Sample records for allowance tracking system

  1. 40 CFR 73.30 - Allowance tracking system accounts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Allowance tracking system accounts. 73.30 Section 73.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) SULFUR DIOXIDE ALLOWANCE SYSTEM Allowance Tracking System § 73.30 Allowance tracking system...

  2. 40 CFR 73.30 - Allowance tracking system accounts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Allowance tracking system accounts. 73.30 Section 73.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) SULFUR DIOXIDE ALLOWANCE SYSTEM Allowance Tracking System § 73.30 Allowance tracking system...

  3. 40 CFR 97.52 - NOX Allowance Tracking System responsibilities of NOX authorized account representative.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false NOX Allowance Tracking System... NOX AND SO2 TRADING PROGRAMS NOX Allowance Tracking System § 97.52 NOX Allowance Tracking System... Tracking System account, all submissions to the Administrator pertaining to the account, including, but not...

  4. 40 CFR 97.52 - NOX Allowance Tracking System responsibilities of NOX authorized account representative.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false NOX Allowance Tracking System... NOX AND SO2 TRADING PROGRAMS NOX Allowance Tracking System § 97.52 NOX Allowance Tracking System... Tracking System account, all submissions to the Administrator pertaining to the account, including, but not...

  5. 40 CFR 96.50 - NOX Allowance Tracking System accounts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false NOX Allowance Tracking System accounts. 96.50 Section 96.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... IMPLEMENTATION PLANS NOX Allowance Tracking System § 96.50 NOX Allowance Tracking System accounts. (a) Nature and...

  6. 40 CFR 96.52 - NOX Allowance Tracking System responsibilities of NOX authorized account representative.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false NOX Allowance Tracking System... SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS NOX Allowance Tracking System § 96.52 NOX Allowance Tracking System responsibilities of NOX authorized account representative. (a) Following the...

  7. 40 CFR 96.50 - NOX Allowance Tracking System accounts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false NOX Allowance Tracking System accounts. 96.50 Section 96.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... IMPLEMENTATION PLANS NOX Allowance Tracking System § 96.50 NOX Allowance Tracking System accounts. (a) Nature and...

  8. 40 CFR 96.52 - NOX Allowance Tracking System responsibilities of NOX authorized account representative.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false NOX Allowance Tracking System... SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS NOX Allowance Tracking System § 96.52 NOX Allowance Tracking System responsibilities of NOX authorized account representative. (a) Following the...

  9. 40 CFR 97.50 - NOX Allowance Tracking System accounts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false NOX Allowance Tracking System accounts. 97.50 Section 97.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Tracking System § 97.50 NOX Allowance Tracking System accounts. (a) Nature and function of compliance...

  10. 40 CFR 97.50 - NOX Allowance Tracking System accounts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false NOX Allowance Tracking System accounts. 97.50 Section 97.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Tracking System § 97.50 NOX Allowance Tracking System accounts. (a) Nature and function of compliance...

  11. 40 CFR 73.36 - Banking.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ALLOWANCE SYSTEM Allowance Tracking System § 73.36 Banking. (a) Compliance accounts. Any allowance in a... to subpart D to another Allowance Tracking System account will remain in the general account. [58 FR...

  12. 40 CFR 73.36 - Banking.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ALLOWANCE SYSTEM Allowance Tracking System § 73.36 Banking. (a) Compliance accounts. Any allowance in a... to subpart D to another Allowance Tracking System account will remain in the general account. [58 FR...

  13. 40 CFR 74.50 - Deducting opt-in source allowances from ATS accounts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) SULFUR DIOXIDE OPT-INS Allowance Tracking and Transfer and End of Year... any Allowance Tracking System accounts in which they are held, the allowances in an amount specified... any Allowance Tracking System Account other than the account of the source that includes opt-in source...

  14. MetaTracker: integration and abstraction of 3D motion tracking data from multiple hardware systems

    NASA Astrophysics Data System (ADS)

    Kopecky, Ken; Winer, Eliot

    2014-06-01

    Motion tracking has long been one of the primary challenges in mixed reality (MR), augmented reality (AR), and virtual reality (VR). Military and defense training can provide particularly difficult challenges for motion tracking, such as in the case of Military Operations in Urban Terrain (MOUT) and other dismounted, close quarters simulations. These simulations can take place across multiple rooms, with many fast-moving objects that need to be tracked with a high degree of accuracy and low latency. Many tracking technologies exist, such as optical, inertial, ultrasonic, and magnetic. Some tracking systems even combine these technologies to complement each other. However, there are no systems that provide a high-resolution, flexible, wide-area solution that is resistant to occlusion. While frameworks exist that simplify the use of tracking systems and other input devices, none allow data from multiple tracking systems to be combined, as if from a single system. In this paper, we introduce a method for compensating for the weaknesses of individual tracking systems by combining data from multiple sources and presenting it as a single tracking system. Individual tracked objects are identified by name, and their data is provided to simulation applications through a server program. This allows tracked objects to transition seamlessly from the area of one tracking system to another. Furthermore, it abstracts away the individual drivers, APIs, and data formats for each system, providing a simplified API that can be used to receive data from any of the available tracking systems. Finally, when single-piece tracking systems are used, those systems can themselves be tracked, allowing for real-time adjustment of the trackable area. This allows simulation operators to leverage limited resources in more effective ways, improving the quality of training.

  15. 40 CFR 73.33 - Authorized account representative.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) SULFUR DIOXIDE ALLOWANCE SYSTEM Allowance Tracking System § 73.33 Authorized account representative. (a) Following the establishment of an Allowance Tracking System account, all matters pertaining...

  16. 40 CFR 73.33 - Authorized account representative.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) SULFUR DIOXIDE ALLOWANCE SYSTEM Allowance Tracking System § 73.33 Authorized account representative. (a) Following the establishment of an Allowance Tracking System account, all matters pertaining...

  17. 40 CFR 73.37 - Account error.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ALLOWANCE SYSTEM Allowance Tracking System § 73.37 Account error. The Administrator may, at his or her sole discretion and on his or her own motion, correct any error in any Allowance Tracking System account. Within...

  18. 40 CFR 73.37 - Account error.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ALLOWANCE SYSTEM Allowance Tracking System § 73.37 Account error. The Administrator may, at his or her sole discretion and on his or her own motion, correct any error in any Allowance Tracking System account. Within...

  19. 40 CFR 73.38 - Closing of accounts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) SULFUR DIOXIDE ALLOWANCE SYSTEM Allowance Tracking System § 73.38 Closing of accounts. (a) General... Tracking System, and by submitting in writing, with the signature of the authorized account representative...

  20. 40 CFR 73.38 - Closing of accounts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) SULFUR DIOXIDE ALLOWANCE SYSTEM Allowance Tracking System § 73.38 Closing of accounts. (a) General... Tracking System, and by submitting in writing, with the signature of the authorized account representative...

  1. 40 CFR 73.71 - Bidding.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... Where the bidder holds no Allowance Tracking System account, a New Account/New Authorized Account Representative Form must accompany the bid. New account information shall include at a minimum: Name, address...) Allowance Tracking System account number; (4) Whether the bidder is willing to purchase fewer allowances...

  2. COMPLIANCE AND ENFORCEMENT REGIONAL TRACKING SYSTEM (CERTS)

    EPA Science Inventory

    The Compliance and Enforcement Regional Tracking System (CERTS) is a system that allows Region 10 employees integrated access to information in EPA national media data bases through the LAN system. CERTS will allow you to identify regulated facilities in a given location such as...

  3. 40 CFR 60.4152 - Responsibilities of Hg authorized account representative.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and Compliance Times for Coal-Fired Electric Steam Generating Units Hg Allowance Tracking System § 60... Allowance Tracking System account, all submissions to the Administrator pertaining to the account, including...

  4. 40 CFR 60.4157 - Closing of general accounts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Coal-Fired Electric Steam Generating Units Hg Allowance Tracking System § 60.4157 Closing of general... Tracking System accounts. (b) If a general account has no allowance transfers in or out of the account for...

  5. 40 CFR 60.4156 - Account error.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Generating Units Hg Allowance Tracking System § 60.4156 Account error. The Administrator may, at his or her sole discretion and on his or her own motion, correct any error in any Hg Allowance Tracking System...

  6. 40 CFR 97.256 - Account error.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS CAIR SO2 Allowance Tracking System § 97.256... any error in any CAIR SO2 Allowance Tracking System account. Within 10 business days of making such...

  7. 40 CFR 96.252 - Responsibilities of CAIR authorized account representative.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS CAIR SO2 Allowance Tracking System § 96.252 Responsibilities of CAIR authorized account representative. Following the establishment of a CAIR SO2 Allowance Tracking System...

  8. 40 CFR 97.252 - Responsibilities of CAIR authorized account representative.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS CAIR SO2 Allowance Tracking System § 97.252 Responsibilities of CAIR authorized account representative. Following the establishment of a CAIR SO2 Allowance Tracking System account, all submissions to the...

  9. Tracking Behavioral Progress within a Children's Mental Health System: The Vermont Community Adjustment Tracking System.

    ERIC Educational Resources Information Center

    Bruns, Eric J.; Burchard, John D.; Froelich, Peter; Yoe, James T.; Tighe, Theodore

    1998-01-01

    Describes the Vermont Community Adjustment Tracking System (VT-CATS), which utilizes four behavioral instruments to allow intensive, ongoing, and interpretable behavioral assessment of a service system's most challenging children and adolescents. Also explains the adjustment indicator checklists and the ability of VT-CATS to address agencies'…

  10. TMDL TRACKING SYSTEM

    EPA Science Inventory

    Resource Purpose:The TMDL Tracking System database contains information on the waters listed under section 303(d) of the Clean Water Act and to track those listed waters through TMDL development. The purpose of the database is to allow EPA, the States/Territories/Tribes, ...

  11. 40 CFR 78.3 - Petition for administrative review and request for evidentiary hearing.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Ozone Season NOX Allowance Tracking System account, covered by the decision; or (ii) Any interested... for any CAIR Ozone Season NOX Allowance Tracking System account, covered by the decision; or (ii) Any... concise brief in support of the petition, explaining why the factual or legal issues are material and, if...

  12. Implementation of a web-based medication tracking system in a large academic medical center.

    PubMed

    Calabrese, Sam V; Williams, Jonathan P

    2012-10-01

    Pharmacy workflow efficiencies achieved through the use of an electronic medication-tracking system are described. Medication dispensing turnaround times at the inpatient pharmacy of a large hospital were evaluated before and after transition from manual medication tracking to a Web-based tracking process involving sequential bar-code scanning and real-time monitoring of medication status. The transition was carried out in three phases: (1) a workflow analysis, including the identification of optimal points for medication scanning with hand-held wireless devices, (2) the phased implementation of an automated solution and associated hardware at a central dispensing pharmacy and three satellite locations, and (3) postimplementation data collection to evaluate the impact of the new tracking system and areas for improvement. Relative to the manual tracking method, electronic medication tracking allowed the capture of far more data points, enabling the pharmacy team to delineate the time required for each step of the medication dispensing process and to identify the steps most likely to involve delays. A comparison of baseline and postimplementation data showed substantial reductions in overall medication turnaround times with the use of the Web-based tracking system (time reductions of 45% and 22% at the central and satellite sites, respectively). In addition to more accurate projections and documentation of turnaround times, the Web-based tracking system has facilitated quality-improvement initiatives. Implementation of an electronic tracking system for monitoring the delivery of medications provided a comprehensive mechanism for calculating turnaround times and allowed the pharmacy to identify bottlenecks within the medication distribution system. Altering processes removed these bottlenecks and decreased delivery turnaround times.

  13. 3D Tracking of Mating Events in Wild Swarms of the Malaria Mosquito Anopheles gambiae

    PubMed Central

    Butail, Sachit; Manoukis, Nicholas; Diallo, Moussa; Yaro, Alpha S.; Dao, Adama; Traoré, Sekou F.; Ribeiro, José M.; Lehmann, Tovi; Paley, Derek A.

    2013-01-01

    We describe an automated tracking system that allows us to reconstruct the 3D kinematics of individual mosquitoes in swarms of Anopheles gambiae. The inputs to the tracking system are video streams recorded from a stereo camera system. The tracker uses a two-pass procedure to automatically localize and track mosquitoes within the swarm. A human-in-the-loop step verifies the estimates and connects broken tracks. The tracker performance is illustrated using footage of mating events filmed in Mali in August 2010. PMID:22254411

  14. An optical tracking system for virtual reality

    NASA Astrophysics Data System (ADS)

    Hrimech, Hamid; Merienne, Frederic

    2009-03-01

    In this paper we present a low-cost 3D tracking system which we have developed and tested in order to move away from traditional 2D interaction techniques (keyboard and mouse) in an attempt to improve user's experience while using a CVE. Such a tracking system is used to implement 3D interaction techniques that augment user experience, promote user's sense of transportation in the virtual world as well as user's awareness of their partners. The tracking system is a passive optical tracking system using stereoscopy a technique allowing the reconstruction of three-dimensional information from a couple of images. We have currently deployed our 3D tracking system on a collaborative research platform for investigating 3D interaction techniques in CVEs.

  15. Assessing the performance of a motion tracking system based on optical joint transform correlation

    NASA Astrophysics Data System (ADS)

    Elbouz, M.; Alfalou, A.; Brosseau, C.; Ben Haj Yahia, N.; Alam, M. S.

    2015-08-01

    We present an optimized system specially designed for the tracking and recognition of moving subjects in a confined environment (such as an elderly remaining at home). In the first step of our study, we use a VanderLugt correlator (VLC) with an adapted pre-processing treatment of the input plane and a postprocessing of the correlation plane via a nonlinear function allowing us to make a robust decision. The second step is based on an optical joint transform correlation (JTC)-based system (NZ-NL-correlation JTC) for achieving improved detection and tracking of moving persons in a confined space. The proposed system has been found to have significantly superior discrimination and robustness capabilities allowing to detect an unknown target in an input scene and to determine the target's trajectory when this target is in motion. This system offers robust tracking performance of a moving target in several scenarios, such as rotational variation of input faces. Test results obtained using various real life video sequences show that the proposed system is particularly suitable for real-time detection and tracking of moving objects.

  16. The Establishment of a Formal Midwest Renewable Energy Tracking System (M-RETS) Organization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maria Redmond; Chela Bordas O'Connor

    2010-06-30

    The objectives identified in requesting and utilizing this funding has been met. The goal was to establish a formal, multi-jurisdictional organization to: (1) ensure the policy objectives of the participating jurisdictions are addressed through increased tradability of the Renewable Energy Credits (RECs) from M-RETS and to eliminate the possibility that a single jurisdiction will be the sole arbiter of the operation of the system; (2) facilitate the establishment of REC standards including the attributes related to, the creation, trading, and interaction with other trading and tracking systems; and (3) have a centralized and established organization that will be responsible formore » the contracting and governance responsibilities of a multi-jurisdictional tracking system. The M-RETS Inc. Board ensures that the system remains policy neutral; that the attributes of generation are tracked in a way that allows the system users to easily identify and trade relevant RECs; that the system can add jurisdictions as needed or desired; and that the tracking system operate in such a way to allow for the greatest access possible for those participating in other tracking or trading systems by allowing those systems to negotiate with a single M-RETS entity for the import and export of RECs. M-RETS as an organizational body participates and often leads the discussions related to the standardization of RECs and increasing the tradability of M-RETS RECs. M-RETS is a founding member of the Environmental Trading Network of North America (ETNNA) and continues to take a leadership role in the development of processes to facilitate trading among tracking systems and to standardize REC definitions. The Board of Directors of M-RETS, Inc., the non-profit corporation, continues to hold telephone/internet Board meetings. Legal counsel continues working with the board and APX management on a new agreement with APX. The board expects to have an agreement and corresponding fee structure in place by January 2011. The Board has recently approved exports to three other tracking systems and is in discussions about imports to the system. Below are the tasks outlined in the request and attached you will find the relevant documentation.« less

  17. Two-dimensional tracking of a motile micro-organism allowing high-resolution observation with various imaging techniques

    NASA Astrophysics Data System (ADS)

    Oku, H.; Ogawa, N.; Ishikawa, M.; Hashimoto, K.

    2005-03-01

    In this article, a micro-organism tracking system using a high-speed vision system is reported. This system two dimensionally tracks a freely swimming micro-organism within the field of an optical microscope by moving a chamber of target micro-organisms based on high-speed visual feedback. The system we developed could track a paramecium using various imaging techniques, including bright-field illumination, dark-field illumination, and differential interference contrast, at magnifications of 5 times and 20 times. A maximum tracking duration of 300s was demonstrated. Also, the system could track an object with a velocity of up to 35 000μm/s (175diameters/s), which is significantly faster than swimming micro-organisms.

  18. Multi-camera real-time three-dimensional tracking of multiple flying animals

    PubMed Central

    Straw, Andrew D.; Branson, Kristin; Neumann, Titus R.; Dickinson, Michael H.

    2011-01-01

    Automated tracking of animal movement allows analyses that would not otherwise be possible by providing great quantities of data. The additional capability of tracking in real time—with minimal latency—opens up the experimental possibility of manipulating sensory feedback, thus allowing detailed explorations of the neural basis for control of behaviour. Here, we describe a system capable of tracking the three-dimensional position and body orientation of animals such as flies and birds. The system operates with less than 40 ms latency and can track multiple animals simultaneously. To achieve these results, a multi-target tracking algorithm was developed based on the extended Kalman filter and the nearest neighbour standard filter data association algorithm. In one implementation, an 11-camera system is capable of tracking three flies simultaneously at 60 frames per second using a gigabit network of nine standard Intel Pentium 4 and Core 2 Duo computers. This manuscript presents the rationale and details of the algorithms employed and shows three implementations of the system. An experiment was performed using the tracking system to measure the effect of visual contrast on the flight speed of Drosophila melanogaster. At low contrasts, speed is more variable and faster on average than at high contrasts. Thus, the system is already a useful tool to study the neurobiology and behaviour of freely flying animals. If combined with other techniques, such as ‘virtual reality’-type computer graphics or genetic manipulation, the tracking system would offer a powerful new way to investigate the biology of flying animals. PMID:20630879

  19. SLR tracking of GPS-35

    NASA Technical Reports Server (NTRS)

    Pavlis, Erricos C.

    1994-01-01

    An experiment was designed to launch a corner cube retroreflector array on one of the Global Positioning Satellites (GPS). The launch on Aug. 31, 1993 ushered in the era of SLR tracking of GPS spacecraft. Once the space operations group finished the check-out procedures for the new satellite, the agreed upon SLR sites were allowed to track it. The first site to acquire GPS-35 was the Russian system at Maidanak and closely after the MLRS system at McDonald Observatory, Texas. The laser tracking network is currently tracking the GPS spacecraft known as GPS-35 or PRN 5 with great success. From the NASA side there are five stations that contribute data regularly and nearly as many from the international partners. Upcoming modifications to the ground receivers will allow for a further increase in the tracking capabilities of several additional sites and add some desperately needed southern hemisphere tracking. We are analyzing the data and are comparing SLR-derived orbits to those determined on the basis of GPS radiometric data.

  20. A simulation framework for the CMS Track Trigger electronics

    NASA Astrophysics Data System (ADS)

    Amstutz, C.; Magazzù, G.; Weber, M.; Palla, F.

    2015-03-01

    A simulation framework has been developed to test and characterize algorithms, architectures and hardware implementations of the vastly complex CMS Track Trigger for the high luminosity upgrade of the CMS experiment at the Large Hadron Collider in Geneva. High-level SystemC models of all system components have been developed to simulate a portion of the track trigger. The simulation of the system components together with input data from physics simulations allows evaluating figures of merit, like delays or bandwidths, under realistic conditions. The use of SystemC for high-level modelling allows co-simulation with models developed in Hardware Description Languages, e.g. VHDL or Verilog. Therefore, the simulation framework can also be used as a test bench for digital modules developed for the final system.

  1. Tracking scanning laser ophthalmoscope (TSLO)

    NASA Astrophysics Data System (ADS)

    Hammer, Daniel X.; Ferguson, R. Daniel; Magill, John C.; White, Michael A.; Elsner, Ann E.; Webb, Robert H.

    2003-07-01

    The effectiveness of image stabilization with a retinal tracker in a multi-function, compact scanning laser ophthalmoscope (TSLO) was demonstrated in initial human subject tests. The retinal tracking system uses a confocal reflectometer with a closed loop optical servo system to lock onto features in the fundus. The system is modular to allow configuration for many research and clinical applications, including hyperspectral imaging, multifocal electroretinography (MFERG), perimetry, quantification of macular and photo-pigmentation, imaging of neovascularization and other subretinal structures (drusen, hyper-, and hypo-pigmentation), and endogenous fluorescence imaging. Optical hardware features include dual wavelength imaging and detection, integrated monochromator, higher-order motion control, and a stimulus source. The system software consists of a real-time feedback control algorithm and a user interface. Software enhancements include automatic bias correction, asymmetric feature tracking, image averaging, automatic track re-lock, and acquisition and logging of uncompressed images and video files. Normal adult subjects were tested without mydriasis to optimize the tracking instrumentation and to characterize imaging performance. The retinal tracking system achieves a bandwidth of greater than 1 kHz, which permits tracking at rates that greatly exceed the maximum rate of motion of the human eye. The TSLO stabilized images in all test subjects during ordinary saccades up to 500 deg/sec with an inter-frame accuracy better than 0.05 deg. Feature lock was maintained for minutes despite subject eye blinking. Successful frame averaging allowed image acquisition with decreased noise in low-light applications. The retinal tracking system significantly enhances the imaging capabilities of the scanning laser ophthalmoscope.

  2. 40 CFR 73.35 - Compliance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Compliance. 73.35 Section 73.35... ALLOWANCE SYSTEM Allowance Tracking System § 73.35 Compliance. (a) Allowance transfer deadline. No allowance shall be deducted for purposes of compliance with an affected source's sulfur dioxide Acid Rain...

  3. 40 CFR 73.35 - Compliance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Compliance. 73.35 Section 73.35... ALLOWANCE SYSTEM Allowance Tracking System § 73.35 Compliance. (a) Allowance transfer deadline. No allowance shall be deducted for purposes of compliance with an affected source's sulfur dioxide Acid Rain...

  4. 41 CFR 301-31.12 - Must I keep track of my expenses?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 4 2010-07-01 2010-07-01 false Must I keep track of my expenses? 301-31.12 Section 301-31.12 Public Contracts and Property Management Federal Travel Regulation System TEMPORARY DUTY (TDY) TRAVEL ALLOWANCES ALLOWABLE TRAVEL EXPENSES 31-THREATENED LAW ENFORCEMENT...

  5. An inexpensive programmable illumination microscope with active feedback.

    PubMed

    Tompkins, Nathan; Fraden, Seth

    2016-02-01

    We have developed a programmable illumination system capable of tracking and illuminating numerous objects simultaneously using only low-cost and reused optical components. The active feedback control software allows for a closed-loop system that tracks and perturbs objects of interest automatically. Our system uses a static stage where the objects of interest are tracked computationally as they move across the field of view allowing for a large number of simultaneous experiments. An algorithmically determined illumination pattern can be applied anywhere in the field of view with simultaneous imaging and perturbation using different colors of light to enable spatially and temporally structured illumination. Our system consists of a consumer projector, camera, 35-mm camera lens, and a small number of other optical and scaffolding components. The entire apparatus can be assembled for under $4,000.

  6. Network Information System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    1996-05-01

    The Network Information System (NWIS) was initially implemented in May 1996 as a system in which computing devices could be recorded so that unique names could be generated for each device. Since then the system has grown to be an enterprise wide information system which is integrated with other systems to provide the seamless flow of data through the enterprise. The system Iracks data for two main entities: people and computing devices. The following are the type of functions performed by NWIS for these two entities: People Provides source information to the enterprise person data repository for select contractors andmore » visitors Generates and tracks unique usernames and Unix user IDs for every individual granted cyber access Tracks accounts for centrally managed computing resources, and monitors and controls the reauthorization of the accounts in accordance with the DOE mandated interval Computing Devices Generates unique names for all computing devices registered in the system Tracks the following information for each computing device: manufacturer, make, model, Sandia property number, vendor serial number, operating system and operating system version, owner, device location, amount of memory, amount of disk space, and level of support provided for the machine Tracks the hardware address for network cards Tracks the P address registered to computing devices along with the canonical and alias names for each address Updates the Dynamic Domain Name Service (DDNS) for canonical and alias names Creates the configuration files for DHCP to control the DHCP ranges and allow access to only properly registered computers Tracks and monitors classified security plans for stand-alone computers Tracks the configuration requirements used to setup the machine Tracks the roles people have on machines (system administrator, administrative access, user, etc...) Allows systems administrators to track changes made on the machine (both hardware and software) Generates an adjustment history of changes on selected fields« less

  7. Acid Rain Data System: Progressive application of information technology for operation of a market-based environmental program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, D.A.

    1995-12-31

    Under the Acid Rain Program, by statute and regulation, affected utility units are allocated annual allowances. Each allowance permits a unit to emit one ton of SO{sub 2} during or after a specified year. At year end, utilities must hold allowances equal to or greater than the cumulative SO{sub 2} emissions throughout the year from their affected units. The program has been developing, on a staged basis, two major computer-based information systems: the Allowance Tracking System (ATS) for tracking creation, transfer, and ultimate use of allowances; and the Emissions Tracking System (ETS) for transmission, receipt, processing, and inventory of continuousmore » emissions monitoring (CEM) data. The systems collectively form a logical Acid Rain Data System (ARDS). ARDS will be the largest information system ever used to operate and evaluate an environmental program. The paper describes the progressive software engineering approach the Acid Rain Program has been using to develop ARDS. Iterative software version releases, keyed to critical program deadlines, add the functionality required to support specific statutory and regulatory provisions. Each software release also incorporates continual improvements for efficiency, user-friendliness, and lower life-cycle costs. The program is migrating the independent ATS and ETS systems into a logically coordinated True-Up processing model, to support the end-of-year reconciliation for balancing allowance holdings against annual emissions and compliance plans for Phase 1 affected utility units. The paper provides specific examples and data to illustrate exciting applications of today`s information technology in ARDS.« less

  8. An inexpensive programmable illumination microscope with active feedback

    PubMed Central

    Tompkins, Nathan; Fraden, Seth

    2016-01-01

    We have developed a programmable illumination system capable of tracking and illuminating numerous objects simultaneously using only low-cost and reused optical components. The active feedback control software allows for a closed-loop system that tracks and perturbs objects of interest automatically. Our system uses a static stage where the objects of interest are tracked computationally as they move across the field of view allowing for a large number of simultaneous experiments. An algorithmically determined illumination pattern can be applied anywhere in the field of view with simultaneous imaging and perturbation using different colors of light to enable spatially and temporally structured illumination. Our system consists of a consumer projector, camera, 35-mm camera lens, and a small number of other optical and scaffolding components. The entire apparatus can be assembled for under $4,000. PMID:27642182

  9. Developing an electronic system to manage and track emergency medications.

    PubMed

    Hamm, Mark W; Calabrese, Samuel V; Knoer, Scott J; Duty, Ashley M

    2018-03-01

    The development of a Web-based program to track and manage emergency medications with radio frequency identification (RFID) is described. At the Cleveland Clinic, medication kit restocking records and dispense locations were historically documented using a paper record-keeping system. The Cleveland Clinic investigated options to replace the paper-based tracking logs with a Web-based program that could track the real-time location and inventory of emergency medication kits. Vendor collaboration with a board of pharmacy (BOP) compliance inspector and pharmacy personnel resulted in the creation of a dual barcoding system using medication and pocket labels. The Web-based program was integrated with a Cleveland Clinic-developed asset tracking system using active RFID tags to give the real-time location of the medication kit. The Web-based program and the asset tracking system allowed identification of kits nearing expiration or containing recalled medications. Conversion from a paper-based system to a Web-based program began in October 2013. After 119 days, data were evaluated to assess the success of the conversion. Pharmacists spent an average of 27 minutes per day approving medication kits during the postimplementation period versus 102 minutes daily using the paper-based system, representing a 74% decrease in pharmacist time spent on this task. Prospective reports are generated monthly to allow the manager to assess the expected workload and adjust staffing for the next month. Implementation of a BOP-approved Web-based system for managing and tracking emergency medications with RFID integration decreased pharmacist review time, minimized compliance risk, and increased access to real-time data. Copyright © 2018 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  10. 40 CFR 73.32 - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false [Reserved] 73.32 Section 73.32 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) SULFUR DIOXIDE ALLOWANCE SYSTEM Allowance Tracking System § 73.32 [Reserved] ...

  11. 40 CFR 73.32 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false [Reserved] 73.32 Section 73.32 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) SULFUR DIOXIDE ALLOWANCE SYSTEM Allowance Tracking System § 73.32 [Reserved] ...

  12. WE-G-213CD-03: A Dual Complementary Verification Method for Dynamic Tumor Tracking on Vero SBRT.

    PubMed

    Poels, K; Depuydt, T; Verellen, D; De Ridder, M

    2012-06-01

    to use complementary cine EPID and gimbals log file analysis for in-vivo tracking accuracy monitoring. A clinical prototype of dynamic tracking (DT) was installed on the Vero SBRT system. This prototype version allowed tumor tracking by gimballed linac rotations using an internal-external correspondence model. The DT prototype software allowed the detailed logging of all applied gimbals rotations during tracking. The integration of an EPID on the vero system allowed the acquisition of cine EPID images during DT. We quantified the tracking error on cine EPID (E-EPID) by subtracting the target center (fiducial marker detection) and the field centroid. Dynamic gimbals log file information was combined with orthogonal x-ray verification images to calculate the in-vivo tracking error (E-kVLog). The correlation between E-kVLog and E-EPID was calculated for validation of the gimbals log file. Further, we investigated the sensitivity of the log file tracking error by introducing predefined systematic tracking errors. As an application we calculate gimbals log file tracking error for dynamic hidden target tests to investigate gravity effects and decoupled gimbals rotation from gantry rotation. Finally, calculating complementary cine EPID and log file tracking errors evaluated the clinical accuracy of dynamic tracking. A strong correlation was found between log file and cine EPID tracking error distribution during concurrent measurements (R=0.98). We found sensitivity in the gimbals log files to detect a systematic tracking error up to 0.5 mm. Dynamic hidden target tests showed no gravity influence on tracking performance and high degree of decoupled gimbals and gantry rotation during dynamic arc dynamic tracking. A submillimetric agreement between clinical complementary tracking error measurements was found. Redundancy of the internal gimbals log file with x-ray verification images with complementary independent cine EPID images was implemented to monitor the accuracy of gimballed tumor tracking on Vero SBRT. Research was financially supported by the Flemish government (FWO), Hercules Foundation and BrainLAB AG. © 2012 American Association of Physicists in Medicine.

  13. 40 CFR 73.31 - Establishment of accounts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Administrator by means of the Allowance Account Information Form, or by providing the following information in a... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Establishment of accounts. 73.31... (CONTINUED) SULFUR DIOXIDE ALLOWANCE SYSTEM Allowance Tracking System § 73.31 Establishment of accounts. (a...

  14. Privacy and Trust Attitudes in the Intent to Volunteer for Data-Tracking Research

    ERIC Educational Resources Information Center

    Smith, Catherine L.

    2016-01-01

    Introduction: The analysis of detailed interaction records is fundamental to development of user-centred systems. Researchers seeking such data must recruit volunteers willing to allow tracking of their interactions. This study examines privacy and trust attitudes in the intent to volunteer for research requiring installation of tracking software.…

  15. Automated Web-Based Request Mechanism for Workflow Enhancement in an Academic Customer-Focused Biorepository.

    PubMed

    McDonald, Sandra A; Ryan, Benjamin J; Brink, Amy; Holtschlag, Victoria L

    2012-02-01

    Informatics systems, particularly those that provide capabilities for data storage, specimen tracking, retrieval, and order fulfillment, are critical to the success of biorepositories and other laboratories engaged in translational medical research. A crucial item-one easily overlooked-is an efficient way to receive and process investigator-initiated requests. A successful electronic ordering system should allow request processing in a maximally efficient manner, while also allowing streamlined tracking and mining of request data such as turnaround times and numerical categorizations (user groups, funding sources, protocols, and so on). Ideally, an electronic ordering system also facilitates the initial contact between the laboratory and customers, while still allowing for downstream communications and other steps toward scientific partnerships. We describe here the recently established Web-based ordering system for the biorepository at Washington University Medical Center, along with its benefits for workflow, tracking, and customer service. Because of the system's numerous value-added impacts, we think our experience can serve as a good model for other customer-focused biorepositories, especially those currently using manual or non-Web-based request systems. Our lessons learned also apply to the informatics developers who serve such biobanks.

  16. Automated Web-Based Request Mechanism for Workflow Enhancement in an Academic Customer-Focused Biorepository

    PubMed Central

    Ryan, Benjamin J.; Brink, Amy; Holtschlag, Victoria L.

    2012-01-01

    Informatics systems, particularly those that provide capabilities for data storage, specimen tracking, retrieval, and order fulfillment, are critical to the success of biorepositories and other laboratories engaged in translational medical research. A crucial item—one easily overlooked—is an efficient way to receive and process investigator-initiated requests. A successful electronic ordering system should allow request processing in a maximally efficient manner, while also allowing streamlined tracking and mining of request data such as turnaround times and numerical categorizations (user groups, funding sources, protocols, and so on). Ideally, an electronic ordering system also facilitates the initial contact between the laboratory and customers, while still allowing for downstream communications and other steps toward scientific partnerships. We describe here the recently established Web-based ordering system for the biorepository at Washington University Medical Center, along with its benefits for workflow, tracking, and customer service. Because of the system's numerous value-added impacts, we think our experience can serve as a good model for other customer-focused biorepositories, especially those currently using manual or non-Web–based request systems. Our lessons learned also apply to the informatics developers who serve such biobanks. PMID:23386921

  17. Adaptive vehicle motion estimation and prediction

    NASA Astrophysics Data System (ADS)

    Zhao, Liang; Thorpe, Chuck E.

    1999-01-01

    Accurate motion estimation and reliable maneuver prediction enable an automated car to react quickly and correctly to the rapid maneuvers of the other vehicles, and so allow safe and efficient navigation. In this paper, we present a car tracking system which provides motion estimation, maneuver prediction and detection of the tracked car. The three strategies employed - adaptive motion modeling, adaptive data sampling, and adaptive model switching probabilities - result in an adaptive interacting multiple model algorithm (AIMM). The experimental results on simulated and real data demonstrate that our tracking system is reliable, flexible, and robust. The adaptive tracking makes the system intelligent and useful in various autonomous driving tasks.

  18. An MRI-Compatible Robotic System With Hybrid Tracking for MRI-Guided Prostate Intervention

    PubMed Central

    Krieger, Axel; Iordachita, Iulian I.; Guion, Peter; Singh, Anurag K.; Kaushal, Aradhana; Ménard, Cynthia; Pinto, Peter A.; Camphausen, Kevin; Fichtinger, Gabor

    2012-01-01

    This paper reports the development, evaluation, and first clinical trials of the access to the prostate tissue (APT) II system—a scanner independent system for magnetic resonance imaging (MRI)-guided transrectal prostate interventions. The system utilizes novel manipulator mechanics employing a steerable needle channel and a novel six degree-of-freedom hybrid tracking method, comprising passive fiducial tracking for initial registration and subsequent incremental motion measurements. Targeting accuracy of the system in prostate phantom experiments and two clinical human-subject procedures is shown to compare favorably with existing systems using passive and active tracking methods. The portable design of the APT II system, using only standard MRI image sequences and minimal custom scanner interfacing, allows the system to be easily used on different MRI scanners. PMID:22009867

  19. RATT: RFID Assisted Tracking Tile. Preliminary results.

    PubMed

    Quinones, Dario R; Cuevas, Aaron; Cambra, Javier; Canals, Santiago; Moratal, David

    2017-07-01

    Behavior is one of the most important aspects of animal life. This behavior depends on the link between animals, their nervous systems and their environment. In order to study the behavior of laboratory animals several tools are needed, but a tracking tool is essential to perform a thorough behavioral study. Currently, several visual tracking tools are available. However, they have some drawbacks. For instance, when an animal is inside a cave, or is close to other animals, the tracking cameras cannot always detect the location or movement of this animal. This paper presents RFID Assisted Tracking Tile (RATT), a tracking system based on passive Radio Frequency Identification (RFID) technology in high frequency band according to ISO/IEC 15693. The RATT system is composed of electronic tiles that have nine active RFID antennas attached; in addition, it contains several overlapping passive coils to improve the magnetic field characteristics. Using several tiles, a large surface can be built on which the animals can move, allowing identification and tracking of their movements. This system, that could also be combined with a visual tracking system, paves the way for complete behavioral studies.

  20. Real time eye tracking using Kalman extended spatio-temporal context learning

    NASA Astrophysics Data System (ADS)

    Munir, Farzeen; Minhas, Fayyaz ul Amir Asfar; Jalil, Abdul; Jeon, Moongu

    2017-06-01

    Real time eye tracking has numerous applications in human computer interaction such as a mouse cursor control in a computer system. It is useful for persons with muscular or motion impairments. However, tracking the movement of the eye is complicated by occlusion due to blinking, head movement, screen glare, rapid eye movements, etc. In this work, we present the algorithmic and construction details of a real time eye tracking system. Our proposed system is an extension of Spatio-Temporal context learning through Kalman Filtering. Spatio-Temporal Context Learning offers state of the art accuracy in general object tracking but its performance suffers due to object occlusion. Addition of the Kalman filter allows the proposed method to model the dynamics of the motion of the eye and provide robust eye tracking in cases of occlusion. We demonstrate the effectiveness of this tracking technique by controlling the computer cursor in real time by eye movements.

  1. The Evolution of Air-Sea Battle: How Army Attack/Reconnaissance Aviation Fits into the Joint Concept for Access and Maneuver in the Global Commons

    DTIC Science & Technology

    2016-05-13

    System (MTADS) has a day TV capability to laser designate and auto track tank-sized targets at 6,000 meters and a Forward Looking Infrared (FLIR...capability to laser designate and auto track tank-sized targets at 3,500 meters. The AH-64 D/E also possesses a Fire Control Radar (FCR) that allows it...a broad spectrum of size, capacity, duration, and security. At the low end are Forward Area Refueling Equipment ( FARE ) systems. These allow CH-47

  2. A system for tracking braille readers using a Wii Remote and a refreshable braille display.

    PubMed

    Aranyanak, Inthraporn; Reilly, Ronan G

    2013-03-01

    This article describes a cheap and easy-to-use finger-tracking system for studying braille reading. It provides improved spatial and temporal resolution over the current available solutions and can be used with either a refreshable braille display or braille-embossed paper. In conjunction with a refreshable braille display, the tracking system has the unique capacity to implement display-change paradigms derived from sighted reading research. This will allow researchers to probe skilled braille reading in significantly more depth than has heretofore been possible.

  3. Eye gaze tracking for endoscopic camera positioning: an application of a hardware/software interface developed to automate Aesop.

    PubMed

    Ali, S M; Reisner, L A; King, B; Cao, A; Auner, G; Klein, M; Pandya, A K

    2008-01-01

    A redesigned motion control system for the medical robot Aesop allows automating and programming its movements. An IR eye tracking system has been integrated with this control interface to implement an intelligent, autonomous eye gaze-based laparoscopic positioning system. A laparoscopic camera held by Aesop can be moved based on the data from the eye tracking interface to keep the user's gaze point region at the center of a video feedback monitor. This system setup provides autonomous camera control that works around the surgeon, providing an optimal robotic camera platform.

  4. Reasonable Accommodation Information Tracking System

    EPA Pesticide Factsheets

    The Reasonable Accommodation Information Tracking System (RAITS) is a case management system that allows the National Reasonable Accommodation Coordinator (NRAC) and the Local Reasonable Accommodation Coordinators (LORAC) to manage information related to Reasonable Accommodation (RA) requests. It provides a data base system in compliance with Executive Order 13164 and required by the Equal Employment Opportunity Commission (EEOC) Regulations and American Federation of Government Employees (AFGE) Bargaining Unit as described in the AFGE National Reasonable Accommodation Procedures. It is a tool that was internally developed in Lotus Notes to track requests for reasonable accommodation and was custom-configured to meet EPA's specific needs and infrastructure.

  5. Design of a telescope control system using an ARM microcontroller with embedded RTOS

    NASA Astrophysics Data System (ADS)

    Peñuela Pico, Cristian R.; Atara Montañez, Fabian A.; Cuervo, Juan C.; Gonzalez-Llorente, Jesus

    2014-08-01

    This work presents the design of a wireless control system that allows driving all the necessary instruments to control the orientation of an equatorial mounting telescope through a real time operative system (RTOS) that runs over ARM microcontroller. The control system is commanded through a user-interface which works under Android platform giving the user the option to control the tracking mode, right ascension, and declination. The system was successfully deployed and tested during a one-hour observation of the Moon. The frequency measured by the oscilloscope is 66.67 Hz which equals the sidereal speed. The telescope control systems allows the user to have a better precision when locating a star but also to cover long-duration tracking processes

  6. Single nanoparticle tracking spectroscopic microscope

    DOEpatents

    Yang, Haw [Moraga, CA; Cang, Hu [Berkeley, CA; Xu, Cangshan [Berkeley, CA; Wong, Chung M [San Gabriel, CA

    2011-07-19

    A system that can maintain and track the position of a single nanoparticle in three dimensions for a prolonged period has been disclosed. The system allows for continuously imaging the particle to observe any interactions it may have. The system also enables the acquisition of real-time sequential spectroscopic information from the particle. The apparatus holds great promise in performing single molecule spectroscopy and imaging on a non-stationary target.

  7. Object Tracking Vision System for Mapping the UCN τ Apparatus Volume

    NASA Astrophysics Data System (ADS)

    Lumb, Rowan; UCNtau Collaboration

    2016-09-01

    The UCN τ collaboration has an immediate goal to measure the lifetime of the free neutron to within 0.1%, i.e. about 1 s. The UCN τ apparatus is a magneto-gravitational ``bottle'' system. This system holds low energy, or ultracold, neutrons in the apparatus with the constraint of gravity, and keeps these low energy neutrons from interacting with the bottle via a strong 1 T surface magnetic field created by a bowl-shaped array of permanent magnets. The apparatus is wrapped with energized coils to supply a magnetic field throughout the ''bottle'' volume to prevent depolarization of the neutrons. An object-tracking stereo-vision system will be presented that precisely tracks a Hall probe and allows a mapping of the magnetic field throughout the volume of the UCN τ bottle. The stereo-vision system utilizes two cameras and open source openCV software to track an object's 3-d position in space in real time. The desired resolution is +/-1 mm resolution along each axis. The vision system is being used as part of an even larger system to map the magnetic field of the UCN τ apparatus and expose any possible systematic effects due to field cancellation or low field points which could allow neutrons to depolarize and possibly escape from the apparatus undetected. Tennessee Technological University.

  8. Least Squares Approach to the Alignment of the Generic High Precision Tracking System

    NASA Astrophysics Data System (ADS)

    de Renstrom, Pawel Brückman; Haywood, Stephen

    2006-04-01

    A least squares method to solve a generic alignment problem of a high granularity tracking system is presented. The algorithm is based on an analytical linear expansion and allows for multiple nested fits, e.g. imposing a common vertex for groups of particle tracks is of particular interest. We present a consistent and complete recipe to impose constraints on either implicit or explicit parameters. The method has been applied to the full simulation of a subset of the ATLAS silicon tracking system. The ultimate goal is to determine ≈35,000 degrees of freedom (DoF's). We present a limited scale exercise exploring various aspects of the solution.

  9. Laboratory Animal Management Assistant (LAMA): a LIMS for active research colonies.

    PubMed

    Milisavljevic, Marko; Hearty, Taryn; Wong, Tony Y T; Portales-Casamar, Elodie; Simpson, Elizabeth M; Wasserman, Wyeth W

    2010-06-01

    Laboratory Animal Management Assistant (LAMA) is an internet-based system for tracking large laboratory mouse colonies. It has a user-friendly interface with powerful search capabilities that ease day-to-day tasks such as tracking breeding cages and weaning litters. LAMA was originally developed to manage hundreds of new mouse strains generated by a large functional genomics program, the Pleiades Promoter Project ( http://www.pleiades.org ). The software system has proven to be highly flexible, suitable for diverse management approaches to mouse colonies. It allows custom tagging and grouping of animals, simplifying project-specific handling and access to data. Finally, LAMA was developed in close collaboration with mouse technicians to ease the transition from paper- or Excel-based management systems to computerized tracking, allowing data export in a popular spreadsheet format and automatic printing of cage cards. LAMA is an open-access software tool, freely available to the research community at http://launchpad.net/mousedb .

  10. Track and mode controller (TMC): a software executive for a high-altitude pointing and tracking experiment

    NASA Astrophysics Data System (ADS)

    Michnovicz, Michael R.

    1997-06-01

    A real-time executive has been implemented to control a high altitude pointing and tracking experiment. The track and mode controller (TMC) implements a table driven design, in which the track mode logic for a tracking mission is defined within a state transition diagram (STD). THe STD is implemented as a state transition table in the TMC software. Status Events trigger the state transitions in the STD. Each state, as it is entered, causes a number of processes to be activated within the system. As these processes propagate through the system, the status of key processes are monitored by the TMC, allowing further transitions within the STD. This architecture is implemented in real-time, using the vxWorks operating system. VxWorks message queues allow communication of status events from the Event Monitor task to the STD task. Process commands are propagated to the rest of the system processors by means of the SCRAMNet shared memory network. The system mode logic contained in the STD will autonomously sequence in acquisition, tracking and pointing system through an entire engagement sequence, starting with target detection and ending with aimpoint maintenance. Simulation results and lab test results will be presented to verify the mode controller. In addition to implementing the system mode logic with the STD, the TMC can process prerecorded time sequences of commands required during startup operations. It can also process single commands from the system operator. In this paper, the author presents (1) an overview, in which he describes the TMC architecture, the relationship of an end-to-end simulation to the flight software and the laboratory testing environment, (2) implementation details, including information on the vxWorks message queues and the SCRAMNet shared memory network, (3) simulation results and lab test results which verify the mode controller, and (4) plans for the future, specifically as to how this executive will expedite transition to a fully functional system.

  11. 40 CFR 73.34 - Recordation in accounts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Recordation in accounts. 73.34 Section 73.34 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) SULFUR DIOXIDE ALLOWANCE SYSTEM Allowance Tracking System § 73.34 Recordation in accounts. (a) After a...

  12. 40 CFR 73.34 - Recordation in accounts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Recordation in accounts. 73.34 Section 73.34 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) SULFUR DIOXIDE ALLOWANCE SYSTEM Allowance Tracking System § 73.34 Recordation in accounts. (a) After a...

  13. StimTrack: An open-source software for manual transcranial magnetic stimulation coil positioning.

    PubMed

    Ambrosini, Emilia; Ferrante, Simona; van de Ruit, Mark; Biguzzi, Stefano; Colombo, Vera; Monticone, Marco; Ferriero, Giorgio; Pedrocchi, Alessandra; Ferrigno, Giancarlo; Grey, Michael J

    2018-01-01

    During Transcranial Magnetic Stimulation (TMS) experiments researchers often use a neuronavigation system to precisely and accurately maintain coil position and orientation. This study aimed to develop and validate an open-source software for TMS coil navigation. StimTrack uses an optical tracker and an intuitive user interface to facilitate the maintenance of position and orientation of any type of coil within and between sessions. Additionally, online access to navigation data is provided, hereby adding e.g. the ability to start or stop the magnetic stimulator depending on the distance to target or the variation of the orientation angles. StimTrack allows repeatable repositioning of the coil within 0.7mm for translation and <1° for rotation. Stimulus-response (SR) curves obtained from 19 healthy volunteers were used to demonstrate that StimTrack can be effectively used in a typical experiment. An excellent intra and inter-session reliability (ICC >0.9) was obtained on all parameters computed on SR curves acquired using StimTrack. StimTrack showed a target accuracy similar to that of a commercial neuronavigation system (BrainSight, Rogue Research Inc.). Indeed, small differences both in position (∼0.2mm) and orientation (<1°) were found between the systems. These differences are negligible given the human error involved in landmarks registration. StimTrack, available as supplementary material, is found to be a good alternative for commercial neuronavigation systems facilitating assessment changes in corticospinal excitability using TMS. StimTrack allows researchers to tailor its functionality to their specific needs, providing added value that benefits experimental procedures and improves data quality. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Search Radar Track-Before-Detect Using the Hough Transform.

    DTIC Science & Technology

    1995-03-01

    before - detect processing method which allows previous data to help in target detection. The technique provides many advantages compared to...improved target detection scheme, applicable to search radars, using the Hough transform image processing technique. The system concept involves a track

  15. Survey of Motion Tracking Methods Based on Inertial Sensors: A Focus on Upper Limb Human Motion

    PubMed Central

    Filippeschi, Alessandro; Schmitz, Norbert; Miezal, Markus; Bleser, Gabriele; Ruffaldi, Emanuele; Stricker, Didier

    2017-01-01

    Motion tracking based on commercial inertial measurements units (IMUs) has been widely studied in the latter years as it is a cost-effective enabling technology for those applications in which motion tracking based on optical technologies is unsuitable. This measurement method has a high impact in human performance assessment and human-robot interaction. IMU motion tracking systems are indeed self-contained and wearable, allowing for long-lasting tracking of the user motion in situated environments. After a survey on IMU-based human tracking, five techniques for motion reconstruction were selected and compared to reconstruct a human arm motion. IMU based estimation was matched against motion tracking based on the Vicon marker-based motion tracking system considered as ground truth. Results show that all but one of the selected models perform similarly (about 35 mm average position estimation error). PMID:28587178

  16. The IBM HeadTracking Pointer: improvements in vision-based pointer control.

    PubMed

    Kjeldsen, Rick

    2008-07-01

    Vision-based head trackers have been around for some years and are even beginning to be commercialized, but problems remain with respect to usability. Users without the ability to use traditional pointing devices--the intended audience of such systems--have no alternative if the automatic bootstrapping process fails. There is room for improvement in face tracking, and the pointer movement dynamics do not support accurate and efficient pointing. This paper describes the IBM HeadTracking Pointer, a system which attempts to directly address some of these issues. Head gestures are used to provide the end user a greater level of autonomous control over the system. A novel face-tracking algorithm reduces drift under variable lighting conditions, allowing the use of absolute, rather than relative, pointer positioning. Most importantly, the pointer dynamics have been designed to take into account the constraints of head-based pointing, with a non-linear gain which allows stability in fine pointer movement, high speed on long transitions and adjustability to support users with different movement dynamics. User studies have identified some difficulties with training the system and some characteristics of the pointer motion that take time to get used to, but also good user feedback and very promising performance results.

  17. Improvements in Space Surveillance Processing for Wide Field of View Optical Sensors

    NASA Astrophysics Data System (ADS)

    Sydney, P.; Wetterer, C.

    2014-09-01

    For more than a decade, an autonomous satellite tracking system at the Air Force Maui Optical and Supercomputing (AMOS) observatory has been generating routine astrometric measurements of Earth-orbiting Resident Space Objects (RSOs) using small commercial telescopes and sensors. Recent work has focused on developing an improved processing system, enhancing measurement performance and response while supporting other sensor systems and missions. This paper will outline improved techniques in scheduling, detection, astrometric and photometric measurements, and catalog maintenance. The processing system now integrates with Special Perturbation (SP) based astrodynamics algorithms, allowing covariance-based scheduling and more precise orbital estimates and object identification. A merit-based scheduling algorithm provides a global optimization framework to support diverse collection tasks and missions. The detection algorithms support a range of target tracking and camera acquisition rates. New comprehensive star catalogs allow for more precise astrometric and photometric calibrations including differential photometry for monitoring environmental changes. This paper will also examine measurement performance with varying tracking rates and acquisition parameters.

  18. Optimal Configuration of Human Motion Tracking Systems: A Systems Engineering Approach

    NASA Technical Reports Server (NTRS)

    Henderson, Steve

    2005-01-01

    Human motion tracking systems represent a crucial technology in the area of modeling and simulation. These systems, which allow engineers to capture human motion for study or replication in virtual environments, have broad applications in several research disciplines including human engineering, robotics, and psychology. These systems are based on several sensing paradigms, including electro-magnetic, infrared, and visual recognition. Each of these paradigms requires specialized environments and hardware configurations to optimize performance of the human motion tracking system. Ideally, these systems are used in a laboratory or other facility that was designed to accommodate the particular sensing technology. For example, electromagnetic systems are highly vulnerable to interference from metallic objects, and should be used in a specialized lab free of metal components.

  19. Investigation of tracking systems properties in CAVE-type virtual reality systems

    NASA Astrophysics Data System (ADS)

    Szymaniak, Magda; Mazikowski, Adam; Meironke, Michał

    2017-08-01

    In recent years, many scientific and industrial centers in the world developed a virtual reality systems or laboratories. One of the most advanced solutions are Immersive 3D Visualization Lab (I3DVL), a CAVE-type (Cave Automatic Virtual Environment) laboratory. It contains two CAVE-type installations: six-screen installation arranged in a form of a cube, and four-screen installation, a simplified version of the previous one. The user feeling of "immersion" and interaction with virtual world depend on many factors, in particular on the accuracy of the tracking system of the user. In this paper properties of the tracking systems applied in I3DVL was investigated. For analysis two parameters were selected: the accuracy of the tracking system and the range of detection of markers by the tracking system in space of the CAVE. Measurements of system accuracy were performed for six-screen installation, equipped with four tracking cameras for three axes: X, Y, Z. Rotation around the Y axis was also analyzed. Measured tracking system shows good linear and rotating accuracy. The biggest issue was the range of the monitoring of markers inside the CAVE. It turned out, that the tracking system lose sight of the markers in the corners of the installation. For comparison, for a simplified version of CAVE (four-screen installation), equipped with eight tracking cameras, this problem was not occur. Obtained results will allow for improvement of cave quality.

  20. 40 CFR 96.256 - Account error.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS CAIR SO2 Allowance... her own motion, correct any error in any CAIR SO2 Allowance Tracking System account. Within 10...

  1. Monitoring and detection platform to prevent anomalous situations in home care.

    PubMed

    Villarrubia, Gabriel; Bajo, Javier; De Paz, Juan F; Corchado, Juan M

    2014-06-05

    Monitoring and tracking people at home usually requires high cost hardware installations, which implies they are not affordable in many situations. This study/paper proposes a monitoring and tracking system for people with medical problems. A virtual organization of agents based on the PANGEA platform, which allows the easy integration of different devices, was created for this study. In this case, a virtual organization was implemented to track and monitor patients carrying a Holter monitor. The system includes the hardware and software required to perform: ECG measurements, monitoring through accelerometers and WiFi networks. Furthermore, the use of interactive television can moderate interactivity with the user. The system makes it possible to merge the information and facilitates patient tracking efficiently with low cost.

  2. Real-time tracking and fast retrieval of persons in multiple surveillance cameras of a shopping mall

    NASA Astrophysics Data System (ADS)

    Bouma, Henri; Baan, Jan; Landsmeer, Sander; Kruszynski, Chris; van Antwerpen, Gert; Dijk, Judith

    2013-05-01

    The capability to track individuals in CCTV cameras is important for e.g. surveillance applications at large areas such as train stations, airports and shopping centers. However, it is laborious to track and trace people over multiple cameras. In this paper, we present a system for real-time tracking and fast interactive retrieval of persons in video streams from multiple static surveillance cameras. This system is demonstrated in a shopping mall, where the cameras are positioned without overlapping fields-of-view and have different lighting conditions. The results show that the system allows an operator to find the origin or destination of a person more efficiently. The misses are reduced with 37%, which is a significant improvement.

  3. Design and preliminary accuracy studies of an MRI-guided transrectal prostate intervention system.

    PubMed

    Krieger, Axel; Csoma, Csaba; Iordachital, Iulian I; Guion, Peter; Singh, Anurag K; Fichtinger, Gabor; Whitcomb, Louis L

    2007-01-01

    This paper reports a novel system for magnetic resonance imaging (MRI) guided transrectal prostate interventions, such as needle biopsy, fiducial marker placement, and therapy delivery. The system utilizes a hybrid tracking method, comprised of passive fiducial tracking for initial registration and subsequent incremental motion measurement along the degrees of freedom using fiber-optical encoders and mechanical scales. Targeting accuracy of the system is evaluated in prostate phantom experiments. Achieved targeting accuracy and procedure times were found to compare favorably with existing systems using passive and active tracking methods. Moreover, the portable design of the system using only standard MRI image sequences and minimal custom scanner interfacing allows the system to be easily used on different MRI scanners.

  4. 40 CFR 73.82 - Application for allowances from reserve program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... or Phase II unit by including in the application the name and Allowance Tracking System account... consistent and integrated basis; (iv) takes into account necessary features for system operation such as diversity, reliability, dispatchability, and other factors of risk; (v) may take into account other factors...

  5. SSC Engineering Analysis

    NASA Technical Reports Server (NTRS)

    Ryan, Harry; Junell, Justin; Albasini, Colby; O'Rourke, William; Le, Thang; Strain, Ted; Stiglets, Tim

    2011-01-01

    A package for the automation of the Engineering Analysis (EA) process at the Stennis Space Center has been customized. It provides the ability to assign and track analysis tasks electronically, and electronically route a task for approval. It now provides a mechanism to keep these analyses under configuration management. It also allows the analysis to be stored and linked to the engineering data that is needed to perform the analysis (drawings, etc.). PTC s (Parametric Technology Corp o ration) Windchill product was customized to allow the EA to be created, routed, and maintained under configuration management. Using Infoengine Tasks, JSP (JavaServer Pages), Javascript, a user interface was created within the Windchill product that allows users to create EAs. Not only does this interface allow users to create and track EAs, but it plugs directly into the out-ofthe- box ability to associate these analyses with other relevant engineering data such as drawings. Also, using the Windchill workflow tool, the Design and Data Management System (DDMS) team created an electronic routing process based on the manual/informal approval process. The team also added the ability for users to notify and track notifications to individuals about the EA. Prior to the Engineering Analysis creation, there was no electronic way of creating and tracking these analyses. There was also a feature that was added that would allow users to track/log e-mail notifications of the EA.

  6. Tracking trade transactions in water resource systems: A node-arc optimization formulation

    NASA Astrophysics Data System (ADS)

    Erfani, Tohid; Huskova, Ivana; Harou, Julien J.

    2013-05-01

    We formulate and apply a multicommodity network flow node-arc optimization model capable of tracking trade transactions in complex water resource systems. The model uses a simple node to node network connectivity matrix and does not require preprocessing of all possible flow paths in the network. We compare the proposed node-arc formulation with an existing arc-path (flow path) formulation and explain the advantages and difficulties of both approaches. We verify the proposed formulation model on a hypothetical water distribution network. Results indicate the arc-path model solves the problem with fewer constraints, but the proposed formulation allows using a simple network connectivity matrix which simplifies modeling large or complex networks. The proposed algorithm allows converting existing node-arc hydroeconomic models that broadly represent water trading to ones that also track individual supplier-receiver relationships (trade transactions).

  7. 49 CFR 1507.3 - Exemptions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... exempt from the access provisions of subsection (d). (e) Correspondence and Matters Tracking Records (DHS/TSA 006). The Correspondence and Matters Tracking Records (CMTR) (DHS/TSA 006) system allows TSA to... is not always possible for TSA or other agencies to know in advance what information is both relevant...

  8. 40 CFR 96.357 - Closing of general accounts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CAIR NOX Ozone Season Allowance Tracking System § 96.357 Closing of general accounts. (a) The CAIR... CAIR NOX Ozone Season allowances in the account to one or more other CAIR NOX Ozone Season Allowance... a 12-month period or longer and does not contain any CAIR NOX Ozone Season allowances, the...

  9. An automated method for the evaluation of the pointing accuracy of sun-tracking devices

    NASA Astrophysics Data System (ADS)

    Baumgartner, Dietmar J.; Rieder, Harald E.; Pötzi, Werner; Freislich, Heinrich; Strutzmann, Heinz

    2016-04-01

    The accuracy of measurements of solar radiation (direct and diffuse radiation) depends significantly on the accuracy of the operational sun-tracking device. Thus rigid targets for instrument performance and operation are specified for international monitoring networks, such as e.g., the Baseline Surface Radiation Network (BSRN) operating under the auspices of the World Climate Research Program (WCRP). Sun-tracking devices fulfilling these accuracy targets are available from various instrument manufacturers, however none of the commercially available systems comprises a secondary accuracy control system, allowing platform operators to independently validate the pointing accuracy of sun-tracking sensors during operation. Here we present KSO-STREAMS (KSO-SunTRackEr Accuracy Monitoring System), a fully automated, system independent and cost-effective method for evaluating the pointing accuracy of sun-tracking devices. We detail the monitoring system setup, its design and specifications and results from its application to the sun-tracking system operated at the Austrian RADiation network (ARAD) site Kanzelhöhe Observatory (KSO). Results from KSO-STREAMS (for mid-March to mid-June 2015) show that the tracking accuracy of the device operated at KSO lies well within BSRN specifications (i.e. 0.1 degree accuracy). We contrast results during clear-sky and partly cloudy conditions documenting sun-tracking performance at manufacturer specified accuracies for active tracking (0.02 degrees) and highlight accuracies achieved during passive tracking i.e. periods with less than 300 W m-2 direct radiation. Furthermore we detail limitations to tracking surveillance during overcast conditions and periods of partial solar limb coverage by clouds.

  10. Robotic Follow Algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2005-03-30

    The Robotic Follow Algorithm enables allows any robotic vehicle to follow a moving target while reactively choosing a route around nearby obstacles. The robotic follow behavior can be used with different camera systems and can be used with thermal or visual tracking as well as other tracking methods such as radio frequency tags.

  11. Quantifying Pilot Visual Attention in Low Visibility Terminal Operations

    NASA Technical Reports Server (NTRS)

    Ellis, Kyle K.; Arthur, J. J.; Latorella, Kara A.; Kramer, Lynda J.; Shelton, Kevin J.; Norman, Robert M.; Prinzel, Lawrence J.

    2012-01-01

    Quantifying pilot visual behavior allows researchers to determine not only where a pilot is looking and when, but holds implications for specific behavioral tracking when these data are coupled with flight technical performance. Remote eye tracking systems have been integrated into simulators at NASA Langley with effectively no impact on the pilot environment. This paper discusses the installation and use of a remote eye tracking system. The data collection techniques from a complex human-in-the-loop (HITL) research experiment are discussed; especially, the data reduction algorithms and logic to transform raw eye tracking data into quantified visual behavior metrics, and analysis methods to interpret visual behavior. The findings suggest superior performance for Head-Up Display (HUD) and improved attentional behavior for Head-Down Display (HDD) implementations of Synthetic Vision System (SVS) technologies for low visibility terminal area operations. Keywords: eye tracking, flight deck, NextGen, human machine interface, aviation

  12. Using location tracking data to assess efficiency in established clinical workflows.

    PubMed

    Meyer, Mark; Fairbrother, Pamela; Egan, Marie; Chueh, Henry; Sandberg, Warren S

    2006-01-01

    Location tracking systems are becoming more prevalent in clinical settings yet applications still are not common. We have designed a system to aid in the assessment of clinical workflow efficiency. Location data is captured from active RFID tags and processed into usable data. These data are stored and presented visually with trending capability over time. The system allows quick assessments of the impact of process changes on workflow, and isolates areas for improvement.

  13. Contrail Tracking and ARM Data Product Development

    NASA Technical Reports Server (NTRS)

    Duda, David P.; Russell, James, III

    2005-01-01

    A contrail tracking system was developed to help in the assessment of the effect of commercial jet contrails on the Earth's radiative budget. The tracking system was built by combining meteorological data from the Rapid Update Cycle (RUC) numerical weather prediction model with commercial air traffic flight track data and satellite imagery. A statistical contrail-forecasting model was created a combination of surface-based contrail observations and numerical weather analyses and forecasts. This model allows predictions of widespread contrail occurrences for contrail research on either a real-time basis or for long-term time scales. Satellite-derived cirrus cloud properties in polluted and unpolluted regions were compared to determine the impact of air traffic on cirrus.

  14. Monitoring and Detection Platform to Prevent Anomalous Situations in Home Care

    PubMed Central

    Villarrubia, Gabriel; Bajo, Javier; De Paz, Juan F.; Corchado, Juan M.

    2014-01-01

    Monitoring and tracking people at home usually requires high cost hardware installations, which implies they are not affordable in many situations. This study/paper proposes a monitoring and tracking system for people with medical problems. A virtual organization of agents based on the PANGEA platform, which allows the easy integration of different devices, was created for this study. In this case, a virtual organization was implemented to track and monitor patients carrying a Holter monitor. The system includes the hardware and software required to perform: ECG measurements, monitoring through accelerometers and WiFi networks. Furthermore, the use of interactive television can moderate interactivity with the user. The system makes it possible to merge the information and facilitates patient tracking efficiently with low cost. PMID:24905853

  15. Nanometer-scale anatomy of entire Stardust tracks

    NASA Astrophysics Data System (ADS)

    Nakamura-Messenger, Keiko; Keller, Lindsay P.; Clemett, Simon J.; Messenger, Scott; Ito, Motoo

    2011-07-01

    We have developed new sample preparation and analytical techniques tailored for entire aerogel tracks of Wild 2 sample analyses both on "carrot" and "bulbous" tracks. We have successfully ultramicrotomed an entire track along its axis while preserving its original shape. This innovation allowed us to examine the distribution of fragments along the entire track from the entrance hole all the way to the terminal particle. The crystalline silicates we measured have Mg-rich compositions and O isotopic compositions in the range of meteoritic materials, implying that they originated in the inner solar system. The terminal particle of the carrot track is a 16O-rich forsteritic grain that may have formed in a similar environment as Ca-, Al-rich inclusions and amoeboid olivine aggregates in primitive carbonaceous chondrites. The track also contains submicron-sized diamond grains likely formed in the solar system. Complex aromatic hydrocarbons distributed along aerogel tracks and in terminal particles. These organics are likely cometary but affected by shock heating.

  16. Magician Simulator. A Realistic Simulator for Heterogenous Teams of Autonomous Robots

    DTIC Science & Technology

    2011-01-18

    IMU, and LIDAR systems for identifying and tracking mobile OOI at long range (>20m), providing early warnings and allowing neutralization from a... LIDAR and Computer Vision template-based feature tracking approaches. Mapping was solved through Multi-Agent particle-filter based Simultaneous...Locali- zation and Mapping ( SLAM ). Our system contains two maps, a physical map and an influence map (location of hostile OOI, explored and unexplored

  17. Precision Targeting With a Tracking Adaptive Optics Scanning Laser Ophthalmoscope

    DTIC Science & Technology

    2006-01-01

    automatic high- resolution mosaic generation, and automatic blink detection and tracking re-lock were also tested. The system has the potential to become an...structures can lead to earlier detection of retinal diseases such as age-related macular degeneration (AMD) and diabetic retinopathy (DR). Combined...optics systems sense perturbations in the detected wave-front and apply corrections to an optical element that flatten the wave-front and allow near

  18. Nuclear Track Detector Characterization via Alpha-Spectrometry for Radioprotection Use

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morelli, D.; Imme, G.; Catalano, R.

    2011-12-13

    Solid Nuclear Track Detectors (SNTDs), CR-39 type, are usually adopted to monitor radon gas concentrations. In order to characterize the detectors according to track geometrical parameters, detectors were irradiated inside a vacuum chamber by alpha particles at twelve energy values, obtained by different Mylar foils in front of a {sup 241}Am source. The alpha energy values were verified using a Si detector. After the exposure to the alpha particles, the detectors were chemically etched to enlarge the tracks, which were then analyzed by means of a semiautomatic system composed of an optical microscope equipped with a CCD camera connected tomore » a personal computer to store images. A suitable routine analyzed the track parameters: major and minor axis length and mean grey level, allowing us to differentiate tracks according to the incident alpha energy and then to individuate the discrimination factors for radon alpha tracks. The combined use of geometrical and optical parameters allows one to overcome the ambiguity in the alpha energy determination due to the non-monotonicity of each parameter versus energy. After track parameter determination, a calibration procedure was performed by means of a radon chamber. The calibration was verified through an inter-comparing survey.« less

  19. 40 CFR 97.253 - Recordation of CAIR SO2 allowances.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Recordation of CAIR SO2 allowances. 97... (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS CAIR SO2 Allowance Tracking System § 97.253 Recordation of CAIR SO2 allowances. (a)(1) After a compliance account is...

  20. 40 CFR 97.257 - Closing of general accounts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS CAIR SO2 Allowance... correctly submitted allowance transfer under §§ 97.260 and 97.261 for any CAIR SO2 allowances in the account to one or more other CAIR SO2 Allowance Tracking System accounts. (b) If a general account has no...

  1. 40 CFR 96.253 - Recordation of CAIR SO2 allowances.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Recordation of CAIR SO2 allowances. 96... (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS CAIR SO2 Allowance Tracking System § 96.253 Recordation of CAIR SO2 allowances. (a)(1) After a...

  2. Radiation-hardened fast acquisition/weak signal tracking system and method

    NASA Technical Reports Server (NTRS)

    Winternitz, Luke (Inventor); Boegner, Gregory J. (Inventor); Sirotzky, Steve (Inventor)

    2009-01-01

    A global positioning system (GPS) receiver and method of acquiring and tracking GPS signals comprises an antenna adapted to receive GPS signals; an analog radio frequency device operatively connected to the antenna and adapted to convert the GPS signals from an analog format to a digital format; a plurality of GPS signal tracking correlators operatively connected to the analog RF device; a GPS signal acquisition component operatively connected to the analog RF device and the plurality of GPS signal tracking correlators, wherein the GPS signal acquisition component is adapted to calculate a maximum vector on a databit correlation grid; and a microprocessor operatively connected to the plurality of GPS signal tracking correlators and the GPS signal acquisition component, wherein the microprocessor is adapted to compare the maximum vector with a predetermined correlation threshold to allow the GPS signal to be fully acquired and tracked.

  3. Tracking Three-Dimensional Fish Behavior with a New Marine Acoustic Telemetry System

    NASA Technical Reports Server (NTRS)

    Brosnan, Ian G.; McGarry, Louise P.; Greene, Charles H.; Steig, Tracey W.; Johnston, Samuel V.; Ehrenberg, John E.

    2015-01-01

    The persistent monitoring capability provided by acoustic telemetry systems allows us to study behavior, movement, and resource selection of mobile marine animals. Current marine acoustic telemetry systems are challenged by localization errors and limits in the number of animals that can be tracked simultaneously. We designed a new system to provide detection ranges of up to 1 km, to reduce localization errors to less than 1 m, and to increase to 500 the number of unique tags simultaneously tracked. The design builds on HTIs experience of more than a decade developing acoustic telemetry systems for freshwater environments. A field trial of the prototype system was conducted at the University of Washingtons Friday Harbor Marine Laboratory (Friday Harbor, WA). Copper rockfish (Sebastes caurinus) were selected for field trials of this new system because their high site-fidelity and small home ranges provide ample opportunity to track individual fish behavior while testing our ability to characterize the movements of a species of interest to management authorities.

  4. Use of an inertial navigation system for accurate track recovery and coastal oceanographic measurements

    NASA Technical Reports Server (NTRS)

    Oliver, B. M.; Gower, J. F. R.

    1977-01-01

    A data acquisition system using a Litton LTN-51 inertial navigation unit (INU) was tested and used for aircraft track recovery and for location and tracking from the air of targets at sea. The characteristic position drift of the INU is compensated for by sighting landmarks of accurately known position at discrete time intervals using a visual sighting system in the transparent nose of the Beechcraft 18 aircraft used. For an aircraft altitude of about 300 m, theoretical and experimental tests indicate that calculated aircraft and/or target positions obtained from the interpolated INU drift curve will be accurate to within 10 m for landmarks spaced approximately every 15 minutes in time. For applications in coastal oceanography, such as surface current mapping by tracking artificial targets, the system allows a broad area to be covered without use of high altitude photography and its attendant needs for large targets and clear weather.

  5. Optofluidic solar concentrators using electrowetting tracking: Concept, design, and characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, JT; Park, S; Chen, CL

    2013-03-01

    We introduce a novel optofluidic solar concentration system based on electrowetting tracking. With two immiscible fluids in a transparent cell, we can actively control the orientation of fluid fluid interface via electrowetting. The naturally-formed meniscus between the two liquids can function as a dynamic optical prism for solar tracking and sunlight steering. An integrated optofluidic solar concentrator can be constructed from the liquid prism tracker in combination with a fixed and static optical condenser (Fresnel lens). Therefore, the liquid prisms can adaptively focus sunlight on a concentrating photovoltaic (CPV) cell sitting on the focus of the Fresnel lens as themore » sun moves. Because of the unique design, electrowetting tracking allows the concentrator to adaptively track both the daily and seasonal changes of the sun's orbit (dual-axis tracking) without bulky, expensive and inefficient mechanical moving parts. This approach can potentially reduce capital costs for CPV and increases operational efficiency by eliminating the power consumption of mechanical tracking. Importantly, the elimination of bulky tracking hardware and quiet operation will allow extensive residential deployment of concentrated solar power. In comparison with traditional silicon-based photovoltaic (PV) solar cells, the electrowetting-based self-tracking technology will generate,similar to 70% more green energy with a 50% cost reduction. (C) 2013 Elsevier Ltd. All rights reserved.« less

  6. 3D environment modeling and location tracking using off-the-shelf components

    NASA Astrophysics Data System (ADS)

    Luke, Robert H.

    2016-05-01

    The remarkable popularity of smartphones over the past decade has led to a technological race for dominance in market share. This has resulted in a flood of new processors and sensors that are inexpensive, low power and high performance. These sensors include accelerometers, gyroscope, barometers and most importantly cameras. This sensor suite, coupled with multicore processors, allows a new community of researchers to build small, high performance platforms for low cost. This paper describes a system using off-the-shelf components to perform position tracking as well as environment modeling. The system relies on tracking using stereo vision and inertial navigation to determine movement of the system as well as create a model of the environment sensed by the system.

  7. 40 CFR 96.353 - Recordation of CAIR NOX Ozone Season allowance allocations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Recordation of CAIR NOX Ozone Season... STATE IMPLEMENTATION PLANS CAIR NOX Ozone Season Allowance Tracking System § 96.353 Recordation of CAIR NOX Ozone Season allowance allocations. (a) By September 30, 2007, the Administrator will record in...

  8. 40 CFR 96.353 - Recordation of CAIR NOX Ozone Season allowance allocations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Recordation of CAIR NOX Ozone Season... STATE IMPLEMENTATION PLANS CAIR NOX Ozone Season Allowance Tracking System § 96.353 Recordation of CAIR NOX Ozone Season allowance allocations. (a) By September 30, 2007, the Administrator will record in...

  9. 40 CFR 96.353 - Recordation of CAIR NOX Ozone Season allowance allocations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Recordation of CAIR NOX Ozone Season... STATE IMPLEMENTATION PLANS CAIR NOX Ozone Season Allowance Tracking System § 96.353 Recordation of CAIR NOX Ozone Season allowance allocations. (a) By September 30, 2007, the Administrator will record in...

  10. 40 CFR 96.353 - Recordation of CAIR NOX Ozone Season allowance allocations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Recordation of CAIR NOX Ozone Season... STATE IMPLEMENTATION PLANS CAIR NOX Ozone Season Allowance Tracking System § 96.353 Recordation of CAIR NOX Ozone Season allowance allocations. (a) By September 30, 2007, the Administrator will record in...

  11. 40 CFR 96.353 - Recordation of CAIR NOX Ozone Season allowance allocations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Recordation of CAIR NOX Ozone Season... STATE IMPLEMENTATION PLANS CAIR NOX Ozone Season Allowance Tracking System § 96.353 Recordation of CAIR NOX Ozone Season allowance allocations. (a) By September 30, 2007, the Administrator will record in...

  12. Development and validation of a low-cost mobile robotics testbed

    NASA Astrophysics Data System (ADS)

    Johnson, Michael; Hayes, Martin J.

    2012-03-01

    This paper considers the design, construction and validation of a low-cost experimental robotic testbed, which allows for the localisation and tracking of multiple robotic agents in real time. The testbed system is suitable for research and education in a range of different mobile robotic applications, for validating theoretical as well as practical research work in the field of digital control, mobile robotics, graphical programming and video tracking systems. It provides a reconfigurable floor space for mobile robotic agents to operate within, while tracking the position of multiple agents in real-time using the overhead vision system. The overall system provides a highly cost-effective solution to the topical problem of providing students with practical robotics experience within severe budget constraints. Several problems encountered in the design and development of the mobile robotic testbed and associated tracking system, such as radial lens distortion and the selection of robot identifier templates are clearly addressed. The testbed performance is quantified and several experiments involving LEGO Mindstorm NXT and Merlin System MiaBot robots are discussed.

  13. A Scalable Distributed Approach to Mobile Robot Vision

    NASA Technical Reports Server (NTRS)

    Kuipers, Benjamin; Browning, Robert L.; Gribble, William S.

    1997-01-01

    This paper documents our progress during the first year of work on our original proposal entitled 'A Scalable Distributed Approach to Mobile Robot Vision'. We are pursuing a strategy for real-time visual identification and tracking of complex objects which does not rely on specialized image-processing hardware. In this system perceptual schemas represent objects as a graph of primitive features. Distributed software agents identify and track these features, using variable-geometry image subwindows of limited size. Active control of imaging parameters and selective processing makes simultaneous real-time tracking of many primitive features tractable. Perceptual schemas operate independently from the tracking of primitive features, so that real-time tracking of a set of image features is not hurt by latency in recognition of the object that those features make up. The architecture allows semantically significant features to be tracked with limited expenditure of computational resources, and allows the visual computation to be distributed across a network of processors. Early experiments are described which demonstrate the usefulness of this formulation, followed by a brief overview of our more recent progress (after the first year).

  14. Close-Range Tracking of Underwater Vehicles Using Light Beacons

    PubMed Central

    Bosch, Josep; Gracias, Nuno; Ridao, Pere; Istenič, Klemen; Ribas, David

    2016-01-01

    This paper presents a new tracking system for autonomous underwater vehicles (AUVs) navigating in a close formation, based on computer vision and the use of active light markers. While acoustic localization can be very effective from medium to long distances, it is not so advantageous in short distances when the safety of the vehicles requires higher accuracy and update rates. The proposed system allows the estimation of the pose of a target vehicle at short ranges, with high accuracy and execution speed. To extend the field of view, an omnidirectional camera is used. This camera provides a full coverage of the lower hemisphere and enables the concurrent tracking of multiple vehicles in different positions. The system was evaluated in real sea conditions by tracking vehicles in mapping missions, where it demonstrated robust operation during extended periods of time. PMID:27023547

  15. Close-Range Tracking of Underwater Vehicles Using Light Beacons.

    PubMed

    Bosch, Josep; Gracias, Nuno; Ridao, Pere; Istenič, Klemen; Ribas, David

    2016-03-25

    This paper presents a new tracking system for autonomous underwater vehicles (AUVs) navigating in a close formation, based on computer vision and the use of active light markers. While acoustic localization can be very effective from medium to long distances, it is not so advantageous in short distances when the safety of the vehicles requires higher accuracy and update rates. The proposed system allows the estimation of the pose of a target vehicle at short ranges, with high accuracy and execution speed. To extend the field of view, an omnidirectional camera is used. This camera provides a full coverage of the lower hemisphere and enables the concurrent tracking of multiple vehicles in different positions. The system was evaluated in real sea conditions by tracking vehicles in mapping missions, where it demonstrated robust operation during extended periods of time.

  16. Implementing a genomic data management system using iRODS in the Wellcome Trust Sanger Institute

    PubMed Central

    2011-01-01

    Background Increasingly large amounts of DNA sequencing data are being generated within the Wellcome Trust Sanger Institute (WTSI). The traditional file system struggles to handle these increasing amounts of sequence data. A good data management system therefore needs to be implemented and integrated into the current WTSI infrastructure. Such a system enables good management of the IT infrastructure of the sequencing pipeline and allows biologists to track their data. Results We have chosen a data grid system, iRODS (Rule-Oriented Data management systems), to act as the data management system for the WTSI. iRODS provides a rule-based system management approach which makes data replication much easier and provides extra data protection. Unlike the metadata provided by traditional file systems, the metadata system of iRODS is comprehensive and allows users to customize their own application level metadata. Users and IT experts in the WTSI can then query the metadata to find and track data. The aim of this paper is to describe how we designed and used (from both system and user viewpoints) iRODS as a data management system. Details are given about the problems faced and the solutions found when iRODS was implemented. A simple use case describing how users within the WTSI use iRODS is also introduced. Conclusions iRODS has been implemented and works as the production system for the sequencing pipeline of the WTSI. Both biologists and IT experts can now track and manage data, which could not previously be achieved. This novel approach allows biologists to define their own metadata and query the genomic data using those metadata. PMID:21906284

  17. Automated tracking for advanced satellite laser ranging systems

    NASA Astrophysics Data System (ADS)

    McGarry, Jan F.; Degnan, John J.; Titterton, Paul J., Sr.; Sweeney, Harold E.; Conklin, Brion P.; Dunn, Peter J.

    1996-06-01

    NASA's Satellite Laser Ranging Network was originally developed during the 1970's to track satellites carrying corner cube reflectors. Today eight NASA systems, achieving millimeter ranging precision, are part of a global network of more than 40 stations that track 17 international satellites. To meet the tracking demands of a steadily growing satellite constellation within existing resources, NASA is embarking on a major automation program. While manpower on the current systems will be reduced to a single operator, the fully automated SLR2000 system is being designed to operate for months without human intervention. Because SLR2000 must be eyesafe and operate in daylight, tracking is often performed in a low probability of detection and high noise environment. The goal is to automatically select the satellite, setup the tracking and ranging hardware, verify acquisition, and close the tracking loop to optimize data yield. TO accomplish the autotracking tasks, we are investigating (1) improved satellite force models, (2) more frequent updates of orbital ephemerides, (3) lunar laser ranging data processing techniques to distinguish satellite returns from noise, and (4) angular detection and search techniques to acquire the satellite. A Monte Carlo simulator has been developed to allow optimization of the autotracking algorithms by modeling the relevant system errors and then checking performance against system truth. A combination of simulator and preliminary field results will be presented.

  18. Can we track holes?

    PubMed Central

    Horowitz, Todd S.; Kuzmova, Yoana

    2011-01-01

    The evidence is mixed as to whether the visual system treats objects and holes differently. We used a multiple object tracking task to test the hypothesis that figural objects are easier to track than holes. Observers tracked four of eight items (holes or objects). We used an adaptive algorithm to estimate the speed allowing 75% tracking accuracy. In Experiments 1–5, the distinction between holes and figures was accomplished by pictorial cues, while red-cyan anaglyphs were used to provide the illusion of depth in Experiment 6. We variously used Gaussian pixel noise, photographic scenes, or synthetic textures as backgrounds. Tracking was more difficult when a complex background was visible, as opposed to a blank background. Tracking was easier when disks carried fixed, unique markings. When these factors were controlled for, tracking holes was no more difficult than tracking figures, suggesting that they are equivalent stimuli for tracking purposes. PMID:21334361

  19. The Haskins Optically Corrected Ultrasound System

    ERIC Educational Resources Information Center

    Whalen, D. H.; Iskarous, Khalil; Tiede, Mark K.; Ostry, David J.; Lehnert-LeHouillier, Heike; Vatikiotis-Bateson, Eric; Hailey, Donald S.

    2005-01-01

    The tongue is critical in the production of speech, yet its nature has made it difficult to measure. Not only does its ability to attain complex shapes make it difficult to track, it is also largely hidden from view during speech. The present article describes a new combination of optical tracking and ultrasound imaging that allows for a…

  20. High-performance object tracking and fixation with an online neural estimator.

    PubMed

    Kumarawadu, Sisil; Watanabe, Keigo; Lee, Tsu-Tian

    2007-02-01

    Vision-based target tracking and fixation to keep objects that move in three dimensions in view is important for many tasks in several fields including intelligent transportation systems and robotics. Much of the visual control literature has focused on the kinematics of visual control and ignored a number of significant dynamic control issues that limit performance. In line with this, this paper presents a neural network (NN)-based binocular tracking scheme for high-performance target tracking and fixation with minimum sensory information. The procedure allows the designer to take into account the physical (Lagrangian dynamics) properties of the vision system in the control law. The design objective is to synthesize a binocular tracking controller that explicitly takes the systems dynamics into account, yet needs no knowledge of dynamic nonlinearities and joint velocity sensory information. The combined neurocontroller-observer scheme can guarantee the uniform ultimate bounds of the tracking, observer, and NN weight estimation errors under fairly general conditions on the controller-observer gains. The controller is tested and verified via simulation tests in the presence of severe target motion changes.

  1. Unsupervised markerless 3-DOF motion tracking in real time using a single low-budget camera.

    PubMed

    Quesada, Luis; León, Alejandro J

    2012-10-01

    Motion tracking is a critical task in many computer vision applications. Existing motion tracking techniques require either a great amount of knowledge on the target object or specific hardware. These requirements discourage the wide spread of commercial applications based on motion tracking. In this paper, we present a novel three degrees of freedom motion tracking system that needs no knowledge on the target object and that only requires a single low-budget camera that can be found installed in most computers and smartphones. Our system estimates, in real time, the three-dimensional position of a nonmodeled unmarked object that may be nonrigid, nonconvex, partially occluded, self-occluded, or motion blurred, given that it is opaque, evenly colored, enough contrasting with the background in each frame, and that it does not rotate. Our system is also able to determine the most relevant object to track in the screen. Our proposal does not impose additional constraints, therefore it allows a market-wide implementation of applications that require the estimation of the three position degrees of freedom of an object.

  2. An efficient fluorescent single-particle position tracking system for long-term pulsed measurements of nitrogen-vacancy centers in diamond

    NASA Astrophysics Data System (ADS)

    Kim, Kiho; Yun, Jiwon; Lee, Donghyuck; Kim, Dohun

    2018-02-01

    A simple and convenient design enables real-time three-dimensional position tracking of nitrogen-vacancy (NV) centers in diamond. The system consists entirely of commercially available components (a single-photon counter, a high-speed digital-to-analog converter, a phase-sensitive detector-based feedback device, and a piezo stage), eliminating the need for custom programming or rigorous optimization processes. With a large input range of counters and trackers combined with high sensitivity of single-photon counting, high-speed position tracking (upper bound recovery time of 0.9 s upon 250 nm of step-like positional shift) not only of bright ensembles, but also of low-photon-collection-efficiency single to few NV centers (down to 103 s-1) is possible. The tracking requires position modulation of only 10 nm, which allows simultaneous position tracking and pulsed measurements in the long term. Therefore, this tracking system enables measuring a single-spin magnetic resonance and Rabi oscillations at a very high resolution even without photon collection optimization. The system is widely applicable to various fields related to NV center quantum manipulation research such as NV optical trapping, NV tracking in fluid dynamics, and biological sensing using NV centers inside a biological cell.

  3. 40 CFR 97.353 - Recordation of CAIR NOX Ozone Season allowance allocations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Recordation of CAIR NOX Ozone Season... CAIR NOX Ozone Season Allowance Tracking System § 97.353 Recordation of CAIR NOX Ozone Season allowance allocations. (a) By September 30, 2007, the Administrator will record in the CAIR NOX Ozone Season sources...

  4. 40 CFR 97.353 - Recordation of CAIR NOX Ozone Season allowance allocations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Recordation of CAIR NOX Ozone Season... CAIR NOX Ozone Season Allowance Tracking System § 97.353 Recordation of CAIR NOX Ozone Season allowance allocations. (a) By September 30, 2007, the Administrator will record in the CAIR NOX Ozone Season sources...

  5. 40 CFR 97.353 - Recordation of CAIR NOX Ozone Season allowance allocations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Recordation of CAIR NOX Ozone Season... CAIR NOX Ozone Season Allowance Tracking System § 97.353 Recordation of CAIR NOX Ozone Season allowance allocations. (a) By September 30, 2007, the Administrator will record in the CAIR NOX Ozone Season sources...

  6. 40 CFR 97.353 - Recordation of CAIR NOX Ozone Season allowance allocations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Recordation of CAIR NOX Ozone Season... CAIR NOX Ozone Season Allowance Tracking System § 97.353 Recordation of CAIR NOX Ozone Season allowance allocations. (a) By September 30, 2007, the Administrator will record in the CAIR NOX Ozone Season sources...

  7. 40 CFR 97.353 - Recordation of CAIR NOX Ozone Season allowance allocations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Recordation of CAIR NOX Ozone Season... CAIR NOX Ozone Season Allowance Tracking System § 97.353 Recordation of CAIR NOX Ozone Season allowance allocations. (a) By September 30, 2007, the Administrator will record in the CAIR NOX Ozone Season sources...

  8. 40 CFR 97.357 - Closing of general accounts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS CAIR NOX Ozone Season... include a correctly submitted allowance transfer under §§ 97.360 and 97.361 for any CAIR NOX Ozone Season allowances in the account to one or more other CAIR NOX Ozone Season Allowance Tracking System accounts. (b...

  9. 40 CFR 97.255 - Banking.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS CAIR SO2 Allowance Tracking System § 97.255 Banking. (a) CAIR SO2 allowances may be banked for future use or transfer in a compliance account or a general account in accordance with paragraph (b) of this section. (b) Any CAIR SO2 allowance that is held...

  10. A Low Cost GPS System for Real-Time Tracking of Sounding Rockets

    NASA Technical Reports Server (NTRS)

    Markgraf, M.; Montenbruck, O.; Hassenpflug, F.; Turner, P.; Bull, B.; Bauer, Frank (Technical Monitor)

    2001-01-01

    In an effort to minimize the need for costly, complex, tracking radars, the German Space Operations Center has set up a research project for GPS based tracking of sounding rockets. As part of this project, a GPS receiver based on commercial technology for terrestrial applications has been modified to allow its use under the highly dynamical conditions of a sounding rocket flight. In addition, new antenna concepts are studied as an alternative to proven but costly wrap-around antennas.

  11. Application of Bayesian a Priori Distributions for Vehicles' Video Tracking Systems

    NASA Astrophysics Data System (ADS)

    Mazurek, Przemysław; Okarma, Krzysztof

    Intelligent Transportation Systems (ITS) helps to improve the quality and quantity of many car traffic parameters. The use of the ITS is possible when the adequate measuring infrastructure is available. Video systems allow for its implementation with relatively low cost due to the possibility of simultaneous video recording of a few lanes of the road at a considerable distance from the camera. The process of tracking can be realized through different algorithms, the most attractive algorithms are Bayesian, because they use the a priori information derived from previous observations or known limitations. Use of this information is crucial for improving the quality of tracking especially for difficult observability conditions, which occur in the video systems under the influence of: smog, fog, rain, snow and poor lighting conditions.

  12. Design and implementation of a remote UAV-based mobile health monitoring system

    NASA Astrophysics Data System (ADS)

    Li, Songwei; Wan, Yan; Fu, Shengli; Liu, Mushuang; Wu, H. Felix

    2017-04-01

    Unmanned aerial vehicles (UAVs) play increasing roles in structure health monitoring. With growing mobility in modern Internet-of-Things (IoT) applications, the health monitoring of mobile structures becomes an emerging application. In this paper, we develop a UAV-carried vision-based monitoring system that allows a UAV to continuously track and monitor a mobile infrastructure and transmit back the monitoring information in real- time from a remote location. The monitoring system uses a simple UAV-mounted camera and requires only a single feature located on the mobile infrastructure for target detection and tracking. The computation-effective vision-based tracking solution based on a single feature is an improvement over existing vision-based lead-follower tracking systems that either have poor tracking performance due to the use of a single feature, or have improved tracking performance at a cost of the usage of multiple features. In addition, a UAV-carried aerial networking infrastructure using directional antennas is used to enable robust real-time transmission of monitoring video streams over a long distance. Automatic heading control is used to self-align headings of directional antennas to enable robust communication in mobility. Compared to existing omni-communication systems, the directional communication solution significantly increases the operation range of remote monitoring systems. In this paper, we develop the integrated modeling framework of camera and mobile platforms, design the tracking algorithm, develop a testbed of UAVs and mobile platforms, and evaluate system performance through both simulation studies and field tests.

  13. Enabling freehand lateral scanning of optical coherence tomography needle probes with a magnetic tracking system

    PubMed Central

    Yeo, Boon Y.; McLaughlin, Robert A.; Kirk, Rodney W.; Sampson, David D.

    2012-01-01

    We present a high-resolution three-dimensional position tracking method that allows an optical coherence tomography (OCT) needle probe to be scanned laterally by hand, providing the high degree of flexibility and freedom required in clinical usage. The method is based on a magnetic tracking system, which is augmented by cross-correlation-based resampling and a two-stage moving window average algorithm to improve upon the tracker's limited intrinsic spatial resolution, achieving 18 µm RMS position accuracy. A proof-of-principle system was developed, with successful image reconstruction demonstrated on phantoms and on ex vivo human breast tissue validated against histology. This freehand scanning method could contribute toward clinical implementation of OCT needle imaging. PMID:22808429

  14. Registration of 3D and Multispectral Data for the Study of Cultural Heritage Surfaces

    PubMed Central

    Chane, Camille Simon; Schütze, Rainer; Boochs, Frank; Marzani, Franck S.

    2013-01-01

    We present a technique for the multi-sensor registration of featureless datasets based on the photogrammetric tracking of the acquisition systems in use. This method is developed for the in situ study of cultural heritage objects and is tested by digitizing a small canvas successively with a 3D digitization system and a multispectral camera while simultaneously tracking the acquisition systems with four cameras and using a cubic target frame with a side length of 500 mm. The achieved tracking accuracy is better than 0.03 mm spatially and 0.150 mrad angularly. This allows us to seamlessly register the 3D acquisitions and to project the multispectral acquisitions on the 3D model. PMID:23322103

  15. Subnanosecond GPS-based clock synchronization and precision deep-space tracking

    NASA Technical Reports Server (NTRS)

    Dunn, C. E.; Lichten, S. M.; Jefferson, D. C.; Border, J. S.

    1992-01-01

    Interferometric spacecraft tracking is accomplished by the Deep Space Network (DSN) by comparing the arrival time of electromagnetic spacecraft signals at ground antennas separated by baselines on the order of 8000 km. Clock synchronization errors within and between DSN stations directly impact the attainable tracking accuracy, with a 0.3-nsec error in clock synchronization resulting in an 11-nrad angular position error. This level of synchronization is currently achieved by observing a quasar which is angularly close to the spacecraft just after the spacecraft observations. By determining the differential arrival times of the random quasar signal at the stations, clock offsets and propagation delays within the atmosphere and within the DSN stations are calibrated. Recent developments in time transfer techniques may allow medium accuracy (50-100 nrad) spacecraft tracking without near-simultaneous quasar-based calibrations. Solutions are presented for a worldwide network of Global Positioning System (GPS) receivers in which the formal errors for DSN clock offset parameters are less than 0.5 nsec. Comparisons of clock rate offsets derived from GPS measurements and from very long baseline interferometry (VLBI), as well as the examination of clock closure, suggest that these formal errors are a realistic measure of GPS-based clock offset precision and accuracy. Incorporating GPS-based clock synchronization measurements into a spacecraft differential ranging system would allow tracking without near-simultaneous quasar observations. The impact on individual spacecraft navigation-error sources due to elimination of quasar-based calibrations is presented. System implementation, including calibration of station electronic delays, is discussed.

  16. Development and testing of a magnetic position sensor system for automotive and avionics applications

    NASA Astrophysics Data System (ADS)

    Jacobs, Bryan C.; Nelson, Carl V.

    2001-08-01

    A magnetic sensor system has been developed to measure the 3-D location and orientation of a rigid body relative to an array of magnetic dipole transmitters. A generalized solution to the measurement problem has been formulated, allowing the transmitter and receiver parameters (position, orientation, number, etc.) to be optimized for various applications. Additionally, the method of images has been used to mitigate the impact of metallic materials in close proximity to the sensor. The resulting system allows precise tracking of high-speed motion in confined metal environments. The sensor system was recently configured and tested as an abdomen displacement sensor for an automobile crash-test dummy. The test results indicate a positional accuracy of approximately 1 mm rms during 20 m/s motions. The dynamic test results also confirmed earlier covariance model predictions, which were used to optimize the sensor geometry. A covariance analysis was performed to evaluate the applicability of this magnetic position system for tracking a pilot's head motion inside an aircraft cockpit. Realistic design parameters indicate that a robust tracking system, consisting of lightweight pickup coils mounted on a pilot's helmet, and an array of transmitter coils distributed throughout a cockpit, is feasible. Recent test and covariance results are presented.

  17. Auditory display as feedback for a novel eye-tracking system for sterile operating room interaction.

    PubMed

    Black, David; Unger, Michael; Fischer, Nele; Kikinis, Ron; Hahn, Horst; Neumuth, Thomas; Glaser, Bernhard

    2018-01-01

    The growing number of technical systems in the operating room has increased attention on developing touchless interaction methods for sterile conditions. However, touchless interaction paradigms lack the tactile feedback found in common input devices such as mice and keyboards. We propose a novel touchless eye-tracking interaction system with auditory display as a feedback method for completing typical operating room tasks. Auditory display provides feedback concerning the selected input into the eye-tracking system as well as a confirmation of the system response. An eye-tracking system with a novel auditory display using both earcons and parameter-mapping sonification was developed to allow touchless interaction for six typical scrub nurse tasks. An evaluation with novice participants compared auditory display with visual display with respect to reaction time and a series of subjective measures. When using auditory display to substitute for the lost tactile feedback during eye-tracking interaction, participants exhibit reduced reaction time compared to using visual-only display. In addition, the auditory feedback led to lower subjective workload and higher usefulness and system acceptance ratings. Due to the absence of tactile feedback for eye-tracking and other touchless interaction methods, auditory display is shown to be a useful and necessary addition to new interaction concepts for the sterile operating room, reducing reaction times while improving subjective measures, including usefulness, user satisfaction, and cognitive workload.

  18. Technological advances in real-time tracking of cell death

    PubMed Central

    Skommer, Joanna; Darzynkiewicz, Zbigniew; Wlodkowic, Donald

    2010-01-01

    Cell population can be viewed as a quantum system, which like Schrödinger’s cat exists as a combination of survival- and death-allowing states. Tracking and understanding cell-to-cell variability in processes of high spatio-temporal complexity such as cell death is at the core of current systems biology approaches. As probabilistic modeling tools attempt to impute information inaccessible by current experimental approaches, advances in technologies for single-cell imaging and omics (proteomics, genomics, metabolomics) should go hand in hand with the computational efforts. Over the last few years we have made exciting technological advances that allow studies of cell death dynamically in real-time and with the unprecedented accuracy. These approaches are based on innovative fluorescent assays and recombinant proteins, bioelectrical properties of cells, and more recently also on state-of-the-art optical spectroscopy. Here, we review current status of the most innovative analytical technologies for dynamic tracking of cell death, and address the interdisciplinary promises and future challenges of these methods. PMID:20519963

  19. Autonomous Space Object Catalogue Construction and Upkeep Using Sensor Control Theory

    NASA Astrophysics Data System (ADS)

    Moretti, N.; Rutten, M.; Bessell, T.; Morreale, B.

    The capability to track objects in space is critical to safeguard domestic and international space assets. Infrequent measurement opportunities, complex dynamics and partial observability of orbital state makes the tracking of resident space objects nontrivial. It is not uncommon for human operators to intervene with space tracking systems, particularly in scheduling sensors. This paper details the development of a system that maintains a catalogue of geostationary objects through dynamically tasking sensors in real time by managing the uncertainty of object states. As the number of objects in space grows the potential for collision grows exponentially. Being able to provide accurate assessment to operators regarding costly collision avoidance manoeuvres is paramount; the accuracy of which is highly dependent on how object states are estimated. The system represents object state and uncertainty using particles and utilises a particle filter for state estimation. Particle filters capture the model and measurement uncertainty accurately, allowing for a more comprehensive representation of the state’s probability density function. Additionally, the number of objects in space is growing disproportionally to the number of sensors used to track them. Maintaining precise positions for all objects places large loads on sensors, limiting the time available to search for new objects or track high priority objects. Rather than precisely track all objects our system manages the uncertainty in orbital state for each object independently. The uncertainty is allowed to grow and sensor data is only requested when the uncertainty must be reduced. For example when object uncertainties overlap leading to data association issues or if the uncertainty grows to beyond a field of view. These control laws are formulated into a cost function, which is optimised in real time to task sensors. By controlling an optical telescope the system has been able to construct and maintain a catalogue of approximately 100 geostationary objects.

  20. The Retarding Force on a Fan-Cart Reversing Direction

    ERIC Educational Resources Information Center

    Aurora, Tarlok S.; Brunner, Bernard J.

    2011-01-01

    In introductory physics, students learn that an object tossed upward has a constant downward acceleration while going up, at the highest point and while falling down. To demonstrate this concept, a self-propelled fan cart system is used on a frictionless track. A quick push is given to the fan cart and it is allowed to move away on a track under…

  1. An automated method for the evaluation of the pointing accuracy of Sun-tracking devices

    NASA Astrophysics Data System (ADS)

    Baumgartner, Dietmar J.; Pötzi, Werner; Freislich, Heinrich; Strutzmann, Heinz; Veronig, Astrid M.; Rieder, Harald E.

    2017-03-01

    The accuracy of solar radiation measurements, for direct (DIR) and diffuse (DIF) radiation, depends significantly on the precision of the operational Sun-tracking device. Thus, rigid targets for instrument performance and operation have been specified for international monitoring networks, e.g., the Baseline Surface Radiation Network (BSRN) operating under the auspices of the World Climate Research Program (WCRP). Sun-tracking devices that fulfill these accuracy requirements are available from various instrument manufacturers; however, none of the commercially available systems comprise an automatic accuracy control system allowing platform operators to independently validate the pointing accuracy of Sun-tracking sensors during operation. Here we present KSO-STREAMS (KSO-SunTRackEr Accuracy Monitoring System), a fully automated, system-independent, and cost-effective system for evaluating the pointing accuracy of Sun-tracking devices. We detail the monitoring system setup, its design and specifications, and the results from its application to the Sun-tracking system operated at the Kanzelhöhe Observatory (KSO) Austrian radiation monitoring network (ARAD) site. The results from an evaluation campaign from March to June 2015 show that the tracking accuracy of the device operated at KSO lies within BSRN specifications (i.e., 0.1° tracking accuracy) for the vast majority of observations (99.8 %). The evaluation of manufacturer-specified active-tracking accuracies (0.02°), during periods with direct solar radiation exceeding 300 W m-2, shows that these are satisfied in 72.9 % of observations. Tracking accuracies are highest during clear-sky conditions and on days where prevailing clear-sky conditions are interrupted by frontal movement; in these cases, we obtain the complete fulfillment of BSRN requirements and 76.4 % of observations within manufacturer-specified active-tracking accuracies. Limitations to tracking surveillance arise during overcast conditions and periods of partial solar-limb coverage by clouds. On days with variable cloud cover, 78.1 % (99.9 %) of observations meet active-tracking (BSRN) accuracy requirements while for days with prevailing overcast conditions these numbers reduce to 64.3 % (99.5 %).

  2. Interactive projection for aerial dance using depth sensing camera

    NASA Astrophysics Data System (ADS)

    Dubnov, Tammuz; Seldess, Zachary; Dubnov, Shlomo

    2014-02-01

    This paper describes an interactive performance system for oor and Aerial Dance that controls visual and sonic aspects of the presentation via a depth sensing camera (MS Kinect). In order to detect, measure and track free movement in space, 3 degree of freedom (3-DOF) tracking in space (on the ground and in the air) is performed using IR markers. Gesture tracking and recognition is performed using a simpli ed HMM model that allows robust mapping of the actor's actions to graphics and sound. Additional visual e ects are achieved by segmentation of the actor body based on depth information, allowing projection of separate imagery on the performer and the backdrop. Artistic use of augmented reality performance relative to more traditional concepts of stage design and dramaturgy are discussed.

  3. Interacting with target tracking algorithms in a gaze-enhanced motion video analysis system

    NASA Astrophysics Data System (ADS)

    Hild, Jutta; Krüger, Wolfgang; Heinze, Norbert; Peinsipp-Byma, Elisabeth; Beyerer, Jürgen

    2016-05-01

    Motion video analysis is a challenging task, particularly if real-time analysis is required. It is therefore an important issue how to provide suitable assistance for the human operator. Given that the use of customized video analysis systems is more and more established, one supporting measure is to provide system functions which perform subtasks of the analysis. Recent progress in the development of automated image exploitation algorithms allow, e.g., real-time moving target tracking. Another supporting measure is to provide a user interface which strives to reduce the perceptual, cognitive and motor load of the human operator for example by incorporating the operator's visual focus of attention. A gaze-enhanced user interface is able to help here. This work extends prior work on automated target recognition, segmentation, and tracking algorithms as well as about the benefits of a gaze-enhanced user interface for interaction with moving targets. We also propose a prototypical system design aiming to combine both the qualities of the human observer's perception and the automated algorithms in order to improve the overall performance of a real-time video analysis system. In this contribution, we address two novel issues analyzing gaze-based interaction with target tracking algorithms. The first issue extends the gaze-based triggering of a target tracking process, e.g., investigating how to best relaunch in the case of track loss. The second issue addresses the initialization of tracking algorithms without motion segmentation where the operator has to provide the system with the object's image region in order to start the tracking algorithm.

  4. ATLAS FTK a - very complex - custom super computer

    NASA Astrophysics Data System (ADS)

    Kimura, N.; ATLAS Collaboration

    2016-10-01

    In the LHC environment for high interaction pile-up, advanced techniques of analysing the data in real time are required in order to maximize the rate of physics processes of interest with respect to background processes. The Fast TracKer (FTK) is a track finding implementation at the hardware level that is designed to deliver full-scan tracks with pT above 1 GeV to the ATLAS trigger system for events passing the Level-1 accept (at a maximum rate of 100 kHz). In order to achieve this performance, a highly parallel system was designed and currently it is being commissioned within in ATLAS. Starting in 2016 it will provide tracks for the trigger system in a region covering the central part of the ATLAS detector, and will be extended to the full detector coverage. The system relies on matching hits coming from the silicon tracking detectors against one billion patterns stored in custom ASIC chips (Associative memory chip - AM06). In a first stage, coarse resolution hits are matched against the patterns and the accepted hits undergo track fitting implemented in FPGAs. Tracks with pT > 1GeV are delivered to the High Level Trigger within about 100 ps. Resolution of the tracks coming from FTK is close to the offline tracking and it will allow for reliable detection of primary and secondary vertexes at trigger level and improved trigger performance for b-jets and tau leptons. This contribution will give an overview of the FTK system and present the status of commissioning of the system. Additionally, the expected FTK performance will be briefly described.

  5. Figure–ground discrimination behavior in Drosophila. I. Spatial organization of wing-steering responses

    PubMed Central

    Fox, Jessica L.; Aptekar, Jacob W.; Zolotova, Nadezhda M.; Shoemaker, Patrick A.; Frye, Mark A.

    2014-01-01

    The behavioral algorithms and neural subsystems for visual figure–ground discrimination are not sufficiently described in any model system. The fly visual system shares structural and functional similarity with that of vertebrates and, like vertebrates, flies robustly track visual figures in the face of ground motion. This computation is crucial for animals that pursue salient objects under the high performance requirements imposed by flight behavior. Flies smoothly track small objects and use wide-field optic flow to maintain flight-stabilizing optomotor reflexes. The spatial and temporal properties of visual figure tracking and wide-field stabilization have been characterized in flies, but how the two systems interact spatially to allow flies to actively track figures against a moving ground has not. We took a systems identification approach in flying Drosophila and measured wing-steering responses to velocity impulses of figure and ground motion independently. We constructed a spatiotemporal action field (STAF) – the behavioral analog of a spatiotemporal receptive field – revealing how the behavioral impulse responses to figure tracking and concurrent ground stabilization vary for figure motion centered at each location across the visual azimuth. The figure tracking and ground stabilization STAFs show distinct spatial tuning and temporal dynamics, confirming the independence of the two systems. When the figure tracking system is activated by a narrow vertical bar moving within the frontal field of view, ground motion is essentially ignored despite comprising over 90% of the total visual input. PMID:24198267

  6. A data set for evaluating the performance of multi-class multi-object video tracking

    NASA Astrophysics Data System (ADS)

    Chakraborty, Avishek; Stamatescu, Victor; Wong, Sebastien C.; Wigley, Grant; Kearney, David

    2017-05-01

    One of the challenges in evaluating multi-object video detection, tracking and classification systems is having publically available data sets with which to compare different systems. However, the measures of performance for tracking and classification are different. Data sets that are suitable for evaluating tracking systems may not be appropriate for classification. Tracking video data sets typically only have ground truth track IDs, while classification video data sets only have ground truth class-label IDs. The former identifies the same object over multiple frames, while the latter identifies the type of object in individual frames. This paper describes an advancement of the ground truth meta-data for the DARPA Neovision2 Tower data set to allow both the evaluation of tracking and classification. The ground truth data sets presented in this paper contain unique object IDs across 5 different classes of object (Car, Bus, Truck, Person, Cyclist) for 24 videos of 871 image frames each. In addition to the object IDs and class labels, the ground truth data also contains the original bounding box coordinates together with new bounding boxes in instances where un-annotated objects were present. The unique IDs are maintained during occlusions between multiple objects or when objects re-enter the field of view. This will provide: a solid foundation for evaluating the performance of multi-object tracking of different types of objects, a straightforward comparison of tracking system performance using the standard Multi Object Tracking (MOT) framework, and classification performance using the Neovision2 metrics. These data have been hosted publically.

  7. 40 CFR 96.54 - Compliance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Compliance. 96.54 Section 96.54... Tracking System § 96.54 Compliance. (a) NO X allowance transfer deadline. The NOX allowances are available to be deducted for compliance with a unit's NOX Budget emissions limitation for a control period in a...

  8. 40 CFR 96.54 - Compliance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Compliance. 96.54 Section 96.54... Tracking System § 96.54 Compliance. (a) NO X allowance transfer deadline. The NOX allowances are available to be deducted for compliance with a unit's NOX Budget emissions limitation for a control period in a...

  9. An Operator Perspective from a Facility Evaluation of an RFID-Based UF6 Cylinder Accounting and Tracking System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martyn, Rose; Fitzgerald, Peter; Stehle, Nicholas D

    An operational field test of a Radio-Frequency Identification (RFID) system for tracking and accounting UF6 cylinders was conducted at the Global Nuclear Fuel Americas (GNF) fuel fabrication plant in 2009. The Cylinder Accountability and Tracking System (CATS) was designed and deployed by Oak Ridge National Laboratory (ORNL) and evaluated in cooperation with GNF. The system required that passive RFID be attached to several UF6 30B cylinders as they were received at the site; then the cylinders were tracked as they proceeded to interim storage, to processing in an autoclave, and eventually to disposition from the site. This CATS deployment alsomore » provided a direct integration of scale data from the site accountability scales. The integration of this information into the tracking data provided an attribute for additional safeguards for evaluation. The field test provided insight into the advantages and challenges of using RFID at an operating nuclear facility. The RFID system allowed operators to interact with the technology and demonstrated the survivability of the tags and reader equipment in the process environment. This paper will provide the operator perspective on utilizing RFID technology for locating cylinders within the facility, thereby tracking the cylinders for process and for Material Control & Accounting functions. The paper also will present the operator viewpoint on RFID implemented as an independent safeguards system.« less

  10. Navy Controls for Invoice, Receipt, Acceptance, and Property Transfer System Need Improvement

    DTIC Science & Technology

    2016-02-25

    iR APT as a web-based system to electronically invoice, receipt, and accept ser vices and product s from its contractors and vendors. The iR APT system...electronically shares document s bet ween DoD and it s contractors and vendors to eliminate redundant data entr y, increase data accuracy, and reduce...The iR APT system allows contractors to submit and track invoices and receipt and acceptance documents over the web and allows government personnel to

  11. The role of "rescue saccades" in tracking objects through occlusions.

    PubMed

    Zelinsky, Gregory J; Todor, Andrei

    2010-12-29

    We hypothesize that our ability to track objects through occlusions is mediated by timely assistance from gaze in the form of "rescue saccades"-eye movements to tracked objects that are in danger of being lost due to impending occlusion. Observers tracked 2-4 target sharks (out of 9) for 20 s as they swam through a rendered 3D underwater scene. Targets were either allowed to enter into occlusions (occlusion trials) or not (no occlusion trials). Tracking accuracy with 2-3 targets was ≥ 92% regardless of target occlusion but dropped to 74% on occlusion trials with four targets (no occlusion trials remained accurate; 83%). This pattern was mirrored in the frequency of rescue saccades. Rescue saccades accompanied approximatlely 50% of the Track 2-3 target occlusions, but only 34% of the Track 4 occlusions. Their frequency also decreased with increasing distance between a target and the nearest other object, suggesting that it is the potential for target confusion that summons a rescue saccade, not occlusion itself. These findings provide evidence for a tracking system that monitors for events that might cause track loss (e.g., occlusions) and requests help from the oculomotor system to resolve these momentary crises. As the number of crises increase with the number of targets, some requests for help go unsatisfied, resulting in degraded tracking.

  12. An adaptive recurrent neural-network controller using a stabilization matrix and predictive inputs to solve a tracking problem under disturbances.

    PubMed

    Fairbank, Michael; Li, Shuhui; Fu, Xingang; Alonso, Eduardo; Wunsch, Donald

    2014-01-01

    We present a recurrent neural-network (RNN) controller designed to solve the tracking problem for control systems. We demonstrate that a major difficulty in training any RNN is the problem of exploding gradients, and we propose a solution to this in the case of tracking problems, by introducing a stabilization matrix and by using carefully constrained context units. This solution allows us to achieve consistently lower training errors, and hence allows us to more easily introduce adaptive capabilities. The resulting RNN is one that has been trained off-line to be rapidly adaptive to changing plant conditions and changing tracking targets. The case study we use is a renewable-energy generator application; that of producing an efficient controller for a three-phase grid-connected converter. The controller we produce can cope with the random variation of system parameters and fluctuating grid voltages. It produces tracking control with almost instantaneous response to changing reference states, and virtually zero oscillation. This compares very favorably to the classical proportional integrator (PI) controllers, which we show produce a much slower response and settling time. In addition, the RNN we propose exhibits better learning stability and convergence properties, and can exhibit faster adaptation, than has been achieved with adaptive critic designs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Vision-Based Leader Vehicle Trajectory Tracking for Multiple Agricultural Vehicles

    PubMed Central

    Zhang, Linhuan; Ahamed, Tofael; Zhang, Yan; Gao, Pengbo; Takigawa, Tomohiro

    2016-01-01

    The aim of this study was to design a navigation system composed of a human-controlled leader vehicle and a follower vehicle. The follower vehicle automatically tracks the leader vehicle. With such a system, a human driver can control two vehicles efficiently in agricultural operations. The tracking system was developed for the leader and the follower vehicle, and control of the follower was performed using a camera vision system. A stable and accurate monocular vision-based sensing system was designed, consisting of a camera and rectangular markers. Noise in the data acquisition was reduced by using the least-squares method. A feedback control algorithm was used to allow the follower vehicle to track the trajectory of the leader vehicle. A proportional–integral–derivative (PID) controller was introduced to maintain the required distance between the leader and the follower vehicle. Field experiments were conducted to evaluate the sensing and tracking performances of the leader-follower system while the leader vehicle was driven at an average speed of 0.3 m/s. In the case of linear trajectory tracking, the RMS errors were 6.5 cm, 8.9 cm and 16.4 cm for straight, turning and zigzag paths, respectively. Again, for parallel trajectory tracking, the root mean square (RMS) errors were found to be 7.1 cm, 14.6 cm and 14.0 cm for straight, turning and zigzag paths, respectively. The navigation performances indicated that the autonomous follower vehicle was able to follow the leader vehicle, and the tracking accuracy was found to be satisfactory. Therefore, the developed leader-follower system can be implemented for the harvesting of grains, using a combine as the leader and an unloader as the autonomous follower vehicle. PMID:27110793

  14. Vision-Based Leader Vehicle Trajectory Tracking for Multiple Agricultural Vehicles.

    PubMed

    Zhang, Linhuan; Ahamed, Tofael; Zhang, Yan; Gao, Pengbo; Takigawa, Tomohiro

    2016-04-22

    The aim of this study was to design a navigation system composed of a human-controlled leader vehicle and a follower vehicle. The follower vehicle automatically tracks the leader vehicle. With such a system, a human driver can control two vehicles efficiently in agricultural operations. The tracking system was developed for the leader and the follower vehicle, and control of the follower was performed using a camera vision system. A stable and accurate monocular vision-based sensing system was designed, consisting of a camera and rectangular markers. Noise in the data acquisition was reduced by using the least-squares method. A feedback control algorithm was used to allow the follower vehicle to track the trajectory of the leader vehicle. A proportional-integral-derivative (PID) controller was introduced to maintain the required distance between the leader and the follower vehicle. Field experiments were conducted to evaluate the sensing and tracking performances of the leader-follower system while the leader vehicle was driven at an average speed of 0.3 m/s. In the case of linear trajectory tracking, the RMS errors were 6.5 cm, 8.9 cm and 16.4 cm for straight, turning and zigzag paths, respectively. Again, for parallel trajectory tracking, the root mean square (RMS) errors were found to be 7.1 cm, 14.6 cm and 14.0 cm for straight, turning and zigzag paths, respectively. The navigation performances indicated that the autonomous follower vehicle was able to follow the leader vehicle, and the tracking accuracy was found to be satisfactory. Therefore, the developed leader-follower system can be implemented for the harvesting of grains, using a combine as the leader and an unloader as the autonomous follower vehicle.

  15. The spacecraft control laboratory experiment optical attitude measurement system

    NASA Technical Reports Server (NTRS)

    Welch, Sharon S.; Montgomery, Raymond C.; Barsky, Michael F.

    1991-01-01

    A stereo camera tracking system was developed to provide a near real-time measure of the position and attitude of the Spacecraft COntrol Laboratory Experiment (SCOLE). The SCOLE is a mockup of the shuttle-like vehicle with an attached flexible mast and (simulated) antenna, and was designed to provide a laboratory environment for the verification and testing of control laws for large flexible spacecraft. Actuators and sensors located on the shuttle and antenna sense the states of the spacecraft and allow the position and attitude to be controlled. The stereo camera tracking system which was developed consists of two position sensitive detector cameras which sense the locations of small infrared LEDs attached to the surface of the shuttle. Information on shuttle position and attitude is provided in six degrees-of-freedom. The design of this optical system, calibration, and tracking algorithm are described. The performance of the system is evaluated for yaw only.

  16. Multileaf collimator tracking integrated with a novel x-ray imaging system and external surrogate monitoring

    NASA Astrophysics Data System (ADS)

    Krauss, Andreas; Fast, Martin F.; Nill, Simeon; Oelfke, Uwe

    2012-04-01

    We have previously developed a tumour tracking system, which adapts the aperture of a Siemens 160 MLC to electromagnetically monitored target motion. In this study, we exploit the use of a novel linac-mounted kilovoltage x-ray imaging system for MLC tracking. The unique in-line geometry of the imaging system allows the detection of target motion perpendicular to the treatment beam (i.e. the directions usually featuring steep dose gradients). We utilized the imaging system either alone or in combination with an external surrogate monitoring system. We equipped a Siemens ARTISTE linac with two flat panel detectors, one directly underneath the linac head for motion monitoring and the other underneath the patient couch for geometric tracking accuracy assessments. A programmable phantom with an embedded metal marker reproduced three patient breathing traces. For MLC tracking based on x-ray imaging alone, marker position was detected at a frame rate of 7.1 Hz. For the combined external and internal motion monitoring system, a total of only 85 x-ray images were acquired prior to or in between the delivery of ten segments of an IMRT beam. External motion was monitored with a potentiometer. A correlation model between external and internal motion was established. The real-time component of the MLC tracking procedure then relied solely on the correlation model estimations of internal motion based on the external signal. Geometric tracking accuracies were 0.6 mm (1.1 mm) and 1.8 mm (1.6 mm) in directions perpendicular and parallel to the leaf travel direction for the x-ray-only (the combined external and internal) motion monitoring system in spite of a total system latency of ˜0.62 s (˜0.51 s). Dosimetric accuracy for a highly modulated IMRT beam-assessed through radiographic film dosimetry-improved substantially when tracking was applied, but depended strongly on the respective geometric tracking accuracy. In conclusion, we have for the first time integrated MLC tracking with x-ray imaging in the in-line geometry and demonstrated highly accurate respiratory motion tracking.

  17. Rapid and Iterative Estimation of Predictions of High School Graduation and Other Milestones

    ERIC Educational Resources Information Center

    Porter, Kristin E.; Balu, Rekha; Gunton, Brad; Pestronk, Jefferson; Cohen, Allison

    2016-01-01

    With the advent of data systems that allow for frequent or even real-time student data updates, and recognition that high school students often can move from being on-track to graduation to off-track in a matter of weeks, indicator analysis alone may not provide a complete picture to guide school leaders' actions. The authors of this paper suggest…

  18. Active MRI tracking for robotic assisted FUS

    NASA Astrophysics Data System (ADS)

    Xiao, Xu; Huang, Zhihong; Melzer, Andreas

    2017-03-01

    MR guided FUS is a noninvasive method producing thermal necrosis at the position of tumors with high accuracy and temperature control. Because the typical size of the ultrasound focus is smaller than the area of interested treatment tissues, focus repositioning become necessary to achieve multiple sonications to cover the whole targeted area. Using MR compatible mechanical actuators could help the ultrasound beam to reach a wider treatment range than using electrical beam steering technique and more flexibility in position the transducer. An active MR tracking technique was combined into the MRgFUS system to help locating the position of the mechanical actuator and the FUS transducer. For this study, a precise agar reference model was designed and fabricated to test the performance of the active tracking technique when it was used on the MR-compatible robotics InnoMotion™ (IBSMM, Engineering spol. s r.o. / Ltd, Czech Republic). The precision, tracking range and positioning speed of the combined robotic FUS system were evaluated in this study. Compared to the existing MR guided HIFU systems, the combined robotic system with active tracking techniques provides a potential that allows the FUS treatment to operate in a larger spatial range and with a faster speed, which is one of the main challenges for organ motion tracking.

  19. OpenControl: a free opensource software for video tracking and automated control of behavioral mazes.

    PubMed

    Aguiar, Paulo; Mendonça, Luís; Galhardo, Vasco

    2007-10-15

    Operant animal behavioral tests require the interaction of the subject with sensors and actuators distributed in the experimental environment of the arena. In order to provide user independent reliable results and versatile control of these devices it is vital to use an automated control system. Commercial systems for control of animal mazes are usually based in software implementations that restrict their application to the proprietary hardware of the vendor. In this paper we present OpenControl: an opensource Visual Basic software that permits a Windows-based computer to function as a system to run fully automated behavioral experiments. OpenControl integrates video-tracking of the animal, definition of zones from the video signal for real-time assignment of animal position in the maze, control of the maze actuators from either hardware sensors or from the online video tracking, and recording of experimental data. Bidirectional communication with the maze hardware is achieved through the parallel-port interface, without the need for expensive AD-DA cards, while video tracking is attained using an inexpensive Firewire digital camera. OpenControl Visual Basic code is structurally general and versatile allowing it to be easily modified or extended to fulfill specific experimental protocols and custom hardware configurations. The Visual Basic environment was chosen in order to allow experimenters to easily adapt the code and expand it at their own needs.

  20. A micro-fluidic treadmill for observing suspended plankton in the lab

    NASA Astrophysics Data System (ADS)

    Jaffe, J. S.; Laxton, B.; Garwood, J. C.; Franks, P. J. S.; Roberts, P. L.

    2016-02-01

    A significant obstacle to laboratory studies of interactions between small organisms ( mm) and their fluid environment is our ability to obtain high-resolution images while allowing freedom of motion. This is because as the organisms sink, they will often move out of the field of view of the observation system. One solution to this problem is to impose a water circulation pattern that preserves their location relative to the camera system while imaging the organisms away from the glass walls. To accomplish this we have designed and created a plankton treadmill. Our computer-controlled system consists of a digital video camera attached to a macro or microscope and a micro-fluidic pump whose flow is regulated to maintain a suspended organism's position relative to the field of view. Organisms are detected and tracked in real time in the video frames, allowing a control algorithm to compensate for any vertical movement by adjusting the flow. The flow control can be manually adjusted using on-screen controls, semi-automatically adjusted to allow the user to select a particular organism to be tracked or fully automatic through the use of classification and tracking algorithms. Experiments with a simple cm-sized cuvette and a number of organisms that are both positively and negatively buoyant have demonstrated the success of the system in permitting longer observation times than would be possible in the absence of a controlled-flow environment. The subjects were observed using a new dual-view, holographic imaging system that provides 3-dimensional microscopic observations with relatively isotropic resolution. We will present the system design, construction, the control algorithm, and some images obtained with the holographic system, demonstrating its effectiveness. Small particles seeded into the flow clearly show the 3D flow fields around the subjects as they freely sink or swim.

  1. Tangible display systems: bringing virtual surfaces into the real world

    NASA Astrophysics Data System (ADS)

    Ferwerda, James A.

    2012-03-01

    We are developing tangible display systems that enable natural interaction with virtual surfaces. Tangible display systems are based on modern mobile devices that incorporate electronic image displays, graphics hardware, tracking systems, and digital cameras. Custom software allows the orientation of a device and the position of the observer to be tracked in real-time. Using this information, realistic images of surfaces with complex textures and material properties illuminated by environment-mapped lighting, can be rendered to the screen at interactive rates. Tilting or moving in front of the device produces realistic changes in surface lighting and material appearance. In this way, tangible displays allow virtual surfaces to be observed and manipulated as naturally as real ones, with the added benefit that surface geometry and material properties can be modified in real-time. We demonstrate the utility of tangible display systems in four application areas: material appearance research; computer-aided appearance design; enhanced access to digital library and museum collections; and new tools for digital artists.

  2. Irradiation control parameters for computer-assisted laser photocoagulation of the retina

    NASA Astrophysics Data System (ADS)

    Naess, Espen; Molvik, Torstein; Barrett, Steven F.; Wright, Cameron H. G.; de Graaf, Peter W.

    2001-06-01

    A system for robotically assisted retinal surgery has been developed to rapidly and safely place lesions on the retina for photocoagulation therapy. This system provides real- time, motion stabilized lesion placement for typical irradiation times of 100 ms. The system consists of three main subsystems: a global, digital-based tracking subsystem; a fast, local analog tracking subsystem; and a confocal reflectance subsystem to control lesion parameters dynamically. We have reported on these subsystems in previous SPIE presentations. This paper concentrates on the development of the second hybrid system prototype. Considerable progress has been made toward reducing the footprint of the optical system, simplifying the user interface, fully characterizing the analog tracking system and using measurable lesion reflectance growth parameters to develop a noninvasive method to infer lesion depth. This method will allow dynamic control of laser dosimetry to provide similar lesions across the non-uniform retinal surface. These system improvements and progress toward a clinically significant system are covered in detail within this paper.

  3. Light-induced radical formation and isomerization of an aromatic thiol in solution followed by time-resolved x-ray absorption spectroscopy at the sulfur K-edge

    DOE PAGES

    Ochmann, Miguel; von Ahnen, Inga; Cordones, Amy A.; ...

    2017-02-20

    Here, we applied time-resolved sulfur-1s absorption spectroscopy to a model aromatic thiol system as a promising method for tracking chemical reactions in solution. Sulfur-1s absorption spectroscopy allows tracking multiple sulfur species with a time resolution of ~70 ps at synchrotron radiation facilities. Experimental transient spectra combined with high-level electronic structure theory allow identification of a radical and two thione isomers, which are generated upon illumination with 267 nm radiation. Moreover, the regioselectivity of the thione isomerization is explained by the resulting radical frontier orbitals. This work demonstrates the usefulness and potential of time-resolved sulfur-1s absorption spectroscopy for tracking multiple chemicalmore » reaction pathways and transient products of sulfur-containing molecules in solution.« less

  4. Light-induced radical formation and isomerization of an aromatic thiol in solution followed by time-resolved x-ray absorption spectroscopy at the sulfur K-edge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ochmann, Miguel; von Ahnen, Inga; Cordones, Amy A.

    Here, we applied time-resolved sulfur-1s absorption spectroscopy to a model aromatic thiol system as a promising method for tracking chemical reactions in solution. Sulfur-1s absorption spectroscopy allows tracking multiple sulfur species with a time resolution of ~70 ps at synchrotron radiation facilities. Experimental transient spectra combined with high-level electronic structure theory allow identification of a radical and two thione isomers, which are generated upon illumination with 267 nm radiation. Moreover, the regioselectivity of the thione isomerization is explained by the resulting radical frontier orbitals. This work demonstrates the usefulness and potential of time-resolved sulfur-1s absorption spectroscopy for tracking multiple chemicalmore » reaction pathways and transient products of sulfur-containing molecules in solution.« less

  5. A robust and non-obtrusive automatic event tracking system for operating room management to improve patient care.

    PubMed

    Huang, Albert Y; Joerger, Guillaume; Salmon, Remi; Dunkin, Brian; Sherman, Vadim; Bass, Barbara L; Garbey, Marc

    2016-08-01

    Optimization of OR management is a complex problem as each OR has different procedures throughout the day inevitably resulting in scheduling delays, variations in time durations and overall suboptimal performance. There exists a need for a system that automatically tracks procedural progress in real time in the OR. This would allow for efficient monitoring of operating room states and target sources of inefficiency and points of improvement. We placed three wireless sensors (floor-mounted pressure sensor, ventilator-mounted bellows motion sensor and ambient light detector, and a general room motion detector) in two ORs at our institution and tracked cases 24 h a day for over 4 months. We collected data on 238 total cases (107 laparoscopic cases). A total of 176 turnover times were also captured, and we found that the average turnover time between cases was 35 min while the institutional goal was 30 min. Deeper examination showed that 38 % of laparoscopic cases had some aspect of suboptimal activity with the time between extubation and patient exiting the OR being the biggest contributor (16 %). Our automated system allows for robust, wireless real-time OR monitoring as well as data collection and retrospective data analyses. We plan to continue expanding our system and to project the data in real time for all OR personnel to see. At the same time, we plan on adding key pieces of technology such as RFID and other radio-frequency systems to track patients and physicians to further increase efficiency and patient safety.

  6. Detection of pointing errors with CMOS-based camera in intersatellite optical communications

    NASA Astrophysics Data System (ADS)

    Yu, Si-yuan; Ma, Jing; Tan, Li-ying

    2005-01-01

    For very high data rates, intersatellite optical communications hold a potential performance edge over microwave communications. Acquisition and Tracking problem is critical because of the narrow transmit beam. A single array detector in some systems performs both spatial acquisition and tracking functions to detect pointing errors, so both wide field of view and high update rate is required. The past systems tend to employ CCD-based camera with complex readout arrangements, but the additional complexity reduces the applicability of the array based tracking concept. With the development of CMOS array, CMOS-based cameras can employ the single array detector concept. The area of interest feature of the CMOS-based camera allows a PAT system to specify portion of the array. The maximum allowed frame rate increases as the size of the area of interest decreases under certain conditions. A commercially available CMOS camera with 105 fps @ 640×480 is employed in our PAT simulation system, in which only part pixels are used in fact. Beams angle varying in the field of view can be detected after getting across a Cassegrain telescope and an optical focus system. Spot pixel values (8 bits per pixel) reading out from CMOS are transmitted to a DSP subsystem via IEEE 1394 bus, and pointing errors can be computed by the centroid equation. It was shown in test that: (1) 500 fps @ 100×100 is available in acquisition when the field of view is 1mrad; (2)3k fps @ 10×10 is available in tracking when the field of view is 0.1mrad.

  7. SU-F-T-100: Development and Implementation of a Treatment Planning Tracking System Into the Radiation Oncology Clinic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kabat, C; Cline, K; Li, Y

    Purpose: With increasing numbers of cancer patients being diagnosed and the complexity of radiotherapy treatments rising it’s paramount that patient plan development continues to stay fluid within the clinic. In order to maintain a high standard of care and clinical efficiency the establishment of a tracking system for patient plan development allows healthcare providers to view real time plan progression and drive clinical workflow. In addition, it provides statistical datasets which can further identify inefficiencies within the clinic. Methods: An application was developed utilizing Microsoft’s ODBC SQL database engine to track patient plan status throughout the treatment planning process whilemore » also managing key factors pertaining to the patient’s treatment. Pertinent information is accessible to staff in many locations, including tracking monitors within dosimetry, the clinic network for both computers and handheld devices, and through email notifications. Plans are initiated with a CT and continually tracked through planning stages until final approval by staff. Patient’s status is dynamically updated by the physicians, dosimetrists, and medical physicists based on the stage of the patient’s plan. Results: Our application has been running over a six month period with all patients being processed through the system. Modifications have been made to allow for new features to be implemented along with additional tracking parameters. Based on in-house feedback, the application has been supportive in streamlining patient plans through the treatment planning process and data has been accumulating to further improve procedures within the clinic. Conclusion: Over time the clinic will continue to track data with this application. As data accumulates the clinic will be able to highlight inefficiencies within the workflow and adapt accordingly. We will add in new features to help support the treatment planning process in the future.« less

  8. Phytotracker, an information management system for easy recording and tracking of plants, seeds and plasmids

    PubMed Central

    2012-01-01

    Background A large number of different plant lines are produced and maintained in a typical plant research laboratory, both as seed stocks and in active growth. These collections need careful and consistent management to track and maintain them properly, and this is a particularly pressing issue in laboratories undertaking research involving genetic manipulation due to regulatory requirements. Researchers and PIs need to access these data and collections, and therefore an easy-to-use plant-oriented laboratory information management system that implements, maintains and displays the information in a simple and visual format would be of great help in both the daily work in the lab and in ensuring regulatory compliance. Results Here, we introduce ‘Phytotracker’, a laboratory management system designed specifically to organise and track plasmids, seeds and growing plants that can be used in mixed platform environments. Phytotracker is designed with simplicity of user operation and ease of installation and management as the major factor, whilst providing tracking tools that cover the full range of activities in molecular genetics labs. It utilises the cross-platform Filemaker relational database, which allows it to be run as a stand-alone or as a server-based networked solution available across all workstations in a lab that can be internet accessible if desired. It can also be readily modified or customised further. Phytotracker provides cataloguing and search functions for plasmids, seed batches, seed stocks and plants growing in pots or trays, and allows tracking of each plant from seed sowing, through harvest to the new seed batch and can print appropriate labels at each stage. The system enters seed information as it is transferred from the previous harvest data, and allows both selfing and hybridization (crossing) to be defined and tracked. Transgenic lines can be linked to their plasmid DNA source. This ease of use and flexibility helps users to reduce their time needed to organise their plants, seeds and plasmids and to maintain laboratory continuity involving multiple workers. Conclusion We have developed and used Phytotracker for over five years and have found it has been an intuitive, powerful and flexible research tool in organising our plasmid, seed and plant collections requiring minimal maintenance and training for users. It has been developed in an Arabidopsis molecular genetics environment, but can be readily adapted for almost any plant laboratory research. PMID:23062011

  9. Phytotracker, an information management system for easy recording and tracking of plants, seeds and plasmids.

    PubMed

    Nieuwland, Jeroen; Sornay, Emily; Marchbank, Angela; de Graaf, Barend Hj; Murray, James Ah

    2012-10-13

    A large number of different plant lines are produced and maintained in a typical plant research laboratory, both as seed stocks and in active growth. These collections need careful and consistent management to track and maintain them properly, and this is a particularly pressing issue in laboratories undertaking research involving genetic manipulation due to regulatory requirements. Researchers and PIs need to access these data and collections, and therefore an easy-to-use plant-oriented laboratory information management system that implements, maintains and displays the information in a simple and visual format would be of great help in both the daily work in the lab and in ensuring regulatory compliance. Here, we introduce 'Phytotracker', a laboratory management system designed specifically to organise and track plasmids, seeds and growing plants that can be used in mixed platform environments. Phytotracker is designed with simplicity of user operation and ease of installation and management as the major factor, whilst providing tracking tools that cover the full range of activities in molecular genetics labs. It utilises the cross-platform Filemaker relational database, which allows it to be run as a stand-alone or as a server-based networked solution available across all workstations in a lab that can be internet accessible if desired. It can also be readily modified or customised further. Phytotracker provides cataloguing and search functions for plasmids, seed batches, seed stocks and plants growing in pots or trays, and allows tracking of each plant from seed sowing, through harvest to the new seed batch and can print appropriate labels at each stage. The system enters seed information as it is transferred from the previous harvest data, and allows both selfing and hybridization (crossing) to be defined and tracked. Transgenic lines can be linked to their plasmid DNA source. This ease of use and flexibility helps users to reduce their time needed to organise their plants, seeds and plasmids and to maintain laboratory continuity involving multiple workers. We have developed and used Phytotracker for over five years and have found it has been an intuitive, powerful and flexible research tool in organising our plasmid, seed and plant collections requiring minimal maintenance and training for users. It has been developed in an Arabidopsis molecular genetics environment, but can be readily adapted for almost any plant laboratory research.

  10. Integrating different tracking systems in football: multiple camera semi-automatic system, local position measurement and GPS technologies.

    PubMed

    Buchheit, Martin; Allen, Adam; Poon, Tsz Kit; Modonutti, Mattia; Gregson, Warren; Di Salvo, Valter

    2014-12-01

    Abstract During the past decade substantial development of computer-aided tracking technology has occurred. Therefore, we aimed to provide calibration equations to allow the interchangeability of different tracking technologies used in soccer. Eighty-two highly trained soccer players (U14-U17) were monitored during training and one match. Player activity was collected simultaneously with a semi-automatic multiple-camera (Prozone), local position measurement (LPM) technology (Inmotio) and two global positioning systems (GPSports and VX). Data were analysed with respect to three different field dimensions (small, <30 m 2 to full-pitch, match). Variables provided by the systems were compared, and calibration equations (linear regression models) between each system were calculated for each field dimension. Most metrics differed between the 4 systems with the magnitude of the differences dependant on both pitch size and the variable of interest. Trivial-to-small between-system differences in total distance were noted. However, high-intensity running distance (>14.4 km · h -1 ) was slightly-to-moderately greater when tracked with Prozone, and accelerations, small-to-very largely greater with LPM. For most of the equations, the typical error of the estimate was of a moderate magnitude. Interchangeability of the different tracking systems is possible with the provided equations, but care is required given their moderate typical error of the estimate.

  11. 40 CFR 96.255 - Banking.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS CAIR SO2 Allowance Tracking System § 96.255 Banking. (a) CAIR SO2 allowances may be banked for future use or transfer in a compliance account or a general account in accordance with paragraph (b) of this section. (b) Any CAIR SO2...

  12. 40 CFR 97.254 - Compliance with CAIR SO2 emissions limitation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Compliance with CAIR SO2 emissions... PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS CAIR SO2 Allowance Tracking System § 97.254 Compliance with CAIR SO2 emissions limitation. (a) Allowance transfer...

  13. 40 CFR 96.257 - Closing of general accounts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS CAIR SO2 Allowance Tracking System § 96.257 Closing of general accounts. (a) The CAIR authorized..., which shall include a correctly submitted allowance transfer under §§ 96.260 and 96.261 for any CAIR SO2...

  14. Tracking and data relay satellite fault isolation and correction using PACES: Power and attitude control expert system

    NASA Technical Reports Server (NTRS)

    Erikson, Carol-Lee; Hooker, Peggy

    1989-01-01

    The Power and Attitude Control Expert System (PACES) is an object oriented and rule based expert system which provides spacecraft engineers with assistance in isolating and correcting problems within the Power and Attitude Control Subsystems of the Tracking and Data Relay Satellites (TDRS). PACES is designed to act in a consultant role. It will not interface to telemetry data, thus preserving full operator control over spacecraft operations. The spacecraft engineer will input requested information. This information will include telemetry data, action being performed, problem characteristics, spectral characteristics, and judgments of spacecraft functioning. Questions are answered either by clicking on appropriate responses (for text), or entering numeric values. A context sensitive help facility allows access to additional information when the user has difficulty understanding a question or deciding on an answer. The major functionality of PACES is to act as a knowledge rich system which includes block diagrams, text, and graphics, linked using hypermedia techniques. This allows easy movement among pieces of the knowledge. Considerable documentation of the spacecraft Power and Attitude Control Subsystems is embedded within PACES. The development phase of TDRSS expert system technology is intended to provide NASA with the necessary expertise and capability to define requirements, evaluate proposals, and monitor the development progress of a highly competent expert system for NASA's Tracking and Data Relay Satellite Program.

  15. Tracking Global Fund HIV/AIDS resources used for sexual and reproductive health service integration: case study from Ethiopia.

    PubMed

    Mookherji, Sangeeta; Ski, Samantha; Huntington, Dale

    2015-05-27

    The Global Fund to Fight AIDS, Tuberculosis & Malaria (GF) strives for high value for money, encouraging countries to integrate synergistic services and systems strengthening to maximize investments. The GF needs to show how, and how much, its grants support more than just HIV/AIDS, TB and malaria. Sexual and Reproductive Health (SRH) has been part of HIV/AIDS grants since 2007. Previous studies showed the GF PBF system does not allow resource tracking for SRH integration within HIV/AIDS grants. We present findings from a resource tracking case study using primary data collected at country level. Ethiopia was the study site. We reviewed data from four HIV/AIDS grants from January 2009-June 2011 and categorized SDAs and activities as directly, indirectly, or not related to SRH integration. Data included: GF PBF data; financial, performance, in-depth interview and facility observation data from Ethiopia. All HIV/AIDS grants in Ethiopia support SRH integration activities (12-100%). Using activities within SDAs, expenditures directly supporting SRH integration increased from 25% to 66% for the largest HIV/AIDS grant, and from 21% to 34% for the smaller PMTCT-focused grant. Using SDAs to categorize expenditures underestimated direct investments in SRH integration; activity-based categorization is more accurate. The important finding is that primary data collection could not resolve the limitations in using GF GPR data for resource tracking. The remedy is to require existing activity-based budgets and expenditure reports as part of PBF reporting requirements, and make them available in the grant portfolio database. The GF should do this quickly, as it is a serious shortfall in the GF guiding principle of transparency. Showing high value for money is important for maximizing impact and replenishments. The Global Fund should routinely track HIV/AIDs grant expenditures to disease control, service integration, and overall health systems strengthening. The current PBF system will not allow this. Real-time expenditure analysis could be achieved by integrating existing activity-based financial data into the routine PBF system. The GF's New Funding Model and the 2012-2016 strategy present good opportunities for over-hauling the PBF system to improve transparency and allow the GF to monitor and maximize value for money.

  16. Implementation and evaluation of a web based system for pharmacy stock management in rural Haiti.

    PubMed

    Berger, Elisabeth J; Jazayeri, Darius; Sauveur, Marcel; Manasse, Jean Joel; Plancher, Inel; Fiefe, Marquise; Laurat, Guerline; Joseph, Samahel; Kempton, Kathryn; Fraser, Hamish S F

    2007-10-11

    Managing the stock and supply of medication is essential for the provision of health care, especially in resource poor areas of the world. We have developed an innovative, web-based stock management system to support nine clinics in rural Haiti. Building on our experience with a web-based EMR system for our HIV patients, we developed a comprehensive stock tracking system that is modeled on the appearance of standardized WHO stock cards. The system allows pharmacy staff at all clinics to enter stock levels and also to request drugs and track shipments. Use of the system over the last 2 years has increased rapidly and we now track 450 products supporting care for 1.78 million patient visits annually. Over the last year drug stockouts have fallen from 2.6% to 1.1% and 97% of stock requests delivered were shipped within 1 day. We are now setting up this system in our clinics in rural Rwanda.

  17. Vital signs monitoring and patient tracking over a wireless network.

    PubMed

    Gao, Tia; Greenspan, Dan; Welsh, Matt; Juang, Radford; Alm, Alex

    2005-01-01

    Patients at a disaster scene can greatly benefit from technologies that continuously monitor their vital status and track their locations until they are admitted to the hospital. We have designed and developed a real-time patient monitoring system that integrates vital signs sensors, location sensors, ad-hoc networking, electronic patient records, and web portal technology to allow remote monitoring of patient status. This system shall facilitate communication between providers at the disaster scene, medical professionals at local hospitals, and specialists available for consultation from distant facilities.

  18. Novel laser communications transceiver with internal gimbal-less pointing and tracking

    NASA Astrophysics Data System (ADS)

    Chalfant, Charles H., III; Orlando, Fred J., Jr.; Gregory, Jeff T.; Sulham, Clifford; O'Neal, Chad B.; Taylor, Geoffrey W.; Craig, Douglas M.; Foshee, James J.; Lovett, J. Timothy

    2002-12-01

    This paper describes a novel laser communications transceiver for use in multi-platform satellite networks or clusters that provides internal pointing and tracking technique allowing static mounting of the transceiver subsystems and minimal use of mechanical stabilization techniques. This eliminates the need for the large, power hungry, mechanical gimbals that are required for laser cross-link pointing, acquisition and tracking. The miniature transceiver is designed for pointing accuracies required for satellite cross-link distances of between 500 meters to 5000 meters. Specifically, the designs are targeting Air Force Research Lab's TechSat21 Program, although alternative transceiver configurations can provide for much greater link distances and other satellite systems. The receiver and transmitter are connected via fiber optic cabling from a separate electronics subsystem containing the optoelectronics PCBs, thereby eliminating active optoelectronic elements from the transceiver's mechanical housing. The internal acquisition and tracking capability is provided by an advanced micro-electro-mechanical system (MEMS) and an optical design that provides a specific field-of-view based on the satellite cluster's interface specifications. The acquisition & tracking control electronics will utilize conventional closed loop tracking techniques. The link optical power budget and optoelectronics designs allow use of transmitter sources with output powers of near 100 mW. The transceiver will provide data rates of up to 2.5 Gbps and operate at either 1310 nm or 1550 nm. In addition to space-based satellite to satellite cross-links, we are planning to develop a broad range of applications including air to air communications between highly mobile airborne platforms and terrestrial fixed point to point communications.

  19. 40 CFR 60.4151 - Establishment of accounts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Coal-Fired Electric Steam Generating Units Hg Allowance Tracking System § 60.4151 Establishment of... obligation to review or evaluate the sufficiency of such documents, if submitted. (2) Authorization of Hg...

  20. New Finite Element/Multibody System Algorithm for Modeling Flexible Tracked Vehicles

    DTIC Science & Technology

    2011-08-01

    U.S. Army RDECOM-TARDEC & 2 University of Illinois at Chicago ABSTRACT The dynamic simulation of multibody tracked vehicles offers engineers a...bodies. Then in a follow-on structural analysis, the loads from the multibody dynamic simulation are input to calculate strains and stresses within the...multibody dynamic simulation environment allowing for an integrated solution. In addition, a new formulation for the interaction between the rigid sprocket

  1. RPC based 5D tracking concept for high multiplicity tracking trigger

    NASA Astrophysics Data System (ADS)

    Aielli, G.; Camarri, P.; Cardarelli, R.; Di Ciaccio, A.; Distante, L.; Liberti, B.; Paolozzi, L.; Pastori, E.; Santonico, R.

    2017-01-01

    The recently approved High Luminosity LHC project (HL-LHC) and the future colliders proposals present a challenging experimental scenario, dominated by high pileup, radiation background and a bunch crossing time possibly shorter than 5 ns. This holds as well for muon systems, where RPCs can play a fundamental role in the design of the future experiments. The RPCs, thanks to their high space-time granularity, allows a sparse representation of the particle hits, in a very large parametric space containing, in addition to 3D spatial localization, also the pulse time and width associated to the avalanche charge. This 5D representation of the hits can be exploited to improve the performance of complex detectors such as muon systems and increase the discovery potential of a future experiment, by allowing a better track pileup rejection and sharper momentum resolution, an effective measurement of the particle velocity, to tag and trigger the non-ultrarelativistic particles, and the detection local multiple track events in close proximity without ambiguities. Moreover, due to the fast response, typically for RPCs of the order of a few ns, this information can be provided promptly to the lowest level trigger. We will discus theoretically and experimentally the principles and performance of this original method.

  2. A tracking system for laboratory mice to support medical researchers in behavioral analysis.

    PubMed

    Macrì, S; Mainetti, L; Patrono, L; Pieretti, S; Secco, A; Sergi, I

    2015-08-01

    The behavioral analysis of laboratory mice plays a key role in several medical and scientific research areas, such as biology, toxicology, pharmacology, and so on. Important information on mice behavior and their reaction to a particular stimulus is deduced from a careful analysis of their movements. Moreover, behavioral analysis of genetically modified mice allows obtaining important information about particular genes, phenotypes or drug effects. The techniques commonly adopted to support such analysis have many limitations, which make the related systems particularly ineffective. Currently, the engineering community is working to explore innovative identification and sensing technologies to develop new tracking systems able to guarantee benefits to animals' behavior analysis. This work presents a tracking solution based on passive Radio Frequency Identification Technology (RFID) in Ultra High Frequency (UHF) band. Much emphasis is given to the software component of the system, based on a Web-oriented solution, able to process the raw tracking data coming from a hardware system, and offer 2D and 3D tracking information as well as reports and dashboards about mice behavior. The system has been widely tested using laboratory mice and compared with an automated video-tracking software (i.e., EthoVision). The obtained results have demonstrated the effectiveness and reliability of the proposed solution, which is able to correctly detect the events occurring in the animals' cage, and to offer a complete and user-friendly tool to support researchers in behavioral analysis of laboratory mice.

  3. Automatic neutron dosimetry system based on fluorescent nuclear track detector technology.

    PubMed

    Akselrod, M S; Fomenko, V V; Bartz, J A; Haslett, T L

    2014-10-01

    For the first time, the authors are describing an automatic fluorescent nuclear track detector (FNTD) reader for neutron dosimetry. FNTD is a luminescent integrating type of detector made of aluminium oxide crystals that does not require electronics or batteries during irradiation. Non-destructive optical readout of the detector is performed using a confocal laser scanning fluorescence imaging with near-diffraction limited resolution. The fully automatic table-top reader allows one to load up to 216 detectors on a tray, read their engraved IDs using a CCD camera and optical character recognition, scan and process simultaneously two types of images in fluorescent and reflected laser light contrast to eliminate false-positive tracks related to surface and volume crystal imperfections. The FNTD dosimetry system allows one to measure neutron doses from 0.1 mSv to 20 Sv and covers neutron energies from thermal to 20 MeV. The reader is characterised by a robust, compact optical design, fast data processing electronics and user-friendly software. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. The Inherent Limitations of Spacepower: Fact or Fiction?

    DTIC Science & Technology

    1995-01-01

    advantageously to affect near-earth space, as well as the Earth, itself. These are termed the libration points . Collins writes: The five so-called libration ... Libration points allow for little or no energy expense for station keeping, while operating from atop the "gravity well" allows for high potential energy...navigation, communica- tions, earth resources, lift orbit transfer , and tracking and control systems. Integrating many aspects of these systems to serve both

  5. Efficient Sample Tracking With OpenLabFramework

    PubMed Central

    List, Markus; Schmidt, Steffen; Trojnar, Jakub; Thomas, Jochen; Thomassen, Mads; Kruse, Torben A.; Tan, Qihua; Baumbach, Jan; Mollenhauer, Jan

    2014-01-01

    The advance of new technologies in biomedical research has led to a dramatic growth in experimental throughput. Projects therefore steadily grow in size and involve a larger number of researchers. Spreadsheets traditionally used are thus no longer suitable for keeping track of the vast amounts of samples created and need to be replaced with state-of-the-art laboratory information management systems. Such systems have been developed in large numbers, but they are often limited to specific research domains and types of data. One domain so far neglected is the management of libraries of vector clones and genetically engineered cell lines. OpenLabFramework is a newly developed web-application for sample tracking, particularly laid out to fill this gap, but with an open architecture allowing it to be extended for other biological materials and functional data. Its sample tracking mechanism is fully customizable and aids productivity further through support for mobile devices and barcoded labels. PMID:24589879

  6. 40 CFR 60.4154 - Compliance with Hg budget emissions limitation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Times for Coal-Fired Electric Steam Generating Units Hg Allowance Tracking System § 60.4154 Compliance.... (f) Administrator's action on submissions. (1) The Administrator may review and conduct independent...

  7. 40 CFR 60.4154 - Compliance with Hg budget emissions limitation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Times for Coal-Fired Electric Steam Generating Units Hg Allowance Tracking System § 60.4154 Compliance.... (f) Administrator's action on submissions. (1) The Administrator may review and conduct independent...

  8. Improved relocatable over-the-horizon radar detection and tracking using the maximum likelihood adaptive neural system algorithm

    NASA Astrophysics Data System (ADS)

    Perlovsky, Leonid I.; Webb, Virgil H.; Bradley, Scott R.; Hansen, Christopher A.

    1998-07-01

    An advanced detection and tracking system is being developed for the U.S. Navy's Relocatable Over-the-Horizon Radar (ROTHR) to provide improved tracking performance against small aircraft typically used in drug-smuggling activities. The development is based on the Maximum Likelihood Adaptive Neural System (MLANS), a model-based neural network that combines advantages of neural network and model-based algorithmic approaches. The objective of the MLANS tracker development effort is to address user requirements for increased detection and tracking capability in clutter and improved track position, heading, and speed accuracy. The MLANS tracker is expected to outperform other approaches to detection and tracking for the following reasons. It incorporates adaptive internal models of target return signals, target tracks and maneuvers, and clutter signals, which leads to concurrent clutter suppression, detection, and tracking (track-before-detect). It is not combinatorial and thus does not require any thresholding or peak picking and can track in low signal-to-noise conditions. It incorporates superresolution spectrum estimation techniques exceeding the performance of conventional maximum likelihood and maximum entropy methods. The unique spectrum estimation method is based on the Einsteinian interpretation of the ROTHR received energy spectrum as a probability density of signal frequency. The MLANS neural architecture and learning mechanism are founded on spectrum models and maximization of the "Einsteinian" likelihood, allowing knowledge of the physical behavior of both targets and clutter to be injected into the tracker algorithms. The paper describes the addressed requirements and expected improvements, theoretical foundations, engineering methodology, and results of the development effort to date.

  9. Human Mobility Monitoring in Very Low Resolution Visual Sensor Network

    PubMed Central

    Bo Bo, Nyan; Deboeverie, Francis; Eldib, Mohamed; Guan, Junzhi; Xie, Xingzhe; Niño, Jorge; Van Haerenborgh, Dirk; Slembrouck, Maarten; Van de Velde, Samuel; Steendam, Heidi; Veelaert, Peter; Kleihorst, Richard; Aghajan, Hamid; Philips, Wilfried

    2014-01-01

    This paper proposes an automated system for monitoring mobility patterns using a network of very low resolution visual sensors (30 × 30 pixels). The use of very low resolution sensors reduces privacy concern, cost, computation requirement and power consumption. The core of our proposed system is a robust people tracker that uses low resolution videos provided by the visual sensor network. The distributed processing architecture of our tracking system allows all image processing tasks to be done on the digital signal controller in each visual sensor. In this paper, we experimentally show that reliable tracking of people is possible using very low resolution imagery. We also compare the performance of our tracker against a state-of-the-art tracking method and show that our method outperforms. Moreover, the mobility statistics of tracks such as total distance traveled and average speed derived from trajectories are compared with those derived from ground truth given by Ultra-Wide Band sensors. The results of this comparison show that the trajectories from our system are accurate enough to obtain useful mobility statistics. PMID:25375754

  10. Feasibility of a walking virtual reality system for rehabilitation: objective and subjective parameters.

    PubMed

    Borrego, Adrián; Latorre, Jorge; Llorens, Roberto; Alcañiz, Mariano; Noé, Enrique

    2016-08-09

    Even though virtual reality (VR) is increasingly used in rehabilitation, the implementation of walking navigation in VR still poses a technological challenge for current motion tracking systems. Different metaphors simulate locomotion without involving real gait kinematics, which can affect presence, orientation, spatial memory and cognition, and even performance. All these factors can dissuade their use in rehabilitation. We hypothesize that a marker-based head tracking solution would allow walking in VR with high sense of presence and without causing sickness. The objectives of this study were to determine the accuracy, the jitter, and the lag of the tracking system and its elicited sickness and presence in comparison of a CAVE system. The accuracy and the jitter around the working area at three different heights and the lag of the head tracking system were analyzed. In addition, 47 healthy subjects completed a search task that involved navigation in the walking VR system and in the CAVE system. Navigation was enabled by natural locomotion in the walking VR system and through a specific device in the CAVE system. An HMD was used as display in the walking VR system. After interacting with each system, subjects rated their sickness in a seven-point scale and their presence in the Slater-Usoh-Steed Questionnaire and a modified version of the Presence Questionnaire. Better performance was registered at higher heights, where accuracy was less than 0.6 cm and the jitter was about 6 mm. The lag of the system was 120 ms. Participants reported that both systems caused similar low levels of sickness (about 2.4 over 7). However, ratings showed that the walking VR system elicited higher sense of presence than the CAVE system in both the Slater-Usoh-Steed Questionnaire (17.6 ± 0.3 vs 14.6 ± 0.6 over 21, respectively) and the modified Presence Questionnaire (107.4 ± 2.0 vs 93.5 ± 3.2 over 147, respectively). The marker-based solution provided accurate, robust, and fast head tracking to allow navigation in the VR system by walking without causing relevant sickness and promoting higher sense of presence than CAVE systems, thus enabling natural walking in full-scale environments, which can enhance the ecological validity of VR-based rehabilitation applications.

  11. Multi-modal imaging, model-based tracking, and mixed reality visualisation for orthopaedic surgery

    PubMed Central

    Fuerst, Bernhard; Tateno, Keisuke; Johnson, Alex; Fotouhi, Javad; Osgood, Greg; Tombari, Federico; Navab, Nassir

    2017-01-01

    Orthopaedic surgeons are still following the decades old workflow of using dozens of two-dimensional fluoroscopic images to drill through complex 3D structures, e.g. pelvis. This Letter presents a mixed reality support system, which incorporates multi-modal data fusion and model-based surgical tool tracking for creating a mixed reality environment supporting screw placement in orthopaedic surgery. A red–green–blue–depth camera is rigidly attached to a mobile C-arm and is calibrated to the cone-beam computed tomography (CBCT) imaging space via iterative closest point algorithm. This allows real-time automatic fusion of reconstructed surface and/or 3D point clouds and synthetic fluoroscopic images obtained through CBCT imaging. An adapted 3D model-based tracking algorithm with automatic tool segmentation allows for tracking of the surgical tools occluded by hand. This proposed interactive 3D mixed reality environment provides an intuitive understanding of the surgical site and supports surgeons in quickly localising the entry point and orienting the surgical tool during screw placement. The authors validate the augmentation by measuring target registration error and also evaluate the tracking accuracy in the presence of partial occlusion. PMID:29184659

  12. Object acquisition and tracking for space-based surveillance

    NASA Astrophysics Data System (ADS)

    1991-11-01

    This report presents the results of research carried out by Space Computer Corporation under the U.S. government's Small Business Innovation Research (SBIR) Program. The work was sponsored by the Strategic Defense Initiative Organization and managed by the Office of Naval Research under Contracts N00014-87-C-0801 (Phase 1) and N00014-89-C-0015 (Phase 2). The basic purpose of this research was to develop and demonstrate a new approach to the detection of, and initiation of track on, moving targets using data from a passive infrared or visual sensor. This approach differs in very significant ways from the traditional approach of dividing the required processing into time dependent, object dependent, and data dependent processing stages. In that approach individual targets are first detected in individual image frames, and the detections are then assembled into tracks. That requires that the signal to noise ratio in each image frame be sufficient for fairly reliable target detection. In contrast, our approach bases detection of targets on multiple image frames, and, accordingly, requires a smaller signal to noise ratio. It is sometimes referred to as track before detect, and can lead to a significant reduction in total system cost. For example, it can allow greater detection range for a single sensor, or it can allow the use of smaller sensor optics. Both the traditional and track before detect approaches are applicable to systems using scanning sensors, as well as those which use staring sensors.

  13. Object acquisition and tracking for space-based surveillance. Final report, Dec 88-May 90

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-11-27

    This report presents the results of research carried out by Space Computer Corporation under the U.S. government's Small Business Innovation Research (SBIR) Program. The work was sponsored by the Strategic Defense Initiative Organization and managed by the Office of Naval Research under Contracts N00014-87-C-0801 (Phase I) and N00014-89-C-0015 (Phase II). The basic purpose of this research was to develop and demonstrate a new approach to the detection of, and initiation of track on, moving targets using data from a passive infrared or visual sensor. This approach differs in very significant ways from the traditional approach of dividing the required processingmore » into time dependent, object-dependent, and data-dependent processing stages. In that approach individual targets are first detected in individual image frames, and the detections are then assembled into tracks. That requires that the signal to noise ratio in each image frame be sufficient for fairly reliable target detection. In contrast, our approach bases detection of targets on multiple image frames, and, accordingly, requires a smaller signal to noise ratio. It is sometimes referred to as track before detect, and can lead to a significant reduction in total system cost. For example, it can allow greater detection range for a single sensor, or it can allow the use of smaller sensor optics. Both the traditional and track before detect approaches are applicable to systems using scanning sensors, as well as those which use staring sensors.« less

  14. Detection and laser ranging of orbital objects using optical methods

    NASA Astrophysics Data System (ADS)

    Wagner, P.; Hampf, D.; Sproll, F.; Hasenohr, T.; Humbert, L.; Rodmann, J.; Riede, W.

    2016-09-01

    Laser ranging to satellites (SLR) in earth orbit is an established technology used for geodesy, fundamental science and precise orbit determination. A combined active and passive optical measurement system using a single telescope mount is presented which performs precise ranging measurements of retro reflector equipped objects in low earth orbit (LEO). The German Aerospace Center (DLR) runs an observatory in Stuttgart where a system has been assembled completely from commercial off-the-shelf (COTS) components. The visible light directed to the tracking camera is used to perform angular measurements of objects under investigation. This is done astrometrically by comparing the apparent target position with cataloged star positions. First successful satellite laser ranging was demonstrated recently using an optical fiber directing laser pulses onto the astronomical mount. The transmitter operates at a wavelength of 1064 nm with a repetition rate of 3 kHz and pulse energy of 25 μJ. A motorized tip/tilt mount allows beam steering of the collimated beam with μrad accuracy. The returning photons reflected from the object in space are captured with the tracking telescope. A special low aberration beam splitter unit was designed to separate the infrared from visible light. This allows passive optical closed loop tracking and operation of a single photon detector for time of flight measurements at a single telescope simultaneously. The presented innovative design yields to a compact and cost effective but very precise ranging system which allows orbit determination.

  15. Image-based systems for space surveillance: from images to collision avoidance

    NASA Astrophysics Data System (ADS)

    Pyanet, Marine; Martin, Bernard; Fau, Nicolas; Vial, Sophie; Chalte, Chantal; Beraud, Pascal; Fuss, Philippe; Le Goff, Roland

    2011-11-01

    In many spatial systems, image is a core technology to fulfil the mission requirements. Depending on the application, the needs and the constraints are different and imaging systems can offer a large variety of configurations in terms of wavelength, resolution, field-of-view, focal length or sensitivity. Adequate image processing algorithms allow the extraction of the needed information and the interpretation of images. As a prime contractor for many major civil or military projects, Astrium ST is very involved in the proposition, development and realization of new image-based techniques and systems for space-related purposes. Among the different applications, space surveillance is a major stake for the future of space transportation. Indeed, studies show that the number of debris in orbit is exponentially growing and the already existing population of small and medium debris is a concrete threat to operational satellites. This paper presents Astrium ST activities regarding space surveillance for space situational awareness (SSA) and space traffic management (STM). Among other possible SSA architectures, the relevance of a ground-based optical station network is investigated. The objective is to detect and track space debris and maintain an exhaustive and accurate catalogue up-to-date in order to assess collision risk for satellites and space vehicles. The system is composed of different type of optical stations dedicated to specific functions (survey, passive tracking, active tracking), distributed around the globe. To support these investigations, two in-house operational breadboards were implemented and are operated for survey and tracking purposes. This paper focuses on Astrium ST end-to-end optical-based survey concept. For the detection of new debris, a network of wide field of view survey stations is considered: those stations are able to detect small objects and associated image processing (detection and tracking) allow a preliminary restitution of their orbit.

  16. Identifying Anxiety Through Tracked Head Movements in a Virtual Classroom.

    PubMed

    Won, Andrea Stevenson; Perone, Brian; Friend, Michelle; Bailenson, Jeremy N

    2016-06-01

    Virtual reality allows the controlled simulation of complex social settings, such as classrooms, and thus provides an opportunity to test a range of theories in the social sciences in a way that is both naturalistic and controlled. Importantly, virtual environments also allow the body movements of participants in the virtual world to be tracked and recorded. In the following article, we discuss how tracked head movements were correlated with participants' reports of anxiety in a simulation of a classroom. Participants who reported a high sense of awareness of and concern about the other virtual people in the room showed different patterns of head movement (more lateral head movement, indicating scanning behavior) from those who reported a low level of concern. We discuss the implications of this research for understanding nonverbal behavior associated with anxiety and for the design of online educational systems.

  17. Flatness-Based Tracking Control and Nonlinear Observer for a Micro Aerial Quadcopter

    NASA Astrophysics Data System (ADS)

    Rivera, G.; Sawodny, O.

    2010-09-01

    This paper deals with the design of a nonlinear observer and a differential flat based path tracking controller for a mini aerial quadcopter. Taking into account that only the inertial coordinates and the yaw angle are available for measurements, it is shown, that the system is differentially flat, allowing a systematic design of a nonlinear tracking control in open and closed loop. A nonlinear observer is carried out to estimate the roll and pitch angle as well as all the linear and angular velocities. Finally the performance of the feedback controller and observer are illustrated in a computer simulation.

  18. A low-cost tracked C-arm (TC-arm) upgrade system for versatile quantitative intraoperative imaging.

    PubMed

    Amiri, Shahram; Wilson, David R; Masri, Bassam A; Anglin, Carolyn

    2014-07-01

    C-arm fluoroscopy is frequently used in clinical applications as a low-cost and mobile real-time qualitative assessment tool. C-arms, however, are not widely accepted for applications involving quantitative assessments, mainly due to the lack of reliable and low-cost position tracking methods, as well as adequate calibration and registration techniques. The solution suggested in this work is a tracked C-arm (TC-arm) which employs a low-cost sensor tracking module that can be retrofitted to any conventional C-arm for tracking the individual joints of the device. Registration and offline calibration methods were developed that allow accurate tracking of the gantry and determination of the exact intrinsic and extrinsic parameters of the imaging system for any acquired fluoroscopic image. The performance of the system was evaluated in comparison to an Optotrak[Formula: see text] motion tracking system and by a series of experiments on accurately built ball-bearing phantoms. Accuracies of the system were determined for 2D-3D registration, three-dimensional landmark localization, and for generating panoramic stitched views in simulated intraoperative applications. The system was able to track the center point of the gantry with an accuracy of [Formula: see text] mm or better. Accuracies of 2D-3D registrations were [Formula: see text] mm and [Formula: see text]. Three-dimensional landmark localization had an accuracy of [Formula: see text] of the length (or [Formula: see text] mm) on average, depending on whether the landmarks were located along, above, or across the table. The overall accuracies of the two-dimensional measurements conducted on stitched panoramic images of the femur and lumbar spine were 2.5 [Formula: see text] 2.0 % [Formula: see text] and [Formula: see text], respectively. The TC-arm system has the potential to achieve sophisticated quantitative fluoroscopy assessment capabilities using an existing C-arm imaging system. This technology may be useful to improve the quality of orthopedic surgery and interventional radiology.

  19. Precision targeting with a tracking adaptive optics scanning laser ophthalmoscope

    NASA Astrophysics Data System (ADS)

    Hammer, Daniel X.; Ferguson, R. Daniel; Bigelow, Chad E.; Iftimia, Nicusor V.; Ustun, Teoman E.; Noojin, Gary D.; Stolarski, David J.; Hodnett, Harvey M.; Imholte, Michelle L.; Kumru, Semih S.; McCall, Michelle N.; Toth, Cynthia A.; Rockwell, Benjamin A.

    2006-02-01

    Precise targeting of retinal structures including retinal pigment epithelial cells, feeder vessels, ganglion cells, photoreceptors, and other cells important for light transduction may enable earlier disease intervention with laser therapies and advanced methods for vision studies. A novel imaging system based upon scanning laser ophthalmoscopy (SLO) with adaptive optics (AO) and active image stabilization was designed, developed, and tested in humans and animals. An additional port allows delivery of aberration-corrected therapeutic/stimulus laser sources. The system design includes simultaneous presentation of non-AO, wide-field (~40 deg) and AO, high-magnification (1-2 deg) retinal scans easily positioned anywhere on the retina in a drag-and-drop manner. The AO optical design achieves an error of <0.45 waves (at 800 nm) over +/-6 deg on the retina. A MEMS-based deformable mirror (Boston Micromachines Inc.) is used for wave-front correction. The third generation retinal tracking system achieves a bandwidth of greater than 1 kHz allowing acquisition of stabilized AO images with an accuracy of ~10 μm. Normal adult human volunteers and animals with previously-placed lesions (cynomolgus monkeys) were tested to optimize the tracking instrumentation and to characterize AO imaging performance. Ultrafast laser pulses were delivered to monkeys to characterize the ability to precisely place lesions and stimulus beams. Other advanced features such as real-time image averaging, automatic highresolution mosaic generation, and automatic blink detection and tracking re-lock were also tested. The system has the potential to become an important tool to clinicians and researchers for early detection and treatment of retinal diseases.

  20. A low-cost test-bed for real-time landmark tracking

    NASA Astrophysics Data System (ADS)

    Csaszar, Ambrus; Hanan, Jay C.; Moreels, Pierre; Assad, Christopher

    2007-04-01

    A low-cost vehicle test-bed system was developed to iteratively test, refine and demonstrate navigation algorithms before attempting to transfer the algorithms to more advanced rover prototypes. The platform used here was a modified radio controlled (RC) car. A microcontroller board and onboard laptop computer allow for either autonomous or remote operation via a computer workstation. The sensors onboard the vehicle represent the types currently used on NASA-JPL rover prototypes. For dead-reckoning navigation, optical wheel encoders, a single axis gyroscope, and 2-axis accelerometer were used. An ultrasound ranger is available to calculate distance as a substitute for the stereo vision systems presently used on rovers. The prototype also carries a small laptop computer with a USB camera and wireless transmitter to send real time video to an off-board computer. A real-time user interface was implemented that combines an automatic image feature selector, tracking parameter controls, streaming video viewer, and user generated or autonomous driving commands. Using the test-bed, real-time landmark tracking was demonstrated by autonomously driving the vehicle through the JPL Mars yard. The algorithms tracked rocks as waypoints. This generated coordinates calculating relative motion and visually servoing to science targets. A limitation for the current system is serial computing-each additional landmark is tracked in order-but since each landmark is tracked independently, if transferred to appropriate parallel hardware, adding targets would not significantly diminish system speed.

  1. VoCATS User Guide. [Draft.

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Public Instruction, Raleigh. Div. of Vocational Education Services.

    This guide focuses on use of the North Carolina Vocational Competency Achievement Tracking System (VoCATS)-designated software in the instructional management process. (VoCATS is a competency-based, computer-based instructional management system that allows the collection of data on student performance achievement prior to, during, and following…

  2. Person and gesture tracking with smart stereo cameras

    NASA Astrophysics Data System (ADS)

    Gordon, Gaile; Chen, Xiangrong; Buck, Ron

    2008-02-01

    Physical security increasingly involves sophisticated, real-time visual tracking of a person's location inside a given environment, often in conjunction with biometrics and other security-related technologies. However, demanding real-world conditions like crowded rooms, changes in lighting and physical obstructions have proved incredibly challenging for 2D computer vision technology. In contrast, 3D imaging technology is not affected by constant changes in lighting and apparent color, and thus allows tracking accuracy to be maintained in dynamically lit environments. In addition, person tracking with a 3D stereo camera can provide the location and movement of each individual very precisely, even in a very crowded environment. 3D vision only requires that the subject be partially visible to a single stereo camera to be correctly tracked; multiple cameras are used to extend the system's operational footprint, and to contend with heavy occlusion. A successful person tracking system, must not only perform visual analysis robustly, but also be small, cheap and consume relatively little power. The TYZX Embedded 3D Vision systems are perfectly suited to provide the low power, small footprint, and low cost points required by these types of volume applications. Several security-focused organizations, including the U.S Government, have deployed TYZX 3D stereo vision systems in security applications. 3D image data is also advantageous in the related application area of gesture tracking. Visual (uninstrumented) tracking of natural hand gestures and movement provides new opportunities for interactive control including: video gaming, location based entertainment, and interactive displays. 2D images have been used to extract the location of hands within a plane, but 3D hand location enables a much broader range of interactive applications. In this paper, we provide some background on the TYZX smart stereo cameras platform, describe the person tracking and gesture tracking systems implemented on this platform, and discuss some deployed applications.

  3. SLATE: scanning laser automatic threat extraction

    NASA Astrophysics Data System (ADS)

    Clark, David J.; Prickett, Shaun L.; Napier, Ashley A.; Mellor, Matthew P.

    2016-10-01

    SLATE is an Autonomous Sensor Module (ASM) designed to work with the SAPIENT system providing accurate location tracking and classifications of targets that pass through its field of view. The concept behind the SLATE ASM is to produce a sensor module that provides a complementary view of the world to the camera-based systems that are usually used for wide area surveillance. Cameras provide a hi-fidelity, human understandable view of the world with which tracking and identification algorithms can be used. Unfortunately, positioning and tracking in a 3D environment is difficult to implement robustly, making location-based threat assessment challenging. SLATE uses a Scanning Laser Rangefinder (SLR) that provides precise (<1cm) positions, sizes, shapes and velocities of targets within its field-of-view (FoV). In this paper we will discuss the development of the SLATE ASM including the techniques used to track and classify detections that move through the field of view of the sensor providing the accurate tracking information to the SAPIENT system. SLATE's ability to locate targets precisely allows subtle boundary-crossing judgements, e.g. on which side of a chain-link fence a target is. SLATE's ability to track targets in 3D throughout its FoV enables behavior classification such as running and walking which can provide an indication of intent and help reduce false alarm rates.

  4. Geometry-Of-Fire Tracking Algorithm for Direct-Fire Weapon Systems

    DTIC Science & Technology

    2015-09-01

    this specific application. A scaled-down version for a fire team was created with XBee Pro radios, Arduino Uno microcontrollers, Raspberry Pi computers...constructed with XBee Pro radios, Arduino Uno microcontrollers, Raspberry Pi computers and ROS [5]. The XBee Pro radios and Arduino Uno microcontrollers...communicated the positional data of each node as shown in Figure 4, and the Raspberry Pi computers and ROS executed the tracking algorithm and allowed

  5. Evaluation of longitudinal tracking and data mining for an imaging informatics-based multiple sclerosis e-folder (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ma, Kevin C.; Forsyth, Sydney; Amezcua, Lilyana; Liu, Brent J.

    2017-03-01

    We have designed and developed a multiple sclerosis eFolder system for patient data storage, image viewing, and automatic lesion quantification results to allow patient tracking. The web-based system aims to be integrated in DICOM-compliant clinical and research environments to aid clinicians in patient treatments and data analysis. The system quantifies lesion volumes, identify and register lesion locations to track shifts in volume and quantity of lesions in a longitudinal study. We aim to evaluate the two most important features of the system, data mining and longitudinal lesion tracking, to demonstrate the MS eFolder's capability in improving clinical workflow efficiency and outcome analysis for research. In order to evaluate data mining capabilities, we have collected radiological and neurological data from 72 patients, 36 Caucasian and 36 Hispanic matched by gender, disease duration, and age. Data analysis on those patients based on ethnicity is performed, and analysis results are displayed by the system's web-based user interface. The data mining module is able to successfully separate Hispanic and Caucasian patients and compare their disease profiles. For longitudinal lesion tracking, we have collected 4 longitudinal cases and simulated different lesion growths over the next year. As a result, the eFolder is able to detect changes in lesion volume and identifying lesions with the most changes. Data mining and lesion tracking evaluation results show high potential of eFolder's usefulness in patientcare and informatics research for multiple sclerosis.

  6. adLIMS: a customized open source software that allows bridging clinical and basic molecular research studies.

    PubMed

    Calabria, Andrea; Spinozzi, Giulio; Benedicenti, Fabrizio; Tenderini, Erika; Montini, Eugenio

    2015-01-01

    Many biological laboratories that deal with genomic samples are facing the problem of sample tracking, both for pure laboratory management and for efficiency. Our laboratory exploits PCR techniques and Next Generation Sequencing (NGS) methods to perform high-throughput integration site monitoring in different clinical trials and scientific projects. Because of the huge amount of samples that we process every year, which result in hundreds of millions of sequencing reads, we need to standardize data management and tracking systems, building up a scalable and flexible structure with web-based interfaces, which are usually called Laboratory Information Management System (LIMS). We started collecting end-users' requirements, composed of desired functionalities of the system and Graphical User Interfaces (GUI), and then we evaluated available tools that could address our requirements, spanning from pure LIMS to Content Management Systems (CMS) up to enterprise information systems. Our analysis identified ADempiere ERP, an open source Enterprise Resource Planning written in Java J2EE, as the best software that also natively implements some highly desirable technological advances, such as the high usability and modularity that grants high use-case flexibility and software scalability for custom solutions. We extended and customized ADempiere ERP to fulfil LIMS requirements and we developed adLIMS. It has been validated by our end-users verifying functionalities and GUIs through test cases for PCRs samples and pre-sequencing data and it is currently in use in our laboratories. adLIMS implements authorization and authentication policies, allowing multiple users management and roles definition that enables specific permissions, operations and data views to each user. For example, adLIMS allows creating sample sheets from stored data using available exporting operations. This simplicity and process standardization may avoid manual errors and information backtracking, features that are not granted using track recording on files or spreadsheets. adLIMS aims to combine sample tracking and data reporting features with higher accessibility and usability of GUIs, thus allowing time to be saved on doing repetitive laboratory tasks, and reducing errors with respect to manual data collection methods. Moreover, adLIMS implements automated data entry, exploiting sample data multiplexing and parallel/transactional processing. adLIMS is natively extensible to cope with laboratory automation through platform-dependent API interfaces, and could be extended to genomic facilities due to the ERP functionalities.

  7. Spin dynamics modeling in the AGS based on a stepwise ray-tracing method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dutheil, Yann

    The AGS provides a polarized proton beam to RHIC. The beam is accelerated in the AGS from Gγ= 4.5 to Gγ = 45.5 and the polarization transmission is critical to the RHIC spin program. In the recent years, various systems were implemented to improve the AGS polarization transmission. These upgrades include the double partial snakes configuration and the tune jumps system. However, 100% polarization transmission through the AGS acceleration cycle is not yet reached. The current efficiency of the polarization transmission is estimated to be around 85% in typical running conditions. Understanding the sources of depolarization in the AGS ismore » critical to improve the AGS polarized proton performances. The complexity of beam and spin dynamics, which is in part due to the specialized Siberian snake magnets, drove a strong interest for original methods of simulations. For that, the Zgoubi code, capable of direct particle and spin tracking through field maps, was here used to model the AGS. A model of the AGS using the Zgoubi code was developed and interfaced with the current system through a simple command: the AgsFromSnapRampCmd. Interfacing with the machine control system allows for fast modelization using actual machine parameters. Those developments allowed the model to realistically reproduce the optics of the AGS along the acceleration ramp. Additional developments on the Zgoubi code, as well as on post-processing and pre-processing tools, granted long term multiturn beam tracking capabilities: the tracking of realistic beams along the complete AGS acceleration cycle. Beam multiturn tracking simulations in the AGS, using realistic beam and machine parameters, provided a unique insight into the mechanisms behind the evolution of the beam emittance and polarization during the acceleration cycle. Post-processing softwares were developed to allow the representation of the relevant quantities from the Zgoubi simulations data. The Zgoubi simulations proved particularly useful to better understand the polarization losses through horizontal intrinsic spin resonances The Zgoubi model as well as the tools developed were also used for some direct applications. For instance, some beam experiment simulations allowed an accurate estimation of the expected polarization gains from machine changes. In particular, the simulations that involved involved the tune jumps system provided an accurate estimation of polarization gains and the optimum settings that would improve the performance of the AGS.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petasecca, M., E-mail: marcop@uow.edu.au; Newall, M. K.; Aldosari, A. H.

    Purpose: Spatial and temporal resolutions are two of the most important features for quality assurance instrumentation of motion adaptive radiotherapy modalities. The goal of this work is to characterize the performance of the 2D high spatial resolution monolithic silicon diode array named “MagicPlate-512” for quality assurance of stereotactic body radiation therapy (SBRT) and stereotactic radiosurgery (SRS) combined with a dynamic multileaf collimator (MLC) tracking technique for motion compensation. Methods: MagicPlate-512 is used in combination with the movable platform HexaMotion and a research version of radiofrequency tracking system Calypso driving MLC tracking software. The authors reconstruct 2D dose distributions of smallmore » field square beams in three modalities: in static conditions, mimicking the temporal movement pattern of a lung tumor and tracking the moving target while the MLC compensates almost instantaneously for the tumor displacement. Use of Calypso in combination with MagicPlate-512 requires a proper radiofrequency interference shielding. Impact of the shielding on dosimetry has been simulated by GEANT4 and verified experimentally. Temporal and spatial resolutions of the dosimetry system allow also for accurate verification of segments of complex stereotactic radiotherapy plans with identification of the instant and location where a certain dose is delivered. This feature allows for retrospective temporal reconstruction of the delivery process and easy identification of error in the tracking or the multileaf collimator driving systems. A sliding MLC wedge combined with the lung motion pattern has been measured. The ability of the MagicPlate-512 (MP512) in 2D dose mapping in all three modes of operation was benchmarked by EBT3 film. Results: Full width at half maximum and penumbra of the moving and stationary dose profiles measured by EBT3 film and MagicPlate-512 confirm that motion has a significant impact on the dose distribution. Motion, no motion, and motion with MLC tracking profiles agreed within 1 and 0.4 mm, respectively, for all field sizes tested. Use of electromagnetic tracking system generates a fluctuation of the detector baseline up to 10% of the full scale signal requiring a proper shielding strategy. MagicPlate-512 is also able to reconstruct the dose variation pulse-by-pulse in each pixel of the detector. An analysis of the dose transients with motion and motion with tracking shows that the tracking feedback algorithm used for this experiment can compensate effectively only the effect of the slower transient components. The fast changing components of the organ motion can contribute only to discrepancy of the order of 15% in penumbral region while the slower components can change the dose profile up to 75% of the expected dose. Conclusions: MagicPlate-512 is shown to be, potentially, a valid alternative to film or 2D ionizing chambers for quality assurance dosimetry in SRS or SBRT. Its high spatial and temporal resolutions allow for accurate reconstruction of the profile in any conditions with motion and with tracking of the motion. It shows excellent performance to reconstruct the dose deposition in real time or retrospectively as a function of time for detailed analysis of the effect of motion in a specific pixel or area of interest.« less

  9. In Vivo Fluorescence Imaging and Tracking of Circulating Cells and Therapeutic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Markovic, Stacey

    Noninvasive enumeration of rare circulating cells in small animals is of great importance in many areas of biomedical research, but most existing enumeration techniques involve drawing and enriching blood which is known to be problematic. Recently, small animal "in vivo flow cytometry" (IVFC) techniques have been developed, where cells flowing through small arterioles are counted continuously and noninvasively in vivo. However, higher sensitivity IVFC techniques are needed for studying low-abundance (<100/mL) circulating cells. To this end, we developed a macroscopic fluorescence imaging system and automated computer vision algorithm that allows in vivo detection, enumeration and tracking of circulating fluorescently labeled cells from multiple large blood vessels in the ear of a mouse. This technique ---"computer vision IVFC" (CV-IVFC) --- allows cell detection and enumeration at concentrations of 20 cells/mL. Performance of CV-IVFC was also characterized for low-contrast imaging scenarios, representing conditions of weak cell fluorescent labeling or high background tissue autofluorescence, and showed efficient tracking and enumeration of circulating cells with 50% sensitivity in contrast conditions degraded 2 orders of magnitude compared to in vivo testing supporting the potential utility of CV-IVFC in a range of biological models. Refinement of prior work in our lab of a separate rare-cell detection platform - "diffuse fluorescence flow cytometry" (DFFC) --- implemented a "frequency encoding" scheme by modulating two excitation lasers. Fluorescent light from both lasers can be simultaneously detected and split by frequency allowing for better discrimination of noise, sensitivity, and cell localization. The system design is described in detail and preliminary data is shown. Last, we developed a broad-field transmission fluorescence imaging system to observe nanoparticle (NP) diffusion in bulk biological tissue. Novel, implantable NP spacers allow controlled, long-term release of drugs. However, kinetics of NP (drug) diffusion over time is still poorly understood. Our imaging system allowed us to quantify diffusion of free dye and NPs of different sizes in vitro and in vivo. Subsequent analysis verified that there was continuous diffusion which could be controlled based on particle size. Continued use of this imaging system will aid optimization of NP spacers.

  10. In-Service Performance and Costs of Methods to Control Urban Rail System Noise : Second Test Series Report

    DOT National Transportation Integrated Search

    1979-10-01

    The goal of the project is to provide sufficient information to allow a transit system with given track and car conditions and budgetary constraints to determine the mix of available noise control methods which will result in the greatest overall ben...

  11. Gesture therapy: a vision-based system for upper extremity stroke rehabilitation.

    PubMed

    Sucar, L; Luis, Roger; Leder, Ron; Hernandez, Jorge; Sanchez, Israel

    2010-01-01

    Stroke is the main cause of motor and cognitive disabilities requiring therapy in the world. Therefor it is important to develop rehabilitation technology that allows individuals who had suffered a stroke to practice intensive movement training without the expense of an always-present therapist. We have developed a low-cost vision-based system that allows stroke survivors to practice arm movement exercises at home or at the clinic, with periodic interactions with a therapist. The system integrates a virtual environment for facilitating repetitive movement training, with computer vision algorithms that track the hand of a patient, using an inexpensive camera and a personal computer. This system, called Gesture Therapy, includes a gripper with a pressure sensor to include hand and finger rehabilitation; and it tracks the head of the patient to detect and avoid trunk compensation. It has been evaluated in a controlled clinical trial at the National Institute for Neurology and Neurosurgery in Mexico City, comparing it with conventional occupational therapy. In this paper we describe the latest version of the Gesture Therapy System and summarize the results of the clinical trail.

  12. User-assisted video segmentation system for visual communication

    NASA Astrophysics Data System (ADS)

    Wu, Zhengping; Chen, Chun

    2002-01-01

    Video segmentation plays an important role for efficient storage and transmission in visual communication. In this paper, we introduce a novel video segmentation system using point tracking and contour formation techniques. Inspired by the results from the study of the human visual system, we intend to solve the video segmentation problem into three separate phases: user-assisted feature points selection, feature points' automatic tracking, and contour formation. This splitting relieves the computer of ill-posed automatic segmentation problems, and allows a higher level of flexibility of the method. First, the precise feature points can be found using a combination of user assistance and an eigenvalue-based adjustment. Second, the feature points in the remaining frames are obtained using motion estimation and point refinement. At last, contour formation is used to extract the object, and plus a point insertion process to provide the feature points for next frame's tracking.

  13. A DNA-based molecular motor that can navigate a network of tracks

    NASA Astrophysics Data System (ADS)

    Wickham, Shelley F. J.; Bath, Jonathan; Katsuda, Yousuke; Endo, Masayuki; Hidaka, Kumi; Sugiyama, Hiroshi; Turberfield, Andrew J.

    2012-03-01

    Synthetic molecular motors can be fuelled by the hydrolysis or hybridization of DNA. Such motors can move autonomously and programmably, and long-range transport has been observed on linear tracks. It has also been shown that DNA systems can compute. Here, we report a synthetic DNA-based system that integrates long-range transport and information processing. We show that the path of a motor through a network of tracks containing four possible routes can be programmed using instructions that are added externally or carried by the motor itself. When external control is used we find that 87% of the motors follow the correct path, and when internal control is used 71% of the motors follow the correct path. Programmable motion will allow the development of computing networks, molecular systems that can sort and process cargoes according to instructions that they carry, and assembly lines that can be reconfigured dynamically in response to changing demands.

  14. Nanoscale measurements of proton tracks using fluorescent nuclear track detectors

    PubMed Central

    Sawakuchi, Gabriel O.; Ferreira, Felisberto A.; McFadden, Conor H.; Hallacy, Timothy M.; Granville, Dal A.; Sahoo, Narayan; Akselrod, Mark S.

    2016-01-01

    Purpose: The authors describe a method in which fluorescence nuclear track detectors (FNTDs), novel track detectors with nanoscale spatial resolution, are used to determine the linear energy transfer (LET) of individual proton tracks from proton therapy beams by allowing visualization and 3D reconstruction of such tracks. Methods: FNTDs were exposed to proton therapy beams with nominal energies ranging from 100 to 250 MeV. Proton track images were then recorded by confocal microscopy of the FNTDs. Proton tracks in the FNTD images were fit by using a Gaussian function to extract fluorescence amplitudes. Histograms of fluorescence amplitudes were then compared with LET spectra. Results: The authors successfully used FNTDs to register individual proton tracks from high-energy proton therapy beams, allowing reconstruction of 3D images of proton tracks along with delta rays. The track amplitudes from FNTDs could be used to parameterize LET spectra, allowing the LET of individual proton tracks from therapeutic proton beams to be determined. Conclusions: FNTDs can be used to directly visualize proton tracks and their delta rays at the nanoscale level. Because the track intensities in the FNTDs correlate with LET, they could be used further to measure LET of individual proton tracks. This method may be useful for measuring nanoscale radiation quantities and for measuring the LET of individual proton tracks in radiation biology experiments. PMID:27147359

  15. Nanoscale measurements of proton tracks using fluorescent nuclear track detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawakuchi, Gabriel O., E-mail: gsawakuchi@mdanderson.org; Sahoo, Narayan; Ferreira, Felisberto A.

    Purpose: The authors describe a method in which fluorescence nuclear track detectors (FNTDs), novel track detectors with nanoscale spatial resolution, are used to determine the linear energy transfer (LET) of individual proton tracks from proton therapy beams by allowing visualization and 3D reconstruction of such tracks. Methods: FNTDs were exposed to proton therapy beams with nominal energies ranging from 100 to 250 MeV. Proton track images were then recorded by confocal microscopy of the FNTDs. Proton tracks in the FNTD images were fit by using a Gaussian function to extract fluorescence amplitudes. Histograms of fluorescence amplitudes were then compared withmore » LET spectra. Results: The authors successfully used FNTDs to register individual proton tracks from high-energy proton therapy beams, allowing reconstruction of 3D images of proton tracks along with delta rays. The track amplitudes from FNTDs could be used to parameterize LET spectra, allowing the LET of individual proton tracks from therapeutic proton beams to be determined. Conclusions: FNTDs can be used to directly visualize proton tracks and their delta rays at the nanoscale level. Because the track intensities in the FNTDs correlate with LET, they could be used further to measure LET of individual proton tracks. This method may be useful for measuring nanoscale radiation quantities and for measuring the LET of individual proton tracks in radiation biology experiments.« less

  16. Optimal Output Trajectory Redesign for Invertible Systems

    NASA Technical Reports Server (NTRS)

    Devasia, S.

    1996-01-01

    Given a desired output trajectory, inversion-based techniques find input-state trajectories required to exactly track the output. These inversion-based techniques have been successfully applied to the endpoint tracking control of multijoint flexible manipulators and to aircraft control. The specified output trajectory uniquely determines the required input and state trajectories that are found through inversion. These input-state trajectories exactly track the desired output; however, they might not meet acceptable performance requirements. For example, during slewing maneuvers of flexible structures, the structural deformations, which depend on the required state trajectories, may be unacceptably large. Further, the required inputs might cause actuator saturation during an exact tracking maneuver, for example, in the flight control of conventional takeoff and landing aircraft. In such situations, a compromise is desired between the tracking requirement and other goals such as reduction of internal vibrations and prevention of actuator saturation; the desired output trajectory needs to redesigned. Here, we pose the trajectory redesign problem as an optimization of a general quadratic cost function and solve it in the context of linear systems. The solution is obtained as an off-line prefilter of the desired output trajectory. An advantage of our technique is that the prefilter is independent of the particular trajectory. The prefilter can therefore be precomputed, which is a major advantage over other optimization approaches. Previous works have addressed the issue of preshaping inputs to minimize residual and in-maneuver vibrations for flexible structures; Since the command preshaping is computed off-line. Further minimization of optimal quadratic cost functions has also been previously use to preshape command inputs for disturbance rejection. All of these approaches are applicable when the inputs to the system are known a priori. Typically, outputs (not inputs) are specified in tracking problems, and hence the input trajectories have to be computed. The inputs to the system are however, difficult to determine for non-minimum phase systems like flexible structures. One approach to solve this problem is to (1) choose a tracking controller (the desired output trajectory is now an input to the closed-loop system and (2) redesign this input to the closed-loop system. Thus we effectively perform output redesign. These redesigns are however, dependent on the choice of the tracking controllers. Thus the controller optimization and trajectory redesign problems become coupled; this coupled optimization is still an open problem. In contrast, we decouple the trajectory redesign problem from the choice of feedback-based tracking controller. It is noted that our approach remains valid when a particular tracking controller is chosen. In addition, the formulation of our problem not only allows for the minimization of residual vibration as in available techniques but also allows for the optimal reduction fo vibrations during the maneuver, e.g., the altitude control of flexible spacecraft. We begin by formulating the optimal output trajectory redesign problem and then solve it in the context of general linear systems. This theory is then applied to an example flexible structure, and simulation results are provided.

  17. Viewing The Entire Sun With STEREO And SDO

    NASA Astrophysics Data System (ADS)

    Thompson, William T.; Gurman, J. B.; Kucera, T. A.; Howard, R. A.; Vourlidas, A.; Wuelser, J.; Pesnell, D.

    2011-05-01

    On 6 February 2011, the two Solar Terrestrial Relations Observatory (STEREO) spacecraft were at 180 degrees separation. This allowed the first-ever simultaneous view of the entire Sun. Combining the STEREO data with corresponding images from the Solar Dynamics Observatory (SDO) allows this full-Sun view to continue for the next eight years. We show how the data from the three viewpoints are combined into a single heliographic map. Processing of the STEREO beacon telemetry allows these full-Sun views to be created in near-real-time, allowing tracking of solar activity even on the far side of the Sun. This is a valuable space-weather tool, not only for anticipating activity before it rotates onto the Earth-view, but also for deep space missions in other parts of the solar system. Scientific use of the data includes the ability to continuously track the entire lifecycle of active regions, filaments, coronal holes, and other solar features. There is also a significant public outreach component to this activity. The STEREO Science Center produces products from the three viewpoints used in iPhone/iPad and Android applications, as well as time sequences for spherical projection systems used in museums, such as Science-on-a-Sphere and Magic Planet.

  18. Advances in Understanding of Swift Heavy-Ion Tracks in Complex Ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lang, Maik; Devanathan, Ram; Toulemonde, Marcel

    2015-02-01

    Tracks produced by swift heavy ions in ceramics are of interest for fundamental science as well as for applications covering different fields such as nanotechnology or fission-track dating of minerals. In the case of pyrochlores with general formula A2B2O7, the track structure and radiation sensitivity shows a clear dependence on the composition. Ion irradiated Gd2Zr2O7, e.g., retains its crystallinity while amorphous tracks are produced in Gd2Ti2O7. Tracks in Ti-containing compositions have a complex morphology consisting of an amorphous core surrounded by a shell of a disordered, defect-fluorite phase. The size of the amorphous core decreases with decreasing energy loss andmore » with increasing Zr content, while the shell thickness seems to be similar over a wide range of energy loss values. The large data set and the complex track structure has made pyrochlore an interesting model system for a general theoretical description of track formation including thermal spike calculations (providing the spatial and temporal evolution of temperature around the ion trajectory) and molecular dynamics (MD) simulations (describing the response of the atomic system).Recent MD advances consider the sudden temperature increase by inserting data from the thermal spike. The combination allows the reproduction of the core-shell track characteristic and sheds light on the early stages of track formation including recrystallization of the molten material produced by the thermal spike.« less

  19. A compact muon tracking system for didactic and outreach activities

    NASA Astrophysics Data System (ADS)

    Antolini, R.; Candela, A.; Conicella, V.; De Deo, M.; D` Incecco, M.; Sablone, D.; Arneodo, F.; Benabderrahmane, M. L.; Di Giovanni, A.; Pazos Clemens, L.; Franchi, G.; d`Inzeo, M.

    2016-07-01

    We present a cosmic ray telescope based on the use of plastic scintillator bars coupled to ASD-RGB1S-M Advansid Silicon Photomultipliers (SiPM) through wavelength shifter fibers. The system is comprised of 200 electronic channels organized into 10 couples of orthogonal planes allowing the 3D reconstruction of crossing muons. Two monolithic PCB boards have been designed to bias, readout all the SiPMs enclosed in the system, to monitor the working parameters and to remotely connect the detector. To make easier the display of muon tracks to non-expert users, two LED matrices, triggered by particle interactions, have been implemented. To improve the usability of the muon telescope, a controller board unit permits to select different levels of trigger and allows data acquisition for refined analyses for the more proficient user. A first prototype, funded by INFN and deployed in collaboration with NYUAD, is operating at the Toledo Metro station of Naples, while two further detectors will be developed and installed in Abu Dhabi in the next few months.

  20. Patient motion tracking in the presence of measurement errors.

    PubMed

    Haidegger, Tamás; Benyó, Zoltán; Kazanzides, Peter

    2009-01-01

    The primary aim of computer-integrated surgical systems is to provide physicians with superior surgical tools for better patient outcome. Robotic technology is capable of both minimally invasive surgery and microsurgery, offering remarkable advantages for the surgeon and the patient. Current systems allow for sub-millimeter intraoperative spatial positioning, however certain limitations still remain. Measurement noise and unintended changes in the operating room environment can result in major errors. Positioning errors are a significant danger to patients in procedures involving robots and other automated devices. We have developed a new robotic system at the Johns Hopkins University to support cranial drilling in neurosurgery procedures. The robot provides advanced visualization and safety features. The generic algorithm described in this paper allows for automated compensation of patient motion through optical tracking and Kalman filtering. When applied to the neurosurgery setup, preliminary results show that it is possible to identify patient motion within 700 ms, and apply the appropriate compensation with an average of 1.24 mm positioning error after 2 s of setup time.

  1. Post-Newtonian equations of motion for LEO debris objects and space-based acquisition, pointing and tracking laser systems

    NASA Astrophysics Data System (ADS)

    Gambi, J. M.; García del Pino, M. L.; Gschwindl, J.; Weinmüller, E. B.

    2017-12-01

    This paper deals with the problem of throwing middle-sized low Earth orbit debris objects into the atmosphere via laser ablation. The post-Newtonian equations here provided allow (hypothetical) space-based acquisition, pointing and tracking systems endowed with very narrow laser beams to reach the pointing accuracy presently prescribed. In fact, whatever the orbital elements of these objects may be, these equations will allow the operators to account for the corrections needed to balance the deviations of the line of sight directions due to the curvature of the paths the laser beams are to travel along. To minimize the respective corrections, the systems will have to perform initial positioning manoeuvres, and the shooting point-ahead angles will have to be adapted in real time. The enclosed numerical experiments suggest that neglecting these measures will cause fatal errors, due to differences in the actual locations of the objects comparable to their size.

  2. A state-based approach to trend recognition and failure prediction for the Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Nelson, Kyle S.; Hadden, George D.

    1992-01-01

    A state-based reasoning approach to trend recognition and failure prediction for the Altitude Determination, and Control System (ADCS) of the Space Station Freedom (SSF) is described. The problem domain is characterized by features (e.g., trends and impending failures) that develop over a variety of time spans, anywhere from several minutes to several years. Our state-based reasoning approach, coupled with intelligent data screening, allows features to be tracked as they develop in a time-dependent manner. That is, each state machine has the ability to encode a time frame for the feature it detects. As features are detected, they are recorded and can be used as input to other state machines, creating a hierarchical feature recognition scheme. Furthermore, each machine can operate independently of the others, allowing simultaneous tracking of features. State-based reasoning was implemented in the trend recognition and the prognostic modules of a prototype Space Station Freedom Maintenance and Diagnostic System (SSFMDS) developed at Honeywell's Systems and Research Center.

  3. Three-dimensional tracking of small aquatic organisms using fluorescent nanoparticles.

    PubMed

    Ekvall, Mikael T; Bianco, Giuseppe; Linse, Sara; Linke, Heiner; Bäckman, Johan; Hansson, Lars-Anders

    2013-01-01

    Tracking techniques are vital for the understanding of the biology and ecology of organisms. While such techniques have provided important information on the movement and migration of large animals, such as mammals and birds, scientific advances in understanding the individual behaviour and interactions of small (mm-scale) organisms have been hampered by constraints, such as the sizes of existing tracking devices, in existing tracking methods. By combining biology, chemistry and physics we here present a method that allows three-dimensional (3D) tracking of individual mm-sized aquatic organisms. The method is based on in-vivo labelling of the organisms with fluorescent nanoparticles, so-called quantum dots, and tracking of the organisms in 3D via the quantum-dot fluorescence using a synchronized multiple camera system. It allows for the efficient and simultaneous study of the behaviour of one as well as multiple individuals in large volumes of observation, thus enabling the study of behavioural interactions at the community scale. The method is non-perturbing - we demonstrate that the labelling is not affecting the behavioural response of the organisms - and is applicable over a wide range of taxa, including cladocerans as well as insects, suggesting that our methodological concept opens up for new research fields on individual behaviour of small animals. Hence, this offers opportunities to focus on important biological, ecological and behavioural questions never before possible to address.

  4. Recent Developments in the Code RITRACKS (Relativistic Ion Tracks)

    NASA Technical Reports Server (NTRS)

    Plante, Ianik; Ponomarev, Artem L.; Blattnig, Steve R.

    2018-01-01

    The code RITRACKS (Relativistic Ion Tracks) was developed to simulate detailed stochastic radiation track structures of ions of different types and energies. Many new capabilities were added to the code during the recent years. Several options were added to specify the times at which the tracks appear in the irradiated volume, allowing the simulation of dose-rate effects. The code has been used to simulate energy deposition in several targets: spherical, ellipsoidal and cylindrical. More recently, density changes as well as a spherical shell were implemented for spherical targets, in order to simulate energy deposition in walled tissue equivalent proportional counters. RITRACKS is used as a part of the new program BDSTracks (Biological Damage by Stochastic Tracks) to simulate several types of chromosome aberrations in various irradiation conditions. The simulation of damage to various DNA structures (linear and chromatin fiber) by direct and indirect effects has been improved and is ongoing. Many improvements were also made to the graphic user interface (GUI), including the addition of several labels allowing changes of units. A new GUI has been added to display the electron ejection vectors. The parallel calculation capabilities, notably the pre- and post-simulation processing on Windows and Linux machines have been reviewed to make them more portable between different systems. The calculation part is currently maintained in an Atlassian Stash® repository for code tracking and possibly future collaboration.

  5. Space Debris Measurements using the Advanced Modular Incoherent Scatter Radar

    NASA Astrophysics Data System (ADS)

    Nicolls, M.

    The Advanced Modular Incoherent Scatter Radar (AMISR) is a modular, mobile UHF phased-array radar facility developed and used for scientific studies of the ionosphere. The radars are completely remotely operated and allow for pulse-to-pulse beam steering over the field-of-view. A satellite and debris tracking capability fully interleaved with scientific operations has been developed, and the AMISR systems are now used to routinely observe LEO space debris, with the ability to simultaneously track and detect multiple objects. The system makes use of wide-bandwidth radar pulses and coherent processing to detect objects as small as 5-10 cm in size through LEO, achieving a range resolution better than 20 meters for LEO targets. The interleaved operations allow for ionospheric effects on UHF space debris measurements, such as dispersion, to be assessed. The radar architecture, interleaved operations, and impact of space weather on the measurements will be discussed.

  6. GPU Particle Tracking and MHD Simulations with Greatly Enhanced Computational Speed

    NASA Astrophysics Data System (ADS)

    Ziemba, T.; O'Donnell, D.; Carscadden, J.; Cash, M.; Winglee, R.; Harnett, E.

    2008-12-01

    GPUs are intrinsically highly parallelized systems that provide more than an order of magnitude computing speed over a CPU based systems, for less cost than a high end-workstation. Recent advancements in GPU technologies allow for full IEEE float specifications with performance up to several hundred GFLOPs per GPU, and new software architectures have recently become available to ease the transition from graphics based to scientific applications. This allows for a cheap alternative to standard supercomputing methods and should increase the time to discovery. 3-D particle tracking and MHD codes have been developed using NVIDIA's CUDA and have demonstrated speed up of nearly a factor of 20 over equivalent CPU versions of the codes. Such a speed up enables new applications to develop, including real time running of radiation belt simulations and real time running of global magnetospheric simulations, both of which could provide important space weather prediction tools.

  7. A high-speed tracking algorithm for dense granular media

    NASA Astrophysics Data System (ADS)

    Cerda, Mauricio; Navarro, Cristóbal A.; Silva, Juan; Waitukaitis, Scott R.; Mujica, Nicolás; Hitschfeld, Nancy

    2018-06-01

    Many fields of study, including medical imaging, granular physics, colloidal physics, and active matter, require the precise identification and tracking of particle-like objects in images. While many algorithms exist to track particles in diffuse conditions, these often perform poorly when particles are densely packed together-as in, for example, solid-like systems of granular materials. Incorrect particle identification can have significant effects on the calculation of physical quantities, which makes the development of more precise and faster tracking algorithms a worthwhile endeavor. In this work, we present a new tracking algorithm to identify particles in dense systems that is both highly accurate and fast. We demonstrate the efficacy of our approach by analyzing images of dense, solid-state granular media, where we achieve an identification error of 5% in the worst evaluated cases. Going further, we propose a parallelization strategy for our algorithm using a GPU, which results in a speedup of up to 10 × when compared to a sequential CPU implementation in C and up to 40 × when compared to the reference MATLAB library widely used for particle tracking. Our results extend the capabilities of state-of-the-art particle tracking methods by allowing fast, high-fidelity detection in dense media at high resolutions.

  8. SU-E-I-58: Experiences in Setting Up An Online Fluoroscopy Tracking System in a Large Healthcare System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisher, R; Wunderle, K; Lingenfelter, M

    Purpose: Transitioning from a paper based to an online system for tracking fluoroscopic case information required by state regulation and to conform to NCRP patient dose tracking suggestions. Methods: State regulations require documentation of operator, equipment, and some metric of tube output for fluoroscopy exams. This information was previously collected in paper logs, which was cumbersome and inefficient for the large number of fluoroscopic units across multiple locations within the system. The “tech notes” feature within Siemens’ Syngo workflow RIS was utilized to create an entry form for technologists to input case information, which was sent to a third partymore » vendor for archiving and display though an online web based portal. Results: Over 55k cases were logged in the first year of implementation, with approximately 6,500 cases per month once fully online. A system was built for area managers to oversee and correct data, which has increased the accuracy of inputted values. A high-dose report was built to automatically send notifications when patients exceed trigger levels. In addition to meeting regulatory requirements, the new system allows for larger scale QC in fluoroscopic cases by allowing comparison of data from specific procedures, locations, equipment, and operators so that instances that fall outside of reference levels can be identified for further evaluation. The system has also drastically improved identification of operators without documented equipment specific training. Conclusion: The transition to online fluoroscopy logs has improved efficiency in meeting state regulatory requirements as well as allowed for identification of particular procedures, equipment, and operators in need of additional attention in order to optimize patient and personnel doses, while high dose alerts improve patient care and follow up. Future efforts are focused on incorporating case information from outside of radiology, as well as on automating processes for increased efficiencies.« less

  9. Identifying and tracking disaster victims: state-of-the-art technology review.

    PubMed

    Pate, Barbara L

    2008-01-01

    The failure of our nation to adequately track victims of Hurricane Katrina has been identified as a major weakness of national and local disaster preparedness plans. This weakness has prompted government and private industries to acknowledge that existing paper-based tracking systems are incapable of managing information during a large-scale disaster. In response to this need, efforts are under way to develop new technologies that allow instant access to identity and location information during emergency situations. The purpose of this article is to provide a review of state-of-the-art technologies, with implications and limitations for use during mass casualty incidents.

  10. Stereoscopic Feature Tracking System for Retrieving Velocity of Surface Waters

    NASA Astrophysics Data System (ADS)

    Zuniga Zamalloa, C. C.; Landry, B. J.

    2017-12-01

    The present work is concerned with the surface velocity retrieval of flows using a stereoscopic setup and finding the correspondence in the images via feature tracking (FT). The feature tracking provides a key benefit of substantially reducing the level of user input. In contrast to other commonly used methods (e.g., normalized cross-correlation), FT does not require the user to prescribe interrogation window sizes and removes the need for masking when specularities are present. The results of the current FT methodology are comparable to those obtained via Large Scale Particle Image Velocimetry while requiring little to no user input which allowed for rapid, automated processing of imagery.

  11. Visual tracking strategies for intelligent vehicle highway systems

    NASA Astrophysics Data System (ADS)

    Smith, Christopher E.; Papanikolopoulos, Nikolaos P.; Brandt, Scott A.; Richards, Charles

    1995-01-01

    The complexity and congestion of current transportation systems often produce traffic situations that jeopardize the safety of the people involved. These situations vary from maintaining a safe distance behind a leading vehicle to safely allowing a pedestrian to cross a busy street. Environmental sensing plays a critical role in virtually all of these situations. Of the sensors available, vision sensors provide information that is richer and more complete than other sensors, making them a logical choice for a multisensor transportation system. In this paper we present robust techniques for intelligent vehicle-highway applications where computer vision plays a crucial role. In particular, we demonstrate that the controlled active vision framework can be utilized to provide a visual sensing modality to a traffic advisory system in order to increase the overall safety margin in a variety of common traffic situations. We have selected two application examples, vehicle tracking and pedestrian tracking, to demonstrate that the framework can provide precisely the type of information required to effectively manage the given situation.

  12. A tracking polarimeter for measuring solar and ionospheric Faraday rotation of signals from deep space probes

    NASA Technical Reports Server (NTRS)

    Ohlson, J. E.; Levy, G. S.; Stelzried, C. T.

    1974-01-01

    A tracking polarimeter implemented on the 64-m NASA/JPL paraboloid antenna at Goldstone, Calif., is described. Its performance is analyzed and compared with measurements. The system was developed to measure Faraday rotation in the solar corona of the telemetry carrier from the Pioneer VI spacecraft as it was occulted by the sun. It also measures rotation in the earth's ionosphere and is an accurate method of determining spacecraft orientation. The new feature of this system is its use of a pair of quarter-wave plates to allow the synthesis of a rotating feed system, while requiring the rotation of only a single section of waveguide. Since the polarization sensing is done at RF and the receiver operates essentially as a null detector, the system's accuracy is superior to other polarization tracking schemes. In addition, the antenna size and maser preamplifier provide unsurpassed sensitivity. The associated instrumentation used in the Pioneer VI experiment is also described.

  13. iTAG: Integrating a Cloud Based, Collaborative Animal Tracking Network into the GCOOS data portal in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, B. A.; Currier, R. D.; Simoniello, C.

    2016-02-01

    The tagging and tracking of aquatic animals using acoustic telemetry hardware has traditionally been the purview of individual researchers that specialize in single species. Concerns over data privacy and unauthorized use of receiver arrays have prevented the construction of large-scale, multi-species, multi-institution, multi-researcher collaborative acoustic arrays. We have developed a toolset to build the new portal using the Flask microframework, Python language, and Twitter bootstrap. Initial feedback has been overwhelmingly positive. The privacy policy has been praised for its granularity: principal investigators can choose between three levels of privacy for all data and hardware: Completely private - viewable only by the PI Visible to iTAG members Visible to the general public At the time of this writing iTAG is still in the beta stage, but the feedback received to date indicates that with the proper design and security features, and an iterative cycle of feedback from potential members, constructing a collaborative acoustic tracking network system is possible. Initial usage will be limited to the entry and searching for `orphan/mystery' tags, with the integration of historical array deployments and data following shortly thereafter. We have also been working with staff from the Ocean Tracking Network to allow for integration of the two systems. The database schema of iTAG is based on the marine metadata convention for acoustic telemetry. This should permit machine-to-machine data exchange between iTAG and OTN. The integration of animal telemetry data into the GCOOS portal will allow researchers to easily access the physiochemical oceanography data, thus allowing for a more in depth understanding of animal response and usage patterns.

  14. AQUIS: A PC-based air inventory and permit manager

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, A.E.; Huber, C.C.; Tschanz, J.

    1992-01-01

    The Air Quality Utility Information System (AQUIS) was developed to calculate and track sources, emissions, stacks, permits, and related information. The system runs on IBM-compatible personal computers with dBASE IV and tracks more than 1,200 data items distributed among various source categories. AQUIS is currently operating at nine US Air Force facilities that have up to 1,000 sources. The system provides a flexible reporting capability that permits users who are unfamiliar with database structure to design and prepare reports containing user-specified information. In addition to six criteria pollutants, AQUIS calculates compound-specific emissions and allows users to enter their own emissionmore » estimates.« less

  15. Tracking and data system support for the Pioneer project. Volume 1: Pioneer 10-prelaunch planning through second trajectory correction, 4 December 1969 - 1 April 1972

    NASA Technical Reports Server (NTRS)

    Siegmeth, A. J.; Purdue, R. E.; Ryan, R. E.

    1973-01-01

    The tracking and data system support of the launch, near-earth, and deep space phases of the Pioneer 10 mission, which sent a Pioneer spacecraft into a flyby of Jupiter that would eventually allow the spacecraft to escape the solar system is discussed. The support through the spacecraft's second trajectory correction is reported. During this period, scientific instruments aboard the spacecraft registered information relative to interplanetary particles and fields, and radiometric data generated by the network continued to improve knowledge of the celestial mechanics of the solar system. In addition to network support activity detail, network performance and special support activities are covered.

  16. Novel methodology to examine cognitive and experiential factors in language development: combining eye-tracking and LENA technology

    PubMed Central

    Odean, Rosalie; Nazareth, Alina; Pruden, Shannon M.

    2015-01-01

    Developmental systems theory posits that development cannot be segmented by influences acting in isolation, but should be studied through a scientific lens that highlights the complex interactions between these forces over time (Overton, 2013a). This poses a unique challenge for developmental psychologists studying complex processes like language development. In this paper, we advocate for the combining of highly sophisticated data collection technologies in an effort to move toward a more systemic approach to studying language development. We investigate the efficiency and appropriateness of combining eye-tracking technology and the LENA (Language Environment Analysis) system, an automated language analysis tool, in an effort to explore the relation between language processing in early development, and external dynamic influences like parent and educator language input in the home and school environments. Eye-tracking allows us to study language processing via eye movement analysis; these eye movements have been linked to both conscious and unconscious cognitive processing, and thus provide one means of evaluating cognitive processes underlying language development that does not require the use of subjective parent reports or checklists. The LENA system, on the other hand, provides automated language output that describes a child’s language-rich environment. In combination, these technologies provide critical information not only about a child’s language processing abilities but also about the complexity of the child’s language environment. Thus, when used in conjunction these technologies allow researchers to explore the nature of interacting systems involved in language development. PMID:26379591

  17. Radiofrequency-Based Identification Medical Device: An Evaluable Solution for Surgical Sponge Retrieval?

    PubMed

    Lazzaro, Alessandra; Corona, Arianna; Iezzi, Luca; Quaresima, Silvia; Armisi, Luca; Piccolo, Ilaria; Medaglia, Carlo Maria; Sbrenni, Sergio; Sileri, Pierpaolo; Rosato, Nicola; Gaspari, Achille Lucio; Di Lorenzo, Nicola

    2017-06-01

    A retained surgical item in patients (gossypiboma) is a persisting problem, despite consistent improvements and existing guidelines in counting instruments and sponges. Previous experiences with radiofrequency identification technology (RFID) tracking sponges show that it could represent an innovation, in order to reduce the criticism and increase the effectiveness during surgical procedures. We present an automated system that allows reduction of errors and improves safety in the operating room. The system consists of 3 antennas, surgical sponges containing RFID tags, and dedicated software applications, with Wi-Fi real-time communication between devices. The first antenna provides the initial count of gauzes; the second a real-time counting during surgery, including the sponges thrown into the kick-bucket; and the third can be used in the event of uneven sponge count. The software allows management at all stages of the process. In vitro and in vivo tests were performed: the system provided excellent results in detecting sponges in patients' body. Hundred percent retained sponges were detected correctly, even when they were overlapped. No false positive or false negative was recorded. The counting procedure turned out to be more streamlined and efficient and it could save time in a standard procedure. The RFID system for sponge tracking was shown to be experimentally a reliable and feasible method to track sponges with a full detection accuracy in the operating room. The results indicate the system to be safe and effective with acceptable cost-effective parameters.

  18. Onco-STS: a web-based laboratory information management system for sample and analysis tracking in oncogenomic experiments.

    PubMed

    Gavrielides, Mike; Furney, Simon J; Yates, Tim; Miller, Crispin J; Marais, Richard

    2014-01-01

    Whole genomes, whole exomes and transcriptomes of tumour samples are sequenced routinely to identify the drivers of cancer. The systematic sequencing and analysis of tumour samples, as well other oncogenomic experiments, necessitates the tracking of relevant sample information throughout the investigative process. These meta-data of the sequencing and analysis procedures include information about the samples and projects as well as the sequencing centres, platforms, data locations, results locations, alignments, analysis specifications and further information relevant to the experiments. The current work presents a sample tracking system for oncogenomic studies (Onco-STS) to store these data and make them easily accessible to the researchers who work with the samples. The system is a web application, which includes a database and a front-end web page that allows the remote access, submission and updating of the sample data in the database. The web application development programming framework Grails was used for the development and implementation of the system. The resulting Onco-STS solution is efficient, secure and easy to use and is intended to replace the manual data handling of text records. Onco-STS allows simultaneous remote access to the system making collaboration among researchers more effective. The system stores both information on the samples in oncogenomic studies and details of the analyses conducted on the resulting data. Onco-STS is based on open-source software, is easy to develop and can be modified according to a research group's needs. Hence it is suitable for laboratories that do not require a commercial system.

  19. A MATLAB-based eye tracking control system using non-invasive helmet head restraint in the macaque.

    PubMed

    De Luna, Paolo; Mohamed Mustafar, Mohamed Faiz Bin; Rainer, Gregor

    2014-09-30

    Tracking eye position is vital for behavioral and neurophysiological investigations in systems and cognitive neuroscience. Infrared camera systems which are now available can be used for eye tracking without the need to surgically implant magnetic search coils. These systems are generally employed using rigid head fixation in monkeys, which maintains the eye in a constant position and facilitates eye tracking. We investigate the use of non-rigid head fixation using a helmet that constrains only general head orientation and allows some freedom of movement. We present a MATLAB software solution to gather and process eye position data, present visual stimuli, interact with various devices, provide experimenter feedback and store data for offline analysis. Our software solution achieves excellent timing performance due to the use of data streaming, instead of the traditionally employed data storage mode for processing analog eye position data. We present behavioral data from two monkeys, demonstrating that adequate performance levels can be achieved on a simple fixation paradigm and show how performance depends on parameters such as fixation window size. Our findings suggest that non-rigid head restraint can be employed for behavioral training and testing on a variety of gaze-dependent visual paradigms, reducing the need for rigid head restraint systems for some applications. While developed for macaque monkey, our system of course can work equally well for applications in human eye tracking where head constraint is undesirable. Copyright © 2014. Published by Elsevier B.V.

  20. FINAL TECHNICAL REPORT: Underwater Active Acoustic Monitoring Network For Marine And Hydrokinetic Energy Projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stein, Peter J.; Edson, Patrick L.

    2013-12-20

    This project saw the completion of the design and development of a second generation, high frequency (90-120 kHz) Subsurface-Threat Detection Sonar Network (SDSN). The system was deployed, operated, and tested in Cobscook Bay, Maine near the site the Ocean Renewable Power Company TidGen™ power unit. This effort resulted in a very successful demonstration of the SDSN detection, tracking, localization, and classification capabilities in a high current, MHK environment as measured by results from the detection and tracking trials in Cobscook Bay. The new high frequency node, designed to operate outside the hearing range of a subset of marine mammals, wasmore » shown to detect and track objects of marine mammal-like target strength to ranges of approximately 500 meters. This performance range results in the SDSN system tracking objects for a significant duration - on the order of minutes - even in a tidal flow of 5-7 knots, potentially allowing time for MHK system or operator decision-making if marine mammals are present. Having demonstrated detection and tracking of synthetic targets with target strengths similar to some marine mammals, the primary hurdle to eventual automated monitoring is a dataset of actual marine mammal kinematic behavior and modifying the tracking algorithms and parameters which are currently tuned to human diver kinematics and classification.« less

  1. A customized vision system for tracking humans wearing reflective safety clothing from industrial vehicles and machinery.

    PubMed

    Mosberger, Rafael; Andreasson, Henrik; Lilienthal, Achim J

    2014-09-26

    This article presents a novel approach for vision-based detection and tracking of humans wearing high-visibility clothing with retro-reflective markers. Addressing industrial applications where heavy vehicles operate in the vicinity of humans, we deploy a customized stereo camera setup with active illumination that allows for efficient detection of the reflective patterns created by the worker's safety garments. After segmenting reflective objects from the image background, the interest regions are described with local image feature descriptors and classified in order to discriminate safety garments from other reflective objects in the scene. In a final step, the trajectories of the detected humans are estimated in 3D space relative to the camera. We evaluate our tracking system in two industrial real-world work environments on several challenging video sequences. The experimental results indicate accurate tracking performance and good robustness towards partial occlusions, body pose variation, and a wide range of different illumination conditions.

  2. A Customized Vision System for Tracking Humans Wearing Reflective Safety Clothing from Industrial Vehicles and Machinery

    PubMed Central

    Mosberger, Rafael; Andreasson, Henrik; Lilienthal, Achim J.

    2014-01-01

    This article presents a novel approach for vision-based detection and tracking of humans wearing high-visibility clothing with retro-reflective markers. Addressing industrial applications where heavy vehicles operate in the vicinity of humans, we deploy a customized stereo camera setup with active illumination that allows for efficient detection of the reflective patterns created by the worker's safety garments. After segmenting reflective objects from the image background, the interest regions are described with local image feature descriptors and classified in order to discriminate safety garments from other reflective objects in the scene. In a final step, the trajectories of the detected humans are estimated in 3D space relative to the camera. We evaluate our tracking system in two industrial real-world work environments on several challenging video sequences. The experimental results indicate accurate tracking performance and good robustness towards partial occlusions, body pose variation, and a wide range of different illumination conditions. PMID:25264956

  3. How Database Management Systems Can Be Used To Evaluate Program Effectiveness in Small School Districts.

    ERIC Educational Resources Information Center

    Hoffman, Tony

    Sophisticated database management systems (DBMS) for microcomputers are becoming increasingly easy to use, allowing small school districts to develop their own autonomous databases for tracking enrollment and student progress in special education. DBMS applications can be designed for maintenance by district personnel with little technical…

  4. Fostering Solutions: Bringing Brief-Therapy Principles and Practices to the Child Welfare System

    ERIC Educational Resources Information Center

    Flemons, Douglas; Liscio, Michele; Gordon, Arlene Brett; Hibel, James; Gutierrez-Hersh, Annette; Rebholz, Cynthia L.

    2010-01-01

    This article describes a 15-month university-community collaboration that was designed to fast-track children out of foster care. The developers of the project initiated resource-oriented "systems facilitations," allowing wraparound professionals and families to come together in large meetings to solve problems and find solutions. Families also…

  5. New tracking implementation in the Deep Space Network

    NASA Technical Reports Server (NTRS)

    Berner, Jeff B.; Bryant, Scott H.

    2001-01-01

    As part of the Network Simplification Project, the tracking system of the Deep Space Network is being upgraded. This upgrade replaces the discrete logic sequential ranging system with a system that is based on commercial Digital Signal Processor boards. The new implementation allows both sequential and pseudo-noise types of ranging. The other major change is a modernization of the data formatting. Previously, there were several types of interfaces, delivering both intermediate data and processed data (called 'observables'). All of these interfaces were bit-packed blocks, which do not allow for easy expansion, and many of these interfaces required knowledge of the specific hardware implementations. The new interface supports four classes of data: raw (direct from the measuring equipment), derived (the observable data), interferometric (multiple antenna measurements), and filtered (data whose values depend on multiple measurements). All of the measurements are reported at the sky frequency or phase level, so that no knowledge of the actual hardware is required. The data is formatted into Standard Formatted Data Units, as defined by the Consultative Committee for Space Data Systems, so that expansion and cross-center usage is greatly enhanced.

  6. A portable telescope based on the ALIBAVA system for test beam studies

    NASA Astrophysics Data System (ADS)

    Bernabeu, J.; Casse, G.; Garcia, C.; Greenall, A.; Lacasta, C.; Lozano, M.; Marti-Garcia, S.; Pellegrini, G.; Rodriguez, J.; Ullan, M.; Tsurin, I.

    2013-12-01

    A test beam telescope has been built using the ALIBAVA system to drive its data acquisition. The basic telescope planes consist of four XYT stations. Each station is built from a detector board with two strip sensors, mounted one in each side (strips crossing at 90°). The ensemble is coupled to an ALIBAVA daughter board. These stations act as reference frame and allow a precise track reconstruction. The system is triggered by the coincidence signal of the two scintillators located up and down stream. The telescope can hold several devices under tests. Each ALIBAVA daughter board is linked to its corresponding mother board. The system can hold up to 16 mother boards. A master board synchronizes and controls all the mother boards and collects their data. The off-line analysis software has been developed to study the charge collection, cluster width, tracking efficiency, resolution, etc., of the devices under test. Moreover, the built-in ALIBAVA TDC allows the analysis of the time profile of the device signal. The ALIBAVA telescope has been successfully operated in two test runs at the DESY and CERN-SPS beam lines.

  7. XML Technology Assessment

    DTIC Science & Technology

    2001-01-01

    System (GCCS) Track Database Management System (TDBM) (3) GCCS Integrated Imagery and Intelligence (3) Intelligence Shared Data Server (ISDS) General ...The CTH is a powerful model that will allow more than just message systems to exchange information. It could be used for object-oriented databases, as...of the Naval Integrated Tactical Environmental System I (NITES I) is used as a case study to demonstrate the utility of this distributed component

  8. Electrically tunable lens speeds up 3D orbital tracking

    PubMed Central

    Annibale, Paolo; Dvornikov, Alexander; Gratton, Enrico

    2015-01-01

    3D orbital particle tracking is a versatile and effective microscopy technique that allows following fast moving fluorescent objects within living cells and reconstructing complex 3D shapes using laser scanning microscopes. We demonstrated notable improvements in the range, speed and accuracy of 3D orbital particle tracking by replacing commonly used piezoelectric stages with Electrically Tunable Lens (ETL) that eliminates mechanical movement of objective lenses. This allowed tracking and reconstructing shape of structures extending 500 microns in the axial direction. Using the ETL, we tracked at high speed fluorescently labeled genomic loci within the nucleus of living cells with unprecedented temporal resolution of 8ms using a 1.42NA oil-immersion objective. The presented technology is cost effective and allows easy upgrade of scanning microscopes for fast 3D orbital tracking. PMID:26114037

  9. Helicopter In-Flight Tracking System (HITS) for the Gulf of Mexico

    NASA Technical Reports Server (NTRS)

    Martone, Patrick; Tucker, George; Aiken, Edwin W. (Technical Monitor)

    2001-01-01

    The National Aeronautics and Space Administration (NASA) Ames Research Center (ARC) is sponsoring deployment and testing of the Helicopter In-flight Tracking System (HITS) in a portion of the Gulf of Mexico offshore area. Using multilateration principles, HITS determines the location and altitude of all transponder-equipped aircraft without requiring changes to current Mode A, C or S avionics. HITS tracks both rotary and fixed-wing aircraft operating in the 8,500 sq. mi. coverage region. The minimum coverage altitude of 100 ft. is beneficial for petroleum industry, allowing helicopters to be tracked onto the pad of most derricks. In addition to multilateration, HITS provides surveillance reports for aircraft equipped for Automatic Dependent Surveillance - Broadcast (ADS-B), a new surveillance system under development by the Federal Aviation Administration (FAA). The U.S. Department of Transportation (DOT) Volpe National Transportation Systems Center (Volpe Center) is supporting NASA in managing HITS installation and operation, and in evaluating the system's effectiveness. Senses Corporation is supplying, installing and maintaining the HITS ground system. Project activities are being coordinated with the FAA and local helicopter operators. Flight-testing in the Gulf will begin in early 2002. This paper describes the HITS project - specifically, the system equipment (architecture, remote sensors, central processing system at Intracoastal City, LA, and communications) and its performance (accuracy, coverage, and reliability). The paper also presents preliminary results of flight tests.

  10. Developing the Systems Engineering Experience Accelerator (SEEA) Prototype and Roadmap

    DTIC Science & Technology

    2012-10-24

    system attributes. These metrics track non-requirements performance, typically relate to production cost per unit, maintenance costs, training costs...immediately implement lessons learned from the training experience to the job, assuming the culture allows this. 1.3 MANAGEMENT PLAN/TECHNICAL OVERVIEW...resolving potential conflicts as they arise. Incrementally implement and continuously integrate capability in priority order, to ensure that final system

  11. Diffusion kinetics of the glucose/glucose oxidase system in swift heavy ion track-based biosensors

    NASA Astrophysics Data System (ADS)

    Fink, Dietmar; Vacik, Jiri; Hnatowicz, V.; Muñoz Hernandez, G.; Garcia Arrelano, H.; Alfonta, Lital; Kiv, Arik

    2017-05-01

    For understanding of the diffusion kinetics and their optimization in swift heavy ion track-based biosensors, recently a diffusion simulation was performed. This simulation aimed at yielding the degree of enrichment of the enzymatic reaction products in the highly confined space of the etched ion tracks. A bunch of curves was obtained for the description of such sensors that depend only on the ratio of the diffusion coefficient of the products to that of the analyte within the tracks. As hitherto none of these two diffusion coefficients is accurately known, the present work was undertaken. The results of this paper allow one to quantify the previous simulation and hence yield realistic predictions of glucose-based biosensors. At this occasion, also the influence of the etched track radius on the diffusion coefficients was measured and compared with earlier prediction.

  12. Precision controllability of the F-15 airplane

    NASA Technical Reports Server (NTRS)

    Sisk, T. R.; Matheny, N. W.

    1979-01-01

    A flying qualities evaluation conducted on a preproduction F-15 airplane permitted an assessment to be made of its precision controllability in the high subsonic and low transonic flight regime over the allowable angle of attack range. Precision controllability, or gunsight tracking, studies were conducted in windup turn maneuvers with the gunsight in the caged pipper mode and depressed 70 mils. This evaluation showed the F-15 airplane to experience severe buffet and mild-to-moderate wing rock at the higher angles of attack. It showed the F-15 airplane radial tracking precision to vary from approximately 6 to 20 mils over the load factor range tested. Tracking in the presence of wing rock essentially doubled the radial tracking error generated at the lower angles of attack. The stability augmentation system affected the tracking precision of the F-15 airplane more than it did that of previous aircraft studied.

  13. Predicting the stochastic guiding of kinesin-driven microtubules in microfabricated tracks: a statistical-mechanics-based modeling approach.

    PubMed

    Lin, Chih-Tin; Meyhofer, Edgar; Kurabayashi, Katsuo

    2010-01-01

    Directional control of microtubule shuttles via microfabricated tracks is key to the development of controlled nanoscale mass transport by kinesin motor molecules. Here we develop and test a model to quantitatively predict the stochastic behavior of microtubule guiding when they mechanically collide with the sidewalls of lithographically patterned tracks. By taking into account appropriate probability distributions of microscopic states of the microtubule system, the model allows us to theoretically analyze the roles of collision conditions and kinesin surface densities in determining how the motion of microtubule shuttles is controlled. In addition, we experimentally observe the statistics of microtubule collision events and compare our theoretical prediction with experimental data to validate our model. The model will direct the design of future hybrid nanotechnology devices that integrate nanoscale transport systems powered by kinesin-driven molecular shuttles.

  14. Automated Track Recognition and Event Reconstruction in Nuclear Emulsion

    NASA Technical Reports Server (NTRS)

    Deines-Jones, P.; Cherry, M. L.; Dabrowska, A.; Holynski, R.; Jones, W. V.; Kolganova, E. D.; Kudzia, D.; Nilsen, B. S.; Olszewski, A.; Pozharova, E. A.; hide

    1998-01-01

    The major advantages of nuclear emulsion for detecting charged particles are its submicron position resolution and sensitivity to minimum ionizing particles. These must be balanced, however, against the difficult manual microscope measurement by skilled observers required for the analysis. We have developed an automated system to acquire and analyze the microscope images from emulsion chambers. Each emulsion plate is analyzed independently, allowing coincidence techniques to be used in order to reject back- ground and estimate error rates. The system has been used to analyze a sample of high-multiplicity Pb-Pb interactions (charged particle multiplicities approx. 1100) produced by the 158 GeV/c per nucleon Pb-208 beam at CERN. Automatically reconstructed track lists agree with our best manual measurements to 3%. We describe the image analysis and track reconstruction techniques, and discuss the measurement and reconstruction uncertainties.

  15. Adaptive sensor-based ultra-high accuracy solar concentrator tracker

    NASA Astrophysics Data System (ADS)

    Brinkley, Jordyn; Hassanzadeh, Ali

    2017-09-01

    Conventional solar trackers use information of the sun's position, either by direct sensing or by GPS. Our method uses the shading of the receiver. This, coupled with nonimaging optics design allows us to achieve ultra-high concentration. Incorporating a sensor based shadow tracking method with a two stage concentration solar hybrid parabolic trough allows the system to maintain high concentration with acute accuracy.

  16. MagicPlate-512: A 2D silicon detector array for quality assurance of stereotactic motion adaptive radiotherapy.

    PubMed

    Petasecca, M; Newall, M K; Booth, J T; Duncan, M; Aldosari, A H; Fuduli, I; Espinoza, A A; Porumb, C S; Guatelli, S; Metcalfe, P; Colvill, E; Cammarano, D; Carolan, M; Oborn, B; Lerch, M L F; Perevertaylo, V; Keall, P J; Rosenfeld, A B

    2015-06-01

    Spatial and temporal resolutions are two of the most important features for quality assurance instrumentation of motion adaptive radiotherapy modalities. The goal of this work is to characterize the performance of the 2D high spatial resolution monolithic silicon diode array named "MagicPlate-512" for quality assurance of stereotactic body radiation therapy (SBRT) and stereotactic radiosurgery (SRS) combined with a dynamic multileaf collimator (MLC) tracking technique for motion compensation. MagicPlate-512 is used in combination with the movable platform HexaMotion and a research version of radiofrequency tracking system Calypso driving MLC tracking software. The authors reconstruct 2D dose distributions of small field square beams in three modalities: in static conditions, mimicking the temporal movement pattern of a lung tumor and tracking the moving target while the MLC compensates almost instantaneously for the tumor displacement. Use of Calypso in combination with MagicPlate-512 requires a proper radiofrequency interference shielding. Impact of the shielding on dosimetry has been simulated by (GEANT)4 and verified experimentally. Temporal and spatial resolutions of the dosimetry system allow also for accurate verification of segments of complex stereotactic radiotherapy plans with identification of the instant and location where a certain dose is delivered. This feature allows for retrospective temporal reconstruction of the delivery process and easy identification of error in the tracking or the multileaf collimator driving systems. A sliding MLC wedge combined with the lung motion pattern has been measured. The ability of the MagicPlate-512 (MP512) in 2D dose mapping in all three modes of operation was benchmarked by EBT3 film. Full width at half maximum and penumbra of the moving and stationary dose profiles measured by EBT3 film and MagicPlate-512 confirm that motion has a significant impact on the dose distribution. Motion, no motion, and motion with MLC tracking profiles agreed within 1 and 0.4 mm, respectively, for all field sizes tested. Use of electromagnetic tracking system generates a fluctuation of the detector baseline up to 10% of the full scale signal requiring a proper shielding strategy. MagicPlate-512 is also able to reconstruct the dose variation pulse-by-pulse in each pixel of the detector. An analysis of the dose transients with motion and motion with tracking shows that the tracking feedback algorithm used for this experiment can compensate effectively only the effect of the slower transient components. The fast changing components of the organ motion can contribute only to discrepancy of the order of 15% in penumbral region while the slower components can change the dose profile up to 75% of the expected dose. MagicPlate-512 is shown to be, potentially, a valid alternative to film or 2D ionizing chambers for quality assurance dosimetry in SRS or SBRT. Its high spatial and temporal resolutions allow for accurate reconstruction of the profile in any conditions with motion and with tracking of the motion. It shows excellent performance to reconstruct the dose deposition in real time or retrospectively as a function of time for detailed analysis of the effect of motion in a specific pixel or area of interest.

  17. Integration of Irma tactical scene generator into directed-energy weapon system simulation

    NASA Astrophysics Data System (ADS)

    Owens, Monte A.; Cole, Madison B., III; Laine, Mark R.

    2003-08-01

    Integrated high-fidelity physics-based simulations that include engagement models, image generation, electro-optical hardware models and control system algorithms have previously been developed by Boeing-SVS for various tracking and pointing systems. These simulations, however, had always used images with featureless or random backgrounds and simple target geometries. With the requirement to engage tactical ground targets in the presence of cluttered backgrounds, a new type of scene generation tool was required to fully evaluate system performance in this challenging environment. To answer this need, Irma was integrated into the existing suite of Boeing-SVS simulation tools, allowing scene generation capabilities with unprecedented realism. Irma is a US Air Force research tool used for high-resolution rendering and prediction of target and background signatures. The MATLAB/Simulink-based simulation achieves closed-loop tracking by running track algorithms on the Irma-generated images, processing the track errors through optical control algorithms, and moving simulated electro-optical elements. The geometry of these elements determines the sensor orientation with respect to the Irma database containing the three-dimensional background and target models. This orientation is dynamically passed to Irma through a Simulink S-function to generate the next image. This integrated simulation provides a test-bed for development and evaluation of tracking and control algorithms against representative images including complex background environments and realistic targets calibrated using field measurements.

  18. Creating objective and measurable postgraduate year 1 residency graduation requirements.

    PubMed

    Starosta, Kaitlin; Davis, Susan L; Kenney, Rachel M; Peters, Michael; To, Long; Kalus, James S

    2017-03-15

    The process of developing objective and measurable postgraduate year 1 (PGY1) residency graduation requirements and a progress tracking system is described. The PGY1 residency accreditation standard requires that programs establish criteria that must be met by residents for successful completion of the program (i.e., graduation requirements), which should presumably be aligned with helping residents to achieve the purpose of residency training. In addition, programs must track a resident's progress toward fulfillment of residency goals and objectives. Defining graduation requirements and establishing the process for tracking residents' progress are left up to the discretion of the residency program. To help standardize resident performance assessments, leaders of an academic medical center-based PGY1 residency program developed graduation requirement criteria that are objective, measurable, and linked back to residency goals and objectives. A system for tracking resident progress relative to quarterly progress targets was instituted. Leaders also developed a focused, on-the-spot skills assessment termed "the Thunderdome," which was designed for objective evaluation of direct patient care skills. Quarterly data on residents' progress are used to update and customize each resident's training plan. Implementation of this system allowed seamless linkage of the training plan, the progress tracking system, and the specified graduation requirement criteria. PGY1 residency requirements that are objective, that are measurable, and that attempt to identify what skills the resident must demonstrate in order to graduate from the program were developed for use in our residency program. A system for tracking the residents' progress by comparing residents' performance to predetermined quarterly benchmarks was developed. Copyright © 2017 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  19. Going wild: what a global small-animal tracking system could do for experimental biologists.

    PubMed

    Wikelski, Martin; Kays, Roland W; Kasdin, N Jeremy; Thorup, Kasper; Smith, James A; Swenson, George W

    2007-01-01

    Tracking animals over large temporal and spatial scales has revealed invaluable and spectacular biological information, particularly when the paths and fates of individuals can be monitored on a global scale. However, only large animals (greater than approximately 300 g) currently can be followed globally because of power and size constraints on the tracking devices. And yet the vast majority of animals is small. Tracking small animals is important because they are often part of evolutionary and ecological experiments, they provide important ecosystem services and they are of conservation concern or pose harm to human health. Here, we propose a small-animal satellite tracking system that would enable the global monitoring of animals down to the size of the smallest birds, mammals (bats), marine life and eventually large insects. To create the scientific framework necessary for such a global project, we formed the ICARUS initiative (www.IcarusInitiative.org), the International Cooperation for Animal Research Using Space. ICARUS also highlights how small-animal tracking could address some of the ;Grand Challenges in Environmental Sciences' identified by the US National Academy of Sciences, such as the spread of infectious diseases or the relationship between biological diversity and ecosystem functioning. Small-animal tracking would allow the quantitative assessment of dispersal and migration in natural populations and thus help solve enigmas regarding population dynamics, extinctions and invasions. Experimental biologists may find a global small-animal tracking system helpful in testing, validating and expanding laboratory-derived discoveries in wild, natural populations. We suggest that the relatively modest investment into a global small-animal tracking system will pay off by providing unprecedented insights into both basic and applied nature. Tracking small animals over large spatial and temporal scales could prove to be one of the most powerful techniques of the early 21st century, offering potential solutions to a wide range of biological and societal questions that date back two millennia to the Greek philosopher Aristotle's enigma about songbird migration. Several of the more recent Grand Challenges in Environmental Sciences, such as the regulation and functional consequences of biological diversity or the surveillance of the population ecology of zoonotic hosts, pathogens or vectors, could also be addressed by a global small-animal tracking system. Our discussion is intended to contribute to an emerging groundswell of scientific support to make such a new technological system happen.

  20. Technical Note: Validation and implementation of a wireless transponder tracking system for gated stereotactic ablative radiotherapy of the liver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James, Joshua, E-mail: joshua.james@louisville.edu; Dunlap, Neal E.; Nguyen, Vi Nhan

    Purpose: Tracking soft-tissue targets has recently been cleared as a new application of Calypso, an electromagnetic wireless transponder tracking system, allowing for gated treatment of the liver based on the motion of the target volume itself. The purpose of this study is to describe the details of validating the Calypso system for wireless transponder tracking of the liver and to present the clinical workflow for using it to deliver gated stereotactic ablative radiotherapy (SABR). Methods: A commercial 3D diode array motion system was used to evaluate the dynamic tracking accuracy of Calypso when tracking continuous large amplitude motion. It wasmore » then used to perform end-to-end tests to evaluate the dosimetric accuracy of gated beam delivery for liver SABR. In addition, gating limits were investigated to determine how large the gating window can be while still maintaining dosimetric accuracy. The gating latency of the Calypso system was also measured using a customized motion phantom. Results: The average absolute difference between the measured and expected positional offset was 0.3 mm. The 2%/2 mm gamma pass rates for the gated treatment delivery were greater than 97%. When increasing the gating limits beyond the known extent of planned motion, the gamma pass rates decreased as expected. The 2%/2 mm gamma pass rate for a 1, 2, and 3 mm increase in gating limits was measured to be 97.8%, 82.9%, and 61.4%, respectively. The average gating latency was measured to be 63.8 ms for beam-hold and 195.8 ms for beam-on. Four liver patients with 17 total fractions have been successfully treated at our institution. Conclusions: Wireless transponder tracking was validated as a dosimetrically accurate way to provide gated SABR of the liver. The dynamic tracking accuracy of the Calypso system met manufacturer’s specification, even for continuous large amplitude motion that can be encountered when tracking liver tumors close to the diaphragm. The measured beam-hold gating latency was appropriate for targets that will traverse the gating limit each respiratory cycle causing the beam to be interrupted constantly throughout treatment delivery.« less

  1. Sensor-based animal tracking

    NASA Astrophysics Data System (ADS)

    Hunter, Andrew

    The advent of Global Positioning System (GPS) technologies has provided wildlife researchers with new insights into the movement and habitat utilization patterns of wildlife species by being able to provide vast quantities of detailed location data. However, current wildlife tracking techniques have numerous limitations, as GPS locations can be biased to an unknown extent because animals move through habitats that are often denied GPS signals. This can result in some habitat types being under sampled or not sampled at all. Additionally, researchers using GPS tracking systems cannot understand what behaviour an animal is exhibiting at each GPS position without either relying on extensive field data or statistical techniques that may infer behaviour. Overall these issues, and others, limit the knowledge that can be derived from the data currently being collected by GPS collars alone. To address these limitations, a dead reckoning solution (called the NavAid) has been developed to augment GPS tracking collars, which enables both the acquisition of continuous movement trajectories for animals under study, and the collection of digital images on a user-defined schedule along travel routes. Analysis of an animal's velocity allows one to identify different types of movement behaviours that can be associated with foraging, searching for food, and locomotion between patches. In addition, the ability to capture continuous paths allows researchers to identify habitat that is important to a species, and habitat that is not---something that is not possible when relying solely on GPS. This new system weighs approximately 220 g and can be deployed on most conventional collar systems for a wide range of species. This thesis presents the research and development of this new system over the past four years, along with preliminary findings from field work carried out on grizzly bears (Ursus arctos) in the foothills of the Canadian Rocky Mountains. Analysis of tracking data suggests that animals select different types of habitat for different purposes, that foraging occurs at movement rates of less than 52m/minute, searching for food between movement rates of 52 m/minute and 223 m/minute and locomotion, or active walking between foraging sites at movement rates greater than 223 m/minute.

  2. Controlled ion track etching

    NASA Astrophysics Data System (ADS)

    George, J.; Irkens, M.; Neumann, S.; Scherer, U. W.; Srivastava, A.; Sinha, D.; Fink, D.

    2006-03-01

    It is a common practice since long to follow the ion track-etching process in thin foils via conductometry, i.e . by measurement of the electrical current which passes through the etched track, once the track breakthrough condition has been achieved. The major disadvantage of this approach, namely the absence of any major detectable signal before breakthrough, can be avoided by examining the track-etching process capacitively. This method allows one to define precisely not only the breakthrough point before it is reached, but also the length of any non-transient track. Combining both capacitive and conductive etching allows one to control the etching process perfectly. Examples and possible applications are given.

  3. Department of Defense Status of Year 2000 Efforts. 11th Quarterly Progress Report

    DTIC Science & Technology

    1999-11-15

    Duplicate systems corrected when all Intelligence mission critical systems were folded into the unclassified OSD database to allow for complete tracking in...one database. - 2 Two Intelligence Systems that were scheduled to be terminated or replaced that have been reclassified to non-mission...National Communication System participated in the Federal Sector Group meetings and assessed our role in the functional testing. Industry conducted

  4. Solar Collector Control System.

    DTIC Science & Technology

    A system for controlling the movement in azimuth and elevation of a large number of sun following solor energy collectors from a single controller...The system utilizes servo signal generators, a modulator and a demodulator for transmitting the servo signals, and stepping motors for controlling...remotely located solar collectors. The system allows precise tracking of the sun by a series of solar collectors without the necessity or expense of individualized solar trackers. (Author)

  5. Robust Pedestrian Tracking and Recognition from FLIR Video: A Unified Approach via Sparse Coding

    PubMed Central

    Li, Xin; Guo, Rui; Chen, Chao

    2014-01-01

    Sparse coding is an emerging method that has been successfully applied to both robust object tracking and recognition in the vision literature. In this paper, we propose to explore a sparse coding-based approach toward joint object tracking-and-recognition and explore its potential in the analysis of forward-looking infrared (FLIR) video to support nighttime machine vision systems. A key technical contribution of this work is to unify existing sparse coding-based approaches toward tracking and recognition under the same framework, so that they can benefit from each other in a closed-loop. On the one hand, tracking the same object through temporal frames allows us to achieve improved recognition performance through dynamical updating of template/dictionary and combining multiple recognition results; on the other hand, the recognition of individual objects facilitates the tracking of multiple objects (i.e., walking pedestrians), especially in the presence of occlusion within a crowded environment. We report experimental results on both the CASIAPedestrian Database and our own collected FLIR video database to demonstrate the effectiveness of the proposed joint tracking-and-recognition approach. PMID:24961216

  6. Tracking elk hunters with the Global Positioning System

    Treesearch

    L. Jack Lyon; Milo G. Burcham

    1998-01-01

    Global Positioning System (GPS) units were used to record hunter locations at 15 second intervals during elk hunting expeditions. This information allowed us to examine the influence of roads on hunter behavior, and along with associated time and distance data, provide a solid foundation on which a hunter density and elk vulnerability model can be developed.

  7. A Programmer-Oriented Approach to Safe Concurrency

    DTIC Science & Technology

    2003-05-01

    and leaving a synchronized block additionally has effects on the management of memory values in the JMM. The practical outcome of these effects is...object-oriented effects system; (3) analysis to track the association of locks with regions, (4) policy descriptions for allowable method...Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4 An Object-Oriented Effects System 45 4.1 Regions Identify State

  8. Concentrating Solar Power Basics | NREL

    Science.gov Websites

    concentrating solar power systems uses the sun as a heat source. The three main types of concentrating solar toward the sun, focusing sunlight on tubes (or receivers) that run the length of the mirrors. The mirrors to allow the mirrors greater mobility in tracking the sun. A dish/engine system uses a mirrored

  9. Partial Automated Alignment and Integration System

    NASA Technical Reports Server (NTRS)

    Kelley, Gary Wayne (Inventor)

    2014-01-01

    The present invention is a Partial Automated Alignment and Integration System (PAAIS) used to automate the alignment and integration of space vehicle components. A PAAIS includes ground support apparatuses, a track assembly with a plurality of energy-emitting components and an energy-receiving component containing a plurality of energy-receiving surfaces. Communication components and processors allow communication and feedback through PAAIS.

  10. Use of artificial neural networks on optical track width measurements.

    PubMed

    Smith, Richard J; See, Chung W; Somekh, Mike G; Yacoot, Andrew

    2007-08-01

    We have demonstrated recently that, by using an ultrastable optical interferometer together with artificial neural networks (ANNs), track widths down to 60 nm can be measured with a 0.3 NA objective lens. We investigate the effective conditions for training ANNs. Experimental results will be used to show the characteristics of the training samples and the data format of the ANN inputs required to produce suitably trained ANNs. Results obtained with networks measuring double tracks, and classifying different structures, will be presented to illustrate the capability of the technique. We include a discussion on expansion of the application areas of the system, allowing it to be used as a general purpose instrument.

  11. Use of artificial neural networks on optical track width measurements

    NASA Astrophysics Data System (ADS)

    Smith, Richard J.; See, Chung W.; Somekh, Mike G.; Yacoot, Andrew

    2007-08-01

    We have demonstrated recently that, by using an ultrastable optical interferometer together with artificial neural networks (ANNs), track widths down to 60 nm can be measured with a 0.3 NA objective lens. We investigate the effective conditions for training ANNs. Experimental results will be used to show the characteristics of the training samples and the data format of the ANN inputs required to produce suitably trained ANNs. Results obtained with networks measuring double tracks, and classifying different structures, will be presented to illustrate the capability of the technique. We include a discussion on expansion of the application areas of the system, allowing it to be used as a general purpose instrument.

  12. Coarse-to-fine markerless gait analysis based on PCA and Gauss-Laguerre decomposition

    NASA Astrophysics Data System (ADS)

    Goffredo, Michela; Schmid, Maurizio; Conforto, Silvia; Carli, Marco; Neri, Alessandro; D'Alessio, Tommaso

    2005-04-01

    Human movement analysis is generally performed through the utilization of marker-based systems, which allow reconstructing, with high levels of accuracy, the trajectories of markers allocated on specific points of the human body. Marker based systems, however, show some drawbacks that can be overcome by the use of video systems applying markerless techniques. In this paper, a specifically designed computer vision technique for the detection and tracking of relevant body points is presented. It is based on the Gauss-Laguerre Decomposition, and a Principal Component Analysis Technique (PCA) is used to circumscribe the region of interest. Results obtained on both synthetic and experimental tests provide significant reduction of the computational costs, with no significant reduction of the tracking accuracy.

  13. AQUIS: A PC-based source information manager

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, A.E.; Huber, C.C.; Tschanz, J.

    1993-05-01

    The Air Quality Utility Information System (AQUIS) was developed to calculate emissions and track them along with related information about sources, stacks, controls, and permits. The system runs on IBM- compatible personal computers with dBASE IV and tracks more than 1, 200 data items distributed among various source categories. AQUIS is currently operating at 11 US Air Force facilities, which have up to 1, 000 sources, and two headquarters. The system provides a flexible reporting capability that permits users who are unfamiliar with database structure to design and prepare reports containing user- specified information. In addition to the criteria pollutants,more » AQUIS calculates compound-specific emissions and allows users to enter their own emission estimates.« less

  14. AQUIS: A PC-based source information manager

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, A.E.; Huber, C.C.; Tschanz, J.

    1993-01-01

    The Air Quality Utility Information System (AQUIS) was developed to calculate emissions and track them along with related information about sources, stacks, controls, and permits. The system runs on IBM- compatible personal computers with dBASE IV and tracks more than 1, 200 data items distributed among various source categories. AQUIS is currently operating at 11 US Air Force facilities, which have up to 1, 000 sources, and two headquarters. The system provides a flexible reporting capability that permits users who are unfamiliar with database structure to design and prepare reports containing user- specified information. In addition to the criteria pollutants,more » AQUIS calculates compound-specific emissions and allows users to enter their own emission estimates.« less

  15. Sub-nanosecond clock synchronization and precision deep space tracking

    NASA Technical Reports Server (NTRS)

    Dunn, Charles; Lichten, Stephen; Jefferson, David; Border, James S.

    1992-01-01

    Interferometric spacecraft tracking is accomplished at the NASA Deep Space Network (DSN) by comparing the arrival time of electromagnetic spacecraft signals to ground antennas separated by baselines on the order of 8000 km. Clock synchronization errors within and between DSN stations directly impact the attainable tracking accuracy, with a 0.3 ns error in clock synchronization resulting in an 11 nrad angular position error. This level of synchronization is currently achieved by observing a quasar which is angularly close to the spacecraft just after the spacecraft observations. By determining the differential arrival times of the random quasar signal at the stations, clock synchronization and propagation delays within the atmosphere and within the DSN stations are calibrated. Recent developments in time transfer techniques may allow medium accuracy (50-100 nrad) spacecraft observations without near-simultaneous quasar-based calibrations. Solutions are presented for a global network of GPS receivers in which the formal errors in clock offset parameters are less than 0.5 ns. Comparisons of clock rate offsets derived from GPS measurements and from very long baseline interferometry and the examination of clock closure suggest that these formal errors are a realistic measure of GPS-based clock offset precision and accuracy. Incorporating GPS-based clock synchronization measurements into a spacecraft differential ranging system would allow tracking without near-simultaneous quasar observations. The impact on individual spacecraft navigation error sources due to elimination of quasar-based calibrations is presented. System implementation, including calibration of station electronic delays, is discussed.

  16. Mobile Telemetry Van Remote Control Upgrade

    DTIC Science & Technology

    2012-05-17

    Advantages of Remote Control System Upgrade • Summary Overview • Remote control of Telemetry Mobile Ground Support ( TMGS ) Van proposed to allow...NWC) personnel provided valuable data for full-function remote control of telemetry tracking vans Background • TMGS Vans support Flight Test...control capability from main TM site at Building 5790 currently allows support via TMGS Van at nearby C- 15 Site, Plant 42 in Palmdale, and as far

  17. Design Development of a Combined Deployment and Pointing System for the International Space Station Neutron Star Interior Composition Explorer Telescope

    NASA Technical Reports Server (NTRS)

    Budinoff, Jason; Gendreau, Keith; Arzoumanian, Zaven; Baker, Charles; Berning, Robert; Colangelo, Todd; Holzinger, John; Lewis, Jesse; Liu, Alice; Mitchell, Alissa; hide

    2015-01-01

    This paper describes the design of a unique suite of mechanisms which make up the Deployment and Pointing System (DAPS) for the Neutron Star Interior Composition Explorer (NICER/SEXTANT) instrument, an X-Ray telescope, which will be mounted on the International Space Station (ISS). The DAPS system uses 4 stepper motor actuators to deploy the telescope box, latch it in the deployed position, and allow it to track sky targets. The DAPS gimbal architecture provides full-hemisphere coverage, and is fully re-stowable. The compact design of the mechanism allowed the majority of total instrument volume to be used for science. Override features allow DAPS to be stowed by ISS robotics.

  18. Design Development of a Combined Deployment and Pointing System for the International Space Station Neutron Star Interior Composition Explorer Telescope

    NASA Technical Reports Server (NTRS)

    Budinoff, Jason; Gendreau, Keith; Arzoumanian, Zaven; Baker, Charles; Berning, Robert; Colangelo, TOdd; Holzinger, John; Lewis, Jesse; Liu, Alice; Mitchell, Alissa; hide

    2016-01-01

    This paper describes the design of a unique suite of mechanisms that make up the Deployment and Pointing System (DAPS) for the Neutron Star Interior Composition Explorer (NICER/SEXTANT) instrument, an X-Ray telescope, which will be mounted on the International Space Station (ISS). The DAPS system uses four stepper motor actuators to deploy the telescope box, latch it in the deployed position, and allow it to track sky targets. The DAPS gimbal architecture provides full-hemisphere coverage, and is fully re-stowable. The compact design of the mechanism allowed the majority of total instrument volume to be used for science. Override features allow DAPS to be stowed by ISS robotics.

  19. Bias estimation for moving optical sensor measurements with targets of opportunity

    NASA Astrophysics Data System (ADS)

    Belfadel, Djedjiga; Osborne, Richard W.; Bar-Shalom, Yaakov

    2014-06-01

    Integration of space based sensors into a Ballistic Missile Defense System (BMDS) allows for detection and tracking of threats over a larger area than ground based sensors [1]. This paper examines the effect of sensor bias error on the tracking quality of a Space Tracking and Surveillance System (STSS) for the highly non-linear problem of tracking a ballistic missile. The STSS constellation consists of two or more satellites (on known trajectories) for tracking ballistic targets. Each satellite is equipped with an IR sensor that provides azimuth and elevation to the target. The tracking problem is made more difficult due to a constant or slowly varying bias error present in each sensor's line of sight measurements. It is important to correct for these bias errors so that the multiple sensor measurements and/or tracks can be referenced as accurately as possible to a common tracking coordinate system. The measurements provided by these sensors are assumed time-coincident (synchronous) and perfectly associated. The line of sight (LOS) measurements from the sensors can be fused into measurements which are the Cartesian target position, i.e., linear in the target state. We evaluate the Cramér-Rao Lower Bound (CRLB) on the covariance of the bias estimates, which serves as a quantification of the available information about the biases. Statistical tests on the results of simulations show that this method is statistically efficient, even for small sample sizes (as few as two sensors and six points on the (unknown) trajectory of a single target of opportunity). We also show that the RMS position error is significantly improved with bias estimation compared with the target position estimation using the original biased measurements.

  20. Needle placement for piriformis injection using 3-D imaging.

    PubMed

    Clendenen, Steven R; Candler, Shawn A; Osborne, Michael D; Palmer, Scott C; Duench, Stephanie; Glynn, Laura; Ghazi, Salim M

    2013-01-01

    Piriformis syndrome is a pain syndrome originating in the buttock and is attributed to 6% - 8% of patients referred for the treatment of back and leg pain. The treatment for piriformis syndrome using fluoroscopy, computed tomography (CT), electromyography (EMG), and ultrasound (US) has become standard practice. The treatment of Piriformis Syndrome has evolved to include fluoroscopy and EMG with CT guidance. We present a case study of 5 successful piriformis injections using 3-D computer-assisted electromagnet needle tracking coupled with ultrasound. A 6-degree of freedom electromagnetic position tracker was attached to the ultrasound probe that allowed the system to detect the position and orientation of the probe in the magnetic field. The tracked ultrasound probe was used to find the posterior superior iliac spine. Subsequently, 3 points were captured to register the ultrasound image with the CT or magnetic resonance image scan. Moreover, after the registration was obtained, the navigation system visualized the tracked needle relative to the CT scan in real-time using 2 orthogonal multi-planar reconstructions centered at the tracked needle tip. Conversely, a recent study revealed that fluoroscopically guided injections had 30% accuracy compared to ultrasound guided injections, which tripled the accuracy percentage. This novel technique exhibited an accurate needle guidance injection precision of 98% while advancing to the piriformis muscle and avoiding the sciatic nerve. The mean (± SD) procedure time was 19.08 (± 4.9) minutes. This technique allows for electromagnetic instrument tip tracking with real-time 3-D guidance to the selected target. As with any new technique, a learning curve is expected; however, this technique could offer an alternative, minimizing radiation exposure.

  1. Calibration of 3D ultrasound to an electromagnetic tracking system

    NASA Astrophysics Data System (ADS)

    Lang, Andrew; Parthasarathy, Vijay; Jain, Ameet

    2011-03-01

    The use of electromagnetic (EM) tracking is an important guidance tool that can be used to aid procedures requiring accurate localization such as needle injections or catheter guidance. Using EM tracking, the information from different modalities can be easily combined using pre-procedural calibration information. These calibrations are performed individually, per modality, allowing different imaging systems to be mixed and matched according to the procedure at hand. In this work, a framework for the calibration of a 3D transesophageal echocardiography probe to EM tracking is developed. The complete calibration framework includes three required steps: data acquisition, needle segmentation, and calibration. Ultrasound (US) images of an EM tracked needle must be acquired with the position of the needles in each volume subsequently extracted by segmentation. The calibration transformation is determined through a registration between the segmented points and the recorded EM needle positions. Additionally, the speed of sound is compensated for since calibration is performed in water that has a different speed then is assumed by the US machine. A statistical validation framework has also been developed to provide further information related to the accuracy and consistency of the calibration. Further validation of the calibration showed an accuracy of 1.39 mm.

  2. Single-Molecule Tracking and Its Application in Biomolecular Binding Detection.

    PubMed

    Liu, Cong; Liu, Yen-Liang; Perillo, Evan P; Dunn, Andrew K; Yeh, Hsin-Chih

    2016-01-01

    In the past two decades significant advances have been made in single-molecule detection, which enables the direct observation of single biomolecules at work in real time and under physiological conditions. In particular, the development of single-molecule tracking (SMT) microscopy allows us to monitor the motion paths of individual biomolecules in living systems, unveiling the localization dynamics and transport modalities of the biomolecules that support the development of life. Beyond the capabilities of traditional camera-based tracking techniques, state-of-the-art SMT microscopies developed in recent years can record fluorescence lifetime while tracking a single molecule in the 3D space. This multiparameter detection capability can open the door to a wide range of investigations at the cellular or tissue level, including identification of molecular interaction hotspots and characterization of association/dissociation kinetics between molecules. In this review, we discuss various SMT techniques developed to date, with an emphasis on our recent development of the next generation 3D tracking system that not only achieves ultrahigh spatiotemporal resolution but also provides sufficient working depth suitable for live animal imaging. We also discuss the challenges that current SMT techniques are facing and the potential strategies to tackle those challenges.

  3. Single-Molecule Tracking and Its Application in Biomolecular Binding Detection

    PubMed Central

    Liu, Cong; Liu, Yen-Liang; Perillo, Evan P.; Dunn, Andrew K.; Yeh, Hsin-Chih

    2016-01-01

    In the past two decades significant advances have been made in single-molecule detection, which enables the direct observation of single biomolecules at work in real time and under physiological conditions. In particular, the development of single-molecule tracking (SMT) microscopy allows us to monitor the motion paths of individual biomolecules in living systems, unveiling the localization dynamics and transport modalities of the biomolecules that support the development of life. Beyond the capabilities of traditional camera-based tracking techniques, state-of-the-art SMT microscopies developed in recent years can record fluorescence lifetime while tracking a single molecule in the 3D space. This multiparameter detection capability can open the door to a wide range of investigations at the cellular or tissue level, including identification of molecular interaction hotspots and characterization of association/dissociation kinetics between molecules. In this review, we discuss various SMT techniques developed to date, with an emphasis on our recent development of the next generation 3D tracking system that not only achieves ultrahigh spatiotemporal resolution but also provides sufficient working depth suitable for live animal imaging. We also discuss the challenges that current SMT techniques are facing and the potential strategies to tackle those challenges. PMID:27660404

  4. A video multitracking system for quantification of individual behavior in a large fish shoal: advantages and limits.

    PubMed

    Delcourt, Johann; Becco, Christophe; Vandewalle, Nicolas; Poncin, Pascal

    2009-02-01

    The capability of a new multitracking system to track a large number of unmarked fish (up to 100) is evaluated. This system extrapolates a trajectory from each individual and analyzes recorded sequences that are several minutes long. This system is very efficient in statistical individual tracking, where the individual's identity is important for a short period of time in comparison with the duration of the track. Individual identification is typically greater than 99%. Identification is largely efficient (more than 99%) when the fish images do not cross the image of a neighbor fish. When the images of two fish merge (occlusion), we consider that the spot on the screen has a double identity. Consequently, there are no identification errors during occlusions, even though the measurement of the positions of each individual is imprecise. When the images of these two merged fish separate (separation), individual identification errors are more frequent, but their effect is very low in statistical individual tracking. On the other hand, in complete individual tracking, where individual fish identity is important for the entire trajectory, each identification error invalidates the results. In such cases, the experimenter must observe whether the program assigns the correct identification, and, when an error is made, must edit the results. This work is not too costly in time because it is limited to the separation events, accounting for fewer than 0.1% of individual identifications. Consequently, in both statistical and rigorous individual tracking, this system allows the experimenter to gain time by measuring the individual position automatically. It can also analyze the structural and dynamic properties of an animal group with a very large sample, with precision and sampling that are impossible to obtain with manual measures.

  5. The VRFurnace: A Virtual Reality Application for Energy System Data Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Peter Eric

    2001-01-01

    The VRFurnace is a unique VR application designed to analyze a complete coal-combustion CFD model of a power plant furnace. Although other applications have been created that analyze furnace performance, no other has included the added complications of particle tracking and the reactions associated with coal combustion. Currently the VRFurnace is a versatile analysis tool. Data translators have been written to allow data from most of the major commercial CFD software packages as well as standard data formats of hand-written code to be uploaded into the VR application. Because of this almost any type of CFD model of any powermore » plant component can be analyzed immediately. The ease of use of the VRFurnace is another of its qualities. The menu system created for the application not only guides first time users through the various button combinations but it also helps the experienced user keep track of which tool is being used. Because the VRFurnace was designed for use in the C6 device at Iowa State University's Virtual Reality Applications Center it is naturally a collaborative project. The projection-based system allows many people to be involved in the analysis process. This type of environment opens the design process to not only include CFD analysts but management teams and plant operators as well by making it easier for engineers to explain design changes. The 3D visualization allows power plant components to be studied in the context of their natural physical environments giving engineers a chance to use their innate pattern recognition and intuitive skills to bring to light key relationships that may have previously gone unrecognized. More specifically, the tools that have been developed make better use of the third dimension that the synthetic environment provides. Whereas the plane tools make it easier to track down interesting features of a given flow field, the box tools allow the user to focus on these features and reduce the data load on the computer.« less

  6. Real-time tracking of objects for a KC-135 microgravity experiment

    NASA Technical Reports Server (NTRS)

    Littlefield, Mark L.

    1994-01-01

    The design of a visual tracking system for use on the Extra-Vehicular Activity Helper/Retriever (EVAHR) is discussed. EVAHR is an autonomous robot designed to perform numerous tasks in an orbital microgravity environment. Since the ability to grasp a freely translating and rotating object is vital to the robot's mission, the EVAHR must analyze range image generated by the primary sensor. This allows EVAHR to locate and focus its sensors so that an accurate set of object poses can be determined and a grasp strategy planned. To test the visual tracking system being developed, a mathematical simulation was used to model the space station environment and maintain dynamics on the EVAHR and any other free floating objects. A second phase of the investigation consists of a series of experiments carried out aboard a KC-135 aircraft flying a parabolic trajectory to simulate microgravity.

  7. Spaceborne centrifugal relays for spacecraft propulsion

    NASA Technical Reports Server (NTRS)

    Ouzidane, Malika

    1991-01-01

    Acceleration using centrifugal relays is a recently discovered method for the acceleration of spaceborne payloads to high velocity at high thrust. Centrifugal relays are moving rotors which progressively accelerate reaction mass to higher velocities. One important engineering problem consists of accurately tracking the position of the projectiles and rotors and guiding each projectile exactly onto the appropriate guide tracks on each rotor. The topics of this research are the system kinematics and dynamics and the computerized guidance system which will allow the projectile to approach each rotor with exact timing with respect to the rotor rotation period and with very small errors in lateral positions. Kinematics studies include analysis of rotor and projectile positions versus time and projectile/rotor interactions. Guidance studies include a detailed description of the tracking mechanism (interrupt of optical beams) and the aiming mechanism (electromagnetic focusing) including the design of electromagnetic deflection coils and the switching circuitry.

  8. What do we know about implicit false-belief tracking?

    PubMed

    Schneider, Dana; Slaughter, Virginia P; Dux, Paul E

    2015-02-01

    There is now considerable evidence that neurotypical individuals track the internal cognitions of others, even in the absence of instructions to do so. This finding has prompted the suggestion that humans possess an implicit mental state tracking system (implicit Theory of Mind, ToM) that exists alongside a system that allows the deliberate and explicit analysis of the mental states of others (explicit ToM). Here we evaluate the evidence for this hypothesis and assess the extent to which implicit and explicit ToM operations are distinct. We review evidence showing that adults can indeed engage in ToM processing even without being conscious of doing so. However, at the same time, there is evidence that explicit and implicit ToM operations share some functional features, including drawing on executive resources. Based on the available evidence, we propose that implicit and explicit ToM operations overlap and should only be considered partially distinct.

  9. Differential correction capability of the GTDS using TDRSS data

    NASA Technical Reports Server (NTRS)

    Liu, S. Y.; Soskey, D. G.; Jacintho, J.

    1980-01-01

    A differential correction (DC) capability was implemented in the Goddard Trajectory Determination System (GTDS) to process satellite tracking data acquired via the Tracking and Data Relay Satellite System (TRDRSS). Configuration of the TDRSS is reviewed, observation modeling is presented, and major features of the capability are discussed. The following types of TDRSS data can be processed by GTDS: two way relay range and Doppler measurements, hybrid relay range and Doppler measurements, one way relay Doppler measurements, and differenced one way relay Doppler measurements. These data may be combined with conventional ground based direct tracking data. By using Bayesian weighted least squares techniques, the software allows the simultaneous determination of the trajectories of up to four different satellites - one user satellite and three relay satellites. In addition to satellite trajectories, the following parameters can be optionally solved: for drag coefficient, reflectivity of a satellite for solar radiation pressure, transponder delay, station position, and biases.

  10. Development of an Adaptable Display and Diagnostic System for the Evaluation of Tropical Cyclone Forecasts

    NASA Astrophysics Data System (ADS)

    Kucera, P. A.; Burek, T.; Halley-Gotway, J.

    2015-12-01

    NCAR's Joint Numerical Testbed Program (JNTP) focuses on the evaluation of experimental forecasts of tropical cyclones (TCs) with the goal of developing new research tools and diagnostic evaluation methods that can be transitioned to operations. Recent activities include the development of new TC forecast verification methods and the development of an adaptable TC display and diagnostic system. The next generation display and diagnostic system is being developed to support evaluation needs of the U.S. National Hurricane Center (NHC) and broader TC research community. The new hurricane display and diagnostic capabilities allow forecasters and research scientists to more deeply examine the performance of operational and experimental models. The system is built upon modern and flexible technology that includes OpenLayers Mapping tools that are platform independent. The forecast track and intensity along with associated observed track information are stored in an efficient MySQL database. The system provides easy-to-use interactive display system, and provides diagnostic tools to examine forecast track stratified by intensity. Consensus forecasts can be computed and displayed interactively. The system is designed to display information for both real-time and for historical TC cyclones. The display configurations are easily adaptable to meet the needs of the end-user preferences. Ongoing enhancements include improving capabilities for stratification and evaluation of historical best tracks, development and implementation of additional methods to stratify and compute consensus hurricane track and intensity forecasts, and improved graphical display tools. The display is also being enhanced to incorporate gridded forecast, satellite, and sea surface temperature fields. The presentation will provide an overview of the display and diagnostic system development and demonstration of the current capabilities.

  11. A measurement technique to determine the calibration accuracy of an electromagnetic tracking system to radiation isocenter.

    PubMed

    Litzenberg, Dale W; Gallagher, Ian; Masi, Kathryn J; Lee, Choonik; Prisciandaro, Joann I; Hamstra, Daniel A; Ritter, Timothy; Lam, Kwok L

    2013-08-01

    To present and characterize a measurement technique to quantify the calibration accuracy of an electromagnetic tracking system to radiation isocenter. This technique was developed as a quality assurance method for electromagnetic tracking systems used in a multi-institutional clinical hypofractionated prostate study. In this technique, the electromagnetic tracking system is calibrated to isocenter with the manufacturers recommended technique, using laser-based alignment. A test patient is created with a transponder at isocenter whose position is measured electromagnetically. Four portal images of the transponder are taken with collimator rotations of 45° 135°, 225°, and 315°, at each of four gantry angles (0°, 90°, 180°, 270°) using a 3×6 cm2 radiation field. In each image, the center of the copper-wrapped iron core of the transponder is determined. All measurements are made relative to this transponder position to remove gantry and imager sag effects. For each of the 16 images, the 50% collimation edges are identified and used to find a ray representing the rotational axis of each collimation edge. The 16 collimator rotation rays from four gantry angles pass through and bound the radiation isocenter volume. The center of the bounded region, relative to the transponder, is calculated and then transformed to tracking system coordinates using the transponder position, allowing the tracking system's calibration offset from radiation isocenter to be found. All image analysis and calculations are automated with inhouse software for user-independent accuracy. Three different tracking systems at two different sites were evaluated for this study. The magnitude of the calibration offset was always less than the manufacturer's stated accuracy of 0.2 cm using their standard clinical calibration procedure, and ranged from 0.014 to 0.175 cm. On three systems in clinical use, the magnitude of the offset was found to be 0.053±0.036, 0.121±0.023, and 0.093±0.013 cm. The method presented here provides an independent technique to verify the calibration of an electromagnetic tracking system to radiation isocenter. The calibration accuracy of the system was better than the 0.2 cm accuracy stated by the manufacturer. However, it should not be assumed to be zero, especially for stereotactic radiation therapy treatments where planning target volume margins are very small.

  12. Training Records And Information Network UNIX Version

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, Michael

    1996-12-01

    TRAIN-UNIX is used to track training requirements, qualifications, training completion and schedule training, classrooms and instructors. TRAIN-UNIX is a requirements-based system. When the identified training requirements for specific jobs are entered into the system, the employees manager or responsible training person assigns jobs to an employee. TRAIN-UNIX will then assemble an Individual Training Plan (ITP) with all courses required. ITP''s can also be modified to add any special training directed or identified by management, best business practices, procedures, etc. TRAIN-UNIX also schedules and tracks conferences, seminars, and required reading. TRAIN-UNIX is a secure database system on a server accessible viamore » the network. Access to the user functions (scheduling, data entry, ITP modification etc.) within TRAIN-UNIX are granted by function, as needed, by the system administrator. An additional level of security allows those who access TRAIN-UNIX to only add, modify or view information for the organizations to which they belong. TRAIN-UNIX scheduling function allows network access to scheduling of students. As a function of the scheduling process, TRAIN-UNIX checks to insure that the student is a valid employee, not double booked, and the instructor and classroom are not double booked. TRAIN-UNIX will report pending lapse of courses or qualifications. This ability to know the lapse of training along with built in training requesting function allows the training deliverers to forecast training needs.« less

  13. TRAIN-UNIX. Training Records And Information Network UNIX Version

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence, M.E.; Crires, J.T.; Johnston, M.

    1995-12-01

    TRAIN-UNIX is used to track training requirements, qualifications, training completion and schedule training, classrooms and instructors. TRAIN-UNIX is a requirements-based system. When the identified training requirements for specific jobs are entered into the system, the employees manager or responsible training person assigns jobs to an employee. TRAIN-UNIX will then assemble an Individual Training Plan (ITP) with all courses required. ITP`s can also be modified to add any special training directed or identified by management, best business practices, procedures, etc. TRAIN-UNIX also schedules and tracks conferences, seminars, and required reading. TRAIN-UNIX is a secure database system on a server accessible viamore » the network. Access to the user functions (scheduling, data entry, ITP modification etc.) within TRAIN-UNIX are granted by function, as needed, by the system administrator. An additional level of security allows those who access TRAIN-UNIX to only add, modify or view information for the organizations to which they belong. TRAIN-UNIX scheduling function allows network access to scheduling of students. As a function of the scheduling process, TRAIN-UNIX checks to insure that the student is a valid employee, not double booked, and the instructor and classroom are not double booked. TRAIN-UNIX will report pending lapse of courses or qualifications. This ability to know the lapse of training along with built in training requesting function allows the training deliverers to forecast training needs.« less

  14. A geometric method for computing ocular kinematics and classifying gaze events using monocular remote eye tracking in a robotic environment.

    PubMed

    Singh, Tarkeshwar; Perry, Christopher M; Herter, Troy M

    2016-01-26

    Robotic and virtual-reality systems offer tremendous potential for improving assessment and rehabilitation of neurological disorders affecting the upper extremity. A key feature of these systems is that visual stimuli are often presented within the same workspace as the hands (i.e., peripersonal space). Integrating video-based remote eye tracking with robotic and virtual-reality systems can provide an additional tool for investigating how cognitive processes influence visuomotor learning and rehabilitation of the upper extremity. However, remote eye tracking systems typically compute ocular kinematics by assuming eye movements are made in a plane with constant depth (e.g. frontal plane). When visual stimuli are presented at variable depths (e.g. transverse plane), eye movements have a vergence component that may influence reliable detection of gaze events (fixations, smooth pursuits and saccades). To our knowledge, there are no available methods to classify gaze events in the transverse plane for monocular remote eye tracking systems. Here we present a geometrical method to compute ocular kinematics from a monocular remote eye tracking system when visual stimuli are presented in the transverse plane. We then use the obtained kinematics to compute velocity-based thresholds that allow us to accurately identify onsets and offsets of fixations, saccades and smooth pursuits. Finally, we validate our algorithm by comparing the gaze events computed by the algorithm with those obtained from the eye-tracking software and manual digitization. Within the transverse plane, our algorithm reliably differentiates saccades from fixations (static visual stimuli) and smooth pursuits from saccades and fixations when visual stimuli are dynamic. The proposed methods provide advancements for examining eye movements in robotic and virtual-reality systems. Our methods can also be used with other video-based or tablet-based systems in which eye movements are performed in a peripersonal plane with variable depth.

  15. A critique of wildlife radio-tracking and its use in National Parks: a report to the National Park Service

    USGS Publications Warehouse

    Mech, L. David; Barber, Shannon M.

    2002-01-01

    Because of the naturalness of National Parks and because of the public’s strong interest in the parks, the National Park Service (NPS) must gather as much information as needed to help understand and preserve the natural functioning of its ecosystems, and especially of its wildlife. The most useful technique for studying wildlife is radio-tracking, or wildlife telemetry. Radio-tracking is the technique of determining information about an animal through the use of radio signals from or to a device carried by the animal.The basic components of a traditional radio-tracking system are (1) a transmitting subsystem consisting of a radio transmitter, a power source and a propagating antenna, and (2) a receiving subsystem including a “pick-up” antenna, a signal receiver with reception indicator (speaker and/or display) and a power source. Most radio tracking systems involve transmitters tuned to different frequencies (analogous to different AM/FM radio stations) that allow individual identification.Three distinct types of radio-tracking are in use today: (1)conventional, very-high-frequency (VHF) radio tracking, (2) satellite tracking, and (3) Global Positioning System (GPS) tracking. VHF radio-tracking is the standard technique that has been in use since 1963.However, radio-tracking can be considered intrusive in that it requires live-capturing animals and attaching a collar or other device to them. A person must then monitor signals from the device, thus usually requiring people in the field in vehicles, aircraft, and on foot. Nevertheless, most national parks have recognized the benefits of radio-tracking and have hosted radio-tracking studies for many years; in some parks, hundreds of animals have been, or are being, so studied.As a result, some NPS staff are concerned about actual or potential intrusiveness of radio-tracking. Ideally, wildlife studies would still be done but with no intrusion on animals or conflict with park visitors.Thus the NPS has decided to closely examine the technique and use of radio-tracking to determine (1) if any less-intrusive method could supply the same information, (2) what the full range of radio-tracking technology is, to determine if the least-intrusive techniques are being used, and (3) whether future technological improvements might lead to less-intrusive techniques. The present review is the result.We first present a simple overview of radio-tracking technology, its benefits, variety, cost, and availability, advantages and disadvantages, and recent refinements that, if used, could reduce research intrusiveness. Then we consider whether any less-intrusive, non-radio-tracking techniques could supply the same information. Next we discuss possible future improvements and suggest some that would help reduce intrusion during wildlife research in national parks.Last, we review radio-tracking technology in detail for readers who want a more complete understanding. This review should also allow administrators and scientists to determine whether the least-intrusive radio-tracking techniques are currently being used.We conclude that no substitute for radio-tracking appears to be on the horizon but that a few recent improvements in the technology can reduce some of its intrusiveness. Further, we recommend that the NPS (1) formally assess the extent of park visitors’ perceptions and concerns about any intrusiveness caused by wildlife radio-tracking studies (2) help minimize visitor concern about the technique by educating the public about radio-tracking and some of its findings in the parks, (3) promote use of the most up-to-date refinements and improvements in radio-tracking technology, and (4) encourage funding projects using such technology.

  16. SU-E-E-02: Dashboard for Tracking Physics Resident Progress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becker, SJ

    2014-06-01

    Purpose: Design a system to easily and securely track the progress of medical physics residents through their residency. Paper sign-offs while offering a real signature are not easily updated or summarized. A resident or mentor needs to be able to quickly assess what the current assignments are, what are overdue, and whether the resident is on track to complete all the tasks in a timely fashion. An electronic version can accomplish all these goals. Methods: An electronic dashboard was created in excel to not only house the tasks and sign-off but to succinctly summarize the residents progress. The first tabmore » contains the dashboard which displays tables of the progress of the residents in each rotation, their current task, and overdue tasks. It also displays the last meetings with the residents, and timeline of important items, and a burn-down chart of the remaining tasks. This are all tied to the data and current date which auto fills the tables. The second tab contains the data. This is comprised of lists of rotations and their associated tasks along with their due dates. A signature column was also created which is password protected but allows special subset users i.e. mentors to alter without using a password. Results: The dashboard has allowed residents to better track their progress and tells them what they should be working on. It has also allowed the mentors and the program director to rapid assess their progress. Conclusion: The dashboard is successful and has been created to allow easy addition and subtraction of required tasks as the residency evolves. The next step is to create a web app version of the excel sheet with logins.« less

  17. Tracking state deployments of commercial vehicle information systems and networks : 1998 Michigan state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  18. Tracking state deployments of commercial vehicle information systems and networks : 1998 Pennsylvania state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  19. Tracking state deployments of commercial vehicle information systems and networks : 1998 Minnesota state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  20. Tracking state deployments of commercial vehicle information systems and networks : 1998 Kansas state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  1. Tracking state deployments of commercial vehicle information systems and networks : 1998 Colorado state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  2. Tracking state deployments of commercial vehicle information systems and networks : 1998 Connecticut state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  3. Tracking state deployments of commercial vehicle information systems and networks : 1998 Missouri state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  4. Tracking state deployments of commercial vehicle information systems and networks : 1998 Delaware state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  5. Tracking state deployments of commercial vehicle information systems and networks : 1998 Massachusetts state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  6. Tracking state deployments of commercial vehicle information systems and networks : 1998 Arizona state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  7. Tracking state deployments of commercial vehicle information systems and networks : 1998 Nebraska state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  8. Tracking state deployments of commercial vehicle information systems and networks : 1998 Wyoming state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  9. Tracking state deployments of commercial vehicle information systems and networks : 1998 Idaho state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  10. Tracking state deployments of commercial vehicle information systems and networks : 1998 Kentucky state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  11. Tracking state deployments of commercial vehicle information systems and networks : 1998 Indiana state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  12. Tracking state deployments of commercial vehicle information systems and networks : 1998 Louisiana state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  13. Tracking state deployments of commercial vehicle information systems and networks : 1998 Maryland state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  14. Tracking state deployments of commercial vehicle information systems and networks : 1998 Oklahoma state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  15. Tracking state deployments of commercial vehicle information systems and networks : 1998 Alaska state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  16. Tracking state deployments of commercial vehicle information systems and networks : 1998 Montana state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  17. Tracking state deployments of commercial vehicle information systems and networks : 1998 Maine state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  18. Tracking state deployments of commercial vehicle information systems and networks : 1998 Vermont state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  19. Tracking state deployments of commercial vehicle information systems and networks : 1998 Hawaii state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  20. Tracking state deployments of commercial vehicle information systems and networks : 1998 Nevada state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  1. Tracking state deployments of commercial vehicle information systems and networks : 1998 Mississippi state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  2. Tracking state deployments of commercial vehicle information systems and networks : 1998 Ohio state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  3. Tracking state deployments of commercial vehicle information systems and networks : 1998 Georgia state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  4. Tracking state deployments of commercial vehicle information systems and networks : 1998 Alabama state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  5. Tracking state deployments of commercial vehicle information systems and networks : 1998 Virginia state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  6. Tracking state deployments of commercial vehicle information systems and networks : 1998 Utah state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  7. Tracking state deployments of commercial vehicle information systems and networks : 1998 California state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  8. Tracking state deployments of commercial vehicle information systems and networks : 1998 Oregon state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  9. Tracking state deployments of commercial vehicle information systems and networks : 1998 Tennessee state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  10. Seam tracking with adaptive image capture for fine-tuning of a high power laser welding process

    NASA Astrophysics Data System (ADS)

    Lahdenoja, Olli; Säntti, Tero; Laiho, Mika; Paasio, Ari; Poikonen, Jonne K.

    2015-02-01

    This paper presents the development of methods for real-time fine-tuning of a high power laser welding process of thick steel by using a compact smart camera system. When performing welding in butt-joint configuration, the laser beam's location needs to be adjusted exactly according to the seam line in order to allow the injected energy to be absorbed uniformly into both steel sheets. In this paper, on-line extraction of seam parameters is targeted by taking advantage of a combination of dynamic image intensity compression, image segmentation with a focal-plane processor ASIC, and Hough transform on an associated FPGA. Additional filtering of Hough line candidates based on temporal windowing is further applied to reduce unrealistic frame-to-frame tracking variations. The proposed methods are implemented in Matlab by using image data captured with adaptive integration time. The simulations are performed in a hardware oriented way to allow real-time implementation of the algorithms on the smart camera system.

  11. Motion tracking to enable pre-surgical margin mapping in basal cell carcinoma using optical imaging modalities: initial feasibility study using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Duffy, M.; Richardson, T. J.; Craythorne, E.; Mallipeddi, R.; Coleman, A. J.

    2014-02-01

    A system has been developed to assess the feasibility of using motion tracking to enable pre-surgical margin mapping of basal cell carcinoma (BCC) in the clinic using optical coherence tomography (OCT). This system consists of a commercial OCT imaging system (the VivoSight 1500, MDL Ltd., Orpington, UK), which has been adapted to incorporate a webcam and a single-sensor electromagnetic positional tracking module (the Flock of Birds, Ascension Technology Corp, Vermont, USA). A supporting software interface has also been developed which allows positional data to be captured and projected onto a 2D dermoscopic image in real-time. Initial results using a stationary test phantom are encouraging, with maximum errors in the projected map in the order of 1-2mm. Initial clinical results were poor due to motion artefact, despite attempts to stabilise the patient. However, the authors present several suggested modifications that are expected to reduce the effects of motion artefact and improve the overall accuracy and clinical usability of the system.

  12. Integrated multiple-model adaptive fault identification and reconfigurable fault-tolerant control for Lead-Wing close formation systems

    NASA Astrophysics Data System (ADS)

    Liu, Chun; Jiang, Bin; Zhang, Ke

    2018-03-01

    This paper investigates the attitude and position tracking control problem for Lead-Wing close formation systems in the presence of loss of effectiveness and lock-in-place or hardover failure. In close formation flight, Wing unmanned aerial vehicle movements are influenced by vortex effects of the neighbouring Lead unmanned aerial vehicle. This situation allows modelling of aerodynamic coupling vortex-effects and linearisation based on optimal close formation geometry. Linearised Lead-Wing close formation model is transformed into nominal robust H-infinity models with respect to Mach hold, Heading hold, and Altitude hold autopilots; static feedback H-infinity controller is designed to guarantee effective tracking of attitude and position while manoeuvring Lead unmanned aerial vehicle. Based on H-infinity control design, an integrated multiple-model adaptive fault identification and reconfigurable fault-tolerant control scheme is developed to guarantee asymptotic stability of close-loop systems, error signal boundedness, and attitude and position tracking properties. Simulation results for Lead-Wing close formation systems validate the efficiency of the proposed integrated multiple-model adaptive control algorithm.

  13. Secure scalable disaster electronic medical record and tracking system.

    PubMed

    Demers, Gerard; Kahn, Christopher; Johansson, Per; Buono, Colleen; Chipara, Octav; Griswold, William; Chan, Theodore

    2013-10-01

    Electronic medical records (EMRs) are considered superior in documentation of care for medical practice. Current disaster medical response involves paper tracking systems and radio communication for mass-casualty incidents (MCIs). These systems are prone to errors, may be compromised by local conditions, and are labor intensive. Communication infrastructure may be impacted, overwhelmed by call volume, or destroyed by the disaster, making self-contained and secure EMR response a critical capability. Report As the prehospital disaster EMR allows for more robust content including protected health information (PHI), security measures must be instituted to safeguard these data. The Wireless Internet Information System for medicAl Response in Disasters (WIISARD) Research Group developed a handheld, linked, wireless EMR system utilizing current technology platforms. Smart phones connected to radio frequency identification (RFID) readers may be utilized to efficiently track casualties resulting from the incident. Medical information may be transmitted on an encrypted network to fellow prehospital team members, medical dispatch, and receiving medical centers. This system has been field tested in a number of exercises with excellent results, and future iterations will incorporate robust security measures. A secure prehospital triage EMR improves documentation quality during disaster drills.

  14. Two degrees of freedom parallel linkageto track solarthermal platforms installed on ships

    NASA Astrophysics Data System (ADS)

    Visa, I.; Cotorcea, A.; Moldovan, M.; Neagoe, M.

    2016-08-01

    Transportation is responsible at global level for one third of the total energy consumption. Solutions to reduce conventional fuel consumption are under research, to improve the systems’ efficiency and to replace the current fossil fuels. There already are several applications, usually onsmall maritime vehicles, using photovoltaic systems to cover the electric energy demand on-board andto support the owners’ commitment towards sustainability. In most cases, these systems are fixed, parallely aligned with the deck; thus, the amount of solar energy received is heavily reduced (down to 50%) as compared to the available irradiance. Large scale, feasible applications require to maximize the energy output of the solar convertors implemented on ships; using solar tracking systems is an obvious path, allowing a gain up to 35...40% in the output energy, as compared to fixed systems. Spatial limitations, continuous movement of the ship and harsh navigation condition are the main barriers in implementation. This paper proposes a solar tracking system with two degrees of freedom, for a solar thermal platform, based on a parallel linkage with sphericaljoints, considered as Multibody System. The analytical model for mobile platform position, pressure angles and a numerical example are given in the paper.

  15. Weighted feature selection criteria for visual servoing of a telerobot

    NASA Technical Reports Server (NTRS)

    Feddema, John T.; Lee, C. S. G.; Mitchell, O. R.

    1989-01-01

    Because of the continually changing environment of a space station, visual feedback is a vital element of a telerobotic system. A real time visual servoing system would allow a telerobot to track and manipulate randomly moving objects. Methodologies for the automatic selection of image features to be used to visually control the relative position between an eye-in-hand telerobot and a known object are devised. A weighted criteria function with both image recognition and control components is used to select the combination of image features which provides the best control. Simulation and experimental results of a PUMA robot arm visually tracking a randomly moving carburetor gasket with a visual update time of 70 milliseconds are discussed.

  16. Front end optimization for the monolithic active pixel sensor of the ALICE Inner Tracking System upgrade

    NASA Astrophysics Data System (ADS)

    Kim, D.; Aglieri Rinella, G.; Cavicchioli, C.; Chanlek, N.; Collu, A.; Degerli, Y.; Dorokhov, A.; Flouzat, C.; Gajanana, D.; Gao, C.; Guilloux, F.; Hillemanns, H.; Hristozkov, S.; Junique, A.; Keil, M.; Kofarago, M.; Kugathasan, T.; Kwon, Y.; Lattuca, A.; Mager, M.; Sielewicz, K. M.; Marin Tobon, C. A.; Marras, D.; Martinengo, P.; Mazza, G.; Mugnier, H.; Musa, L.; Pham, T. H.; Puggioni, C.; Reidt, F.; Riedler, P.; Rousset, J.; Siddhanta, S.; Snoeys, W.; Song, M.; Usai, G.; Van Hoorne, J. W.; Yang, P.

    2016-02-01

    ALICE plans to replace its Inner Tracking System during the second long shut down of the LHC in 2019 with a new 10 m2 tracker constructed entirely with monolithic active pixel sensors. The TowerJazz 180 nm CMOS imaging Sensor process has been selected to produce the sensor as it offers a deep pwell allowing full CMOS in-pixel circuitry and different starting materials. First full-scale prototypes have been fabricated and tested. Radiation tolerance has also been verified. In this paper the development of the charge sensitive front end and in particular its optimization for uniformity of charge threshold and time response will be presented.

  17. Mobile gaze tracking system for outdoor walking behavioral studies

    PubMed Central

    Tomasi, Matteo; Pundlik, Shrinivas; Bowers, Alex R.; Peli, Eli; Luo, Gang

    2016-01-01

    Most gaze tracking techniques estimate gaze points on screens, on scene images, or in confined spaces. Tracking of gaze in open-world coordinates, especially in walking situations, has rarely been addressed. We use a head-mounted eye tracker combined with two inertial measurement units (IMU) to track gaze orientation relative to the heading direction in outdoor walking. Head movements relative to the body are measured by the difference in output between the IMUs on the head and body trunk. The use of the IMU pair reduces the impact of environmental interference on each sensor. The system was tested in busy urban areas and allowed drift compensation for long (up to 18 min) gaze recording. Comparison with ground truth revealed an average error of 3.3° while walking straight segments. The range of gaze scanning in walking is frequently larger than the estimation error by about one order of magnitude. Our proposed method was also tested with real cases of natural walking and it was found to be suitable for the evaluation of gaze behaviors in outdoor environments. PMID:26894511

  18. A simulation of the San Andreas fault experiment

    NASA Technical Reports Server (NTRS)

    Agreen, R. W.; Smith, D. E.

    1973-01-01

    The San Andreas Fault Experiment, which employs two laser tracking systems for measuring the relative motion of two points on opposite sides of the fault, was simulated for an eight year observation period. The two tracking stations are located near San Diego on the western side of the fault and near Quincy on the eastern side; they are roughly 900 kilometers apart. Both will simultaneously track laser reflector equipped satellites as they pass near the stations. Tracking of the Beacon Explorer C Spacecraft was simulated for these two stations during August and September for eight consecutive years. An error analysis of the recovery of the relative location of Quincy from the data was made, allowing for model errors in the mass of the earth, the gravity field, solar radiation pressure, atmospheric drag, errors in the position of the San Diego site, and laser systems range biases and noise. The results of this simulation indicate that the distance of Quincy from San Diego will be determined each year with a precision of about 10 centimeters. This figure is based on the accuracy of earth models and other parameters available in 1972.

  19. Acoustic Levitator Maintains Resonance

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Gaspar, M. S.

    1986-01-01

    Transducer loading characteristics allow resonance tracked at high temperature. Acoustic-levitation chamber length automatically adjusted to maintain resonance at constant acoustic frequency as temperature changes. Developed for containerless processing of materials at high temperatures, system does not rely on microphones as resonance sensors, since microphones are difficult to fabricate for use at temperatures above 500 degrees C. Instead, system uses acoustic transducer itself as sensor.

  20. Investigation of the relative orientation of the system of optical sensors to monitor the technosphere objects

    NASA Astrophysics Data System (ADS)

    Petrochenko, Andrey; Konyakhin, Igor

    2017-06-01

    In connection with the development of robotics have become increasingly popular variety of three-dimensional reconstruction of the system mapping and image-set received from the optical sensors. The main objective of technical and robot vision is the detection, tracking and classification of objects of the space in which these systems and robots operate [15,16,18]. Two-dimensional images sometimes don't contain sufficient information to address those or other problems: the construction of the map of the surrounding area for a route; object identification, tracking their relative position and movement; selection of objects and their attributes to complement the knowledge base. Three-dimensional reconstruction of the surrounding space allows you to obtain information on the relative positions of objects, their shape, surface texture. Systems, providing training on the basis of three-dimensional reconstruction of the results of the comparison can produce two-dimensional images of three-dimensional model that allows for the recognition of volume objects on flat images. The problem of the relative orientation of industrial robots with the ability to build threedimensional scenes of controlled surfaces is becoming actual nowadays.

  1. An augmented reality haptic training simulator for spinal needle procedures.

    PubMed

    Sutherland, Colin; Hashtrudi-Zaad, Keyvan; Sellens, Rick; Abolmaesumi, Purang; Mousavi, Parvin

    2013-11-01

    This paper presents the prototype for an augmented reality haptic simulation system with potential for spinal needle insertion training. The proposed system is composed of a torso mannequin, a MicronTracker2 optical tracking system, a PHANToM haptic device, and a graphical user interface to provide visual feedback. The system allows users to perform simulated needle insertions on a physical mannequin overlaid with an augmented reality cutaway of patient anatomy. A tissue model based on a finite-element model provides force during the insertion. The system allows for training without the need for the presence of a trained clinician or access to live patients or cadavers. A pilot user study demonstrates the potential and functionality of the system.

  2. Optical eye tracking system for real-time noninvasive tumor localization in external beam radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Via, Riccardo, E-mail: riccardo.via@polimi.it; Fassi, Aurora; Fattori, Giovanni

    Purpose: External beam radiotherapy currently represents an important therapeutic strategy for the treatment of intraocular tumors. Accurate target localization and efficient compensation of involuntary eye movements are crucial to avoid deviations in dose distribution with respect to the treatment plan. This paper describes an eye tracking system (ETS) based on noninvasive infrared video imaging. The system was designed for capturing the tridimensional (3D) ocular motion and provides an on-line estimation of intraocular lesions position based on a priori knowledge coming from volumetric imaging. Methods: Eye tracking is performed by localizing cornea and pupil centers on stereo images captured by twomore » calibrated video cameras, exploiting eye reflections produced by infrared illumination. Additionally, torsional eye movements are detected by template matching in the iris region of eye images. This information allows estimating the 3D position and orientation of the eye by means of an eye local reference system. By combining ETS measurements with volumetric imaging for treatment planning [computed tomography (CT) and magnetic resonance (MR)], one is able to map the position of the lesion to be treated in local eye coordinates, thus enabling real-time tumor referencing during treatment setup and irradiation. Experimental tests on an eye phantom and seven healthy subjects were performed to assess ETS tracking accuracy. Results: Measurements on phantom showed an overall median accuracy within 0.16 mm and 0.40° for translations and rotations, respectively. Torsional movements were affected by 0.28° median uncertainty. On healthy subjects, the gaze direction error ranged between 0.19° and 0.82° at a median working distance of 29 cm. The median processing time of the eye tracking algorithm was 18.60 ms, thus allowing eye monitoring up to 50 Hz. Conclusions: A noninvasive ETS prototype was designed to perform real-time target localization and eye movement monitoring during ocular radiotherapy treatments. The device aims at improving state-of-the-art invasive procedures based on surgical implantation of radiopaque clips and repeated acquisition of X-ray images, with expected positive effects on treatment quality and patient outcome.« less

  3. Optical eye tracking system for real-time noninvasive tumor localization in external beam radiotherapy.

    PubMed

    Via, Riccardo; Fassi, Aurora; Fattori, Giovanni; Fontana, Giulia; Pella, Andrea; Tagaste, Barbara; Riboldi, Marco; Ciocca, Mario; Orecchia, Roberto; Baroni, Guido

    2015-05-01

    External beam radiotherapy currently represents an important therapeutic strategy for the treatment of intraocular tumors. Accurate target localization and efficient compensation of involuntary eye movements are crucial to avoid deviations in dose distribution with respect to the treatment plan. This paper describes an eye tracking system (ETS) based on noninvasive infrared video imaging. The system was designed for capturing the tridimensional (3D) ocular motion and provides an on-line estimation of intraocular lesions position based on a priori knowledge coming from volumetric imaging. Eye tracking is performed by localizing cornea and pupil centers on stereo images captured by two calibrated video cameras, exploiting eye reflections produced by infrared illumination. Additionally, torsional eye movements are detected by template matching in the iris region of eye images. This information allows estimating the 3D position and orientation of the eye by means of an eye local reference system. By combining ETS measurements with volumetric imaging for treatment planning [computed tomography (CT) and magnetic resonance (MR)], one is able to map the position of the lesion to be treated in local eye coordinates, thus enabling real-time tumor referencing during treatment setup and irradiation. Experimental tests on an eye phantom and seven healthy subjects were performed to assess ETS tracking accuracy. Measurements on phantom showed an overall median accuracy within 0.16 mm and 0.40° for translations and rotations, respectively. Torsional movements were affected by 0.28° median uncertainty. On healthy subjects, the gaze direction error ranged between 0.19° and 0.82° at a median working distance of 29 cm. The median processing time of the eye tracking algorithm was 18.60 ms, thus allowing eye monitoring up to 50 Hz. A noninvasive ETS prototype was designed to perform real-time target localization and eye movement monitoring during ocular radiotherapy treatments. The device aims at improving state-of-the-art invasive procedures based on surgical implantation of radiopaque clips and repeated acquisition of X-ray images, with expected positive effects on treatment quality and patient outcome.

  4. A Non-invasive Real-time Localization System for Enhanced Efficacy in Nasogastric Intubation.

    PubMed

    Sun, Zhenglong; Foong, Shaohui; Maréchal, Luc; Tan, U-Xuan; Teo, Tee Hui; Shabbir, Asim

    2015-12-01

    Nasogastric (NG) intubation is one of the most commonly performed clinical procedures. Real-time localization and tracking of the NG tube passage at the larynx region into the esophagus is crucial for safety, but is lacking in current practice. In this paper, we present the design, analysis and evaluation of a non-invasive real-time localization system using passive magnetic tracking techniques to improve efficacy of the clinical NG intubation process. By embedding a small permanent magnet at the insertion tip of the NG tube, a wearable system containing embedded sensors around the neck can determine the absolute position of the NG tube inside the body in real-time to assist in insertion. In order to validate the feasibility of the proposed system in detecting erroneous tube placement, typical reference intubation trajectories are first analyzed using anatomically correct models and localization accuracy of the system are evaluated using a precise robotic platform. It is found that the root-mean-squared tracking accuracy is within 5.3 mm for both the esophagus and trachea intubation pathways. Experiments were also designed and performed to demonstrate that the system is capable of tracking the NG tube accurately in biological environments even in presence of stationary ferromagnetic objects (such as clinical instruments). With minimal physical modification to the NG tube and clinical process, this system allows accurate and efficient localization and confirmation of correct NG tube placement without supplemental radiographic methods which is considered the current clinical standard.

  5. Conducting ion tracks generated by charge-selected swift heavy ions

    NASA Astrophysics Data System (ADS)

    Gupta, Srashti; Gehrke, H. G.; Krauser, J.; Trautmann, C.; Severin, D.; Bender, M.; Rothard, H.; Hofsäss, H.

    2016-08-01

    Conducting ion tracks in tetrahedral amorphous carbon (ta-C) thin films were generated by irradiation with swift heavy ions of well-defined charge state. The conductivity of tracks and the surface topography of the films, showing characteristic hillocks at each track position, were investigated using conductive atomic force microscopy measurements. The dependence of track conductivity and hillock size on the charge state of the ions was studied using 4.6 MeV/u Pb ions of charge state 53+, 56+ and 60+ provided by GANIL, as well as 4.8 MeV/u Bi and Au ions of charge state from 50+ to 61+ and 4.2 MeV/u 238U ions in equilibrium charge state provided by UNILAC of GSI. For the charge state selection at GSI, an additional stripper-foil system was installed at the M-branch that now allows routine irradiations with ions of selected charge states. The conductivity of tracks in ta-C increases significantly when the charge state increases from 51+ to 60+. However, the conductivity of individual tracks on the same sample still shows large variations, indicating that tracks formed in ta-C are either inhomogeneous or the conductivity is limited by the interface between ion track and Si substrate.

  6. SKYWARD: the next generation airborne infrared search and track

    NASA Astrophysics Data System (ADS)

    Fortunato, L.; Colombi, G.; Ondini, A.; Quaranta, C.; Giunti, C.; Sozzi, B.; Balzarotti, G.

    2016-05-01

    Infrared Search and Track systems are an essential element of the modern and future combat aircrafts. Passive automatic search, detection and tracking functions, are key points for silent operations or jammed tactical scenarios. SKYWARD represents the latest evolution of IRST technology in which high quality electro-optical components, advanced algorithms, efficient hardware and software solutions are harmonically integrated to provide high-end affordable performances. Additionally, the reduction of critical opto-mechanical elements optimises weight and volume and increases the overall reliability. Multiple operative modes dedicated to different situations are available; many options can be selected among multiple or single target tracking, for surveillance or engagement, and imaging, for landing or navigation aid, assuring the maximum system flexibility. The high quality 2D-IR sensor is exploited by multiple parallel processing chains, based on linear and non-linear techniques, to extract the possible targets from background, in different conditions, with false alarm rate control. A widely tested track processor manages a large amount of candidate targets simultaneously and allows discriminating real targets from noise whilst operating with low target to background contrasts. The capability of providing reliable passive range estimation is an additional qualifying element of the system. Particular care has been dedicated to the detector non-uniformities, a possible limiting factor for distant targets detection, as well as to the design of the electro-optics for a harsh airborne environment. The system can be configured for LWIR or MWIR waveband according to the customer operational requirements. An embedded data recorder saves all the necessary images and data for mission debriefing, particularly useful during inflight system integration and tuning.

  7. Reusable, extensible, and modifiable R scripts and Kepler workflows for comprehensive single set ChIP-seq analysis.

    PubMed

    Cormier, Nathan; Kolisnik, Tyler; Bieda, Mark

    2016-07-05

    There has been an enormous expansion of use of chromatin immunoprecipitation followed by sequencing (ChIP-seq) technologies. Analysis of large-scale ChIP-seq datasets involves a complex series of steps and production of several specialized graphical outputs. A number of systems have emphasized custom development of ChIP-seq pipelines. These systems are primarily based on custom programming of a single, complex pipeline or supply libraries of modules and do not produce the full range of outputs commonly produced for ChIP-seq datasets. It is desirable to have more comprehensive pipelines, in particular ones addressing common metadata tasks, such as pathway analysis, and pipelines producing standard complex graphical outputs. It is advantageous if these are highly modular systems, available as both turnkey pipelines and individual modules, that are easily comprehensible, modifiable and extensible to allow rapid alteration in response to new analysis developments in this growing area. Furthermore, it is advantageous if these pipelines allow data provenance tracking. We present a set of 20 ChIP-seq analysis software modules implemented in the Kepler workflow system; most (18/20) were also implemented as standalone, fully functional R scripts. The set consists of four full turnkey pipelines and 16 component modules. The turnkey pipelines in Kepler allow data provenance tracking. Implementation emphasized use of common R packages and widely-used external tools (e.g., MACS for peak finding), along with custom programming. This software presents comprehensive solutions and easily repurposed code blocks for ChIP-seq analysis and pipeline creation. Tasks include mapping raw reads, peakfinding via MACS, summary statistics, peak location statistics, summary plots centered on the transcription start site (TSS), gene ontology, pathway analysis, and de novo motif finding, among others. These pipelines range from those performing a single task to those performing full analyses of ChIP-seq data. The pipelines are supplied as both Kepler workflows, which allow data provenance tracking, and, in the majority of cases, as standalone R scripts. These pipelines are designed for ease of modification and repurposing.

  8. An artificial retina processor for track reconstruction at the LHC crossing rate

    DOE PAGES

    Bedeschi, F.; Cenci, R.; Marino, P.; ...

    2017-11-23

    The goal of the INFN-RETINA R&D project is to develop and implement a computational methodology that allows to reconstruct events with a large number (> 100) of charged-particle tracks in pixel and silicon strip detectors at 40 MHz, thus matching the requirements for processing LHC events at the full bunch-crossing frequency. Our approach relies on a parallel pattern-recognition algorithm, dubbed artificial retina, inspired by the early stages of image processing by the brain. In order to demonstrate that a track-processing system based on this algorithm is feasible, we built a sizable prototype of a tracking processor tuned to 3 000more » patterns, based on already existing readout boards equipped with Altera Stratix III FPGAs. The detailed geometry and charged-particle activity of a large tracking detector currently in operation are used to assess its performances. Here, we report on the test results with such a prototype.« less

  9. Deep and high-resolution three-dimensional tracking of single particles using nonlinear and multiplexed illumination

    NASA Astrophysics Data System (ADS)

    Perillo, Evan P.; Liu, Yen-Liang; Huynh, Khang; Liu, Cong; Chou, Chao-Kai; Hung, Mien-Chie; Yeh, Hsin-Chih; Dunn, Andrew K.

    2015-07-01

    Molecular trafficking within cells, tissues and engineered three-dimensional multicellular models is critical to the understanding of the development and treatment of various diseases including cancer. However, current tracking methods are either confined to two dimensions or limited to an interrogation depth of ~15 μm. Here we present a three-dimensional tracking method capable of quantifying rapid molecular transport dynamics in highly scattering environments at depths up to 200 μm. The system has a response time of 1 ms with a temporal resolution down to 50 μs in high signal-to-noise conditions, and a spatial localization precision as good as 35 nm. Built on spatiotemporally multiplexed two-photon excitation, this approach requires only one detector for three-dimensional particle tracking and allows for two-photon, multicolour imaging. Here we demonstrate three-dimensional tracking of epidermal growth factor receptor complexes at a depth of ~100 μm in tumour spheroids.

  10. An artificial retina processor for track reconstruction at the LHC crossing rate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bedeschi, F.; Cenci, R.; Marino, P.

    The goal of the INFN-RETINA R&D project is to develop and implement a computational methodology that allows to reconstruct events with a large number (> 100) of charged-particle tracks in pixel and silicon strip detectors at 40 MHz, thus matching the requirements for processing LHC events at the full bunch-crossing frequency. Our approach relies on a parallel pattern-recognition algorithm, dubbed artificial retina, inspired by the early stages of image processing by the brain. In order to demonstrate that a track-processing system based on this algorithm is feasible, we built a sizable prototype of a tracking processor tuned to 3 000more » patterns, based on already existing readout boards equipped with Altera Stratix III FPGAs. The detailed geometry and charged-particle activity of a large tracking detector currently in operation are used to assess its performances. Here, we report on the test results with such a prototype.« less

  11. Tracking state deployments of commercial vehicle information systems and networks : 1998 New York state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  12. Tracking state deployments of commercial vehicle information systems and networks : 1998 New Jersey state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  13. Tracking state deployments of commercial vehicle information systems and networks : 1998 North Carolina state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  14. Tracking state deployments of commercial vehicle information systems and networks : 1998 North Dakota state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  15. Tracking state deployments of commercial vehicle information systems and networks : 1998 South Carolina state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  16. Tracking state deployments of commercial vehicle information systems and networks : 1998 District of Columbia state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  17. Tracking state deployments of commercial vehicle information systems and networks : 1998 Rhode Island state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  18. Tracking state deployments of commercial vehicle information systems and networks : 1998 New Mexico state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  19. 40 CFR 97.250 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false [Reserved] 97.250 Section 97.250 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS CAIR SO2 Allowance Tracking System § 97.250...

  20. Tracking state deployments of commercial vehicle information systems and networks : 1998 New Hampshire state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  1. Using LabView for real-time monitoring and tracking of multiple biological objects

    NASA Astrophysics Data System (ADS)

    Nikolskyy, Aleksandr I.; Krasilenko, Vladimir G.; Bilynsky, Yosyp Y.; Starovier, Anzhelika

    2017-04-01

    Today real-time studying and tracking of movement dynamics of various biological objects is important and widely researched. Features of objects, conditions of their visualization and model parameters strongly influence the choice of optimal methods and algorithms for a specific task. Therefore, to automate the processes of adaptation of recognition tracking algorithms, several Labview project trackers are considered in the article. Projects allow changing templates for training and retraining the system quickly. They adapt to the speed of objects and statistical characteristics of noise in images. New functions of comparison of images or their features, descriptors and pre-processing methods will be discussed. The experiments carried out to test the trackers on real video files will be presented and analyzed.

  2. GPS Metric Tracking Unit

    NASA Technical Reports Server (NTRS)

    2008-01-01

    As Global Positioning Satellite (GPS) applications become more prevalent for land- and air-based vehicles, GPS applications for space vehicles will also increase. The Applied Technology Directorate of Kennedy Space Center (KSC) has developed a lightweight, low-cost GPS Metric Tracking Unit (GMTU), the first of two steps in developing a lightweight, low-cost Space-Based Tracking and Command Subsystem (STACS) designed to meet Range Safety's link margin and latency requirements for vehicle command and telemetry data. The goals of STACS are to improve Range Safety operations and expand tracking capabilities for space vehicles. STACS will track the vehicle, receive commands, and send telemetry data through the space-based asset, which will dramatically reduce dependence on ground-based assets. The other step was the Low-Cost Tracking and Data Relay Satellite System (TDRSS) Transceiver (LCT2), developed by the Wallops Flight Facility (WFF), which allows the vehicle to communicate with a geosynchronous relay satellite. Although the GMTU and LCT2 were independently implemented and tested, the design collaboration of KSC and WFF engineers allowed GMTU and LCT2 to be integrated into one enclosure, leading to the final STACS. In operation, GMTU needs only a radio frequency (RF) input from a GPS antenna and outputs position and velocity data to the vehicle through a serial or pulse code modulation (PCM) interface. GMTU includes one commercial GPS receiver board and a custom board, the Command and Telemetry Processor (CTP) developed by KSC. The CTP design is based on a field-programmable gate array (FPGA) with embedded processors to support GPS functions.

  3. Oceanic Situational Awareness Over the Western Atlantic Track Routing System

    NASA Technical Reports Server (NTRS)

    Welch, Bryan; Greenfeld, Israel

    2005-01-01

    Air traffic control (ATC) mandated, aircraft separations over the oceans impose a limitation on traffic capacity for a given corridor, given the projected traffic growth over the Western Atlantic Track Routing System (WATRS). The separations result from a lack of acceptable situational awareness over oceans where radar position updates are not available. This study considers the use of Automatic Dependent Surveillance (ADS) data transmitted over a commercial satellite communications system as an approach to provide ATC with the needed situational awareness and thusly allow for reduced aircraft separations. This study uses Federal Aviation Administration data from a single day for the WATRS corridor to analyze traffic loading to be used as a benchmark against which to compare several approaches for coordinating data transmissions from the aircraft to the satellites.

  4. A Tabletop Tool for Modeling Life Support Systems

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Majumdar, A.; McDaniels, D.; Stewart, E.

    2003-01-01

    This paper describes the development plan for a comprehensive research and diagnostic tool for aspects of advanced life support systems in space-based laboratories. Specifically it aims to build a high fidelity tabletop model that can be used for the purpose of risk mitigation, failure mode analysis, contamination tracking, and testing reliability. We envision a comprehensive approach involving experimental work coupled with numerical simulation to develop this diagnostic tool. It envisions a 10% scale transparent model of a space platform such as the International Space Station that operates with water or a specific matched index of refraction liquid as the working fluid. This allows the scaling of a 10 ft x 10 ft x 10 ft room with air flow to 1 ft x 1 ft x 1 ft tabletop model with water/liquid flow. Dynamic similitude for this length scale dictates model velocities to be 67% of full-scale and thereby the time scale of the model to represent 15% of the full- scale system; meaning identical processes in the model are completed in 15% of the full- scale time. The use of an index matching fluid (fluid that matches the refractive index of cast acrylic, the model material) allows making the entire model (with complex internal geometry) transparent and hence conducive to non-intrusive optical diagnostics. So using such a system one can test environment control parameters such as core flows (axial flows), cross flows (from registers and diffusers), potential problem areas such as flow short circuits, inadequate oxygen content, build up of other gases beyond desirable levels, test mixing processes within the system at local nodes or compartments and assess the overall system performance. The system allows quantitative measurements of contaminants introduced in the system and allows testing and optimizing the tracking process and removal of contaminants. The envisaged system will be modular and hence flexible for quick configuration change and subsequent testing. The data and inferences from the tests will allow for improvements in the development and design of next generation life support systems and configurations.

  5. Distortion correction and cross-talk compensation algorithm for use with an imaging spectrometer based spatially resolved diffuse reflectance system

    NASA Astrophysics Data System (ADS)

    Cappon, Derek J.; Farrell, Thomas J.; Fang, Qiyin; Hayward, Joseph E.

    2016-12-01

    Optical spectroscopy of human tissue has been widely applied within the field of biomedical optics to allow rapid, in vivo characterization and analysis of the tissue. When designing an instrument of this type, an imaging spectrometer is often employed to allow for simultaneous analysis of distinct signals. This is especially important when performing spatially resolved diffuse reflectance spectroscopy. In this article, an algorithm is presented that allows for the automated processing of 2-dimensional images acquired from an imaging spectrometer. The algorithm automatically defines distinct spectrometer tracks and adaptively compensates for distortion introduced by optical components in the imaging chain. Crosstalk resulting from the overlap of adjacent spectrometer tracks in the image is detected and subtracted from each signal. The algorithm's performance is demonstrated in the processing of spatially resolved diffuse reflectance spectra recovered from an Intralipid and ink liquid phantom and is shown to increase the range of wavelengths over which usable data can be recovered.

  6. Prototype Test Results for the Single Photon Detection SLR2000 Satellite Laser Ranging System

    NASA Technical Reports Server (NTRS)

    Zagwodzki, Thomas W.; McGarry, Jan F.; Degnan, John J.; Cheek, Jack W.; Dunn, Peter J.; Patterson, Don; Donovan, Howard

    2004-01-01

    NASA's aging Satellite Laser Ranging (SLR) network is scheduled to be replaced over the next few years with a fully automated single photon detection system. A prototype of this new system, called SLR2000, is currently undergoing field trials at the Goddard Space Flight Center in Greenbelt, Maryland to evaluate photon counting techniques and determine system hardware, software, and control algorithm performance levels and limitations. Newly developed diode pumped microchip lasers and quadrant microchannel plate-based photomultiplier tubes have enabled the development of this high repetition rate single photon detection SLR system. The SLR2000 receiver threshold is set at the single photoelectron (pe) level but tracks satellites with an average signal level typically much less than 1 pe. The 2 kHz laser fire rate aids in satellite acquisition and tracking and will enable closed loop tracking by accumulating single photon count statistics in a quadrant detector and using this information to correct for pointing errors. Laser transmitter beamwidths of 10 arcseconds (FWHM) or less are currently being used to maintain an adequate signal level for tracking while the receiver field of view (FOV) has been opened to 40 arcseconds to accommodate point ahead/look behind angular offsets. In the near future, the laser transmitter point ahead will be controlled by a pair of Risley prisms. This will allow the telescope to point behind and enable closure of the receiver FOV to roughly match the transmitter beam divergence. Bandpass filters (BPF) are removed for night tracking operations while 0.2 nm or 1 nm filters are used during daylight operation. Both day and night laser tracking of Low Earth Orbit (LEO) satellites has been achieved with a laser transmitter energy of only 65 microjoules per pulse. Satellite tracking is presently limited to LEO satellites until the brassboard laser transmitter can be upgraded or replaced. Simultaneous tracks have also been observed with NASA s SLR standard, MOBLAS 7, for the purposes of data comparison and identification of biases. Work continues to optimize the receive optics; upgrade or replace the laser transmitter; calibrate the quadrant detector, the point ahead Risley prisms, and event timer verniers; and test normal point generation with SLR2000 data. This paper will report on the satellite tracking results to date, issues yet to be resolved, and future plans for the SLR2000 system.

  7. Spinning Rocket Simulator Turntable Design

    NASA Technical Reports Server (NTRS)

    Miles, Robert W.

    2001-01-01

    Contained herein is the research and data acquired from the Turntable Design portion of the Spinning Rocket Simulator (SRS) project. The SRS Project studies and eliminates the effect of coning on thrust-propelled spacecraft. This design and construction of the turntable adds a structural support for the SRS model and two degrees of freedom. The two degrees of freedom, radial and circumferential, will help develop a simulated thrust force perpendicular to the plane of the spacecraft model while undergoing an unstable coning motion. The Turntable consists of a ten-foot linear track mounted to a sprocket and press-fit to a thrust bearing. A two-inch high column grounded by a Triangular Baseplate supports this bearing and houses the slip rings and pressurized, air-line swivel. The thrust bearing allows the entire system to rotate under the moment applied through the chain-driven sprocket producing a circumferential degree of freedom. The radial degree of freedom is given to the model through the helically threaded linear track. This track allows the Model Support and Counter Balance to simultaneously reposition according to the coning motion of the Model. Two design factors that hinder the linear track are bending and twist due to torsion. A Standard Aluminum "C" channel significantly reduces these two deflections. Safety considerations dictate the design of all the components involved in this project.

  8. Joint passive radar tracking and target classification using radar cross section

    NASA Astrophysics Data System (ADS)

    Herman, Shawn M.

    2004-01-01

    We present a recursive Bayesian solution for the problem of joint tracking and classification of airborne targets. In our system, we allow for complications due to multiple targets, false alarms, and missed detections. More importantly, though, we utilize the full benefit of a joint approach by implementing our tracker using an aerodynamically valid flight model that requires aircraft-specific coefficients such as wing area and vehicle mass, which are provided by our classifier. A key feature that bridges the gap between tracking and classification is radar cross section (RCS). By modeling the true deterministic relationship that exists between RCS and target aspect, we are able to gain both valuable class information and an estimate of target orientation. However, the lack of a closed-form relationship between RCS and target aspect prevents us from using the Kalman filter or its variants. Instead, we rely upon a sequential Monte Carlo-based approach known as particle filtering. In addition to allowing us to include RCS as a measurement, the particle filter also simplifies the implementation of our nonlinear non-Gaussian flight model.

  9. Joint passive radar tracking and target classification using radar cross section

    NASA Astrophysics Data System (ADS)

    Herman, Shawn M.

    2003-12-01

    We present a recursive Bayesian solution for the problem of joint tracking and classification of airborne targets. In our system, we allow for complications due to multiple targets, false alarms, and missed detections. More importantly, though, we utilize the full benefit of a joint approach by implementing our tracker using an aerodynamically valid flight model that requires aircraft-specific coefficients such as wing area and vehicle mass, which are provided by our classifier. A key feature that bridges the gap between tracking and classification is radar cross section (RCS). By modeling the true deterministic relationship that exists between RCS and target aspect, we are able to gain both valuable class information and an estimate of target orientation. However, the lack of a closed-form relationship between RCS and target aspect prevents us from using the Kalman filter or its variants. Instead, we rely upon a sequential Monte Carlo-based approach known as particle filtering. In addition to allowing us to include RCS as a measurement, the particle filter also simplifies the implementation of our nonlinear non-Gaussian flight model.

  10. Lessons Learned From the Environmental Public Health Tracking Sub-County Data Pilot Project.

    PubMed

    Werner, Angela K; Strosnider, Heather; Kassinger, Craig; Shin, Mikyong

    2017-12-07

    Small area data are key to better understanding the complex relationships between environmental health, health outcomes, and risk factors at a local level. In 2014, the Centers for Disease Control and Prevention's National Environmental Public Health Tracking Program (Tracking Program) conducted the Sub-County Data Pilot Project with grantees to consider integration of sub-county data into the National Environmental Public Health Tracking Network (Tracking Network). The Tracking Program and grantees developed sub-county-level data for several data sets during this pilot project, working to standardize processes for submitting data and creating required geographies. Grantees documented challenges they encountered during the pilot project and documented decisions. This article covers the challenges revealed during the project. It includes insights into geocoding, aggregation, population estimates, and data stability and provides recommendations for moving forward. National standards for generating, analyzing, and sharing sub-county data should be established to build a system of sub-county data that allow for comparison of outcomes, geographies, and time. Increasing the availability and accessibility of small area data will not only enhance the Tracking Network's capabilities but also contribute to an improved understanding of environmental health and informed decision making at a local level.

  11. Fission track length distributions in multi-system thermochronology (Invited)

    NASA Astrophysics Data System (ADS)

    Gleadow, A. J.; Seiler, C.

    2013-12-01

    Fission track length distributions contain a unique record of past temperature variations and therefore play a key role in low-temperature thermochronology, for which there is no exact equivalent in any other method. Confined track lengths closely approximate the true etchable ranges of latent fission tracks [1] and are therefore favoured for fission track studies, but they still have a number of practical limitations. These include small numbers of suitable tracks, especially when only horizontal confined tracks are measured. Using only track-in-track events for measurement further limits the sample size. These restrictions become acute for low track-density samples, where length measurements may be impossible. Irradiating the surface with 252Cf tracks [2] can substantially increase the number of confined tracks, but many researchers do not have access to a Cf source. An even more significant issue has emerged from inter-laboratory comparison experiments that demonstrate a disturbingly poor reproducibility of length measurements between observers [3], a problem compounded by a lack of standardisation in measurement techniques. As a result, individual observers may measure different positions for the end of a track, contributing significantly to variability, and consequently blurring the thermal histories obtained. New digital microscopes open up important opportunities for improved track length measurements by reducing restrictions on sample size, and eliminating some sources of inter-observer bias. We have developed a track length measurement system that enables precise determination of vertical as well as horizontal track dimensions, allowing 3D lengths to be obtained. Lengths are measured on captured image stacks that can be analysed easily and may also be shared, for greater standardisation between laboratories. Length measurements are highly reproducible between different observers using this system, suggesting that at least one source of variability can be eliminated. The selection of lengths for imaging, however, still remains a source of potential bias between observers. The new measurement system also enables measurement of 3D lengths of surface-intersecting ';semi-tracks', the distributions of which have been well understood theoretically [1,4], but have not been used in practice because of difficulties of measuring vertical dimensions on older microscopes. Semi-track lengths are, of course, a degraded measure compared to confined tracks because they are randomly truncated. However, this is more than compensated by their very much greater abundance, by a factor of >60, compared to confined tracks. They are also more amenable to semi- or fully-automated measurement techniques than confined tracks. Moreover the distribution characteristics of semi-track lengths relative to confined track lengths are well understood so that in principle the two types could be used together in modelling thermal histories. The implementation of these new approaches for track length measurement should significantly improve the precision and standardisation of track length measurements at every stage of their utilisation, from annealing studies to thermal history modelling of unknowns. [1] Galbraith (2003) Statistics for FT Analysis, Chapman & Hall [2] Donelick et al. (2005) Rev Min Geochem 58, 49-94 [3] Ketcham et al. (2009) Ear Planet Sci Lett 284, 504-515 [4] Jonckheere & Van den haute (1999) Rad Meas 30, 155-179

  12. Radar coordination and resource management in a distributed sensor network using emergent control

    NASA Astrophysics Data System (ADS)

    Weir, B. S.; Sokol, T. M.

    2009-05-01

    As the list of anti-air warfare and ballistic missile defense missions grows, there is an increasing need to coordinate and optimize usage of radar resources across the netted force. Early attempts at this optimization involved top-down control mechanisms whereby sensors accept resource tasking orders from networked tracking elements. These approaches rely heavily on uncertain knowledge of sensor constraints and capabilities. Furthermore, advanced sensor systems may support self-defense missions of the host platform and are therefore unable to relinquish control to an external function. To surmount these issues, the use of bottom-up emergent control techniques is proposed. The information necessary to make quality, network-wide resource allocations is readily available to sensor nodes with access to a netted track picture. By assessing resource priorities relative to the network (versus local) track picture, sensors can understand the contribution of their resources to the netted force. This allows the sensors to apply resources where most needed and remove waste. Furthermore, simple local rules for resource usage, when properly constructed, allow sensors to obtain a globally optimal resource allocation without direct coordination (emergence). These results are robust to partial implementation (i.e., not all nodes upgraded at once) and failures on individual nodes (whether from casualty or reallocation to other sensor missions), and they leave resource control decisions in the hands of the sensor systems instead of an external function. This paper presents independent research and development work on emergent control of sensor resources and the impact to resource allocation and tracking performance.

  13. Mars @ ASDC

    NASA Astrophysics Data System (ADS)

    Carraro, Francesco

    "Mars @ ASDC" is a project born with the goal of using the new web technologies to assist researches involved in the study of Mars. This project employs Mars map and javascript APIs provided by Google to visualize data acquired by space missions on the planet. So far, visualization of tracks acquired by MARSIS and regions observed by VIRTIS-Rosetta has been implemented. The main reason for the creation of this kind of tool is the difficulty in handling hundreds or thousands of acquisitions, like the ones from MARSIS, and the consequent difficulty in finding observations related to a particular region. This led to the development of a tool which allows to search for acquisitions either by defining the region of interest through a set of geometrical parameters or by manually selecting the region on the map through a few mouse clicks The system allows the visualization of tracks (acquired by MARSIS) or regions (acquired by VIRTIS-Rosetta) which intersect the user defined region. MARSIS tracks can be visualized both in Mercator and polar projections while the regions observed by VIRTIS can presently be visualized only in Mercator projection. The Mercator projection is the standard map provided by Google. The polar projections are provided by NASA and have been developed to be used in combination with APIs provided by Google The whole project has been developed following the "open source" philosophy: the client-side code which handles the functioning of the web page is written in javascript; the server-side code which executes the searches for tracks or regions is written in PHP and the DB which undergoes the system is MySQL.

  14. Remote vs. head-mounted eye-tracking: a comparison using radiologists reading mammograms

    NASA Astrophysics Data System (ADS)

    Mello-Thoms, Claudia; Gur, David

    2007-03-01

    Eye position monitoring has been used for decades in Radiology in order to determine how radiologists interpret medical images. Using these devices several discoveries about the perception/decision making process have been made, such as the importance of comparisons of perceived abnormalities with selected areas of the background, the likelihood that a true lesion will attract visual attention early in the reading process, and the finding that most misses attract prolonged visual dwell, often comparable to dwell in the location of reported lesions. However, eye position tracking is a cumbersome process, which often requires the observer to wear a helmet gear which contains the eye tracker per se and a magnetic head tracker, which allows for the computation of head position. Observers tend to complain of fatigue after wearing the gear for a prolonged time. Recently, with the advances made to remote eye-tracking, the use of head-mounted systems seemed destined to become a thing of the past. In this study we evaluated a remote eye tracking system, and compared it to a head-mounted system, as radiologists read a case set of one-view mammograms on a high-resolution display. We compared visual search parameters between the two systems, such as time to hit the location of the lesion for the first time, amount of dwell time in the location of the lesion, total time analyzing the image, etc. We also evaluated the observers' impressions of both systems, and what their perceptions were of the restrictions of each system.

  15. Navy Acquisition: Development of the AN/BSY-1 Combat System

    DTIC Science & Technology

    1992-01-01

    AN/BSY-1, a computer-based combat system, is designed to detect, classify, track, and launch weapons at enemy surface, subsurface, and land targets. The Navy expects the AN/BSY-1 system to locate targets sooner than previous systems, allow operators to perform multiple tasks and address multiple targets concurrently, and reduce the time between detecting a target and launching weapons. The Navy has contracted with the International Business Machines (IBM) Corporation for 23 AN/BSY-1 systems, maintenance and operational trainers, and a software

  16. 14. IN PLAN 9 WEST. POWER HOUSE IS VISIBLE IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. IN PLAN 9 WEST. POWER HOUSE IS VISIBLE IN CENTER OF PICTURE. PLANE 9 WAS THE LONGEST PLANE OF THE CANAL SYSTEM. IT IS ALSO ONE OF ONLY THREE DOUBLE TRACKED PLANES (ALLOWING BOATS TO ASCEND AND DESCEND SIMULTANEOUSLY) ON THE CANAL. - Morris Canal, Phillipsburg, Warren County, NJ

  17. Vehicle Dynamics Monitoring and Tracking System (VDMTS): Monitoring Mission Impacts in Support of Installation Land Management

    DTIC Science & Technology

    2012-05-01

    Hawaii (U.S. Army Environmental Command, 2008). The installation is located in the saddle between Mauna Loa and Mauna Kea volcanoes. PTA is located...17 5.2 SITE LOCATION, HISTORY , AND SITE CHARACTERISTICS...allowed the system to be tested and validated under different conditions and on different vehicle types. 5.2 SITE LOCATION, HISTORY , AND SITE

  18. Waste Management Information System (WMIS) User Guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. E. Broz

    2008-12-22

    This document provides the user of the Waste Management Information System (WMIS) instructions on how to use the WMIS software. WMIS allows users to initiate, track, and close waste packages. The modular design supports integration and utilization of data throuh the various stages of waste management. The phases of the waste management work process include generation, designation, packaging, container management, procurement, storage, treatment, transportation, and disposal.

  19. Unsupervised learning in persistent sensing for target recognition by wireless ad hoc networks of ground-based sensors

    NASA Astrophysics Data System (ADS)

    Hortos, William S.

    2008-04-01

    In previous work by the author, effective persistent and pervasive sensing for recognition and tracking of battlefield targets were seen to be achieved, using intelligent algorithms implemented by distributed mobile agents over a composite system of unmanned aerial vehicles (UAVs) for persistence and a wireless network of unattended ground sensors for pervasive coverage of the mission environment. While simulated performance results for the supervised algorithms of the composite system are shown to provide satisfactory target recognition over relatively brief periods of system operation, this performance can degrade by as much as 50% as target dynamics in the environment evolve beyond the period of system operation in which the training data are representative. To overcome this limitation, this paper applies the distributed approach using mobile agents to the network of ground-based wireless sensors alone, without the UAV subsystem, to provide persistent as well as pervasive sensing for target recognition and tracking. The supervised algorithms used in the earlier work are supplanted by unsupervised routines, including competitive-learning neural networks (CLNNs) and new versions of support vector machines (SVMs) for characterization of an unknown target environment. To capture the same physical phenomena from battlefield targets as the composite system, the suite of ground-based sensors can be expanded to include imaging and video capabilities. The spatial density of deployed sensor nodes is increased to allow more precise ground-based location and tracking of detected targets by active nodes. The "swarm" mobile agents enabling WSN intelligence are organized in a three processing stages: detection, recognition and sustained tracking of ground targets. Features formed from the compressed sensor data are down-selected according to an information-theoretic algorithm that reduces redundancy within the feature set, reducing the dimension of samples used in the target recognition and tracking routines. Target tracking is based on simplified versions of Kalman filtration. Accuracy of recognition and tracking of implemented versions of the proposed suite of unsupervised algorithms is somewhat degraded from the ideal. Target recognition and tracking by supervised routines and by unsupervised SVM and CLNN routines in the ground-based WSN is evaluated in simulations using published system values and sensor data from vehicular targets in ground-surveillance scenarios. Results are compared with previously published performance for the system of the ground-based sensor network (GSN) and UAV swarm.

  20. From chart tracking to workflow management.

    PubMed Central

    Srinivasan, P.; Vignes, G.; Venable, C.; Hazelwood, A.; Cade, T.

    1994-01-01

    The current interest in system-wide integration appears to be based on the assumption that an organization, by digitizing information and accepting a common standard for the exchange of such information, will improve the accessibility of this information and automatically experience benefits resulting from its more productive use. We do not dispute this reasoning, but assert that an organization's capacity for effective change is proportional to the understanding of the current structure among its personnel. Our workflow manager is based on the use of a Parameterized Petri Net (PPN) model which can be configured to represent an arbitrarily detailed picture of an organization. The PPN model can be animated to observe the model organization in action, and the results of the animation analyzed. This simulation is a dynamic ongoing process which changes with the system and allows members of the organization to pose "what if" questions as a means of exploring opportunities for change. We present, the "workflow management system" as the natural successor to the tracking program, incorporating modeling, scheduling, reactive planning, performance evaluation, and simulation. This workflow management system is more than adequate for meeting the needs of a paper chart tracking system, and, as the patient record is computerized, will serve as a planning and evaluation tool in converting the paper-based health information system into a computer-based system. PMID:7950051

  1. Collaborative real-time motion video analysis by human observer and image exploitation algorithms

    NASA Astrophysics Data System (ADS)

    Hild, Jutta; Krüger, Wolfgang; Brüstle, Stefan; Trantelle, Patrick; Unmüßig, Gabriel; Heinze, Norbert; Peinsipp-Byma, Elisabeth; Beyerer, Jürgen

    2015-05-01

    Motion video analysis is a challenging task, especially in real-time applications. In most safety and security critical applications, a human observer is an obligatory part of the overall analysis system. Over the last years, substantial progress has been made in the development of automated image exploitation algorithms. Hence, we investigate how the benefits of automated video analysis can be integrated suitably into the current video exploitation systems. In this paper, a system design is introduced which strives to combine both the qualities of the human observer's perception and the automated algorithms, thus aiming to improve the overall performance of a real-time video analysis system. The system design builds on prior work where we showed the benefits for the human observer by means of a user interface which utilizes the human visual focus of attention revealed by the eye gaze direction for interaction with the image exploitation system; eye tracker-based interaction allows much faster, more convenient, and equally precise moving target acquisition in video images than traditional computer mouse selection. The system design also builds on prior work we did on automated target detection, segmentation, and tracking algorithms. Beside the system design, a first pilot study is presented, where we investigated how the participants (all non-experts in video analysis) performed in initializing an object tracking subsystem by selecting a target for tracking. Preliminary results show that the gaze + key press technique is an effective, efficient, and easy to use interaction technique when performing selection operations on moving targets in videos in order to initialize an object tracking function.

  2. Long-term object tracking combined offline with online learning

    NASA Astrophysics Data System (ADS)

    Hu, Mengjie; Wei, Zhenzhong; Zhang, Guangjun

    2016-04-01

    We propose a simple yet effective method for long-term object tracking. Different from the traditional visual tracking method, which mainly depends on frame-to-frame correspondence, we combine high-level semantic information with low-level correspondences. Our framework is formulated in a confidence selection framework, which allows our system to recover from drift and partly deal with occlusion. To summarize, our algorithm can be roughly decomposed into an initialization stage and a tracking stage. In the initialization stage, an offline detector is trained to get the object appearance information at the category level, which is used for detecting the potential target and initializing the tracking stage. The tracking stage consists of three modules: the online tracking module, detection module, and decision module. A pretrained detector is used for maintaining drift of the online tracker, while the online tracker is used for filtering out false positive detections. A confidence selection mechanism is proposed to optimize the object location based on the online tracker and detection. If the target is lost, the pretrained detector is utilized to reinitialize the whole algorithm when the target is relocated. During experiments, we evaluate our method on several challenging video sequences, and it demonstrates huge improvement compared with detection and online tracking only.

  3. Using artificial intelligence to automate remittance processing.

    PubMed

    Adams, W T; Snow, G M; Helmick, P M

    1998-06-01

    The consolidated business office of the Allegheny Health Education Research Foundation (AHERF), a large integrated healthcare system based in Pittsburgh, Pennsylvania, sought to improve its cash-related business office activities by implementing an automated remittance processing system that uses artificial intelligence. The goal was to create a completely automated system whereby all monies it processed would be tracked, automatically posted, analyzed, monitored, controlled, and reconciled through a central database. Using a phased approach, the automated payment system has become the central repository for all of the remittances for seven of the hospitals in the AHERF system and has allowed for the complete integration of these hospitals' existing billing systems, document imaging system, and intranet, as well as the new automated payment posting, and electronic cash tracking and reconciling systems. For such new technology, which is designed to bring about major change, factors contributing to the project's success were adequate planning, clearly articulated objectives, marketing, end-user acceptance, and post-implementation plan revision.

  4. Automated enclosure and protection system for compact solar-tracking spectrometers

    NASA Astrophysics Data System (ADS)

    Heinle, Ludwig; Chen, Jia

    2018-04-01

    A novel automated enclosure for protecting solar-tracking atmospheric instruments was designed, constructed, and successfully tested under various weather conditions. A complete automated measurement system, consisting of a compact solar-tracking Fourier transform infrared (FTIR) spectrometer (EM27/SUN) and the enclosure, has been deployed in central Munich to monitor greenhouse gases since 2016 and withstood all critical weather conditions, including rain, storms, and snow. It provided ground-based measurements of column-averaged concentrations of CO2, CH4, O2, and H2O throughout this time.The enclosure protects the instrument from harmful environmental influences while allowing open-path measurements in sunny weather. The newly developed and patented cover, a key component of the enclosure, permits unblocked solar measurements while reliably protecting the instrument. This enables dynamic decision regarding taking measurements, and thus increases the number of data samples. This enclosure leads to a fully automated measurement system, which collects data whenever possible without any human interaction. In the long term, the enclosure will provide the foundation for a permanent greenhouse gas monitoring sensor network.

  5. Application of unscented Kalman filter for robust pose estimation in image-guided surgery

    NASA Astrophysics Data System (ADS)

    Vaccarella, Alberto; De Momi, Elena; Valenti, Marta; Ferrigno, Giancarlo; Enquobahrie, Andinet

    2012-02-01

    Image-guided surgery (IGS) allows clinicians to view current, intra-operative scenes superimposed on preoperative images (typically MRI or CT scans). IGS systems use localization systems to track and visualize surgical tools overlaid on top of preoperative images of the patient during surgery. The most commonly used localization systems in the Operating Rooms (OR) are optical tracking systems (OTS) due to their ease of use and cost effectiveness. However, OTS' suffer from the major drawback of line-of-sight requirements. State space approaches based on different implementations of the Kalman filter have recently been investigated in order to compensate for short line-of-sight occlusion. However, the proposed parameterizations for the rigid body orientation suffer from singularities at certain values of rotation angles. The purpose of this work is to develop a quaternion-based Unscented Kalman Filter (UKF) for robust optical tracking of both position and orientation of surgical tools in order to compensate marker occlusion issues. This paper presents preliminary results towards a Kalman-based Sensor Management Engine (SME). The engine will filter and fuse multimodal tracking streams of data. This work was motivated by our experience working in robot-based applications for keyhole neurosurgery (ROBOCAST project). The algorithm was evaluated using real data from NDI Polaris tracker. The results show that our estimation technique is able to compensate for marker occlusion with a maximum error of 2.5° for orientation and 2.36 mm for position. The proposed approach will be useful in over-crowded state-of-the-art ORs where achieving continuous visibility of all tracked objects will be difficult.

  6. Keeping Communication Continuous

    NASA Technical Reports Server (NTRS)

    2003-01-01

    General Dynamics Decision Systems employees have played a role in supplying telemetry, tracking, and control (TT&C) and other communications systems to NASA and the U.S. Department of Defense for over 40 years. Providing integrated communication systems and subsystems for nearly all manned and unmanned U.S. space flights, the heritage of this Scottsdale, Arizona-based company includes S-band transceivers that enabled millions of Americans to see Neil Armstrong and hear his prophetic words from the Moon in 1969. More recently, Decision Systems has collaborated with NASA s Goddard Space Flight Center to develop transponders, wireless communications devices that pick up and automatically respond to an incoming signal, for NASA s Tracking and Data Relay Satellite System (TDRSS). Four generations of Decision Systems TDRSS transponders have been developed under Goddard s sponsorship. The company s Fourth Generation TDRSS User Transponder (TDRSS IV) allows low-Earth-orbiting spacecraft to communicate continuously with a single ground station at White Sands, New Mexico, through a constellation of geostationary relay satellites positioned at key locations around the Earth. In addition to the communications of forward link control commands and return link telemetry data, the TDRSS IV also supports spacecraft orbit tracking through coherent turn-around of a pseudo-noise ranging code and two-way Doppler tracking.When the NSBF adopted the use of global positioning system receivers for balloon position tracking, Decision Systems concluded that a simpler, noncoherent transceiver could provide the NSBF with the necessary TDRSS communications without the additional cost and complexity of a coherent transponder. The solution was to take the core design of the TDRSS IV Transponder, but remove the extra functionality that supported coherent turn-around. This would simplify the production effort, reduce the testing required, and result in a lower cost product with smaller size, weight, and power consumption. Once NSBF and Decision Systems agreed on a concept for this new product, known as the Multi-Mode Transceiver (MMT), the NSBF approached Goddard for approval and funding.

  7. Counter unmanned aerial system testing and evaluation methodology

    NASA Astrophysics Data System (ADS)

    Kouhestani, C.; Woo, B.; Birch, G.

    2017-05-01

    Unmanned aerial systems (UAS) are increasing in flight times, ease of use, and payload sizes. Detection, classification, tracking, and neutralization of UAS is a necessary capability for infrastructure and facility protection. We discuss test and evaluation methodology developed at Sandia National Laboratories to establish a consistent, defendable, and unbiased means for evaluating counter unmanned aerial system (CUAS) technologies. The test approach described identifies test strategies, performance metrics, UAS types tested, key variables, and the necessary data analysis to accurately quantify the capabilities of CUAS technologies. The tests conducted, as defined by this approach, will allow for the determination of quantifiable limitations, strengths, and weaknesses in terms of detection, tracking, classification, and neutralization. Communicating the results of this testing in such a manner informs decisions by government sponsors and stakeholders that can be used to guide future investments and inform procurement, deployment, and advancement of such systems into their specific venues.

  8. Understanding of and applications for robot vision guidance at KSC

    NASA Technical Reports Server (NTRS)

    Shawaga, Lawrence M.

    1988-01-01

    The primary thrust of robotics at KSC is for the servicing of Space Shuttle remote umbilical docking functions. In order for this to occur, robots performing servicing operations must be capable of tracking a swaying Orbiter in Six Degrees of Freedom (6-DOF). Currently, in NASA KSC's Robotic Applications Development Laboratory (RADL), an ASEA IRB-90 industrial robot is being equipped with a real-time computer vision (hardware and software) system to allow it to track a simulated Orbiter interface (target) in 6-DOF. The real-time computer vision system effectively becomes the eyes for the lab robot, guiding it through a closed loop visual feedback system to move with the simulated Orbiter interface. This paper will address an understanding of this vision guidance system and how it will be applied to remote umbilical servicing at KSC. In addition, other current and future applications will be addressed.

  9. TELAER: a multi-mode/multi-antenna interferometric airborne SAR system

    NASA Astrophysics Data System (ADS)

    Perna, Stefano; Amaral, Tiago; Berardino, Paolo; Esposito, Carmen; Jackson, Giuseppe; Pauciullo, Antonio; Vaz Junior, Eurico; Wimmer, Christian; Lanari, Riccardo

    2014-05-01

    The present contribution is aimed at showing the capabilities of the TELAER airborne Synthetic Aperture Radar (SAR) system recently upgraded to the interferometric mode [1]. TELAER is an Italian airborne X-Band SAR system, mounted onboard a LearJet 35A aircraft. Originally equipped with a single TX/RX antenna, it now operates in single-pass interferometric mode thanks to a system upgrading [1] funded by the Italian National Research Council (CNR), via the Italian Ministry of Education, Universities and Research (MIUR), in the framework of a cooperation between CNR and the Italian Agency for Agriculture Subsidy Payments (AGEA). In the frame of such cooperation, CNR has entrusted the Institute for Electromagnetic Sensing of the Environment (IREA) for managing all the activities, included the final flight tests, related to the system upgrading. According to such an upgrading, two additional receiving X-band antennas have been installed in order to allow, simultaneously, single-pass Across-Track and Along-Track interferometry [1]. More specifically, the three antennas are now installed in such a way to produce three different across-track baselines and two different along-track baselines. Moreover, in the frame of the same system upgrading, it has been mounted onboard the Learjet an accurate embedded Global Navigation Satellite System and Inertial Measurement Unit equipment. This allows precise measurement of the tracks described by the SAR antennas during the flight, in order to accurately implement Motion Compensation (MOCO) algorithms [2] during the image formation (focusing) step. It is worth remarking that the TELAER system upgraded to the interferometric mode is very flexible, since the user can set different operational modes characterized by different geometric resolutions and range swaths. In particular, it is possible to reach up to 0.5 m of resolution with a range swath of 2km; conversely, it is possible to enlarge the range swath up to 10 km at expenses of a degradation of the geometric resolution, which in this case becomes equal to 5m. Such an operational flexibility, added to the above discussed single-pass interferometric capability and to the intrinsic flexibility of airborne platforms, renders the TELAER airborne SAR system a powerful instrument for fast generation of high resolution Digital Elevation Models, even in natural disaster scenarios. Accordingly, this system can play today a key role not only for strictly scientific purposes, but also for the monitoring of natural hazards, especially if properly integrated with other remote sensing sensors. [1] S. Perna et al., "Capabilities of the TELAER airborne SAR system upgraded to the multi-antenna mode", In Proceedings IGARSS 2012 Symposium, Munich, 2012. [2] G. Franceschetti, and R.Lanari, Synthetic Aperture Radar Processing, CRC PRESS, New York, 1999.

  10. Results of field testing with the FightSight infrared-based projectile tracking and weapon-fire characterization technology

    NASA Astrophysics Data System (ADS)

    Snarski, Steve; Menozzi, Alberico; Sherrill, Todd; Volpe, Chris; Wille, Mark

    2010-04-01

    This paper describes experimental results from recent live-fire data collects that demonstrate the capability of a prototype system for projectile detection and tracking. This system, which is being developed at Applied Research Associates, Inc., under the FightSight program, consists of a high-speed thermal camera and sophisticated image processing algorithms to detect and track projectiles. The FightSight operational vision is automated situational intelligence to detect, track, and graphically map large-scale firefights and individual shooting events onto command and control (C2) systems in real time (shot location and direction, weapon ID, movements and trends). Gaining information on enemy-fire trajectories allows educated inferences on the enemy's intent, disposition, and strength. Our prototype projectile detection and tracking system has been tested at the Joint Readiness Training Center (Ft Polk, LA) during live-fire convoy and mortar registration exercises, in the summer of 2009. It was also tested during staged military-operations- on-urban-terrain (MOUT) firefight events at Aberdeen Test Center (Aberdeen, MD) under the Hostile Fire Defeat Army Technology Objective midterm experiment, also in the summer of 2009, where we introduced fusion with acoustic and EO sensors to provide 3D localization and near-real time display of firing events. Results are presented in this paper that demonstrate effective and accurate detection and localization of weapon fire (5.56mm, 7.62mm, .50cal, 81/120mm mortars, 40mm) in diverse and challenging environments (dust, heat, day and night, rain, arid open terrain, urban clutter). FightSight's operational capabilities demonstrated under these live-fire data collects can support closecombat scenarios. As development continues, FightSight will be able to feed C2 systems with a symbolic map of enemy actions.

  11. Eye Tracking Based Control System for Natural Human-Computer Interaction

    PubMed Central

    Lin, Shu-Fan

    2017-01-01

    Eye movement can be regarded as a pivotal real-time input medium for human-computer communication, which is especially important for people with physical disability. In order to improve the reliability, mobility, and usability of eye tracking technique in user-computer dialogue, a novel eye control system with integrating both mouse and keyboard functions is proposed in this paper. The proposed system focuses on providing a simple and convenient interactive mode by only using user's eye. The usage flow of the proposed system is designed to perfectly follow human natural habits. Additionally, a magnifier module is proposed to allow the accurate operation. In the experiment, two interactive tasks with different difficulty (searching article and browsing multimedia web) were done to compare the proposed eye control tool with an existing system. The Technology Acceptance Model (TAM) measures are used to evaluate the perceived effectiveness of our system. It is demonstrated that the proposed system is very effective with regard to usability and interface design. PMID:29403528

  12. Eye Tracking Based Control System for Natural Human-Computer Interaction.

    PubMed

    Zhang, Xuebai; Liu, Xiaolong; Yuan, Shyan-Ming; Lin, Shu-Fan

    2017-01-01

    Eye movement can be regarded as a pivotal real-time input medium for human-computer communication, which is especially important for people with physical disability. In order to improve the reliability, mobility, and usability of eye tracking technique in user-computer dialogue, a novel eye control system with integrating both mouse and keyboard functions is proposed in this paper. The proposed system focuses on providing a simple and convenient interactive mode by only using user's eye. The usage flow of the proposed system is designed to perfectly follow human natural habits. Additionally, a magnifier module is proposed to allow the accurate operation. In the experiment, two interactive tasks with different difficulty (searching article and browsing multimedia web) were done to compare the proposed eye control tool with an existing system. The Technology Acceptance Model (TAM) measures are used to evaluate the perceived effectiveness of our system. It is demonstrated that the proposed system is very effective with regard to usability and interface design.

  13. Automated Tracking of Motion and Body Weight for Objective Monitoring of Rats in Colony Housing

    PubMed Central

    Brenneis, Christian; Westhof, Andreas; Holschbach, Jeannine; Michaelis, Martin; Guehring, Hans; Kleinschmidt-Doerr, Kerstin

    2017-01-01

    Living together in large social communities within an enriched environment stimulates self-motivated activity in rats. We developed a modular housing system in which a single unit can accommodate as many as 48 rats and contains multiple functional areas. This rat colony cage further allowed us to remotely measure body weight and to continuously measure movement, including jumping and stair walking between areas. Compared with pair-housed, age-, strain-, and weight-matched rats in conventional cages, the colony-housed rats exhibited higher body mass indices, had more exploratory behavior, and were more cooperative during handling. Continuous activity tracking revealed that the amount of spontaneous locomotion, such as jumping between levels and running through the staircase, fell after surgery, blood sampling, injections, and behavioral tests to a similar extent regardless of the specific intervention. Data from the automated system allowed us to identify individual rats with significant differences (>2 SD) from other cohoused rats; these rats showed potential health problems, as verified using conventional health scoring. Thus, our rat colony cage permits social interaction and provides a variety of functional areas, thereby perhaps improving animal wellbeing. Furthermore, automated online tracking enabled continuous quantification of spontaneous motion, potentially providing objective measures of animal behavior in various disease models and reducing the need for experimental manipulation. Finally, health monitoring of individual rats was facilitated in an objective manner. PMID:28905711

  14. Implementation of the Regulatory Authority Information System in Egypt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carson, S.D.; Schetnan, R.; Hasan, A.

    2006-07-01

    As part of the implementation of a bar-code-based system to track radioactive sealed sources (RSS) in Egypt, the Regulatory Authority Information System Personal Digital Assistant (RAIS PDA) Application was developed to extend the functionality of the International Atomic Energy Agency's (IAEA's) RAIS database by allowing users to download RSS data from the database to a portable PDA equipped with a bar-code scanner. [1, 4] The system allows users in the field to verify radioactive sealed source data, gather radioactive sealed source audit information, and upload that data to the RAIS database. This paper describes the development of the RAIS PDAmore » Application, its features, and how it will be implemented in Egypt. (authors)« less

  15. Methods and apparatus for switching a transponder to an active state, and asset management systems employing same

    NASA Technical Reports Server (NTRS)

    Mickle, Marlin H. (Inventor); Jones, Alex K. (Inventor); Cain, James T. (Inventor); Hawrylak, Peter J. (Inventor); Marx, Frank (Inventor); Hoare, Raymond R. (Inventor)

    2012-01-01

    A transponder that may be used as an RFID tag includes a passive circuit to eliminate the need for an "always on" active RF receiving element to anticipate a wake-up signal for the balance of the transponder electronics. This solution allows the entire active transponder to have all circuit elements in a sleep (standby) state, thus drastically extending battery life or other charge storage device life. Also, a wake-up solution that reduces total energy consumption of an active transponder system by allowing all non-addressed transponders to remain in a sleep (standby) state, thereby reducing total system or collection energy. Also, the transponder and wake-up solution are employed in an asset tracking system.

  16. Methods and apparatus for switching a transponder to an active state, and asset management systems employing same

    NASA Technical Reports Server (NTRS)

    Mickle, Marlin H. (Inventor); Jones, Alex K. (Inventor); Cain, James T. (Inventor); Hawrylak, Peter J. (Inventor); Marx, Frank (Inventor); Hoare, Raymond R. (Inventor)

    2011-01-01

    A transponder that may be used as an RFID tag includes a passive circuit to eliminate the need for an "always on" active RF receiving element to anticipate a wake-up signal for the balance of the transponder electronics. This solution allows the entire active transponder to have all circuit elements in a sleep (standby) state, thus drastically extending battery life or other charge storage device life. Also, a wake-up solution that reduces total energy consumption of an active transponder system by allowing all non-addressed transponders to remain in a sleep (standby) state, thereby reducing total system or collection energy. Also, the transponder and wake-up solution are employed in an asset tracking system.

  17. Application of Multifunctional Doppler LIDAR for Noncontact Track Speed, Distance, and Curvature Assessment

    NASA Astrophysics Data System (ADS)

    Munoz, Joshua

    The primary focus of this research is evaluation of feasibility, applicability, and accuracy of Doppler Light Detection And Ranging (LIDAR) sensors as non-contact means for measuring track speed, distance traveled, and curvature. Speed histories, currently measured with a rotary, wheelmounted encoder, serve a number of useful purposes, one significant use involving derailment investigations. Distance calculation provides a spatial reference system for operators to locate track sections of interest. Railroad curves, using an IMU to measure curvature, are monitored to maintain track infrastructure within regulations. Speed measured with high accuracy leads to highfidelity distance and curvature data through utilization of processor clock rate and left-and rightrail speed differentials during curve navigation, respectively. Wheel-mounted encoders, or tachometers, provide a relatively low-resolution speed profile, exhibit increased noise with increasing speed, and are subject to the inertial behavior of the rail car which affects output data. The IMU used to measure curvature is dependent on acceleration and yaw rate sensitivity and experiences difficulty in low-speed conditions. Preliminary system tests onboard a "Hy-Rail" utility vehicle capable of traveling on rail show speed capture is possible using the rails as the reference moving target and furthermore, obtaining speed profiles from both rails allows for the calculation of speed differentials in curves to estimate degrees curvature. Ground truth distance calibration and curve measurement were also carried out. Distance calibration involved placement of spatial landmarks detected by a sensor to synchronize distance measurements as a pre-processing procedure. Curvature ground truth measurements provided a reference system to confirm measurement results and observe alignment variation throughout a curve. Primary testing occurred onboard a track geometry rail car, measuring rail speed over substantial mileage in various weather conditions, providing highaccuracy data to further calculate distance and curvature along the test routes. Tests results indicate the LIDAR system measures speed at higher accuracy than the encoder, absent of noise influenced by increasing speed. Distance calculation is also high in accuracy, results showing high correlation with encoder and ground truth data. Finally, curvature calculation using speed data is shown to have good correlation with IMU measurements and a resolution capable of revealing localized track alignments. Further investigations involve a curve measurement algorithm and speed calibration method independent from external reference systems, namely encoder and ground truth data. The speed calibration results show a high correlation with speed data from the track geometry vehicle. It is recommended that the study be extended to provide assessment of the LIDAR's sensitivity to car body motion in order to better isolate the embedded behavior in the speed and curvature profiles. Furthermore, in the interest of progressing the system toward a commercially viable unit, methods for self-calibration and pre-processing to allow for fully independent operation is highly encouraged.

  18. Mobile remote manipulator vehicle system

    NASA Technical Reports Server (NTRS)

    Bush, Harold G. (Inventor); Mikulas, Martin M., Jr. (Inventor); Wallsom, Richard E. (Inventor); Jensen, J. Kermit (Inventor)

    1987-01-01

    A mobile remote manipulator system is disclosed for assembly, repair and logistics transport on, around and about a space station square bay truss structure. The vehicle is supported by a square track arrangement supported by guide pins integral with the space station truss structure and located at each truss node. Propulsion is provided by a central push-pull drive mechanism that extends out from the vehicle one full structural bay over the truss and locks drive rods into the guide pins. The draw bar is now retracted and the mobile remote manipulator system is pulled onto the next adjacent structural bay. Thus, translation of the vehicle is inchworm style. The drive bar can be locked onto two guide pins while the extendable draw bar is within the vehicle and then push the vehicle away one bay providing bidirectional push-pull drive. The track switches allow the vehicle to travel in two orthogonal directions over the truss structure which coupled with the bidirectional drive, allow movement in four directions on one plane. The top layer of this trilayered vehicle is a logistics platform. This platform is capable of 369 degees of rotation and will have two astronaut foot restraint platforms and a space crane integral.

  19. GONUTS: the Gene Ontology Normal Usage Tracking System

    PubMed Central

    Renfro, Daniel P.; McIntosh, Brenley K.; Venkatraman, Anand; Siegele, Deborah A.; Hu, James C.

    2012-01-01

    The Gene Ontology Normal Usage Tracking System (GONUTS) is a community-based browser and usage guide for Gene Ontology (GO) terms and a community system for general GO annotation of proteins. GONUTS uses wiki technology to allow registered users to share and edit notes on the use of each term in GO, and to contribute annotations for specific genes of interest. By providing a site for generation of third-party documentation at the granularity of individual terms, GONUTS complements the official documentation of the Gene Ontology Consortium. To provide examples for community users, GONUTS displays the complete GO annotations from seven model organisms: Saccharomyces cerevisiae, Dictyostelium discoideum, Caenorhabditis elegans, Drosophila melanogaster, Danio rerio, Mus musculus and Arabidopsis thaliana. To support community annotation, GONUTS allows automated creation of gene pages for gene products in UniProt. GONUTS will improve the consistency of annotation efforts across genome projects, and should be useful in training new annotators and consumers in the production of GO annotations and the use of GO terms. GONUTS can be accessed at http://gowiki.tamu.edu. The source code for generating the content of GONUTS is available upon request. PMID:22110029

  20. Gravity model improvement using the DORIS tracking system on the SPOT 2 satellite

    NASA Technical Reports Server (NTRS)

    Nerem, R. S.; Lerch, F. J.; Williamson, R. G.; Klosko, S. M.; Robbins, J. W.; Patel, G. B.

    1994-01-01

    A high-precision radiometric satellite tracking system, Doppler Orbitography and Radio-positioning Integrated by Satellite system (DORIS), has recently been developed by the French space agency, Centre National d'Etudes Spatiales (CNES). DORIS was designed to provide tracking support for missions such as the joint United States/French TOPEX/Poseidon. As part of the flight testing process, a DORIS package was flown on the French SPOT 2 satellite. A substantial quantity of geodetic quality tracking data was obtained on SPOT 2 from an extensive international DORIS tracking network. These data were analyzed to assess their accuracy and to evaluate the gravitational modeling enhancements provided by these data in combination with the Goddard Earth Model-T3 (GEM-T3) gravitational model. These observations have noise levels of 0.4 to 0.5 mm/s, with few residual systematic effects. Although the SPOT 2 satellite experiences high atmospheric drag forces, the precision and global coverage of the DORIS tracking data have enabled more extensive orbit parameterization to mitigate these effects. As a result, the SPOT 2 orbital errors have been reduced to an estimated radial accuracy in the 10-20 cm RMS range. The addition of these data, which encompass many regions heretofore lacking in precision satellite tracking, has significantly improved GEM-T3 and allowed greatly improved orbit accuracies for Sun-synchronous satellites like SPOT 2 (such as ERS 1 and EOS). Comparison of the ensuing gravity model with other contemporary fields (GRIM-4C2, TEG2B, and OSU91A) provides a means to assess the current state of knowledge of the Earth's gravity field. Thus, the DORIS experiment on SPOT 2 has provided a strong basis for evaluating this new orbit tracking technology and has demonstrated the important contribution of the DORIS network to the success of the TOPEX/Poseidon mission.

  1. Absolute vs. relative error characterization of electromagnetic tracking accuracy

    NASA Astrophysics Data System (ADS)

    Matinfar, Mohammad; Narayanasamy, Ganesh; Gutierrez, Luis; Chan, Raymond; Jain, Ameet

    2010-02-01

    Electromagnetic (EM) tracking systems are often used for real time navigation of medical tools in an Image Guided Therapy (IGT) system. They are specifically advantageous when the medical device requires tracking within the body of a patient where line of sight constraints prevent the use of conventional optical tracking. EM tracking systems are however very sensitive to electromagnetic field distortions. These distortions, arising from changes in the electromagnetic environment due to the presence of conductive ferromagnetic surgical tools or other medical equipment, limit the accuracy of EM tracking, in some cases potentially rendering tracking data unusable. We present a mapping method for the operating region over which EM tracking sensors are used, allowing for characterization of measurement errors, in turn providing physicians with visual feedback about measurement confidence or reliability of localization estimates. In this instance, we employ a calibration phantom to assess distortion within the operating field of the EM tracker and to display in real time the distribution of measurement errors, as well as the location and extent of the field associated with minimal spatial distortion. The accuracy is assessed relative to successive measurements. Error is computed for a reference point and consecutive measurement errors are displayed relative to the reference in order to characterize the accuracy in near-real-time. In an initial set-up phase, the phantom geometry is calibrated by registering the data from a multitude of EM sensors in a non-ferromagnetic ("clean") EM environment. The registration results in the locations of sensors with respect to each other and defines the geometry of the sensors in the phantom. In a measurement phase, the position and orientation data from all sensors are compared with the known geometry of the sensor spacing, and localization errors (displacement and orientation) are computed. Based on error thresholds provided by the operator, the spatial distribution of localization errors are clustered and dynamically displayed as separate confidence zones within the operating region of the EM tracker space.

  2. Interoperative Biopsy Site Relocalization in Endoluminal Surgery.

    PubMed

    Vemuri, Anant Suraj; Nicolau, Stephane; Sportes, Adrien; Marescaux, Jacques; Soler, Luc; Ayache, Nicholas

    2016-09-01

    Barrett's oesophagus, a premalignant condition of the oesophagus has been on a rise in the recent years. The standard diagnostic protocol for Barrett's involves obtaining biopsies at suspicious regions along the oesophagus. The localization and tracking of these biopsy sites "interoperatively" poses a significant challenge for providing targeted treatments and tracking disease progression. This paper proposes an approach to provide guided navigation and relocalization of the biopsy sites using an electromagnetic tracking system. The characteristic of our approach over existing ones is the integration of an electromagnetic sensor at the flexible endoscope tip, so that the endoscopic camera depth inside the oesophagus can be computed in real time, allowing to retrieve and display an image from a previous exploration at the same depth. We first describe our system setup and methodology for interoperative registration. We then propose three incremental experiments of our approach. First, on synthetic data with realistic noise model to analyze the error bounds of our system. The second on in vivo pig data using an optical tracking system to provide a pseudo ground truth. Accuracy results obtained were consistent with the synthetic experiments despite uncertainty introduced due to breathing motion, and remain inside acceptable error margin according to medical experts. Finally, a third experiment designed using data from pigs to simulate a real task of biopsy site relocalization, and evaluated by ten gastro-intestinal experts. It clearly demonstrated the benefit of our system toward assisted guidance by improving the biopsy site retrieval rate from 47.5% to 94%.

  3. Recording and reading of information on optical disks

    NASA Astrophysics Data System (ADS)

    Bouwhuis, G.; Braat, J. J. M.

    In the storage of information, related to video programs, in a spiral track on a disk, difficulties arise because the bandwidth for video is much greater than for audio signals. An attractive solution was found in optical storage. The optical noncontact method is free of wear, and allows for fast random access. Initial problems regarding a suitable light source could be overcome with the aid of appropriate laser devices. The basic concepts of optical storage on disks are treated insofar as they are relevant for the optical arrangement. A general description is provided of a video, a digital audio, and a data storage system. Scanning spot microscopy for recording and reading of optical disks is discussed, giving attention to recording of the signal, the readout of optical disks, the readout of digitally encoded signals, and cross talk. Tracking systems are also considered, taking into account the generation of error signals for radial tracking and the generation of focus error signals.

  4. Determination of the System Mass and the Individual Masses of Pluto and Charon from New Horizons Radio Tracking

    NASA Astrophysics Data System (ADS)

    Hahn, M.; Paetzold, M.; Andert, T.; Bird, M. K.; Tyler, G. L.; Hinson, D. P.; Linscott, I.; Stern, A.; Weaver, H. A., Jr.; Young, L. A.; Ennico Smith, K.; Olkin, C.

    2016-12-01

    One objective of the New Horizons Radio Science Experiment REX is the direct determination of the system mass and the individual masses of Pluto and Charon. About four weeks of two-way radio tracking centered around the closest approach of New Horizons to the Pluto system were processed. Major problems during the processing were the changes in spacecraft attitude by thrusters which applied extra Δv to the spacecraft motion masking partially the continuously perturbed motion caused by the attracting forces of the Pluto system members. The times of the spacecraft thruster activity are known but the applied Δv magnitude needed to be specifically adjusted. No two-way tracking was available during the flyby day on 14th July but slots of the REX one-way uplink observations cover the most important time near closest approach, these are for example the Pluto and Charon Earth occultation entries and exits. The REX data during the flyby day allowed to extract the individual masses of Pluto and Charon from the system mass at high precision. The relative errors of the mass determinations are below 0.02% and 0.2%, respectively. The masses of the 4 small satellites in the Pluto system could not be resolved.

  5. Preliminary development of augmented reality systems for spinal surgery

    NASA Astrophysics Data System (ADS)

    Nguyen, Nhu Q.; Ramjist, Joel M.; Jivraj, Jamil; Jakubovic, Raphael; Deorajh, Ryan; Yang, Victor X. D.

    2017-02-01

    Surgical navigation has been more actively deployed in open spinal surgeries due to the need for improved precision during procedures. This is increasingly difficult in minimally invasive surgeries due to the lack of visual cues caused by smaller exposure sites, and increases a surgeon's dependence on their knowledge of anatomical landmarks as well as the CT or MRI images. The use of augmented reality (AR) systems and registration technologies in spinal surgeries could allow for improvements to techniques by overlaying a 3D reconstruction of patient anatomy in the surgeon's field of view, creating a mixed reality visualization. The AR system will be capable of projecting the 3D reconstruction onto a field and preliminary object tracking on a phantom. Dimensional accuracy of the mixed media will also be quantified to account for distortions in tracking.

  6. Automatic outdoor monitoring system for photovoltaic panels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stefancich, Marco; Simpson, Lin; Chiesa, Matteo

    Long-term acquisition of solar panel performance parameters, for panels operated at maximum power point in their real environment, is of critical importance in the photovoltaic research sector. However, few options exist for the characterization of non-standard panels such as concentrated photovoltaic systems, heavily soiled or shaded panels or those operating under non-standard spectral illumination; certainly, it is difficult to find such a measurement system that is flexible and affordable enough to be adopted by the smaller research institutes or universities. We present here an instrument aiming to fill this gap, autonomously tracking and maintaining any solar panel at maximum powermore » point while continuously monitoring its operational parameters and dissipating the produced energy without connection to the power grid. The instrument allows periodic acquisition of current-voltage curves to verify the employed maximum power point tracking approach. At the same time, with hardware schematics and software code being provided, it provides a flexible open development environment for the monitoring of non-standard generators like concentrator photovoltaic systems and to test novel power tracking approaches. The key issues, and the corresponding solutions, encountered in the design are analyzed in detail and the relevant schematics presented.« less

  7. Automatic outdoor monitoring system for photovoltaic panels.

    PubMed

    Stefancich, Marco; Simpson, Lin; Chiesa, Matteo

    2016-05-01

    Long-term acquisition of solar panel performance parameters, for panels operated at maximum power point in their real environment, is of critical importance in the photovoltaic research sector. However, few options exist for the characterization of non-standard panels such as concentrated photovoltaic systems, heavily soiled or shaded panels or those operating under non-standard spectral illumination; certainly, it is difficult to find such a measurement system that is flexible and affordable enough to be adopted by the smaller research institutes or universities. We present here an instrument aiming to fill this gap, autonomously tracking and maintaining any solar panel at maximum power point while continuously monitoring its operational parameters and dissipating the produced energy without connection to the power grid. The instrument allows periodic acquisition of current-voltage curves to verify the employed maximum power point tracking approach. At the same time, with hardware schematics and software code being provided, it provides a flexible open development environment for the monitoring of non-standard generators like concentrator photovoltaic systems and to test novel power tracking approaches. The key issues, and the corresponding solutions, encountered in the design are analyzed in detail and the relevant schematics presented.

  8. Thermal tracking in mobile robots for leak inspection activities.

    PubMed

    Ibarguren, Aitor; Molina, Jorge; Susperregi, Loreto; Maurtua, Iñaki

    2013-10-09

    Maintenance tasks are crucial for all kind of industries, especially in extensive industrial plants, like solar thermal power plants. The incorporation of robots is a key issue for automating inspection activities, as it will allow a constant and regular control over the whole plant. This paper presents an autonomous robotic system to perform pipeline inspection for early detection and prevention of leakages in thermal power plants, based on the work developed within the MAINBOT (http://www.mainbot.eu) European project. Based on the information provided by a thermographic camera, the system is able to detect leakages in the collectors and pipelines. Beside the leakage detection algorithms, the system includes a particle filter-based tracking algorithm to keep the target in the field of view of the camera and to avoid the irregularities of the terrain while the robot patrols the plant. The information provided by the particle filter is further used to command a robot arm, which handles the camera and ensures that the target is always within the image. The obtained results show the suitability of the proposed approach, adding a tracking algorithm to improve the performance of the leakage detection system.

  9. Thermal Tracking in Mobile Robots for Leak Inspection Activities

    PubMed Central

    Ibarguren, Aitor; Molina, Jorge; Susperregi, Loreto; Maurtua, Iñaki

    2013-01-01

    Maintenance tasks are crucial for all kind of industries, especially in extensive industrial plants, like solar thermal power plants. The incorporation of robots is a key issue for automating inspection activities, as it will allow a constant and regular control over the whole plant. This paper presents an autonomous robotic system to perform pipeline inspection for early detection and prevention of leakages in thermal power plants, based on the work developed within the MAINBOT (http://www.mainbot.eu) European project. Based on the information provided by a thermographic camera, the system is able to detect leakages in the collectors and pipelines. Beside the leakage detection algorithms, the system includes a particle filter-based tracking algorithm to keep the target in the field of view of the camera and to avoid the irregularities of the terrain while the robot patrols the plant. The information provided by the particle filter is further used to command a robot arm, which handles the camera and ensures that the target is always within the image. The obtained results show the suitability of the proposed approach, adding a tracking algorithm to improve the performance of the leakage detection system. PMID:24113684

  10. Preliminary greenhouse design for a Martian colony: Structural, solar collection, and light distribution systems

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The design of a greenhouse that will be a component of a long-term habitat on Mars is presented. The greenhouse will be the primary food source for people stationed on Mars. The food will be grown in three identical underground modules, pressurized at 1 atm to allow a shirt-sleeve environment within the greenhouse. The underground location will support the structure, moderate the large environmental variations on the surface, and protect the crops from cosmic radiation. The design effort is concentrated on the outer structure and the lighting system for the greenhouse. The structure is inflatable and made of a Kevlar 49/Epoxy composite and a pipe-arched system that is corrugated to increase stiffness. This composite is pliable in an uncured state, which allows it to be efficiently packaged for transport. The lighting system consists of several flat-plate fiber optic solar collectors with dual-axis tracking systems that will continually track the sun. This design is modeled after the Himawari collector, which was designed by Dr. Kei Mori and is currently in use in Japan. The light will pass through Fresnel lenses that filter out undesirable wavelengths and send the light into the greenhouses by way of fiber optic cables. When the light arrives at the greenhouse, it is dispersed to the plants via a waveguide and diffuser system.

  11. SU-G-JeP3-10: Update On a Real-Time Treatment Guidance System Using An IR Navigation System for Pleural PDT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, M; Penjweini, R; Zhu, T

    Purpose: Photodynamic therapy (PDT) is used in conjunction with surgical debulking of tumorous tissue during treatment for pleural mesothelioma. One of the key components of effective PDT is uniform light distribution. Currently, light is monitored with 8 isotropic light detectors that are placed at specific locations inside the pleural cavity. A tracking system with real-time feedback software can be utilized to improve the uniformity of light in addition to the existing detectors. Methods: An infrared (IR) tracking camera is used to monitor the movement of the light source. The same system determines the pleural geometry of the treatment area. Softwaremore » upgrades allow visualization of the pleural cavity as a two-dimensional volume. The treatment delivery wand was upgraded for ease of light delivery while incorporating the IR system. Isotropic detector locations are also displayed. Data from the tracking system is used to calculate the light fluence rate delivered. This data is also compared with in vivo data collected via the isotropic detectors. Furthermore, treatment volume information will be used to form light dose volume histograms of the pleural cavity. Results: In a phantom study, the light distribution was improved by using real-time guidance compared to the distribution when using detectors without guidance. With the tracking system, 2D data can be collected regarding light fluence rather than just the 8 discrete locations inside the pleural cavity. Light fluence distribution on the entire cavity can be calculated at every time in the treatment. Conclusion: The IR camera has been used successfully during pleural PDT patient treatment to track the motion of the light source and provide real-time display of 2D light fluence. It is possible to use the feedback system to deliver a more uniform dose of light throughout the pleural cavity.« less

  12. A Direct Method for Mapping the Center of Pressure Measured by an Insole Pressure Sensor System to the Shoe's Local Coordinate System.

    PubMed

    Weaver, Brian T; Braman, Jerrod E; Haut, Roger C

    2016-06-01

    A direct method to express the center of pressure (CoP) measured by an insole pressure sensor system (IPSS) into a known coordinate system measured by motion tracking equipment is presented. A custom probe was constructed with reflective markers to allow its tip to be precisely tracked with motion tracking equipment. This probe was utilized to activate individual sensors on an IPSS that was placed in a shoe fitted with reflective markers used to establish a local shoe coordinate system. When pressed onto the IPSS the location of the probe's tip was coincident with the CoP measured by the IPSS (IPSS-CoP). Two separate pushes (i.e., data points) were used to develop vectors in each respective coordinate system. Simple vector mathematics determined the rotational and translational components of the transformation matrix needed to express the IPSS-CoP into the local shoe coordinate system. Validation was performed by comparing IPSS-CoP with an embedded force plate measured CoP (FP-CoP) from data gathered during kinematic trials. Six male subjects stood on an embedded FP and performed anterior/posterior (AP) sway, internal rotation, and external rotation of the body relative to a firmly planted foot. The IPSS-CoP was highly correlated with the FP-CoP for all motions, root mean square errors (RMSRRs) were comparable to other research, and there were no statistical differences between the displacement of the IPSS-CoP and FP-CoP for both the AP and medial/lateral (ML) axes, respectively. The results demonstrated that this methodology could be utilized to determine the transformation variables need to express IPSS-CoP into a known coordinate system measured by motion tracking equipment and that these variables can be determined outside the laboratory anywhere motion tracking equipment is available.

  13. A Proposed Treatment for Visual Field Loss caused by Traumatic Brain Injury using Interactive Visuotactile Virtual Environment

    NASA Astrophysics Data System (ADS)

    Farkas, Attila J.; Hajnal, Alen; Shiratuddin, Mohd F.; Szatmary, Gabriella

    In this paper, we propose a novel approach of using interactive virtual environment technology in Vision Restoration Therapy caused by Traumatic Brain Injury. We called the new system Interactive Visuotactile Virtual Environment and it holds a promise of expanding the scope of already existing rehabilitation techniques. Traditional vision rehabilitation methods are based on passive psychophysical training procedures, and can last up to six months before any modest improvements can be seen in patients. A highly immersive and interactive virtual environment will allow the patient to practice everyday activities such as object identification and object manipulation through the use 3D motion sensoring handheld devices such data glove or the Nintendo Wiimote. Employing both perceptual and action components in the training procedures holds the promise of more efficient sensorimotor rehabilitation. Increased stimulation of visual and sensorimotor areas of the brain should facilitate a comprehensive recovery of visuomotor function by exploiting the plasticity of the central nervous system. Integrated with a motion tracking system and an eye tracking device, the interactive virtual environment allows for the creation and manipulation of a wide variety of stimuli, as well as real-time recording of hand-, eye- and body movements and coordination. The goal of the project is to design a cost-effective and efficient vision restoration system.

  14. Mathematical Modeling of RNA-Based Architectures for Closed Loop Control of Gene Expression.

    PubMed

    Agrawal, Deepak K; Tang, Xun; Westbrook, Alexandra; Marshall, Ryan; Maxwell, Colin S; Lucks, Julius; Noireaux, Vincent; Beisel, Chase L; Dunlop, Mary J; Franco, Elisa

    2018-05-08

    Feedback allows biological systems to control gene expression precisely and reliably, even in the presence of uncertainty, by sensing and processing environmental changes. Taking inspiration from natural architectures, synthetic biologists have engineered feedback loops to tune the dynamics and improve the robustness and predictability of gene expression. However, experimental implementations of biomolecular control systems are still far from satisfying performance specifications typically achieved by electrical or mechanical control systems. To address this gap, we present mathematical models of biomolecular controllers that enable reference tracking, disturbance rejection, and tuning of the temporal response of gene expression. These controllers employ RNA transcriptional regulators to achieve closed loop control where feedback is introduced via molecular sequestration. Sensitivity analysis of the models allows us to identify which parameters influence the transient and steady state response of a target gene expression process, as well as which biologically plausible parameter values enable perfect reference tracking. We quantify performance using typical control theory metrics to characterize response properties and provide clear selection guidelines for practical applications. Our results indicate that RNA regulators are well-suited for building robust and precise feedback controllers for gene expression. Additionally, our approach illustrates several quantitative methods useful for assessing the performance of biomolecular feedback control systems.

  15. Improved Rotary Transformer For Shaft-Position Indicator

    NASA Technical Reports Server (NTRS)

    Mclyman, W. T.

    1991-01-01

    Improved rotary transformer for Inductosyn (or equivalent) shaft-position-indicating circuit has pair of ferrite cores instead of the solid-iron cores. Designed with view toward decreasing excitation power (to maximum allowable 2 W) supplied to shaft-position-indicating circuit to increase its output signal and make tracking system less vulnerable to electromagnetic interference.

  16. Where in the World?: GPS Projects for the Technology Class

    ERIC Educational Resources Information Center

    Guccione, Sam

    2005-01-01

    Global positioning system (GPS) has many uses. They include navigation, location finding, vehicle tracking, surveying, autonomous control of highway construction equipment, scientific activities, asset location and entertainment. The GPS is a constellation of 24 satellites located in a 10,000-mile radius orbit in a way that allows for at least six…

  17. 40 CFR 96.254 - Compliance with CAIR SO2 emissions limitation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Compliance with CAIR SO2 emissions... PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS CAIR SO2 Allowance Tracking System § 96.254 Compliance with CAIR SO2 emissions limitation...

  18. Active Voodoo Dolls: A Vision Based Input Device for Nonrigid Control.

    DTIC Science & Technology

    1998-08-01

    A vision based technique for nonrigid control is presented that can be used for animation and video game applications. The user grasps a soft...allowing the user to control it interactively. Our use of texture mapping hardware in tracking makes the system responsive enough for interactive animation and video game character control.

  19. A noniterative greedy algorithm for multiframe point correspondence.

    PubMed

    Shafique, Khurram; Shah, Mubarak

    2005-01-01

    This paper presents a framework for finding point correspondences in monocular image sequences over multiple frames. The general problem of multiframe point correspondence is NP-hard for three or more frames. A polynomial time algorithm for a restriction of this problem is presented and is used as the basis of the proposed greedy algorithm for the general problem. The greedy nature of the proposed algorithm allows it to be used in real-time systems for tracking and surveillance, etc. In addition, the proposed algorithm deals with the problems of occlusion, missed detections, and false positives by using a single noniterative greedy optimization scheme and, hence, reduces the complexity of the overall algorithm as compared to most existing approaches where multiple heuristics are used for the same purpose. While most greedy algorithms for point tracking do not allow for entry and exit of the points from the scene, this is not a limitation for the proposed algorithm. Experiments with real and synthetic data over a wide range of scenarios and system parameters are presented to validate the claims about the performance of the proposed algorithm.

  20. Untwisting the Caenorhabditis elegans embryo.

    PubMed

    Christensen, Ryan Patrick; Bokinsky, Alexandra; Santella, Anthony; Wu, Yicong; Marquina-Solis, Javier; Guo, Min; Kovacevic, Ismar; Kumar, Abhishek; Winter, Peter W; Tashakkori, Nicole; McCreedy, Evan; Liu, Huafeng; McAuliffe, Matthew; Mohler, William; Colón-Ramos, Daniel A; Bao, Zhirong; Shroff, Hari

    2015-12-03

    The nematode Caenorhabditis elegans possesses a simple embryonic nervous system with few enough neurons that the growth of each cell could be followed to provide a systems-level view of development. However, studies of single cell development have largely been conducted in fixed or pre-twitching live embryos, because of technical difficulties associated with embryo movement in late embryogenesis. We present open-source untwisting and annotation software (http://mipav.cit.nih.gov/plugin_jws/mipav_worm_plugin.php) that allows the investigation of neurodevelopmental events in late embryogenesis and apply it to track the 3D positions of seam cell nuclei, neurons, and neurites in multiple elongating embryos. We also provide a tutorial describing how to use the software (Supplementary file 1) and a detailed description of the untwisting algorithm (Appendix). The detailed positional information we obtained enabled us to develop a composite model showing movement of these cells and neurites in an 'average' worm embryo. The untwisting and cell tracking capabilities of our method provide a foundation on which to catalog C. elegans neurodevelopment, allowing interrogation of developmental events in previously inaccessible periods of embryogenesis.

  1. Wireless data transfer with mm-waves for future tracking detectors

    NASA Astrophysics Data System (ADS)

    Pelikan, D.; Bingefors, N.; Brenner, R.; Dancila, D.; Gustafsson, L.

    2014-11-01

    Wireless data transfer has revolutionized the consumer market for the last decade generating many products equipped with transmitters and receivers for wireless data transfer. Wireless technology opens attractive possibilities for data transfer in future tracking detectors. The reduction of wires and connectors for data links is certainly beneficial both for the material budget and the reliability of the system. An advantage of wireless data transfer is the freedom of routing signals which today is particularly complicated when bringing the data the first 50 cm out of the tracker. With wireless links intelligence can be built into a tracker by introducing communication between tracking layers within a region of interest which would allow the construction of track primitives in real time. The wireless technology used in consumer products is however not suitable for tracker readouts. The low data transfer capacity of current 5 GHz transceivers and the relatively large feature sizes of the components is a disadvantage.Due to the requirement of high data rates in tracking detectors high bandwidth is required. The frequency band around 60 GHz turns out to be a very promising candidate for data transfer in a detector system. The high baseband frequency allows for data transfer in the order of several Gbit/s. Due to the small wavelength in the mm range only small structures are needed for the transmitting and receiving electronics. The 60 GHz frequency band is a strong candidate for future WLAN applications hence components are already starting to be available on the market.Patch antennas produced on flexible Printed Circuit Board substrate that can be used for wireless communication in future trackers are presented in this article. The antennas can be connected to transceivers for data transmission/reception or be connected by wave-guides to structures capable of bringing the 60 GHz signal behind boundaries. Results on simulation and fabrication of these antennas are presented as well as studies on the sensitivity of production tolerances.

  2. Scheduler software for tracking and data relay satellite system loading analysis: User manual and programmer guide

    NASA Technical Reports Server (NTRS)

    Craft, R.; Dunn, C.; Mccord, J.; Simeone, L.

    1980-01-01

    A user guide and programmer documentation is provided for a system of PRIME 400 minicomputer programs. The system was designed to support loading analyses on the Tracking Data Relay Satellite System (TDRSS). The system is a scheduler for various types of data relays (including tape recorder dumps and real time relays) from orbiting payloads to the TDRSS. Several model options are available to statistically generate data relay requirements. TDRSS time lines (representing resources available for scheduling) and payload/TDRSS acquisition and loss of sight time lines are input to the scheduler from disk. Tabulated output from the interactive system includes a summary of the scheduler activities over time intervals specified by the user and overall summary of scheduler input and output information. A history file, which records every event generated by the scheduler, is written to disk to allow further scheduling on remaining resources and to provide data for graphic displays or additional statistical analysis.

  3. Adaptive neural control of MIMO nonlinear systems with a block-triangular pure-feedback control structure.

    PubMed

    Chen, Zhenfeng; Ge, Shuzhi Sam; Zhang, Yun; Li, Yanan

    2014-11-01

    This paper presents adaptive neural tracking control for a class of uncertain multiinput-multioutput (MIMO) nonlinear systems in block-triangular form. All subsystems within these MIMO nonlinear systems are of completely nonaffine pure-feedback form and allowed to have different orders. To deal with the nonaffine appearance of the control variables, the mean value theorem is employed to transform the systems into a block-triangular strict-feedback form with control coefficients being couplings among various inputs and outputs. A systematic procedure is proposed for the design of a new singularity-free adaptive neural tracking control strategy. Such a design procedure can remove the couplings among subsystems and hence avoids the possible circular control construction problem. As a consequence, all the signals in the closed-loop system are guaranteed to be semiglobally uniformly ultimately bounded. Moreover, the outputs of the systems are ensured to converge to a small neighborhood of the desired trajectories. Simulation studies verify the theoretical findings revealed in this paper.

  4. GPS tracking data of Lesser Black-backed Gulls and Herring Gulls breeding at the southern North Sea coast.

    PubMed

    Stienen, Eric W M; Desmet, Peter; Aelterman, Bart; Courtens, Wouter; Feys, Simon; Vanermen, Nicolas; Verstraete, Hilbran; de Walle, Marc Van; Deneudt, Klaas; Hernandez, Francisco; Houthoofdt, Robin; Vanhoorne, Bart; Bouten, Willem; Buijs, Roland-Jan; Kavelaars, Marwa M; Müller, Wendt; Herman, David; Matheve, Hans; Sotillo, Alejandro; Lens, Luc

    2016-01-01

    In this data paper, Bird tracking - GPS tracking of Lesser Black-backed Gulls and Herring Gulls breeding at the southern North Sea coast is described, a species occurrence dataset published by the Research Institute for Nature and Forest (INBO). The dataset (version 5.5) contains close to 2.5 million occurrences, recorded by 101 GPS trackers mounted on 75 Lesser Black-backed Gulls and 26 Herring Gulls breeding at the Belgian and Dutch coast. The trackers were developed by the University of Amsterdam Bird Tracking System (UvA-BiTS, http://www.uva-bits.nl). These automatically record and transmit bird movements, which allows us and others to study their habitat use and migration behaviour in great detail. Our bird tracking network is operational since 2013. It is funded for LifeWatch by the Hercules Foundation and maintained in collaboration with UvA-BiTS and the Flanders Marine Institute (VLIZ). The recorded data are periodically released in bulk as open data (http://dataset.inbo.be/bird-tracking-gull-occurrences), and are also accessible through CartoDB and the Global Biodiversity Information Facility (GBIF).

  5. Precision controllability of the YF-17 airplane

    NASA Technical Reports Server (NTRS)

    Sisk, T. R.; Mataeny, N. W.

    1980-01-01

    A flying qualities evaluation conducted on the YF-17 airplane permitted assessment of its precision controllability in the transonic flight regime over the allowable angle of attack range. The precision controllability (tailchase tracking) study was conducted in constant-g and windup turn tracking maneuvers with the command augmentation system (CAS) on, automatic maneuver flaps, and the caged pipper gunsight depressed 70 mils. This study showed that the YF-17 airplane tracks essentially as well at 7 g's to 8 g's as earlier fighters did at 4 g's to 5 g's before they encountered wing rock. The pilots considered the YF-17 airplane one of the best tracking airplanes they had flown. Wing rock at the higher angles of attack degraded tracking precision, and lack of control harmony made precision controllability more difficult. The revised automatic maneuver flap schedule incorporated in the airplane at the time of the tests did not appear to be optimum. The largest tracking errors and greatest pilot workload occurred at high normal load factors at low angles of attack. The pilots reported that the high-g maneuvers caused some tunnel vision and that they found it difficult to think clearly after repeated maneuvers.

  6. Reconstructed storm tracks reveal three centuries of changing moisture delivery to North America

    PubMed Central

    Wise, Erika K.; Dannenberg, Matthew P.

    2017-01-01

    Moisture delivery to western North America is closely linked to variability in the westerly storm tracks of midlatitude cyclones, which are, in turn, modified by larger-scale features such as the El Niño–Southern Oscillation system. Instrumental and modeling data suggest that extratropical storm tracks may be intensifying and shifting poleward due to anthropogenic climate change, but it is difficult to separate recent trends from natural variability because of the large amount of decadal and longer variation in storm tracks and their limited instrumental record. We reconstruct cool-season, midlatitude Pacific storm-track position and intensity from 1693 to 1995 CE using existing tree-ring chronologies along with a network of newly developed chronologies from the U.S. Pacific Northwest, where small variations in storm-track position can have a major influence on hydroclimate patterns. Our results show high interannual-to-multidecadal variability in storm-track position and intensity over the past 303 years, with spectral signatures characteristic of tropical and northern Pacific influences. Comparison with reconstructions of precipitation and tropical sea surface temperature confirms the relationship between shifting drought patterns in the Pacific Northwest and storm-track variability through time and demonstrates the long-term influence of El Niño. These results allow us to place recent storm-track changes in the context of decadal and multidecadal fluctuations across the long-term record, showing that recent changes in storm-track intensity likely represent a warming-related increase amplified by natural decadal variability. PMID:28630900

  7. Reconstructed storm tracks reveal three centuries of changing moisture delivery to North America.

    PubMed

    Wise, Erika K; Dannenberg, Matthew P

    2017-06-01

    Moisture delivery to western North America is closely linked to variability in the westerly storm tracks of midlatitude cyclones, which are, in turn, modified by larger-scale features such as the El Niño-Southern Oscillation system. Instrumental and modeling data suggest that extratropical storm tracks may be intensifying and shifting poleward due to anthropogenic climate change, but it is difficult to separate recent trends from natural variability because of the large amount of decadal and longer variation in storm tracks and their limited instrumental record. We reconstruct cool-season, midlatitude Pacific storm-track position and intensity from 1693 to 1995 CE using existing tree-ring chronologies along with a network of newly developed chronologies from the U.S. Pacific Northwest, where small variations in storm-track position can have a major influence on hydroclimate patterns. Our results show high interannual-to-multidecadal variability in storm-track position and intensity over the past 303 years, with spectral signatures characteristic of tropical and northern Pacific influences. Comparison with reconstructions of precipitation and tropical sea surface temperature confirms the relationship between shifting drought patterns in the Pacific Northwest and storm-track variability through time and demonstrates the long-term influence of El Niño. These results allow us to place recent storm-track changes in the context of decadal and multidecadal fluctuations across the long-term record, showing that recent changes in storm-track intensity likely represent a warming-related increase amplified by natural decadal variability.

  8. Probabilistic Multi-Person Tracking Using Dynamic Bayes Networks

    NASA Astrophysics Data System (ADS)

    Klinger, T.; Rottensteiner, F.; Heipke, C.

    2015-08-01

    Tracking-by-detection is a widely used practice in recent tracking systems. These usually rely on independent single frame detections that are handled as observations in a recursive estimation framework. If these observations are imprecise the generated trajectory is prone to be updated towards a wrong position. In contrary to existing methods our novel approach uses a Dynamic Bayes Network in which the state vector of a recursive Bayes filter, as well as the location of the tracked object in the image are modelled as unknowns. These unknowns are estimated in a probabilistic framework taking into account a dynamic model, and a state-of-the-art pedestrian detector and classifier. The classifier is based on the Random Forest-algorithm and is capable of being trained incrementally so that new training samples can be incorporated at runtime. This allows the classifier to adapt to the changing appearance of a target and to unlearn outdated features. The approach is evaluated on a publicly available benchmark. The results confirm that our approach is well suited for tracking pedestrians over long distances while at the same time achieving comparatively good geometric accuracy.

  9. Development of a 750x750 pixels CMOS imager sensor for tracking applications

    NASA Astrophysics Data System (ADS)

    Larnaudie, Franck; Guardiola, Nicolas; Saint-Pé, Olivier; Vignon, Bruno; Tulet, Michel; Davancens, Robert; Magnan, Pierre; Corbière, Franck; Martin-Gonthier, Philippe; Estribeau, Magali

    2017-11-01

    Solid-state optical sensors are now commonly used in space applications (navigation cameras, astronomy imagers, tracking sensors...). Although the charge-coupled devices are still widely used, the CMOS image sensor (CIS), which performances are continuously improving, is a strong challenger for Guidance, Navigation and Control (GNC) systems. This paper describes a 750x750 pixels CMOS image sensor that has been specially designed and developed for star tracker and tracking sensor applications. Such detector, that is featuring smart architecture enabling very simple and powerful operations, is built using the AMIS 0.5μm CMOS technology. It contains 750x750 rectangular pixels with 20μm pitch. The geometry of the pixel sensitive zone is optimized for applications based on centroiding measurements. The main feature of this device is the on-chip control and timing function that makes the device operation easier by drastically reducing the number of clocks to be applied. This powerful function allows the user to operate the sensor with high flexibility: measurement of dark level from masked lines, direct access to the windows of interest… A temperature probe is also integrated within the CMOS chip allowing a very precise measurement through the video stream. A complete electro-optical characterization of the sensor has been performed. The major parameters have been evaluated: dark current and its uniformity, read-out noise, conversion gain, Fixed Pattern Noise, Photo Response Non Uniformity, quantum efficiency, Modulation Transfer Function, intra-pixel scanning. The characterization tests are detailed in the paper. Co60 and protons irradiation tests have been also carried out on the image sensor and the results are presented. The specific features of the 750x750 image sensor such as low power CMOS design (3.3V, power consumption<100mW), natural windowing (that allows efficient and robust tracking algorithms), simple proximity electronics (because of the on-chip control and timing function) enabling a high flexibility architecture, make this imager a good candidate for high performance tracking applications.

  10. Automated night/day standoff detection, tracking, and identification of personnel for installation protection

    NASA Astrophysics Data System (ADS)

    Lemoff, Brian E.; Martin, Robert B.; Sluch, Mikhail; Kafka, Kristopher M.; McCormick, William; Ice, Robert

    2013-06-01

    The capability to positively and covertly identify people at a safe distance, 24-hours per day, could provide a valuable advantage in protecting installations, both domestically and in an asymmetric warfare environment. This capability would enable installation security officers to identify known bad actors from a safe distance, even if they are approaching under cover of darkness. We will describe an active-SWIR imaging system being developed to automatically detect, track, and identify people at long range using computer face recognition. The system illuminates the target with an eye-safe and invisible SWIR laser beam, to provide consistent high-resolution imagery night and day. SWIR facial imagery produced by the system is matched against a watch-list of mug shots using computer face recognition algorithms. The current system relies on an operator to point the camera and to review and interpret the face recognition results. Automation software is being developed that will allow the system to be cued to a location by an external system, automatically detect a person, track the person as they move, zoom in on the face, select good facial images, and process the face recognition results, producing alarms and sharing data with other systems when people are detected and identified. Progress on the automation of this system will be presented along with experimental night-time face recognition results at distance.

  11. flexplan: Mission Planning System for the Lunar Reconnaissance Orbiter

    NASA Technical Reports Server (NTRS)

    Barnoy, Assaf; Beech, Theresa

    2013-01-01

    flexplan is a mission planning and scheduling (MPS) tool that uses soft algorithms to define mission scheduling rules and constraints. This allows the operator to configure the tool for any mission without the need to modify or recompile code. In addition, flexplan uses an ID system to track every output on the schedule to the input from which it was generated. This allows flexplan to receive feedback as the schedules are executed, and update the status of all activities in a Web-based client. flexplan outputs include various planning reports, stored command loads for the Lunar Reconnaissance Orbiter (LRO), ephemeris loads, and pass scripts for automation.

  12. The new classic data acquisition system for NPOI

    NASA Astrophysics Data System (ADS)

    Sun, B.; Jorgensen, A. M.; Landavazo, M.; Hutter, D. J.; van Belle, G. T.; Mozurkewich, David; Armstrong, J. T.; Schmitt, H. R.; Baines, E. K.; Restaino, S. R.

    2014-07-01

    The New Classic data acquisition system is an important portion of a new project of stellar surface imaging with the NPOI, funded by the National Science Foundation, and enables the data acquisition necessary for the project. The NPOI can simultaneously deliver beams from 6 telescopes to the beam combining facility, and in the Classic beam combiner these are combined 4 at a time on 3 separate spectrographs with all 15 possible baselines observed. The Classic data acquisition system is limited to 16 of 32 wavelength channels on two spectrographs and limited to 30 s integrations followed by a pause to ush data. Classic also has some limitations in its fringe-tracking capability. These factors, and the fact that Classic incorporates 1990s technology which cannot be easily replaced are motivation for upgrading the data acquisition system. The New Classic data acquisition system is based around modern electronics, including a high-end Stratix FPGA, a 200 MB/s Direct Memory Access card, and a fast modern Linux computer. These allow for continuous recording of all 96 channels across three spectrographs, increasing the total amount of data recorded by a an estimated order of magnitude. The additional computing power on the data acquisition system also allows for the implementation of more sophisticated fringe-tracking algorithms which are needed for the Stellar Surface Imaging project. In this paper we describe the New Classic system design and implementation, describe the background and motivation for the system as well as show some initial results from using it.

  13. Kalman filter based data fusion for neutral axis tracking in wind turbine towers

    NASA Astrophysics Data System (ADS)

    Soman, Rohan; Malinowski, Pawel; Ostachowicz, Wieslaw; Paulsen, Uwe S.

    2015-03-01

    Wind energy is seen as one of the most promising solutions to man's ever increasing demands of a clean source of energy. In particular to reduce the cost of energy (COE) generated, there are efforts to increase the life-time of the wind turbines, to reduce maintenance costs and to ensure high availability. Maintenance costs may be lowered and the high availability and low repair costs ensured through the use of condition monitoring (CM) and structural health monitoring (SHM). SHM allows early detection of damage and allows maintenance planning. Furthermore, it can allow us to avoid unnecessary downtime, hence increasing the availability of the system. The present work is based on the use of neutral axis (NA) for SHM of the structure. The NA is tracked by data fusion of measured yaw angle and strain through the use of Extended Kalman Filter (EKF). The EKF allows accurate tracking even in the presence of changing ambient conditions. NA is defined as the line or plane in the section of the beam which does not experience any tensile or compressive forces when loaded. The NA is the property of the cross section of the tower and is independent of the applied loads and ambient conditions. Any change in the NA position may be used for detecting and locating the damage. The wind turbine tower has been modelled with FE software ABAQUS and validated on data from load measurements carried out on the 34m high tower of the Nordtank, NTK 500/41 wind turbine.

  14. A Study on the Deriving Requirements of ARGO Operation System

    NASA Astrophysics Data System (ADS)

    Seo, Yoon-Kyung; Rew, Dong-Young; Lim, Hyung-Chul; Park, In-Kwan; Yim, Hong-Suh; Jo, Jung Hyun; Park, Jong-Uk

    2009-12-01

    Korea Astronomy and Space Science Institute (KASI) has been developing one mobile and one stationary SLR system since 2008 named as ARGO-M and ARGO-F, respectively. KASI finished the step of deriving the system requirements of ARGO. The requirements include definitions and scopes of various software and hardware components which are necessary for developing the ARGO-M operation system. And the requirements define function, performance, and interface requirements. The operation system consisting of ARGO-M site, ARGO-F site, and Remote Operation Center (ROC) inside KASI is designed for remote access and the automatic tracking and control system which are the main operation concept of ARGO system. To accomplish remote operation, we are considering remote access to ARGO-F and ARGO-M from ROC. The mobile-phone service allows us to access the ARGO-F remotely and to control the system in an emergency. To implement fully automatic tracking and control function in ARGO-F, we have investigated and described the requirements about the automatic aircraft detection system and the various meteorological sensors. This paper addresses the requirements of ARGO Operation System.

  15. Estimating clandestine activities from partially observed processes: illegal transhipment of fish catches among vessels

    NASA Astrophysics Data System (ADS)

    Wilcox, C.; Ford, J.

    2016-12-01

    Crimes involving fishers impose significant costs on fisheries, managers and national governments. These crimes also lead to unsustainable harvesting practices, as they undermine both knowledge of the status of fisheries stocks and limits on their harvesting. One of the greatest contributors to fisheries crimes globally is transfer of fish catch among vessels, otherwise known as transshipment. While legal transshipment provides economic advantages to vessels by increasing their efficiency, illegal transshipment can allow them to avoid regulations, catch prohibited species, and fish with impunity in prohibited locations such as waters of foreign countries. Despite the presence of a number of monitoring technologies for tracking fishing vessels, transshipment is frequently done clandestinely. Here we present a statistical model for transshipment in a Southeast Asian tuna fishery. We utilize both spatial and temporal information on vessel movement patterns in a statistical model to infer unobserved transshipment events among vessels. We provide a risk analysis framework for forecasting likely transshipment events, based on our analysis of vessel movement patterns. The tools we present are widely applicable to a variety of fisheries and types of tracking data, allowing managers to more effectively screen the large volume of data tracking systems create and quickly identify suspicious behavior.

  16. Development of the Code RITRACKS

    NASA Technical Reports Server (NTRS)

    Plante, Ianik; Cucinotta, Francis A.

    2013-01-01

    A document discusses the code RITRACKS (Relativistic Ion Tracks), which was developed to simulate heavy ion track structure at the microscopic and nanoscopic scales. It is a Monte-Carlo code that simulates the production of radiolytic species in water, event-by-event, and which may be used to simulate tracks and also to calculate dose in targets and voxels of different sizes. The dose deposited by the radiation can be calculated in nanovolumes (voxels). RITRACKS allows simulation of radiation tracks without the need of extensive knowledge of computer programming or Monte-Carlo simulations. It is installed as a regular application on Windows systems. The main input parameters entered by the user are the type and energy of the ion, the length and size of the irradiated volume, the number of ions impacting the volume, and the number of histories. The simulation can be started after the input parameters are entered in the GUI. The number of each kind of interactions for each track is shown in the result details window. The tracks can be visualized in 3D after the simulation is complete. It is also possible to see the time evolution of the tracks and zoom on specific parts of the tracks. The software RITRACKS can be very useful for radiation scientists to investigate various problems in the fields of radiation physics, radiation chemistry, and radiation biology. For example, it can be used to simulate electron ejection experiments (radiation physics).

  17. Robotically assisted ureteroscopy for kidney exploration.

    PubMed

    Talari, Hadi F; Monfaredi, Reza; Wilson, Emmanuel; Blum, Emily; Bayne, Christopher; Peters, Craig; Zhang, Anlin; Cleary, Kevin

    2017-02-01

    Ureteroscopy is a minimally invasive procedure for diagnosis and treatment of a wide range of urinary tract pathologies. It is most commonly performed in the diagnostic work-up of hematuria and the diagnosis and treatment of upper urinary tract malignancies and calculi. Ergonomic and visualization challenges as well as radiation exposure are limitations to conventional ureteroscopy. For example, for diagnostic tumor inspection, the urologist has to maneuver the ureteroscope through each of the 6 to 12 calyces in the kidney under fluoroscopy to ensure complete surveillance. Therefore, we have been developing a robotic system to "power drive" a flexible fiber-optic ureteroscope with 3D tip tracking and pre-operative image overlay. Our goal is to provide the urologist precise control of the ureteroscope tip with less radiation exposure. Our prototype system allows control of the three degrees of freedom of the ureteroscope via brushless motors and a joystick interface. The robot provides a steady platform for controlling the ureteroscope. Furthermore, the robot design facilitates a quick "snap-in" of the ureteroscope, thus allowing the ureteroscope to be mounted midway through the procedure. We have completed the mechanical system and the controlling software and begun evaluation using a kidney phantom. We put MRI-compatible fiducials on the phantom and obtained MR images. We registered these images with the robot using an electromagnetic tracking system and paired-point registration. The system is described and initial evaluation results are given in this paper.

  18. Study and design of laser communications system for space shuttle

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The design, development and operation are described of the laser communications system developed for potential space shuttle application. A brief study was conducted to identify the need, if any, for narrow bandwidth space-to-space communication on the shuttle vehicles. None have been specifically identified that could not be accommodated with existing equipments. The key technical features developed in this hardware are the conically scanned tracker for optimized track while communicating with a single detector, and the utilization of a common optical carrier frequency for both transmission and detection. This latter feature permits a multiple access capability so that several transceivers can communicate with one another. The conically scanned tracker technique allows the received signal energy to be efficiently divided between the tracking and communications functions within a common detector.

  19. Automated Tracking of Cell Migration with Rapid Data Analysis.

    PubMed

    DuChez, Brian J

    2017-09-01

    Cell migration is essential for many biological processes including development, wound healing, and metastasis. However, studying cell migration often requires the time-consuming and labor-intensive task of manually tracking cells. To accelerate the task of obtaining coordinate positions of migrating cells, we have developed a graphical user interface (GUI) capable of automating the tracking of fluorescently labeled nuclei. This GUI provides an intuitive user interface that makes automated tracking accessible to researchers with no image-processing experience or familiarity with particle-tracking approaches. Using this GUI, users can interactively determine a minimum of four parameters to identify fluorescently labeled cells and automate acquisition of cell trajectories. Additional features allow for batch processing of numerous time-lapse images, curation of unwanted tracks, and subsequent statistical analysis of tracked cells. Statistical outputs allow users to evaluate migratory phenotypes, including cell speed, distance, displacement, and persistence, as well as measures of directional movement, such as forward migration index (FMI) and angular displacement. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  20. Automated Proton Track Identification in MicroBooNE Using Gradient Boosted Decision Trees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodruff, Katherine

    MicroBooNE is a liquid argon time projection chamber (LArTPC) neutrino experiment that is currently running in the Booster Neutrino Beam at Fermilab. LArTPC technology allows for high-resolution, three-dimensional representations of neutrino interactions. A wide variety of software tools for automated reconstruction and selection of particle tracks in LArTPCs are actively being developed. Short, isolated proton tracks, the signal for low- momentum-transfer neutral current (NC) elastic events, are easily hidden in a large cosmic background. Detecting these low-energy tracks will allow us to probe interesting regions of the proton's spin structure. An effective method for selecting NC elastic events is tomore » combine a highly efficient track reconstruction algorithm to find all candidate tracks with highly accurate particle identification using a machine learning algorithm. We present our work on particle track classification using gradient tree boosting software (XGBoost) and the performance on simulated neutrino data.« less

  1. An Interactive System For Fourier Analysis Of Artichoke Flower Shape.

    NASA Astrophysics Data System (ADS)

    Impedovo, Sebastiano; Fanelli, Anna M.; Ligouras, Panagiotis

    1984-06-01

    In this paper we present an interactive system which allows the Fourier analysis of the artichoke flower-head profile. The system consistsof a DEC pdp 11/34 computer with both a a track-following device and a Tektronix 4010/1 graphic and alpha numeric display on-line. Some experiments have been carried out taking into account some different parental types of artichoke flower-head samples. It is shown here that a narrow band of only eight harmonics is sufficient to classify different artichoke flower shapes.

  2. Certainty Equivalence M-MRAC for Systems with Unmatched Uncertainties

    NASA Technical Reports Server (NTRS)

    Stepanyan, Vahram; Krishnakumar, Kalmanje

    2012-01-01

    The paper presents a certainty equivalence state feedback indirect adaptive control design method for the systems of any relative degree with unmatched uncertainties. The approach is based on the parameter identification (estimation) model, which is completely separated from the control design and is capable of producing parameter estimates as fast as the computing power allows without generating high frequency oscillations. It is shown that the system's input and output tracking errors can be systematically decreased by the proper choice of the design parameters.

  3. Space Laboratory on a Table Top: A Next Generative ECLSS design and diagnostic tool

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.

    2005-01-01

    This paper describes the development plan for a comprehensive research and diagnostic tool for aspects of advanced life support systems in space-based laboratories. Specifically it aims to build a high fidelity tabletop model that can be used for the purpose of risk mitigation, failure mode analysis, contamination tracking, and testing reliability. We envision a comprehensive approach involving experimental work coupled with numerical simulation to develop this diagnostic tool. It envisions a 10% scale transparent model of a space platform such as the International Space Station that operates with water or a specific matched index of refraction liquid as the working fluid. This allows the scaling of a 10 ft x 10 ft x 10 ft room with air flow to 1 ft x 1 ft x 1 ft tabletop model with water/liquid flow. Dynamic similitude for this length scale dictates model velocities to be 67% of full-scale and thereby the time scale of the model to represent 15% of the full- scale system; meaning identical processes in the model are completed in 15% of the full- scale-time. The use of an index matching fluid (fluid that matches the refractive index of cast acrylic, the model material) allows making the entire model (with complex internal geometry) transparent and hence conducive to non-intrusive optical diagnostics. So using such a system one can test environment control parameters such as core flows (axial flows), cross flows (from registers and diffusers), potential problem areas such as flow short circuits, inadequate oxygen content, build up of other gases beyond desirable levels, test mixing processes within the system at local nodes or compartments and assess the overall system performance. The system allows quantitative measurements of contaminants introduced in the system and allows testing and optimizing the tracking process and removal of contaminants. The envisaged system will be modular and hence flexible for quick configuration change and subsequent testing. The data and inferences from the tests will allow for improvements in the development and design of next generation life support systems and configurations. Preliminary experimental and modeling work in this area will be presented. This involves testing of a single inlet-exit model with detailed 3-D flow visualization and quantitative diagnostics and computational modeling of the system.

  4. Design and evaluation of a computed tomography (CT)-compatible needle insertion device using an electromagnetic tracking system and CT images.

    PubMed

    Shahriari, Navid; Hekman, Edsko; Oudkerk, Matthijs; Misra, Sarthak

    2015-11-01

    Percutaneous needle insertion procedures are commonly used for diagnostic and therapeutic purposes. Although current technology allows accurate localization of lesions, they cannot yet be precisely targeted. Lung cancer is the most common cause of cancer-related death, and early detection reduces the mortality rate. Therefore, suspicious lesions are tested for diagnosis by performing needle biopsy. In this paper, we have presented a novel computed tomography (CT)-compatible needle insertion device (NID). The NID is used to steer a flexible needle (φ0.55 mm) with a bevel at the tip in biological tissue. CT images and an electromagnetic (EM) tracking system are used in two separate scenarios to track the needle tip in three-dimensional space during the procedure. Our system uses a control algorithm to steer the needle through a combination of insertion and minimal number of rotations. Noise analysis of CT images has demonstrated the compatibility of the device. The results for three experimental cases (case 1: open-loop control, case 2: closed-loop control using EM tracking system and case 3: closed-loop control using CT images) are presented. Each experimental case is performed five times, and average targeting errors are 2.86 ± 1.14, 1.11 ± 0.14 and 1.94 ± 0.63 mm for case 1, case 2 and case 3, respectively. The achieved results show that our device is CT-compatible and it is able to steer a bevel-tipped needle toward a target. We are able to use intermittent CT images and EM tracking data to control the needle path in a closed-loop manner. These results are promising and suggest that it is possible to accurately target the lesions in real clinical procedures in the future.

  5. Integration of communications and tracking data processing simulation for space station

    NASA Technical Reports Server (NTRS)

    Lacovara, Robert C.

    1987-01-01

    A simplified model of the communications network for the Communications and Tracking Data Processing System (CTDP) was developed. It was simulated by use of programs running on several on-site computers. These programs communicate with one another by means of both local area networks and direct serial connections. The domain of the model and its simulation is from Orbital Replaceable Unit (ORU) interface to Data Management Systems (DMS). The simulation was designed to allow status queries from remote entities across the DMS networks to be propagated through the model to several simulated ORU's. The ORU response is then propagated back to the remote entity which originated the request. Response times at the various levels were investigated in a multi-tasking, multi-user operating system environment. Results indicate that the effective bandwidth of the system may be too low to support expected data volume requirements under conventional operating systems. Instead, some form of embedded process control program may be required on the node computers.

  6. VideoHacking: Automated Tracking and Quantification of Locomotor Behavior with Open Source Software and Off-the-Shelf Video Equipment.

    PubMed

    Conklin, Emily E; Lee, Kathyann L; Schlabach, Sadie A; Woods, Ian G

    2015-01-01

    Differences in nervous system function can result in differences in behavioral output. Measurements of animal locomotion enable the quantification of these differences. Automated tracking of animal movement is less labor-intensive and bias-prone than direct observation, and allows for simultaneous analysis of multiple animals, high spatial and temporal resolution, and data collection over extended periods of time. Here, we present a new video-tracking system built on Python-based software that is free, open source, and cross-platform, and that can analyze video input from widely available video capture devices such as smartphone cameras and webcams. We validated this software through four tests on a variety of animal species, including larval and adult zebrafish (Danio rerio), Siberian dwarf hamsters (Phodopus sungorus), and wild birds. These tests highlight the capacity of our software for long-term data acquisition, parallel analysis of multiple animals, and application to animal species of different sizes and movement patterns. We applied the software to an analysis of the effects of ethanol on thigmotaxis (wall-hugging) behavior on adult zebrafish, and found that acute ethanol treatment decreased thigmotaxis behaviors without affecting overall amounts of motion. The open source nature of our software enables flexibility, customization, and scalability in behavioral analyses. Moreover, our system presents a free alternative to commercial video-tracking systems and is thus broadly applicable to a wide variety of educational settings and research programs.

  7. Visual tracking for multi-modality computer-assisted image guidance

    NASA Astrophysics Data System (ADS)

    Basafa, Ehsan; Foroughi, Pezhman; Hossbach, Martin; Bhanushali, Jasmine; Stolka, Philipp

    2017-03-01

    With optical cameras, many interventional navigation tasks previously relying on EM, optical, or mechanical guidance can be performed robustly, quickly, and conveniently. We developed a family of novel guidance systems based on wide-spectrum cameras and vision algorithms for real-time tracking of interventional instruments and multi-modality markers. These navigation systems support the localization of anatomical targets, support placement of imaging probe and instruments, and provide fusion imaging. The unique architecture - low-cost, miniature, in-hand stereo vision cameras fitted directly to imaging probes - allows for an intuitive workflow that fits a wide variety of specialties such as anesthesiology, interventional radiology, interventional oncology, emergency medicine, urology, and others, many of which see increasing pressure to utilize medical imaging and especially ultrasound, but have yet to develop the requisite skills for reliable success. We developed a modular system, consisting of hardware (the Optical Head containing the mini cameras) and software (components for visual instrument tracking with or without specialized visual features, fully automated marker segmentation from a variety of 3D imaging modalities, visual observation of meshes of widely separated markers, instant automatic registration, and target tracking and guidance on real-time multi-modality fusion views). From these components, we implemented a family of distinct clinical and pre-clinical systems (for combinations of ultrasound, CT, CBCT, and MRI), most of which have international regulatory clearance for clinical use. We present technical and clinical results on phantoms, ex- and in-vivo animals, and patients.

  8. Modeling reality

    NASA Technical Reports Server (NTRS)

    Denning, Peter J.

    1990-01-01

    Although powerful computers have allowed complex physical and manmade hardware systems to be modeled successfully, we have encountered persistent problems with the reliability of computer models for systems involving human learning, human action, and human organizations. This is not a misfortune; unlike physical and manmade systems, human systems do not operate under a fixed set of laws. The rules governing the actions allowable in the system can be changed without warning at any moment, and can evolve over time. That the governing laws are inherently unpredictable raises serious questions about the reliability of models when applied to human situations. In these domains, computers are better used, not for prediction and planning, but for aiding humans. Examples are systems that help humans speculate about possible futures, offer advice about possible actions in a domain, systems that gather information from the networks, and systems that track and support work flows in organizations.

  9. Monte-Carlo Simulation for Accuracy Assessment of a Single Camera Navigation System

    NASA Astrophysics Data System (ADS)

    Bethmann, F.; Luhmann, T.

    2012-07-01

    The paper describes a simulation-based optimization of an optical tracking system that is used as a 6DOF navigation system for neurosurgery. Compared to classical system used in clinical navigation, the presented system has two unique properties: firstly, the system will be miniaturized and integrated into an operating microscope for neurosurgery; secondly, due to miniaturization a single camera approach has been designed. Single camera techniques for 6DOF measurements show a special sensitivity against weak geometric configurations between camera and object. In addition, the achievable accuracy potential depends significantly on the geometric properties of the tracked objects (locators). Besides quality and stability of the targets used on the locator, their geometric configuration is of major importance. In the following the development and investigation of a simulation program is presented which allows for the assessment and optimization of the system with respect to accuracy. Different system parameters can be altered as well as different scenarios indicating the operational use of the system. Measurement deviations are estimated based on the Monte-Carlo method. Practical measurements validate the correctness of the numerical simulation results.

  10. The Design of WORKER'S Behavior Analysis Method in Workplace Using Indoor Positioning Technology

    NASA Astrophysics Data System (ADS)

    Tabata, K.; Konno, H.; Nakajima, M.

    2016-06-01

    This study presents a method for analyzing workers' behavior using indoor positioning technology and field test in the workplace. Recently, various indoor positioning methods, such as Wi-Fi, Bluetooth low energy (BLE), visible light communication, Japan's indoor messaging system, ultra-wide band (UWB), and pedestrian dead reckoning (PDR), have been investigated. The development of these technologies allows tracking of movement of both people and/or goods in indoor spaces, people and/or goods behavior analysis is expected as one of the key technologies for operation optimization. However, when we use these technologies for human tracking, there are some problem as follows. 1) Many cases need to use dedicated facilities (e.g. UWB). 2) When we use smartphone as sensing device, battery depletion is one of the big problem (especially using PDR). 3) the accuracy is instability for tracking (e.g. Wi-Fi). Based on these matters, in this study we designed and developed an indoor positioning system using BLE positioning. And, we adopted smartphone for business use as sensing device, developed a smartphone application runs on android OS. Moreover, we conducted the field test of developed system at Itoki Corporation's ITOKI Tokyo Innovation Center, SYNQA, office (Tokyo, Japan). Over 40 workers participated in this field test, and worker tracking log data were collected for 6 weeks. We analyzed the characteristics of the workers' behavior using this log data as a prototyping.

  11. Onboard System Evaluation of Rotors Vibration, Engines (OBSERVE) monitoring System

    DTIC Science & Technology

    1992-07-01

    consists of a Data Acquisiiton Unit (DAU), Control and Display Unit ( CADU ), Universal Tracking Devices (UTD), Remote Cockpit Display (RCD) and a PC...and Display Unit ( CADU ) - The CADU provides data storage and a graphical user interface neccesary to display both the measured data and diagnostic...information. The CADU has an interface to a Credit Card Memory (CCM) which operates similar to a disk drive, allowing the storage of data and programs. The

  12. Fundamentals of the Design and the Operation of an Intelligent Tutoring System for the Learning of the Arithmetical and Algebraic Way of Solving Word Problems

    ERIC Educational Resources Information Center

    Arnau, David; Arevalillo-Herraez, Miguel; Puig, Luis; Gonzalez-Calero, Jose Antonio

    2013-01-01

    Designers of interactive learning environments with a focus on word problem solving usually have to compromise between the amount of resolution paths that a user is allowed to follow and the quality of the feedback provided. We have built an intelligent tutoring system (ITS) that is able to both track the user's actions and provide adequate…

  13. A Concept of Operations for the Use of Emergent Open Internet Technologies as the Basis for a Network-Centric Environment

    DTIC Science & Technology

    2006-09-01

    automated agents , such as chatbots to acts as a relay between chatrooms and blogs or other systems. In particular, chatbots could be used to monitor...bandwidth connections and legacy systems. Chatbot Integration The use of connected autonomous agents that monitor chatrooms to allow users access...of Cell Phone GPS Tracking. .............84 Figure 35. Example of a Chatbot Creating a Blog Entry

  14. 49 CFR 213.365 - Visual inspections.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... made on foot or by riding over the track in a vehicle at a speed that allows the person making the... over track crossings and turnouts, otherwise, the inspection vehicle speed shall be at the sole... unobstructed by any cause and that the second track is not centered more than 30 feet from the track upon which...

  15. 49 CFR 213.365 - Visual inspections.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... made on foot or by riding over the track in a vehicle at a speed that allows the person making the... over track crossings and turnouts, otherwise, the inspection vehicle speed shall be at the sole... unobstructed by any cause and that the second track is not centered more than 30 feet from the track upon which...

  16. Taking the Pulse of Plants

    NASA Astrophysics Data System (ADS)

    Jensen, Kaare H.; Beecher, Sierra; Holbrook, N. Michele; Knoblauch, Michael

    2014-11-01

    Many biological systems use complex networks of vascular conduits to distribute energy over great distances. Examples include sugar transport in the phloem tissue of vascular plants and cytoplasmic streaming in some slime molds. Detailed knowledge of transport patterns in these systems is important for our fundamental understanding of energy distribution during development and for engineering of more efficient crops. Current techniques for quantifying transport in these microfluidic systems, however, only allow for the determination of either the flow speed or the concentration of material. Here we demonstrate a new method, based on confocal microscopy, which allows us to simultaneously determine velocity and solute concentration by tracking the dispersion of a tracer dye. We attempt to rationalize the observed transport patterns through consideration of constrained optimization problems.

  17. Hybrid Orientation Based Human Limbs Motion Tracking Method

    PubMed Central

    Glonek, Grzegorz; Wojciechowski, Adam

    2017-01-01

    One of the key technologies that lays behind the human–machine interaction and human motion diagnosis is the limbs motion tracking. To make the limbs tracking efficient, it must be able to estimate a precise and unambiguous position of each tracked human joint and resulting body part pose. In recent years, body pose estimation became very popular and broadly available for home users because of easy access to cheap tracking devices. Their robustness can be improved by different tracking modes data fusion. The paper defines the novel approach—orientation based data fusion—instead of dominating in literature position based approach, for two classes of tracking devices: depth sensors (i.e., Microsoft Kinect) and inertial measurement units (IMU). The detailed analysis of their working characteristics allowed to elaborate a new method that let fuse more precisely limbs orientation data from both devices and compensates their imprecisions. The paper presents the series of performed experiments that verified the method’s accuracy. This novel approach allowed to outperform the precision of position-based joints tracking, the methods dominating in the literature, of up to 18%. PMID:29232832

  18. CellProfiler Tracer: exploring and validating high-throughput, time-lapse microscopy image data.

    PubMed

    Bray, Mark-Anthony; Carpenter, Anne E

    2015-11-04

    Time-lapse analysis of cellular images is an important and growing need in biology. Algorithms for cell tracking are widely available; what researchers have been missing is a single open-source software package to visualize standard tracking output (from software like CellProfiler) in a way that allows convenient assessment of track quality, especially for researchers tuning tracking parameters for high-content time-lapse experiments. This makes quality assessment and algorithm adjustment a substantial challenge, particularly when dealing with hundreds of time-lapse movies collected in a high-throughput manner. We present CellProfiler Tracer, a free and open-source tool that complements the object tracking functionality of the CellProfiler biological image analysis package. Tracer allows multi-parametric morphological data to be visualized on object tracks, providing visualizations that have already been validated within the scientific community for time-lapse experiments, and combining them with simple graph-based measures for highlighting possible tracking artifacts. CellProfiler Tracer is a useful, free tool for inspection and quality control of object tracking data, available from http://www.cellprofiler.org/tracer/.

  19. Smartphones, Smart Feedback: Using Mobile Devices to Collect In-the-Moment Feedback.

    PubMed

    Havel, Lauren Koehler; Powell, Samantha D; Cabaniss, Deborah L; Arbuckle, Melissa R

    2017-02-01

    The goal of this study was to streamline the collection of resident feedback in order to support faculty development and program improvement in psychiatry training. The authors developed and implemented a brief, free, mobile survey to track resident feedback and class attendance. Prior to instituting this system, resident feedback was obtained semi-annually for each course (n = 90) and not each individual class. In comparison, this new system allowed the authors to collect feedback on 477 of the 519 classes held over the 2014-15 academic year (92 %). Written comments about the curriculum increased over tenfold from 42 in 2013-14 to 541 during a comparative time period in 2014-15. One year after instituting this new system, resident participation increased to 81 % on average (compared to 64 % previously). Mobile devices may provide an inexpensive and relatively untapped mechanism for improving the process of collecting resident feedback and tracking class attendance.

  20. Forward and Inverse Predictive Model for the Trajectory Tracking Control of a Lower Limb Exoskeleton for Gait Rehabilitation: Simulation modelling analysis

    NASA Astrophysics Data System (ADS)

    Zakaria, M. A.; Majeed, A. P. P. A.; Taha, Z.; Alim, M. M.; Baarath, K.

    2018-03-01

    The movement of a lower limb exoskeleton requires a reasonably accurate control method to allow for an effective gait therapy session to transpire. Trajectory tracking is a nontrivial means of passive rehabilitation technique to correct the motion of the patients’ impaired limb. This paper proposes an inverse predictive model that is coupled together with the forward kinematics of the exoskeleton to estimate the behaviour of the system. A conventional PID control system is used to converge the required joint angles based on the desired input from the inverse predictive model. It was demonstrated through the present study, that the inverse predictive model is capable of meeting the trajectory demand with acceptable error tolerance. The findings further suggest the ability of the predictive model of the exoskeleton to predict a correct joint angle command to the system.

  1. Coordinated Dynamic Behaviors for Multirobot Systems With Collision Avoidance.

    PubMed

    Sabattini, Lorenzo; Secchi, Cristian; Fantuzzi, Cesare

    2017-12-01

    In this paper, we propose a novel methodology for achieving complex dynamic behaviors in multirobot systems. In particular, we consider a multirobot system partitioned into two subgroups: 1) dependent and 2) independent robots. Independent robots are utilized as a control input, and their motion is controlled in such a way that the dependent robots solve a tracking problem, that is following arbitrarily defined setpoint trajectories, in a coordinated manner. The control strategy proposed in this paper explicitly addresses the collision avoidance problem, utilizing a null space-based behavioral approach: this leads to combining, in a non conflicting manner, the tracking control law with a collision avoidance strategy. The combination of these control actions allows the robots to execute their task in a safe way. Avoidance of collisions is formally proven in this paper, and the proposed methodology is validated by means of simulations and experiments on real robots.

  2. Electronic differential for tramcar bogies: system development and performance evaluation by means of numerical simulation

    NASA Astrophysics Data System (ADS)

    Barbera, Andrea N.; Bucca, Giuseppe; Corradi, Roberto; Facchinetti, Alan; Mapelli, Ferdinando

    2014-05-01

    The dynamic behaviour of railway vehicles depends on the wheelset configuration, i.e. solid axle wheelset or independently rotating wheels (IRWs). The self-centring behaviour, peculiar of the solid axle wheelset, makes this kind of wheelset very suitable for tangent track running at low speed: the absence of the self-centring mechanism in the IRWs may lead to anomalous wheel/rail wear, reduced vehicle safety and passengers' discomfort. On the contrary, during negotiation of the sharp curves typical of urban tramways, solid axle wheelsets produce lateral contact forces higher than those of IRWs. This paper illustrates an electronic differential system to be applied to tramcar bogies equipped with wheel-hub motors which allows switching from solid axle in tangent track to IRWs in sharp curve (and vice versa). An electro-mechanical vehicle model is adopted for the design of the control system and for the evaluation of the vehicle dynamic performances.

  3. Systems integration for the Kennedy Space Center (KSC) Robotics Applications Development Laboratory (RADL)

    NASA Technical Reports Server (NTRS)

    Davis, V. Leon; Nordeen, Ross

    1988-01-01

    A laboratory for developing robotics technology for hazardous and repetitive Shuttle and payload processing activities is discussed. An overview of the computer hardware and software responsible for integrating the laboratory systems is given. The center's anthropomorphic robot is placed on a track allowing it to be moved to different stations. Various aspects of the laboratory equipment are described, including industrial robot arm control, smart systems integration, the supervisory computer, programmable process controller, real-time tracking controller, image processing hardware, and control display graphics. Topics of research include: automated loading and unloading of hypergolics for space vehicles and payloads; the use of mobile robotics for security, fire fighting, and hazardous spill operations; nondestructive testing for SRB joint and seal verification; Shuttle Orbiter radiator damage inspection; and Orbiter contour measurements. The possibility of expanding the laboratory in the future is examined.

  4. Radar signature generation for feature-aided tracking research

    NASA Astrophysics Data System (ADS)

    Piatt, Teri L.; Sherwood, John U.; Musick, Stanton H.

    2005-05-01

    Accurately associating sensor kinematic reports to known tracks, new tracks, or clutter is one of the greatest obstacles to effective track estimation. Feature-aiding is one technology that is emerging to address this problem, and it is expected that adding target features will aid report association by enhancing track accuracy and lengthening track life. The Sensor's Directorate of the Air Force Research Laboratory is sponsoring a challenge problem called Feature-Aided Tracking of Stop-move Objects (FATSO). The long-range goal of this research is to provide a full suite of public data and software to encourage researchers from government, industry, and academia to participate in radar-based feature-aided tracking research. The FATSO program is currently releasing a vehicle database coupled to a radar signature generator. The completed FATSO system will incorporate this database/generator into a Monte Carlo simulation environment for evaluating multiplatform/multitarget tracking scenarios. The currently released data and software contains the following: eight target models, including a tank, ammo hauler, and self-propelled artillery vehicles; and a radar signature generator capable of producing SAR and HRR signatures of all eight modeled targets in almost any configuration or articulation. In addition, the signature generator creates Z-buffer data, label map data, and radar cross-section prediction and allows the user to add noise to an image while varying sensor-target geometry (roll, pitch, yaw, squint). Future capabilities of this signature generator, such as scene models and EO signatures as well as details of the complete FATSO testbed, are outlined.

  5. A network control concept for the 30/20 GHz communication system baseband processor

    NASA Technical Reports Server (NTRS)

    Sabourin, D. J.; Hay, R. E.

    1982-01-01

    The architecture and system design for a satellite-switched TDMA communication system employing on-board processing was developed by Motorola for NASA's Lewis Research Center. The system design is based on distributed processing techniques that provide extreme flexibility in the selection of a network control protocol without impacting the satellite or ground terminal hardware. A network control concept that includes system synchronization and allows burst synchronization to occur within the system operational requirement is described. This concept integrates the tracking and control links with the communication links via the baseband processor, resulting in an autonomous system operational approach.

  6. Evaluation of the accuracy of the CyberKnife Synchrony™ Respiratory Tracking System using a plastic scintillator.

    PubMed

    Akino, Yuichi; Sumida, Iori; Shiomi, Hiroya; Higashinaka, Naokazu; Murashima, Yoshiichi; Hayashida, Miori; Mabuchi, Nobuhisa; Ogawa, Kazuhiko

    2018-06-01

    The Synchrony ™ Respiratory Tracking System of the CyberKnife ® Robotic Radiosurgery System (Accuray, Inc., Sunnyvale CA) enables real-time tracking of moving targets such as lung and liver tumors during radiotherapy. Although film measurements have been used for quality assurance of the tracking system, they cannot evaluate the temporal tracking accuracy. We have developed a verification system using a plastic scintillator that can evaluate the temporal accuracy of the CyberKnife Synchrony. A phantom consisting of a U-shaped plastic frame with three fiducial markers was used. The phantom was moved on a plastic scintillator plate. To identify the phantom position on the recording video in darkness, four pieces of fluorescent tape representing the corners of a 10 cm × 10 cm square around an 8 cm × 8 cm window were attached to the phantom. For a stable respiration model, the phantom was moved with the fourth power of a sinusoidal wave with breathing cycles of 4, 3, and 2 s and an amplitude of 1 cm. To simulate irregular breathing, the respiratory cycle was varied with Gaussian random numbers. A virtual target was generated at the center of the fluorescent markers using the MultiPlan ™ treatment planning system. Photon beams were irradiated using a fiducial tracking technique. In a dark room, the fluorescent light of the markers and the scintillation light of the beam position were recorded using a camera. For each video frame, a homography matrix was calculated from the four fluorescent marker positions, and the beam position derived from the scintillation light was corrected. To correct the displacement of the beam position due to oblique irradiation angles and other systematic measurement errors, offset values were derived from measurements with the phantom held stationary. The average SDs of beam position measured without phantom motion were 0.16 mm and 0.20 mm for lateral and longitudinal directions, respectively. For the stable respiration model, the tracking errors (mean ± SD) were 0.40 ± 0.64 mm, -0.07 ± 0.79 mm, and 0.45 ± 1.14 mm for breathing cycles of 4, 3, and 2 s, respectively. The tracking errors showed significant linear correlation with the phantom velocity. The correlation coefficients were 0.897, 0.913, and 0.957 for breathing cycles of 4, 3, and 2 s, respectively. The unstable respiration model also showed linear correlation between tracking errors and phantom velocity. The probability of tracking error incidents increased with decreasing length of the respiratory cycles. Although the tracking error incidents increased with larger variations in respiratory cycle, the effect on the cumulative probability was insignificant. For a respiratory cycle of 4 s, the maximum tracking error was 1.10 mm and 1.43 mm at the probability of 10% and 5%, respectively. Large tracking errors were observed when there was phase shift between the tumor and the LED marker. This technique allows evaluation of the motion tracking accuracy of the Synchrony ™ system over time by measurement of the photon beam. The velocity of the target and phase shift have significant effects on accuracy. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. Telemetry Data Collection from Oscar Satellite

    NASA Technical Reports Server (NTRS)

    Haddock, Paul C.; Horan, Stephen

    1998-01-01

    This paper discusses the design, configuration, and operation of a satellite station built for the Center for Space Telemetering and Telecommunications Laboratory in the Klipsch School of Electrical and Computer Engineering Engineering at New Mexico State University (NMSU). This satellite station consists of a computer-controlled antenna tracking system, 2m/70cm transceiver, satellite tracking software, and a demodulator. The satellite station receives satellite,telemetry, allows for voice communications, and will be used in future classes. Currently this satellite station is receiving telemetry from an amateur radio satellite, UoSAT-OSCAR-11. Amateur radio satellites are referred to as Orbiting Satellites Carrying Amateur Radio (OSCAR) satellites as discussed in the next section.

  8. Feasibility studies for the Forward Spectrometer

    NASA Astrophysics Data System (ADS)

    Biernat, Jacek; P¯ANDA Collaboration

    2015-04-01

    The Forward Spectrometer designed for the P¯ANDA detector will consist of many different detector systems allowing for precise track reconstruction and particle identification. Feasibility studies for Forward Spectrometer done by means of specific reactions will be presented. In the first part of the paper, results of simulations focussing on rate estimates of the tracking stations based on straw tubes will be presented. Next, the importance of the Forward Tracker will be demonstrated through the reconstruction of the ψ(4040) → DD¯ decay. Finally, results from the analysis of the experimental data collected with a straw tube prototype designed and constructed at the Research Center in Juelich will be discussed.

  9. Dynamics of Polydisperse Foam-like Emulsion

    NASA Astrophysics Data System (ADS)

    Hicock, Harry; Feitosa, Klebert

    2011-10-01

    Foam is a complex fluid whose relaxation properties are associated with the continuous diffusion of gas from small to large bubbles driven by differences in Laplace pressures. We study the dynamics of bubble rearrangements by tracking droplets of a clear, buoyantly neutral emulsion that coarsens like a foam. The droplets are imaged in three dimensions using confocal microscopy. Analysis of the images allows us to measure their positions and radii, and track their evolution in time. We find that the droplet size distribution fits a Weibull distribution characteristics of foam systems. Additionally, we observe that droplets undergo continuous evolution interspersed by occasional large rearrangements in par with local relaxation behavior typical of foams.

  10. Classifying and Tracking Dust Plumes from Passive Remote Sensing

    NASA Astrophysics Data System (ADS)

    Bachl, Fabian E.; Garbe, Christoph S.

    2012-03-01

    Recent studies emphasize the role mineral dust aerosols play in terms of the earth's climate system, its radiation budget and microbial nutrition cycles. In order to gain further insight into the genesis and long term characteristics of dust events, processing setellite imagery is inevitable. We propose a fully Bayesian multispectral classification method that significantly facilitates this task. Using MSG-SEVIRI imagery we show that our technique allows to extract dust activity well enough to pave the way for a tracking scheme. Based on this procedure we derive an approach to identify regions that are likely to be the origin of emerging dust plumes.

  11. Extremely Selective Attention: Eye-Tracking Studies of the Dynamic Allocation of Attention to Stimulus Features in Categorization

    ERIC Educational Resources Information Center

    Blair, Mark R.; Watson, Marcus R.; Walshe, R. Calen; Maj, Fillip

    2009-01-01

    Humans have an extremely flexible ability to categorize regularities in their environment, in part because of attentional systems that allow them to focus on important perceptual information. In formal theories of categorization, attention is typically modeled with weights that selectively bias the processing of stimulus features. These theories…

  12. Short- and medium-range 3D sensing for space applications

    NASA Astrophysics Data System (ADS)

    Beraldin, J. A.; Blais, Francois; Rioux, Marc; Cournoyer, Luc; Laurin, Denis G.; MacLean, Steve G.

    1997-07-01

    This paper focuses on the characteristics and performance of a laser range scanner (LARS) with short and medium range 3D sensing capabilities for space applications. This versatile laser range scanner is a precision measurement tool intended to complement the current Canadian Space Vision System (CSVS). Together, these vision systems are intended to be used during the construction of the International Space Station (ISS). Integration of the LARS to the CSVS will allow 3D surveying of a robotic work-site, identification of known objects from registered range and intensity images, and object detection and tracking relative to the orbiter and ISS. The data supplied by the improved CSVS will be invaluable in Orbiter rendez-vous and in assisting the Orbiter/ISS Remote Manipulator System operators. The major advantages of the LARS over conventional video-based imaging are its ability to operate with sunlight shining directly into the scanner and its immunity to spurious reflections and shadows which occur frequently in space. Because the LARS is equipped with two high-speed galvanometers to steer the laser beam, any spatial location within the field of view of the camera can be addressed. This level of versatility enables the LARS to operate in two basic scan pattern modes: (1) variable scan resolution mode and (2) raster scan mode. In the variable resolution mode, the LARS can search and track targets and geometrical features on objects located within a field of view of 30 degrees X 30 degrees and with corresponding range from about 0.5 m to 2000 m. This flexibility allows implementations of practical search and track strategies based on the use of Lissajous patterns for multiple targets. The tracking mode can reach a refresh rate of up to 137 Hz. The raster mode is used primarily for the measurement of registered range and intensity information of large stationary objects. It allows among other things: target-based measurements, feature-based measurements, and, image-based measurements like differential inspection in 3D space and surface reflectance monitoring. The digitizing and modeling of human subjects, cargo payloads, and environments are also possible with the LARS. A number of examples illustrating the many capabilities of the LARS are presented in this paper.

  13. Cerebellum Augmented Rover Development

    NASA Technical Reports Server (NTRS)

    King, Matthew

    2005-01-01

    Bio-Inspired Technologies and Systems (BITS) are a very natural result of thinking about Nature's way of solving problems. Knowledge of animal behaviors an be used in developing robotic behaviors intended for planetary exploration. This is the expertise of the JFL BITS Group and has served as a philosophical model for NMSU RioRobolab. Navigation is a vital function for any autonomous system. Systems must have the ability to determine a safe path between their current location and some target location. The MER mission, as well as other JPL rover missions, uses a method known as dead-reckoning to determine position information. Dead-reckoning uses wheel encoders to sense the wheel's rotation. In a sandy environment such as Mars, this method is highly inaccurate because the wheels will slip in the sand. Improving positioning error will allow the speed of an autonomous navigating rover to be greatly increased. Therefore, local navigation based upon landmark tracking is desirable in planetary exploration. The BITS Group is developing navigation technology based upon landmark tracking. Integration of the current rover architecture with a cerebellar neural network tracking algorithm will demonstrate that this approach to navigation is feasible and should be implemented in future rover and spacecraft missions.

  14. An Orientation Sensor-Based Head Tracking System for Driver Behaviour Monitoring.

    PubMed

    Zhao, Yifan; Görne, Lorenz; Yuen, Iek-Man; Cao, Dongpu; Sullman, Mark; Auger, Daniel; Lv, Chen; Wang, Huaji; Matthias, Rebecca; Skrypchuk, Lee; Mouzakitis, Alexandros

    2017-11-22

    Although at present legislation does not allow drivers in a Level 3 autonomous vehicle to engage in a secondary task, there may become a time when it does. Monitoring the behaviour of drivers engaging in various non-driving activities (NDAs) is crucial to decide how well the driver will be able to take over control of the vehicle. One limitation of the commonly used face-based head tracking system, using cameras, is that sufficient features of the face must be visible, which limits the detectable angle of head movement and thereby measurable NDAs, unless multiple cameras are used. This paper proposes a novel orientation sensor based head tracking system that includes twin devices, one of which measures the movement of the vehicle while the other measures the absolute movement of the head. Measurement error in the shaking and nodding axes were less than 0.4°, while error in the rolling axis was less than 2°. Comparison with a camera-based system, through in-house tests and on-road tests, showed that the main advantage of the proposed system is the ability to detect angles larger than 20° in the shaking and nodding axes. Finally, a case study demonstrated that the measurement of the shaking and nodding angles, produced from the proposed system, can effectively characterise the drivers' behaviour while engaged in the NDAs of chatting to a passenger and playing on a smartphone.

  15. An automated dose tracking system for adaptive radiation therapy.

    PubMed

    Liu, Chang; Kim, Jinkoo; Kumarasiri, Akila; Mayyas, Essa; Brown, Stephen L; Wen, Ning; Siddiqui, Farzan; Chetty, Indrin J

    2018-02-01

    The implementation of adaptive radiation therapy (ART) into routine clinical practice is technically challenging and requires significant resources to perform and validate each process step. The objective of this report is to identify the key components of ART, to illustrate how a specific automated procedure improves efficiency, and to facilitate the routine clinical application of ART. Data was used from patient images, exported from a clinical database and converted to an intermediate format for point-wise dose tracking and accumulation. The process was automated using in-house developed software containing three modularized components: an ART engine, user interactive tools, and integration tools. The ART engine conducts computing tasks using the following modules: data importing, image pre-processing, dose mapping, dose accumulation, and reporting. In addition, custom graphical user interfaces (GUIs) were developed to allow user interaction with select processes such as deformable image registration (DIR). A commercial scripting application programming interface was used to incorporate automated dose calculation for application in routine treatment planning. Each module was considered an independent program, written in C++or C#, running in a distributed Windows environment, scheduled and monitored by integration tools. The automated tracking system was retrospectively evaluated for 20 patients with prostate cancer and 96 patients with head and neck cancer, under institutional review board (IRB) approval. In addition, the system was evaluated prospectively using 4 patients with head and neck cancer. Altogether 780 prostate dose fractions and 2586 head and neck cancer dose fractions went processed, including DIR and dose mapping. On average, daily cumulative dose was computed in 3 h and the manual work was limited to 13 min per case with approximately 10% of cases requiring an additional 10 min for image registration refinement. An efficient and convenient dose tracking system for ART in the clinical setting is presented. The software and automated processes were rigorously evaluated and validated using patient image datasets. Automation of the various procedures has improved efficiency significantly, allowing for the routine clinical application of ART for improving radiation therapy effectiveness. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Comprehensive Lifecycle Planning and Management System For Addressing Water Issues Associated With Shale Gas Development In New York, Pennsylvania, And West Virginia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arthur, J. Daniel

    2012-07-01

    The objective of this project is to develop a modeling system to allow operators and regulators to plan all aspects of water management activities associated with shale gas development in the target project area of New York, Pennsylvania, and West Virginia (target area ), including water supply, transport, storage, use, recycling, and disposal and which can be used for planning, managing, forecasting, permit tracking, and compliance monitoring. The proposed project is a breakthrough approach to represent the entire shale gas water lifecycle in one comprehensive system with the capability to analyze impacts and options for operational efficiency and regulatory trackingmore » and compliance, and to plan for future water use and disposition. It will address all of the major water-related issues of concern associated with shale gas development in the target area, including water withdrawal, transport, storage, use, treatment, recycling, and disposal. It will analyze the costs, water use, and wastes associated with the available options, and incorporate constraints presented by permit requirements, agreements, local and state regulations, equipment and material availability, etc. By using the system to examine the water lifecycle from withdrawals through disposal, users will be able to perform scenario analysis to answer "what if" questions for various situations. The system will include regulatory requirements of the appropriate state and regional agencies and facilitate reporting and permit applications and tracking. These features will allow operators to plan for more cost effective resource production. Regulators will be able to analyze impacts of development over an entire area. Regulators can then make informed decisions about the protections and practices that should be required as development proceeds. This modeling system will have myriad benefits for industry, government, and the public. For industry, it will allow planning all water management operations for a project or an area as one entity to optimize water use and minimize costs subject to regulatory and other constraints. It will facilitate analysis of options and tradeoffs, and will also simplify permitting and reporting to regulatory agencies. The system will help regulators study cumulative impacts of development, conserve water resources, and manage disposal options across a region. It will also allow them to track permits and monitor compliance. The public will benefit from water conservation, improved environmental performance as better system wide decisions are made, and greater supply of natural gas, with attendant lower prices, as costs are reduced and development is assisted through better planning and scheduling. Altogether, better economics and fewer barriers will facilitate recovery of the more than 300 trillion cubic feet of estimated recoverable natural gas resource in the Marcellus Shale in a manner that protects the environment.« less

  17. Usability of a real-time tracked augmented reality display system in musculoskeletal injections

    NASA Astrophysics Data System (ADS)

    Baum, Zachary; Ungi, Tamas; Lasso, Andras; Fichtinger, Gabor

    2017-03-01

    PURPOSE: Image-guided needle interventions are seldom performed with augmented reality guidance in clinical practice due to many workspace and usability restrictions. We propose a real-time optically tracked image overlay system to make image-guided musculoskeletal injections more efficient and assess its usability in a bed-side clinical environment. METHODS: An image overlay system consisting of an optically tracked viewbox, tablet computer, and semitransparent mirror allows users to navigate scanned patient volumetric images in real-time using software built on the open-source 3D Slicer application platform. A series of experiments were conducted to evaluate the latency and screen refresh rate of the system using different image resolutions. To assess the usability of the system and software, five medical professionals were asked to navigate patient images while using the overlay and completed a questionnaire to assess the system. RESULTS: In assessing the latency of the system with scanned images of varying size, screen refresh rates were approximately 5 FPS. The study showed that participants found using the image overlay system easy, and found the table-mounted system was significantly more usable and effective than the handheld system. CONCLUSION: It was determined that the system performs comparably with scanned images of varying size when assessing the latency of the system. During our usability study, participants preferred the table-mounted system over the handheld. The participants also felt that the system itself was simple to use and understand. With these results, the image overlay system shows promise for use in a clinical environment.

  18. Autonomous Low Earth Orbit Satellite and Orbital Debris Tracking Using Mid Aperture COTS Optical Trackers

    NASA Astrophysics Data System (ADS)

    Ehrhorn, B.; Azari, D.

    Low Earth Orbit (LEO) and Orbital Debris tracking have become considerably important with regard to Space Situational Awareness (SSA). This paper discusses the capabilities of autonomous LEO and Orbital Debris Tracking Systems using commercially available (mid aperture 20-24 inch) telescopes, tracking gimbals, and CCD imagers. RC Optical Systems has been developing autonomous satellite trackers that allow for unattended acquisition, imaging, and orbital determination of LEOs using low cost COTS equipment. The test setup from which we are gathering data consists of an RC Optical Systems Professional Series Elevation over Azimuth Gimbal with field de-rotation, RC Optical Systems 20 inch Ritchey-Chretien Telescope coupled to an e2v CCD42-40 CCD array, and 77mm f/4 tracking lens coupled to a KAF-0402ME CCD array. Central to success of LEO acquisition and open loop tracking is accurate modeling of Gimbal and telescope misalignments and flexures. Using pro-TPoint and a simple automated mapping routine we have modeled our primary telescope to achieve pointing and tracking accuracies within a population standard deviation of 1.3 arc-sec (which is 1.1 arc-sec RMS). Once modeled, a mobile system can easily and quickly be calibrated to the sky using a simple 6-10 star map to solve for axis tilt and collimation coefficients. Acquisition of LEO satellites is accomplished through the use of a wide field imager. Using a 77mm f/4 lens and 765 x 510 x 9mu CCD array yields a 1.28 x 0.85 degree field of view in our test setup. Accurate boresite within the acquisition array is maintained throughout the full range of motion through differential tpoint modeling of the main and acquisition imagers. Satellite identification is accomplished by detecting a stationary centroid as a point source and differentiating from the background of streaked stars in a single frame. We found 100% detection rate of LEO with radar cross sections (RCS) of > 0.5 meter*meter within the acquisition array, and approximately 90% within 0.25 degrees of center. Tests of open loop tracking revealed a vast majority of satellites remain within the main detector area of 0.19 x 0.19 degrees after initial centering. Once acquired, the satellite is centered within the main imager via automated adjustment of the epoch and inclination using non-linear least square fit. Thereafter, real time satellite position is sequentially determined and recorded using the main imaging array. Real time determination of the SGP4 Keplerian elements are solved using non-linear least squares regression. The tracking propagator is periodically updated to reflect the solved Keplerian elements in order to maintain the satellite position near image center. These processes are accomplished without the need for user intervention. Unattended fully autonomous LEO satellite tracking and orbital determination simply requires scheduling of appropriate targets and scripted command of the tracking system.

  19. Software development to support sensor control of robot arc welding

    NASA Technical Reports Server (NTRS)

    Silas, F. R., Jr.

    1986-01-01

    The development of software for a Digital Equipment Corporation MINC-23 Laboratory Computer to provide functions of a workcell host computer for Space Shuttle Main Engine (SSME) robotic welding is documented. Routines were written to transfer robot programs between the MINC and an Advanced Robotic Cyro 750 welding robot. Other routines provide advanced program editing features while additional software allows communicatin with a remote computer aided design system. Access to special robot functions were provided to allow advanced control of weld seam tracking and process control for future development programs.

  20. Strategies to Improve Activity Recognition Based on Skeletal Tracking: Applying Restrictions Regarding Body Parts and Similarity Boundaries †

    PubMed Central

    Gutiérrez-López-Franca, Carlos; Hervás, Ramón; Johnson, Esperanza

    2018-01-01

    This paper aims to improve activity recognition systems based on skeletal tracking through the study of two different strategies (and its combination): (a) specialized body parts analysis and (b) stricter restrictions for the most easily detectable activities. The study was performed using the Extended Body-Angles Algorithm, which is able to analyze activities using only a single key sample. This system allows to select, for each considered activity, which are its relevant joints, which makes it possible to monitor the body of the user selecting only a subset of the same. But this feature of the system has both advantages and disadvantages. As a consequence, in the past we had some difficulties with the recognition of activities that only have a small subset of the joints of the body as relevant. The goal of this work, therefore, is to analyze the effect produced by the application of several strategies on the results of an activity recognition system based on skeletal tracking joint oriented devices. Strategies that we applied with the purpose of improve the recognition rates of the activities with a small subset of relevant joints. Through the results of this work, we aim to give the scientific community some first indications about which considered strategy is better. PMID:29789478

  1. Objective Tracking of Tropical Cyclones in the North-West Pacific Basin Based on Wind Field Information only

    NASA Astrophysics Data System (ADS)

    Leckebusch, G. C.; Befort, D. J.; Kruschke, T.

    2016-12-01

    Although only ca. 12% of the global insured losses of natural disasters occurred in Asia, there are two major reasons to be concerned about risks in Asia: a) The fraction of loss events was substantial higher with 39% of which 94% were due to atmospheric processes; b) Asia and especially China, is undergoing quick transitions and especially the insurance market is rapidly growing. In order to allow for the estimation of potential future (loss) impacts in East-Asia, in this study we further developed and applied a feature tracking system based on extreme wind speed occurrences to tropical cyclones, which was originally developed for extra-tropical cyclones (Leckebusch et al., 2008). In principle, wind fields will be identified and tracked once a coherent exceedance of local percentile thresholds is identified. The focus on severe wind impact will allow an objective link between the strength of a cyclone and its potential damages over land. The wind tracking is developed in such a way to be applicable also to course-gridded AOGCM simulation. In the presented configuration the wind tracking algorithm is applied to the Japanese reanalysis (JRA55) and TC Identification is based on 850hPa wind speeds (6h resolution) from 1979 to 2014 over the Western North Pacific region. For validation the IBTrACS Best Track archive version v03r8 is used. Out of all 904 observed tracks, about 62% can be matched to at least one windstorm event identified in JRA55. It is found that the relative amount of matched best tracks increases with the maximum intensity. Thus, a positive matching (hit rate) of above 98% for Violent Typhoons (VTY), above 90% for Very Strong Typhoons (VSTY), about 75% for Typhoons (TY), and still some 50% for less intense TCs (TD, TS, STS) is found. This result is extremely encouraging to apply this technique to AOGCM outputs and to derive information about affected regions and intensity-frequency distributions potentially changed under future climate conditions.

  2. Properties of train load frequencies and their applications

    NASA Astrophysics Data System (ADS)

    Milne, D. R. M.; Le Pen, L. M.; Thompson, D. J.; Powrie, W.

    2017-06-01

    A train in motion applies moving steady loads to the railway track as well as dynamic excitation; this causes track deflections, vibration and noise. At low frequency, the spectrum of measured track vibration has been found to have a distinct pattern; with spectral peaks occurring at multiples of the vehicle passing frequency. This pattern can be analysed to quantify aspects of train and track performance as well as to design sensors and systems for trackside condition monitoring. To this end, analytical methods are developed to determine frequency spectra based on known vehicle geometry and track properties. It is shown that the quasi-static wheel loads from a moving train, which are the most significant cause of the track deflections at low frequency, can be understood by considering a loading function representing the train geometry in combination with the response of the track to a single unit load. The Fourier transform of the loading function describes how the passage of repeating vehicles within a train leads to spectral peaks at various multiples of the vehicle passing frequency. When a train consists of a single type of repeating vehicle, these peaks depend on the geometry of that vehicle type as the separation of axles on a bogie and spacing of those bogies on a vehicle cause certain frequencies to be suppressed. Introduction of different vehicle types within a train or coupling of trainsets with a different inter-car length changes the spectrum, although local peaks still occur at multiples of the passing frequency of the primary vehicle. Using data from track-mounted geophones, it is shown that the properties of the train load spectrum, together with a model for track behaviour, allows calculation of the track system support modulus without knowledge of the axle loads, and enables rapid determination of the train speed. For continuous remote condition monitoring, track-mounted transducers are ideally powered using energy harvesting devices. These need to be tuned to optimise energy abstraction; the appropriate energy harvesting frequencies for given vehicle types and line speeds can also be predicted using the models developed.

  3. Radial Internal Material Handling System (RIMS) for Circular Habitat Volumes

    NASA Technical Reports Server (NTRS)

    Howe, Alan S.; Haselschwardt, Sally; Bogatko, Alex; Humphrey, Brian; Patel, Amit

    2013-01-01

    On planetary surfaces, pressurized human habitable volumes will require a means to carry equipment around within the volume of the habitat, regardless of the partial gravity (Earth, Moon, Mars, etc.). On the NASA Habitat Demonstration Unit (HDU), a vertical cylindrical volume, it was determined that a variety of heavy items would need to be carried back and forth from deployed locations to the General Maintenance Work Station (GMWS) when in need of repair, and other equipment may need to be carried inside for repairs, such as rover parts and other external equipment. The vertical cylindrical volume of the HDU lent itself to a circular overhead track and hoist system that allows lifting of heavy objects from anywhere in the habitat to any other point in the habitat interior. In addition, the system is able to hand-off lifted items to other material handling systems through the side hatches, such as through an airlock. The overhead system consists of two concentric circle tracks that have a movable beam between them. The beam has a hoist carriage that can move back and forth on the beam. Therefore, the entire system acts like a bridge crane curved around to meet itself in a circle. The novelty of the system is in its configuration, and how it interfaces with the volume of the HDU habitat. Similar to how a bridge crane allows coverage for an entire rectangular volume, the RIMS system covers a circular volume. The RIMS system is the first generation of what may be applied to future planetary surface vertical cylinder habitats on the Moon or on Mars.

  4. A real-time single sperm tracking, laser trapping, and ratiometric fluorescent imaging system

    NASA Astrophysics Data System (ADS)

    Shi, Linda Z.; Botvinick, Elliot L.; Nascimento, Jaclyn; Chandsawangbhuwana, Charlie; Berns, Michael W.

    2006-08-01

    Sperm cells from a domestic dog were treated with oxacarbocyanine DiOC II(3), a ratiometrically-encoded membrane potential fluorescent probe in order to monitor the mitochondria stored in an individual sperm's midpiece. This dye normally emits a red fluorescence near 610 nm as well as a green fluorescence near 515 nm. The ratio of red to green fluorescence provides a substantially accurate and precise measurement of sperm midpiece membrane potential. A two-level computer system has been developed to quantify the motility and energetics of sperm using video rate tracking, automated laser trapping (done by the upper-level system) and fluorescent imaging (done by the lower-level system). The communication between these two systems is achieved by a networked gigabit TCP/IP cat5e crossover connection. This allows for the curvilinear velocity (VCL) and ratio of the red to green fluorescent images of individual sperm to be written to the hard drive at video rates. This two-level automatic system has increased experimental throughput over our previous single-level system (Mei et al., 2005) by an order of magnitude.

  5. 49 CFR 106.45 - Tracking rulemaking actions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Tracking rulemaking actions. 106.45 Section 106.45 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... PHMSA Rulemaking Documents § 106.45 Tracking rulemaking actions. The following identifying numbers allow...

  6. Millimeter-wave radar for vital signs sensing

    NASA Astrophysics Data System (ADS)

    Petkie, Douglas T.; Benton, Carla; Bryan, Erik

    2009-05-01

    In this paper, we will describe the development of a 228 GHz heterodyne radar system as a vital signs sensing monitor that can remotely measure respiration and heart rates from distances of 1 to 50 meters. We will discuss the design of the radar system along with several studies of its performance. The system includes the 228 GHz transmitter and heterodyne receiver that are optically coupled to the same 6 inch optical mirror that is used to illuminate the subject under study. Intermediate Frequency (IF) signal processing allows the system to track the phase of the reflected signal through I and Q detection and phase unwrapping. The system monitors the displacement in real time, allowing various studies of its performance to be made. We will review its successes by comparing the measured rates with a wireless health monitor and also describe the challenges of the system.

  7. Dual-Modality Small Animal Imaging System*

    NASA Astrophysics Data System (ADS)

    Ranck, Amoreena; Feldmann, John; Saunders, Robert S.; Welsh, Robert E.; Bradley, Eric L.; Saha, Margaret S.; Kross, Brian; Majewski, Stan; Popov, Vladimir; Weisenberger, Andrew G.; Wojcik, Randolph

    2000-10-01

    We describe preliminary results from an imaging system consisting of an array of position-sensitive photomultiplier tubes (PSPMTs) viewing pixelated scintillators and a small fluoroscopic x-ray system (Lixi, Inc.). The PSPMT detectors are used to follow the uptake of lignads tagged principally with ^125I which emits photons in the 30keV region. The fluoroscope allows the superposition of structural information on the pattern of the radioligands. This "dual modality" technique permits more accurate tracking of the tagged material in the animal under study. Small sources give fiducial information on both x-ray and radioligand pictures allowing close registration of the two views of the system under study. Improvements to this system incorporating a very versatile rotatable gantry capable of supporting a wide range of detection systems simultaneously will be described. *Supported in part by The American Diabetes Association, The Jeffress Trust, The National Science Foundation, The Department of Energy, and The Howard Hughes Foundation

  8. Early Communication System (ECOMM) for ISS

    NASA Technical Reports Server (NTRS)

    Gaylor, Kent; Tu, Kwei

    1999-01-01

    The International Space Station (ISS) Early Communications System (ECOMM) was a Johnson Space Center (JSC) Avionic Systems Division (ASD) in-house developed communication system to provide early communications between the ISS and the Mission Control Center-Houston (MCC-H). This system allows for low rate commands (link rate of 6 kbps) to be transmitted through the Tracking and Data Relay Satellite System (TDRSS) from MCC-H to the ISS using TDRSS's S-band Single Access Forward (SSA/) link service. This system also allows for low rate telemetry (link rate of 20.48 kbps) to be transmitted from ISS to MCC-H through the TDRSS using TDRSS's S-band Single Access Return (SSAR) link service. In addition this system supports a JSC developed Onboard Communications Adapter (OCA) that allows for a two-way data exchange of 128 kbps between MCC-H and the ISS through TDRSS. This OCA data can be digital video/audio (two-way videoconference), and/or file transfers, and/or "white board". The key components of the system, the data formats used by the system to insure compatibility with the future ISS S-Band System, as well as how other vehicles may be able to use this system for their needs are discussed in this paper.

  9. Remote Marker-Based Tracking for UAV Landing Using Visible-Light Camera Sensor.

    PubMed

    Nguyen, Phong Ha; Kim, Ki Wan; Lee, Young Won; Park, Kang Ryoung

    2017-08-30

    Unmanned aerial vehicles (UAVs), which are commonly known as drones, have proved to be useful not only on the battlefields where manned flight is considered too risky or difficult, but also in everyday life purposes such as surveillance, monitoring, rescue, unmanned cargo, aerial video, and photography. More advanced drones make use of global positioning system (GPS) receivers during the navigation and control loop which allows for smart GPS features of drone navigation. However, there are problems if the drones operate in heterogeneous areas with no GPS signal, so it is important to perform research into the development of UAVs with autonomous navigation and landing guidance using computer vision. In this research, we determined how to safely land a drone in the absence of GPS signals using our remote maker-based tracking algorithm based on the visible light camera sensor. The proposed method uses a unique marker designed as a tracking target during landing procedures. Experimental results show that our method significantly outperforms state-of-the-art object trackers in terms of both accuracy and processing time, and we perform test on an embedded system in various environments.

  10. Advanced algorithms for distributed fusion

    NASA Astrophysics Data System (ADS)

    Gelfand, A.; Smith, C.; Colony, M.; Bowman, C.; Pei, R.; Huynh, T.; Brown, C.

    2008-03-01

    The US Military has been undergoing a radical transition from a traditional "platform-centric" force to one capable of performing in a "Network-Centric" environment. This transformation will place all of the data needed to efficiently meet tactical and strategic goals at the warfighter's fingertips. With access to this information, the challenge of fusing data from across the batttlespace into an operational picture for real-time Situational Awareness emerges. In such an environment, centralized fusion approaches will have limited application due to the constraints of real-time communications networks and computational resources. To overcome these limitations, we are developing a formalized architecture for fusion and track adjudication that allows the distribution of fusion processes over a dynamically created and managed information network. This network will support the incorporation and utilization of low level tracking information within the Army Distributed Common Ground System (DCGS-A) or Future Combat System (FCS). The framework is based on Bowman's Dual Node Network (DNN) architecture that utilizes a distributed network of interlaced fusion and track adjudication nodes to build and maintain a globally consistent picture across all assets.

  11. Visual Sensor Based Abnormal Event Detection with Moving Shadow Removal in Home Healthcare Applications

    PubMed Central

    Lee, Young-Sook; Chung, Wan-Young

    2012-01-01

    Vision-based abnormal event detection for home healthcare systems can be greatly improved using visual sensor-based techniques able to detect, track and recognize objects in the scene. However, in moving object detection and tracking processes, moving cast shadows can be misclassified as part of objects or moving objects. Shadow removal is an essential step for developing video surveillance systems. The goal of the primary is to design novel computer vision techniques that can extract objects more accurately and discriminate between abnormal and normal activities. To improve the accuracy of object detection and tracking, our proposed shadow removal algorithm is employed. Abnormal event detection based on visual sensor by using shape features variation and 3-D trajectory is presented to overcome the low fall detection rate. The experimental results showed that the success rate of detecting abnormal events was 97% with a false positive rate of 2%. Our proposed algorithm can allow distinguishing diverse fall activities such as forward falls, backward falls, and falling asides from normal activities. PMID:22368486

  12. Problem Reporting System

    NASA Technical Reports Server (NTRS)

    Potter, Don; Serian, Charles; Sweet, Robert; Sapir, Babak; Gamez, Enrique; Mays, David

    2008-01-01

    The Problem Reporting System (PRS) is a Web application, running on two Web servers (load-balanced) and two database servers (RAID-5), which establishes a system for submission, editing, and sharing of reports to manage risk assessment of anomalies identified in NASA's flight projects. PRS consolidates diverse anomaly-reporting systems, maintains a rich database set, and incorporates a robust engine, which allows tracking of any hardware, software, or paper process by configuring an appropriate life cycle. Global and specific project administration and setup tools allow lifecycle tailoring, along with customizable controls for user, e-mail, notifications, and more. PRS is accessible via the World Wide Web for authorized user at most any location. Upon successful log-in, the user receives a customizable window, which displays time-critical 'To Do' items (anomalies requiring the user s input before the system moves the anomaly to the next phase of the lifecycle), anomalies originated by the user, anomalies the user has addressed, and custom queries that can be saved for future use. Access controls exist depending on a user's role as system administrator, project administrator, user, or developer, and then, further by association with user, project, subsystem, company, or item with provisions for business-to-business exclusions, limitations on access according to the covert or overt nature of a given project, all with multiple layers of filtration, as needed. Reporting of metrics is built in. There is a provision for proxy access (in which the user may choose to grant one or more other users to view screens and perform actions as though they were the user, during any part of a tracking life cycle - especially useful during tight build schedules and vacations to keep things moving). The system also provides users the ability to have an anomaly link to or notify other systems, including QA Inspection Reports, Safety, GIDEP (Government-Industry Data Exchange Program) Alert, Corrective Actions, and Lessons Learned. The PRS tracking engine was designed as a very extensible and scalable system, able to support additional applications, with future development possibilities already discussed, including Incident Surprise Anomalies (for anomalies occurring during Operations phases of NASA Flight projects), GIDEP and NASA Alerts, and others.

  13. Design and Implementation of the MARG Human Body Motion Tracking System

    DTIC Science & Technology

    2004-10-01

    7803-8463-6/041$20.00 ©:!004 IEEE 625 OPTOTRAK from Northern Digital Inc. is a typical example of a marker-based system [I 0]. Another is the...technique called tunneling is :used to overcome this problem. Tunneling is a software solution that runs on the end point routers/computers and allows...multicast packets to traverse the network by putting them into unicast packets. MUTUP overcomes the tunneling problem using shared memory in the

  14. Local characterization of hindered Brownian motion by using digital video microscopy and 3D particle tracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dettmer, Simon L.; Keyser, Ulrich F.; Pagliara, Stefano

    In this article we present methods for measuring hindered Brownian motion in the confinement of complex 3D geometries using digital video microscopy. Here we discuss essential features of automated 3D particle tracking as well as diffusion data analysis. By introducing local mean squared displacement-vs-time curves, we are able to simultaneously measure the spatial dependence of diffusion coefficients, tracking accuracies and drift velocities. Such local measurements allow a more detailed and appropriate description of strongly heterogeneous systems as opposed to global measurements. Finite size effects of the tracking region on measuring mean squared displacements are also discussed. The use of thesemore » methods was crucial for the measurement of the diffusive behavior of spherical polystyrene particles (505 nm diameter) in a microfluidic chip. The particles explored an array of parallel channels with different cross sections as well as the bulk reservoirs. For this experiment we present the measurement of local tracking accuracies in all three axial directions as well as the diffusivity parallel to the channel axis while we observed no significant flow but purely Brownian motion. Finally, the presented algorithm is suitable also for tracking of fluorescently labeled particles and particles driven by an external force, e.g., electrokinetic or dielectrophoretic forces.« less

  15. A whole-tree chamber system for examining tree-level physiological responses of field-grown trees to environmental variation and climate change.

    PubMed

    Medhurst, Jane; Parsby, Jan; Linder, Sune; Wallin, Göran; Ceschia, Eric; Slaney, Michelle

    2006-09-01

    A whole-tree chamber (WTC) system was installed at Flakaliden in northern Sweden to examine the long-term physiological responses of field-grown 40-year-old Norway spruce trees [Picea abies (L.) Karst.] to climate change. The WTCs were designed as large cuvettes to allow the net tree-level CO(2) and water fluxes to be measured on a continuous basis. A total of 12 WTCs were used to impose combinations of atmospheric carbon dioxide concentration, [CO(2)], and air temperature treatments. The air inside the ambient and elevated [CO(2)] WTCs was maintained at 365 and 700 micromol mol(-1), respectively. The air temperature inside the ambient temperature WTCs tracked air temperature outside the WTCs. Elevated temperatures were altered on a monthly time-step and ranged between +2.8 and +5.6 degrees C above ambient temperature. The system allowed continuous, long-term measurement of whole-tree photosynthesis, night-time respiration and transpiration. The performance of the WTCs was assessed using winter and spring data sets. The ability of the WTC system to measure tree-level physiological responses is demonstrated. All WTCs displayed a high level of control over tracking of air temperatures. The set target of 365 micromol mol(-1) in the ambient [CO(2)] chambers was too low to be maintained during winter because of tree dormancy and the high natural increase in [CO(2)] over winter at high latitudes such as the Flakaliden site. Accurate control over [CO(2)] in the ambient [CO(2)] chambers was restored during the spring and the system maintained the elevated [CO(2)] target of 700 micromol mol(-1) for both measurement periods. Air water vapour deficit (VPD) was accurately tracked in ambient temperature WTCs. However, as water vapour pressure in all 12 WTCs was maintained at the level of non-chambered (reference) air, VPD of elevated temperature WTCs was increased.

  16. Real-time tracking of respiratory-induced tumor motion by dose-rate regulation

    NASA Astrophysics Data System (ADS)

    Han-Oh, Yeonju Sarah

    We have developed a novel real-time tumor-tracking technology, called Dose-Rate-Regulated Tracking (DRRT), to compensate for tumor motion caused by breathing. Unlike other previously proposed tumor-tracking methods, this new method uses a preprogrammed dynamic multileaf collimator (MLC) sequence in combination with real-time dose-rate control. This new scheme circumvents the technical challenge in MLC-based tumor tracking, that is to control the MLC motion in real time, based on real-time detected tumor motion. The preprogrammed MLC sequence describes the movement of the tumor, as a function of breathing phase, amplitude, or tidal volume. The irregularity of tumor motion during treatment is handled by real-time regulation of the dose rate, which effectively speeds up or slows down the delivery of radiation as needed. This method is based on the fact that all of the parameters in dynamic radiation delivery, including MLC motion, are enslaved to the cumulative dose, which, in turn, can be accelerated or decelerated by varying the dose rate. Because commercially available MLC systems do not allow the MLC delivery sequence to be modified in real time based on the patient's breathing signal, previously proposed tumor-tracking techniques using a MLC cannot be readily implemented in the clinic today. By using a preprogrammed MLC sequence to handle the required motion, the task for real-time control is greatly simplified. We have developed and tested the pre- programmed MLC sequence and the dose-rate regulation algorithm using lung-cancer patients breathing signals. It has been shown that DRRT can track the tumor with an accuracy of less than 2 mm for a latency of the DRRT system of less than 0.35 s. We also have evaluated the usefulness of guided breathing for DRRT. Since DRRT by its very nature can compensate for breathing-period changes, guided breathing was shown to be unnecessary for real-time tracking when using DRRT. Finally, DRRT uses the existing dose-rate control system that is provided for current linear accelerators. Therefore, DRRT can be achieved with minimal modification of existing technology, and this can shorten substantially the time necessary to establish DRRT in clinical practice.

  17. Simultaneous maxillary distraction osteogenesis using a twin-track distraction device combined with alveolar bone grafting in cleft patients: preliminary report of a technique.

    PubMed

    Suzuki, Eduardo Yugo; Watanabe, Masayo; Buranastidporn, Boonsiva; Baba, Yoshiyuki; Ohyama, Kimie; Ishii, Masatoshi

    2006-01-01

    The simultaneous use of cleft reduction and maxillary advancement by distraction osteogenesis has not been applied routinely because of the difficulty in three-dimensional control and stabilization of the transported segments. This report describes a new approach of simultaneous bilateral alveolar cleft reduction and maxillary advancement by distraction osteogenesis combined with autogenous bone grafting. A custom-made Twin-Track device was used to allow bilateral alveolar cleft closure combined with simultaneous maxillary advancement, using distraction osteogenesis and a rigid external distraction system in a bilateral cleft lip and palate patient. After a maxillary Le Fort I osteotomy, autogenous iliac bone graft was placed in the cleft spaces before suturing. A latency period of six days was observed before activation. The rate of activation was one mm/d for the maxillary advancement and 0.5 mm/d for the segmental transport. Accordingly, the concave facial appearance was improved with acceptable occlusion, and complete bilateral cleft closure was attained. No adjustments were necessary to the vector of the transported segments during the activation and no complications were observed. The proposed Twin-Track device, based on the concept of track-guided bone transport, permitted three-dimensional control over the distraction processes allowing simultaneous cleft closure, maxillary distraction, and autogenous bone grafting. The combined simultaneous approach is extremely advantageous in correcting severe deformities, reducing the number of surgical interventions and, consequently, the total treatment time.

  18. Photon collider: a four-channel autoguider solution

    NASA Astrophysics Data System (ADS)

    Hygelund, John C.; Haynes, Rachel; Burleson, Ben; Fulton, Benjamin J.

    2010-07-01

    The "Photon Collider" uses a compact array of four off axis autoguider cameras positioned with independent filtering and focus. The photon collider is two way symmetric and robustly mounted with the off axis light crossing the science field which allows the compact single frame construction to have extremely small relative deflections between guide and science CCDs. The photon collider provides four independent guiding signals with a total of 15 square arc minutes of sky coverage. These signals allow for simultaneous altitude, azimuth, field rotation and focus guiding. Guide cameras read out without exposure overhead increasing the tracking cadence. The independent focus allows the photon collider to maintain in focus guide stars when the main science camera is taking defocused exposures as well as track for telescope focus changes. Independent filters allow auto guiding in the science camera wavelength bandpass. The four cameras are controlled with a custom web services interface from a single Linux based industrial PC, and the autoguider mechanism and telemetry is built around a uCLinux based Analog Devices BlackFin embedded microprocessor. Off axis light is corrected with a custom meniscus correcting lens. Guide CCDs are cooled with ethylene glycol with an advanced leak detection system. The photon collider was built for use on Las Cumbres Observatory's 2 meter Faulks telescopes and currently used to guide the alt-az mount.

  19. White matter fiber tracking computation based on diffusion tensor imaging for clinical applications.

    PubMed

    Dellani, Paulo R; Glaser, Martin; Wille, Paulo R; Vucurevic, Goran; Stadie, Axel; Bauermann, Thomas; Tropine, Andrei; Perneczky, Axel; von Wangenheim, Aldo; Stoeter, Peter

    2007-03-01

    Fiber tracking allows the in vivo reconstruction of human brain white matter fiber trajectories based on magnetic resonance diffusion tensor imaging (MR-DTI), but its application in the clinical routine is still in its infancy. In this study, we present a new software for fiber tracking, developed on top of a general-purpose DICOM (digital imaging and communications in medicine) framework, which can be easily integrated into existing picture archiving and communication system (PACS) of radiological institutions. Images combining anatomical information and the localization of different fiber tract trajectories can be encoded and exported in DICOM and Analyze formats, which are valuable resources in the clinical applications of this method. Fiber tracking was implemented based on existing line propagation algorithms, but it includes a heuristic for fiber crossings in the case of disk-shaped diffusion tensors. We successfully performed fiber tracking on MR-DTI data sets from 26 patients with different types of brain lesions affecting the corticospinal tracts. In all cases, the trajectories of the central spinal tract (pyramidal tract) were reconstructed and could be applied at the planning phase of the surgery as well as in intraoperative neuronavigation.

  20. DNA analysis of hair and scat collected along snow tracks to document the presence of Canada Lynx.

    Treesearch

    Kevin S. McKelvey; Jeffrey von Kienast; Keith B. Aubry; Gary M. Koehler; Bejamin T. Maletzke; John R. Squires; Edward L. Lindquist; Steve Loch; Michael K. Schwartz

    2006-01-01

    Snow tracking is often used to inventory carnivore communities, but species identification using this method can produce ambiguous and misleading results. DNA can be extracted from hair and scat samples collected from tracks made in snow. Using DNA analysis could allow positive track identification across a broad range of snow conditions, thus increasing survey...

Top