Science.gov

Sample records for allowing direct observation

  1. Dipole-allowed direct band gap silicon superlattices

    PubMed Central

    Oh, Young Jun; Lee, In-Ho; Kim, Sunghyun; Lee, Jooyoung; Chang, Kee Joo

    2015-01-01

    Silicon is the most popular material used in electronic devices. However, its poor optical properties owing to its indirect band gap nature limit its usage in optoelectronic devices. Here we present the discovery of super-stable pure-silicon superlattice structures that can serve as promising materials for solar cell applications and can lead to the realization of pure Si-based optoelectronic devices. The structures are almost identical to that of bulk Si except that defective layers are intercalated in the diamond lattice. The superlattices exhibit dipole-allowed direct band gaps as well as indirect band gaps, providing ideal conditions for the investigation of a direct-to-indirect band gap transition. The fact that almost all structural portions of the superlattices originate from bulk Si warrants their stability and good lattice matching with bulk Si. Through first-principles molecular dynamics simulations, we confirmed their thermal stability and propose a possible method to synthesize the defective layer through wafer bonding. PMID:26656482

  2. Dipole-allowed direct band gap silicon superlattices

    NASA Astrophysics Data System (ADS)

    Oh, Young Jun; Lee, In-Ho; Kim, Sunghyun; Lee, Jooyoung; Chang, Kee Joo

    2015-12-01

    Silicon is the most popular material used in electronic devices. However, its poor optical properties owing to its indirect band gap nature limit its usage in optoelectronic devices. Here we present the discovery of super-stable pure-silicon superlattice structures that can serve as promising materials for solar cell applications and can lead to the realization of pure Si-based optoelectronic devices. The structures are almost identical to that of bulk Si except that defective layers are intercalated in the diamond lattice. The superlattices exhibit dipole-allowed direct band gaps as well as indirect band gaps, providing ideal conditions for the investigation of a direct-to-indirect band gap transition. The fact that almost all structural portions of the superlattices originate from bulk Si warrants their stability and good lattice matching with bulk Si. Through first-principles molecular dynamics simulations, we confirmed their thermal stability and propose a possible method to synthesize the defective layer through wafer bonding.

  3. Direct observation detonator operation

    NASA Astrophysics Data System (ADS)

    Hall, Charles R.

    2001-11-01

    The analysis of detonator-timing performance has involved the use of rotating-mirror cameras (RMC) used in the streak mode and high-speed film. Fiducial timing marks are applied to the film to provide temporal references. The use of a RMC for detonator analysis requires aligning the camera, performing an exposure test, capturing light from the detonation and then processing the film. This procedure can take up to an hour for two technicians. After the film is possessed another technician compares each light streak on the film with the fiducial timing marks also recorded on the film. Capturing light from a detonator and recording it directly to a digitizer can improve detonator-timing measurement in several ways. The digitized signals can then be directly analyzed with software. The direct recording method reduces the need for expensive rotating mirror cameras, film processing and subjective optical measurement comparison. Furthermore, an extensive support facility requiring several specialized technicians is reduced to a single technician in a modest laboratory. This technician is then capable of performing several tests an hour. Tests were preformed to measure light intensity at detonation. An optical method of capturing the light was designed using a remote microscope coupled to optical fiber to bring the light to an optical/electrical converter and a digitizer then records the signal. This system is presently used in parallel with a RMC. The results are compared for accuracy.

  4. How far is observation allowed in patients with ectopia lentis?

    PubMed

    Matsuo, Toshihiko

    2015-01-01

    Surgical timing for ectopia lentis has not been well described until now. The purpose of this study is to find a benchmark as to how far observation would be allowed in children with ectopia lentis when they and their families are reluctant to go through surgery. Retrospective review was made on 15 consecutive patients (14 children and one adult) with ectopia lentis in both eyes, seen at a referral-based institution in 5 years from April 2008 to March 2013, to survey the reasons for continuing observation or deciding surgical intervention. The diagnoses were Marfan syndrome in six patients, familial ectopia lentis in six, and sporadic ectopia lentis in three. Observation was continued in nine patients with the age at the final visit, ranging from 4 to 17 (median 9) years, because six children had good visual acuity at both near and distant viewing with glasses, and three children had visual acuity of 0.4 at near viewing despites poor visual acuity at distant viewing with glasses. In contrast, lensectomy was determined in six patients (5 children and one adult) with the age at surgery, ranging from 4 to 36 (median 9) years, and the age at the final visit, ranging from 7 to 42 (median 11) years, mainly because of poor visual acuity at near and distant viewing. More specific causes for surgeries in five children were the optical axis to become aphakic due to the progression of ectopia in the course in two children, lens dislocation to the anterior chamber after blunt eye injury in one child, and difficulty in studying at school classes in two children. One adult patient developed cataract in ectopic lenses. Lensectomy, combined with anterior vitrectomy, was done from two limbal side ports with a 25-gauge infusion cannula and vitreous cutter. Two patients at the age of 16 and 36 years, additionally, underwent intraocular lens-suturing in both eyes. In conclusions, observation was continued in children with ectopia lentis who had good visual acuity at near viewing

  5. Directional drilling allows quick exit from petrochemical plant

    SciTech Connect

    Halderman, R.G.

    1994-12-31

    Horizontal directional drilling uses specialty tools and techniques largely taken from the oil field and the mining industry to very accurately install pipelines, utilities and other conduits under obstacles such as rivers, beaches, environmentally sensitive areas, roadways, railroads, airfields, and congested pipeline corridors. In the early part of 1990, a particularly interesting problem confronted the pipeline engineers at Union Carbides 2,500-acre Seadrift plant near Port Lavaca, Texas. Having started up in 1954, the plant today is a major supplier of chemicals and plastics to industry, shipping more than two billion pounds per year. Since very large volumes of cooling water are needed for the operation of a petrochemical complex of this magnitude, years of expansion and modifications have caused the plant to become nearly surrounded by a number of rather large segmented ponds.

  6. Ovarian fluid allows directional cryptic female choice despite external fertilization.

    PubMed

    Alonzo, Suzanne H; Stiver, Kelly A; Marsh-Rollo, Susan E

    2016-08-16

    In species with internal fertilization, females can favour certain males over others, not only before mating but also within the female's reproductive tract after mating. Here, we ask whether such directional post-mating (that is, cryptic) female mate choice can also occur in species with external fertilization. Using an in vitro sperm competition experiment, we demonstrate that female ovarian fluid (ovarian fluid) changes the outcome of sperm competition by decreasing the importance of sperm number thereby increasing the relative importance of sperm velocity. We further show that ovarian fluid does not differentially affect sperm from alternative male phenotypes, but generally enhances sperm velocity, motility, straightness and chemoattraction. Under natural conditions, female ovarian fluid likely increases the paternity of the preferred parental male phenotype, as these males release fewer but faster sperm. These results imply females have greater control over fertilization and potential to exert selection on males in species with external fertilization than previously thought possible.

  7. Ovarian fluid allows directional cryptic female choice despite external fertilization

    PubMed Central

    Alonzo, Suzanne H.; Stiver, Kelly A.; Marsh-Rollo, Susan E.

    2016-01-01

    In species with internal fertilization, females can favour certain males over others, not only before mating but also within the female's reproductive tract after mating. Here, we ask whether such directional post-mating (that is, cryptic) female mate choice can also occur in species with external fertilization. Using an in vitro sperm competition experiment, we demonstrate that female ovarian fluid (ovarian fluid) changes the outcome of sperm competition by decreasing the importance of sperm number thereby increasing the relative importance of sperm velocity. We further show that ovarian fluid does not differentially affect sperm from alternative male phenotypes, but generally enhances sperm velocity, motility, straightness and chemoattraction. Under natural conditions, female ovarian fluid likely increases the paternity of the preferred parental male phenotype, as these males release fewer but faster sperm. These results imply females have greater control over fertilization and potential to exert selection on males in species with external fertilization than previously thought possible. PMID:27529581

  8. Direct observation of time reversal violation

    NASA Astrophysics Data System (ADS)

    Bernabéu, J.

    2013-06-01

    A direct evidence for Time Reversal Violation (TRV) means an experiment that, considered by itself, clearly shows TRV independent of, and unconnected to, the results for CP Violation. No existing result before the recent BABAR experiment with entangled neutral B mesons had demonstrated TRV in this sense. There is a unique opportunity for a search of TRV with unstable particles thanks to the Einstein-Podolsky-Rosen (EPR) Entanglement between the two neutral mesons in B, and PHI, Factories. The two quantum effects of the first decay as a filtering measurement and the transfer of information to the still living partner allow performing a genuine TRV asymmetry with the exchange of "in" and "out" states. With four independent TRV asymmetries, BABAR observes a large deviation of T-invariance with a statistical significance of 14 standard deviations, far more than needed to declare the result as a discovery. This is the first direct observation of TRV in the time evolution of any system.

  9. 30 CFR 1220.011 - Schedule of allowable direct and allocable joint costs and credits.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PAYMENT FOR OUTER CONTINENTAL SHELF OIL AND GAS LEASES § 1220.011 Schedule of allowable direct and... event of oil spills or other environmental damage are allowable. The costs of actual control and cleanup of oil spills and resulting responsibilities required by applicable laws and regulations...

  10. 30 CFR 220.011 - Schedule of allowable direct and allocable joint costs and credits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PAYMENT FOR OUTER CONTINENTAL SHELF OIL AND GAS LEASES § 220.011 Schedule of allowable direct and... event of oil spills or other environmental damage are allowable. The costs of actual control and cleanup of oil spills and resulting responsibilities required by applicable laws and regulations...

  11. 30 CFR 1220.011 - Schedule of allowable direct and allocable joint costs and credits.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PAYMENT FOR OUTER CONTINENTAL SHELF OIL AND GAS LEASES § 1220.011 Schedule of allowable direct and... event of oil spills or other environmental damage are allowable. The costs of actual control and cleanup of oil spills and resulting responsibilities required by applicable laws and regulations...

  12. 30 CFR 1220.011 - Schedule of allowable direct and allocable joint costs and credits.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PAYMENT FOR OUTER CONTINENTAL SHELF OIL AND GAS LEASES § 1220.011 Schedule of allowable direct and... event of oil spills or other environmental damage are allowable. The costs of actual control and cleanup of oil spills and resulting responsibilities required by applicable laws and regulations...

  13. Direct observation of vinyl hydroperoxide.

    PubMed

    Liu, Fang; Fang, Yi; Kumar, Manoj; Thompson, Ward H; Lester, Marsha I

    2015-08-28

    Many alkyl-substituted Criegee intermediates are predicted to undergo an intramolecular 1,4-hydrogen transfer to form isomeric vinyl hydroperoxide species (C[double bond, length as m-dash]COOH moiety), which break apart to release OH and vinoxy radicals. We report direct detection of stabilized vinyl hydroperoxides formed via carboxylic acid-catalyzed tautomerization of Criegee intermediates. A doubly hydrogen-bonded interaction between the Criegee intermediate and carboxylic acid facilitates efficient hydrogen transfer through a double hydrogen shift. Deuteration of formic or acetic acid permits migration of a D atom to yield partially deuterated vinyl hydroperoxides, which are distinguished from the CH3CHOO, (CH3)2COO, and CH3CH2CHOO Criegee intermediates by mass. Using 10.5 eV photoionization, three prototypical vinyl hydroperoxides, CH2[double bond, length as m-dash]CHOOD, CH2[double bond, length as m-dash]C(CH3)OOD, and CH3CH[double bond, length as m-dash]CHOOD, are detected directly. Complementary electronic structure calculations reveal several reaction pathways, including the barrierless acid-catalyzed tautomerization reaction predicted previously and a barrierless addition reaction that yields hydroperoxy alkyl formate.

  14. Cosmological ensemble and directional averages of observables

    SciTech Connect

    Bonvin, Camille; Clarkson, Chris; Durrer, Ruth; Maartens, Roy; Umeh, Obinna E-mail: chris.clarkson@gmail.com E-mail: roy.maartens@gmail.com

    2015-07-01

    We show that at second order, ensemble averages of observables and directional averages do not commute due to gravitational lensing—observing the same thing in many directions over the sky is not the same as taking an ensemble average. In principle this non-commutativity is significant for a variety of quantities that we often use as observables and can lead to a bias in parameter estimation. We derive the relation between the ensemble average and the directional average of an observable, at second order in perturbation theory. We discuss the relevance of these two types of averages for making predictions of cosmological observables, focusing on observables related to distances and magnitudes. In particular, we show that the ensemble average of the distance in a given observed direction is increased by gravitational lensing, whereas the directional average of the distance is decreased. For a generic observable, there exists a particular function of the observable that is not affected by second-order lensing perturbations. We also show that standard areas have an advantage over standard rulers, and we discuss the subtleties involved in averaging in the case of supernova observations.

  15. Toward a Direct Realist Account of Observation.

    ERIC Educational Resources Information Center

    Sievers, K. H.

    1999-01-01

    Criticizes the account of observation given by Alan Chalmers in "What Is This Thing Called Science?" and provides an alternative based on direct realist approaches to perception. Contains 15 references. (Author/WRM)

  16. Current observations with a decaying cosmological constant allow for chaotic cyclic cosmology

    SciTech Connect

    Ellis, George F.R.; Platts, Emma; Weltman, Amanda; Sloan, David E-mail: pltemm002@myuct.ac.za E-mail: amanda.weltman@uct.ac.za

    2016-04-01

    We use the phase plane analysis technique of Madsen and Ellis [1] to consider a universe with a true cosmological constant as well as a cosmological 'constant' that is decaying. Time symmetric dynamics for the inflationary era allows eternally bouncing models to occur. Allowing for scalar field dynamic evolution, we find that if dark energy decays in the future, chaotic cyclic universes exist provided the spatial curvature is positive. This is particularly interesting in light of current observations which do not yet rule out either closed universes or possible evolution of the cosmological constant. We present only a proof of principle, with no definite claim on the physical mechanism required for the present dark energy to decay.

  17. A new type of remote sensors which allow directly forming certain statistical estimates of images

    NASA Astrophysics Data System (ADS)

    Podlaskin, Boris; Guk, Elena; Karpenko, Andrey

    2010-10-01

    A new approach to the problems of statistical and structural pattern recognition, a signal processing and image analysis techniques has been considered. These problems are extremely important for tasks being solved by airborne and space borne remote sensing systems. Development of new remote sensors for image and signal processing is inherently connected with a possibility of statistical processing of images. Fundamentally new optoelectronic sensors "Multiscan" have been suggested in the present paper. Such sensors make it possible to form directly certain statistical estimates, which describe completely enough the different types of images. The sensors under discussion perform the Lebesgue-Stieltjes signal integration rather than the Cauchy-Riemann one. That permits to create integral functionals for determining statistical features of images. The use of the integral functionals for image processing provides a good agreement of obtained statistical estimates with required image information features. The Multiscan remote sensors allows to create a set of integral moments of an input image right up to high-order integral moments, to form a quantile representation of an input image, which provides a count number limited texture, to form a median, which provides a localisation of a low-contrast horizon line in fog, localisation of water flow boundary etc. This work presents both the description of the design concept of the new remote sensor and mathematical apparatus providing the possibility to create input image statistical features and integral functionals.

  18. DNA nanomechanics allows direct digital detection of complementary DNA and microRNA targets.

    PubMed

    Husale, Sudhir; Persson, Henrik H J; Sahin, Ozgur

    2009-12-24

    Techniques to detect and quantify DNA and RNA molecules in biological samples have had a central role in genomics research. Over the past decade, several techniques have been developed to improve detection performance and reduce the cost of genetic analysis. In particular, significant advances in label-free methods have been reported. Yet detection of DNA molecules at concentrations below the femtomolar level requires amplified detection schemes. Here we report a unique nanomechanical response of hybridized DNA and RNA molecules that serves as an intrinsic molecular label. Nanomechanical measurements on a microarray surface have sufficient background signal rejection to allow direct detection and counting of hybridized molecules. The digital response of the sensor provides a large dynamic range that is critical for gene expression profiling. We have measured differential expressions of microRNAs in tumour samples; such measurements have been shown to help discriminate between the tissue origins of metastatic tumours. Two hundred picograms of total RNA is found to be sufficient for this analysis. In addition, the limit of detection in pure samples is found to be one attomolar. These results suggest that nanomechanical read-out of microarrays promises attomolar-level sensitivity and large dynamic range for the analysis of gene expression, while eliminating biochemical manipulations, amplification and labelling.

  19. Direct observation limits on antimatter gravitation

    SciTech Connect

    Fischler, Mark; Lykken, Joe; Roberts, Tom; /Fermilab

    2008-06-01

    The proposed Antihydrogen Gravity experiment at Fermilab (P981) will directly measure the gravitational attraction g between antihydrogen and the Earth, with an accuracy of 1% or better. The following key question has been asked by the PAC: Is a possible 1% difference between g and g already ruled out by other evidence? This memo presents the key points of existing evidence, to answer whether such a difference is ruled out (a) on the basis of direct observational evidence; and/or (b) on the basis of indirect evidence, combined with reasoning based on strongly held theoretical assumptions. The bottom line is that there are no direct observations or measurements of gravitational asymmetry which address the antimatter sector. There is evidence which by indirect reasoning can be taken to rule out such a difference, but the analysis needed to draw that conclusion rests on models and assumptions which are in question for other reasons and are thus worth testing. There is no compelling evidence or theoretical reason to rule out such a difference at the 1% level.

  20. Recursive directional ligation by plasmid reconstruction allows rapid and seamless cloning of oligomeric genes.

    PubMed

    McDaniel, Jonathan R; Mackay, J Andrew; Quiroz, Felipe García; Chilkoti, Ashutosh

    2010-04-12

    This paper reports a new strategy, recursive directional ligation by plasmid reconstruction (PRe-RDL), to rapidly clone highly repetitive polypeptides of any sequence and specified length over a large range of molecular weights. In a single cycle of PRe-RDL, two halves of a parent plasmid, each containing a copy of an oligomer, are ligated together, thereby dimerizing the oligomer and reconstituting a functional plasmid. This process is carried out recursively to assemble an oligomeric gene with the desired number of repeats. PRe-RDL has several unique features that stem from the use of type IIs restriction endonucleases: first, PRe-RDL is a seamless cloning method that leaves no extraneous nucleotides at the ligation junction. Because it uses type IIs endonucleases to ligate the two halves of the plasmid, PRe-RDL also addresses the major limitation of RDL in that it abolishes any restriction on the gene sequence that can be oligomerized. The reconstitution of a functional plasmid only upon successful ligation in PRe-RDL also addresses two other limitations of RDL: the significant background from self-ligation of the vector observed in RDL, and the decreased efficiency of ligation due to nonproductive circularization of the insert. PRe-RDL can also be used to assemble genes that encode different sequences in a predetermined order to encode block copolymers or append leader and trailer peptide sequences to the oligomerized gene.

  1. Direct observation of type 1 fimbrial switching.

    PubMed

    Adiciptaningrum, Aileen M; Blomfield, Ian C; Tans, Sander J

    2009-05-01

    The defining feature of bacterial phase variation is a stochastic 'all-or-nothing' switching in gene expression. However, direct observations of these rare switching events have so far been lacking, obscuring possible correlations between switching events themselves, and between switching and other cellular events, such as division and DNA replication. We monitored the phase variation of type 1 fimbriae in individual Escherichia coli in real time and simultaneously tracked the chromosome replication process. We observed distinctive patterns of fim (fimbriae) expression in multiple genealogically related lineages. These patterns could be explained by a model that combines a single switching event with chromosomal fim replication, as well as the epigenetic inheritance of expressed fim protein and RNA, and their dilution by growth. Analysis of the moment of switching at sub-cell-cycle resolution revealed a correlation between fim switching and cell age, which challenges the traditional idea of phase variation as a random Poissonian phenomenon.

  2. Direct observation of laser guided corona discharges

    PubMed Central

    Wang, Tie-Jun; Wei, Yingxia; Liu, Yaoxiang; Chen, Na; Liu, Yonghong; Ju, Jingjing; Sun, Haiyi; Wang, Cheng; Lu, Haihe; Liu, Jiansheng; Chin, See Leang; Li, Ruxin; Xu, Zhizhan

    2015-01-01

    Laser based lightning control holds a promising way to solve the problem of the long standing disaster of lightning strikes. But it is a challenging project due to insufficient understanding of the interaction between laser plasma channel and high voltage electric filed. In this work, a direct observation of laser guided corona discharge is reported. Laser filament guided streamer and leader types of corona discharges were observed. An enhanced ionization took place in the leader (filament) through the interaction with the high voltage discharging field. The fluorescence lifetime of laser filament guided corona discharge was measured to be several microseconds, which is 3 orders of magnitude longer than the fluorescence lifetime of laser filaments. This work could be advantageous towards a better understanding of laser assisted leader development in the atmosphere. PMID:26679271

  3. Direct observation of laser guided corona discharges

    NASA Astrophysics Data System (ADS)

    Wang, Tie-Jun; Wei, Yingxia; Liu, Yaoxiang; Chen, Na; Liu, Yonghong; Ju, Jingjing; Sun, Haiyi; Wang, Cheng; Lu, Haihe; Liu, Jiansheng; Chin, See Leang; Li, Ruxin; Xu, Zhizhan

    2015-12-01

    Laser based lightning control holds a promising way to solve the problem of the long standing disaster of lightning strikes. But it is a challenging project due to insufficient understanding of the interaction between laser plasma channel and high voltage electric filed. In this work, a direct observation of laser guided corona discharge is reported. Laser filament guided streamer and leader types of corona discharges were observed. An enhanced ionization took place in the leader (filament) through the interaction with the high voltage discharging field. The fluorescence lifetime of laser filament guided corona discharge was measured to be several microseconds, which is 3 orders of magnitude longer than the fluorescence lifetime of laser filaments. This work could be advantageous towards a better understanding of laser assisted leader development in the atmosphere.

  4. First direct observation of muon antineutrino disappearance

    DOE PAGES

    Adamson, P.

    2011-07-05

    This letter reports the first direct observation of muon antineutrino disappearance. The MINOS experiment has taken data with an accelerator beam optimized for ν¯μ production, accumulating an exposure of 1.71 x 1020 protons on target. In the Far Detector, 97 charged current ν¯μ events are observed. The no-oscillation hypothesis predicts 156 events and is excluded at 6.3σ. The best fit to oscillation yields |Δm¯2| = (3.36-0.40 +0.46(stat.) ± 0.06(syst.)) x 10-3 eV2, sin2(2 θ¯) = 0.86-0.12+0.11 (stat.) ± 0.01(syst.). The MINOS νμ and ν¯μ measurements are consistent at the 2.0% confidence level, assuming identical underlying oscillation parameters.

  5. Direct observation of laser guided corona discharges.

    PubMed

    Wang, Tie-Jun; Wei, Yingxia; Liu, Yaoxiang; Chen, Na; Liu, Yonghong; Ju, Jingjing; Sun, Haiyi; Wang, Cheng; Lu, Haihe; Liu, Jiansheng; Chin, See Leang; Li, Ruxin; Xu, Zhizhan

    2015-12-18

    Laser based lightning control holds a promising way to solve the problem of the long standing disaster of lightning strikes. But it is a challenging project due to insufficient understanding of the interaction between laser plasma channel and high voltage electric filed. In this work, a direct observation of laser guided corona discharge is reported. Laser filament guided streamer and leader types of corona discharges were observed. An enhanced ionization took place in the leader (filament) through the interaction with the high voltage discharging field. The fluorescence lifetime of laser filament guided corona discharge was measured to be several microseconds, which is 3 orders of magnitude longer than the fluorescence lifetime of laser filaments. This work could be advantageous towards a better understanding of laser assisted leader development in the atmosphere.

  6. Direct observation of a fractional charge

    NASA Astrophysics Data System (ADS)

    de-Picciotto, R.; Reznikov, M.; Heiblum, M.; Umansky, V.; Bunin, G.; Mahalu, D.

    1997-09-01

    Since Millikan's famous oil-drop experiments, it has been well known that electrical charge is quantized in units of the charge of an electron, e. For this reason, the theoretical prediction, by Laughlin of the existence of fractionally charged `quasiparticles'-proposed as an explanation for the fractional quantum Hall (FQH) effect-is very counterintuitive. The FQH effect is a phenomenon observed in the conduction properties of a two-dimensional electron gas subjected to a strong perpendicular magnetic field. This effect results from the strong interaction between electrons, brought about by the magnetic field, giving rise to the aforementioned fractionally charged quasiparticles which carry the current. Here we report the direct observation of these counterintuitive entities by using measurements of quantum shot noise. Quantum shot noise results from the discreteness of the current-carrying charges and so is proportional to both the charge of the quasiparticles and the average current. Our measurements of quantum shot noise show unambiguously that current in a two-dimensional electron gas in the FQH regime is carried by fractional charges-e/3 in the present case-in agreement with Laughlin's prediction.

  7. Prediction of direct band gap silicon superlattices with dipole-allowed optical transition

    NASA Astrophysics Data System (ADS)

    Kim, Sunghyun; Oh, Young Jun; Lee, In-Ho; Lee, Jooyoung; Chang, K. J.

    While cubic diamond silicon (c-Si) is an important element in electronic devices, it has poor optical properties owing to its indirect gap nature, thereby limiting its applications to optoelectronic devices. Here, we report Si superlattice structures which are computationally designed to possess direct band gaps and excellent optical properties. The computational approach adopts density functional calculations and conformational space annealing for global optimization. The Si superlattices, which consist of alternating stacks of Si(111) layers and a defective layer with Seiwatz chains, have either direct or quasi-direct band gaps depending on the details of attacking layers. The photovoltaic efficiencies are calculated by solving Bethe-Salpeter equation together with quasiparticle G0W0 calculations. The strong direct optical transition is attributed to the overlap of the valence and conduction band edge states in the interface region. Our Si superlattices exhibit high thermal stability, with the energies lower by an order of magnitude than those of the previously reported Si allotropes. We discuss a possible route to the synthesis of the superlattices through wafer bonding. This work is supported by Samsung Science and Technology Foundation under Grant No. SSTF-BA1401-08.

  8. Trehalose glycopolymer resists allow direct writing of protein patterns by electron-beam lithography.

    PubMed

    Bat, Erhan; Lee, Juneyoung; Lau, Uland Y; Maynard, Heather D

    2015-03-20

    Direct-write patterning of multiple proteins on surfaces is of tremendous interest for a myriad of applications. Precise arrangement of different proteins at increasingly smaller dimensions is a fundamental challenge to apply the materials in tissue engineering, diagnostics, proteomics and biosensors. Herein, we present a new resist that protects proteins during electron-beam exposure and its application in direct-write patterning of multiple proteins. Polymers with pendant trehalose units are shown to effectively crosslink to surfaces as negative resists, while at the same time providing stabilization to proteins during the vacuum and electron-beam irradiation steps. In this manner, arbitrary patterns of several different classes of proteins such as enzymes, growth factors and immunoglobulins are realized. Utilizing the high-precision alignment capability of electron-beam lithography, surfaces with complex patterns of multiple proteins are successfully generated at the micrometre and nanometre scale without requiring cleanroom conditions.

  9. Trehalose Glycopolymer Resists Allow Direct Writing of Protein Patterns by Electron-Beam Lithography

    PubMed Central

    Bat, Erhan; Lee, Juneyoung; Lau, Uland Y.; Maynard, Heather D.

    2015-01-01

    Direct-write patterning of multiple proteins on surfaces is of tremendous interest for a myriad of applications. Precise arrangement of different proteins at increasingly smaller dimensions is a fundamental challenge to apply the materials in tissue engineering, diagnostics, proteomics and biosensors. Herein we present a new resist that protects proteins during electron beam exposure and its application in direct-write patterning of multiple proteins. Polymers with pendant trehalose units are shown to effectively cross-link to surfaces as negative resists, while at the same time providing stabilization to proteins during the vacuum and electron beam irradiation steps. In this manner, arbitrary patterns of several different classes of proteins such as enzymes, growth factors and immunoglobulins are realized. Utilizing the high precision alignment capability of electron-beam lithography, surfaces with complex patterns of multiple proteins are successfully generated at the micrometer and nanometer scale without requiring cleanroom conditions. PMID:25791943

  10. A General Ligand Design for Gold Catalysis allowing Ligand-Directed Anti Nucleophilic Attack of Alkynes

    PubMed Central

    Wang, Yanzhao; Wang, Zhixun; Li, Yuxue; Wu, Gongde; Cao, Zheng; Zhang, Liming

    2014-01-01

    Most homogenous gold catalyses demand ≥0.5 mol % catalyst loading. Due to the high cost of gold, these reactions are unlikely to be applicable in medium or large scale applications. Here we disclose a novel ligand design based on the privileged biphenyl-2-phosphine framework that offers a potentially general approach to dramatically lowering catalyst loading. In this design, an amide group at the 3’ position of the ligand framework directs and promotes nucleophilic attack at the ligand gold complex-activated alkyne, which is unprecedented in homogeneous gold catalysis considering the spatial challenge of using ligand to reach antiapproaching nucleophile in a linear P-Au-alkyne centroid structure. With such a ligand, the gold(I) complex becomes highly efficient in catalyzing acid addition to alkynes, with a turnover number up to 99,000. Density functional theory calculations support the role of the amide moiety in directing the attack of carboxylic acid via hydrogen bonding. PMID:24704803

  11. Tagging motor memories with transcranial direct current stimulation allows later artificially-controlled retrieval

    PubMed Central

    Nozaki, Daichi; Yokoi, Atsushi; Kimura, Takahiro; Hirashima, Masaya; Orban de Xivry, Jean-Jacques

    2016-01-01

    We demonstrate that human motor memories can be artificially tagged and later retrieved by noninvasive transcranial direct current stimulation (tDCS). Participants learned to adapt reaching movements to two conflicting dynamical environments that were each associated with a different tDCS polarity (anodal or cathodal tDCS) on the sensorimotor cortex. That is, we sought to determine whether divergent background activity levels within the sensorimotor cortex (anodal: higher activity; cathodal: lower activity) give rise to distinct motor memories. After a training session, application of each tDCS polarity automatically resulted in the retrieval of the motor memory corresponding to that polarity. These results reveal that artificial modulation of neural activity in the sensorimotor cortex through tDCS can act as a context for the formation and recollection of motor memories. DOI: http://dx.doi.org/10.7554/eLife.15378.001 PMID:27472899

  12. Direct observation of amyloid nucleation under nanomechanical stretching

    NASA Astrophysics Data System (ADS)

    Varongchayakul, Nitinun

    Self-assembly of amyloid nanofiber is associated with functional and pathological processes such as in neurodegenerative diseases. Despite intensive studies, stochastic nature of the process has made it difficult to elucidate molecular mechanisms for the key amyloid nucleation. Here, we investigated the amyloid nucleation of silk-elastin-like peptide (SELP) using time-lapse lateral force microscopy (LFM). By repeated scanning a single line on a SELP-coated mica surface, we observed sudden stepwise height increases, corresponds to nucleation of an amyloid fiber. The lateral force profiles followed either a worm-like chain model or an exponential function, suggesting that the atomic force microscopy (AFM) tip stretches a single or multiple SELP molecules along the scanning direction, serves as the template for further self-assembly perpendicular to the scan direction. Such mechanically induced nucleation of amyloid fibrils allows positional and directional control of amyloid assembly in vitro , which we demonstrate by generating single nanofibers at predetermined nucleation sites.

  13. Direct observation of microbubbles in directional solidification of salol

    SciTech Connect

    Williams, L.M.; Srinivasan, M.R.; Cummins, H.Z. )

    1990-03-26

    Dynamic light scattering at the crystal-melt interface of solidifying salol was followed for 14 days. The hydrodynamic radius deduced from intensity correlation data increased continuously from {approx}1 to {approx}100 {mu}m. When the scattering layer was trapped by the advancing crystal front, microscopic observation revealed bubbles as inclusions whose size agreed with the light-scattering value. Scattering was also observed to disappear after prolonged pumping on the sample.

  14. Direct Observation of Academic Learning Time.

    ERIC Educational Resources Information Center

    Wilson, Rich

    1987-01-01

    Classroom variables associated with academic learning time (ALT)--instructional time, on-task behavior, and student success rate--are positively related to student achievement. Guidelines and forms are provided for teachers and supervisors to gather objective and usable information on these ALT components through direct classroom observation…

  15. Direct observation of stepwise movement of a synthetic molecular transporter

    NASA Astrophysics Data System (ADS)

    Wickham, Shelley F. J.; Endo, Masayuki; Katsuda, Yousuke; Hidaka, Kumi; Bath, Jonathan; Sugiyama, Hiroshi; Turberfield, Andrew J.

    2011-03-01

    Controlled motion at the nanoscale can be achieved by using Watson-Crick base-pairing to direct the assembly and operation of a molecular transport system consisting of a track, a motor and fuel, all made from DNA. Here, we assemble a 100-nm-long DNA track on a two-dimensional scaffold, and show that a DNA motor loaded at one end of the track moves autonomously and at a constant average speed along the full length of the track, a journey comprising 16 consecutive steps for the motor. Real-time atomic force microscopy allows direct observation of individual steps of a single motor, revealing mechanistic details of its operation. This precisely controlled, long-range transport could lead to the development of systems that could be programmed and routed by instructions encoded in the nucleotide sequences of the track and motor. Such systems might be used to create molecular assembly lines modelled on the ribosome.

  16. Relaxed Observance of Traditional Marriage Rules Allows Social Connectivity without Loss of Genetic Diversity.

    PubMed

    Guillot, Elsa G; Hazelton, Martin L; Karafet, Tatiana M; Lansing, J Stephen; Sudoyo, Herawati; Cox, Murray P

    2015-09-01

    Marriage rules, the community prescriptions that dictate who an individual can or cannot marry, are extremely diverse and universally present in traditional societies. A major focus of research in the early decades of modern anthropology, marriage rules impose social and economic forces that help structure societies and forge connections between them. However, in those early anthropological studies, the biological benefits or disadvantages of marriage rules could not be determined. We revisit this question by applying a novel simulation framework and genome-wide data to explore the effects of Asymmetric Prescriptive Alliance, an elaborate set of marriage rules that has been a focus of research for many anthropologists. Simulations show that strict adherence to these marriage rules reduces genetic diversity on the autosomes, X chromosome and mitochondrial DNA, but relaxed compliance produces genetic diversity similar to random mating. Genome-wide data from the Indonesian community of Rindi, one of the early study populations for Asymmetric Prescriptive Alliance, are more consistent with relaxed compliance than strict adherence. We therefore suggest that, in practice, marriage rules are treated with sufficient flexibility to allow social connectivity without significant degradation of biological diversity.

  17. Relaxed Observance of Traditional Marriage Rules Allows Social Connectivity without Loss of Genetic Diversity

    PubMed Central

    Guillot, Elsa G.; Hazelton, Martin L.; Karafet, Tatiana M.; Lansing, J. Stephen; Sudoyo, Herawati; Cox, Murray P.

    2015-01-01

    Marriage rules, the community prescriptions that dictate who an individual can or cannot marry, are extremely diverse and universally present in traditional societies. A major focus of research in the early decades of modern anthropology, marriage rules impose social and economic forces that help structure societies and forge connections between them. However, in those early anthropological studies, the biological benefits or disadvantages of marriage rules could not be determined. We revisit this question by applying a novel simulation framework and genome-wide data to explore the effects of Asymmetric Prescriptive Alliance, an elaborate set of marriage rules that has been a focus of research for many anthropologists. Simulations show that strict adherence to these marriage rules reduces genetic diversity on the autosomes, X chromosome and mitochondrial DNA, but relaxed compliance produces genetic diversity similar to random mating. Genome-wide data from the Indonesian community of Rindi, one of the early study populations for Asymmetric Prescriptive Alliance, are more consistent with relaxed compliance than strict adherence. We therefore suggest that, in practice, marriage rules are treated with sufficient flexibility to allow social connectivity without significant degradation of biological diversity. PMID:25968961

  18. Direct Observation of Paramagnons in Palladium

    SciTech Connect

    Doubble, R.; Hayden, S M.; Dai, Pengcheng; Mook Jr, Herbert A; Thompson, James R; Frost, C.

    2010-01-01

    We report an inelastic neutron scattering study of the spin fluctuations in the nearly ferromagnetic element palladium. Dispersive over-damped collective magnetic excitations or 'paramagnons' are observed up to 128 meV. We analyze our results in terms of a Moriya-Lonzarich-type spin-fluctuation model and estimate the contribution of the spin fluctuations to the low-temperature heat capacity. In spite of the paramagnon excitations being relatively strong, their relaxation rates are large. This leads to a small contribution to the low-temperature electronic specific heat.

  19. Direct observation of ballistic Andreev reflection

    NASA Astrophysics Data System (ADS)

    Klapwijk, T. M.; Ryabchun, S. A.

    2014-12-01

    An overview is presented of experiments on ballistic electrical transport in inhomogeneous superconducting systems which are controlled by the process of Andreev reflection. The initial experiments based on the coexistence of a normal phase and a superconducting phase in the intermediate state led to the concept itself. It was followed by a focus on geometrically inhomogeneous systems like point contacts, which provided a very clear manifestation of the energy and direction dependence of the Andreev reflection process. The point contacts have recently evolved towards the atomic scale owing to the use of mechanical break-junctions, revealing a very detailed dependence of Andreev reflection on the macroscopic phase of the superconducting state. In present-day research, the superconducting in homogeneity is constructed by clean room technology and combines superconducting materials, for example, with low-dimensional materials and topological insulators. Alternatively, the superconductor is combined with nano-objects, such as graphene, carbon nanotubes, or semiconducting nanowires. Each of these "inhomogeneous systems" provides a very interesting range of properties, all rooted in some manifestation of Andreev reflection.

  20. Direct observation of ballistic Andreev reflection

    SciTech Connect

    Klapwijk, T. M.; Ryabchun, S. A.

    2014-12-15

    An overview is presented of experiments on ballistic electrical transport in inhomogeneous superconducting systems which are controlled by the process of Andreev reflection. The initial experiments based on the coexistence of a normal phase and a superconducting phase in the intermediate state led to the concept itself. It was followed by a focus on geometrically inhomogeneous systems like point contacts, which provided a very clear manifestation of the energy and direction dependence of the Andreev reflection process. The point contacts have recently evolved towards the atomic scale owing to the use of mechanical break-junctions, revealing a very detailed dependence of Andreev reflection on the macroscopic phase of the superconducting state. In present-day research, the superconducting in homogeneity is constructed by clean room technology and combines superconducting materials, for example, with low-dimensional materials and topological insulators. Alternatively, the superconductor is combined with nano-objects, such as graphene, carbon nanotubes, or semiconducting nanowires. Each of these “inhomogeneous systems” provides a very interesting range of properties, all rooted in some manifestation of Andreev reflection.

  1. Direct observation of amyloid nucleation under nanomechanical stretching.

    PubMed

    Varongchayakul, Nitinun; Johnson, Sara; Quabili, Trina; Cappello, Joseph; Ghandehari, Hamidreza; Solares, Santiago De Jesus; Hwang, Wonmuk; Seog, Joonil

    2013-09-24

    Self-assembly of amyloid nanofiber is associated with both functional biological and pathological processes such as those in neurodegenerative diseases. Despite intensive studies, the stochastic nature of the process has made it difficult to elucidate a molecular mechanism for the key amyloid nucleation event. Here we investigated nucleation of the silk-elastin-like peptide (SELP) amyloid using time-lapse lateral force microscopy (LFM). By repeated scanning of a single line on a SELP-coated mica surface, we observed a sudden stepwise height increase. This corresponds to nucleation of an amyloid fiber, which subsequently grew perpendicular to the scanning direction. The lateral force profiles followed either a worm-like chain model or an exponential function, suggesting that the atomic force microscopy (AFM) tip stretches a single or multiple SELP molecules along the scanning direction. The probability of nucleation correlated with the maximum stretching force and extension, implying that stretching of SELP molecules is a key molecular event for amyloid nucleation. The mechanically induced nucleation allows for positional and directional control of amyloid assembly in vitro, which we demonstrate by generating single nanofibers at predetermined nucleation sites.

  2. Crystallization of a fragment of human fibronectin: introduction of methionine by site-directed mutagenesis to allow phasing via selenomethionine.

    PubMed

    Leahy, D J; Erickson, H P; Aukhil, I; Joshi, P; Hendrickson, W A

    1994-05-01

    Crystals of a fragment of human fibronectin encompassing the 7th through the RGD-containing 10th type III repeats (FN7-10) have been produced with protein expressed in E. coli. The crystals are monoclinic with one molecule in the asymmetric unit and diffract to beyond 2.0 A Bragg spacings. A mutant FN7-10 was produced in which three methionines, in addition to the single native methionine already present, have been introduced by site-directed mutagenesis. Diffraction-quality crystals of this mutant protein have been grown in which methionine was replaced with selenomethionine. The introduction of methionine by site-directed mutagenesis to allow phasing from selenomethionyl-substituted crystals is shown to be feasible by this example and is proposed as a general approach to solving the crystallographic phase problem. Strategies for selecting propitious sites for methionine mutations are discussed.

  3. Direct Behavioral Observation in School Settings: Bringing Science to Practice

    ERIC Educational Resources Information Center

    Nock, Matthew K.; Kurtz, Steven M. S.

    2005-01-01

    Schools provide a useful, controlled setting for evaluating child behavior problems, yet direct observational coding procedures evaluated by child researchers have not been widely incorporated by practicing clinicians. This article provides a summary of procedures useful to clinicians performing direct behavioral observation in school settings. We…

  4. Direct observations of field-induced assemblies in magnetite ferrofluids

    NASA Astrophysics Data System (ADS)

    Mousavi, N. S. Susan; Khapli, Sachin D.; Kumar, Sunil

    2015-03-01

    Evolution of microstructures in magnetite-based ferrofluids with weak dipolar moments (particle size ≤ 10 nm) is studied with an emphasis on examining the effects of particle concentration (ϕ) and magnetic field strength (H) on the structures. Nanoparticles are dispersed in water at three different concentrations, ϕ = 0.15%, 0.48%, and 0.59% (w/v) [g/ml%] and exposed to uniform magnetic fields in the range of H = 0.05-0.42 T. Cryogenic transmission electron microscopy is employed to provide in-situ observations of the field-induced assemblies in such systems. As the magnetic field increases, the Brownian colloids are observed to form randomly distributed chains aligned in the field direction, followed by head-to-tail chain aggregation and then lateral aggregation of chains termed as zippering. By increasing the field in low concentration samples, the number of chains increases, though their length does not change dramatically. Increasing concentration increases the length of the linear particle assemblies in the presence of a fixed external magnetic field. Thickening of the chains due to zippering is observed at relatively high fields. Through a systematic variation of concentration and magnetic field strength, this study shows that both magnetic field strength and change in concentration can strongly influence formation of microstructures even in weak dipolar systems. Additionally, the results of two commonly used support films on electron microscopy grids, continuous carbon and holey carbon films, are compared. Holey carbon film allows us to create local regions of high concentrations that further assist the development of field-induced assemblies. The experimental observations provide a validation of the zippering effect and can be utilized in the development of models for thermophysical properties such as thermal conductivity.

  5. Direct Observation of Two Proton Radioactivity Using Digital Photography

    SciTech Connect

    Rykaczewski, Krzysztof Piotr; Pfutzner, M.; Dominik, Wojciech; Janas, Z.; Miernik, K.; Bingham, C. R.; Czyrkowski, Henryk; Cwiok, Mikolaj; Darby, Iain; Dabrowski, Ryszard; Ginter, T. N.; Grzywacz, Robert Kazimierz; Karny, M.; Korgul, A.; Kusmierz, Waldemar; Liddick, Sean; Rajabali, Mustafa; Stolz, A.

    2007-01-01

    Recently the observation of a new type of spontaneous radioactive decay has been claimed in which two protons are simultaneously ejected by an atomic nucleus from the ground state1,2,3. Experimental data obtained for the extremely neutron-deficient nuclei 45Fe and 54Zn, were interpreted as the first evidence of such a decay mode which has been sought since 1960.4 However, the technique applied in those studies allowed only measurements of the decay time and the total energy released. Particles emitted in the decay were not identified and the conclusions had to be supported by theoretical arguments. Here we show for the first time, directly and unambiguously, that 45Fe indeed disintegrates by two-proton decay. Furthermore, we demonstrate that the decay branch of this isotope leads to various particle emission channels including two-proton and three-proton emission. To achieve this result we have developed a new type of detector V the Optical Time Projection Chamber (OTPC) in which digital photography is applied to nuclear physics for the first time. The detector records images of tracks from charged particles, allowing for their unambiguous identification and the reconstruction of decay events in three dimensions. This new and simple technique provides a powerful method to identify exotic decay channels involving emission of charged particles. It is expected that further studies with the OTPC device will yield important information on nuclei located at and beyond the proton drip-line, thus providing new material for testing and improving models of very unstable atomic nuclei.

  6. Combined use of leaf size and economics traits allows direct comparison of hydrophyte and terrestrial herbaceous adaptive strategies

    PubMed Central

    Pierce, Simon; Brusa, Guido; Sartori, Matteo; Cerabolini, Bruno E. L.

    2012-01-01

    Background and Aims Hydrophytes generally exhibit highly acquisitive leaf economics. However, a range of growth forms is evident, from small, free-floating and rapidly growing Lemniden to large, broad-leaved Nymphaeiden, denoting variability in adaptive strategies. Traits used to classify adaptive strategies in terrestrial species, such as canopy height, are not applicable to hydrophytes. We hypothesize that hydrophyte leaf size traits and economics exhibit sufficient overlap with terrestrial species to allow a common classification of plant functional types, sensu Grime's CSR theory. Methods Leaf morpho-functional traits were measured for 61 species from 47 water bodies in lowland continental, sub-alpine and alpine bioclimatic zones in southern Europe and compared against the full leaf economics spectrum and leaf size range of terrestrial herbs, and between hydrophyte growth forms. Key Results Hydrophytes differed in the ranges and mean values of traits compared with herbs, but principal components analysis (PCA) demonstrated that both groups shared axes of trait variability: PCA1 encompassed size variation (area and mass), and PCA2 ranged from relatively dense, carbon-rich leaves to nitrogen-rich leaves of high specific leaf area (SLA). Most growth forms exhibited trait syndromes directly equivalent to herbs classified as R adapted, although Nymphaeiden ranged between C and SR adaptation. Conclusions Our findings support the hypothesis that hydrophyte adaptive strategy variation reflects fundamental trade-offs in economics and size that govern all plants, and that hydrophyte adaptive strategies can be directly compared with terrestrial species by combining leaf economics and size traits. PMID:22337079

  7. Plasmon Surface Polariton Dispersion by Direct Optical Observation.

    ERIC Educational Resources Information Center

    Swalen, J. D.; And Others

    1980-01-01

    Describes several simple experiments that can be used to observe directly the dispersion curve of plasmon surface polaritons (PSP) on flat metal surfaces. A method is described of observing the increonental change in the wave vector of the PSP due to coatings that differ in thickness by a few nanometers. (Author/CS)

  8. Direct Observational Assessment during Test Sessions and Child Clinical Interviews

    ERIC Educational Resources Information Center

    McConaughy, Stephanie H.

    2005-01-01

    Test sessions and child clinical interviews offer opportunities for direct observations of children's behavior in controlled settings. Moreover, standardized instruments for test session and interview observations offer more reliable and valid assessment methods than do anecdotal reports. This article reviews characteristics and psychometric…

  9. Retinex Image Processing: Improved Fidelity To Direct Visual Observation

    NASA Technical Reports Server (NTRS)

    Jobson, Daniel J.; Rahman, Zia-Ur; Woodell, Glenn A.

    1996-01-01

    Recorded color images differ from direct human viewing by the lack of dynamic range compression and color constancy. Research is summarized which develops the center/surround retinex concept originated by Edwin Land through a single scale design to a multi-scale design with color restoration (MSRCR). The MSRCR synthesizes dynamic range compression, color constancy, and color rendition and, thereby, approaches fidelity to direct observation.

  10. Modelling 1-minute directional observations of the global irradiance.

    NASA Astrophysics Data System (ADS)

    Thejll, Peter; Pagh Nielsen, Kristian; Andersen, Elsa; Furbo, Simon

    2016-04-01

    Direct and diffuse irradiances from the sky has been collected at 1-minute intervals for about a year from the experimental station at the Technical University of Denmark for the IEA project "Solar Resource Assessment and Forecasting". These data were gathered by pyrheliometers tracking the Sun, as well as with apertured pyranometers gathering 1/8th and 1/16th of the light from the sky in 45 degree azimuthal ranges pointed around the compass. The data are gathered in order to develop detailed models of the potentially available solar energy and its variations at high temporal resolution in order to gain a more detailed understanding of the solar resource. This is important for a better understanding of the sub-grid scale cloud variation that cannot be resolved with climate and weather models. It is also important for optimizing the operation of active solar energy systems such as photovoltaic plants and thermal solar collector arrays, and for passive solar energy and lighting to buildings. We present regression-based modelling of the observed data, and focus, here, on the statistical properties of the model fits. Using models based on the one hand on what is found in the literature and on physical expectations, and on the other hand on purely statistical models, we find solutions that can explain up to 90% of the variance in global radiation. The models leaning on physical insights include terms for the direct solar radiation, a term for the circum-solar radiation, a diffuse term and a term for the horizon brightening/darkening. The purely statistical model is found using data- and formula-validation approaches picking model expressions from a general catalogue of possible formulae. The method allows nesting of expressions, and the results found are dependent on and heavily constrained by the cross-validation carried out on statistically independent testing and training data-sets. Slightly better fits -- in terms of variance explained -- is found using the purely

  11. Direct observation of Barkhausen avalanche in Co thin films.

    PubMed

    Kim, Dong-Hyun; Choe, Sug-Bong; Shin, Sung-Chul

    2003-02-28

    We report direct full-field magneto-optical observations of Barkhausen avalanches in Co polycrystalline thin films at criticality. We provide experimental evidence for the validity of a phenomenological model of the Barkhausen avalanche originally proposed by Cizeau, Zapperi, Durin, and Stanley [Phys. Rev. Lett. 79, 4669 (1997)

  12. Covalent attachment of lipid vesicles to a fluid supported bilayer allows observation of DNA-mediated vesicle interactions

    PubMed Central

    van Lengerich, Bettina; Rawle, Robert J.; Boxer, Steven G.

    2010-01-01

    Specific membrane interactions such as lipid vesicle docking and fusion can be mediated by synthetic DNA-lipid conjugates as a model for the protein-driven processes that are ubiquitous in biological systems. Here we present a method of tethering vesicles to a supported lipid bilayer that allows simultaneous deposition of cognate vesicle partners displaying complementary DNA, resulting in well-mixed populations of tethered vesicles that are laterally mobile. Vesicles are covalently attached to a supporting lipid bilayer using a DNA-templated click reaction; then DNA-mediated interactions between tethered vesicles are triggered by spiking the salt concentration. These interactions, such as docking and fusion, can then be observed for individual vesicles as they collide on the surface. The architecture of this new system also permits control over the number of lipid anchors that tether the vesicle to the supporting bilayer. The diffusion coefficient of tethered vesicles anchored by two lipids is approximately 1.6-fold slower than that of vesicles anchored only with a single lipid, consistent with a simple physical model. PMID:20180548

  13. Direct observation of OH production from the ozonolysis of olefins

    NASA Astrophysics Data System (ADS)

    Donahue, Neil M.; Kroll, Jesse H.; Anderson, James G.; Demerjian, Kenneth L.

    Ozone olefin reactions may be a significant source of OH in the urban atmosphere, but current evidence for OH production is indirect and contested. We report the first direct observation of OH radicals from the reaction of ozone with a series of olefins (ethene, isoprene, trans-2-butene and 2,3 dimethyl-2-butene) in 4-6 torr of nitrogen. Using LIF to directly observe the steady-state of OH produced by the initial ozone-olefin reaction and subsequently destroyed by the OH-olefin reaction, we are able to establish OH yields broadly consistent with indirect values. The identification of the OH is unequivocal, and there is no indication that it is produced by a secondary process. To support these observations, we present a complete ab-initio potential energy surface for the O3-ethene reaction, extending from the reactants to available products.

  14. New Directions: Emerging Satellite Observations of Above-cloud Aerosols and Direct Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Yu, Hongbin; Zhang, Zhibo

    2013-01-01

    Spaceborne lidar and passive sensors with multi-wavelength and polarization capabilities onboard the A-Train provide unprecedented opportunities of observing above-cloud aerosols and direct radiative forcing. Significant progress has been made in recent years in exploring these new aerosol remote sensing capabilities and generating unique datasets. The emerging observations will advance the understanding of aerosol climate forcing.

  15. Compassionate Allowances

    MedlinePlus

    Skip to content Social Security Search Menu Languages Sign in / up Compassionate Allowances Featured Items Compassionate Allowances Conditions CAL conditions are selected using information received ...

  16. Direct observation of ice nucleation events on individual atmospheric particles

    SciTech Connect

    Wang, Bingbing; Knopf, Daniel A.; China, Swarup; Arey, Bruce W.; Harder, Tristan H.; Gilles, Mary K.; Laskin, Alexander

    2016-01-01

    Heterogeneous ice nucleation is a physical chemistry process of critical relevance to a range of topics in the fundamental and the applied sciences and technologies. Heterogeneous ice nucleation remains insufficiently understood. This is in part due to the lack of experimental methods capable of in situ visualization of ice formation over nucleating substrates with microscopically characterized morphology and composition. We present development, validation and first applications of a novel electron microscopy platform allowing observation of individual ice nucleation events at temperature and relative humidity (RH) relevant for ice formation in a broad range of environmental and applied technology processes. The approach utilizes a custom-built ice nucleation cell, interfaced with an Environmental Scanning Electron Microscope (IN-ESEM system). The IN-ESEM system allows dynamic observations of individual ice formation events over particles of atmospheric relevance and determination of the ice nucleation mechanisms. Additional IN-ESEM experiments allow examination of the location of ice formation on the surface of individual particles and micro-spectroscopy analysis of the ice nucleating particles (INPs). This includes elemental composition detected by the energy dispersed analysis of X-rays (EDX), speciation of the organic content in particles using scanning transmission X-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS), and Helium ion microscopy (HeIM). The capabilities of the IN-ESEM experimental platform are demonstrated first on laboratory standards and then by chemical imaging of INPs using a complex sample of ambient particles.

  17. Directly observed therapy for tuberculosis: the Harlem Hospital experience, 1993.

    PubMed Central

    el-Sadr, W; Medard, F; Berthaud, V; Barthaud, V

    1996-01-01

    OBJECTIVES. A directly observed therapy program was established at Harlem Hospital, New York, NY, in 1993 to promote high tuberculosis treatment completion rates. METHODS. The Harlem program used an on-site surrogate family model. Treatment completion rate, visit adherence rate, human immuno-deficiency virus seroprevalence, and time to sputum culture conversion were assessed. RESULTS. Out of 145 enrolled patients with suspected and confirmed tuberculosis, 95 (92 confirmed and 3 suspected) continued treatment. The visit adherence rate was 91.1 +/- 7.9%, with one patient (1%) lost to follow-up. CONCLUSION. High rates of treatment completion and visit adherence were achieved because of unique program characteristics. Thus, directly observed therapy is advocated as a means of ensuring treatment completion. PMID:8712276

  18. Direct Observations of the Evolution of Polar Cap Ionization Patches

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Zhang, B.; Lockwood, M. M.; Hu, H.; Moen, J. I.; Ruohoniemi, J.; Thomas, E. G.; Zhang, S.; Yang, H.; Liu, R.; McWilliams, K. A.; Baker, J. B.

    2013-12-01

    Patches of ionization are common in the polar ionosphere where their motion and associated density gradients give variable disturbances to High Frequency (HF) radio communications, over-the-horizon radar location errors, and disruption and errors to satellite navigation and communication. Their formation and evolution are poorly understood, particularly under disturbed space weather conditions. We report direct observations of the full evolution of patches during a geomagnetic storm, including formation, polar cap entry, transpolar evolution, polar cap exit, and sunward return flow. Our observations show that modulation of nightside reconnection in the substorm cycle of the magnetosphere helps form the gaps between patches where steady convection would give a 'tongue' of ionization (TOI).

  19. Molecular oxygen observed by direct photoproduction from carbon dioxide

    NASA Astrophysics Data System (ADS)

    Larimian, Seyedreza; Erattupuzha, Sonia; Mai, Sebastian; Marquetand, Philipp; González, Leticia; Baltuška, Andrius; Kitzler, Markus; Xie, Xinhua

    2017-01-01

    We report experiments on the direct observation of molecular oxygen formation from CO2 in strong laser fields with a reaction microscope. Our accompanying simulations and pump-probe measurements suggest that CO2 molecules undergo bending motion during strong-field ionization which supports the molecular oxygen formation process. The observation of molecular oxygen formation from CO2 may trigger further experimental and theoretical studies on such processes with laser pulses, and provides hints in studies of the O2 and O2+ abundance in CO2-dominated planetary atmospheres.

  20. Microcrack closure in rocks under stress - Direct observation

    NASA Technical Reports Server (NTRS)

    Batzle, M. L.; Simmons, G.; Siegfried, R. W.

    1980-01-01

    Direct observations of the closure of microcracks in rocks under increasing stress are reported. Uniaxial stresses up to 300 bars were applied to untreated and previously heated samples of Westerly granite and Frederick diabase by a small hydraulic press which fit entirely within a scanning electron microscope. Crack closure characteristics are found to depend on crack orientation, with cracks perpendicular to the applied stress closing and those parallel tending to open, as well as crack aspect ratio, crack intersection properties, stress concentrations and surface roughness. Uniaxial and hydrostatic stress measurements are found to be strongly dependent on fracture content as observed by SEM, and the observed hysteresis in strain measurements in the first stress cycles is also related to microscopic processes

  1. Direct observation of intermolecular interactions mediated by hydrogen bonding

    SciTech Connect

    De Marco, Luigi; Reppert, Mike; Thämer, Martin; Tokmakoff, Andrei

    2014-07-21

    Although intermolecular interactions are ubiquitous in physicochemical phenomena, their dynamics have proven difficult to observe directly, and most experiments rely on indirect measurements. Using broadband two-dimensional infrared spectroscopy (2DIR), we have measured the influence of hydrogen bonding on the intermolecular vibrational coupling between dimerized N-methylacetamide molecules. In addition to strong intramolecular coupling between N–H and C=O oscillators, cross-peaks in the broadband 2DIR spectrum appearing upon dimerization reveal strong intermolecular coupling that changes the character of the vibrations. In addition, dimerization changes the effects of intramolecular coupling, resulting in Fermi resonances between high and low-frequency modes. These results illustrate how hydrogen bonding influences the interplay of inter- and intramolecular vibrations, giving rise to correlated nuclear motions and significant changes in the vibrational structure of the amide group. These observations have direct impact on modeling and interpreting the IR spectra of proteins. In addition, they illustrate a general approach to direct molecular characterization of intermolecular interactions.

  2. Direct observation of microbial inhibition of calcite dissolution.

    PubMed

    Lüttge, Andreas; Conrad, Pamela G

    2004-03-01

    Vertical scanning interferometry (VSI) provides a method for quantification of surface topography at the angstrom to nanometer level. Time-dependent VSI measurements can be used to study the surface-normal retreat across crystal and other solid surfaces during dissolution or corrosion processes. Therefore, VSI can be used to directly and nondestructively measure mineral dissolution rates with high precision. We have used this method to compare the abiotic dissolution behavior of a representative calcite (CaCO(3)) cleavage face with that observed upon addition of an environmental microbe, Shewanella oneidensis MR-1, to the crystal surface. From our direct observations, we have concluded that the presence of the microbes results in a significant inhibition of the rate of calcite dissolution. This inhibition appears to be a 2nd-order effect that is related to the formation of etch pits. The opening of etch pits was greatly inhibited in the presence of added bacteria, suggesting that the bacterial cells exert their effect by inhibiting the formation of etch pits at high-energy sites at the crystal surface caused by lattice defects, e.g., screw or point dislocations. The experimental methodology thus provides a nondestructive, directly quantifiable, and easily visualized view of the interactions of microbes and minerals during weathering (or corrosion) processes or during mineral precipitation.

  3. Direct observation of closure domain wall mediated spin waves

    SciTech Connect

    Mozooni, Babak McCord, Jeffrey

    2015-07-27

    The generation and guiding of spin waves from and by magnetic domain walls are demonstrated. The spin waves radiate from pinned and oscillating magnetic closure domain walls and propagate linearly along a narrow path formed by the surrounding 180° asymmetric Bloch domain walls. The propagating spin wave modes are directly visualized by time-resolved magneto-optical Kerr microscopy with picosecond temporal resolution. A linear relationship between excitation frequency, wavelength, and number of spin waves per domain exists. Independent of the field excitation frequency, a constant phase velocity of spin waves propagation is obtained. Spin waves characteristics can be tuned by varying the magnetic domain dynamics, allowing for variable spin wave characteristics with magnetic field characteristics and histories.

  4. Direct observation of lubricant additives using tomography techniques

    NASA Astrophysics Data System (ADS)

    Chen, Yunyun; Sanchez, Carlos; Parkinson, Dilworth Y.; Liang, Hong

    2016-07-01

    Lubricants play important roles in daily activities such as driving, walking, and cooking. The current understanding of mechanisms of lubrication, particularly in mechanical systems, has been limited by the lack of capability in direct observation. Here, we report an in situ approach to directly observe the motion of additive particles in grease under the influence of shear. Using the K-edge tomography technique, it is possible to detect particular additives in a grease and observe their distribution through 3D visualization. A commercial grease as a reference was studied with and without an inorganic additive of Fe3O4 microparticles. The results showed that it was possible to identify these particles and track their movement. Under a shear stress, Fe3O4 particles were found to adhere to the edge of calcium complex thickeners commonly used in grease. Due to sliding, the grease formed a film with increased density. This approach enables in-line monitoring of a lubricant and future investigation in mechanisms of lubrication.

  5. Direct state reconstruction with coupling-deformed pointer observables

    NASA Astrophysics Data System (ADS)

    Zhu, Xuanmin; Zhang, Yu-Xiang; Wu, Shengjun

    2016-06-01

    Direct state tomography (DST) using weak measurements has received wide attention. Based on the concept of coupling-deformed pointer observables presented by Zhang et al. [Y.-X. Zhang, S. Wu, and Z.-B. Chen, Phys. Rev. A 93, 032128 (2016), 10.1103/PhysRevA.93.032128], a modified direct state tomography (MDST) is proposed, examined, and compared with other typical state tomography schemes. MDST has exact validity for measurements of any strength. We identify the strength needed to attain the highest efficiency level of MDST by using statistical theory. MDST is much more efficient than DST in the sense that far fewer samples are needed to reach DST's level of reconstruction accuracy. Moreover, MDST has no inherent bias when compared to DST.

  6. Responses to the advanced notice of proposed rulemaking EPA published on June 6, 1996 regarding changes to the EPA allowance auctions and elimination of the direct sale

    SciTech Connect

    Critchfield, L.R.

    1997-12-31

    On June 6, 1996, EPA`s Acid Rain Program published an advance notice of proposed rulemaking (ANPRM) in the Federal Register seeking comment on: (1) whether to change the design of the annual sulfur dioxide (SO{sub 2}) allowance auctions; (2) whether to change the timing of the allowance auctions; (3) whether to change the requirement that the minimum price of offered allowances must be in whole dollars, and (4) whether EPA should propose the ability to submit allowance transfers electronically. EPA also published on that day a proposed and direct final rule on whether to eliminate the direct sale. This paper documents the issues addressed in the ANPRM, the comments EPA received, and EPA`s responses to those comments. EPA received comments from 14 separate commenters.

  7. Direct Observation of Teacher and Student Behavior in School Settings: Trends, Issues and Future Directions

    ERIC Educational Resources Information Center

    Lewis, Timothy J.; Scott, Terrance M.; Wehby, Joseph H.; Wills, Howard P.

    2014-01-01

    Across the modern history of the field of special education and emotional/behavioral disorders (EBD), direct observation of student and educator behavior has been an essential component of the diagnostic process, student progress monitoring, and establishing functional and statistical relationships within research. This article provides an…

  8. Direct observation of Kelvin waves excited by quantized vortex reconnection

    PubMed Central

    Fonda, Enrico; Meichle, David P.; Ouellette, Nicholas T.; Hormoz, Sahand; Lathrop, Daniel P.

    2014-01-01

    Quantized vortices are key features of quantum fluids such as superfluid helium and Bose–Einstein condensates. The reconnection of quantized vortices and subsequent emission of Kelvin waves along the vortices are thought to be central to dissipation in such systems. By visualizing the motion of submicron particles dispersed in superfluid 4He, we have directly observed the emission of Kelvin waves from quantized vortex reconnection. We characterize one event in detail, using dimensionless similarity coordinates, and compare it with several theories. Finally, we give evidence for other examples of wavelike behavior in our system. PMID:24704878

  9. Direct observations of the evolution of polar cap ionization patches.

    PubMed

    Zhang, Qing-He; Zhang, Bei-Chen; Lockwood, Michael; Hu, Hong-Qiao; Moen, Jøran; Ruohoniemi, J Michael; Thomas, Evan G; Zhang, Shun-Rong; Yang, Hui-Gen; Liu, Rui-Yuan; McWilliams, Kathryn A; Baker, Joseph B H

    2013-03-29

    Patches of ionization are common in the polar ionosphere, where their motion and associated density gradients give variable disturbances to high-frequency (HF) radio communications, over-the-horizon radar location errors, and disruption and errors to satellite navigation and communication. Their formation and evolution are poorly understood, particularly under disturbed space weather conditions. We report direct observations of the full evolution of patches during a geomagnetic storm, including formation, polar cap entry, transpolar evolution, polar cap exit, and sunward return flow. Our observations show that modulation of nightside reconnection in the substorm cycle of the magnetosphere helps form the gaps between patches where steady convection would give a "tongue" of ionization (TOI).

  10. Direct Observations of PMC Local Time Variations by Aura OMI

    NASA Technical Reports Server (NTRS)

    DeLand, Matthew T.; Shettle, Eric P.; Thomas, Gary E.; Olivero, John J.

    2010-01-01

    The Ozone Monitoring Instrument (OMI) on the Aura satellite obtains unique measurements for polar mesospheric cloud (PMC) analysis. Its wide cross-track viewing swath and high along-track spatial resolution makes it possible to directly evaluate PMC occurrence frequency and brightness variations between 6S" and 8S' latitude as a function of local time over a 12-14 h continuous period. OMI PMC local time variations are closely coupled to concurrent variations in measurement scattering angle, so that ice phase function effects must be considered when interpreting the observations. Two different phase functions corresponding to bright and faint clouds are examined in this analysis. OMI observations show maximum frequency and albedo values at 8-10 h local time in the Northern Hemisphere, with decreasing amplitude at higher latitudes. Southern Hemisphere values reach a minimum at 18-20 h LT. Larger variations are seen in Northern Hemisphere data. No statistically significant longitudinal dependence was seen.

  11. Direct observation of thitherto unobservable quantum phenomena by using electrons.

    PubMed

    Tonomura, Akira

    2005-10-18

    Fundamental aspects of quantum mechanics, which were discussed only theoretically as "thought experiments" in the 1920s and 1930s, have begun to frequently show up in nanoscopic regions owing to recent rapid progress in advanced technologies. Quantum phenomena were once regarded as the ultimate factors limiting further miniaturization trends of microstructured electronic devices, but now they have begun to be actively used as the principles for new devices such as quantum computers. To directly observe what had been unobservable quantum phenomena, we have tried to develop bright and monochromatic electron beams for the last 35 years. Every time the brightness of an electron beam improved, fundamental experiments in quantum mechanics became possible, and quantum phenomena became observable by using the wave nature of electrons.

  12. Directly observable optical properties of sprites in Central Europe

    NASA Astrophysics Data System (ADS)

    Bór, József

    2013-04-01

    Luminous optical emissions accompanying streamer-based natural electric breakdown processes initiating in the mesosphere are called sprites. 489 sprite events have been observed with a TV frame rate video system in Central Europe from Sopron (47.68N, 16.58E, 230 m MSL), Hungary between 2007 and 2009. On the basis of these observations, characteristic morphological properties of sprites, i.e. basic forms (e.g. column, carrot, angel, etc.) as well as common morphological features (e.g. tendrils, glows, puffs, beads, etc.), have been identified. Probable time sequences of streamer propagation directions were associated with each of the basic sprite forms. It is speculated that different sequences of streamer propagation directions can result in very similar final sprite shapes. The number and type variety of sprite elements appearing in an event as well as the total optical duration of an event was analyzed statistically. Jellyfish and dancing sprite events were considered as special subsets of sprite clusters. It was found that more than 90% of the recorded sprite elements appeared in clusters rather than alone and more than half of the clusters contained more than one basic sprite forms. The analysis showed that jellyfish sprites and clusters of column sprites featuring glows and tendrils do not tend to have optical lifetimes longer than 80 ms. Such very long optical lifetimes have not been observed in sprite clusters containing more than 25 elements of any type, either. In contrast to clusters containing sprite entities of only one form, sprite events showing more sprite forms seem to have extended optical durations more likely. The need for further investigation and for finding theoretical concepts to link these observations to electric conditions ambient for sprite formation is emphasized.

  13. Direct observation of photoinduced bent nitrosyl excited-state complexes

    SciTech Connect

    Sawyer, Karma R.; Steele, Ryan P.; Glascoe, Elizabeth A.; Cahoon, James F.; Schlegel, Jacob P.; Head-Gordon, Martin; Harris, Charles B.

    2008-06-28

    Ground state structures with side-on nitrosyl ({eta}{sup 2}-NO) and isonitrosyl (ON) ligands have been observed in a variety of transition-metal complexes. In contrast, excited state structures with bent-NO ligands have been proposed for years but never directly observed. Here we use picosecond time-resolved infrared spectroscopy and density functional theory (DFT) modeling to study the photochemistry of Co(CO){sub 3}(NO), a model transition-metal-NO compound. Surprisingly, we have observed no evidence for ON and {eta}{sup 2}-NO structural isomers, but have observed two bent-NO complexes. DFT modeling of the ground and excited state potentials indicates that the bent-NO complexes correspond to triplet excited states. Photolysis of Co(CO){sub 3}(NO) with a 400-nm pump pulse leads to population of a manifold of excited states which decay to form an excited state triplet bent-NO complex within 1 ps. This structure relaxes to the ground triplet state in ca. 350 ps to form a second bent-NO structure.

  14. Hyperpolarized 13C allows a direct measure of flux through a single enzyme-catalyzed step by NMR

    PubMed Central

    Merritt, Matthew E.; Harrison, Crystal; Storey, Charles; Jeffrey, F. Mark; Sherry, A. Dean; Malloy, Craig R.

    2007-01-01

    13C NMR is a powerful tool for monitoring metabolic fluxes in vivo. The recent availability of automated dynamic nuclear polarization equipment for hyperpolarizing 13C nuclei now offers the potential to measure metabolic fluxes through select enzyme-catalyzed steps with substantially improved sensitivity. Here, we investigated the metabolism of hyperpolarized [1-13C1]pyruvate in a widely used model for physiology and pharmacology, the perfused rat heart. Dissolved 13CO2, the immediate product of the first step of the reaction catalyzed by pyruvate dehydrogenase, was observed with a temporal resolution of ≈1 s along with H13CO3−, the hydrated form of 13CO2 generated catalytically by carbonic anhydrase. In hearts presented with the medium-chain fatty acid octanoate in addition to hyperpolarized [1-13C1]pyruvate, production of 13CO2 and H13CO3− was suppressed by ≈90%, whereas the signal from [1-13C1]lactate was enhanced. In separate experiments, it was shown that O2 consumption and tricarboxylic acid (TCA) cycle flux were unchanged in the presence of added octanoate. Thus, the rate of appearance of 13CO2 and H13CO3− from [1-13C1]pyruvate does not reflect production of CO2 in the TCA cycle but rather reflects flux through pyruvate dehydrogenase exclusively. PMID:18056642

  15. Direct microscopic observation of forward osmosis membrane fouling.

    PubMed

    Wang, Yining; Wicaksana, Filicia; Tang, Chuyang Y; Fane, Anthony G

    2010-09-15

    This study describes the application of a noninvasive direct microscopic observation method for characterizing fouling of a forward osmosis (FO) membrane. The effect of the draw solution concentration, membrane orientation, and feed spacer on FO fouling was systematically investigated in a cross-flow setup using latex particles as model foulant in the feedwater. Higher draw solution (DS) concentrations (and thus increased flux levels) resulted in dramatic increase in the surface coverage by latex particles, suggesting that the critical flux concept might be applicable even for the osmotically driven FO process. Under identical draw solution concentrations, the active-layer-facing-the-feed-solution orientation (AL-FS) experienced significantly less fouling compared to the alternative orientation. This may be explained by the lower water flux in AL-FS, which is consistent with the critical flux concept. The use of a feed spacer not only dramatically enhanced the initial flux of the FO membrane, but also significantly improved the flux stability during FO fouling. Despite such beneficial effects of using the feed spacer, a significant amount of particle accumulation was found near the spacer filament, suggesting further opportunities for improved spacer design. To the best of the authors' knowledge, this is the first direct microscopic observation study on FO fouling.

  16. Direct observation of the strange b baryon Xib-.

    PubMed

    Abazov, V M; Abbott, B; Abolins, M; Acharya, B S; Adams, M; Adams, T; Aguilo, E; Ahn, S H; Ahsan, M; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Anastasoaie, M; Ancu, L S; Andeen, T; Anderson, S; Andrieu, B; Anzelc, M S; Arnoud, Y; Arov, M; Arthaud, M; Askew, A; Asman, B; Assis Jesus, A C S; Atramentov, O; Autermann, C; Avila, C; Ay, C; Badaud, F; Baden, A; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, S; Banerjee, P; Barberis, E; Barfuss, A-F; Bargassa, P; Baringer, P; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Beale, S; Bean, A; Begalli, M; Begel, M; Belanger-Champagne, C; Bellantoni, L; Bellavance, A; Benitez, J A; Beri, S B; Bernardi, G; Bernhard, R; Berntzon, L; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Biscarat, C; Blazey, G; Blekman, F; Blessing, S; Bloch, D; Bloom, K; Boehnlein, A; Boline, D; Bolton, T A; Borissov, G; Bos, K; Bose, T; Brandt, A; Brock, R; Brooijmans, G; Bross, A; Brown, D; Buchanan, N J; Buchholz, D; Buehler, M; Buescher, V; Burdin, S; Burke, S; Burnett, T H; Buszello, C P; Butler, J M; Calfayan, P; Calvet, S; Cammin, J; Caron, S; Carvalho, W; Casey, B C K; Cason, N M; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K M; Chan, K; Chandra, A; Charles, F; Cheu, E; Chevallier, F; Cho, D K; Choi, S; Choudhary, B; Christofek, L; Christoudias, T; Cihangir, S; Claes, D; Clément, C; Clément, B; Coadou, Y; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M-C; Crépé-Renaudin, S; Cutts, D; Cwiok, M; da Motta, H; Das, A; Davies, G; De, K; de Jong, S J; de Jong, P; De La Cruz-Burelo, E; De Oliveira Martins, C; Degenhardt, J D; Déliot, F; Demarteau, M; Demina, R; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Dominguez, A; Dong, H; Dudko, L V; Duflot, L; Dugad, S R; Duggan, D; Duperrin, A; Dyer, J; Dyshkant, A; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Eno, S; Ermolov, P; Evans, H; Evdokimov, A; Evdokimov, V N; Ferapontov, A V; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Ford, M; Fortner, M; Fox, H; Fu, S; Fuess, S; Gadfort, T; Galea, C F; Gallas, E; Galyaev, E; Garcia, C; Garcia-Bellido, A; Gavrilov, V; Gay, P; Geist, W; Gelé, D; Gerber, C E; Gershtein, Y; Gillberg, D; Ginther, G; Gollub, N; Gómez, B; Goussiou, A; Grannis, P D; Greenlee, H; Greenwood, Z D; Gregores, E M; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guo, J; Guo, F; Gutierrez, P; Gutierrez, G; Haas, A; Hadley, N J; Haefner, P; Hagopian, S; Haley, J; Hall, I; Hall, R E; Han, L; Hanagaki, K; Hansson, P; Harder, K; Harel, A; Harrington, R; Hauptman, J M; Hauser, R; Hays, J; Hebbeker, T; Hedin, D; Hegeman, J G; Heinmiller, J M; Heinson, A P; Heintz, U; Hensel, C; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hobbs, J D; Hoeneisen, B; Hoeth, H; Hohlfeld, M; Hong, S J; Hooper, R; Hossain, S; Houben, P; Hu, Y; Hubacek, Z; Hynek, V; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jakobs, K; Jarvis, C; Jesik, R; Johns, K; Johnson, C; Johnson, M; Jonckheere, A; Jonsson, P; Juste, A; Käfer, D; Kahn, S; Kajfasz, E; Kalinin, A M; Kalk, J R; Kalk, J M; Kappler, S; Karmanov, D; Kasper, J; Kasper, P; Katsanos, I; Kau, D; Kaur, R; Kaushik, V; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y M; Khatidze, D; Kim, H; Kim, T J; Kirby, M H; Kirsch, M; Klima, B; Kohli, J M; Konrath, J-P; Kopal, M; Korablev, V M; Kothari, B; Kozelov, A V; Krop, D; Kryemadhi, A; Kuhl, T; Kumar, A; Kunori, S; Kupco, A; Kurca, T; Kvita, J; Lacroix, F; Lam, D; Lammers, S; Landsberg, G; Lazoflores, J; Lebrun, P; Lee, W M; Leflat, A; Lehner, F; Lellouch, J; Lesne, V; Leveque, J; Lewis, P; Li, J; Li, Q Z; Li, L; Lietti, S M; Lima, J G R; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, Y; Liu, Z; Lobo, L; Lobodenko, A; Lokajicek, M; Lounis, A; Love, P; Lubatti, H J; Lyon, A L; Maciel, A K A; Mackin, D; Madaras, R J; Mättig, P; Magass, C; Magerkurth, A; Makovec, N; Mal, P K; Malbouisson, H B; Malik, S; Malyshev, V L; Mao, H S; Maravin, Y; Martin, B; McCarthy, R; Melnitchouk, A; Mendes, A; Mendoza, L; Mercadante, P G; Merekov, Y P; Merkin, M; Merritt, K W; Meyer, J; Meyer, A; Michaut, M; Millet, T; Mitrevski, J; Molina, J; Mommsen, R K; Mondal, N K; Moore, R W; Moulik, T; Muanza, G S; Mulders, M; Mulhearn, M; Mundal, O; Mundim, L; Nagy, E; Naimuddin, M; Narain, M; Naumann, N A; Neal, H A; Negret, J P; Neustroev, P; Nilsen, H; Nomerotski, A; Novaes, S F; Nunnemann, T; O'Dell, V; O'Neil, D C; Obrant, G; Ochando, C; Onoprienko, D; Oshima, N; Osta, J; Otec, R; Otero y Garzón, G J; Owen, M; Padley, P; Pangilinan, M; Panov, G; Parashar, N; Park, S-J; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Pawloski, G; Penning, B; Perea, P M; Peters, K; Peters, Y; Pétroff, P; Petteni, M; Piegaia, R; Piper, J; Pleier, M-A; Podesta-Lerma, P L M; Podstavkov, V M; Pogorelov, Y; Pol, M-E; Polozov, P; Pompos, A; Pope, B G; Popov, A V; Potter, C; Prado da Silva, W L; Prosper, H B; Protopopescu, S; Qian, J; Quadt, A; Quinn, B; Rakitine, A; Rangel, M S; Rani, K J; Ranjan, K; Ratoff, P N; Renkel, P; Reucroft, S; Rich, P; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F; Robinson, S; Rodrigues, R F; Royon, C; Rozhdestvenski, A; Rubinov, P; Ruchti, R; Safronov, G; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Santoro, A; Savage, G; Sawyer, L; Scanlon, T; Schaile, D; Schamberger, R D; Scheglov, Y; Schellman, H; Schieferdecker, P; Schliephake, T; Schmitt, C; Schwanenberger, C; Schwartzman, A; Schwienhorst, R; Sekaric, J; Sengupta, S; Severini, H; Shabalina, E; Shamim, M; Shary, V; Shchukin, A A; Shivpuri, R K; Shpakov, D; Siccardi, V; Simak, V; Sirotenko, V; Skubic, P; Slattery, P; Smirnov, D; Smith, R P; Snow, J; Snow, G R; Snyder, S; Söldner-Rembold, S; Sonnenschein, L; Sopczak, A; Sosebee, M; Soustruznik, K; Souza, M; Spurlock, B; Stark, J; Steele, J; Stolin, V; Stone, A; Stoyanova, D A; Strandberg, J; Strandberg, S; Strang, M A; Strauss, M; Strauss, E; Ströhmer, R; Strom, D; Strovink, M; Stutte, L; Sumowidagdo, S; Svoisky, P; Sznajder, A; Talby, M; Tamburello, P; Tanasijczuk, A; Taylor, W; Telford, P; Temple, J; Tiller, B; Tissandier, F; Titov, M; Tokmenin, V V; Tomoto, M; Toole, T; Torchiani, I; Trefzger, T; Tsybychev, D; Tuchming, B; Tully, C; Tuts, P M; Unalan, R; Uvarov, S; Uvarov, L; Uzunyan, S; Vachon, B; van den Berg, P J; van Eijk, B; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vartapetian, A; Vasilyev, I A; Vaupel, M; Verdier, P; Vertogradov, L S; Vertogradova, Y; Verzocchi, M; Villeneuve-Seguier, F; Vint, P; Vokac, P; Von Toerne, E; Voutilainen, M; Vreeswijk, M; Wagner, R; Wahl, H D; Wang, L; Wang, M H L S; Warchol, J; Watts, G; Wayne, M; Weber, M; Weber, G; Weerts, H; Wenger, A; Wermes, N; Wetstein, M; White, A; Wicke, D; Wilson, G W; Wimpenny, S J; Wobisch, M; Wood, D R; Wyatt, T R; Xie, Y; Yacoob, S; Yamada, R; Yan, M; Yasuda, T; Yatsunenko, Y A; Yip, K; Yoo, H D; Youn, S W; Yu, J; Yu, C; Yurkewicz, A; Zatserklyaniy, A; Zeitnitz, C; Zhang, D; Zhao, T; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zieminski, A; Zivkovic, L; Zutshi, V; Zverev, E G

    2007-08-03

    We report the first direct observation of the strange b baryon Xi(b)- (Xi(b)+). We reconstruct the decay Xi(b)- -->J/psiXi-, with J/psi-->mu+mu-, and Xi--->Lambdapi--->ppi-pi- in pp collisions at square root of s =1.96 TeV. Using 1.3 fb(-1) of data collected by the D0 detector, we observe 15.2 +/- 4.4(stat)(-0.4)(+1.9)(syst) Xi(b)- candidates at a mass of 5.774 +/- 0.011(stat) +/- 0.015(syst) GeV. The significance of the observed signal is 5.5 sigma, equivalent to a probability of 3.3 x 10(-8) of it arising from a background fluctuation. Normalizing to the decay Lambda(b)-->J/psiLambda, we measure the relative rate sigma(Xi(b-) x B(Xi)b})- -->J/psiXi-)/sigma(Lambda(b)) x B(Lambda(b)-->J/psiLambda) = 0.28+/-0.09(stat)(-0.08)(+0.09)(syst).

  17. Direct observation of athermal photofluidisation in azo-polymer films.

    PubMed

    Hurduc, Nicolae; Donose, Bogdan C; Macovei, Alina; Paius, Cristina; Ibanescu, Constanta; Scutaru, Dan; Hamel, Matthieu; Branza-Nichita, Norica; Rocha, Licinio

    2014-07-14

    The surface relief gratings (SRGs) can be generated when azo-polymer films are exposed to laser beam interference as a result of mass migration. Despite considerable research effort over the past two decades this complex phenomenon remains incompletely understood. Here we show, for the first time, the athermal photofluidisation of azo-polysiloxane films exposed to 488 nm light, directly monitored by optical microscopy. A process of surface relief erasure occurring in parallel with its inscription was also observed during laser irradiation. We therefore propose a new mechanism of SRG formation, based on three different processes: (1) the polymer photo-fluidization in illuminated regions, (2) the mass displacement from illuminated to dark regions and (3) the inverse mass displacement, from dark to illuminated regions. The mechanical properties of the films during UV light irradiation were investigated by classical rheology and, for the first time, by using amplitude modulation-frequency modulation atomic force microscopy (AM-FM AFM).

  18. Direct Observation of Tropomyosin Binding to Actin Filaments

    PubMed Central

    Schmidt, William M.; Lehman, William; Moore, Jeffrey R.

    2015-01-01

    Tropomyosin is an elongated α-helical coiled-coil that binds to seven consecutive actin subunits along the long-pitch helix of actin filaments. Once bound, tropomyosin polymerizes end-to-end and both stabilizes F-actin and regulates access of various actin binding proteins including myosin in muscle and non-muscle cells. Single tropomyosin molecules bind weakly to F-actin with millimolar Kd, whereas the end-to-end linked tropomyosin associates with about a one thousand-fold greater affinity. Despite years of study, the assembly mechanism of tropomyosin onto actin filaments remains unclear. In the current study, we used total internal reflection fluorescence (TIRF) microscopy to directly monitor the cooperative binding of fluorescently labeled tropomyosin molecules to phalloidin-stabilized actin filaments. We find that tropomyosin molecules assemble from multiple growth sites following random low affinity binding of single molecules to actin. As the length of the tropomyosin chain increases, the probability of detachment decreases, which leads to further chain growth. Tropomyosin chain extension is linearly dependent on tropomyosin concentration, occurring at approximately 100 monomers/(μM*s). The random tropomyosin binding to F-actin leads to discontinuous end-to-end association where gaps in the chain continuity smaller than the required seven sequential actin monomers are available. Direct observation of tropomyosin detachment revealed the number of gaps in actin-bound tropomyosin, the time course of gap annealing, and the eventual filament saturation process. PMID:26033920

  19. Enabling direct nanoscale observations of biological reactions with dynamic TEM

    PubMed Central

    Evans, James E.; Browning, Nigel D.

    2013-01-01

    Biological processes occur on a wide range of spatial and temporal scales: from femtoseconds to hours and from angstroms to meters. Many new biological insights can be expected from a better understanding of the processes that occur on these very fast and very small scales. In this regard, new instruments that use fast X-ray or electron pulses are expected to reveal novel mechanistic details for macromolecular protein dynamics. To ensure that any observed conformational change is physiologically relevant and not constrained by 3D crystal packing, it would be preferable for experiments to utilize small protein samples such as single particles or 2D crystals that mimic the target protein's native environment. These samples are not typically amenable to X-ray analysis, but transmission electron microscopy has imaged such sample geometries for over 40 years using both direct imaging and diffraction modes. While conventional transmission electron microscopes (TEM) have visualized biological samples with atomic resolution in an arrested or frozen state, the recent development of the dynamic TEM (DTEM) extends electron microscopy into a dynamic regime using pump-probe imaging. A new second-generation DTEM, which is currently being constructed, has the potential to observe live biological processes with unprecedented spatiotemporal resolution by using pulsed electron packets to probe the sample on micro- and nanosecond timescales. This article reviews the experimental parameters necessary for coupling DTEM with in situ liquid microscopy to enable direct imaging of protein conformational dynamics in a fully hydrated environment and visualize reactions propagating in real time. PMID:23315566

  20. Direct observation of individual dislocation interaction processes with grain boundaries

    PubMed Central

    Kondo, Shun; Mitsuma, Tasuku; Shibata, Naoya; Ikuhara, Yuichi

    2016-01-01

    In deformation processes, the presence of grain boundaries has a crucial influence on dislocation behavior; these boundaries drastically change the mechanical properties of polycrystalline materials. It has been considered that grain boundaries act as effective barriers for dislocation glide, but the origin of this barrier-like behavior has been a matter of conjecture for many years. We directly observe how the motion of individual dislocations is impeded at well-defined high-angle and low-angle grain boundaries in SrTiO3, via in situ nanoindentation experiments inside a transmission electron microscope. Our in situ observations show that both the high-angle and low-angle grain boundaries impede dislocation glide across them and that the impediment of dislocation glide does not simply originate from the geometric effects; it arises as a result of the local structural stabilization effects at grain boundary cores as well, especially for low-angle grain boundaries. The present findings indicate that simultaneous consideration of both the geometric effects and the stabilization effects is necessary to quantitatively understand the dislocation impediment processes at grain boundaries. PMID:27847862

  1. Evidence of Arctic sea ice thinning from direct observations

    NASA Astrophysics Data System (ADS)

    Renner, Angelika H. H.; Gerland, Sebastian; Haas, Christian; Spreen, Gunnar; Beckers, Justin F.; Hansen, Edmond; Nicolaus, Marcel; Goodwin, Harvey

    2014-07-01

    The Arctic sea ice cover is rapidly shrinking, but a direct, longer-term assessment of the ice thinning remains challenging. A new time series constructed from in situ measurements of sea ice thickness at the end of the melt season in Fram Strait shows a thinning by over 50% during 2003-2012. The modal and mean ice thickness along 79°N decreased at a rate of 0.3 and 0.2 m yr-1, respectively, with long-term averages of 2.5 and 3 m. Airborne observations reveal an east-west thickness gradient across the strait in spring but not in summer due to advection from more different source regions. There is no clear relationship between interannual ice thickness variability and the source regions of the ice. The observed thinning is therefore likely a result of Arctic-wide reduction in ice thickness with a potential shift in exported ice types playing a minor role.

  2. Direct observation of the spin-dependent Peltier effect.

    PubMed

    Flipse, J; Bakker, F L; Slachter, A; Dejene, F K; van Wees, B J

    2012-02-05

    The Peltier coefficient describes the amount of heat that is carried by an electrical current when it passes through a material. When two materials with different Peltier coefficients are placed in contact with one another, the Peltier effect causes a net flow of heat either towards or away from the interface between them. Spintronics describes the transport of electric charge and spin angular momentum by separate spin-up and spin-down channels in a device. The observation that spin-up and spin-down charge transport channels are able to transport heat independently of each other has raised the possibility that spin currents could be used to heat or cool the interface between materials with different spin-dependent Peltier coefficients. Here, we report the direct observation of the heating and cooling of such an interface by a spin current. We demonstrate this spin-dependent Peltier effect in a spin-valve pillar structure that consists of two ferromagnetic layers separated by a non-ferromagnetic metal. Using a three-dimensional finite-element model, we extract spin-dependent Peltier coefficients in the range -0.9 to -1.3 mV for permalloy. The magnetic control of heat flow could prove useful for the cooling of nanoscale electronic components or devices.

  3. Direct observation of the spin-dependent Peltier effect

    NASA Astrophysics Data System (ADS)

    Flipse, J.; Bakker, F. L.; Slachter, A.; Dejene, F. K.; van Wees, B. J.

    2012-03-01

    The Peltier coefficient describes the amount of heat that is carried by an electrical current when it passes through a material. When two materials with different Peltier coefficients are placed in contact with one another, the Peltier effect causes a net flow of heat either towards or away from the interface between them. Spintronics describes the transport of electric charge and spin angular momentum by separate spin-up and spin-down channels in a device. The observation that spin-up and spin-down charge transport channels are able to transport heat independently of each other has raised the possibility that spin currents could be used to heat or cool the interface between materials with different spin-dependent Peltier coefficients. Here, we report the direct observation of the heating and cooling of such an interface by a spin current. We demonstrate this spin-dependent Peltier effect in a spin-valve pillar structure that consists of two ferromagnetic layers separated by a non-ferromagnetic metal. Using a three-dimensional finite-element model, we extract spin-dependent Peltier coefficients in the range -0.9 to -1.3 mV for permalloy. The magnetic control of heat flow could prove useful for the cooling of nanoscale electronic components or devices.

  4. Direct observation of brownian motion of lipids in a membrane.

    PubMed Central

    Lee, G M; Ishihara, A; Jacobson, K A

    1991-01-01

    Nanovid microscopy, which uses 30- to 40-nm colloidal gold probes combined with video-enhanced contrast, can be used to examine random and directed movements of individual molecules in the plasma membrane of living cells. To validate the technique in a model system, the movements of lipid molecules were followed in a supported, planar bilayer containing fluorescein-conjugated phosphatidylethanolamine (Fl-PtdEtn) labeled with 30-nm gold anti-fluorescein (anti-Fl). Multivalent gold probes were prepared by conjugating only anti-Fl to the gold. Paucivalent probes were prepared by mixing an irrelevant antibody with the anti-Fl prior to conjugation. The membrane-bound gold particles moved in random patterns that were indistinguishable from those produced by computer simulations of two-dimensional random motion. The multivalent gold probes had an average lateral diffusion coefficient (D) of 0.26 x 10(-8) cm2/sec, and paucivalent probes had an average D of 0.73 x 10(-8) cm2/sec. Sixteen percent of the multivalent and 50% of the paucivalent probes had values for D in excess of 0.6 x 10(-8) cm2/sec, which, after allowance for stochastic variation, are consistent with the D of 1.3 x 10(-8) cm2/sec measured by fluorescence recovery after photobleaching of Fl-PtdEtn in the planar bilayer. The effect of valency on diffusion suggests that the multivalent gold binds several lipids forming a disk up to 30-40 nm in diameter, resulting in reduced diffusion with respect to the paucivalent gold, which binds one or a very few lipids. Provided the valency of the gold probe is considered in the interpretation of the results. Nanovid microscopy is a valid method for analyzing the movements of single or small groups of molecules within membranes. Images PMID:1712486

  5. Directly Observed Therapy and Improved Tuberculosis Treatment Outcomes in Thailand

    PubMed Central

    Anuwatnonthakate, Amornrat; Limsomboon, Pranom; Nateniyom, Sriprapa; Wattanaamornkiat, Wanpen; Komsakorn, Sittijate; Moolphate, Saiyud; Chiengsorn, Navarat; Kaewsa-ard, Samroui; Sombat, Potjaman; Siangphoe, Umaporn; Mock, Philip A.; Varma, Jay K.

    2008-01-01

    Background The World Health Organization (WHO) recommends that tuberculosis (TB) patients receive directly observed therapy (DOT). Randomized controlled trials have not consistently shown that this practice improves TB treatment success rates. In Thailand, one of 22 WHO-designated high burden TB countries, patients may have TB treatment observed by a health care worker (HCW), family member, or no one. We studied whether DOT improved TB treatment outcomes in a prospective, observational cohort. Methods and Findings We prospectively collected epidemiologic data about TB patients treated at public and private facilities in four provinces in Thailand and the national infectious diseases hospital from 2004–2006. Public health staff recorded the type of observed therapy that patients received during the first two months of TB treatment. We limited our analysis to pulmonary TB patients never previously treated for TB and not known to have multidrug-resistant TB. We analyzed the proportion of patients still on treatment at the end of two months and with treatment success at the end of treatment according to DOT type. We used propensity score analysis to control for factors associated with DOT and treatment outcome. Of 8,031 patients eligible for analysis, 24% received HCW DOT, 59% family DOT, and 18% self-administered therapy (SAT). Smear-positive TB was diagnosed in 63%, and 21% were HIV-infected. Of patients either on treatment or that defaulted at two months, 1601/1636 (98%) patients that received HCW DOT remained on treatment at two months compared with 1096/1268 (86%) patients that received SAT (adjusted OR [aOR] 3.8; 95% confidence interval [CI] 2.4–6.0) and 3782/3987 (95%) patients that received family DOT (aOR 2.1; CI, 1.4–3.1). Of patients that had treatment success or that defaulted at the end of treatment, 1369/1477 (93%) patients that received HCW DOT completed treatment compared with 744/1074 (69%) patients that received SAT (aOR 3.3; CI, 2.4–4.5) and

  6. Microcrack closure in rocks under stress: direct observation

    SciTech Connect

    Batzle, M.L.; Simmons, G.; Siegfried, R.W.

    1980-12-10

    Microcrack closure in rocks under increasing stress was observed directly with a scanning electron microscope. Uniaxial stresses to 300 bars were applied with a small hydraulic press to specimens of Westerly (RI) granite, both unheated and previously heat cycled to 500/sup 0/C, and of Frederick (MD) diabase, heat cycled to 700/sup 0/C. Closure characteristics (rate, final closure pressure, etc.) depend on crack orientation, shape, surface roughness, and on the nature of fracture intersections and interactions. Cracks perpendicular to the applied stress closed while those parallel to the stress tended to open. Long, narrow cracks (low aspect ratio) closed at relatively low pressures. At some intersections, one fracture would open while another simultaneously closed, depending upon their orientations. Many fractures closed uniformly even though offset by other fractures. Local stress concentrations often caused new fracturing at low applied stress. Some fractures were propped open until material lodged inside was crushed. Significant irreversible damage occurred during the first stress cycle. Closure characteristics varied significantly among the samples. The unheated granite has cracks with rough, pitted, and mismatched walls. Only partial closure occurred under stress with many sections remaining open. Crack porosity is reduced but continues to be interconnected. Fractures in the preheated granite and diabase are also irregular, but the walls are well-matched and closure is nearly complete. The cracks in the heated granite closed at lower stresses than in the diabase. As the maximum stress was approached for the heated granite, new transgranular cracks formed and preexisting cracks were enlarged. The variations in closure rate and character were also observed in strain measurements.

  7. Direct observation of interface instability during crystal growth

    NASA Technical Reports Server (NTRS)

    Tiller, W. A.; Feigelson, R. S.; Elwell, D.

    1982-01-01

    The general aim of this investigation was to study interface stability and solute segregation phenomena during crystallization of a model system. Emphasis was to be placed on direct observational studies partly because this offered the possibility at a later stage of performing related experiments under substantially convection-free conditions in the space shuttle. The major achievements described in this report are: (1) the development of a new model system for fundamental studies of crystal growth from the melt and the measurement of a range of material parameters necessary for comparison of experiment with theory. (2) The introduction of a new method of measuring segregation coefficient using absorption of a laser beam by the liquid phase. (3) The comparison of segregation in crystals grown by gradient freezing and by pulling from the melt. (4) The introduction into the theory of solute segregation of an interface field term and comparison with experiment. (5) The introduction of the interface field term into the theories of constitutional supercooling and morphological stability and assessment of its importance.

  8. Method for observing phase objects without halos and directional shadows

    NASA Astrophysics Data System (ADS)

    Suzuki, Yoshimasa; Kajitani, Kazuo; Ohde, Hisashi

    2015-03-01

    A new microscopy method for observing phase objects without halos and directional shadows is proposed. The key optical element is an annular aperture at the front focal plane of a condenser with a larger diameter than those used in standard phase contrast microscopy. The light flux passing through the annular aperture is changed by the specimen's surface profile and then passes through an objective and contributes to image formation. This paper presents essential conditions for realizing the method. In this paper, images of colonies formed by induced pluripotent stem (iPS) cells using this method are compared with the conventional phase contrast method and the bright-field method when the NA of the illumination is small to identify differences among these techniques. The outlines of the iPS cells are clearly visible with this method, whereas they are not clearly visible due to halos when using the phase contrast method or due to weak contrast when using the bright-field method. Other images using this method are also presented to demonstrate a capacity of this method: a mouse ovum and superimposition of several different images of mouse iPS cells.

  9. Directly Observing the Galaxies Likely Responsible for Reionization

    NASA Astrophysics Data System (ADS)

    Livermore, R. C.; Finkelstein, S. L.; Lotz, J. M.

    2017-02-01

    We report a new analysis of the Hubble Frontier Fields clusters Abell 2744 and MACS 0416 using wavelet decomposition to remove the cluster light, enabling the detection of highly magnified (>50×) galaxies a factor of 10× fainter in luminosity than previous studies. We find 167 galaxies at z≳ 6, and with this sample we are able to characterize the UV luminosity function to {M}{UV}=-12.5 at z∼ 6, ‑14 at z∼ 7, and ‑15 at z∼ 8. We find a steep faint-end slope (α < -2), and with our improved statistics at the faint end we reduce the fractional uncertainty on α to < 2 % at z∼ 6{--}7 and 4% at z∼ 8. We also investigate the systematic uncertainty due to the lens modeling by using every available lens model individually and comparing the results; this systematic fractional uncertainty on α is < 4 % at all redshifts. We now directly observe galaxies in the luminosity regime where some simulations predict a change in the faint-end slope of the luminosity function, yet our results provide statistically very strong evidence against any turnover in the luminosity range probed, more consistent with simulations in which stars form in lower-mass halos. Thus, we find strong support for the extension of the steep luminosity function to {M}{UV}=-13 at z> 6, consistent with the number of faint galaxies needed to reionize the universe under standard assumptions.

  10. Direct Observation of Rydberg-Rydberg Transitions via Cpmmw Spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Grimes, David; Klein, Ethan; Barnum, Timothy J.; Field, Robert W.

    2014-06-01

    Rydberg-Rydberg transitions of Ca atoms are directly observed by chirped-pulse millimeter-wave spectroscopy, which is a form of broadband, high-resolution, free induction decay-detected (FID) spectroscopy with accurate relative intensities. A new setup, a 20 K Neon buffer gas cooled molecular beam system, has been constructed and tested in our lab. The number density of our target molecules, BaF, is increased by a factor of >100 relative to a Smalley-type laser ablation supersonic beam source. In addition, the laboratory frame velocity is decreased by factor 10, which improves our spectroscopic resolution to better than 50 kHz FWHM at 100 GHz. The improved molecular beam source opens the door to an extension of the CPmmW spectroscopy from atomic Rydberg states to molecular Rydberg states. I expect to present preliminary data from ``pure electronic" spectra of BaF Rydberg molecules. We expect to produce 10^8 state-selected core-nonpenetrating Rydberg molecules in a single pulse of a laser-laser-mm-wave triple resonance excitation sequence.

  11. Direct Observations Of Microbial Activity At Extreme Pressures

    NASA Astrophysics Data System (ADS)

    Sharma, A.; Scott, J. H.; Cody, G. D.; Fogel, M.; Hazen, R. M.; Hemley, R. J.; Huntress, W. T.

    2002-12-01

    Microbial communities adapt to a wide range of pressures, temperatures, salinities, pH, and oxidation states. Although, significant attention has been focused on the effects of high and low temperature on physiology, there is some evidence that elevated pressure may also manifest interesting effects on cellular physiology, such as enzyme inactivation, cell-membrane breach, and suppression of protein interactions with various substrates. However, exactly how these factors affect intact cells is not well understood. In this study, we have adapted diamond anvil cells to explore the effects of high pressure on microbial life. We used the rate of microbial formate oxidation as a probe of metabolic viability. The utilization of formate by microorganisms is a fundamental metabolic process in anaerobic environments. We monitored in-situ microbial formate oxidation via molecular spectroscopy for Shewanella oneidensis strain MR1 and Escherichia coli strain MG1655 at high pressures (68 to 1060 MPa). At pressures of 1200 to 1600 MPa, living bacteria resided in fluid inclusions in ice-VI crystals and continued to be viable upon subsequent release to ambient pressures (0.1 MPa). Furthermore, direct microscopic observations indicate that these cells maintain their ability for cellular division upon decompression from such high pressures. Evidence of microbial viability and activity at these extreme pressures expands by an order of magnitude the range of conditions representing the habitable zone in the solar system. These results imply that pressure may not be a significant impediment to life. The maximum pressure explored in this work is equivalent to a depth of ~ 50 km below Earth's crust, or ~ 160 km in a hypothetical ocean. The pressures encountered at the depths of thick ice caps and deep crustal subsurface may not be a limiting factor for the existence of life. This suggests that deep (water/ice) layers of Europa, Callisto, or Ganymede, subduction zones on Earth, and the

  12. Direct observation of liquid-like behavior of a single Au grain boundary

    NASA Astrophysics Data System (ADS)

    Casillas, Gilberto; Ponce, Arturo; Velázquez-Salazar, J. Jesús; José-Yacamán, Miguel

    2013-06-01

    Behavior of matter at the nanoscale differs from that of the bulk due to confinement and surface effects. Here, we report a direct observation of liquid-like behavior of a single grain boundary formed by cold-welding Au nanoparticles, 40 nm in size, by mechanical manipulation in situ TEM. The grain boundary rotates almost freely due to the free surfaces and can rotate about 90 degrees. The grain boundary sustains more stress than the bulk, confirming a strong bonding between the nanoparticles. Moreover, this technique allows the measurement of the surface diffusion coefficient from experimental observations, which we compute for the Au nanoparticles. This methodology can be used for any metal, oxide, semiconductor or combination of them.Behavior of matter at the nanoscale differs from that of the bulk due to confinement and surface effects. Here, we report a direct observation of liquid-like behavior of a single grain boundary formed by cold-welding Au nanoparticles, 40 nm in size, by mechanical manipulation in situ TEM. The grain boundary rotates almost freely due to the free surfaces and can rotate about 90 degrees. The grain boundary sustains more stress than the bulk, confirming a strong bonding between the nanoparticles. Moreover, this technique allows the measurement of the surface diffusion coefficient from experimental observations, which we compute for the Au nanoparticles. This methodology can be used for any metal, oxide, semiconductor or combination of them. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr01501g

  13. Rupture directivity of fluid-induced microseismic events: Observations from an enhanced geothermal system

    NASA Astrophysics Data System (ADS)

    Folesky, Jonas; Kummerow, Jörn; Shapiro, Serge A.; Häring, Markus; Asanuma, Hiroshi

    2016-11-01

    The rupture process of fluid-induced microseismic events is still poorly understood, mainly due to usually small magnitudes and sparse monitoring geometries. The high-quality recordings of the earthquake sequence 2006-2007 at the enhanced geothermal system at Basel, Switzerland, constitute a rare exception, allowing a systematic directivity study of 195 events using the empirical Green's function method. We observe clear directivity signatures for about half the events which demonstrates that rupture directivity persists down to small magnitudes (ML˜1). The predominant rupture behavior is unilateral. We further find evidence that directivity is magnitude dependent and varies systematically with distance from the injection source. Whereas pore pressure seems to play the dominant role close to the injection source and no preferred rupture direction is observable, directivity aligns parallel to the event distribution with increasing distance (≳100 m) and is preferably oriented away from the injection point. The largest analyzed events (ML˜2) show a distinct behavior: They rupture toward the injection source, suggesting that they nucleate in the vicinity of the pressure front and propagate backward into the perturbed volume. This finding is of particular relevance for seismic hazard assessment of georeservoirs, since it implies that maximum event size is related to dimension of the fluid-perturbed volume. Our study also resolves rupture complexities for a small group of events. This shows that small fault heterogeneities exist down to a scale of a few tens of meters. The observation of directivity and complexity in induced microseismic events suggest that future source studies account for these phenomena.

  14. Direct Observation of the Controlled Magnetization Reversal Processes in Py/Al/Py Assymmetric Ring Stacks

    SciTech Connect

    Huang, L.; Schofield, M.A.; Zhu, Y.

    2009-07-27

    Electron holographic experiments were performed to study the magnetization reversal process of patterned Py/Al/Py (20nm/20nm/10nm) asymmetric ring stacks. By changing the in-plane field applied perpendicular to the ring's symmetric axis, we directly observed the vortex-based magnetization reversal process through controlled domain wall motion and annihilation. The two magnetic layers were found to switch at different critical fields, leading to the existence of various distinct domain state combinations. Quantitative agreement was obtained between measured phase shifts and those derived from micromagnetic calculations, which allows us to resolve the layer-by-layer magnetic behavior as a function of applied external field.

  15. Tracking individual membrane proteins and their biochemistry: The power of direct observation.

    PubMed

    Barden, Adam O; Goler, Adam S; Humphreys, Sara C; Tabatabaei, Samaneh; Lochner, Martin; Ruepp, Marc-David; Jack, Thomas; Simonin, Jonathan; Thompson, Andrew J; Jones, Jeffrey P; Brozik, James A

    2015-11-01

    The advent of single molecule fluorescence microscopy has allowed experimental molecular biophysics and biochemistry to transcend traditional ensemble measurements, where the behavior of individual proteins could not be precisely sampled. The recent explosion in popularity of new super-resolution and super-localization techniques coupled with technical advances in optical designs and fast highly sensitive cameras with single photon sensitivity and millisecond time resolution have made it possible to track key motions, reactions, and interactions of individual proteins with high temporal resolution and spatial resolution well beyond the diffraction limit. Within the purview of membrane proteins and ligand gated ion channels (LGICs), these outstanding advances in single molecule microscopy allow for the direct observation of discrete biochemical states and their fluctuation dynamics. Such observations are fundamentally important for understanding molecular-level mechanisms governing these systems. Examples reviewed here include the effects of allostery on the stoichiometry of ligand binding in the presence of fluorescent ligands; the observation of subdomain partitioning of membrane proteins due to microenvironment effects; and the use of single particle tracking experiments to elucidate characteristics of membrane protein diffusion and the direct measurement of thermodynamic properties, which govern the free energy landscape of protein dimerization. The review of such characteristic topics represents a snapshot of efforts to push the boundaries of fluorescence microscopy of membrane proteins to the absolute limit. This article is part of the Special Issue entitled 'Fluorescent Tools in Neuropharmacology'.

  16. A direct way to observe absolute molecular handedness

    NASA Astrophysics Data System (ADS)

    Vager, Zeev

    2014-07-01

    We claim that the polarization of electrons tunneling through the molecular electric dipole direction uniquely determines the handedness of chiral centers. Unique labeling of chiral stereo-centers must include their handedness. The conventional method is formally known as the R, S nomenclature or the Ingold-Prelog priority (CIP) rules. It requires knowledge of the spatial absolute configuration of that center. Traditionally, experimental methods of extracting handedness go through the absolute configuration and only then would the CIP convention be applied. Here we show that a direct experimental method of determination of the natural molecular handedness by the polarization of tunneling electrons is almost always compatible with the CIP convention. By the sole use of symmetry arguments we show that the chiral molecular symmetry eliminates the need of fine structure splitting. As a consequence, the polarization of electrons tunneling through the molecular electric dipole direction uniquely determines their handedness.

  17. Ordered lattice defects in colored fluorite: direct observations.

    PubMed

    Murr, L E

    1974-01-18

    Ordered arrays of defect aggregates in the (111) planes of natural fluorite have been observed by transmission electron microscopy. The intense blue coloration observed in corresponding sample areas after 200-kilovolt electron microscopy confirms the conclusion that these are color-center aggregates and, conversely, that color centers are primarily responsible for fluorite coloration.

  18. Comer Schools: Are They Recognizable through Direct Observation?

    ERIC Educational Resources Information Center

    Aguilera, Linda; Crane, Patti; Hamer, Mariann; Morrison, Melissa; Serrano, Dina

    The Comer School Development Program is a reform model aimed at creating a positive school climate. Research has confirmed that specific Comer characteristics, such as an orderly, well-maintained facility, classroom diversity, and staff friendliness, can be observed. This study uses the Comer Visitor Observation instrument to determine whether…

  19. Direct UV observations of the circumstellar envelope of alpha Orionis

    NASA Technical Reports Server (NTRS)

    Stencel, R. E.; Carpenter, K. G.; Pesce, J. E.; Skinner, S.; Brown, A.; Judge, P.

    1988-01-01

    Observations were made in the IUE LWP camera, low dispersion mode, with alpha Ori being offset various distances from the center of the Long Wavelength Large Aperture along its major axis. Signal was acquired at all offset positions and is comprised of unequal components of background/dark counts, telescope-scattered light, and scattered light emanating from the extended circumstellar shell. The star is known from optical and infrared observations to possess an extended, arc-minute sized, shell of cool material. Attempts to observe this shell with the IUE are described, although the deconvolution of the stellar signal from the telescope scattered light requires further calibration effort.

  20. Direct observation of the Aharonov-Casher phase.

    PubMed

    König, M; Tschetschetkin, A; Hankiewicz, E M; Sinova, Jairo; Hock, V; Daumer, V; Schäfer, M; Becker, C R; Buhmann, H; Molenkamp, L W

    2006-02-24

    Ring structures fabricated from HgTe/HgCdTe quantum wells have been used to study Aharonov-Bohm type conductance oscillations as a function of Rashba spin-orbit splitting strength. We observe nonmonotonic phase changes indicating that an additional phase factor modifies the electron wave function. We associate these observations with the Aharonov-Casher effect. This is confirmed by comparison with numerical calculations of the magnetoconductance for a multichannel ring structure within the Landauer-Büttiker formalism.

  1. Direct observation shows superposition and large scale flexibility within cytoplasmic dynein motors moving along microtubules

    NASA Astrophysics Data System (ADS)

    Imai, Hiroshi; Shima, Tomohiro; Sutoh, Kazuo; Walker, Matthew L.; Knight, Peter J.; Kon, Takahide; Burgess, Stan A.

    2015-09-01

    Cytoplasmic dynein is a dimeric AAA+ motor protein that performs critical roles in eukaryotic cells by moving along microtubules using ATP. Here using cryo-electron microscopy we directly observe the structure of Dictyostelium discoideum dynein dimers on microtubules at near-physiological ATP concentrations. They display remarkable flexibility at a hinge close to the microtubule binding domain (the stalkhead) producing a wide range of head positions. About half the molecules have the two heads separated from one another, with both leading and trailing motors attached to the microtubule. The other half have the two heads and stalks closely superposed in a front-to-back arrangement of the AAA+ rings, suggesting specific contact between the heads. All stalks point towards the microtubule minus end. Mean stalk angles depend on the separation between their stalkheads, which allows estimation of inter-head tension. These findings provide a structural framework for understanding dynein's directionality and unusual stepping behaviour.

  2. Direct observation of multistep energy transfer in LHCII with fifth-order 3D electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Zhengyang; Lambrev, Petar H.; Wells, Kym L.; Garab, Győző; Tan, Howe-Siang

    2015-07-01

    During photosynthesis, sunlight is efficiently captured by light-harvesting complexes, and the excitation energy is then funneled towards the reaction centre. These photosynthetic excitation energy transfer (EET) pathways are complex and proceed in a multistep fashion. Ultrafast two-dimensional electronic spectroscopy (2DES) is an important tool to study EET processes in photosynthetic complexes. However, the multistep EET processes can only be indirectly inferred by correlating different cross peaks from a series of 2DES spectra. Here we directly observe multistep EET processes in LHCII using ultrafast fifth-order three-dimensional electronic spectroscopy (3DES). We measure cross peaks in 3DES spectra of LHCII that directly indicate energy transfer from excitons in the chlorophyll b (Chl b) manifold to the low-energy level chlorophyll a (Chl a) via mid-level Chl a energy states. This new spectroscopic technique allows scientists to move a step towards mapping the complete complex EET processes in photosynthetic systems.

  3. Direct observation shows superposition and large scale flexibility within cytoplasmic dynein motors moving along microtubules

    PubMed Central

    Imai, Hiroshi; Shima, Tomohiro; Sutoh, Kazuo; Walker, Matthew L.; Knight, Peter J.; Kon, Takahide; Burgess, Stan A.

    2015-01-01

    Cytoplasmic dynein is a dimeric AAA+ motor protein that performs critical roles in eukaryotic cells by moving along microtubules using ATP. Here using cryo-electron microscopy we directly observe the structure of Dictyostelium discoideum dynein dimers on microtubules at near-physiological ATP concentrations. They display remarkable flexibility at a hinge close to the microtubule binding domain (the stalkhead) producing a wide range of head positions. About half the molecules have the two heads separated from one another, with both leading and trailing motors attached to the microtubule. The other half have the two heads and stalks closely superposed in a front-to-back arrangement of the AAA+ rings, suggesting specific contact between the heads. All stalks point towards the microtubule minus end. Mean stalk angles depend on the separation between their stalkheads, which allows estimation of inter-head tension. These findings provide a structural framework for understanding dynein's directionality and unusual stepping behaviour. PMID:26365535

  4. Direct observation of multistep energy transfer in LHCII with fifth-order 3D electronic spectroscopy

    PubMed Central

    Zhang, Zhengyang; Lambrev, Petar H.; Wells, Kym L.; Garab, Győző; Tan, Howe-Siang

    2015-01-01

    During photosynthesis, sunlight is efficiently captured by light-harvesting complexes, and the excitation energy is then funneled towards the reaction centre. These photosynthetic excitation energy transfer (EET) pathways are complex and proceed in a multistep fashion. Ultrafast two-dimensional electronic spectroscopy (2DES) is an important tool to study EET processes in photosynthetic complexes. However, the multistep EET processes can only be indirectly inferred by correlating different cross peaks from a series of 2DES spectra. Here we directly observe multistep EET processes in LHCII using ultrafast fifth-order three-dimensional electronic spectroscopy (3DES). We measure cross peaks in 3DES spectra of LHCII that directly indicate energy transfer from excitons in the chlorophyll b (Chl b) manifold to the low-energy level chlorophyll a (Chl a) via mid-level Chl a energy states. This new spectroscopic technique allows scientists to move a step towards mapping the complete complex EET processes in photosynthetic systems. PMID:26228055

  5. The nature of the redshift and directly observed quasar statistics.

    PubMed

    Segal, I E; Nicoll, J F; Wu, P; Zhou, Z

    1991-07-01

    The nature of the cosmic redshift is one of the most fundamental questions in modern science. Hubble's discovery of the apparent Expansion of the Universe is derived from observations on a small number of galaxies at very low redshifts. Today, quasar redshifts have a range more than 1000 times greater than those in Hubble's sample, and represent more than 100 times as many objects. A recent comprehensive compilation of published measurements provides the basis for a study indicating that quasar observations are not in good agreement with the original predictions of the Expanding Universe theory, but are well fit by the predictions of an alternative theory having fewer adjustable parameters.

  6. Direct observation of up-conversion via femtosecond photoelectron imaging

    NASA Astrophysics Data System (ADS)

    Liu, Yuzhu; Knopp, Gregor; Gerber, Thomas

    2015-10-01

    Ultrafast relaxation dynamics in 2-methylfuran has been investigated by time-resolved photoelectron imaging. An "up" internal conversion from a low-lying state into a higher-lying one has been observed experimentally. Temporal photoelectron kinetic-energy distributions and angular distributions of the photoelectrons are analyzed. In the up-conversion process, the vibrational energy in the initial state is converted to the electronic energy of the final state during the energy transfer. And the time scale for the up-conversion process is estimated by the observed onset delay for the corresponding photoelectron bands.

  7. Direct Observations of Nucleation in a Nondilute Multicomponent Alloy

    NASA Technical Reports Server (NTRS)

    Sudbrack, Chantal K.; Noebe, Ronald D.; Seidman, David N.

    2006-01-01

    The chemical pathways leading to gamma'(L1(sub 2)) nucleation from nondilute Ni-5.2 Al-14.2 Cr at. %, gama(fcc), at 873 K are followed with radial distribution functions and isoconcentration surface analyses of direct-space atom-probe tomographic images. Although Cr atoms initially are randomly distributed, a distribution of congruent Ni3Al short-range-order domains (SRO), [R] approx. equals 0.6 nm, results from Al diffusion during quenching. Domain site occupancy develops as their number density increases leading to Al-rich phase separation by gamma'-nucleation, [R]=0.75 nm, after SRO occurs.

  8. Observations of directional gamma prime coarsening during engine operation

    NASA Technical Reports Server (NTRS)

    Draper, Susan L.; Hull, David R.; Dreshfield, Robert L.

    1987-01-01

    Two alloys with negative mismatch parameters, NASAIR 100 and a modified NASAIR 100 called Alloy 3 were run as turbine blades in an experimental ground based Garret TFE731 engine for up to 200 hr. The directional coarsening of gamma prime (rafting) that developed during engine testing was analyzed and compared to previous research from laboratory tests. The blades were found to be rafted normal to the centrifugal stress axis over much of the span, but near the surfaces, the blades were found to be rafted parallel to the centrifugal stress axis for certain cycles. Representative photomicrographs of the blades and the effects of stress and temperature on raft formation are shown.

  9. Ultrafast bandgap photonics for IR directional countermeasures and low observables

    NASA Astrophysics Data System (ADS)

    Rafailov, Michael K.

    2011-06-01

    Ultrafast Bandgap Photonics is discussed as an alternative technology for laser-based Directional IR Counter Measures (DIRCM). Ultra-fast laser is capable of providing fundamentally different type of countermeasure which is able to counter all generations of heat-seeking missiles. Ultrafast Bandgap Photonic technology is compatible with existing laser based DIRCM pointing systems as it requires much less energy per pulse and peak power than damage inducing systems. A foundation of ultra-fast technology is its ability to remotely alter seeker characteristics. In this paper, we will consider the effects caused by relatively low energy per pulse ultra-fast and, to some extent, fast lasers.

  10. VLA Observations of Solar Decimetric Spike Bursts: Direct Signature of Accelerated Electrons in Reconnection Outflow Region

    NASA Astrophysics Data System (ADS)

    Chen, B.; Bastian, T.; Gary, D. E.

    2014-12-01

    Solar decimetric spike bursts, which appear in a radio dynamic spectrum as a cluster of short-lived and narrowband brightenings, have been suggested as a possible signature of many, "elementary" particle accelerations at or near a magnetic reconnection site. Their dynamic spectral feature can be potentially used to diagnose important parameters of the reconnection site such as plasma density and spatial size of the fragmentation. Yet direct observational evidence supporting this scenario has been elusive mainly due to the lack of imaging observations. The upgraded Karl G. Jansky Very Large Array (VLA) provides the first opportunity of performing simultaneous radio imaging and dynamic spectroscopy, which allows radio sources to be imaged at every spatio-temporal pixel in the dynamic spectrum. Here we report Jansky VLA observations of decimetric spike bursts recorded during an eruptive solar limb flare. Combined with EUV and X-ray data from SDO and RHESSI, we show that the spike bursts coincide spatially with a loop-top hard X-ray source, which are located in a region where supra-arcade downflows meet the underlying hot, EUV/X-ray loops. We interpret the observed spike bursts as a direct signature of non-thermal electrons accelerated by turbulences and/or shocks in the reconnection outflow region.

  11. Clear Direction. The Montessori Observer. Volume 32, Number 2

    ERIC Educational Resources Information Center

    International Montessori Society (NJ3), 2011

    2011-01-01

    "The Montessori Observer" is mailed four times each year, in March, May, September and November, to Society members throughout the world. The purpose is to provide news and information about the Society's work in Montessori education, and to extend awareness of Montessori principles throughout the world. This issue contains a feature…

  12. Direct observation of disulfide isomerization in a single protein

    NASA Astrophysics Data System (ADS)

    Alegre-Cebollada, Jorge; Kosuri, Pallav; Rivas-Pardo, Jaime Andrés; Fernández, Julio M.

    2011-11-01

    Photochemical uncaging techniques use light to release active molecules from otherwise inert compounds. Here we expand this class of techniques by demonstrating the mechanical uncaging of a reactive species within a single protein. We proved this novel technique by capturing the regiospecific reaction between a thiol and a vicinal disulfide bond. We designed a protein that includes a caged cysteine and a buried disulfide. The mechanical unfolding of this protein in the presence of an external nucleophile frees the single reactive cysteine residue, which now can cleave the target disulfide via a nucleophilic attack on either one of its two sulfur atoms. This produces two different and competing reaction pathways. We used single-molecule force spectroscopy to monitor the cleavage of the disulfides, which extends the polypeptide by a magnitude unambiguously associated with each reaction pathway. This allowed us to measure, for the first time, the kinetics of disulfide-bond isomerization in a protein.

  13. Direct observations of atomic diffusion by scanning transmission electron microscopy

    PubMed Central

    Isaacson, M.; Kopf, D.; Utlaut, M.; Parker, N. W.; Crewe, A. V.

    1977-01-01

    The feasibility of using a high-resolution scanning transmission electron microscope to study the diffusion of heavy atoms on thin film substrates of low atomic number has been investigated. We have shown that it is possible to visualize the diffusion of individual uranium atoms adsorbed to thin carbon film substrates and that the observed motion of the atoms does not appear to be induced by the incident electron beam. Images PMID:16592396

  14. Direct Observation of Nanoparticle-Cancer Cell Nucleus Interactions

    PubMed Central

    Dam, Duncan Hieu M.; Lee, Jung Heon; Sisco, Patrick N.; Co, Dick T.; Zhang, Ming; Wasielewski, Michael R.; Odom, Teri W.

    2012-01-01

    We report the direct visualization of interactions between drug-loaded nanoparticles and the cancer cell nucleus. Nanoconstructs composed of nucleolin-specific aptamers and gold nanostars were actively transported to the nucleus and induced major changes to the nuclear phenotype via nuclear envelope invaginations near the site of the construct. The number of local deformations could be increased by ultra-fast, light-triggered release of the aptamers from the surface of the gold nanostars. Cancer cells with more nuclear envelope folding showed increased caspase 3 and 7 activity (apoptosis) as well as decreased cell viability. This newly revealed correlation between drug-induced changes in nuclear phenotype and increased therapeutic efficacy could provide new insight for nuclear-targeted cancer therapy. PMID:22424173

  15. Direct observation of nanoparticle-cancer cell nucleus interactions.

    PubMed

    Dam, Duncan Hieu M; Lee, Jung Heon; Sisco, Patrick N; Co, Dick T; Zhang, Ming; Wasielewski, Michael R; Odom, Teri W

    2012-04-24

    We report the direct visualization of interactions between drug-loaded nanoparticles and the cancer cell nucleus. Nanoconstructs composed of nucleolin-specific aptamers and gold nanostars were actively transported to the nucleus and induced major changes to the nuclear phenotype via nuclear envelope invaginations near the site of the construct. The number of local deformations could be increased by ultrafast, light-triggered release of the aptamers from the surface of the gold nanostars. Cancer cells with more nuclear envelope folding showed increased caspase 3 and 7 activity (apoptosis) as well as decreased cell viability. This newly revealed correlation between drug-induced changes in nuclear phenotype and increased therapeutic efficacy could provide new insight for nuclear-targeted cancer therapy.

  16. Observations of directional gamma prime coarsening during engine operation

    NASA Technical Reports Server (NTRS)

    Draper, S.; Hull, D.; Dreshfield, R.

    1989-01-01

    Two alloys, NASAIR 100 and a modified NASAIR 100 called Alloy 3, were run as turbine blades in an experimental ground-based Garrett TFE731 engine for up to 200 hours. The stress induced directional coarsening of gamma-prime (rafting) that developed during engine testing was analyzed and compared to previous research from laboratory tests. The blades were found to have formed a lamellar structure, the lamellae being normal to the centrifugal stress axis over much of the span. However, near the surfaces, the blades were found to have formed lamellae parallel to the centrifugal stress axis for certain cycles. Representative photomicrographs of the blades and the effects of stress and temperature on lamellae formation are shown.

  17. Does directly observed treatment ("DOTS") contribute to tuberculosis treatment compliance?

    PubMed

    Terra, Maria Fernanda; Bertolozzi, Maria Rita

    2008-01-01

    This is a qualitative study performed in the theoretical framework of the Theory of Social Determination of the Health-Disease process and the concept of Compliance. The goal was to analyze meanings of DOTS in compliance with tuberculosis treatment, according to healthcare professionals of the Technical Healthcare Supervision of Butantã (SUVIS), a region of the São Paulo City Healthcare Secretariat, Brazil. The project was submitted to the Ethics Committee of the São Paulo Municipal Health Secretariat. All professionals (22 people) developing DOTS were interviewed, including service coordinators, healthcare professionals and the DOTS coordinator for the region. The statements were analyzed with an appropriate technique for discourse analysis. The results appoint that the strategy presents more potentialities than limits and is effective regarding compliance, since it allows the professionals to welcome and monitor the patients, considering their needs. The importance of increasing the understanding of compliance is also noted, so that it can go beyond the simple intake of medication, integrating the care for the sick person and his or her necessities by transcending those restricted to the biological dimension.

  18. Direct Observation of Entropic Stabilization of bcc Crystals Near Melting

    NASA Astrophysics Data System (ADS)

    Sprakel, Joris; Zaccone, Alessio; Spaepen, Frans; Schall, Peter; Weitz, David A.

    2017-02-01

    Crystals with low latent heat are predicted to melt from an entropically stabilized body-centered cubic symmetry. At this weakly first-order transition, strongly correlated fluctuations are expected to emerge, which could change the nature of the transition. Here we show how large fluctuations stabilize bcc crystals formed from charged colloids, giving rise to strongly power-law correlated heterogeneous dynamics. Moreover, we find that significant nonaffine particle displacements lead to a vanishing of the nonaffine shear modulus at the transition. We interpret these observations by reformulating the Born-Huang theory to account for nonaffinity, illustrating a scenario of ordered solids reaching a state where classical lattice dynamics fail.

  19. Direct Observation of Ultralow Vertical Emittance using a Vertical Undulator

    SciTech Connect

    Wootton, Kent

    2015-09-17

    In recent work, the first quantitative measurements of electron beam vertical emittance using a vertical undulator were presented, with particular emphasis given to ultralow vertical emittances [K. P. Wootton, et al., Phys. Rev. ST Accel. Beams, 17, 112802 (2014)]. Using this apparatus, a geometric vertical emittance of 0.9 #6;± 0.3 pm rad has been observed. A critical analysis is given of measurement approaches that were attempted, with particular emphasis on systematic and statistical uncertainties. The method used is explained, compared to other techniques and the applicability of these results to other scenarios discussed.

  20. Direct Observation of Critical Point Wetting in Microgravity

    NASA Technical Reports Server (NTRS)

    Kaukler, W. F.

    1985-01-01

    The objective of this program is to observe the interface shape in single and multicomponent systems at the onset of critical wetting in microgravity using the MSFC drop tower and KC-135 aircraft. Test cells for the drop facility were built and tested up to critical point of CCl. Low temperature drops were conducted for two-component systems near the critical consolute point. Contact angle seems to approach 90 deg near the critical consolute temperature contrary to expectations. It is suspected that since the interfacial energy becomes vanishingly small at the critical consolute temperature, the interface shape has not reached equilibrium in the available low-gravity time.

  1. Direct observation of intermediate states in model membrane fusion

    NASA Astrophysics Data System (ADS)

    Keidel, Andrea; Bartsch, Tobias F.; Florin, Ernst-Ludwig

    2016-03-01

    We introduce a novel assay for membrane fusion of solid supported membranes on silica beads and on coverslips. Fusion of the lipid bilayers is induced by bringing an optically trapped bead in contact with the coverslip surface while observing the bead’s thermal motion with microsecond temporal and nanometer spatial resolution using a three-dimensional position detector. The probability of fusion is controlled by the membrane tension on the particle. We show that the progression of fusion can be monitored by changes in the three-dimensional position histograms of the bead and in its rate of diffusion. We were able to observe all fusion intermediates including transient fusion, formation of a stalk, hemifusion and the completion of a fusion pore. Fusion intermediates are characterized by axial but not lateral confinement of the motion of the bead and independently by the change of its rate of diffusion due to the additional drag from the stalk-like connection between the two membranes. The detailed information provided by this assay makes it ideally suited for studies of early events in pure lipid bilayer fusion or fusion assisted by fusogenic molecules.

  2. Direct observation of light focusing by single photoreceptor cell nuclei.

    PubMed

    Błaszczak, Zuzanna; Kreysing, Moritz; Guck, Jochen

    2014-05-05

    The vertebrate retina is inverted with respect to its optical function, which requires light to pass through the entire tissue prior to detection. The last significant barrier for photons to overcome is the outer nuclear layer formed by photoreceptor cell (PRC) nuclei. Here we experimentally characterise the optical properties of PRC nuclei using bright-field defocusing microscopy to capture near-field intensity distributions behind individual nuclei. We find that some nuclei efficiently focus incident light confirming earlier predictions based on comparative studies of chromatin organisation in nocturnal and diurnal mammals. The emergence of light focusing during the development of mouse nuclei highlights the acquired nature of the observed lens-like behaviour. Optical characterisation of these nuclei is an important first step towards an improved understanding of how light transmission through the retina is influenced by its constituents.

  3. An Unroofing Method to Observe the Cytoskeleton Directly at Molecular Resolution Using Atomic Force Microscopy

    PubMed Central

    Usukura, Eiji; Narita, Akihiro; Yagi, Akira; Ito, Shuichi; Usukura, Jiro

    2016-01-01

    An improved unroofing method enabled the cantilever of an atomic force microscope (AFM) to reach directly into a cell to visualize the intracellular cytoskeletal actin filaments, microtubules, clathrin coats, and caveolae in phosphate-buffered saline (PBS) at a higher resolution than conventional electron microscopy. All of the actin filaments clearly exhibited a short periodicity of approximately 5–6 nm, which was derived from globular actins linked to each other to form filaments, as well as a long helical periodicity. The polarity of the actin filaments appeared to be determined by the shape of the periodic striations. Microtubules were identified based on their thickness. Clathrin coats and caveolae were observed on the cytoplasmic surface of cell membranes. The area containing clathrin molecules and their terminal domains was directly visualized. Characteristic ridge structures located at the surface of the caveolae were observed at high resolution, similar to those observed with electron microscopy (EM). Overall, unroofing allowed intracellular AFM imaging in a liquid environment with a level of quality equivalent or superior to that of EM. Thus, AFMs are anticipated to provide cutting-edge findings in cell biology and histology. PMID:27273367

  4. Direct observation of dynamic shear jamming in dense suspensions

    NASA Astrophysics Data System (ADS)

    Peters, Ivo R.; Majumdar, Sayantan; Jaeger, Heinrich M.

    2016-04-01

    Liquid-like at rest, dense suspensions of hard particles can undergo striking transformations in behaviour when agitated or sheared. These phenomena include solidification during rapid impact, as well as strong shear thickening characterized by discontinuous, orders-of-magnitude increases in suspension viscosity. Much of this highly non-Newtonian behaviour has recently been interpreted within the framework of a jamming transition. However, although jamming indeed induces solid-like rigidity, even a strongly shear-thickened state still flows and thus cannot be fully jammed. Furthermore, although suspensions are incompressible, the onset of rigidity in the standard jamming scenario requires an increase in particle density. Finally, whereas shear thickening occurs in the steady state, impact-induced solidification is transient. As a result, it has remained unclear how these dense suspension phenomena are related and how they are connected to jamming. Here we resolve this by systematically exploring both the steady-state and transient regimes with the same experimental system. We demonstrate that a fully jammed, solid-like state can be reached without compression and instead purely with shear, as recently proposed for dry granular systems. This state is created by transient shear-jamming fronts, which we track directly. We also show that shear stress, rather than shear rate, is the key control parameter. From these findings we map out a state diagram with particle density and shear stress as variables. We identify discontinuous shear thickening with a marginally jammed regime just below the onset of full, solid-like jamming. This state diagram provides a unifying framework, compatible with prior experimental and simulation results on dense suspensions, that connects steady-state and transient behaviour in terms of a dynamic shear-jamming process.

  5. Direct observation of OH formation from stabilised Criegee intermediates.

    PubMed

    Novelli, A; Vereecken, L; Lelieveld, J; Harder, H

    2014-10-07

    The syn-CH3CHOO Criegee intermediate formed from the ozonolysis of propene and (E)-2-butene was detected via unimolecular decomposition and subsequent detection of OH radicals by a LIF-FAGE instrument. An observed time dependent OH concentration profile was analysed using a detailed model focusing on the speciated chemistry of Criegee intermediates based on the recent literature. The absolute OH concentration was found to depend on the steady state concentration of syn-CH3CHOO at the injection point while the time dependence of the OH concentration profile was influenced by the sum of the rates of unimolecular decomposition of syn-CH3CHOO and wall loss. By varying the most relevant parameters influencing the SCI chemistry in the model and based on the temporal OH concentration profile, the unimolecular decomposition rate k (293 K) of syn-CH3CHOO was shown to lie within the range 3-30 s(-1), where a value of 20 ± 10 s(-1) yields the best agreement with the CI chemistry literature.

  6. Direct Observation of Completely Processed Calcium Carbonate Dust Particles

    SciTech Connect

    Laskin, Alexander; Iedema, Martin J.; Ichkovich, Aviad; Graber, Ellen R.; Taraniuk, Ilya; Rudich, Yinon

    2005-05-27

    This study presents, for the first time, field evidence of complete, irreversible processing of solid calcium carbonate (calcite)-containing particles and quantitative formation of liquid calcium nitrate particles apparently as a result of heterogeneous reaction of calcium carbonate-containing mineral dust particles with gaseous nitric acid. Formation of nitrates from individual calcite and sea salt particles was followed as a function of time in aerosol samples collected at Shoresh, Israel. Morphology and compositional changes of individual particles were observed using conventional scanning electron microscopy with energy dispersive analysis of X-rays (SEM/EDX) and computer controlled SEM/EDX. Environmental scanning electron microscopy (ESEM) was utilized to determine and demonstrate the hygroscopic behavior of calcium nitrate particles found in some of the samples. Calcium nitrate particles are exceptionally hygroscopic and deliquesce even at very low relative humidity (RH) of 9 -11% which is lower than typical atmospheric environments. Transformation of non-hygroscopic dry mineral dust particles into hygroscopic wet aerosol may have substantial impacts on light scattering properties, the ability to modify clouds and heterogeneous chemistry.

  7. Direct observation of resonance effects in laser cluster interactions

    SciTech Connect

    Zweiback, J. S.

    1999-06-01

    Time resolved dynamics of high intensity laser interactions with atomic clusters have been studied with both theoretical analysis and experiment. A short-pulse Ti:sapphire laser system, which could produce 50 mJ of energy in a 50 fs pulse, was built to perform these experiments. The laser used a novel single grating stretcher and was pumped, in part, by a custom Nd:YLF laser system, including 19 mm Nd:YLF amplifiers. It was found that there is an optimal pulse width to maximize absorption for a given cluster size. This optimal pulse width ranged from 400 fs for 85 A radius xenon clusters to 1.2 ps for 205 {angstrom} radius xenon clusters. Using a pump-probe configuration, the absorption of the probe radiation was observed to reach a maximum for a particular time delay between pump and probe, dependent on the cluster size. The delay for peak absorption was 800, 1400, and 2100 fs for 85 Å, 130 Å, and 170 Å radius xenon clusters respectively. Model calculations suggest that these effects are due to resonant heating of the spherical plasma in agreement with the hydrodynamic interpretation of cluster interactions. While this simple hydrodynamic code produces reasonable agreement with data, it does not include bulk plasma or non-linear propagation effects and is limited to the regime where resonant behavior dominates. We also measured the scattered laser light from the laser-cluster interaction. Similar to the absorption measurements, there is an optimal pulse width which maximizes the scattered signal. This pulse width is larger than the optimal pulse width for absorption. This disagrees with model calculations which show both pulse widths being similar. Further experiments measuring the scattered light in a pump-probe configuration should help to resolve this disagreement.

  8. Direct and indirect inactivation of tumor cell protective catalase by salicylic acid and anthocyanidins reactivates intercellular ROS signaling and allows for synergistic effects.

    PubMed

    Scheit, Katrin; Bauer, Georg

    2015-03-01

    Salicylic acid and anthocyanidins are known as plant-derived antioxidants, but also can provoke paradoxically seeming prooxidant effects in vitro. These prooxidant effects are connected to the potential of salicylic acid and anthocyanidins to induce apoptosis selectively in tumor cells in vitro and to inhibit tumor growth in animal models. Several epidemiological studies have shown that salicylic acid and its prodrug acetylsalicylic acid are tumor-preventive for humans. The mechanism of salicylic acid- and anthocyanidin-dependent antitumor effects has remained enigmatic so far. Extracellular apoptosis-inducing reactive oxygen species signaling through the NO/peroxynitrite and the HOCl signaling pathway specifically induces apoptosis in transformed cells. Tumor cells have acquired resistance against intercellular reactive oxygen species signaling through expression of membrane-associated catalase. Here, we show that salicylic acid and anthocyanidins inactivate tumor cell protective catalase and thus reactive apoptosis-inducing intercellular reactive oxygen species signaling of tumor cells and the mitochondrial pathway of apoptosis Salicylic acid inhibits catalase directly through its potential to transform compound I of catalase into the inactive compound II. In contrast, anthocyanidins provoke a complex mechanism for catalase inactivation that is initiated by anthocyanidin-mediated inhibition of NO dioxygenase. This allows the formation of extracellular singlet oxygen through the reaction between H(2)O(2) and peroxynitrite, amplification through a caspase8-dependent step and subsequent singlet oxygen-mediated inactivation of catalase. The combination of salicylic acid and anthocyanidins allows for a remarkable synergistic effect in apoptosis induction. This effect may be potentially useful to elaborate novel therapeutic approaches and crucial for the interpretation of epidemiological results related to the antitumor effects of secondary plant compounds.

  9. Direct observations of the atmospheric processing of Asian mineral dust

    NASA Astrophysics Data System (ADS)

    Sullivan, R. C.; Guazzotti, S. A.; Sodeman, D. A.; Prather, K. A.

    2007-02-01

    The accumulation of secondary acids and ammonium on individual mineral dust particles during ACE-Asia has been measured with an online single-particle mass spectrometer, the ATOFMS. Changes in the amounts of sulphate, nitrate, and chloride mixed with dust particles correlate with air masses from different source regions. The uptake of secondary acids depended on the individual dust particle mineralogy; high amounts of nitrate accumulated on calcium-rich dust while high amounts of sulphate accumulated on aluminosilicate-rich dust. Oxidation of S(IV) to S(VI) by iron in the aluminosilicate dust is a possible explanation for this enrichment of sulphate, which has important consequences for the fertilization of remote oceans by soluble iron. This study shows the segregation of sulphate from nitrate and chloride in individual aged dust particles for the first time. A transport and aging timeline provides an explanation for the observed segregation. Our data suggests that sulphate became mixed with the dust first. This implies that the transport pathway is more important than the reaction kinetics in determining which species accumulate on mineral dust. Early in the study, dust particles in volcanically influenced air masses were mixed predominately with sulphate. Dust mixed with chloride then dominated over sulphate and nitrate when a major dust front reached the R. V. Ronald Brown. We hypothesize that the rapid increase in chloride on dust was due to mixing with HCl(g) released from acidified sea salt particles induced by heterogeneous reaction with volcanic SO2(g), prior to the arrival of the dust front. The amount of ammonium mixed with dust correlated strongly with the total amount of secondary acid reaction products in the dust. Submicron dust and ammonium sulphate were internally mixed, contrary to frequent reports that they exist as external mixtures. The size distribution of the mixing state of dust with these secondary species validates previous mechanisms of

  10. Relation between Direct Observation of Relaxation and Self-Reported Mindfulness and Relaxation States

    ERIC Educational Resources Information Center

    Hites, Lacey S.; Lundervold, Duane A.

    2013-01-01

    Forty-four individuals, 18-47 (MN 21.8, SD 5.63) years of age, took part in a study examining the magnitude and direction of the relationship between self-report and direct observation measures of relaxation and mindfulness. The Behavioral Relaxation Scale (BRS), a valid direct observation measure of relaxation, was used to assess relaxed behavior…

  11. Observation of uniaxial anisotropy along the [100] direction in crystalline Fe film

    NASA Astrophysics Data System (ADS)

    Bac, Seul-Ki; Lee, Hakjoon; Lee, Sangyoep; Choi, Seonghoon; Yoo, Taehee; Lee, Sanghoon; Liu, X.; Furdyna, J. K.

    2015-12-01

    We report an observation of uniaxial magnetic anisotropy along the [100] crystallographic direction in crystalline Fe film grown on Ge buffers deposited on a (001) GaAs substrate. As expected, planar Hall resistance (PHR) measurements reveal the presence of four in-plane magnetic easy axes, indicating the dominance of the cubic anisotropy in the film. However, systematic mapping of the PHR hysteresis loops observed during magnetization reversal at different field orientations shows that the easy axes along the and are not equivalent. Such breaking of the cubic symmetry can only be ascribed to the presence of uniaxial anisotropy along the direction of the Fe film. Analysis of the PHR data measured as a function of orientation of the applied magnetic field allowed us to quantify the magnitude of this uniaxial anisotropy field as Oe. Although this value is only 1.5% of cubic anisotropy field, its presence significantly changes the process of magnetization reversal, revealing the important role of the uniaxial anisotropy in Fe films. Breaking of the cubic symmetry in the Fe film deposited on a Ge buffer is surprising, and we discuss possible reason for this unexpected behavior.

  12. Observation of uniaxial anisotropy along the [100] direction in crystalline Fe film.

    PubMed

    Bac, Seul-Ki; Lee, Hakjoon; Lee, Sangyoep; Choi, Seonghoon; Yoo, Taehee; Lee, Sanghoon; Liu, X; Furdyna, J K

    2015-12-04

    We report an observation of uniaxial magnetic anisotropy along the [100] crystallographic direction in crystalline Fe film grown on Ge buffers deposited on a (001) GaAs substrate. As expected, planar Hall resistance (PHR) measurements reveal the presence of four in-plane magnetic easy axes, indicating the dominance of the cubic anisotropy in the film. However, systematic mapping of the PHR hysteresis loops observed during magnetization reversal at different field orientations shows that the easy axes along the and are not equivalent. Such breaking of the cubic symmetry can only be ascribed to the presence of uniaxial anisotropy along the direction of the Fe film. Analysis of the PHR data measured as a function of orientation of the applied magnetic field allowed us to quantify the magnitude of this uniaxial anisotropy field as Oe. Although this value is only 1.5% of cubic anisotropy field, its presence significantly changes the process of magnetization reversal, revealing the important role of the uniaxial anisotropy in Fe films. Breaking of the cubic symmetry in the Fe film deposited on a Ge buffer is surprising, and we discuss possible reason for this unexpected behavior.

  13. Measuring Implementation of the Direct Instruction Model in an Urban School District: An Observational Approach.

    ERIC Educational Resources Information Center

    Gersten, Russell M.; Carnine, Doug

    During an extensive inservice program, teachers and aides in 20 kindergarten and first grade Follow Through Classrooms were observed for mastery of the Direct Instruction Model. Two trained observers used the Direct Instruction Supervisor Code to record behavior in the fall, winter, and spring. Subjects were observed while teaching a 12 minute…

  14. FISH and DAPI staining of the synaptonemal complex of the Nile tilapia (Oreochromis niloticus) allow orientation of the unpaired region of bivalent 1 observed during early pachytene.

    PubMed

    Ocalewicz, Konrad; Mota-Velasco, Jose C; Campos-Ramos, Rafael; Penman, David J

    2009-01-01

    Bivalent 1 of the synaptonemal complex (SC) in XY male Oreochromis niloticus shows an unpaired terminal region in early pachytene. This appears to be related to recombination suppression around a sex determination locus. To allow more detailed analysis of this, and unpaired regions in the karyotype of other Oreochromis species, we developed techniques for FISH on SC preparations, combined with DAPI staining. DAPI staining identified presumptive centromeres in SC bivalents, which appeared to correspond to the positions observed in the mitotic karyotype (the kinetochores could be identified only sporadically in silver-stained EM SC images). Furthermore, two BAC clones containing Dmo (dmrt4) and OniY227 markers that hybridize to known positions in chromosome pair 1 in mitotic spreads (near the centromere, Flpter 0.25, and the putative sex-determination locus, Flpter 0.57, respectively) were used as FISH probes on SCs to verify that the presumptive centromere identified by DAPI staining was located in the expected position. Visualization of both the centromere and FISH signals on bivalent 1 allowed the unpaired region to be positioned at Flpter 0.80 to 1.00, demonstrating that the unpaired region is located in the distal part of the long arm(s). Finally, differences between mitotic and meiotic measurements are discussed.

  15. Initiation of simian virus 40 DNA replication in vitro: aphidicolin causes accumulation of early-replicating intermediates and allows determination of the initial direction of DNA synthesis.

    PubMed Central

    Decker, R S; Yamaguchi, M; Possenti, R; DePamphilis, M L

    1986-01-01

    Aphidicolin, a specific inhibitor of DNA polymerase alpha, provided a novel method for distinguishing between initiation of DNA synthesis at the simian virus 40 (SV40) origin of replication (ori) and continuation of replication beyond ori. In the presence of sufficient aphidicolin to inhibit total DNA synthesis by 50%, initiation of DNA replication in SV40 chromosomes or ori-containing plasmids continued in vitro, whereas DNA synthesis in the bulk of SV40 replicative intermediate DNA (RI) that had initiated replication in vivo was rapidly inhibited. This resulted in accumulation of early RI in which most nascent DNA was localized within a 600- to 700-base-pair region centered at ori. Accumulation of early RI was observed only under conditions that permitted initiation of SV40 ori-dependent, T-antigen-dependent DNA replication and only when aphidicolin was added to the in vitro system. Increasing aphidicolin concentrations revealed that DNA synthesis in the ori region was not completely resistant to aphidicolin but simply less sensitive than DNA synthesis at forks that were farther away. Since DNA synthesized in the presence of aphidicolin was concentrated in the 300 base pairs on the early gene side of ori, we conclude that the initial direction of DNA synthesis was the same as that of early mRNA synthesis, consistent with the model proposed by Hay and DePamphilis (Cell 28:767-779, 1982). The data were also consistent with initiation of the first DNA chains in ori by CV-1 cell DNA primase-DNA polymerase alpha. Synthesis of pppA/G(pN)6-8(pdN)21-23 chains on a single-stranded DNA template by a purified preparation of this enzyme was completely resistant to aphidicolin, and further incorporation of deoxynucleotide monophosphates was inhibited. Therefore, in the presence of aphidicolin, this enzyme could initiate RNA-primed DNA synthesis at ori first in the early gene direction and then in the late gene direction, but could not continue DNA synthesis for an extended

  16. DIRECT OBSERVATION OF THE COOLING OF THE CASSIOPEIA A NEUTRON STAR

    SciTech Connect

    Heinke, Craig O.; Ho, Wynn C. G. E-mail: wynnho@slac.stanford.ed

    2010-08-20

    The cooling rate of young neutron stars (NSs) gives direct insight into their internal makeup. Although the temperatures of several young NSs have been measured, until now a young NS has never been observed to decrease in temperature over time. We fit nine years of archival Chandra ACIS spectra of the likely NS in the {approx}330 yr old Cassiopeia A supernova remnant with our non-magnetic carbon atmosphere model. Our fits show a relative decline in the surface temperature by 4% (5.4{sigma}, from (2.12 {+-} 0.01) x 10{sup 6} K in 2000 to (2.04 {+-} 0.01) x 10{sup 6} K in 2009) and the observed flux by 21%. Using a simple model for NS cooling, we show that this temperature decline could indicate that the NS became isothermal sometime between 1965 and 1980, and constrains some combinations of neutrino emission mechanisms and envelope compositions. However, the NS is likely to have become isothermal soon after formation, in which case the temperature history suggests episodes of additional heating or more rapid cooling. Observations over the next few years will allow us to test possible explanations for the temperature evolution.

  17. Direct observation of mobility state transitions in RNA trajectories by sensitive single molecule feedback tracking

    PubMed Central

    Spille, Jan-Hendrik; Kaminski, Tim P.; Scherer, Katharina; Rinne, Jennifer S.; Heckel, Alexander; Kubitscheck, Ulrich

    2015-01-01

    Observation and tracking of fluorescently labeled molecules and particles in living cells reveals detailed information about intracellular processes on the molecular level. Whereas light microscopic particle observation is usually limited to two-dimensional projections of short trajectory segments, we report here image-based real-time three-dimensional single particle tracking in an active feedback loop with single molecule sensitivity. We tracked particles carrying only 1–3 fluorophores deep inside living tissue with high spatio-temporal resolution. Using this approach, we succeeded to acquire trajectories containing several hundred localizations. We present statistical methods to find significant deviations from random Brownian motion in such trajectories. The analysis allowed us to directly observe transitions in the mobility of ribosomal (r)RNA and Balbiani ring (BR) messenger (m)RNA particles in living Chironomus tentans salivary gland cell nuclei. We found that BR mRNA particles displayed phases of reduced mobility, while rRNA particles showed distinct binding events in and near nucleoli. PMID:25414330

  18. Direct three dimensional observation of the microstructure and chemistry of C3S hydration

    NASA Astrophysics Data System (ADS)

    Hu, Qinang

    Although portland cement has been used for over a hundred years as the binder in concrete, the basic mechanism of hydration is still not well understood. Progress has been halted for the fact that it is challenging for most current experimental techniques to give direct observation of the hydration process in-situ and provide quantitative measurement on the microstructure and chemistry at the nano-length scale. Recent advances of nano scale X-ray imaging make nano-tomography and nano-X-ray fluorescence reality. The nano-scale X-ray beams in these techniques allow the sample to be imaged nondestructively and provide a high transmission of signal that penetrate through both sample materials and a possible solution environment, which could make themselves in-situ techniques. Moreover, these techniques can be combined to enrich both datasets to become a more powerful technique. In this dissertation, the applications of both techniques have been established from micron lab scale experiment to nano-synchrotron investigation for studying cementitious materials. The progresses have been shown from first application on 3D chemical characterization of fly ash particles at the nanoscale to later updated versions of in-situ experiments for studying cement hydration, which allow quantitative measurements on 3D structure, chemistry and mass density of hydration products at different hydration periods. These unprecedented discoveries could lead to a breakthrough for both nanoscale analysis of any material and cement hydration research.

  19. Use of internal artificial vaginas for breeding soundness evaluation in range bulls: an alternative for electroejaculation allowing observation of sex drive and mating ability.

    PubMed

    Barth, Albert D; Arteaga, Andres A; Brito, Leonardo F C; Palmer, Colin W

    2004-09-01

    The objective of this study was to test the efficacy of an inexpensive, reusable internal artificial vagina (IAV) developed for breeding soundness evaluation of range beef bulls. In addition, sexual behavior during semen collection by IAV was compared to behavior during pasture breeding. Breeding soundness exams (BSEs) were conducted on 165 bulls in two consecutive years (96 in Year 1 and 69 in Year 2). In Year 1, BSEs were done twice in all bulls, once by a conventional protocol using electroejaculation (EEJ), followed by the IAV method, one week later. In Year 2, all BSEs were done on one day; 69 bulls by the IAV method followed by EEJ in 21 bulls that failed to serve the IAV. For semen collection using an IAV, mount cows were restrained in breeding crates and an IAV was inserted into the vagina just beyond the depth of the vestibular sphincter. After each copulation, the IAV was replaced for the next bull to be tested. Semen collection by IAV was successful for all bulls that mounted and penetrated cows during the testing period (54.3 and 69.6% of the bulls served the cows with IAVs in Year 1 and 2, respectively). Semen was collected successfully by EEJ from all bulls in both years. Differences were observed between semen collection methods in semen volume and percentage of sperm staining alive; however, the differences were opposite in Year 1 and 2 and, therefore, were probably due to natural variations in time and within bull rather than the method of semen collection. Semen collection by IAV allowed the detection of problems that prevented copulation in 8 bulls (4.8%) that were determined to be satisfactory potential breeders when semen was collected by EEJ. In Year 1, breeding observations were made at pasture for 15 bulls that served, and 15 bulls that did not serve cows with an IAV. Bulls that did not serve the IAV during the test period had fewer mounts, attempts to mount, and completed services at pasture than bulls that had served the IAV, indicating

  20. Direct Imaging of an Emerging Flux Rope and a Resulting Chromospheric Jet Observed by Hinode

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Berger, T.; Title, A. M.; Tarbell, T. D.; DeRosa, M.

    2010-05-01

    Magnetic flux emergence has been traditionally observed on the disk by identifying changes in magnetograms. Observations near the limb offer an alternative perspective and allow direct imaging of emerging flux ropes. We present Hinode/SOT Ca II H observations of such an event in an equatorial coronal hole on 2007 February 9. The precursor of the event was a bundle of fine material threads that extended at an oblique angle above the chromosphere and appeared to rotate about a common axis. This bundle first slowly and then rapidly swung up, accompanied by a loop that appeared at the base of the bundle and expanded at comparable rates. During the first (slow rise) stage, the apex of the loop ascended at 16 km/s, a velocity similar to that of H-alpha arch filaments (e.g., Chou & Zirin) and of emerging flux ropes expanding into the corona as found in MHD simulations (e.g., Fan & Gibson; Martinez-Sykora). The second stage started at the onset of a GOES A5 flare and the loop expansion accelerated, reaching a velocity of 130 km/s when the loop appeared to rupture near the peak of the flare. The material bundle then swung back in a whiplike manner and developed into a collimated jet, exhibiting oscillatory transverse motions across its axis, as expected from unwinding twists. Some jet material fell back along smooth streamlines, which bypass an unseen dome and presumably a null point in the low corona, depicting an inverted-Y shape. Some of these observations resemble the model (e.g., Uchida & Shibata) of the emergence of a twisted flux rope into an open field region that leads to reconnection and formation of a jet. Some observations are, however, not predicted in previous models and we will discuss their implications.

  1. Validation of a New Counter for Direct Observation of Physical Activity in Parks

    PubMed Central

    Han, Bing; Cohen, Deborah A.; Derose, Kathryn Pitkin; Marsh, Terry; Williamson, Stephanie; Raaen, Laura

    2015-01-01

    Purpose Prior tools to observe large groups of people in parks have not allowed disaggregation of physical activity levels by age group and gender simultaneously, making it impossible to determine which subgroups engaged in moderate to vigorous physical activity (MVPA). This study aims to examine the reliability of a 12-button counter to simultaneously assess MVPA by age and gender subgroups in park settings. Methods A total of 1,160 pairs of observations were conducted in 481 target areas of 19 neighborhood parks in the great Los Angeles area between June 2013 and March 2014. Inter-rater reliability was assessed by Pearson’s correlation, intra-class correlation (ICC), and agreement probability in the total metabolic equivalents (METs) and METs spent in MVPA. Cosine similarity was used to check the resemblance of distributions among age and gender categories. Pictures taken in a total of 112 target areas at the beginning of the observations were used as a second check on the reliability of direct observation. Results Inter-rater reliability was high for the total METs and METs in all age and gender categories (between 0.82 and 0.97), except for male seniors (correlations and ICC between 0.64 and 0.77, agreement probability 0.85 to 0.86). Reliability was higher for total METs than for METs spent in MVPA. Correlation and ICC between observers’ measurement and picture-based counts are also high (between 0.79 and 0.94). Conclusion Trained observers can reliably use the 12-button counter to accurately assess PA distribution and disparities by age and gender. PMID:26103584

  2. Directional Surface Plasmon Coupled Luminescence for Analytical Sensing Applications: Which Metal, What Wavelength, What Observation Angle?

    PubMed Central

    Aslan, Kadir; Geddes, Chris D.

    2009-01-01

    The ability of luminescent species in the near-field to both induce and couple to surface plasmons has been known for many years, with highly directional emission from films (Surface Plasmon Coupled Luminescence, SPCL) facilitating the development of sensitive near-field assay sensing platforms, to name but just one application. Because of the near-field nature of the effect, only luminescent species (fluorescence, chemiluminescence and phosphorescence) within a few hundred nanometers from the surface play a role in coupling, which in terms of biosensing, provides for limited penetration into optically dense media, such as in whole blood. Another attractive feature is the highly polarized and angular dependent emission which allows both fixed angle and wavelength dependent emission angles to be realized at high polarization ratios. In this paper, a generic procedure based on theoretical Fresnel calculations, which outlines the step-by-step selection of an appropriate metal for SPCL applications is presented. It is also shown that 11 different metals have differing properties in different spectral regions and offer either fixed angle or wavelength-dependent angular shifts in emission. In addition, it is shown that both chemiluminescence and phosphorescence can also be observed in a highly directional manner similar to coupled fluorescence. PMID:19601619

  3. 10 CFR 26.115 - Collecting a urine specimen under direct observation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Collecting a urine specimen under direct observation. 26.115 Section 26.115 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Collecting Specimens for Testing § 26.115 Collecting a urine specimen under direct observation. (a) Procedures...

  4. 10 CFR 26.115 - Collecting a urine specimen under direct observation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Collecting a urine specimen under direct observation. 26.115 Section 26.115 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Collecting Specimens for Testing § 26.115 Collecting a urine specimen under direct observation. (a) Procedures...

  5. 10 CFR 26.115 - Collecting a urine specimen under direct observation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Collecting a urine specimen under direct observation. 26.115 Section 26.115 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Collecting Specimens for Testing § 26.115 Collecting a urine specimen under direct observation. (a) Procedures...

  6. 10 CFR 26.115 - Collecting a urine specimen under direct observation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Collecting a urine specimen under direct observation. 26.115 Section 26.115 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Collecting Specimens for Testing § 26.115 Collecting a urine specimen under direct observation. (a) Procedures...

  7. 10 CFR 26.115 - Collecting a urine specimen under direct observation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Collecting a urine specimen under direct observation. 26.115 Section 26.115 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Collecting Specimens for Testing § 26.115 Collecting a urine specimen under direct observation. (a) Procedures...

  8. Direct Observations of Clouds on Brown Dwarfs: A Spitzer Study of Extreme Cases

    NASA Astrophysics Data System (ADS)

    Burgasser, Adam; Cruz, Kelle; Cushing, Michael; Kirkpatrick, J. Davy; Looper, Dagny; Lowrance, Patrick; Marley, Mark; Saumon, Didier

    2008-03-01

    Clouds play a fundamental role in the emergent spectral energy distributions and observed variability of very low mass stars and brown dwarfs, yet hey have only been studied indirectly thus far. Recent indications of a broad silicate grain absorption feature in the 8-11 micron spectra of mid-type L dwarfs, and evidence that the strength of this absorption varies according to broad-band near-infrared color, may finally allow the first direct studies of clouds and condensate grain properties in brown dwarf atmospheres. We propose to observe a sample of 18 ``extreme'' L dwarfs - objects with unusually blue and red near-infrared colors - with IRAC and IRS to study the 8-11 micron feature in detail (including grain size distributions and bulk compositions), and to constrain advanced condensate cloud atmosphere models currently in development. Our program provides a unique examination of the general processes of cloud formation by focusing on the relatively warm photospheres of late-type brown dwarfs.

  9. Mid-depth recirculation observed in the interior Labrador and Irminger seas by direct velocity measurements

    PubMed

    Lavender; Davis; Owens

    2000-09-07

    The Labrador Sea is one of the sites where convection exports surface water to the deep ocean in winter as part of the thermohaline circulation. Labrador Sea water is characteristically cold and fresh, and it can be traced at intermediate depths (500-2,000 m) across the North Atlantic Ocean, to the south and to the east of the Labrador Sea. Widespread observations of the ocean currents that lead to this distribution of Labrador Sea water have, however, been difficult and therefore scarce. We have used more than 200 subsurface floats to measure directly basin-wide horizontal velocities at various depths in the Labrador and Irminger seas. We observe unanticipated recirculations of the mid-depth (approximately 700 m) cyclonic boundary currents in both basins, leading to an anticyclonic flow in the interior of the Labrador basin. About 40% of the floats from the region of deep convection left the basin within one year and were rapidly transported in the anticyclonic flow to the Irminger basin, and also eastwards into the subpolar gyre. Surprisingly, the float tracks did not clearly depict the deep western boundary current, which is the expected main pathway of Labrador Sea water in the thermohaline circulation. Rather, the flow along the boundary near Flemish Cap is dominated by eddies that transport water offshore. Our detailed observations of the velocity structure with a high data coverage suggest that we may have to revise our picture of the formation and spreading of Labrador Sea water, and future studies with similar instrumentation will allow new insights on the intermediate depth ocean circulation.

  10. Direct observation in medical education: a review of the literature and evidence for validity.

    PubMed

    Fromme, H Barrett; Karani, Reena; Downing, Steven M

    2009-08-01

    In 2000, the Accreditation Council for Medical Education introduced a new initiative that substantively changed the method by which residency programs are evaluated. In this new competency-based approach to residency education, assessment of performance became a main area of interest, and direct observation was offered as a tool to assess knowledge and skills. Despite being an inherent part of medical education as faculty and learners work together in clinical experiences, direct observation has traditionally been an informal and underused assessment method across all specialties. Residents and students report rarely being observed during their educational process, even though they value the experience. Reasons for this include a lack of faculty time, a lack of faculty skills, a potential stressful effect on the learner, and a perceived lack of validation of the assessment. This article examines the literature regarding the use of direct observation in medical education with a focus on validity evidence. We performed a PubMed search of articles pertaining to direct observation, using key words such as direct observation, performance observation, clinical observation, students, and residents. A subsequent search was conducted in known articles, focusing on variations of the term observation in the titles of articles and introducing the concept of clinical competence. In conclusion, direct observation is a unique and useful tool in the assessment of medical students and residents. Assessing learners in natural settings offers the opportunity to see beyond what they know and into what they actually do, which is fundamentally essential to training qualified physicians. Although the literature identifies several threats to its validity as an assessment, it also demonstrates methods to minimize those threats. Based on the current recommendations and need for performance assessment in education and with attention paid to the development and design, direct observation can

  11. Direct Observation of the Superconducting Energy Gap in the Conductivity Spectra of Thin Niobium Films.

    NASA Astrophysics Data System (ADS)

    Pronin, A. V.; Dressel, M.; Pimenov, A.; Loidl, A.; Roshchin, I. V.; Greene, L. H.

    1998-03-01

    High-quality niobium thin films are grown by planar magnetron sputter deposition on sapphire substrates. The electrodynamic response of Nb in the frequency range above and below the energy gap 2Δ is studied in both the normal and superconducting states. The amplitude and the phase of the transmission through the Nb film measured in the 5-30cm-1 frequency range using a coherent source interferometer allowed direct determination of both components of the complex conductivity. Below the superconducting transition temperature (T_c=8.3K for a 150Åthick film) the superconducting energy gap is observed to increase when the temperature is decreased. The temperature dependence of the conductivity spectra is described by BCS formalism with finite scattering. The gap is estimated to be 2Δ(0)=24cm-1 (3 meV) at T=0, therefore 2Δ(0)=4.1 k_bT_c. [1] ^Present Address: General Phys. Inst., RAS, Russia. Support: ^#BMBF (EKM 13N6917), Deutsche Forschungsgemeinschaft, Russian Foundation for Basic Research; ^*DoE through MRL (DEFG02-91ER45439). [1] A.V. Pronin et al., Phys.Rev.B (submitted).

  12. Direct Observation of a Dark State in the Photocycle of a Light-Driven Molecular Motor

    PubMed Central

    2016-01-01

    Controlling the excited-state properties of light driven molecular machines is crucial to achieving high efficiency and directed functionality. A key challenge in achieving control lies in unravelling the complex photodynamics and especially in identifying the role played by dark states. Here we use the structure sensitivity and high time resolution of UV-pump/IR-probe spectroscopy to build a detailed and comprehensive model of the structural evolution of light driven molecular rotors. The photodynamics of these chiral overcrowded alkene derivatives are determined by two close-lying excited electronic states. The potential energy landscape of these “bright” and “dark” states gives rise to a broad excited-state electronic absorption band over the entire mid-IR range that is probed for the first time and modeled by quantum mechanical calculations. The transient IR vibrational fingerprints observed in our studies allow for an unambiguous identification of the identity of the “dark” electronic excited state from which the photon’s energy is converted into motion, and thereby pave the way for tuning the quantum yield of future molecular rotors based on this structural motif. PMID:27684513

  13. Direct retrieval of ocean surface evaporation and latent heat flux from the spacebased observations

    NASA Technical Reports Server (NTRS)

    Liu, W. T.; Tang, W.

    2000-01-01

    The Tropical Rain Measuring Mission (TRMM) provides the opportunity to improve the spacebased estimation of evaporation. An algorithm for retrieving evaporation directly from the radiances observed by the TRMM Microwave Imager and its validation results are described.

  14. Instructional Interactions of Kindergarten Mathematics Classrooms: Validating a Direct Observation Instrument

    ERIC Educational Resources Information Center

    Doabler, Christian; Smolkowski, Keith; Fien, Hank; Kosty, Derek B.; Cary, Mari Strand

    2010-01-01

    In this paper, the authors report research focused directly on the validation of the Coding of Academic Teacher-Student interactions (CATS) direct observation instrument. They use classroom information gathered by the CATS instrument to better understand the potential mediating variables hypothesized to influence student achievement. Their study's…

  15. Rationale and design of a randomized controlled trial of varenicline directly observed therapy delivered in methadone clinics

    PubMed Central

    2014-01-01

    Background Tobacco cessation medication adherence is one of the few factors shown to improve smoking cessation rates among methadone-maintained smokers, but interventions to improve adherence to smoking cessation medications have not yet been tested among methadone treatment patients. Methadone clinic-based, directly observed therapy (DOT) programs for HIV and tuberculosis improve adherence and clinical outcomes, but have not been evaluated for smoking cessation. We describe a randomized controlled trial to evaluate whether a methadone clinic-based, directly observed varenicline therapy program increases adherence and tobacco abstinence among opioid-dependent drug users receiving methadone treatment. Methods/Design We plan to enroll 100 methadone-maintained smokers and randomize them to directly observed varenicline dispensed with daily methadone doses or treatment as usual (self-administered varenicline) for 12 weeks. Our outcome measures are: 1) pill count adherence and 2) carbon monoxide-verified tobacco abstinence. We will assess differences in adherence and abstinence between the two treatment arms using repeated measures models. Discussion This trial will allow for rigorous evaluation of the efficacy of methadone clinic-based, directly observed varenicline for improving adherence and smoking cessation outcomes. This detailed description of trial methodology can serve as a template for the development of future DOT programs and can guide protocols for studies among opioid-dependent smokers receiving methadone treatment. Trial Registration clinicaltrials.gov NCT01378858 PMID:24928218

  16. Experience-Based Guidance for Implementing a Direct Observation Checklist in a Pediatric Emergency Department Setting

    PubMed Central

    FitzGerald, Michael; Mallory, Mia; Mittiga, Matthew; Schubert, Charles; Schwartz, Hamilton; Gonzalez, Javier; Duma, Elena; McAneney, Constance

    2012-01-01

    Background The importance and benefits of direct observation in residency training have been underscored by a number of studies. Yet, implementing direct observation in an effective and sustainable way is hampered by demands on physicians' time and shrinking resources for educational innovation. Objective To describe the development and pilot implementation of a direct observation tool to assess the history and physical examination skills of interns in a pediatric emergency department rotation. Methods A task force developed specific history and physical examination checklists for a range of common conditions. For the pilot implementation, 10 pediatric emergency medicine faculty attendings conducted the initial observations of 34 interns during the course of 1 academic year. At the conclusion of the pilot, the faculty observers and interns were interviewed to assess the feasibility and benefits of the process. Results A total of 33 of the 34 interns were observed during their rotation, with 26 of the observations conducted when the faculty observer was off shift, and it took approximately 20 minutes to complete each observation. In terms of learning benefits, interns and faculty observers reported that it facilitated clear and useful feedback and revealed gaps that would not have otherwise been identified. Faculty observers also mentioned that it helped them focus their teaching effort, built empathy with learners, and gave them a way to demonstrate a true concern for their learning. Conclusion Our results offer evidence for the feasibility and benefits of the direct observation checklists. The description of the implementation, challenges, and response to those challenges may help others avoid some of the common problems faced when implementing direct observation methods. PMID:24294433

  17. Direct observation of electron propagation and dielectric screening on the atomic length scale.

    PubMed

    Neppl, S; Ernstorfer, R; Cavalieri, A L; Lemell, C; Wachter, G; Magerl, E; Bothschafter, E M; Jobst, M; Hofstetter, M; Kleineberg, U; Barth, J V; Menzel, D; Burgdörfer, J; Feulner, P; Krausz, F; Kienberger, R

    2015-01-15

    The propagation and transport of electrons in crystals is a fundamental process pertaining to the functioning of most electronic devices. Microscopic theories describe this phenomenon as being based on the motion of Bloch wave packets. These wave packets are superpositions of individual Bloch states with the group velocity determined by the dispersion of the electronic band structure near the central wavevector in momentum space. This concept has been verified experimentally in artificial superlattices by the observation of Bloch oscillations--periodic oscillations of electrons in real and momentum space. Here we present a direct observation of electron wave packet motion in a real-space and real-time experiment, on length and time scales shorter than the Bloch oscillation amplitude and period. We show that attosecond metrology (1 as = 10(-18) seconds) now enables quantitative insight into weakly disturbed electron wave packet propagation on the atomic length scale without being hampered by scattering effects, which inevitably occur over macroscopic propagation length scales. We use sub-femtosecond (less than 10(-15) seconds) extreme-ultraviolet light pulses to launch photoelectron wave packets inside a tungsten crystal that is covered by magnesium films of varied, well-defined thicknesses of a few ångströms. Probing the moment of arrival of the wave packets at the surface with attosecond precision reveals free-electron-like, ballistic propagation behaviour inside the magnesium adlayer--constituting the semi-classical limit of Bloch wave packet motion. Real-time access to electron transport through atomic layers and interfaces promises unprecedented insight into phenomena that may enable the scaling of electronic and photonic circuits to atomic dimensions. In addition, this experiment allows us to determine the penetration depth of electrical fields at optical frequencies at solid interfaces on the atomic scale.

  18. Direct Adaptive Neural Control for a Class of Uncertain Nonaffine Nonlinear Systems Based on Disturbance Observer.

    PubMed

    Chen, Mou; Ge, Shuzhi Sam

    2013-08-01

    In this paper, the direct adaptive neural control is proposed for a class of uncertain nonaffine nonlinear systems with unknown nonsymmetric input saturation. Based on the implicit function theorem and mean value theorem, both state feedback and output feedback direct adaptive controls are developed using neural networks (NNs) and a disturbance observer. A compounded disturbance is defined to take into account of the effect of the unknown external disturbance, the unknown nonsymmetric input saturation, and the approximation error of NN. Then, a disturbance observer is developed to estimate the unknown compounded disturbance, and it is established that the estimate error converges to a compact set if appropriate observer design parameters are chosen. Both state feedback and output feedback direct adaptive controls can guarantee semiglobal uniform boundedness of the closed-loop system signals as rigorously proved by Lyapunov analysis. Numerical simulation results are presented to illustrate the effectiveness of the proposed direct adaptive neural control techniques.

  19. The Stochastic Engine Initiative: Improving Prediction of Behavior in Geologic Environments We Cannot Directly Observe

    SciTech Connect

    Aines, R; Nitao, J; Newmark, R; Carle, S; Ramirez, A; Harris, D; Johnson, J; Johnson, V; Ermak, D; Sugiyama, G; Hanley, W; Sengupta, S; Daily, W; Glaser, R; Dyer, K; Fogg, G; Zhang, Y; Yu, Z; Levine, R

    2002-05-09

    , and most importantly an ability to obtain disparate data sets that are directly affected by the system configuration. Our initial earth-sciences application uses models for lithology, flow and transport, geochemistry, and geophysical imaging; the system configuration (base representation) being refined is the rock type at each underground location. In the initial stages of this initiative we demonstrated a two-stage analysis of synthetic Electrical Resistance Tomography (ERT) data and hydraulic flow information (Newmark et al., 2002). We used these results to develop algorithms that improve efficiency of the Metropolis search and provide accurate diagnostic evaluation during the search. Using actual data from a highly contaminated A/M outfall and solvent tank storage areas at the Savannah River Site (SRS), we used the stochastic engine to resolve lithology using ERT data. SRS will use these methods in their design and implementation of steam cleanup of the largest trichloroethylene (TCE) source in the Department of Energy (DOE) complex. We have implemented ''soft conditioning'' algorithms that allow us to use a variety of data types to control the initial representations, and most importantly, to use the final distribution resulting from one stochastic engine analysis as the initial distribution for a subsequent analysis. We have created a web-based interface that will allow collaborators like SRS to enter data and observe results of calculations on Lawrence Livermore National Laboratory (LLNL) supercomputers in an interactive mode. All engine functions operate in three dimensions, and a parallel implementation on Linux cluster machines is in initial testing. The method will be extended to include active process analysis, in which an ongoing data stream is used to continuously update the understanding of the system configuration. Applications to other types of state spaces, such as chemical parameters in a reacting system or atmospheric plume movement, are being

  20. Direct observation of broken time-reversal symmetry on the surface of a magnetically doped topological insulator.

    PubMed

    Okada, Yoshinori; Dhital, Chetan; Zhou, Wenwen; Huemiller, Erik D; Lin, Hsin; Basak, S; Bansil, A; Huang, Y-B; Ding, H; Wang, Z; Wilson, Stephen D; Madhavan, V

    2011-05-20

    We study interference patterns of a magnetically doped topological insulator Bi(2-x)Fe(x)Te(3+d) by using Fourier transform scanning tunneling spectroscopy and observe several new scattering channels. A comparison with angle-resolved photoemission spectroscopy allows us to unambiguously ascertain the momentum-space origin of distinct dispersing channels along high-symmetry directions and identify those originating from time-reversal symmetry breaking. Our analysis also reveals that the surface state survives far above the energy where angle-resolved photoemission spectroscopy finds the onset of continuum bulk bands.

  1. Holographic 3D display observable for multiple simultaneous viewers from all horizontal directions by using a time division method.

    PubMed

    Sando, Yusuke; Barada, Daisuke; Yatagai, Toyohiko

    2014-10-01

    A holographic three-dimensional display system with a viewing angle of 360°, by using a high-speed digital micromirror device (DMD), has been proposed. The wavefront modulated by the DMD enters a rotating mirror tilted vertically downward. The synchronization of the rotating mirror and holograms displayed on the DMD allows for the reconstruction of a wavefront propagating in all horizontal directions. An optical experiment has been demonstrated in order to verify our proposed system. Binocular vision is realized from anywhere within the horizontal plane. Our display system enables simultaneous observation by multiple viewers at an extremely close range.

  2. Objectively Optimized Observation Direction System Providing Situational Awareness for a Sensor Web

    NASA Astrophysics Data System (ADS)

    Aulov, O.; Lary, D. J.

    2010-12-01

    There is great utility in having a flexible and automated objective observation direction system for the decadal survey missions and beyond. Such a system allows us to optimize the observations made by suite of sensors to address specific goals from long term monitoring to rapid response. We have developed such a prototype using a network of communicating software elements to control a heterogeneous network of sensor systems, which can have multiple modes and flexible viewing geometries. Our system makes sensor systems intelligent and situationally aware. Together they form a sensor web of multiple sensors working together and capable of automated target selection, i.e. the sensors “know” where they are, what they are able to observe, what targets and with what priorities they should observe. This system is implemented in three components. The first component is a Sensor Web simulator. The Sensor Web simulator describes the capabilities and locations of each sensor as a function of time, whether they are orbital, sub-orbital, or ground based. The simulator has been implemented using AGIs Satellite Tool Kit (STK). STK makes it easy to analyze and visualize optimal solutions for complex space scenarios, and perform complex analysis of land, sea, air, space assets, and shares results in one integrated solution. The second component is target scheduler that was implemented with STK Scheduler. STK Scheduler is powered by a scheduling engine that finds better solutions in a shorter amount of time than traditional heuristic algorithms. The global search algorithm within this engine is based on neural network technology that is capable of finding solutions to larger and more complex problems and maximizing the value of limited resources. The third component is a modeling and data assimilation system. It provides situational awareness by supplying the time evolution of uncertainty and information content metrics that are used to tell us what we need to observe and the

  3. High-resolution direct infusion-based mass spectrometry in combination with whole 13C metabolome isotope labeling allows unambiguous assignment of chemical sum formulas.

    PubMed

    Giavalisco, Patrick; Hummel, Jan; Lisec, Jan; Inostroza, Alvaro Cuadros; Catchpole, Gareth; Willmitzer, Lothar

    2008-12-15

    A new strategy for direct infusion-based metabolite analysis employing a combination of high-resolution mass spectrometry and (13)C-isotope labeling of entire metabolomes is described. Differentially isotope labeled metabolite extracts from otherwise identically grown reference plants were prepared and infused into a Fourier transform ion cyclotron resonance mass spectrometer. The derived accurate mass lists from each extract were searched, using an in-house-developed database search tool, against a number of comprehensive metabolite databases. Comparison of the retrieved chemical formulas from both, the (12)C and (13)C samples, leads to two major advantages compared to nonisotope-based metabolite fingerprinting: first, removal of background contaminations from the result list, due to the (12)C/(13)C peak pairing principle and therefore positive identification of compounds of true biological origin; second, elimination of ambiguity in chemical formula assignment due to the same principle, leading to the clear association of one measured mass to only one chemical formula. Applying this combination of strategies to metabolite extracts of the model plant Arabidopsis thaliana therefore resulted in the reproducible identification of more than 1000 unambiguous chemical sum formulas of biological origin of which more than 80% have not been associated to Arabidopsis before.

  4. Direct observation of multiple tautomers of oxythiamine and their recognition by the thiamine pyrophosphate riboswitch.

    PubMed

    Singh, Vipender; Peng, Chunte Sam; Li, Deyu; Mitra, Koyel; Silvestre, Katherine J; Tokmakoff, Andrei; Essigmann, John M

    2014-01-17

    Structural diversification of canonical nucleic acid bases and nucleotide analogues by tautomerism has been proposed to be a powerful on/off switching mechanism allowing regulation of many biological processes mediated by RNA enzymes and aptamers. Despite the suspected biological importance of tautomerism, attempts to observe minor tautomeric forms in nucleic acid or hybrid nucleic acid-ligand complexes have met with challenges due to the lack of sensitive methods. Here, a combination of spectroscopic, biochemical, and computational tools probed tautomerism in the context of an RNA aptamer-ligand complex; studies involved a model ligand, oxythiamine pyrophosphate (OxyTPP), bound to the thiamine pyrophosphate (TPP) riboswitch (an RNA aptamer) as well as its unbound nonphosphorylated form, oxythiamine (OxyT). OxyTPP, similarly to canonical heteroaromatic nucleic acid bases, has a pyrimidine ring that forms hydrogen bonding interactions with the riboswitch. Tautomerism was established using two-dimensional infrared (2D IR) spectroscopy, variable temperature FTIR and NMR spectroscopies, binding isotope effects (BIEs), and computational methods. All three possible tautomers of OxyT, including the minor enol tautomer, were directly identified, and their distributions were quantitated. In the bound form, BIE data suggested that OxyTPP existed as a 4'-keto tautomer that was likely protonated at the N1'-position. These results also provide a mechanistic framework for understanding the activation of riboswitch in response to deamination of the active form of vitamin B1 (or TPP). The combination of methods reported here revealing the fine details of tautomerism can be applied to other systems where the importance of tautomerism is suspected.

  5. Unimolecular thermal decomposition of phenol and d5-phenol: Direct observation of cyclopentadiene formation via cyclohexadienone

    NASA Astrophysics Data System (ADS)

    Scheer, Adam M.; Mukarakate, Calvin; Robichaud, David J.; Nimlos, Mark R.; Carstensen, Hans-Heinrich; Barney Ellison, G.

    2012-01-01

    The pyrolyses of phenol and d5-phenol (C6H5OH and C6D5OH) have been studied using a high temperature, microtubular (μtubular) SiC reactor. Product detection is via both photon ionization (10.487 eV) time-of-flight mass spectrometry and matrix isolation infrared spectroscopy. Gas exiting the heated reactor (375 K-1575 K) is subject to a free expansion after a residence time in the μtubular reactor of approximately 50-100 μs. The expansion from the reactor into vacuum rapidly cools the gas mixture and allows the detection of radicals and other highly reactive intermediates. We find that the initial decomposition steps at the onset of phenol pyrolysis are enol/keto tautomerization to form cyclohexadienone followed by decarbonylation to produce cyclopentadiene; C6H5OH → c-C6H6 = O → c-C5H6 + CO. The cyclopentadiene loses a H atom to generate the cyclopentadienyl radical which further decomposes to acetylene and propargyl radical; c-C5H6 → c-C5H5 + H → HC≡CH + HCCCH2. At higher temperatures, hydrogen loss from the PhO-H group to form phenoxy radical followed by CO ejection to generate the cyclopentadienyl radical likely contributes to the product distribution; C6H5O-H → C6H5O + H → c-C5H5 + CO. The direct decarbonylation reaction remains an important channel in the thermal decomposition mechanisms of the dihydroxybenzenes. Both catechol (o-HO-C6H4-OH) and hydroquinone (p-HO-C6H4-OH) are shown to undergo decarbonylation at the onset of pyrolysis to form hydroxycyclopentadiene. In the case of catechol, we observe that water loss is also an important decomposition channel at the onset of pyrolysis.

  6. A Novel 7-Single Nucleotide Polymorphism-Based Clonotyping Test Allows Rapid Prediction of Antimicrobial Susceptibility of Extraintestinal Escherichia coli Directly From Urine Specimens

    PubMed Central

    Tchesnokova, Veronika; Avagyan, Hovhannes; Billig, Mariya; Chattopadhyay, Sujay; Aprikian, Pavel; Chan, Diana; Pseunova, Julietta; Rechkina, Elena; Riddell, Kim; Scholes, Delia; Fang, Ferric C.; Johnson, James R.; Sokurenko, Evgeni V.

    2016-01-01

    Background. Escherichia coli is a highly clonal pathogen. Extraintestinal isolates belong to a limited number of genetically related groups, which often exhibit characteristic antimicrobial resistance profiles. Methods. We developed a rapid clonotyping method for extraintestinal E coli based on detection of the presence or absence of 7 single nucleotide polymorphisms (SNPs) within 2 genes (fumC and fimH). A reference set of 2559 E coli isolates, primarily of urinary origin, was used to predict the resolving power of the 7-SNP-based typing method, and 582 representative strains from this set were used to evaluate test robustness. Results. Fifty-four unique SNP combinations (“septatypes”) were identified in the reference strains. These septatypes yielded a clonal group resolution power on par with that of traditional multilocus sequence typing. In 72% of isolates, septatype identity predicted sequence type identity with at least 90% (mean, 97%) accuracy. Most septatypes exhibited highly distinctive antimicrobial susceptibility profiles. The 7-SNP-based test could be performed with high specificity and sensitivity using single or multiplex conventional polymerase chain reaction (PCR) and quantitative PCR. In the latter format, E coli presence and septatype identity were determined directly in urine specimens within 45 minutes with bacterial loads as low as 102 colony-forming units/mL and, at clinically significant bacterial loads, with 100% sensitivity and specificity. Conclusions. 7-SNP-based typing of E coli can be used for both epidemiological studies and clinical diagnostics, which could greatly improve the empirical selection of antimicrobial therapy. PMID:26925427

  7. Direct observation of blocked nanoscale surface evaporation on SiO2 nanodroplets

    NASA Astrophysics Data System (ADS)

    Wan, Neng; Xu, Jun; Sun, Li-Tao; Martini, Matteo; Huang, Qing-An; Hu, Xiao-Hui; Xu, Tao; Bi, Heng-Chang; Sun, Jun

    2012-10-01

    Nano-scale surface evaporation of SiO2 nanodroplets from a volcano-shaped tip (tip diameter d ˜ 20 nm to 70 nm) was observed directly using an in situ transmission electron microscopy method. Au nanoparticles, those precipitated in the SiO2 matrix after an Au catalyzed growth, diffused and pinned onto the evaporation surface, which induced blocked evaporation dynamics. Our observations provide direct evidences of blocked evaporation dynamics caused by small-sized nanoparticles at the nanometer scale.

  8. Direct observation of grain growth from molten silicon formed by micro-thermal-plasma-jet irradiation

    SciTech Connect

    Hayashi, Shohei; Fujita, Yuji; Kamikura, Takahiro; Sakaike, Kohei; Akazawa, Muneki; Ikeda, Mitsuhisa; Hanafusa, Hiroaki; Higashi, Seiichiro

    2012-10-22

    Phase transformation of amorphous-silicon during millisecond annealing using micro-thermal-plasma-jet irradiation was directly observed using a high-speed camera with microsecond time resolution. An oval-shaped molten-silicon region adjacent to the solid phase crystallization region was clearly observed, followed by lateral large grain growth perpendicular to a liquid-solid interface. Furthermore, leading wave crystallization (LWC), which showed intermittent explosive crystallization, was discovered in front of the moving molten region. The growth mechanism of LWC has been investigated on the basis of numerical simulation implementing explosive movement of a thin liquid layer driven by released latent heat diffusion in a lateral direction.

  9. Directional surface plasmon coupled chemiluminescence from nickel thin films: Fixed angle observation

    NASA Astrophysics Data System (ADS)

    Weisenberg, Micah; Aslan, Kadir; Hortle, Elinor; Geddes, Chris D.

    2009-04-01

    Directional surface plasmon coupled chemiluminescence (SPCC) from nickel thin films is demonstrated. Free-space and angular-dependent SPCC emission from blue, green and turquoise chemiluminescent solutions placed onto nickel thin films attached to a hemispherical prism were measured. SPCC emission was found to be highly directional and preferentially p-polarized, in contrast to the unpolarized and isotropic chemiluminescence emission. The largest SPCC emission for all chemiluminescence solutions was observed at a fixed observation angle of 60°, which was also predicted by theoretical Fresnel calculations. It was found that nickel thin films did not have a catalytic effect on chemiluminescence emission.

  10. Inter-observer reproducibility of back surface topography parameters allowing assessment of scoliotic thoracic gibbosity and comparison with two standard postures.

    PubMed

    de Sèze, M; Randriaminahisoa, T; Gaunelle, A; de Korvin, G; Mazaux, J-M

    2013-12-01

    The objective of this work was to analyze the inter-observer reproducibility of an upright posture designed to bring out the thoracic humps by folding the upper limbs. The effect of this posture on back surface parameters was also compared with two standard radiological postures. A back surface topography was performed on 46 patients (40 girls and 6 boys) with a minimum of 15° Cobb angle on coronal spinal radiographs. Inter-observer reliability was evaluated using the typical error measurement (TEM) and Intraclass Correlation Coefficient (ICC). Variations between postures were assessed using a Student's t test. The inter-observer reproducibility is good enough for the three postures. The proposed posture leads to significant changes in the sagittal plane as well as in the identification of thoracic humps. This study shows the reproducibility of the proposed posture in order to explore the thoracic humps and highlights its relevance to explore scoliosis with back surface topography systems.

  11. Observing Grasping Actions Directed to Emotion-Laden Objects: Effects upon Corticospinal Excitability

    PubMed Central

    Nogueira-Campos, Anaelli A.; Saunier, Ghislain; Della-Maggiore, Valeria; De Oliveira, Laura A. S.; Rodrigues, Erika C.; Vargas, Claudia D.

    2016-01-01

    The motor system is recruited whenever one executes an action as well as when one observes the same action being executed by others. Although it is well established that emotion modulates the motor system, the effect of observing other individuals acting in an emotional context is particularly elusive. The main aim of this study was to investigate the effect induced by the observation of grasping directed to emotion-laden objects upon corticospinal excitability (CSE). Participants classified video-clips depicting the right-hand of an actor grasping emotion-laden objects. Twenty video-clips differing in terms of valence but balanced in arousal level were selected. Motor evoked potentials (MEPs) were then recorded from the first dorsal interosseous using transcranial magnetic stimulation (TMS) while the participants observed the selected emotional video-clips. During the video-clip presentation, TMS pulses were randomly applied at one of two different time points of grasping: (1) maximum grip aperture, and (2) object contact time. CSE was higher during the observation of grasping directed to unpleasant objects compared to pleasant ones. These results indicate that when someone observes an action of grasping directed to emotion-laden objects, the effect of the object valence promotes a specific modulation over the motor system. PMID:27625602

  12. Three-Item Direct Observation Screen (TIDOS) for Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Oner, Pinar; Oner, Ozgur; Munir, Kerim

    2014-01-01

    We compared ratings on the Three-Item Direct Observation Screen test for autism spectrum disorders completed by pediatric residents with the Social Communication Questionnaire parent reports as an augmentative tool for improving autism spectrum disorder screening performance. We examined three groups of children (18-60 months) comparable in age…

  13. Standardizing the Pre-Licensure Supervision Process: A Commentary on Advocating for Direct Observation of Skills

    ERIC Educational Resources Information Center

    Gray, Neal D.; Erickson, Paul

    2013-01-01

    The present paper advocates for standardized regulations and laws for supervision of pre-licensed counselors in the United States, particularly for direct observation of clinical skills. A review of regulations by the American Counseling Association (ACA) Office of Professional Affairs (2012) reveals that only two states (Arizona and North…

  14. Considering Systematic Direct Observation after a Century of Research--Commentary on the Special Issue

    ERIC Educational Resources Information Center

    Stichter, Janine P.; Riley-Tillman, T. Chris

    2014-01-01

    Systematic Direct Observation (SDO) has played a pivotal role in the field of Emotional and/or Behavioral Disorders (EBD) since its inception as a key part of understanding more about the behaviors, contexts that impact them, and the effective supports necessary for this population. This methodology is an ongoing charge for everyone. The authors…

  15. A comparison of in situ and airborne radar observations of ocean wave directionality

    NASA Technical Reports Server (NTRS)

    Jackson, F. C.; Walton, W. T.; Peng, C. Y.

    1985-01-01

    The directional spectrum of a fully arisen, about 3 m sea as measured by an experimental airborne radar, the NASA K(u)-band radar ocean wave spectrometer (ROWS), is compared to reference pitch-roll buoy data and to the classical SWOP (stereo wave observations project) spectrum for fully developed conditions. The ROWS spectrum, inferred indirectly from backscattered power measurements at 5-km altitude, is shown to be in excellent agreement with the buoy spectrum. Specifically, excellent agreement is found between the two nondirectional height spectra, and mean wave directions and directional spreads as functions of frequency. A comparison of the ROWS and SWOP spectra shows the two spectra to be very similar, in detailed shape as well as in terms of the gross spreading characteristics. Both spectra are seen to exhibit bimodal structures which accord with the Phillips' (1958) resonance mechanism. This observation is thus seen to support Phillips' contention that the SWOP modes were indeed resonance modes, not statistical artifacts.

  16. Three-item Direct Observation Screen (TIDOS) for autism spectrum disorder.

    PubMed

    Oner, Pinar; Oner, Ozgur; Munir, Kerim

    2014-08-01

    We compared ratings on the Three-Item Direct Observation Screen test for autism spectrum disorders completed by pediatric residents with the Social Communication Questionnaire parent reports as an augmentative tool for improving autism spectrum disorder screening performance. We examined three groups of children (18-60 months) comparable in age (18-24 month, 24-36 month, 36-60 preschool subgroups) and gender distribution: n = 86 with Diagnostic and Statistical Manual of Mental Disorders (4th ed., text rev.) autism spectrum disorders; n = 76 with developmental delay without autism spectrum disorders; and n = 97 with typical development. The Three-Item Direct Observation Screen test included the following (a) Joint Attention, (b) Eye Contact, and (c) Responsiveness to Name. The parent Social Communication Questionnaire ratings had a sensitivity of .73 and specificity of .70 for diagnosis of autism spectrum disorders. The Three-Item Direct Observation Screen test item Joint Attention had a sensitivity of .82 and specificity of .90, Eye Contact had a sensitivity of .89 and specificity of .91, and Responsiveness to Name had a sensitivity of .67 and specificity of .87. In the Three-Item Direct Observation Screen test, having at least one of the three items positive had a sensitivity of .95 and specificity of .85. Age, diagnosis of autism spectrum disorder, and developmental level were important factors affecting sensitivity and specificity. The results indicate that augmentation of autism spectrum disorder screening by observational items completed by trained pediatric-oriented professionals can be a highly effective tool in improving screening performance. If supported by future population studies, the results suggest that primary care practitioners will be able to be trained to use this direct procedure to augment screening for autism spectrum disorders in the community.

  17. Direct observation of a sub-Poissonian number distribution of atoms in an optical lattice.

    PubMed

    Itah, Amir; Veksler, Hagar; Lahav, Oren; Blumkin, Alex; Moreno, Coral; Gordon, Carmit; Steinhauer, Jeff

    2010-03-19

    We report single-site resolution in a lattice with tunneling between sites, allowing for an in situ study of stochastic losses. The ratio of the loss rate to the tunneling rate is seen to determine the number fluctuations, and the overall profile of the lattice. Sub-Poissonian number fluctuations are observed. Deriving the lattice beams from a microlens array results in perfect relative stability between beams.

  18. Validation of a weather forecast model at radiance level against satellite observations allowing quantification of temperature, humidity, and cloud-related biases

    NASA Astrophysics Data System (ADS)

    Bani Shahabadi, Maziar; Huang, Yi; Garand, Louis; Heilliette, Sylvain; Yang, Ping

    2016-09-01

    An established radiative transfer model (RTM) is adapted for simulating all-sky infrared radiance spectra from the Canadian Global Environmental Multiscale (GEM) model in order to validate its forecasts at the radiance level against Atmospheric InfraRed Sounder (AIRS) observations. Synthetic spectra are generated for 2 months from short-term (3-9 h) GEM forecasts. The RTM uses a monthly climatological land surface emissivity/reflectivity atlas. An updated ice particle optical property library was introduced for cloudy radiance calculations. Forward model brightness temperature (BT) biases are assessed to be of the order of ˜1 K for both clear-sky and overcast conditions. To quantify GEM forecast meteorological variables biases, spectral sensitivity kernels are generated and used to attribute radiance biases to surface and atmospheric temperatures, atmospheric humidity, and clouds biases. The kernel method, supplemented with retrieved profiles based on AIRS observations in collocation with a microwave sounder, achieves good closure in explaining clear-sky radiance biases, which are attributed mostly to surface temperature and upper tropospheric water vapor biases. Cloudy-sky radiance biases are dominated by cloud-induced radiance biases. Prominent GEM biases are identified as: (1) too low surface temperature over land, causing about -5 K bias in the atmospheric window region; (2) too high upper tropospheric water vapor, inducing about -3 K bias in the water vapor absorption band; (3) too few high clouds in the convective regions, generating about +10 K bias in window band and about +6 K bias in the water vapor band.

  19. THE STRUCTURE OF A SELF-GRAVITATING PROTOPLANETARY DISK AND ITS IMPLICATIONS FOR DIRECT IMAGING OBSERVATIONS

    SciTech Connect

    Muto, Takayuki

    2011-09-20

    We consider the effects of self-gravity on the hydrostatic balance in the vertical direction of a gaseous disk and discuss the possible signature of the self-gravity that may be captured by direct imaging observations of protoplanetary disks in the future. In this paper, we consider a vertically isothermal disk in order to isolate the effects of self-gravity. The specific disk model we consider in this paper is the one with a radial surface density gap, at which the Toomre's Q-parameter of the disk varies rapidly in the radial direction. We calculate the vertical structure of the disk including the effects of self-gravity. We then calculate the scattered light and the dust thermal emission. We find that if the disk is massive enough and the effects of self-gravity come into play, a weak bump-like structure at the gap edge appears in the near-infrared (NIR) scattered light, while no such bump-like structure is seen in the submillimeter (sub-mm) dust continuum image. The appearance of the bump is caused by the variation of the height of the surface in the NIR wavelength. If such a bump-like feature is detected in future direct imaging observations, combined with sub-mm observations, it will give us useful information about the physical states of the disk.

  20. Unimolecular Thermal Decomposition of Phenol and d5-Phenol: Direct Observation of Cyclopentadiene Formation via Cyclohexadienone

    SciTech Connect

    Scheer, A. M.; Mukarakate, C.; Robichaud, D. J.; Nimlos, M. R.; Carstensen, H. H.; Barney, E. G.

    2012-01-28

    The pyrolyses of phenol and d{sub 5}-phenol (C{sub 6}H{sub 5}OH and C{sub 6}D{sub 5}OH) have been studied using a high temperature, microtubular ({mu}tubular) SiC reactor. Product detection is via both photon ionization (10.487 eV) time-of-flight mass spectrometry and matrix isolation infrared spectroscopy. Gas exiting the heated reactor (375 K-1575 K) is subject to a free expansion after a residence time in the {mu}tubular reactor of approximately 50-100 {micro}s. The expansion from the reactor into vacuum rapidly cools the gas mixture and allows the detection of radicals and other highly reactive intermediates. We find that the initial decomposition steps at the onset of phenol pyrolysis are enol/keto tautomerization to form cyclohexadienone followed by decarbonylation to produce cyclopentadiene; C{sub 6}H{sub 5}OH {yields} c-C{sub 6}H{sub 6} = O {yields} c-C{sub 5}H{sub 6} + CO. The cyclopentadiene loses a H atom to generate the cyclopentadienyl radical which further decomposes to acetylene and propargyl radical; c-C{sub 5}H{sub 6} {yields} c-C{sub 5}H{sub 5} + H {yields} HC {triple_bond} CH + HCCCH{sub 2}. At higher temperatures, hydrogen loss from the PhO-H group to form phenoxy radical followed by CO ejection to generate the cyclopentadienyl radical likely contributes to the product distribution; C{sub 6}H{sub 5}O-H {yields} C{sub 6}H{sub 5}O + H {yields} c-C{sub 5}H{sub 5} + CO. The direct decarbonylation reaction remains an important channel in the thermal decomposition mechanisms of the dihydroxybenzenes. Both catechol (o-HO-C{sub 6}H{sub 4}-OH) and hydroquinone (p-HO-C{sub 6}H{sub 4}-OH) are shown to undergo decarbonylation at the onset of pyrolysis to form hydroxycyclopentadiene. In the case of catechol, we observe that water loss is also an important decomposition channel at the onset of pyrolysis.

  1. Direct Observation of Field and Temperature Induced Domain Replication in Dipolar Coupled Perpendicular Anisotropy Films

    SciTech Connect

    Hauet, T.; Gunther, C.M.; Pfau, B.; Eisebitt, S.; Fischer, P.; Rick, R. L.; Thiele, J.-U.; Hellwig, O.; Schabes, M.E.

    2007-07-01

    Dipolar interactions in a soft/Pd/hard [CoNi/Pd]{sub 30}/Pd/[Co/Pd]{sub 20} multilayer system, where a thick Pd layer between two ferromagnetic units prevents direct exchange coupling, are directly revealed by combining magnetometry and state-of-the-art layer resolving soft x-ray imaging techniques with sub-100-nm spatial resolution. The domains forming in the soft layer during external magnetic field reversal are found to match the domains previously trapped in the hard layer. The low Curie temperature of the soft layer allows varying its intrinsic parameters via temperature and thus studying the competition with dipolar fields due to the domains in the hard layer. Micromagnetic simulations elucidate the role of [CoNi/Pd] magnetization, exchange, and anisotropy in the duplication process. Finally, thermally driven domain replication in remanence during temperature cycling is demonstrated.

  2. Diffusion of a Highly-Charged Supramolecular Assembly: Direct Observation of Ion-Association in Water

    SciTech Connect

    University of California, Berkeley; Lawrence Berkeley National Laboratory; Raymond, Kenneth; Pluth, Michael D.; Tiedemann, Bryan E.F.; van Halbeek, Herman; Nunlist, Rudi; Raymond, Kenneth N.

    2007-10-22

    Understanding the solution behavior of supramolecular assemblies is essential for a full understanding of the formation and chemistry of synthetic host-guest systems. While the interaction between host and guest molecules is generally the focus of mechanistic studies of host-guest complexes, the interaction of the host-guest complex with other species in solution remains largely unknown, although in principle accessible by diffusion studies. Several NMR techniques are available to monitor diffusion and have recently been reviewed. Pulsed gradient spin-echo (PGSE) NMR methods have attracted increasing interest, since they allow diffusion coefficients to be measured with high accuracy; they have been successfully used with observation of {sup 7}Li and {sup 31}P nuclei as well as with {sup 1}H NMR. We report here the direct measurement of diffusion coefficients to observe ion-association interactions by counter cations with a highly-charged supramolecular assembly. Raymond and coworkers have described the design and chemistry of a class of metal-ligand supramolecular assemblies over the past decade. The [Ga{sub 4}L{sub 6}]{sup 12-} (L = 1,5-bis(2,3-dihydroxybenzamido)naphthalene) (1) (Figure 1) assembly has garnered the most attention, with the exploration of the dynamics and mechanism of guest exchange as well as the ability of 1 to achieve either stoichiometric or catalytic reactions inside its interior cavity. Recent studies have revealed the importance of counter cations in solution on the chemistry of 1. During the mechanistic study of the C-H bond activation of aldehydes by [Cp*Ir(PMe{sub 3})(olefin){sup +} {contained_in} 1]{sup 11-} a stepwise guest dissociation mechanism with an ion-paired intermediate was proposed. Similarly, in the mechanism for the hydrolysis of iminium cations generated from the 3-aza Cope rearrangement of enammonium cations in 1, the presence of an exterior ion association was part of the kinetic model. To further substantiate the

  3. Does prey size matter? Novel observations of feeding in the leatherback turtle (Dermochelys coriacea) allow a test of predator-prey size relationships.

    PubMed

    Fossette, Sabrina; Gleiss, Adrian C; Casey, James P; Lewis, Andrew R; Hays, Graeme C

    2012-06-23

    Optimal foraging models predict that large predators should concentrate on large prey in order to maximize their net gain of energy intake. Here, we show that the largest species of sea turtle, Dermochelys coriacea, does not strictly adhere to this general pattern. Field observations combined with a theoretical model suggest that a 300 kg leatherback turtle would meet its energetic requirements by feeding for 3-4 h a day on 4 g jellyfish, but only if prey were aggregated in high-density patches. Therefore, prey abundance rather than prey size may, in some cases, be the overriding parameter for foraging leatherbacks. This is a classic example where the presence of small prey in the diet of a large marine predator may reflect profitable foraging decisions if the relatively low energy intake per small individual prey is offset by high encounter rates and minimal capture and handling costs. This study provides, to our knowledge, the first quantitative estimates of intake rate for this species.

  4. Mid-Cretaceous charred fossil flowers reveal direct observation of arthropod feeding strategies

    PubMed Central

    Hartkopf-Fröder, Christoph; Rust, Jes; Wappler, Torsten; Friis, Else Marie; Viehofen, Agnes

    2012-01-01

    Although plant–arthropod relationships underpin the dramatic rise in diversity and ecological dominance of flowering plants and their associated arthropods, direct observations of such interactions in the fossil record are rare, as these ephemeral moments are difficult to preserve. Three-dimensionally preserved charred remains of Chloranthistemon flowers from the Late Albian to Early Cenomanian of Germany preserve scales of mosquitoes and an oribatid mite with mouthparts inserted into the pollen sac. Mosquitoes, which today are frequent nectar feeders, and the mite were feeding on pollen at the time wildfire consumed the flowers. These findings document directly arthropod feeding strategies and their role in decomposition. PMID:21900310

  5. Direct observation of quantum phonon fluctuations in a one-dimensional Bose gas.

    PubMed

    Armijo, Julien

    2012-06-01

    We report the first direct observation of collective quantum fluctuations in a continuous field. Shot-to-shot atom number fluctuations in small subvolumes of a weakly interacting, ultracold atomic 1D cloud are studied using in situ absorption imaging and statistical analysis of the density profiles. In the cloud centers, well in the quantum quasicondensate regime, the ratio of chemical potential to thermal energy is μ/k(B)T≃4, and, owing to high resolution, up to 20% of the microscopically observed fluctuations are quantum phonons. Within a nonlocal analysis at variable observation length, we observe a clear deviation from a classical field prediction, which reveals the emergence of dominant quantum fluctuations at short length scales, as the thermodynamic limit breaks down.

  6. Validation of simulated flow direction and hydraulic gradients with hydraulic head observations using open source GIS

    NASA Astrophysics Data System (ADS)

    Vandersteen, Katrijn; Rogiers, Bart; Gedeon, Matej

    2015-04-01

    It is recommended to check hydraulic gradients and flow directions predicted by a groundwater flow model that is calibrated solely with hydraulic head observations. It has been demonstrated in literature that substantial errors can be made when the model is not calibrated on these state variables. Therefore, in this work, we perform a validation of a steady-state groundwater flow model, representing part of the Neogene aquifer (60 km2) in Belgium. This model was developed and calibrated solely on groundwater head measurements, in the framework of the environmental impact assessment of the near surface repository for low- and intermediate-level short-lived waste, realized by ONDRAF/NIRAS at Dessel, Belgium. Horizontal flow directions, horizontal and vertical gradients for the entire area of the groundwater model were estimated from measurements at shallow monitoring wells within the groundwater flow model domain, and compared to the flow directions and vertical gradients predicted by the model. For obtaining horizontal flow directions and gradients, triangulation of groundwater levels was performed for combinations of three neighboring hydraulic head observations in the same hydrogeological layer within the model. The simulated equivalents at the same monitoring wells were used to repeat the same methodology, and calculate flow direction components. This analysis was performed in SAGA GIS and was visualized through QGIS. Comparison of the flow directions and flow gradients obtained from measurements and simulations gives an indication on the model performance. The calculations were performed for three sandy hydrogeological units used in the model. A similar procedure was performed for the vertical hydraulic head gradients, where any combination of two hydraulic head observations at the same location but at different levels within the aquifer were used to validate the vertical gradients predicted by the model. Besides model validation on average hydraulic heads, the

  7. Microbunching instability in relativistic electron bunches: direct observations of the microstructures using ultrafast YBCO detectors.

    PubMed

    Roussel, E; Evain, C; Szwaj, C; Bielawski, S; Raasch, J; Thoma, P; Scheuring, A; Hofherr, M; Ilin, K; Wünsch, S; Siegel, M; Hosaka, M; Yamamoto, N; Takashima, Y; Zen, H; Konomi, T; Adachi, M; Kimura, S; Katoh, M

    2014-08-29

    Relativistic electron bunches circulating in accelerators are subjected to a dynamical instability leading to microstructures at millimeter to centimeter scale. Although this is a well-known fact, direct experimental observations of the structures, or the field that they emit, remained up to now an open problem. Here, we report the direct, shot-by-shot, time-resolved recording of the shapes (including envelope and carrier) of the pulses of coherent synchrotron radiation that are emitted, and that are a "signature" of the electron bunch microstructure. The experiments are performed on the UVSOR-III storage ring, using electrical field sensitive YBa2Cu3O(7-x) thin-film ultrafast detectors. The observed patterns are subjected to permanent drifts, that can be explained from a reasoning in phase space, using macroparticle simulations.

  8. Direct observation of electric field induced pattern formation and particle aggregation in ferrofluids

    SciTech Connect

    Rajnak, Michal; Kopcansky, Peter; Timko, Milan; Petrenko, Viktor I.; Avdeev, Mikhail V.; Ivankov, Olexandr I.; Feoktystov, Artem; Dolnik, Bystrik; Kurimsky, Juraj

    2015-08-17

    Ferrofluids typically respond to magnetic fields and can be manipulated by external magnetic fields. Here, we report on formation of visually observable patterns in a diluted low-polarity ferrofluid exposed to external electric fields. This presents a specific type of ferrofluid structure driven by a combined effect of electrohydrodynamics and electrical body forces. The free charge and permittivity variation are considered to play a key role in the observed phenomenon. The corresponding changes in the ferrofluid structure have been found at nanoscale as well. By small-angle neutron scattering (SANS), we show that the magnetic nanoparticles aggregate in direct current (dc) electric field with a strong dependence on the field intensity. The anisotropic aggregates preferably orient in the direction of the applied electric field. Conducting SANS experiments with alternating current (ac) electric fields of various frequencies, we found a critical frequency triggering the aggregation process. Our experimental study could open future applications of ferrofluids based on insulating liquids.

  9. Direct spectroscopic observation of a shallow hydrogenlike donor state in insulating SrTiO3.

    PubMed

    Salman, Z; Prokscha, T; Amato, A; Morenzoni, E; Scheuermann, R; Sedlak, K; Suter, A

    2014-10-10

    We present a direct spectroscopic observation of a shallow hydrogenlike muonium state in SrTiO(3) which confirms the theoretical prediction that interstitial hydrogen may act as a shallow donor in this material. The formation of this muonium state is temperature dependent and appears below ∼ 70K. From the temperature dependence we estimate an activation energy of ∼ 50 meV in the bulk and ∼ 23 meV near the free surface. The field and directional dependence of the muonium precession frequencies further supports the shallow impurity state with a rare example of a fully anisotropic hyperfine tensor. From these measurements we determine the strength of the hyperfine interaction and propose that the muon occupies an interstitial site near the face of the oxygen octahedron in SrTiO(3). The observed shallow donor state provides new insight for tailoring the electronic and optical properties of SrTiO(3)-based oxide interface systems.

  10. Direct Observation of Nanosecond Water Exchange Dynamics at a Protein Metal Site

    PubMed Central

    Stachura, Monika; Chakraborty, Saumen; Gottberg, Alexander; Ruckthong, Leela; Pecoraro, Vincent L.; Hemmingsen, Lars

    2017-01-01

    Nanosecond ligand exchange dynamics at metal sites within proteins is essential in catalysis, metal ion transport, and regulatory metallobiochemistry. Herein we present direct observation of the exchange dynamics of water at a Cd2+ binding site within two de novo designed metalloprotein constructs using 111mCd perturbed angular correlation (PAC) of γ-rays and 113Cd NMR spectroscopy. The residence time of the Cd2+-bound water molecule is tens of nanoseconds at 20 °C in both proteins. This constitutes the first direct experimental observation of the residence time of Cd2+ coordinated water in any system, including the simple aqua ion. A Leu to Ala amino acid substitution ~10 Å from the Cd2+ site affects both the equilibrium constant and the residence time of water, while, surprisingly, the metal site structure, as probed by PAC spectroscopy, remains essentially unaltered. This implies that remote mutations may affect metal site dynamics, even when structure is conserved. PMID:27973778

  11. Direct observation of the crystallographic relationship between interlamellar membranes and aragonite tablets in bivalve nacre.

    PubMed

    Xu, Jun; Zhang, Gangsheng

    2016-12-23

    Nacre is one of the most attractive models for understanding the fundamental principles of biomineralization and for designing bio-inspired materials due to its simple structure but with unusual mechanical properties. It is made up of lamellae of aragonite tablets bonded together by the organic interlamellar membranes (ILMs), of which the latter occupy less than 5wt% of nacre. For a long time, previous authors failed to directly observe the crystallographic relationship between the ILM and aragonite tablet in bivalve shells. Here, using high resolution transmission electron microscope (HRTEM), we investigate the interfacial structure of the domed tablets that coexist with the flat ones in green mussels. We directly observed that the ILMs are oriented with the underlying tablets and connected with the latter via a superlattice region. The finding advances our current knowledge of nacre biomineralization and may help to design novel nacre-like materials.

  12. Bi-directional reflectance and other radiation parameters of cirrus from ER-2 observations

    NASA Technical Reports Server (NTRS)

    Spinhime, James

    1993-01-01

    Passive and active remote sensing of cirrus were acquired from the ER-2 high altitude aircraft in the 1991 Cirrus Experiment. The observations include direct measurements of cirrus bi-directional reflectance from a new translinear scanning radiometer and the previously employed measurements by lidar and visible-infrared imaging radiometers. For any cirrus radiative transfer application, it is necessary to know the appropriate model for visible reflectance in relation to angle and also the optical thickness and infrared emissivity of the clouds. At a more complicated level, for remote sensing and overall cloud effects it is ultimately required to understand effects from multiple cloud layers, broken clouds, and variable microphysics. Our overall data set from the scanning radiometers and lidar is intended to provide the necessary observations to investigate these problems.

  13. Direct observation of electric field induced pattern formation and particle aggregation in ferrofluids

    NASA Astrophysics Data System (ADS)

    Rajnak, Michal; Petrenko, Viktor I.; Avdeev, Mikhail V.; Ivankov, Olexandr I.; Feoktystov, Artem; Dolnik, Bystrik; Kurimsky, Juraj; Kopcansky, Peter; Timko, Milan

    2015-08-01

    Ferrofluids typically respond to magnetic fields and can be manipulated by external magnetic fields. Here, we report on formation of visually observable patterns in a diluted low-polarity ferrofluid exposed to external electric fields. This presents a specific type of ferrofluid structure driven by a combined effect of electrohydrodynamics and electrical body forces. The free charge and permittivity variation are considered to play a key role in the observed phenomenon. The corresponding changes in the ferrofluid structure have been found at nanoscale as well. By small-angle neutron scattering (SANS), we show that the magnetic nanoparticles aggregate in direct current (dc) electric field with a strong dependence on the field intensity. The anisotropic aggregates preferably orient in the direction of the applied electric field. Conducting SANS experiments with alternating current (ac) electric fields of various frequencies, we found a critical frequency triggering the aggregation process. Our experimental study could open future applications of ferrofluids based on insulating liquids.

  14. Direct Observation of Spatiotemporal Dynamics of Short Electron Bunches in Storage Rings.

    PubMed

    Evain, C; Roussel, E; Le Parquier, M; Szwaj, C; Tordeux, M-A; Brubach, J-B; Manceron, L; Roy, P; Bielawski, S

    2017-02-03

    In recent synchrotron radiation facilities, the use of short (picosecond) electron bunches is a powerful method for producing giant pulses of terahertz coherent synchrotron radiation. Here we report on the first direct observation of these pulse shapes with a few picoseconds resolution, and of their dynamics over a long time. We thus confirm in a very direct way the theories predicting an interplay between two physical processes. Below a critical bunch charge, we observe a train of identical THz pulses (a broadband Terahertz comb) stemming from the shortness of the electron bunches. Above this threshold, a large part of the emission is dominated by drifting structures, which appear through spontaneous self-organization. These challenging single-shot THz recordings are made possible by using a recently developed photonic time stretch detector with a high sensitivity. The experiment has been realized at the SOLEIL storage ring.

  15. Direct Observation of Spatiotemporal Dynamics of Short Electron Bunches in Storage Rings

    NASA Astrophysics Data System (ADS)

    Evain, C.; Roussel, E.; Le Parquier, M.; Szwaj, C.; Tordeux, M.-A.; Brubach, J.-B.; Manceron, L.; Roy, P.; Bielawski, S.

    2017-02-01

    In recent synchrotron radiation facilities, the use of short (picosecond) electron bunches is a powerful method for producing giant pulses of terahertz coherent synchrotron radiation. Here we report on the first direct observation of these pulse shapes with a few picoseconds resolution, and of their dynamics over a long time. We thus confirm in a very direct way the theories predicting an interplay between two physical processes. Below a critical bunch charge, we observe a train of identical THz pulses (a broadband Terahertz comb) stemming from the shortness of the electron bunches. Above this threshold, a large part of the emission is dominated by drifting structures, which appear through spontaneous self-organization. These challenging single-shot THz recordings are made possible by using a recently developed photonic time stretch detector with a high sensitivity. The experiment has been realized at the SOLEIL storage ring.

  16. A woman's lived experience with directly observed therapy for tuberculosis-a case study.

    PubMed

    Zuñiga, Julie Ann

    2012-01-01

    This is a case study to investigate the lived experience of tuberculosis (TB) treatment for a Hispanic female. The theme was accumulating aggravation. Her daily life was interrupted with appointments and negative side effects. She had to wear a mask that made her feel isolated. She felt ignored by her doctors. Although she experienced the opposite feeling of being overly observed, the informant began to feel like she was always being watched. The participant described herself as paranoid due to the threat of imprisonment for nonadherence. The accumulating aggravation made the directly observed therapy short-course (DOTS) experience a difficulty and stressful experience.

  17. Earth Science System of the Future: Observing, Processing, and Delivering Data Products Directly to Users

    NASA Technical Reports Server (NTRS)

    Crisp, David; Komar, George (Technical Monitor)

    2001-01-01

    Advancement of our predictive capabilities will require new scientific knowledge, improvement of our modeling capabilities, and new observation strategies to generate the complex data sets needed by coupled modeling networks. New observation strategies must support remote sensing from a variety of vantage points and will include "sensorwebs" of small satellites in low Earth orbit, large aperture sensors in Geostationary orbits, and sentinel satellites at L1 and L2 to provide day/night views of the entire globe. Onboard data processing and high speed computing and communications will enable near real-time tailoring and delivery of information products (i.e., predictions) directly to users.

  18. Direct optical observation of magnetic domains in Ni-Mn-Ga martensite

    NASA Astrophysics Data System (ADS)

    Ge, Y.; Heczko, O.; Söderberg, O.; Hannula, S.-P.

    2006-08-01

    This letter reports the direct optical observation, i.e., without polarization, of the magnetic domain structure explained by a large surface relief in Ni-Mn-Ga martensite. The authors suggest that the relief is due to the different straining of the surface and the bulk caused by the internal stresses associated with the magnetic shape memory effect. As a result of the relief the projection of the (011) twin traces upon the (010) plane creates the observed zigzag pattern. The surface tilt angle calculated from the zigzag pattern is ˜3°.

  19. Direct observation of depth-dependent atomic displacements associated with dislocations in gallium nitride.

    PubMed

    Lozano, J G; Yang, H; Guerrero-Lebrero, M P; D'Alfonso, A J; Yasuhara, A; Okunishi, E; Zhang, S; Humphreys, C J; Allen, L J; Galindo, P L; Hirsch, P B; Nellist, P D

    2014-09-26

    We demonstrate that the aberration-corrected scanning transmission electron microscope has a sufficiently small depth of field to observe depth-dependent atomic displacements in a crystal. The depth-dependent displacements associated with the Eshelby twist of dislocations in GaN normal to the foil with a screw component of the Burgers vector are directly imaged. We show that these displacements are observed as a rotation of the lattice between images taken in a focal series. From the sense of the rotation, the sign of the screw component can be determined.

  20. Three-dimensional atomic force microscopy: interaction force vector by direct observation of tip trajectory.

    PubMed

    Sigdel, Krishna P; Grayer, Justin S; King, Gavin M

    2013-11-13

    The prospect of a robust three-dimensional atomic force microscope (AFM) holds significant promise in nanoscience. Yet, in conventional AFM, the tip-sample interaction force vector is not directly accessible. We scatter a focused laser directly off an AFM tip apex to rapidly and precisely measure the tapping tip trajectory in three-dimensional space. This data also yields three-dimensional cantilever spring constants, effective masses, and hence, the tip-sample interaction force components via Newton's second law. Significant lateral forces representing 49 and 13% of the normal force (Fz = 152 ± 17 pN) were observed in common tapping mode conditions as a silicon tip intermittently contacted a glass substrate in aqueous solution; as a consequence, the direction of the force vector tilted considerably more than expected. When addressing the surface of a lipid bilayer, the behavior of the force components differed significantly from that observed on glass. This is attributed to the lateral mobility of the lipid membrane coupled with its elastic properties. Direct access to interaction components Fx, Fy, and Fz provides a more complete view of tip dynamics that underlie force microscope operation and can form the foundation of a three-dimensional AFM in a plurality of conditions.

  1. Controllability and observability analysis for vertex domination centrality in directed networks

    PubMed Central

    Wang, Bingbo; Gao, Lin; Gao, Yong; Deng, Yue; Wang, Yu

    2014-01-01

    Topological centrality is a significant measure for characterising the relative importance of a node in a complex network. For directed networks that model dynamic processes, however, it is of more practical importance to quantify a vertex's ability to dominate (control or observe) the state of other vertices. In this paper, based on the determination of controllable and observable subspaces under the global minimum-cost condition, we introduce a novel direction-specific index, domination centrality, to assess the intervention capabilities of vertices in a directed network. Statistical studies demonstrate that the domination centrality is, to a great extent, encoded by the underlying network's degree distribution and that most network positions through which one can intervene in a system are vertices with high domination centrality rather than network hubs. To analyse the interaction and functional dependence between vertices when they are used to dominate a network, we define the domination similarity and detect significant functional modules in glossary and metabolic networks through clustering analysis. The experimental results provide strong evidence that our indices are effective and practical in accurately depicting the structure of directed networks. PMID:24954137

  2. Direct observation of porous SiC formed by anodization in HF

    NASA Technical Reports Server (NTRS)

    Shor, Joseph S.; Grimberg, Ilana; Weiss, Ben-Zion; Kurtz, Anthony D.

    1993-01-01

    A process for forming porous SiC from single-crystal SiC wafers has been demonstrated. Porous SiC can be fabricated by anodizing n-type 6H-SiC in HF under UV illumination. TEM reveals pores of sizes 10-30 nm with interpore spacings ranging from roughly 5 to 150 nm. This is the first reported direct observation of porous SiC formation.

  3. Directivity Patterns of Complex Solar Type III Radio Bursts: Stereoscopic Observations

    NASA Astrophysics Data System (ADS)

    Golla, T.; MacDowall, R. J.

    2014-12-01

    Complex solar type III-like radio bursts are a group of type III bursts that occur in association with slowly drifting type II radio bursts excited by coronal mass ejection (CME) driven shock waves. We presentsimultaneous observations of these radio bursts from the STEREO A, B and WIND spacecraft at low frequencies, located at different vantage points in the ecliptic plane. Using these stereoscopic observations, wedetermine the directivity of these complex radio bursts. We estimate the angles between the directions of the magnetic field at the sources and the lines connecting the source to the spacecraft (viewing angles) by assuming that the sources are located on the Parker spiral magnetic field lines emerging from the associated active regions into the spherically symmetric solar atmosphere. We estimate the normalized peak intensities of these bursts (directivity factors) at each spacecraft using their time profiles at each spacecraft. These observations indicate that the complex type III bursts can be divided into two groups: (1) bursts emitting into a very narrow cone centered around the tangent to the magnetic field, and (2) bursts emitting into a wider cone. We show that the bursts , which are emitted along the tangent to the spiral magnetic field lines at the source are very intense, and their intensities steadily fall as the viewing angles increase to higher values. We have developed a ray tracing code and computed the distributions of the trajectories of rays emitted at the fundamental and second harmonic of the electron plasma frequency. The comparison of the observed emission patterns with the computed distributions of the ray trajectories indicate that the intense bursts visible in a narrow range of angles around the magnetic field directions probably are emitted in the fundamental mode, whereas the relativelyweaker bursts visible to a wide range of angles are probably emitted in the harmonic mode.

  4. Direct observation of imprinted antiferromagnetic vortex state in CoO/Fe/Ag(001) disks

    SciTech Connect

    Wu, J.; Carlton, D.; Park, J. S.; Meng, Y.; Arenholz, E.; Doran, A.; Young, A.T.; Scholl, A.; Hwang, C.; Zhao, H. W.; Bokor, J.; Qiu, Z. Q.

    2010-12-21

    In magnetic thin films, a magnetic vortex is a state in which the magnetization vector curls around the center of a confined structure. A vortex state in a thin film disk, for example, is a topological object characterized by the vortex polarity and the winding number. In ferromagnetic (FM) disks, these parameters govern many fundamental properties of the vortex such as its gyroscopic rotation, polarity reversal, core motion, and vortex pair excitation. However, in antiferromagnetic (AFM) disks, though there has been indirect evidence of the vortex state through observations of the induced FM-ordered spins in the AFM disk, they have never been observed directly in experiment. By fabricating single crystalline NiO/Fe/Ag(001) and CoO/Fe/Ag(001) disks and using X-ray Magnetic Linear Dichroism (XMLD), we show direct observation of the vortex state in an AFM disk of AFM/FM bilayer system. We observe that there are two types of AFM vortices, one of which has no analog in FM structures. Finally, we show that a frozen AFM vortex can bias a FM vortex at low temperature.

  5. Accuracy and reliability of direct observations of home-packed lunches in elementary schools by trained nutrition students.

    PubMed

    Richter, Shannon L; Vandervet, Laura M; Macaskill, Lesley A; Salvadori, Marina I; Seabrook, Jamie A; Dworatzek, Paula D N

    2012-10-01

    Increased attention has been directed toward the school food environment because children consume important contributions toward their daily food intake while at school. In Canada, most elementary school students bring a lunch to school and there are minimal data on the composition and consumption of these lunches. Dietary assessment of home-packed lunches is challenging compared with assessment of standardized school meals due to greater diversity of items, nonstandard portions, and opaque containers. We assessed accuracy and reliability of a food observation method whereby upper-year nutrition students (n=15) were trained to assess packed lunch contents and intake in elementary schools. Accuracy and reliability was assessed during 2010-2011 in three observational phases: sample lunches, volunteer-consumed lunches, and elementary school students' lunches (n=32). Observers accurately identified 96% and 95% of items in the sample and volunteer lunches, respectively. Similarly, they accurately reported portion sizes for 86% and 94% of the items in the sample and volunteer lunches, thus showing improvements in successive phases. Interobserver reliability for amount consumed, by portion size and macronutrient content, ranged from 0.79 to 0.88 in the volunteer-consumed lunches and 0.78 to 0.86 in the students' lunches, with a majority ≥0.80. It is noteworthy that the analyses for the amount consumed were conducted as absolute amounts with no allowances for discrepancies, which differs from other interobserver reliability assessments where as much as 25% discrepancy is considered agreement. Observers with prior nutrition knowledge assessed packed lunch contents and intake accurately and reliably by direct observation in an elementary school setting.

  6. Feedback in formative OSCEs: comparison between direct observation and video-based formats

    PubMed Central

    Junod Perron, Noëlle; Louis-Simonet, Martine; Cerutti, Bernard; Pfarrwaller, Eva; Sommer, Johanna; Nendaz, Mathieu

    2016-01-01

    Introduction Medical students at the Faculty of Medicine, University of Geneva, Switzerland, have the opportunity to practice clinical skills with simulated patients during formative sessions in preparation for clerkships. These sessions are given in two formats: 1) direct observation of an encounter followed by verbal feedback (direct feedback) and 2) subsequent review of the videotaped encounter by both student and supervisor (video-based feedback). The aim of the study was to evaluate whether content and process of feedback differed between both formats. Methods In 2013, all second- and third-year medical students and clinical supervisors involved in formative sessions were asked to take part in the study. A sample of audiotaped feedback sessions involving supervisors who gave feedback in both formats were analyzed (content and process of the feedback) using a 21-item feedback scale. Results Forty-eight audiotaped feedback sessions involving 12 supervisors were analyzed (2 direct and 2 video-based sessions per supervisor). When adjusted for the length of feedback, there were significant differences in terms of content and process between both formats; the number of communication skills and clinical reasoning items addressed were higher in the video-based format (11.29 vs. 7.71, p=0.002 and 3.71 vs. 2.04, p=0.010, respectively). Supervisors engaged students more actively during the video-based sessions than during direct feedback sessions (self-assessment: 4.00 vs. 3.17, p=0.007; active problem-solving: 3.92 vs. 3.42, p=0.009). Students made similar observations and tended to consider that the video feedback was more useful for improving some clinical skills. Conclusion Video-based feedback facilitates discussion of clinical reasoning, communication, and professionalism issues while at the same time actively engaging students. Different time and conceptual frameworks may explain observed differences. The choice of feedback format should depend on the educational

  7. Feedback in formative OSCEs: comparison between direct observation and video-based formats.

    PubMed

    Perron, Noëlle Junod; Louis-Simonet, Martine; Cerutti, Bernard; Pfarrwaller, Eva; Sommer, Johanna; Nendaz, Mathieu

    2016-01-01

    Introduction Medical students at the Faculty of Medicine, University of Geneva, Switzerland, have the opportunity to practice clinical skills with simulated patients during formative sessions in preparation for clerkships. These sessions are given in two formats: 1) direct observation of an encounter followed by verbal feedback (direct feedback) and 2) subsequent review of the videotaped encounter by both student and supervisor (video-based feedback). The aim of the study was to evaluate whether content and process of feedback differed between both formats. Methods In 2013, all second- and third-year medical students and clinical supervisors involved in formative sessions were asked to take part in the study. A sample of audiotaped feedback sessions involving supervisors who gave feedback in both formats were analyzed (content and process of the feedback) using a 21-item feedback scale. Results Forty-eight audiotaped feedback sessions involving 12 supervisors were analyzed (2 direct and 2 video-based sessions per supervisor). When adjusted for the length of feedback, there were significant differences in terms of content and process between both formats; the number of communication skills and clinical reasoning items addressed were higher in the video-based format (11.29 vs. 7.71, p=0.002 and 3.71 vs. 2.04, p=0.010, respectively). Supervisors engaged students more actively during the video-based sessions than during direct feedback sessions (self-assessment: 4.00 vs. 3.17, p=0.007; active problem-solving: 3.92 vs. 3.42, p=0.009). Students made similar observations and tended to consider that the video feedback was more useful for improving some clinical skills. Conclusion Video-based feedback facilitates discussion of clinical reasoning, communication, and professionalism issues while at the same time actively engaging students. Different time and conceptual frameworks may explain observed differences. The choice of feedback format should depend on the educational

  8. Direct observation and quantification of extracellular long-range electron flow in anaerobic bacteria

    NASA Astrophysics Data System (ADS)

    Malvankar, Nikhil; Yalcin, Sibel; Vargas, Madeline; Tuominen, Mark; Lovley, Derek

    2013-03-01

    Some anaerobic microorganisms are capable of transporting electrons outside their cell to distant electron acceptors such as metals, minerals or partner species. Previous studies have focused primarily on transport over short distances (< 1 μm) via diffusion of molecular intermediates, or alternatively via tunneling or thermally-activated hopping across biomolecules. However, we have found that Geobacter sulfurreducens can transport electrons over long distances (> 10 μm) using pili filaments that show organic metal-like conductivity. Pili also enable direct exchange of electrons among syntrophic Geobacter co-cultures. In order to establish the physical principles underlying this remarkable electron transport, we have employed a novel scanning probe microscopy-based method to perform quantitative measurements of electron flow at a single cell level under physiological conditions. Using this nanoscopic approach, we have directly observed the propagation and distribution of injected electrons in individual native bacterial extracellular proteins. Our direct measurements demonstrate unambiguously for the first time that the pili of G. sulfurreducens are a novel class of electronically functional proteins that can sustain electron flow in a surprising manner that has not been observed previously in any other natural protein. Funded by Office of Naval Research, DOE Genomic Sciences and NSF-NSEC Center for Hierarchical Manufacturing grant no. CMMI-1025020.

  9. An accuracy measurement method for star trackers based on direct astronomic observation

    PubMed Central

    Sun, Ting; Xing, Fei; Wang, Xiaochu; You, Zheng; Chu, Daping

    2016-01-01

    Star tracker is one of the most promising optical attitude measurement devices and it is widely used in spacecraft for its high accuracy. However, how to realize and verify such an accuracy remains a crucial but unsolved issue until now. The authenticity of the accuracy measurement method of a star tracker will eventually determine the satellite performance. A new and robust accuracy measurement method for a star tracker based on the direct astronomical observation is proposed here. In comparison with the conventional method with simulated stars, this method utilizes real navigation stars as observation targets which makes the measurement results more authoritative and authentic. Transformations between different coordinate systems are conducted on the account of the precision movements of the Earth, and the error curves of directional vectors are obtained along the three axes. Based on error analysis and accuracy definitions, a three-axis accuracy evaluation criterion has been proposed in this paper, which could determine pointing and rolling accuracy of a star tracker directly. Experimental measurements confirm that this method is effective and convenient to implement. Such a measurement environment is close to the in-orbit conditions and it can satisfy the stringent requirement for high-accuracy star trackers. PMID:26948412

  10. Investigating common clinical presentations in first opinion small animal consultations using direct observation

    PubMed Central

    Robinson, N. J.; Dean, R. S.; Cobb, M.; Brennan, M. L.

    2015-01-01

    Understanding more about the clinical presentations encountered in veterinary practice is vital in directing research towards areas relevant to practitioners. The aim of this study was to describe all problems discussed during a convenience sample of consultations using a direct observation method. A data collection tool was used to gather data by direct observation during small animal consultations at eight sentinel practices. Data were recorded for all presenting and non-presenting specific health problems discussed. A total of 1901 patients were presented with 3206 specific health problems discussed. Clinical presentation varied widely between species and between presenting and non-presenting problems. Skin lump, vomiting and inappetence were the most common clinical signs reported by the owner while overweight/obese, dental tartar and skin lump were the most common clinical examination findings. Skin was the most frequently affected body system overall followed by non-specific problems then the gastrointestinal system. Consultations are complex, with a diverse range of different clinical presentations seen. Considering the presenting problem only may give an inaccurate view of the veterinary caseload, as some common problems are rarely the reason for presentation. Understanding the common diagnoses made is the next step and will help to further focus questions for future research. PMID:25564472

  11. Capturing the complexity of first opinion small animal consultations using direct observation

    PubMed Central

    Robinson, N. J.; Brennan, M. L.; Cobb, M.; Dean, R. S.

    2015-01-01

    Various different methods are currently being used to capture data from small animal consultations. The aim of this study was to develop a tool to record detailed data from consultations by direct observation. A second aim was to investigate the complexity of the consultation by examining the number of problems discussed per patient. A data collection tool was developed and used during direct observation of small animal consultations in eight practices. Data were recorded on consultation type, patient signalment and number of problems discussed. During 16 weeks of data collection, 1901 patients were presented. Up to eight problems were discussed for some patients; more problems were discussed during preventive medicine consultations than during first consultations (P<0.001) or revisits (P<0.001). Fewer problems were discussed for rabbits than cats (P<0.001) or dogs (P<0.001). Age was positively correlated with discussion of specific health problems and negatively correlated with discussion of preventive medicine. Consultations are complex with multiple problems frequently discussed, suggesting comorbidity may be common. Future research utilising practice data should consider how much of this complexity needs to be captured, and use appropriate methods accordingly. The findings here have implications for directing research and education as well as application in veterinary practice. PMID:25262057

  12. Investigating common clinical presentations in first opinion small animal consultations using direct observation.

    PubMed

    Robinson, N J; Dean, R S; Cobb, M; Brennan, M L

    2015-05-02

    Understanding more about the clinical presentations encountered in veterinary practice is vital in directing research towards areas relevant to practitioners. The aim of this study was to describe all problems discussed during a convenience sample of consultations using a direct observation method. A data collection tool was used to gather data by direct observation during small animal consultations at eight sentinel practices. Data were recorded for all presenting and non-presenting specific health problems discussed. A total of 1901 patients were presented with 3206 specific health problems discussed. Clinical presentation varied widely between species and between presenting and non-presenting problems. Skin lump, vomiting and inappetence were the most common clinical signs reported by the owner while overweight/obese, dental tartar and skin lump were the most common clinical examination findings. Skin was the most frequently affected body system overall followed by non-specific problems then the gastrointestinal system. Consultations are complex, with a diverse range of different clinical presentations seen. Considering the presenting problem only may give an inaccurate view of the veterinary caseload, as some common problems are rarely the reason for presentation. Understanding the common diagnoses made is the next step and will help to further focus questions for future research.

  13. Apparatus for Direct Optical Fiber Through-Lens Illumination of Microscopy or Observational Objects

    NASA Technical Reports Server (NTRS)

    Kadogawa, Hiroshi (Inventor)

    2001-01-01

    In one embodiment of the invention, a microscope or other observational apparatus, comprises a hollow tube, a lens mounted to the tube, a light source and at least one flexible optical fiber having an input end and an output end. The input end is positioned to receive light from the light source, and the output end is positioned within the tube so as to directly project light along a straight path to the lens to illuminate an object to be viewed. The path of projected light is uninterrupted and free of light deflecting elements. By passing the light through the lens, the light can be diffused or otherwise defocused to provide more uniform illumination across the surface of the object, increasing the quality of the image of the object seen by the viewer. The direct undeflected and uninterrupted projection of light, without change of direction, eliminates the need for light-deflecting elements, such as beam-splitters, mirrors, prisms, or the like, to direct the projected light towards the object.

  14. Direct laboratory observation of fluid distribution and its influence on acoustic properties of patchy saturated rocks

    NASA Astrophysics Data System (ADS)

    Lebedev, M.; Clennell, B.; Pervukhina, M.; Shulakova, V.; Mueller, T.; Gurevich, B.

    2009-04-01

    samples (38 mm in diameter, approximately 60 mm long) were dried in oven under reduced pressure. In dynamic saturation experiments, samples were jacketed in the experimental cell, made from transparent for X-radiation material (PMMA). Distillate water was injected into the sample from the one side. Fluid distribution in such "dynamic" experiment: both spatial and time dependant was measured using X-ray Computer Tomograph (CT) with resolution 0.2 x 0.2 x 1 mm3. Velocities (Vp, and Vs) at ultrasonic frequency of 1 MHz, were measured in the direction perpendicular to initial direction of the fluid flow injection. Sample saturation was estimated from the CT results. In "quasi static" experiments samples were saturated during long period of time (over 2 weeks) to achieve uniform distribution of liquid inside the sample. Saturation was determined by measurement of the weight of water fraction. All experiments were performed at laboratory environments at temperature 25 C. Ultrasonic velocities and fluid saturations were measured simultaneously during water injection into sandstone core samples. The experimental results obtained on low-permeability samples show that at low saturation values the velocity-saturation dependence can be described by the Gassmann-Wood relationship. However, with increasing saturation a sharp increase of P-wave velocity is observed, eventually approaching the Gassmann-Hill relationship. We connect the characteristics of the transition behavior of the velocity-saturation relationships to the increasing size of the patches inside the rock sample. In particular, we show that for relatively large fluid injection rate this transition occurs at smaller degrees of saturation as compared with high injection rate. We model the experimental data using the so-called White model (Toms 2007) that assumes fluid patch distribution as a periodic assemblage of concentric spheres. We can observe reasonable agreement between experimental results and theoretical

  15. Increasing Reliability of Direct Observation Measurement Approaches in Emotional and/or Behavioral Disorders Research Using Generalizability Theory

    ERIC Educational Resources Information Center

    Gage, Nicholas A.; Prykanowski, Debra; Hirn, Regina

    2014-01-01

    Reliability of direct observation outcomes ensures the results are consistent, dependable, and trustworthy. Typically, reliability of direct observation measurement approaches is assessed using interobserver agreement (IOA) and the calculation of observer agreement (e.g., percentage of agreement). However, IOA does not address intraobserver…

  16. Direct Observation of Aggregative Nanoparticle Growth: Kinetic Modeling of the Size Distribution and Growth Rate

    SciTech Connect

    Woehl, Taylor J.; Park, Chiwoo; Evans, James E.; Arslan, Ilke; Ristenpart, William D.; Browning, Nigel D.

    2014-01-08

    Direct observations of solution-phase nanoparticle growth using in situ liquid transmission electron microscopy (TEM) have demonstrated the importance of “non-classical” growth mechanisms, such as aggregation and coalescence, on the growth and final morphology of nanocrystals at the atomic and single nanoparticle scales. To date, groups have quantitatively interpreted the mean growth rate of nanoparticles in terms of the Lifshitz-Slyozov-Wagner (LSW) model for Ostwald ripening, but less attention has been paid to modeling the corresponding particle size distribution. Here we use in situ fluid stage scanning TEM to demonstrate that silver nanoparticles grow by a length-scale dependent mechanism, where individual nanoparticles grow by monomer attachment but ensemble-scale growth is dominated by aggregation. Although our observed mean nanoparticle growth rate is consistent with the LSW model, we show that the corresponding particle size distribution is broader and more symmetric than predicted by LSW. Following direct observations of aggregation, we interpret the ensemble-scale growth using Smoluchowski kinetics and demonstrate that the Smoluchowski model quantitatively captures the mean growth rate and particle size distribution.

  17. Direct observation of the ferroelectric polarization in the layered perovskite Bi4Ti3O12

    NASA Astrophysics Data System (ADS)

    Urushihara, Daisuke; Komabuchi, Mai; Ishizawa, Nobuo; Iwata, Makoto; Fukuda, Koichiro; Asaka, Toru

    2016-10-01

    We investigated the crystal structure and ferroelectric domains of Bi4Ti3O12 (BTO) by means of transmission electron microscopy (TEM) and single-crystal X-ray diffractometry. From the extinction rule, we determined that the space group in the ferroelectric phase of BTO is P1a1 rather than B2cb and B1a1 which have been proposed previously. We successfully refined the crystal structure based on the space group P1a1. The 180° and 90° ferroelectric domain structures were observed by the [001]-zone dark-field TEM imaging. In the 180° domain structure, we determined that one component of the polarization vector is parallel to the a-axis. An annular bright-field scanning transmission electron microscopy (ABF-STEM) was performed for the direct observation of the crystal structures. The ABF-STEM images displayed the contrasts with respect to every atomic position in spite of the highly distorted structure of BTO. We could evaluate the tilting and distortion of the [TiO6] octahedra relatively. Therefore, we directly observed the ferroelectric displacements of Bi and Ti ions.

  18. Investigations on the mechanism of superlubricity achieved with phosphoric acid solution by direct observation

    NASA Astrophysics Data System (ADS)

    Li, Jinjin; Ma, Liran; Zhang, Shaohua; Zhang, Chenhui; Liu, Yuhong; Luo, Jianbin

    2013-09-01

    In this work, the contact region between a Si3N4 ball and a SiO2 plate with the lubrication of phosphoric acid solution is observed directly by an optical microscope combined with a Raman microscope to understand the superlubricity mechanism. It is found that the wear on the friction surfaces mainly occurs at the beginning of the test and nearly disappears after the friction coefficient reduces to 0.05. When the superlubricity appears (μ = 0.004), there is only a limited amount of solution available to the contact (forming starvation state), resulting in an "H" distribution surrounding the contact region. Moreover, it is observed that the hydrogen bond effect in the solution is enhanced with time going by, and finally a thin film with hydrogen bond network among H3PO4, H2PO4-, and H2O is formed on the friction surfaces, leading to the superlubricity. By employing this direct observation approach, the structure of the confined solution and the superlubricity mechanism of phosphoric acid solution are finally investigated and discussed.

  19. Observation of flux-creep in direction opposite to the Lorentz force

    NASA Astrophysics Data System (ADS)

    Sawh, R.-P.; Weinstein, R.; Carpenter, K.; Parks, D.; Davey, K.

    2017-04-01

    The conclusion that free fluxoids move in the direction of \\mathop{{\\boldsymbol{F}}}\\limits \\rightharpoonup ={\\mathop{J}\\limits \\rightharpoonup }{{c}}× \\mathop{{\\boldsymbol{B}}}\\limits \\rightharpoonup is broadly accepted. For certain spatial distributions of flux in HTS bulks, this requires free fluxoids to collect at the center of the bulk. Here, we report experiments in which such spatial distributions are created by means of zero-field-cool partial magnetization of the bulk, and the temporal changes in flux are measured. We report that the direction of the flux creep is observed to be opposite to \\mathop{{\\boldsymbol{F}}}\\limits \\rightharpoonup ={\\mathop{J}\\limits \\rightharpoonup }{{c}}× \\mathop{{\\boldsymbol{B}}.}\\limits \\rightharpoonup

  20. Direct assessment of groundwater vulnerability from single observations of multiple contaminants

    USGS Publications Warehouse

    Worrall, F.; Kolpin, D.W.

    2003-01-01

    Groundwater vulnerability is a central concept in pollution risk assessment, yet its estimation has been largely a matter of expert judgment. This work applies a method for the direct calculation of vulnerability from monitoring well observations of pesticide concentrations. The method has two major advantages: it is independent of the compounds being examined, and it has a direct probabilistic interpretation making it ideal for risk assessment. The methodology was applied to data from a groundwater monitoring program in the midwestern United States. The distribution of the vulnerabilities was skewed toward zero. Spatial distribution of the vulnerabilities shows them to be controlled by both regional and local factors. Methods are presented for estimating the necessary sample sizes for vulnerability studies. The further application of the approach developed in this study to understanding groundwater pollution is discussed.

  1. Photoacoustics of single laser-trapped nanodroplets for the direct observation of nanofocusing in aerosol photokinetics

    PubMed Central

    Cremer, Johannes W.; Thaler, Klemens M.; Haisch, Christoph; Signorell, Ruth

    2016-01-01

    Photochemistry taking place in atmospheric aerosol droplets has a significant impact on the Earth's climate. Nanofocusing of electromagnetic radiation inside aerosols plays a crucial role in their absorption behaviour, since the radiation flux inside the droplet strongly affects the activation rate of photochemically active species. However, size-dependent nanofocusing effects in the photokinetics of small aerosols have escaped direct observation due to the inability to measure absorption signatures from single droplets. Here we show that photoacoustic measurements on optically trapped single nanodroplets provide a direct, broadly applicable method to measure absorption with attolitre sensitivity. We demonstrate for a model aerosol that the photolysis is accelerated by an order of magnitude in the sub-micron to micron size range, compared with larger droplets. The versatility of our technique promises broad applicability to absorption studies of aerosol particles, such as atmospheric aerosols where quantitative photokinetic data are critical for climate predictions. PMID:26979973

  2. Direct observation of a highly spin-polarized organic spinterface at room temperature

    PubMed Central

    Djeghloul, F.; Ibrahim, F.; Cantoni, M.; Bowen, M.; Joly, L.; Boukari, S.; Ohresser, P.; Bertran, F.; Le Fèvre, P.; Thakur, P.; Scheurer, F.; Miyamachi, T.; Mattana, R.; Seneor, P.; Jaafar, A.; Rinaldi, C.; Javaid, S.; Arabski, J.; Kappler, J. -P; Wulfhekel, W.; Brookes, N. B.; Bertacco, R.; Taleb-Ibrahimi, A.; Alouani, M.; Beaurepaire, E.; Weber, W.

    2013-01-01

    Organic semiconductors constitute promising candidates toward large-scale electronic circuits that are entirely spintronics-driven. Toward this goal, tunneling magnetoresistance values above 300% at low temperature suggested the presence of highly spin-polarized device interfaces. However, such spinterfaces have not been observed directly, let alone at room temperature. Thanks to experiments and theory on the model spinterface between phthalocyanine molecules and a Co single crystal surface, we clearly evidence a highly efficient spinterface. Spin-polarised direct and inverse photoemission experiments reveal a high degree of spin polarisation at room temperature at this interface. We measured a magnetic moment on the molecule's nitrogen π orbitals, which substantiates an ab-initio theoretical description of highly spin-polarised charge conduction across the interface due to differing spinterface formation mechanisms in each spin channel. We propose, through this example, a recipe to engineer simple organic-inorganic interfaces with remarkable spintronic properties that can endure well above room temperature. PMID:23412079

  3. Direct observations of ecosystem light use efficiency from MAIAC/MODIS

    NASA Astrophysics Data System (ADS)

    Hall, F. G.; Hilker, T.; Lyapustin, A.; Wang, Y.; Coops, N.; Drolet, G.

    2009-12-01

    The fraction of photosynthetically active radiation (FPAR) incident upon and absorbed by vegetated ecosystems is a standard MODIS product. From this and satellite observations of incident PAR flux, ecosystem photosynthetic capacity can be measured remotely, but not ecosystem photosynthetic rate. The missing link is remotely sensed observations of ecosystem light-use efficiency (LUE) (the efficiency with which ecosystems convert absorbed PAR into carbon), which is modulated by plant physiology in response to rapidly changing extant environmental conditions. LUE is currently estimated from models that attempt to relate plant physiological response to their environment (soil moisture, fertility etc); however accuracies are limited by the uncertainty of the required inputs at landscape scales - primarily precipitation and soil hydrological characteristics. To rectify this situation, a number of recent studies were directed at measuring ecosystem LUE directly from MODIS using a photochemical reflectance index (PRI) - based on the reflectance measurements from MODIS bands 11 and 12 (~531 and ~550 nm). Results however have shown that quantifying the relationship between MODIS PRI and ecosystem LUE remains challenging. In addition, atmospherically induced aerosol variability confounds the subtle PRI signal. Here, we introduce and evaluate a new approach (MAIAC) that minimizes cloud interference, and aerosol and surface bidirectional reflectance effects on PRI. Using tower measured LUE, we evaluate our approach and demonstrate a strong relationship (r2=0.74, p<0.01) between tower based observations of both PRI and LUE and those from atmospherically corrected MODIS data; these correlations remained robust throughout the vegetation period of 2006. Swath observations yielded better results than gridded data (r2=0.58, p<0.01) both of which included forward and backscatter observations. As expected from theoretical considerations, MODIS PRI values were strongly related to canopy

  4. Direct atmosphere opacity observations from CALIPSO provide new constraints on cloud-radiation interactions

    NASA Astrophysics Data System (ADS)

    Guzman, R.; Chepfer, H.; Noel, V.; Vaillant de Guélis, T.; Kay, J. E.; Raberanto, P.; Cesana, G.; Vaughan, M. A.; Winker, D. M.

    2017-01-01

    The spaceborne lidar CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) directly measures atmospheric opacity. In 8 years of CALIPSO observations, we find that 69% of vertical profiles penetrate through the complete atmosphere. The remaining 31% do not reach the surface, due to opaque clouds. The global mean altitude of full attenuation of the lidar beam (z_opaque) is 3.2 km, but there are large regional variations in this altitude. Of relevance to cloud-climate studies, the annual zonal mean longwave cloud radiative effect and annual zonal mean z_opaque weighted by opaque cloud cover are highly correlated (0.94). The annual zonal mean shortwave cloud radiative effect and annual zonal mean opaque cloud cover are also correlated (-0.95). The new diagnostics introduced here are implemented within a simulator framework to enable scale-aware and definition-aware evaluation of the LMDZ5B global climate model. The evaluation shows that the model overestimates opaque cloud cover (31% obs. versus 38% model) and z_opaque (3.2 km obs. versus 5.1 km model). In contrast, the model underestimates thin cloud cover (35% obs. versus 14% model). Further assessment shows that reasonable agreement between modeled and observed longwave cloud radiative effects results from compensating errors between insufficient warming by thin clouds and excessive warming due to overestimating both z_opaque and opaque cloud cover. This work shows the power of spaceborne lidar observations to directly constrain cloud-radiation interactions in both observations and models.

  5. SPICA infrared coronagraph for the direct observation of exo-planets

    NASA Astrophysics Data System (ADS)

    Enya, Keigo; Spica Working Group

    2010-04-01

    We present a mid-infrared coronagraph to target the direct observation of extrasolar planets, for Space Infrared telescope for Cosmology and Astrophysics (SPICA). SPICA is a proposed JAXA-ESA mission, which will carry a telescope cooled to 5 K with a 3.5 m diameter aperture, and is planned to be launched in 2018 by an H II family rocket. The SPICA mission gives us a unique opportunity for high-contrast observations because of the large telescope aperture, the simple pupil shape, and the capability for infrared observations from space. We have commenced studies for a coronagraph for SPICA, in which this coronagraph is currently regarded as an option of the focal plane instruments. The primary target of the SPICA coronagraph is the direct observation of Jovian exo-planets. A strategy of the baseline survey and the specifications for the coronagraph instrument for the survey are introduced together. The main wavelengths and the contrast required for the observations are 3.5-27 μm, and 10 -6, respectively. Laboratory experiments were performed with a visible laser to demonstrate the principles of the coronagraphs. In an experiment using binary-shaped pupil coronagraphs, a contrast of 6.7 × 10 -8 was achieved, as derived from the linear average in the dark region and the core of the point spread function (PSF). A coronagraph by a binary-shaped pupil mask is a baseline solution for SPICA because of its feasibility and robustness. On the other hand, a laboratory experiment of the phase induced amplitude apodization/binary-mask hybrid coronagraph has been executed to obtain an option of higher performance (i.e., smaller inner working angle and higher throughput), and a contrast of 6.5 × 10 -7 was achieved with active wavefront control. Potentially important by-product of the instrument, transit monitoring for characterization of exo-planets, is also described. We also present recent progress of technology on a design of a binary-shaped pupil mask for the actual pupil of

  6. A line rate calculation method for arbitrary directional imaging of an Earth observing satellite

    NASA Astrophysics Data System (ADS)

    Jeon, Moon-Jin; Kim, Eunghyun; Lim, Seong-Bin; Choi, Seok-Weon

    2016-10-01

    For an earth observing satellite, a line rate is the number of lines which the CCD of push broom type camera scans in a second. It can be easily calculated by ground velocity divided by ground sample distance. Accurate calculation of line rate is necessary to obtain high quality image using TDI CCD. The earth observing satellite has four types of imaging missions which are strip imaging, stereo imaging, multi-point imaging, and arbitrary directional imaging. For the first three types of imaging, ground scanning direction is aligned with satellite velocity direction. Therefore, if the orbit propagation and spacecraft attitude information are available, the ground velocity and ground sample distance could be easily calculated. However, the calculation method might not be applicable to the arbitrary directional imaging. In the arbitrary directional imaging mode, the ground velocity is not fixed value which could be directly derived by orbit information. Furthermore, the ground sample distance might not be easily calculated by simple trigonometry which is possible for the other types of imaging. In this paper, we proposed a line rate calculation method for the arbitrary directional imaging. We applied spherical geometry to derive the equation of ground point which is the intersection between the line of sight vector of the camera and earth surface. The derivative of this equation for time is the ground velocity except the factor of earth rotation. By adding this equation and earth rotation factor, the true ground velocity vector could be derived. For the ground sample distance, we applied the equation of circle and ellipse for yaw angle difference. The equation of circle is used for the yaw angle representation on the plane which is orthogonal to the line of sight vector. The equation of ellipse is used for the yaw angle representation on the ground surface. We applied the proposed method to the KOMPSAT-3A (Korea Multi-Purpose Satellite 3A) mission which is the first

  7. Direct observation of magnetochiral effects through a single metamolecule in microwave regions.

    PubMed

    Tomita, Satoshi; Sawada, Kei; Porokhnyuk, Andrey; Ueda, Tetsuya

    2014-12-05

    We report direct observation of magnetochiral (MCh) effects for the X-band microwaves through a single metamolecule consisting of a copper chiral structure and ferrite rod. A fictitious interaction between chirality and magnetism is realized in the metamolecule without intrinsic electronic interactions. The MCh effects are induced at the resonant optical activities by applying a weak dc magnetic field of 1 mT, and are increased with the magnetic field. The nonreciprocal differences in refractive indices are evaluated to be 10^{-3} at 200 mT.

  8. Direct Observation of Charge Transfer in Double-Perovskite-Like RbMn[Fe(CN)6

    NASA Astrophysics Data System (ADS)

    Kato, K.; Moritomo, Y.; Takata, M.; Sakata, M.; Umekawa, M.; Hamada, N.; Ohkoshi, S.; Tokoro, H.; Hashimoto, K.

    2003-12-01

    The charge density distribution has been determined for a transition metal cyanide, RbMn[Fe(CN)6], by means of the maximum entropy Rietveld method combined with the highly angularly resolved synchrotron radiation x-ray powder diffraction at SPring-8 BL02B2. We directly observed a charge transfer from the Mn site to the Fe site in the low-temperature phase. On the basis of a local density approximation calculation, we discuss the origin for the anisotropic bonding electron distribution around the Mn3+ ion in the low-temperature phase.

  9. Direct observation of enhanced magnetic moments in Fe/Ag(100)

    NASA Astrophysics Data System (ADS)

    Wooten, C. L.; Chen, J.; Mulhollan, G. A.; Erskine, J. L.; Markert, J. T.

    1994-04-01

    The magnetic properties of ultrathin (1-5 monolayer) Fe films on Ag(100) substrates were investigated using SQUID magnetometry. Films were grown in pairs (one bulklike, the other thin), and characterized in situ by low-energy electron diffraction, Auger spectroscopy, and the surface magneto-optic Kerr effect. The films were than capped with Au and studied with a SQUID magnetometer over the temperature range 2-340 K. We report here a direct observation of enhanced magnetic moments for Fe on Ag(100), with interface moments enhanced as much as 29%.

  10. The 'semitorrid' gas observed in the direction of Gamma-2 Velorum and the Gum nebula

    NASA Technical Reports Server (NTRS)

    Bruhweiler, F. C.; Kondo, J.; Mccluskey, G. E., Jr.

    1979-01-01

    On the basis of recent IUE observations in the far-ultraviolet, the authors report the detection of a 'semitorrid' region of the interstellar medium in the direction of Gamma-2 Velorum and the Gum nebula. The characteristic temperature of this gas is in the 40,000 K range, between the warm (around 1000 K) and hot (roughly 100,000-1,000,000 K) regions reported by various investigators. This temperature is compatible with the theoretical temperature ascribed to the 'fossil Stromgren sphere' by Brandt et al. and Alexander et al.

  11. Directly observed interaction within adolescent romantic relationships: What have we learned?

    PubMed Central

    Welsh, Deborah P; Shulman, Shmuel

    2008-01-01

    Review and conceptual analysis of the papers in this special issue calls attention to several important methodological and conceptual issues surrounding the direct observation of adolescent romantic couples. It also provides an important new foundation of knowledge about the nature of adolescents' romantic relationships. Connections with previous family relationships, new understandings of the distinctive nature of adolescent romantic relationships, and gender issues are clarified by this body of papers. Together, these papers move the scholarly field forward and generate new lines of questions for future investigators. PMID:18986697

  12. Direct experimental observation of periodic intensity modulation along a straight hollow-core optical waveguide

    SciTech Connect

    Pfeifer, T.; Downer, M. C.

    2007-05-15

    We report the direct observation of periodic intensity modulation of a laser pulse propagating in a hollow-core waveguide. A series of equally spaced plasma sparks along the gas-filled capillary is produced. This effect can be explained by the beating of different fiber modes, which are excited by controlling the size of the focal spot at the capillary entrance. As compared with an artificial modulated waveguide structure, our presented approach represents an easier and more flexible quasi-phase-matching scheme for nonlinear-optical frequency conversion.

  13. Direct Observations of Silver Nanoink Sintering and Eutectic Remelt Reaction with Copper

    SciTech Connect

    Elmer, J. W.; Specht, Eliot D

    2010-01-01

    Ag nanoink sintering kinetics and subsequent melting is studied using in-situ synchrotron based x-ray diffraction. Direct observations of Ag nanoink sintering on Cu demonstrate its potential for materials joining since the Ag nanoink sinters at low temperatures but melts at high temperatures. Results show low expansion coefficient of sintered Ag, non-linear expansion as Ag densifies and interdiffuses with Cu above 500 C, remelting consistent with bulk Ag, and eutectic reaction with Cu demonstrating its usefulness as a high temperature bonding medium

  14. Direct Observation of the Injection Dynamics of a Laser Wakefield Accelerator Using Few-Femtosecond Shadowgraphy.

    PubMed

    Sävert, A; Mangles, S P D; Schnell, M; Siminos, E; Cole, J M; Leier, M; Reuter, M; Schwab, M B; Möller, M; Poder, K; Jäckel, O; Paulus, G G; Spielmann, C; Skupin, S; Najmudin, Z; Kaluza, M C

    2015-07-31

    We present few-femtosecond shadowgraphic snapshots taken during the nonlinear evolution of the plasma wave in a laser wakefield accelerator with transverse synchronized few-cycle probe pulses. These snapshots can be directly associated with the electron density distribution within the plasma wave and give quantitative information about its size and shape. Our results show that self-injection of electrons into the first plasma-wave period is induced by a lengthening of the first plasma period. Three-dimensional particle-in-cell simulations support our observations.

  15. Future prospects for spectroscopic and direct work - Optical and UV. [astronomical observations with Space Telescope

    NASA Technical Reports Server (NTRS)

    Burbidge, E. M.

    1978-01-01

    A description of the main features and proposed instrumentation of the 2.4 m Space Telescope is given. Highlights of work that can be planned on active nuclei of galaxies, QSOs, and BL Lac objects are briefly outlined, involving spectroscopy over wavelengths from 1200 A to 1 mm, direct imaging with 0.1 sec resolution, and the capability for 0.1 sec resolution along the spectrograph slit. The resolution, the much reduced sky background, and the full wavelength coverage also make possible important observations relevant to cosmology.

  16. Adjustable Parameter-Based Distributed Fault Estimation Observer Design for Multiagent Systems With Directed Graphs.

    PubMed

    Zhang, Ke; Jiang, Bin; Shi, Peng

    2017-02-01

    In this paper, a novel adjustable parameter (AP)-based distributed fault estimation observer (DFEO) is proposed for multiagent systems (MASs) with the directed communication topology. First, a relative output estimation error is defined based on the communication topology of MASs. Then a DFEO with AP is constructed with the purpose of improving the accuracy of fault estimation. Based on H ∞ and H 2 with pole placement, multiconstrained design is given to calculate the gain of DFEO. Finally, simulation results are presented to illustrate the feasibility and effectiveness of the proposed DFEO design with AP.

  17. Observed Arctic sea-ice loss directly follows anthropogenic CO2 emission.

    PubMed

    Notz, Dirk; Stroeve, Julienne

    2016-11-11

    Arctic sea ice is retreating rapidly, raising prospects of a future ice-free Arctic Ocean during summer. Because climate-model simulations of the sea-ice loss differ substantially, we used a robust linear relationship between monthly-mean September sea-ice area and cumulative carbon dioxide (CO2) emissions to infer the future evolution of Arctic summer sea ice directly from the observational record. The observed linear relationship implies a sustained loss of 3 ± 0.3 square meters of September sea-ice area per metric ton of CO2 emission. On the basis of this sensitivity, Arctic sea ice will be lost throughout September for an additional 1000 gigatons of CO2 emissions. Most models show a lower sensitivity, which is possibly linked to an underestimation of the modeled increase in incoming longwave radiation and of the modeled transient climate response.

  18. Direct observation of TALE protein dynamics reveals a two-state search mechanism

    PubMed Central

    Cuculis, Luke; Abil, Zhanar; Zhao, Huimin; Schroeder, Charles M.

    2015-01-01

    Transcription activator-like effector (TALE) proteins are a class of programmable DNA-binding proteins for which the fundamental mechanisms governing the search process are not fully understood. Here we use single-molecule techniques to directly observe TALE search dynamics along DNA templates. We find that TALE proteins are capable of rapid diffusion along DNA using a combination of sliding and hopping behaviour, which suggests that the TALE search process is governed in part by facilitated diffusion. We also observe that TALE proteins exhibit two distinct modes of action during the search process—a search state and a recognition state—facilitated by different subdomains in monomeric TALE proteins. Using TALE truncation mutants, we further demonstrate that the N-terminal region of TALEs is required for the initial non-specific binding and subsequent rapid search along DNA, whereas the central repeat domain is required for transitioning into the site-specific recognition state. PMID:26027871

  19. Direct observation and imaging of a spin-wave soliton with p-like symmetry

    SciTech Connect

    Bonetti, S.; Kukreja, R.; Chen, Z.; Macià, F.; Hernàndez, J. M.; Eklund, A.; Backes, D.; Frisch, J.; Katine, J.; Malm, G.; Urazhdin, S.; Kent, A. D.; Stöhr, J.; Ohldag, H.; Dürr, H. A.

    2015-11-16

    Spin waves, the collective excitations of spins, can emerge as nonlinear solitons at the nanoscale when excited by an electrical current from a nanocontact. These solitons are expected to have essentially cylindrical symmetry (that is, s-like), but no direct experimental observation exists to confirm this picture. Using a high-sensitivity time-resolved magnetic X-ray microscopy with 50 ps temporal resolution and 35 nm spatial resolution, we are able to create a real-space spin-wave movie and observe the emergence of a localized soliton with a nodal line, that is, with p-like symmetry. Moreover, micromagnetic simulations explain the measurements and reveal that the symmetry of the soliton can be controlled by magnetic fields. Our results broaden the understanding of spin-wave dynamics at the nanoscale, with implications for the design of magnetic nanodevices.

  20. Direct observation and imaging of a spin-wave soliton with p-like symmetry

    PubMed Central

    Bonetti, S.; Kukreja, R.; Chen, Z.; Macià, F.; Hernàndez, J. M.; Eklund, A.; Backes, D.; Frisch, J.; Katine, J.; Malm, G.; Urazhdin, S.; Kent, A. D.; Stöhr, J.; Ohldag, H.; Dürr, H. A.

    2015-01-01

    Spin waves, the collective excitations of spins, can emerge as nonlinear solitons at the nanoscale when excited by an electrical current from a nanocontact. These solitons are expected to have essentially cylindrical symmetry (that is, s-like), but no direct experimental observation exists to confirm this picture. Using a high-sensitivity time-resolved magnetic X-ray microscopy with 50 ps temporal resolution and 35 nm spatial resolution, we are able to create a real-space spin-wave movie and observe the emergence of a localized soliton with a nodal line, that is, with p-like symmetry. Micromagnetic simulations explain the measurements and reveal that the symmetry of the soliton can be controlled by magnetic fields. Our results broaden the understanding of spin-wave dynamics at the nanoscale, with implications for the design of magnetic nanodevices. PMID:26567699

  1. Interactions between C and Cu atoms in single-layer graphene: direct observation and modelling.

    PubMed

    Kano, Emi; Hashimoto, Ayako; Kaneko, Tomoaki; Tajima, Nobuo; Ohno, Takahisa; Takeguchi, Masaki

    2016-01-07

    Metal doping into the graphene lattice has been studied recently to develop novel nanoelectronic devices and to gain an understanding of the catalytic activities of metals in nanocarbon structures. Here we report the direct observation of interactions between Cu atoms and single-layer graphene by transmission electron microscopy. We document stable configurations of Cu atoms in the graphene sheet and unique transformations of graphene promoted by Cu atoms. First-principles calculations based on density functional theory reveal a reduction of energy barrier that caused rotation of C-C bonds near Cu atoms. We discuss two driving forces, electron irradiation and in situ heating, and conclude that the observed transformations were mainly promoted by electron irradiation. Our results suggest that individual Cu atoms can promote reconstruction of single-layer graphene.

  2. Direct observation of TALE protein dynamics reveals a two-state search mechanism

    NASA Astrophysics Data System (ADS)

    Cuculis, Luke; Abil, Zhanar; Zhao, Huimin; Schroeder, Charles M.

    2015-06-01

    Transcription activator-like effector (TALE) proteins are a class of programmable DNA-binding proteins for which the fundamental mechanisms governing the search process are not fully understood. Here we use single-molecule techniques to directly observe TALE search dynamics along DNA templates. We find that TALE proteins are capable of rapid diffusion along DNA using a combination of sliding and hopping behaviour, which suggests that the TALE search process is governed in part by facilitated diffusion. We also observe that TALE proteins exhibit two distinct modes of action during the search process--a search state and a recognition state--facilitated by different subdomains in monomeric TALE proteins. Using TALE truncation mutants, we further demonstrate that the N-terminal region of TALEs is required for the initial non-specific binding and subsequent rapid search along DNA, whereas the central repeat domain is required for transitioning into the site-specific recognition state.

  3. Direct observation of two protons in the decay of 54Zn.

    PubMed

    Ascher, P; Audirac, L; Adimi, N; Blank, B; Borcea, C; Brown, B A; Companis, I; Delalee, F; Demonchy, C E; de Oliveira Santos, F; Giovinazzo, J; Grévy, S; Grigorenko, L V; Kurtukian-Nieto, T; Leblanc, S; Pedroza, J-L; Perrot, L; Pibernat, J; Serani, L; Srivastava, P C; Thomas, J-C

    2011-09-02

    The two protons emitted in the decay of 54Zn have been individually observed for the first time in a time projection chamber. The total decay energy and the half-life measured in this work agree with the results obtained in a previous experiment. Angular and energy correlations between the two protons are determined and compared to theoretical distributions of a three-body model. Within the shell model framework, the relative decay probabilities show a strong contribution of the p2 configuration for the two-proton emission. After 45Fe, the present result on 54Zn constitutes only the second case of a direct observation of the ground state two-proton decay of a long-lived isotope.

  4. Direct observation of the quantum critical point in heavy fermion CeRhSi3.

    PubMed

    Egetenmeyer, N; Gavilano, J L; Maisuradze, A; Gerber, S; MacLaughlin, D E; Seyfarth, G; Andreica, D; Desilets-Benoit, A; Bianchi, A D; Baines, Ch; Khasanov, R; Fisk, Z; Kenzelmann, M

    2012-04-27

    We report on muon spin rotation studies of the noncentrosymmetric heavy fermion antiferromagnet CeRhSi3. A drastic and monotonic suppression of the internal fields, at the lowest measured temperature, was observed upon an increase of external pressure. Our data suggest that the ordered moments are gradually quenched with increasing pressure, in a manner different from the pressure dependence of the Néel temperature. At 23.6 kbar, the ordered magnetic moments are fully suppressed via a second-order phase transition, and T(N) is zero. Thus, we directly observed the quantum critical point at 23.6 kbar hidden inside the superconducting phase of CeRhSi3.

  5. Direct observation of liquid nucleus growth in homogeneous melting of colloidal crystals

    PubMed Central

    Wang, Ziren; Wang, Feng; Peng, Yi; Han, Yilong

    2015-01-01

    The growth behaviour of liquid nucleus is crucial for crystal melting, but its kinetics is difficult to predict and remains challenging in experiment. Here we directly observed the growth of individual liquid nuclei in homogeneous melting of three-dimensional superheated colloidal crystals with single-particle dynamics by video microscopy. The growth rate of nucleus at weak superheating is well fitted by generalizing the Wilson–Frenkel law of crystallization to melting and including the surface tension effects and non-spherical-shape effects. As the degree of superheating increases, the growth rate is enhanced by nucleus shape fluctuation, nuclei coalescence and multimer attachment. The results provide new guidance for the refinement of nucleation theory, especially for the poorly understood strong-superheating regime. The universal Lindemann parameter observed at the superheat limit and solid–liquid interfaces indicates a connection between homogeneous and heterogeneous melting. PMID:25897801

  6. Observed Arctic sea-ice loss directly follows anthropogenic CO2 emission

    NASA Astrophysics Data System (ADS)

    Notz, Dirk; Stroeve, Julienne

    2016-11-01

    Arctic sea ice is retreating rapidly, raising prospects of a future ice-free Arctic Ocean during summer. Because climate-model simulations of the sea-ice loss differ substantially, we used a robust linear relationship between monthly-mean September sea-ice area and cumulative carbon dioxide (CO2) emissions to infer the future evolution of Arctic summer sea ice directly from the observational record. The observed linear relationship implies a sustained loss of 3 ± 0.3 square meters of September sea-ice area per metric ton of CO2 emission. On the basis of this sensitivity, Arctic sea ice will be lost throughout September for an additional 1000 gigatons of CO2 emissions. Most models show a lower sensitivity, which is possibly linked to an underestimation of the modeled increase in incoming longwave radiation and of the modeled transient climate response.

  7. Direct observation of a long-lived single-atom catalyst chiseling atomic structures in graphene.

    PubMed

    Wang, Wei Li; Santos, Elton J G; Jiang, Bin; Cubuk, Ekin Dogus; Ophus, Colin; Centeno, Alba; Pesquera, Amaia; Zurutuza, Amaia; Ciston, Jim; Westervelt, Robert; Kaxiras, Efthimios

    2014-02-12

    Fabricating stable functional devices at the atomic scale is an ultimate goal of nanotechnology. In biological processes, such high-precision operations are accomplished by enzymes. A counterpart molecular catalyst that binds to a solid-state substrate would be highly desirable. Here, we report the direct observation of single Si adatoms catalyzing the dissociation of carbon atoms from graphene in an aberration-corrected high-resolution transmission electron microscope (HRTEM). The single Si atom provides a catalytic wedge for energetic electrons to chisel off the graphene lattice, atom by atom, while the Si atom itself is not consumed. The products of the chiseling process are atomic-scale features including graphene pores and clean edges. Our experimental observations and first-principles calculations demonstrated the dynamics, stability, and selectivity of such a single-atom chisel, which opens up the possibility of fabricating certain stable molecular devices by precise modification of materials at the atomic scale.

  8. Direct observation and imaging of a spin-wave soliton with p-like symmetry

    DOE PAGES

    Bonetti, S.; Kukreja, R.; Chen, Z.; ...

    2015-11-16

    Spin waves, the collective excitations of spins, can emerge as nonlinear solitons at the nanoscale when excited by an electrical current from a nanocontact. These solitons are expected to have essentially cylindrical symmetry (that is, s-like), but no direct experimental observation exists to confirm this picture. Using a high-sensitivity time-resolved magnetic X-ray microscopy with 50 ps temporal resolution and 35 nm spatial resolution, we are able to create a real-space spin-wave movie and observe the emergence of a localized soliton with a nodal line, that is, with p-like symmetry. Moreover, micromagnetic simulations explain the measurements and reveal that the symmetrymore » of the soliton can be controlled by magnetic fields. Our results broaden the understanding of spin-wave dynamics at the nanoscale, with implications for the design of magnetic nanodevices.« less

  9. Direct self-repairing control for a helicopter via quantum multi-model and disturbance observer

    NASA Astrophysics Data System (ADS)

    Chen, Fuyang; Cai, Ling; Jiang, Bin; Tao, Gang

    2016-02-01

    In this paper, a new direct self-repairing control scheme is developed for a helicopter flight control system with unknown actuator faults and external disturbance. The design of multi-model-based adaptive control is used to accommodate the faulty system under different fault conditions. By appropriate switching based on quantum information technique, the system can be converted to the best model and the corresponding controller. Asymptotic model following performance and system stability is guaranteed. A disturbance observer is introduced to observe the disturbance of the system, which can produce corresponding control signals according to the disturbance. The results including a numerical simulation and a semi-physical verification demonstrate the effectiveness of the proposed self-repairing control approach for the helicopter flight control system.

  10. Direct observation of phonon emission from hot electrons: spectral features in diamond secondary electron emission.

    PubMed

    O'Donnell, Kane M; Edmonds, Mark T; Ristein, Jürgen; Rietwyk, Kevin J; Tadich, Anton; Thomsen, Lars; Pakes, Christopher I; Ley, Lothar

    2014-10-01

    In this work we use high-resolution synchrotron-based photoelectron spectroscopy to investigate the low kinetic energy electron emission from two negative electron affinity surfaces of diamond, namely hydrogenated and lithiated diamond. For hydrogen-terminated diamond electron emission below the conduction band minimum (CBM) is clearly observed as a result of phonon emission subsequent to carrier thermalization at the CBM. In the case of lithiated diamond, we find the normal conduction band minimum emission peak is asymmetrically broadened to higher kinetic energies and argue the broadening is a result of ballistic emission from carriers thermalized to the CBM in the bulk well before the onset of band-bending. In both cases the spectra display intensity modulations that are the signature of optical phonon emission as the main mechanism for carrier relaxation. To our knowledge, these measurements represent the first direct observation of hot carrier energy loss via photoemission.

  11. Direct observation of Oersted-field-induced magnetization dynamics in magnetic nanostripes

    SciTech Connect

    Uhlir, V.; Pizzini, S.; Rougemaille, N.; Ranno, L.; Fruchart, O.; Wagner, E.; Vogel, J.; Cros, V.; Jimenez, E.; Camarero, J.; Urbanek, M.; Gaudin, G.; Sirotti, F.

    2011-01-15

    We have used time-resolved x-ray photoemission electron microscopy to investigate the magnetization dynamics induced by nanosecond current pulses in NiFe/Cu/Co nanostripes. A large tilt of the NiFe magnetization in the direction transverse to the stripe is observed during the pulses. We show that this effect cannot be quantitatively understood from the amplitude of the Oersted field and the shape anisotropy. High-frequency oscillations observed at the onset of the pulses are attributed to precessional motion of the NiFe magnetization about the effective field. We discuss the possible origins of the large magnetization tilt and the potential implications of the static and dynamic effects of the Oersted field on current-induced domain-wall motion in such stripes.

  12. Acidification of the North Pacific Ocean: Direct Observations of pH in 1991 and 2006

    NASA Astrophysics Data System (ADS)

    Byrne, R. H.; Liu, X.; Mecking, S.; Feely, R. A.

    2006-12-01

    Spectrophotometric procedures were first successfully used to obtain seawater pH profiles on a 1991 cruise within the CLIVAR/CO2 Repeat Hydrography Program. During a 2006 reoccupation of the P16N transect along 152 ^{0}W, closely similar methods were used to obtain a fifteen-year spectrophotometrically-based record of ocean pH change. Spectrophotometric procedures are particularly robust as a means of observing changes in seawater pH because sulfonephthalein equilibrium constants, being nearly constant at constant temperature and salinity, are unimportant in pH difference calculations. In such cases, the quality of pH difference measurements is most closely related to measurement precision. Since the precision of spectrophotometric pH measurements (using observations of sulfonephthalein absorbance ratios) is on the order of 0.0004 pH units, pH differences can be measured with a precision somewhat better than +/- 0.001. In the absence of other effects, the atmospheric pCO2 increase between 1991 and 2006 would decrease the pH of the surface ocean, in equilibrium with the atmosphere, by approximately 0.025 pH units. Thus, spectrophotometric pH observations are capable of directly resolving pH perturbations on a scale commensurate with potential atmospherically-induced changes. At depths between 3000 and 5000 meters the directly observed mean fifteen-year pH difference was on the order of 0.000 +/-0.0015. At depths below 1000 meters, pH changes generally ranged between + 0.006 and -0.006. In contrast, in the upper 700 meters, pH was much more variable, with an average fifteen-year pH decrease on the order of 0.025 and including pH differences as large as -0.055. These directly observed pH differences are consistent with expected changes in response to elevated atmospheric CO2, along with changes that can be attributed to differences in respiration and changes in ocean circulation.

  13. Performing Gram stain directly on catheter tips: assessment of the quality of the observation process.

    PubMed

    Guembe, M; Pérez-Granda, M J; Rivera, M L; Martín-Rabadán, P; Bouza, E

    2015-06-01

    A previous study performed in our institution showed that catheter tip (CT) staining by combining acridine orange and Gram stain (GS) before culture anticipated catheter colonization with exhaustive and careful observation by a highly trained technician. Our objective was to assess the validity values of GS without acridine orange on an external smear of CT for predicting catheter colonization and catheter-related bloodstream infection (C-RBSI). We compared different periods of observation and the results of two technicians with different levels of professional experience. Over a 5-month period, the roll-plate technique was preceded by direct GS of all CTs sent to the microbiology laboratory. The reading was taken at ×100 by two observers with different skill levels. Each observer performed a routine examination (3 min along three longitudinal lines) and an exhaustive examination (5 min along five longitudinal lines). The presence of at least one cell was considered positive. All slides were read before culture results were known. We included a total of 271 CTs from 209 patients. The prevalence of catheter colonization and C-RBSI was 16.2 % and 5.1 %, respectively. Routine and exhaustive examinations revealed only 29.5 % and 40.9 % of colonized catheters, respectively (p < 0.001). In contrast, they revealed high negative predictive values for C-RBSI (96.5 % and 96.3 %, respectively). Our study shows that the yield of GS performed directly on CTs is greater when staining is performed exhaustively. However, the decision to implement this approach in daily routine will depend on the prevalence rate of catheter colonization at each institution.

  14. Direct observation of DNA knots using a solid-state nanopore

    NASA Astrophysics Data System (ADS)

    Plesa, Calin; Verschueren, Daniel; Pud, Sergii; van der Torre, Jaco; Ruitenberg, Justus W.; Witteveen, Menno J.; Jonsson, Magnus P.; Grosberg, Alexander Y.; Rabin, Yitzhak; Dekker, Cees

    2016-12-01

    Long DNA molecules can self-entangle into knots. Experimental techniques for observing such DNA knots (primarily gel electrophoresis) are limited to bulk methods and circular molecules below 10 kilobase pairs in length. Here, we show that solid-state nanopores can be used to directly observe individual knots in both linear and circular single DNA molecules of arbitrary length. The DNA knots are observed as short spikes in the nanopore current traces of the traversing DNA molecules and their detection is dependent on a sufficiently high measurement resolution, which can be achieved using high-concentration LiCl buffers. We study the percentage of molecules with knots for DNA molecules of up to 166 kilobase pairs in length and find that the knotting occurrence rises with the length of the DNA molecule, consistent with a constant knotting probability per unit length. Our experimental data compare favourably with previous simulation-based predictions for long polymers. From the translocation time of the knot through the nanopore, we estimate that the majority of the DNA knots are tight, with remarkably small sizes below 100 nm. In the case of linear molecules, we also observe that knots are able to slide out on application of high driving forces (voltage).

  15. Influence of atmospheric relative humidity on ultraviolet flux and aerosol direct radiative forcing: Observation and simulation

    NASA Astrophysics Data System (ADS)

    Xia, Dong; Chen, Ling; Chen, Huizhong; Luo, Xuyu; Deng, Tao

    2016-08-01

    The atmospheric aerosols can absorb moisture from the environment due to their hydrophilicity and thus affect atmospheric radiation fluxes. In this article, the ultraviolet radiation and relative humidity (RH) data from ground observations and a radiative transfer model were used to examine the influence of RH on ultraviolet radiation flux and aerosol direct radiative forcing under the clear-sky conditions. The results show that RH has a significant influence on ultraviolet radiation because of aerosol hygroscopicity. The relationship between attenuation rate and RH can be fitted logarithmically and all of the R2 of the 4 sets of samples are high, i.e. 0.87, 0.96, 0.9, and 0.9, respectively. When the RH is 60%, 70%, 80% and 90%, the mean aerosol direct radiative forcing in ultraviolet is -4.22W m-2, -4.5W m-2, -4.82W m-2 and -5.4W m-2, respectively. For the selected polluted air samples the growth factor for computing aerosol direct radiative forcing in the ultraviolet for the RH of 80% varies from 1.19 to 1.53, with an average of 1.31.

  16. The Exozodiacal Dust Problem for Direct Observations of ExoEarths

    NASA Technical Reports Server (NTRS)

    Roberge, Aki; Chen, Christine H.; Millan-Gabet, Rafael; Weinberger, Alycia J.; Hinz, Philip M.; Stapelfeldt, Karl R.; Absil, Olivier; Kuchner, Marc J.; Bryden, Geoffrey

    2012-01-01

    Debris dust in the habitable zones of stars otherwise known as exozodiacal dust comes from extrasolar asteroids and comets and is thus an expected part of a planetary system. Background flux from the Solar Systems zodiacal dust and the exozodiacal dust in the target system is likely to be the largest source of astrophysical noise in direct observations of terrestrial planets in the habitable zones of nearby stars. Furthermore, dust structures like clumps, thought to be produced by dynamical interactions with exoplanets, are a possible source of confusion. In this paper, we qualitatively assess the primary impact of exozodical dust on high-contrast direct imaging at optical wavelengths, such as would be performed with a coronagraph. Then we present the sensitivity of previous, current, and near-term facilities to thermal emission from debris dust at all distances from nearby solar-type stars, as well as our current knowledge of dust levels from recent surveys. Finally, we address the other method of detecting debris dust, through high-contrast imaging in scattered light. This method is currently far less sensitive than thermal emission observations, but provides high spatial resolution for studying dust structures. This paper represents the first report of NASA's Exoplanet Exploration Program Analysis Group (ExoPAG).

  17. Direct estimation of tidally induced Earth rotation variations observed by VLBI

    NASA Astrophysics Data System (ADS)

    Englich, S.; Heinkelmann, R.; BOHM, J.; Schuh, H.

    2009-09-01

    The subject of our study is the investigation of periodical variations induced by solid Earth tides and ocean tides in Earth rotation parameters (ERP: polar motion, UT1)observed by VLBI. There are two strategies to determine the amplitudes and phases of Earth rotation variations from observations of space geodetic techniques. The common way is to derive time series of Earth rotation parameters first and to estimate amplitudes and phases in a second step. Results obtained by this means were shown in previous studies for zonal tidal variations (Englich et al.; 2008a) and variations caused by ocean tides (Englich et al.; 2008b). The alternative method is to estimate the tidal parameters directly within the VLBI data analysis procedure together with other parameters such as station coordinates, tropospheric delays, clocks etc. The purpose of this work was the application of this direct method to a combined VLBI data analysis using the software packages OCCAM (Version 6.1, Gauss-Markov-Model) and DOGSCS (Gerstl et al.; 2001). The theoretical basis and the preparatory steps for the implementation of this approach are presented here.

  18. [Preliminary study on detox in outpatient care units with 18 alcoholic patients in Directly Observed Treatment].

    PubMed

    Lloréns Martínez, Ramón; Calatayud Francés, María; Morales Gallús, Esperanza; Añó Cervera, Consol; Adriá Caballero, Librada

    2008-01-01

    Directly Observed Treatment (TOD-DOT) has been tested in different conditions. The objective of this work is to check whether a UCA-CAB (Centre for Addictive Behaviour) can achieve detox and reduce the risk of early relapse (up to 12 weeks) in alcoholic patients. All patients had an established organic addiction and serious withdrawal syndrome, and had undergone multiple previous treatments. Furthermore, they had not managed to abstain for a 3-month consecutive period over the previous 2 years. The aim of the Directly Observed Treatment was to attain detox and reduce relapse by following a multi-method approach: medical, psychological and personal care, based on a brief daily consultation and pharmacological supervision. The results were as follows: Of the 18 patients included in the study, after 12 weeks, 13 (72 %) were still abstinent and 4 (22 %) had relapsed. Thus, 17 (94 %) were still following the treatment, with just one drop-out. We analysed the profiles of the patients abstaining, of those who relapsed (4) and of the one who dropped out. The average CIWA-Ar was 27.05 (21-36). Any value over 20 is considered to indicate serious withdrawal syndrome, though there were no negative events leading to hospitalization. Level of adherence to the treatment (94 %) meant that the most seriously affected patients and those with fewest financial resources could benefit, not only from any auxiliary social schemes, but also from basic health services, permitting them to improve the quality of their everyday life.

  19. Direct Observation of Photoinduced Charge Separation in Ruthenium Complex/Ni(OH)2 Nanoparticle Hybrid

    NASA Astrophysics Data System (ADS)

    Tang, Yu; Pattengale, Brian; Ludwig, John; Atifi, Abderrahman; Zinovev, Alexander V.; Dong, Bin; Kong, Qingyu; Zuo, Xiaobing; Zhang, Xiaoyi; Huang, Jier

    2015-12-01

    Ni(OH)2 have emerged as important functional materials for solar fuel conversion because of their potential as cost-effective bifunctional catalysts for both hydrogen and oxygen evolution reactions. However, their roles as photocatalysts in the photoinduced charge separation (CS) reactions remain unexplored. In this paper, we investigate the CS dynamics of a newly designed hybrid catalyst by integrating a Ru complex with Ni(OH)2 nanoparticles (NPs). Using time resolved X-ray absorption spectroscopy (XTA), we directly observed the formation of the reduced Ni metal site (~60 ps), unambiguously demonstrating CS process in the hybrid through ultrafast electron transfer from Ru complex to Ni(OH)2 NPs. Compared to the ultrafast CS process, the charge recombination in the hybrid is ultraslow (≫50 ns). These results not only suggest the possibility of developing Ni(OH)2 as solar fuel catalysts, but also represent the first time direct observation of efficient CS in a hybrid catalyst using XTA.

  20. Direct TEM observations of growth mechanisms of two-dimensional MoS2 flakes

    PubMed Central

    Fei, Linfeng; Lei, Shuijin; Zhang, Wei-Bing; Lu, Wei; Lin, Ziyuan; Lam, Chi Hang; Chai, Yang; Wang, Yu

    2016-01-01

    A microscopic understanding of the growth mechanism of two-dimensional materials is of particular importance for controllable synthesis of functional nanostructures. Because of the lack of direct and insightful observations, how to control the orientation and the size of two-dimensional material grains is still under debate. Here we discern distinct formation stages for MoS2 flakes from the thermolysis of ammonium thiomolybdates using in situ transmission electron microscopy. In the initial stage (400 °C), vertically aligned MoS2 structures grow in a layer-by-layer mode. With the increasing temperature of up to 780 °C, the orientation of MoS2 structures becomes horizontal. When the growth temperature reaches 850 °C, the crystalline size of MoS2 increases by merging adjacent flakes. Our study shows direct observations of MoS2 growth as the temperature evolves, and sheds light on the controllable orientation and grain size of two-dimensional materials. PMID:27412892

  1. Direct Observation of Photoinduced Charge Separation in Ruthenium Complex/Ni(OH)2 Nanoparticle Hybrid

    DOE PAGES

    Tang, Yu; Pattengale, Brian A.; Ludwig, John M.; ...

    2015-12-17

    We report that Ni(OH)2 have emerged as important functional materials for solar fuel conversion because of their potential as cost-effective bifunctional catalysts for both hydrogen and oxygen evolution reactions. However, their roles as photocatalysts in the photoinduced charge separation (CS) reactions remain unexplored. In this paper, we investigate the CS dynamics of a newly designed hybrid catalyst by integrating a Ru complex with Ni(OH)2 nanoparticles (NPs). Using time resolved X-ray absorption spectroscopy (XTA), we directly observed the formation of the reduced Ni metal site (~60 ps), unambiguously demonstrating CS process in the hybrid through ultrafast electron transfer from Ru complexmore » to Ni(OH)2 NPs. Compared to the ultrafast CS process, the charge recombination in the hybrid is ultraslow (>>50 ns). These results not only suggest the possibility of developing Ni(OH)2 as solar fuel catalysts, but also represent the first time direct observation of efficient CS in a hybrid catalyst using XTA.« less

  2. Direct Observation of Photoinduced Charge Separation in Ruthenium Complex/Ni(OH)2 Nanoparticle Hybrid

    PubMed Central

    Tang, Yu; Pattengale, Brian; Ludwig, John; Atifi, Abderrahman; Zinovev, Alexander V.; Dong, Bin; Kong, Qingyu; Zuo, Xiaobing; Zhang, Xiaoyi; Huang, Jier

    2015-01-01

    Ni(OH)2 have emerged as important functional materials for solar fuel conversion because of their potential as cost-effective bifunctional catalysts for both hydrogen and oxygen evolution reactions. However, their roles as photocatalysts in the photoinduced charge separation (CS) reactions remain unexplored. In this paper, we investigate the CS dynamics of a newly designed hybrid catalyst by integrating a Ru complex with Ni(OH)2 nanoparticles (NPs). Using time resolved X-ray absorption spectroscopy (XTA), we directly observed the formation of the reduced Ni metal site (~60 ps), unambiguously demonstrating CS process in the hybrid through ultrafast electron transfer from Ru complex to Ni(OH)2 NPs. Compared to the ultrafast CS process, the charge recombination in the hybrid is ultraslow (≫50 ns). These results not only suggest the possibility of developing Ni(OH)2 as solar fuel catalysts, but also represent the first time direct observation of efficient CS in a hybrid catalyst using XTA. PMID:26673578

  3. Direct observation of bosonic quantum interference of surface plasmon polaritons using photon-number-resolving detectors

    NASA Astrophysics Data System (ADS)

    Fujii, Go; Fukuda, Daiji; Inoue, Shuichiro

    2014-08-01

    Quantum plasmonics is a field of research combining plasmonics with quantum optics and investigates interactions between photons and metallic nanostructures. So far, it has been proven that quantum properties of single photons to excite single surface plasmon polaritons (SPPs) are preserved in the process of photon-SPP-photon mode conversion in plasmonic nanostructures, which suggests the potential application of SPPs to the quantum information processing (QIP). Recently the Hong-Ou-Mandel (HOM) interference of single SPPs was observed in a plasmonic circuitry. However, the visibility was below the classical limit (50%) due to the simultaneous excitation of distinguishable SPP modes. We employed a directional coupler based on long-range surface-plasmon-polariton waveguides (LRSPP-DC) and superconducting photon-number-resolving detectors to directly observe the bosonic quantum interference of single SPPs beyond the classical limit. In addition, we demonstrated the indistinguishability of photons that excite single SPPs is well preserved in the process of photon-SPP mode conversion.

  4. The Exozodiacal Dust Problem for Direct Observations of Exo-Earths

    NASA Astrophysics Data System (ADS)

    Roberge, Aki; Chen, Christine H.; Millan-Gabet, Rafael; Weinberger, Alycia J.; Hinz, Philip M.; Stapelfeldt, Karl R.; Absil, Olivier; Kuchner, Marc J.; Bryden, Geoffrey

    2012-08-01

    Debris dust in the habitable zones of stars—otherwise known as exozodiacal dust—comes from extrasolar asteroids and comets and is thus an expected part of a planetary system. Background flux from the solar system’s zodiacal dust and the exozodiacal dust in the target system is likely to be the largest source of astrophysical noise in direct observations of terrestrial planets in the habitable zones of nearby stars. Furthermore, dust structures like clumps, thought to be produced by dynamical interactions with exoplanets, are a possible source of confusion. In this article, we qualitatively assess the primary impact of exozodiacal dust on high-contrast direct imaging at optical wavelengths, such as would be performed with a coronagraph. Then we present the sensitivity of previous, current, and near-term facilities to thermal emission from debris dust at all distances from nearby solar-type stars, as well as our current knowledge of dust levels from recent surveys. Finally, we address the other method of detecting debris dust, through high-contrast imaging in scattered light. This method is currently far less sensitive than thermal emission observations, but provides high spatial resolution for studying dust structures. This article represents the first report of NASA’s Exoplanet Exploration Program Analysis Group (ExoPAG).

  5. DIRECT OBSERVATION OF SOLAR CORONAL MAGNETIC FIELDS BY VECTOR TOMOGRAPHY OF THE CORONAL EMISSION LINE POLARIZATIONS

    SciTech Connect

    Kramar, M.; Lin, H.; Tomczyk, S. E-mail: lin@ifa.hawaii.edu

    2016-03-10

    We present the first direct “observation” of the global-scale, 3D coronal magnetic fields of Carrington Rotation (CR) Cycle 2112 using vector tomographic inversion techniques. The vector tomographic inversion uses measurements of the Fe xiii 10747 Å Hanle effect polarization signals by the Coronal Multichannel Polarimeter (CoMP) and 3D coronal density and temperature derived from scalar tomographic inversion of Solar Terrestrial Relations Observatory (STEREO)/Extreme Ultraviolet Imager (EUVI) coronal emission lines (CELs) intensity images as inputs to derive a coronal magnetic field model that best reproduces the observed polarization signals. While independent verifications of the vector tomography results cannot be performed, we compared the tomography inverted coronal magnetic fields with those constructed by magnetohydrodynamic (MHD) simulations based on observed photospheric magnetic fields of CR 2112 and 2113. We found that the MHD model for CR 2112 is qualitatively consistent with the tomography inverted result for most of the reconstruction domain except for several regions. Particularly, for one of the most noticeable regions, we found that the MHD simulation for CR 2113 predicted a model that more closely resembles the vector tomography inverted magnetic fields. In another case, our tomographic reconstruction predicted an open magnetic field at a region where a coronal hole can be seen directly from a STEREO-B/EUVI image. We discuss the utilities and limitations of the tomographic inversion technique, and present ideas for future developments.

  6. Toward the Direct Measurement of Coronal Magnetic Fields: An Airborne Infrared Spectrometer for Eclipse Observations

    NASA Astrophysics Data System (ADS)

    Samra, J.; DeLuca, E. E.; Golub, L.; Cheimets, P.

    2014-12-01

    The solar magnetic field enables the heating of the corona and provides its underlying structure. Energy stored in coronal magnetic fields is released in flares and coronal mass ejections (CME) and provides the ultimate source of energy for space weather. Therefore, direct measurements of the coronal magnetic field have significant potential to enhance understanding of coronal dynamics and improve solar forecasting models. Of particular interest are observations of coronal field lines in the transitional region between closed and open flux systems, providing important information on the origin of the slow solar wind. While current instruments routinely observe only the photospheric and chromospheric magnetic fields, a proposed airborne spectrometer will take a step toward the direct observation of coronal fields by measuring plasma emission in the infrared at high spatial and spectral resolution. The targeted lines are four forbidden magnetic dipole transitions between 2 and 4 μm. The airborne system will consist of a telescope, grating spectrometer, and pointing/stabilization system to be flown on the NSF/NCAR High-performance Instrumented Airborne Platform for Environmental Research (HIAPER) during the August 2017 total solar eclipse. The project incorporates several optical engineering challenges, centered around maintaining adequate spectral and spatial resolution in a compact and inexpensive package and on a moving platform. Design studies are currently underway to examine the tradeoffs between various optical geometries and control strategies for the pointing/stabilization system. The results will be presented and interpreted in terms of the consequences for the scientific questions. In addition, results from a laboratory prototype and simulations of the final system will be presented.

  7. IRIS, Hinode, SDO, and RHESSI Observations of a White Light Flare Produced Directly by Nonthermal Electrons

    NASA Astrophysics Data System (ADS)

    Lee, Kyoung-Sun; Imada, Shinsuke; Watanabe, Kyoko; Bamba, Yumi; Brooks, David H.

    2017-02-01

    An X1.6 flare occurred in active region AR 12192 on 2014 October 22 at 14:02 UT and was observed by Hinode, IRIS, SDO, and RHESSI. We analyze a bright kernel that produces a white light (WL) flare with continuum enhancement and a hard X-ray (HXR) peak. Taking advantage of the spectroscopic observations of IRIS and Hinode/EIS, we measure the temporal variation of the plasma properties in the bright kernel in the chromosphere and corona. We find that explosive evaporation was observed when the WL emission occurred, even though the intensity enhancement in hotter lines is quite weak. The temporal correlation of the WL emission, HXR peak, and evaporation flows indicates that the WL emission was produced by accelerated electrons. To understand the WL emission process, we calculated the energy flux deposited by non-thermal electrons (observed by RHESSI) and compared it to the dissipated energy estimated from a chromospheric line (Mg ii triplet) observed by IRIS. The deposited energy flux from the non-thermal electrons is about (3–7.7) × 1010 erg cm‑2 s‑1 for a given low-energy cutoff of 30–40 keV, assuming the thick-target model. The energy flux estimated from the changes in temperature in the chromosphere measured using the Mg ii subordinate line is about (4.6–6.7) × 109 erg cm‑2 s‑1: ∼6%–22% of the deposited energy. This comparison of estimated energy fluxes implies that the continuum enhancement was directly produced by the non-thermal electrons.

  8. Direct Observation of a Majorana Quasiparticle Heat Capacity in 3He

    NASA Astrophysics Data System (ADS)

    Bunkov, Y. M.

    2014-04-01

    The Majorana fermion, which acts as its own antiparticle, was suggested by Majorana in 1937 (Nuovo Cimento 14:171). While no stable particle with Majorana properties has yet been observed, Majorana quasiparticles (QP) may exist at the boundaries of topological insulators. Here we report the preliminary results of direct observation of Majorana QPs by a precise measurements of superfluid 3He heat capacity. The bulk superfluid 3He heat capacity falls exponentially with cooling at the temperatures significantly below the energy gap. Owing to the zero energy gap mode the Majorana heat capacity falls in a power law. The Majorana heat capacity can be larger than bulk one at some temperature, which depends on surface to volume ratio of the experimental cell. Some times ago we developed the Dark matter particles detector (DMD) on a basis of superfluid 3He which is working at the frontier of extremely low temperatures (Winkelmann et al., Nucl. Instrum. Meth. A 559:384-386, 2006). Here we report the observation of zero gap mode of Majorana, follows from the new analyses of DMD heat capacity, published early. We have found a 10 % deviation from the bulk superfluid 3He heat capacity at the temperature of 135 μK. This deviation corresponds well to the theoretical value for Majorana heat capacity at such low temperature. (Note, there were no fitting parameters).

  9. Direct space-based observations of anthropogenic CO2 emission areas from OCO-2

    NASA Astrophysics Data System (ADS)

    Hakkarainen, J.; Ialongo, I.; Tamminen, J.

    2016-11-01

    Anthropogenic CO2 emissions from fossil fuel combustion have large impacts on climate. In order to monitor the increasing CO2 concentrations in the atmosphere, accurate spaceborne observations—as available from the Orbiting Carbon Observatory-2 (OCO-2)—are needed. This work provides the first direct observation of anthropogenic CO2 from OCO-2 over the main pollution regions: eastern USA, central Europe, and East Asia. This is achieved by deseasonalizing and detrending OCO-2 CO2 observations to derive CO2 anomalies. Several small isolated emission areas (such as large cities) are detectable from the anomaly maps. The spatial distribution of the CO2 anomaly matches the features observed in the maps of the Ozone Monitoring Instrument NO2 tropospheric columns, used as an indicator of atmospheric pollution. The results of a cluster analysis confirm the spatial correlation between CO2 and NO2 data over areas with different amounts of pollution. We found positive correlation between CO2 anomalies and emission inventories. The results demonstrate the power of spaceborne data for monitoring anthropogenic CO2 emissions.

  10. Direct observation of feedout-related areal mass oscillations in planar plastic targets.

    NASA Astrophysics Data System (ADS)

    Aglitskiy, Y.; Metzler, N.; Velikovich, A. L.; Karasik, M.; Serlin, V.; Pawley, C.; Mostovych, A. N.; Schmitt, A. J.; Obenschain, S. P.; Gardner, J. H.

    2001-10-01

    "Feedout" means the transfer of mass perturbations from the rear to the front surface of a driven target. The oscillations are expected if the perturbation wavelength λ is not large compared to 2π L_s, where Ls is the shock-compressed target thickness. We report the first direct experimental observation of areal mass oscillation associated with feedout, followed by the onset of exponential RT growth. Our experiments were performed with the Nike KrF laser at irradiation 50 TW/cm^2. The mass redistribution in the target was observed with the aid of monochromatic x-ray imaging coupled to a streak camera. We used 40 to 60 μm thick CH targets rippled on the rear side with wavelengths of either 30 or 45 μm, the ratio 2π L_s/λ thus being close to 2. Two phase reversals of mass variation predicted by the theory and simulations were consistently observed both on the original images and on the time histories of Fourier amplitudes.

  11. Direct observation of aqueous secondary organic aerosol from biomass-burning emissions

    NASA Astrophysics Data System (ADS)

    Gilardoni, Stefania; Massoli, Paola; Paglione, Marco; Giulianelli, Lara; Carbone, Claudio; Rinaldi, Matteo; Decesari, Stefano; Sandrini, Silvia; Costabile, Francesca; Gobbi, Gian Paolo; Chiara Pietrogrande, Maria; Visentin, Marco; Scotto, Fabiana; Fuzzi, Sandro; Facchini, Maria Cristina

    2016-09-01

    The mechanisms leading to the formation of secondary organic aerosol (SOA) are an important subject of ongoing research for both air quality and climate. Recent laboratory experiments suggest that reactions taking place in the atmospheric liquid phase represent a potentially significant source of SOA mass. Here, we report direct ambient observations of SOA mass formation from processing of biomass-burning emissions in the aqueous phase. Aqueous SOA (aqSOA) formation is observed both in fog water and in wet aerosol. The aqSOA from biomass burning contributes to the “brown” carbon (BrC) budget and exhibits light absorption wavelength dependence close to the upper bound of the values observed in laboratory experiments for fresh and processed biomass-burning emissions. We estimate that the aqSOA from residential wood combustion can account for up to 0.1-0.5 Tg of organic aerosol (OA) per y in Europe, equivalent to 4-20% of the total OA emissions. Our findings highlight the importance of aqSOA from anthropogenic emissions on air quality and climate.

  12. Chemotaxis study using optical tweezers to observe the strength and directionality of forces of Leishmania amazonensis

    NASA Astrophysics Data System (ADS)

    Pozzo, Liliana d. Y.; Fontes, Adriana; de Thomaz, André A.; Barbosa, Luiz C.; Ayres, Diana C.; Giorgio, Selma; Cesar, Carlos L.

    2006-08-01

    The displacements of a dielectric microspheres trapped by an optical tweezers (OT) can be used as a force transducer for mechanical measurements in life sciences. This system can measure forces on the 50 femto Newtons to 200 pico Newtons range, of the same order of magnitude of a typical forces induced by flagellar motion. The process in which living microorganisms search for food and run away from poison chemicals is known is chemotaxy. Optical tweezers can be used to obtain a better understanding of chemotaxy by observing the force response of the microorganism when placed in a gradient of attractors and or repelling chemicals. This report shows such observations for the protozoa Leishmania amazomenzis, responsible for the leishmaniasis, a serious tropical disease. We used a quadrant detector to monitor the movement of the protozoa for different chemicals gradient. This way we have been able to observe both the force strength and its directionality. The characterization of the chemotaxis of these parasites can help to understand the infection mechanics and improve the diagnosis and the treatments employed for this disease.

  13. Direct observation of aqueous secondary organic aerosol from biomass-burning emissions

    PubMed Central

    Massoli, Paola; Paglione, Marco; Giulianelli, Lara; Carbone, Claudio; Rinaldi, Matteo; Decesari, Stefano; Sandrini, Silvia; Costabile, Francesca; Gobbi, Gian Paolo; Pietrogrande, Maria Chiara; Visentin, Marco; Scotto, Fabiana; Fuzzi, Sandro; Facchini, Maria Cristina

    2016-01-01

    The mechanisms leading to the formation of secondary organic aerosol (SOA) are an important subject of ongoing research for both air quality and climate. Recent laboratory experiments suggest that reactions taking place in the atmospheric liquid phase represent a potentially significant source of SOA mass. Here, we report direct ambient observations of SOA mass formation from processing of biomass-burning emissions in the aqueous phase. Aqueous SOA (aqSOA) formation is observed both in fog water and in wet aerosol. The aqSOA from biomass burning contributes to the “brown” carbon (BrC) budget and exhibits light absorption wavelength dependence close to the upper bound of the values observed in laboratory experiments for fresh and processed biomass-burning emissions. We estimate that the aqSOA from residential wood combustion can account for up to 0.1–0.5 Tg of organic aerosol (OA) per y in Europe, equivalent to 4–20% of the total OA emissions. Our findings highlight the importance of aqSOA from anthropogenic emissions on air quality and climate. PMID:27551086

  14. Direct observation of the two-plasmon-decay common plasma wave using ultraviolet Thomson scattering.

    PubMed

    Follett, R K; Edgell, D H; Henchen, R J; Hu, S X; Katz, J; Michel, D T; Myatt, J F; Shaw, J; Froula, D H

    2015-03-01

    A 263-nm Thomson-scattering beam was used to directly probe two-plasmon-decay (TPD) excited electron plasma waves (EPWs) driven by between two and five 351-nm beams on the OMEGA Laser System. The amplitude of these waves was nearly independent of the number of drive beams at constant overlapped intensity, showing that the observed EPWs are common to the multiple beams. In an experimental configuration where the Thomson-scattering diagnostic was not wave matched to the common TPD EPWs, a broad spectrum of TPD-driven EPWs was observed, indicative of nonlinear effects associated with TPD saturation. Electron plasma waves corresponding to Langmuir decay of TPD EPWs were observed in both Thomson-scattering spectra, suggesting the Langmuir decay instability as a TPD saturation mechanism. Simulated Thomson-scattering spectra from three-dimensional numerical solutions of the extended Zakharov equations of TPD are in excellent agreement with the experimental spectra and verify the presence of the Langmuir decay instability.

  15. A new filter for the Mean Dynamic Topography of the ocean derived directly from satellite observations

    NASA Astrophysics Data System (ADS)

    Freiwald, G.

    2013-12-01

    The Mean Dynamic Topography (MDT) of the ocean provides valuable information about the ocean's surface currents. Therefore the MDT is computed from satellite observations and then assimilated into ocean models in order to improve the ocean circulation estimates. However, the computation of the MDT from satellite observations of sea surface height and the Earth's gravity field is not straightforward and requires additional filtering of the data combination. The choice of the filter is crucial as it determines the amount of small-scale noise in the data and the resolution of the final MDT. There exist various approaches for the determination of an "optimal" filter. However, they all have in common the more or less subjective choice of the filter type and filter width. Here, a new filter is presented that is determined directly from the geodetic normal equations. By its construction, this filter accurately accounts for the correlations within the MDT data and requires no subjective choice about the filter radius. The new filtered MDT is assimilated into an inverse ocean model. Modifications in the meridional overturning circulation and in the poleward heat transports can be observed, compared to the result of the assimilation using the unfiltered MDT.

  16. Direct observation of the growth of gibbsite crystals by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Freij, Sawsan J.; Parkinson, Gordon M.; Reyhani, Manijeh M.

    2004-01-01

    Atomic force microscope (AFM) has been used to investigate the mechanism of gibbsite crystallization on all the morphologically important faces. Growth on single crystal faces has been observed by a series of ex situ experiments, in which the same area was repeatedly located and imaged after growth had occurred in synthetic solution. At the same supersaturation level and temperature, the ex situ experiments have revealed a variety of growth modes: (1) Continuous birth and spread on a flat surface, the nuclei forming as approximately circular features that develop into elongated features, indicating anisotropic growth, followed by restoration of the flatness of the original area after further growth. (2) Step growth followed by rough growth on a surface that contains growth hillocks. (3) Two-dimensional nucleation on a surface that contains a surface defect (tilt boundary). The results are used to establish a clearer picture of the growth mechanism of gibbsite, and the effect of the seed surface structure. On the prismatic faces of gibbsite, steps parallel to the (0 0 1) face and block formation were imaged. Step growth was observed in both the [0 0 1] direction and parallel to the (0 0 1) plane. No nucleation was observed, and no emergent screw dislocations have been resolved.

  17. Direct radiative effect of aerosols based on PARASOL and OMI satellite observations

    NASA Astrophysics Data System (ADS)

    Lacagnina, Carlo; Hasekamp, Otto P.; Torres, Omar

    2017-02-01

    Accurate portrayal of the aerosol characteristics is crucial to determine aerosol contribution to the Earth's radiation budget. We employ novel satellite retrievals to make a new measurement-based estimate of the shortwave direct radiative effect of aerosols (DREA), both over land and ocean. Global satellite measurements of aerosol optical depth, single-scattering albedo (SSA), and phase function from PARASOL (Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar) are used in synergy with OMI (Ozone Monitoring Instrument) SSA. Aerosol information is combined with land-surface bidirectional reflectance distribution function and cloud characteristics from MODIS (Moderate Resolution Imaging Spectroradiometer) satellite products. Eventual gaps in observations are filled with the state-of-the-art global aerosol model ECHAM5-HAM2. It is found that our estimate of DREA is largely insensitive to model choice. Radiative transfer calculations show that DREA at top-of-atmosphere is -4.6 ± 1.5 W/m2 for cloud-free and -2.1 ± 0.7 W/m2 for all-sky conditions, during year 2006. These fluxes are consistent with, albeit generally less negative over ocean than, former assessments. Unlike previous studies, our estimate is constrained by retrievals of global coverage SSA, which may justify different DREA values. Remarkable consistency is found in comparison with DREA based on CERES (Clouds and the Earth's Radiant Energy System) and MODIS observations.

  18. Direct Radiative Effect of Aerosols Based on PARASOL and OMI Satellite Observations

    NASA Technical Reports Server (NTRS)

    Lacagnina, Carlo; Hasekamp, Otto P.; Torres, Omar

    2017-01-01

    Accurate portrayal of the aerosol characteristics is crucial to determine aerosol contribution to the Earth's radiation budget. We employ novel satellite retrievals to make a new measurement-based estimate of the shortwave direct radiative effect of aerosols (DREA), both over land and ocean. Global satellite measurements of aerosol optical depth, single-scattering albedo (SSA), and phase function from PARASOL (Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar) are used in synergy with OMI (Ozone Monitoring Instrument) SSA. Aerosol information is combined with land-surface bidirectional reflectance distribution function and cloud characteristics from MODIS (Moderate Resolution Imaging Spectroradiometer) satellite products. Eventual gaps in observations are filled with the state-of-the-art global aerosol model ECHAM5-HAM2. It is found that our estimate of DREA is largely insensitive to model choice. Radiative transfer calculations show that DREA at top-of-atmosphere is -4.6 +/- 1.5 W/sq m for cloud-free and -2.1 +/- 0.7 W/sq m for all-sky conditions, during year 2006. These fluxes are consistent with, albeit generally less negative over ocean than, former assessments. Unlike previous studies, our estimate is constrained by retrievals of global coverage SSA, which may justify different DREA values. Remarkable consistency is found in comparison with DREA based on CERES (Clouds and the Earth's Radiant Energy System) and MODIS observations.

  19. An observation related to directional attenuation of SKS waves propagating in anisotropic media

    NASA Astrophysics Data System (ADS)

    Zhao, Liang; Xue, Mei

    2015-04-01

    Azimuthal anisotropy of attenuation is a physical phenomenon related to the directional change of attenuation. This study examines the frequency properties and directional attenuation of SKS waves. The directional frequency-dependent characteristics of SKS waves are investigated in the frequency band of 0.02-0.5 Hz using data from 53 permanent seismic stations located throughout the northern Yangtze Craton, the southern North China Craton and adjacent areas. In addition to normal splitting behavior, the analysis reveals that many SKS splitting measurements exhibit a lemniscate shape, reflecting frequency differences along fast and slow polarization directions. Frequency analysis shows that spectral ratios between fast/slow components of the lemniscate-type splitting results fluctuate strongly in a higher frequency band of 0.2-0.5 Hz, and fluctuate less within the main frequency band of 0.02-0.2 Hz. For each station, the ratio of the peak amplitude of the fast/slow components can be represented as a cotangential function of event backazimuth multiplying with a constant = 0.42 ± 0.10. This transformation shows that the regional average angles consistently fall within the relatively narrow range of -46.5 ± 3° with respect to the north, suggesting that a regional tectonic controlling factor dictates the relatively uniform directional attenuation of SKS waves within the frequency band of 0.02-0.2 Hz. Further analysis is performed by projecting the SKS waves onto the components along and perpendicular to the regional average angles. The calculation also shows that, in the 0.02-0.2 Hz band, the relationship between amplitude ratio and event backazimuth matches a cotangential functions with the same best matching angles and constant a < 1. Synthetic calculations demonstrate that although different filters influence the splitting parameters, attenuation anisotropy cannot be explained by elastic anisotropic media, including multilayer anisotropy and anisotropy with a

  20. Social communication with virtual agents: The effects of body and gaze direction on attention and emotional responding in human observers.

    PubMed

    Marschner, Linda; Pannasch, Sebastian; Schulz, Johannes; Graupner, Sven-Thomas

    2015-08-01

    In social communication, the gaze direction of other persons provides important information to perceive and interpret their emotional response. Previous research investigated the influence of gaze by manipulating mutual eye contact. Therefore, gaze and body direction have been changed as a whole, resulting in only congruent gaze and body directions (averted or directed) of another person. Here, we aimed to disentangle these effects by using short animated sequences of virtual agents posing with either direct or averted body or gaze. Attention allocation by means of eye movements, facial muscle response, and emotional experience to agents of different gender and facial expressions were investigated. Eye movement data revealed longer fixation durations, i.e., a stronger allocation of attention, when gaze and body direction were not congruent with each other or when both were directed towards the observer. This suggests that direct interaction as well as incongruous signals increase the demands of attentional resources in the observer. For the facial muscle response, only the reaction of muscle zygomaticus major revealed an effect of body direction, expressed by stronger activity in response to happy expressions for direct compared to averted gaze when the virtual character's body was directed towards the observer. Finally, body direction also influenced the emotional experience ratings towards happy expressions. While earlier findings suggested that mutual eye contact is the main source for increased emotional responding and attentional allocation, the present results indicate that direction of the virtual agent's body and head also plays a minor but significant role.

  1. Direct observation of nucleation in the bulk of an opaque sample

    NASA Astrophysics Data System (ADS)

    Xu, Chaoling; Zhang, Yubin; Godfrey, Andrew; Wu, Guilin; Liu, Wenjun; Tischler, Jonathan Z.; Liu, Qing; Juul Jensen, Dorte

    2017-02-01

    Remarkably little is known about the physical phenomena leading to nucleation of new perfect crystals within deformed metals during annealing, in particular how and where volumes with nearly perfect lattices evolve from structures filled with dislocations, and how local variations at the micrometer length scale affect this nucleation process. We present here the first experimental measurements that relate directly nucleation of recrystallization to the local deformation microstructure in the bulk of a sample of cold rolled aluminum, further deformed locally by a hardness indentation. White beam differential aperture X-ray microscopy is used for the measurements, allowing us to map a selected gauge volume in the bulk of the sample in the deformed state, then anneal the sample and map the exact same gauge volume in the annealed state. It is found that nuclei develop at sites of high stored energy and they have crystallographic orientations from those present in the deformed state. Accordingly we suggest that for each nucleus the embryonic volume arises from a structural element contained within the voxels identified with the same orientation. Possible nucleation mechanisms are discussed and the growth potentials of the nuclei are also analyzed and discussed.

  2. The breakup of large tabular icebergs - direct observations and theoretical considerations

    NASA Astrophysics Data System (ADS)

    Wadhams, P.

    2013-12-01

    Peter Wadhams and Till Wagner Dept. of Applied Mathematics and Theoretical Physics (DAMTP), University of Cambridge. We review the factors governing the stability, dynamics and decay of icebergs and describe areas where current models are inadequate. These include questions such as draft changes in capsizing icebergs; iceberg trajectory modelling; the melt rate of the ice underside and ways of reducing it; and wave-induced flexure and its role in the break-up of tabular icebergs. In July 2012 the authors worked on a very large (42 sq km) tabular iceberg in Baffin Bay, which had calved from the Petermann Glacier in NW Greenland. We measured incoming swell spectrum and the iceberg response; also the role of buoyancy forces due to erosion of a waterline wave cut and the creation of an underwater ram. The iceberg broke up while we were on it, allowing an instrumental measurement of the calving event. The experiments were included in the BBC-2 film 'Operation Iceberg' shown on Nov 1 2012 and repeated on Nov 18. We conclude that two processes interacted in the break-up event: increased bending stress due to buoyancy of underwater rams; and direct flexural strain due to incidence of ocean swell. Implications for icebergs in the open sea are estimated.

  3. Direct observation of nucleation in the bulk of an opaque sample

    PubMed Central

    Xu, Chaoling; Zhang, Yubin; Godfrey, Andrew; Wu, Guilin; Liu, Wenjun; Tischler, Jonathan Z.; Liu, Qing; Juul Jensen, Dorte

    2017-01-01

    Remarkably little is known about the physical phenomena leading to nucleation of new perfect crystals within deformed metals during annealing, in particular how and where volumes with nearly perfect lattices evolve from structures filled with dislocations, and how local variations at the micrometer length scale affect this nucleation process. We present here the first experimental measurements that relate directly nucleation of recrystallization to the local deformation microstructure in the bulk of a sample of cold rolled aluminum, further deformed locally by a hardness indentation. White beam differential aperture X-ray microscopy is used for the measurements, allowing us to map a selected gauge volume in the bulk of the sample in the deformed state, then anneal the sample and map the exact same gauge volume in the annealed state. It is found that nuclei develop at sites of high stored energy and they have crystallographic orientations from those present in the deformed state. Accordingly we suggest that for each nucleus the embryonic volume arises from a structural element contained within the voxels identified with the same orientation. Possible nucleation mechanisms are discussed and the growth potentials of the nuclei are also analyzed and discussed. PMID:28195133

  4. In-Situ Observation of Directional Solidifications of Al-Cu Alloys During Parabolic Flight Campaigns

    NASA Astrophysics Data System (ADS)

    Abou-Khalil, L.; Salloum-Abou-Jaoude, G.; Reinhart, G.; Pickmann, C.; Zimmermann, G.; Houltz, Y.; Li, J.; Janson, O.; Nguyen-Thi, H.

    2015-09-01

    It is well known that the final properties of materials are strongly related to the microstructures formed during growth and to the accompanying segregation, both being very sensitive to the natural hydrodynamic movements in the melt induced by gravity. Therefore, a deeper understanding of gravity effects on the solidification microstructure is of great importance for industrial applications. In the framework of the ESA-MAP project entitled XRMON (in-situ X-Ray MONitoring of advanced metallurgical processes under microgravity and terrestrial conditions), directional solidification experiments with in situ X-ray radiography were carried out during the 60th and 61st ESA — PF campaigns onboard the Airbus A300 operated by Novespace. Parabolic flights offer several successions of periods with normal gravity between two parabolas, and hyper gravity and microgravity during each parabola, which allows the impact of gravity level variations on the solidification microstructures to be investigated. For this purpose, a dedicated apparatus was designed and developed in collaboration with SSC (Swedish Space Corporation). XRMON-PFF (Parabolic Flight Facility) includes a Bridgman furnace dedicated to the solidification of Al-based alloys with an X-ray device that enables in situ characterization. Columnar and/or equiaxed growth of refined and non-refined Al2Owt.%Cu alloys were investigated and X-ray radiography was successfully used to assess the effect of periodic variations of the gravity level on the solidification microstructure formation. Preliminary results confirmed the strong influence of gravity on the solidification microstructure development.

  5. Observation of Intrinsic Magnus Force and Direct Detection of Chirality in Superfluid 3He-A

    NASA Astrophysics Data System (ADS)

    Ikegami, Hiroki; Tsutsumi, Yasumasa; Kono, Kimitoshi

    2015-04-01

    We report details of the observation of the intrinsic Magnus (IM) force acting on negative and positive ions trapped just below a free surface of the A phase of superfluid 3He (3He-A). From the transport measurements of the ions along the surface, we found that the IM force acts on both the negative and positive ions. We also demonstrate that the transport measurements could distinguish whether the surface is composed of a chiral monodomain or multiple chiral domains. For multiple chiral domains, the current of the ions was found to be irreproducible and unstable, which was reasonably explained by the formation of the chiral domain structure and the dynamics of the chiral domain walls. For chiral monodomains, the appearance ratio of chirality emerging upon cooling through the superfluid transition temperature was found to depend on the direction of the external magnetic field, which implies the existence of an unknown coupling between the chirality and the magnetic field.

  6. Patient satisfaction with care at directly observed therapy programs for tuberculosis in New York City.

    PubMed Central

    Davidson, H; Smirnoff, M; Klein, S J; Burdick, E

    1999-01-01

    OBJECTIVES: This study examined patients' satisfaction with New York State's tuberculosis (TB) directly observed therapy (DOT) programs in New York City. METHODS: A survey was conducted of 435 patients at 19 public, private, and community-based TB DOT clinics about their satisfaction with various aspects of the programs. RESULTS: Patients identified the opportunity to receive good medical care as the most important aspect of TB DOT. Also significant was the supportiveness of DOT staff. Receiving incentives to encourage participation was statistically less important. Half of the patients reported being better off with DOT than with self-supervised care. CONCLUSIONS: This study confirms the value of patient-focused care among inner-city TB patients. PMID:10511842

  7. Build a better mouse: directly-observed issues in computer use for adults with SMI.

    PubMed

    Black, Anne C; Serowik, Kristin L; Schensul, Jean J; Bowen, Anne M; Rosen, Marc I

    2013-03-01

    Integrating information technology into healthcare has the potential to bring treatment to hard-to-reach people. Individuals with serious mental illness (SMI), however, may derive limited benefit from these advances in care because of lack of computer ownership and experience. To date, conclusions about the computer skills and attitudes of adults with SMI have been based primarily on self-report. In the current study, 28 psychiatric outpatients with co-occurring cocaine use were interviewed about their computer use and opinions, and 25 were then directly observed using task analysis and think aloud methods as they navigated a multi-component health informational website. Participants reported low rates of computer ownership and use, and negative attitudes towards computers. Self-reported computer skills were higher than demonstrated in the task analysis. However, some participants spontaneously expressed more positive attitudes and greater computer self-efficacy after navigating the website. Implications for increasing access to computer-based health information are discussed.

  8. Direct observations of American eels migrating across the continental shelf to the Sargasso Sea

    PubMed Central

    Béguer-Pon, Mélanie; Castonguay, Martin; Shan, Shiliang; Benchetrit, José; Dodson, Julian J.

    2015-01-01

    Since inferring spawning areas from larval distributions in the Sargasso Sea a century ago, the oceanic migration of adult American eels has remained a mystery. No adult eel has ever been observed migrating in the open ocean or in the spawning area. Here, we track movements of maturing eels equipped with pop-up satellite archival tags from the Scotian Shelf (Canada) into the open ocean, with one individual migrating 2,400 km to the northern limit of the spawning site in the Sargasso Sea. The reconstructed routes suggest a migration in two phases: one over the continental shelf and along its edge in shallow waters; the second in deeper waters straight south towards the spawning area. This study is the first direct evidence of adult Anguilla migrating to the Sargasso Sea and represents an important step forward in the understanding of routes and migratory cues. PMID:26505325

  9. Dislocation-pipe diffusion in nitride superlattices observed in direct atomic resolution

    PubMed Central

    Garbrecht, Magnus; Saha, Bivas; Schroeder, Jeremy L.; Hultman, Lars; Sands, Timothy D.

    2017-01-01

    Device failure from diffusion short circuits in microelectronic components occurs via thermally induced migration of atoms along high-diffusivity paths: dislocations, grain boundaries, and free surfaces. Even well-annealed single-grain metallic films contain dislocation densities of about 1014 m−2; hence dislocation-pipe diffusion (DPD) becomes a major contribution at working temperatures. While its theoretical concept was established already in the 1950s and its contribution is commonly measured using indirect tracer, spectroscopy, or electrical methods, no direct observation of DPD at the atomic level has been reported. We present atomically-resolved electron microscopy images of the onset and progression of diffusion along threading dislocations in sequentially annealed nitride metal/semiconductor superlattices, and show that this type of diffusion can be independent of concentration gradients in the system but governed by the reduction of strain fields in the lattice. PMID:28382949

  10. Direct observation of the gas-phase Criegee intermediate (CH2OO).

    PubMed

    Taatjes, Craig A; Meloni, Giovanni; Selby, Talitha M; Trevitt, Adam J; Osborn, David L; Percival, Carl J; Shallcross, Dudley E

    2008-09-10

    Carbonyl oxide species play a key role in tropospheric oxidation of organic molecules and in low-temperature combustion processes. In the late 1940s, Criegee first postulated the participation of carbonyl oxides, now often called "Criegee intermediates," in ozonolysis of alkenes. However, despite decades of effort, no gas phase Criegee intermediate has before been observed. As a result, knowledge of gas phase carbonyl oxide reactions has heretofore been inferred by indirect means, with derived rate coefficients spanning orders of magnitude. We have directly detected the primary Criegee intermediate, formaldehyde oxide (CH2OO), in the chlorine-initiated gas-phase oxidation of dimethyl sulfoxide (DMSO). This work not only establishes that the Criegee intermediate is formed in DMSO oxidation also but opens the possibility for explicit kinetics studies on this critical atmospheric species.

  11. Direct Observations of the Charge States of Low Energy Solar Particles

    NASA Technical Reports Server (NTRS)

    Gloeckler, G.; Fan, C. Y.; Hovestadt, D.

    1973-01-01

    The charge states of carbon and oxygen of solar origin were measured directly in interplanetary space. At 100 keV per nucleon the C(+5)/C(+6) and O(+7)/O(+8) ratios are 1.8 and 1.6 respectively. It was found that the abundance ratios of low energy heavy nuclei to He is significantly larger than corresponding photospheric values: the enhancement of O/He is 35 and both Si/He and Fe/He are overabundant by a factor of 100. To explain these observations a mechanism is proposed which first preferentially accelerates heavy ions and is followed by either storage of these ions in the coronal regions or strong adiabatic deceleration.

  12. Direct observations of the charge states of low energy solar particles

    NASA Technical Reports Server (NTRS)

    Gloeckler, G.; Fan, C. Y.; Hovestadt, D.

    1974-01-01

    The charge states of carbon and oxygen of solar origin have been measured directly in interplanetary space. At 100 keV per nucleon the C(+5)/C(+6) and O(+7)/O(+8) ratios are 1.8 and 1.6, respectively. Abundance ratios of low energy heavy nuclei to He are found which are significantly larger than the corresponding photospheric values. The enhancement of O/He is 35, and both Si/He and Fe/He are overabundant by a factor of 100. To explain these observations a mechanism is proposed which first preferentially accelerates heavy ions and is followed by either storage of these ions in the coronal regions or strong adiabatic deceleration.

  13. Direct observation of the band structure in bulk hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Henck, Hugo; Pierucci, Debora; Fugallo, Giorgia; Avila, José; Cassabois, Guillaume; Dappe, Yannick J.; Silly, Mathieu G.; Chen, Chaoyu; Gil, Bernard; Gatti, Matteo; Sottile, Francesco; Sirotti, Fausto; Asensio, Maria C.; Ouerghi, Abdelkarim

    2017-02-01

    A promising route towards nanodevice applications relies on the association of graphene and transition metal dichalcogenides with hexagonal boron nitride (h -BN ). Due to its insulating nature, h -BN has emerged as a natural substrate and gate dielectric for graphene-based electronic devices. However, some fundamental properties of bulk h -BN remain obscure. For example, the band structure and the position of the Fermi level have not been experimentally resolved. Here, we report a direct observation of parabolic dispersions of h -BN crystals using high-resolution angle-resolved photoemission spectroscopy (ARPES). We find that h -BN exfoliation on epitaxial graphene enables overcoming the technical difficulties of using ARPES with insulating materials. We show trigonal warping of the intensity maps at constant energy. The valence-band maxima are located around the K points, 2.5 eV below the Fermi level, thus confirming the residual p -type character of typical h -BN .

  14. A novel approach to directly observed therapy for tuberculosis in an HIV-endemic area.

    PubMed Central

    Desvarieux, M; Hyppolite, P R; Johnson, W D; Pape, J W

    2001-01-01

    OBJECTIVES: This study evaluated a novel approach to the delivery of directly observed therapy (DOT) for tuberculosis in Haiti. METHODS: A total of 194 patients (152 HIV seropositive, 42 HIV seronegative) received daily unsupervised triple-drug therapy for 4 to 8 weeks, followed by twice-weekly 2-drug therapy for the remainder of the 6-month period. DOT was deferred until initiation of the twice-weekly phase. RESULTS: A total of 169 of 194 patients (87.1%) completed the 6-month course. The program of deferred DOT had an effectiveness of 85%. Overall cost was reduced by approximately 40%. CONCLUSIONS: Flexible approaches to DOT, integrating behavioral knowledge, cost considerations, and practicality may improve completion rates and program effectiveness. PMID:11189809

  15. Direct observation of motion of single F-actin filaments in the presence of myosin

    NASA Astrophysics Data System (ADS)

    Yanagida, Toshio; Nakase, Michiyuki; Nishiyama, Katsumi; Oosawa, Fumio

    1984-01-01

    Actin is found in almost all kinds of non-muscle cells where it is thought to have an important role in cell motility. A proper understanding of that role will only be possible when reliable in vitro systems are available for investigating the interaction of cellular actin and myosin. A start has been made on several systems1-4, most recently by Sheetz and Spudich who demonstrated unidirectional movement of HMM-coated beads along F-actin cables on arrays of chloroplasts exposed by dissection of a Nitella cell5. As an alternative approach, we report here the direct observation by fluorescence microscopy of the movements of single F-actin filaments interacting with soluble myosin fragments energized by Mg2+-ATP.

  16. Direct observation of half-metallicity in the Heusler compound Co2MnSi.

    PubMed

    Jourdan, M; Minár, J; Braun, J; Kronenberg, A; Chadov, S; Balke, B; Gloskovskii, A; Kolbe, M; Elmers, H J; Schönhense, G; Ebert, H; Felser, C; Kläui, M

    2014-05-30

    Ferromagnetic thin films of Heusler compounds are highly relevant for spintronic applications owing to their predicted half-metallicity, that is, 100% spin polarization at the Fermi energy. However, experimental evidence for this property is scarce. Here we investigate epitaxial thin films of the compound Co2MnSi in situ by ultraviolet-photoemission spectroscopy, taking advantage of a novel multi-channel spin filter. By this surface sensitive method, an exceptionally large spin polarization of (93(-11)(+7)) % at room temperature is observed directly. As a more bulk sensitive method, additional ex situ spin-integrated high energy X-ray photoemission spectroscopy experiments are performed. All experimental results are compared with advanced band structure and photoemission calculations which include surface effects. Excellent agreement is obtained with calculations, which show a highly spin polarized bulk-like surface resonance ingrained in a half metallic bulk band structure.

  17. Direct observation of half-metallicity in the Heusler compound Co2MnSi

    PubMed Central

    Jourdan, M.; Minár, J.; Braun, J.; Kronenberg, A.; Chadov, S.; Balke, B.; Gloskovskii, A.; Kolbe, M.; Elmers, H.J.; Schönhense, G.; Ebert, H.; Felser, C.; Kläui, M.

    2014-01-01

    Ferromagnetic thin films of Heusler compounds are highly relevant for spintronic applications owing to their predicted half-metallicity, that is, 100% spin polarization at the Fermi energy. However, experimental evidence for this property is scarce. Here we investigate epitaxial thin films of the compound Co2MnSi in situ by ultraviolet-photoemission spectroscopy, taking advantage of a novel multi-channel spin filter. By this surface sensitive method, an exceptionally large spin polarization of () % at room temperature is observed directly. As a more bulk sensitive method, additional ex situ spin-integrated high energy X-ray photoemission spectroscopy experiments are performed. All experimental results are compared with advanced band structure and photoemission calculations which include surface effects. Excellent agreement is obtained with calculations, which show a highly spin polarized bulk-like surface resonance ingrained in a half metallic bulk band structure. PMID:24875774

  18. Direct Observation of Morphological Tranformation from Twisted Ribbons into Helical Ribbons

    SciTech Connect

    Pashuck, E.Thomas; Stupp, Samuel I.

    2010-07-01

    We report on the direct observation of a nanostructural transformation from a twisted ribbon to a helical ribbon in supramolecular assemblies of peptide amphiphiles. Using cryogenic electron microscopy, a peptide amphiphile molecule containing aromatic residues was found to first assemble into short twisted ribbons in the time range of seconds, which then elongate in the time scale of minutes, and finally transform into helical ribbons over the course of weeks. By synthesizing an analogous molecule without the aromatic side groups, it was found that a cylindrical nanostructure is formed that does not undergo any transitions during the same time period. The study of metastable states in peptide aggregation can contribute to our understanding of amyloid-related diseases, such as Alzheimer's disease.

  19. Direct observation of the M2 phase with its Mott transition in a VO2 film

    NASA Astrophysics Data System (ADS)

    Kim, Hoon; Slusar, Tetiana V.; Wulferding, Dirk; Yang, Ilkyu; Cho, Jin-Cheol; Lee, Minkyung; Choi, Hee Cheul; Jeong, Yoon Hee; Kim, Hyun-Tak; Kim, Jeehoon

    2016-12-01

    In VO2, the explicit origin of the insulator-to-metal transition is still disputable between Peierls and Mott insulators. Along with the controversy, its second monoclinic (M2) phase has received considerable attention due to the presence of electron correlation in undimerized vanadium ions. However, the origin of the M2 phase is still obscure. Here, we study a granular VO2 film using conductive atomic force microscopy and Raman scattering. Upon the structural transition from monoclinic to rutile, we observe directly an intermediate state showing the coexistence of monoclinic M1 and M2 phases. The conductivity near the grain boundary in this regime is six times larger than that of the grain core, producing a donut-like landscape. Our results reveal an intra-grain percolation process, indicating that VO2 with the M2 phase is a Mott insulator.

  20. Feasibility of spectro-polarimetric characterization of exoplanetary atmospheres with direct observing instruments

    NASA Astrophysics Data System (ADS)

    Takahashi, J.; Matsuo, T.; Itoh, Y.

    2017-02-01

    Context. Spectro-polarimetry of reflected light from exoplanets is anticipated to be a powerful method for probing atmospheric composition and structure. Aims: We aim to evaluate the feasibility of the search for a spectro-polarimetric feature of water vapor using a high-contrast polarimetric instrument on a 30-40 m-class ground-based telescope. Methods: Three types of errors are considered: (a) errors from the difference between efficiencies for two orthogonally polarized states; (b) errors caused by speckle noises; and (c) errors caused by photon noise from scattered starlight. Using the analytically derived error formulas, we estimate the number of planets for which feasible spectro-polarimetric detection of water vapor is possible. Results: Our calculations show that effective spectro-polarimetric searches for water vapor are possible for 5 to 14 known planets. Spectro-polarimetric characterization of exoplanetary atmospheres is feasible with an extremely large telescope and a direct observing spectro-polarimeter.

  1. Direct observations of American eels migrating across the continental shelf to the Sargasso Sea.

    PubMed

    Béguer-Pon, Mélanie; Castonguay, Martin; Shan, Shiliang; Benchetrit, José; Dodson, Julian J

    2015-10-27

    Since inferring spawning areas from larval distributions in the Sargasso Sea a century ago, the oceanic migration of adult American eels has remained a mystery. No adult eel has ever been observed migrating in the open ocean or in the spawning area. Here, we track movements of maturing eels equipped with pop-up satellite archival tags from the Scotian Shelf (Canada) into the open ocean, with one individual migrating 2,400 km to the northern limit of the spawning site in the Sargasso Sea. The reconstructed routes suggest a migration in two phases: one over the continental shelf and along its edge in shallow waters; the second in deeper waters straight south towards the spawning area. This study is the first direct evidence of adult Anguilla migrating to the Sargasso Sea and represents an important step forward in the understanding of routes and migratory cues.

  2. Direct Observation of Sulfur Radicals as Reaction Media in Lithium Sulfur Batteries

    SciTech Connect

    Wang, Qiang; Zheng, Jianming; Walter, Eric; Pan, Huilin; Lv, Dongping; Zuo, Pengjian; Chen, Honghao; Deng, Z. D.; Liaw, Bor Y.; Yu, Xiqian; Yang, Xiao-Qing; Zhang, Ji-Guang; Liu, Jun; Xiao, Jie

    2015-01-09

    Lithium sulfur (Li-S) battery has been regaining tremendous interest in recent years because of its attractive attributes such as high gravimetric energy, low cost and environmental benignity. However, it is still not conclusively known how polysulfide ring/chain participates in the whole cycling and whether the discharge and charge processes follow the same pathway. Herein, we demonstrate the direct observation of sulfur radicals by using in situ electron paramagnetic resonance (EPR) technique. Based on the concentration changes of sulfur radicals at different potentials and the electrochemical characteristics of the cell, it is revealed that the chemical and electrochemical reactions in Li-S cell are driving each other to proceed through sulfur radicals, leading to two completely different reaction pathways during discharge and charge. The proposed radical mechanism may provide new perspectives to investigate the interactions between sulfur species and the electrolyte, inspiring novel strategies to develop Li-S battery technology.

  3. Direct Observation of Sulfur Radicals as Reaction Media in Lithium Sulfur Batteries

    DOE PAGES

    Wang, Qiang; Zheng, Jianming; Walter, Eric; ...

    2015-01-09

    Lithium sulfur (Li-S) battery has been regaining tremendous interest in recent years because of its attractive attributes such as high gravimetric energy, low cost and environmental benignity. However, it is still not conclusively known how polysulfide ring/chain participates in the whole cycling and whether the discharge and charge processes follow the same pathway. Herein, we demonstrate the direct observation of sulfur radicals by using in situ electron paramagnetic resonance (EPR) technique. Based on the concentration changes of sulfur radicals at different potentials and the electrochemical characteristics of the cell, it is revealed that the chemical and electrochemical reactions in Li-Smore » cell are driving each other to proceed through sulfur radicals, leading to two completely different reaction pathways during discharge and charge. The proposed radical mechanism may provide new perspectives to investigate the interactions between sulfur species and the electrolyte, inspiring novel strategies to develop Li-S battery technology.« less

  4. Direct observation of hierarchical nucleation of martensite and size-dependent superelasticity in shape memory alloys.

    PubMed

    Liu, Lifeng; Ding, Xiangdong; Li, Ju; Lookman, Turab; Sun, Jun

    2014-02-21

    Martensitic transformation usually creates hierarchical internal structures beyond mere change of the atomic crystal structure. Multi-stage nucleation is thus required, where nucleation (level-1) of the underlying atomic crystal lattice does not have to be immediately followed by the nucleation of higher-order superstructures (level-2 and above), such as polysynthetic laths. Using in situ transmission electron microscopy (TEM), we directly observe the nucleation of the level-2 superstructure in a Cu-Al-Ni single crystal under compression, with critical super-nuclei size L2c around 500 nm. When the sample size D decreases below L2c, the superelasticity behavior changes from a flat stress plateau to a continuously rising stress-strain curve. Such size dependence definitely would impact the application of shape memory alloys in miniaturized MEMS/NEMS devices.

  5. Direct observation of the layer-dependent electronic structure in phosphorene

    NASA Astrophysics Data System (ADS)

    Li, Likai; Kim, Jonghwan; Jin, Chenhao; Ye, Guo Jun; Qiu, Diana Y.; da Jornada, Felipe H.; Shi, Zhiwen; Chen, Long; Zhang, Zuocheng; Yang, Fangyuan; Watanabe, Kenji; Taniguchi, Takashi; Ren, Wencai; Louie, Steven G.; Chen, Xian Hui; Zhang, Yuanbo; Wang, Feng

    2017-01-01

    Phosphorene, a single atomic layer of black phosphorus, has recently emerged as a new two-dimensional (2D) material that holds promise for electronic and photonic technologies. Here we experimentally demonstrate that the electronic structure of few-layer phosphorene varies significantly with the number of layers, in good agreement with theoretical predictions. The interband optical transitions cover a wide, technologically important spectral range from the visible to the mid-infrared. In addition, we observe strong photoluminescence in few-layer phosphorene at energies that closely match the absorption edge, indicating that they are direct bandgap semiconductors. The strongly layer-dependent electronic structure of phosphorene, in combination with its high electrical mobility, gives it distinct advantages over other 2D materials in electronic and opto-electronic applications.

  6. Direct observation of resistive heating at graphene wrinkles and grain boundaries

    SciTech Connect

    Grosse, Kyle L.; Dorgan, Vincent E.; Estrada, David; Wood, Joshua D.; Vlassiouk, Ivan V; Eres, Gyula; Lyding, Joseph W; King, William P.; Pop, Eric

    2014-01-01

    We directly measure the nanometer-scale temperature rise at wrinkles and grain boundaries (GBs) in functioning graphene devices by scanning Joule expansion microscopy with 50 nm spatial and 0.2K temperature resolution. We observe a small temperature increase at select wrinkles and a large (100 K) temperature increase at GBs between coalesced hexagonal grains. Comparisons of measurements with device simulations estimate the GB resistivity (8 150 X lm) among the lowest reported for graphene grown by chemical vapor deposition. An analytical model is developed, showing that GBs can experience highly localized resistive heating and temperature rise, most likely affecting the reliability of graphene devices. Our studies provide an unprecedented view of thermal effects surrounding nanoscale defects in nanomaterials such as graphene.

  7. Carbon radicals. Direct observation and kinetics of a hydroperoxyalkyl radical (QOOH).

    PubMed

    Savee, John D; Papajak, Ewa; Rotavera, Brandon; Huang, Haifeng; Eskola, Arkke J; Welz, Oliver; Sheps, Leonid; Taatjes, Craig A; Zádor, Judit; Osborn, David L

    2015-02-06

    Oxidation of organic compounds in combustion and in Earth's troposphere is mediated by reactive species formed by the addition of molecular oxygen (O2) to organic radicals. Among the most crucial and elusive of these intermediates are hydroperoxyalkyl radicals, often denoted "QOOH." These species and their reactions with O2 are responsible for the radical chain branching that sustains autoignition and are implicated in tropospheric autoxidation that can form low-volatility, highly oxygenated organic aerosol precursors. We report direct observation and kinetics measurements of a QOOH intermediate in the oxidation of 1,3-cycloheptadiene, a molecule that offers insight into both resonance-stabilized and nonstabilized radical intermediates. The results establish that resonance stabilization dramatically changes QOOH reactivity and, hence, that oxidation of unsaturated organics can produce exceptionally long-lived QOOH intermediates.

  8. Direct Observation of Sulfur Radicals as Reaction Media in lithium Sulfur Batteries

    SciTech Connect

    Wang, Qiang; Zheng, Jianming; Walter, Eric D.; Pan, Huilin; Lu, Dongping; Zuo, Pengjian; Chen, Honghao; Deng, Zhiqun; Liaw, Bor Yann; Yu, Xiqian; Yang, Xiaoning; Zhang, Jiguang; Liu, Jun; Xiao, Jie

    2014-12-09

    Lithium sulfur (Li-S) battery has been regaining tremendous interest in recent years because of its attractive attributes such as high gravimetric energy, low cost and environmental benignity. However, it is still not conclusively known how polysulfide ring/chain participates in the whole cycling and whether the discharge and charge process follow the same pathway. Herein, we demonstrate the direct observation of sulfur radicals by using in situ electron paramagnetic resonance (EPR) technique. Based on the concentration changes of sulfur radicals at different potentials, it is revealed that the chemical and electrochemical reactions in Li-S cell are driven each other to proceed through sulfur radicals, leading to two completely different reaction pathways during discharge and charge. The proposed radical mechanism may provide new insights to investigate the interactions between sulfur species and the electrolyte, inspiring novel strategies to develop Li-S battery technology.

  9. Effects of action observation on corticospinal excitability: Muscle specificity, direction, and timing of the mirror response.

    PubMed

    Naish, Katherine R; Houston-Price, Carmel; Bremner, Andrew J; Holmes, Nicholas P

    2014-11-01

    Many human behaviours and pathologies have been attributed to the putative mirror neuron system, a neural system that is active during both the observation and execution of actions. While there are now a very large number of papers on the mirror neuron system, variations in the methods and analyses employed by researchers mean that the basic characteristics of the mirror response are not clear. This review focuses on three important aspects of the mirror response, as measured by modulations in corticospinal excitability: (1) muscle specificity; (2) direction; and (3) timing of modulation. We focus mainly on electromyographic (EMG) data gathered following single-pulse transcranial magnetic stimulation (TMS), because this method provides precise information regarding these three aspects of the response. Data from paired-pulse TMS paradigms and peripheral nerve stimulation (PNS) are also considered when we discuss the possible mechanisms underlying the mirror response. In this systematic review of the literature, we examine the findings of 85 TMS and PNS studies of the human mirror response, and consider the limitations and advantages of the different methodological approaches these have adopted in relation to discrepancies between their findings. We conclude by proposing a testable model of how action observation modulates corticospinal excitability in humans. Specifically, we propose that action observation elicits an early, non-specific facilitation of corticospinal excitability (at around 90ms from action onset), followed by a later modulation of activity specific to the muscles involved in the observed action (from around 200ms). Testing this model will greatly advance our understanding of the mirror mechanism and provide a more stable grounding on which to base inferences about its role in human behaviour.

  10. Direct single-molecule observation of calcium-dependent misfolding in human neuronal calcium sensor-1

    PubMed Central

    Heidarsson, Pétur O.; Naqvi, Mohsin M.; Otazo, Mariela R.; Mossa, Alessandro; Kragelund, Birthe B.; Cecconi, Ciro

    2014-01-01

    Neurodegenerative disorders are strongly linked to protein misfolding, and crucial to their explication is a detailed understanding of the underlying structural rearrangements and pathways that govern the formation of misfolded states. Here we use single-molecule optical tweezers to monitor misfolding reactions of the human neuronal calcium sensor-1, a multispecific EF-hand protein involved in neurotransmitter release and linked to severe neurological diseases. We directly observed two misfolding trajectories leading to distinct kinetically trapped misfolded conformations. Both trajectories originate from an on-pathway intermediate state and compete with native folding in a calcium-dependent manner. The relative probability of the different trajectories could be affected by modulating the relaxation rate of applied force, demonstrating an unprecedented real-time control over the free-energy landscape of a protein. Constant-force experiments in combination with hidden Markov analysis revealed the free-energy landscape of the misfolding transitions under both physiological and pathological calcium concentrations. Remarkably for a calcium sensor, we found that higher calcium concentrations increased the lifetimes of the misfolded conformations, slowing productive folding to the native state. We propose a rugged, multidimensional energy landscape for neuronal calcium sensor-1 and speculate on a direct link between protein misfolding and calcium dysregulation that could play a role in neurodegeneration. PMID:25157171

  11. Microscopic Observations on the Origin of Defects During Machining of Direct Aged (DA) Inconel 718 Superalloy

    NASA Astrophysics Data System (ADS)

    Dosbaeva, G. K.; Veldhuis, S. C.; Elfizy, A.; Fox-Rabinovich, G.; Wagg, T.

    2010-11-01

    Surface quality of advanced superalloys after machining is one of the major issues in the aerospace industry because it directly affects service characteristics of the machined part. Tool life of cemented carbide inserts with the TiAlN coating during machining of direct aged DA 718 alloys under roughing and finishing conditions has been under study. The defect origin on the surface of the machined part was investigated. Metallographic observations of the DA 718 were made using optical metallography and SEM/EDS. To find out the origins of surface defect formation, the morphology of machined parts and cross sections of the machined surfaces have been investigated. Two major categories of defects were detected on the surface of the machined part: cracks and tears. The origin of the cracks on the machined surface is related to shearing of the primary complex TiC/NbC carbide revealed in a structure of DA 718 alloy. At the same time, Nb-rich regions of the primary complex carbide interact with the environment (oxygen from air) during machining with further formation of low strength oxide layer on the surface, forming tears.

  12. Direct observation of slow intersystem crossing in an aromatic ketone, fluorenone.

    PubMed

    Soep, Benoît; Mestdagh, Jean-Michel; Briant, Marc; Gaveau, Marc-André; Poisson, Lionel

    2016-08-17

    Direct measurements of Single vibronic Level InterSystem Crossing (SLISC) have been performed on the fluorenone molecule in the gas phase, by time resolved photoelectron and photoion spectroscopy. Vibronic transitions above the S1 nπ* origin were excited in the 432-420 nm region and the decay of S1 and growth of T1(3)ππ* could be observed within a 10 ns time domain. The ionization potential is measured as 8.33 ± 0.04 eV. The energy of the first excited triplet state of fluorenone, T1 has been characterized directly at 18 640 ± 250 cm(-1). The internal conversion of S1 to S0 is found to amount to ∼15% of the population decay, thus ISC is the dominant electronic relaxation process. ISC, although favored by the S1(1)nπ*-T1(3)ππ* coupling scheme, is 3 orders of magnitude less efficient than in the similar molecule benzophenone. Thus, the planarity of the fluorenone molecule disfavors the exploration of the configuration space where surface crossings would create high ISC probability, which occurs in benzophenone through surface crossings. The time evolution of S1 fluorenone is well accounted for by the statistical decay of individual levels into a quasi-continuum of T1 vibronic levels.

  13. Direct Observation of α-Synuclein Amyloid Aggregates in Endocytic Vesicles of Neuroblastoma Cells

    PubMed Central

    Subramaniam, Vinod; Canters, Gerard W.; Schmidt, Thomas; Aartsma, Thijs J.

    2016-01-01

    Aggregation of α-synuclein has been linked to both familial and sporadic Parkinson’s disease. Recent studies suggest that α-synuclein aggregates may spread from cell to cell and raise questions about the propagation of neurodegeneration. While continuous progress has been made characterizing α-synuclein aggregates in vitro, there is a lack of information regarding the structure of these species inside the cells. Here, we use confocal fluorescence microscopy in combination with direct stochastic optical reconstruction microscopy, dSTORM, to investigate α-synuclein uptake when added exogenously to SH-SY5Y neuroblastoma cells, and to probe in situ morphological features of α-synuclein aggregates with near nanometer resolution. We demonstrate that using dSTORM, it is possible to follow noninvasively the uptake of extracellularly added α-synuclein aggregates by the cells. Once the aggregates are internalized, they move through the endosomal pathway and accumulate in lysosomes to be degraded. Our dSTORM data show that α-synuclein aggregates remain assembled after internalization and they are shortened as they move through the endosomal pathway. No further aggregation was observed inside the lysosomes as speculated in the literature, nor in the cytoplasm of the cells. Our study thus highlights the super-resolution capability of dSTORM to follow directly the endocytotic uptake of extracellularly added amyloid aggregates and to probe the morphology of in situ protein aggregates even when they accumulate in small vesicular compartments. PMID:27105068

  14. Direct observation of interfacial Au atoms on TiO₂ in three dimensions.

    PubMed

    Gao, Wenpei; Sivaramakrishnan, Shankar; Wen, Jianguo; Zuo, Jian-Min

    2015-04-08

    Interfacial atoms, which result from interactions between the metal nanoparticles and support, have a large impact on the physical and chemical properties of nanoparticles. However, they are difficult to observe; the lack of knowledge has been a major obstacle toward unraveling their role in chemical transformations. Here we report conclusive evidence of interfacial Au atoms formed on the rutile (TiO2) (110) surfaces by activation using high-temperature (∼500 °C) annealing in air. Three-dimensional imaging was performed using depth-sectioning enabled by aberration-corrected scanning transmission electron microscopy. Results show that the interface between Au nanocrystals and TiO2 (110) surfaces consists of a single atomic layer with Au atoms embedded inside Ti-O. The number of interfacial Au atoms is estimated from ∼1-8 in an interfacial atomic column. Direct impact of interfacial Au atoms is observed on an enhanced Au-TiO2 interaction and the reduction of surface TiO2; both are critical to Au catalysis.

  15. Direct observation of atomic-level nucleation and growth processes from an ultrathin metallic glass films

    NASA Astrophysics Data System (ADS)

    Huang, K. Q.; Cao, C. R.; Sun, Y. T.; Li, J.; Bai, H. Y.; Gu, L.; Zheng, D. N.; Wang, W. H.

    2016-01-01

    Till date, there have been no direct atomic-level experimental observations of the earliest stages of the nucleation and growth processes of nanocrystals formed by thermally induced crystallization in ultrathin metallic glasses (MGs). Here, we present a study of the crystallization process in atomically thin and highly stable MG films using double spherical aberration-corrected scanning transmission electron microscopy (Cs-TEM). Taking advantage of the stability of MG films with a slow crystallization process and the atomic-level high resolution of Cs-TEM, we observe the formation of the nucleus precursor of nanocrystals formed by atom aggregation followed by concomitant coalescence and stepwise evolution of the shape of the nanocrystals with a monodispersed and separated bimodal size distribution. Molecular dynamics simulation of the atomic motion in the glass film on a rigid amorphous substrate confirms the stepwise evolution processes of atom aggregation, cluster formation, cluster movement on the substrate, and cluster coalescence into larger crystalline particles. Our results might provide a better fundamental understanding of the nucleation and growth processes of nanocrystals in thin MG films.

  16. Direct observation of microcontact behaviours in pattern-generation step of reverse offset printing

    NASA Astrophysics Data System (ADS)

    Kusaka, Yasuyuki; Kanazawa, Shusuke; Yamamoto, Noritaka; Ushijima, Hirobumi

    2017-01-01

    In this study, we investigate the static and dynamic aspects of the nip formed during roll-to-sheet-type reverse offset printing. First, we show that several modes of roof collapses (bottom contact defects) could be formed depending on the poly(dimethylsiloxane) (PDMS) blanket thickness and pattern size. We regulate the manifestation of the defect modes driven by the local pile-up of the incompressible PDMS, as modelled by the contact mechanics formulation, together with a complementary numerical simulation. In dynamics, we first differentiate between the static nip and dynamic nip during printing, where the width is extended by the kinetically controlled adhesion of the blanket PDMS. Further, we observe that depending on the pattern structure, there was spatial deviation of the microscopic contact and subsequent separation behaviours of the cliché from a macroscopically recognizable nip, and consequently, local detachment rates were heterogeneous in the pattern-generation process of the reverse offset printing, even with a constant machine speed. In addition, we found that the parts of a pattern where the ink transfer fails in a high-speed patterning condition corresponded to the region of the locally enhanced detachment rates found during direct observation.

  17. Direct observation of atomic-level nucleation and growth processes from an ultrathin metallic glass films

    SciTech Connect

    Huang, K. Q.; Cao, C. R.; Sun, Y. T.; Li, J.; Bai, H. Y.; Zheng, D. N. E-mail: dzheng@iphy.ac.cn Wang, W. H. E-mail: dzheng@iphy.ac.cn; Gu, L. E-mail: dzheng@iphy.ac.cn

    2016-01-07

    Till date, there have been no direct atomic-level experimental observations of the earliest stages of the nucleation and growth processes of nanocrystals formed by thermally induced crystallization in ultrathin metallic glasses (MGs). Here, we present a study of the crystallization process in atomically thin and highly stable MG films using double spherical aberration-corrected scanning transmission electron microscopy (Cs-TEM). Taking advantage of the stability of MG films with a slow crystallization process and the atomic-level high resolution of Cs-TEM, we observe the formation of the nucleus precursor of nanocrystals formed by atom aggregation followed by concomitant coalescence and stepwise evolution of the shape of the nanocrystals with a monodispersed and separated bimodal size distribution. Molecular dynamics simulation of the atomic motion in the glass film on a rigid amorphous substrate confirms the stepwise evolution processes of atom aggregation, cluster formation, cluster movement on the substrate, and cluster coalescence into larger crystalline particles. Our results might provide a better fundamental understanding of the nucleation and growth processes of nanocrystals in thin MG films.

  18. Direct observations of the Antarctic Slope Current transport at 113°E

    NASA Astrophysics Data System (ADS)

    Peña-Molino, B.; McCartney, M. S.; Rintoul, S. R.

    2016-10-01

    The Antarctic Slope Current (ASC), defined here as the region of westward flow along the continental slope off Antarctica, forms the southern limb of the subpolar gyres. It regulates the exchange of water across the shelf break and provides a path for interbasin westward transport. Despite its significance, the ASC remains largely unobserved around most of the Antarctic continent. Here we present direct velocity observations from a 17 month current meter moored array deployed across the continental slope between the 1000 and the 4200 m isobaths, in the southeastern Indian Ocean near 113°E. The observed time-mean flow consists of a surface-intensified jet associated with the Antarctic Slope Front (ASF) and a broader bottom-intensified westward flow that extends out to approximately the 4000 m isobath and is strongest along the upper slope. The time-mean transport of the ASC is -29.2 Sv. Fluctuations in the transport are large, typically exceeding the mean by a factor of 2. They are mainly due to changes in the northward extent of the current over the lower slope. However, seasonal changes in the wind also drive variations in the transport of the ASF and the flow in the upper slope. Both mean and variability are largely barotropic, thus invisible to traditional geostrophic methods.

  19. Direct observation of small cluster mobility and ripening. [during annealing of metal films on amorphous substrates

    NASA Technical Reports Server (NTRS)

    Heinemann, K.; Poppa, H.

    1975-01-01

    Direct evidence is reported for the simultaneous occurrence of Ostwald ripening and short-distance cluster mobility during annealing of discontinuous metal films on clean amorphous substrates. The annealing characteristics of very thin particulate deposits of silver on amorphized clean surfaces of single crystalline thin graphite substrates were studied by in-situ transmission electron microscopy (TEM) under controlled environmental conditions (residual gas pressure of 10 to the minus 9th power torr) in the temperature range from 25 to 450 C. Sputter cleaning of the substrate surface, metal deposition, and annealing were monitored by TEM observation. Pseudostereographic presentation of micrographs in different annealing stages, the observation of the annealing behavior at cast shadow edges, and measurements with an electronic image analyzing system were employed to aid the visual perception and the analysis of changes in deposit structure recorded during annealing. Slow Ostwald ripening was found to occur in the entire temperature range, but the overriding surface transport mechanism was short-distance cluster mobility.

  20. Direct Observation of Controlled Melting and Resolidification of Succinonitrile Mixtures in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Grugel, R. N.; Anilkumar, A. V.; Lee, C. P.

    2004-01-01

    In support of the Pore Formation and Mobility Investigation (PFMI) direct observation of experiments on the controlled melting and subsequent resolidification of succinonitrile were conducted in the glovebox facility (GBX) of the International Space Station (ISS). Samples were prepared on ground by filling glass tubes, 1 cm ID and approximately 30 cm in length, with pure succinonitrile (SCN) and SCN-Water mixtures under 450 millibar of nitrogen. Experimental processing parameters of temperature gradient and translation speed, as well as camera settings, were remotely monitored and manipulated from the ground Telescience Center (TSC) at the Marshall Space Flight Center. Sample temperatures are monitored by six in situ thermocouples. Real time visualization during melt back revealed bubbles of different sizes initiating at the solid/liquid interface, their release, interactions, and movement into the temperature field ahead of them. Subsequent re-solidification examined planar interface breakdown and the transition to steady-state dendritic growth. A preliminary analysis of the observed phenomena and its implication to future microgravity experiments is presented and discussed.

  1. On the Contextual Independence of Personality: Teachers’ Assessments Predict Directly Observed Behavior after Four Decades

    PubMed Central

    Nave, Christopher S.; Sherman, Ryne A.; Funder, David C.; Hampson, Sarah E.; Goldberg, Lewis R.

    2010-01-01

    The continuity of personality’s association with directly observed behavior is demonstrated across two contexts spanning four decades. During the 1960s, elementary school teachers rated personalities of members of the ethnically diverse Hawaii Personality and Health Cohort (Hampson & Goldberg, 2006). The same individuals were interviewed in a medical clinic over 40 years later. Trained coders viewed video recordings of a subset of these interviews (N = 144, 68 F, 76 M) and assessed the behavior they observed using the Riverside Behavioral Q-sort Version 3.0 (Funder, Furr & Colvin, 2000; Furr, Wagerman & Funder, 2010). Children rated by their teachers as “verbally fluent” (defined as unrestrained talkativeness) showed dominant and socially adept behavior as middle-aged adults. Early “adaptability” was associated with cheerful and intellectually curious behavior, early “impulsivity” was associated with later talkativeness and loud speech, and early rated tendencies to “self-minimize” were related to adult expressions of insecurity and humility. PMID:20890402

  2. Direct observations of evolving subglacial drainage beneath the Greenland Ice Sheet.

    PubMed

    Andrews, Lauren C; Catania, Ginny A; Hoffman, Matthew J; Gulley, Jason D; Lüthi, Martin P; Ryser, Claudia; Hawley, Robert L; Neumann, Thomas A

    2014-10-02

    Seasonal acceleration of the Greenland Ice Sheet is influenced by the dynamic response of the subglacial hydrologic system to variability in meltwater delivery to the bed via crevasses and moulins (vertical conduits connecting supraglacial water to the bed of the ice sheet). As the melt season progresses, the subglacial hydrologic system drains supraglacial meltwater more efficiently, decreasing basal water pressure and moderating the ice velocity response to surface melting. However, limited direct observations of subglacial water pressure mean that the spatiotemporal evolution of the subglacial hydrologic system remains poorly understood. Here we show that ice velocity is well correlated with moulin hydraulic head but is out of phase with that of nearby (0.3-2 kilometres away) boreholes, indicating that moulins connect to an efficient, channelized component of the subglacial hydrologic system, which exerts the primary control on diurnal and multi-day changes in ice velocity. Our simultaneous measurements of moulin and borehole hydraulic head and ice velocity in the Paakitsoq region of western Greenland show that decreasing trends in ice velocity during the latter part of the melt season cannot be explained by changes in the ability of moulin-connected channels to convey supraglacial melt. Instead, these observations suggest that decreasing late-season ice velocity may be caused by changes in connectivity in unchannelized regions of the subglacial hydrologic system. Understanding this spatiotemporal variability in subglacial pressures is increasingly important because melt-season dynamics affect ice velocity beyond the conclusion of the melt season.

  3. Direct observation of minimum-sized amyloid fibrils using solution NMR spectroscopy

    PubMed Central

    Yoshimura, Yuichi; Sakurai, Kazumasa; Lee, Young-Ho; Ikegami, Takahisa; Chatani, Eri; Naiki, Hironobu; Goto, Yuji

    2010-01-01

    It is challenging to investigate the structure and dynamics of amyloid fibrils at the residue and atomic resolution because of their high molecular weight and heterogeneous properties. Here, we used solution nuclear magnetic resonance (NMR) spectroscopy to characterize the conformation and flexibility of amyloid fibrils of β2-microglobulin (β2m), for which direct observation of solution NMR could not be made. Ultrasonication led to fragmentation producing a solution of minimum-sized fibrils with a molecular weight of around 6 MDa. In 1H-15N heteronuclear single-quantum correlation measurements, five signals, derived from N-terminal residues (i.e., Ile1, Gln2, Arg3, Thr4, and Lys6), were newly detected. Signal strength decreased with the distance from the N-terminal end. Capping experiments with the unlabeled β2m monomer indicated that the signals originated from molecules located inside the fibrils. Ultrasonication makes the residues with moderate flexibility observable by reducing size of the fibrils. Thus, solution NMR measurements of ultrasonicated fibrils will be promising for studying the structure and dynamics of fibrils. PMID:20936689

  4. Direct Microscopic And Microholographic Observations Of The Solidification Of Particles From Rapidly Stirred Melts

    NASA Astrophysics Data System (ADS)

    Smeulders, R. J.; Mischgofsky, F. H.; Frankena, H. J.

    1983-06-01

    A microscopic set-up to observe fast moving solidifying particles during stir casting is described. The set-up consists of a Ruby laser and a frequency doubled Nd3+:YAG laser, a model device of an actual stir casting apparatus filled with a transparent organic alloy, melting at a low temperature and three different recording systems. Using a neopentyl alcohol alloy as a model substance for metal alloys, the crystallization process is studied by direct observation. Pulses from both lasers are used to provide a sufficiently short exposure time to take (simultaneously) holograms, microphotographs and videorecordings of the fast moving (flow rates up to 10 ms-1) small particles with sizes in the order of 10-103 μm. Primarily solidified particles appear to have equiaxed dendritic shapes. The longest diameter of these particles attain a maximum for low stirring rates and high cooling rates. After a period of stirring, some of the dendrite tips grow and transform the particle shapes into more spherical ones. At this stage the morphology of the solidified particles shows a good similarity with stir casted metal alloys.

  5. Incorporating a disturbance observer with direct velocity feedback for control of human-induced vibrations

    NASA Astrophysics Data System (ADS)

    Nyawako, Donald; Reynolds, Paul; Hudson, Emma

    2016-04-01

    Feedback control strategies are desirable for disturbance rejection of human-induced vibrations in civil engineering structures as human walking forces cannot easily be measured. In relation to human-induced vibration control studies, most past researches have focused on floors and footbridges and the widely used linear controller implemented in the trials has been the direct velocity feedback (DVF) scheme. With appropriate compensation to enhance its robustness, it has been shown to be effective at damping out the problematic modes of vibration of the structures in which the active vibration control systems have been implemented. The work presented here introduces a disturbance observer (DOB) that is used with an outer-loop DVF controller. Results of analytical studies presented in this work based on the dynamic properties of a walkway bridge structure demonstrate the potential of this approach for enhancing the vibration mitigation performance offered by a purely DVF controller. For example, estimates of controlled frequency response functions indicate improved attenuation of vibration around the dominant frequency of the walkway bridge structure as well as at higher resonant frequencies. Controlled responses from three synthesized walking excitation forces on a walkway bridge structure model show that the inclusion of the disturbance observer with an outer loop DVF has potential to improve on the vibration mitigation performance by about 3.5% at resonance and 6-10% off-resonance. These are realised with hard constraints being imposed on the low frequency actuator displacements.

  6. Direct observations of basin-wide acidification of the North Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Byrne, Robert H.; Mecking, Sabine; Feely, Richard A.; Liu, Xuewu

    2010-01-01

    Global ocean acidification is a prominent, inexorable change associated with rising levels of atmospheric CO2. Here we present the first basin-wide direct observations of recently declining pH, along with estimates of anthropogenic and non-anthropogenic contributions to that signal. Along 152°W in the North Pacific Ocean (22-56°N), pH changes between 1991 and 2006 were essentially zero below about 800 m depth. However, in the upper 500 m, significant pH changes, as large as -0.06, were observed. Anthropogenic and non-anthropogenic contributions over the upper 800 m are estimated to be of similar magnitude. In the surface mixed layer (depths to ˜100 m), the extent of pH change is consistent with that expected under conditions of seawater/atmosphere equilibration, with an average rate of change of -0.0017/yr. Future mixed layer changes can be expected to closely mirror changes in atmospheric CO2, with surface seawater pH continuing to fall as atmospheric CO2 rises.

  7. Influence of Observed Diurnal Cycles of Aerosol Optical Depth on Aerosol Direct Radiative Effect

    NASA Technical Reports Server (NTRS)

    Arola, A.; Eck, T. F.; Huttunen, J.; Lehtinen, K. E. J.; Lindfors, A. V.; Myhre, G.; Smirinov, A.; Tripathi, S. N.; Yu, H.

    2013-01-01

    The diurnal variability of aerosol optical depth (AOD) can be significant, depending on location and dominant aerosol type. However, these diurnal cycles have rarely been taken into account in measurement-based estimates of aerosol direct radiative forcing (ADRF) or aerosol direct radiative effect (ADRE). The objective of our study was to estimate the influence of diurnal aerosol variability at the top of the atmosphere ADRE estimates. By including all the possible AERONET sites, we wanted to assess the influence on global ADRE estimates. While focusing also in more detail on some selected sites of strongest impact, our goal was to also see the possible impact regionally.We calculated ADRE with different assumptions about the daily AOD variability: taking the observed daily AOD cycle into account and assuming diurnally constant AOD. Moreover, we estimated the corresponding differences in ADREs, if the single AOD value for the daily mean was taken from the the Moderate Resolution Imaging Spectroradiometer (MODIS) Terra or Aqua overpass times, instead of accounting for the true observed daily variability. The mean impact of diurnal AOD variability on 24 h ADRE estimates, averaged over all AERONET sites, was rather small and it was relatively small even for the cases when AOD was chosen to correspond to the Terra or Aqua overpass time. This was true on average over all AERONET sites, while clearly there can be much stronger impact in individual sites. Examples of some selected sites demonstrated that the strongest observed AOD variability (the strongest morning afternoon contrast) does not typically result in a significant impact on 24 h ADRE. In those cases, the morning and afternoon AOD patterns are opposite and thus the impact on 24 h ADRE, when integrated over all solar zenith angles, is reduced. The most significant effect on daily ADRE was induced by AOD cycles with either maximum or minimum AOD close to local noon. In these cases, the impact on 24 h ADRE was

  8. An instrument for direct observations of seismic and normal-mode rotational oscillations of the Earth.

    PubMed

    Cowsik, R

    2007-04-24

    The rotations around the vertical axis associated with the normal mode oscillations of the Earth and those induced by the seismic and other disturbances have been very difficult to observe directly. Such observations will provide additional information for 3D modeling of the Earth and for understanding earthquakes and other underground explosions. In this paper, we describe the design of an instrument capable of measuring the rotational motions associated with the seismic oscillations of the Earth, including the lowest frequency normal mode at nu approximately 3.7 x 10(-4) Hz. The instrument consists of a torsion balance with a natural frequency of nu(0) approximately 1.6 x 10(-4) Hz, which is observed by an autocollimating optical lever of high angular resolution and dynamic range. Thermal noise limits the sensitivity of the apparatus to amplitudes of approximately 1.5 x 10(-9) rad at the lowest frequency normal mode and the sensitivity improves as nu(-3/2) with increasing frequency. Further improvements in sensitivity by about two orders of magnitude may be achieved by operating the balance at cryogenic temperatures. Alternatively, the instrument can be made more robust with a reduced sensitivity by increasing nu(0) to approximately 10(-2) Hz. This instrument thus complements the ongoing effort by Igel and others to study rotational motions using ring laser gyroscopes and constitutes a positive response to the clarion call for developments in rotation seismology by Igel, Lee, and Todorovska [H. Igel, W.H.K. Lee and M.I. Todorovska, AGU Fall Meeting 2006, Rotational Seismology Sessions: S22A,S23B, Inauguration of the International Working Group on Rotational Seismology (IWGoRS)].

  9. Direct observations of active school transportation and stroller use in kindergarten children.

    PubMed

    Rothman, Linda; Macpherson, Alison K; Howard, Andrew; Parkin, Patricia C; Richmond, Sarah A; Birken, Catherine S

    2016-12-01

    Little is known about kindergarten students' active school transportation (AST) and stroller/wagon use as sedentary travel devices. The primary objective of this cross-sectional study was to determine the prevalence of kindergarten children arriving to school by active and sedentary modes, including strollers, in Toronto elementary schools and compare to students in kindergarten to grade 6 (K-6). The secondary objective was to examine factors associated with AST in kindergarten and K-6 students. School travel mode was counted using direct observations at elementary schools in the City of Toronto in 2015. Two samples were observed: 1) Kindergarten sample: a random sample of schools with separate kindergarten entrances (n = 26 schools, 1069 children); 2) Kindergarten to grade 6 sample: observations were conducted at arrival locations at 50% of eligible elementary schools for students of all ages (n = 88 schools, 17,224 children). Proportions arriving by different travel modes were compared using Chi-square analysis. Negative binomial regression was conducted to examine the association between school characteristics and AST. AST was lower in the kindergarten compared to the K-6 sample (60% versus 74%, χ(2) = 91.37, p < 0.001). The predominant sedentary mode for kindergarten students was by vehicle (38%), with < 2% using strollers/wagons. Recent immigrant status was related to higher AST in kindergarten students; higher social disadvantage, crossing guards, school population and collision rates were related to higher AST in the K-6 sample. Factors influencing AST in young students require further investigation to influence the development of healthy active lifestyles at an early age.

  10. Video Allows Young Scientists New Ways to Be Seen

    ERIC Educational Resources Information Center

    Park, John C.

    2009-01-01

    Science is frequently a visual endeavor, dependent on direct or indirect observations. Teachers have long employed motion pictures in the science classroom to allow students to make indirect observations, but the capabilities of digital video offer opportunities to engage students in active science learning. Not only can watching a digital video…

  11. Measuring Learning Styles with Questionnaires versus Direct Observation of Preferential Choice Behavior in Authentic Learning Situations: The Visualizer/Verbalizer Behavior Observation Scale (VV-BOS).

    ERIC Educational Resources Information Center

    Leutner, Detlev; Plass, Jan L.

    1998-01-01

    Describes the development of the VV-BOS (Visualizer/Verbalizer Behavior Observation Scale), a computer-based instrument for direct observation of students' preferences for visual or verbal learning material. Results of a study with second-language learners indicated a high degree of reliability as an alternative to conventional questionnaires.…

  12. Direct observation of microcavitation in underwater adhesion of mushroom-shaped adhesive microstructure

    PubMed Central

    Kovalev, Alexander E; Gorb, Stanislav N

    2014-01-01

    Summary In this work we report on experiments aimed at testing the cavitation hypothesis [Varenberg, M.; Gorb, S. J. R. Soc., Interface 2008, 5, 383–385] proposed to explain the strong underwater adhesion of mushroom-shaped adhesive microstructures (MSAMSs). For this purpose, we measured the pull-off forces of individual MSAMSs by detaching them from a glass substrate under different wetting conditions and simultaneously video recording the detachment behavior at very high temporal resolution (54,000–100,000 fps). Although microcavitation was observed during the detachment of individual MSAMSs, which was a consequence of water inclusions present at the glass–MSAMS contact interface subjected to negative pressure (tension), the pull-off forces were consistently lower, around 50%, of those measured under ambient conditions. This result supports the assumption that the recently observed strong underwater adhesion of MSAMS is due to an air layer between individual MSAMSs [Kizilkan, E.; Heepe, L.; Gorb, S. N. Underwater adhesion of mushroom-shaped adhesive microstructure: An air-entrapment effect. In Biological and biomimetic adhesives: Challenges and opportunities; Santos, R.; Aldred, N.; Gorb, S. N.; Flammang, P., Eds.; The Royal Society of Chemistry: Cambridge, U.K., 2013; pp 65–71] rather than by cavitation. These results obtained due to the high-speed visualisation of the contact behavior at nanoscale-confined interfaces allow for a microscopic understanding of the underwater adhesion of MSAMSs and may aid in further development of artificial adhesive microstructures for applications in predominantly liquid environments. PMID:24991528

  13. Establishing the Feasibility of Direct Observation in the Assessment of Tics in Children with Chronic Tic Disorders

    PubMed Central

    Himle, Michael B; Chang, Susanna; Woods, Douglas W; Pearlman, Amanda; Buzzella, Brian; Bunaciu, Liviu; Piacentini, John C

    2006-01-01

    Behavior analysis has been at the forefront in establishing effective treatments for children and adults with chronic tic disorders. As is customary in behavior analysis, the efficacy of these treatments has been established using direct-observation assessment methods. Although behavior-analytic treatments have enjoyed acceptance and integration into mainstream health care practices for tic disorders (e.g., psychiatry and neurology), the use of direct observation as a primary assessment tool has been neglected in favor of less objective methods. Hesitation to use direct observation appears to stem largely from concerns about the generalizability of clinic observations to other settings (e.g., home) and a lack of consensus regarding the most appropriate and feasible techniques for conducting and scoring direct observation. The purpose of the current study was to evaluate and establish a reliable, valid, and feasible direct-observation protocol capable of being transported to research and clinical settings. A total of 43 children with tic disorders, collected from two outpatient specialty clinics, were assessed using direct (videotape samples) and indirect (Yale Global Tic Severity Scale; YGTSS) methods. Videotaped observation samples were collected across 3 consecutive weeks and two different settings (clinic and home), were scored using both exact frequency counts and partial-interval coding, and were compared to data from a common indirect measure of tic severity (the YGTSS). In addition, various lengths of videotaped segments were scored to determine the optimal observation length. Results show that (a) clinic-based observations correspond well to home-based observations, (b) brief direct-observation segments scored with time-sampling methods reliably quantified tics, and (c) indirect methods did not consistently correspond with the direct methods. PMID:17236340

  14. Direct observation of millisecond to second motions in proteins by dipolar CODEX NMR spectroscopy.

    PubMed

    Krushelnitsky, Alexey; deAzevedo, Eduardo; Linser, Rasmus; Reif, Bernd; Saalwächter, Kay; Reichert, Detlef

    2009-09-02

    We present a site-resolved study of slow (ms to s) motions in a protein in the solid (microcrystalline) state performed with the use of a modified version of the centerband-only detection of exchange (CODEX) NMR experiment. CODEX was originally based on measuring changes in molecular orientation by means of the chemical shift anisotropy (CSA) tensor, and in our modification, angular reorientations of internuclear vectors are observed. The experiment was applied to the study of slow (15)N-(1)H motions of the SH3 domain of chicken alpha-spectrin. The protein was perdeuterated with partial back-exchange of protons at labile sites. This allowed indirect (proton) detection of (15)N nuclei and thus a significant enhancement of sensitivity. The diluted proton system also made negligible proton-driven spin diffusion between (15)N nuclei, which interferes with the molecular exchange (motion) and hampers the acquisition of dynamic parameters. The experiment has shown that approximately half of the peaks in the 2D (15)N-(1)H correlation spectrum exhibit exchange in a different extent. The correlation time of the slow motion for most peaks is 1 to 3 s. This is the first NMR study of the internal dynamics of proteins in the solid state on the millisecond to second time scale with site-specific spectral resolution that provides both time-scale and geometry information about molecular motions.

  15. Melt electrospinning of poly(ε-caprolactone) scaffolds: phenomenological observations associated with collection and direct writing.

    PubMed

    Brown, Toby D; Edin, Fredrik; Detta, Nicola; Skelton, Anthony D; Hutmacher, Dietmar W; Dalton, Paul D

    2014-12-01

    Melt electrospinning and its additive manufacturing analogue, melt electrospinning writing (MEW), are two processes which can produce porous materials for applications where solvent toxicity and accumulation in solution electrospinning are problematic. This study explores the melt electrospinning of poly(ε-caprolactone) (PCL) scaffolds, specifically for applications in tissue engineering. The research described here aims to inform researchers interested in melt electrospinning about technical aspects of the process. This includes rapid fiber characterization using glass microscope slides, allowing influential processing parameters on fiber morphology to be assessed, as well as observed fiber collection phenomena on different collector substrates. The distribution and alignment of melt electrospun PCL fibers can be controlled to a certain degree using patterned collectors to create large numbers of scaffolds with shaped macroporous architectures. However, the buildup of residual charge in the collected fibers limits the achievable thickness of the porous template through such scaffolds. One challenge identified for MEW is the ability to control charge buildup so that fibers can be placed accurately in close proximity, and in many centimeter heights. The scale and size of scaffolds produced using MEW, however, indicate that this emerging process will fill a technological niche in biofabrication.

  16. Constraining nova observables: Direct measurements of resonance strengths in 33S(p,γ)34Cl

    NASA Astrophysics Data System (ADS)

    Fallis, J.; Parikh, A.; Bertone, P. F.; Bishop, S.; Buchmann, L.; Chen, A. A.; Christian, G.; Clark, J. A.; D'Auria, J. M.; Davids, B.; Deibel, C. M.; Fulton, B. R.; Greife, U.; Guo, B.; Hager, U.; Herlitzius, C.; Hutcheon, D. A.; José, J.; Laird, A. M.; Li, E. T.; Li, Z. H.; Lian, G.; Liu, W. P.; Martin, L.; Nelson, K.; Ottewell, D.; Parker, P. D.; Reeve, S.; Rojas, A.; Ruiz, C.; Setoodehnia, K.; Sjue, S.; Vockenhuber, C.; Wang, Y. B.; Wrede, C.

    2013-10-01

    The 33S(p,γ)34Cl reaction is important for constraining predictions of certain isotopic abundances in oxygen-neon novae. Models currently predict as much as 150 times the solar abundance of 33S in oxygen-neon nova ejecta. This overproduction factor may vary by orders of magnitude due to uncertainties in the 33S(p,γ)34Cl reaction rate at nova peak temperatures. Depending on this rate, 33S could potentially be used as a diagnostic tool for classifying certain types of presolar grains. Better knowledge of the 33S(p,γ)34Cl rate would also aid in interpreting nova observations over the S-Ca mass region and contribute to the firm establishment of the maximum endpoint of nova nucleosynthesis. Additionally, the total S elemental abundance which is affected by this reaction has been proposed as a thermometer to study the peak temperatures of novae. Previously, the 33S(p,γ)34Cl reaction rate had only been studied directly down to resonance energies of 432 keV. However, for nova peak temperatures of 0.2-0.4 GK there are seven known states in 34Cl both below the 432-keV resonance and within the Gamow window that could play a dominant role. Direct measurements of the resonance strengths of these states were performed using the DRAGON (Detector of Recoils And Gammas of Nuclear reactions) recoil separator at TRIUMF. Additionally two new states within this energy region are reported. Several hydrodynamic simulations have been performed, using all available experimental information for the 33S(p,γ)34Cl rate, to explore the impact of the remaining uncertainty in this rate on nucleosynthesis in nova explosions. These calculations give a range of ≈20-150 for the expected 33S overproduction factor, and a range of ≈100-450 for the 32S/33S ratio expected in ONe novae.

  17. Evaluation of Physical Activity Counseling in Primary Care Using Direct Observation of the 5As

    PubMed Central

    Carroll, Jennifer K.; Antognoli, Elizabeth; Flocke, Susan A.

    2011-01-01

    BACKGROUND The 5As (ask, advise, assess, assist, arrange) are recommended as a strategy for brief physical activity counseling in primary care. There is no reference standard for measurement, however, and patient participation is not well understood. This study’s objectives were to (1) develop a coding scheme to measure the 5As using audio-recordings of primary care visits and (2) describe the degree to which patients and physicians accomplish the 5As. METHODS We developed a coding scheme using previously published definitions of the 5As, direct-observation measures, and evaluation of audio-recorded discussions of physical activity. We applied the coding scheme to 361 audio-recorded visits by patients reporting low levels of physical activity and 28 physicians in northeast Ohio. RESULTS The coding scheme achieved good inter-rater agreement for each of the 5As (κ = 0.62–1.0). A total of 135 visits included discussion of physical activity. Although ask tasks occurred in 91% of visits, it infrequently elicited sufficient detail about current activity. Patient readiness to change physical activity (assess) was infrequently directly elicited by the physician (24%), but readiness was commonly expressed by the patient in response to an assessment of current level of physical activity (53%). Ambivalence was infrequently followed by physician assistance (49%). CONCLUSIONS Our newly developed measure showed that (1) physicians infrequently assess patient readiness to change, (2) patient expressions of ambivalence are common, and (3) specific mention of recommended guidelines for exercise is nearly absent. Future work should increase clinician skills in exploring ambivalence and readiness to change, as well as improve explicit mention of recommended guidelines for physical activity. PMID:21911760

  18. Experimental observation of oscillatory cellular patterns in three-dimensional directional solidification

    NASA Astrophysics Data System (ADS)

    Pereda, J.; Mota, F. L.; Chen, L.; Billia, B.; Tourret, D.; Song, Y.; Debierre, J.-M.; Guérin, R.; Karma, A.; Trivedi, R.; Bergeon, N.

    2017-01-01

    We present a detailed analysis of oscillatory modes during three-dimensional cellular growth in a diffusive transport regime. We ground our analysis primarily on in situ observations of directional solidification experiments of a transparent succinonitrile 0.24 wt % camphor alloy performed in microgravity conditions onboard the International Space Station. This study completes our previous reports [Bergeon et al., Phys. Rev. Lett. 110, 226102 (2013), 10.1103/PhysRevLett.110.226102; Tourret et al., Phys. Rev. E 92, 042401 (2015), 10.1103/PhysRevE.92.042401] from an experimental perspective, and results are supported by additional phase-field simulations. We analyze the influence of growth parameters, crystal orientation, and sample history on promoting oscillations, and on their spatiotemporal characteristics. Cellular patterns display a remarkably uniform oscillation period throughout the entire array, despite a high array disorder and a wide distribution of primary spacing. Oscillation inhibition may be associated to crystalline disorientation, which stems from polygonization and is manifested as pattern drifting. We determine a drifting velocity threshold above which oscillations are inhibited, thereby demonstrating that inhibition is due to cell drifting and not directly to disorientation, and also explaining the suppression of oscillations when the pulling velocity history favors drifting. Furthermore, we show that the array disorder prevents long-range coherence of oscillations, but not short-range coherence in localized ordered regions. For regions of a few cells exhibiting hexagonal (square) ordering, three (two) subarrays oscillate with a phase shift of approximately ±120∘ (180∘), with square ordering occurring preferentially near subgrain boundaries.

  19. CAN-DOO: The Climate Action Network through Direct Observations and Outreach

    NASA Astrophysics Data System (ADS)

    Taubman, B.; Sherman, J. P.; Perry, L. B.; Markham, J.; Kelly, G.

    2011-12-01

    The urgency of climate change demands a greater understanding of our climate system, not only by the leaders of today, but by the scientists, policy makers, and citizens of tomorrow. Unfortunately, a large segment of the population currently possesses inadequate knowledge of climate science. In direct response to a need for greater scientific literacy with respect to climate science, researchers from Appalachian State University's Appalachian Atmospheric Interdisciplinary Research (AppalAIR) group, with support from NASA, have developed CAN-DOO: the Climate Action Network through Direct Observations and Outreach. CAN-DOO addresses climate science literacy by 1) Developing the infrastructure for sustaining and expanding public outreach through long-term climate measurements capable of complementing existing NASA measurements, 2) Enhancing public awareness of climate science and NASA's role in advancing our understanding of the Earth System, and 3) Introducing Science, Technology, Engineering, and Mathematics principles to homeschooled, public school, and Appalachian State University students through applied climate science activities. Project partners include the Grandfather Mountain Stewardship Foundation, Pisgah Astronomical Research Institute, and local elementary schools. In partnership with Grandfather Mountain, climate science awareness is promoted through citizen science activities, interactive public displays, and staff training. CAN-DOO engages students by involving them in the entire scientific investigative process as applied to climate science. We introduce local elementary and middle school students, homeschooled students throughout North Carolina, and undergraduate students in a new Global Climate Change course and select other courses at Appalachian State University to instrument assembly, measurement techniques, data collection, hypothesis testing, and drawing conclusions. Results are placed in the proper context via comparisons with other student

  20. Direct Observation (DO) for Drug-Resistant Tuberculosis: Do We Really DO?

    PubMed Central

    Benbaba, Stella; Isaakidis, Petros; Das, Mrinalini; Jadhav, Sonakshi; Reid, Tony; Furin, Jennifer

    2015-01-01

    Introduction Directly-observed therapy (DOT) is recommended for drug-resistant tuberculosis (DR-TB) patients during their entire treatment duration. However, there is limited published evidence on implementation of direct observation (DO) in the field. This study aims to detail whether DO was followed with DR-TB patients in a Médecins Sans Frontières (MSF) tuberculosis program in Mumbai, India. Methods This was a cross-sectional, mixed-methods study. Existing qualitative data from a purposively-selected subset of 12 patients, 5 DOT-providers and 5 family members, were assessed in order to determine how DO was implemented. A questionnaire-based survey of DR-TB patients, their DOT-providers and MSF staff was completed between June and August 2014. Patients were defined as”following Strict DO” and “following DO” if a DOT-provider had seen the patient swallow his/her medications “every day” or “most of the days” respectively. If DO was not followed, reasons were also recorded. The qualitative data were analysed for theme and content and used to supplement the questionnaire-based data. Results A total of 70 DR-TB patients, 65 DOT-providers and 21 MSF health staff were included. Fifty-five per cent of the patients were HIV-co-infected and 41% had multidrug-resistant-TB plus additional resistance to a fluoroquinolone. Among all patients, only 14% (10/70) and 20% (14/70) self-reported “following Strict DO” and “following DO” respectively. Among DOT-providers, 46% (30/65) reported that their patients “followed DO”. MSF health staff reported none of the patients “followed DO”. Reasons for not implementing DO included the unavailability of DOT-provider, time spent, stigma and treatment adverse events. The qualitative data also revealed that “Strict DO” was rarely followed and noted the same reasons for lack of implementation. Conclusion This mixed-methods study has found that a majority of patients with DR-TB in Mumbai did not follow DO

  1. The influence of program acceptability on the effectiveness of public health policy: a study of directly observed therapy for tuberculosis.

    PubMed Central

    Heymann, S J; Sell, R; Brewer, T F

    1998-01-01

    OBJECTIVES: This study examined how patient acceptability influences the effectiveness of directly observed therapy for tuberculosis. METHODS: Decision and sensitivity analyses were used in assessing influences. RESULTS: If mandatory directly observed therapy discourages 6% of initial tuberculosis patients (range: 4% to 10%) from seeking care, then such therapy will be less effective than self-administered therapy. Directly observed therapy is more effective than repeated self-administered therapy for patients failing to complete initial treatment unless 32% (range: 27% to 38%) of patients avoid seeking care. CONCLUSIONS: Patient acceptability must be taken into consideration before selecting public health strategies. PMID:9518978

  2. Processing Doppler Lidar and Cloud Radar Observations for Analysis of Convective Mass Flux Parameterizations Using DYNAMO Direct Observations

    DTIC Science & Technology

    2014-09-30

    provide a local moistening of the troposphere above the cloudy boundary layer, or if the moistening is due to a larger-scale mechanism for moisture...hence play a role in the moistening of the upper troposphere . APPROACH Our approach is to anlyze HRDL observations obtained during DYNAMO in

  3. Direct radiative effects of aerosols over South Asia from observations and modeling

    NASA Astrophysics Data System (ADS)

    Nair, Vijayakumar S.; Babu, S. Suresh; Manoj, M. R.; Moorthy, K. Krishna; Chin, Mian

    2016-10-01

    Quantitative assessment of the seasonal variations in the direct radiative effect (DRE) of composite aerosols as well as the constituent species over the Indian sub continent has been carried out using a synergy of observations from a dense network of ground based aerosol observatories and modeling based on chemical transport model simulations. Seasonal variation of aerosol constituents depict significant influence of anthropogenic aerosol sources in winter and the dominance of natural sources in spring, even though the aerosol optical depth doesn't change significantly between these two seasons. A significant increase in the surface cooling and atmospheric warming has been observed as season changes from winter (DRESUR = -28 ± 12 W m-2 and DREATM = +19.6 ± 9 W m-2) to spring (DRESUR = -33.7 ± 12 W m-2 and DREATM = +27 ± 9 W m-2). Interestingly, springtime aerosols are more absorptive in nature compared to winter and consequently the aerosol induced diabatic heating of the atmosphere goes as high as 1 K day-1 during spring, especially over eastern India. The atmospheric DRE due to dust aerosols (+14 ± 7 W m-2) during spring overwhelms that of black carbon DRE (+11.8 ± 6 W m-2) during winter. The DRE at the top of the atmosphere is mostly governed by the anthropogenic aerosols during all the seasons. The columnar aerosol loading, its anthropogenic fraction and radiative effects shows a steady increase with latitude across Indian mainland leading to a larger aerosol-induced atmospheric warming during spring than in winter.

  4. Quantifying Aerosol Direct Effects from Broadband Irradiance and Spectral Aerosol Optical Depth Observations

    SciTech Connect

    Creekmore, Torreon N.; Joseph, Everette; Long, Charles N.; Li, Siwei

    2014-05-16

    We outline a methodology using broadband and spectral irradiances to quantify aerosol direct effects on the surface diffuse shortwave (SW) irradiance. Best Estimate Flux data span a 13 year timeframe at the Department of Energy Atmospheric Radiation Measurement Program’s Southern Great Plains (SGP) site. Screened clear-sky irradiances and aerosol optical depth (AOD), for solar zenith angles ≤ 65°, are used to estimate clear-sky diffuse irradiances. We validate against detected clear-sky observations from SGP’s Basic Radiation System (BRS). BRS diffuse irradiances were in accordance with estimates, producing a root-mean-square error and mean bias errors of 4.0 W/m2 and -1.4 W/m2, respectively. Absolute differences show 99% of estimates within ±10 W/m2 (10%) of the mean BRS observations. Clear-sky diffuse estimates are used to derive quantitative estimates of aerosol radiative effects, represented as the aerosol diffuse irradiance (ADI). ADI is the contribution of diffuse SW to global SW, attributable to scattering of atmospheric transmission by natural plus anthropogenic aerosols. Estimated slope for the ADI as a function of AOD indicates an increase of ~22 W/m2 in diffuse SW for every 0.1 increase in AOD. Such significant increases in the diffuse fraction could possibly increase photosynthesis. Annual mean ADI is 28.2 W/m2, and heavy aerosol loading at SGP provides up to a maximum increase of 120 W/m2 in diffuse SW over background conditions. With regard to seasonal variation, the mean diffuse forcings are 17.2, 33.3, 39.0, and 23.6 W/m2 for winter, spring, summer, and fall, respectively.

  5. Direct observations of formation and propagation of subpolar eddies into the Subtropical North Atlantic

    NASA Astrophysics Data System (ADS)

    Bower, Amy S.; Hendry, Ross M.; Amrhein, Daniel E.; Lilly, Jonathan M.

    2013-01-01

    Subsurface float and moored observations are presented to show for the first time the formation and propagation of anticyclonic submesoscale coherent vortices that transport relatively cold, fresh subpolar water to the interior subtropical North Atlantic. Acoustically tracked RAFOS floats released in the southward-flowing Western Boundary Current at the exit of the Labrador Sea reveal the formation of three of these eddies at the southern tip of the Grand Banks (42°N, 50°W). Using a recently developed method to detect eddies in float trajectories and estimate their kinematic properties, it was found that the eddies had average rotation periods of 5-7 day at radii of 10-25 km, with mean rotation speeds of up to 0.3 m s-1. One especially long-lived (5.1 months) eddy crossed under the Gulf Stream path and translated southwestward in the subtropical recirculation to at least 35°N, where it hit one of the Corner Rise Seamounts. Velocity, temperature and salinity measurements from a nine-month deployment of two moorings south of the Gulf Stream at 38°N, 50°W reveal the passage of at least two eddies with similar hydrographic and kinematic properties. The core temperature and salinity properties of the eddies imply their formation at intermediate levels of the Labrador Current south of the Tail of the Grand Banks. These observations confirm earlier speculation that eddies form in this region and transport anomalously cold, low-salinity water directly into the subtropical interior. Possible formation mechanisms and potential importance of these eddies to interior ventilation and the equatorward spreading of Labrador Sea Water are discussed.

  6. Directly observed treatment, short-course strategy and multidrug-resistant tuberculosis: are any modifications required?

    PubMed Central

    Bastian, I.; Rigouts, L.; Van Deun, A.; Portaels, F.

    2000-01-01

    Multidrug-resistant tuberculosis (MDRTB) should be defined as tuberculosis with resistance to at least isoniazid and rifampicin because these drugs are the cornerstone of short-course chemotherapy, and combined isoniazid and rifampicin resistance requires prolonged treatment with second-line agents. Short-course chemotherapy is a key ingredient in the tuberculosis control strategy known as directly observed treatment, short-course (DOTS). For populations in which multidrug-resistant tuberculosis is endemic, the outcome of the standard short-course chemotherapy regimen remains uncertain. Unacceptable failure rates have been reported and resistance to additional agents may be induced. As a consequence there have been calls for well-functioning DOTS programmes to provide additional services in areas with high rates of multidrug-resistant tuberculosis. These "DOTS-plus for MDRTB programmes" may need to modify all five elements of the DOTS strategy: the treatment may need to be individualized rather than standardized; laboratory services may need to provide facilities for on-site culture and antibiotic susceptibility testing; reliable supplies of a wide range of expensive second-line agents would have to be supplied; operational studies would be required to determine the indications for and format of the expanded programmes; financial and technical support from international organizations and Western governments would be needed in addition to that obtained from local governments. PMID:10743297

  7. Direct observation of crystal growth from solution using optical investigation of a growing crystal face

    NASA Technical Reports Server (NTRS)

    Lal, Ravindra

    1994-01-01

    The first technical report for the period 1 Jan. 1993 till 31 Dec. 1993 for the research entitled, 'Direct observation of crystal growth from solution using Optical Investigation of a growing crystal Face' is presented. The work on the project did not start till 1 June 1993 due to the non-availability of the required personnel. The progress of the work during the period 1 June 1993 till the end of 1993 is described. Significant progress was made for testing various optical diagnostic techniques for monitoring crystal solution. Some of the techniques that are being tested are: heterodyne detection technique, in which changes in phase are measured as a interferometric function of time/crystal growth; a conventional technique, in which a fringe brightness is measured as a function of crystal growth/time; and a Mach-Zehnder interferometric technique in which a fringe brightness is measured as a function of time to obtain information on concentration changes. During the second year it will be decided to incorporate the best interferometric technique along with the ellipsometric technique, to obtain real time in-situ growth rate measurements. A laboratory mock-up of the first two techniques were made and tested.

  8. Direct observation of solid-state reversed transformation from crystals to quasicrystals in a Mg alloy.

    PubMed

    Liu, Jian-Fang; Yang, Zhi-Qing; Ye, Heng-Qiang

    2015-06-12

    Phase transformation of quasicrystals is of interest in various fields of science and technology. Interestingly, we directly observed unexpected solid-state epitaxial nucleation and growth of Zn6Mg3Y icosahedral quasicrystals in a Mg alloy at about 573 K which is about 300 K below the melting point of Zn6Mg3Y, in contrast to formation of quasicrystals through solidification that was usually found in many alloys. Maximizing local packing density of atoms associated with segregation of Y and Zn in Mg adjacent to Mg/Zn3MgY interfaces triggered atomic rearrangement in Mg to form icosahedra coupled epitaxially with surface distorted icosahedra of Zn3MgY, which plays a critical role in the nucleation of icosahedral clusters. A local Zn:Mg:Y ratio close to 6:3:1, corresponding to a valence electron concentration of about 2.15, should have been reached to trigger the formation of quasicrystals at Mg/Zn3MgY interfaces. The solid-state icosahedral ordering in crystals opens a new window for growing quasicrystals and understanding their atomic origin mechanisms. Epitaxial growth of quasicrystals onto crystals can modify the surface/interface structures and properties of crystalline materials.

  9. Direct observation of solid-state reversed transformation from crystals to quasicrystals in a Mg alloy

    PubMed Central

    Liu, Jian-Fang; Yang, Zhi-Qing; Ye, Heng-Qiang

    2015-01-01

    Phase transformation of quasicrystals is of interest in various fields of science and technology. Interestingly, we directly observed unexpected solid-state epitaxial nucleation and growth of Zn 6 Mg 3 Y icosahedral quasicrystals in a Mg alloy at about 573 K which is about 300 K below the melting point of Zn 6 Mg 3 Y, in contrast to formation of quasicrystals through solidification that was usually found in many alloys. Maximizing local packing density of atoms associated with segregation of Y and Zn in Mg adjacent to Mg/Zn 3 MgY interfaces triggered atomic rearrangement in Mg to form icosahedra coupled epitaxially with surface distorted icosahedra of Zn 3 MgY, which plays a critical role in the nucleation of icosahedral clusters. A local Zn:Mg:Y ratio close to 6:3:1, corresponding to a valence electron concentration of about 2.15, should have been reached to trigger the formation of quasicrystals at Mg/Zn 3 MgY interfaces. The solid-state icosahedral ordering in crystals opens a new window for growing quasicrystals and understanding their atomic origin mechanisms. Epitaxial growth of quasicrystals onto crystals can modify the surface/interface structures and properties of crystalline materials. PMID:26066096

  10. Direct observations of ice seasonality reveal changes in climate over the past 320–570 years

    PubMed Central

    Sharma, Sapna; Magnuson, John J.; Batt, Ryan D.; Winslow, Luke A.; Korhonen, Johanna; Aono, Yasuyuki

    2016-01-01

    Lake and river ice seasonality (dates of ice freeze and breakup) responds sensitively to climatic change and variability. We analyzed climate-related changes using direct human observations of ice freeze dates (1443–2014) for Lake Suwa, Japan, and of ice breakup dates (1693–2013) for Torne River, Finland. We found a rich array of changes in ice seasonality of two inland waters from geographically distant regions: namely a shift towards later ice formation for Suwa and earlier spring melt for Torne, increasing frequencies of years with warm extremes, changing inter-annual variability, waning of dominant inter-decadal quasi-periodic dynamics, and stronger correlations of ice seasonality with atmospheric CO2 concentration and air temperature after the start of the Industrial Revolution. Although local factors, including human population growth, land use change, and water management influence Suwa and Torne, the general patterns of ice seasonality are similar for both systems, suggesting that global processes including climate change and variability are driving the long-term changes in ice seasonality. PMID:27113125

  11. Direct observations of ice seasonality reveal changes in climate over the past 320–570 years

    NASA Astrophysics Data System (ADS)

    Sharma, Sapna; Magnuson, John J.; Batt, Ryan D.; Winslow, Luke A.; Korhonen, Johanna; Aono, Yasuyuki

    2016-04-01

    Lake and river ice seasonality (dates of ice freeze and breakup) responds sensitively to climatic change and variability. We analyzed climate-related changes using direct human observations of ice freeze dates (1443–2014) for Lake Suwa, Japan, and of ice breakup dates (1693–2013) for Torne River, Finland. We found a rich array of changes in ice seasonality of two inland waters from geographically distant regions: namely a shift towards later ice formation for Suwa and earlier spring melt for Torne, increasing frequencies of years with warm extremes, changing inter-annual variability, waning of dominant inter-decadal quasi-periodic dynamics, and stronger correlations of ice seasonality with atmospheric CO2 concentration and air temperature after the start of the Industrial Revolution. Although local factors, including human population growth, land use change, and water management influence Suwa and Torne, the general patterns of ice seasonality are similar for both systems, suggesting that global processes including climate change and variability are driving the long-term changes in ice seasonality.

  12. Direct Observation of Folding Energy Landscape of RNA Hairpin at Mechanical Loading Rates.

    PubMed

    Xu, Huizhong; Plaut, Benjamin; Zhu, Xiran; Chen, Maverick; Mavinkurve, Udit; Maiti, Anindita; Song, Guangtao; Murari, Krishna; Mandal, Maumita

    2017-03-16

    By applying a controlled mechanical load using optical tweezers, we measured the diffusive barrier crossing in a 49 nt long P5ab RNA hairpin. We find that in the free-energy landscape the barrier height (G(‡)) and transition distance (x(‡)) are dependent on the loading rate (r) along the pulling direction, x, as predicted by Bell. The barrier shifted toward the initial state, whereas ΔG(‡) reduced significantly from 50 to 5 kT, as r increased from 0 to 32 pN/s. However, the equilibrium work (ΔG) during strand separation, as estimated by Crook's fluctuation theorem, remained unchanged at different rates. Previously, helix formation and denaturation have been described as two-state (F ↔ U) transitions for P5ab. Herein, we report three intermediate states I1, I, and I2 located at 4, 11, and 16 nm respectively, from the folded conformation. The intermediates were observed only when the hairpin was subjected to an optimal r, 7.6 pN/s. The results indicate that the complementary strands in P5ab can zip and unzip through complex routes, whereby mismatches act as checkpoints and often impose barriers. The study highlights the significance of loading rates in force-spectroscopy experiments that are increasingly being used to measure the folding properties of biomolecules.

  13. Direct Observation of an Oxepin from a Bacterial Cytochrome P450-Catalyzed Oxidation.

    PubMed

    Stok, Jeanette E; Chow, Sharon; Krenske, Elizabeth H; Farfan Soto, Clementina; Matyas, Csongor; Poirier, Raymond A; Williams, Craig M; De Voss, James J

    2016-03-18

    The cytochromes P450 are hemoproteins that catalyze a range of oxidative C-H functionalization reactions, including aliphatic and aromatic hydroxylation. These transformations are important in a range of biological contexts, including biosynthesis and xenobiotic biodegradation. Much work has been carried out on the mechanism of aliphatic hydroxylation, implicating hydrogen atom abstraction, but aromatic hydroxylation is postulated to proceed differently. One mechanism invokes as the key intermediate an arene oxide (and/or its oxepin tautomer). Conclusive isolation of this intermediate has remained elusive and, currently, direct formation of phenols from a Meisenheimer intermediate is believed to be favored. We report here the identification of a P450 [P450cam (CYP101A1) and P450cin (CYP176A1)]-generated arene oxide as a product of in vitro oxidation of tert-butylbenzene. Computations (CBS-QB3) predict that the arene oxide and oxepin have similar stabilities to other arene oxides/oxepins implicated (but not detected) in P450-mediated transformations, suggesting that arene oxides can be unstable terminal products of P450-catalyzed aromatic oxidation that can explain the origin of some observed metabolites.

  14. Direct Observation of Spin- and Charge-Density Waves in a Luttinger Liquid

    NASA Astrophysics Data System (ADS)

    Cao, Chenglin; Marcum, Andrew; Mawardi Ismail, Arif; Fonta, Francisco; O'Hara, Kenneth

    2016-05-01

    At low energy, interacting fermions in one dimension (e.g. electrons in quantum wires or fermionic atoms in 1D waveguides) should behave as Luttinger liquids. In stark contrast to Fermi liquids, the low-energy elementary excitations in Luttinger liquids are collective sound-like modes that propagate independently as spin-density and/or charge-density (i.e. particle-density) waves with generally unequal, and interaction-dependent, velocities. Here we aim to unambiguously confirm this hallmark feature of the Luttinger liquid - the phenomenon of spin-charge separation - by directly observing in real space the dynamics of spin-density and ``charge''-density waves excited in an ultracold gas of spin-1/2 fermions confined in an array of 1D optical waveguides. Starting from a two-component mixture of 6 Li atoms harmonically confined along each of the 1D waveguides, we excite low lying normal modes of the trapped system - namely the spin dipole and density dipole and quadrupole modes - and measure their frequency as a function of interaction strength. Luttinger liquid theory predicts that the spin dipole frequency is strongly dependent on interaction strength whereas the density dipole and quadrupole mode frequencies are relatively insensitive. We will also discuss extending our approach to exciting localized spin density and particle density wavepackets which should propagate at different velocities. Supported by AFOSR and NSF.

  15. Surveillance or support: The experience of direct observation during tuberculosis treatment.

    PubMed

    Bojorquez, Ietza; Salazar, Irais; Garfein, Richard S; Cerecer, Paris; Rodwell, Timothy C

    2016-10-16

    Directly observed therapy (DOT) is a cornerstone of tuberculosis (TB) control. DOT has been criticised as paternalistic, but it has also been argued that the interaction with healthcare workers (HWs) can be a source of support for patients. We explored the experience of patients in antituberculosis treatment, with the aim of understanding the balance between surveillance and support from the recipient's point of view. We interviewed 27 patients in Tijuana, Mexico, employing narrative analysis to understand how participants made sense of their illness and their experience of DOT. We found a core narrative of biographic disruption and self-reconstruction, in which HWs helped participants to attribute a less negative meaning to TB. Interviewees accepted DOT's as necessary for other people to avoid treatment abandonment, but felt that in their case it was unnecessary. Only a few felt that DOT represented mistrust on the part of the HWs. We conclude that DOT can be a source of support when it is enacted in a patient-centred way. We discuss whether participants' lack of criticism of DOT is a case of adaptive preference, in the context of a power differential between patient and health system.

  16. Marking of specific sequences in double-stranded DNA molecules—SNP detection and direct observation

    PubMed Central

    Shigemori, Yasushi; Haruta, Hirotaka; Okada, Takao; Oishi, Michio

    2004-01-01

    In this study, we describe a simple method to mark specific sequences in double-stranded DNA molecules. For the marking, we used two specifically designed oligonucleotides, one of which is complementary to the sequence to be marked and the other, serving as a splint, to make the marking stable and detectable by subsequent various analytical means. In the presence of the two deoxyoligonucleotides, whereas RecA protein-mediated reaction converts the sequence to be marked to a regional triple-stranded structure with the complementary (probing) oligonucleotide, DNA ligase transforms it to a stable multi- (possibly quintuple) stranded structure with the splint oligonucleotide. The whole marking process is simple and completed in a single reaction mixture. Because RecA protein makes the marking to proceed with high fidelity, we were able to mark (detect) SNPs in complex genomes like human's. Furthermore, the structure of the marked sequence is stable and quite distinct enough to be readily detectable by biochemical means or direct observation by scanning probe microscopy. PMID:15574826

  17. Directly observing the motion of DNA molecules near solid-state nanopores.

    PubMed

    Ando, Genki; Hyun, Changbae; Li, Jiali; Mitsui, Toshiyuki

    2012-11-27

    We investigate the diffusion and the drift motion of λ DNA molecules near solid-state nanopores prior to their translocation through the nanopores using fluorescence microscopy. The radial dependence of the electric field near a nanopore generated by an applied voltage in ionic solution can be estimated quantitatively in 3D by analyzing the motion of negatively charged DNA molecules. We find that the electric field is approximately spherically symmetric around the nanopore under the conditions investigated. In addition, DNA clogging at the nanopore was directly observed. Surprisingly, the probability of the clogging event increases with increasing external bias voltage. We also find that DNA molecules clogging the nanopore reduce the electric field amplitude at the nanopore membrane surface. To better understand these experimental results, analytical method with Ohm's law and computer simulation with Poisson and Nernst-Planck (PNP) equations are used to calculate the electric field near the nanopore. These results are of great interest in both experimental and theoretical considerations of the motion of DNA molecules near voltage-biased nanopores. These findings will also contribute to the development of solid-state nanopore-based DNA sensing devices.

  18. Direct observations of ice seasonality reveal changes in climate over the past 320–570 years

    USGS Publications Warehouse

    Sharma, Sapna; Magnuson, John J.; Batt, Ryan D; Winslow, Luke; Korhonen, Johanna; Yasuyuki Aono,

    2016-01-01

    Lake and river ice seasonality (dates of ice freeze and breakup) responds sensitively to climatic change and variability. We analyzed climate-related changes using direct human observations of ice freeze dates (1443–2014) for Lake Suwa, Japan, and of ice breakup dates (1693–2013) for Torne River, Finland. We found a rich array of changes in ice seasonality of two inland waters from geographically distant regions: namely a shift towards later ice formation for Suwa and earlier spring melt for Torne, increasing frequencies of years with warm extremes, changing inter-annual variability, waning of dominant inter-decadal quasi-periodic dynamics, and stronger correlations of ice seasonality with atmospheric CO2 concentration and air temperature after the start of the Industrial Revolution. Although local factors, including human population growth, land use change, and water management influence Suwa and Torne, the general patterns of ice seasonality are similar for both systems, suggesting that global processes including climate change and variability are driving the long-term changes in ice seasonality.

  19. Patients’ Experience of Tuberculosis Treatment Using Directly Observed Treatment, Short-Course (DOTS): A Qualitative Study

    PubMed Central

    Behzadifar, Masoud; Mirzaei, Masoud; Behzadifar, Meysam; Keshavarzi, Abouzar; Behzadifar, Maryam; Saran, Maryam

    2015-01-01

    Background: Despite effective diagnosis and treatment, prevalence of tuberculosis (TB) is still growing. The directly observed treatment, short-course (DOTS) strategy to treat TB was introduced by the World Health Organization more than a decade ago. Little is known about patients’ experience of TB treatment, according to DOTS, in Iran. Objectives: This study aimed to understand the patients’ experience of tuberculosis treatment according to DOTS in Iran. Patients and Methods: This study is a qualitative study, using content analysis to examine patients’ experience of TB treatment and to understand their compliance during DOTS. In this study, a semi-structured interview with open questions was answered by 40 patients, who had a diagnosis of pulmonary and extrapulmonary tuberculosis, and improved during the course of their treatment. The method of sampling was purposive sample and the interview process lasted until data saturation. Results: Data analysis resulted in the extraction of six themes, which reflect the experiences of the study participants. The themes are: 1) individual factors; 2) change of the attitudes and beliefs of patients on TB treatment; 3) support terms of patients with tuberculosis; 4) the role of health care professionals; 5) social factors and 6) the financial burden. Conclusions: Successful completion of TB treatment requires an effective partnership between the patient and health care professionals, and a harmony between the cultural context, attitude of the patient, family support and health literacy. Future health policies should address these issues to improve patients’ adherence to DOTS. PMID:26023334

  20. Direct observation of epitaxial organic film growth: temperature-dependent growth mechanisms and metastability.

    PubMed

    Marchetto, Helder; Schmidt, Thomas; Groh, Ullrich; Maier, Florian C; Lévesque, Pierre L; Fink, Rainer H; Freund, Hans-Joachim; Umbach, Eberhard

    2015-11-21

    The growth of the first ten layers of organic thin films on a smooth metallic substrate has been investigated in real-time using the model system PTCDA on Ag(111). The complex behaviour is comprehensively studied by electron microscopy, spectroscopy and diffraction in a combined PEEM/LEEM instrument revealing several new phenomena and yielding a consistent picture of this layer growth. PTCDA grows above room temperature in a Stranski-Krastanov mode, forming three-dimensional islands on a stable bi-layer, in competition with metastable 3rd and 4th layers. Around room temperature this growth mode changes into a quasi layer-by-layer growth, while at temperatures below about 250 K a Vollmer-Weber-like behaviour is observed. By means of laterally resolved soft X-ray absorption spectroscopy the orientation of all adsorbed molecules is found to be homogeneously flat lying on the surface, even during the growth process. The films grow epitaxially, showing long-range order with rotational domains. For the monolayer these domains could be directly analysed, showing an average size of several micrometers extending over substrate steps.

  1. Direct real-space observation of nearly stochastic behavior in magnetization reversal process on a nanoscale

    SciTech Connect

    Im, M.-Y.; Kim, D.-H.; Lee, K.-D.; Fischer, P.; Shin, S.-C.

    2007-06-01

    We report a non-deterministic nature in the magnetization reversal of nanograins of CoCrPt alloy film. Magnetization reversal process of CoCrPt alloy film is investigated using high resolution soft X-ray microscopy which provides real space images with a spatial resolution of 15 nm. Domain nucleation sites mostly appear stochastically distributed within repeated hysteretic cycles, where the correlation increases as the strength of the applied magnetic field increases in the descending and ascending branches of the major hysteresis loop. In addition, domain configuration is mostly asymmetric with inversion of an applied magnetic field in the hysteretic cycle. Nanomagnetic simulation considering thermal fluctuations of the magnetic moments of the grains explains the nearly stochastic nature of the domain nucleation behavior observed in CoCrPt alloy film. With the bit size in high-density magnetic recording media approaching nanometer length scale, one of the fundamental and crucial issues is whether the domain nucleation during magnetization reversal process exhibits a deterministic behavior. Repeatability of local domain nucleation and deterministic switching behavior are basic and essential factors for achieving high performance in high-density magnetic recording [1-3]. Most experimental studies on this issue reported so far have been mainly performed by indirect probes through macroscopic hysteresis loop and Barkhausen pattern measurements, which provide the ensemble-average magnetization. Thus, they are inadequate to gain insight into the domain-nucleation behavior on a nanometer length scale during the magnetization reversal process [4-6]. Very recently, coherent X-ray speckle metrology, where the speckle pattern observed in reciprocal space acts as a fingerprint of the domain configurations, was adopted to investigate stochastic behavior in the magnetization reversal of a Co/Pt multilayer film [7,8]. However, no direct observation on the stochastic behavior of

  2. Direct observations of the role of solution composition in magnesite dissolution

    NASA Astrophysics Data System (ADS)

    King, H. E.; Putnis, C. V.

    2012-04-01

    (Rudolph et al., 2003) that are not expected to form in Cl- or NO3- solutions. In all experiments, despite the undersaturation of original solutions with respect to Mg-carbonate phases, a precipitate formed on the surface indicating the formation of a fluid boundary layer supersaturated with respect to a new phase (probably hydrated magnesite). This is also consistent with Mg concentrations in experimental outflow solutions. At high ionic strength, despite the direct observations of an increase in dissolution, the Mg concentrations decreased. The precipitated phase was effectively passivating the mineral surface.

  3. Direct observations of organic aerosols in common wintertime hazes in North China: insights into direct emissions from Chinese residential stoves

    NASA Astrophysics Data System (ADS)

    Chen, Shurui; Xu, Liang; Zhang, Yinxiao; Chen, Bing; Wang, Xinfeng; Zhang, Xiaoye; Zheng, Mei; Chen, Jianmin; Wang, Wenxing; Sun, Yele; Fu, Pingqing; Wang, Zifa; Li, Weijun

    2017-01-01

    heterogeneous reactions between particles and gases. We conclude that the direct emissions from these coal stoves without any pollution controls in rural areas and in urban outskirts contribute large amounts of primary OM particles to the regional L & M hazes in North China.

  4. Direct Observation of Landau Level Resonance and Mass Generation in Dirac Semimetal Cd3As2 Thin Films.

    PubMed

    Yuan, Xiang; Cheng, Peihong; Zhang, Longqiang; Zhang, Cheng; Wang, Junyong; Liu, Yanwen; Sun, Qingqing; Zhou, Peng; Zhang, David Wei; Hu, Zhigao; Wan, Xiangang; Yan, Hugen; Li, Zhiqiang; Xiu, Faxian

    2017-03-02

    Three-dimensional topological Dirac semimetals have hitherto stimulated unprecedented research interests as a new class of quantum materials. Breaking certain types of symmetries has been proposed to enable the manipulation of Dirac fermions, and that was soon realized by external modulations such as magnetic fields. However, an intrinsic manipulation of Dirac states, which is more efficient and desirable, remains a significant challenge. Here, we report a systematic study of quasi-particle dynamics and band evolution in Cd3As2 thin films with controlled chromium (Cr) doping by both magneto-infrared spectroscopy and electrical transport. We observe the √B relation of inter-Landau-level resonance in Cd3As2, an important signature of ultrarelativistic massless state inaccessible in previous optical experiments. A crossover from quantum to quasi-classical behavior makes it possible to directly probe the mass of Dirac fermions. Importantly, Cr doping allows for a Dirac mass acquisition and topological phase transition enabling a desired dynamic control of Dirac fermions. Corroborating with the density-functional theory calculations, we show that the mass generation can be explained by the explicit C4 rotation symmetry breaking and the resultant Dirac gap engineering through Cr substitution for Cd atoms. The manipulation of the system symmetry and Dirac mass in Cd3As2 thin films provides a tuning knob to explore the exotic states stemming from the parent phase of Dirac semimetals.

  5. Direct Observations of Rapid Diffusion of Cu in Au Thin Films using In-Situ X-ray Diffraction

    SciTech Connect

    Elmer, J W; Palmer, T A; Specht, E D

    2005-11-28

    In-situ x-ray diffraction was performed while annealing thin-film Au/Cu binary diffusion couples to directly observe diffusion at elevated temperatures. The temperature dependence of the interdiffusion coefficient was determined from isothermal measurements at 700 C, 800 C, and 900 C, where Cu and Au form a disordered continuous face centered cubic solid solution. Large differences in the lattice parameters of Au and Cu allowed the initial diffraction peaks to be easily identified, and later tracked as they merged into one diffraction peak with increased diffusion time. Initial diffusion kinetics were studied by measuring the time required for the Cu to diffuse through the Au thin film of known thickness. The activation energy for interdiffusion was measured to be 65.4 kJ/mole during this initial stage, which is approximately 0.4x that for bulk diffusion and 0.8x that for grain boundary diffusion. The low activation energy is attributed to the high density of columnar grain boundaries combined with other defects in the sputter deposited thin film coatings. As interdiffusion continues, the two layers homogenize with an activation energy of 111 kJ/mole during the latter stages of diffusion. This higher activation energy falls between the reported values for grain boundary and bulk diffusion, and may be related to grain growth occurring at these temperatures which accounts for the decreasing importance of grain boundaries on diffusion.

  6. In Situ Observation of Directed Nanoparticle Aggregation During the Synthesis of Ordered Nanoporous Metal in Soft Templates

    SciTech Connect

    Parent, Lucas R.; Robinson, David B.; Cappillino, Patrick J.; Hartnett, Ryan J.; Abellan Baeza, Patricia; Evans, James E.; Browning, Nigel D.; Arslan, Ilke

    2014-02-11

    The prevalent approach to developing new nanomaterials is a trial and error process of iteratively altering synthesis procedures and then characterizing the resulting nanostructures. This is fundamentally limited in that the growth processes that occur during synthesis can only be inferred from the final synthetic structure. Directly observing real-time nanomaterial growth provides unprecedented insight into the relationship between synthesis conditions and product evolution, and facilitates a mechanistic approach to nanomaterial development. Here we use in situ liquid stage scanning transmission electron microscopy to observe the growth of mesoporous palladium in a solvated block copolymer (BCP) template under various synthesis conditions, and ultimately determine a refined synthesis procedure that yields ordered pores. We find that at low organic solvent (tetrahydrofuran, THF) content, the BCP assembles into a rigid, cylindrical micelle array with a high degree of short-range order, but poor long-range order. Upon slowing the THF evaporation rate using a solvent-vapor anneal step, the long-range order is greatly improved. The electron beam induces nucleation of small particles in the aqueous phase around the micelles. The small particles then flocculate and grow into denser structures that surround the micelles, forming an ordered mesoporous structure. The microscope observations revealed that template disorder can be addressed prior to reaction, and is not invariably induced by the growth process itself, allowing us to more quickly optimize the synthetic method. This work was conducted in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. The Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy under contract DE-AC05-76RL01830. This research

  7. Direct observation of extrasolar planets and the development of the gemini planet imager integral field spectrograph

    NASA Astrophysics Data System (ADS)

    Chilcote, Jeffrey Kaplan

    This thesis is focused on the development and testing of a new instrument capable of finding and characterizing recently-formed Jupiter-sized planets orbiting other stars. To observe these planets, I present the design, construction and testing of the Gemini Planet Imager (GPI) Integral Field Spectrograph (IFS). GPI is a facility class instrument for the Gemini Observatory with the primary goal of directly detecting young Jovian planets. The GPI IFS utilizes an infrared transmissive lenslet array to sample a rectangular 2.7 x 2.7 arcsecond field of view and provide low-resolution spectra across five bands between 1 and 2.5 mum. The dispersing element can be replaced with a Wollaston prism to provide broadband polarimetry across the same five filter bands. The IFS construction was based at the University of California, Los Angeles in collaboration with the Universite de Montreal, Immervision and Lawrence Livermore National Laboratory. I will present performance results, from in-lab testing, of the Integral Field Spectrograph (IFS) for the Gemini Planet Imager (GPI). The IFS is a large, complex, cryogenic, optical system requiring several years of development and testing. I will present the design and integration of the mechanical and optical performance of the spectrograph optics. The IFS passed its pre-ship review in 2011 and was shipped to University of California, Santa Cruz for integration with the remaining sub-systems of GPI. The UCLA built GPI IFS was integrated with the rest of GPI and is delivering high quality spectral datacubes of GPI's coronagraphic field. Using the NIRC2 instrument located at the Keck Observatory, my collaborators and I observed the planetary companion to beta Pictoris in L' (3.5--4.1mum). Observations taken in the fall of 2009 and 2012 are used to find the location and inclination of the planet relative to the massive debris disk orbiting beta Pictoris. We find that the planet's orbit has a position angle on the sky of 211

  8. The Photochemical Reflectance Index from Directional Cornfield Reflectances: Observations and Simulations

    NASA Technical Reports Server (NTRS)

    Cheng, Yen-Ben; Middleton, Elizabeth M.; Zhang, Qingyuan; Corp, Lawrence A.; Dandois, Jonathan; Kustas, William P.

    2012-01-01

    The two-layer Markov chain Analytical Canopy Reflectance Model (ACRM) was linked with in situ hyperspectral leaf optical properties to simulate the Photochemical Reflectance Index (PRI) for a corn crop canopy at three different growth stages. This is an extended study after a successful demonstration of PRI simulations for a cornfield previously conducted at an early vegetative growth stage. Consistent with previous in situ studies, sunlit leaves exhibited lower PRI values than shaded leaves. Since sunlit (shaded) foliage dominates the canopy in the reflectance hotspot (coldspot), the canopy PRI derived from field hyperspectral observations displayed sensitivity to both view zenith angle and relative azimuth angle at all growth stages. Consequently, sunlit and shaded canopy sectors were most differentiated when viewed along the azimuth matching the solar principal plane. These directional PRI responses associated with sunlit/shaded foliage were successfully reproduced by the ACRM. As before, the simulated PRI values from the current study were closer to in situ values when both sunlit and shaded leaves were utilized as model input data in a two-layer mode, instead of a one-layer mode with sunlit leaves only. Model performance as judged by correlation between in situ and simulated values was strongest for the mature corn crop (r = 0.87, RMSE = 0.0048), followed by the early vegetative stage (r = 0.78; RMSE = 0.0051) and the early senescent stage (r = 0.65; RMSE = 0.0104). Since the benefit of including shaded leaves in the scheme varied across different growth stages, a further analysis was conducted to investigate how variable fractions of sunlit/shaded leaves affect the canopy PRI values expected for a cornfield, with implications for 20 remote sensing monitoring options. Simulations of the sunlit to shaded canopy ratio near 50/50 +/- 10 (e.g., 60/40) matching field observations at all growth stages were examined. Our results suggest in the importance of the

  9. Randomized Control Trial of Peer-Delivered, Modified Directly Observed Therapy for HAART in Mozambique

    PubMed Central

    Pearson, Cynthia R.; Micek, Mark A.; Simoni, Jane M.; Hoff, Peter D.; Matediana, Eduardo; Martin, Diane P.; Gloyd, Stephen S.

    2014-01-01

    Objective To assess the efficacy of a peer-delivered intervention to promote short-term (6-month) and long-term (12-month) adherence to HAART in a Mozambican clinic population. Design A 2-arm randomized controlled trial was conducted between October 2004 and June 2006. Participants Of 350 men and women (≥18 years) initiating HAART, 53.7% were female, and 97% were on 1 fixed-dose combination pill twice a day. Intervention Participants were randomly assigned to receive 6 weeks (Monday through Friday; 30 daily visits) of peer-delivered, modified directly observed therapy (mDOT) or standard care. Peers provided education about treatment and adherence and sought to identify and mitigate adherence barriers. Outcome Participants' self-reported medication adherence was assessed 6 months and 12 months after starting HAART. Adherence was defined as the proportion of prescribed doses taken over the previous 7 days. Statistical analyses were performed using intention-to-treat (missing = failure). Results Intervention participants, compared to those in standard care, showed significantly higher mean medication adherence at 6 months (92.7% vs. 84.9%, difference 7.8, 95% confidence interval [CI]: 0.0.02, 13.0) and 12 months (94.4% vs. 87.7%, difference 6.8, 95% CI: 0.9, 12.9). There were no between-arm differences in chart-abstracted CD4 counts. Conclusions A peer-delivered mDOT program may be an effective strategy to promote long-term adherence among persons initiating HAART in resource-poor settings. PMID:17693890

  10. Gulf Stream Power Characteristics near Cape Hatteras; Regional Model vs. Direct Current Observations

    NASA Astrophysics Data System (ADS)

    Lowcher, C.; Bane, J.; Gong, Y.; He, R.; Muglia, M.

    2014-12-01

    The Gulf Stream has current velocities reaching approximately 2 meters per second, which distinguish it as a potential source of marine hydrokinetic (MHK) energy. The upper continental slope off Cape Hatteras is a desirable area for development of offshore renewable energy because of the closeness of the Gulf Stream to the shelf edge and its minimal meanderings there. Using data from a moored 150-kHz ADCP and from the Mid-Atlantic Bight and South Atlantic Bight (MABSAB) ocean circulation model, MHK power characteristics have been computed for this area. These calculations quantify the Gulf Stream power resource and its temporal and spatial variations. During August 2013 - April 2014 at the moored ADCP site 30 meters below the surface and within the Stream's cyclonic shear zone, a comparison of the ADCP and MABSAB model reveals that the average current speeds from the two sources are nearly identical and have a magnitude of 1.15 m/s. A comparison for the same time period was made for Betz power, which yielded an observed average of 0.8 kW/m2 and a model average of 0.7 kW/m2, a difference of about 13%. The model has shown to be more conservative than the ADCP in its computation of current speed and Betz power, and it shows somewhat less variability than the ADCP in directionality of the Stream. Additionally, model data have been used to calculate annual average vector velocities and yearly Betz power averages for a number of years, and at various locations over the NC continental slope. These results depict the variation of the Stream's position along the NC coastline over the most recent years, and show that yearly averaged Betz power at a given location has significant inter-annual variations, with average power during one year being nearly four times greater than in another year.

  11. Direct observations of muscle arterioles and venules following contraction of skeletal muscle fibres in the rat.

    PubMed Central

    Marshall, J M; Tandon, H C

    1984-01-01

    Direct observations have been made of responses of individual arterioles and venules of rat spinotrapezius muscle to contraction of the skeletal muscle fibres. Stimuli of 4-6 V intensity, 0.1 ms duration, delivered via a micro-electrode inserted into the spinotrapezius, evoked contraction of a small bundle of skeletal muscle fibres, followed by vasodilatation which was limited to all those arterioles and venules which crossed or ran alongside activated muscle fibres. Since venules outside the region of contraction, but supplied by dilating arterioles, were not passively distended by the attendant rise in intravascular pressure, it is concluded that both the arterioles and venules dilated actively in response to muscle contraction. All arterioles responded to a single twitch contraction, the terminal arterioles (7-13 micron i.d.) showing the largest increase in diameter. Collecting venules (9-18 micron i.d.) responded to just two twitches in 1 s and larger venules to five twitches in 1 s. When twitch contractions were continuously evoked for 10 s, the responses in individual arterioles and venules were graded with twitch frequency, the fastest and largest response occurring at 6-8 Hz. Tetanic contraction, at 40 Hz for 1 s, produced faster responses in all vessels, a maximum 55% increase from resting internal diameter being attained in only 8 s in some terminal arterioles. In all vessels the responses to tetanic contraction were equal to the maximal dilatation induced by papaverine. These results, in contrast with conclusions drawn from indirect estimates of venous responses, show that venules, like arterioles, dilate actively in response to muscle contraction. Venule dilatation may reduce the rise in capillary hydrostatic pressure, thereby limiting the outward filtration of fluid. PMID:6747856

  12. Directional Limits on Persistent Gravitational Waves from Advanced LIGO's First Observing Run.

    PubMed

    Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Ananyeva, A; Anderson, S B; Anderson, W G; Appert, S; Arai, K; Araya, M C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Avila-Alvarez, A; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Beer, C; Bejger, M; Belahcene, I; Belgin, M; Bell, A S; Berger, B K; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Billman, C R; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Biscoveanu, A S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blackman, J; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Boer, M; Bogaert, G; Bohe, A; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Broida, J E; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Brunett, S; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T A; Calloni, E; Camp, J B; Campbell, W; Canepa, M; Cannon, K C; Cao, H; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerboni Baiardi, L; Cerretani, G; Cesarini, E; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Cheeseboro, B D; Chen, H Y; Chen, Y; Cheng, H-P; Chincarini, A; Chiummo, A; Chmiel, T; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, A J K; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Cocchieri, C; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conti, L; Cooper, S J; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, E; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Covas, P B; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Creighton, J D E; Creighton, T D; Cripe, J; Crowder, S G; Cullen, T J; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Danilishin, S L; D'Antonio, S; Danzmann, K; Dasgupta, A; Da Silva Costa, C F; Dattilo, V; Dave, I; Davier, M; Davies, G S; Davis, D; Daw, E J; Day, B; Day, R; De, S; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Devenson, J; Devine, R C; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Girolamo, T; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Doctor, Z; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Dorrington, I; Douglas, R; Dovale Álvarez, M; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Essick, R C; Etienne, Z; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Farinon, S; Farr, B; Farr, W M; Fauchon-Jones, E J; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Fernández Galiana, A; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fong, H; Forsyth, S S; Fournier, J-D; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fries, E M; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H; Gadre, B U; Gaebel, S M; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gaur, G; Gayathri, V; Gehrels, N; Gemme, G; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghonge, S; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; González, G; Gonzalez Castro, J M; Gopakumar, A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Grado, A; Graef, C; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Healy, J; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Henry, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hofman, D; Holt, K; Holz, D E; Hopkins, P; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J-M; Isi, M; Isogai, T; Iyer, B R; Izumi, K; Jacqmin, T; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Junker, J; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karki, S; Karvinen, K S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kéfélian, F; Keitel, D; Kelley, D B; Kennedy, R; Key, J S; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, Chunglee; Kim, J C; Kim, Whansun; Kim, W; Kim, Y-M; Kimbrell, S J; King, E J; King, P J; Kirchhoff, R; Kissel, J S; Klein, B; Kleybolte, L; Klimenko, S; Koch, P; Koehlenbeck, S M; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Krämer, C; Kringel, V; Królak, A; Kuehn, G; Kumar, P; Kumar, R; Kuo, L; Kutynia, A; Lackey, B D; Landry, M; Lang, R N; Lange, J; Lantz, B; Lanza, R K; Lartaux-Vollard, A; Lasky, P D; Laxen, M; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lehmann, J; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Li, T G F; Libson, A; Littenberg, T B; Liu, J; Lockerbie, N A; Lombardi, A L; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lousto, C O; Lovelace, G; Lück, H; Lundgren, A P; Lynch, R; Ma, Y; Macfoy, S; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martynov, D V; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Mastrogiovanni, S; Matas, A; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; McCarthy, R; McClelland, D E; McCormick, S; McGrath, C; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McRae, T; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mendoza-Gandara, D; Mercer, R A; Merilh, E L; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Metzdorff, R; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, A L; Miller, A; Miller, B B; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mours, B; Mow-Lowry, C M; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Muniz, E A M; Murray, P G; Mytidis, A; Napier, K; Nardecchia, I; Naticchioni, L; Nelemans, G; Nelson, T J N; Neri, M; Nery, M; Neunzert, A; Newport, J M; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Noack, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Overmier, H; Owen, B J; Pace, A E; Page, J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perez, C J; Perreca, A; Perri, L M; Pfeiffer, H P; Phelps, M; Piccinni, O J; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poe, M; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Pratt, J W W; Predoi, V; Prestegard, T; Prijatelj, M; Principe, M; Privitera, S; Prodi, G A; Prokhorov, L G; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Qiu, S; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rajan, C; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Rhoades, E; Ricci, F; Riles, K; Rizzo, M; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Sakellariadou, M; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sampson, L M; Sanchez, E J; Sandberg, V; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Scheuer, J; Schlassa, S; Schmidt, E; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Schwalbe, S G; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Setyawati, Y; Shaddock, D A; Shaffer, T J; Shahriar, M S; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sieniawska, M; Sigg, D; Silva, A D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, B; Smith, J R; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Spencer, A P; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stevenson, S P; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strigin, S E; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sunil, S; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tao, D; Tápai, M; Taracchini, A; Taylor, R; Theeg, T; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thrane, E; Tippens, T; Tiwari, S; Tiwari, V; Tokmakov, K V; Toland, K; Tomlinson, C; Tonelli, M; Tornasi, Z; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Trinastic, J; Tringali, M C; Trozzo, L; Tse, M; Tso, R; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Varma, V; Vass, S; Vasúth, M; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Venugopalan, G; Verkindt, D; Vetrano, F; Viceré, A; Viets, A D; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D V; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, Y; Ward, R L; Warner, J; Was, M; Watchi, J; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; Whiting, B F; Whittle, C; Williams, D; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Woehler, J; Worden, J; Wright, J L; Wu, D S; Wu, G; Yam, W; Yamamoto, H; Yancey, C C; Yap, M J; Yu, Hang; Yu, Haocun; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zendri, J-P; Zevin, M; Zhang, L; Zhang, M; Zhang, T; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, S J; Zhu, X J; Zucker, M E; Zweizig, J

    2017-03-24

    We employ gravitational-wave radiometry to map the stochastic gravitational wave background expected from a variety of contributing mechanisms and test the assumption of isotropy using data from the Advanced Laser Interferometer Gravitational Wave Observatory's (aLIGO) first observing run. We also search for persistent gravitational waves from point sources with only minimal assumptions over the 20-1726 Hz frequency band. Finding no evidence of gravitational waves from either point sources or a stochastic background, we set limits at 90% confidence. For broadband point sources, we report upper limits on the gravitational wave energy flux per unit frequency in the range F_{α,Θ}(f)<(0.1-56)×10^{-8}    erg cm^{-2} s^{-1} Hz^{-1}(f/25  Hz)^{α-1} depending on the sky location Θ and the spectral power index α. For extended sources, we report upper limits on the fractional gravitational wave energy density required to close the Universe of Ω(f,Θ)<(0.39-7.6)×10^{-8}  sr^{-1}(f/25  Hz)^{α} depending on Θ and α. Directed searches for narrowband gravitational waves from astrophysically interesting objects (Scorpius X-1, Supernova 1987 A, and the Galactic Center) yield median frequency-dependent limits on strain amplitude of h_{0}<(6.7,5.5,  and  7.0)×10^{-25}, respectively, at the most sensitive detector frequencies between 130-175 Hz. This represents a mean improvement of a factor of 2 across the band compared to previous searches of this kind for these sky locations, considering the different quantities of strain constrained in each case.

  13. Directional Limits on Persistent Gravitational Waves from Advanced LIGO's First Observing Run

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Beer, C.; Bejger, M.; Belahcene, I.; Belgin, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, A. S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Campbell, W.; Canepa, M.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, H.-P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conti, L.; Cooper, S. J.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, E.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Davis, D.; Daw, E. J.; Day, B.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Essick, R. C.; Etienne, Z.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fernández Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kelley, D. B.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, Whansun; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGrath, C.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P. G.; Mytidis, A.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Rhoades, E.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schlassa, S.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T. J.; Shahriar, M. S.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tao, D.; Tápai, M.; Taracchini, A.; Taylor, R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tippens, T.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tse, M.; Tso, R.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2017-03-01

    We employ gravitational-wave radiometry to map the stochastic gravitational wave background expected from a variety of contributing mechanisms and test the assumption of isotropy using data from the Advanced Laser Interferometer Gravitational Wave Observatory's (aLIGO) first observing run. We also search for persistent gravitational waves from point sources with only minimal assumptions over the 20-1726 Hz frequency band. Finding no evidence of gravitational waves from either point sources or a stochastic background, we set limits at 90% confidence. For broadband point sources, we report upper limits on the gravitational wave energy flux per unit frequency in the range Fα ,Θ(f )<(0.1 - 56 )×10-8 erg cm-2 s-1 Hz-1(f /25 Hz )α -1 depending on the sky location Θ and the spectral power index α . For extended sources, we report upper limits on the fractional gravitational wave energy density required to close the Universe of Ω (f ,Θ )<(0.39 - 7.6 )×10-8 sr-1(f /25 Hz )α depending on Θ and α . Directed searches for narrowband gravitational waves from astrophysically interesting objects (Scorpius X-1, Supernova 1987 A, and the Galactic Center) yield median frequency-dependent limits on strain amplitude of h0<(6.7 ,5.5 , and 7.0 )×10-25 , respectively, at the most sensitive detector frequencies between 130-175 Hz. This represents a mean improvement of a factor of 2 across the band compared to previous searches of this kind for these sky locations, considering the different quantities of strain constrained in each case.

  14. Southeast Atlantic Ocean aerosol direct radiative effects over clouds: Comparison of observations and simulations

    NASA Astrophysics Data System (ADS)

    de Graaf, M.; Haywood, J.; Bellouin, N.; Tilstra, L. G.; Stammes, P.

    2017-02-01

    Absorbing aerosols exert a warming or a cooling effect on the Earth's system, depending on the circumstances. The direct radiative effect (DRE) of absorbing aerosols is negative (cooling) at the top-of-the-atmosphere (TOA) over a dark surface like the ocean, as the aerosols increase the planetary albedo, but it is positive (warming) over bright backgrounds like clouds. Furthermore, radiation absorption by aerosols heat the atmosphere locally, and, through rapid adjustments of the atmospheric column and cloud dynamics, the net effect can be amplified considerably. We developed a technique to study the absorption of radiation of smoke over low lying clouds using satellite spectrometry. The TOA DRE of smoke over clouds is large and positive over the southeast Atlantic Ocean off the west coast of Africa, which can be explained by the large decrease of reflected radiation by a polluted cloud, especially in the UV. However, general circulation models (GCMs) fail to reproduce these strong positive DRE, and in general GCMs disagree on the magnitude and even sign of the aerosol DRE in the southeast Atlantic region. Our satellite-derived DRE measurements show clear seasonal and inter-annual variations, consistent with other satellite measurements, which are not reproduced by GCMs. A comparison with model results showed discrepancies with the Ångström exponent of the smoke aerosols, which is larger than assumed in simulations, and a sensitivity to emission scenarios. However, this was not enough to explain the discrepancies, and we suspect that the modeling of cloud distributions and microphysics will have the necessary larger impact on DRE that will explain the differences between observations and modeling.

  15. The New Worlds Observer: An Optimal Path to Direct Study of Earth-like Planets

    NASA Astrophysics Data System (ADS)

    Cash, Webster C., Jr.; New Worlds Study Team

    2009-01-01

    Direct detection and spectroscopic study of the planets around the nearby stars is generally recognized as a prime goal of astronomy. The New Worlds Observer mission concept is being studied as an Astrophysics Strategic Mission Concept Study for this purpose. NWO features two spacecraft: a general purpose 4m telescope that operates from the UV to the Near IR, and a starshade, a flower-shaped occulter about 50m in diameter flying in alignment about 70,000km away. Our study shows this is the most effective way to map nearby planetary systems. In this poster we will show that NWO can return much more science than any of the competing approaches at any given price point. Images will show dust and debris down to a fraction of our zodiacal light level. Planets fainter than the Earth can be seen from the Habitable Zone outward, at distances up to 20pc. High throughput and low noise enable immediate follow-up spectroscopy of discovered planets. NWO can discover many more Earth-like planets than all competing approaches including astrometric, interferometric, and internal coronagraphic. Within hours of discovery, a high quality spectrum can determine the true nature of the exoplanet and open the search for biomarkers and life. Over half of the time will be spent with the starshade in transit to the next target. During those times the telescope will be available to for general astrophysics purposes. Operating from the ultraviolet to the near infrared, this will be a true HST follow-on. The study shows all needed technologies already exist. The cost scales primarily with telescope size. The mission is definitely within the financial and technical reach of NASA for the coming decade.

  16. The New Worlds Observer: Direct Detection and Study of Exoplanets from the Habitable Zone Outward

    NASA Astrophysics Data System (ADS)

    Cash, Webster C.; New Worlds Study Team

    2009-01-01

    Direct detection and spectroscopic study of the planets around the nearby stars is generally recognized as a prime goal of astronomy. The New Worlds Observer mission concept is being studied as an Astrophysics Strategic Mission Concept Study for this purpose. NWO features two spacecraft: a general purpose 4m telescope that operates from the UV to the Near IR, and a starshade, a flower-shaped occulter about 50m in diameter flying in alignment about 70,000km away. Our study shows this is the most effective way to map nearby planetary systems. Images will show dust and debris down to a fraction of our zodiacal light level. Planets fainter than the Earth can be seen from the Habitable Zone outward, at distances up to 20pc. High throughput and low noise enable immediate follow-up spectroscopy of discovered planets. NWO can discover many more Earth-like planets than all competing approaches including astrometric, interferometric, and internal coronagraphic. Within hours of discovery, a high quality spectrum can determine the true nature of the exoplanet and open the search for biomarkers and life. Over half of the time will be spent with the starshade in transit to the next target. During those times the telescope will be available to for general astrophysics purposes. Operating from the ultraviolet to the near infrared, this will be a true HST follow-on. The study shows all needed technologies already exist. The cost scales primarily with telescope size. The mission is definitely within the financial and technical reach of NASA for the coming decade.

  17. Rates of ingestion and their variability between individual calanoid copepods: Direct observations

    SciTech Connect

    Paffenhoefer, G.A.; Lewis, K.D.; Bundy, M.H. |; Metz, C.

    1995-12-01

    The goals of this study were to determine rates of ingestion and fecal pellet release, and their variability, for individual planktonic copepods over extended periods of time (>20 min). Ingestions and rejections of individual cells of the diatom Thalassiosira eccentrica by a adult females of the calanoid Paracalanus aculeatus were directly quantified by observing individual copepods continuously at cell concentrations ranging from 0.1 to 1.2 mm{sup 3} l{sup {minus}1}. Average ingestion rates increased with increasing food concentration, but were not significantly different between 0.3 and 1.0 mm{sup 3} l{sup {minus}1} (9.8 and 32.7 {mu}g Cl{sup {minus}1}) of T.eccentrica. Rates of cell rejections were low and similar at 0.1 and 0.3. but were significantly higher at 1.0 mm{sup 3} l{sup {minus}1}. The coefficients of variation for average ingestion rates of individual copepods hardly differed between food concentrations, ranging from 17 to 22%, and were close to those for average fecal pellet release intervals which ranged from 15 to 21%. A comparison between individuals at each food concentration found no significant differences at 1.0; at 0.1 and 0.3 mm{sup 3} l{sup {minus}1}, respectively, ingestion rates of four out of five females did not differ significantly from each other. Average intervals between fecal pellet releases were similar at 0.3 and 1.0 mm{sup 3} l{sup {minus}1}. Fecal pellet release intervals between individuals were significantly different at each food concentration; these significant differences were attributed to rather narrow ranges of pellet release intervals of each individual female. Potential sources/causes of variability in the sizes and rates of copepods in the ocean are evaluated.

  18. Direct Observation of Secondary Organic Aerosol Formation during Cloud Condensation-Evaporation Cycles (SOAaq) in Simulation Chamber Experiments

    NASA Astrophysics Data System (ADS)

    Doussin, J. F.; Bregonzio-Rozier, L.; Giorio, C.; Siekmann, F.; Gratien, A.; Temime-Roussel, B.; Ravier, S.; Pangui, E.; Tapparo, A.; Kalberer, M.; Monod, A.

    2014-12-01

    Biogenic volatile organic compounds (BVOCs) undergo many reactions in the atmosphere and form a wide range of oxidised and water-soluble compounds. These compounds can partition into atmospheric water droplets, and react within the aqueous phase producing higher molecular weight and/or less volatile compounds which can remain in the particle phase after water evaporation and thus increase the organic aerosol mass (Ervens et al., 2011; Altieri et al., 2008; Couvidat et al., 2013). While this hypothesis is frequently discussed in the literature, so far, almost no direct observations of such a process have been provided.The aim of the present work is to study SOA formation from isoprene photooxidation during cloud condensation-evaporation cycles.The experiments were performed during the CUMULUS project (CloUd MULtiphase chemistry of organic compoUndS in the troposphere), in the CESAM simulation chamber located at LISA. CESAM is a 4.2 m3 stainless steel chamber equipped with realistic irradiation sources and temperature and relative humidity (RH) controls (Wang et al., 2011). In each experiment, isoprene was allowed to oxidize during several hours in the presence on nitrogen oxides under dry conditions. Gas phase compounds were analyzed on-line by a Proton Transfer Reaction Time of Flight Mass Spectrometer (PTR-ToF-MS), a Fourier Transform Infrared Spectrometer (FTIR), NOx and O3 analyzers. SOA formation was monitored on-line with a Scanning Mobility Particle Sizer (SMPS) and an Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS). The experimental protocol was optimised to generate cloud events in the simulation chamber, which allowed us to generate clouds lasting for ca. 10 minutes in the presence of light.In all experiments, we observed that during cloud formation, water-soluble gas-phase oxidation products (e.g., methylglyoxal, hydroxyacetone, acetaldehyde, formic acid, acetic acid and glycolaldehyde) readily partitioned into cloud

  19. Early Results of Pilot Study Using Hepatitis C Virus (HCV) Positive Kidneys to Transplant HCV Infected Patients with End-Stage Renal Disease Allowing for Successful Interferon-Free Direct Acting Antiviral Therapy after Transplantation

    PubMed Central

    Gallegos-Orozco, Juan F; Kim, Robin; Thiesset, Heather F; Hatch, Jenny; Lynch, Keisa; Chaly, Jr, Thomas; Shihab, Fuad; Ahmed, Faris; Hall, Isaac

    2016-01-01

    Introduction: Hepatitis C virus (HCV) infection in kidney transplant (KTX) patients reduces long-term patient and graft survival. Direct-acting antivirals (DAA) are > 90% effective in achieving sustained viral response (SVR); however, DAAs are not routinely available to patients with end-stage renal disease (ESRD). The University of Utah Transplant Program developed a protocol to allow HCV-positive potential KTX recipients to accept HCV-positive donors' kidneys. Three months after successful KTX, they were eligible for DAA therapy. Methods: HCV-positive patients approved for KTX by the University of Utah Transplant Selection Committee were eligible to be enrolled in this study. Patients consented for the use of HCV-positive donor organs. Three to six months after successful KTX, these patients were treated for HCV with interferon-free direct-acting antiviral regimens according to viral genotype and prior treatment experience. Results: Between 2014-2015, 12 HCV-positive patients were listed for KTX. Eight patients were kidney only eligible, seven patients received HCV-positive deceased donor kidneys, and one received an HCV-negative organ. Currently, six patients have completed treatment, all have achieved sustained viral response (SVR), and one patient is currently awaiting treatment. All seven patients have functioning kidney grafts. Wait time for KTX was reduced amongst all blood groups from an average of 1,350 days to only 65 days. Conclusions: HCV-positive patients with ESRD can successfully receive an HCV-positive donor's kidney. Once transplanted, these patients can receive DAA therapy and achieve SVR. Use of HCV-positive organs reduced time on the waitlist by greater than three years and expanded the donor organ pool. PMID:28018760

  20. The 'not-so-strange' body in the mirror: A principal components analysis of direct and mirror self-observation.

    PubMed

    Jenkinson, Paul M; Preston, Catherine

    2017-02-01

    In this study we adopted a psychometric approach to examine how the body is subjectively experienced in a mirror. One hundred and twenty-four healthy participants viewed their body for five minutes directly or via a mirror, and then completed a 20-item questionnaire designed to capture subjective experiences of the body. PCA revealed a two-component structure for both direct and mirror conditions, comprising body evaluations (and alienation) and unusual feelings and perceptions. The relationship between these components and pre-existing tendencies for appearance anxiety, body dysmorphic-type beliefs, dissociative symptomatology, self-objectification and delusion ideation further supported the similarity between direct and mirror conditions; however, the occurrence of strange experiences like those reported to occur during prolonged face viewing was not confirmed. These results suggest that, despite obvious differences in visual feedback, observing the body via a mirror (as an outside observer) is subjectively equivalent to observing the body directly (from our own viewpoint).

  1. Direct and in vitro observation of growth hormone receptor molecules in A549 human lung epithelial cells by nanodiamond labeling

    NASA Astrophysics Data System (ADS)

    Cheng, C.-Y.; Perevedentseva, E.; Tu, J.-S.; Chung, P.-H.; Cheng, C.-L.; Liu, K.-K.; Chao, J.-I.; Chen, P.-H.; Chang, C.-C.

    2007-04-01

    This letter presents direct observation of growth hormone receptor in one single cancer cell using nanodiamond-growth hormone complex as a specific probe. The interaction of surface growth hormone receptor of A549 human lung epithelial cells with growth hormone was observed using nanodiamond's unique spectroscopic signal via confocal Raman mapping. The growth hormone molecules were covalent conjugated to 100nm diameter carboxylated nanodiamonds, which can be recognized specifically by the growth hormone receptors of A549 cell. The Raman spectroscopic signal of diamond provides direct and in vitro observation of growth hormone receptors in physiology condition in a single cell level.

  2. Adverse Reactions Due to Directly Observed Treatment Strategy Therapy in Chinese Tuberculosis Patients: A Prospective Study

    PubMed Central

    Lv, Xiaozhen; Tang, Shaowen; Xia, Yinyin; Wang, Xiaomeng; Yuan, Yanli; Hu, Daiyu; Liu, Feiying; Wu, Shanshan; Zhang, Yuan; Yang, Zhirong; Tu, Dehua; Chen, Yixin; Deng, Peiyuan; Ma, Yu; Chen, Ru; Zhan, Siyan

    2013-01-01

    Background More than 1 million tuberculosis (TB) patients are receiving directly observed treatment strategy (DOTS) therapy in China every year. As to the profile of adverse drug reactions (ADRs) due to DOTS therapy, no consensus has been reached. There is no report regarding ADRs due to DOTS therapy with a large Chinese TB population. This study aimed to determine the incidence and prognosis of ADRs due to DOTS therapy, and to evaluate their impact on anti-TB treatment in China. Methods A prospective population-based cohort study was performed during 2007–2008. Sputum smear positive pulmonary TB patients who received DOTS therapy were included and followed up for six to nine months in 52 counties of four regions in China. The suspected ADRs were recorded and reviewed by Chinese State Food and Drug Administration. Results A total of 4304 TB patients were included in this study. 649 patients (15.08%) showed at least one ADR and 766 cases in total were detected. The incidence (count) of ADR based on affected organ was: liver dysfunction 6.34% (273), gastrointestinal disorders 3.74% (161), arthralgia 2.51% (108), allergic reactions 2.35% (101), neurological system disorders 2.04% (88), renal impairment 0.07% (3) and others 0.05% (2). Most cases of ADRs (95%) had a good clinical outcome, while two with hepatotoxicity and one with renal impairment died. Compared with patients without ADRs, patients with ADRs were more likely to have positive smear test results at the end of the intensive phase (adjusted OR, 2.00; 95%CI, 1.44–2.78) and unsuccessful anti-TB outcomes (adjusted OR, 2.58; 95%CI, 1.43–4.68). Conclusions The incidence of ADRs due to DOTS therapy was 15.08%. Those ADRs had a substantial impact on TB control in China. This highlighted the importance of developing strategies to ameliorate ADRs both to improve the quality of patient care and to control TB safely. PMID:23750225

  3. The Biasing Effects of Labels on Direct Observation by Preservice Teachers

    ERIC Educational Resources Information Center

    Allday, R. Allan; Duhon, Gary J.; Blackburn-Ellis, Sarah; Van Dycke, Jamie L.

    2011-01-01

    Observational bias can significantly affect results attained through observation. This study focused on 122 preservice teacher educators who conducted a structured observation, using momentary time sampling procedures with 10-second intervals, to measure student on-task and off-task behaviors. The experimental variable altered was the…

  4. Direct Spectroscopic Observation of the Structural Origin of Peroxide Generation from Co-Based Pyrolyzed Porphyrins for ORR Applications

    SciTech Connect

    Ziegelbauer,J.; Olson, T.; Pylypenko, S.; Alamgir, F.; Jaye, C.; Atanassov, P.; Mukerjee, S.

    2008-01-01

    Pyrolyzed transition metal based porphyrins present an attractive alternative to state of the art Pt-based electrocatalysts for fuel cell applications based on their comparatively low cost. Unfortunately, the large array of precursors and synthetic strategies has led to considerable ambiguity regarding the specific structure/property relationships that give rise to their activity for oxygen reduction. Specifically, considerable debate exists in actual chemical structure of the pyrolyzed reaction centers, and their relationship to membrane-damaging peroxide yield. In this manuscript a comprehensive electrochemical and spectroscopic study of pyrolyzed CoTMPP produced via a self-templating process is presented. The resulting electrocatalysts are not carbon-supported, but are highly porous self-supported pyropolymers. Rotating ring disk electrode measurements showed that the materials pyrolyzed at 700 C exhibited the highest performance, whereas pyrolysis at 800 C resulted in a significant increase in the peroxide yield. X-ray photoelectron spectroscopy and Co L and K edge extended X-ray absorption fine structure (EXAFS) studies confirm that the majority of the Co-N4 active site has broken down to Co-N2 at 800 C. Application of ?{mu} analysis (an X-ray absorption near-edge structure difference technique) to the in situ Co K edge EXAFS data allowed for direct spectroscopic observation of the geometry of Oads on the pyropolymer active sites. The specific geometrical adsorption of molecular oxygen with respect to the plane of the Co-Nx moieties highly influences the oxygen reduction reaction pathway. The application of the ?{mu} technique to other transition metal based macrocycle electrocatalyst systems is expected to provide similarly detailed information.

  5. Direct observation of proteolytic cleavage at the S2 site upon forced unfolding of the Notch negative regulatory region.

    PubMed

    Stephenson, Natalie L; Avis, Johanna M

    2012-10-09

    The conserved Notch signaling pathway plays crucial roles in developing and self-renewing tissues. Notch is activated upon ligand-induced conformation change of the Notch negative regulatory region (NRR) unmasking a key proteolytic site (S2) and facilitating downstream events. Thus far, the molecular mechanism of this signal activation is not defined. However, strong indirect evidence favors a model whereby transendocytosis of the Notch extracellular domain, in tight association with ligand into the ligand-bearing cell, exerts a force on the NRR to drive the required structure change. Here, we demonstrate that force applied to the human Notch2 NRR can indeed expose the S2 site and, crucially, allow cleavage by the metalloprotease TACE (TNF-alpha-converting enzyme). Molecular insight into this process is achieved using atomic force microscopy and molecular dynamics simulations on the human Notch2 NRR. The data show near-sequential unfolding of its constituent LNR (Lin12-Notch repeat) and HD (heterodimerization) domains, at forces similar to those observed for other protein domains with a load-bearing role. Exposure of the S2 site is the first force "barrier" on the unfolding pathway, occurring prior to unfolding of any domain, and achieved via removal of the LNRAB linker region from the HD domain. Metal ions increase the resistance of the Notch2 NRR to forced unfolding, their removal clearly facilitating unfolding at lower forces. The results provide direct demonstration of force-mediated exposure and cleavage of the Notch S2 site and thus firmly establish the feasibility of a mechanotransduction mechanism for ligand-induced Notch activation.

  6. 42 CFR 417.534 - Allowable costs.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 3 2011-10-01 2011-10-01 false Allowable costs. 417.534 Section 417.534 Public... PLANS Medicare Payment: Cost Basis § 417.534 Allowable costs. (a) Definition—Allowable costs means the direct and indirect costs, including normal standby costs incurred by the HMO or CMP, that are proper...

  7. How can the English-language scientific literature be made more accessible to non-native speakers? Journals should allow greater use of referenced direct quotations in 'component-oriented' scientific writing.

    PubMed

    Charlton, Bruce G

    2007-01-01

    In scientific writing, although clarity and precision of language are vital to effective communication, it seems undeniable that content is more important than form. Potentially valuable knowledge should not be excluded from the scientific literature merely because the researchers lack advanced language skills. Given that global scientific literature is overwhelmingly in the English-language, this presents a problem for non-native speakers. My proposal is that scientists should be permitted to construct papers using a substantial number of direct quotations from the already-published scientific literature. Quotations would need to be explicitly referenced so that the original author and publication should be given full credit for creating such a useful and valid description. At the extreme, this might result in a paper consisting mainly of a 'mosaic' of quotations from the already existing scientific literature, which are linked and extended by relatively few sentences comprising new data or ideas. This model bears some conceptual relationship to the recent trend in computing science for component-based or component-oriented software engineering - in which new programs are constructed by reusing programme components, which may be available in libraries. A new functionality is constructed by linking-together many pre-existing chunks of software. I suggest that journal editors should, in their instructions to authors, explicitly allow this 'component-oriented' method of constructing scientific articles; and carefully describe how it can be accomplished in such a way that proper referencing is enforced, and full credit is allocated to the authors of the reused linguistic components.

  8. Spectroscopic observation of simultaneous bi-directional reconnection outflows in a laboratory plasma

    NASA Astrophysics Data System (ADS)

    Brown, M. R.; Cothran, C. D.; Gray, T.; Myers, C. E.; Belova, E. V.

    2012-08-01

    We report a precise, direct spectroscopic measurement of simultaneous bi-directional outflows from a reconnection event in a laboratory plasma. Outflow speeds are as Alfvénic and Abel analysis shows that the outflows are generated in the plasma core. A Sweet-Parker like analysis of outflow speed coupled with external measurements of reconnection electric field and assumption of Spitzer resistivity predict an aspect ratio of the reconnection layer and reconnection rate that are close to that measured in the experiment and in simulations. However, this analysis underestimates the absolute scale of the layer, indicating other than 2D resistive physics is at play.

  9. Screening Kindergarten Children for Early Intervention through Direct Observation of Classroom Behavior.

    ERIC Educational Resources Information Center

    Forness, Steven R.

    The purpose of this study is to determine if children identified as "at risk" on the basis of their observable classroom behavior at the beginning of their kindergarten year are also the same children whom teachers see as having problems much later in the year. Kindergarten children were observed in the fall and spring. Teachers were asked to rate…

  10. Assessing the Accuracy of Classwide Direct Observation Methods: Two Analyses Using Simulated and Naturalistic Data

    ERIC Educational Resources Information Center

    Dart, Evan H.; Radley, Keith C.; Briesch, Amy M.; Furlow, Christopher M.; Cavell, Hannah J.; Briesch, Amy M.

    2016-01-01

    Two studies investigated the accuracy of eight different interval-based group observation methods that are commonly used to assess the effects of classwide interventions. In Study 1, a Microsoft Visual Basic program was created to simulate a large set of observational data. Binary data were randomly generated at the student level to represent…

  11. Nano-aquarium for dynamic observation of aquatic microorganisms fabricated by femtosecond laser direct writing of photostructurable glass

    NASA Astrophysics Data System (ADS)

    Hanada, Y.; Sugioka, K.; Kawano, H.; Ishikawa, I.; Miyawaki, A.; Midorikawa, K.

    2008-02-01

    We demonstrate the fabrication of three-dimensional (3-D) hollow microstructures embedded in photostructurable glass by a femtosecond (fs) laser direct writing. Fs laser direct writing followed by annealing and successive wet etching in dilute hydrofluoric (HF) acid solution resulted in the rapid manufacturing of microchips with 3-D hollow microstructures for the dynamic observation of living microorganisms in fresh water. The embedded microchannel structure enables us to analyze the continuous motion of Euglena gracilis. A microchamber with a movable microneedle demonstrates its ability for the elucidation of the information transmission process in Pleurosira laevis. Such microchips, referred to as nano-aquariums realize the efficient and highly functional observation of microorganisms.

  12. 49 CFR 40.67 - When and how is a directly observed collection conducted?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... TRANSPORTATION WORKPLACE DRUG AND ALCOHOL TESTING PROGRAMS Urine Specimen Collections § 40.67 When and how is a...) The laboratory reported to the MRO that the specimen was negative-dilute with a creatinine... specimen to you as negative-dilute and that a second collection must take place under direct...

  13. 49 CFR 40.67 - When and how is a directly observed collection conducted?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... TRANSPORTATION WORKPLACE DRUG AND ALCOHOL TESTING PROGRAMS Urine Specimen Collections § 40.67 When and how is a...) The laboratory reported to the MRO that the specimen was negative-dilute with a creatinine... specimen to you as negative-dilute and that a second collection must take place under direct...

  14. 49 CFR 40.67 - When and how is a directly observed collection conducted?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... TRANSPORTATION WORKPLACE DRUG AND ALCOHOL TESTING PROGRAMS Urine Specimen Collections § 40.67 When and how is a...) The laboratory reported to the MRO that the specimen was negative-dilute with a creatinine... specimen to you as negative-dilute and that a second collection must take place under direct...

  15. 49 CFR 40.67 - When and how is a directly observed collection conducted?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... TRANSPORTATION WORKPLACE DRUG AND ALCOHOL TESTING PROGRAMS Urine Specimen Collections § 40.67 When and how is a...) The laboratory reported to the MRO that the specimen was negative-dilute with a creatinine... specimen to you as negative-dilute and that a second collection must take place under direct...

  16. An observation of direct-gap electroluminescence in GaAs structures with Ge quantum wells

    SciTech Connect

    Aleshkin, V. Ya.; Dikareva, N. V.; Dubinov, A. A.; Zvonkov, B. N.; Kudryavtsev, K. E.; Nekorkin, S. M.

    2015-02-15

    A light-emitting diode structure based on GaAs with eight narrow Ge quantum wells is grown by laser sputtering. An electroluminescence line polarized predominately in the plane parallel to the constituent layers of the structure is revealed. The line corresponds to the direct optical transitions in momentum space in the Ge quantum wells.

  17. Direct Observation of Ultralow Vertical Emittance using a Vertical Undulator - presentation slides

    SciTech Connect

    Wootton, Kent

    2015-09-17

    Direct emittance measurement based on vertical undulator is discussed. Emittance was evaluated from peak ratios, the smallest measured being 𝜀𝑦 =0.9 ±0.3 pm rad. The angular distribution of undulator radiation departs from Gaussian approximations, a fact of which diffraction-limited light sources should be aware.

  18. Anna Freud: the Hampstead War Nurseries and the role of the direct observation of children for psychoanalysis.

    PubMed

    Midgley, Nick

    2007-08-01

    The psychoanalytic tradition of direct observation of children has a long history, going back to the early 20th century, when psychoanalysis and the emerging field of 'child studies' came into fruitful contact in Freud's Vienna. As a leading figure in the attempted integration of direct observation with the new psychoanalytic knowledge emerging from the consulting room, Anna Freud played a crucial role in the emergence of this field. But her major contribution to the theory and practice of observing children came during the Second World War, when she founded the Hampstead War Nurseries. The author describes in detail this important period of Anna Freud's career, and discusses the impact it had on later work. He explores the theoretical contribution that Anna Freud made in the post-war years to the debate about the place of direct observation in psychoanalysis, and concludes that Anna Freud's 'double approach' (direct observation plus analytic reconstruction) still has a great deal to offer as a method of both psychoanalytic research and education.

  19. Observation of direct hadronic pairs in nucleus-nucleus collisions in JACEE emulsion chambers

    NASA Technical Reports Server (NTRS)

    Burnett, T. H.; Dake, S.; Fuki, M.; Gregory, J. C.; Hayashi, T.; Hayashi, T.; Holynski, R.; Iwai, J.; Jones, W. V.; Jurak, A.

    1985-01-01

    In a number of high energy ( or = 1 TeV/amu) nucleus-nucleus collisions observed in Japanese-American Cooperative Emulsion Experiment (JACEE) emulsion chambers, nonrandom spatial association of produced charged particles, mostly hadronic pairs, are observed. Similar narrow pairs are observed in about 100 events at much low energy (20 to 60 GeV/amu). Analysis shows that 30 to 50% of Pair abundances are understood by the Hambury-Brown-Twiss effect, and the remainder seems to require other explanations.

  20. Direct estimation and correction of bias from temporally variable non-stationary noise in a channelized Hotelling model observer

    NASA Astrophysics Data System (ADS)

    Fetterly, Kenneth A.; Favazza, Christopher P.

    2016-08-01

    Channelized Hotelling model observer (CHO) methods were developed to assess performance of an x-ray angiography system. The analytical methods included correction for known bias error due to finite sampling. Detectability indices ({{d}\\prime} ) corresponding to disk-shaped objects with diameters in the range 0.5-4 mm were calculated. Application of the CHO for variable detector target dose (DTD) in the range 6-240 nGy frame-1 resulted in {{d}\\prime} estimates which were as much as 2.9×  greater than expected of a quantum limited system. Over-estimation of {{d}\\prime}<˜ 3.0 was presumed to be a result of bias error due to temporally variable non-stationary noise. Statistical theory which allows for independent contributions of ‘signal’ from a test object (o) and temporally variable non-stationary noise (ns) was developed. The theory demonstrates that the biased dβ\\prime is the sum of the detectability indices associated with the test object ≤ft(d\\text{o}\\prime\\right) and non-stationary noise (d\\text{ns}\\prime ). Given the nature of the imaging system and the experimental methods, d\\text{o}\\prime cannot be directly determined independent of d\\text{ns}\\prime . However, methods to estimate d\\text{ns}\\prime independent of d\\text{o}\\prime were developed. In accordance with the theory, d\\text{ns}\\prime was subtracted from experimental estimates of dβ\\prime , providing an unbiased estimate of d\\text{o}\\prime . Estimates of d\\text{o}\\prime exhibited trends consistent with expectations of an angiography system that is quantum limited for high DTD and compromised by detector electronic readout noise for low DTD conditions. Results suggest that these methods provide d\\text{o}\\prime estimates which are accurate and precise for d\\text{o}\\prime~≥slant ˜ 1.0 . Further, results demonstrated that the source of bias was detector electronic readout noise. In summary, this work presents theory and methods to test for the presence of bias

  1. Pseudophakodonesis and corneal endothelial contact: direct observations by high-speed cinematography.

    PubMed

    Jacobs, P M; Cheng, H; Price, N C

    1983-10-01

    High-speed cinematography was used to observe the movement of Federov type I lens implants within the anterior chamber. Our measurements suggest that in most patients contact between the lens implant and corneal endothelium does not occur.

  2. Analyzing the contribution of aerosols to an observed increase in direct normal irradiance in Oregon

    SciTech Connect

    Riihimaki, L. D.; Vignola, F.; Long, Charles N.

    2009-01-22

    Annual average total irradiance increases by 1-2% per decade at three monitoring stations in Oregon over the period from 1980 to 2007. Direct normal irradiance measurements increase by 5% per decade over the same time period. The measurements show no sign of a dimming before 1990. Clear-sky periods from this long direct normal time series are used in conjunction with radiative transfer calculations to look for changes in anthropogenic aerosols. Stratospheric aerosols from the volcanic eruptions of El Chichon and Mt. Pinatubo are clearly seen in the measurements. The period from 1987 to 2007 shows no detectable change in aerosols not explained by the volcanic aerosols. All three sites show relatively low clear-sky measurements before the eruption of El Chichon in 1982, suggesting higher aerosol loads during this period.

  3. Direct experimental observation of weakly-bound character of the attached electron in europium anion

    PubMed Central

    Cheng, Shi-Bo; Castleman, A. W.

    2015-01-01

    Direct experimental determination of precise electron affinities (EAs) of lanthanides is a longstanding challenge to experimentalists. Considerable debate exists in previous experiment and theory, hindering the complete understanding about the properties of the atomic anions. Herein, we report the first precise photoelectron imaging spectroscopy of europium (Eu), with the aim of eliminating prior contradictions. The measured EA (0.116 ± 0.013 eV) of Eu is in excellent agreement with recently reported theoretical predictions, providing direct spectroscopic evidence that the additional electron is weakly attached. Additionally, a new experimental strategy is proposed that can significantly increase the yield of the lanthanide anions, opening up the best opportunity to complete the periodic table of the atomic anions. The present findings not only serve to resolve previous discrepancy but also will help in improving the depth and accuracy of our understanding about the fundamental properties of the atomic anions. PMID:26198741

  4. Direct time-domain observation of attosecond final-state lifetimes in photoemission from solids

    NASA Astrophysics Data System (ADS)

    Tao, Zhensheng; Chen, Cong; Szilvási, Tibor; Keller, Mark; Mavrikakis, Manos; Kapteyn, Henry; Murnane, Margaret

    2016-07-01

    Attosecond spectroscopic techniques have made it possible to measure differences in transport times for photoelectrons from localized core levels and delocalized valence bands in solids. We report the application of attosecond pulse trains to directly and unambiguously measure the difference in lifetimes between photoelectrons born into free electron-like states and those excited into unoccupied excited states in the band structure of nickel (111). An enormous increase in lifetime of 212 ± 30 attoseconds occurs when the final state coincides with a short-lived excited state. Moreover, a strong dependence of this lifetime on emission angle is directly related to the final-state band dispersion as a function of electron transverse momentum. This finding underscores the importance of the material band structure in determining photoelectron lifetimes and corresponding electron escape depths.

  5. Direct observation of massless domain wall dynamics in nanostripes with perpendicular magnetic anisotropy.

    PubMed

    Vogel, J; Bonfim, M; Rougemaille, N; Boulle, O; Miron, I M; Auffret, S; Rodmacq, B; Gaudin, G; Cezar, J C; Sirotti, F; Pizzini, S

    2012-06-15

    Domain wall motion induced by nanosecond current pulses in nanostripes with perpendicular magnetic anisotropy (Pt/Co/AlO(x)) is shown to exhibit negligible inertia. Time-resolved magnetic microscopy during current pulses reveals that the domain walls start moving, with a constant speed, as soon as the current reaches a constant amplitude, and no or little motion takes place after the end of the pulse. The very low "mass" of these domain walls is attributed to the combination of their narrow width and high damping parameter α. Such a small inertia should allow accurate control of domain wall motion by tuning the duration and amplitude of the current pulses.

  6. Direct observation of electron-to-hole energy transfer in CdSe quantum dots.

    PubMed

    Hendry, E; Koeberg, M; Wang, F; Zhang, H; de Mello Donegá, C; Vanmaekelbergh, D; Bonn, M

    2006-02-10

    We independently determine the subpicosecond cooling rates for holes and electrons in CdSe quantum dots. Time-resolved luminescence and terahertz spectroscopy reveal that the rate of hole cooling, following photoexcitation of the quantum dots, depends critically on the electron excess energy. This constitutes the first direct, quantitative measurement of electron-to-hole energy transfer, the hypothesis behind the Auger cooling mechanism proposed in quantum dots, which is found to occur on a 1 +/- 0.15 ps time scale.

  7. Analyzing the Contribution of Aerosols to an Observed Increase in Direct Normal Irradiance in Oregon

    SciTech Connect

    Riihimaki, Laura D.; Vignola, F.; Long, Charles N.

    2009-01-22

    Annual average total irradiance increases by 1-2% per decade at three mon- itoring stations in Oregon over the period from 1980 to 2007. Direct normal irradiance measurements increase by 5% per decade over the same time pe- riod. The measurements show no sign of a dimming before 1990. The impact of high concentrations of stratospheric aerosols following the volcanic erup- tions of El Chich¶on and Mt. Pinatubo are clearly seen in the measurements. Removing these years from the annual average all-sky time series reduces the trends in both total and direct normal irradiance. Clear-sky periods from this long direct normal time series are used in conjunction with radiative trans- fer calculations to test whether part of the increase could be caused by an- thropogenic aerosols. All three sites show relatively low clear-sky measure- ments before the eruption of El Chich¶on in 1982, suggesting higher aerosol loads during this period. After removing the periods most strongly impacted by volcanic eruptions, two of the sites show statistically signi¯cant increases in clear-sky direct normal irradiance from 1987 to 2007. Radiative transfer calculations of the impact of volcanic aerosols and tropospheric water vapor indicate that only about 20% of that clear-sky increase between background aerosol periods before and after the eruption of Mt. Pinatubo can be explained by these two factors. Thus, a statistically signi¯cant clear-sky trend remains between 1987 and 2007 that is consistent with the hypothesis that at least some of the increase in surface irradiance could be caused by a reduction of anthropogenic aerosols. D

  8. Direct Observation of Oil Consumption Mechanisms in a Production Spark Ignition Engine Using Fluorescence Techniques

    DTIC Science & Technology

    1994-05-01

    investigated for different piston ring end-gap configurations. A radiotracer was used to perform direct measurement of the oil consumption while Laser- induced ...and Instrumentation . . . . 43 3.1 General .......... ................... .. 43 3.2 Engine Description ....... ............. .. 43 3.3 Laser Induced ...Duty Diesels h" Non-dimensionalized Ah. k Proportionality constant for surface tension 11 (NI [mK]). Kpa kilo-Pascal LIF Laser Induced Fluorescence

  9. Direct Observation of Reversible Magnesium Ion Intercalation into a Spinel Oxide Host

    SciTech Connect

    Kim, Chunjoong; Phillips, Patrick J.; Key, Baris; Yi, Tanghong; Nordlund, Dennis; Yu, Young-Sang; Bayliss, Ryan D.; Han, Sang-Don; He, Meinan; Zhang, Zhengcheng; Burrell, Anthony K.; Klie, Robert F.; Cabana, Jordi

    2015-06-10

    Direct evidence of Mg2+ intercalation into a spinel-type Mn2O4 is provided. By com­bining tools with different sensitivities, from atomic-resolution X-ray spectro­scopy to bulk X-ray diffraction, it is demonstrated that Mg2+ reversibly occupies the tetrahedral sites of the spinel structure through the reduction of Mn when the electrochemical reaction is performed.

  10. Direct experimental observation of the single reflection optical Goos-Hänchen shift.

    PubMed

    Schwefel, H G L; Köhler, W; Lu, Z H; Fan, J; Wang, L J

    2008-04-15

    We report a precise direct measurement of the Goos-Hänchen shift after one reflection off a dielectric interface coated with periodic metal stripes. The spatial displacement of the shift is determined by image analysis. A maximal absolute shift of 5.18 and 23.39 mum for TE and TM polarized light, respectively, is determined. This technique is simple to implement and can be used for a large range of incident angles.

  11. Direct observations of plasma upflows and condensation in a catastrophically cooling solar transition region loop

    SciTech Connect

    Orange, N. B.; Chesny, D. L.; Oluseyi, H. M.; Hesterly, K.; Patel, M.; Champey, P.

    2013-12-01

    Minimal observational evidence exists for fast transition region (TR) upflows in the presence of cool loops. Observations of such occurrences challenge notions of standard solar atmospheric heating models as well as their description of bright TR emission. Using the EUV Imaging Spectrometer on board Hinode, we observe fast upflows (v {sub λ} ≤ –10 km s{sup –1}) over multiple TR temperatures (5.8 ≤log T ≤ 6.0) at the footpoint sites of a cool loop (log T ≤ 6.0). Prior to cool loop energizing, asymmetric flows of +5 km s{sup –1} and –60 km s{sup –1} are observed at footpoint sites. These flows, speeds, and patterns occur simultaneously with both magnetic flux cancellation (at the site of upflows only) derived from the Solar Dynamics Observatory's Helioseismic Magnetic Imager's line-of-sight magnetogram images, and a 30% mass influx at coronal heights. The incurred non-equilibrium structure of the cool loop leads to a catastrophic cooling event, with subsequent plasma evaporation indicating that the TR is the heating site. From the magnetic flux evolution, we conclude that magnetic reconnection between the footpoint and background field is responsible for the observed fast TR plasma upflows.

  12. Direct Observation of a Nuclear Spin Excitation in Ho2Ti2O7

    SciTech Connect

    Ehlers, Georg; Mamontov, Eugene; Zamponi, Michaela M

    2009-01-01

    A single nondispersive excitation is observed by means of neutron backscattering, at E{sub 0} = 26.3 {micro}eV in the spin ice Ho{sub 2}Ti{sub 2}O{sub 7} but not in the isotopically enriched {sup 162}Dy{sub 2}Ti{sub 2}O{sub 7} analogue. The intensity of this excitation is rather small, {approx}< 0.2% of the elastic intensity. It is clearly observed below 80 K but resolution limited only below {approx}65 K. The application of a magnetic field up to {mu}{sub 0}H = 4.5 T, at 1.6 K, has no measurable effect on the energy or intensity. This nuclear excitation is believed to perturb the electronic, Ising spin system resulting in the persistent spin dynamics observed in spin ice compounds.

  13. Instructions for observing air temperature, humidity, and direction and force of wind

    USGS Publications Warehouse

    ,

    1892-01-01

    Description of instruments.-The temperature and humidity of the air are obtained from the simultaneous observation of a pair of mercurial thermometers termed the dry and the wet bulb. The air temperature is given by the dry-bulb thermometer, and the humidity is obtained from the combined readings of both. The wet-bulb thermometer differs from the dry-bulb thermometer only in having its bulb covered with thin muslin, which is wetted in pure water at each observation.The two thermometers are fastened in a light metal 'or wooden frame. To this frame is to be attached a stout cord for the whirling of the thermometers, which is an essential part of every observation.

  14. Direct Observations of Sigma Phase Growth and Dissolution in 2205 Duplex Stainless Steel

    SciTech Connect

    Palmer, T; Elmer, J; Babu, S; Specht, E

    2005-06-14

    The formation and growth of sigma ({sigma}) phase in a 2205 duplex stainless steel is monitored during an 850 C isothermal heat treatment using an in situ synchrotron x-ray diffraction technique. At this temperature, {sigma} phase is first observed within approximately 40 seconds of the start of the isothermal heat treatment and grows rapidly over the course of the 3600 second heat treatment to a volume fraction of approximately 13%. A simultaneous increase in the austenite ({gamma}) volume fraction and a decrease in the ferrite ({delta}) volume fraction are observed. The {sigma} phase formed at this temperature is rapidly dissolved within approximately 200 seconds when the temperature is increased to 1000 C. Accompanying this rapid dissolution of the {sigma} phase, the {delta} and {gamma} volume fractions both approach the balanced (50/50) level observed in the as-received material.

  15. Direct observation of closed magnetic flux trapped in the high-latitude magnetosphere.

    PubMed

    Fear, R C; Milan, S E; Maggiolo, R; Fazakerley, A N; Dandouras, I; Mende, S B

    2014-12-19

    The structure of Earth's magnetosphere is poorly understood when the interplanetary magnetic field is northward. Under this condition, uncharacteristically energetic plasma is observed in the magnetotail lobes, which is not expected in the textbook model of the magnetosphere. Using satellite observations, we show that these lobe plasma signatures occur on high-latitude magnetic field lines that have been closed by the fundamental plasma process of magnetic reconnection. Previously, it has been suggested that closed flux can become trapped in the lobe and that this plasma-trapping process could explain another poorly understood phenomenon: the presence of auroras at extremely high latitudes, called transpolar arcs. Observations of the aurora at the same time as the lobe plasma signatures reveal the presence of a transpolar arc. The excellent correspondence between the transpolar arc and the trapped closed flux at high altitudes provides very strong evidence of the trapping mechanism as the cause of transpolar arcs.

  16. Notes From the Field: Direct Observation Versus Rating by Videos for the Assessment of Central Venous Catheterization Skills.

    PubMed

    Ma, Irene W Y; Zalunardo, Nadia; Brindle, Mary E; Hatala, Rose; McLaughlin, Kevin

    2015-09-01

    Blinded assessments of technical skills using video-recordings may offer more objective assessments than direct observations. This study seeks to compare these two modalities. Two trained assessors independently assessed 18 central venous catheterization performances by direct observation and video-recorded assessments using two tools. Although sound quality was deemed adequate in all videos, portions of the video for wire handling and drape handling were frequently out of view (n = 13, 72% for wire-handling; n = 17, 94% for drape-handling). There were no differences in summary global rating scores, checklist scores, or pass/fail decisions for either modality (p > 0.05). Inter-rater reliability was acceptable for both modalities. Of the 26 discrepancies identified between direct observation and video-recorded assessments, three discrepancies (12%) were due to inattention during video review, while one (4%) discrepancy was due to inattention during direct observation. In conclusion, although scores did not differ between the two assessment modalities, techniques of video-recording may significantly impact individual items of assessments.

  17. Commentary: What You See Is What You Get--A Commentary on School-Based Direct Observation Systems

    ERIC Educational Resources Information Center

    Landau, Steven; Swerdlik, Mark E.

    2005-01-01

    Direct observation is the hallmark example of broader behavior assessment. As such, it involves a systematic process in which behaviors, settings, and their reciprocal relationship are studied. As a process, behavior assessment relies on multiple methods and repeated measurement. Each component in the behavior assessment battery makes a unique…

  18. A formal total synthesis of (+)-zincophorin. Observation of an unusual urea-directed Stork-Crabtree hydrogenation.

    PubMed

    Song, Zhenlei; Hsung, Richard P

    2007-05-24

    A formal total synthesis of (+)-zincophorin via interception of Miyashita's advanced intermediates is described here. This effort features the first synthetic application of an inverse demand hetero [4 + 2] cycloaddition of a chiral allenamide, and the observation of an unusual urea directed Stork-Crabtree hydrogenation.

  19. Establishing the Feasibility of Direct Observation in the Assessment of Tics in Children with Chronic Tic Disorders

    ERIC Educational Resources Information Center

    Himle, Michael B.; Chang, Susanna; Woods, Douglas W.; Pearlman, Amanda; Buzzella, Brian; Bunaciu, Liviu; Piacentini, John C.

    2006-01-01

    Behavior analysis has been at the forefront in establishing effective treatments for children and adults with chronic tic disorders. As is customary in behavior analysis, the efficacy of these treatments has been established using direct-observation assessment methods. Although behavior-analytic treatments have enjoyed acceptance and integration…

  20. Bi-directional streaming of halo electrons in interplanetary plasma clouds observed between 0.3 and 1 AU

    NASA Technical Reports Server (NTRS)

    Ivory, K.; Schwenn, R.

    1995-01-01

    The solar wind data obtained from the two Helios solar probes in the years 1974 to 1986 were systematically searched for the occurrence of bi-directional electron events. Most often these events are found in conjunction with shock associated magnetic clouds. The implications of these observations for the topology of interplanetary plasma clouds are discussed.

  1. OH Observations in the Direction of H2O Masers in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Gardner, F. F.; Whiteoak, J. B.

    1985-07-01

    1.6-GHz OH observations have been made towards five LMC H II regions that have been associated with H2O maser emission. Circularly polarized maser emission was observed in two cases, 0510-689 and 0540-696B, but not towards 0540-697A (N159), where emission had been previously reported. Weak OH absorption was detected for two regions (0539-691 and 0540-697A) and possibly a third (0540-696). The optical depths are low (around 0.01), providing additional evidence that molecular densities in the LMC are signficantly lower than in our Galaxy.

  2. Observation and interpretation of energy efficient, diffuse direct current glow discharge at atmospheric pressure

    SciTech Connect

    Tang, Jie Jiang, Weiman; Wang, Yishan; Zhao, Wei; Li, Jing; Duan, Yixiang

    2015-08-24

    A diffuse direct-current glow discharge was realized with low energy consumption and high energy utilization efficiency at atmospheric pressure. The formation of diffuse discharge was demonstrated by examining and comparing the electrical properties and optical emissions of plasmas. In combination with theoretical derivation and calculation, we draw guidelines that appearance of nitrogen ions at low electron density is crucial to enhance the ambipolar diffusion for the expansion of discharge channel and the increasing ambipolar diffusion near the cathode plays a key role in the onset of diffuse discharge. An individual-discharge-channel expansion model is proposed to explain the diffuse discharge formation.

  3. Direct observation of spontaneous weak ferromagnetism in the superconductor ErNi2B2C.

    PubMed

    Choi, S M; Lynn, J W; Lopez, D; Gammel, P L; Canfield, P C; Bud'ko, S L

    2001-09-03

    Neutron measurements show that superconducting ErNi2B2C (T(C) = 11 K) develops antiferromagnetic spin density wave magnetic order (T(N) = 6 K), which squares up with decreasing temperature yielding a series of higher-order magnetic Bragg peaks with odd harmonics. Below T(WFM) = 2.3 K where magnetization indicates a net moment develops, even-order Bragg peaks develop which low field (approximately 3 Oe) polarized beam measurements show are magnetic in origin. The data directly demonstrate the existence of a net magnetization with a periodicity of 20a, confirming the microscopic coexistence of spontaneous weak ferromagnetism with superconductivity.

  4. Azimuthal instability of the interface in a shear banded flow by direct visual observation.

    PubMed

    Decruppe, J P; Bécu, L; Greffier, O; Fazel, N

    2010-12-17

    The stability of the shear banded flow of a Maxwellian fluid is studied from an experimental point of view using rheology and flow visualization with polarized light. We show that the one-layer homogeneous flow cannot sustain shear rates corresponding to the end of the stress plateau. The high shear rate branch is not found and the shear stress oscillates at the end of the plateau. An azimuthal instability appears: the shear induced band becomes unstable and the interface between the two bands undulates in time and space with a period τ, a wavelength λ and a wave vector k parallel to the direction of the tangential velocity.

  5. Replication of Non-Trivial Directional Motion in Multi-Scales Observed by the Runs Test

    NASA Astrophysics Data System (ADS)

    Yura, Yoshihiro; Ohnishi, Takaaki; Yamada, Kenta; Takayasu, Hideki; Takayasu, Misako

    Non-trivial autocorrelation in up-down statistics in financial market price fluctuation is revealed by a multi-scale runs test(Wald-Wolfowitz test). We apply two models, a stochastic price model and dealer model to understand this property. In both approaches we successfully reproduce the non-stationary directional price motions consistent with the runs test by tuning parameters in the models. We find that two types of dealers exist in the markets, a short-time-scale trend-follower and an extended-time-scale contrarian who are active in different time periods.

  6. Direct observation of nonlinear coupling in wave turbulence at the surface of water and relevance of approximate resonances

    NASA Astrophysics Data System (ADS)

    Aubourg, Quentin; Mordant, Nicolas

    2016-04-01

    energy cascade is clearly observed consistently with previous measurements. A large amount of data permits us to use higher order statistical tools to investigate directly the resonant interactions. We observe a strong presence of triadic interactions in our system, confirming the foundations of the weak wave turbulence theory. A significant part of these interactions are non-local and enable coupling between capillary and gravity waves. We also emphasize the role of approximate resonances that are made possible by the nonlinear spectral widening. The quasi-resonances increase significantly the number of wave interactions and in particular open the possibility of observing 3-wave coupling among gravity waves although 3-wave exact resonances are prohibited. These effects are being currently investigated in a larger size experiment using a 13m in diameter wave flume. Our observation raise the question of the importance of these approximate resonances of gravity waves in energy transfers both in the theory and in the ocean.

  7. A DTN-ready application for the real-time dissemination of Earth Observation data received by Direct Readout stations

    NASA Astrophysics Data System (ADS)

    Paronis, Dimitris; Daglis, Ioannis A.; Diamantopoulos, Sotirios; Tsaoussidis, Vassilis; Tsigkanos, Antonis; Ghita, Bogdan; Evans, Michael

    2014-05-01

    The majority of Earth observation satellites operate in low Earth sun-synchronous orbit and transmit data captured by a variety of sensors. The effective dissemination of satellite data in real-time is a crucial parameter for disaster monitoring in particular. Generally, a spacecraft collects data and then stores it on-board until it passes over dedicated ground stations to transmit the data. Additionally, some satellites (e.g. Terra, Aqua, Suomi-NPP, NOAA series satellites) have the so-called Direct Broadcast (DB) capability, which is based on a real-time data transmission sub-system. Compatible Direct Readout (DR) stations in direct line of sight are able to receive these transmissions. To date data exchange between DR stations have not been fully exploited for real-time data dissemination. Stations around the world store data locally, which is then disseminated on demand via Internet gateways based on the standard TCP-IP protocols. On the other hand, Delay Tolerant Networks (DTNs), which deliver data by enabling store-and-forward transmission in order to cope with link failures, service disruptions and network congestion, could prove as an alternative/complementary transmission mechanism for the efficient dissemination of data. The DTN architecture allows for efficient utilization of the network, using in-network storage and taking advantage of the network availability among the interconnected nodes. Although DTNs were originally developed for high-propagation delay, challenged connectivity environments such as deep space, the broader research community has investigated possible architectural enhancements for various emerging applications (e.g., terrestrial infrastructure, ground-to-air communications, content retrieval and dissemination). In this paper, a scheme for the effective dissemination of DB data is conceptualized, designed and implemented based on store-and-forward transmission capabilities provided by DTNs. For demonstration purposes, a set-up has

  8. Observation of cosmic ray flux deficit in the direction of the sun using a charged particle traking telescope

    NASA Astrophysics Data System (ADS)

    Bahmanabadi, Mahmud

    2017-01-01

    A cosmic ray tracking telescope has been made for the measurement of the secondary cosmic ray flux at ground level. The observations have been made both looking in the direction of the sun and away from the sun. Our observations by the telescope shows a deficiency in the detected number of cosmic rays entering the telescope when its axis was pointing to the sun compared to that entering the telescope with no sun in its field of view. The statistical significance of this deficit with the Li and Ma method stands near 1.3σ for all of our observations.

  9. Directly Observed Physical Activity among 3-Year-Olds in Finnish Childcare

    ERIC Educational Resources Information Center

    Soini, Anne; Villberg, Jari; Sääkslahti, Arja; Gubbels, Jessica; Mehtälä, Anette; Kettunen, Tarja; Poskiparta, Marita

    2014-01-01

    The main purpose of the study was to determine 3-year-olds' physical activity levels and how these vary across season, gender, time of day, location, and the physical and social environment in childcare settings in Finland. A modified version of the Observational System for Recording Physical Activity in Children-Preschool (OSRAC-P) was used to…

  10. DIRECT OBSERVATION OF A SHARP TRANSITION TO COHERENCE IN DENSE CORES

    SciTech Connect

    Pineda, Jaime E.; Goodman, Alyssa A.; Foster, Jonathan B.; Myers, Philip C.; Arce, Hector G.; Caselli, Paola; Rosolowsky, Erik W.

    2010-03-20

    We present NH{sub 3} observations of the B5 region in Perseus obtained with the Green Bank Telescope. The map covers a region large enough ({approx}11'x14') that it contains the entire dense core observed in previous dust continuum surveys. The dense gas traced by NH{sub 3}(1,1) covers a much larger area than the dust continuum features found in bolometer observations. The velocity dispersion in the central region of the core is small, presenting subsonic non-thermal motions which are independent of scale. However, it is because of the coverage and high sensitivity of the observations that we present the detection, for the first time, of the transition between the coherent core and the dense but more turbulent gas surrounding it. This transition is sharp, increasing the velocity dispersion by a factor of 2 in less than 0.04 pc (the 31'' beam size at the distance of Perseus, {approx}250 pc). The change in velocity dispersion at the transition is {approx}3 km s{sup -1} pc{sup -1}. The existence of the transition provides a natural definition of dense core: the region with nearly constant subsonic non-thermal velocity dispersion. From the analysis presented here, we can neither confirm nor rule out a corresponding sharp density transition.

  11. MALDI-imaging enables direct observation of kinetic and thermodynamic products of mixed peptide fiber assembly.

    PubMed

    Medini, Karima; West, Brandi; Williams, David E; Brimble, Margaret A; Gerrard, Juliet A

    2017-02-04

    Controlling the self-assembly of multicomponent systems provides a key to designing new materials and understanding the molecular complexity of biology. Here, we demonstrate the first use of MALDI-imaging to characterize a multicomponent self-assembling peptide fiber. Observations of mixed peptide systems over time demonstrate how simple sequence variation can change the balance between kinetic and thermodynamic products.

  12. Observations of bi-directional leader development in a triggered lightning flash

    NASA Technical Reports Server (NTRS)

    Laroche, P.; Idone, V.; Eybert-Berard, A.; Barret, L.

    1991-01-01

    Observations of a modified form of rocket triggered lightning are described. A flash triggered during the summer of 1989 is studied as part of an effort to model bidirectional discharge. It is suggested that the altitude triggering technique provides a realistic means of studying the attachment process.

  13. Direct observation of dynamic modes excited in a magnetic insulator by pure spin current

    PubMed Central

    Demidov, V. E.; Evelt, M.; Bessonov, V.; Demokritov, S. O.; Prieto, J. L.; Muñoz, M.; Ben Youssef, J.; Naletov, V. V.; de Loubens, G.; Klein, O.; Collet, M.; Bortolotti, P.; Cros, V.; Anane, A.

    2016-01-01

    Excitation of magnetization dynamics by pure spin currents has been recently recognized as an enabling mechanism for spintronics and magnonics, which allows implementation of spin-torque devices based on low-damping insulating magnetic materials. Here we report the first spatially-resolved study of the dynamic modes excited by pure spin current in nanometer-thick microscopic insulating Yttrium Iron Garnet disks. We show that these modes exhibit nonlinear self-broadening preventing the formation of the self-localized magnetic bullet, which plays a crucial role in the stabilization of the single-mode magnetization oscillations in all-metallic systems. This peculiarity associated with the efficient nonlinear mode coupling in low-damping materials can be among the main factors governing the interaction of pure spin currents with the dynamic magnetization in high-quality magnetic insulators. PMID:27608533

  14. Direct observation of hydrogen atom dynamics and interactions by ultrahigh resolution neutron protein crystallography.

    PubMed

    Chen, Julian C-H; Hanson, B Leif; Fisher, S Zoë; Langan, Paul; Kovalevsky, Andrey Y

    2012-09-18

    The 1.1 Å, ultrahigh resolution neutron structure of hydrogen/deuterium (H/D) exchanged crambin is reported. Two hundred ninety-nine out of 315, or 94.9%, of the hydrogen atom positions in the protein have been experimentally derived and resolved through nuclear density maps. A number of unconventional interactions are clearly defined, including a potential O─H…π interaction between a water molecule and the aromatic ring of residue Y44, as well as a number of potential C─H…O hydrogen bonds. Hydrogen bonding networks that are ambiguous in the 0.85 Å ultrahigh resolution X-ray structure can be resolved by accurate orientation of water molecules. Furthermore, the high resolution of the reported structure has allowed for the anisotropic description of 36 deuterium atoms in the protein. The visibility of hydrogen and deuterium atoms in the nuclear density maps is discussed in relation to the resolution of the neutron data.

  15. Direct Observation of Optical Field Phase Carving in the Vicinity of Plasmonic Metasurfaces.

    PubMed

    Dagens, B; Février, M; Gogol, P; Blaize, S; Apuzzo, A; Magno, G; Mégy, R; Lerondel, G

    2016-07-13

    Plasmonic surfaces are mainly used for their optical intensity concentration properties that allow for enhancement of physical interaction like in nonlinear optics, optical sensors, or tweezers. Phase response in plasmonic resonances can also play a major role, especially in a periodic assembly of plasmonic resonators like metasurfaces. Here we show that localized surface plasmons collectively excited by a guided mode in a metallic nanostructure periodic chain present nonmonotonous phase variation along the 1D metasurface, resulting from both selective Bloch mode coupling and dipolar coupling. As shown by near-field measurements, the phase profile of the highly concentrated optical field is carved out in the vicinity of the metallic metasurface, paving the way to unusual local optical functions.

  16. Direct Observation of Band Structure Modifications in Nanocrystals of CsPbBr3 Perovskite.

    PubMed

    Lin, Junhao; Gomez, Leyre; de Weerd, Chris; Fujiwara, Yasufumi; Gregorkiewicz, Tom; Suenaga, Kazutomo

    2016-11-09

    We investigate the variation of the bandgap energy of single quantum dots of CsPbBr3 inorganic halide perovskite as a function of size and shape and upon embedding within an ensemble. For that purpose, we make use of valence-loss electron spectroscopy with Z-contrast annular dark-field (ADF) imaging in a state-of-the-art low-voltage monochromatic scanning transmission electron microscope. In the experiment, energy absorption is directly mapped onto individual quantum dots, whose dimensions and location are simultaneously measured to the highest precision. In that way, we establish an intimate relation between quantum dot size and even shape and its bandgap energy on a single object level. We explicitly follow the bandgap increase in smaller quantum dots due to quantum confinement and demonstrate that it is predominantly governed by the smallest of the three edges of the cuboidal perovskite dot. We also show the presence of an effective coupling between proximal dots in an ensemble, leading to band structure modification. These unique insights are directly relevant to the development of custom-designed quantum structures and solids which will be realized by purposeful assemblage of individually characterized and selected quantum dots, serving as building blocks.

  17. Direct observation of dynamic charge stripes in La2-xSrxNiO4.

    PubMed

    Anissimova, S; Parshall, D; Gu, G D; Marty, K; Lumsden, M D; Chi, Songxue; Fernandez-Baca, J A; Abernathy, D L; Lamago, D; Tranquada, J M; Reznik, D

    2014-03-17

    The insulator-to-metal transition continues to be a challenging subject, especially when electronic correlations are strong. In layered compounds, such as La2-xSrxNiO4 and La2-xBaxCuO4, the doped charge carriers can segregate into periodically spaced charge stripes separating narrow domains of antiferromagnetic order. Although there have been theoretical proposals of dynamically fluctuating stripes, direct spectroscopic evidence of charge-stripe fluctuations has been lacking. Here we report the detection of critical lattice fluctuations, driven by charge-stripe correlations, in La2-xSrxNiO4 using inelastic neutron scattering. This scattering is detected at large momentum transfers where the magnetic form factor suppresses the spin fluctuation signal. The lattice fluctuations associated with the dynamic charge stripes are narrow in q and broad in energy. They are strongest near the charge-stripe melting temperature. Our results open the way towards the quantitative theory of dynamic stripes and for directly detecting dynamical charge stripes in other strongly correlated systems, including high-temperature superconductors such as La2-xSrxCuO4.

  18. Direct observation of dynamic charge stripes in La2-xSrxNiO4

    NASA Astrophysics Data System (ADS)

    Anissimova, S.; Parshall, D.; Gu, G. D.; Marty, K.; Lumsden, M. D.; Chi, Songxue; Fernandez-Baca, J. A.; Abernathy, D. L.; Lamago, D.; Tranquada, J. M.; Reznik, D.

    2014-03-01

    The insulator-to-metal transition continues to be a challenging subject, especially when electronic correlations are strong. In layered compounds, such as La2-xSrxNiO4 and La2-xBaxCuO4, the doped charge carriers can segregate into periodically spaced charge stripes separating narrow domains of antiferromagnetic order. Although there have been theoretical proposals of dynamically fluctuating stripes, direct spectroscopic evidence of charge-stripe fluctuations has been lacking. Here we report the detection of critical lattice fluctuations, driven by charge-stripe correlations, in La2-xSrxNiO4 using inelastic neutron scattering. This scattering is detected at large momentum transfers where the magnetic form factor suppresses the spin fluctuation signal. The lattice fluctuations associated with the dynamic charge stripes are narrow in q and broad in energy. They are strongest near the charge-stripe melting temperature. Our results open the way towards the quantitative theory of dynamic stripes and for directly detecting dynamical charge stripes in other strongly correlated systems, including high-temperature superconductors such as La2-xSrxCuO4.

  19. Accuracy and Limitations of Fitting and Stereoscopic Methods to Determine the Direction of Coronal Mass Ejections from Heliospheric Imagers Observations

    NASA Astrophysics Data System (ADS)

    Lugaz, N.

    2010-12-01

    Using data from the Heliospheric Imagers (HIs) onboard STEREO, it is possible to derive the direction of propagation of coronal mass ejections (CMEs) in addition to their speed with a variety of methods. For CMEs observed by both STEREO spacecraft, it is possible to derive their direction using simultaneous observations from the twin spacecraft and also, using observations from only one spacecraft with fitting methods. This makes it possible to test and compare different analysis techniques. In this article, we propose a new fitting method based on observations from one spacecraft, which we compare to the commonly used fitting method of Sheeley et al. ( J. Geophys. Res. 104, 24739, 1999). We also compare the results from these two fitting methods with those from two stereoscopic methods, focusing on 12 CMEs observed simultaneously by the two STEREO spacecraft in 2008 and 2009. We find evidence that the fitting method of Sheeley et al. ( J. Geophys. Res. 104, 24739, 1999) may result in significant errors in the determination of the CME direction when the CME propagates outside of 60°±20° from the Sun - spacecraft line. We expect our new fitting method to be better adapted to the analysis of halo or limb CMEs with respect to the observing spacecraft. We also find some evidence that direct triangulation in the HI fields-of-view should only be applied to CMEs propagating approximatively toward Earth (± 20° from the Sun - Earth line). Last, we address one of the possible sources of errors of fitting methods: the assumption of radial propagation. Using stereoscopic methods, we find that at least seven of the 12 studied CMEs had a heliospheric deflection of less than 20° as they propagated in the HI fields-of-view, which, we believe, validates this approximation.

  20. Observation of directly interacting coherent two-level systems in an amorphous material.

    PubMed

    Lisenfeld, Jürgen; Grabovskij, Grigorij J; Müller, Clemens; Cole, Jared H; Weiss, Georg; Ustinov, Alexey V

    2015-02-05

    Parasitic two-level tunnelling systems originating from structural material defects affect the functionality of various microfabricated devices by acting as a source of noise. In particular, superconducting quantum bits may be sensitive to even single defects when these reside in the tunnel barrier of the qubit's Josephson junctions, and this can be exploited to observe and manipulate the quantum states of individual tunnelling systems. Here, we detect and fully characterize a system of two strongly interacting defects using a novel technique for high-resolution spectroscopy. Mutual defect coupling has been conjectured to explain various anomalies of glasses, and was recently suggested as the origin of low-frequency noise in superconducting devices. Our study provides conclusive evidence of defect interactions with full access to the individual constituents, demonstrating the potential of superconducting qubits for studying material defects. All our observations are consistent with the assumption that defects are generated by atomic tunnelling.

  1. Observation of dust torus with poloidal rotation in direct current glow discharge plasma

    SciTech Connect

    Kaur, Manjit Bose, Sayak; Chattopadhyay, P. K. Sharma, Devendra; Ghosh, J.; Saxena, Y. C.

    2015-03-15

    Observation of dust cloud rotation in parallel-plate DC glow discharge plasma is reported here. The experiments are carried out at high pressures (∼130 Pa) with a metallic ring placed on the lower electrode (cathode). The dust cloud rotates poloidally in the vertical plane near the cathode surface. This structure is continuous toroidally. Absence of magnetic field rules out the possibility of E × B induced ion flow as the cause of dust rotation. The dust rotational structures exist even with water cooled cathode. Therefore, temperature gradient driven mechanisms, such as thermophoretic force, thermal creep flow, and free convection cannot be causing the observed dust rotation. Langmuir probe measurement reveals the existence of a sharp density gradient near the location of the rotating dust cloud. The gradient in the density, giving rise to a gradient in the ion drag force, has been identified as the principal cause behind the rotation of dust particles.

  2. Direct observation of an attosecond electron wave packet in a nitrogen molecule

    PubMed Central

    Okino, Tomoya; Furukawa, Yusuke; Nabekawa, Yasuo; Miyabe, Shungo; Amani Eilanlou, A.; Takahashi, Eiji J.; Yamanouchi, Kaoru; Midorikawa, Katsumi

    2015-01-01

    Capturing electron motion in a molecule is the basis of understanding or steering chemical reactions. Nonlinear Fourier transform spectroscopy using an attosecond-pump/attosecond-probe technique is used to observe an attosecond electron wave packet in a nitrogen molecule in real time. The 500-as electronic motion between two bound electronic states in a nitrogen molecule is captured by measuring the fragment ions with the same kinetic energy generated in sequential two-photon dissociative ionization processes. The temporal evolution of electronic coherence originating from various electronic states is visualized via the fragment ions appearing after irradiation of the probe pulse. This observation of an attosecond molecular electron wave packet is a critical step in understanding coupled nuclear and electron motion in polyatomic and biological molecules to explore attochemistry. PMID:26601262

  3. Direct in situ observations of single Fe atom catalytic processes and anomalous diffusion at graphene edges.

    PubMed

    Zhao, Jiong; Deng, Qingming; Avdoshenko, Stanislav M; Fu, Lei; Eckert, Jürgen; Rümmeli, Mark H

    2014-11-04

    Single-atom catalysts are of great interest because of their high efficiency. In the case of chemically deposited sp(2) carbon, the implementation of a single transition metal atom for growth can provide crucial insight into the formation mechanisms of graphene and carbon nanotubes. This knowledge is particularly important if we are to overcome fabrication difficulties in these materials and fully take advantage of their distinct band structures and physical properties. In this work, we present atomically resolved transmission EM in situ investigations of single Fe atoms at graphene edges. Our in situ observations show individual iron atoms diffusing along an edge either removing or adding carbon atoms (viz., catalytic action). The experimental observations of the catalytic behavior of a single Fe atom are in excellent agreement with supporting theoretical studies. In addition, the kinetics of Fe atoms at graphene edges are shown to exhibit anomalous diffusion, which again, is in agreement with our theoretical investigations.

  4. Direct observation of interstitial dislocation loop coarsening in α-iron.

    PubMed

    Moll, S; Jourdan, T; Lefaix-Jeuland, H

    2013-07-05

    Interstitial loop coarsening by Ostwald ripening can provide insight into single point defects but is very difficult to observe in α-iron and many other metals where nanoscale vacancy clusters dissociate and annihilate loops. We show that by implanting helium in the samples at a carefully chosen energy, it is possible to observe Ostwald ripening of loops by transmission electron microscopy during in situ isochronal annealings. This coarsening of loops results in a sharp increase of the mean loop radius at around 850 K. Using cluster dynamics simulations, we demonstrate that loops evolve due to vacancy emission and that such experiments give a robust estimation of the sum of the formation and migration free energies of vacancies. In particular, our results are in good agreement with self-diffusion experiments and confirm that entropic contributions are large for the vacancy in α-iron.

  5. Observation

    ERIC Educational Resources Information Center

    Helfrich, Shannon

    2016-01-01

    Helfrich addresses two perspectives from which to think about observation in the classroom: that of the teacher observing her classroom, her group, and its needs, and that of the outside observer coming into the classroom. Offering advice from her own experience, she encourages and defends both. Do not be afraid of the disruption of outside…

  6. Observations

    ERIC Educational Resources Information Center

    Joosten, Albert Max

    2016-01-01

    Joosten begins his article by telling us that love and knowledge together are the foundation for our work with children. This combination is at the heart of our observation. With this as the foundation, he goes on to offer practical advice to aid our practice of observation. He offers a "List of Objects of Observation" to help guide our…

  7. Direct Observation of Fracture of Cas-Glass/SiC Composites and Processing of Toughened Alumina

    DTIC Science & Technology

    1992-09-01

    to the load-displacement behaviour include indirect techniques such as acoustic emission and edge replication microscopy ( Zawada et at, 1991; Harris...18b). Zawada et aL (1991) also observed that 900 ply cracks precede 00 cracks in tests on the same cross-ply material with unnotched specimens; Pryce...have been some loss of stiffness. Similar behaviour has been found in fatigue with unnotched specimens of this material by Zawada et aL (1991). - 58

  8. Direct observation of the birth of a nanocrystalline nucleus in an amorphous matrix

    SciTech Connect

    Rauf, Ijaz A.

    2008-10-06

    Nucleation of crystals within an amorphous phase can be induced using electron beam irradiation in an electron microscope. In contrast to generally believed two-step phase transformation involving nucleation and growth, we observe a three-step transformation: a two-step nucleation stage followed by the growth process. The two steps in the nucleation stage are: the formation of a basic crystalline skeleton followed by the diffusion of excess defects to the periphery of the crystalline skeleton.

  9. Direct observation of spin-like reaction fronts in planar energetic multilayer foils.

    SciTech Connect

    Adams, David Price; Hodges, V. Carter; Jones, Eric D., Jr.; McDonald, Joel Patrick

    2008-10-01

    Propagating reactions in initially planar cobalt/aluminum exothermic multilayer foils have been investigated using high-speed digital photography. Real-time observations of reactions indicate that unsteady (spinlike) reaction propagation leads to the formation of highly periodic surface morphologies with length scales ranging from 1 {micro}m to 1 mm. The characteristics of propagating spinlike reactions and corresponding reacted foil morphologies depend on the bilayer thickness of multilayer foils.

  10. Direct observation of the birth of a nanocrystalline nucleus in an amorphous matrix

    NASA Astrophysics Data System (ADS)

    Rauf, Ijaz A.

    2008-10-01

    Nucleation of crystals within an amorphous phase can be induced using electron beam irradiation in an electron microscope. In contrast to generally believed two-step phase transformation involving nucleation and growth, we observe a three-step transformation: a two-step nucleation stage followed by the growth process. The two steps in the nucleation stage are: the formation of a basic crystalline skeleton followed by the diffusion of excess defects to the periphery of the crystalline skeleton.

  11. Direct observation of electrically induced Pauli paramagnetism in single-layer graphene using ESR spectroscopy

    PubMed Central

    Fujita, Naohiro; Matsumoto, Daisuke; Sakurai, Yuki; Kawahara, Kenji; Ago, Hiroki; Takenobu, Taishi; Marumoto, Kazuhiro

    2016-01-01

    Graphene has been actively investigated as an electronic material owing to many excellent physical properties, such as high charge mobility and quantum Hall effect, due to the characteristics of a linear band structure and an ideal two-dimensional electron system. However, the correlations between the transport characteristics and the spin states of charge carriers or atomic vacancies in graphene have not yet been fully elucidated. Here, we show the spin states of single-layer graphene to clarify the correlations using electron spin resonance (ESR) spectroscopy as a function of accumulated charge density using transistor structures. Two different electrically induced ESR signals were observed. One is originated from a Fermi-degenerate two-dimensional electron system, demonstrating the first observation of electrically induced Pauli paramagnetism from a microscopic viewpoint, showing a clear contrast to no ESR observation of Pauli paramagnetism in carbon nanotubes (CNTs) due to a one-dimensional electron system. The other is originated from the electrically induced ambipolar spin vanishments due to atomic vacancies in graphene, showing a universal phenomenon for carbon materials including CNTs. The degenerate electron system with the ambipolar spin vanishments would contribute to high charge mobility due to the decrease in spin scatterings in graphene. PMID:27731338

  12. Direct observation of a 'devil's staircase' in wave-particle interaction

    SciTech Connect

    Doveil, Fabrice; Macor, Alessandro; Elskens, Yves

    2006-09-15

    We report the experimental observation of a 'devil's staircase' in a time-dependent system considered as a paradigm for the transition to large-scale chaos in the universality class of Hamiltonian systems. A test electron beam is used to observe its non-self-consistent interaction with externally excited wave(s) in a traveling wave tube (TWT). A trochoidal energy analyzer records the beam energy distribution at the output of the interaction line. An arbitrary waveform generator is used to launch a prescribed spectrum of waves along the slow wave structure (a 4 m long helix) of the TWT. The resonant velocity domain associated to a single wave is observed, as well as the transition to large-scale chaos when the resonant domains of two waves and their secondary resonances overlap. This transition exhibits a 'devil's staircase' behavior for increasing excitation amplitude, due to the nonlinear forcing by the second wave on the pendulum-like motion of a charged particle in one electrostatic wave.

  13. Value-directed human behavior analysis from video using partially observable Markov decision processes.

    PubMed

    Hoey, Jesse; Little, James J

    2007-07-01

    This paper presents a method for learning decision theoretic models of human behaviors from video data. Our system learns relationships between the movements of a person, the context in which they are acting, and a utility function. This learning makes explicit that the meaning of a behavior to an observer is contained in its relationship to actions and outcomes. An agent wishing to capitalize on these relationships must learn to distinguish the behaviors according to how they help the agent to maximize utility. The model we use is a partially observable Markov decision process, or POMDP. The video observations are integrated into the POMDP using a dynamic Bayesian network that creates spatial and temporal abstractions amenable to decision making at the high level. The parameters of the model are learned from training data using an a posteriori constrained optimization technique based on the expectation-maximization algorithm. The system automatically discovers classes of behaviors and determines which are important for choosing actions that optimize over the utility of possible outcomes. This type of learning obviates the need for labeled data from expert knowledge about which behaviors are significant and removes bias about what behaviors may be useful to recognize in a particular situation. We show results in three interactions: a single player imitation game, a gestural robotic control problem, and a card game played by two people.

  14. Feshbach enhanced s-wave scattering of fermions: direct observation with optimized absorption imaging

    PubMed Central

    Genkina, D; Aycock, LM; Stuhl, BK; Lu, H-I; Williams, RA; Spielman, IB

    2016-01-01

    We directly measured the normalized s-wave scattering cross-section of ultracold 40K atoms across a magnetic-field Feshbach resonance by colliding pairs of degenerate Fermi gases (DFGs) and imaging the scattered atoms. We extracted the scattered fraction for a range of bias magnetic fields, and measured the resonance location to be B0 = 20.206(15) mT with width Δ = 1.0(5) mT. To optimize the signal-to-noise ratio of atom number in scattering images, we developed techniques to interpret absorption images in a regime where recoil induced detuning corrections are significant. These imaging techniques are generally applicable to experiments with lighter alkalis that would benefit from maximizing signal-to-noise ratio on atom number counting at the expense of spatial imaging resolution. PMID:26903778

  15. Paul trapping of radioactive 6He+ ions and direct observation of their beta decay.

    PubMed

    Fléchard, X; Liénard, E; Méry, A; Rodríguez, D; Ban, G; Durand, D; Duval, F; Herbane, M; Labalme, M; Mauger, F; Naviliat-Cuncic, O; Thomas, J C; Velten, Ph

    2008-11-21

    We demonstrate that abundant quantities of short-lived beta unstable ions can be trapped in a novel transparent Paul trap and that their decay products can directly be detected in coincidence. Low energy 6He+ (807 ms half-life) ions were extracted from the SPIRAL source at GANIL, then decelerated, cooled, and bunched by means of the buffer gas cooling technique. More than 10(8) ions have been stored over a measuring period of six days, and about 10(5) decay coincidences between the beta particles and the 6Li++ recoiling ions have been recorded. The technique can be extended to other short-lived species, opening new possibilities for trap assisted decay experiments.

  16. Direct Observation of Room-Temperature Polar Ordering in Colloidal GeTe Nanocrystals

    SciTech Connect

    Polking, Mark J.; Zheng, Haimei; Urban, Jeffrey J.; Milliron, Delia J.; Chan, Emory; Caldwell, Marissa A.; Raoux, Simone; Kisielowski, Christian F.; Ager III, Joel W.; Ramesh, Ramamoorthy; Alivisatos, A.P.

    2009-12-07

    Ferroelectrics and other materials that exhibit spontaneous polar ordering have demonstrated immense promise for applications ranging from non-volatile memories to microelectromechanical systems. However, experimental evidence of polar ordering and effective synthetic strategies for accessing these materials are lacking for low-dimensional nanomaterials. Here, we demonstrate the synthesis of size-controlled nanocrystals of the polar material germanium telluride (GeTe) using colloidal chemistry and provide the first direct evidence of room-temperature polar ordering in nanocrystals less than 5 nm in size using aberration-corrected transmission electron microscopy. Synchrotron x-ray diffraction and Raman studies demonstrate a sizeable polar distortion and a reversible size-dependent polar phase transition in these nanocrystals. The stability of polar ordering in solution-processible nanomaterials suggests an economical avenue to Tbit/in2-density non-volatile memory devices and other applications.

  17. High-temperature corrosion observed in austenitic coils and tubes in a direct reduction process

    SciTech Connect

    Campillo, B.; Gonzalez, C.; Hernandez-Duque, G.; Juarez-Islas, J.A.

    2000-02-01

    The subject of this study is related to the performance of austenitic steel coils and tubes, in a range of temperatures between 425 and 870 C for the transport of reducing gas, in an installation involving the direct reduction of iron-ore by reforming natural gas. Evidence is presented that metal dusting is not the only unique high-temperature corrosion mechanism that caused catastrophic failures of austenitic 304 (UNS S30400) coils and HK-40 (UNS J94204) tubes. Sensitization as well as stress corrosion cracking occurred in 304 stainless steel coils and metal dusting took place in HK-40 tubes, a high resistance alloy. The role of continuous injection of H{sub 2}S into the process is suggested to avoid the high resistance metal dusting corrosion mechanism found in this kind of installation.

  18. The direct observation of charge separation dynamics in CdSe quantum dots/cobaloxime hybrids

    SciTech Connect

    Huang, J.; Tang, Y.; Mulfort, Karen L.; Zhang, Xiaoyi

    2016-02-14

    In this work, we investigated photoinduced charge separation dynamics in a CdSe quantum dot/cobaloxime molecular catalyst hybrid using the combination of transient optical (OTA) and X-ray absorption (XTA) spectroscopy. We show that ultrafast charge separation occurs through electron transfer (ET) from CdSe QDs to cobaloxime. In addition to the enhanced 1S exciton bleach recovery in CdSe QDs due to the presence of cobaloxime, the direct evidence for ET process, i.e. the formation of the transient charge separated state, is captured by XTA. These results not only demonstrate the capability of XTA to capture the transient species during the photoinduced reactions in hybrid nanostructures but also enhance our understanding of charge separation dynamics in semiconductor nanocrystal/molecular catalyst hybrid

  19. Direct atomic-scale observation of layer-by-layer oxide growth during magnesium oxidation

    SciTech Connect

    Zheng, He; Wu, Shujing; Sheng, Huaping; Liu, Chun; Liu, Yu; Cao, Fan; Zhou, Zhichao; Zhao, Dongshan E-mail: dszhao@whu.edu.cn; Wang, Jianbo E-mail: dszhao@whu.edu.cn; Zhao, Xingzhong

    2014-04-07

    The atomic-scale oxide growth dynamics are directly revealed by in situ high resolution transmission electron microscopy during the oxidation of Mg surface. The oxidation process is characterized by the layer-by-layer growth of magnesium oxide (MgO) nanocrystal via the adatom process. Consistently, the nucleated MgO crystals exhibit faceted surface morphology as enclosed by (200) lattice planes. It is believed that the relatively lower surface energies of (200) lattice planes should play important roles, governing the growth mechanism. These results facilitate the understanding of the nanoscale oxide growth mechanism that will have an important impact on the development of magnesium or magnesium alloys with improved resistance to oxidation.

  20. Direct observation of microstructures on superconducting single crystals of K x Fe2- y Se2

    NASA Astrophysics Data System (ADS)

    Tanaka, Masashi; Takeya, Hiroyuki; Takano, Yoshihiko

    2017-02-01

    Potassium-intercalated FeSe has been reported as a superconductor with a superconducting transition temperature (T c) of 30-48 K. However, the relationship among the surface morphology, compositional ratio, and crystal structure has not yet been clarified. This report directly reveals the correspondence among these three characteristics in single crystals with a T c onset of around 44 K by using a microsampling technique. Island-like parts on the surface of the crystals clearly exhibit the K x Fe2Se2 structure with perfect FeSe layers, which is formed in conjunction with the K2Fe4Se5 phase. This results in the appearance of the T c onset at 44 K.

  1. Direct observation of two-step crystallization in nanoparticle superlattice formation

    SciTech Connect

    Park, Jungwon; Zheng, Haimei; Lee, Won Chul; Geissler, Phillip L.; Rabani, Eran; Alivisatos, A. Paul

    2011-10-06

    Direct imaging of nanoparticle solutions by liquid phase transmission electron microscopy has enabled unique in-situ studies of nanoparticle motion and growth. In the present work, we report on real-time formation of two-dimensional nanoparticle arrays in the very low diffusive limit, where nanoparticles are mainly driven by capillary forces and solvent fluctuations. We find that superlattice formation appears to be segregated into multiple regimes. Initially, the solvent front drags the nanoparticles, condensing them into an amorphous agglomerate. Subsequently, the nanoparticle crystallization into an array is driven by local fluctuations. Following the crystallization event, superlattice growth can also occur via the addition of individual nanoparticles drawn from outlying regions by different solvent fronts. The dragging mechanism is consistent with simulations based on a coarse-grained lattice gas model at the same limit.

  2. Direct observation of ClO from chlorine nitrate photolysis. [as mechanism of polar ozone depletion

    NASA Technical Reports Server (NTRS)

    Minton, Timothy K.; Nelson, Christine M.; Moore, Teresa A.; Okumura, Mitchio

    1992-01-01

    Chlorine nitrate photolysis has been investigated with the use of a molecular beam technique. Excitation at both 248 and 193 nanometers led to photodissociation by two pathways, ClONO2 yields ClO + NO2 and ClONO2 yields Cl + NO3, with comparable yields. This experiment provides a direct measurement of the ClO product channel and consequently raises the possibility of an analogous channel in ClO dimer photolysis. Photodissociation of the ClO dimer is a critical step in the catalytic cycle that is presumed to dominate polar stratospheric ozone destruction. A substantial yield of ClO would reduce the efficiency of this cycle.

  3. Direct observation of closed-loop ferrohydrodynamic pumping under traveling magnetic fields

    NASA Astrophysics Data System (ADS)

    Mao, Leidong; Elborai, Shihab; He, Xiaowei; Zahn, Markus; Koser, Hur

    2011-09-01

    Ferrofluid-based liquid manipulation schemes typically actuate an immiscible liquid via a ferrofluid plug, using high magnetic flux (˜1 T) densities and strong field gradients created with bulky permanent magnets. They rely on surface tension effects to maintain the cohesion of the ferrofluid plug, necessitating miniature channels and slow (˜1 μl/min) flow speeds. Here, we demonstrate direct ferrohydrodynamic pumping using traveling magnetic fields at controllable speeds in a simple, closed-loop geometry without any mechanically actuated components. The pumping approach is compact, scalable, and practical. Using moderate field amplitudes (˜10 mT), we obtained a maximum volumetric flow rate of 0.69 ml/s using a readily available commercial ferrofluid. Our closed-loop pumping approach could lead to integrated and efficient liquid manipulation and cooling schemes based on ferrofluids.

  4. Direct Observation of Phase Transition Dynamics in Suspensions of Soft Colloidal Hydrogel Particles

    NASA Astrophysics Data System (ADS)

    Cho, Jae Kyu; Meng, Zhiyong; Lyon, L. Andrew; Breedveld, Victor

    2008-07-01

    Due to the tunability of their softness and volume as a function of temperature, poly(N-isopropylacrylamide) (pNIPAm) hydrogel particles have emerged as a model system for soft colloidal spheres. By introducing AAc as comonomer, one can also tune the particle volume via pH. We report on the phase behavior of these stimuli-responsive colloids as measured with a microdialysis cell. This device, which integrates microfluidics with Particle Tracking Video-microscopy allows for simple and quick investigation of the phase behavior of suspensions the soft colloidal hydrogel as a function of pH as well as its packing density. In particular, we demonstrate the existence of an unusually broad liquid/crystal coexistence region as a function of effective particle volume fraction. Additionally, we reveal that nonequilibrium jammed states can be created in the coexistence region upon sudden large changes of pH. The phase diagram is indicative of complex interparticle interactions with weakly attractive components.

  5. Direct observation of conductive filament formation in Alq3 based organic resistive memories

    NASA Astrophysics Data System (ADS)

    Busby, Y.; Nau, S.; Sax, S.; List-Kratochvil, E. J. W.; Novak, J.; Banerjee, R.; Schreiber, F.; Pireaux, J.-J.

    2015-08-01

    This work explores resistive switching mechanisms in non-volatile organic memory devices based on tris(8-hydroxyquinolie)aluminum (Alq3). Advanced characterization tools are applied to investigate metal diffusion in ITO/Alq3/Ag memory device stacks leading to conductive filament formation. The morphology of Alq3/Ag layers as a function of the metal evaporation conditions is studied by X-ray reflectivity, while depth profile analysis with X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry is applied to characterize operational memory elements displaying reliable bistable current-voltage characteristics. 3D images of the distribution of silver inside the organic layer clearly point towards the existence of conductive filaments and allow for the identification of the initial filament formation and inactivation mechanisms during switching of the device. Initial filament formation is suggested to be driven by field assisted diffusion of silver from abundant structures formed during the top electrode evaporation, whereas thermochemical effects lead to local filament inactivation.

  6. Direct observation of hydrogen atom dynamics and interactions by ultrahigh resolution neutron protein crystallography

    PubMed Central

    Chen, Julian C.-H.; Hanson, B. Leif; Fisher, S. Zoë; Langan, Paul; Kovalevsky, Andrey Y.

    2012-01-01

    The 1.1 Å, ultrahigh resolution neutron structure of hydrogen/deuterium (H/D) exchanged crambin is reported. Two hundred ninety-nine out of 315, or 94.9%, of the hydrogen atom positions in the protein have been experimentally derived and resolved through nuclear density maps. A number of unconventional interactions are clearly defined, including a potential O─H…π interaction between a water molecule and the aromatic ring of residue Y44, as well as a number of potential C─H…O hydrogen bonds. Hydrogen bonding networks that are ambiguous in the 0.85 Å ultrahigh resolution X-ray structure can be resolved by accurate orientation of water molecules. Furthermore, the high resolution of the reported structure has allowed for the anisotropic description of 36 deuterium atoms in the protein. The visibility of hydrogen and deuterium atoms in the nuclear density maps is discussed in relation to the resolution of the neutron data. PMID:22949690

  7. Direct observation of electrogenic NH4+ transport in ammonium transport (Amt) proteins

    PubMed Central

    Wacker, Tobias; Garcia-Celma, Juan J.; Lewe, Philipp; Andrade, Susana L. A.

    2014-01-01

    Ammonium transport (Amt) proteins form a ubiquitous family of integral membrane proteins that specifically shuttle ammonium across membranes. In prokaryotes, archaea, and plants, Amts are used as environmental NH4+ scavengers for uptake and assimilation of nitrogen. In the eukaryotic homologs, the Rhesus proteins, NH4+/NH3 transport is used instead in acid–base and pH homeostasis in kidney or NH4+/NH3 (and eventually CO2) detoxification in erythrocytes. Crystal structures and variant proteins are available, but the inherent challenges associated with the unambiguous identification of substrate and monitoring of transport events severely inhibit further progress in the field. Here we report a reliable in vitro assay that allows us to quantify the electrogenic capacity of Amt proteins. Using solid-supported membrane (SSM)-based electrophysiology, we have investigated the three Amt orthologs from the euryarchaeon Archaeoglobus fulgidus. Af-Amt1 and Af-Amt3 are electrogenic and transport the ammonium and methylammonium cation with high specificity. Transport is pH-dependent, with a steep decline at pH values of ∼5.0. Despite significant sequence homologies, functional differences between the three proteins became apparent. SSM electrophysiology provides a long-sought-after functional assay for the ubiquitous ammonium transporters. PMID:24958855

  8. DIRECT OBSERVATIONS OF MAGNETIC FLUX ROPE FORMATION DURING A SOLAR CORONAL MASS EJECTION

    SciTech Connect

    Song, H. Q.; Chen, Y.; Zhang, J.; Cheng, X.

    2014-09-10

    Coronal mass ejections (CMEs) are the most spectacular eruptive phenomena in the solar atmosphere. It is generally accepted that CMEs are the results of eruptions of magnetic flux ropes (MFRs). However, there is heated debate on whether MFRs exist prior to the eruptions or if they are formed during the eruptions. Several coronal signatures, e.g., filaments, coronal cavities, sigmoid structures, and hot channels (or hot blobs), are proposed as MFRs and observed before the eruption, which support the pre-existing MFR scenario. There is almost no reported observation of MFR formation during the eruption. In this Letter, we present an intriguing observation of a solar eruptive event that occurred on 2013 November 21 with the Atmospheric Imaging Assembly on board the Solar Dynamic Observatory, which shows the formation process of the MFR during the eruption in detail. The process began with the expansion of a low-lying coronal arcade, possibly caused by the flare magnetic reconnection underneath. The newly formed ascending loops from below further pushed the arcade upward, stretching the surrounding magnetic field. The arcade and stretched magnetic field lines then curved in just below the arcade vertex, forming an X-point. The field lines near the X-point continued to approach each other and a second magnetic reconnection was induced. It is this high-lying magnetic reconnection that led to the formation and eruption of a hot blob (∼10 MK), presumably an MFR, producing a CME. We suggest that two spatially separated magnetic reconnections occurred in this event, which were responsible for producing the flare and the hot blob (CME)

  9. Synthesis of Fluorescent Gelators and Direct Observation of Gelation with a Fluorescence Microscope.

    PubMed

    Hanabusa, Kenji; Ueda, Takuya; Takata, Shingo; Suzuki, Masahiro

    2016-11-14

    Fluorescein-, benzothiazole-, quinoline-, stilbene-, and carbazole-containing fluorescent gelators have been synthesized by connecting gelation-driving segments, including l-isoleucine, l-valine, l-phenylalanine, l-leucine residue, cyclo(l-asparaginyl-l-phenylalanyl), and trans-(1R,2R)-diaminocyclohexane. The emission behaviors of the gelators were investigated, and their gelation abilities studied against 15 solvents. The minimum gel concentration, variable-temperature spectroscopy, transmission electron microscopy, scanning electron microscopy, fluorescence microscopy (FM), and confocal laser scanning microscopy (CLSM) were used to characterize gelation. The intermolecular hydrogen bonding between the N-H and C=O of amide, van der Waals interactions and π-π stacking play important roles in gelation. The colors of emission are related to the fluorescence structures of gelators. Fibrous aggregates characterized by the color of their emission were observed by FM. 3D images are produced by the superposition of images captured by CLSM every 0.1 μm to a settled depth. The 3D images show that the large micrometer-sized aggregates spread out three dimensionally. FM observations of mixed gelators are studied. In the case of gelation, two structurally related gelators with the same gelation-driving segment lead to the gelators build up of the same aggregates through similar hydrogen-bonding patterns. When two gelators with structurally different gelation-driving segments induce gelation, the gelators build up each aggregate through individual hydrogen-bonding patterns. A fluorescent reagent that was incorporated into the aggregates of gels through van der Waals interactions was developed. The addition of this fluorescent reagent enables the successful observation of nonfluorescent gelators' aggregates by FM.

  10. Direct observation of polar tweed in LaAlO3

    PubMed Central

    Salje, Ekhard K. H.; Alexe, Marin; Kustov, Sergey; Weber, Mads C.; Schiemer, Jason; Nataf, Guillaume F.; Kreisel, Jens

    2016-01-01

    Polar tweed was discovered in mechanically stressed LaAlO3. Local patches of strained material (diameter ca. 5 μm) form interwoven patterns seen in birefringence images, Piezo-Force Microscopy (PFM) and Resonant Piezoelectric Spectroscopy (RPS). PFM and RPS observations prove unequivocally that electrical polarity exists inside the tweed patterns of LaAlO3. The local piezoelectric effect varies greatly within the tweed patterns and reaches magnitudes similar to quartz. The patterns were mapped by the shift of the Eg soft-mode frequency by Raman spectroscopy. PMID:27250525

  11. Direct Observation of the Coherent Nuclear Response after the Absorption of a Photon

    NASA Astrophysics Data System (ADS)

    Liebel, M.; Schnedermann, C.; Bassolino, G.; Taylor, G.; Watts, A.; Kukura, P.

    2014-06-01

    How molecules convert light energy to perform a specific transformation is a fundamental question in photophysics. Ultrafast spectroscopy reveals the kinetics associated with electronic energy flow, but little is known about how absorbed photon energy drives nuclear motion. Here we used ultrabroadband transient absorption spectroscopy to monitor coherent vibrational energy flow after photoexcitation of the retinal chromophore. In the proton pump bacteriorhodopsin, we observed coherent activation of hydrogen-out-of-plane wagging and backbone torsional modes that were replaced by unreactive coordinates in the solution environment, concomitant with a deactivation of the reactive relaxation pathway.

  12. Direct mapping rather than motor prediction subserves modulation of corticospinal excitability during observation of actions in real time

    PubMed Central

    Gueugneau, Nicolas; Mc Cabe, Sofia I.; Villalta, Jorge I.; Grafton, Scott T.

    2015-01-01

    Motor facilitation refers to the specific increment in corticospinal excitability (CSE) elicited by the observation of actions performed by others. To date, the precise nature of the mechanism at the basis of this phenomenon is unknown. One possibility is that motor facilitation is driven by a predictive process reminiscent of the role of forward models in motor control. Alternatively, motor facilitation may result from a model-free mechanism by which the basic elements of the observed action are directly mapped onto their cortical representations. Our study was designed to discern these alternatives. To this aim, we recorded the time course of CSE for the first dorsal interosseous (FDI) and the abductor digiti minimi (ADM) during observation of three grasping actions in real time, two of which strongly diverged in kinematics from their natural (invariant) form. Although artificially slow movements used in most action observation studies might enhance the observer's discrimination performance, the use of videos in real time is crucial to maintain the time course of CSE within the physiological range of daily actions. CSE was measured at 4 time points within a 240-ms window that best captured the kinematic divergence from the invariant form. Our results show that CSE of the FDI, not the ADM, closely follows the functional role of the muscle despite the mismatch between the natural and the divergent kinematics. We propose that motor facilitation during observation of actions performed in real time reflects the model-free coding of perceived movement following a direct mapping mechanism. PMID:25810483

  13. Direct mapping rather than motor prediction subserves modulation of corticospinal excitability during observation of actions in real time.

    PubMed

    Gueugneau, Nicolas; Mc Cabe, Sofia I; Villalta, Jorge I; Grafton, Scott T; Della-Maggiore, Valeria

    2015-06-01

    Motor facilitation refers to the specific increment in corticospinal excitability (CSE) elicited by the observation of actions performed by others. To date, the precise nature of the mechanism at the basis of this phenomenon is unknown. One possibility is that motor facilitation is driven by a predictive process reminiscent of the role of forward models in motor control. Alternatively, motor facilitation may result from a model-free mechanism by which the basic elements of the observed action are directly mapped onto their cortical representations. Our study was designed to discern these alternatives. To this aim, we recorded the time course of CSE for the first dorsal interosseous (FDI) and the abductor digiti minimi (ADM) during observation of three grasping actions in real time, two of which strongly diverged in kinematics from their natural (invariant) form. Although artificially slow movements used in most action observation studies might enhance the observer's discrimination performance, the use of videos in real time is crucial to maintain the time course of CSE within the physiological range of daily actions. CSE was measured at 4 time points within a 240-ms window that best captured the kinematic divergence from the invariant form. Our results show that CSE of the FDI, not the ADM, closely follows the functional role of the muscle despite the mismatch between the natural and the divergent kinematics. We propose that motor facilitation during observation of actions performed in real time reflects the model-free coding of perceived movement following a direct mapping mechanism.

  14. Direct observation of exceptional points in coupled photonic-crystal lasers with asymmetric optical gains

    PubMed Central

    Kim, Kyoung-Ho; Hwang, Min-Soo; Kim, Ha-Reem; Choi, Jae-Hyuck; No, You-Shin; Park, Hong-Gyu

    2016-01-01

    Although counter-intuitive features have been observed in non-Hermitian optical systems based on micrometre-sized cavities, the achievement of a simplified but unambiguous approach to enable the efficient access of exceptional points (EPs) and the phase transition to desired lasing modes remains a challenge, particularly in wavelength-scale coupled cavities. Here, we demonstrate coupled photonic-crystal (PhC) nanolasers with asymmetric optical gains, and observe the phase transition of lasing modes at EPs through tuning of the area of graphene cover on one PhC cavity and systematic scanning photoluminescence measurements. As the gain contrast between the two identical PhC cavities exceeds the intercavity coupling, the phase transition occurs from the bonding/anti-bonding lasing modes to the single-amplifying lasing mode, which is confirmed by the experimental measurement of the mode images and the theoretical modelling of coupled cavities with asymmetric gains. In addition, we demonstrate active tuning of EPs by controlling the optical loss of graphene through electrical gating. PMID:28000688

  15. Direct observation of asymmetric band structure of bilayer graphene through quantum capacitance measurements

    NASA Astrophysics Data System (ADS)

    Kanayama, Kaoru; Nagashio, Kosuke; Nishimura, Tomonori; Toriumi, Akira

    2014-03-01

    Although upper conduction and valence sub-bands in bilayer graphene are known to be asymmetric, a detailed analysis based on the electrical measurements is very limited due to the infirm quality of gate insulator. In this study, the electrical quality of the top-gate Y2O3 insulator is drastically improved by the high-pressure O2 post-deposition annealing at 100 atm and the carrier density of ~8*1013 cm-2 is achieved. In quantum capacitance measurements, the drastic increase of the density of states is observed in addition to the van Hove singularity, suggesting that the Fermi energy reaches upper sub-band. At the same carrier density, the sudden reduction of the conductivity is observed, indicating that the inter-band scattering occurs. The estimated carrier density required to fill the upper sub-bands is different between electron and hole sides, i.e., asymmetric band structure between upper conduction and valence bands is revealed by the electrical measurements.

  16. A microfluidic imaging chamber for the direct observation of chemotactic transmigration

    PubMed Central

    Breckenridge, Mark T.; Egelhoff, Thomas T.; Baskaran, Harihara

    2010-01-01

    To study the roles of nonmuscle myosin II (NM-II) during invasive cell migration, microfluidic migration chambers have been designed and fabricated using photo- and soft-lithography microfabrication techniques. The chamber consists of two channels separated by a vertical barrier with multiple bays of pores with widths varying from 6 µm to 16 µm, and lengths varying from 25µm to 50µm. The cells are plated in the channel on one side of the barrier while a chemoattractant is flowed through the channel on the other side of the barrier. In these chambers, cells can be observed with transmitted light or fluorescence optics while they chemotax through various sized pores that impose differential mechanical resistance to transmigration. As an initial test of this device, we compared breast-cancer cell chemotactic transmigration through different pore sizes with and without inhibition of NM-II. Two distinct rates were observed as cells attempted to pull their nucleus through the smaller pores, and the faster nuclear transit mode was critically dependent on NM-II motor activity. The ability to monitor cells as they chemotax through pores of different dimensions within a single experimental system provides novel information on how pore size affects cell morphology and migration rate, providing a dramatic improvement of imaging potential relative to other in vitro transmigration systems such as Boyden chambers. PMID:20309736

  17. Direct observation of ultrafast many-body electron dynamics in an ultracold Rydberg gas

    PubMed Central

    Takei, Nobuyuki; Sommer, Christian; Genes, Claudiu; Pupillo, Guido; Goto, Haruka; Koyasu, Kuniaki; Chiba, Hisashi; Weidemüller, Matthias; Ohmori, Kenji

    2016-01-01

    Many-body correlations govern a variety of important quantum phenomena such as the emergence of superconductivity and magnetism. Understanding quantum many-body systems is thus one of the central goals of modern sciences. Here we demonstrate an experimental approach towards this goal by utilizing an ultracold Rydberg gas generated with a broadband picosecond laser pulse. We follow the ultrafast evolution of its electronic coherence by time-domain Ramsey interferometry with attosecond precision. The observed electronic coherence shows an ultrafast oscillation with a period of 1 femtosecond, whose phase shift on the attosecond timescale is consistent with many-body correlations among Rydberg atoms beyond mean-field approximations. This coherent and ultrafast many-body dynamics is actively controlled by tuning the orbital size and population of the Rydberg state, as well as the mean atomic distance. Our approach will offer a versatile platform to observe and manipulate non-equilibrium dynamics of quantum many-body systems on the ultrafast timescale. PMID:27849054

  18. Direct observation of a borane-silane complex involved in frustrated Lewis-pair-mediated hydrosilylations

    NASA Astrophysics Data System (ADS)

    Houghton, Adrian Y.; Hurmalainen, Juha; Mansikkamäki, Akseli; Piers, Warren E.; Tuononen, Heikki M.

    2014-11-01

    Perfluorarylborane Lewis acids catalyse the addition of silicon-hydrogen bonds across C=C, C=N and C=O double bonds. This ‘metal-free’ hydrosilylation has been proposed to occur via borane activation of the silane Si-H bond, rather than through classical Lewis acid/base adducts with the substrate. However, the key borane/silane adduct had not been observed experimentally. Here it is shown that the strongly Lewis acidic, antiaromatic 1,2,3-tris(pentafluorophenyl)-4,5,6,7-tetrafluoro-1-boraindene forms an observable, isolable adduct with triethylsilane. The equilibrium for adduct formation was studied quantitatively through variable-temperature NMR spectroscopic investigations. The interaction of the silane with the borane occurs through the Si-H bond, as evidenced by trends in the Si-H coupling constant and the infrared stretching frequency of the Si-H bond, as well as by X-ray crystallography and theoretical calculations. The adduct's reactivity with nucleophiles demonstrates conclusively the role of this species in metal-free ‘frustrated-Lewis-pair’ hydrosilylation reactions.

  19. Direct observation of exceptional points in coupled photonic-crystal lasers with asymmetric optical gains

    NASA Astrophysics Data System (ADS)

    Kim, Kyoung-Ho; Hwang, Min-Soo; Kim, Ha-Reem; Choi, Jae-Hyuck; No, You-Shin; Park, Hong-Gyu

    2016-12-01

    Although counter-intuitive features have been observed in non-Hermitian optical systems based on micrometre-sized cavities, the achievement of a simplified but unambiguous approach to enable the efficient access of exceptional points (EPs) and the phase transition to desired lasing modes remains a challenge, particularly in wavelength-scale coupled cavities. Here, we demonstrate coupled photonic-crystal (PhC) nanolasers with asymmetric optical gains, and observe the phase transition of lasing modes at EPs through tuning of the area of graphene cover on one PhC cavity and systematic scanning photoluminescence measurements. As the gain contrast between the two identical PhC cavities exceeds the intercavity coupling, the phase transition occurs from the bonding/anti-bonding lasing modes to the single-amplifying lasing mode, which is confirmed by the experimental measurement of the mode images and the theoretical modelling of coupled cavities with asymmetric gains. In addition, we demonstrate active tuning of EPs by controlling the optical loss of graphene through electrical gating.

  20. Direct observation of ultrafast many-body electron dynamics in an ultracold Rydberg gas

    NASA Astrophysics Data System (ADS)

    Takei, Nobuyuki; Sommer, Christian; Genes, Claudiu; Pupillo, Guido; Goto, Haruka; Koyasu, Kuniaki; Chiba, Hisashi; Weidemüller, Matthias; Ohmori, Kenji

    2016-11-01

    Many-body correlations govern a variety of important quantum phenomena such as the emergence of superconductivity and magnetism. Understanding quantum many-body systems is thus one of the central goals of modern sciences. Here we demonstrate an experimental approach towards this goal by utilizing an ultracold Rydberg gas generated with a broadband picosecond laser pulse. We follow the ultrafast evolution of its electronic coherence by time-domain Ramsey interferometry with attosecond precision. The observed electronic coherence shows an ultrafast oscillation with a period of 1 femtosecond, whose phase shift on the attosecond timescale is consistent with many-body correlations among Rydberg atoms beyond mean-field approximations. This coherent and ultrafast many-body dynamics is actively controlled by tuning the orbital size and population of the Rydberg state, as well as the mean atomic distance. Our approach will offer a versatile platform to observe and manipulate non-equilibrium dynamics of quantum many-body systems on the ultrafast timescale.

  1. Direct observations of damage during unconfined brittle failure of Carrara marble

    NASA Astrophysics Data System (ADS)

    Tal, Yuval; Evans, Brian; Mok, Ulrich

    2016-03-01

    To observe and quantify the production of microfracturing from initial yield to failure, we deformed Carrara marble samples in uniaxial compression at 20, 105, and 180°C and continuously observed a region of about 1 mm2 on an exposed face with a long-working distance microscope. Using image processing and microscale strain-mapping techniques, we measured local strains over a length scale of tens of micrometers. By treating the images with various filters, we identified linear damage features, as well as the magnitude of localized strain and the mode of deformation, i.e., shear versus normal deformation. In general, shear deformation is more prevalent after initial yielding, while tensile deformation dominates closer to peak stress. Independent measurements of both stress and microcrack density at different stages of each experiment provide a unique opportunity to explicitly compare the data with damage models. The model of Ashby and Sammis (1990) significantly underestimated the damage that the rock could sustain before peak stress, perhaps owing to the influence of weak grain boundaries on the damage production. In these samples, microcracks tended to form near boundaries before yield stress. During strain hardening, the damage parameters increased rapidly as longer microcracks grew along the boundaries and finally transected grains as loading neared peak stress. The microcrack density can be empirically related to the reduction of Young's modulus; stiffness ratios decay exponentially with increasing microcrack density for T ≤ 105°C.

  2. Direct observation of dipolar chains in ferrofluids in zero field using cryogenic electron microscopy

    NASA Astrophysics Data System (ADS)

    Butter, K.; Bomans, P. H.; Frederik, P. M.; Vroege, G. J.; Philipse, A. P.

    2003-04-01

    The particle structure of ferrofluids is studied in situ, by cryogenic electron microscopy, on vitrified films of iron and magnetite dispersions. By means of synthesis of iron colloids with controlled particle size and different types of surfactant, dipolar particle interactions can be varied over a broad range, which significantly influences the ferrofluid particle structure. Our experiments on iron dispersions (in contrast to magnetite dispersions) for the first time demonstrate, in ferrofluids in zero field, a transition with increasing particle size from separate particles to linear chains of particles (Butter K, Bomans P H, Frederik P M, Vroege G J and Philipse A P 2003 Nature Mater. 2 88). These chains, already predicted theoretically by de Gennes and Pincus (de Gennes P G and Pincus P A 1970 Phys. Kondens. Mater. 11 189), very much resemble the fluctuating chains found in simulations of dipolar fluids (Weis J J 1998 Mol. Phys. 93 361, Chantrell R W, Bradbury A, Popplewell J and Charles S W 1982 J. Appl. Phys. 53 2742). Decreasing the range of steric repulsion between particles by employing a thinner surfactant layer is found to change particle structures as well. The dipolar nature of the aggregation is confirmed by the alignment of existing chains and individual particles in the field direction upon vitrification of dispersions in a saturating magnetic field. Frequency-dependent susceptibility measurements indicate that particle structures in truly three-dimensional ferrofluids are qualitatively similar to those in liquid films.

  3. Direct Observation of Photoexcited Hole Localization in CdSe Nanorods

    SciTech Connect

    Yang, Ye; Wu, Kaifeng; Shabaev, Andrew; Efros, Alexander L.; Lian, Tianquan; Beard, Matthew C.

    2016-07-08

    Quantum-confined 1D semiconductor nanostructures are being investigated for hydrogen generation photocatalysts. In the photoreaction, after fast electron transfer, holes that remain in the nanostructure play an important role in the total quantum yield of hydrogen production. Unfortunately, knowledge of hole dynamics is limited due to lack of convenient spectroscopic signatures. Here, we directly probe hole localization dynamics within CdSe nanorods (NRs) by combining transient absorption (TA) and time-resolved terahertz (TRTS) spectroscopy. We show that when methylene blue is used as an electron acceptor, the resulting electron transfer occurs with a time constant of 3.5 +/- 0.1 ps and leaves behind a delocalized hole. However, the hole quickly localizes in the Coulomb potential well generated by the reduced electron acceptor near the NR surface with time constant of 11.7 +/- 0.2 ps. Our theoretical investigation suggests that the hole becomes confined to a ~ +/-0.8 nm region near the reduced electron acceptor and the activation energy to detrap the hole from the potential well can be as large as 235 meV.

  4. The direct observation of alkali vapor species in biomass combustion and gasification

    SciTech Connect

    French, R J; Dayton, D C; Milne, T A

    1994-01-01

    This report summarizes new data from screening various feedstocks for alkali vapor release under combustion conditions. The successful development of a laboratory flow reactor and molecular beam, mass spectrometer interface is detailed. Its application to several herbaceous and woody feedstocks, as well as a fast-pyrolysis oil, under 800 and 1,100{degrees}C batch combustion, is documented. Chlorine seems to play a large role in the facile mobilization of potassium. Included in the report is a discussion of relevant literature on the alkali problem in combustors and turbines. Highlighted are the phenomena identified in studies on coal and methods that have been applied to alkali speciation. The nature of binding of alkali in coal versus biomass is discussed, together with the implications for the ease of release. Herbaceous species and many agricultural residues appear to pose significant problems in release of alkali species to the vapor at typical combustor temperatures. These problems could be especially acute in direct combustion fired turbines, but may be ameliorated in integrated gasification combined cycles.

  5. Direct observation of interface asymmetry in GaAs-AlAs superlattices grown by MBE.

    NASA Astrophysics Data System (ADS)

    McCartney, M.; Menéndez, J.; Pfeiffer, L. N.; West, K. W.

    1996-03-01

    Transmission electron microscopy techniques have been applied to the study of compositional profiles in (GaAs)_6(AlAs)6 superlattices grown by Molecular Beam Epitaxy. Cross-sectional samples in [100] and [110] orientations were used in both high-resolution and diffraction contrast imaging. Comparisons were made with simulated images computed from theoretically predicted compositional profiles. In samples grown at temperatures below 450 ^circC, the shape of the compositional profiles is found to be consistent with Ga surface segregation models. If Ga segregates to the AlAs surface, the direct (AlAs on GaAs) interface is predicted to be broad due to the penetration of Ga atoms into the AlAs layers. The indirect interface is expected to be sharper because Al does not segregate to the GaAs surface. The microscopy results are consistent with Raman experiments on the same samples.(G.S. Spencer, J. Menéndez, L.N. Pfeiffer, and K.W. West, Phys. Rev. B 52), 8205 (1995).

  6. Direct observation of enhanced emission sites in nitrogen implanted hybrid structured ultrananocrystalline diamond films

    SciTech Connect

    Panda, Kalpataru; Sundaravel, B.; Panigrahi, B. K.; Chen, Huang-Chin; Lin, I.-Nan

    2013-02-07

    A hybrid-structured ultrananocrystalline diamond (h-UNCD) film, synthesized on Si-substrates by a two-step microwave plasma enhanced chemical vapour deposition (MPECVD) process, contains duplex structure with large diamond aggregates evenly dispersed in a matrix of ultra-small grains ({approx}5 nm). The two-step plasma synthesized h-UNCD films exhibit superior electron field emission (EFE) properties than the one-step MPECVD deposited UNCD films. Nitrogen-ion implantation/post-annealing processes further improve the EFE properties of these films. Current imaging tunnelling spectroscopy in scanning tunnelling spectroscopy mode directly shows increased density of emission sites in N implanted/post-annealed h-UNCD films than as-prepared one. X-ray photoelectron spectroscopy measurements show increased sp{sup 2} phase content and C-N bonding fraction in N ion implanted/post-annealed films. Transmission electron microscopic analysis reveals that the N implantation/post-annealing processes induce the formation of defects in the diamond grains, which decreases the band gap and increases the density of states within the band gap of diamond. Moreover, the formation of nanographitic phase surrounding the small diamond grains enhanced the conductivity at the diamond grain boundaries. Both of the phenomena enhance the EFE properties.

  7. Direct observation of Σ7 domain boundary core structure in magnetic skyrmion lattice

    PubMed Central

    Matsumoto, Takao; So, Yeong-Gi; Kohno, Yuji; Sawada, Hidetaka; Ikuhara, Yuichi; Shibata, Naoya

    2016-01-01

    Skyrmions are topologically protected nanoscale magnetic spin entities in helical magnets. They behave like particles and tend to form hexagonal close-packed lattices, like atoms, as their stable structure. Domain boundaries in skyrmion lattices are considered to be important as they affect the dynamic properties of magnetic skyrmions. However, little is known about the fine structure of such skyrmion domain boundaries. We use differential phase contrast scanning transmission electron microscopy to directly visualize skyrmion domain boundaries in FeGe1−xSix induced by the influence of an “edge” of a crystal grain. Similar to hexagonal close-packed atomic lattices, we find the formation of skyrmion “Σ7” domain boundary, whose orientation relationship is predicted by the coincidence site lattice theory to be geometrically stable. On the contrary, the skyrmion domain boundary core structure shows a very different structure relaxation mode. Individual skyrmions can flexibly change their size and shape to accommodate local coordination changes and free volumes formed at the domain boundary cores. Although atomic rearrangement is a common structural relaxation mode in crystalline grain boundaries, skyrmions show very unique and thus different responses to such local lattice disorders. PMID:26933690

  8. Direct observation of melting in a two-dimensional driven granular system

    PubMed Central

    Sun, Xiaoyan; Li, Yang; Ma, Yuqiang; Zhang, Zexin

    2016-01-01

    Melting is considered to be one of the most fundamental problems in physical science. Generally, dimensionality plays an important role in melting. In three-dimension, it’s well known that a crystal melts directly into a liquid via a first-order transition. In two-dimension (2D), however, the melting process has been widely debated whether it is a first-order transition or a two-step transition with an intermediate hexatic phase. Experimentally 2D melting has been intensively studied in equilibrium systems such as molecular and colloidal crystals, but rarely been explored in non-equilibrium system such as granular materials. In this paper, we experimentally studied the 2D melting in a driven granular model system at single particle level using video recording and particle tracking techniques. Measurements of orientational/translational correlation functions show evidences that the melting is a two-step transition. A novel concept of orientational/translational susceptibilities enable us to clearly resolve the intermediate hexatic phase. Our results are in excellent agreement with the two-step melting scenario predicted by KTHNY theory, and demonstrate that the KTHNY melting scenario can be extended to non-equilibrium systems. PMID:27052190

  9. Direct Telephonic Communication in a Heart Failure Transitional Care Program: An observational study

    PubMed Central

    Ota, Ken S.; Beutler, David S.; Sheikh, Hassam; Weiss, Jessica L.; Parkinson, Dallin; Nguyen, Peter; Gerkin, Richard D.; Loli, Akil I.

    2013-01-01

    Background This study investigated the trend of phone calls in the Banner Good Samaritan Medical Center (BGSMC) Heart Failure Transitional Care Program (HFTCP). The primary goal of the HFTCP is to reduce 30-Day readmissions for heart failure patients by using a multi-pronged approach. Methods This study included 104 patients in the HFTCP discharged over a 51-week period who had around-the-clock telephone access to the Transitionalist. Cellular phone records were reviewed. This study evaluated the length and timing of calls. Results A total of 4398 telephone calls were recorded of which 39% were inbound and 61% were outbound. This averaged to 86 calls per week. During the “Weekday Daytime” period, Eighty-five percent of the totals calls were made. There were 229 calls during the “Weekday Nights” period with 1.5 inbound calls per week. The “Total Weekend” calls were 10.2% of the total calls which equated to a weekly average of 8.8. Conclusions Our experience is that direct, physician-patient telephone contact is feasible with a panel of around 100 HF patients for one provider. If the proper financial reimbursements are provided, physicians may be apt to participate in similar transitional care programs. Likewise, third party payers will benefit from the reduction in unnecessary emergency room visits and hospitalizations. PMID:28352437

  10. Direct Observation of Ultrafast Exciton Formation in a Monolayer of WSe2.

    PubMed

    Steinleitner, Philipp; Merkl, Philipp; Nagler, Philipp; Mornhinweg, Joshua; Schüller, Christian; Korn, Tobias; Chernikov, Alexey; Huber, Rupert

    2017-03-08

    Many of the fundamental optical and electronic properties of atomically thin transition metal dichalcogenides are dominated by strong Coulomb interactions between electrons and holes, forming tightly bound atom-like states called excitons. Here, we directly trace the ultrafast formation of excitons by monitoring the absolute densities of bound and unbound electron-hole pairs in single monolayers of WSe2 on a diamond substrate following femtosecond nonresonant optical excitation. To this end, phase-locked mid-infrared probe pulses and field-sensitive electro-optic sampling are used to map out the full complex-valued optical conductivity of the nonequilibrium system and to discern the hallmark low-energy responses of bound and unbound pairs. While the spectral shape of the infrared response immediately after above-bandgap injection is dominated by free charge carriers, up to 60% of the electron-hole pairs are bound into excitons already on a subpicosecond time scale, evidencing extremely fast and efficient exciton formation. During the subsequent recombination phase, we still find a large density of free carriers in addition to excitons, indicating a nonequilibrium state of the photoexcited electron-hole system.

  11. Direct observation of local xylem embolisms induced by soil drying in intact Zea mays leaves

    PubMed Central

    Ryu, Jeongeun; Hwang, Bae Geun; Kim, Yangmin X.; Lee, Sang Joon

    2016-01-01

    The vulnerability of vascular plants to xylem embolism is closely related to their stable long-distance water transport, growth, and survival. Direct measurements of xylem embolism are required to understand what causes embolism and what strategies plants employ against it. In this study, synchrotron X-ray microscopy was used to non-destructively investigate both the anatomical structures of xylem vessels and embolism occurrence in the leaves of intact Zea mays (maize) plants. Xylem embolism was induced by water stress at various soil drying periods and soil water contents. X-ray images of dehydrated maize leaves showed that the ratio of gas-filled vessels to all xylem vessels increased with decreased soil water content and reached approximately 30% under severe water stress. Embolism occurred in some but not all vessels. Embolism in maize leaves was not strongly correlated with xylem diameter but was more likely to occur in the peripheral veins. The rate of embolism formation in metaxylem vessels was higher than in protoxylem vessels. This work has demonstrated that xylem embolism remains low in maize leaves under water stress and that there xylem has characteristic spatial traits of vulnerability to embolism. PMID:26946123

  12. What is the probability that direct detection experiments have observed dark matter?

    SciTech Connect

    Bozorgnia, Nassim; Schwetz, Thomas E-mail: schwetz@fysik.su.se

    2014-12-01

    In Dark Matter direct detection we are facing the situation of some experiments reporting positive signals which are in conflict with limits from other experiments. Such conclusions are subject to large uncertainties introduced by the poorly known local Dark Matter distribution. We present a method to calculate an upper bound on the joint probability of obtaining the outcome of two potentially conflicting experiments under the assumption that the Dark Matter hypothesis is correct, but completely independent of assumptions about the Dark Matter distribution. In this way we can quantify the compatibility of two experiments in an astrophysics independent way. We illustrate our method by testing the compatibility of the hints reported by DAMA and CDMS-Si with the limits from the LUX and SuperCDMS experiments. The method does not require Monte Carlo simulations but is mostly based on using Poisson statistics. In order to deal with signals of few events we introduce the so-called ''signal length'' to take into account energy information. The signal length method provides a simple way to calculate the probability to obtain a given experimental outcome under a specified Dark Matter and background hypothesis.

  13. Current Directions in Adding Value to Earth Observation Products for Decision Support

    NASA Astrophysics Data System (ADS)

    Ryker, S. J.

    2015-12-01

    Natural resource managers and infrastructure planners face increasingly complex challenges, given competing demands for resources and changing conditions due to climate and land use change. These pressures create demand for high-quality, timely data; for both one-time decision support and long-term monitoring; and for techniques to articulate the value of resources in monetary and nonmonetary terms. To meet the need for data, the U.S. government invests several billion dollars per year in Earth observations collected from satellite, airborne, terrestrial, and ocean-based systems. Earth observation-based decision support is coming of age; user surveys show that these data are used in an increasing variety of analyses. For example, since the U.S. Department of the Interior/U.S. Geological Survey's (USGS) 2008 free and open data policy for the Landsat satellites, downloads from the USGS archive have increased from 20,000 Landsat scenes per year to 10 million per year and climbing, with strong growth in both research and decision support fields. However, Earth observation-based decision support still poses users a number of challenges. Many of those Landsat downloads support a specialized community of remote sensing scientists, though new technologies promise to increase the usability of remotely sensed data for the larger GIS community supporting planning and resource management. Serving this larger community also requires supporting the development of increasingly interpretive products, and of new approaches to host and update products. For example, automating updates will add value to new essential climate variable products such as surface water extent and wildfire burned area extent. Projections of future urbanization in the southeastern U.S. are most useful when long-term land cover trends are integrated with street-level community data and planning tools. The USGS assessment of biological carbon sequestration in vegetation and shallow soils required a significant

  14. Drag coefficient comparisons between observed and model simulated directional wave spectra under hurricane conditions

    NASA Astrophysics Data System (ADS)

    Fan, Yalin; Rogers, W. Erick

    2016-06-01

    In this study, Donelan, M.A., Babanin, A.V., Young, I.R., Banner, M.L., 2006. J. Phys. Oceanogr. 36, 1672-1688 source function is used to calculate drag coefficients from both the scanning radar altimeter (SRA) measured two dimensional wave spectra obtained during hurricane Ivan in 2004 and the WAVEWATCH III simulated wave spectra. The drag coefficients disagree between the SRA and model spectra mainly in the right/left rear quadrant of the hurricane where the observed spectra appear to be bimodal while the model spectra are single peaked with more energy in the swell frequencies and less energy in the wind sea frequencies. These results suggest that WAVEWATCH III is currently not capable of providing sensible stress calculations in the rear quadrants of the hurricane.

  15. Direct observation of electron emission and recombination processes by time domain measurements of charge pumping current

    SciTech Connect

    Hori, Masahiro Watanabe, Tokinobu; Ono, Yukinori; Tsuchiya, Toshiaki

    2015-01-26

    To analyze the charge pumping (CP) sequence in detail, the source/drain electron current and the substrate hole current under the CP mode of transistors are simultaneously monitored in the time domain. Peaks are observed in both the electron and hole currents, which are, respectively, attributed to the electron emission from the interface defects and to the recombination with holes. The peak caused by the electron emission is found to consist of two components, strongly suggesting that the present time-domain measurement can enable us to resolve different kinds of interface defects. Investigating the correlation between the number of emitted and recombined electrons reveals that only one of the two components contributes to the CP current for the gate-pulse fall time from 6.25 × 10{sup −4} to 1.25 × 10{sup −2} s.

  16. Direct observation of the electron spin relaxation induced by nuclei in quantum dots

    NASA Astrophysics Data System (ADS)

    Braun, P.-F.; Lombez, L.; Marie, X.; Urbaszek, B.; Amand, T.; Renucci, P.; Lagarde, D.; Kalevich, V. K.; Kavokin, K. V.; Krebs, O.; Voisin, P.

    2006-02-01

    We have investigated the electron and hole spin dynamics in p-doped semiconductor InAs/GaAs quantum dots by time resolved photoluminescence. We observe a decay of the average electron spin polarisation down to 1/3 of its initial value with a characteristic time of T Δ ~ 500ps. We attribute this decay to the hyperfine interaction of the electron spin with randomly orientated nuclear spins. Magnetic field dependent studies reveal that this efficient spin relaxation mechanism can be suppressed by a field in the order of 100mT. In pump-probe like experiments we demonstrate that the resident hole spin, "written" with a first pulse, remains stable long enough to be "read" 15ns later with a second pulse.

  17. Direct observation of the collapse of the delocalized excess electron in water

    NASA Astrophysics Data System (ADS)

    Savolainen, Janne; Uhlig, Frank; Ahmed, Saima; Hamm, Peter; Jungwirth, Pavel

    2014-08-01

    It is generally assumed that the hydrated electron occupies a quasi-spherical cavity surrounded by only a few water molecules in its equilibrated state. However, in the very moment of its generation, before water has had time to respond to the extra charge, it is expected to be significantly larger in size. According to a particle-in-a-box picture, the frequency of its absorption spectrum is a sensitive measure of the initial size of the electronic wavefunction. Here, using transient terahertz spectroscopy, we show that the excess electron initially absorbs in the far-infrared at a frequency for which accompanying ab initio molecular dynamics simulations estimate an initial delocalization length of ≈40 Å. The electron subsequently shrinks due to solvation and thereby leaves the terahertz observation window very quickly, within ≈200 fs.

  18. Direct observation of catalytic oxidation of particulate matter using in situ TEM

    PubMed Central

    Kamatani, Kohei; Higuchi, Kimitaka; Yamamoto, Yuta; Arai, Shigeo; Tanaka, Nobuo; Ogura, Masaru

    2015-01-01

    The ability to observe chemical reactions at the molecular level convincingly demonstrates the physical and chemical phenomena occurring throughout a reaction mechanism. Videos obtained through in situ transmission electron microscopy (TEM) revealed the oxidation of catalytic soot under practical reaction conditions. Carbon oxidation reactions using Ag/SiO2 or Cs2CO3/nepheline catalysts were performed at 330 °C under an O2 flow of 0.5 Pa in the TEM measurement chamber. Ag/SiO2 catalyzed the reaction at the interface of the mobile Ag species and carbon, while the Cs species was fixed on the nepheline surface during the reaction. In the latter case, carbon particles moved, remained attached to the Cs2CO3/nepheline surface, and were consumed at the interface by the oxidation reaction. Using this technique, we were able to visualize such mobile and immobile catalysis according to different mechanisms. PMID:26154580

  19. Laser beam directed at the lunar retro-reflector array: observations of the first returns.

    PubMed

    Faller, J; Winer, I; Carrion, W; Johnson, T S; Spadin, P; Robinson, L; Wampler, E J; Wieber, D

    1969-10-03

    On 1 August between 10:15 and 12:50 Universal Time, with the Lick Observatory 120-inch (304-cm) telescope and a laser operating at 6943 angstroms, return signals from an optical retro-reflector array placed on the moon by the Apollo 11 astronauts were successfully detected. After the return signal was first detected it continued to appear with the expected time delay for the remainder of the night. The observed range is in excellent agreement with the predicted ephemeris. Transmitting between 7 and 8 joules per pulse, we found that each return signal averaged more than one photoelectron. This is in good agreement with calculations of the expected signal strength.

  20. Comparison of direct observational methods for measuring stereotypic behavior in children with autism spectrum disorders.

    PubMed

    Gardenier, Nicole Ciotti; MacDonald, Rebecca; Green, Gina

    2004-01-01

    We compared partial-interval recording (PIR) and momentary time sampling (MTS) estimates against continuous measures of the actual durations of stereotypic behavior in young children with autism or pervasive developmental disorder-not otherwise specified. Twenty-two videotaped samples of stereotypy were scored using a low-tech duration recording method, and relative durations (i.e., proportions of observation periods consumed by stereotypy) were calculated. Then 10, 20, and 30s MTS and 10s PIR estimates of relative durations were derived from the raw duration data. Across all samples, PIR was found to grossly overestimate the relative duration of stereotypy. Momentary time sampling both over- and under-estimated the relative duration of stereotypy, but with much smaller errors than PIR (Experiment 1). These results were replicated across 27 samples of low, moderate and high levels of stereotypy (Experiment 2).