FRET, equilibrium 45Ca2+ binding and stopped-flow techniques provided insights into the dynamic mechanisms of CBDs. Ca2+ binding to CBD1 results in a population s