Sample records for allowing full control

  1. 14 CFR 29.671 - General.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... function. (b) Each element of each flight control system must be designed, or distinctively and permanently... system. (c) A means must be provided to allow full control movement of all primary flight controls prior to flight, or a means must be provided that will allow the pilot to determine that full control...

  2. 14 CFR 29.671 - General.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... function. (b) Each element of each flight control system must be designed, or distinctively and permanently... system. (c) A means must be provided to allow full control movement of all primary flight controls prior to flight, or a means must be provided that will allow the pilot to determine that full control...

  3. 14 CFR 29.671 - General.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... function. (b) Each element of each flight control system must be designed, or distinctively and permanently... system. (c) A means must be provided to allow full control movement of all primary flight controls prior to flight, or a means must be provided that will allow the pilot to determine that full control...

  4. Limited Evaluation Canadair CL-215 Amphibious Airplane.

    DTIC Science & Technology

    1972-10-01

    The trimming devices were evaluated throughout their operational range. Forces created and the travel time required for full trim deflections are...presented in table 8. Full forward and full aft elevator trim created longitudinal control forces of 95 and 97 pounds, respectively. These control forces... created by full trim deflection in the aileron and rudder control trim systems could be satisfactorily controlled by the pilot to allow a safe return to

  5. Electrical servo actuator bracket. [fuel control valves on jet engines

    NASA Technical Reports Server (NTRS)

    Sawyer, R. V. (Inventor)

    1981-01-01

    An electrical servo actuator is mounted on a support arm which is allowed to pivot on a bolt through a fixed mounting bracket. The actuator is pivotally connected to the end of the support arm by a bolt which has an extension allowed to pass through a slot in the fixed mounting bracket. An actuator rod extends from the servo actuator to a crank arm which turns a control shaft. A short linear thrust of the rod pivots the crank arm through about 90 for full-on control with the rod contracted into the servo actuator, and full-off control when the rod is extended from the actuator. A spring moves the servo actuator and actuator rod toward the control crank arm once the actuator rod is fully extended in the full-off position. This assures the turning of the control shaft to a full-off position. A stop bolt and slot are provided to limit pivot motion. Once fully extended, the spring pivots the motion.

  6. Mobile Telemetry Van Remote Control Upgrade

    DTIC Science & Technology

    2012-05-17

    Advantages of Remote Control System Upgrade • Summary Overview • Remote control of Telemetry Mobile Ground Support ( TMGS ) Van proposed to allow...NWC) personnel provided valuable data for full-function remote control of telemetry tracking vans Background • TMGS Vans support Flight Test...control capability from main TM site at Building 5790 currently allows support via TMGS Van at nearby C- 15 Site, Plant 42 in Palmdale, and as far

  7. Prototype part task trainer: A remote manipulator system simulator

    NASA Technical Reports Server (NTRS)

    Shores, David

    1989-01-01

    The Part Task Trainer program (PTT) is a kinematic simulation of the Remote Manipulator System (RMS) for the orbiter. The purpose of the PTT is to supply a low cost man-in-the-loop simulator, allowing the student to learn operational procedures which then can be used in the more expensive full scale simulators. PTT will allow the crew members to work on their arm operation skills without the need for other people running the simulation. The controlling algorithms for the arm were coded out of the Functional Subsystem Requirements Document to ensure realistic operation of the simulation. Relying on the hardware of the workstation to provide fast refresh rates for full shaded images allows the simulation to be run on small low cost stand alone work stations, removing the need to be tied into a multi-million dollar computer for the simulation. PTT will allow the student to make errors which in full scale mock up simulators might cause failures or damage hardware. On the screen the user is shown a graphical representation of the RMS control panel in the aft cockpit of the orbiter, along with a main view window and up to six trunion and guide windows. The dials drawn on the panel may be turned to select the desired mode of operation. The inputs controlling the arm are read from a chair with a Translational Hand Controller (THC) and a Rotational Hand Controller (RHC) attached to it.

  8. Control of three-dimensional waves on thin liquid films

    NASA Astrophysics Data System (ADS)

    Tomlin, Ruben; Gomes, Susana; Pavliotis, Greg; Papageorgiou, Demetrios

    2017-11-01

    We consider a weakly nonlinear model for interfacial waves on three-dimensional thin films on inclined flat planes - the Kuramoto-Sivashinsky equation. The flow is driven by gravity, and is allowed to be overlying or hanging on the flat substrate. Blowing and suction controls are applied at the substrate surface. We explore the instability of the transverse modes for hanging arrangements, which are unbounded and grow exponentially. The structure of the equations allows us to construct optimal transverse controls analytically to prevent this transverse growth. We also may consider the influence of transverse modes on overlying film flows, these modes are damped out if uncontrolled. We also consider the more physical concept of point actuated controls which are modelled using Dirac delta functions. We first study the case of proportional control, where the actuation at a point depends on the local interface height alone. Here, we study the influence of control strength and number/location of actuators on the possible stabilization of the zero solution. We also consider the full feedback problem, which assumes that we can observe the full interface and allow communication between actuators. Using these controls we can obtain exponential stability where proportional controls fail, and stabilize non-trivial solutions.

  9. Experience with synchronous and asynchronous digital control systems

    NASA Technical Reports Server (NTRS)

    Regenie, V. A.; Chacon, C. V.; Lock, W. P.

    1986-01-01

    Flight control systems have undergone a revolution since the days of simple mechanical linkages; presently the most advanced systems are full-authority, full-time digital systems controlling unstable aircraft. With the use of advanced control systems, the aerodynamic design can incorporate features that allow greater performance and fuel savings, as can be seen on the new Airbus design and advanced tactical fighter concepts. These advanced aircraft will be and are relying on the flight control system to provide the stability and handling qualities required for safe flight and to allow the pilot to control the aircraft. Various design philosophies have been proposed and followed to investigate system architectures for these advanced flight control systems. One major area of discussion is whether a multichannel digital control system should be synchronous or asynchronous. This paper addressed the flight experience at the Dryden Flight Research Facility of NASA's Ames Research Center with both synchronous and asynchronous digital flight control systems. Four different flight control systems are evaluated against criteria such as software reliability, cost increases, and schedule delays.

  10. Digital Full-Scope Simulation of a Conventional Nuclear Power Plant Control Room, Phase 2: Installation of a Reconfigurable Simulator to Support Nuclear Plant Sustainability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ronald L. Boring; Vivek Agarwal; Kirk Fitzgerald

    2013-03-01

    The U.S. Department of Energy’s Light Water Reactor Sustainability program has developed a control room simulator in support of control room modernization at nuclear power plants in the U.S. This report highlights the recent completion of this reconfigurable, full-scale, full-scope control room simulator buildout at the Idaho National Laboratory. The simulator is fully reconfigurable, meaning it supports multiple plant models developed by different simulator vendors. The simulator is full-scale, using glasstop virtual panels to display the analog control boards found at current plants. The present installation features 15 glasstop panels, uniquely achieving a complete control room representation. The simulator ismore » also full-scope, meaning it uses the same plant models used for training simulators at actual plants. Unlike in the plant training simulators, the deployment on glasstop panels allows a high degree of customization of the panels, allowing the simulator to be used for research on the design of new digital control systems for control room modernization. This report includes separate sections discussing the glasstop panels, their layout to mimic control rooms at actual plants, technical details on creating a multi-plant and multi-vendor reconfigurable simulator, and current efforts to support control room modernization at U.S. utilities. The glasstop simulator provides an ideal testbed for prototyping and validating new control room concepts. Equally importantly, it is helping create a standardized and vetted human factors engineering process that can be used across the nuclear industry to ensure control room upgrades maintain and even improve current reliability and safety.« less

  11. Full-order optimal compensators for flow control: the multiple inputs case

    NASA Astrophysics Data System (ADS)

    Semeraro, Onofrio; Pralits, Jan O.

    2018-03-01

    Flow control has been the subject of numerous experimental and theoretical works. We analyze full-order, optimal controllers for large dynamical systems in the presence of multiple actuators and sensors. The full-order controllers do not require any preliminary model reduction or low-order approximation: this feature allows us to assess the optimal performance of an actuated flow without relying on any estimation process or further hypothesis on the disturbances. We start from the original technique proposed by Bewley et al. (Meccanica 51(12):2997-3014, 2016. https://doi.org/10.1007/s11012-016-0547-3), the adjoint of the direct-adjoint (ADA) algorithm. The algorithm is iterative and allows bypassing the solution of the algebraic Riccati equation associated with the optimal control problem, typically infeasible for large systems. In this numerical work, we extend the ADA iteration into a more general framework that includes the design of controllers with multiple, coupled inputs and robust controllers (H_{∞} methods). First, we demonstrate our results by showing the analytical equivalence between the full Riccati solutions and the ADA approximations in the multiple inputs case. In the second part of the article, we analyze the performance of the algorithm in terms of convergence of the solution, by comparing it with analogous techniques. We find an excellent scalability with the number of inputs (actuators), making the method a viable way for full-order control design in complex settings. Finally, the applicability of the algorithm to fluid mechanics problems is shown using the linearized Kuramoto-Sivashinsky equation and the Kármán vortex street past a two-dimensional cylinder.

  12. 14 CFR 29.671 - General.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... function. (b) Each element of each flight control system must be designed, or distinctively and permanently... system. (c) A means must be provided to allow full control movement of all primary flight controls prior... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Control Systems § 29.671 General. (a) Each...

  13. Experience with synchronous and asynchronous digital control systems. [for flight

    NASA Technical Reports Server (NTRS)

    Regenie, Victoria A.; Chacon, Claude V.; Lock, Wilton P.

    1986-01-01

    Flight control systems have undergone a revolution since the days of simple mechanical linkages; presently the most advanced systems are full-authority, full-time digital systems controlling unstable aircraft. With the use of advanced control systems, the aerodynamic design can incorporate features that allow greater performance and fuel savings, as can be seen on the new Airbus design and advanced tactical fighter concepts. These advanced aircraft will be and are relying on the flight control system to provide the stability and handling qualities required for safe flight and to allow the pilot to control the aircraft. Various design philosophies have been proposed and followed to investigate system architectures for these advanced flight control systems. One major area of discussion is whether a multichannel digital control system should be synchronous or asynchronous. This paper addressed the flight experience at the Dryden Flight Research Facility of NASA's Ames Research Center with both synchronous and asynchronous digital flight control systems. Four different flight control systems are evaluated against criteria such as software reliability, cost increases, and schedule delays.

  14. Operational viewpoint of the X-29A digital flight control system

    NASA Technical Reports Server (NTRS)

    Chacon, Vince; Mcbride, David

    1988-01-01

    In the past few years many flight control systems have been implemented as full-authority, full-time digital systems. The digital design has allowed flight control systems to make use of many enhanced elements that are generally considered too complex to implement in an analog system. Examples of these elements are redundant information exchanged between channels to allow for continued operation after multiple failures and multiple variable gain schedules to optimize control of the aircraft throughout its flight envelope and in all flight modes. The introduction of the digital system for flight control also created the problem of obtaining information from the system in an understandable and useful format. This paper presents how the X-29A was dealt with during its operations at NASA Ames-Dryden Flight Research Facility. A brief description of the X-29A control system, a discussion of the tools developed to aid in daily operations, and the troubleshooting of the aircraft are included.

  15. Method and system for controlling a synchronous machine over full operating range

    DOEpatents

    Walters, James E.; Gunawan, Fani S.; Xue, Yanhong

    2002-01-01

    System and method for controlling a synchronous machine are provided. The method allows for calculating a stator voltage index. The method further allows for relating the magnitude of the stator voltage index against a threshold voltage value. An offset signal is generated based on the results of the relating step. A respective state of operation of the machine is determined. The offset signal is processed based on the respective state of the machine.

  16. Composite fuzzy sliding mode control of nonlinear singularly perturbed systems.

    PubMed

    Nagarale, Ravindrakumar M; Patre, B M

    2014-05-01

    This paper deals with the robust asymptotic stabilization for a class of nonlinear singularly perturbed systems using the fuzzy sliding mode control technique. In the proposed approach the original system is decomposed into two subsystems as slow and fast models by the singularly perturbed method. The composite fuzzy sliding mode controller is designed for stabilizing the full order system by combining separately designed slow and fast fuzzy sliding mode controllers. The two-time scale design approach minimizes the effect of boundary layer system on the full order system. A stability analysis allows us to provide sufficient conditions for the asymptotic stability of the full order closed-loop system. The simulation results show improved system performance of the proposed controller as compared to existing methods. The experimentation results validate the effectiveness of the proposed controller. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Windows NT Attacks for the Evaluation of Intrusion Detection Systems

    DTIC Science & Technology

    2000-06-01

    their passwords never expire. Their privileges allow telnet access and FTP access to the system, but do not allow local logins . Each user can...default: • Administrator: This root account allows remote and local logins and full control of system software. • Guest: This default account, setup by...realizing that the Netbus server was installed. The attack also edits the Windows NT Registry so the Netbus server restarts at every login . This

  18. On decentralized adaptive full-order sliding mode control of multiple UAVs.

    PubMed

    Xiang, Xianbo; Liu, Chao; Su, Housheng; Zhang, Qin

    2017-11-01

    In this study, a novel decentralized adaptive full-order sliding mode control framework is proposed for the robust synchronized formation motion of multiple unmanned aerial vehicles (UAVs) subject to system uncertainty. First, a full-order sliding mode surface in a decentralized manner is designed to incorporate both the individual position tracking error and the synchronized formation error while the UAV group is engaged in building a certain desired geometric pattern in three dimensional space. Second, a decentralized virtual plant controller is constructed which allows the embedded low-pass filter to attain the chattering free property of the sliding mode controller. In addition, robust adaptive technique is integrated in the decentralized chattering free sliding control design in order to handle unknown bounded uncertainties, without requirements for assuming a priori knowledge of bounds on the system uncertainties as stated in conventional chattering free control methods. Subsequently, system robustness as well as stability of the decentralized full-order sliding mode control of multiple UAVs is synthesized. Numerical simulation results illustrate the effectiveness of the proposed control framework to achieve robust 3D formation flight of the multi-UAV system. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Development of a Model for Human Operator Learning in Continuous Estimation and Control Tasks.

    DTIC Science & Technology

    1983-12-01

    and (3) a " precognitive mode" in 𔄁 17 which the pilot is able to take full advantage of any predictability "" inherent in the external inputs and can...allow application of a partial feedforward strategy; and (3) a " precognitive " mode in which full advantage is taken of any predictability of the

  20. Control of three-dimensional waves on thin liquid films. I - Optimal control and transverse mode effects

    NASA Astrophysics Data System (ADS)

    Tomlin, Ruben; Gomes, Susana; Pavliotis, Greg; Papageorgiou, Demetrios

    2017-11-01

    We consider a weakly nonlinear model for interfacial waves on three-dimensional thin films on inclined flat planes - the Kuramoto-Sivashinsky equation. The flow is driven by gravity, and is allowed to be overlying or hanging on the flat substrate. Blowing and suction controls are applied at the substrate surface. In this talk we explore the instability of the transverse modes for hanging arrangements, which are unbounded and grow exponentially. The structure of the equations allows us to construct optimal transverse controls analytically to prevent this transverse growth. In this case and the case of an overlying film, we additionally study the influence of controlling to non-trivial transverse states on the streamwise and mixed mode dynamics. Finally, we solve the full optimal control problem by deriving the first order necessary conditions for existence of an optimal control, and solving these numerically using the forward-backward sweep method.

  1. A real-time simulator of a turbofan engine

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.; Delaat, John C.; Merrill, Walter C.

    1989-01-01

    A real-time digital simulator of a Pratt and Whitney F100 engine has been developed for real-time code verification and for actuator diagnosis during full-scale engine testing. This self-contained unit can operate in an open-loop stand-alone mode or as part of closed-loop control system. It can also be used for control system design and development. Tests conducted in conjunction with the NASA Advanced Detection, Isolation, and Accommodation program show that the simulator is a valuable tool for real-time code verification and as a real-time actuator simulator for actuator fault diagnosis. Although currently a small perturbation model, advances in microprocessor hardware should allow the simulator to evolve into a real-time, full-envelope, full engine simulation.

  2. Double-tick realization of binary control program

    NASA Astrophysics Data System (ADS)

    Kobylecki, Michał; Kania, Dariusz

    2016-12-01

    This paper presents a procedure for the implementation of control algorithms for hardware-bit compatible with the standard IEC61131-3. The described transformation based on the sets of calculus and graphs, allows translation of the original form of the control program to the form in full compliance with the original, giving the architecture represented by two tick. The proposed method enables the efficient implementation of the control bits in the FPGA with the use of a standardized programming language LD.

  3. Nonlinear dispersion-based incoherent photonic processing for microwave pulse generation with full reconfigurability.

    PubMed

    Bolea, Mario; Mora, José; Ortega, Beatriz; Capmany, José

    2012-03-12

    A novel all-optical technique based on the incoherent processing of optical signals using high-order dispersive elements is analyzed for microwave arbitrary pulse generation. We show an approach which allows a full reconfigurability of a pulse in terms of chirp, envelope and central frequency by the proper control of the second-order dispersion and the incoherent optical source power distribution, achieving large values of time-bandwidth product.

  4. US Coast Guard ASIST Probe Evaluation on a H-65 Dolphin

    DTIC Science & Technology

    2010-05-01

    Turbomeca FADEC (Full Authority Digital Engine Controller) was used to adjust the rotor RPM to the desired value. Due to concerns of exciting resonance...inside the engine, the FADEC controller is designed to not allow continuous operation between 300 and 320 RPM so this rotor RPM range was not tested...the FADEC controller. All other personnel were located southwest of the aircraft to capture data and witness the event. US Coast Guard ASIST

  5. Full scale load testing of sand-jacks.

    DOT National Transportation Integrated Search

    2006-06-01

    A sand-jack is a sand filled container used as a component of cast-in-place bridge false-work. The sand filler facilitates the removal of the false-work by allowing slow and controlled lowering of the bracing that has become wedged beneath the new br...

  6. Achieving nitritation in a continuous moving bed biofilm reactor at different temperatures through ratio control.

    PubMed

    Bian, Wei; Zhang, Shuyan; Zhang, Yanzhuo; Li, Wenjing; Kan, Ruizhe; Wang, Wenxiao; Zheng, Zhaoming; Li, Jun

    2017-02-01

    A ratio control strategy was implemented in a continuous moving bed biofilm reactor (MBBR) to investigate the response to different temperatures. The control strategy was designed to maintain a constant ratio between dissolved oxygen (DO) and total ammonia nitrogen (TAN) concentrations. The results revealed that a stable nitritation in a biofilm reactor could be achieved via ratio control, which compensated the negative influence of low temperatures by stronger oxygen-limiting conditions. Even with a temperature as low as 6°C, stable nitritation could be achieved when the controlling ratio did not exceed 0.17. Oxygen-limiting conditions in the biofilm reactor were determined by the DO/TAN concentrations ratio, instead of the mere DO concentration. This ratio control strategy allowed the achievement of stable nitritation without complete wash-out of NOB from the reactor. Through the ratio control strategy full nitritation of sidestream wastewater was allowed; however, for mainstream wastewater, only partial nitritation was recommended. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. 3D surface flow kinematics derived from airborne UAVSAR interferometric synthetic aperture radar to constrain the physical mechanisms controlling landslide motion

    NASA Astrophysics Data System (ADS)

    Delbridge, B. G.; Burgmann, R.; Fielding, E. J.; Hensley, S.; Schulz, W. H.

    2013-12-01

    This project focuses on improving our understanding of the physical mechanisms controlling landslide motion by studying the landslide-wide kinematics of the Slumgullion landslide in southwestern Colorado using interferometric synthetic aperture radar (InSAR) and GPS. The NASA/JPL UAVSAR airborne repeat-pass SAR interferometry system imaged the Slumgullion landslide from 4 look directions on eight flights in 2011 and 2012. Combining the four look directions allows us to extract the full 3-D velocity field of the surface. Observing the full 3-dimensional flow field allows us to extract the full strain tensor (assuming free surface boundary conditions and incompressible flow) since we have both the spatial resolution to take spatial derivates and full deformation information. COSMO-SkyMed(CSK) high-resolution Spotlight data was also acquired during time intervals overlapping with the UAVSAR one-week pairs, with intervals as short as one day. These observations allow for the quantitative testing of the deformation magnitude and estimated formal errors in the UAVSAR derived deformation field. We also test the agreement of the deformation at 20 GPS monitoring sites concurrently acquired by the USGS. We also utilize the temporal resolution of real-time GPS acquired by the UC Berkeley Active Tectonics Group during a temporary deployment from July 22nd - August 2nd. By combining this data with the kinematic data we hope to elucidate the response of the landslide to environmental changes such as rainfall, snowmelt, and atmospheric pressure, and consequently the mechanisms controlling the dynamics of the landslide system. To constrain the longer temporal dynamics, interferograms made from pairs of CSK images acquired in 2010, 2011, 2012 and 2013 reveal the slide deformation on a longer timescale by allowing us to measure meters of motion and see the average rates over year long intervals using pixel offset tracking of the high-resolution SAR amplitude images. The results of this study will also allow us to test the agreement and commensurability of UAVSAR- derived deformation with real-time GPS observations and traditional satellite-based SAR interferometry from the COSMOSkyMed system. We will not only help mitigate the hazards associated with large landslides, but also provide information on the limitations of current geodetic imaging techniques. This unique opportunity to compare several concurrent geodetic observations of the same deformation will provide constraints and recommendations for the design and implementation of future geodetic systems for the monitoring of Earth surface processes.

  8. Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project: Test act system description

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The engineering and fabrication of the test ACT system, produced in the third program element of the IAAC Project is documented. The system incorporates pitch-augmented stability and wing-load alleviation, plus full authority fly-by-wire control of the elevators. The pitch-augmented stability is designed to have reliability sufficient to allow flight with neutral or negative inherent longitudinal stability.

  9. Development and evaluation of a device for simultaneous uniaxial compression and optical imaging of cartilage samples in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinert, Marian; Kratz, Marita; Jones, David B.

    2014-10-15

    In this paper, we present a system that allows imaging of cartilage tissue via optical coherence tomography (OCT) during controlled uniaxial unconfined compression of cylindrical osteochondral cores in vitro. We describe the system design and conduct a static and dynamic performance analysis. While reference measurements yield a full scale maximum deviation of 0.14% in displacement, force can be measured with a full scale standard deviation of 1.4%. The dynamic performance evaluation indicates a high accuracy in force controlled mode up to 25 Hz, but it also reveals a strong effect of variance of sample mechanical properties on the tracking performancemore » under displacement control. In order to counterbalance these disturbances, an adaptive feed forward approach was applied which finally resulted in an improved displacement tracking accuracy up to 3 Hz. A built-in imaging probe allows on-line monitoring of the sample via OCT while being loaded in the cultivation chamber. We show that cartilage topology and defects in the tissue can be observed and demonstrate the visualization of the compression process during static mechanical loading.« less

  10. Vectorial control of nonlinear emission via chiral butterfly nanoantennas: generation of pure high order nonlinear vortex beams.

    PubMed

    Lesina, Antonino Cala'; Berini, Pierre; Ramunno, Lora

    2017-02-06

    We report on a chiral gap-nanostructure, which we term a "butterfly nanoantenna," that offers full vectorial control over nonlinear emission. The field enhancement in its gap occurs for only one circular polarization but for every incident linear polarization. As the polarization, phase and amplitude of the linear field in the gap are highly controlled, the linear field can drive nonlinear emitters within the gap, which behave as an idealized Huygens source. A general framework is thereby proposed wherein the butterfly nanoantennas can be arranged in a metasurface, and the nonlinear Huygens sources exploited to produce a highly structured far-field optical beam. Nonlinearity allows us to shape the light at shorter wavelengths, not accessible by linear plasmonics, and resulting in high purity beams. The chirality of the butterfly allows us to create orbital angular momentum states using a linearly polarized excitation. A third harmonic Laguerre-Gauss beam carrying an optical orbital angular momentum of 41 is demonstrated as an example, through large-scale simulations on a high-performance computing platform of the full plasmonic metasurface with an area large enough to contain up to 3600 nanoantennas.

  11. Pointing and control system design study for the space infrared telescope facility (SIRTF)

    NASA Technical Reports Server (NTRS)

    Lorell, K. R.; Aubrun, J. N.; Sridhar, B.; Cochran, R. W.

    1984-01-01

    The design and performance of pointing and control systems for two space infrared telescope facility vehicles were examined. The need for active compensation of image jitter using the secondary mirror or other optical elements was determined. In addition, a control system to allow the telescope to perform small angle slews, and to accomplish large angle slews at the rate of 15 deg per minute was designed. Both the 98 deg and the 28 deg inclination orbits were examined, and spacecraft designs were developed for each. The results indicate that active optical compensation of line-of-sight errors is not necessary if the system is allowed to settle for roughly ten seconds after a slew maneuver. The results are contingent on the assumption of rigid body dynamics, and a single structural mode between spacecraft and telescope. Helium slosh for a half full 4000 liter tank was analyzed, and did not represent a major control problem.

  12. Biopharmaceuticals: The Economic Equation

    PubMed Central

    Blackstone, Erwin A.; Fuhr, Joseph P.

    2007-01-01

    As more biopharmaceuticals reach the market, more attention will be given to issues such as cost-effectiveness evaluations, biosimilars, and price controls. The value biologic therapies bring to the healthcare system may take years to appreciate in full –perhaps only when policy decisions allow for their economic effects to be understood. PMID:22478688

  13. Developments in Polarization and Energy Control of APPLE-II Undulators at Diamond Light Source

    NASA Astrophysics Data System (ADS)

    Longhi, E. C.; Bencok, P.; Dobrynin, A.; Rial, E. C. M.; Rose, A.; Steadman, P.; Thompson, C.; Thomson, A.; Wang, H.

    2013-03-01

    A pair of 2m long APPLE-II type undulators have been built for the I10 BLADE beamline at Diamond Light Source. These 48mm period devices have gap as well as four moveable phase axes which provide the possibility to produce the full range of elliptical polarizations as well as linear polarization tilted through a full 180deg. The mechanical layout chosen has a 'master and slave' arrangement of the phase axes on the top and bottom. This arrangement allows the use of symmetries to provide operational ease for both changing energy using only the master phase while keeping fixed linear horizontal or circular polarization, as well as changing linear polarization angle while keeping fixed energy [1]. The design allows very fast motion of the master phase arrays, without sacrifice of accuracy, allowing the possibility of mechanical polarization switching at 1Hz for dichroism experiments. We present the mechanical design features of these devices, as well as the results of magnetic measurements and shimming from before installation. Finally, we present the results of characterization of these devices by the beamline, including polarimetry, which has been done on the various modes of motion to control energy and polarization. These modes of operation have been available to users since 2011.

  14. A four-diode full-wave ionic current rectifier based on bipolar membranes: overcoming the limit of electrode capacity.

    PubMed

    Gabrielsson, Erik O; Janson, Per; Tybrandt, Klas; Simon, Daniel T; Berggren, Magnus

    2014-08-13

    Full-wave rectification of ionic currents is obtained by constructing the typical four-diode bridge out of ion conducting bipolar membranes. Together with conjugated polymer electrodes addressed with alternating current, the bridge allows for generation of a controlled ionic direct current for extended periods of time without the production of toxic species or gas typically arising from electrode side-reactions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. FPGA-based real time controller for high order correction in EDIFISE

    NASA Astrophysics Data System (ADS)

    Rodríguez-Ramos, L. F.; Chulani, H.; Martín, Y.; Dorta, T.; Alonso, A.; Fuensalida, J. J.

    2012-07-01

    EDIFISE is a technology demonstrator instrument developed at the Institute of Astrophysics of the Canary Islands (IAC), intended to explore the feasibility of combining Adaptive Optics with attenuated optical fibers in order to obtain high spatial resolution spectra at the surroundings of a star, as an alternative to coronagraphy. A simplified version with only tip tilt correction has been tested at the OGS telescope in Observatorio del Teide (Canary islands, Spain) and a complete version is intended to be tested at the OGS and at the WHT telescope in Observatorio del Roque de los Muchachos, (Canary Islands, Spain). This paper describes the FPGA-based real time control of the High Order unit, responsible of the computation of the actuation values of a 97-actuactor deformable mirror (11x11) with the information provided by a configurable wavefront sensor of up to 16x16 subpupils at 500 Hz (128x128 pixels). The reconfigurable logic hardware will allow both zonal and modal control approaches, will full access to select which mode loops should be closed and with a number of utilities for influence matrix and open loop response measurements. The system has been designed in a modular way to allow for easy upgrade to faster frame rates (1500 Hz) and bigger wavefront sensors (240x240 pixels), accepting also several interfaces from the WFS and towards the mirror driver. The FPGA-based (Field Programmable Gate Array) real time controller provides bias and flat-fielding corrections, subpupil slopes to modal matrix computation for up to 97 modes, independent servo loop controllers for each mode with user control for independent loop opening or closing, mode to actuator matrix computation and non-common path aberration correction capability. It also provides full housekeeping control via UPD/IP for matrix reloading and full system data logging.

  16. Full Capability Formation Flight Control

    DTIC Science & Technology

    2005-02-01

    and ≤ 5 feet during thunderstorm level turbulence. Next, the 4 vortex wake of the lead aircraft will be modeled and the controller will be...be used to simulate the random effects of wind turbulence on the system. This model allows for the input of wind turbulence at three different ...Formation Vortex Interactions The other significant disturbance to be included in the two aircraft dynamic model is the effect of lead’s vortex wake on

  17. Magnetics and Power System Upgrades for the Pegasus-U Experiment

    NASA Astrophysics Data System (ADS)

    Preston, R. C.; Bongard, M. W.; Fonck, R. J.; Lewicki, B. T.

    2014-10-01

    To support the missions of developing local helicity injection startup and exploiting advanced tokamak physics studies at near unity aspect ratio, the proposed Pegasus-U will include expanded magnetic systems and associated power supplies. A new centerstack increases the toroidal field seven times to 1 T and the volt-seconds by a factor of six while maintaining operation at an aspect ratio of 1.2. The poloidal field magnet system is expanded to support improved shape control and robust double or single null divertor operation at the full plasma current of 0.3 MA. An integrated digital control system based on Field Programmable Gate Arrays (FPGAs) provides active feedback control of all magnet currents. Implementation of the FPGAs is achieved with modular noise reducing electronics. The digital feedback controllers replace the existing analog systems and switch multiplexing technology. This will reduce noise sensitivity and allow the operational Ohmic power supply voltage to increase from 2100 V to its maximum capacity of 2400 V. The feedback controller replacement also allows frequency control for ``freewheeling''--stopping the switching for a short interval and allowing the current to coast. The FPGAs assist in optimizing pulse length by having programmable switching events to minimize energy losses. They also allow for more efficient switching topologies that provide improved stored energy utilization, and support increasing the pulse length from 25 ms to 50-100 ms. Work supported by US DOE Grant DE-FG02-96ER54375.

  18. Estimating risk and rate levels, ratios and differences in case-control studies.

    PubMed

    King, Gary; Zeng, Langche

    2002-05-30

    Classic (or 'cumulative') case-control sampling designs do not admit inferences about quantities of interest other than risk ratios, and then only by making the rare events assumption. Probabilities, risk differences and other quantities cannot be computed without knowledge of the population incidence fraction. Similarly, density (or 'risk set') case-control sampling designs do not allow inferences about quantities other than the rate ratio. Rates, rate differences, cumulative rates, risks, and other quantities cannot be estimated unless auxiliary information about the underlying cohort such as the number of controls in each full risk set is available. Most scholars who have considered the issue recommend reporting more than just risk and rate ratios, but auxiliary population information needed to do this is not usually available. We address this problem by developing methods that allow valid inferences about all relevant quantities of interest from either type of case-control study when completely ignorant of or only partially knowledgeable about relevant auxiliary population information.

  19. Development and Operation of an Automatic Rotor Trim Control System for the UH-60 Individual Blade Control Wind Tunnel Test

    NASA Technical Reports Server (NTRS)

    Theodore, Colin R.; Tischler, Mark B.

    2010-01-01

    An automatic rotor trim control system was developed and successfully used during a wind tunnel test of a full-scale UH-60 rotor system with Individual Blade Control (IBC) actuators. The trim control system allowed rotor trim to be set more quickly, precisely and repeatably than in previous wind tunnel tests. This control system also allowed the rotor trim state to be maintained during transients and drift in wind tunnel flow, and through changes in IBC actuation. The ability to maintain a consistent rotor trim state was key to quickly and accurately evaluating the effect of IBC on rotor performance, vibration, noise and loads. This paper presents details of the design and implementation of the trim control system including the rotor system hardware, trim control requirements, and trim control hardware and software implementation. Results are presented showing the effect of IBC on rotor trim and dynamic response, a validation of the rotor dynamic simulation used to calculate the initial control gains and tuning of the control system, and the overall performance of the trim control system during the wind tunnel test.

  20. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov Websites

    capabilities, and new methodologies that allowed NREL to model operations of the Eastern Interconnection at Analyst Power Systems Modeling Researcher Project Manager Power Systems Engineering Center Research Engineer Power Systems Modeling and Control Get the full list of job postings and learn more about working

  1. Direct Digital Boiler Control Systems for the Navy Small Boiler Equipment.

    DTIC Science & Technology

    1983-02-01

    Hardware. Each full-size ACU a 6 caculation modules 30 arrme, modufes sation for dead time lag contains input/output circuit a 16 control mo uies a...along with lather modules of the DCS-1000 family. ’The complete instrument consists of plug-in circuit boards that allow easy Teplacement of a...Maintenance-Most systems indicate trouble areas with diagnostic routines or integral LED indicators so that circuit boards can be replaced to correct

  2. Effects of Different Heave Motion Components on Pilot Pitch Control Behavior

    NASA Technical Reports Server (NTRS)

    Zaal, Petrus M. T.; Zavala, Melinda A.

    2016-01-01

    The study described in this paper had two objectives. The first objective was to investigate if a different weighting of heave motion components decomposed at the center of gravity, allowing for a higher fidelity of individual components, would result in pilot manual pitch control behavior and performance closer to that observed with full aircraft motion. The second objective was to investigate if decomposing the heave components at the aircraft's instantaneous center of rotation rather than at the center of gravity could result in additional improvements in heave motion fidelity. Twenty-one general aviation pilots performed a pitch attitude control task in an experiment conducted on the Vertical Motion Simulator at NASA Ames under different hexapod motion conditions. The large motion capability of the Vertical Motion Simulator also allowed for a full aircraft motion condition, which served as a baseline. The controlled dynamics were of a transport category aircraft trimmed close to the stall point. When the ratio of center of gravity pitch heave to center of gravity heave increased in the hexapod motion conditions, pilot manual control behavior and performance became increasingly more similar to what is observed with full aircraft motion. Pilot visual and motion gains significantly increased, while the visual lead time constant decreased. The pilot visual and motion time delays remained approximately constant and decreased, respectively. The neuromuscular damping and frequency both decreased, with their values more similar to what is observed with real aircraft motion when there was an equal weighting of the heave of the center of gravity and heave due to rotations about the center of gravity. In terms of open- loop performance, the disturbance and target crossover frequency increased and decreased, respectively, and their corresponding phase margins remained constant and increased, respectively. The decomposition point of the heave components only had limited effects on pilot manual control behavior and performance.

  3. Controlling the stream of thought: working memory capacity predicts adjustment of mind-wandering to situational demands.

    PubMed

    Rummel, Jan; Boywitt, C Dennis

    2014-10-01

    Although engaging in task-unrelated thoughts can be enjoyable and functional under certain circumstances, allowing one's mind to wander off-task will come at a cost to performance in many situations. Given that task-unrelated thoughts need to be blocked out when the current task requires full attention, it has been argued that cognitive control is necessary to prevent mind-wandering from becoming maladaptive. Extending this idea, we exposed participants to tasks of different demands and assessed mind-wandering via thought probes. Employing a latent-change model, we found mind-wandering to be adjusted to current task demands. As hypothesized, the degree of adjustment was predicted by working memory capacity, indicating that participants with higher working memory capacity were more flexible in their coordination of on- and off-task thoughts. Notably, the better the adjustment, the smaller performance decrements due to increased task demands were. On the basis of these findings, we argue that cognitive control does not simply allow blocking out task-unrelated thoughts but, rather, allows one to flexibly adjust mind-wandering to situational demands.

  4. Experimental investigation of the stability boundary for double-diffusive finger convection in a Hele-Shaw cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, Clay A.; Glass, Robert J.; Tyler, Scott W.

    OAK - B135 We apply high resolution, full field light transmission techniques to study the onset and development of convection in simulated porous media (Hele-Shaw cells) and fractures. The light transmission technique allows quantitative measurement of the solute concentration fields in time thus allowing direct measurements of the mass flux of components. Experiments are first designed to test theoretical stability relations as a function of the solute concentrations, solute diffusivities and the medium's permeability. Structural evolution and convective transport as a function of dimensionless control parameters is then determined across the full range of parameter space. We also consider themore » application of lattice gas automata techniques to numerically model the onset and development of convection. (Gary Drew notified on 3/25/03 of copyrighted Material)« less

  5. Wake flow control using a dynamically controlled wind turbine

    NASA Astrophysics Data System (ADS)

    Castillo, Ricardo; Wang, Yeqin; Pol, Suhas; Swift, Andy; Hussain, Fazle; Westergaard, Carsten; Texas Tech University Team

    2016-11-01

    A wind tunnel based "Hyper Accelerated Wind Farm Kinematic-Control Simulator" (HAWKS) is being built at Texas Tech University to emulate controlled wind turbine flow physics. The HAWKS model turbine has pitch, yaw and speed control which is operated in real model time, similar to that of an equivalent full scale turbine. Also, similar to that of a full scale wind turbine, the controls are developed in a Matlab Simulink environment. The current diagnostic system consists of power, rotor position, rotor speed measurements and PIV wake characterization with four cameras. The setup allows up to 7D downstream of the rotor to be mapped. The purpose of HAWKS is to simulate control strategies at turnaround times much faster than CFD and full scale testing. The fundamental building blocks of the simulator have been tested, and demonstrate wake steering for both static and dynamic turbine actuation. Parameters which have been studied are yaw, rotor speed and combinations hereof. The measured wake deflections for static yaw cases are in agreement with previously reported research implying general applicability of the HAWKS platform for the purpose of manipulating the wake. In this presentation the general results will be introduced followed by an analysis of the wake turbulence and coherent structures when comparing static and dynamic flow cases. The outcome of such studies could ultimately support effective wind farm wake flow control strategies. Texas Emerging Technology Fund (ETF).

  6. Optimizing phase to enhance optical trap stiffness.

    PubMed

    Taylor, Michael A

    2017-04-03

    Phase optimization offers promising capabilities in optical tweezers, allowing huge increases in the applied forces, trap stiff-ness, or measurement sensitivity. One key obstacle to potential applications is the lack of an efficient algorithm to compute an optimized phase profile, with enhanced trapping experiments relying on slow programs that would take up to a week to converge. Here we introduce an algorithm that reduces the wait from days to minutes. We characterize the achievable in-crease in trap stiffness and its dependence on particle size, refractive index, and optical polarization. We further show that phase-only control can achieve almost all of the enhancement possible with full wavefront shaping; for instance phase control allows 62 times higher trap stiffness for 10 μm silica spheres in water, while amplitude control and non-trivial polarization further increase this by 1.26 and 1.01 respectively. This algorithm will facilitate future applications in optical trapping, and more generally in wavefront optimization.

  7. Hybrid neural network and fuzzy logic approaches for rendezvous and capture in space

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.; Castellano, Timothy

    1991-01-01

    The nonlinear behavior of many practical systems and unavailability of quantitative data regarding the input-output relations makes the analytical modeling of these systems very difficult. On the other hand, approximate reasoning-based controllers which do not require analytical models have demonstrated a number of successful applications such as the subway system in the city of Sendai. These applications have mainly concentrated on emulating the performance of a skilled human operator in the form of linguistic rules. However, the process of learning and tuning the control rules to achieve the desired performance remains a difficult task. Fuzzy Logic Control is based on fuzzy set theory. A fuzzy set is an extension of a crisp set. Crisp sets only allow full membership or no membership at all, whereas fuzzy sets allow partial membership. In other words, an element may partially belong to a set.

  8. Effects of Motion Cues on the Training of Multi-Axis Manual Control Skills

    NASA Technical Reports Server (NTRS)

    Zaal, Peter M. T.; Mobertz, Xander R. I.

    2017-01-01

    The study described in this paper investigated the effects of two different hexapod motion configurations on the training and transfer of training of a simultaneous roll and pitch control task. Pilots were divided between two groups which trained either under a baseline hexapod motion condition, with motion typically provided by current training simulators, or an optimized hexapod motion condition, with increased fidelity of the motion cues most relevant for the task. All pilots transferred to the same full-motion condition, representing motion experienced in flight. A cybernetic approach was used that gave insights into the development of pilots use of visual and motion cues over the course of training and after transfer. Based on the current results, neither of the hexapod motion conditions can unambiguously be chosen as providing the best motion for training and transfer of training of the used multi-axis control task. However, the optimized hexapod motion condition did allow pilots to generate less visual lead, control with higher gains, and have better disturbance-rejection performance at the end of the training session compared to the baseline hexapod motion condition. Significant adaptations in control behavior still occurred in the transfer phase under the full-motion condition for both groups. Pilots behaved less linearly compared to previous single-axis control-task experiments; however, this did not result in smaller motion or learning effects. Motion and learning effects were more pronounced in pitch compared to roll. Finally, valuable lessons were learned that allow us to improve the adopted approach for future transfer-of-training studies.

  9. CONTROL RODS FOR NUCLEAR REACTORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, F.R.

    1963-01-16

    A means for controlling the control rod in emergency, when it is desired to shutdown the reactor with the shortest possible delay, is described. When the emergency occurs the control rod is allowed to drop freely under gravity from the control rod support tube into the bore in the reactor core. A normal shutdown is reached almost at the lowest rod position. In the shut-down position and also below it, the control rod had its full effect of reducing the level of activity in the core. When the shut-down position was reached, a brake came into action to decelerate themore » rod and reduce shock and the likelihood of damage. (C.E.S.)« less

  10. Computer programming for generating visual stimuli.

    PubMed

    Bukhari, Farhan; Kurylo, Daniel D

    2008-02-01

    Critical to vision research is the generation of visual displays with precise control over stimulus metrics. Generating stimuli often requires adapting commercial software or developing specialized software for specific research applications. In order to facilitate this process, we give here an overview that allows nonexpert users to generate and customize stimuli for vision research. We first give a review of relevant hardware and software considerations, to allow the selection of display hardware, operating system, programming language, and graphics packages most appropriate for specific research applications. We then describe the framework of a generic computer program that can be adapted for use with a broad range of experimental applications. Stimuli are generated in the context of trial events, allowing the display of text messages, the monitoring of subject responses and reaction times, and the inclusion of contingency algorithms. This approach allows direct control and management of computer-generated visual stimuli while utilizing the full capabilities of modern hardware and software systems. The flowchart and source code for the stimulus-generating program may be downloaded from www.psychonomic.org/archive.

  11. Add Control: plant virtualization for control solutions in WWTP.

    PubMed

    Maiza, M; Bengoechea, A; Grau, P; De Keyser, W; Nopens, I; Brockmann, D; Steyer, J P; Claeys, F; Urchegui, G; Fernández, O; Ayesa, E

    2013-01-01

    This paper summarizes part of the research work carried out in the Add Control project, which proposes an extension of the wastewater treatment plant (WWTP) models and modelling architectures used in traditional WWTP simulation tools, addressing, in addition to the classical mass transformations (transport, physico-chemical phenomena, biological reactions), all the instrumentation, actuation and automation & control components (sensors, actuators, controllers), considering their real behaviour (signal delays, noise, failures and power consumption of actuators). Its ultimate objective is to allow a rapid transition from the simulation of the control strategy to its implementation at full-scale plants. Thus, this paper presents the application of the Add Control simulation platform for the design and implementation of new control strategies at the WWTP of Mekolalde.

  12. Creating and Maintaining Data-Driven Course Web Sites.

    ERIC Educational Resources Information Center

    Heines, Jesse M.

    This paper deals with techniques for reducing the amount of work that needs to be redone each semester when one prepares an existing course Web site for a new class. The key concept is algorithmic generation of common page elements while still allowing full control over page content via WYSIWYG tools like Microsoft FrontPage and Macromedia…

  13. Load capacity, failure mode and design criteria investigation of sand jacks : full scale load testing of sand jacks.

    DOT National Transportation Integrated Search

    2008-12-01

    A sand-jack is a sand filled container used as a component of cast-in-place bridge false-work. The sand filler facilitates the removal of the false-work by allowing slow and controlled lowering of the bracing that has become wedged beneath the new br...

  14. Preliminary investigations of design philosophies and features applicable to large magnetic suspension and balance systems

    NASA Technical Reports Server (NTRS)

    Britcher, C. P.; Fortescue, P. W.; Allcock, G. A.; Goodyer, M. J.

    1979-01-01

    The technology which is required to allow the principles of magnetic suspension and balance systems (MSBS) to be applied to the high Reynolds number transonic testing of aircraft models is examined. A test facility is presented as comprising a pressurized transonic cryogenic wind tunnel, with the MSBS providing full six degree of freedom control. The electro-magnets which are superconducting and fed from quiet, bipolar power supplies are examined. A model control system having some self adaptive characteristics is discussed.

  15. LabVIEW-based control and acquisition system for the dosimetric characterization of a silicon strip detector.

    PubMed

    Ovejero, M C; Pérez Vega-Leal, A; Gallardo, M I; Espino, J M; Selva, A; Cortés-Giraldo, M A; Arráns, R

    2017-02-01

    The aim of this work is to present a new data acquisition, control, and analysis software system written in LabVIEW. This system has been designed to obtain the dosimetry of a silicon strip detector in polyethylene. It allows the full automation of the experiments and data analysis required for the dosimetric characterization of silicon detectors. It becomes a useful tool that can be applied in the daily routine check of a beam accelerator.

  16. Versatile IEEE-488 data acquisition and control routines for a diode array spectrophotometer

    PubMed Central

    Shiundu, Paul M.

    1991-01-01

    The UV-visible diode array spectrophotometer is a work-horse instrument for many laboratories. This article provides simple data acquisition and control routines in Microsoft QuickBasic for a HP-8452A diode array spectrophotometer interfaced to an IBM PC/XT/AT, or compatible, microcomputer. These allow capture of full spectra and measure absorbance at one or several wavelengths at preset time intervals. The variance in absorbance at each wavelength is available as an option. PMID:18924888

  17. Patellar tendon rupture repair using Dall-Miles cable.

    PubMed

    Shelbourne, K D; Darmelio, M P; Klootwyk, T E

    2001-01-01

    Ten patients underwent patellar tendon repair with end-to-end suture technique and medial and lateral retinacular repair, as well as reinforcement with a Dall-Miles cable through the patella and tibial tubercle. The cable was tensioned at 60 degrees of flexion to allow immediate range of motion to at least 100 degrees of flexion and to protect the repair from undue tension while healing. Accurate tendon length was obtained from a lateral radiograph of the noninvolved knee in 60 degrees of flexion. Patients were allowed to bear full weight as tolerated postoperatively. A knee immobilizer was worn for approximately 2 weeks when adequate muscular control of the leg was attained. The cable was removed 6-8 weeks postoperatively, at which time range of motion equal to the opposite extremity was sought. Full extension was obtained by 1 week postoperatively. Average postoperative knee flexion was 88 degrees at 2 weeks, 112 degrees at 1 month, 133 at 3 months, and 138 degrees at 6 months compared to flexion of 141 degrees in the noninvolved knee. Mean quadriceps muscle strength 1 year postoperatively was 72%+/-11% of the noninvolved leg. No patient had patella infera or rerupture after surgery. Repair of a patellar tendon rupture with end-to-end techniques reinforced with a Dall-Miles cable allows immediate rehabilitation without the need for prolonged immobilization. This technique allows restoration of full range of motion early postoperatively and enables patients to regain adequate quadriceps strength.

  18. ProteoCloud: a full-featured open source proteomics cloud computing pipeline.

    PubMed

    Muth, Thilo; Peters, Julian; Blackburn, Jonathan; Rapp, Erdmann; Martens, Lennart

    2013-08-02

    We here present the ProteoCloud pipeline, a freely available, full-featured cloud-based platform to perform computationally intensive, exhaustive searches in a cloud environment using five different peptide identification algorithms. ProteoCloud is entirely open source, and is built around an easy to use and cross-platform software client with a rich graphical user interface. This client allows full control of the number of cloud instances to initiate and of the spectra to assign for identification. It also enables the user to track progress, and to visualize and interpret the results in detail. Source code, binaries and documentation are all available at http://proteocloud.googlecode.com. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Recent technical advances in general purpose mobile Satcom aviation terminals

    NASA Technical Reports Server (NTRS)

    Sydor, John T.

    1990-01-01

    A second general aviation amplitude companded single sideband (ACSSB) aeronautical terminal was developed for use with the Ontario Air Ambulance Service (OAAS). This terminal is designed to have automatic call set up and take down and to interface with the Public Service Telephone Network (PSTN) through a ground earth station hub controller. The terminal has integrated RF and microprocessor hardware which allows such functions as beam steering and automatic frequency control to be software controlled. The terminal uses a conformal patch array system to provide almost full azimuthal coverage. Antenna beam steering is executed without relying on aircraft supplied orientation information.

  20. Humanoid Robotics: Real-Time Object Oriented Programming

    NASA Technical Reports Server (NTRS)

    Newton, Jason E.

    2005-01-01

    Programming of robots in today's world is often done in a procedural oriented fashion, where object oriented programming is not incorporated. In order to keep a robust architecture allowing for easy expansion of capabilities and a truly modular design, object oriented programming is required. However, concepts in object oriented programming are not typically applied to a real time environment. The Fujitsu HOAP-2 is the test bed for the development of a humanoid robot framework abstracting control of the robot into simple logical commands in a real time robotic system while allowing full access to all sensory data. In addition to interfacing between the motor and sensory systems, this paper discusses the software which operates multiple independently developed control systems simultaneously and the safety measures which keep the humanoid from damaging itself and its environment while running these systems. The use of this software decreases development time and costs and allows changes to be made while keeping results safe and predictable.

  1. Crystal accumulation in the Hanford Waste Treatment Plant high level waste melter: Summary of 2017 experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, K.; Fowley, M.

    A full-scale, transparent mock-up of the Hanford Tank Waste Treatment and Immobilization Project High Level Waste glass melter riser and pour spout has been constructed to allow for testing with visual feedback of particle settling, accumulation, and resuspension when operating with a controlled fraction of crystals in the glass melt. Room temperature operation with silicone oil and magnetite particles simulating molten glass and spinel crystals, respectively, allows for direct observation of flow patterns and settling patterns. The fluid and particle mixture is recycled within the system for each test.

  2. Study design options in evaluating gene-environment interactions: practical considerations for a planned case-control study of pediatric leukemia.

    PubMed

    Goodman, Michael; Dana Flanders, W

    2007-04-01

    We compare methodological approaches for evaluating gene-environment interaction using a planned study of pediatric leukemia as a practical example. We considered three design options: a full case-control study (Option I), a case-only study (Option II), and a partial case-control study (Option III), in which information on controls is limited to environmental exposure only. For each design option we determined its ability to measure the main effects of environmental factor E and genetic factor G, and the interaction between E and G. Using the leukemia study example, we calculated sample sizes required to detect and odds ratio (OR) of 2.0 for E alone, an OR of 10 for G alone and an interaction G x E of 3. Option I allows measuring both main effects and interaction, but requires a total sample size of 1,500 cases and 1,500 controls. Option II allows measuring only interaction, but requires just 121 cases. Option III allows calculating the main effect of E, and interaction, but not the main effect of G, and requires a total of 156 cases and 133 controls. In this case, the partial case-control study (Option III) appears to be more efficient with respect to its ability to answer the research questions for the amount of resources required. The design options considered in this example are not limited to observational epidemiology and may be applicable in studies of pharmacogenomics, survivorship, and other areas of pediatric ALL research.

  3. Modal Parameters Evaluation in a Full-Scale Aircraft Demonstrator under Different Environmental Conditions Using HS 3D-DIC.

    PubMed

    Molina-Viedma, Ángel Jesús; López-Alba, Elías; Felipe-Sesé, Luis; Díaz, Francisco A; Rodríguez-Ahlquist, Javier; Iglesias-Vallejo, Manuel

    2018-02-02

    In real aircraft structures the comfort and the occupational performance of crewmembers and passengers are affected by the presence of noise. In this sense, special attention is focused on mechanical and material design for isolation and vibration control. Experimental characterization and, in particular, experimental modal analysis, provides information for adequate cabin noise control. Traditional sensors employed in the aircraft industry for this purpose are invasive and provide a low spatial resolution. This paper presents a methodology for experimental modal characterization of a front fuselage full-scale demonstrator using high-speed 3D digital image correlation, which is non-invasive, ensuring that the structural response is unperturbed by the instrumentation mass. Specifically, full-field measurements on the passenger window area were conducted when the structure was excited using an electrodynamic shaker. The spectral analysis of the measured time-domain displacements made it possible to identify natural frequencies and full-field operational deflection shapes. Changes in the modal parameters due to cabin pressurization and the behavior of different local structural modifications were assessed using this methodology. The proposed full-field methodology allowed the characterization of relevant dynamic response patterns, complementing the capabilities provided by accelerometers.

  4. Modal Parameters Evaluation in a Full-Scale Aircraft Demonstrator under Different Environmental Conditions Using HS 3D-DIC

    PubMed Central

    López-Alba, Elías; Felipe-Sesé, Luis; Díaz, Francisco A.; Rodríguez-Ahlquist, Javier; Iglesias-Vallejo, Manuel

    2018-01-01

    In real aircraft structures the comfort and the occupational performance of crewmembers and passengers are affected by the presence of noise. In this sense, special attention is focused on mechanical and material design for isolation and vibration control. Experimental characterization and, in particular, experimental modal analysis, provides information for adequate cabin noise control. Traditional sensors employed in the aircraft industry for this purpose are invasive and provide a low spatial resolution. This paper presents a methodology for experimental modal characterization of a front fuselage full-scale demonstrator using high-speed 3D digital image correlation, which is non-invasive, ensuring that the structural response is unperturbed by the instrumentation mass. Specifically, full-field measurements on the passenger window area were conducted when the structure was excited using an electrodynamic shaker. The spectral analysis of the measured time-domain displacements made it possible to identify natural frequencies and full-field operational deflection shapes. Changes in the modal parameters due to cabin pressurization and the behavior of different local structural modifications were assessed using this methodology. The proposed full-field methodology allowed the characterization of relevant dynamic response patterns, complementing the capabilities provided by accelerometers. PMID:29393897

  5. Advancing Microgrid Research at NREL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NREL expanded its microgrid research capabilities at the Energy System Integration Facility (ESIF) with the purchase of a Schweitzer Engineering Laboratories (SEL) microgrid controller, resulting in a more comprehensive microgrid research platform. NREL's microgrid research platform allows manufacturers, utilities, and integrators to develop and evaluate their technology or configuration at full power before implementation - something only possible at a handful of facilities in the world.

  6. Simulator Evaluation of Simplified Propulsion-Only Emergency Flight Control Systems on Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Kaneshige, John; Bull, John; Maine, Trindel A.

    1999-01-01

    With the advent of digital engine control systems, considering the use of engine thrust for emergency flight control has become feasible. Many incidents have occurred in which engine thrust supplemented or replaced normal aircraft flight controls. In most of these cases, a crash has resulted, and more than 1100 lives have been lost. The NASA Dryden Flight Research Center has developed a propulsion-controlled aircraft (PCA) system in which computer-controlled engine thrust provides emergency flight control capability. Using this PCA system, an F-15 and an MD-11 airplane have been landed without using any flight controls. In simulations, C-17, B-757, and B-747 PCA systems have also been evaluated successfully. These tests used full-authority digital electronic control systems on the engines. Developing simpler PCA systems that can operate without full-authority engine control, thus allowing PCA technology to be installed on less capable airplanes or at lower cost, is also a desire. Studies have examined simplified ?PCA Ultralite? concepts in which thrust control is provided using an autothrottle system supplemented by manual differential throttle control. Some of these concepts have worked well. The PCA Ultralite study results are presented for simulation tests of MD-11, B-757, C-17, and B-747 aircraft.

  7. Effect of time delay on flying qualities: An update

    NASA Technical Reports Server (NTRS)

    Smith, R. E.; Sarrafian, S. K.

    1986-01-01

    Flying qualities problems of modern, full-authority electronic flight control systems are most often related to the introduction of additional time delay in aircraft response to a pilot input. These delays can have a significant effect on the flying qualities of the aircraft. Time delay effects are reexamined in light of recent flight test experience with aircraft incorporating new technology. Data from the X-29A forward-swept-wing demonstrator, a related preliminary in-flight experiment, and other flight observations are presented. These data suggest that the present MIL-F-8785C allowable-control system time delay specifications are inadequate or, at least, incomplete. Allowable time delay appears to be a function of the shape of the aircraft response following the initial delay. The cockpit feel system is discussed as a dynamic element in the flight control system. Data presented indicate that the time delay associated with a significant low-frequency feel system does not result in the predicted degradation in aircraft flying qualities. The impact of the feel system is discussed from two viewpoints: as a filter in the control system which can alter the initial response shape and, therefore, the allowable time delay, and as a unique dynamic element whose delay contribution can potentially be discounted by special pilot loop closures.

  8. Development and Operation of an Automatic Rotor Trim Control System for use During the UH-60 Individual Blade Control Wind Tunnel Test

    NASA Technical Reports Server (NTRS)

    Theodore, Colin R.

    2010-01-01

    A full-scale wind tunnel test to evaluate the effects of Individual Blade Control (IBC) on the performance, vibration, noise and loads of a UH-60A rotor was recently completed in the National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-Foot Wind Tunnel [1]. A key component of this wind tunnel test was an automatic rotor trim control system that allowed the rotor trim state to be set more precisely, quickly and repeatably than was possible with the rotor operator setting the trim condition manually. The trim control system was also able to maintain the desired trim condition through changes in IBC actuation both in open- and closed-loop IBC modes, and through long-period transients in wind tunnel flow. This ability of the trim control system to automatically set and maintain a steady rotor trim enabled the effects of different IBC inputs to be compared at common trim conditions and to perform these tests quickly without requiring the rotor operator to re-trim the rotor. The trim control system described in this paper was developed specifically for use during the IBC wind tunnel test

  9. Full Mesh Audio Conferencing Using the Point-to-Multipoint On-Board Switching Capability of ACTS

    NASA Technical Reports Server (NTRS)

    Rivett, Mary L.; Sethna, Zubin H.

    1996-01-01

    The purpose of this paper is to describe an implementation of audio conferencing using the ACTS T1-VSAT network. In particular, this implementation evaluates the use of the on-board switching capability of the satellite as a viable alternative for providing the multipoint connectivity normally provided by terrestrial audio bridge equipment The system that was implemented provides full mesh, full-duplex audio conferencing, with end-to-end voice paths between all participants requiring only a single hop (i.e. 250 msec. delay). Moreover, it addresses the lack of spontaneity in current systems by allowing a user to easily start a conference from any standard telephone handset connected to an ACTS earth station, and quickly add new members to the conference at any time using the 'hook flash' capability. No prior scheduling of resources is required and there is no central point of control, thereby providing the user with the spontaneity desired in audio conference control.

  10. Application of ESPI techniques for the study of dynamic vibrations

    NASA Astrophysics Data System (ADS)

    Krupka, Rene

    2004-06-01

    Full field optical measurement techniques have already entered into various fields of industrial applications covering static as well as dynamic phenomena. The electronic speckle pattern interferometry (ESPI) allows the non contact, sensitive and three dimensional measurement of displacements in the sub micron range of objects with dimensions from mm2 to m2. For dynamic and transient phenomena, the use of pulsed laser have already been reported for various applications and successfully proven for the determination of the structural response of different components. In this paper we would like to present recent developments in the field of pulsed ESPI applications where emphasis is put onto the full field measurement result. The use of a completely computer controlled system allows easy access to mode shape characterization, deformation measurements and the characterization of transient events like shock wave propagation. Recent developments of the 3D-PulseESPI technique led to a very compact and complete system with improved characteristics regarding robustness and operation. The integrated design of the illumination laser and sensors for image acquisition allows easy aiming and adjustments with respect to the object of inspection. The laser is completely computer controlled which is advantageously used in a completely automatic brake squeal inspection system, which captures the squealing signal, automatically fires the laser and provides the complete deformation map of the component under test. Examples of recent applications in the field of dynamic structure response, with an emphasis in the field of automotive applications are given.

  11. Samonellosis and meat hygiene: red meat.

    PubMed

    Watson, W A

    1975-04-26

    The association between salmonellosis in man and the infection in food animals has been clearly established. There is, moreover, little doubt that abattoir by-products, effluent and solid waste may allow the recycling of infection in animals. The potential hazard posed by salmonellosis to human and animal health will be reduced only by a greater control over the slaughter of infected farm livestock, improved isolation and casualty slaughter accommodation, a stricter control of slaughterhouse hygiene and the provision and full utilisation of adequate laboratory facilities for the bacteriological examination of meat and the abattoir environment.

  12. Introduction to the arcopter arc wing and the Bertelsen effect for positive pitch stability and control

    NASA Technical Reports Server (NTRS)

    Bertelsen, W. D.

    1979-01-01

    A brief report, offered on a wing design, new in geometry, construction, and flight characteristics. Preliminary wind tunnel data on a three-dimensional model was well as some full-scale man-carrying test results are included. There are photos of all phases of the experiments and some figures which serve to illustrate the Bertelsen Effect, a unique focus of aerodynamic forces in the arc wing system which allows the attainment of high lift coefficients with the maintenance of pitch stability and control.

  13. Custom Coordination Environments for Lanthanoids: Tripodal Ligands Achieve Near-Perfect Octahedral Coordination for Two Dysprosium-Based Molecular Nanomagnets.

    PubMed

    Lim, Kwang Soo; Baldoví, José J; Jiang, ShangDa; Koo, Bong Ho; Kang, Dong Won; Lee, Woo Ram; Koh, Eui Kwan; Gaita-Ariño, Alejandro; Coronado, Eugenio; Slota, Michael; Bogani, Lapo; Hong, Chang Seop

    2017-05-01

    Controlling the coordination sphere of lanthanoid complexes is a challenging critical step toward controlling their relaxation properties. Here we present the synthesis of hexacoordinated dysprosium single-molecule magnets, where tripodal ligands achieve a near-perfect octahedral coordination. We perform a complete experimental and theoretical investigation of their magnetic properties, including a full single-crystal magnetic anisotropy analysis. The combination of electrostatic and crystal-field computational tools (SIMPRE and CONDON codes) allows us to explain the static behavior of these systems in detail.

  14. Variable speed induction motor operation from a 20-kHz power bus

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1989-01-01

    Induction motors are recognized for their simple rugged construction. To date, however, their application to variable speed or servo drives was hampered by limitations on their control. Induction motor drives tend to be complex and to display troublesome low speed characteristics due in part to nonsinusoidal driving voltages. A technique was developed which involves direct synthesis of sinusoidal driving voltages from a high frequency power bus and independent control of frequency and voltages. Separation of frequency and voltage allows independent control of rotor and stator flux, full four quadrant operation, and instantaneous torque control. Recent test results, current status of the technology, and proposed aerospace applications will be discussed.

  15. Variable speed induction motor operation from a 20-kHz power bus

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1989-01-01

    Induction motors are recognized for their simple rugged construction to date, however, their application to variable speed or servo drives has been hampered by limitations on their control. Induction motor drives tend to be complex and to display troublesome low speed characteristics due in part to nonsinusoidal driving voltages. A technique was developed which involves direct synthesis of sinusoidal driving voltages from a high frequency power bus and independent control of frequency and voltages. Separation offrequency and voltage allows independent control of rotor and stator flux, full four-quadrant operation, and instantaneous torque control. Recent test results, current status of the technology, and proposed aerospace applications will be discussed.

  16. Full-Scaled Advanced Systems Testbed: Ensuring Success of Adaptive Control Research Through Project Lifecycle Risk Mitigation

    NASA Technical Reports Server (NTRS)

    Pavlock, Kate M.

    2011-01-01

    The National Aeronautics and Space Administration's Dryden Flight Research Center completed flight testing of adaptive controls research on the Full-Scale Advance Systems Testbed (FAST) in January of 2011. The research addressed technical challenges involved with reducing risk in an increasingly complex and dynamic national airspace. Specific challenges lie with the development of validated, multidisciplinary, integrated aircraft control design tools and techniques to enable safe flight in the presence of adverse conditions such as structural damage, control surface failures, or aerodynamic upsets. The testbed is an F-18 aircraft serving as a full-scale vehicle to test and validate adaptive flight control research and lends a significant confidence to the development, maturation, and acceptance process of incorporating adaptive control laws into follow-on research and the operational environment. The experimental systems integrated into FAST were designed to allow for flexible yet safe flight test evaluation and validation of modern adaptive control technologies and revolve around two major hardware upgrades: the modification of Production Support Flight Control Computers (PSFCC) and integration of two, fourth-generation Airborne Research Test Systems (ARTS). Post-hardware integration verification and validation provided the foundation for safe flight test of Nonlinear Dynamic Inversion and Model Reference Aircraft Control adaptive control law experiments. To ensure success of flight in terms of cost, schedule, and test results, emphasis on risk management was incorporated into early stages of design and flight test planning and continued through the execution of each flight test mission. Specific consideration was made to incorporate safety features within the hardware and software to alleviate user demands as well as into test processes and training to reduce human factor impacts to safe and successful flight test. This paper describes the research configuration, experiment functionality, overall risk mitigation, flight test approach and results, and lessons learned of adaptive controls research of the Full-Scale Advanced Systems Testbed.

  17. Physics and control of wall turbulence for drag reduction.

    PubMed

    Kim, John

    2011-04-13

    Turbulence physics responsible for high skin-friction drag in turbulent boundary layers is first reviewed. A self-sustaining process of near-wall turbulence structures is then discussed from the perspective of controlling this process for the purpose of skin-friction drag reduction. After recognizing that key parts of this self-sustaining process are linear, a linear systems approach to boundary-layer control is discussed. It is shown that singular-value decomposition analysis of the linear system allows us to examine different approaches to boundary-layer control without carrying out the expensive nonlinear simulations. Results from the linear analysis are consistent with those observed in full nonlinear simulations, thus demonstrating the validity of the linear analysis. Finally, fundamental performance limit expected of optimal control input is discussed.

  18. A Springloaded Metal-Ligand Mesocate Allows Access to Trapped Intermediates of Self-Assembly.

    PubMed

    Bogie, Paul M; Holloway, Lauren R; Lyon, Yana; Onishi, Nicole C; Beran, Gregory J O; Julian, Ryan R; Hooley, Richard J

    2018-04-02

    A strained, "springloaded" Fe 2 L 3 iminopyridine mesocate shows highly variable reactivity upon postassembly reaction with competitive diamines. The strained assembly is reactive toward transimination in minutes at ambient temperature and allows observation of kinetically trapped intermediates in the self-assembly pathway. When diamines are used that can only form less favored cage products upon full equilibration, trapped ML 3 fragments with pendant, "hanging" NH 2 groups are selectively formed instead. Slight variations in diamine structure have large effects on the product outcome: less rigid diamines convert the mesocate to more favored self-assembled cage complexes under mild conditions and allow observation of heterocomplex intermediates in the displacement pathway. The mesocate allows control of equilibrium processes and direction of product outcomes via small, iterative changes in added subcomponent structure and provides a method of accessing metal-ligand cage structures not normally observed in multicomponent Fe-iminopyridine self-assembly.

  19. Training the elderly in pedestrian safety: Transfer effect between two virtual reality simulation devices.

    PubMed

    Maillot, Pauline; Dommes, Aurélie; Dang, Nguyen-Thong; Vienne, Fabrice

    2017-02-01

    A virtual-reality training program has been developed to help older pedestrians make safer street-crossing decisions in two-way traffic situations. The aim was to develop a small-scale affordable and transportable simulation device that allowed transferring effects to a full-scale device involving actual walking. 20 younger adults and 40 older participants first participated in a pre-test phase to assess their street crossings using both full-scale and small-scale simulation devices. Then, a trained older group (20 participants) completed two 1.5-h training sessions with the small-scale device, whereas an older control group received no training (19 participants). Thereafter, the 39 older trained and untrained participants took part in a 1.5-h post-test phase again with both devices. Pre-test phase results suggested significant differences between both devices in the group of older participants only. Unlike younger participants, older participants accepted more often to cross and had more collisions on the small-scale simulation device than on the full-scale one. Post-test phase results showed that training older participants on the small-scale device allowed a significant global decrease in the percentage of accepted crossings and collisions on both simulation devices. But specific improvements regarding the way participants took into account the speed of approaching cars and vehicles in the far lane were notable only on the full-scale simulation device. The findings suggest that the small-scale simulation device triggers a greater number of unsafe decisions compared to a full-scale one that allows actual crossings. But findings reveal that such a small-scale simulation device could be a good means to improve the safety of street-crossing decisions and behaviors among older pedestrians, suggesting a transfer of learning effect between the two simulation devices, from training people with a miniature device to measuring their specific progress with a full-scale one. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Distributed Engine Control Empirical/Analytical Verification Tools

    NASA Technical Reports Server (NTRS)

    DeCastro, Jonathan; Hettler, Eric; Yedavalli, Rama; Mitra, Sayan

    2013-01-01

    NASA's vision for an intelligent engine will be realized with the development of a truly distributed control system featuring highly reliable, modular, and dependable components capable of both surviving the harsh engine operating environment and decentralized functionality. A set of control system verification tools was developed and applied to a C-MAPSS40K engine model, and metrics were established to assess the stability and performance of these control systems on the same platform. A software tool was developed that allows designers to assemble easily a distributed control system in software and immediately assess the overall impacts of the system on the target (simulated) platform, allowing control system designers to converge rapidly on acceptable architectures with consideration to all required hardware elements. The software developed in this program will be installed on a distributed hardware-in-the-loop (DHIL) simulation tool to assist NASA and the Distributed Engine Control Working Group (DECWG) in integrating DCS (distributed engine control systems) components onto existing and next-generation engines.The distributed engine control simulator blockset for MATLAB/Simulink and hardware simulator provides the capability to simulate virtual subcomponents, as well as swap actual subcomponents for hardware-in-the-loop (HIL) analysis. Subcomponents can be the communication network, smart sensor or actuator nodes, or a centralized control system. The distributed engine control blockset for MATLAB/Simulink is a software development tool. The software includes an engine simulation, a communication network simulation, control algorithms, and analysis algorithms set up in a modular environment for rapid simulation of different network architectures; the hardware consists of an embedded device running parts of the CMAPSS engine simulator and controlled through Simulink. The distributed engine control simulation, evaluation, and analysis technology provides unique capabilities to study the effects of a given change to the control system in the context of the distributed paradigm. The simulation tool can support treatment of all components within the control system, both virtual and real; these include communication data network, smart sensor and actuator nodes, centralized control system (FADEC full authority digital engine control), and the aircraft engine itself. The DECsim tool can allow simulation-based prototyping of control laws, control architectures, and decentralization strategies before hardware is integrated into the system. With the configuration specified, the simulator allows a variety of key factors to be systematically assessed. Such factors include control system performance, reliability, weight, and bandwidth utilization.

  1. Developing an Integration Infrastructure for Distributed Engine Control Technologies

    NASA Technical Reports Server (NTRS)

    Culley, Dennis; Zinnecker, Alicia; Aretskin-Hariton, Eliot; Kratz, Jonathan

    2014-01-01

    Turbine engine control technology is poised to make the first revolutionary leap forward since the advent of full authority digital engine control in the mid-1980s. This change aims squarely at overcoming the physical constraints that have historically limited control system hardware on aero-engines to a federated architecture. Distributed control architecture allows complex analog interfaces existing between system elements and the control unit to be replaced by standardized digital interfaces. Embedded processing, enabled by high temperature electronics, provides for digitization of signals at the source and network communications resulting in a modular system at the hardware level. While this scheme simplifies the physical integration of the system, its complexity appears in other ways. In fact, integration now becomes a shared responsibility among suppliers and system integrators. While these are the most obvious changes, there are additional concerns about performance, reliability, and failure modes due to distributed architecture that warrant detailed study. This paper describes the development of a new facility intended to address the many challenges of the underlying technologies of distributed control. The facility is capable of performing both simulation and hardware studies ranging from component to system level complexity. Its modular and hierarchical structure allows the user to focus their interaction on specific areas of interest.

  2. Externally controlled pressure and temperature microreactor for in situ x-ray diffraction, visual and spectroscopic reaction investigations under supercritical and subcritical conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diefenbacher, Jason; McKelvy, Michael; Chizmeshya, Andrew V.G.

    2005-01-01

    A microreactor has been developed for in situ, spectroscopic investigations of materials and reaction processes with full external pressure and temperature control from ambient conditions to 400 deg. C and 310 bar. The sample chamber is in direct contact with an external manifold, whereby gases, liquids or fluids can be injected and their activities controlled prior to and under investigation conditions. The microreactor employs high strength, single crystal moissanite windows which allow direct probe beam interaction with a sample to investigate in situ reaction processes and other materials properties. The relatively large volume of the cell, along with full opticalmore » accessibility and external temperature and pressure control, make this reaction cell well suited for experimental investigations involving any combination of gas, fluid, and solid interactions. The microreactor's capabilities are demonstrated through an in situ x-ray diffraction study of the conversion of a meta-serpentine sample to magnesite under high pressure and temperature. Serpentine is one of the mineral candidates for the implementation of mineral carbonation, an intriguing carbon sequestration candidate technology.« less

  3. Externally controlled pressure and temperature microreactor for in situ x-ray diffraction, visual and spectroscopic reaction investigations under supercritical and subcritial conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diefenbacher, J.; McKelvy, M.; Chizemeshya, A.V.

    2010-07-13

    A microreactor has been developed for in situ, spectroscopic investigations of materials and reaction processes with full external pressure and temperature control from ambient conditions to 400 C and 310 bar. The sample chamber is in direct contact with an external manifold, whereby gases, liquids or fluids can be injected and their activities controlled prior to and under investigation conditions. The microreactor employs high strength, single crystal moissanite windows which allow direct probe beam interaction with a sample to investigate in situ reaction processes and other materials properties. The relatively large volume of the cell, along with full optical accessibilitymore » and external temperature and pressure control, make this reaction cell well suited for experimental investigations involving any combination of gas, fluid, and solid interactions. The microreactor's capabilities are demonstrated through an in situ x-ray diffraction study of the conversion of a meta-serpentine sample to magnesite under high pressure and temperature. Serpentine is one of the mineral candidates for the implementation of mineral carbonation, an intriguing carbon sequestration candidate technology.« less

  4. Solution Exchange Lithography: A Versatile Tool for Sequential Surface Engineering

    NASA Astrophysics Data System (ADS)

    Pester, Christian; Mattson, Kaila; Bothman, David; Klinger, Daniel; Lee, Kenneth; Discekici, Emre; Narupai, Benjaporn; Hawker, Craig

    The covalent attachment of polymers has emerged as a viable strategy for the preparation of multi-functional surfaces. Patterned, surface-grafted polymer brushes provide spatial control over wetting, mechanical, biological or electronic properties, and allow fabrication of `intelligent' substrates which selectively adapt to their environment. However, the route towards patterned polymer brush surfaces often remains challenging, creating a demand for more efficient and less complicated fabrication strategies. We describe the design and application of a novel experimental setup to combine light-mediated and flow chemistry for the fabrication of hierarchical surface-grafted polymer brushes. Using light-mediated, surface initiated controlled radical polymerization and post-functionalization via well-established, and highly efficient chemistries, polymer brush films of previously unimaginable complexity are now shown to be accessible. This methodology allows full flexibility to exchange both lithographic photomasks and chemical environments in-situ, readily affording multidimensional thin film architectures, all from uniformly functionalized substrates.

  5. Single board system for fuzzy inference

    NASA Technical Reports Server (NTRS)

    Symon, James R.; Watanabe, Hiroyuki

    1991-01-01

    The very large scale integration (VLSI) implementation of a fuzzy logic inference mechanism allows the use of rule-based control and decision making in demanding real-time applications. Researchers designed a full custom VLSI inference engine. The chip was fabricated using CMOS technology. The chip consists of 688,000 transistors of which 476,000 are used for RAM memory. The fuzzy logic inference engine board system incorporates the custom designed integrated circuit into a standard VMEbus environment. The Fuzzy Logic system uses Transistor-Transistor Logic (TTL) parts to provide the interface between the Fuzzy chip and a standard, double height VMEbus backplane, allowing the chip to perform application process control through the VMEbus host. High level C language functions hide details of the hardware system interface from the applications level programmer. The first version of the board was installed on a robot at Oak Ridge National Laboratory in January of 1990.

  6. C2 of Space: The Key to Full Spectrum Dominance

    DTIC Science & Technology

    1999-01-01

    created the Air Force Research Laboratory in 1997, AFRL/IF was tasked to provide Information Dominance technologies to the warfighter. These critical...allowing the future Battle Manager’s control of the battlespace. The first five ITTPs come under AFRL’s Information Dominance thrust area...time Sensor-to-Shooter, falls under the Precision Strike thrust area. This paper provides a brief background regarding Information Dominance and

  7. U.S.-Russian Civilian Nuclear Cooperation Agreement: Issues for Congress

    DTIC Science & Technology

    2010-07-09

    for nuclear cooperation in 1973 to allow for cooperation in controlled thermonuclear fusion, fast breeder reactors , and fundamental research. The...that a 123 agreement is needed to implement this action plan—for example, full scale technical cooperation on fast reactors and demonstration of...superpowers convened a Joint Coordinating Committee for Civilian Reactor Safety starting in 1988.10 After the fall of the Soviet Union and prior to July

  8. Effect of water-soluble contrast in colorectal surgery: A prospective randomized trial

    PubMed Central

    Chen, Jia-Hui; Hsieh, Chung-Bao; Chao, Pei-Chieh; Liu, Hsiao-Dung; Chen, Chung-Jueng; Liu, Yao-Chi; Yu, Jyh-Cherng

    2005-01-01

    AIM: Postoperative gastrointestinal-tract motility is normally delayed. Early feeding after colorectal surgery has been reported recently, but late feeding is common. Gastrografin not only enhances bowel peristalsis, but also decreases bowel-wall edema. Whether contrast medium allows early oral feeding and reduces the duration of hospitalization requires clarification. METHODS: Fifty patients underwent elective colorectal surgery in a regional medical center. Patients were prosp-ectively randomized into a Gastrografin group or control group (n = 25 each). Patients in the Gastrografin group began their feeding schedule with 100 mL of 5% dextrose water with 100 mL of Gastrografin on postoperative d 3 and were advanced to a full liquid diet when the contrast reached the colon in 4 h. Patients in the control group began their feeding schedule with 200 mL of 5% dextrose water on postoperative d 3 and were advanced to a full liquid diet after the passage of flatus and stool. Nasogastric tubes were inserted for persistent postoperative vomiting. Fullness, nausea, vomiting, complications, time of anesthesia, time of operation, time of mobilization, time of oral feeding, and duration of hospital stay were recorded and analyzed with Student’s t-test. RESULTS: In the Gastrografin group, one patient had aspiration pneumonia and one patient had anastomotic leakage resulting in sepsis and eventual death. This mortality was excluded from the subsequent statistical analysis. In the control group, two patients had wound infections. There was no significant difference between the two groups at the time of anesthesia, time of operation, or time of mobilization. There were significant differences between the two groups in the time of oral feeding (3.3±0.3 d in the Gastrografin group vs 4.8±0.4 d in the control group; P = odds ratio--, 95%CI [-0.5 to +0.7 d]) and in the length of hospital stay (7.6±1.1 d in the Gastrografin group vs 10.2±1.3 d in the control group; P = odds ratio--, 95% CI [-1.2 to +1.4 d]). CONCLUSION: Gastrografin not only allowed early oral feeding but also reduced the duration of hospitalization after elective colorectal surgery. PMID:15884127

  9. Effect of water-soluble contrast in colorectal surgery: a prospective randomized trial.

    PubMed

    Chen, Jia-Hui; Hsieh, Chung-Bao; Chao, Pei-Chieh; Liu, Hsiao-Dung; Chen, Chung-Jueng; Liu, Yao-Chi; Yu, Jyh-Cherng

    2005-05-14

    Postoperative gastrointestinal-tract motility is normally delayed. Early feeding after colorectal surgery has been reported recently, but late feeding is common. Gastrografin not only enhances bowel peristalsis, but also decreases bowel-wall edema. Whether contrast medium allows early oral feeding and reduces the duration of hospitalization requires clarification. Fifty patients underwent elective colorectal surgery in a regional medical center. Patients were prospectively randomized into a Gastrografin group or control group (n = 25 each). Patients in the Gastrografin group began their feeding schedule with 100 mL of 5% dextrose water with 100 mL of Gastrografin on postoperative d 3 and were advanced to a full liquid diet when the contrast reached the colon in 4 h. Patients in the control group began their feeding schedule with 200 mL of 5% dextrose water on postoperative d 3 and were advanced to a full liquid diet after the passage of flatus and stool. Nasogastric tubes were inserted for persistent postoperative vomiting. Fullness, nausea, vomiting, complications, time of anesthesia, time of operation, time of mobilization, time of oral feeding, and duration of hospital stay were recorded and analyzed with Student's t-test. In the Gastrografin group, one patient had aspiration pneumonia and one patient had anastomotic leakage resulting in sepsis and eventual death. This mortality was excluded from the subsequent statistical analysis. In the control group, two patients had wound infections. There was no significant difference between the two groups at the time of anesthesia, time of operation, or time of mobilization. There were significant differences between the two groups in the time of oral feeding (3.3+/-0.3 d in the Gastrografin group vs 4.8+/-0.4 d in the control group; P = odds ratio--, 95%CI [-0.5 to +0.7 d]) and in the length of hospital stay (7.6+/-1.1 d in the Gastrografin group vs 10.2+/-1.3 d in the control group; P = odds ratio--, 95% CI [-1.2 to +1.4 d]). Gastrografin not only allowed early oral feeding but also reduced the duration of hospitalization after elective colorectal surgery.

  10. Practical Application of a Subscale Transport Aircraft for Flight Research in Control Upset and Failure Conditions

    NASA Technical Reports Server (NTRS)

    Cunningham, Kevin; Foster, John V.; Morelli, Eugene A.; Murch, Austin M.

    2008-01-01

    Over the past decade, the goal of reducing the fatal accident rate of large transport aircraft has resulted in research aimed at the problem of aircraft loss-of-control. Starting in 1999, the NASA Aviation Safety Program initiated research that included vehicle dynamics modeling, system health monitoring, and reconfigurable control systems focused on flight regimes beyond the normal flight envelope. In recent years, there has been an increased emphasis on adaptive control technologies for recovery from control upsets or failures including damage scenarios. As part of these efforts, NASA has developed the Airborne Subscale Transport Aircraft Research (AirSTAR) flight facility to allow flight research and validation, and system testing for flight regimes that are considered too risky for full-scale manned transport airplane testing. The AirSTAR facility utilizes dynamically-scaled vehicles that enable the application of subscale flight test results to full scale vehicles. This paper describes the modeling and simulation approach used for AirSTAR vehicles that supports the goals of efficient, low-cost and safe flight research in abnormal flight conditions. Modeling of aerodynamics, controls, and propulsion will be discussed as well as the application of simulation to flight control system development, test planning, risk mitigation, and flight research.

  11. Exploiting the potential of vector control for disease prevention.

    PubMed

    Townson, H; Nathan, M B; Zaim, M; Guillet, P; Manga, L; Bos, R; Kindhauser, M

    2005-12-01

    Although vector control has proven highly effective in preventing disease transmission, it is not being used to its full potential, thereby depriving disadvantaged populations of the benefits of well tried and tested methods. Following the discovery of synthetic residual insecticides in the 1940s, large-scale programmes succeeded in bringing many of the important vector-borne diseases under control. By the late 1960s, most vector-borne diseases--with the exception of malaria in Africa--were no longer considered to be of primary public health importance. The result was that control programmes lapsed, resources dwindled, and specialists in vector control disappeared from public health units. Within two decades, many important vector-borne diseases had re-emerged or spread to new areas. The time has come to restore vector control to its key role in the prevention of disease transmission, albeit with an increased emphasis on multiple measures, whether pesticide-based or involving environmental modification, and with a strengthened managerial and operational capacity. Integrated vector management provides a sound conceptual framework for deployment of cost-effective and sustainable methods of vector control. This approach allows for full consideration of the complex determinants of disease transmission, including local disease ecology, the role of human activity in increasing risks of disease transmission, and the socioeconomic conditions of affected communities.

  12. Exploiting the potential of vector control for disease prevention.

    PubMed Central

    Townson, H.; Nathan, M. B.; Zaim, M.; Guillet, P.; Manga, L.; Bos, R.; Kindhauser, M.

    2005-01-01

    Although vector control has proven highly effective in preventing disease transmission, it is not being used to its full potential, thereby depriving disadvantaged populations of the benefits of well tried and tested methods. Following the discovery of synthetic residual insecticides in the 1940s, large-scale programmes succeeded in bringing many of the important vector-borne diseases under control. By the late 1960s, most vector-borne diseases--with the exception of malaria in Africa--were no longer considered to be of primary public health importance. The result was that control programmes lapsed, resources dwindled, and specialists in vector control disappeared from public health units. Within two decades, many important vector-borne diseases had re-emerged or spread to new areas. The time has come to restore vector control to its key role in the prevention of disease transmission, albeit with an increased emphasis on multiple measures, whether pesticide-based or involving environmental modification, and with a strengthened managerial and operational capacity. Integrated vector management provides a sound conceptual framework for deployment of cost-effective and sustainable methods of vector control. This approach allows for full consideration of the complex determinants of disease transmission, including local disease ecology, the role of human activity in increasing risks of disease transmission, and the socioeconomic conditions of affected communities. PMID:16462987

  13. Suboptimal distributed control and estimation: application to a four coupled tanks system

    NASA Astrophysics Data System (ADS)

    Orihuela, Luis; Millán, Pablo; Vivas, Carlos; Rubio, Francisco R.

    2016-06-01

    The paper proposes an innovative estimation and control scheme that enables the distributed monitoring and control of large-scale processes. The proposed approach considers a discrete linear time-invariant process controlled by a network of agents that may both collect information about the evolution of the plant and apply control actions to drive its behaviour. The problem makes full sense when local observability/controllability is not assumed and the communication between agents can be exploited to reach system-wide goals. Additionally, to reduce agents bandwidth requirements and power consumption, an event-based communication policy is studied. The design procedure guarantees system stability, allowing the designer to trade-off performance, control effort and communication requirements. The obtained controllers and observers are implemented in a fully distributed fashion. To illustrate the performance of the proposed technique, experimental results on a quadruple-tank process are provided.

  14. Cluster flight control for fractionated spacecraft on an elliptic orbit

    NASA Astrophysics Data System (ADS)

    Xu, Ming; Liang, Yuying; Tan, Tian; Wei, Lixin

    2016-08-01

    This paper deals with the stabilization of cluster flight on an elliptic reference orbit by the Hamiltonian structure-preserving control using the relative position measurement only. The linearized Melton's relative equation is utilized to derive the controller and then the full nonlinear relative dynamics are employed to numerically evaluate the controller's performance. In this paper, the hyperbolic and elliptic eigenvalues and their manifolds are treated without distinction notations. This new treatment not only contributes to solving the difficulty in feedback of the unfixed-dimensional manifolds, but also allows more opportunities to set the controlled frequencies of foundational motions or to optimize control gains. Any initial condition can be stabilized on a Kolmogorov-Arnold-Moser torus near a controlled elliptic equilibrium. The motions are stabilized around the natural relative trajectories rather than track a reference relative configuration. In addition, the bounded quasi-periodic trajectories generated by the controller have advantages in rapid reconfiguration and unpredictable evolution.

  15. Motion and force control for multiple cooperative manipulators

    NASA Technical Reports Server (NTRS)

    Wen, John T.; Kreutz, Kenneth

    1989-01-01

    The motion and force control of multiple robot arms manipulating a commonly held object is addressed. A general control paradigm that decouples the motion and force control problems is introduced. For motion control, there are three natural choices: (1) joint torques, (2) arm-tip force vectors, and (3) the acceleration of a generalized coordinate. Choice (1) allows a class of relatively model-independent control laws by exploiting the Hamiltonian structure of the open-loop system; (2) and (3) require the full model information but produce simpler problems. To resolve the nonuniqueness of the joint torques, two methods are introduced. If the arm and object models are available, the allocation of the desired end-effector control force to the joint actuators can be optimized; otherwise the internal force can be controlled about some set point. It is shown that effective force regulation can be achieved even if little model information is available.

  16. Complete Coherent Control of a Quantum Dot Strongly Coupled to a Nanocavity.

    PubMed

    Dory, Constantin; Fischer, Kevin A; Müller, Kai; Lagoudakis, Konstantinos G; Sarmiento, Tomas; Rundquist, Armand; Zhang, Jingyuan L; Kelaita, Yousif; Vučković, Jelena

    2016-04-26

    Strongly coupled quantum dot-cavity systems provide a non-linear configuration of hybridized light-matter states with promising quantum-optical applications. Here, we investigate the coherent interaction between strong laser pulses and quantum dot-cavity polaritons. Resonant excitation of polaritonic states and their interaction with phonons allow us to observe coherent Rabi oscillations and Ramsey fringes. Furthermore, we demonstrate complete coherent control of a quantum dot-photonic crystal cavity based quantum-bit. By controlling the excitation power and phase in a two-pulse excitation scheme we achieve access to the full Bloch sphere. Quantum-optical simulations are in good agreement with our experiments and provide insight into the decoherence mechanisms.

  17. Complete Coherent Control of a Quantum Dot Strongly Coupled to a Nanocavity

    NASA Astrophysics Data System (ADS)

    Dory, Constantin; Fischer, Kevin A.; Müller, Kai; Lagoudakis, Konstantinos G.; Sarmiento, Tomas; Rundquist, Armand; Zhang, Jingyuan L.; Kelaita, Yousif; Vučković, Jelena

    2016-04-01

    Strongly coupled quantum dot-cavity systems provide a non-linear configuration of hybridized light-matter states with promising quantum-optical applications. Here, we investigate the coherent interaction between strong laser pulses and quantum dot-cavity polaritons. Resonant excitation of polaritonic states and their interaction with phonons allow us to observe coherent Rabi oscillations and Ramsey fringes. Furthermore, we demonstrate complete coherent control of a quantum dot-photonic crystal cavity based quantum-bit. By controlling the excitation power and phase in a two-pulse excitation scheme we achieve access to the full Bloch sphere. Quantum-optical simulations are in good agreement with our experiments and provide insight into the decoherence mechanisms.

  18. Full control of far-field radiation via photonic integrated circuits decorated with plasmonic nanoantennas.

    PubMed

    Sun, Yi-Zhi; Feng, Li-Shuang; Bachelot, Renaud; Blaize, Sylvain; Ding, Wei

    2017-07-24

    We theoretically develop a hybrid architecture consisting of photonic integrated circuit and plasmonic nanoantennas to fully control optical far-field radiation with unprecedented flexibility. By exploiting asymmetric and lateral excitation from silicon waveguides, single gold nanorod and cascaded nanorod pair can function as component radiation pixels, featured by full 2π phase coverage and nanoscale footprint. These radiation pixels allow us to design scalable on-chip devices in a wavefront engineering fashion. We numerically demonstrate beam collimation with 30° out of the incident plane and nearly diffraction limited divergence angle. We also present high-numerical-aperture (NA) beam focusing with NA ≈0.65 and vector beam generation (the radially-polarized mode) with the mode similarity greater than 44%. This concept and approach constitutes a designable optical platform, which might be a future bridge between integrated photonics and metasurface functionalities.

  19. Integrated Flight/Structural Mode Control for Very Flexible Aircraft Using L1 Adaptive Output Feedback Controller

    NASA Technical Reports Server (NTRS)

    Che, Jiaxing; Cao, Chengyu; Gregory, Irene M.

    2012-01-01

    This paper explores application of adaptive control architecture to a light, high-aspect ratio, flexible aircraft configuration that exhibits strong rigid body/flexible mode coupling. Specifically, an L(sub 1) adaptive output feedback controller is developed for a semi-span wind tunnel model capable of motion. The wind tunnel mount allows the semi-span model to translate vertically and pitch at the wing root, resulting in better simulation of an aircraft s rigid body motion. The control objective is to design a pitch control with altitude hold while suppressing body freedom flutter. The controller is an output feedback nominal controller (LQG) augmented by an L(sub 1) adaptive loop. A modification to the L(sub 1) output feedback is proposed to make it more suitable for flexible structures. The new control law relaxes the required bounds on the unmatched uncertainty and allows dependence on the state as well as time, i.e. a more general unmatched nonlinearity. The paper presents controller development and simulated performance responses. Simulation is conducted by using full state flexible wing models derived from test data at 10 different dynamic pressure conditions. An L(sub 1) adaptive output feedback controller is designed for a single test point and is then applied to all the test cases. The simulation results show that the L(sub 1) augmented controller can stabilize and meet the performance requirements for all 10 test conditions ranging from 30 psf to 130 psf dynamic pressure.

  20. Wearable wireless User Interface Cursor-Controller (UIC-C).

    PubMed

    Marjanovic, Nicholas; Kerr, Kevin; Aranda, Ricardo; Hickey, Richard; Esmailbeigi, Hananeh

    2017-07-01

    Controlling a computer or a smartphone's cursor allows the user to access a world full of information. For millions of people with limited upper extremities motor function, controlling the cursor becomes profoundly difficult. Our team has developed the User Interface Cursor-Controller (UIC-C) to assist the impaired individuals in regaining control over the cursor. The UIC-C is a hands-free device that utilizes the tongue muscle to control the cursor movements. The entire device is housed inside a subject specific retainer. The user maneuvers the cursor by manipulating a joystick imbedded inside the retainer via their tongue. The joystick movement commands are sent to an electronic device via a Bluetooth connection. The device is readily recognizable as a cursor controller by any Bluetooth enabled electronic device. The device testing results have shown that the time it takes the user to control the cursor accurately via the UIC-C is about three times longer than a standard computer mouse controlled via the hand. The device does not require any permanent modifications to the body; therefore, it could be used during the period of acute rehabilitation of the hands. With the development of modern smart homes, and enhancement electronics controlled by the computer, UIC-C could be integrated into a system that enables individuals with permanent impairment, the ability to control the cursor. In conclusion, the UIC-C device is designed with the goal of allowing the user to accurately control a cursor during the periods of either acute or permanent upper extremities impairment.

  1. US-CERT Control System Center Input/Output (I/O) Conceputal Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2005-02-01

    This document was prepared for the US-CERT Control Systems Center of the National Cyber Security Division (NCSD) of the Department of Homeland Security (DHS). DHS has been tasked under the Homeland Security Act of 2002 to coordinate the overall national effort to enhance the protection of the national critical infrastructure. Homeland Security Presidential Directive HSPD-7 directs the federal departments to identify and prioritize critical infrastructure and protect it from terrorist attack. The US-CERT National Strategy for Control Systems Security was prepared by the NCSD to address the control system security component addressed in the National Strategy to Secure Cyberspace andmore » the National Strategy for the Physical Protection of Critical Infrastructures and Key Assets. The US-CERT National Strategy for Control Systems Security identified five high-level strategic goals for improving cyber security of control systems; the I/O upgrade described in this document supports these goals. The vulnerability assessment Test Bed, located in the Information Operations Research Center (IORC) facility at Idaho National Laboratory (INL), consists of a cyber test facility integrated with multiple test beds that simulate the nation's critical infrastructure. The fundamental mission of the Test Bed is to provide industry owner/operators, system vendors, and multi-agency partners of the INL National Security Division a platform for vulnerability assessments of control systems. The Input/Output (I/O) upgrade to the Test Bed (see Work Package 3.1 of the FY-05 Annual Work Plan) will provide for the expansion of assessment capabilities within the IORC facility. It will also provide capabilities to connect test beds within the Test Range and other Laboratory resources. This will allow real time I/O data input and communication channels for full replications of control systems (Process Control Systems [PCS], Supervisory Control and Data Acquisition Systems [SCADA], and components). This will be accomplished through the design and implementation of a modular infrastructure of control system, communications, networking, computing and associated equipment, and measurement/control devices. The architecture upgrade will provide a flexible patching system providing a quick ''plug and play''configuration through various communication paths to gain access to live I/O running over specific protocols. This will allow for in-depth assessments of control systems in a true-to-life environment. The full I/O upgrade will be completed through a two-phased approach. Phase I, funded by DHS, expands the capabilities of the Test Bed by developing an operational control system in two functional areas, the Science & Technology Applications Research (STAR) Facility and the expansion of various portions of the Test Bed. Phase II (see Appendix A), funded by other programs, will complete the full I/O upgrade to the facility.« less

  2. The Ubiquitination of PINK1 Is Restricted to Its Mature 52-kDa Form.

    PubMed

    Liu, Yuhui; Guardia-Laguarta, Cristina; Yin, Jiang; Erdjument-Bromage, Hediye; Martin, Brittany; James, Michael; Jiang, Xuejun; Przedborski, Serge

    2017-07-05

    Along with Parkin, PINK1 plays a critical role in maintaining mitochondrial quality control. Although PINK1 is expressed constitutively, its level is kept low in healthy mitochondria by polyubiquitination and ensuing proteasomal degradation of its mature, 52 kDa, form. We show here that the target of PINK1 polyubiquitination is the mature form and is mediated by ubiquitination of a conserved lysine at position 137. Notably, the full-length protein also contains Lys-137 but is not ubiquitinated. On the basis of our data, we propose that cleavage of full-length PINK1 at Phe-104 disrupts the major hydrophobic membrane-spanning domain in the protein, inducing a conformation change in the resultant mature form that exposes Lys-137 to the cytosol for subsequent modification by the ubiquitination machinery. Thus, the balance between the full-length and mature PINK1 allows its levels to be regulated via ubiquitination of the mature form and ensures that PINK1 functions as a mitochondrial quality control factor. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Digital Platform for Wafer-Level MEMS Testing and Characterization Using Electrical Response

    PubMed Central

    Brito, Nuno; Ferreira, Carlos; Alves, Filipe; Cabral, Jorge; Gaspar, João; Monteiro, João; Rocha, Luís

    2016-01-01

    The uniqueness of microelectromechanical system (MEMS) devices, with their multiphysics characteristics, presents some limitations to the borrowed test methods from traditional integrated circuits (IC) manufacturing. Although some improvements have been performed, this specific area still lags behind when compared to the design and manufacturing competencies developed over the last decades by the IC industry. A complete digital solution for fast testing and characterization of inertial sensors with built-in actuation mechanisms is presented in this paper, with a fast, full-wafer test as a leading ambition. The full electrical approach and flexibility of modern hardware design technologies allow a fast adaptation for other physical domains with minimum effort. The digital system encloses a processor and the tailored signal acquisition, processing, control, and actuation hardware control modules, capable of the structure position and response analysis when subjected to controlled actuation signals in real time. The hardware performance, together with the simplicity of the sequential programming on a processor, results in a flexible and powerful tool to evaluate the newest and fastest control algorithms. The system enables measurement of resonant frequency (Fr), quality factor (Q), and pull-in voltage (Vpi) within 1.5 s with repeatability better than 5 ppt (parts per thousand). A full-wafer with 420 devices under test (DUTs) has been evaluated detecting the faulty devices and providing important design specification feedback to the designers. PMID:27657087

  4. Digital Platform for Wafer-Level MEMS Testing and Characterization Using Electrical Response.

    PubMed

    Brito, Nuno; Ferreira, Carlos; Alves, Filipe; Cabral, Jorge; Gaspar, João; Monteiro, João; Rocha, Luís

    2016-09-21

    The uniqueness of microelectromechanical system (MEMS) devices, with their multiphysics characteristics, presents some limitations to the borrowed test methods from traditional integrated circuits (IC) manufacturing. Although some improvements have been performed, this specific area still lags behind when compared to the design and manufacturing competencies developed over the last decades by the IC industry. A complete digital solution for fast testing and characterization of inertial sensors with built-in actuation mechanisms is presented in this paper, with a fast, full-wafer test as a leading ambition. The full electrical approach and flexibility of modern hardware design technologies allow a fast adaptation for other physical domains with minimum effort. The digital system encloses a processor and the tailored signal acquisition, processing, control, and actuation hardware control modules, capable of the structure position and response analysis when subjected to controlled actuation signals in real time. The hardware performance, together with the simplicity of the sequential programming on a processor, results in a flexible and powerful tool to evaluate the newest and fastest control algorithms. The system enables measurement of resonant frequency (Fr), quality factor (Q), and pull-in voltage (Vpi) within 1.5 s with repeatability better than 5 ppt (parts per thousand). A full-wafer with 420 devices under test (DUTs) has been evaluated detecting the faulty devices and providing important design specification feedback to the designers.

  5. Field tuning the g factor in InAs nanowire double quantum dots.

    PubMed

    Schroer, M D; Petersson, K D; Jung, M; Petta, J R

    2011-10-21

    We study the effects of magnetic and electric fields on the g factors of spins confined in a two-electron InAs nanowire double quantum dot. Spin sensitive measurements are performed by monitoring the leakage current in the Pauli blockade regime. Rotations of single spins are driven using electric-dipole spin resonance. The g factors are extracted from the spin resonance condition as a function of the magnetic field direction, allowing determination of the full g tensor. Electric and magnetic field tuning can be used to maximize the g-factor difference and in some cases altogether quench the electric-dipole spin resonance response, allowing selective single spin control. © 2011 American Physical Society

  6. Repeated Failures: What We Haven’t Learned About Complex Systems

    DTIC Science & Technology

    2010-11-01

    Computer (OBC) ordered full nozzle deflection for both solid rocket motors and the Vulcain at approximately T +39 seconds. This was based on data...Workmanship/QC: .. Deficiencies in CM design, workmanship and quality control UNCLASSIFIED What h8PPIIDIItl: • Failure of Solid Rocket Motor ...SAM) field joint allowed hot gases to impinge on External Tank (ET) and lower struts ( aft attach points between ET and Solid Rocket Booster (SRB

  7. Exploiting Non-Markovianity for Quantum Control.

    PubMed

    Reich, Daniel M; Katz, Nadav; Koch, Christiane P

    2015-07-22

    Quantum technology, exploiting entanglement and the wave nature of matter, relies on the ability to accurately control quantum systems. Quantum control is often compromised by the interaction of the system with its environment since this causes loss of amplitude and phase. However, when the dynamics of the open quantum system is non-Markovian, amplitude and phase flow not only from the system into the environment but also back. Interaction with the environment is then not necessarily detrimental. We show that the back-flow of amplitude and phase can be exploited to carry out quantum control tasks that could not be realized if the system was isolated. The control is facilitated by a few strongly coupled, sufficiently isolated environmental modes. Our paradigmatic example considers a weakly anharmonic ladder with resonant amplitude control only, restricting realizable operations to SO(N). The coupling to the environment, when harnessed with optimization techniques, allows for full SU(N) controllability.

  8. Precision control of multiple quantum cascade lasers for calibration systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taubman, Matthew S., E-mail: Matthew.Taubman@pnnl.gov; Myers, Tanya L.; Pratt, Richard M.

    We present a precision, 1-A, digitally interfaced current controller for quantum cascade lasers, with demonstrated temperature coefficients for continuous and 40-kHz full-depth square-wave modulated operation, of 1–2 ppm/ °C and 15 ppm/ °C, respectively. High precision digital to analog converters (DACs) together with an ultra-precision voltage reference produce highly stable, precision voltages, which are selected by a multiplexer (MUX) chip to set output currents via a linear current regulator. The controller is operated in conjunction with a power multiplexing unit, allowing one of three lasers to be driven by the controller, while ensuring protection of controller and all lasers during operation, standby,more » and switching. Simple ASCII commands sent over a USB connection to a microprocessor located in the current controller operate both the controller (via the DACs and MUX chip) and the power multiplexer.« less

  9. Visco-elastic controlled-source full waveform inversion without surface waves

    NASA Astrophysics Data System (ADS)

    Paschke, Marco; Krause, Martin; Bleibinhaus, Florian

    2016-04-01

    We developed a frequency-domain visco-elastic full waveform inversion for onshore seismic experiments with topography. The forward modeling is based on a finite-difference time-domain algorithm by Robertsson that uses the image-method to ensure a stress-free condition at the surface. The time-domain data is Fourier-transformed at every point in the model space during the forward modeling for a given set of frequencies. The motivation for this approach is the reduced amount of memory when computing kernels, and the straightforward implementation of the multiscale approach. For the inversion, we calculate the Frechet derivative matrix explicitly, and we implement a Levenberg-Marquardt scheme that allows for computing the resolution matrix. To reduce the size of the Frechet derivative matrix, and to stabilize the inversion, an adapted inverse mesh is used. The node spacing is controlled by the velocity distribution and the chosen frequencies. To focus the inversion on body waves (P, P-coda, and S) we mute the surface waves from the data. Consistent spatiotemporal weighting factors are applied to the wavefields during the Fourier transform to obtain the corresponding kernels. We test our code with a synthetic study using the Marmousi model with arbitrary topography. This study also demonstrates the importance of topography and muting surface waves in controlled-source full waveform inversion.

  10. Active control of nano dimers response using piezoelectric effect

    NASA Astrophysics Data System (ADS)

    Mekkawy, Ahmed A.; Ali, Tamer A.; Badawi, Ashraf H.

    2016-09-01

    Nano devices can be used as building blocks for Internet of Nano-Things network devices, such as sensors/actuators, transceivers, and routers. Although nano particles response can be engineered to fit in different regimes, for such a nano particle to be used as an active nano device, its properties should be dynamically controlled. This controllability is a challenge, and there are many proposed techniques to tune nanoparticle response on the spot through a sort of control signal, wither that signal is optical (for all-optical systems) or electronic (for opto-electronic systems). This will allow the use of nano particles as nano-switches or as dynamic sensors that can pick different frequencies depending on surrounding conditions or depending on a smart decisions. In this work, we propose a piezoelectric substrate as an active control mediator to control plasmonic gaps in nano dimers. This method allows for integrating nano devices with regular electronics while communicating control signals to nano devices through applying electric signals to a piezoelectric material, in order to control the gaps between nano particles in a nano cluster. We do a full numerical study to the system, analyzing the piezoelectric control resolution (minimum gap change step) and its effect on a nanodimer response as a nanoantenna. This analysis considers the dielectric functions of materials within the visible frequencies range. The effects of different parameters, such as the piezoelectric geometrical structure and materials, on the gap control resolution and the operating frequency are studied.

  11. New Density Functional Approach for Solid-Liquid-Vapor Transitions in Pure Materials

    NASA Astrophysics Data System (ADS)

    Kocher, Gabriel; Provatas, Nikolas

    2015-04-01

    A new phase field crystal (PFC) type theory is presented, which accounts for the full spectrum of solid-liquid-vapor phase transitions within the framework of a single density order parameter. Its equilibrium properties show the most quantitative features to date in PFC modeling of pure substances, and full consistency with thermodynamics in pressure-volume-temperature space is demonstrated. A method to control either the volume or the pressure of the system is also introduced. Nonequilibrium simulations show that 2- and 3-phase growth of solid, vapor, and liquid can be achieved, while our formalism also allows for a full range of pressure-induced transformations. This model opens up a new window for the study of pressure driven interactions of condensed phases with vapor, an experimentally relevant paradigm previously missing from phase field crystal theories.

  12. Data Automata in Scala

    NASA Technical Reports Server (NTRS)

    Havelund, Klaus

    2014-01-01

    The field of runtime verification has during the last decade seen a multitude of systems for monitoring event sequences (traces) emitted by a running system. The objective is to ensure correctness of a system by checking its execution traces against formal specifications representing requirements. A special challenge is data parameterized events, where monitors have to keep track of the combination of control states as well as data constraints, relating events and the data they carry across time points. This poses a challenge wrt. efficiency of monitors, as well as expressiveness of logics. Data automata is a form of automata where states are parameterized with data, supporting monitoring of data parameterized events. We describe the full details of a very simple API in the Scala programming language, an internal DSL (Domain-Specific Language), implementing data automata. The small implementation suggests a design pattern. Data automata allow transition conditions to refer to other states than the source state, and allow target states of transitions to be inlined, offering a temporal logic flavored notation. An embedding of a logic in a high-level language like Scala in addition allows monitors to be programmed using all of Scala's language constructs, offering the full flexibility of a programming language. The framework is demonstrated on an XML processing scenario previously addressed in related work.

  13. Ni-base superalloy powder-processed porous layer for gas cooling in extreme environments

    DOE PAGES

    White, Emma M. H.; Heidloff, Andrew J.; Byrd, David J.; ...

    2016-05-26

    Extreme high temperature conditions demand novel solutions for hot gas filters and coolant access architectures, i.e., porous layers on exposed components. These high temperatures, for example in current turbine engines, are at or exceeding current material limits for high temperature oxidation/corrosion, creep resistance, and, even, melting temperature. Thus novel blade designs allowing greater heat removal are required to maintain airfoil temperatures below melting and/ or rapid creep deformation limits. Gas atomized Ni-base superalloy powders were partially sintered into porous layers to allow full-surface, transpirational cooling of the surface of airfoils. Furthermore, these powder-processed porous layers were fully characterized for surface,more » morphology, cross-sectional microstructure, and mechanical strength characteristics. A sintering model based on pure Ni surface diffusion correlated well with the experimental results and allowed reasonable control over the partial sintering process to obtain a specified level of porosity within the porous layer.« less

  14. Ni-base superalloy powder-processed porous layer for gas cooling in extreme environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Emma M. H.; Heidloff, Andrew J.; Byrd, David J.

    Extreme high temperature conditions demand novel solutions for hot gas filters and coolant access architectures, i.e., porous layers on exposed components. These high temperatures, for example in current turbine engines, are at or exceeding current material limits for high temperature oxidation/corrosion, creep resistance, and, even, melting temperature. Thus novel blade designs allowing greater heat removal are required to maintain airfoil temperatures below melting and/ or rapid creep deformation limits. Gas atomized Ni-base superalloy powders were partially sintered into porous layers to allow full-surface, transpirational cooling of the surface of airfoils. Furthermore, these powder-processed porous layers were fully characterized for surface,more » morphology, cross-sectional microstructure, and mechanical strength characteristics. A sintering model based on pure Ni surface diffusion correlated well with the experimental results and allowed reasonable control over the partial sintering process to obtain a specified level of porosity within the porous layer.« less

  15. Functional and genetic characterization of gas exchange and intrinsic water use efficiency in a full-sib family of Pinus pinaster Ait. in response to drought.

    PubMed

    de Miguel, Marina; Sánchez-Gómez, David; Cervera, María Teresa; Aranda, Ismael

    2012-01-01

    Drought is an important environmental factor in Mediterranean ecosystems affecting seedling recruitment, productivity or susceptibility to fires and pathogens. Studying water use efficiency in these environments is crucial due to its adaptive value allowing trees to cope with low water availability. We studied the phenotypic variability and genetic control of intrinsic water use efficiency (WUE(i)) and related traits in a full-sib family of Pinus pinaster under drought imposition. We detected significant differences in WUE(i) between clones of the same family and moderate heritability estimates that indicate some degree of genetic control over this trait. Stomatal conductance to water vapor was the trait most affected by drought imposition and it showed the strongest influence in WUE(i). Stomatal conductance to water vapor and specific leaf area (SLA) were the traits with highest heritabilities and they showed a significant genetic correlation with WUE(i), suggesting that selection of needles with low SLA values will improve WUE(i) in this species by reducing water losses through stomatal control.

  16. User's Guide for the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS)

    NASA Technical Reports Server (NTRS)

    Frederick, Dean K.; DeCastro, Jonathan A.; Litt, Jonathan S.

    2007-01-01

    This report is a Users Guide for the NASA-developed Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) software, which is a transient simulation of a large commercial turbofan engine (up to 90,000-lb thrust) with a realistic engine control system. The software supports easy access to health, control, and engine parameters through a graphical user interface (GUI). C-MAPSS provides the user with a graphical turbofan engine simulation environment in which advanced algorithms can be implemented and tested. C-MAPSS can run user-specified transient simulations, and it can generate state-space linear models of the nonlinear engine model at an operating point. The code has a number of GUI screens that allow point-and-click operation, and have editable fields for user-specified input. The software includes an atmospheric model which allows simulation of engine operation at altitudes from sea level to 40,000 ft, Mach numbers from 0 to 0.90, and ambient temperatures from -60 to 103 F. The package also includes a power-management system that allows the engine to be operated over a wide range of thrust levels throughout the full range of flight conditions.

  17. The LHCb Run Control

    NASA Astrophysics Data System (ADS)

    Alessio, F.; Barandela, M. C.; Callot, O.; Duval, P.-Y.; Franek, B.; Frank, M.; Galli, D.; Gaspar, C.; Herwijnen, E. v.; Jacobsson, R.; Jost, B.; Neufeld, N.; Sambade, A.; Schwemmer, R.; Somogyi, P.

    2010-04-01

    LHCb has designed and implemented an integrated Experiment Control System. The Control System uses the same concepts and the same tools to control and monitor all parts of the experiment: the Data Acquisition System, the Timing and the Trigger Systems, the High Level Trigger Farm, the Detector Control System, the Experiment's Infrastructure and the interaction with the CERN Technical Services and the Accelerator. LHCb's Run Control, the main interface used by the experiment's operator, provides access in a hierarchical, coherent and homogeneous manner to all areas of the experiment and to all its sub-detectors. It allows for automated (or manual) configuration and control, including error recovery, of the full experiment in its different running modes. Different instances of the same Run Control interface are used by the various sub-detectors for their stand-alone activities: test runs, calibration runs, etc. The architecture and the tools used to build the control system, the guidelines and components provided to the developers, as well as the first experience with the usage of the Run Control will be presented

  18. Performance improvement of a measurement station for superconducting cable test

    NASA Astrophysics Data System (ADS)

    Arpaia, Pasquale; Bottura, Luca; Montenero, Giuseppe; Naour, Sandrine Le

    2012-09-01

    A fully digital system, improving measurements flexibility, integrator drift, and current control of superconducting transformers for cable test, is proposed. The system is based on a high-performance integration of Rogowski coil signal and a flexible direct control of the current into the secondary windings. This allows state-of-the-art performance to be overcome by means of out-of-the-shelf components: on a full-scale of 32 kA, current measurement resolution of 1 A, stability below 0.25 A min-1, and controller ripple less than ±50 ppm. The system effectiveness has been demonstrated experimentally on the superconducting transformer of the Facility for the Research of Superconducting Cables at the European Organization for Nuclear Research (CERN).

  19. Automated Liquid-Level Control of a Nutrient Reservoir for a Hydroponic System

    NASA Technical Reports Server (NTRS)

    Smith, Boris; Asumadu, Johnson A.; Dogan, Numan S.

    1997-01-01

    A microprocessor-based system for control of the liquid level of a nutrient reservoir for a plant hydroponic growing system has been developed. The system uses an ultrasonic transducer to sense the liquid level or height. A National Instruments' Multifunction Analog and Digital Input/Output PC Kit includes NI-DAQ DOS/Windows driver software for an IBM 486 personal computer. A Labview Full Development system for Windows is the graphical programming system being used. The system allows liquid level control to within 0.1 cm for all levels tried between 8 and 36 cm in the hydroponic system application. The detailed algorithms have been developed and a fully automated microprocessor based nutrient replenishment system has been described for this hydroponic system.

  20. Pan Am gets big savings at no cost

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanz, D.

    Pan American World Airways' contract with an energy management control systems distributor enabled the company's terminal and maintenance facilities at JFK airport in New York to shift from housekeeping to major savings without additional cost. Energy savings from a pneumatic control system were split almost equally between Pan Am and Thomas S. Brown Associates (TSBA) Inc., and further savings are expected from a planned computer-controlled system. A full-time energy manager, able to give top priority to energy-consumption problems, was considered crucial to the program's success. Early efforts in light-level reduction and equipment scheduling required extensive persuasion and policing, but successfulmore » energy savings allowed the manager to progress to the more-extensive plants with TSBA.« less

  1. Ultrashort polarization-tailored bichromatic fields from a CEP-stable white light supercontinuum.

    PubMed

    Kerbstadt, Stefanie; Timmer, Daniel; Englert, Lars; Bayer, Tim; Wollenhaupt, Matthias

    2017-05-29

    We apply ultrafast polarization shaping to an ultrabroadband carrier envelope phase (CEP) stable white light supercontinuum to generate polarization-tailored bichromatic laser fields of low-order frequency ratio. The generation of orthogonal linearly and counter-rotating circularly polarized bichromatic fields is achieved by introducing a composite polarizer in the Fourier plane of a 4 f polarization shaper. The resulting Lissajous- and propeller-type polarization profiles are characterized experimentally by cross-correlation trajectories. The scheme provides full control over all bichromatic parameters and allows for individual spectral phase modulation of both colors. Shaper-based CEP control and the generation of tailored bichromatic fields is demonstrated. These bichromatic CEP-stable polarization-shaped ultrashort laser pulses provide a versatile class of waveforms for coherent control experiments.

  2. Development of the fine-particle agglomerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feldman, P.; Balasic, P.

    1999-07-01

    This paper presents the current status of the commercial development of a new technology to more efficiently control fine particulate emissions. The technology is based on an invention by Environmental Elements Corporation (EEC) which utilizes laminar flow to promote contact of fine submicron particles with larger particles to form agglomerates prior to their removal in a conventional particulate control device, such as an ESP. As agglomerates the particles are easily captured in the control device, whereas a substantial amount would pass through if allowed to remain as fine particles. EEC has developed the laminar-flow agglomerator technology through the laboratory proof-of-conceptmore » stage, which was funded by a DOE SBIR grant, to pilot-scale and full-scale demonstrations.« less

  3. Simple technique of talc delivery for video-assisted talc pleurodesis.

    PubMed

    Jutley, Rajwinder S; Waqar, Salman; Raha, Neil; Fenton, Paul; Sarkar, Pradip K

    2009-02-01

    It has been proven that talc is the sclerosant of choice for pleurodesis, especially for malignant effusions. Uniform talc deposition on the visceral pleura is often difficult, resulting in clump deposition with the use of an atomizer or bladder syringe delivery apparatus. We have devised a simple sterile apparatus that allows the operator to retain full control over the talc delivery rate and coat the lung uniformly under direct vision using a pressurized system.

  4. Active control of lateral leakage in thin-ridge SOI waveguide structures

    NASA Astrophysics Data System (ADS)

    Dalvand, Naser; Nguyen, Thach G.; Tummidi, Ravi S.; Koch, Thomas L.; Mitchell, Arnan

    2011-12-01

    We report on the design and simulation of a novel Silicon-On-Insulator waveguide structures which when excited with TM guided light, emit TE polarized radiation with controlled radiation characteristics[1]. The structures utilize parallel leaky waveguides of specific separations. The structures are simulated using a full-vector mode-matching approach which allows visualisation of the evolution of the propagating and radiating fields over the length of the waveguide structure. It is shown that radiation can be resonantly enhanced or suppressed in different directions depending on the choice of the phase of the excitation of the waveguide components. Steps toward practical demonstration are identified.

  5. [What are the pharmacological options for treating resistant hypertension?

    PubMed

    Martell-Claros, N; Abad-Cardiel, M

    2017-01-01

    When treating a patient with resistant hypertension therapy should be optimize in order to prescribe three antihypertensive drugs at full doses, being powerful drugs, having 24-hour coverage, and showing synergistic effects. Diuretic therapy is of special relevance. The fourth drug should be an aldosterone antagonists. In the case of intolerance, or when control is not achieved, drugs from other type of antihypertensive drugs should be, sometimes allowing adequate blood pressure control. Copyright © 2017 Sociedad Española de Hipertension-Liga Española para la Lucha de la Hipertensión Arterial (SEH-LELHA). Publicado por Elsevier España, S.L.U. All rights reserved.

  6. MMU development at the Martin Marietta plant in Denver, Colorado

    NASA Image and Video Library

    1980-07-25

    S80-36889 (24 July 1980) --- Astronaut Bruce McCandless II uses a simulator at Martin Marietta?s space center near Denver to develop flight techniques for a backpack propulsion unit that will be used on Space Shuttle flights. The manned maneuvering unit (MMU) training simulator allows astronauts to "fly missions" against a full scale mockup of a portion of the orbiter vehicle. Controls of the simulator are like those of the actual MMU. Manipulating them allows the astronaut to move in three straight-line directions and in pitch, yaw and roll. One possible application of the MMU is for an extravehicular activity chore to repair damaged tiles on the vehicle. McCandless is wearing an extravehicular mobility unit (EMU).

  7. WebSat--a web software for microsatellite marker development.

    PubMed

    Martins, Wellington Santos; Lucas, Divino César Soares; Neves, Kelligton Fabricio de Souza; Bertioli, David John

    2009-01-01

    Simple sequence repeats (SSR), also known as microsatellites, have been extensively used as molecular markers due to their abundance and high degree of polymorphism. We have developed a simple to use web software, called WebSat, for microsatellite molecular marker prediction and development. WebSat is accessible through the Internet, requiring no program installation. Although a web solution, it makes use of Ajax techniques, providing a rich, responsive user interface. WebSat allows the submission of sequences, visualization of microsatellites and the design of primers suitable for their amplification. The program allows full control of parameters and the easy export of the resulting data, thus facilitating the development of microsatellite markers. The web tool may be accessed at http://purl.oclc.org/NET/websat/

  8. Silicon microdisk-based full adders for optical computing.

    PubMed

    Ying, Zhoufeng; Wang, Zheng; Zhao, Zheng; Dhar, Shounak; Pan, David Z; Soref, Richard; Chen, Ray T

    2018-03-01

    Due to the projected saturation of Moore's law, as well as the drastically increasing trend of bandwidth with lower power consumption, silicon photonics has emerged as one of the most promising alternatives that has attracted a lasting interest due to the accessibility and maturity of ultra-compact passive and active integrated photonic components. In this Letter, we demonstrate a ripple-carry electro-optic 2-bit full adder using microdisks, which replaces the core part of an electrical full adder by optical counterparts and uses light to carry signals from one bit to the next with high bandwidth and low power consumption per bit. All control signals of the operands are applied simultaneously within each clock cycle. Thus, the severe latency issue that accumulates as the size of the full adder increases can be circumvented, allowing for an improvement in computing speed and a reduction in power consumption. This approach paves the way for future high-speed optical computing systems in the post-Moore's law era.

  9. CDSbank: taxonomy-aware extraction, selection, renaming and formatting of protein-coding DNA or amino acid sequences.

    PubMed

    Hazes, Bart

    2014-02-28

    Protein-coding DNA sequences and their corresponding amino acid sequences are routinely used to study relationships between sequence, structure, function, and evolution. The rapidly growing size of sequence databases increases the power of such comparative analyses but it makes it more challenging to prepare high quality sequence data sets with control over redundancy, quality, completeness, formatting, and labeling. Software tools for some individual steps in this process exist but manual intervention remains a common and time consuming necessity. CDSbank is a database that stores both the protein-coding DNA sequence (CDS) and amino acid sequence for each protein annotated in Genbank. CDSbank also stores Genbank feature annotation, a flag to indicate incomplete 5' and 3' ends, full taxonomic data, and a heuristic to rank the scientific interest of each species. This rich information allows fully automated data set preparation with a level of sophistication that aims to meet or exceed manual processing. Defaults ensure ease of use for typical scenarios while allowing great flexibility when needed. Access is via a free web server at http://hazeslab.med.ualberta.ca/CDSbank/. CDSbank presents a user-friendly web server to download, filter, format, and name large sequence data sets. Common usage scenarios can be accessed via pre-programmed default choices, while optional sections give full control over the processing pipeline. Particular strengths are: extract protein-coding DNA sequences just as easily as amino acid sequences, full access to taxonomy for labeling and filtering, awareness of incomplete sequences, and the ability to take one protein sequence and extract all synonymous CDS or identical protein sequences in other species. Finally, CDSbank can also create labeled property files to, for instance, annotate or re-label phylogenetic trees.

  10. Shipbuilding Docks as Experimental Systems for Realistic Assessments of Anthropogenic Stressors on Marine Organisms

    PubMed Central

    Harding, Harry R.; Bunce, Tom; Birch, Fiona; Lister, Jessica; Spiga, Ilaria; Benson, Tom; Rossington, Kate; Jones, Diane; Tyler, Charles R.; Simpson, Stephen D.

    2017-01-01

    Abstract Empirical investigations of the impacts of anthropogenic stressors on marine organisms are typically performed under controlled laboratory conditions, onshore mesocosms, or via offshore experiments with realistic (but uncontrolled) environmental variation. These approaches have merits, but onshore setups are generally small sized and fail to recreate natural stressor fields, whereas offshore studies are often compromised by confounding factors. We suggest the use of flooded shipbuilding docks to allow studying realistic exposure to stressors and their impacts on the intra- and interspecific responses of animals. Shipbuilding docks permit the careful study of groups of known animals, including the evaluation of their behavioral interactions, while enabling full control of the stressor and many environmental conditions. We propose that this approach could be used for assessing the impacts of prominent anthropogenic stressors, including chemicals, ocean warming, and sound. Results from shipbuilding-dock studies could allow improved parameterization of predictive models relating to the environmental risks and population consequences of anthropogenic stressors. PMID:29599545

  11. Shipbuilding Docks as Experimental Systems for Realistic Assessments of Anthropogenic Stressors on Marine Organisms.

    PubMed

    Bruintjes, Rick; Harding, Harry R; Bunce, Tom; Birch, Fiona; Lister, Jessica; Spiga, Ilaria; Benson, Tom; Rossington, Kate; Jones, Diane; Tyler, Charles R; Radford, Andrew N; Simpson, Stephen D

    2017-09-01

    Empirical investigations of the impacts of anthropogenic stressors on marine organisms are typically performed under controlled laboratory conditions, onshore mesocosms, or via offshore experiments with realistic (but uncontrolled) environmental variation. These approaches have merits, but onshore setups are generally small sized and fail to recreate natural stressor fields, whereas offshore studies are often compromised by confounding factors. We suggest the use of flooded shipbuilding docks to allow studying realistic exposure to stressors and their impacts on the intra- and interspecific responses of animals. Shipbuilding docks permit the careful study of groups of known animals, including the evaluation of their behavioral interactions, while enabling full control of the stressor and many environmental conditions. We propose that this approach could be used for assessing the impacts of prominent anthropogenic stressors, including chemicals, ocean warming, and sound. Results from shipbuilding-dock studies could allow improved parameterization of predictive models relating to the environmental risks and population consequences of anthropogenic stressors.

  12. Reduced-Intensity Stem Cell Transplantation: "...whereof a little More than a little is by much too much." King Henry IV, part 1, I, 2.

    PubMed

    Antin, Joseph H

    2007-01-01

    The recognition that the immune system can play a major role in the control and cure of transplantable disorders led to the development of reduced-intensity allogeneic transplantation. The notion is that a compromise can be made between the intensity of conditioning and the fostering of graft-versus-host disease/ graft-versus-leukemia (GVHD/GVL), allowing the use of less intense conditioning with concomitantly less intense immediate toxicity. Reduced-intensity conditioning regimens have allowed the application of transplantation to older patients and to patients with underlying medical problems that preclude full-dose transplantation. Clearly, in some settings in which dose intensity is important, reduced-intensity regimens are less useful. However, for diseases that are either indolent, highly susceptible to GVL, or under good control before entering transplantation, this approach appears to have substantial benefits. Although the therapy appears to be valuable, concerns about delayed immune reconstitution and GVHD remain.

  13. Lunar PMAD technology assessment

    NASA Technical Reports Server (NTRS)

    Metcalf, Kenneth J.

    1992-01-01

    This report documents an initial set of power conditioning models created to generate 'ballpark' power management and distribution (PMAD) component mass and size estimates. It contains converter, rectifier, inverter, transformer, remote bus isolator (RBI), and remote power controller (RPC) models. These models allow certain studies to be performed; however, additional models are required to assess a full range of PMAD alternatives. The intent is to eventually form a library of PMAD models that will allow system designers to evaluate various power system architectures and distribution techniques quickly and consistently. The models in this report are designed primarily for space exploration initiative (SEI) missions requiring continuous power and supporting manned operations. The mass estimates were developed by identifying the stages in a component and obtaining mass breakdowns for these stages from near term electronic hardware elements. Technology advances were then incorporated to generate hardware masses consistent with the 2000 to 2010 time period. The mass of a complete component is computed by algorithms that calculate the masses of the component stages, control and monitoring, enclosure, and thermal management subsystem.

  14. Concept for estimating mitochondrial DNA haplogroups using a maximum likelihood approach (EMMA)☆

    PubMed Central

    Röck, Alexander W.; Dür, Arne; van Oven, Mannis; Parson, Walther

    2013-01-01

    The assignment of haplogroups to mitochondrial DNA haplotypes contributes substantial value for quality control, not only in forensic genetics but also in population and medical genetics. The availability of Phylotree, a widely accepted phylogenetic tree of human mitochondrial DNA lineages, led to the development of several (semi-)automated software solutions for haplogrouping. However, currently existing haplogrouping tools only make use of haplogroup-defining mutations, whereas private mutations (beyond the haplogroup level) can be additionally informative allowing for enhanced haplogroup assignment. This is especially relevant in the case of (partial) control region sequences, which are mainly used in forensics. The present study makes three major contributions toward a more reliable, semi-automated estimation of mitochondrial haplogroups. First, a quality-controlled database consisting of 14,990 full mtGenomes downloaded from GenBank was compiled. Together with Phylotree, these mtGenomes serve as a reference database for haplogroup estimates. Second, the concept of fluctuation rates, i.e. a maximum likelihood estimation of the stability of mutations based on 19,171 full control region haplotypes for which raw lane data is available, is presented. Finally, an algorithm for estimating the haplogroup of an mtDNA sequence based on the combined database of full mtGenomes and Phylotree, which also incorporates the empirically determined fluctuation rates, is brought forward. On the basis of examples from the literature and EMPOP, the algorithm is not only validated, but both the strength of this approach and its utility for quality control of mitochondrial haplotypes is also demonstrated. PMID:23948335

  15. Surface dislocation nucleation controlled deformation of Au nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roos, B.; Kapelle, B.; Volkert, C. A., E-mail: volkert@ump.gwdg.de

    2014-11-17

    We investigate deformation in high quality Au nanowires under both tension and bending using in-situ transmission electron microscopy. Defect evolution is investigated during: (1) tensile deformation of 〈110〉 oriented, initially defect-free, single crystal nanowires with cross-sectional widths between 30 and 300 nm, (2) bending deformation of the same wires, and (3) tensile deformation of wires containing coherent twin boundaries along their lengths. We observe the formation of twins and stacking faults in the single crystal wires under tension, and storage of full dislocations after bending of single crystal wires and after tension of twinned wires. The stress state dependence of themore » deformation morphology and the formation of stacking faults and twins are not features of bulk Au, where deformation is controlled by dislocation interactions. Instead, we attribute the deformation morphologies to the surface nucleation of either leading or trailing partial dislocations, depending on the Schmid factors, which move through and exit the wires producing stacking faults or full dislocation slip. The presence of obstacles such as neutral planes or twin boundaries hinder the egress of the freshly nucleated dislocations and allow trailing and leading partial dislocations to combine and to be stored as full dislocations in the wires. We infer that the twins and stacking faults often observed in nanoscale Au specimens are not a direct size effect but the result of a size and obstacle dependent transition from dislocation interaction controlled to dislocation nucleation controlled deformation.« less

  16. Advanced Sulfur-Silicon Full Cell Architecture for Lithium Ion Batteries.

    PubMed

    Ye, Rachel; Bell, Jeffrey; Patino, Daisy; Ahmed, Kazi; Ozkan, Mihri; Ozkan, Cengiz S

    2017-12-08

    Lithium-ion batteries are crucial to the future of energy storage. However, the energy density of current lithium-ion batteries is insufficient for future applications. Sulfur cathodes and silicon anodes have garnered a lot of attention in the field due their high capacity potential. Although recent developments in sulfur and silicon electrodes show exciting results in half cell formats, neither electrode can act as a lithium source when put together into a full cell format. Current methods toward incorporating lithium in sulfur-silicon full cells involves prelithiating silicon or using lithium sulfide. These methods however, complicate material processing and creates safety hazards. Herein, we present a novel full cell battery architecture that bypasses the issues associated with current methods. This battery architecture gradually integrates controlled amounts of pure lithium into the system by allowing lithium the access to external circuit. A high specific energy density of 350 Wh/kg after 250 cycles at C/10 was achieved using this method. This work should pave the way for future researches into sulfur-silicon full cells.

  17. Ion cyclotron emission from energetic fusion products in tokamak plasmas: A full-wave calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batchelor, D.B.; Jaeger, E.F.; Colestock, P.L.

    1989-06-01

    A full-wave ion cyclotron resonant heating (ICRH) code has been modified to allow calculation of cyclotron emission from energetic ions in tokamaks. The immediate application is to fusion alpha particles in near-ignition devices. This permits detailed evaluation of proposed alpha particle diagnostics (Proceedings of the Thirteenth European Conference on Controlled Fusion and Plasma Heating, Schliersee, Federal Republic of Germany, 1986, edited by G. Briffod and M. Kaufmann (European Physical Society, Petit-Lancy, Switzerland, 1986), Part 1, Vol. 2, p. 37.) This full-wave approach automatically takes into account wall reflections, standing waves, and plasma absorption and overcomes the difficulties inherent in attemptingmore » to apply conventional geometrical optics to long wavelengths. By calculating the coherent radiation field caused by an ensemble of localized current sources (and retaining the phase information), the directivity of pickup antennas is correctly represented.« less

  18. Development of a digital solar simulator based on full-bridge converter

    NASA Astrophysics Data System (ADS)

    Liu, Chen; Feng, Jian; Liu, Zhilong; Tong, Weichao; Ji, Yibo

    2014-02-01

    With the development of solar photovoltaic, distribution schemes utilized in power grid had been commonly application, and photovoltaic (PV) inverter is an essential equipment in grid. In this paper, a digital solar simulator based on full-bridge structure is presented. The output characteristic curve of system is electrically similar to silicon solar cells, which can greatly simplify research methods of PV inverter, improve the efficiency of research and development. The proposed simulator consists on a main control board based on TM320F28335, phase-shifted zero-voltage-switching (ZVS) DC-DC full-bridge converter and voltage and current sampling circuit, that allows emulating the voltage-current curve with the open-circuit voltage (Voc) of 900V and the short-circuit current (Isc) of 18A .When the system connected to a PV inverter, the inverter can quickly track from the open-circuit to the maximum power point and keep stability.

  19. Neural Network for Image-to-Image Control of Optical Tweezers

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.; Anderson, Robert C.; Weiland, Kenneth E.; Wrbanek, Susan Y.

    2004-01-01

    A method is discussed for using neural networks to control optical tweezers. Neural-net outputs are combined with scaling and tiling to generate 480 by 480-pixel control patterns for a spatial light modulator (SLM). The SLM can be combined in various ways with a microscope to create movable tweezers traps with controllable profiles. The neural nets are intended to respond to scattered light from carbon and silicon carbide nanotube sensors. The nanotube sensors are to be held by the traps for manipulation and calibration. Scaling and tiling allow the 100 by 100-pixel maximum resolution of the neural-net software to be applied in stages to exploit the full 480 by 480-pixel resolution of the SLM. One of these stages is intended to create sensitive null detectors for detecting variations in the scattered light from the nanotube sensors.

  20. An analysis of a candidate control algorithm for a ride quality augmentation system

    NASA Technical Reports Server (NTRS)

    Suikat, Reiner; Donaldson, Kent; Downing, David R.

    1987-01-01

    This paper presents a detailed analysis of a candidate algorithm for a ride quality augmentation system. The algorithm consists of a full-state feedback control law based on optimal control output weighting, estimators for angle of attack and sideslip, and a maneuvering algorithm. The control law is shown to perform well by both frequency and time domain analysis. The rms vertical acceleration is reduced by about 40 percent over the whole mission flight envelope. The estimators for the angle of attack and sideslip avoid the often inaccurate or costly direct measurement of those angles. The maneuvering algorithm will allow the augmented airplane to respond to pilot inputs. The design characteristics and performance are documented by the closed-loop eigenvalues; rms levels of vertical, lateral, and longitudinal acceleration; and representative time histories and frequency response.

  1. High-resolution, continuous field-of-view (FOV), non-rotating imaging system

    NASA Technical Reports Server (NTRS)

    Huntsberger, Terrance L. (Inventor); Stirbl, Robert C. (Inventor); Aghazarian, Hrand (Inventor); Padgett, Curtis W. (Inventor)

    2010-01-01

    A high resolution CMOS imaging system especially suitable for use in a periscope head. The imaging system includes a sensor head for scene acquisition, and a control apparatus inclusive of distributed processors and software for device-control, data handling, and display. The sensor head encloses a combination of wide field-of-view CMOS imagers and narrow field-of-view CMOS imagers. Each bank of imagers is controlled by a dedicated processing module in order to handle information flow and image analysis of the outputs of the camera system. The imaging system also includes automated or manually controlled display system and software for providing an interactive graphical user interface (GUI) that displays a full 360-degree field of view and allows the user or automated ATR system to select regions for higher resolution inspection.

  2. 7. VIEW NORTHWEST OF 'ISLAND' (TOWER OR SUPERSTRUCTURE) ON THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW NORTHWEST OF 'ISLAND' (TOWER OR SUPERSTRUCTURE) ON THE DECK OF THE AIRCRAFT CARRIER JOHN F. KENNEDY. WHEN THE PHOTOGRAPH WAS TAKEN IN SEPTEMBER 1994, THE KENNEDY WAS IN DRY-DOCK FOR REFURBISHMENT UNDER THE 'SERVICE LIFE EXTENSION PROGRAM (SLEP). THE 'ISLAND' HOUSES THE SHIP'S BRIDGE AND A CONTROL CENTER FOR AIRCRAFT OPERATIONS. EXTENSIVE SCAFFOLDING WAS REQUIRED TO ALLOW FULL ACCESS TO THE PAINTERS AND TECHNICIANS WORKING HERE. - Naval Base Philadelphia-Philadelphia Naval Shipyard, Dry Dock No. 5, League Island, Philadelphia, Philadelphia County, PA

  3. Mesoscopic Vortex–Meissner currents in ring ladders

    NASA Astrophysics Data System (ADS)

    Haug, Tobias; Amico, Luigi; Dumke, Rainer; Kwek, Leong-Chuan

    2018-07-01

    Recent experimental progress have revealed Meissner and Vortex phases in low-dimensional ultracold atoms systems. Atomtronic setups can realize ring ladders, while explicitly taking the finite size of the system into account. This enables the engineering of quantized chiral currents and phase slips in between them. We find that the mesoscopic scale modifies the current. Full control of the lattice configuration reveals a reentrant behavior of Vortex and Meissner phases. Our approach allows a feasible diagnostic of the currents’ configuration through time-of-flight measurements.

  4. MONO FOR CROSS-PLATFORM CONTROL SYSTEM ENVIRONMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishimura, Hiroshi; Timossi, Chris

    2006-10-19

    Mono is an independent implementation of the .NET Frameworkby Novell that runs on multiple operating systems (including Windows,Linux and Macintosh) and allows any .NET compatible application to rununmodified. For instance Mono can run programs with graphical userinterfaces (GUI) developed with the C# language on Windows with VisualStudio (a full port of WinForm for Mono is in progress). We present theresults of tests we performed to evaluate the portability of our controlssystem .NET applications from MS Windows to Linux.

  5. “Five on a dice” port placement for robot-assisted thoracoscopic right upper lobectomy using robotic stapler

    PubMed Central

    Chan, Edward Y.

    2017-01-01

    Early versions of the da Vinci robot system (S and Si) have been used to perform pulmonary lung resection with severe limitations. The lack of a vascular robot stapler required the presence of a trained bedside assistant whose role was to place, manipulate and fire the stapler around major vascular structures. Thus, the techniques developed for the Si robot required a skilled bedside assistant to perform stapling of the hilar structure and manipulation of the lung. With the advent of the da Vinci Xi system with a vascular robot stapler, we postulated that we could develop a new port placement and technique to provide total control for the surgeon during the pulmonary lung resection. We found that the “five on a dice” port placement and technique allows for minimal assistance during the lobectomy with full control by the surgeon. This technique uses the full capability of the Xi robot to make the robot-assisted lobectomy a safe and ergonomic operation. PMID:29312746

  6. "Five on a dice" port placement for robot-assisted thoracoscopic right upper lobectomy using robotic stapler.

    PubMed

    Kim, Min P; Chan, Edward Y

    2017-12-01

    Early versions of the da Vinci robot system (S and Si) have been used to perform pulmonary lung resection with severe limitations. The lack of a vascular robot stapler required the presence of a trained bedside assistant whose role was to place, manipulate and fire the stapler around major vascular structures. Thus, the techniques developed for the Si robot required a skilled bedside assistant to perform stapling of the hilar structure and manipulation of the lung. With the advent of the da Vinci Xi system with a vascular robot stapler, we postulated that we could develop a new port placement and technique to provide total control for the surgeon during the pulmonary lung resection. We found that the "five on a dice" port placement and technique allows for minimal assistance during the lobectomy with full control by the surgeon. This technique uses the full capability of the Xi robot to make the robot-assisted lobectomy a safe and ergonomic operation.

  7. Patient-controlled sharing of medical imaging data across unaffiliated healthcare organizations

    PubMed Central

    Ahn, David K; Unde, Bhagyashree; Gage, H Donald; Carr, J Jeffrey

    2013-01-01

    Background Current image sharing is carried out by manual transportation of CDs by patients or organization-coordinated sharing networks. The former places a significant burden on patients and providers. The latter faces challenges to patient privacy. Objective To allow healthcare providers efficient access to medical imaging data acquired at other unaffiliated healthcare facilities while ensuring strong protection of patient privacy and minimizing burden on patients, providers, and the information technology infrastructure. Methods An image sharing framework is described that involves patients as an integral part of, and with full control of, the image sharing process. Central to this framework is the Patient Controlled Access-key REgistry (PCARE) which manages the access keys issued by image source facilities. When digitally signed by patients, the access keys are used by any requesting facility to retrieve the associated imaging data from the source facility. A centralized patient portal, called a PCARE patient control portal, allows patients to manage all the access keys in PCARE. Results A prototype of the PCARE framework has been developed by extending open-source technology. The results for feasibility, performance, and user assessments are encouraging and demonstrate the benefits of patient-controlled image sharing. Discussion The PCARE framework is effective in many important clinical cases of image sharing and can be used to integrate organization-coordinated sharing networks. The same framework can also be used to realize a longitudinal virtual electronic health record. Conclusion The PCARE framework allows prior imaging data to be shared among unaffiliated healthcare facilities while protecting patient privacy with minimal burden on patients, providers, and infrastructure. A prototype has been implemented to demonstrate the feasibility and benefits of this approach. PMID:22886546

  8. Thermodynamic Vent System for an On-Orbit Cryogenic Reaction Control Engine

    NASA Technical Reports Server (NTRS)

    Hurlbert, Eric A.; Romig, Kris A.; Jimenez, Rafael; Flores, Sam

    2012-01-01

    A report discusses a cryogenic reaction control system (RCS) that integrates a Joule-Thompson (JT) device (expansion valve) and thermodynamic vent system (TVS) with a cryogenic distribution system to allow fine control of the propellant quality (subcooled liquid) during operation of the device. It enables zero-venting when coupled with an RCS engine. The proper attachment locations and sizing of the orifice are required with the propellant distribution line to facilitate line conditioning. During operations, system instrumentation was strategically installed along the distribution/TVS line assembly, and temperature control bands were identified. A sub-scale run tank, full-scale distribution line, open-loop TVS, and a combination of procured and custom-fabricated cryogenic components were used in the cryogenic RCS build-up. Simulated on-orbit activation and thruster firing profiles were performed to quantify system heat gain and evaluate the TVS s capability to maintain the required propellant conditions at the inlet to the engine valves. Test data determined that a small control valve, such as a piezoelectric, is optimal to provide continuously the required thermal control. The data obtained from testing has also assisted with the development of fluid and thermal models of an RCS to refine integrated cryogenic propulsion system designs. This system allows a liquid oxygenbased main propulsion and reaction control system for a spacecraft, which improves performance, safety, and cost over conventional hypergolic systems due to higher performance, use of nontoxic propellants, potential for integration with life support and power subsystems, and compatibility with in-situ produced propellants.

  9. Reinforcement learning techniques for controlling resources in power networks

    NASA Astrophysics Data System (ADS)

    Kowli, Anupama Sunil

    As power grids transition towards increased reliance on renewable generation, energy storage and demand response resources, an effective control architecture is required to harness the full functionalities of these resources. There is a critical need for control techniques that recognize the unique characteristics of the different resources and exploit the flexibility afforded by them to provide ancillary services to the grid. The work presented in this dissertation addresses these needs. Specifically, new algorithms are proposed, which allow control synthesis in settings wherein the precise distribution of the uncertainty and its temporal statistics are not known. These algorithms are based on recent developments in Markov decision theory, approximate dynamic programming and reinforcement learning. They impose minimal assumptions on the system model and allow the control to be "learned" based on the actual dynamics of the system. Furthermore, they can accommodate complex constraints such as capacity and ramping limits on generation resources, state-of-charge constraints on storage resources, comfort-related limitations on demand response resources and power flow limits on transmission lines. Numerical studies demonstrating applications of these algorithms to practical control problems in power systems are discussed. Results demonstrate how the proposed control algorithms can be used to improve the performance and reduce the computational complexity of the economic dispatch mechanism in a power network. We argue that the proposed algorithms are eminently suitable to develop operational decision-making tools for large power grids with many resources and many sources of uncertainty.

  10. Intuitive wireless control of a robotic arm for people living with an upper body disability.

    PubMed

    Fall, C L; Turgeon, P; Campeau-Lecours, A; Maheu, V; Boukadoum, M; Roy, S; Massicotte, D; Gosselin, C; Gosselin, B

    2015-08-01

    Assistive Technologies (ATs) also called extrinsic enablers are useful tools for people living with various disabilities. The key points when designing such useful devices not only concern their intended goal, but also the most suitable human-machine interface (HMI) that should be provided to users. This paper describes the design of a highly intuitive wireless controller for people living with upper body disabilities with a residual or complete control of their neck and their shoulders. Tested with JACO, a six-degree-of-freedom (6-DOF) assistive robotic arm with 3 flexible fingers on its end-effector, the system described in this article is made of low-cost commercial off-the-shelf components and allows a full emulation of JACO's standard controller, a 3 axis joystick with 7 user buttons. To do so, three nine-degree-of-freedom (9-DOF) inertial measurement units (IMUs) are connected to a microcontroller and help measuring the user's head and shoulders position, using a complementary filter approach. The results are then transmitted to a base-station via a 2.4-GHz low-power wireless transceiver and interpreted by the control algorithm running on a PC host. A dedicated software interface allows the user to quickly calibrate the controller, and translates the information into suitable commands for JACO. The proposed controller is thoroughly described, from the electronic design to implemented algorithms and user interfaces. Its performance and future improvements are discussed as well.

  11. A Tabletop Tool for Modeling Life Support Systems

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Majumdar, A.; McDaniels, D.; Stewart, E.

    2003-01-01

    This paper describes the development plan for a comprehensive research and diagnostic tool for aspects of advanced life support systems in space-based laboratories. Specifically it aims to build a high fidelity tabletop model that can be used for the purpose of risk mitigation, failure mode analysis, contamination tracking, and testing reliability. We envision a comprehensive approach involving experimental work coupled with numerical simulation to develop this diagnostic tool. It envisions a 10% scale transparent model of a space platform such as the International Space Station that operates with water or a specific matched index of refraction liquid as the working fluid. This allows the scaling of a 10 ft x 10 ft x 10 ft room with air flow to 1 ft x 1 ft x 1 ft tabletop model with water/liquid flow. Dynamic similitude for this length scale dictates model velocities to be 67% of full-scale and thereby the time scale of the model to represent 15% of the full- scale system; meaning identical processes in the model are completed in 15% of the full- scale time. The use of an index matching fluid (fluid that matches the refractive index of cast acrylic, the model material) allows making the entire model (with complex internal geometry) transparent and hence conducive to non-intrusive optical diagnostics. So using such a system one can test environment control parameters such as core flows (axial flows), cross flows (from registers and diffusers), potential problem areas such as flow short circuits, inadequate oxygen content, build up of other gases beyond desirable levels, test mixing processes within the system at local nodes or compartments and assess the overall system performance. The system allows quantitative measurements of contaminants introduced in the system and allows testing and optimizing the tracking process and removal of contaminants. The envisaged system will be modular and hence flexible for quick configuration change and subsequent testing. The data and inferences from the tests will allow for improvements in the development and design of next generation life support systems and configurations.

  12. Precision topographic inspection of MOEMS by moiré interferometry

    NASA Astrophysics Data System (ADS)

    Meguellati, S.

    2016-04-01

    The manufacturing of micro components is useful and necessary for eventual use in the field of MOEMS micro technologies, but, micro fabrication process inspection quality is required. The accuracy of components geometry is parameter which influences the precision of the function. Moiré topography is full-field optical technique in which the contour and shape of object surfaces is measured by means of geometric interference between two identical line gratings. The technique has found various applications in diverse fields, from biomedical to industrial, scientific applications, and miniaturized instrumentation for space applications. This method of optical scanning presented in this paper is used for precision measurement deformation or absolute forms in comparison with a reference component form, of optical or mechanical micro components, on surfaces that are of the order of mm2 and more. The optical device used allows high magnification dimensional surface inspected which allows easy processing and reaches an exceptional nanometric imprecision of measurements. This measurement technique can be used advantageously to measure the deformations generated by constraints on functional parts and the influence of these variations on the function. It can also be used for dimensional control when, for example, to quantify the error as to whether a piece is good or rubbish. It then suffices to compare a figure of moiré fringes with another previously recorded from a piece considered standard, which saves time, money and accuracy. This method of control and measurement allows real time control; speed control and the detection resolution may vary depending on the importance of defects to be measured.

  13. Digital watermarking for secure and adaptive teleconferencing

    NASA Astrophysics Data System (ADS)

    Vorbrueggen, Jan C.; Thorwirth, Niels

    2002-04-01

    The EC-sponsored project ANDROID aims to develop a management system for secure active networks. Active network means allowing the network's customers to execute code (Java-based so-called proxylets) on parts of the network infrastructure. Secure means that the network operator nonetheless retains full control over the network and its resources, and that proxylets use ANDROID-developed facilities to provide secure applications. Management is based on policies and allows autonomous, distributed decisions and actions to be taken. Proxylets interface with the system via policies; among actions they can take is controlling execution of other proxylets or redirection of network traffic. Secure teleconferencing is used as the application to demonstrate the approach's advantages. A way to control a teleconference's data streams is to use digital watermarking of the video, audio and/or shared-whiteboard streams, providing an imperceptible and inseparable side channel that delivers information from originating or intermediate stations to downstream stations. Depending on the information carried by the watermark, these stations can take many different actions. Examples are forwarding decisions based on security classifications (possibly time-varying) at security boundaries, set-up and tear-down of virtual private networks, intelligent and adaptive transcoding, recorder or playback control (e.g., speaking off the record), copyright protection, and sender authentication.

  14. Using virtual reality environment to facilitate training with advanced upper-limb prosthesis.

    PubMed

    Resnik, Linda; Etter, Katherine; Klinger, Shana Lieberman; Kambe, Charles

    2011-01-01

    Technological advances in upper-limb prosthetic design offer dramatically increased possibilities for powered movement. The DEKA Arm system allows users 10 powered degrees of movement. Learning to control these movements by utilizing a set of motions that, in most instances, differ from those used to obtain the desired action prior to amputation is a challenge for users. In the Department of Veterans Affairs "Study to Optimize the DEKA Arm," we attempted to facilitate motor learning by using a virtual reality environment (VRE) program. This VRE program allows users to practice controlling an avatar using the controls designed to operate the DEKA Arm in the real world. In this article, we provide highlights from our experiences implementing VRE in training amputees to use the full DEKA Arm. This article discusses the use of VRE in amputee rehabilitation, describes the VRE system used with the DEKA Arm, describes VRE training, provides qualitative data from a case study of a subject, and provides recommendations for future research and implementation of VRE in amputee rehabilitation. Our experience has led us to believe that training with VRE is particularly valuable for upper-limb amputees who must master a large number of controls and for those amputees who need a structured learning environment because of cognitive deficits.

  15. Diffraction-Induced Bidimensional Talbot Self-Imaging with Full Independent Period Control

    NASA Astrophysics Data System (ADS)

    Guillet de Chatellus, Hugues; Romero Cortés, Luis; Deville, Antonin; Seghilani, Mohamed; Azaña, José

    2017-03-01

    We predict, formulate, and observe experimentally a generalized version of the Talbot effect that allows one to create diffraction-induced self-images of a periodic two-dimensional (2D) waveform with arbitrary control of the image spatial periods. Through the proposed scheme, the periods of the output self-image are multiples of the input ones by any desired integer or fractional factor, and they can be controlled independently across each of the two wave dimensions. The concept involves conditioning the phase profile of the input periodic wave before free-space diffraction. The wave energy is fundamentally preserved through the self-imaging process, enabling, for instance, the possibility of the passive amplification of the periodic patterns in the wave by a purely diffractive effect, without the use of any active gain.

  16. Diffraction-Induced Bidimensional Talbot Self-Imaging with Full Independent Period Control.

    PubMed

    Guillet de Chatellus, Hugues; Romero Cortés, Luis; Deville, Antonin; Seghilani, Mohamed; Azaña, José

    2017-03-31

    We predict, formulate, and observe experimentally a generalized version of the Talbot effect that allows one to create diffraction-induced self-images of a periodic two-dimensional (2D) waveform with arbitrary control of the image spatial periods. Through the proposed scheme, the periods of the output self-image are multiples of the input ones by any desired integer or fractional factor, and they can be controlled independently across each of the two wave dimensions. The concept involves conditioning the phase profile of the input periodic wave before free-space diffraction. The wave energy is fundamentally preserved through the self-imaging process, enabling, for instance, the possibility of the passive amplification of the periodic patterns in the wave by a purely diffractive effect, without the use of any active gain.

  17. Surface origin and control of resonance Raman scattering and surface band gap in indium nitride

    NASA Astrophysics Data System (ADS)

    Alarcón-Lladó, Esther; Brazzini, Tommaso; Ager, Joel W.

    2016-06-01

    Resonance Raman scattering measurements were performed on indium nitride thin films under conditions where the surface electron concentration was controlled by an electrolyte gate. As the surface condition is tuned from electron depletion to accumulation, the spectral feature at the expected position of the (E 1, A 1) longitudinal optical (LO) near 590 cm-1 shifts to lower frequency. The shift is reversibly controlled with the applied gate potential, which clearly demonstrates the surface origin of this feature. The result is interpreted within the framework of a Martin double resonance, where the surface functions as a planar defect, allowing the scattering of long wavevector phonons. The allowed wavevector range, and hence the frequency, is modulated by the electron accumulation due to band gap narrowing. A surface band gap reduction of over 500 meV is estimated for the conditions of maximum electron accumulation. Under conditions of electron depletion, the full InN bandgap (E g  =  0.65 eV) is expected at the surface. The drastic change in the surface band gap is expected to influence the transport properties of devices which utilize the surface electron accumulation layer.

  18. Pulser: user-friendly, graphical user-interface based software for controlling stimuli during data acquisition with Spike2 for Windows.

    PubMed

    Lidierth, Malcolm

    2005-02-15

    This paper describes software that runs in the Spike2 for Windows environment and provides a versatile tool for generating stimuli during data acquisition from the 1401 family of interfaces (CED, UK). A graphical user interface (GUI) is used to provide dynamic control of stimulus timing. Both single stimuli and trains of stimuli can be generated. The pulse generation routines make use of programmable variables within the interface and allow these to be rapidly changed during an experiment. The routines therefore provide the ease-of-use associated with external, stand-alone pulse generators. Complex stimulus protocols can be loaded from an external text file and facilities are included to create these files through the GUI. The software consists of a Spike2 script that runs in the host PC, and accompanying routines written in the 1401 sequencer control code, that run in the 1401 interface. Handshaking between the PC and the interface card are built into the routines and provides for full integration of sampling, analysis and stimulus generation during an experiment. Control of the 1401 digital-to-analogue converters is also provided; this allows control of stimulus amplitude as well as timing and also provides a sample-hold feature that may be used to remove DC offsets and drift from recorded data.

  19. Tracking and data relay satellite fault isolation and correction using PACES: Power and attitude control expert system

    NASA Technical Reports Server (NTRS)

    Erikson, Carol-Lee; Hooker, Peggy

    1989-01-01

    The Power and Attitude Control Expert System (PACES) is an object oriented and rule based expert system which provides spacecraft engineers with assistance in isolating and correcting problems within the Power and Attitude Control Subsystems of the Tracking and Data Relay Satellites (TDRS). PACES is designed to act in a consultant role. It will not interface to telemetry data, thus preserving full operator control over spacecraft operations. The spacecraft engineer will input requested information. This information will include telemetry data, action being performed, problem characteristics, spectral characteristics, and judgments of spacecraft functioning. Questions are answered either by clicking on appropriate responses (for text), or entering numeric values. A context sensitive help facility allows access to additional information when the user has difficulty understanding a question or deciding on an answer. The major functionality of PACES is to act as a knowledge rich system which includes block diagrams, text, and graphics, linked using hypermedia techniques. This allows easy movement among pieces of the knowledge. Considerable documentation of the spacecraft Power and Attitude Control Subsystems is embedded within PACES. The development phase of TDRSS expert system technology is intended to provide NASA with the necessary expertise and capability to define requirements, evaluate proposals, and monitor the development progress of a highly competent expert system for NASA's Tracking and Data Relay Satellite Program.

  20. Novel full-length major histocompatibility complex class I allele discovery and haplotype definition in pig-tailed macaques.

    PubMed

    Semler, Matthew R; Wiseman, Roger W; Karl, Julie A; Graham, Michael E; Gieger, Samantha M; O'Connor, David H

    2018-06-01

    Pig-tailed macaques (Macaca nemestrina, Mane) are important models for human immunodeficiency virus (HIV) studies. Their infectability with minimally modified HIV makes them a uniquely valuable animal model to mimic human infection with HIV and progression to acquired immunodeficiency syndrome (AIDS). However, variation in the pig-tailed macaque major histocompatibility complex (MHC) and the impact of individual transcripts on the pathogenesis of HIV and other infectious diseases is understudied compared to that of rhesus and cynomolgus macaques. In this study, we used Pacific Biosciences single-molecule real-time circular consensus sequencing to describe full-length MHC class I (MHC-I) transcripts for 194 pig-tailed macaques from three breeding centers. We then used the full-length sequences to infer Mane-A and Mane-B haplotypes containing groups of MHC-I transcripts that co-segregate due to physical linkage. In total, we characterized full-length open reading frames (ORFs) for 313 Mane-A, Mane-B, and Mane-I sequences that defined 86 Mane-A and 106 Mane-B MHC-I haplotypes. Pacific Biosciences technology allows us to resolve these Mane-A and Mane-B haplotypes to the level of synonymous allelic variants. The newly defined haplotypes and transcript sequences containing full-length ORFs provide an important resource for infectious disease researchers as certain MHC haplotypes have been shown to provide exceptional control of simian immunodeficiency virus (SIV) replication and prevention of AIDS-like disease in nonhuman primates. The increased allelic resolution provided by Pacific Biosciences sequencing also benefits transplant research by allowing researchers to more specifically match haplotypes between donors and recipients to the level of nonsynonymous allelic variation, thus reducing the risk of graft-versus-host disease.

  1. A translator and simulator for the Burroughs D machine

    NASA Technical Reports Server (NTRS)

    Roberts, J.

    1972-01-01

    The D Machine is described as a small user microprogrammable computer designed to be a versatile building block for such diverse functions as: disk file controllers, I/O controllers, and emulators. TRANSLANG is an ALGOL-like language, which allows D Machine users to write microprograms in an English-like format as opposed to creating binary bit pattern maps. The TRANSLANG translator parses TRANSLANG programs into D Machine microinstruction bit patterns which can be executed on the D Machine simulator. In addition to simulation and translation, the two programs also offer several debugging tools, such as: a full set of diagnostic error messages, register dumps, simulated memory dumps, traces on instructions and groups of instructions, and breakpoints.

  2. Distributed Optimization

    NASA Technical Reports Server (NTRS)

    Macready, William; Wolpert, David

    2005-01-01

    We demonstrate a new framework for analyzing and controlling distributed systems, by solving constrained optimization problems with an algorithm based on that framework. The framework is ar. information-theoretic extension of conventional full-rationality game theory to allow bounded rational agents. The associated optimization algorithm is a game in which agents control the variables of the optimization problem. They do this by jointly minimizing a Lagrangian of (the probability distribution of) their joint state. The updating of the Lagrange parameters in that Lagrangian is a form of automated annealing, one that focuses the multi-agent system on the optimal pure strategy. We present computer experiments for the k-sat constraint satisfaction problem and for unconstrained minimization of NK functions.

  3. Using routine health information systems for well-designed health evaluations in low- and middle-income countries

    PubMed Central

    Wagenaar, Bradley H; Sherr, Kenneth; Fernandes, Quinhas; Wagenaar, Alexander C

    2016-01-01

    Routine health information systems (RHISs) are in place in nearly every country and provide routinely collected full-coverage records on all levels of health system service delivery. However, these rich sources of data are regularly overlooked for evaluating causal effects of health programmes due to concerns regarding completeness, timeliness, representativeness and accuracy. Using Mozambique’s national RHIS (Módulo Básico) as an illustrative example, we urge renewed attention to the use of RHIS data for health evaluations. Interventions to improve data quality exist and have been tested in low-and middle-income countries (LMICs). Intrinsic features of RHIS data (numerous repeated observations over extended periods of time, full coverage of health facilities, and numerous real-time indicators of service coverage and utilization) provide for very robust quasi-experimental designs, such as controlled interrupted time-series (cITS), which are not possible with intermittent community sample surveys. In addition, cITS analyses are well suited for continuously evolving development contexts in LMICs by: (1) allowing for measurement and controlling for trends and other patterns before, during and after intervention implementation; (2) facilitating the use of numerous simultaneous control groups and non-equivalent dependent variables at multiple nested levels to increase validity and strength of causal inference; and (3) allowing the integration of continuous ‘effective dose received’ implementation measures. With expanded use of RHIS data for the evaluation of health programmes, investments in data systems, health worker interest in and utilization of RHIS data, as well as data quality will further increase over time. Because RHIS data are ministry-owned and operated, relying upon these data will contribute to sustainable national capacity over time. PMID:25887561

  4. Doping control analysis of 46 polar drugs in horse plasma and urine using a 'dilute-and-shoot' ultra high performance liquid chromatography-high resolution mass spectrometry approach.

    PubMed

    Kwok, Wai Him; Choi, Timmy L S; Kwok, Karen Y; Chan, George H M; Wong, Jenny K Y; Wan, Terence S M

    2016-06-17

    The high sensitivity of ultra high performance liquid chromatography coupled with high resolution mass spectrometry (UHPLC-HRMS) allows the identification of many prohibited substances without pre-concentration, leading to the development of simple and fast 'dilute-and-shoot' methods for doping control for human and equine sports. While the detection of polar drugs in plasma and urine is difficult using liquid-liquid or solid-phase extraction as these substances are poorly extracted, the 'dilute-and-shoot' approach is plausible. This paper describes a 'dilute-and-shoot' UHPLC-HRMS screening method to detect 46 polar drugs in equine urine and plasma, including some angiotensin-converting enzyme (ACE) inhibitors, sympathomimetics, anti-epileptics, hemostatics, the new doping agent 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR), as well as two threshold substances, namely dimethyl sulfoxide and theobromine. For plasma, the sample (200μL) was protein precipitated using trichloroacetic acid, and the resulting supernatant was diluted using Buffer A with an overall dilution factor of 3. For urine, the sample (20μL) was simply diluted 50-fold with Buffer A. The diluted plasma or urine sample was then analysed using a UHPLC-HRMS system in full-scan ESI mode. The assay was validated for qualitative identification purpose. This straightforward and reliable approach carried out in combination with other screening procedures has increased the efficiency of doping control analysis in the laboratory. Moreover, since the UHPLC-HRMS data were acquired in full-scan mode, the method could theoretically accommodate an unlimited number of existing and new doping agents, and would allow a retrospectively search for drugs that have not been targeted at the time of analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Using routine health information systems for well-designed health evaluations in low- and middle-income countries.

    PubMed

    Wagenaar, Bradley H; Sherr, Kenneth; Fernandes, Quinhas; Wagenaar, Alexander C

    2016-02-01

    Routine health information systems (RHISs) are in place in nearly every country and provide routinely collected full-coverage records on all levels of health system service delivery. However, these rich sources of data are regularly overlooked for evaluating causal effects of health programmes due to concerns regarding completeness, timeliness, representativeness and accuracy. Using Mozambique's national RHIS (Módulo Básico) as an illustrative example, we urge renewed attention to the use of RHIS data for health evaluations. Interventions to improve data quality exist and have been tested in low-and middle-income countries (LMICs). Intrinsic features of RHIS data (numerous repeated observations over extended periods of time, full coverage of health facilities, and numerous real-time indicators of service coverage and utilization) provide for very robust quasi-experimental designs, such as controlled interrupted time-series (cITS), which are not possible with intermittent community sample surveys. In addition, cITS analyses are well suited for continuously evolving development contexts in LMICs by: (1) allowing for measurement and controlling for trends and other patterns before, during and after intervention implementation; (2) facilitating the use of numerous simultaneous control groups and non-equivalent dependent variables at multiple nested levels to increase validity and strength of causal inference; and (3) allowing the integration of continuous 'effective dose received' implementation measures. With expanded use of RHIS data for the evaluation of health programmes, investments in data systems, health worker interest in and utilization of RHIS data, as well as data quality will further increase over time. Because RHIS data are ministry-owned and operated, relying upon these data will contribute to sustainable national capacity over time. © The Author 2015. Published by Oxford University Press in association with The London School of Hygiene and Tropical Medicine.

  6. External access to ALICE controls conditions data

    NASA Astrophysics Data System (ADS)

    Jadlovský, J.; Jadlovská, A.; Sarnovský, J.; Jajčišin, Š.; Čopík, M.; Jadlovská, S.; Papcun, P.; Bielek, R.; Čerkala, J.; Kopčík, M.; Chochula, P.; Augustinus, A.

    2014-06-01

    ALICE Controls data produced by commercial SCADA system WINCCOA is stored in ORACLE database on the private experiment network. The SCADA system allows for basic access and processing of the historical data. More advanced analysis requires tools like ROOT and needs therefore a separate access method to the archives. The present scenario expects that detector experts create simple WINCCOA scripts, which retrieves and stores data in a form usable for further studies. This relatively simple procedure generates a lot of administrative overhead - users have to request the data, experts needed to run the script, the results have to be exported outside of the experiment network. The new mechanism profits from database replica, which is running on the CERN campus network. Access to this database is not restricted and there is no risk of generating a heavy load affecting the operation of the experiment. The developed tools presented in this paper allow for access to this data. The users can use web-based tools to generate the requests, consisting of the data identifiers and period of time of interest. The administrators maintain full control over the data - an authorization and authentication mechanism helps to assign privileges to selected users and restrict access to certain groups of data. Advanced caching mechanism allows the user to profit from the presence of already processed data sets. This feature significantly reduces the time required for debugging as the retrieval of raw data can last tens of minutes. A highly configurable client allows for information retrieval bypassing the interactive interface. This method is for example used by ALICE Offline to extract operational conditions after a run is completed. Last but not least, the software can be easily adopted to any underlying database structure and is therefore not limited to WINCCOA.

  7. WebSat ‐ A web software for microsatellite marker development

    PubMed Central

    Martins, Wellington Santos; Soares Lucas, Divino César; de Souza Neves, Kelligton Fabricio; Bertioli, David John

    2009-01-01

    Simple sequence repeats (SSR), also known as microsatellites, have been extensively used as molecular markers due to their abundance and high degree of polymorphism. We have developed a simple to use web software, called WebSat, for microsatellite molecular marker prediction and development. WebSat is accessible through the Internet, requiring no program installation. Although a web solution, it makes use of Ajax techniques, providing a rich, responsive user interface. WebSat allows the submission of sequences, visualization of microsatellites and the design of primers suitable for their amplification. The program allows full control of parameters and the easy export of the resulting data, thus facilitating the development of microsatellite markers. Availability The web tool may be accessed at http://purl.oclc.org/NET/websat/ PMID:19255650

  8. flexTMS--a novel repetitive transcranial magnetic stimulation device with freely programmable stimulus currents.

    PubMed

    Gattinger, Norbert; Moessnang, Georg; Gleich, Bernhard

    2012-07-01

    Transcranial magnetic stimulation (TMS) is able to noninvasively excite neuronal populations due to brief magnetic field pulses. The efficiency and the characteristics of stimulation pulse shapes influence the physiological effect of TMS. However, commercial devices allow only a minimum of control of different pulse shapes. Basically, just sinusoidal and monophasic pulse shapes with fixed pulse widths are available. Only few research groups work on TMS devices with controllable pulse parameters such as pulse shape or pulse width. We describe a novel TMS device with a full-bridge circuit topology incorporating four insulated-gate bipolar transistor (IGBT) modules and one energy storage capacitor to generate arbitrary waveforms. This flexible TMS (flexTMS ) device can generate magnetic pulses which can be adjusted with respect to pulse width, polarity, and intensity. Furthermore, the equipment allows us to set paired pulses with a variable interstimulus interval (ISI) from 0 to 20 ms with a step size of 10  μs. All user-defined pulses can be applied continually with repetition rates up to 30 pulses per second (pps) or, respectively, up to 100 pps in theta burst mode. Offering this variety of flexibility, flexTMS will allow the enhancement of existing TMS paradigms and novel research applications.

  9. User's Guide for the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS): Version 2

    NASA Technical Reports Server (NTRS)

    Liu, Yuan; Frederick, Dean K.; DeCastro, Jonathan A.; Litt, Jonathan S.; Chan, William W.

    2012-01-01

    This report is a Users Guide for version 2 of the NASA-developed Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) software, which is a transient simulation of a large commercial turbofan engine (up to 90,000-lb thrust) with a realistic engine control system. The software supports easy access to health, control, and engine parameters through a graphical user interface (GUI). C-MAPSS v.2 has some enhancements over the original, including three actuators rather than one, the addition of actuator and sensor dynamics, and an improved controller, while retaining or improving on the convenience and user-friendliness of the original. C-MAPSS v.2 provides the user with a graphical turbofan engine simulation environment in which advanced algorithms can be implemented and tested. C-MAPSS can run user-specified transient simulations, and it can generate state-space linear models of the nonlinear engine model at an operating point. The code has a number of GUI screens that allow point-and-click operation, and have editable fields for user-specified input. The software includes an atmospheric model which allows simulation of engine operation at altitudes from sea level to 40,000 ft, Mach numbers from 0 to 0.90, and ambient temperatures from -60 to 103 F. The package also includes a power-management system that allows the engine to be operated over a wide range of thrust levels throughout the full range of flight conditions.

  10. Short-Range Six-Axis Interferometer Controlled Positioning for Scanning Probe Microscopy

    PubMed Central

    Lazar, Josef; Klapetek, Petr; Valtr, Miroslav; Hrabina, Jan; Buchta, Zdenek; Cip, Onrej; Cizek, Martin; Oulehla, Jindrich; Sery, Mojmir

    2014-01-01

    We present a design of a nanometrology measuring setup which is a part of the national standard instrumentation for nanometrology operated by the Czech Metrology Institute (CMI) in Brno, Czech Republic. The system employs a full six-axis interferometric position measurement of the sample holder consisting of six independent interferometers. Here we report on description of alignment issues and accurate adjustment of orthogonality of the measuring axes. Consequently, suppression of cosine errors and reduction of sensitivity to Abbe offset is achieved through full control in all six degrees of freedom. Due to the geometric configuration including a wide basis of the two units measuring in y-direction and the three measuring in z-direction the angle resolution of the whole setup is minimize to tens of nanoradians. Moreover, the servo-control of all six degrees of freedom allows to keep guidance errors below 100 nrad. This small range system is based on a commercial nanopositioning stage driven by piezoelectric transducers with the range (200 × 200 × 10) μm. Thermally compensated miniature interferometric units with fiber-optic light delivery and integrated homodyne detection system were developed especially for this system and serve as sensors for othogonality alignment. PMID:24451463

  11. Finite element solution of optimal control problems with inequality constraints

    NASA Technical Reports Server (NTRS)

    Bless, Robert R.; Hodges, Dewey H.

    1990-01-01

    A finite-element method based on a weak Hamiltonian form of the necessary conditions is summarized for optimal control problems. Very crude shape functions (so simple that element numerical quadrature is not necessary) can be used to develop an efficient procedure for obtaining candidate solutions (i.e., those which satisfy all the necessary conditions) even for highly nonlinear problems. An extension of the formulation allowing for discontinuities in the states and derivatives of the states is given. A theory that includes control inequality constraints is fully developed. An advanced launch vehicle (ALV) model is presented. The model involves staging and control constraints, thus demonstrating the full power of the weak formulation to date. Numerical results are presented along with total elapsed computer time required to obtain the results. The speed and accuracy in obtaining the results make this method a strong candidate for a real-time guidance algorithm.

  12. FVMS: A novel SiL approach on the evaluation of controllers for autonomous MAV

    NASA Astrophysics Data System (ADS)

    Sampaio, Rafael C. B.; Becker, Marcelo; Siqueira, Adriano A. G.; Freschi, Leonardo W.; Montanher, Marcelo P.

    The originality of this work is to propose a novel SiL (Software-in-the-Loop) platform using Microsoft Flight Simulator (MSFS) to assist control design regarding the stabilization problem found in © AscTec Pelican platform. Aerial Robots Team (USP/EESC/LabRoM/ART) has developed a custom C++/C# software named FVMS (Flight Variables Management System) that interfaces the communication between the virtual Pelican and the control algorithms allowing the control designer to perform fast full closed loop real time algorithms. Emulation of embedded sensors as well as the possibility to integrate OpenCV Optical Flow algorithms to a virtual downward camera makes the SiL even more reliable. More than a strictly numeric analysis, the proposed SiL platform offers an unique experience, simultaneously offering both dynamic and graphical responses. Performance of SiL algorithms is presented and discussed.

  13. Optogenetic Acidification of Synaptic Vesicles and Lysosomes

    PubMed Central

    Grauel, M. Katharina; Wozny, Christian; Bentz, Claudia; Blessing, Anja; Rosenmund, Tanja; Jentsch, Thomas J.; Schmitz, Dietmar; Hegemann, Peter; Rosenmund, Christian

    2016-01-01

    Acidification is required for the function of many intracellular organelles, but methods to acutely manipulate their intraluminal pH have not been available. Here we present a targeting strategy to selectively express the light-driven proton pump Arch3 on synaptic vesicles. Our new tool, pHoenix, can functionally replace endogenous proton pumps, enabling optogenetic control of vesicular acidification and neurotransmitter accumulation. Under physiological conditions, glutamatergic vesicles are nearly full, as additional vesicle acidification with pHoenix only slightly increased the quantal size. By contrast, we found that incompletely filled vesicles exhibited a lower release probability than full vesicles, suggesting preferential exocytosis of vesicles with high transmitter content. Our subcellular targeting approach can be transferred to other organelles, as demonstrated for a pHoenix variant that allows light-activated acidification of lysosomes. PMID:26551543

  14. Optogenetic acidification of synaptic vesicles and lysosomes.

    PubMed

    Rost, Benjamin R; Schneider, Franziska; Grauel, M Katharina; Wozny, Christian; Bentz, Claudia; Blessing, Anja; Rosenmund, Tanja; Jentsch, Thomas J; Schmitz, Dietmar; Hegemann, Peter; Rosenmund, Christian

    2015-12-01

    Acidification is required for the function of many intracellular organelles, but methods to acutely manipulate their intraluminal pH have not been available. Here we present a targeting strategy to selectively express the light-driven proton pump Arch3 on synaptic vesicles. Our new tool, pHoenix, can functionally replace endogenous proton pumps, enabling optogenetic control of vesicular acidification and neurotransmitter accumulation. Under physiological conditions, glutamatergic vesicles are nearly full, as additional vesicle acidification with pHoenix only slightly increased the quantal size. By contrast, we found that incompletely filled vesicles exhibited a lower release probability than full vesicles, suggesting preferential exocytosis of vesicles with high transmitter content. Our subcellular targeting approach can be transferred to other organelles, as demonstrated for a pHoenix variant that allows light-activated acidification of lysosomes.

  15. ISS Operations Cost Reductions Through Automation of Real-Time Planning Tasks

    NASA Technical Reports Server (NTRS)

    Hall, Timothy A.

    2011-01-01

    In 2008 the Johnson Space Center s Mission Operations Directorate (MOD) management team challenged their organization to find ways to reduce the costs of International Space station (ISS) console operations in the Mission Control Center (MCC). Each MOD organization was asked to identify projects that would help them attain a goal of a 30% reduction in operating costs by 2012. The MOD Operations and Planning organization responded to this challenge by launching several software automation projects that would allow them to greatly improve ISS console operations and reduce staffing and operating costs. These projects to date have allowed the MOD Operations organization to remove one full time (7 x 24 x 365) ISS console position in 2010; with the plan of eliminating two full time ISS console support positions by 2012. This will account for an overall 10 EP reduction in staffing for the Operations and Planning organization. These automation projects focused on utilizing software to automate many administrative and often repetitive tasks involved with processing ISS planning and daily operations information. This information was exchanged between the ground flight control teams in Houston and around the globe, as well as with the ISS astronaut crew. These tasks ranged from managing mission plan changes from around the globe, to uploading and downloading information to and from the ISS crew, to even more complex tasks that required multiple decision points to process the data, track approvals and deliver it to the correct recipient across network and security boundaries. The software solutions leveraged several different technologies including customized web applications and implementation of industry standard web services architecture between several planning tools; as well as a engaging a previously research level technology (TRL 2-3) developed by Ames Research Center (ARC) that utilized an intelligent agent based system to manage and automate file traffic flow, archiving f data, and generating console logs. This technology called OCAMS (OCA (Orbital Communication System) Management System), is now considered TRL level 9 and is in daily use in the Mission Control Center in support of ISS operations. These solutions have not only allowed for improved efficiency on console; but since many of the previously manual data transfers are now automated, many of the human error prone steps have been removed, and the quality of the planning products has improved tremendously. This has also allowed our Planning Flight Controllers more time to focus on the abstract areas of the job, (like the complexities of planning a mission for 6 international crew members with a global planning team), instead of being burdened with the administrative tasks that took significant time each console shift to process. The resulting automation solutions have allowed the Operations and Planning organization to realize significant cost savings for the ISS program through 2020 and many of these solutions could be a viable

  16. An optimized routing algorithm for the automated assembly of standard multimode ribbon fibers in a full-mesh optical backplane

    NASA Astrophysics Data System (ADS)

    Basile, Vito; Guadagno, Gianluca; Ferrario, Maddalena; Fassi, Irene

    2018-03-01

    In this paper a parametric, modular and scalable algorithm allowing a fully automated assembly of a backplane fiber-optic interconnection circuit is presented. This approach guarantees the optimization of the optical fiber routing inside the backplane with respect to specific criteria (i.e. bending power losses), addressing both transmission performance and overall costs issues. Graph theory has been exploited to simplify the complexity of the NxN full-mesh backplane interconnection topology, firstly, into N independent sub-circuits and then, recursively, into a limited number of loops easier to be generated. Afterwards, the proposed algorithm selects a set of geometrical and architectural parameters whose optimization allows to identify the optimal fiber optic routing for each sub-circuit of the backplane. The topological and numerical information provided by the algorithm are then exploited to control a robot which performs the automated assembly of the backplane sub-circuits. The proposed routing algorithm can be extended to any array architecture and number of connections thanks to its modularity and scalability. Finally, the algorithm has been exploited for the automated assembly of an 8x8 optical backplane realized with standard multimode (MM) 12-fiber ribbons.

  17. MagPy: A Python toolbox for controlling Magstim transcranial magnetic stimulators.

    PubMed

    McNair, Nicolas A

    2017-01-30

    To date, transcranial magnetic stimulation (TMS) studies manipulating stimulation parameters have largely used blocked paradigms. However, altering these parameters on a trial-by-trial basis in Magstim stimulators is complicated by the need to send regular (1Hz) commands to the stimulator. Additionally, effecting such control interferes with the ability to send TMS pulses or simultaneously present stimuli with high-temporal precision. This manuscript presents the MagPy toolbox, a Python software package that provides full control over Magstim stimulators via the serial port. It is able to maintain this control with no impact on concurrent processing, such as stimulus delivery. In addition, a specially-designed "QuickFire" serial cable is specified that allows MagPy to trigger TMS pulses with very low-latency. In a series of experimental simulations, MagPy was able to maintain uninterrupted remote control over the connected Magstim stimulator across all testing sessions. In addition, having MagPy enabled had no effect on stimulus timing - all stimuli were presented for precisely the duration specified. Finally, using the QuickFire cable, MagPy was able to elicit TMS pulses with sub-millisecond latencies. The MagPy toolbox allows for experiments that require manipulating stimulation parameters from trial to trial. Furthermore, it can achieve this in contexts that require tight control over timing, such as those seeking to combine TMS with fMRI or EEG. Together, the MagPy toolbox and QuickFire serial cable provide an effective means for controlling Magstim stimulators during experiments while ensuring high-precision timing. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Changes Are Needed to the Army Contract with Sikorsky to Use Existing DoD Inventory and Control Costs at the Corpus Christi Army Depot

    DTIC Science & Technology

    2011-11-03

    contingency stock for requirements outside the CCAD/Sikorsky contract. 6 The DoD EMALL is a full-service eCommerce site, which strives to be the single...such quantity as (A) will result in the total cost and unit cost most advantageous to the United States where practicable.” Having more than one...practice and frequently does not allow DoD to take advantage of economic order quantities. Table 15 shows examples where higher quantities procured

  19. Rocket nozzle thermal shock tests in an arc heater facility

    NASA Technical Reports Server (NTRS)

    Painter, James H.; Williamson, Ronald A.

    1986-01-01

    A rocket motor nozzle thermal structural test technique that utilizes arc heated nitrogen to simulate a motor burn was developed. The technique was used to test four heavily instrumented full-scale Star 48 rocket motor 2D carbon/carbon segments at conditions simulating the predicted thermal-structural environment. All four nozzles survived the tests without catastrophic or other structural failures. The test technique demonstrated promise as a low cost, controllable alternative to rocket motor firing. The technique includes the capability of rapid termination in the event of failure, allowing post-test analysis.

  20. Experimental light scattering by small particles: first results with a novel Mueller matrix scatterometer

    NASA Astrophysics Data System (ADS)

    Penttilä, Antti; Maconi, Göran; Kassamakov, Ivan; Gritsevich, Maria; Hæggström, Edward; Muinonen, Karri

    2017-04-01

    We describe a setup for measuring the full angular Mueller matrix profile of a single mm- to µm-size sample, and verify the experimental results against a theoretical model. The scatterometer has a fixed or levitating sample, illuminated with a laser beam whose full polarization state is controlled. The scattered light is detected with a wave retarder-linear polarizer-photomultiplier tube combination that is attached to a rotational stage, to allow measuring the full angular profile, with the exception of the backscattering direction. By controlling the angle of the linear polarizers and the angle of the axis of the wave retarders before and after the scatterer we record such a combination of intensities that reconstructing the full Mueller matrix of the scatterer is possible. We have performed the first measurements of our calibration sample, a 5 mm sphere (N-BK7 glass, Edmund Optics). We verify the first measurement results by comparing the angular scattering profile against the theoretical results computed using Mie theory. The profiles recorded using the linear polarizers only agree with the theoretical predictions in all scattering angles. With the linear polarizers, we are able to construct the upper left 2×2 submatrix of the full Mueller matrix. The constructed (1,1) and (2,2) elements of the matrix are almost identical, as they should for a sphere, as well as the (1,2) and (2,1) elements. There are some discrepancies, as expected since calibration spheres are never perfect spherical shapes with completely homogeneous internal structure. Acknowledgments: The research is funded by the ERC Advanced Grant No. 320773 (SAEMPL).

  1. A minimum drives automatic target definition procedure for multi-axis random control testing

    NASA Astrophysics Data System (ADS)

    Musella, Umberto; D'Elia, Giacomo; Carrella, Alex; Peeters, Bart; Mucchi, Emiliano; Marulo, Francesco; Guillaume, Patrick

    2018-07-01

    Multiple-Input Multiple-Output (MIMO) vibration control tests are able to closely replicate, via shakers excitation, the vibration environment that a structure needs to withstand during its operational life. This feature is fundamental to accurately verify the experienced stress state, and ultimately the fatigue life, of the tested structure. In case of MIMO random tests, the control target is a full reference Spectral Density Matrix in the frequency band of interest. The diagonal terms are the Power Spectral Densities (PSDs), representative for the acceleration operational levels, and the off-diagonal terms are the Cross Spectral Densities (CSDs). The specifications of random vibration tests are however often given in terms of PSDs only, coming from a legacy of single axis testing. Information about the CSDs is often missing. An accurate definition of the CSD profiles can further enhance the MIMO random testing practice, as these terms influence both the responses and the shaker's voltages (the so-called drives). The challenges are linked to the algebraic constraint that the full reference matrix must be positive semi-definite in the entire bandwidth, with no flexibility in modifying the given PSDs. This paper proposes a newly developed method that automatically provides the full reference matrix without modifying the PSDs, considered as test specifications. The innovative feature is the capability of minimizing the drives required to match the reference PSDs and, at the same time, to directly guarantee that the obtained full matrix is positive semi-definite. The drives minimization aims on one hand to reach the fixed test specifications without stressing the delicate excitation system; on the other hand it potentially allows to further increase the test levels. The detailed analytic derivation and implementation steps of the proposed method are followed by real-life testing considering different scenarios.

  2. Remote Control and Monitoring of VLBI Experiments by Smartphones

    NASA Astrophysics Data System (ADS)

    Ruztort, C. H.; Hase, H.; Zapata, O.; Pedreros, F.

    2012-12-01

    For the remote control and monitoring of VLBI operations, we developed a software optimized for smartphones. This is a new tool based on a client-server architecture with a Web interface optimized for smartphone screens and cellphone networks. The server uses variables of the Field System and its station specific parameters stored in the shared memory. The client running on the smartphone by a Web interface analyzes and visualizes the current status of the radio telescope, receiver, schedule, and recorder. In addition, it allows commands to be sent remotely to the Field System computer and displays the log entries. The user has full access to the entire operation process, which is important in emergency cases. The software also integrates a webcam interface.

  3. Optomechanical design and tolerance of a microscope objective at 121.6 nm

    NASA Astrophysics Data System (ADS)

    Keyes, Derek S.; Jota, Thiago S.; Gao, Weichuan; Luepke, Dakota; Densmore, Victor; Kim, Young-Sik; Kim, Gun-Hee; Milster, Thomas D.

    2015-08-01

    By utilizing the Hydrogen-Lyman-α (HLA) source at 121.6 nm, we hope to achieve an intrinsic resolution of 247 nm at 0.3 numerical aperture (NA) and 92 nm at 0.8 NA. The motivation for 121.6 nm microscopy is the existence of a transparent window in the air absorption spectrum at that wavelength, which allows for the sample to be in air while the microscope is in an enclosed nitrogen environment. The microscope objective consists of two reflective optics and a LiF window, and it has been designed to demonstrate diffraction limited performance over a 160μm full field at 121.6 nm. The optomechanical design consists of mechanical subcells for each optical component, precision spacers and a barrel bore, which allow for submicron control of tolerance parameters.

  4. Evaluation of heat and particle controllability on the JT-60SA divertor

    NASA Astrophysics Data System (ADS)

    Kawashima, H.; Hoshino, K.; Shimizu, K.; Takizuka, T.; Ide, S.; Sakurai, S.; Asakura, N.

    2011-08-01

    The JT-60SA divertor design has been established on the basis of engineering requirements and physics analysis. Heat and particle fluxes under the full input power of 41 MW can give severe heat loads on the divertor targets, while the allowable heat load is limited below 15 MW/m2. Dependence of the heat flux mitigation on a D2 gas-puff is evaluated by SONIC simulations for high density (ne_ave ˜ 1 × 1020 m-3) high current plasmas. It is found that the peak heat load 10 MW/m2 with dense (ned > 4 × 1020 m-3) and cold (Ted, Tid ⩽ 1 eV) divertor plasmas are obtained at a moderate gas-puff of Γpuff = 15 × 1021 s-1. Divertor plasmas are controlled from attached to detached condition using the divertor pump with pumping-speed below 100 m3/s. In full non-inductive current drive plasmas with low density (ne_ave ˜ 5 × 1019 m-3), the reduction of divertor heat load is achieved with the Ar injection.

  5. 78 FR 20004 - Protection of Stratospheric Ozone: Adjustments to the Allowance System for Controlling HCFC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-03

    ... Protection of Stratospheric Ozone: Adjustments to the Allowance System for Controlling HCFC Production... adjusting the allowance system controlling U.S. consumption and production of hydrochlorofluorocarbons... ``Protection of Stratospheric Ozone: Adjustments to the Allowance System for Controlling HCFC Production...

  6. Access control and privilege management in electronic health record: a systematic literature review.

    PubMed

    Jayabalan, Manoj; O'Daniel, Thomas

    2016-12-01

    This study presents a systematic literature review of access control for electronic health record systems to protect patient's privacy. Articles from 2006 to 2016 were extracted from the ACM Digital Library, IEEE Xplore Digital Library, Science Direct, MEDLINE, and MetaPress using broad eligibility criteria, and chosen for inclusion based on analysis of ISO22600. Cryptographic standards and methods were left outside the scope of this review. Three broad classes of models are being actively investigated and developed: access control for electronic health records, access control for interoperability, and access control for risk analysis. Traditional role-based access control models are extended with spatial, temporal, probabilistic, dynamic, and semantic aspects to capture contextual information and provide granular access control. Maintenance of audit trails and facilities for overriding normal roles to allow full access in emergency cases are common features. Access privilege frameworks utilizing ontology-based knowledge representation for defining the rules have attracted considerable interest, due to the higher level of abstraction that makes it possible to model domain knowledge and validate access requests efficiently.

  7. Development of a robust framework for controlling high performance turbofan engines

    NASA Astrophysics Data System (ADS)

    Miklosovic, Robert

    This research involves the development of a robust framework for controlling complex and uncertain multivariable systems. Where mathematical modeling is often tedious or inaccurate, the new method uses an extended state observer (ESO) to estimate and cancel dynamic information in real time and dynamically decouple the system. As a result, controller design and tuning become transparent as the number of required model parameters is reduced. Much research has been devoted towards the application of modern multivariable control techniques on aircraft engines. However, few, if any, have been implemented on an operational aircraft, partially due to the difficulty in tuning the controller for satisfactory performance. The new technique is applied to a modern two-spool, high-pressure ratio, low-bypass turbofan with mixed-flow afterburning. A realistic Modular Aero-Propulsion System Simulation (MAPSS) package, developed by NASA, is used to demonstrate the new design process and compare its performance with that of a supplied nominal controller. This approach is expected to reduce gain scheduling over the full operating envelope of the engine and allow a controller to be tuned for engine-to-engine variations.

  8. Closed-Loop Control of Myoelectric Prostheses With Electrotactile Feedback: Influence of Stimulation Artifact and Blanking.

    PubMed

    Hartmann, Cornelia; Dosen, Strahinja; Amsuess, Sebastian; Farina, Dario

    2015-09-01

    Electrocutaneous stimulation is a promising approach to provide sensory feedback to amputees, and thus close the loop in upper limb prosthetic systems. However, the stimulation introduces artifacts in the recorded electromyographic (EMG) signals, which may be detrimental for the control of myoelectric prostheses. In this study, artifact blanking with three data segmentation approaches was investigated as a simple method to restore the performance of pattern recognition in prosthesis control (eight motions) when EMG signals are corrupted by stimulation artifacts. The methods were tested over a range of stimulation conditions and using four feature sets, comprising both time and frequency domain features. The results demonstrated that when stimulation artifacts were present, the classification performance improved with blanking in all tested conditions. In some cases, the classification performance with blanking was at the level of the benchmark (artifact-free data). The greatest pulse duration and frequency that allowed a full performance recovery were 400 μs and 150 Hz, respectively. These results show that artifact blanking can be used as a practical solution to eliminate the negative influence of the stimulation artifact on EMG pattern classification in a broad range of conditions, thus allowing to close the loop in myoelectric prostheses using electrotactile feedback.

  9. Network Consumption and Storage Needs when Working in a Full-Time Routine Digital Environment in a Large Nonacademic Training Hospital.

    PubMed

    Nap, Marius

    2016-01-01

    Digital pathology is indisputably connected with high demands on data traffic and storage. As a consequence, control of the logistic process and insight into the management of both traffic and storage is essential. We monitored data traffic from scanners to server and server to workstation and registered storage needs for diagnostic images and additional projects. The results showed that data traffic inside the hospital network (1 Gbps) never exceeded 80 Mbps for scanner-to-server activity, and activity from the server to the workstation took at most 5 Mbps. Data storage per image increased from 300 MB to an average of 600 MB as a result of camera and software updates, and, due to the increased scanning speed, the scanning time was reduced with almost 8 h/day. Introduction of a storage policy of only 12 months for diagnostic images and rescanning if needed resulted in a manageable storage window of 45 TB for the period of 1 year. Using simple registration tools allowed the transition of digital pathology into a concise package that allows planning and control. Incorporating retrieval of such information from scanning and storage devices will reduce the fear of losing control by the management when introducing digital pathology in daily routine. © 2016 S. Karger AG, Basel.

  10. Oxygen Transfer in Moving Bed Biofilm Reactor and Integrated Fixed Film Activated Sludge Processes.

    PubMed

    2017-11-17

    A demonstrated approach to design the, so-called, medium-bubble air diffusion network for oxygen transfer into the aerobic zone(s) of moving bed biofilm reactor (MBBR) and integrated fixed-film activated sludge (IFAS) processes is described in this paper. Operational full-scale biological water resource recovery systems treating municipal sewerage demonstrate that medium-bubble air diffusion networks designed using the method presented here provide reliable service. Further improvement is possible, however, as knowledge gaps prevent more rational process designs. Filling such knowledge gaps can potentially result in higher performing and more economical systems. Small-scale system testing demonstrates significant enhancement of oxygen transfer capacity due to the presence of media, but quantification of such effects in full-scale systems is lacking, and is needed. Establishment of the relationship between diffuser submergence, aeration rate, and biofilm carrier fill fraction will enhance MBBR and IFAS aerobic process design, cost, and performance. Limited testing of full-scale systems is available to allow computation of alpha valuess. As with clean water testing of full-scale systems, further full-scale testing under actual operating conditions is required to more fully quantify MBBR and IFAS system oxygen transfer performance under a wide range of operating conditions. Control of MBBR and IFAS aerobic zone oxygen transfer systems can be optimized by recognizing that varying residual dissolved oxygen (DO) concentrations are needed, depending on operating conditions. For example, the DO concentration in the aerobic zone of nitrifying IFAS processes can be lowered during warm weather conditions when greater suspended growth nitrification can occur, resulting in the need for reduced nitrification by the biofilm compartment. Further application of oxygen transfer control approaches used in activated sludge systems to MBBR and IFAS systems, such as ammonia-based oxygen transfer system control, has been demonstrated to further improve MBBR and IFAS system energy-efficiency.

  11. Improved Continuous-Time Higher Harmonic Control Using Hinfinity Methods

    NASA Astrophysics Data System (ADS)

    Fan, Frank H.

    The helicopter is a versatile aircraft that can take-off and land vertically, hover efficiently, and maneuver in confined space. This versatility is enabled by the main rotor, which also causes undesired harmonic vibration during operation. This unwanted vibration has a negative impact on the practicality of the helicopter and also increases its operational cost. Passive control techniques have been applied to helicopter vibration suppression, but these methods are generally heavy and are not robust to changes in operating conditions. Feedback control offers the advantages of robustness and potentially higher performance over passive control techniques, and amongst the various feedback schemes, Shaw's higher harmonic control algorithm has been shown to be an effective method for attenuating harmonic disturbance in helicopters. In this thesis, the higher harmonic disturbance algorithm is further developed to achieve improved performance. One goal in this thesis is to determine the importance of periodicity in the helicopter rotor dynamics for control synthesis. Based on the analysis of wind tunnel data and simulation results, we conclude the helicopter rotor can be modeled reasonably well as linear and time-invariant for control design purposes. Modeling the helicopter rotor as linear time-invariant allows us to apply linear control theory concepts to the higher harmonic control problem. Another goal in this thesis is to find the limits of performance in harmonic disturbance rejection. To achieve this goal, we first define the metrics to measure the performance of the controller in terms of response speed and robustness to changes in the plant dynamics. The performance metrics are incorporated into an Hinfinity control problem. For a given plant, the resulting Hinfinity controller achieves the maximum performance, thus allowing us to identify the performance limitation in harmonic disturbance rejection. However, the Hinfinity controllers are of high order, and may have unstable poles, leading us to develop a design method to generate stable, fixed-order, and high performance controllers. Both the Hinfinity and the fixed-order controllers are designed for constant flight conditions. A gain-scheduled control law is used to reduce the vibration throughout the flight envelope. The gain-scheduling is accomplished by blending the outputs from fixed-order controllers designed for different flight conditions. The structure of the fixed-order controller allows the usage of a previously developed anti-windup scheme, and the blending function results in a bumpless full flight envelope control law. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs mit.edu)

  12. G2 Flywheel Module Design

    NASA Technical Reports Server (NTRS)

    Jensen, Ralph H.; Dever, Timothy P.

    2006-01-01

    Design of a flywheel module, designated the G2 module, is described. The G2 flywheel is a 60,000 RPM, 525 W-hr, 1 kW system designed for a laboratory environment; it will be used for component testing and system demonstrations, with the goal of applying flywheels to aerospace energy storage and integrated power and attitude control (IPACS) applications. G2 has a modular design, which allows for new motors, magnetic bearings, touchdown bearings, and rotors to be installed without a complete redesign of the system. This design process involves several engineering disciplines, and requirements are developed for the speed, energy storage, power level, and operating environment. The G2 rotor system consists of a multilayer carbon fiber rim with a titanium hub on which the other components mount, and rotordynamics analysis is conducted to ensure rigid and flexible rotor modes are controllable or outside of the operating speed range. Magnetic bearings are sized using 1-D magnetic circuit analysis and refined using 3-D finite element analysis. The G2 magnetic bearing system was designed by Texas A&M and has redundancy which allows derated operation after the loss of some components, and an existing liquid cooled two pole permanent magnet motor/generator is used. The touchdown bearing system is designed with a squeeze film damper system allowing spin down from full operating speed in case of a magnetic bearing failure. The G2 flywheel will enable module level demonstrations of component technology, and will be a key building block in system level attitude control and IPACS demonstrations.

  13. Space Laboratory on a Table Top: A Next Generative ECLSS design and diagnostic tool

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.

    2005-01-01

    This paper describes the development plan for a comprehensive research and diagnostic tool for aspects of advanced life support systems in space-based laboratories. Specifically it aims to build a high fidelity tabletop model that can be used for the purpose of risk mitigation, failure mode analysis, contamination tracking, and testing reliability. We envision a comprehensive approach involving experimental work coupled with numerical simulation to develop this diagnostic tool. It envisions a 10% scale transparent model of a space platform such as the International Space Station that operates with water or a specific matched index of refraction liquid as the working fluid. This allows the scaling of a 10 ft x 10 ft x 10 ft room with air flow to 1 ft x 1 ft x 1 ft tabletop model with water/liquid flow. Dynamic similitude for this length scale dictates model velocities to be 67% of full-scale and thereby the time scale of the model to represent 15% of the full- scale system; meaning identical processes in the model are completed in 15% of the full- scale-time. The use of an index matching fluid (fluid that matches the refractive index of cast acrylic, the model material) allows making the entire model (with complex internal geometry) transparent and hence conducive to non-intrusive optical diagnostics. So using such a system one can test environment control parameters such as core flows (axial flows), cross flows (from registers and diffusers), potential problem areas such as flow short circuits, inadequate oxygen content, build up of other gases beyond desirable levels, test mixing processes within the system at local nodes or compartments and assess the overall system performance. The system allows quantitative measurements of contaminants introduced in the system and allows testing and optimizing the tracking process and removal of contaminants. The envisaged system will be modular and hence flexible for quick configuration change and subsequent testing. The data and inferences from the tests will allow for improvements in the development and design of next generation life support systems and configurations. Preliminary experimental and modeling work in this area will be presented. This involves testing of a single inlet-exit model with detailed 3-D flow visualization and quantitative diagnostics and computational modeling of the system.

  14. 10 CFR 719.43 - What is the treatment of travel costs?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...-46, as appropriate, to be reimbursable. (b) Travel time may be allowed at a full hourly rate for the... remaining travel time shall be reimbursed at 50 percent of the full hourly rate, except that in no event will travel time spent working for other clients be allowable. Also, for long distance travel that...

  15. Obesity and health-related decisions: An empirical model of the determinants of weight status across the transition from adolescence to young adulthood.

    PubMed

    Morales, Leonardo Fabio; Gordon-Larsen, Penny; Guilkey, David

    2016-12-01

    We estimate a structural dynamic model of the determinants of obesity. In addition to including many of the well-recognized endogenous factors mentioned in the literature as obesity determinants, we also model the individual's residential location as a choice variable, which is the main contribution of this paper to the literature. This allows us to control for an individual's self-selection into communities that possess the types of amenities in the built environment, which in turn affect their obesity-related behaviors such as physical activity (PA) and fast food consumption. We specify reduced form equations for a set of endogenous demand decisions, together with an obesity structural equation. The whole system of equations is jointly estimated by a semi-parametric full information log-likelihood method that allows for a general pattern of correlation in the errors across equations. Our model predicts a reduction in adult obesity of 7 percentage points as a result of a continued high level PA from adolescence into adulthood; a reduction of 0.7 (3) percentage points in adult obesity as a result of one standard deviation reduction in weekly fast food consumption for women (men); and a reduction of 0.02 (0.05) in adult obesity as a result of one standard deviation change in several neighborhood amenities for women (men). Another key finding is that controlling for residential self-selection has substantive implications. To our knowledge, this has not been yet documented within a full information maximum likelihood framework. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Obesity and Health-Related Decisions: An Empirical Model of the Determinants of Weight Status across the Transition from Adolescence to Young Adulthood*

    PubMed Central

    Morales, Leonardo Fabio; Gordon-Larsen, Penny; Guilkey, David

    2017-01-01

    We estimate a structural dynamic model of the determinants of obesity. In addition to including many of the well-recognized endogenous factors mentioned in the literature as obesity determinants, we also model the individual’s residential location as a choice variable, which is the main contribution of this paper to the literature. This allows us to control for an individual's self-selection into communities that possess the types of amenities in the built environment, which in turn affect their obesity-related behaviors such as physical activity (PA) and fast food consumption. We specify reduced form equations for a set of endogenous demand decisions, together with an obesity structural equation. The whole system of equations is jointly estimated by a semi-parametric full information log-likelihood method that allows for a general pattern of correlation in the errors across equations. Our model predicts a reduction in adult obesity of 7 percentage points as a result of a continued high level PA from adolescence into adulthood; a reduction of 0.7 (3) percentage points in adult obesity as a result of one standard deviation reduction in weekly fast food consumption for women (men); and a reduction of 0.02 (0.05) in adult obesity as a result of one standard deviation change in several neighborhood amenities for women (men). Another key finding is that controlling for residential self-selection has substantive implications. To our knowledge, this has not been yet documented within a full information maximum likelihood framework. PMID:27459276

  17. Control of the annual cycle in birds: endocrine constraints and plasticity in response to ecological variability.

    PubMed

    Dawson, Alistair

    2008-05-12

    This paper reviews information from ecological and physiological studies to assess how extrinsic factors can modulate intrinsic physiological processes. The annual cycle of birds is made up of a sequence of life-history stages: breeding, moult and migration. Each stage has evolved to occur at the optimum time and to last for the whole duration of time available. Some species have predictable breeding seasons, others are more flexible and some breed opportunistically in response to unpredictable food availability. Photoperiod is the principal environmental cue used to time each stage, allowing birds to adapt their physiology in advance of predictable environmental changes. Physiological (neuroendocrine and endocrine) plasticity allows non-photoperiodic cues to modulate timing to enable individuals to cope with, and benefit from, short-term environmental variability. Although the timing and duration of the period of full gonadal maturation is principally controlled by photoperiod, non-photoperiodic cues, such as temperature, rainfall or food availability, could potentially modulate the exact time of breeding either by fine-tuning the time of egg-laying within the period of full gonadal maturity or, more fundamentally, by modulating gonadal maturation and/or regression. The timing of gonadal regression affects the time of the start of moult, which in turn may affect the duration of the moult. There are many areas of uncertainty. Future integrated studies are required to assess the scope for flexibility in life-history strategies as this will have a critical bearing on whether birds can adapt sufficiently rapidly to anthropogenic environmental changes, in particular climate change.

  18. The use of hypnosis in therapy to increase happiness.

    PubMed

    Ruysschaert, Nicole

    2014-01-01

    In their journey through life, most people are looking for happiness. Definitions of happiness and the concepts of a pleasant, good, meaningful, and a full life are reviewed. Next, Seligman's (2002) concept of "authentic happiness" and a happiness formula, S+C+V (Set + Circumstances + Variables), are discussed. An integration of happiness, as a goal, and hypnosis, as a facilitative approach, are presented. Hypnotic techniques with case examples are given. Hypnosis is presented as an efficient companion intervention to work on these variables in a creative way and to pave the way to a happy and full life. The following results are presented: (1) hypnosis allows for increased executive attention with control of emotions, (2) focusing on positive imagery contributes to strengthening "happy pathways," and (3) emotions about the past, present, and future are subject to change.

  19. Excitation-scanning hyperspectral imaging system for microscopic and endoscopic applications

    NASA Astrophysics Data System (ADS)

    Mayes, Sam A.; Leavesley, Silas J.; Rich, Thomas C.

    2016-04-01

    Current microscopic and endoscopic technologies for cancer screening utilize white-light illumination sources. Hyper-spectral imaging has been shown to improve sensitivity while retaining specificity when compared to white-light imaging in both microscopy and in vivo imaging. However, hyperspectral imaging methods have historically suffered from slow acquisition times due to the narrow bandwidth of spectral filters. Often minutes are required to gather a full image stack. We have developed a novel approach called excitation-scanning hyperspectral imaging that provides 2-3 orders of magnitude increased signal strength. This reduces acquisition times significantly, allowing for live video acquisition. Here, we describe a preliminary prototype excitation-scanning hyperspectral imaging system that can be coupled with endoscopes or microscopes for hyperspectral imaging of tissues and cells. Our system is comprised of three subsystems: illumination, transmission, and imaging. The illumination subsystem employs light-emitting diode arrays to illuminate at different wavelengths. The transmission subsystem utilizes a unique geometry of optics and a liquid light guide. Software controls allow us to interface with and control the subsystems and components. Digital and analog signals are used to coordinate wavelength intensity, cycling and camera triggering. Testing of the system shows it can cycle 16 wavelengths at as fast as 1 ms per cycle. Additionally, more than 18% of the light transmits through the system. Our setup should allow for hyperspectral imaging of tissue and cells in real time.

  20. 38 CFR 21.4145 - Work-study allowance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2010-07-01 2010-07-01 false Work-study allowance. 21...; Educational Assistance Allowance § 21.4145 Work-study allowance. (a) Eligibility. (1) A veteran or reservist... rate of three-quarter time or full time is eligible to receive a work-study allowance. (2) An eligible...

  1. 38 CFR 21.4145 - Work-study allowance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2011-07-01 2011-07-01 false Work-study allowance. 21...; Educational Assistance Allowance § 21.4145 Work-study allowance. (a) Eligibility. (1) A veteran or reservist... rate of three-quarter time or full time is eligible to receive a work-study allowance. (2) An eligible...

  2. Point-and-stare operation and high-speed image acquisition in real-time hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Driver, Richard D.; Bannon, David P.; Ciccone, Domenic; Hill, Sam L.

    2010-04-01

    The design and optical performance of a small-footprint, low-power, turnkey, Point-And-Stare hyperspectral analyzer, capable of fully automated field deployment in remote and harsh environments, is described. The unit is packaged for outdoor operation in an IP56 protected air-conditioned enclosure and includes a mechanically ruggedized fully reflective, aberration-corrected hyperspectral VNIR (400-1000 nm) spectrometer with a board-level detector optimized for point and stare operation, an on-board computer capable of full system data-acquisition and control, and a fully functioning internal hyperspectral calibration system for in-situ system spectral calibration and verification. Performance data on the unit under extremes of real-time survey operation and high spatial and high spectral resolution will be discussed. Hyperspectral acquisition including full parameter tracking is achieved by the addition of a fiber-optic based downwelling spectral channel for solar illumination tracking during hyperspectral acquisition and the use of other sensors for spatial and directional tracking to pinpoint view location. The system is mounted on a Pan-And-Tilt device, automatically controlled from the analyzer's on-board computer, making the HyperspecTM particularly adaptable for base security, border protection and remote deployments. A hyperspectral macro library has been developed to control hyperspectral image acquisition, system calibration and scene location control. The software allows the system to be operated in a fully automatic mode or under direct operator control through a GigE interface.

  3. Development of a Deterministic Ethernet Building blocks for Space Applications

    NASA Astrophysics Data System (ADS)

    Fidi, C.; Jakovljevic, Mirko

    2015-09-01

    The benefits of using commercially based networking standards and protocols have been widely discussed and are expected to include reduction in overall mission cost, shortened integration and test (I&T) schedules, increased operations flexibility, and hardware and software upgradeability/scalability with developments ongoing in the commercial world. The deterministic Ethernet technology TTEthernet [1] diploid on the NASA Orion spacecraft has demonstrated the use of the TTEthernet technology for a safety critical human space flight application during the Exploration Flight Test 1 (EFT-1). The TTEthernet technology used within the NASA Orion program has been matured for the use within this mission but did not lead to a broader use in space applications or an international space standard. Therefore TTTech has developed a new version which allows to scale the technology for different applications not only the high end missions allowing to decrease the size of the building blocks leading to a reduction of size weight and power enabling the use in smaller applications. TTTech is currently developing a full space products offering for its TTEthernet technology to allow the use in different space applications not restricted to launchers and human spaceflight. A broad space market assessment and the current ESA TRP7594 lead to the development of a space grade TTEthernet controller ASIC based on the ESA qualified Atmel AT1C8RHA95 process [2]. In this paper we will describe our current TTEthernet controller development towards a space qualified network component allowing future spacecrafts to operate in significant radiation environments while using a single onboard network for reliable commanding and data transfer.

  4. Methods of Optimal Control of Laser-Plasma Instabilities Using Spike Trains of Uneven Duration and Delay (STUD Pulses)

    NASA Astrophysics Data System (ADS)

    Afeyan, Bedros

    2013-10-01

    We have recently introduced and extensively studied a new adaptive method of LPI control. It promises to extend the effectiveness of laser as inertial fusion drivers by allowing active control of stimulated Raman and Brillouin scattering and crossed beam energy transfer. It breaks multi-nanosecond pulses into a series of picosecond (ps) time scale spikes with comparable gaps in between. The height and width of each spike as well as their separations are optimization parameters. In addition, the spatial speckle patterns are changed after a number of successive spikes as needed (from every spike to never). The combination of these parameters allows the taming of parametric instabilities to conform to any desired reduced reflectivity profile, within the bounds of the performance limitations of the lasers. Instead of pulse shaping on hydrodynamical time scales, far faster (from 1 ps to 10 ps) modulations of the laser profile will be needed to implement the STUD pulse program for full LPI control. We will show theoretical and computational evidence for the effectiveness of the STUD pulse program to control LPI. The physics of why STUD pulses work and how optimization can be implemented efficiently using statistical nonlinear optical models and techniques will be explained. We will also discuss a novel diagnostic system employing STUD pulses that will allow the boosted measurement of velocity distribution function slopes on a ps time scale in the small crossing volume of a pump and a probe beam. Various regimes from weak to strong coupling and weak to strong damping will be treated. Novel pulse modulation schemes and diagnostic tools based on time-lenses used in both microscope and telescope modes will be suggested for the execution of the STUD pule program. Work Supported by the DOE NNSA-OFES Joint Program on HEDLP and DOE OFES SBIR Phase I Grants.

  5. Effect of controlling recrystallization from the melt on the residual stress and structural properties of the Silica-clad Ge core fiber

    NASA Astrophysics Data System (ADS)

    Zhao, Ziwen; Cheng, Xueli; He, Ting; Xue, Fei; Zhang, Wei; Chen, Na; Wen, Jianxiang; Zeng, Xianglong; Wang, Tingyun

    2017-09-01

    Effect of controlling recrystallization from the melt (1000 °C) on the residual stress and structural properties of a Ge core fiber via molten core drawing (MCD) method is investigated. Ge core fibers is investigated using Raman spectroscopy, scanning electron microscope (SEM), and X-ray diffraction (XRD). Compared with the as-drawn Ge fiber, the Raman peak of the recrystallized Ge fiber shift from 300 cm-1 to 300.6 cm-1 and full width at half maximum (FWHM) decreased from 5.36 cm-1 to 4.48 cm-1. The Ge crystal grains which sizes are of 200-600 nm were formed during the process of recrystallization; the XRD peak of (1 1 1) plane is observed after recrystallization. These results show that controlling recrystallization allows the release of the thermal stress, and improvement of the crystal quality of Ge core.

  6. Performance measurement: A tool for program control

    NASA Technical Reports Server (NTRS)

    Abell, Nancy

    1994-01-01

    Performance measurement is a management tool for planning, monitoring, and controlling as aspects of program and project management--cost, schedule, and technical requirements. It is a means (concept and approach) to a desired end (effective program planning and control). To reach the desired end, however, performance measurement must be applied and used appropriately, with full knowledge and recognition of its power and of its limitations--what it can and cannot do for the project manager. What is the potential of this management tool? What does performance measurement do that a traditional plan vs. actual technique cannot do? Performance measurement provides an improvement over the customary comparison of how much money was spent (actual cost) vs. how much was planned to be spent based on a schedule of activities (work planned). This commonly used plan vs. actual comparison does not allow one to know from the numerical data if the actual cost incurred was for work intended to be done.

  7. Planning of water resources management and pollution control for Heshui River watershed, China: A full credibility-constrained programming approach.

    PubMed

    Zhang, Y M; Huang, G; Lu, H W; He, Li

    2015-08-15

    A key issue facing integrated water resources management and water pollution control is to address the vague parametric information. A full credibility-based chance-constrained programming (FCCP) method is thus developed by introducing the new concept of credibility into the modeling framework. FCCP can deal with fuzzy parameters appearing concurrently in the objective and both sides of the constraints of the model, but also provide a credibility level indicating how much confidence one can believe the optimal modeling solutions. The method is applied to Heshui River watershed in the south-central China for demonstration. Results from the case study showed that groundwater would make up for the water shortage in terms of the shrinking surface water and rising water demand, and the optimized total pumpage of groundwater from both alluvial and karst aquifers would exceed 90% of its maximum allowable levels when credibility level is higher than or equal to 0.9. It is also indicated that an increase in credibility level would induce a reduction in cost for surface water acquisition, a rise in cost from groundwater withdrawal, and negligible variation in cost for water pollution control. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. What the publisher can teach the patient: intellectual property and privacy in an era of trusted privication.

    PubMed

    Zittrain, J

    2000-05-01

    This article begins with a premise that intellectual property and privacy have something significant and yet understated in common: both are about balancing a creator's desire to control a particular set of data with consumers' desires to access and redistribute that data. Both law and technology influence such balancing, making it more or less palatable to use data for particular purposes--whether one is an individual making a copy of a popular song for a friend, or a hospital selling a list of maternity ward patients to a day care service. In the shadow of the Internet's rapid development and concomitant easing of barriers to data sharing, holders of intellectual property are pairing increased legal protection with the technologies of "trusted systems." I describe how these technologies might allow more thorough mass distribution of data, while allowing publishers to retain unprecedented control over their wares. For instance, an e-Book seller might charge one price for a read-only copy that could not be printed or forwarded and charge an additional fee for each copy or printout made. Taking up the case of medical privacy, I then suggest that those who worry about the confidentiality of medical records, particularly as they are digitized by recent congressional mandate, might seek to augment comparatively paltry legal protections with trusted systems technologies. For instance, a trusted system could allow a patient to specify how and by whom her records could be used; within limits, she could allow full access to her primary care physician, while allowing only time-limited access to emergency care providers, non-personally identifiable access to medical researchers, and no access at all for marketing purposes. These technologies could allow for new kinds of privacy protection, without sacrificing the legitimate interests of the consumers of medical records.

  9. Developmental control of transcriptional and proliferative potency during the evolutionary emergence of animals

    PubMed Central

    Arenas-Mena, Cesar; Coffman, James A.

    2016-01-01

    Summary It is proposed that the evolution of complex animals required repressive genetic mechanisms for controlling the transcriptional and proliferative potency of cells. Unicellular organisms are transcriptionally potent, able to express their full genetic complement as the need arises through their life cycle, whereas differentiated cells of multicellular organisms can only express a fraction of their genomic potential. Likewise, whereas cell proliferation in unicellular organisms is primarily limited by nutrient availability, cell proliferation in multicellular organisms is developmentally regulated. Repressive genetic controls limiting the potency of cells at the end of ontogeny would have stabilized the gene expression states of differentiated cells and prevented disruptive proliferation, allowing the emergence of diverse cell types and functional shapes. We propose that distal cis-regulatory elements represent the primary innovations that set the stage for the evolution of developmental gene regulatory networks and the repressive control of key multipotency and cell-cycle control genes. The testable prediction of this model is that the genomes of extant animals, unlike those of our unicellular relatives, encode gene regulatory circuits dedicated to the developmental control of transcriptional and proliferative potency. PMID:26173445

  10. Universal control and measuring system for modern classic and amorphous magnetic materials single/on-line strip testers

    NASA Astrophysics Data System (ADS)

    Zemánek, Ivan; Havlíček, Václav

    2006-09-01

    A new universal control and measuring system for classic and amorphous soft magnetic materials single/on-line strip testing has been developed at the Czech Technical University in Prague. The measuring system allows to measure magnetization characteristic and specific power losses of different tested materials (strips) at AC magnetization of arbitrary magnetic flux density waveform at wide range of frequencies 20 Hz-20 kHz. The measuring system can be used for both single strip testing in laboratories and on-line strip testing during the production process. The measuring system is controlled by two-stage master-slave control system consisting of the external PC (master) completed by three special A/D measuring plug-in boards, and local executing control unit (slave) with one-chip microprocessor 8051, connected with PC by the RS232 serial line. The "user friendly" powerful control software implemented on the PC and the effective program code for the microprocessor give possibility for full automatic measurement with high measuring power and high measuring accuracy.

  11. Toward wideband steerable acoustic metasurfaces with arrays of active electroacoustic resonators

    NASA Astrophysics Data System (ADS)

    Lissek, Hervé; Rivet, Etienne; Laurence, Thomas; Fleury, Romain

    2018-03-01

    We introduce an active concept for achieving acoustic metasurfaces with steerable reflection properties, effective over a wide frequency band. The proposed active acoustic metasurface consists of a surface array of subwavelength loudspeaker diaphragms, each with programmable individual active acoustic impedances allowing for local control over the different reflection phases over the metasurface. The active control framework used for controlling the reflection phase over the metasurface is derived from the Active Electroacoustic Resonator concept. Each unit-cell simply consists of a current-driven electrodynamic loudspeaker in a closed box, whose acoustic impedance at the diaphragm is judiciously adjusted by connecting an active electrical control circuit. The control is known to achieve a wide variety of acoustic impedances on a single loudspeaker diaphragm used as an acoustic resonator, with the possibility to shift its resonance frequency by more than one octave. This paper presents a methodology for designing such active metasurface elements. An experimental validation of the achieved individual reflection coefficients is presented, and full wave simulations present a few examples of achievable reflection properties, with a focus on the bandwidth of operation of the proposed control concept.

  12. Bio-inspired adaptive feedback error learning architecture for motor control.

    PubMed

    Tolu, Silvia; Vanegas, Mauricio; Luque, Niceto R; Garrido, Jesús A; Ros, Eduardo

    2012-10-01

    This study proposes an adaptive control architecture based on an accurate regression method called Locally Weighted Projection Regression (LWPR) and on a bio-inspired module, such as a cerebellar-like engine. This hybrid architecture takes full advantage of the machine learning module (LWPR kernel) to abstract an optimized representation of the sensorimotor space while the cerebellar component integrates this to generate corrective terms in the framework of a control task. Furthermore, we illustrate how the use of a simple adaptive error feedback term allows to use the proposed architecture even in the absence of an accurate analytic reference model. The presented approach achieves an accurate control with low gain corrective terms (for compliant control schemes). We evaluate the contribution of the different components of the proposed scheme comparing the obtained performance with alternative approaches. Then, we show that the presented architecture can be used for accurate manipulation of different objects when their physical properties are not directly known by the controller. We evaluate how the scheme scales for simulated plants of high Degrees of Freedom (7-DOFs).

  13. Desarrollo de una Interfaz de Control para un Observatorio Astronómico Robotizado con fines educativos en la Facultad de Ciencias Exactas; Físicas y Naturales de la UNSJ

    NASA Astrophysics Data System (ADS)

    Pogrebinsky, L.; Francile, C.

    We report the development and the construction of an Interface to Control a robotized Astronomical Observatory (ICOA), which allows to control the operation of an observatory based on a Meade LX200 telescope. The interface operates together with a computer to control and supervise all the local variables of the observatory, and can take the control of it in risky situations. It serves as a link among the control computer and all the necessary devices for the astronomical observation such as the telescope, the dome, the weather station, the CCD camera, the calibration devices and the security devices. The computer receives orders from an operator who can be or not at the site of observation. The goal of this robotized observatory is the operation in a secure, autonomous and unattended way, with the purpose of to be used remotely by the students of the "Facultad de Ciencias Exactas, Físicas y Naturales" of the UNSJ. FULL TEXT IN SPANISH

  14. A four-dimensional virtual hand brain-machine interface using active dimension selection.

    PubMed

    Rouse, Adam G

    2016-06-01

    Brain-machine interfaces (BMI) traditionally rely on a fixed, linear transformation from neural signals to an output state-space. In this study, the assumption that a BMI must control a fixed, orthogonal basis set was challenged and a novel active dimension selection (ADS) decoder was explored. ADS utilizes a two stage decoder by using neural signals to both (i) select an active dimension being controlled and (ii) control the velocity along the selected dimension. ADS decoding was tested in a monkey using 16 single units from premotor and primary motor cortex to successfully control a virtual hand avatar to move to eight different postures. Following training with the ADS decoder to control 2, 3, and then 4 dimensions, each emulating a grasp shape of the hand, performance reached 93% correct with a bit rate of 2.4 bits s(-1) for eight targets. Selection of eight targets using ADS control was more efficient, as measured by bit rate, than either full four-dimensional control or computer assisted one-dimensional control. ADS decoding allows a user to quickly and efficiently select different hand postures. This novel decoding scheme represents a potential method to reduce the complexity of high-dimension BMI control of the hand.

  15. 38 CFR 21.3131 - Rates-educational assistance allowance-38 U.S.C. chapter 35.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....00 Cooperative training (other than farm cooperative) (full time only) 788.00 Apprenticeship or on... Fourth six months and thereafter 144.00 Farm cooperative: Full time 636.00 3/4 time 477.00 1/2 time 319... eligible spouse or surviving spouse and serviced by the school—Allowance paid quarterly. 3 1 If an eligible...

  16. 38 CFR 21.3131 - Rates-educational assistance allowance-38 U.S.C. chapter 35.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....00 Cooperative training (other than farm cooperative) (full time only) 788.00 Apprenticeship or on... Fourth six months and thereafter 144.00 Farm cooperative: Full time 636.00 3/4 time 477.00 1/2 time 319... eligible spouse or surviving spouse and serviced by the school—Allowance paid quarterly. 3 1 If an eligible...

  17. 38 CFR 21.3131 - Rates-educational assistance allowance-38 U.S.C. chapter 35.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....00 Cooperative training (other than farm cooperative) (full time only) 788.00 Apprenticeship or on... Fourth six months and thereafter 144.00 Farm cooperative: Full time 636.00 3/4 time 477.00 1/2 time 319... eligible spouse or surviving spouse and serviced by the school—Allowance paid quarterly. 3 1 If an eligible...

  18. 38 CFR 21.3131 - Rates-educational assistance allowance-38 U.S.C. chapter 35.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....00 Cooperative training (other than farm cooperative) (full time only) 788.00 Apprenticeship or on... Fourth six months and thereafter 144.00 Farm cooperative: Full time 636.00 3/4 time 477.00 1/2 time 319... eligible spouse or surviving spouse and serviced by the school—Allowance paid quarterly. 3 1 If an eligible...

  19. 40 CFR 82.23 - Transfers of allowances of class II controlled substances.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., any production, and allowable imports and exports of class II controlled substances reported by the... quantity of the transferor's class II consumption allowances, production allowances, export production... EPA; and (G) For trades of consumption allowances, production allowances, export production allowances...

  20. Nonlinear Wavefront Control with All-Dielectric Metasurfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lei; Kruk, Sergey; Koshelev, Kirill

    Metasurfaces, two-dimensional lattices of nanoscale resonators, offer unique opportunities for functional flat optics and allow the control of the transmission, reflection, and polarization of a wavefront of light. Recently, all-dielectric metasurfaces reached remarkable efficiencies, often matching or out-performing conventional optical elements. The exploitation of the nonlinear optical response of metasurfaces offers a paradigm shift in nonlinear optics, and dielectric nonlinear metasurfaces are expected to enrich subwavelength photonics by enhancing substantially nonlinear response of natural materials combined with the efficient control of the phase of nonlinear waves. Here, we suggest a novel and rather general approach for engineering the wavefront ofmore » parametric waves of arbitrary complexity generated by a nonlinear metasurface. We design all-dielectric nonlinear metasurfaces, achieve a highly efficient wavefront control of a third-harmonic field, and demonstrate the generation of nonlinear beams at a designed angle and the generation of nonlinear focusing vortex beams. Lastly, our nonlinear metasurfaces produce phase gradients over a full 0–2π phase range with a 92% diffraction efficiency.« less

  1. Nonlinear Wavefront Control with All-Dielectric Metasurfaces.

    PubMed

    Wang, Lei; Kruk, Sergey; Koshelev, Kirill; Kravchenko, Ivan; Luther-Davies, Barry; Kivshar, Yuri

    2018-06-13

    Metasurfaces, two-dimensional lattices of nanoscale resonators, offer unique opportunities for functional flat optics and allow the control of the transmission, reflection, and polarization of a wavefront of light. Recently, all-dielectric metasurfaces reached remarkable efficiencies, often matching or out-performing conventional optical elements. The exploitation of the nonlinear optical response of metasurfaces offers a paradigm shift in nonlinear optics, and dielectric nonlinear metasurfaces are expected to enrich subwavelength photonics by enhancing substantially nonlinear response of natural materials combined with the efficient control of the phase of nonlinear waves. Here, we suggest a novel and rather general approach for engineering the wavefront of parametric waves of arbitrary complexity generated by a nonlinear metasurface. We design all-dielectric nonlinear metasurfaces, achieve a highly efficient wavefront control of a third-harmonic field, and demonstrate the generation of nonlinear beams at a designed angle and the generation of nonlinear focusing vortex beams. Our nonlinear metasurfaces produce phase gradients over a full 0-2π phase range with a 92% diffraction efficiency.

  2. Nonlinear Wavefront Control with All-Dielectric Metasurfaces

    DOE PAGES

    Wang, Lei; Kruk, Sergey; Koshelev, Kirill; ...

    2018-05-11

    Metasurfaces, two-dimensional lattices of nanoscale resonators, offer unique opportunities for functional flat optics and allow the control of the transmission, reflection, and polarization of a wavefront of light. Recently, all-dielectric metasurfaces reached remarkable efficiencies, often matching or out-performing conventional optical elements. The exploitation of the nonlinear optical response of metasurfaces offers a paradigm shift in nonlinear optics, and dielectric nonlinear metasurfaces are expected to enrich subwavelength photonics by enhancing substantially nonlinear response of natural materials combined with the efficient control of the phase of nonlinear waves. Here, we suggest a novel and rather general approach for engineering the wavefront ofmore » parametric waves of arbitrary complexity generated by a nonlinear metasurface. We design all-dielectric nonlinear metasurfaces, achieve a highly efficient wavefront control of a third-harmonic field, and demonstrate the generation of nonlinear beams at a designed angle and the generation of nonlinear focusing vortex beams. Lastly, our nonlinear metasurfaces produce phase gradients over a full 0–2π phase range with a 92% diffraction efficiency.« less

  3. Modeling of the Bosphorus exchange flow dynamics

    NASA Astrophysics Data System (ADS)

    Sözer, Adil; Özsoy, Emin

    2017-04-01

    The fundamental hydrodynamic behavior of the Bosphorus Strait is investigated through a numerical modeling study using alternative configurations of idealized or realistic geometry. Strait geometry and basin stratification conditions allow for hydraulic controls and are ideally suited to support the maximal-exchange regime, which determines the rate of exchange of waters originating from the adjacent Black and Mediterranean Seas for a given net transport. Steady-state hydraulic controls are demonstrated by densimetric Froude number calculations under layered flow approximations when corrections are applied to account for high velocity shears typically observed in the Bosphorus. Analyses of the model results reveal many observed features of the strait, including critical transitions at hydraulic controls and dissipation by turbulence and hydraulic jumps. It is found that the solution depends on initialization, especially with respect to the basin initial conditions. Significant differences between the controlled maximal-exchange and drowned solutions suggest that a detailed modeling implementation involving coupling with adjacent basins needs to take full account of the Bosphorus Strait in terms of the physical processes to be resolved.

  4. SCAILET - An intelligent assistant for satellite ground terminal operations

    NASA Technical Reports Server (NTRS)

    Shahidi, A. K.; Crapo, J. A.; Schlegelmilch, R. F.; Reinhart, R. C.; Petrik, E. J.; Walters, J. L.; Jones, R. E.

    1992-01-01

    Space communication artificial intelligence for the link evaluation terminal (SCAILET) is an experimenter interface to the link evaluation terminal (LET) developed by NASA through the application of artificial intelligence to an advanced ground terminal. The high-burst-rate (HBR) LET provides the required capabilities for wideband communications experiments with the advanced communications technology satellite (ACTS). The HBR-LET terminal consists of seven major subsystems and is controlled and monitored by a minicomputer through an IEEE-488 or RS-232 interface. Programming scripts configure HBR-LET and allow data acquisition but are difficult to use and therefore the full capabilities of the system are not utilized. An intelligent assistant module was developed as part of the SCAILET module and solves problems encountered during configuration of the HBR-LET system. This assistant is a graphical interface with an expert system running in the background and allows users to configure instrumentation, program sequences and reference documentation. The simplicity of use makes SCAILET a superior interface to the ASCII terminal and continuous monitoring allows nearly flawless configuration and execution of HBR-LET experiments.

  5. All new custom path photo book creation

    NASA Astrophysics Data System (ADS)

    Wang, Wiley; Muzzolini, Russ

    2012-03-01

    In this paper, we present an all new custom path to allow consumers to have full control to their photos and the format of their books, while providing them with guidance to make their creation fast and easy. The users can choose to fully automate the initial creation, and then customize every page. The system manage many design themes along with numerous design elements, such as layouts, backgrounds, embellishments and pattern bands. The users can also utilize photos from multiple sources including their computers, Shutterfly accounts, Shutterfly Share sites and Facebook. The users can also use a photo as background, add, move and resize photos and text - putting what they want where they want instead of being confined to templates. The new path allows users to add embellishments anywhere in the book, and the high-performance platform can support up to 1,000 photos per book and up to 25 pictures per page. The path offers either Smart Autofill or Storyboard features allowing customers to populate their books with photos so they can add captions and customize the pages.

  6. Automation of a N-S S and C Database Generation for the Harrier in Ground Effect

    NASA Technical Reports Server (NTRS)

    Murman, Scott M.; Chaderjian, Neal M.; Pandya, Shishir; Kwak, Dochan (Technical Monitor)

    2001-01-01

    A method of automating the generation of a time-dependent, Navier-Stokes static stability and control database for the Harrier aircraft in ground effect is outlined. Reusable, lightweight components arc described which allow different facets of the computational fluid dynamic simulation process to utilize a consistent interface to a remote database. These components also allow changes and customizations to easily be facilitated into the solution process to enhance performance, without relying upon third-party support. An analysis of the multi-level parallel solver OVERFLOW-MLP is presented, and the results indicate that it is feasible to utilize large numbers of processors (= 100) even with a grid system with relatively small number of cells (= 10(exp 6)). A more detailed discussion of the simulation process, as well as refined data for the scaling of the OVERFLOW-MLP flow solver will be included in the full paper.

  7. Full length view of the Spacelab module

    NASA Image and Video Library

    2016-08-12

    STS083-312-031 (4-8 April 1997) --- Payload specialist Gregory T. Linteris (left) is seen at the Mid Deck Glove Box (MGBX), while astronaut Donald A. Thomas, mission specialist, works at the Expedite the Processing of Experiments to Space Station (EXPRESS) rack. MGBX is a facility that allows scientists the capability of doing tests on hardware and materials that are not approved to be handled in the open Spacelab. It is equipped with photographic, video and data recording capability, allowing a complete record of experiment operations. Experiments performed on STS-83 were Bubble Drop Nonlinear Dynamics and Fiber Supported Droplet Combustion. EXPRESS is designed to provide accommodations for Sub-rack payloads on Space Station. For STS-83, it held two payloads. The Physics of Hard Colloidal Spheres (PHaSE) and ASTRO-Plant Generic Bioprocessing Apparatus (ASTRO-PGBA), a facility with light and atmospheric controls which supports plant growth for commercial research.

  8. Report on ISS Oxygen Production, Resupply, and Partial Pressure Management

    NASA Technical Reports Server (NTRS)

    Schaezler, Ryan; Ghariani, Ahmed; Leonard, Daniel; Lehman, Daniel

    2011-01-01

    The majority of oxygen used on International Space Station (ISS) is for metabolic support and denitrogenation procedures prior to Extra-Vehicular Activities. Oxygen is supplied by various visiting vehicles such as the Progress and Shuttle in addition to oxygen production capability on both the United States On-Orbit Segment (USOS) and Russian Segment (RS). To maintain a habitable atmosphere the oxygen partial pressure is controlled between upper and lower bounds. The full range of the allowable oxygen partial pressure along with the increased ISS cabin volume is utilized as a buffer allowing days to pass between oxygen production or direct addition of oxygen to the atmosphere from reserves. This paper summarizes amount of oxygen supplied and produced from all of the sources and describes past experience of managing oxygen partial pressure along with the range of management options available to the ISS.

  9. jvenn: an interactive Venn diagram viewer.

    PubMed

    Bardou, Philippe; Mariette, Jérôme; Escudié, Frédéric; Djemiel, Christophe; Klopp, Christophe

    2014-08-29

    Venn diagrams are commonly used to display list comparison. In biology, they are widely used to show the differences between gene lists originating from different differential analyses, for instance. They thus allow the comparison between different experimental conditions or between different methods. However, when the number of input lists exceeds four, the diagram becomes difficult to read. Alternative layouts and dynamic display features can improve its use and its readability. jvenn is a new JavaScript library. It processes lists and produces Venn diagrams. It handles up to six input lists and presents results using classical or Edwards-Venn layouts. User interactions can be controlled and customized. Finally, jvenn can easily be embeded in a web page, allowing to have dynamic Venn diagrams. jvenn is an open source component for web environments helping scientists to analyze their data. The library package, which comes with full documentation and an example, is freely available at http://bioinfo.genotoul.fr/jvenn.

  10. Experimental light scattering by small particles: system design and calibration

    NASA Astrophysics Data System (ADS)

    Maconi, Göran; Kassamakov, Ivan; Penttilä, Antti; Gritsevich, Maria; Hæggström, Edward; Muinonen, Karri

    2017-06-01

    We describe a setup for precise multi-angular measurements of light scattered by mm- to μm-sized samples. We present a calibration procedure that ensures accurate measurements. Calibration is done using a spherical sample (d = 5 mm, n = 1.517) fixed on a static holder. The ultimate goal of the project is to allow accurate multi-wavelength measurements (the full Mueller matrix) of single-particle samples which are levitated ultrasonically. The system comprises a tunable multimode Argon-krypton laser, with 12 wavelengths ranging from 465 to 676 nm, a linear polarizer, a reference photomultiplier tube (PMT) monitoring beam intensity, and several PMT:s mounted radially towards the sample at an adjustable radius. The current 150 mm radius allows measuring all azimuthal angles except for ±4° around the backward scattering direction. The measurement angle is controlled by a motor-driven rotational stage with an accuracy of 15'.

  11. A versatile soft X-ray transmission system for time resolved in situ microscopy with chemical contrast.

    PubMed

    Forsberg, J; Englund, C-J; Duda, L-C

    2009-08-01

    We present the design and operation of a versatile soft X-ray transmission system for time resolved in situ microscopy with chemical contrast. The utility of the setup is demonstrated by results from following a corrosion process of iron in saline environment, subjected to a controlled humid atmosphere. The system includes a transmission flow-cell reactor that allows for in situ microscopic probing with soft X-rays. We employ a full field technique by using a nearly collimated X-ray beam that produces an unmagnified projection of the transmitted soft X-rays (below 1.1 keV) which is magnified and recorded by an optical CCD camera. Time lapse series with chemical contrast allow us to follow and interpret the chemical processes in detail. The obtainable lateral resolution is a few mum, sufficient to detect filiform corrosion on iron.

  12. Research at NASA's NFAC wind tunnels

    NASA Technical Reports Server (NTRS)

    Edenborough, H. Kipling

    1990-01-01

    The National Full-Scale Aerodynamics Complex (NFAC) is a unique combination of wind tunnels that allow the testing of aerodynamic and dynamic models at full or large scale. It can even accommodate actual aircraft with their engines running. Maintaining full-scale Reynolds numbers and testing with surface irregularities, protuberances, and control surface gaps that either closely match the full-scale or indeed are those of the full-scale aircraft help produce test data that accurately predict what can be expected from future flight investigations. This complex has grown from the venerable 40- by 80-ft wind tunnel that has served for over 40 years helping researchers obtain data to better understand the aerodynamics of a wide range of aircraft from helicopters to the space shuttle. A recent modification to the tunnel expanded its maximum speed capabilities, added a new 80- by 120-ft test section and provided extensive acoustic treatment. The modification is certain to make the NFAC an even more useful facility for NASA's ongoing research activities. A brief background is presented on the original facility and the kind of testing that has been accomplished using it through the years. A summary of the modification project and the measured capabilities of the two test sections is followed by a review of recent testing activities and of research projected for the future.

  13. High-precision control of static magnetic field magnitude, orientation, and gradient using optically pumped vapour cell magnetometry.

    PubMed

    Ingleby, S J; Griffin, P F; Arnold, A S; Chouliara, M; Riis, E

    2017-04-01

    An integrated system of hardware and software allowing precise definition of arbitrarily oriented magnetic fields up to |B| = 1 μT within a five-layer Mumetal shield is described. The system is calibrated with reference to magnetic resonance observed between Zeeman states of the 6S 1/2 F = 4 133 Cs ground state. Magnetic field definition over the full 4π solid angle is demonstrated with one-sigma tolerances in magnitude, orientation, and gradient of δ|B| = 0.94 nT, δθ = 5.9 mrad, and δ|∇B|=13.0 pT/mm, respectively. This field control is used to empirically map M x magnetometer signal amplitude as a function of the static field (B 0 ) orientation.

  14. ISGV Self-rectifying Turbine Design For Thermoacoustic Application

    NASA Astrophysics Data System (ADS)

    Sammak, Shervin; Asghary, Maryam; Ghorbanian, Kaveh

    2014-11-01

    Thermoacoustic engines produce the acoustic power from wasted heat and then electricity can be generated from acoustic power. Utilizing self-rectifying turbine after a thermoacoustic engine allows for deploying standard generators with high enough rotational speed that remarkably reduce abrasion, size and cost and significantly increase efficiency and controllability in comparison with linear alternators. In this paper, by evaluating all different type of self-rectifying turbine, impulse turbine with self-piched controlled (ISGV) is chosen as the most appropriate type for this application. This kind of turbine is designed in detail for a popular engine, thermoacoustic stirling heat engine (TASHE). In order to validate the design, a full scale size of designed turbine is modeled in ANSYS CFX. As a result, optimum power and efficiency gained based on numerical data.

  15. Long Pulse Operation on Tore-Supra: Towards Steady State

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreau, P.; Bucalossi, J.; Brosset, C.

    The experimental programme of Tore Supra is devoted to the study of technology and physics issues associated to long-duration high performance discharges. This new domain of operation requires simultaneously and in steady state: heat removal capability, particle exhaust, fully non-inductive current drive, advanced technology integration and real time plasma control. The long discharge allows for addressing new time scale physic such as the wall particle retention and erosion. Moreover, the physics of fully non-inductive discharges is full of novelty, namely: the MHD stability, the slow spontaneous oscillation of the central electron temperature or the outstanding inward particle pinch.

  16. An Integrated Testbed for Cooperative Perception with Heterogeneous Mobile and Static Sensors

    PubMed Central

    Jiménez-González, Adrián; Martínez-De Dios, José Ramiro; Ollero, Aníbal

    2011-01-01

    Cooperation among devices with different sensing, computing and communication capabilities provides interesting possibilities in a growing number of problems and applications including domotics (domestic robotics), environmental monitoring or intelligent cities, among others. Despite the increasing interest in academic and industrial communities, experimental tools for evaluation and comparison of cooperative algorithms for such heterogeneous technologies are still very scarce. This paper presents a remote testbed with mobile robots and Wireless Sensor Networks (WSN) equipped with a set of low-cost off-the-shelf sensors, commonly used in cooperative perception research and applications, that present high degree of heterogeneity in their technology, sensed magnitudes, features, output bandwidth, interfaces and power consumption, among others. Its open and modular architecture allows tight integration and interoperability between mobile robots and WSN through a bidirectional protocol that enables full interaction. Moreover, the integration of standard tools and interfaces increases usability, allowing an easy extension to new hardware and software components and the reuse of code. Different levels of decentralization are considered, supporting from totally distributed to centralized approaches. Developed for the EU-funded Cooperating Objects Network of Excellence (CONET) and currently available at the School of Engineering of Seville (Spain), the testbed provides full remote control through the Internet. Numerous experiments have been performed, some of which are described in the paper. PMID:22247679

  17. An integrated testbed for cooperative perception with heterogeneous mobile and static sensors.

    PubMed

    Jiménez-González, Adrián; Martínez-De Dios, José Ramiro; Ollero, Aníbal

    2011-01-01

    Cooperation among devices with different sensing, computing and communication capabilities provides interesting possibilities in a growing number of problems and applications including domotics (domestic robotics), environmental monitoring or intelligent cities, among others. Despite the increasing interest in academic and industrial communities, experimental tools for evaluation and comparison of cooperative algorithms for such heterogeneous technologies are still very scarce. This paper presents a remote testbed with mobile robots and Wireless Sensor Networks (WSN) equipped with a set of low-cost off-the-shelf sensors, commonly used in cooperative perception research and applications, that present high degree of heterogeneity in their technology, sensed magnitudes, features, output bandwidth, interfaces and power consumption, among others. Its open and modular architecture allows tight integration and interoperability between mobile robots and WSN through a bidirectional protocol that enables full interaction. Moreover, the integration of standard tools and interfaces increases usability, allowing an easy extension to new hardware and software components and the reuse of code. Different levels of decentralization are considered, supporting from totally distributed to centralized approaches. Developed for the EU-funded Cooperating Objects Network of Excellence (CONET) and currently available at the School of Engineering of Seville (Spain), the testbed provides full remote control through the Internet. Numerous experiments have been performed, some of which are described in the paper.

  18. A Cloud Based Framework For Monitoring And Predicting Subsurface System Behaviour

    NASA Astrophysics Data System (ADS)

    Versteeg, R. J.; Rodzianko, A.; Johnson, D. V.; Soltanian, M. R.; Dwivedi, D.; Dafflon, B.; Tran, A. P.; Versteeg, O. J.

    2015-12-01

    Subsurface system behavior is driven and controlled by the interplay of physical, chemical, and biological processes which occur at multiple temporal and spatial scales. Capabilities to monitor, understand and predict this behavior in an effective and timely manner are needed for both scientific purposes and for effective subsurface system management. Such capabilities require three elements: Models, Data and an enabling cyberinfrastructure, which allow users to use these models and data in an effective manner. Under a DOE Office of Science funded STTR award Subsurface Insights and LBNL have designed and implemented a cloud based predictive assimilation framework (PAF) which automatically ingests, controls quality and stores heterogeneous physical and chemical subsurface data and processes these data using different inversion and modeling codes to provide information on the current state and evolution of subsurface systems. PAF is implemented as a modular cloud based software application with five components: (1) data acquisition, (2) data management, (3) data assimilation and processing, (4) visualization and result delivery and (5) orchestration. Serverside PAF uses ZF2 (a PHP web application framework) and Python and both open source (ODM2) and in house developed data models. Clientside PAF uses CSS and JS to allow for interactive data visualization and analysis. Client side modularity (which allows for a responsive interface) of the system is achieved by implementing each core capability of PAF (such as data visualization, user configuration and control, electrical geophysical monitoring and email/SMS alerts on data streams) as a SPA (Single Page Application). One of the recent enhancements is the full integration of a number of flow and mass transport and parameter estimation codes (e.g., MODFLOW, MT3DMS, PHT3D, TOUGH, PFLOTRAN) in this framework. This integration allows for autonomous and user controlled modeling of hydrological and geochemical processes. In our presentation we will discuss our software architecture and present the results of using these codes and the overall developed performance of our framework using hydrological, geochemical and geophysical data from the LBNL SFA2 Rifle field site.

  19. Automated sample-changing robot for solution scattering experiments at the EMBL Hamburg SAXS station X33

    PubMed Central

    Round, A. R.; Franke, D.; Moritz, S.; Huchler, R.; Fritsche, M.; Malthan, D.; Klaering, R.; Svergun, D. I.; Roessle, M.

    2008-01-01

    There is a rapidly increasing interest in the use of synchrotron small-angle X-ray scattering (SAXS) for large-scale studies of biological macromolecules in solution, and this requires an adequate means of automating the experiment. A prototype has been developed of an automated sample changer for solution SAXS, where the solutions are kept in thermostatically controlled well plates allowing for operation with up to 192 samples. The measuring protocol involves controlled loading of protein solutions and matching buffers, followed by cleaning and drying of the cell between measurements. The system was installed and tested at the X33 beamline of the EMBL, at the storage ring DORIS-III (DESY, Hamburg), where it was used by over 50 external groups during 2007. At X33, a throughput of approximately 12 samples per hour, with a failure rate of sample loading of less than 0.5%, was observed. The feedback from users indicates that the ease of use and reliability of the user operation at the beamline were greatly improved compared with the manual filling mode. The changer is controlled by a client–server-based network protocol, locally and remotely. During the testing phase, the changer was operated in an attended mode to assess its reliability and convenience. Full integration with the beamline control software, allowing for automated data collection of all samples loaded into the machine with remote control from the user, is presently being implemented. The approach reported is not limited to synchrotron-based SAXS but can also be used on laboratory and neutron sources. PMID:25484841

  20. Remote operation of the Black Knight unmanned ground combat vehicle

    NASA Astrophysics Data System (ADS)

    Valois, Jean-Sebastien; Herman, Herman; Bares, John; Rice, David P.

    2008-04-01

    The Black Knight is a 12-ton, C-130 deployable Unmanned Ground Combat Vehicle (UGCV). It was developed to demonstrate how unmanned vehicles can be integrated into a mechanized military force to increase combat capability while protecting Soldiers in a full spectrum of battlefield scenarios. The Black Knight is used in military operational tests that allow Soldiers to develop the necessary techniques, tactics, and procedures to operate a large unmanned vehicle within a mechanized military force. It can be safely controlled by Soldiers from inside a manned fighting vehicle, such as the Bradley Fighting Vehicle. Black Knight control modes include path tracking, guarded teleoperation, and fully autonomous movement. Its state-of-the-art Autonomous Navigation Module (ANM) includes terrain-mapping sensors for route planning, terrain classification, and obstacle avoidance. In guarded teleoperation mode, the ANM data, together with automotive dials and gages, are used to generate video overlays that assist the operator for both day and night driving performance. Remote operation of various sensors also allows Soldiers to perform effective target location and tracking. This document covers Black Knight's system architecture and includes implementation overviews of the various operation modes. We conclude with lessons learned and development goals for the Black Knight UGCV.

  1. Reducing Actuator Requirements in Continuum Robots Through Optimized Cable Routing.

    PubMed

    Case, Jennifer C; White, Edward L; SunSpiral, Vytas; Kramer-Bottiglio, Rebecca

    2018-02-01

    Continuum manipulators offer many advantages compared to their rigid-linked counterparts, such as increased degrees of freedom and workspace volume. Inspired by biological systems, such as elephant trunks and octopus tentacles, many continuum manipulators are made of multiple segments that allow large-scale deformations to be distributed throughout the body. Most continuum manipulators currently control each segment individually. For example, a planar cable-driven system is typically controlled by a pair of cables for each segment, which implies two actuators per segment. In this article, we demonstrate how highly coupled crossing cable configurations can reduce both actuator count and actuator torque requirements in a planar continuum manipulator, while maintaining workspace reachability and manipulability. We achieve highly coupled actuation by allowing cables to cross through the manipulator to create new cable configurations. We further derive an analytical model to predict the underactuated manipulator workspace and experimentally verify the model accuracy with a physical system. We use this model to compare crossing cable configurations to the traditional cable configuration using workspace performance metrics. Our work here focuses on a simplified planar robot, both in simulation and in hardware, with the goal of extending this to spiraling-cable configurations on full 3D continuum robots in future work.

  2. Reactive Collision Avoidance Algorithm

    NASA Technical Reports Server (NTRS)

    Scharf, Daniel; Acikmese, Behcet; Ploen, Scott; Hadaegh, Fred

    2010-01-01

    The reactive collision avoidance (RCA) algorithm allows a spacecraft to find a fuel-optimal trajectory for avoiding an arbitrary number of colliding spacecraft in real time while accounting for acceleration limits. In addition to spacecraft, the technology can be used for vehicles that can accelerate in any direction, such as helicopters and submersibles. In contrast to existing, passive algorithms that simultaneously design trajectories for a cluster of vehicles working to achieve a common goal, RCA is implemented onboard spacecraft only when an imminent collision is detected, and then plans a collision avoidance maneuver for only that host vehicle, thus preventing a collision in an off-nominal situation for which passive algorithms cannot. An example scenario for such a situation might be when a spacecraft in the cluster is approaching another one, but enters safe mode and begins to drift. Functionally, the RCA detects colliding spacecraft, plans an evasion trajectory by solving the Evasion Trajectory Problem (ETP), and then recovers after the collision is avoided. A direct optimization approach was used to develop the algorithm so it can run in real time. In this innovation, a parameterized class of avoidance trajectories is specified, and then the optimal trajectory is found by searching over the parameters. The class of trajectories is selected as bang-off-bang as motivated by optimal control theory. That is, an avoiding spacecraft first applies full acceleration in a constant direction, then coasts, and finally applies full acceleration to stop. The parameter optimization problem can be solved offline and stored as a look-up table of values. Using a look-up table allows the algorithm to run in real time. Given a colliding spacecraft, the properties of the collision geometry serve as indices of the look-up table that gives the optimal trajectory. For multiple colliding spacecraft, the set of trajectories that avoid all spacecraft is rapidly searched on-line. The optimal avoidance trajectory is implemented as a receding-horizon model predictive control law. Therefore, at each time step, the optimal avoidance trajectory is found and the first time step of its acceleration is applied. At the next time step of the control computer, the problem is re-solved and the new first time step is again applied. This continual updating allows the RCA algorithm to adapt to a colliding spacecraft that is making erratic course changes.

  3. Invasive plants may promote predator-mediated feedback that inhibits further invasion

    PubMed Central

    Smith, Lauren M; Schmitz, Oswald J

    2015-01-01

    Understanding the impacts of invasive species requires placing invasion within a full community context. Plant invaders are often considered in the context of herbivores that may drive invasion by avoiding invaders while consuming natives (enemy escape), or inhibit invasion by consuming invaders (biotic resistance). However, predators that attack those herbivores are rarely considered as major players in invasion. Invasive plants often promote predators, generally by providing improved habitat. Here, we show that predator-promoting invaders may initiate a negative feedback loop that inhibits invasion. By enabling top-down control of herbivores, predator-promoting invaders lose any advantage gained through enemy escape, indirectly favoring natives. In cases where palatable invaders encounter biotic resistance, predator promotion may allow an invader to persist, but not dominate. Overall, results indicate that placing invaders in a full community context may reveal reduced impacts of invaders compared to expectations based on simple plant–plant or plant–herbivore subsystems. PMID:26120430

  4. Modeling a full-scale primary sedimentation tank using artificial neural networks.

    PubMed

    Gamal El-Din, A; Smith, D W

    2002-05-01

    Modeling the performance of full-scale primary sedimentation tanks has been commonly done using regression-based models, which are empirical relationships derived strictly from observed daily average influent and effluent data. Another approach to model a sedimentation tank is using a hydraulic efficiency model that utilizes tracer studies to characterize the performance of model sedimentation tanks based on eddy diffusion. However, the use of hydraulic efficiency models to predict the dynamic behavior of a full-scale sedimentation tank is very difficult as the development of such models has been done using controlled studies of model tanks. In this paper, another type of model, namely artificial neural network modeling approach, is used to predict the dynamic response of a full-scale primary sedimentation tank. The neuralmodel consists of two separate networks, one uses flow and influent total suspended solids data in order to predict the effluent total suspended solids from the tank, and the other makes predictions of the effluent chemical oxygen demand using data of the flow and influent chemical oxygen demand as inputs. An extensive sampling program was conducted in order to collect a data set to be used in training and validating the networks. A systematic approach was used in the building process of the model which allowed the identification of a parsimonious neural model that is able to learn (and not memorize) from past data and generalize very well to unseen data that were used to validate the model. Theresults seem very promising. The potential of using the model as part of a real-time process control system isalso discussed.

  5. DNA hairpins promote temperature controlled cargo encapsulation in a truncated octahedral nanocage structure family

    NASA Astrophysics Data System (ADS)

    Franch, Oskar; Iacovelli, Federico; Falconi, Mattia; Juul, Sissel; Ottaviani, Alessio; Benvenuti, Claudia; Biocca, Silvia; Ho, Yi-Ping; Knudsen, Birgitta R.; Desideri, Alessandro

    2016-07-01

    In the present study we investigate the mechanism behind temperature controlled cargo uptake using a truncated octahedral DNA cage scaffold functionalized with one, two, three or four hairpin forming DNA strands inserted in one corner of the structure. This investigation was inspired by our previous demonstration of temperature controlled reversible encapsulation of the cargo enzyme, horseradish peroxidase, in the cage with four hairpin forming strands. However, in this previous study the mechanism of cargo uptake was not directly addressed (Juul, et al., Temperature-Controlled Encapsulation and Release of an Active Enzyme in the Cavity of a Self-Assembled DNA Nanocage, ACS Nano, 2013, 7, 9724-9734). In the present study we use a combination of molecular dynamics simulations and in vitro analyses to unravel the mechanism of cargo uptake in hairpin containing DNA cages. We find that two hairpin forming strands are necessary and sufficient to facilitate efficient cargo uptake, which argues against a full opening-closing of one corner of the structure being responsible for encapsulation. Molecular dynamics simulations were carried out to evaluate the atomistic motions responsible for encapsulation and showed that the two hairpin forming strands facilitated extension of at least one of the face surfaces of the cage scaffold, allowing entrance of the cargo protein into the cavity of the structure. Hence, the presented data demonstrate that cargo uptake does not involve a full opening of the structure. Rather, the uptake mechanism represents a feature of increased flexibility integrated in this nanocage structure upon the addition of at least two hairpin-forming strands.In the present study we investigate the mechanism behind temperature controlled cargo uptake using a truncated octahedral DNA cage scaffold functionalized with one, two, three or four hairpin forming DNA strands inserted in one corner of the structure. This investigation was inspired by our previous demonstration of temperature controlled reversible encapsulation of the cargo enzyme, horseradish peroxidase, in the cage with four hairpin forming strands. However, in this previous study the mechanism of cargo uptake was not directly addressed (Juul, et al., Temperature-Controlled Encapsulation and Release of an Active Enzyme in the Cavity of a Self-Assembled DNA Nanocage, ACS Nano, 2013, 7, 9724-9734). In the present study we use a combination of molecular dynamics simulations and in vitro analyses to unravel the mechanism of cargo uptake in hairpin containing DNA cages. We find that two hairpin forming strands are necessary and sufficient to facilitate efficient cargo uptake, which argues against a full opening-closing of one corner of the structure being responsible for encapsulation. Molecular dynamics simulations were carried out to evaluate the atomistic motions responsible for encapsulation and showed that the two hairpin forming strands facilitated extension of at least one of the face surfaces of the cage scaffold, allowing entrance of the cargo protein into the cavity of the structure. Hence, the presented data demonstrate that cargo uptake does not involve a full opening of the structure. Rather, the uptake mechanism represents a feature of increased flexibility integrated in this nanocage structure upon the addition of at least two hairpin-forming strands. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01806h

  6. Nonlinear Dynamic Inversion Baseline Control Law: Flight-Test Results for the Full-scale Advanced Systems Testbed F/A-18 Airplane

    NASA Technical Reports Server (NTRS)

    Miller, Christopher J.

    2011-01-01

    A model reference nonlinear dynamic inversion control law has been developed to provide a baseline controller for research into simple adaptive elements for advanced flight control laws. This controller has been implemented and tested in a hardware-in-the-loop simulation and in flight. The flight results agree well with the simulation predictions and show good handling qualities throughout the tested flight envelope with some noteworthy deficiencies highlighted both by handling qualities metrics and pilot comments. Many design choices and implementation details reflect the requirements placed on the system by the nonlinear flight environment and the desire to keep the system as simple as possible to easily allow the addition of the adaptive elements. The flight-test results and how they compare to the simulation predictions are discussed, along with a discussion about how each element affected pilot opinions. Additionally, aspects of the design that performed better than expected are presented, as well as some simple improvements that will be suggested for follow-on work.

  7. Convergence of Vehicle and Infrastructure Data for Traffic and Demand Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Stanley E.

    The increasing availability of highly granular, vehicle trajectory data combined with ever increasing stores of roadway sensor data has provided unparalleled observability into the operation of our urban roadway networks. These data sources are quickly moving from research and prototype environments into full-scale commercial deployment and data offerings. The observability gained allows for increased control opportunities to enhance transportation mobility, safety and energy efficiency. The National Renewable Energy Laboratory (NREL) is involved in three initiatives to leverage these data for positive outcomes: 1) In 2015 NREL, in cooperation with industry and university partners, was awarded an ARPA-E research grant tomore » research a control architecture to incentivize individual travelers toward more sustainable travel behavior. Based on real-time data on the traveler's destination and state of the system, the traveler is presented with route and/or mode choices and offered incentives to accept sustainable alternatives over less-sustainable ones. The project tests the extent to which small incentives can influence, or tip the balance toward more sustainable travel behavior. 2) Although commercial sources of travel time and speed have emerged in recent years based on vehicle probe data, volume estimates continue to rely primarily on historical count data factored for the time of day, day of week, and season of year. Real-time volume flows would enable better tools, simulation in the loop, and ultimately more effective control outcomes. NREL in cooperation with the University of Maryland and industry traffic data providers (INRIX, HERE and TomTom), are attempting to accelerate the timeframe to a viable real-time vehicle volume data feed based on probe data. 3) Signal control on urban arterials for years has had to rely on models rather than measured data to assess performance. High-resolution controller data and low-cost re-identification data now allows for direct measurement of the quality of progression along a corridor. Though still requiring an investment in equipment and communications, these data sources are transforming traffic signal management to a data driven, performance management basis. Ever increasing availability of granular GPS trace data from automobiles may allow for assessment of traffic signal performance, allowing for signal optimization while minimizing the investment in additional sensors and communication infrastructure.« less

  8. Synchronization of video recording and laser pulses including background light suppression

    NASA Technical Reports Server (NTRS)

    Kalshoven, Jr., James E. (Inventor); Tierney, Jr., Michael (Inventor); Dabney, Philip W. (Inventor)

    2004-01-01

    An apparatus for and a method of triggering a pulsed light source, in particular a laser light source, for predictable capture of the source by video equipment. A frame synchronization signal is derived from the video signal of a camera to trigger the laser and position the resulting laser light pulse in the appropriate field of the video frame and during the opening of the electronic shutter, if such shutter is included in the camera. Positioning of the laser pulse in the proper video field allows, after recording, for the viewing of the laser light image with a video monitor using the pause mode on a standard cassette-type VCR. This invention also allows for fine positioning of the laser pulse to fall within the electronic shutter opening. For cameras with externally controllable electronic shutters, the invention provides for background light suppression by increasing shutter speed during the frame in which the laser light image is captured. This results in the laser light appearing in one frame in which the background scene is suppressed with the laser light being uneffected, while in all other frames, the shutter speed is slower, allowing for the normal recording of the background scene. This invention also allows for arbitrary (manual or external) triggering of the laser with full video synchronization and background light suppression.

  9. 40 CFR 82.12 - Transfers of allowances for class I controlled substances.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... § 82.12 Transfers of allowances for class I controlled substances. (a) Inter-company transfers. (1) Until January 1, 1996, for all class I controlled substances, except for Group VI, and until January 1... amount of the transferor's consumption allowances or production allowances, and effective January 1, 1995...

  10. Improved Dual-Luciferase Reporter Assays for Nuclear Receptors

    PubMed Central

    Paguio, Aileen; Stecha, Pete; Wood, Keith V; Fan, Frank

    2010-01-01

    Nuclear receptors play important roles in many cellular functions through control of gene transcription. It is also a large target class for drug discovery. Luciferase reporter assays are frequently used to study nuclear receptor function because of their wide dynamic range, low endogenous activity, and ease of use. Recent improvements of luciferase genes and vectors have further enhanced their utilities. Here we applied these improvements to two reporter formats for studying nuclear receptors. The first assay contains a Murine Mammary Tumor Virus promoter upstream of a destabilized luciferase. The presence of response elements for nuclear hormone receptor in this promoter allows the studies of endogenous and/or exogenous full length receptors. The second assay contains a ligand binding domain (LBD) of a nuclear receptor fused to the GAL4 DNA binding domain (DBD) on one vector and multiple Gal4 Upstream Activator Sequences (UAS) upstream of luciferase reporter on another vector. We showed that codon optimization of luciferase reporter genes increased expression levels in conjunction with the incorporation of protein destabilizing sequences into luciferase led to a larger assay dynamic range in both formats. The optimum number of UAS to generate the best response was determined. The expression vector for nuclear receptor LBD/GAL4 DBD fusion also constitutively expresses a Renilla luciferase-neoR fusion protein, which provides selection capability (G418 resistance, neoR) as well as an internal control (Renilla luciferase). This dual-luciferase format allowed detecting compound cytotoxicity or off-target change in expression during drug screening, therefore improved data quality. These luciferase reporter assays provided better research and drug discovery tools for studying the functions of full length nuclear receptors and ligand binding domains. PMID:21687560

  11. VOC and air toxics control using biofiltration: 2 full-scale system case studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fucich, W.J.; Togna, A.P.; Loudon, R.E.

    1997-12-31

    Industry continuous to search for innovative air treatment technologies to cost effectively meet the stringent requirements of the CAAA. High volume process exhaust streams contaminated with dilute concentrations of VOCs and HAPs are an especially challenging problem. Biological treatment is an option that must be evaluated with the traditional control technologies (chemical scrubbing, condensation, adsorption, thermal oxidation, etc.) because of the low operating costs and the system is environmentally friendly. In the United States, biofiltration is considered an emerging technology, however, full-scale biofiltration systems are now successfully operating in two rigorous services. At Nylonge Corporation, a biofilter is safely andmore » efficiently degrading CS{sub 2} and H{sub 2}S vapor emissions. The ABTco system is successfully treating the target compounds, methanol and formaldehyde, in a press exhaust containing inert particulate and semi-volatiles. These systems are both based on a unique, patented modular design. The modular concept allows the system to be easily installed resulting in construction cost minimization and maintaining critical project schedules. The modular system offers flexibility because the biofilter is easily expanded to accommodate future plant growth. The modular design benefits the end user because individual modules or biofilter sections can be isolated for service and inspection while the biofilter system stays on-line. An up-flow configuration and the patented irrigation system allow biofilters to be used on the most difficult services. In the case of Nylonge, the biofilter is handling the sulfuric acid generated during the degradation of CS{sub 2} and H{sub 2}S vapors. At ABTco, stable operation is achieved in a stream containing particulates and semi-volatiles.« less

  12. A novel, integrated forensic microdevice on a rotation-driven platform: Buccal swab to STR product in less than 2 h.

    PubMed

    Cox, Jordan O; DeCarmen, Teresa Sikes; Ouyang, Yiwen; Strachan, Briony; Sloane, Hillary; Connon, Cathey; Gibson, Kemper; Jackson, Kimberly; Landers, James P; Cruz, Tracey Dawson

    2016-12-01

    This work describes the development of a novel microdevice for forensic DNA processing of reference swabs. This microdevice incorporates an enzyme-based assay for DNA preparation, which allows for faster processing times and reduced sample handling. Infrared-mediated PCR (IR-PCR) is used for STR amplification using a custom reaction mixture, allowing for amplification of STR loci in 45 min while circumventing the limitations of traditional block thermocyclers. Uniquely positioned valves coupled with a simple rotational platform are used to exert fluidic control, eliminating the need for bulky external equipment. All microdevices were fabricated using laser ablation and thermal bonding of PMMA layers. Using this microdevice, the enzyme-mediated DNA liberation module produced DNA yields similar to or higher than those produced using the traditional (tube-based) protocol. Initial microdevice IR-PCR experiments to test the amplification module and reaction (using Phusion Flash/SpeedSTAR) generated near-full profiles that suffered from interlocus peak imbalance and poor adenylation (significant -A). However, subsequent attempts using KAPA 2G and Pfu Ultra polymerases generated full STR profiles with improved interlocus balance and the expected adenylated product. A fully integrated run designed to test microfluidic control successfully generated CE-ready STR amplicons in less than 2 h (<1 h of hands-on time). Using this approach, high-quality STR profiles were developed that were consistent with those produced using conventional DNA purification and STR amplification methods. This method is a smaller, more elegant solution than current microdevice methods and offers a cheaper, hands-free, closed-system alternative to traditional forensic methods. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Preventive doping control screening analysis of prohibited substances in human urine using rapid-resolution liquid chromatography/high-resolution time-of-flight mass spectrometry.

    PubMed

    Vonaparti, A; Lyris, E; Angelis, Y S; Panderi, I; Koupparis, M; Tsantili-Kakoulidou, A; Peters, R J B; Nielen, M W F; Georgakopoulos, C

    2010-06-15

    Unification of the screening protocols for a wide range of doping agents has become an important issue for doping control laboratories. This study presents the development and validation of a generic liquid chromatography/time-of-flight mass spectrometry (LC/TOFMS) screening method of 241 small molecule analytes from various categories of prohibited substances (stimulants, narcotics, diuretics, beta(2)-agonists, beta-blockers, hormone antagonists and modulators, glucocorticosteroids and anabolic agents). It is based on a single-step liquid-liquid extraction of hydrolyzed urine and the use of a rapid-resolution liquid chromatography/high-resolution time-of-flight mass spectrometric system acquiring continuous full scan data. Electrospray ionization in the positive mode was used. Validation parameters consisted of identification capability, limit of detection, specificity, ion suppression, extraction recovery, repeatability and mass accuracy. Detection criteria were established on the basis of retention time reproducibility and mass accuracy. The suitability of the methodology for doping control was demonstrated with positive urine samples. The preventive role of the method was proved by the case where full scan acquisition with accurate mass measurement allowed the retrospective reprocessing of acquired data from past doping control samples for the detection of a designer drug, the stimulant 4-methyl-2-hexanamine, which resulted in re-reporting a number of stored samples as positives for this particular substance, when, initially, they had been reported as negatives. Copyright (c) 2010 John Wiley & Sons, Ltd.

  14. State Event Models for the Formal Analysis of Human-Machine Interactions

    NASA Technical Reports Server (NTRS)

    Combefis, Sebastien; Giannakopoulou, Dimitra; Pecheur, Charles

    2014-01-01

    The work described in this paper was motivated by our experience with applying a framework for formal analysis of human-machine interactions (HMI) to a realistic model of an autopilot. The framework is built around a formally defined conformance relation called "fullcontrol" between an actual system and the mental model according to which the system is operated. Systems are well-designed if they can be described by relatively simple, full-control, mental models for their human operators. For this reason, our framework supports automated generation of minimal full-control mental models for HMI systems, where both the system and the mental models are described as labelled transition systems (LTS). The autopilot that we analysed has been developed in the NASA Ames HMI prototyping tool ADEPT. In this paper, we describe how we extended the models that our HMI analysis framework handles to allow adequate representation of ADEPT models. We then provide a property-preserving reduction from these extended models to LTSs, to enable application of our LTS-based formal analysis algorithms. Finally, we briefly discuss the analyses we were able to perform on the autopilot model with our extended framework.

  15. Design and implementation of a training strategy in chronic stroke with an arm robotic exoskeleton.

    PubMed

    Frisoli, Antonio; Sotgiu, Edoardo; Procopio, Caterina; Bergamasco, Massimo; Rossi, Bruno; Chisari, Carmelo

    2011-01-01

    The distinguishing features of active exoskeletons are the capability of guiding arm movement at the level of the full kinematic chain of the human arm, and training full 3D spatial movements. We have specifically developed a PD sliding mode control for upper limb rehabilitation with gain scheduling for providing "assistance as needed", according to the force capability of the patient, and an automatic measurement of the impaired arm joint torques, to evaluate the hypertonia associated to the movement during the execution of the training exercise. Two different training tasks in Virtual Reality were devised, that make use of the above control, and allow to make a performance based evaluation of patient's motor status. The PERCRO L-Exos (Light-Exoskeleton) was used to evaluate the proposed algorithms and training exercises in two clinical case studies of patients with chronic stroke, that performed 6 weeks of robotic assisted training. Clinical evaluation (Fugl-Meyer Scale, Modified Ashworth Scale, Bimanual Activity Test) was conducted before and after treatment and compared to the scores and the quantitative indices, such as task time, position/joint error and resistance torques, associated to the training exercises. © 2011 IEEE

  16. Dual-frequency ultrasound focal therapy for MRI-guided transurethral treatment of the prostate: Study in gel phantom

    NASA Astrophysics Data System (ADS)

    N'Djin, W. Apoutou; Mougenot, Charles; Kobelevskiy, Ilya; Ramsay, Elizabeth; Bronskill, Michael; Chopra, Rajiv

    2012-11-01

    Ultrasound thermal therapy of localized prostate cancer offers a minimally-invasive non-ionizing alternative [1-3] to surgery and radiotherapy. MRI-controlled transurethral ultrasound prostate therapy [4-6] has previously been investigated in a pilot human feasibility study [7], by treating a small sub-volume of prostate tissue. In this study, the feasibility of transurethral dual-frequency ultrasound focal therapy has been investigated in gel phantom. A database of pelvic anatomical models of human prostate cancer patients have been created using MR clinical images. The largest prostate boundary (47 cm3) was used to fabricate an anatomical gel phantom which included various MR characteristics to mimic prostate tissues, 4 localized tumors and surrounding prostate tissues. A 9-element transurethral ultrasound applicator working in dual-frequency mode (f = 4.6/14.5 MHz) was evaluated to heat: (i) the entire prostate volume (Full prostate treatment strategy), (ii) a prostate region restricted to tumors (Focal therapy). Acoustic power of each element and rotation rate of the device were adjusted in realtime based on MR-thermometry feedback control (nine thermal slices updated every 6.2s). Experiments have been performed using dual-frequency ultrasound exposures (surface Pmax: 20W.cm-2). (i) For full prostate heating, 7 elements of the device were used to cover the entire prostate length. The heating process was completed within 35 min. Ultrasound exposures at the fundamental frequency allowed full heating of the largest prostate radii (>18 mm), while exposures at the 3rd harmonic ensured homogeneous treatment of the smallest radii. Undertreated and overtreated regions represented respectively 2% and 17% of the prostate volume. (ii) For focal therapy, the target region was optimized to maintain safe regions in the prostate and to cover all tumor-mimics. Only 5 ultrasound elements were used to treat successfully all tumor-mimics within 26 min. Undertreated and overtreated regions each represented 7% of the prostate volume. MRI-guided transurethral ultrasound procedure enables full treatment and focal therapy in human prostate geometry. Prostate volume heating was fast compared to standard HIFU prostate treatments. Dual-frequency ultrasound exposures allowed optimal heat deposition in all prostate regions. The focal therapy strategy is promising as regard to safety and could contribute to enhance the post-treatment autonomy of the patient.

  17. Translational control of a graphically simulated robot arm by kinematic rate equations that overcome elbow joint singularity

    NASA Technical Reports Server (NTRS)

    Barker, L. K.; Houck, J. A.; Carzoo, S. W.

    1984-01-01

    An operator commands a robot hand to move in a certain direction relative to its own axis system by specifying a velocity in that direction. This velocity command is then resolved into individual joint rotational velocities in the robot arm to effect the motion. However, the usual resolved-rate equations become singular when the robot arm is straightened. To overcome this elbow joint singularity, equations were developed which allow continued translational control of the robot hand even though the robot arm is (or is nearly) fully extended. A feature of the equations near full arm extension is that an operator simply extends and retracts the robot arm to reverse the direction of the elbow bend (difficult maneuver for the usual resolved-rate equations). Results show successful movement of a graphically simulated robot arm.

  18. Implementing of lognormal humidity and cloud-related control variables for the NCEP GSI hybrid EnVAR Assimilation scheme.

    NASA Astrophysics Data System (ADS)

    Fletcher, S. J.; Kleist, D.; Ide, K.

    2017-12-01

    As the resolution of operational global numerical weather prediction system approach the meso-scale, then the assumption of Gaussianity for the errors at these scales may not valid. However, it is also true that synoptic variables that are positive definite in behavior, for example humidity, cannot be optimally analyzed with a Gaussian error structure, where the increment could force the full field to go negative. In this presentation we present the initial work of implementing a mixed Gaussian-lognormal approximation for the temperature and moisture variable in both the ensemble and variational component of the NCEP GSI hybrid EnVAR. We shall also lay the foundation for the implementation of the lognormal approximation to cloud related control variables to allow for a possible more consistent assimilation of cloudy radiances.

  19. High-performance execution of psychophysical tasks with complex visual stimuli in MATLAB

    PubMed Central

    Asaad, Wael F.; Santhanam, Navaneethan; McClellan, Steven

    2013-01-01

    Behavioral, psychological, and physiological experiments often require the ability to present sensory stimuli, monitor and record subjects' responses, interface with a wide range of devices, and precisely control the timing of events within a behavioral task. Here, we describe our recent progress developing an accessible and full-featured software system for controlling such studies using the MATLAB environment. Compared with earlier reports on this software, key new features have been implemented to allow the presentation of more complex visual stimuli, increase temporal precision, and enhance user interaction. These features greatly improve the performance of the system and broaden its applicability to a wider range of possible experiments. This report describes these new features and improvements, current limitations, and quantifies the performance of the system in a real-world experimental setting. PMID:23034363

  20. Gridded Model Information Support System (GMISS) user's guide. Volume 3. Model-concentration data-retrieval subsystem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Gridded Model Information Support System (GMISS) is a data base management system for selected Regional Oxidant Model (ROM) input data and species concentrations produced by gridded photochemical air pollution models. The Model Concentration Data Retrieval Subsystem allows State and local air pollution control agencies to retrieve these hourly data for use in support of their regulatory programs. These hourly data may be used to calculate initial and boundary conditions for the Empirical Kinetics Modeling Approach (EKMA). They may be used for other modeling application needs as well as to support evaluation of regional emission controls strategies. Both temporal andmore » spatial subsets of the data may be retrieved. The document describes how to invoke and execute the Model Concentration Data Retrieval Subsystem using the full screen menus.« less

  1. Optical trapping and control of nanoparticles inside evacuated hollow core photonic crystal fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grass, David, E-mail: david.grass@univie.ac.at; Fesel, Julian; Hofer, Sebastian G.

    2016-05-30

    We demonstrate an optical conveyor belt for levitated nanoparticles over several centimeters inside both air-filled and evacuated hollow-core photonic crystal fibers (HCPCF). Detection of the transmitted light field allows three-dimensional read-out of the particle center-of-mass motion. An additional laser enables axial radiation pressure based feedback cooling over the full fiber length. We show that the particle dynamics is a sensitive local probe for characterizing the optical intensity profile inside the fiber as well as the pressure distribution along the fiber axis. In contrast to some theoretical predictions, we find a linear pressure dependence inside the HCPCF, extending over three ordersmore » of magnitude from 0.2 mbar to 100 mbar. A targeted application is the controlled delivery of nanoparticles from ambient pressure into medium vacuum.« less

  2. Aeroservoelastic Wind-Tunnel Tests of a Free-Flying, Joined-Wing SensorCraft Model for Gust Load Alleviation

    NASA Technical Reports Server (NTRS)

    Scott, Robert C.; Castelluccio, Mark A.; Coulson, David A.; Heeg, Jennifer

    2011-01-01

    A team comprised of the Air Force Research Laboratory (AFRL), Boeing, and the NASA Langley Research Center conducted three aeroservoelastic wind-tunnel tests in the Transonic Dynamics Tunnel to demonstrate active control technologies relevant to large, exible vehicles. In the first of these three tests, a full-span, aeroelastically scaled, wind-tunnel model of a joined-wing SensorCraft vehicle was mounted to a force balance to acquire a basic aerodynamic data set. In the second and third tests, the same wind-tunnel model was mated to a new, two-degree-of-freedom, beam mount. This mount allowed the full-span model to translate vertically and pitch. Trimmed flight at -10% static margin and gust load alleviation were successfully demonstrated. The rigid body degrees of freedom required that the model be own in the wind tunnel using an active control system. This risky mode of testing necessitated that a model arrestment system be integrated into the new mount. The safe and successful completion of these free-flying tests required the development and integration of custom hardware and software. This paper describes the many systems, software, and procedures that were developed as part of this effort. The balance and free ying wind-tunnel tests will be summarized. The design of the trim and gust load alleviation control laws along with the associated results will also be discussed.

  3. Control of noisy quantum systems: Field-theory approach to error mitigation

    NASA Astrophysics Data System (ADS)

    Hipolito, Rafael; Goldbart, Paul M.

    2016-04-01

    We consider the basic quantum-control task of obtaining a target unitary operation (i.e., a quantum gate) via control fields that couple to the quantum system and are chosen to best mitigate errors resulting from time-dependent noise, which frustrate this task. We allow for two sources of noise: fluctuations in the control fields and fluctuations arising from the environment. We address the issue of control-error mitigation by means of a formulation rooted in the Martin-Siggia-Rose (MSR) approach to noisy, classical statistical-mechanical systems. To do this, we express the noisy control problem in terms of a path integral, and integrate out the noise to arrive at an effective, noise-free description. We characterize the degree of success in error mitigation via a fidelity metric, which characterizes the proximity of the sought-after evolution to ones that are achievable in the presence of noise. Error mitigation is then best accomplished by applying the optimal control fields, i.e., those that maximize the fidelity subject to any constraints obeyed by the control fields. To make connection with MSR, we reformulate the fidelity in terms of a Schwinger-Keldysh (SK) path integral, with the added twist that the "forward" and "backward" branches of the time contour are inequivalent with respect to the noise. The present approach naturally and readily allows the incorporation of constraints on the control fields—a useful feature in practice, given that constraints feature in all real experiments. In addition to addressing the noise average of the fidelity, we consider its full probability distribution. The information content present in this distribution allows one to address more complex questions regarding error mitigation, including, in principle, questions of extreme value statistics, i.e., the likelihood and impact of rare instances of the fidelity and how to harness or cope with their influence. We illustrate this MSR-SK reformulation by considering a model system consisting of a single spin-s freedom (with s arbitrary), focusing on the case of 1 /f noise in the weak-noise limit. We discover that optimal error mitigation is accomplished via a universal control field protocol that is valid for all s , from the qubit (i.e., s =1 /2 ) case to the classical (i.e., s →∞ ) limit. In principle, this MSR-SK approach provides a transparent framework for addressing quantum control in the presence of noise for systems of arbitrary complexity.

  4. Developing a control system for ARES 2

    NASA Technical Reports Server (NTRS)

    Fitzsimons, Philip M.

    1992-01-01

    A great deal of analysis and testing is conducted at the NASA Langley Research Center to support the development of safe and reliable helicopter rotor systems. This work is performed by the Rotorcraft Aeroelasticity Group located in the Transonic Dynamics Tunnel (TDT) facility. Over the past two decades a wide variety of tests have been successfully conducted in the TDT and their results have contributed significantly to the understanding of aeromechanical phenomena in rotor systems. This has led to improved tools for analysis and design, and ultimately to the development, of improved rotor systems. The TDT facility is ideally suited for these tests due to its unique ability to use a heavy gas as a working medium. This allows the model to be scaled such that the results obtained may be readily extrapolated to full scale. Until recently, the rotor system to be tested has been mounted on a fixed balance which is attached to the longeron which is attached to the stand through a single pitching degree of freedom. The testbed used is known as the Aeroelastic Rotor Experimental System (ARES 1). In order to extend the experimental capabilities to investigate the full rotor/body dynamic coupling present in a rotorcraft, a very ambitious project has been undertaken to design and construct a six degree of freedom system that can be controlled so as to emulate the inertial characteristics of a prescribed model fuselage. The electronic and mechanical hardware for this system has already been designed and constructed. This system is known ar ARES II. The rotor and its drive system are mounted on the balance which is attached to the longeron via six hydraulic actuators. This six degree of freedom parallel linkage is referred to in the literature as a Stuart Platform. By properly adjusting the length of the hydraulic actuators it is possible to position and orient the balance relative to the longeron. The longeron is attached to the stand via a pitch degree of freedom to allow testing over various forward flight regimes. One major task remaining to complete this testbed is the design and synthesis of a control system. To do this properly requires an understanding of the kinematics and dynamics of the system and robust control design. A brief description of the development of a control design is given.

  5. A four-dimensional virtual hand brain-machine interface using active dimension selection

    NASA Astrophysics Data System (ADS)

    Rouse, Adam G.

    2016-06-01

    Objective. Brain-machine interfaces (BMI) traditionally rely on a fixed, linear transformation from neural signals to an output state-space. In this study, the assumption that a BMI must control a fixed, orthogonal basis set was challenged and a novel active dimension selection (ADS) decoder was explored. Approach. ADS utilizes a two stage decoder by using neural signals to both (i) select an active dimension being controlled and (ii) control the velocity along the selected dimension. ADS decoding was tested in a monkey using 16 single units from premotor and primary motor cortex to successfully control a virtual hand avatar to move to eight different postures. Main results. Following training with the ADS decoder to control 2, 3, and then 4 dimensions, each emulating a grasp shape of the hand, performance reached 93% correct with a bit rate of 2.4 bits s-1 for eight targets. Selection of eight targets using ADS control was more efficient, as measured by bit rate, than either full four-dimensional control or computer assisted one-dimensional control. Significance. ADS decoding allows a user to quickly and efficiently select different hand postures. This novel decoding scheme represents a potential method to reduce the complexity of high-dimension BMI control of the hand.

  6. A four-dimensional virtual hand brain-machine interface using active dimension selection

    PubMed Central

    Rouse, Adam G.

    2018-01-01

    Objective Brain-machine interfaces (BMI) traditionally rely on a fixed, linear transformation from neural signals to an output state-space. In this study, the assumption that a BMI must control a fixed, orthogonal basis set was challenged and a novel active dimension selection (ADS) decoder was explored. Approach ADS utilizes a two stage decoder by using neural signals to both i) select an active dimension being controlled and ii) control the velocity along the selected dimension. ADS decoding was tested in a monkey using 16 single units from premotor and primary motor cortex to successfully control a virtual hand avatar to move to eight different postures. Main Results Following training with the ADS decoder to control 2, 3, and then 4 dimensions, each emulating a grasp shape of the hand, performance reached 93% correct with a bit rate of 2.4 bits/s for eight targets. Selection of eight targets using ADS control was more efficient, as measured by bit rate, than either full four-dimensional control or computer assisted one-dimensional control. Significance ADS decoding allows a user to quickly and efficiently select different hand postures. This novel decoding scheme represents a potential method to reduce the complexity of high-dimension BMI control of the hand. PMID:27171896

  7. A robust momentum management and attitude control system for the space station

    NASA Technical Reports Server (NTRS)

    Speyer, J. L.; Rhee, Ihnseok

    1991-01-01

    A game theoretic controller is synthesized for momentum management and attitude control of the Space Station in the presence of uncertainties in the moments of inertia. Full state information is assumed since attitude rates are assumed to be very assurately measured. By an input-output decomposition of the uncertainty in the system matrices, the parameter uncertainties in the dynamic system are represented as an unknown gain associated with an internal feedback loop (IFL). The input and output matrices associated with the IFL form directions through which the uncertain parameters affect system response. If the quadratic form of the IFL output augments the cost criterion, then enhanced parameter robustness is anticipated. By considering the input and the input disturbance from the IFL as two noncooperative players, a linear-quadratic differential game is constructed. The solution in the form of a linear controller is used for synthesis. Inclusion of the external disturbance torques results in a dynamic feedback controller which consists of conventional PID (proportional integral derivative) control and cyclic disturbance rejection filters. It is shown that the game theoretic design allows large variations in the inertias in directions of importance.

  8. Concept and realization of unmanned aerial system with different modes of operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Czyba, Roman; Szafrański, Grzegorz; Janusz, Wojciech

    2014-12-10

    In this paper we describe the development process of unmanned aerial system, its mechanical components, electronics and software solutions. During the stage of design, we have formulated some necessary requirements for the multirotor vehicle and ground control station in order to build an optimal system which can be used for the reconnaissance missions. Platform is controlled by use of the ground control station (GCS) and has possibility of accomplishing video based observation tasks. In order to fulfill this requirement the on-board payload consists of mechanically stabilized camera augmented with machine vision algorithms to enable object tracking tasks. Novelty of themore » system are four modes of flight, which give full functionality of the developed UAV system. Designed ground control station is consisted not only of the application itself, but also a built-in dedicated components located inside the chassis, which together creates an advanced UAV system supporting the control and management of the flight. Mechanical part of quadrotor is designed to ensure its robustness while meeting objectives of minimizing weight of the platform. Finally the designed electronics allows for implementation of control and estimation algorithms without the needs for their excessive computational optimization.« less

  9. Optical Addressing of Multi-Colour Photochromic Material Mixture for Volumetric Display.

    PubMed

    Hirayama, Ryuji; Shiraki, Atsushi; Naruse, Makoto; Nakamura, Shinichiro; Nakayama, Hirotaka; Kakue, Takashi; Shimobaba, Tomoyoshi; Ito, Tomoyoshi

    2016-08-16

    This is the first study to demonstrate that colour transformations in the volume of a photochromic material (PM) are induced at the intersections of two control light channels, one controlling PM colouration and the other controlling decolouration. Thus, PM colouration is induced by position selectivity, and therefore, a dynamic volumetric display may be realised using these two control lights. Moreover, a mixture of multiple PM types with different absorption properties exhibits different colours depending on the control light spectrum. Particularly, the spectrum management of the control light allows colour-selective colouration besides position selectivity. Therefore, a PM-based, full-colour volumetric display is realised. We experimentally construct a mixture of two PM types and validate the operating principles of such a volumetric display system. Our system is constructed simply by mixing multiple PM types; therefore, the display hardware structure is extremely simple, and the minimum size of a volume element can be as small as the size of a molecule. Volumetric displays can provide natural three-dimensional (3D) perception; therefore, the potential uses of our system include high-definition 3D visualisation for medical applications, architectural design, human-computer interactions, advertising, and entertainment.

  10. Optical Addressing of Multi-Colour Photochromic Material Mixture for Volumetric Display

    NASA Astrophysics Data System (ADS)

    Hirayama, Ryuji; Shiraki, Atsushi; Naruse, Makoto; Nakamura, Shinichiro; Nakayama, Hirotaka; Kakue, Takashi; Shimobaba, Tomoyoshi; Ito, Tomoyoshi

    2016-08-01

    This is the first study to demonstrate that colour transformations in the volume of a photochromic material (PM) are induced at the intersections of two control light channels, one controlling PM colouration and the other controlling decolouration. Thus, PM colouration is induced by position selectivity, and therefore, a dynamic volumetric display may be realised using these two control lights. Moreover, a mixture of multiple PM types with different absorption properties exhibits different colours depending on the control light spectrum. Particularly, the spectrum management of the control light allows colour-selective colouration besides position selectivity. Therefore, a PM-based, full-colour volumetric display is realised. We experimentally construct a mixture of two PM types and validate the operating principles of such a volumetric display system. Our system is constructed simply by mixing multiple PM types; therefore, the display hardware structure is extremely simple, and the minimum size of a volume element can be as small as the size of a molecule. Volumetric displays can provide natural three-dimensional (3D) perception; therefore, the potential uses of our system include high-definition 3D visualisation for medical applications, architectural design, human-computer interactions, advertising, and entertainment.

  11. Robust momentum management and attitude control system for the Space Station

    NASA Technical Reports Server (NTRS)

    Rhee, Ihnseok; Speyer, Jason L.

    1992-01-01

    A game theoretic controller is synthesized for momentum management and attitude control of the Space Station in the presence of uncertainties in the moments of inertia. Full state information is assumed since attitude rates are assumed to be very accurately measured. By an input-output decomposition of the uncertainty in the system matrices, the parameter uncertainties in the dynamic system are represented as an unknown gain associated with an internal feedback loop (IFL). The input and output matrices associated with the IFL form directions through which the uncertain parameters affect system response. If the quadratic form of the IFL output augments the cost criterion, then enhanced parameter robustness is anticipated. By considering the input and the input disturbance from the IFL as two noncooperative players, a linear-quadratic differential game is constructed. The solution in the form of a linear controller is used for synthesis. Inclusion of the external disturbance torques results in a dynamic feedback controller which consists of conventional PID (proportional integral derivative) control and cyclic disturbance rejection filters. It is shown that the game theoretic design allows large variations in the inertias in directions of importance.

  12. Co-morbid depressive disorder is associated with better neurocognitive performance in first episode schizophrenia spectrum.

    PubMed

    Herniman, Sarah E; Cotton, Sue M; Killackey, Eóin; Hester, Robert; Allott, Kelly A

    2018-03-15

    Both major depressive disorder (MDD) and first episode schizophrenia spectrum (FES) are associated with significant neurocognitive deficits. However, it remains unclear whether the neurocognitive deficits in individuals with FES are more severe if there is comorbid depressive disorder. The aim of this study was to compare the neurocognitive profiles between those with and without full-threshold depressive disorder in FES. This study involved secondary analysis of baseline data from a randomized controlled trial of vocational intervention for young people with first-episode psychosis (N = 82; age range: 15-25 years). Those with full-threshold depressive disorder (n = 24) had significantly better information processing speed than those without full-threshold depressive disorder. Severity of depressive symptoms was also associated with better information processing speed. In additional to the cross-sectional design, limitations of this study include the absence of assessing insight as a potential mediator. After the first psychotic episode, it could be speculated that those with better information processing speed may be more likely to develop full-threshold depressive disorder, as their ability to efficiently process information may allow them to be more aware of their situations and environments, and consequently to have greater insight into the devastating consequences of FES. Such novel findings support the examination of full-threshold depressive disorder in relation to neurocognitive performance across illness phases in future work. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Music and the brain - design of an MEG compatible piano.

    PubMed

    Chacon-Castano, Julian; Rathbone, Daniel R; Hoffman, Rachel; Heng Yang; Pantazis, Dimitrios; Yang, Jason; Hornberger, Erik; Hanumara, Nevan C

    2017-07-01

    Magnetoencephalography (MEG) neuroimaging has been used to study subjects' responses when listening to music, but research into the effects of playing music has been limited by the lack of MEG compatible instruments that can operate in a magnetically shielded environment without creating electromagnetic interference. This paper describes the design and preliminary testing of an MEG compatible piano keyboard with 25 full size keys that employs a novel 3-state optical encoder design and electronics to provide realistic velocity-controlled volume modulation. This instrument will allow researchers to study musical performance on a finer timescale than fMRI and enable a range of MEG studies.

  14. A novel spatter detection algorithm based on typical cellular neural network operations for laser beam welding processes

    NASA Astrophysics Data System (ADS)

    Nicolosi, L.; Abt, F.; Blug, A.; Heider, A.; Tetzlaff, R.; Höfler, H.

    2012-01-01

    Real-time monitoring of laser beam welding (LBW) has increasingly gained importance in several manufacturing processes ranging from automobile production to precision mechanics. In the latter, a novel algorithm for the real-time detection of spatters was implemented in a camera based on cellular neural networks. The latter can be connected to the optics of commercially available laser machines leading to real-time monitoring of LBW processes at rates up to 15 kHz. Such high monitoring rates allow the integration of other image evaluation tasks such as the detection of the full penetration hole for real-time control of process parameters.

  15. Fibercore AstroGain fiber: multichannel erbium doped fibers for optical space communications

    NASA Astrophysics Data System (ADS)

    Hill, Mark; Gray, Rebecca; Hankey, Judith; Gillooly, Andy

    2014-03-01

    Fibercore have developed AstroGainTM fiber optimized for multichannel amplifiers used in optical satellite communications and control. The fiber has been designed to take full advantage of the photo-annealing effect that results from pumping in the 980nm region. The proprietary trivalent structure of the core matrix allows optimum recovery following radiation damage to the fiber, whilst also providing a market leading Erbium Doped Fiber Amplifier (EDFA) efficiency. Direct measurements have been taken of amplifier efficiency in a multichannel assembly, which show an effective photo-annealing recovery of up to 100% of the radiation induced attenuation through excitation of point defects.

  16. MAVEN observations of the Mars upper atmosphere, ionosphere, and solar wind interactions

    NASA Astrophysics Data System (ADS)

    Jakosky, Bruce M.

    2017-09-01

    The Mars Atmosphere and Volatile Evolution (MAVEN) mission to Mars has been operating in orbit for more than a full Martian year. Observations are dramatically changing our view of the Mars upper atmosphere system, which includes the upper atmosphere, ionosphere, coupling to the lower atmosphere, magnetosphere, and interactions with the Sun and the solar wind. The data are allowing us to understand the processes controlling the present-day structure of the upper atmosphere and the rates of escape of gas to space. These will tell us the role that escape to space has played in the evolution of the Mars atmosphere and climate.

  17. Collaboration technology and space science

    NASA Technical Reports Server (NTRS)

    Leiner, Barry M.; Brown, R. L.; Haines, R. F.

    1990-01-01

    A summary of available collaboration technologies and their applications to space science is presented as well as investigations into remote coaching paradigms and the role of a specific collaboration tool for distributed task coordination in supporting such teleoperations. The applicability and effectiveness of different communication media and tools in supporting remote coaching are investigated. One investigation concerns a distributed check-list, a computer-based tool that allows a group of people, e.g., onboard crew, ground based investigator, and mission control, to synchronize their actions while providing full flexibility for the flight crew to set the pace and remain on their operational schedule. This autonomy is shown to contribute to morale and productivity.

  18. Concentric transmon qubit featuring fast tunability and site-selective Z coupling

    NASA Astrophysics Data System (ADS)

    Weides, Martin; Braumueller, Jochen; Sandberg, Martin; Vissers, Michael; Schneider, Andre; Schloer, Steffen; Gruenhaupt, Lukas; Rotzinger, Hannes; Marthaler, Michael; Lukashenko, Alexander; Dieter, Amadeus; Ustinov, Alexey; Pappas, David

    We present a planar qubit design based on a superconducting circuit that we call concentric transmon. While employing a simple fabrication process using Al evaporation and lift-off lithography, we observe qubit lifetimes and coherence times in the order of 10 μs. We systematically characterize loss channels such as incoherent dielectric loss, Purcell decay and radiative losses. The implementation of a gradiometric SQUID loop allows for a fast tuning of the qubit transition frequency and therefore for full tomographic control of the quantum circuit. The presented qubit design features a passive direct Z coupling between neighboring qubits, being a pending quest in the field of quantum simulation.

  19. Perioral Rejuvenation With Ablative Erbium Resurfacing.

    PubMed

    Cohen, Joel L

    2015-11-01

    Since the introduction of the scanning full-field erbium laser, misconceptions regarding ablative erbium resurfacing have resulted in its being largely overshadowed by ablative fractional resurfacing. This case report illustrates the appropriateness of full-field erbium ablation for perioral resurfacing. A patient with profoundly severe perioral photodamage etched-in lines underwent full-field ablative perioral resurfacing with an erbium laser (Contour TRL, Sciton Inc., Palo Alto, CA) that allows separate control of ablation and coagulation. The pre-procedure consultations included evaluation of the severity of etched-in lines, and discussion of patient goals, expectations, and appropriate treatment options, as well as a review of patient photos and post-treatment care required. The author generally avoids full-field erbium ablation in patients with Fitzpatrick type IV and above. For each of 2 treatment sessions (separated by approximately 4 months), the patient received (12 cc plain 2% lidodaine) sulcus blocks before undergoing 4 passes with the erbium laser at 150 μ ablation, no coagulation, and then some very focal 30 μ ablation to areas of residual lines still visualized through the pinpoint bleeding. Similarly, full-field ablative resurfacing can be very reliable for significant wrinkles and creping in the lower eyelid skin--where often a single treatment of 80 μ ablation, 50 μ coagulation can lead to a nice improvement. Standardized digital imaging revealed significant improvement in deeply etched rhytides without significant adverse events. For appropriately selected patients requiring perioral (or periorbital) rejuvenation, full-field ablative erbium resurfacing is safe, efficacious and merits consideration.

  20. 40 CFR 82.17 - Apportionment of baseline production allowances for class II controlled substances.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... allowances for class II controlled substances. 82.17 Section 82.17 Protection of Environment ENVIRONMENTAL... Consumption Controls § 82.17 Apportionment of baseline production allowances for class II controlled... 1,759,681 MDA Manufacturing HCFC-22 2,383,835 Solvay Solexis HCFC-142b 6,541,764 [ 74 FR 66446, Dec...

  1. MOSFET Switching Circuit Protects Shape Memory Alloy Actuators

    NASA Technical Reports Server (NTRS)

    Gummin, Mark A.

    2011-01-01

    A small-footprint, full surface-mount-component printed circuit board employs MOSFET (metal-oxide-semiconductor field-effect transistor) power switches to switch high currents from any input power supply from 3 to 30 V. High-force shape memory alloy (SMA) actuators generally require high current (up to 9 A at 28 V) to actuate. SMA wires (the driving element of the actuators) can be quickly overheated if power is not removed at the end of stroke, which can damage the wires. The new analog driver prevents overheating of the SMA wires in an actuator by momentarily removing power when the end limit switch is closed, thereby allowing complex control schemes to be adopted without concern for overheating. Either an integral pushbutton or microprocessor-controlled gate or control line inputs switch current to the actuator until the end switch line goes from logic high to logic low state. Power is then momentarily removed (switched off by the MOSFET). The analog driver is suited to use with nearly any SMA actuator.

  2. Continuously Tunable, Polarization Controlled, Colour Palette Produced from Nanoscale Plasmonic Pixels.

    PubMed

    Balaur, Eugeniu; Sadatnajafi, Catherine; Kou, Shan Shan; Lin, Jiao; Abbey, Brian

    2016-06-17

    Colour filters based on nano-apertures in thin metallic films have been widely studied due to their extraordinary optical transmission and small size. These properties make them prime candidates for use in high-resolution colour displays and high accuracy bio-sensors. The inclusion of polarization sensitive plasmonic features in such devices allow additional control over the electromagnetic field distribution, critical for investigations of polarization induced phenomena. Here we demonstrate that cross-shaped nano-apertures can be used for polarization controlled color tuning in the visible range and apply fundamental theoretical models to interpret key features of the transmitted spectrum. Full color transmission was achieved by fine-tuning the periodicity of the apertures, whilst keeping the geometry of individual apertures constant. We demonstrate this effect for both transverse electric and magnetic fields. Furthermore we have been able to demonstrate the same polarization sensitivity even for nano-size, sub-wavelength sets of arrays, which is paramount for ultra-high resolution compact colour displays.

  3. Continuously Tunable, Polarization Controlled, Colour Palette Produced from Nanoscale Plasmonic Pixels

    PubMed Central

    Balaur, Eugeniu; Sadatnajafi, Catherine; Kou, Shan Shan; Lin, Jiao; Abbey, Brian

    2016-01-01

    Colour filters based on nano-apertures in thin metallic films have been widely studied due to their extraordinary optical transmission and small size. These properties make them prime candidates for use in high-resolution colour displays and high accuracy bio-sensors. The inclusion of polarization sensitive plasmonic features in such devices allow additional control over the electromagnetic field distribution, critical for investigations of polarization induced phenomena. Here we demonstrate that cross-shaped nano-apertures can be used for polarization controlled color tuning in the visible range and apply fundamental theoretical models to interpret key features of the transmitted spectrum. Full color transmission was achieved by fine-tuning the periodicity of the apertures, whilst keeping the geometry of individual apertures constant. We demonstrate this effect for both transverse electric and magnetic fields. Furthermore we have been able to demonstrate the same polarization sensitivity even for nano-size, sub-wavelength sets of arrays, which is paramount for ultra-high resolution compact colour displays. PMID:27312072

  4. A ground track control algorithm for the Topographic Mapping Laser Altimeter (TMLA)

    NASA Technical Reports Server (NTRS)

    Blaes, V.; Mcintosh, R.; Roszman, L.; Cooley, J.

    1993-01-01

    The results of an analysis of an algorithm that will provide autonomous onboard orbit control using orbits determined with Global Positioning System (GPS) data. The algorithm uses the GPS data to (1) compute the ground track error relative to a fixed longitude grid, and (2) determine the altitude adjustment required to correct the longitude error. A program was written on a personal computer (PC) to test the concept for numerous altitudes and values of solar flux using a simplified orbit model including only the J sub 2 zonal harmonic and simple orbit decay computations. The algorithm was then implemented in a precision orbit propagation program having a full range of perturbations. The analysis showed that, even with all perturbations (including actual time histories of solar flux variation), the algorithm could effectively control the spacecraft ground track and yield more than 99 percent Earth coverage in the time required to complete one coverage cycle on the fixed grid (220 to 230 days depending on altitude and overlap allowance).

  5. Observation of optomechanical buckling transitions

    PubMed Central

    Xu, H.; Kemiktarak, U.; Fan, J.; Ragole, S.; Lawall, J.; Taylor, J. M.

    2017-01-01

    Correlated phases of matter provide long-term stability for systems as diverse as solids, magnets and potential exotic quantum materials. Mechanical systems, such as buckling transition spring switches, can have engineered, stable configurations whose dependence on a control variable is reminiscent of non-equilibrium phase transitions. In hybrid optomechanical systems, light and matter are strongly coupled, allowing engineering of rapid changes in the force landscape, storing and processing information, and ultimately probing and controlling behaviour at the quantum level. Here we report the observation of first- and second-order buckling transitions between stable mechanical states in an optomechanical system, in which full control of the nature of the transition is obtained by means of the laser power and detuning. The underlying multiwell confining potential we create is highly tunable, with a sub-nanometre distance between potential wells. Our results enable new applications in photonics and information technology, and may enable explorations of quantum phase transitions and macroscopic quantum tunnelling in mechanical systems. PMID:28248293

  6. Controlling the selective formation of calcium sulfate polymorphs at room temperature.

    PubMed

    Tritschler, Ulrich; Van Driessche, Alexander E S; Kempter, Andreas; Kellermeier, Matthias; Cölfen, Helmut

    2015-03-23

    Calcium sulfate is a naturally abundant and technologically important mineral with a broad scope of applications. However, controlling CaSO4 polymorphism and, with it, its final material properties still represents a major challenge, and to date there is no universal method for the selective production of the different hydrated and anhydrous forms under mild conditions. Herein we report the first successful synthesis of pure anhydrite from solution at room temperature. We precipitated calcium sulfate in alcoholic media at low water contents. Moreover, by adjusting the amount of water in the syntheses, we can switch between the distinct polymorphs and fine-tune the outcome of the reaction, yielding either any desired CaSO4 phase in pure state or binary mixtures with predefined compositions. This concept provides full control over phase selection in CaSO4 mineralization and may allow for the targeted fabrication of corresponding materials for use in various areas. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Field-Effect Control of Graphene-Fullerene Thermoelectric Nanodevices.

    PubMed

    Gehring, Pascal; Harzheim, Achim; Spièce, Jean; Sheng, Yuewen; Rogers, Gregory; Evangeli, Charalambos; Mishra, Aadarsh; Robinson, Benjamin J; Porfyrakis, Kyriakos; Warner, Jamie H; Kolosov, Oleg V; Briggs, G Andrew D; Mol, Jan A

    2017-11-08

    Although it was demonstrated that discrete molecular levels determine the sign and magnitude of the thermoelectric effect in single-molecule junctions, full electrostatic control of these levels has not been achieved to date. Here, we show that graphene nanogaps combined with gold microheaters serve as a testbed for studying single-molecule thermoelectricity. Reduced screening of the gate electric field compared to conventional metal electrodes allows control of the position of the dominant transport orbital by hundreds of meV. We find that the power factor of graphene-fullerene junctions can be tuned over several orders of magnitude to a value close to the theoretical limit of an isolated Breit-Wigner resonance. Furthermore, our data suggest that the power factor of an isolated level is only given by the tunnel coupling to the leads and temperature. These results open up new avenues for exploring thermoelectricity and charge transport in individual molecules and highlight the importance of level alignment and coupling to the electrodes for optimum energy conversion in organic thermoelectric materials.

  8. Measuring Pressure Has a New Standard

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Force-Balanced Piston Gauge (FPG) tests and calibrates instrumentation operating in the low pressure range. The system provides a traceable, primary calibration standard for measuring pressures in the range of near 0 to 15 kPa (2.2 psi) in both gauge and absolute measurement modes. The hardware combines a large area piston-cylinder with a load cell measuring the force resulting from pressures across the piston. The mass of the piston can be tared out, allowing measurement to start from zero. A pressure higher than the measured pressure, which keeps the piston centered, lubricates an innovative conical gap located between the piston and the cylinder, eliminating the need for piston rotation. A pressure controller based on the control of low gas flow automates the pressure control. DHI markets the FPG as an automated primary standard for very low-gauge and absolute pressures. DHI is selling the FPG to high-end metrology laboratories on a case by case basis, with a full commercial release to follow.

  9. DNA origami scaffold for studying intrinsically disordered proteins of the nuclear pore complex.

    PubMed

    Ketterer, Philip; Ananth, Adithya N; Laman Trip, Diederik S; Mishra, Ankur; Bertosin, Eva; Ganji, Mahipal; van der Torre, Jaco; Onck, Patrick; Dietz, Hendrik; Dekker, Cees

    2018-03-02

    The nuclear pore complex (NPC) is the gatekeeper for nuclear transport in eukaryotic cells. A key component of the NPC is the central shaft lined with intrinsically disordered proteins (IDPs) known as FG-Nups, which control the selective molecular traffic. Here, we present an approach to realize artificial NPC mimics that allows controlling the type and copy number of FG-Nups. We constructed 34 nm-wide 3D DNA origami rings and attached different numbers of NSP1, a model yeast FG-Nup, or NSP1-S, a hydrophilic mutant. Using (cryo) electron microscopy, we find that NSP1 forms denser cohesive networks inside the ring compared to NSP1-S. Consistent with this, the measured ionic conductance is lower for NSP1 than for NSP1-S. Molecular dynamics simulations reveal spatially varying protein densities and conductances in good agreement with the experiments. Our technique provides an experimental platform for deciphering the collective behavior of IDPs with full control of their type and position.

  10. Waiting for what comes later: capuchin monkeys show self-control even for nonvisible delayed rewards.

    PubMed

    Perdue, Bonnie M; Bramlett, Jessica L; Evans, Theodore A; Beran, Michael J

    2015-09-01

    Self-control tasks used with nonhuman animals typically involve the choice between an immediate option and a delayed, but more preferred option. However, in many self-control scenarios, not only does the more impulsive option come sooner in time, it is often more concrete than the delayed option. For example, studies have presented children with the option of eating a visible marshmallow immediately, or foregoing it for a better reward that can only be seen later. Thus, the immediately available option is visible and concrete, whereas the delayed option is not visible and more abstract. We tested eight capuchin monkeys to better understand this potential effect by manipulating the visibility of the response options and the visibility of the baiting itself. Monkeys observed two food items (20 or 5 g pieces of banana) each being placed either on top of or inside of one of the two opaque containers attached to a revolving tray apparatus, either in full view of monkeys or occluded by a barrier. Trials ended when monkeys removed a reward from the rotating tray. To demonstrate self-control, monkeys should have allowed the smaller piece of food to pass if the larger piece was forthcoming. Overall, monkeys were successful on the task, allowing a smaller, visible piece of banana to pass from reach in order to access the larger, nonvisible banana piece. This was true even when the entire baiting process took place out of sight of the monkeys. This finding suggests that capuchin monkeys succeed on self-control tasks even when the delayed option is also more abstract than the immediate one-a situation likely faced by primates in everyday life.

  11. Rangeland Condition Monitoring: A New Approach Using Cross-Fence Comparisons of Remotely Sensed Vegetation

    PubMed Central

    Kilpatrick, Adam D.; Lewis, Megan M.; Ostendorf, Bertram

    2015-01-01

    A need exists in arid rangelands for effective monitoring of the impacts of grazing management on vegetation cover. Monitoring methods which utilize remotely-sensed imagery may have comprehensive spatial and temporal sampling, but do not necessarily control for spatial variation of natural variables, such as landsystem, vegetation type, soil type and rainfall. We use the inverse of the red band from Landsat TM satellite imagery to determine levels of vegetation cover in a 22,672km2 area of arid rangeland in central South Australia. We interpret this wealth of data using a cross-fence comparison methodology, allowing us to rank paddocks (fields) in the study region according to effectiveness of grazing management. The cross-fence comparison methodology generates and solves simultaneous equations of the relationship between each paddock and all other paddocks, derived from pairs of cross-fence sample points. We compare this ranking from two image dates separated by six years, during which management changes are known to have taken place. Changes in paddock rank resulting from the cross-fence comparison method show strong correspondence to those predicted by grazing management in this region, with a significant difference between the two common management types; a change from full stocking rate to light 20% stocking regime (Major Stocking Reduction) and maintenance of full 100% stocking regime (Full Stocking Maintained) (P = 0.00000132). While no paddocks had a known increase in stocking rate during the study period, many had a reduction or complete removal in stock numbers, and many also experienced removals of pest species, such as rabbits, and other ecosystem restoration activities. These paddocks generally showed an improvement in rank compared to paddocks where the stocking regime remained relatively unchanged. For the first time, this method allows us to rank non-adjacent paddocks in a rangeland region relative to each other, while controlling for natural spatio-temporal variables such as rainfall, soil type, and vegetation community distributions, due to the nature of the cross-fence experimental design, and the spatially comprehensive data available in satellite imagery. This method provides a potential tool to aid land managers in decision making processes, particularly with regard to stocking rates. PMID:26565801

  12. Full-wave simulations of ICRF heating regimes in toroidal plasma with non-Maxwellian distribution functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertelli, N.; Valeo, E. J.; Green, D. L.

    At the power levels required for significant heating and current drive in magnetically-confined toroidal plasma, modification of the particle distribution function from a Maxwellian shape is likely (Stix 1975 Nucl. Fusion 15 737), with consequent changes in wave propagation and in the location and amount of absorption. In order to study these effects computationally, both the finite-Larmor-radius and the high-harmonic fast wave (HHFW), versions of the full-wave, hot-plasma toroidal simulation code TORIC (Brambilla 1999 Plasma Phys. Control. Fusion 41 1 and Brambilla 2002 Plasma Phys. Control. Fusion 44 2423), have been extended to allow the prescription of arbitrary velocity distributionsmore » of the form f(v(parallel to), v(perpendicular to) , psi, theta). For hydrogen (H) minority heating of a deuterium (D) plasma with anisotropic Maxwellian H distributions, the fractional H absorption varies significantly with changes in parallel temperature but is essentially independent of perpendicular temperature. On the other hand, for HHFW regime with anisotropic Maxwellian fast ion distribution, the fractional beam ion absorption varies mainly with changes in the perpendicular temperature. The evaluation of the wave-field and power absorption, through the full wave solver, with the ion distribution function provided by either a Monte-Carlo particle and Fokker-Planck codes is also examined for Alcator C-Mod and NSTX plasmas. Non-Maxwellian effects generally tend to increase the absorption with respect to the equivalent Maxwellian distribution.« less

  13. Full-wave simulations of ICRF heating regimes in toroidal plasmas with non-Maxwellian distribution functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertelli, N.; Valeo, E.J.; Green, D.L.

    At the power levels required for significant heating and current drive in magnetically-confined toroidal plasma, modification of the particle distribution function from a Maxwellian shape is likely [T. H. Stix, Nucl. Fusion, 15 737 (1975)], with consequent changes in wave propagation and in the location and amount of absorption. In order to study these effects computationally, both the finite-Larmor-radius and the high-harmonic fast wave (HHFW), versions of the full-wave, hot-plasma toroidal simulation code TORIC [M. Brambilla, Plasma Phys. Control. Fusion 41, 1 (1999) and M. Brambilla, Plasma Phys. Control. Fusion 44, 2423 (2002)], have been extended to allow the prescriptionmore » of arbitrary velocity distributions of the form f(v||, v_perp, psi , theta). For hydrogen (H) minority heating of a deuterium (D) plasma with anisotropic Maxwellian H distributions, the fractional H absorption varies significantly with changes in parallel temperature but is essentially independent of perpendicular temperature. On the other hand, for HHFW regime with anisotropic Maxwellian fast ion distribution, the fractional beam ion absorption varies mainly with changes in the perpendicular temperature. The evaluation of the wave-field and power absorption, through the full wave solver, with the ion distribution function provided by either aMonte-Carlo particle and Fokker-Planck codes is also examined for Alcator C-Mod and NSTX plasmas. Non-Maxwellian effects generally tends to increase the absorption with respect to the equivalent Maxwellian distribution.« less

  14. Full-wave simulations of ICRF heating regimes in toroidal plasma with non-Maxwellian distribution functions

    NASA Astrophysics Data System (ADS)

    Bertelli, N.; Valeo, E. J.; Green, D. L.; Gorelenkova, M.; Phillips, C. K.; Podestà, M.; Lee, J. P.; Wright, J. C.; Jaeger, E. F.

    2017-05-01

    At the power levels required for significant heating and current drive in magnetically-confined toroidal plasma, modification of the particle distribution function from a Maxwellian shape is likely (Stix 1975 Nucl. Fusion 15 737), with consequent changes in wave propagation and in the location and amount of absorption. In order to study these effects computationally, both the finite-Larmor-radius and the high-harmonic fast wave (HHFW), versions of the full-wave, hot-plasma toroidal simulation code TORIC (Brambilla 1999 Plasma Phys. Control. Fusion 41 1 and Brambilla 2002 Plasma Phys. Control. Fusion 44 2423), have been extended to allow the prescription of arbitrary velocity distributions of the form f≤ft({{v}\\parallel},{{v}\\bot},\\psi,θ \\right) . For hydrogen (H) minority heating of a deuterium (D) plasma with anisotropic Maxwellian H distributions, the fractional H absorption varies significantly with changes in parallel temperature but is essentially independent of perpendicular temperature. On the other hand, for HHFW regime with anisotropic Maxwellian fast ion distribution, the fractional beam ion absorption varies mainly with changes in the perpendicular temperature. The evaluation of the wave-field and power absorption, through the full wave solver, with the ion distribution function provided by either a Monte-Carlo particle and Fokker-Planck codes is also examined for Alcator C-Mod and NSTX plasmas. Non-Maxwellian effects generally tend to increase the absorption with respect to the equivalent Maxwellian distribution.

  15. Full-wave simulations of ICRF heating regimes in toroidal plasma with non-Maxwellian distribution functions

    DOE PAGES

    Bertelli, N.; Valeo, E. J.; Green, D. L.; ...

    2017-04-03

    At the power levels required for significant heating and current drive in magnetically-confined toroidal plasma, modification of the particle distribution function from a Maxwellian shape is likely (Stix 1975 Nucl. Fusion 15 737), with consequent changes in wave propagation and in the location and amount of absorption. In order to study these effects computationally, both the finite-Larmor-radius and the high-harmonic fast wave (HHFW), versions of the full-wave, hot-plasma toroidal simulation code TORIC (Brambilla 1999 Plasma Phys. Control. Fusion 41 1 and Brambilla 2002 Plasma Phys. Control. Fusion 44 2423), have been extended to allow the prescription of arbitrary velocity distributionsmore » of the form f(v(parallel to), v(perpendicular to) , psi, theta). For hydrogen (H) minority heating of a deuterium (D) plasma with anisotropic Maxwellian H distributions, the fractional H absorption varies significantly with changes in parallel temperature but is essentially independent of perpendicular temperature. On the other hand, for HHFW regime with anisotropic Maxwellian fast ion distribution, the fractional beam ion absorption varies mainly with changes in the perpendicular temperature. The evaluation of the wave-field and power absorption, through the full wave solver, with the ion distribution function provided by either a Monte-Carlo particle and Fokker-Planck codes is also examined for Alcator C-Mod and NSTX plasmas. Non-Maxwellian effects generally tend to increase the absorption with respect to the equivalent Maxwellian distribution.« less

  16. Human polyhomeotic homolog 3 (PHC3) sterile alpha motif (SAM) linker allows open-ended polymerization of PHC3 SAM.

    PubMed

    Robinson, Angela K; Leal, Belinda Z; Nanyes, David R; Kaur, Yogeet; Ilangovan, Udayar; Schirf, Virgil; Hinck, Andrew P; Demeler, Borries; Kim, Chongwoo A

    2012-07-10

    Sterile alpha motifs (SAMs) are frequently found in eukaryotic genomes. An intriguing property of many SAMs is their ability to self-associate, forming an open-ended polymer structure whose formation has been shown to be essential for the function of the protein. What remains largely unresolved is how polymerization is controlled. Previously, we had determined that the stretch of unstructured residues N-terminal to the SAM of a Drosophila protein called polyhomeotic (Ph), a member of the polycomb group (PcG) of gene silencers, plays a key role in controlling Ph SAM polymerization. Ph SAM with its native linker created shorter polymers compared to Ph SAM attached to either a random linker or no linker. Here, we show that the SAM linker for the human Ph ortholog, polyhomeotic homolog 3 (PHC3), also controls PHC3 SAM polymerization but does so in the opposite fashion. PHC3 SAM with its native linker allows longer polymers to form compared to when attached to a random linker. Attaching the PHC3 SAM linker to Ph SAM also resulted in extending Ph SAM polymerization. Moreover, in the context of full-length Ph protein, replacing the SAM linker with PHC3 SAM linker, intended to create longer polymers, resulted in greater repressive ability for the chimera compared to wild-type Ph. These findings show that polymeric SAM linkers evolved to modulate a wide dynamic range of SAM polymerization abilities and suggest that rationally manipulating the function of SAM containing proteins through controlling their SAM polymerization may be possible.

  17. Design of advanced ultrasonic transducers for welding devices.

    PubMed

    Parrini, L

    2001-11-01

    A new high frequency ultrasonic transducer has been conceived, designed, prototyped, and tested. In the design phase, an advanced approach was used and established. The method is based on an initial design estimate obtained with finite element method (FEM) simulations. The simulated ultrasonic transducers and resonators are then built and characterized experimentally through laser interferometry and electrical resonance spectra. The comparison of simulation results with experimental data allows the parameters of FEM models to be adjusted and optimized. The achieved FEM simulations exhibit a remarkably high predictive potential and allow full control of the vibration behavior of the transducer. The new transducer is mounted on a wire bonder with a flange whose special geometry was calculated by means of FEM simulations. This flange allows the transducer to be attached on the wire bonder, not only in longitudinal nodes, but also in radial nodes of the ultrasonic field excited in the horn. This leads to a total decoupling of the transducer to the wire bonder, which has not been achieved so far. The new approach to mount ultrasonic transducers on a welding device is of major importance, not only for wire bonding, but also for all high power ultrasound applications and has been patented.

  18. Improvements in analysis techniques for segmented mirror arrays

    NASA Astrophysics Data System (ADS)

    Michels, Gregory J.; Genberg, Victor L.; Bisson, Gary R.

    2016-08-01

    The employment of actively controlled segmented mirror architectures has become increasingly common in the development of current astronomical telescopes. Optomechanical analysis of such hardware presents unique issues compared to that of monolithic mirror designs. The work presented here is a review of current capabilities and improvements in the methodology of the analysis of mechanically induced surface deformation of such systems. The recent improvements include capability to differentiate surface deformation at the array and segment level. This differentiation allowing surface deformation analysis at each individual segment level offers useful insight into the mechanical behavior of the segments that is unavailable by analysis solely at the parent array level. In addition, capability to characterize the full displacement vector deformation of collections of points allows analysis of mechanical disturbance predictions of assembly interfaces relative to other assembly interfaces. This capability, called racking analysis, allows engineers to develop designs for segment-to-segment phasing performance in assembly integration, 0g release, and thermal stability of operation. The performance predicted by racking has the advantage of being comparable to the measurements used in assembly of hardware. Approaches to all of the above issues are presented and demonstrated by example with SigFit, a commercially available tool integrating mechanical analysis with optical analysis.

  19. Electric terminal performance and characterization of solid oxide fuel cells and systems

    NASA Astrophysics Data System (ADS)

    Lindahl, Peter Allan

    Solid Oxide Fuel Cells (SOFCs) are electrochemical devices which can effect efficient, clean, and quiet conversion of chemical to electrical energy. In contrast to conventional electricity generation systems which feature multiple discrete energy conversion processes, SOFCs are direct energy conversion devices. That is, they feature a fully integrated chemical to electrical energy conversion process where the electric load demanded of the cell intrinsically drives the electrochemical reactions and associated processes internal to the cell. As a result, the cell's electric terminals provide a path for interaction between load side electric demand and the conversion side processes. The implication of this is twofold. First, the magnitude and dynamic characteristics of the electric load demanded of the cell can directly impact the long-term efficacy of the cell's chemical to electrical energy conversion. Second, the electric terminal response to dynamic loads can be exploited for monitoring the cell's conversion side processes and used in diagnostic analysis and degradation-mitigating control schemes. This dissertation presents a multi-tier investigation into this electric terminal based performance characterization of SOFCs through the development of novel test systems, analysis techniques and control schemes. First, a reference-based simulation system is introduced. This system scales up the electric terminal performance of a prototype SOFC system, e.g. a single fuel cell, to that of a full power-level stack. This allows realistic stack/load interaction studies while maintaining explicit ability for post-test analysis of the prototype system. Next, a time-domain least squares fitting method for electrochemical impedance spectroscopy (EIS) is developed for reduced-time monitoring of the electrochemical and physicochemical mechanics of the fuel cell through its electric terminals. The utility of the reference-based simulator and the EIS technique are demonstrated through their combined use in the performance testing of a hybrid-source power management (HSPM) system designed to allow in-situ EIS monitoring of a stack under dynamic loading conditions. The results from the latter study suggest that an HSPM controller allows an opportunity for in-situ electric terminal monitoring and control-based mitigation of SOFC degradation. As such, an exploration of control-based SOFC degradation mitigation is presented and ideas for further work are suggested.

  20. Autonomous search and surveillance with small fixed wing aircraft

    NASA Astrophysics Data System (ADS)

    McGee, Timothy Garland

    Small unmanned aerial vehicles (UAVs) have the potential to act as low cost tools in a variety of both civilian and military applications including traffic monitoring, border patrol, and search and rescue. While most current operational UAV systems require human operators, advances in autonomy will allow these systems to reach their full potential as sensor platforms. This dissertation specifically focuses on developing advanced control, path planning, search, and image processing techniques that allow small fixed wing aircraft to autonomously collect data. The problems explored were motivated by experience with the development and experimental flight testing of a fleet of small autonomous fixed wing aircraft. These issues, which have not been fully addressed in past work done on ground vehicles or autonomous helicopters, include the influence of wind and turning rate constraints, the non-negligible velocity of ground targets relative to the aircraft velocity, and limitations on sensor size and processing power on small vehicles. Several contributions for the autonomous operation of small fixed wing aircraft are presented. Several sliding surface controllers are designed which extend previous techniques to include variable sliding surface coefficients and the use of spatial vehicle dynamics. These advances eliminate potential singularities in the control laws to follow spatially defined paths and allow smooth transition between controllers. The optimal solution for the problem of path planning through an ordered set of points for an aircraft with a bounded turning rate in the presence of a constant wind is then discussed. Path planning strategies are also explored to guarantee that a searcher will travel within sensing distance of a mobile ground target. This work assumes only a maximum velocity of the target and is designed to succeed for any possible path of the target. Closed-loop approximations of both the path planning and search techniques, using the sliding surface controllers already discussed, are also studied. Finally, a novel method is presented to detect obstacles by segmenting an image into sky and non-sky regions. The feasibility of this method is demonstrated experimentally on an aircraft test bed.

  1. Investigation of Active Flow Control to Improve Aerodynamic Performance of Oscillating Wings

    NASA Technical Reports Server (NTRS)

    Narducci, Robert P.; Bowersox, Rodney; Bussom, Richard; McVeigh, Michael; Raghu, Surya; White, Edward

    2014-01-01

    The objective of this effort is to design a promising active flow control concept on an oscillating airfoil for on-blade alleviation of dynamic stall. The concept must be designed for a range of representative Mach numbers (0.2 to 0.5) and representative reduced frequency characteristics of a full-scale rotorcraft. Specifications for a sweeping-jet actuator to mitigate the detrimental effects of retreating blade stall experienced by edgewise rotors in forward flight has been performed. Wind tunnel modifications have been designed to accommodate a 5x6 test section in the Oran W. Nicks Low Speed Wind Tunnel at Texas A&M University that will allow the tunnel to achieve Mach 0.5. The flow control design is for a two-dimensional oscillating VR-7 blade section with a 15- inch chord at rotor-relevant flow conditions covering the range of reduced frequencies from 0.0 to 0.15 and Mach numbers from 0.2 to 0.5. A Computational Fluid Dynamics (CFD) analysis has been performed to influence the placement of the flow control devices for optimal effectiveness.

  2. Partitioning-defective Protein 6 (Par-6) Activates Atypical Protein Kinase C (aPKC) by Pseudosubstrate Displacement*

    PubMed Central

    Graybill, Chiharu; Wee, Brett; Atwood, Scott X.; Prehoda, Kenneth E.

    2012-01-01

    Atypical protein kinase C (aPKC) controls cell polarity by modulating substrate cortical localization. Aberrant aPKC activity disrupts polarity, yet the mechanisms that control aPKC remain poorly understood. We used a reconstituted system with purified components and a cultured cell cortical displacement assay to investigate aPKC regulation. We find that aPKC is autoinhibited by two domains within its NH2-terminal regulatory half, a pseudosubstrate motif that occupies the kinase active site, and a C1 domain that assists in this process. The Par complex member Par-6, previously thought to inhibit aPKC, is a potent activator of aPKC in our assays. Par-6 and aPKC interact via PB1 domain heterodimerization, and this interaction activates aPKC by displacing the pseudosubstrate, although full activity requires the Par-6 CRIB-PDZ domains. We propose that, along with its previously described roles in controlling aPKC localization, Par-6 allosterically activates aPKC to allow for high spatial and temporal control of substrate phosphorylation and polarization. PMID:22544755

  3. Quantitative 3-D Corneal Imaging In Vivo Using a Modified HRT- RCM Confocal Microscope

    PubMed Central

    Petroll, W. Matthew.; Weaver, Matthew; Vaidya, Saurabh; McCulley, James P.; Cavanagh, H. Dwight

    2012-01-01

    Purpose The purpose of this study was to develop and test hardware and software modifications to allow quantitative full-thickness corneal imaging using the HRT Rostock Corneal Module. Methods A PC-controlled motor drive with positional feedback was integrated into the system to allow automated focusing through the entire cornea. The left eyes of ten New Zealand White rabbits were scanned from endothelium to epithelium. Image sequences were read into a custom-developed program for depth calculation and measurement of sub-layer thicknesses. 3-D visualizations were also generated using Imaris. In six rabbits, stack images were registered, and depth-dependent counts of keratocyte nuclei were made using Metamorph. Results The mean epithelial and corneal thicknesses measured in the rabbit were 47 ± 5 μm and 373 ± 25 μm, respectively (N = 10 corneas); coefficients of variation for repeated scans were 8.2% and 2.1%. Corneal thickness measured using ultrasonic pachymetry was 374 ± 17 μm. The mean overall keratocyte density measured in the rabbit was 43,246 ± 5,603 cells/mm3 in vivo (N = 6 corneas). There was a gradual decrease in keratocyte density from the anterior to posterior cornea (R = 0.99), consistent with previous data generated in vitro. Conclusions This modified system allows high resolution 3-D image stacks to be collected from the full thickness rabbit cornea in vivo. These datasets can be used for interactive visualization of corneal cell layers, measurement of sub-layer thickness, and depth-dependent keratocyte density measurements. Overall, the modifications significantly expand the potential quantitative research applications of the HRT-RCM microscope. PMID:23051907

  4. Microdosing and Other Phase 0 Clinical Trials: Facilitating Translation in Drug Development.

    PubMed

    Burt, T; Yoshida, K; Lappin, G; Vuong, L; John, C; de Wildt, S N; Sugiyama, Y; Rowland, M

    2016-04-01

    A number of drivers and developments suggest that microdosing and other phase 0 applications will experience increased utilization in the near-to-medium future. Increasing costs of drug development and ethical concerns about the risks of exposing humans and animals to novel chemical entities are important drivers in favor of these approaches, and can be expected only to increase in their relevance. An increasing body of research supports the validity of extrapolation from the limited drug exposure of phase 0 approaches to the full, therapeutic exposure, with modeling and simulations capable of extrapolating even non-linear scenarios. An increasing number of applications and design options demonstrate the versatility and flexibility these approaches offer to drug developers including the study of PK, bioavailability, DDI, and mechanistic PD effects. PET microdosing allows study of target localization, PK and receptor binding and occupancy, while Intra-Target Microdosing (ITM) allows study of local therapeutic-level acute PD coupled with systemic microdose-level exposure. Applications in vulnerable populations and extreme environments are attractive due to the unique risks of pharmacotherapy and increasing unmet healthcare needs. All phase 0 approaches depend on the validity of extrapolation from the limited-exposure scenario to the full exposure of therapeutic intent, but in the final analysis the potential for controlled human data to reduce uncertainty about drug properties is bound to be a valuable addition to the drug development process.

  5. The Structural Biology Center 19ID undulator beamline: facility specifications and protein crystallographic results

    PubMed Central

    Rosenbaum, Gerd; Alkire, Randy W.; Evans, Gwyndaf; Rotella, Frank J.; Lazarski, Krzystof; Zhang, Rong-Guang; Ginell, Stephan L.; Duke, Norma; Naday, Istvan; Lazarz, Jack; Molitsky, Michael J.; Keefe, Lisa; Gonczy, John; Rock, Larry; Sanishvili, Ruslan; Walsh, Martin A.; Westbrook, Edwin; Joachimiak, Andrzej

    2008-01-01

    The 19ID undulator beamline of the Structure Biology Center has been designed and built to take full advantage of the high flux, brilliance and quality of X-ray beams delivered by the Advanced Photon Source. The beamline optics are capable of delivering monochromatic X-rays with photon energies from 3.5 to 20 keV (3.5–0.6 Å wavelength) with fluxes up to 8–18 × 1012 photons s−1 (depending on photon energy) onto cryogenically cooled crystal samples. The size of the beam (full width at half-maximum) at the sample position can be varied from 2.2 mm × 1.0 mm (horizontal × vertical, unfocused) to 0.083 mm × 0.020 mm in its fully focused configuration. Specimen-to-detector distances of between 100 mm and 1500 mm can be used. The high flexibility, inherent in the design of the optics, coupled with a κ-geometry goniometer and beamline control software allows optimal strategies to be adopted in protein crystallographic experiments, thus maximizing the chances of their success. A large-area mosaic 3 × 3 CCD detector allows high-quality diffraction data to be measured rapidly to the crystal diffraction limits. The beamline layout and the X-ray optical and endstation components are described in detail, and the results of representative crystallographic experiments are presented. PMID:16371706

  6. 40 CFR 82.7 - Grant and phase reduction of baseline production and consumption allowances for class I...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OZONE Production and Consumption Controls § 82.7 Grant and phase reduction of baseline production and consumption allowances for class I controlled substances. For each control period specified in the following... allowances apportioned to him under §§ 82.5 and 82.6 of this subpart. Control period Class I substances in...

  7. 40 CFR 82.12 - Transfers of allowances for class I controlled substances.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) PROTECTION OF STRATOSPHERIC OZONE Production and Consumption Controls...) Until January 1, 1996, for all class I controlled substances, except for Group VI, and until January 1... amount of the transferor's consumption allowances or production allowances, and effective January 1, 1995...

  8. Instrumentation for studying binder burnout in an immobilized plutonium ceramic wasteform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, M; Pugh, D; Herman, C

    The Plutonium Immobilization Program produces a ceramic wasteform that utilizes organic binders. Several techniques and instruments were developed to study binder burnout on full size ceramic samples in a production environment. This approach provides a method for developing process parameters on production scale to optimize throughput, product quality, offgas behavior, and plant emissions. These instruments allow for offgas analysis, large-scale TGA, product quality observation, and thermal modeling. Using these tools, results from lab-scale techniques such as laser dilametry studies and traditional TGA/DTA analysis can be integrated. Often, the sintering step of a ceramification process is the limiting process step thatmore » controls the production throughput. Therefore, optimization of sintering behavior is important for overall process success. Furthermore, the capabilities of this instrumentation allows better understanding of plant emissions of key gases: volatile organic compounds (VOCs), volatile inorganics including some halide compounds, NO{sub x}, SO{sub x}, carbon dioxide, and carbon monoxide.« less

  9. Synthetic scaffolds with full pore interconnectivity for bone regeneration prepared by supercritical foaming using advanced biofunctional plasticizers.

    PubMed

    Salerno, Aurelio; Diéguez, Sara; Diaz-Gomez, Luis; Gómez-Amoza, José L; Magariños, Beatriz; Concheiro, Angel; Domingo, Concepción; Alvarez-Lorenzo, Carmen; García-González, Carlos A

    2017-06-30

    Supercritical foaming allows for the solvent-free processing of synthetic scaffolds for bone regeneration. However, the control on the pore interconnectivity and throat pore size with this technique still needs to be improved. The use of plasticizers may help overcome these limitations. Eugenol, a GRAS natural compound extracted from plants, is proposed in this work as an advanced plasticizer with bioactive properties. Eugenol-containing poly(ε-caprolactone) (PCL) scaffolds were obtained by supercritical foaming (20.0 MPa, 45 °C, 17 h) followed by a one or a two-step depressurization profile. The effects of the eugenol content and the depressurization profile on the porous structure of the material and the physicochemical properties of the scaffold were evaluated. The combination of both processing parameters was successful to simultaneously tune the pore interconnectivity and throat sizes to allow mesenchymal stem cells infiltration. Scaffolds with eugenol were cytocompatible, presented antimicrobial activity preventing the attachment of Gram positive (S. aureus, S. epidermidis) bacteria and showed good tissue integration.

  10. Lunar Science: Using the Moon as a Testbed

    NASA Technical Reports Server (NTRS)

    Taylor, G. J.

    1993-01-01

    The Moon is an excellent test bed for innovative instruments and spacecraft. Excellent science can be done, the Moon has a convenient location, and previous measurements have calibrated many parts of it. I summarize these attributes and give some suggestions for the types of future measurements. The Lunar Scout missions planned by NASA's Office of Exploration will not make all the measurements needed. Thus, test missions to the Moon can also return significant scientific results, making them more than technology demonstrations. The Moon is close to Earth, so cruise time is insignificant, tracking is precise, and some operations can be controlled from Earth, but it is in the deep space environment, allowing full tests of instruments and spacecraft components. The existing database on the Moon allows tests of new instruments against known information. The most precise data come from lunar samples, where detailed analyses of samples from a few places on the Moon provide data on chemical and mineralogical composition and physical properties.

  11. Superlinear threshold detectors in quantum cryptography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lydersen, Lars; Maroey, Oystein; Skaar, Johannes

    2011-09-15

    We introduce the concept of a superlinear threshold detector, a detector that has a higher probability to detect multiple photons if it receives them simultaneously rather than at separate times. Highly superlinear threshold detectors in quantum key distribution systems allow eavesdropping the full secret key without being revealed. Here, we generalize the detector control attack, and analyze how it performs against quantum key distribution systems with moderately superlinear detectors. We quantify the superlinearity in superconducting single-photon detectors based on earlier published data, and gated avalanche photodiode detectors based on our own measurements. The analysis shows that quantum key distribution systemsmore » using detector(s) of either type can be vulnerable to eavesdropping. The avalanche photodiode detector becomes superlinear toward the end of the gate. For systems expecting substantial loss, or for systems not monitoring loss, this would allow eavesdropping using trigger pulses containing less than 120 photons per pulse. Such an attack would be virtually impossible to catch with an optical power meter at the receiver entrance.« less

  12. Self organising maps for visualising and modelling

    PubMed Central

    2012-01-01

    The paper describes the motivation of SOMs (Self Organising Maps) and how they are generally more accessible due to the wider available modern, more powerful, cost-effective computers. Their advantages compared to Principal Components Analysis and Partial Least Squares are discussed. These allow application to non-linear data, are not so dependent on least squares solutions, normality of errors and less influenced by outliers. In addition there are a wide variety of intuitive methods for visualisation that allow full use of the map space. Modern problems in analytical chemistry include applications to cultural heritage studies, environmental, metabolomic and biological problems result in complex datasets. Methods for visualising maps are described including best matching units, hit histograms, unified distance matrices and component planes. Supervised SOMs for classification including multifactor data and variable selection are discussed as is their use in Quality Control. The paper is illustrated using four case studies, namely the Near Infrared of food, the thermal analysis of polymers, metabolomic analysis of saliva using NMR, and on-line HPLC for pharmaceutical process monitoring. PMID:22594434

  13. Aeroservoelastic Testing of a Sidewall Mounted Free Flying Wind-Tunnel Model

    NASA Technical Reports Server (NTRS)

    Scott, Robert C.; Vetter, Travis K.; Penning, Kevin B.; Coulson, David A.; Heeg, Jennifer

    2008-01-01

    A team comprised of the Air Force Research Laboratory (AFRL), Northrop Grumman, Lockheed Martin, and the NASA Langley Research Center conducted three j wind-tunnel tests in the Transonic Dynamics Tunnel to demonstrate active control technologies relevant to large, exible vehicles. In the rst of these three tests, a semispan, aeroelastically scaled, wind-tunnel model of a ying wing SensorCraft vehi- cle was mounted to a force balance to demonstrate gust load alleviation. In the second and third tests, the same wing was mated to a new, multi-degree-of-freedom, sidewall mount. This mount allowed the half-span model to translate vertically and pitch at the wing root, allowing better simulation of the full span vehicle's rigid-body modes. Gust Load Alleviation (GLA) and Body Freedom Flutter (BFF) suppression were successfully demonstrated. The rigid body degrees-of-freedom required that the model be own in the wind tunnel using an active control system. This risky mode of testing necessitated that a model arrestment system be integrated into the new mount. The safe and successful completion of these free-flying tests required the development and integration of custom hardware and software. This paper describes the many systems, software, and procedures that were developed as part of this effort.

  14. Highly-ordered supportless three-dimensional nanowire networks with tunable complexity and interwire connectivity for device integration.

    PubMed

    Rauber, Markus; Alber, Ina; Müller, Sven; Neumann, Reinhard; Picht, Oliver; Roth, Christina; Schökel, Alexander; Toimil-Molares, Maria Eugenia; Ensinger, Wolfgang

    2011-06-08

    The fabrication of three-dimensional assemblies consisting of large quantities of nanowires is of great technological importance for various applications including (electro-)catalysis, sensitive sensing, and improvement of electronic devices. Because the spatial distribution of the nanostructured material can strongly influence the properties, architectural design is required in order to use assembled nanowires to their full potential. In addition, special effort has to be dedicated to the development of efficient methods that allow precise control over structural parameters of the nanoscale building blocks as a means of tuning their characteristics. This paper reports the direct synthesis of highly ordered large-area nanowire networks by a method based on hard templates using electrodeposition within nanochannels of ion track-etched polymer membranes. Control over the complexity of the networks and the dimensions of the integrated nanostructures are achieved by a modified template fabrication. The networks possess high surface area and excellent transport properties, turning them into a promising electrocatalyst material as demonstrated by cyclic voltammetry studies on platinum nanowire networks catalyzing methanol oxidation. Our method opens up a new general route for interconnecting nanowires to stable macroscopic network structures of very high integration level that allow easy handling of nanowires while maintaining their connectivity.

  15. Radial hemostasis is facilitated with a potassium ferrate hemostatic patch: the Statseal with TR band assessment trial (STAT).

    PubMed

    Seto, Arnold H; Rollefson, William; Patel, Mitul P; Suh, William M; Tehrani, David M; Nguyen, Jacqueline A; Amador, Daniel G; Behnamfar, Omid; Garg, Vinisha; Cohen, Mauricio G

    2018-05-15

    Hemostasis is a limiting factor for discharge after uncomplicated transradial procedures. The potassium ferrate hemostatic patch (PFHP) may serve as an adjunct to the air-bladder TR band (TRB) and allow expedited deflation of the TRB. Prospective multicenter randomized controlled trial comparing radial hemostatic protocols. Deflation of the TRB was attempted at 40 minutes with PFHP and at 120 minutes without the PFHP. The primary outcome was time to full deflation of the TRB with hemostasis. At four U.S. sites, 180 patients were enrolled after receiving a minimum of 5,000 units of unfractionated heparin or bivalirudin. Interventions comprised 30% of procedures. Successful TRB deflation occurred at 43 ± 14 minutes with PFHP and 160 ± 43 minutes without PFHP (p<0.001). Minor hematomas occurred in 9 (10.3%) of TRB patients and 16 (17.2%) of PFHP patients (p=0.20). Radial artery occlusion occurred in 2% of patients in the PFHP group (p=NS). Outpatients randomized to PFHP were discharged 51 ± 83.5 minutes earlier than control. The PFHP hemostatic patch facilitated early deflation of the TRB with a nonsignificant increase in forearm hematomas. Use of the PFHP may improve patient throughput and allow for earlier discharge following transradial procedures.

  16. Choosing Sensor Configuration for a Flexible Structure Using Full Control Synthesis

    NASA Technical Reports Server (NTRS)

    Lind, Rick; Nalbantoglu, Volkan; Balas, Gary

    1997-01-01

    Optimal locations and types for feedback sensors which meet design constraints and control requirements are difficult to determine. This paper introduces an approach to choosing a sensor configuration based on Full Control synthesis. A globally optimal Full Control compensator is computed for each member of a set of sensor configurations which are feasible for the plant. The sensor configuration associated with the Full Control system achieving the best closed-loop performance is chosen for feedback measurements to an output feedback controller. A flexible structure is used as an example to demonstrate this procedure. Experimental results show sensor configurations chosen to optimize the Full Control performance are effective for output feedback controllers.

  17. Early science with the Korean VLBI network: evaluation of system performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sang-Sung; Byun, Do-Young; Kim, Jongsoo

    2014-04-01

    We report the very long baseline interferometry (VLBI) observing performance of the Korean VLBI Network (KVN). The KVN is the first millimeter-dedicated VLBI network in East Asia. The KVN consists of three 21 m radio telescopes with baseline lengths in a range of 305-476 km. The quasi-optical system equipped on the antennas allows simultaneous observations at 22, 43, 86, and 129 GHz. The first fringes of the KVN were obtained at 22 GHz on 2010 June 8. Test observations at 22 and 43 GHz on 2010 September 30 and 2011 April 4 confirmed that the full cycle of VLBI observationsmore » works according to specification: scheduling, antenna control system, data recording, correlation, post-correlation data processing, astrometry, geodesy, and imaging analysis. We found that decorrelation due to instability in the hardware at times up to 600 s is negligible. The atmosphere fluctuations at KVN baseline are partly coherent, which allows us to extend integration time under good winter weather conditions up to 600 s without significant loss of coherence. The post-fit residuals at KVN baselines do not exhibit systematic patterns, and the weighted rms of the residuals is 14.8 ps. The KVN is ready to image compact radio sources both in snapshot and full-track modes with residual noise in calibrated phases of less than 2 deg at 22 and 43 GHz and with dynamic ranges of ∼300 for snapshot mode and ∼1000 for full-track mode. With simultaneous multi-frequency observations, the KVN can be used to make parsec-scale spectral index maps of compact radio sources.« less

  18. DOE Research and Development Accomplishments Help

    Science.gov Websites

    be used to search, locate, access, and electronically download full-text research and development (R Browse Downloading, Viewing, and/or Searching Full-text Documents/Pages Searching the Database Search Features Search allows you to search the OCRed full-text document and bibliographic information, the

  19. 78 FR 72022 - Drawbridge Operation Regulation; Atlantic Intracoastal Waterway, Wrightsville Beach, NC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-02

    ... accommodate the 2014 Quintiles Wrightsville Beach Full and Half Marathon. This deviation allows the bridge to... INFORMATION: The Quintiles Wrightsville Beach Full and Half Marathon committee on behalf of the North Carolina... requested deviation will accommodate the 2014 Quintiles Wrightsville Beach Full and Half Marathon scheduled...

  20. 78 FR 669 - Drawbridge Operation Regulation; Atlantic Intracoastal Waterway, Wrightsville Beach, NC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-04

    ... the 2013 Quintiles Wrightsville Beach Full and Half Marathon. This deviation allows the bridge to... Quintiles Wrightsville Beach Full and Half Marathon committee on behalf of the North Carolina Department of... accommodate the 2013 Quintiles Wrightsville Beach Full and Half Marathon scheduled for Sunday, March 17, 2013...

  1. A Novel Small-Specimen Planar Biaxial Testing System With Full In-Plane Deformation Control.

    PubMed

    Potter, Samuel; Graves, Jordan; Drach, Borys; Leahy, Thomas; Hammel, Chris; Feng, Yuan; Baker, Aaron; Sacks, Michael S

    2018-05-01

    Simulations of soft tissues require accurate and robust constitutive models, whose form is derived from carefully designed experimental studies. For such investigations of membranes or thin specimens, planar biaxial systems have been used extensively. Yet, all such systems remain limited in their ability to: (1) fully prescribe in-plane deformation gradient tensor F2D, (2) ensure homogeneity of the applied deformation, and (3) be able to accommodate sufficiently small specimens to ensure a reasonable degree of material homogeneity. To address these issues, we have developed a novel planar biaxial testing device that overcomes these difficulties and is capable of full control of the in-plane deformation gradient tensor F2D and of testing specimens as small as ∼4 mm × ∼4 mm. Individual actuation of the specimen attachment points, combined with a robust real-time feedback control, enabled the device to enforce any arbitrary F2D with a high degree of accuracy and homogeneity. Results from extensive device validation trials and example tissues illustrated the ability of the device to perform as designed and gather data needed for developing and validating constitutive models. Examples included the murine aortic tissues, allowing for investigators to take advantage of the genetic manipulation of murine disease models. These capabilities highlight the potential of the device to serve as a platform for informing and verifying the results of inverse models and for conducting robust, controlled investigation into the biomechanics of very local behaviors of soft tissues and membrane biomaterials.

  2. Surface Development and Test Facility (SDTF) New R&D Simulator for Airport Operations

    NASA Technical Reports Server (NTRS)

    Dorighi, Nancy S.

    1997-01-01

    A new simulator, the Surface Development and Test Facility (SDTF) is under construction at the NASA Ames Research Center in Mountain View, California. Jointly funded by the FAA (Federal Aviation Administration) and NASA, the SDTF will be a testbed for airport surface automation technologies of the future. The SDTF will be operational in the third quarter of 1998. The SDTF will combine a virtual tower with simulated ground operations to allow evaluation of new technologies for safety, effectiveness, reliability, and cost benefit. The full-scale level V tower will provide a seamless 360 degree high resolution out-the-window view, and a full complement of ATC (air traffic control) controller positions. The imaging system will be generated by two fully-configured Silicon Graphics Onyx Infinite Reality computers, and will support surface movement of up to 200 aircraft and ground vehicles. The controller positions, displays and consoles can be completely reconfigured to match the unique layout of any individual airport tower. Dedicated areas will accommodate pseudo-airport ramp controllers, pseudo-airport operators, and pseudo-pilots. Up to 33 total personnel positions will be able to participate in simultaneous operational scenarios. A realistic voice communication infrastructure will emulate the intercom and telephone communications of a real airport tower. Multi-channel audio and video recording and a sophisticated data acquisition system will support a wide variety of research and development areas, such as evaluation of automation tools for surface operations, human factors studies, integration of terminal area and airport technologies, and studies of potential airport physical and procedural modifications.

  3. Quality control and primo-diagnosis of transurethral bladder resections with full-field OCT

    NASA Astrophysics Data System (ADS)

    Montagne, P.; Ducesne, I.; Anract, J.; Yang, C.; Sibony, M.; Beuvon, F.; Delongchamps, N. B.; Dalimier, E.

    2017-02-01

    Transurethral resections are commonly used for bladder cancer diagnosis, treatment and follow-up. Cancer staging relies largely on the analysis of muscle in the resections; however, muscle presence is uncertain at the time of the resection. An extemporaneous quality control tool would be of great use to certify the presence of muscle in the resection, and potentially formulate a primo-diagnosis, in order to ensure optimum patient care. Full-field optical coherence tomography (FFOCT) offers a fast and non-destructive method of obtaining images of biological tissues at ultrahigh resolution (1μm in all 3 directions), approaching traditional histological sections. This study aimed to evaluate the potential of FFOCT for the quality control and the primo-diagnosis of transurethral bladder resections. Over 70 transurethral bladder resections were imaged with FFOCT within minutes, shortly after excision, and before histological preparation. Side-by-side comparison with histology allowed to establish reading criteria for the presence of muscle and cancer in particular. Images of 24 specimens were read blindly by three non-pathologists readers: two resident urologists and a junior bio-medical engineer, who were asked to notify the presence of muscle and tumor. Results showed that after appropriate training, 96% accuracy could be obtained on both tumour and muscle detection. FFOCT is a fast and nondestructive imaging technique that provides analysis results concordant with histology. Its implementation as a quality control and primo-diagnosis tool for transurethral bladder resections in the urology suite is feasible and lets envision high value for the patient.

  4. Control of mucocutaneous leishmaniasis, a neglected disease: results of a control programme in Satipo Province, Peru.

    PubMed

    Guthmann, Jean-Paul; Arlt, Doris; Garcia, Luis Miguel Leon; Rosales, Milena; de Jesus Sanchez, Juan; Alvarez, Eugenia; Lonlas, Sylvaine; Conte, Mado; Bertoletti, Guillermo; Fournier, Christophe; Huari, Roberto; Torreele, Els; Llanos-Cuentas, Alejandro

    2005-09-01

    Mucocutaneous leishmaniasis (MCL) is an important health problem in many rural areas of Latin America, but there are few data on the results of programmatic approaches to control the disease. We report the results of a control programme in San Martin de Pangoa District, which reports one of the highest prevalences of MCL in Peru. For 2 years (2001--2002), the technicians at the health post were trained in patient case management, received medical support and were supplied with antimonials. An evaluation after 2 years showed the following main achievements: better diagnosis of patients, who were confirmed by microscopy in 34% (82/240) of the cases in 2001 and 60% of the cases (153/254) in 2002; improved follow-up during treatment: 237 of 263 (90%) patients who initiated an antimonial therapy ended the full treatment course; improved follow-up after treatment: 143 of 237 (60%) patients who ended their full treatment were correctly monitored during the required period of 6 (cutaneous cases) or 12 (mucosal cases) months after the end of treatment. These achievements were largely due to the human and logistical resources made available, the constant availability of medications and the close collaboration between the Ministry of Health, a national research institute and an international non-governmental organization. At the end of this period, the health authorities decided to register a generic brand of sodium stibogluconate, which is now in use. This should allow the treatment of a significant number of additional patients, while saving money to invest in other facets of the case management.

  5. High density processing electronics for superconducting tunnel junction x-ray detector arrays

    NASA Astrophysics Data System (ADS)

    Warburton, W. K.; Harris, J. T.; Friedrich, S.

    2015-06-01

    Superconducting tunnel junctions (STJs) are excellent soft x-ray (100-2000 eV) detectors, particularly for synchrotron applications, because of their ability to obtain energy resolutions below 10 eV at count rates approaching 10 kcps. In order to achieve useful solid detection angles with these very small detectors, they are typically deployed in large arrays - currently with 100+ elements, but with 1000 elements being contemplated. In this paper we review a 5-year effort to develop compact, computer controlled low-noise processing electronics for STJ detector arrays, focusing on the major issues encountered and our solutions to them. Of particular interest are our preamplifier design, which can set the STJ operating points under computer control and achieve 2.7 eV energy resolution; our low noise power supply, which produces only 2 nV/√Hz noise at the preamplifier's critical cascode node; our digital processing card that digitizes and digitally processes 32 channels; and an STJ I-V curve scanning algorithm that computes noise as a function of offset voltage, allowing an optimum operating point to be easily selected. With 32 preamplifiers laid out on a custom 3U EuroCard, and the 32 channel digital card in a 3U PXI card format, electronics for a 128 channel array occupy only two small chassis, each the size of a National Instruments 5-slot PXI crate, and allow full array control with simple extensions of existing beam line data collection packages.

  6. Ad libitum or demand/semi-demand feeding versus scheduled interval feeding for preterm infants.

    PubMed

    McCormick, Felicia M; Tosh, Karen; McGuire, William

    2010-02-17

    Scheduled interval feeding of prescribed enteral volumes is current standard practice for preterm infants. However, feeding preterm infants in response to their hunger and satiation cues (ad libitum or demand/semi demand) rather than at scheduled intervals might help in the establishment of independent oral feeding, increase nutrient intake and growth rates, and allow earlier hospital discharge. To assess the effect of a policy of feeding preterm infants on an ad libitum or demand/semi-demand basis versus feeding prescribed volumes at scheduled intervals on growth rates and the time to hospital discharge. We used the standard search strategy of the Cochrane Neonatal Review Group. This included searches of the Cochrane Central Register of Controlled Trials (CENTRAL, The Cochrane Library, Issue 4, 2009), MEDLINE (1966 to Oct 2009), EMBASE (1980 to Oct 2009), CINAHL (1982 to Oct 2009), conference proceedings, and previous reviews. Randomised or quasi-randomised controlled trials (including cluster randomised trials) that compared a policy of feeding preterm infants on an ad libitum or demand/semi-demand basis versus feeding at scheduled intervals. We used the standard methods of the Cochrane Neonatal Review Group with separate evaluation of trial quality and data extraction by two review authors. We found eight randomised controlled trials that compared ad libitum or demand/semi-demand regimens with scheduled interval regimes in preterm infants in the transition phase from intragastric tube to oral feeding. The trials were generally small and of variable methodological quality. The duration of the intervention and the duration of data collection and follow-up in most of the trials was not likely to have allowed detection of measurable effects on growth. Three trials reported that feeding preterm infants using an ad libitum or demand/semi-demand feeding regimen allowed earlier discharge from hospital (by about two to four days) but other trials did not confirm this finding. Limited evidence exists that feeding preterm infants with ad libitum or demand/semi-demand regimens allows earlier attainment of full oral feeding and earlier hospital discharge. This finding should be interpreted cautiously because of methodological weaknesses in the included trials. A large randomised controlled trial is needed to confirm this finding and to determine if ad libitum of demand/semi-demand feeding of preterm infants affects other clinically important outcomes.

  7. A simulation-based study of HighSpeed TCP and its deployment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souza, Evandro de

    2003-05-01

    The current congestion control mechanism used in TCP has difficulty reaching full utilization on high speed links, particularly on wide-area connections. For example, the packet drop rate needed to fill a Gigabit pipe using the present TCP protocol is below the currently achievable fiber optic error rates. HighSpeed TCP was recently proposed as a modification of TCP's congestion control mechanism to allow it to achieve reasonable performance in high speed wide-area links. In this research, simulation results showing the performance of HighSpeed TCP and the impact of its use on the present implementation of TCP are presented. Network conditions includingmore » different degrees of congestion, different levels of loss rate, different degrees of bursty traffic and two distinct router queue management policies were simulated. The performance and fairness of HighSpeed TCP were compared to the existing TCP and solutions for bulk-data transfer using parallel streams.« less

  8. Self-starting, self-regulating Fourier domain mode locked fiber laser for OCT imaging

    PubMed Central

    Murari, Kartikeya; Mavadia, Jessica; Xi, Jiefeng; Li, Xingde

    2011-01-01

    We present a Fourier domain mode locking (FDML) fiber laser with a feedback loop allowing automatic startup without a priori knowledge of the fundamental drive frequency. The feedback can also regulate the drive frequency making the source robust against environmental variations. A control system samples the energy of the light traversing the FDML cavity and uses a voltage controlled oscillator (VCO) to drive the tunable fiber Fabry-Perot filter in order to maximize that energy. We demonstrate a prototype self-starting, self-regulating FDML operating at 40 kHz with a full width tuning range of 140 nm around 1305 nm and a power output of ~40 mW. The laser starts up with no operator intervention in less than 5 seconds and exhibits improved spectral stability over a conventional FDML source. In OCT applications the source achieved over 120 dB detection sensitivity and an ~8.9-µm axial resolution. PMID:21750775

  9. Full control of ligand positioning reveals spatial thresholds for T cell receptor triggering.

    PubMed

    Cai, Haogang; Muller, James; Depoil, David; Mayya, Viveka; Sheetz, Michael P; Dustin, Michael L; Wind, Shalom J

    2018-04-30

    Elucidating the rules for receptor triggering in cell-cell and cell-matrix contacts requires precise control of ligand positioning in three dimensions. Here, we use the T cell receptor (TCR) as a model and subject T cells to different geometric arrangements of ligands, using a nanofabricated single-molecule array platform. This comprises monovalent TCR ligands anchored to lithographically patterned nanoparticle clusters surrounded by mobile adhesion molecules on a supported lipid bilayer. The TCR ligand could be co-planar with the supported lipid bilayer (2D), excluding the CD45 transmembrane tyrosine phosphatase, or elevated by 10 nm on solid nanopedestals (3D), allowing closer access of CD45 to engaged TCR. The two configurations resulted in different T cell responses, depending on the lateral spacing between the ligands. These results identify the important contributions of lateral and axial components of ligand positioning and create a more complete foundation for receptor engineering for immunotherapy.

  10. The Risks of Scuba Diving: A Focus on Decompression Illness

    PubMed Central

    2014-01-01

    Decompression Illness includes both Decompression Sickness (DCS) and Pulmonary Overinflation Syndrome (POIS), subsets of diving-related injury related to scuba diving. DCS is a condition in which gas bubbles that form while diving do not have adequate time to be resorbed or “off-gassed,” resulting in entrapment in specific regions of the body. POIS is due to an overly rapid ascent to the surface resulting in the rupture of alveoli and subsequent extravasation of air bubbles into tissue planes or even the cerebral circulation. Divers must always be cognizant of dive time and depth, and be trained in the management of decompression. A slow and controlled ascent, plus proper control of buoyancy can reduce the dangerous consequences of pulmonary barotrauma. The incidence of adverse effects can be diminished with safe practices, allowing for the full enjoyment of this adventurous aquatic sport. PMID:25478296

  11. An efficient variational method to study the denaturation of DNA induced by superhelical stress

    NASA Astrophysics Data System (ADS)

    Jost, Daniel; Everaers, Ralf

    2010-03-01

    Many fundamental biological processes, like transcription or replication, need the opening of the double-stranded DNA. One common way to control the local denaturation is to impose superhelical stress to the DNA using protein machineries. To describe superhelical effect for circular molecules, Benham introduced a model where the standard thermodynamic description of base-pairing is coupled with torsional stress energetics. Here, we introduce an efficient mean-field approximation of the Benham model. Our self-consistent solution is confident and computationally-fast, compared to the full treatment of the model. In particular, our formulation allows to compute the probability of bubble formation for given length and position along the sequence. Evolution of this probability as a function of the superhelical stress could inform us on the ability for organisms to control the strength of superhelicity acting on their genomes.

  12. BioMot exoskeleton - Towards a smart wearable robot for symbiotic human-robot interaction.

    PubMed

    Bacek, Tomislav; Moltedo, Marta; Langlois, Kevin; Prieto, Guillermo Asin; Sanchez-Villamanan, Maria Carmen; Gonzalez-Vargas, Jose; Vanderborght, Bram; Lefeber, Dirk; Moreno, Juan C

    2017-07-01

    This paper presents design of a novel modular lower-limb gait exoskeleton built within the FP7 BioMot project. Exoskeleton employs a variable stiffness actuator in all 6 joints, a directional-flexibility structure and a novel physical humanrobot interfacing, which allows it to deliver the required output while minimally constraining user's gait by providing passive degrees of freedom. Due to modularity, the exoskeleton can be used as a full lower-limb orthosis, a single-joint orthosis in any of the three joints, and a two-joint orthosis in a combination of any of the two joints. By employing a simple torque control strategy, the exoskeleton can be used to deliver user-specific assistance, both in gait rehabilitation and in assisting people suffering musculoskeletal impairments. The result of the presented BioMot efforts is a low-footprint exoskeleton with powerful compliant actuators, simple, yet effective torque controller and easily adjustable flexible structure.

  13. Flexible sample environment for high resolution neutron imaging at high temperatures in controlled atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makowska, Małgorzata G.; Theil Kuhn, Luise; Cleemann, Lars N.

    In high material penetration by neutrons allows for experiments using sophisticated sample environments providing complex conditions. Thus, neutron imaging holds potential for performing in situ nondestructive measurements on large samples or even full technological systems, which are not possible with any other technique. Our paper presents a new sample environment for in situ high resolution neutron imaging experiments at temperatures from room temperature up to 1100 degrees C and/or using controllable flow of reactive atmospheres. The design also offers the possibility to directly combine imaging with diffraction measurements. Design, special features, and specification of the furnace are described. In addition,more » examples of experiments successfully performed at various neutron facilities with the furnace, as well as examples of possible applications are presented. Our work covers a broad field of research from fundamental to technological investigations of various types of materials and components.« less

  14. Flexible sample environment for high resolution neutron imaging at high temperatures in controlled atmosphere

    DOE PAGES

    Makowska, Małgorzata G.; Theil Kuhn, Luise; Cleemann, Lars N.; ...

    2015-12-17

    In high material penetration by neutrons allows for experiments using sophisticated sample environments providing complex conditions. Thus, neutron imaging holds potential for performing in situ nondestructive measurements on large samples or even full technological systems, which are not possible with any other technique. Our paper presents a new sample environment for in situ high resolution neutron imaging experiments at temperatures from room temperature up to 1100 degrees C and/or using controllable flow of reactive atmospheres. The design also offers the possibility to directly combine imaging with diffraction measurements. Design, special features, and specification of the furnace are described. In addition,more » examples of experiments successfully performed at various neutron facilities with the furnace, as well as examples of possible applications are presented. Our work covers a broad field of research from fundamental to technological investigations of various types of materials and components.« less

  15. Analysis on electronic control unit of continuously variable transmission

    NASA Astrophysics Data System (ADS)

    Cao, Shuanggui

    Continuously variable transmission system can ensure that the engine work along the line of best fuel economy, improve fuel economy, save fuel and reduce harmful gas emissions. At the same time, continuously variable transmission allows the vehicle speed is more smooth and improves the ride comfort. Although the CVT technology has made great development, but there are many shortcomings in the CVT. The CVT system of ordinary vehicles now is still low efficiency, poor starting performance, low transmission power, and is not ideal controlling, high cost and other issues. Therefore, many scholars began to study some new type of continuously variable transmission. The transmission system with electronic systems control can achieve automatic control of power transmission, give full play to the characteristics of the engine to achieve optimal control of powertrain, so the vehicle is always traveling around the best condition. Electronic control unit is composed of the core processor, input and output circuit module and other auxiliary circuit module. Input module collects and process many signals sent by sensor and , such as throttle angle, brake signals, engine speed signal, speed signal of input and output shaft of transmission, manual shift signals, mode selection signals, gear position signal and the speed ratio signal, so as to provide its corresponding processing for the controller core.

  16. ZFS on RBODs - Leveraging RAID Controllers for Metrics and Enclosure Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stearman, D. M.

    2015-03-30

    Traditionally, the Lustre file system has relied on the ldiskfs file system with reliable RAID (Redundant Array of Independent Disks) storage underneath. As of Lustre 2.4, ZFS was added as a backend file system, with built-in software RAID, thereby removing the need of expensive RAID controllers. ZFS was designed to work with JBOD (Just a Bunch Of Disks) storage enclosures under the Solaris Operating System, which provided a rich device management system. Long time users of the Lustre file system have relied on the RAID controllers to provide metrics and enclosure monitoring and management services, with rich APIs and commandmore » line interfaces. This paper will study a hybrid approach using an advanced full featured RAID enclosure which is presented to the host as a JBOD, This RBOD (RAIDed Bunch Of Disks) allows ZFS to do the RAID protection and error correction, while the RAID controller handles management of the disks and monitors the enclosure. It was hoped that the value of the RAID controller features would offset the additional cost, and that performance would not suffer in this mode. The test results revealed that the hybrid RBOD approach did suffer reduced performance.« less

  17. Complete Quantum Control of a Single Silicon-Vacancy Center in a Diamond Nanopillar

    NASA Astrophysics Data System (ADS)

    Zhang, Jingyuan Linda; Lagoudakis, Konstantinos G.; Tzeng, Yan-Kai; Dory, Constantin; Radulaski, Marina; Kelaita, Yousif; Shen, Zhi-Xun; Melosh, Nicholas A.; Chu, Steven; Vuckovic, Jelena

    Coherent quantum control of a quantum bit (qubit) is an important step towards its use in a quantum network. SiV- center in diamond offers excellent physical qualities such as low inhomogeneous broadening, fast photon emission, and a large Debye-Waller factor, while the fast spin manipulation and techniques to extend the spin coherence time are under active investigation. Here, we demonstrate full coherent control over the state of a single SiV- center in a diamond nanopillar using ultrafast optical pulses. The high quality of the chemical vapor deposition grown SiV- centers allows us to coherently manipulate and quasi-resonantly read out the state of the single SiV- center. Moreover, the SiV- centers being coherently controlled are integrated into diamond nanopillar arrays in a site-controlled, individually addressable manner with high yield, low strain, and high spectral stability, which paves the way for scalable on chip optically accessible quantum system in a quantum photonic network. Financial support is provided by the DOE Office of Basic Energy Sciences, Division of Materials Sciences through Stanford Institute for Materials and Energy Sciences (SIMES) under contract DE-AC02-76SF00515.

  18. The impact of emotional intelligent leadership on staff nurse empowerment: the moderating effect of span of control.

    PubMed

    Lucas, Victoria; Laschinger, Heather K Spence; Wong, Carol A

    2008-11-01

    To test a model linking nurses' perceptions of their nurse manager's emotionally intelligent leadership style and nurses' structural empowerment, and the impact of nurse manager span of control (number of direct reports) on the emotional intelligence/empowerment relationship. Hospital restructuring in the 1990s resulted in a dramatic reduction in nurse manager positions, yet nurse managers are critical to empowering nurses for professional practice. A descriptive correlational survey design was used to test the hypothesized model in two community hospitals in Ontario. Two hundred and three nurses from two hospitals returned useable questionnaires (68% response rate). Span of control was a significant moderator of the relationship between nurses perceptions of their managers' emotionally intelligent behaviour and feelings of workplace empowerment. The results suggest that even managers with strong emotional intelligence may not be able to empower their staff if their span of control is large. Every effort must be made to ensure that managers have reasonable spans of control that allow them to develop and use the leadership skill necessary for empowering their staff to practice to the full scope of their professional role.

  19. PointCom: semi-autonomous UGV control with intuitive interface

    NASA Astrophysics Data System (ADS)

    Rohde, Mitchell M.; Perlin, Victor E.; Iagnemma, Karl D.; Lupa, Robert M.; Rohde, Steven M.; Overholt, James; Fiorani, Graham

    2008-04-01

    Unmanned ground vehicles (UGVs) will play an important role in the nation's next-generation ground force. Advances in sensing, control, and computing have enabled a new generation of technologies that bridge the gap between manual UGV teleoperation and full autonomy. In this paper, we present current research on a unique command and control system for UGVs named PointCom (Point-and-Go Command). PointCom is a semi-autonomous command system for one or multiple UGVs. The system, when complete, will be easy to operate and will enable significant reduction in operator workload by utilizing an intuitive image-based control framework for UGV navigation and allowing a single operator to command multiple UGVs. The project leverages new image processing algorithms for monocular visual servoing and odometry to yield a unique, high-performance fused navigation system. Human Computer Interface (HCI) techniques from the entertainment software industry are being used to develop video-game style interfaces that require little training and build upon the navigation capabilities. By combining an advanced navigation system with an intuitive interface, a semi-autonomous control and navigation system is being created that is robust, user friendly, and less burdensome than many current generation systems. mand).

  20. Test program, helium II orbital resupply coupling

    NASA Technical Reports Server (NTRS)

    Hyatt, William S.

    1991-01-01

    The full scope of this program was to have included development tests, design and production of custom test equipment and acceptance and qualification testing of prototype and protoflight coupling hardware. This program was performed by Ball Aerospace Systems Division, Boulder, Colorado until its premature termination in May 1991. Development tests were performed on cryogenic face seals and flow control devices at superfluid helium (He II) conditions. Special equipment was developed to allow quantified leak detection at large leak rates up to 8.4 x 10(exp -4) SCCS. Two major fixtures were developed and characterized: The Cryogenic Test Fixture (CTF) and the Thermal Mismatch Fixture (Glovebox). The CTF allows the coupling hardware to be filled with liquid nitrogen (LN2), liquid helium (LHe) or sub-cooled liquid helium when hardware flow control valves are either open or closed. Heat leak measurements, internal and external helium leakage measurements, cryogenic proof pressure tests and external load applications are performed in this fixture. Special reusable MLI closures were developed to provide repeatable installations in the CTF. The Thermal Mismatch Fixture allows all design configurations of coupling hardware to be engaged and disengaged while measuring applied forces and torques. Any two hardware components may be individually thermally preconditioned within the range of 117 deg K to 350 deg K prior to engage/disengage cycling. This verifies dimensional compatibility and operation when thermally mismatched. A clean, dry GN2 atmosphere is maintained in the fixture at all times. The first shipset of hardware was received, inspected and cycled at room temperature just prior to program termination.

  1. Life Sciences Research in the Centrifuge Accommodation Module of the International Space Station

    NASA Technical Reports Server (NTRS)

    Dalton, Bonnie P.; Plaut, Karen; Meeker, Gabrielle B.; Sun, Sid (Technical Monitor)

    2000-01-01

    The Centrifuge Accommodation Module (CAM) will be the home of the fundamental biology research facilities on the International Space Station (ISS). These facilities are being built by the Biological Research Project (BRP), whose goal is to oversee development of a wide variety of habitats and host systems to support life sciences research on the ISS. The habitats and host systems are designed to provide life support for a variety of specimens including cells, bacteria, yeast, plants, fish, rodents, eggs (e.g., quail), and insects. Each habitat contains specimen chambers that allow for easy manipulation of specimens and alteration of sample numbers. All habitats are capable of sustaining life support for 90 days and have automated as well as full telescience capabilities for sending habitat parameters data to investigator homesite laboratories. The habitats provide all basic life support capabilities including temperature control, humidity monitoring and control, waste management, food, media and water delivery as well as adjustable lighting. All habitats will have either an internal centrifuge or are fitted to the 2.5-meter diameter centrifuge allowing for variable centrifugation up to 2 g. Specimen chambers are removable so that the specimens can be handled in the life sciences glovebox. Laboratory support equipment is provided for handling the specimens. This includes a compound and dissecting microscope with advanced video imaging, mass measuring devices, refrigerated centrifuge for processing biological samples, pH meter, fixation and complete cryogenic storage capabilities. The research capabilities provided by the fundamental biology facilities will allow for flexibility and efficiency for long term research on the International Space Station.

  2. 40 CFR 82.23 - Transfers of allowances of class II controlled substances.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... section. (2) Inter-pollutant transfers will be permitted at any time during the control period and during... 40 Protection of Environment 17 2011-07-01 2011-07-01 false Transfers of allowances of class II... § 82.23 Transfers of allowances of class II controlled substances. (a) Inter-company transfers...

  3. 40 CFR 82.23 - Transfers of allowances of class II controlled substances.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... section. (2) Inter-pollutant transfers will be permitted at any time during the control period and during... 40 Protection of Environment 18 2014-07-01 2014-07-01 false Transfers of allowances of class II... § 82.23 Transfers of allowances of class II controlled substances. (a) Inter-company transfers...

  4. The ORBCOMM data communications system

    NASA Technical Reports Server (NTRS)

    Schoen, David C.; Locke, Paul A.

    1993-01-01

    The ORBCOMM system is designed to provide low-cost, two-way data communications for mobile and remote users. The communications system is ideally configured for low data rate applications where communicating devices are geographically dispersed and two-way communications through terrestrial means is cumbersome and not cost effective. The remote terminals use VHF frequencies which allow for the use of very small, low-cost terminals. ORBCOMM has entered into joint development agreements with several large manufacturers of both consumer and industrial electronics to design and build the remote terminals. Based on prototype work, the estimated retail cost of these units will range from $50 to $400 depending on the complexity of the design. Starting in the fall of 1993, ORBCOMM will begin service with a demonstration network consisting of two operating satellites. By the end of 1994, a full operating network of 26 satellites, four Gateway Earth Stations, and a Network Control Center will be in place. The full constellation will provide full coverage of the entire world with greater than 94 percent communications availability for the continental U.S. This paper describes the ORBCOMM system, the technology used in its implementation, and its applications.

  5. Parametric entry corridors for lunar/Mars aerocapture missions

    NASA Technical Reports Server (NTRS)

    Ling, Lisa M.; Baseggio, Franco M.; Fuhry, Douglas P.

    1991-01-01

    Parametric atmospheric entry corridor data are presented for Earth and Mars aerocapture. Parameter ranges were dictated by the range of mission designs currently envisioned as possibilities for the Human Exploration Initiative (HEI). This data, while not providing a means for exhaustive evaluation of aerocapture performance, should prove to be a useful aid for preliminary mission design and evaluation. Entry corridors are expressed as ranges of allowable vacuum periapse altitude of the planetary approach hyperbolic orbit, with chart provided for conversion to an approximate flight path angle corridor at entry interface (125 km altitude). The corridor boundaries are defined by open-loop aerocapture trajectories which satisfy boundary constraints while utilizing the full aerodynamic control capability of the vehicle (i.e., full lift-up or full lift-down). Parameters examined were limited to those of greatest importance from an aerocapture performance standpoint, including the approach orbit hyperbolic excess velocity, the vehicle lift to drag ratio, maximum aerodynamic load factor limit, and the apoapse of the target orbit. The impact of the atmospheric density bias uncertainties are also included. The corridor data is presented in graphical format, and examples of the utilization of these graphs for mission design and evaluation are included.

  6. Can we save energy by taxing it

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boshier, J.F.

    1978-01-01

    The political and economic implications of using investment tax credits and energy-source taxes to promote energy conservation are examined and the conclusion is reached that taxes for a controlled increase in energy prices will allow better management of the transition period, but that the proposed conservation tax credit is inadequate to reverse the trend toward energy-intensive equipment. If labor costs fall relative to capital and energy costs, it will be possible to meet the goal of full employment as well as the goal of energy conservation. Policies that promote full employment, such as the wage subsidy, will further these goals,more » which will also be encouraged by policies to stimulate investment by lowering capital costs. Inconsistencies in the National Energy Plan, such as the policy to increase spendable income, are more likely to increase consumption than conserve energy. Taxes on energy are compared under the three categories of product taxes, general (or Btu) taxes, and tariffs in terms of effectiveness and social, economic, and political effects.« less

  7. Cheetah: A high frame rate, high resolution SWIR image camera

    NASA Astrophysics Data System (ADS)

    Neys, Joel; Bentell, Jonas; O'Grady, Matt; Vermeiren, Jan; Colin, Thierry; Hooylaerts, Peter; Grietens, Bob

    2008-10-01

    A high resolution, high frame rate InGaAs based image sensor and associated camera has been developed. The sensor and the camera are capable of recording and delivering more than 1700 full 640x512pixel frames per second. The FPA utilizes a low lag CTIA current integrator in each pixel, enabling integration times shorter than one microsecond. On-chip logics allows for four different sub windows to be read out simultaneously at even higher rates. The spectral sensitivity of the FPA is situated in the SWIR range [0.9-1.7 μm] and can be further extended into the Visible and NIR range. The Cheetah camera has max 16 GB of on-board memory to store the acquired images and transfer the data over a Gigabit Ethernet connection to the PC. The camera is also equipped with a full CameralinkTM interface to directly stream the data to a frame grabber or dedicated image processing unit. The Cheetah camera is completely under software control.

  8. High-irradiance reactor design with practical unfolded optics

    NASA Astrophysics Data System (ADS)

    Feuermann, Daniel; Gordon, Jeffrey M.

    2008-08-01

    In the design of high-temperature chemical reactors and furnaces, as well as high-radiance light projection applications, reconstituting the ultra-high radiance of short-arc discharge lamps at maximum radiative efficiency constitutes a significant challenge. The difficulty is exacerbated by the high numerical aperture necessary at both the source and the target. Separating the optic from both the light source and the target allows practical operation, control, monitoring, diagnostics and maintenance. We present near-field unfolded aplanatic optics as a feasible solution. The concept is illustrated with a design customized to a high-temperature chemical reactor for nano-material synthesis, driven by an ultra-bright xenon short-arc discharge lamp, with near-unity numerical aperture for both light input and light output. We report preliminary optical measurements for the first prototype, which constitutes a double-ellipsoid solution. We also propose compound unfolded aplanats that collect the full angular extent of lamp emission (in lieu of light recycling optics) and additionally permit nearly full-circumference irradiation of the reactor.

  9. A rapid method for simultaneously determining ethanol and methanol content in wines by full evaporation headspace gas chromatography.

    PubMed

    Zhang, Chun-Yun; Lin, Neng-Biao; Chai, Xin-Sheng; Zhong-Li; Barnes, Donald G

    2015-09-15

    This work reports on a full evaporation headspace gas chromatographic (FE HS-GC) method for simultaneously determining the ethanol (EtOH) and methanol (MeOH) content in wines. A small sample (10μL) was placed in a headspace sample vial, and a near-complete mass transfer of ethanol and methanol from the liquid sample to the vapor phase was obtained within three minutes at a temperature of 105°C, which allowed the measurement of the EtOH and MeOH content in the sample by GC. The results showed excellent precision and accuracy, as shown by the reproducibilities of 1.02% and 2.11% for EtOH and MeOH, respectively, and recoveries that ranged from 96.1% to 104% for both alcohols. The method is efficient, accurate and suitable for the determination of EtOH and MeOH in wine production and quality control. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Full-size solar dynamic heat receiver thermal-vacuum tests

    NASA Technical Reports Server (NTRS)

    Sedgwick, L. M.; Kaufmann, K. J.; Mclallin, K. L.; Kerslake, Thomas W.

    1991-01-01

    The testing of a full-size, 120 kW, solar dynamic heat receiver utilizing high-temperature thermal energy storage is described. The purpose of the test program was to quantify receiver thermodynamic performance, operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber with liquid nitrogen cold shrouds and an aperture cold plate to partly simulate a low-Earth-orbit environment. The cavity of the receiver was heated by an infrared quartz lamp heater with 30 independently controllable zones to allow axially and circumferentially varied flux distributions. A closed-Brayton cycle engine simulator conditioned a helium-xenon gas mixture to specific interface conditions to simulate the various operational modes of the solar dynamic power module on the Space Station Freedom. Inlet gas temperature, pressure, and flow rate were independently varied. A total of 58 simulated orbital cycles, each 94 minutes in duration, was completed during the test conduct period.

  11. Full-size solar dynamic heat receiver thermal-vacuum tests

    NASA Technical Reports Server (NTRS)

    Sedgwick, L. M.; Kaufmann, K. J.; Mclallin, K. L.; Kerslake, T. W.

    1991-01-01

    The testing of a full-size, 102 kW, solar dynamic heat receiver utilizing high-temperature thermal energy storage is described. The purpose of the test program was to quantify receiver thermodynamic performance, operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber with liquid nitrogen cold shrouds and an aperture cold plate to partly simulate a low-Earth-orbit environment. The cavity of the receiver was heated by an infrared quartz lamp heater with 30 independently controllable zones to allow axially and circumferentially varied flux distributions. A closed-Brayton cycle engine simulator conditioned a helium-xenon gas mixture to specific interface conditions to simulate the various operational modes of the solar dynamic power module on the Space Station Freedom. Inlet gas temperature, pressure, and flow rate were independently varied. A total of 58 simulated orbital cycles, each 94 minutes in duration, was completed during the test period.

  12. Full-size solar dynamic heat receiver thermal-vacuum tests

    NASA Astrophysics Data System (ADS)

    Sedgwick, L. M.; Kaufmann, K. J.; McLallin, K. L.; Kerslake, T. W.

    The testing of a full-size, 102 kW, solar dynamic heat receiver utilizing high-temperature thermal energy storage is described. The purpose of the test program was to quantify receiver thermodynamic performance, operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber with liquid nitrogen cold shrouds and an aperture cold plate to partly simulate a low-Earth-orbit environment. The cavity of the receiver was heated by an infrared quartz lamp heater with 30 independently controllable zones to allow axially and circumferentially varied flux distributions. A closed-Brayton cycle engine simulator conditioned a helium-xenon gas mixture to specific interface conditions to simulate the various operational modes of the solar dynamic power module on the Space Station Freedom. Inlet gas temperature, pressure, and flow rate were independently varied. A total of 58 simulated orbital cycles, each 94 minutes in duration, was completed during the test period.

  13. Athermally photoreduced graphene oxides for three-dimensional holographic images

    PubMed Central

    Li, Xiangping; Ren, Haoran; Chen, Xi; Liu, Juan; Li, Qin; Li, Chengmingyue; Xue, Gaolei; Jia, Jia; Cao, Liangcai; Sahu, Amit; Hu, Bin; Wang, Yongtian; Jin, Guofan; Gu, Min

    2015-01-01

    The emerging graphene-based material, an atomic layer of aromatic carbon atoms with exceptional electronic and optical properties, has offered unprecedented prospects for developing flat two-dimensional displaying systems. Here, we show that reduced graphene oxide enabled write-once holograms for wide-angle and full-colour three-dimensional images. This is achieved through the discovery of subwavelength-scale multilevel optical index modulation of athermally reduced graphene oxides by a single femtosecond pulsed beam. This new feature allows for static three-dimensional holographic images with a wide viewing angle up to 52 degrees. In addition, the spectrally flat optical index modulation in reduced graphene oxides enables wavelength-multiplexed holograms for full-colour images. The large and polarization-insensitive phase modulation over π in reduced graphene oxide composites enables to restore vectorial wavefronts of polarization discernible images through the vectorial diffraction of a reconstruction beam. Therefore, our technique can be leveraged to achieve compact and versatile holographic components for controlling light. PMID:25901676

  14. Reduced-order modeling for hyperthermia: an extended balanced-realization-based approach.

    PubMed

    Mattingly, M; Bailey, E A; Dutton, A W; Roemer, R B; Devasia, S

    1998-09-01

    Accurate thermal models are needed in hyperthermia cancer treatments for such tasks as actuator and sensor placement design, parameter estimation, and feedback temperature control. The complexity of the human body produces full-order models which are too large for effective execution of these tasks, making use of reduced-order models necessary. However, standard balanced-realization (SBR)-based model reduction techniques require a priori knowledge of the particular placement of actuators and sensors for model reduction. Since placement design is intractable (computationally) on the full-order models, SBR techniques must use ad hoc placements. To alleviate this problem, an extended balanced-realization (EBR)-based model-order reduction approach is presented. The new technique allows model order reduction to be performed over all possible placement designs and does not require ad hoc placement designs. It is shown that models obtained using the EBR method are more robust to intratreatment changes in the placement of the applied power field than those models obtained using the SBR method.

  15. Ataluren in cystic fibrosis: development, clinical studies and where are we now?

    PubMed

    Zainal Abidin, Noreen; Haq, Iram J; Gardner, Aaron I; Brodlie, Malcolm

    2017-09-01

    Cystic fibrosis (CF) is one of the most common genetically-acquired life-limiting conditions worldwide. The underlying defect is dysfunction of the cystic fibrosis transmembrane-conductance regulator (CFTR) which leads to progressive lung disease and other multi-system effects. Around 10% of people with CF have a class I nonsense mutation that leads to production of shortened CFTR due to a premature termination codon (PTC). Areas covered: We discuss the discovery of the small-molecule drug ataluren, which in vitro has been shown to allow read-through of PTCs and facilitate synthesis of full-length protein. We review clinical studies that have been performed involving ataluren in CF. Early-phase short-term cross-over studies showed improvement in nasal potential difference. A follow-up phase III randomised controlled trial did not show a significant difference for the primary outcome of lung function, however a post-hoc analysis suggested possible benefit in patients not receiving tobramycin. A further randomised controlled trial in patients not receiving tobramycin has been reported as showing no benefit but has not yet been published in full peer-reviewed form. Expert opinion: A small-molecule approach to facilitate read-through of PTCs in nonsense mutations makes intuitive sense. However, at present there is no high-quality evidence of clinical efficacy for ataluren in people with CF.

  16. Modelling energy costs for different operational strategies of a large water resource recovery facility.

    PubMed

    Póvoa, P; Oehmen, A; Inocêncio, P; Matos, J S; Frazão, A

    2017-05-01

    The main objective of this paper is to demonstrate the importance of applying dynamic modelling and real energy prices on a full scale water resource recovery facility (WRRF) for the evaluation of control strategies in terms of energy costs with aeration. The Activated Sludge Model No. 1 (ASM1) was coupled with real energy pricing and a power consumption model and applied as a dynamic simulation case study. The model calibration is based on the STOWA protocol. The case study investigates the importance of providing real energy pricing comparing (i) real energy pricing, (ii) weighted arithmetic mean energy pricing and (iii) arithmetic mean energy pricing. The operational strategies evaluated were (i) old versus new air diffusers, (ii) different DO set-points and (iii) implementation of a carbon removal controller based on nitrate sensor readings. The application in a full scale WRRF of the ASM1 model coupled with real energy costs was successful. Dynamic modelling with real energy pricing instead of constant energy pricing enables the wastewater utility to optimize energy consumption according to the real energy price structure. Specific energy cost allows the identification of time periods with potential for linking WRRF with the electric grid to optimize the treatment costs, satisfying operational goals.

  17. Optical properties of metal nanoparticles embedded in amorphous silicon analysed using discrete dipole approximation

    NASA Astrophysics Data System (ADS)

    Fantoni, Alessandro; Fernandes, Miguel; Vygranenko, Yuri; Vieira, Manuela; Oliveira-Silva, Rui P.; Prazeres, D. M. F.; Ribeiro, Ana P. C.; Alegria, Elisabete C. B. A.

    2018-02-01

    Localized surface plasmons (LSP) can be excited in metal nanoparticles (NP) by UV, visible or NIR light and are described as coherent oscillation of conduction electrons. Taking advantage of the tunable optical properties of NPs, we propose the realization of a plasmonic structure, based on the LSP interaction of NP with an embedding matrix of amorphous silicon. This study is directed to define the characteristics of NP and substrate necessary to the development of a LSP proteomics sensor that, once provided immobilized antibodies on its surface, will screen the concentration of selected antigens through the determination of LSPR spectra and peaks of light absorption. Metals of interest for NP composition are: Aluminium and Gold. Recent advances in nanoparticle production techniques allow almost full control over shapes and size, permitting full control over their optical and plasmonic properties and, above all, over their responsive spectra. Analytical solution is only possible for simple NP geometries, therefore our analysis, is realized recurring to computer simulation using the Discrete Dipole Approximation method (DDA). In this work we use the free software DDSCAT to study the optical properties of metal nanoparticles embedded in an amorphous silicon matrix, as a function of size, shape, aspect-ratio and metal type. Experimental measurements realized with arrays of metal nanoparticles are compared with the simulations.

  18. A Distributed Control System Prototyping Environment to Support Control Room Modernization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lew, Roger Thomas; Boring, Ronald Laurids; Ulrich, Thomas Anthony

    Operators of critical processes, such as nuclear power production, must contend with highly complex systems, procedures, and regulations. Developing human-machine interfaces (HMIs) that better support operators is a high priority for ensuring the safe and reliable operation of critical processes. Human factors engineering (HFE) provides a rich and mature set of tools for evaluating the performance of HMIs, however the set of tools for developing and designing HMIs is still in its infancy. Here we propose a rapid prototyping approach for integrating proposed HMIs into their native environments before a design is finalized. This approach allows researchers and developers tomore » test design ideas and eliminate design flaws prior to fully developing the new system. We illustrate this approach with four prototype designs developed using Microsoft’s Windows Presentation Foundation (WPF). One example is integrated into a microworld environment to test the functionality of the design and identify the optimal level of automation for a new system in a nuclear power plant. The other three examples are integrated into a full-scale, glasstop digital simulator of a nuclear power plant. One example demonstrates the capabilities of next generation control concepts; another aims to expand the current state of the art; lastly, an HMI prototype was developed as a test platform for a new control system currently in development at U.S. nuclear power plants. WPF possesses several characteristics that make it well suited to HMI design. It provides a tremendous amount of flexibility, agility, robustness, and extensibility. Distributed control system (DCS) specific environments tend to focus on the safety and reliability requirements for real-world interfaces and consequently have less emphasis on providing functionality to support novel interaction paradigms. Because of WPF’s large user-base, Microsoft can provide an extremely mature tool. Within process control applications,WPF is platform independent and can communicate with popular full-scope process control simulator vendor plant models and DCS platforms.« less

  19. Process optimization by decoupled control of key microbial populations: distribution of activity and abundance of polyphosphate-accumulating organisms and nitrifying populations in a full-scale IFAS-EBPR plant.

    PubMed

    Onnis-Hayden, Annalisa; Majed, Nehreen; Schramm, Andreas; Gu, April Z

    2011-07-01

    This study investigated the abundance and distribution of key functional microbial populations and their activities in a full-scale integrated fixed film activated sludge-enhanced biological phosphorus removal (IFAS-EBPR) process. Polyphosphate accumulating organisms (PAOs) including Accumulibacter and EBPR activities were predominately associated with the mixed liquor (>90%) whereas nitrifying populations and nitrification activity resided mostly (>70%) on the carrier media. Ammonia oxidizer bacteria (AOB) were members of the Nitrosomonas europaea/eutropha/halophila and the Nitrosomonas oligotropha lineages, while nitrite oxidizer bacteria (NOB) belonged to the Nitrospira genus. Addition of the carrier media in the hybrid activated sludge system increased the nitrification capacity and stability; this effect was much greater in the first IFAS stage than in the second one where the residual ammonia concentration becomes limiting. Our results show that IFAS-EBPR systems enable decoupling of solid residence time (SRT) control for nitrifiers and PAOs that require or prefer conflicting SRT values (e.g. >15 days required for nitrifiers and <5 days preferred for PAOs). Allowing the slow-growing nitrifiers to attach to the carrier media and the faster-growing phosphorus (P)-removing organisms (and other heterotrophs, e.g. denitrifiers) to be in the suspended mixed liquor (ML), the EBPR-IFAS system facilitates separate SRT controls and overall optimization for both N and P removal processes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Visual control of foot placement when walking over complex terrain.

    PubMed

    Matthis, Jonathan S; Fajen, Brett R

    2014-02-01

    The aim of this study was to investigate the role of visual information in the control of walking over complex terrain with irregularly spaced obstacles. We developed an experimental paradigm to measure how far along the future path people need to see in order to maintain forward progress and avoid stepping on obstacles. Participants walked over an array of randomly distributed virtual obstacles that were projected onto the floor by an LCD projector while their movements were tracked by a full-body motion capture system. Walking behavior in a full-vision control condition was compared with behavior in a number of other visibility conditions in which obstacles did not appear until they fell within a window of visibility centered on the moving observer. Collisions with obstacles were more frequent and, for some participants, walking speed was slower when the visibility window constrained vision to less than two step lengths ahead. When window sizes were greater than two step lengths, the frequency of collisions and walking speed were weakly affected or unaffected. We conclude that visual information from at least two step lengths ahead is needed to guide foot placement when walking over complex terrain. When placed in the context of recent research on the biomechanics of walking, the findings suggest that two step lengths of visual information may be needed because it allows walkers to exploit the passive mechanical forces inherent to bipedal locomotion, thereby avoiding obstacles while maximizing energetic efficiency. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  1. Gravity packaging final waste recovery based on gravity separation and chemical imaging control.

    PubMed

    Bonifazi, Giuseppe; Serranti, Silvia; Potenza, Fabio; Luciani, Valentina; Di Maio, Francesco

    2017-02-01

    Plastic polymers are characterized by a high calorific value. Post-consumer plastic waste can be thus considered, in many cases, as a typical secondary solid fuels according to the European Commission directive on End of Waste (EoW). In Europe the practice of incineration is considered one of the solutions for waste disposal waste, for energy recovery and, as a consequence, for the reduction of waste sent to landfill. A full characterization of these products represents the first step to profitably and correctly utilize them. Several techniques have been investigated in this paper in order to separate and characterize post-consumer plastic packaging waste fulfilling the previous goals, that is: gravity separation (i.e. Reflux Classifier), FT-IR spectroscopy, NIR HyperSpectralImaging (HSI) based techniques and calorimetric test. The study demonstrated as the proposed separation technique and the HyperSpectral NIR Imaging approach allow to separate and recognize the different polymers (i.e. PolyVinyl Chloride (PVC), PolyStyrene (PS), PolyEthylene (PE), PoliEtilene Tereftalato (PET), PolyPropylene (PP)) in order to maximize the removal of the PVC fraction from plastic waste and to perform the full quality control of the resulting products, can be profitably utilized to set up analytical/control strategies finalized to obtain a low content of PVC in the final Solid Recovered Fuel (SRF), thus enhancing SRF quality, increasing its value and reducing the "final waste". Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. 41 CFR 102-74.190 - Are portable heaters, fans and other such devices allowed in Government-controlled facilities?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., fans and other such devices allowed in Government-controlled facilities? 102-74.190 Section 102-74.190... § 102-74.190 Are portable heaters, fans and other such devices allowed in Government-controlled facilities? Federal agencies are prohibited from operating portable heaters, fans, and other such devices in...

  3. Measuring silicon pore optics

    NASA Astrophysics Data System (ADS)

    Vacanti, Giuseppe; Barrière, Nicolas; Bavdaz, Marcos; Chatbi, Abdelhakim; Collon, Maximilien; Dekker, Daniëlle; Girou, David; Günther, Ramses; van der Hoeven, Roy; Krumrey, Michael; Landgraf, Boris; Müller, Peter; Schreiber, Swenja; Vervest, Mark; Wille, Eric

    2017-09-01

    While predictions based on the metrology (local slope errors and detailed geometrical details) play an essential role in controlling the development of the manufacturing processes, X-ray characterization remains the ultimate indication of the actual performance of Silicon Pore Optics (SPO). For this reason SPO stacks and mirror modules are routinely characterized at PTB's X-ray Pencil Beam Facility at BESSY II. Obtaining standard X-ray results quickly, right after the production of X-ray optics is essential to making sure that X-ray results can inform decisions taken in the lab. We describe the data analysis pipeline in operations at cosine, and how it allows us to go from stack production to full X-ray characterization in 24 hours.

  4. History of surgery for atrial fibrillation.

    PubMed

    Edgerton, Zachary J; Edgerton, James R

    2009-12-01

    There is a rich history of surgery for atrial fibrillation. Initial procedures were aimed at controlling the ventricular response rate. Later procedures were directed at converting atrial fibrillation to normal sinus rhythm. These culminated in the Cox Maze III procedure. While highly effective, the complexity and morbidity of the cut and sew Maze III limited its adoption. Enabling technology has developed alternate energy sources designed to produce a transmural atrial scar without cutting and sewing. Termed the Maze IV, this lessened the morbidity of the procedure and widened the applicability. Further advances in minimal access techniques are now being developed to allow totally thorascopic placement of all the left atrial lesions on the full, beating heart, using alternate energy sources.

  5. Rapid high temperature field test method for evaluation of geothermal calcite scale inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asperger, R.G.

    1982-08-01

    A test method is described which allows the rapid field testing of calcite scale inhibitors in high- temperature geothermal brines. Five commercial formulations, chosen on the basis of laboratory screening tests, were tested in brines with low total dissolved solids at ca 500 F. Four were found to be effective; of these, 2 were found to be capable of removing recently deposited scale. One chemical was tested in the full-flow brine line for 6 wks. It was shown to stop a severe surface scaling problem at the well's control valve, thus proving the viability of the rapid test method. (12more » refs.)« less

  6. Surgical management of enterocutaneous fistula.

    PubMed

    Lee, Suk-Hwan

    2012-01-01

    Enterocutaneous (EC) fistula is an abnormal connection between the gastrointestinal (GI) tract and skin. The majority of EC fistulas result from surgery. About one third of fistulas close spontaneously with medical treatment and radiologic interventions. Surgical treatment should be reserved for use after sufficient time has passed from the previous laparotomy to allow lysis of the fibrous adhesion using full nutritional and medical treatment and until a complete understanding of the anatomy of the fistula has been achieved. The successful management of GI fistula requires a multi-disciplinary team approach including a gastroenterologist, interventional radiologist, enterostomal therapist, dietician, social worker and surgeons. With this coordinated approach, EC fistula can be controlled with acceptable morbidity and mortality.

  7. Surgical Management of Enterocutaneous Fistula

    PubMed Central

    2012-01-01

    Enterocutaneous (EC) fistula is an abnormal connection between the gastrointestinal (GI) tract and skin. The majority of EC fistulas result from surgery. About one third of fistulas close spontaneously with medical treatment and radiologic interventions. Surgical treatment should be reserved for use after sufficient time has passed from the previous laparotomy to allow lysis of the fibrous adhesion using full nutritional and medical treatment and until a complete understanding of the anatomy of the fistula has been achieved. The successful management of GI fistula requires a multi-disciplinary team approach including a gastroenterologist, interventional radiologist, enterostomal therapist, dietician, social worker and surgeons. With this coordinated approach, EC fistula can be controlled with acceptable morbidity and mortality. PMID:22563283

  8. Microwave focusing with uniaxially symmetric gradient index metamaterials

    NASA Astrophysics Data System (ADS)

    Wheeland, Sara; Sternberg, Oren; Perez, Israel; Rockway, John D.

    2016-09-01

    Previous efforts to create a metamaterial lens in the microwave X band frequency range focused on the development of a device with biaxial symmetry. This allows for focusing solely along the central axis of propagation. For applications involving wave direction or energy diversion, focusing may be required off the central axis. This work explores a metamaterial device with uniaxial symmetry, namely in the direction of propagation. Ray-trace optimization and full-wave finite element simulations contribute to the design of the lens. By changing the placement of the focus, we achieve further control of the focus parameters. While the present work uses coils, the unit cell can consist of any structure or material.

  9. Dynamic Modeling Accuracy Dependence on Errors in Sensor Measurements, Mass Properties, and Aircraft Geometry

    NASA Technical Reports Server (NTRS)

    Grauer, Jared A.; Morelli, Eugene A.

    2013-01-01

    A nonlinear simulation of the NASA Generic Transport Model was used to investigate the effects of errors in sensor measurements, mass properties, and aircraft geometry on the accuracy of dynamic models identified from flight data. Measurements from a typical system identification maneuver were systematically and progressively deteriorated and then used to estimate stability and control derivatives within a Monte Carlo analysis. Based on the results, recommendations were provided for maximum allowable errors in sensor measurements, mass properties, and aircraft geometry to achieve desired levels of dynamic modeling accuracy. Results using other flight conditions, parameter estimation methods, and a full-scale F-16 nonlinear aircraft simulation were compared with these recommendations.

  10. On-chip quantum tomography of mechanical nanoscale oscillators with guided Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Sanz-Mora, A.; Wüster, S.; Rost, J.-M.

    2017-07-01

    Nanomechanical oscillators as well as Rydberg-atomic waveguides hosted on microfabricated chip surfaces hold promise to become pillars of future quantum technologies. In a hybrid platform with both, we show that beams of Rydberg atoms in waveguides can quantum coherently interrogate and manipulate nanomechanical elements, allowing full quantum state tomography. Central to the tomography are quantum nondemolition measurements using the Rydberg atoms as probes. Quantum coherent displacement of the oscillator is also made possible by driving the atoms with external fields while they interact with the oscillator. We numerically demonstrate the feasibility of this fully integrated on-chip control and read-out suite for quantum nanomechanics, taking into account noise and error sources.

  11. Flipping interferometry and its application for quantitative phase microscopy in a micro-channel.

    PubMed

    Roitshtain, Darina; Turko, Nir A; Javidi, Bahram; Shaked, Natan T

    2016-05-15

    We present a portable, off-axis interferometric module for quantitative phase microscopy of live cells, positioned at the exit port of a coherently illuminated inverted microscope. The module creates on the digital camera an interference pattern between the image of the sample and its flipped version. The proposed simplified module is based on a retro-reflector modification in an external Michelson interferometer. The module does not contain any lenses, pinholes, or gratings and its alignment is straightforward. Still, it allows full control of the off-axis angle and does not suffer from ghost images. As experimentally demonstrated, the module is useful for quantitative phase microscopy of live cells rapidly flowing in a micro-channel.

  12. Use of thermal sieve to allow optical testing of cryogenic optical systems.

    PubMed

    Kim, Dae Wook; Cai, Wenrui; Burge, James H

    2012-05-21

    Full aperture testing of large cryogenic optical systems has been impractical due to the difficulty of operating a large collimator at cryogenic temperatures. The Thermal Sieve solves this problem by acting as a thermal barrier between an ambient temperature collimator and the cryogenic system under test. The Thermal Sieve uses a set of thermally controlled baffles with array of holes that are lined up to pass the light from the collimator without degrading the wavefront, while attenuating the thermal background by nearly 4 orders of magnitude. This paper provides the theory behind the Thermal Sieve system, evaluates the optimization for its optical and thermal performance, and presents the design and analysis for a specific system.

  13. Intermediate Levels of Autonomy within the SSM/PMAD Breadboard

    NASA Technical Reports Server (NTRS)

    Dugal-Whitehead, Norma R.; Walls, Bryan

    1995-01-01

    The Space Station Module Power Management and Distribution (SSM/PMAD) bread-board is a test bed for the development of advanced power system control and automation. Software control in the SSM/PMAD breadboard is through co-operating systems, called Autonomous Agents. Agents can be a mixture of algorithmic software and expert systems. The early SSM/PMAD system was envisioned as being completely autonomous. It soon became apparent, though, that there would always be a need for human intervention, at least as long as a human interacts with the system in any way. In a system designed only for autonomous operation, manual intervention meant taking full control of the whole system, and loosing whatever expertise was in the system. Several methods for allowing humans to interact at an appropriate level of control were developed. This paper examines some of these intermediate modes of autonomy. The least humanly intrusive mode is simple monitoring. The ability to modify future behavior by altering a schedule involves high-level interaction. Modification of operating activities comes next. The coarsest mode of control is individual, unplanned operation of individual Power System components. Each of these levels is integrated into the SSM/PMAD breadboard, with support for the user (such as warnings of the consequences of control decisions) at every level.

  14. Generator voltage stabilisation for series-hybrid electric vehicles.

    PubMed

    Stewart, P; Gladwin, D; Stewart, J; Cowley, R

    2008-04-01

    This paper presents a controller for use in speed control of an internal combustion engine for series-hybrid electric vehicle applications. Particular reference is made to the stability of the rectified DC link voltage under load disturbance. In the system under consideration, the primary power source is a four-cylinder normally aspirated gasoline internal combustion engine, which is mechanically coupled to a three-phase permanent magnet AC generator. The generated AC voltage is subsequently rectified to supply a lead-acid battery, and permanent magnet traction motors via three-phase full bridge power electronic inverters. Two complementary performance objectives exist. Firstly to maintain the internal combustion engine at its optimal operating point, and secondly to supply a stable 42 V supply to the traction drive inverters. Achievement of these goals minimises the transient energy storage requirements at the DC link, with a consequent reduction in both weight and cost. These objectives imply constant velocity operation of the internal combustion engine under external load disturbances and changes in both operating conditions and vehicle speed set-points. An electronically operated throttle allows closed loop engine velocity control. System time delays and nonlinearities render closed loop control design extremely problematic. A model-based controller is designed and shown to be effective in controlling the DC link voltage, resulting in the well-conditioned operation of the hybrid vehicle.

  15. Framework for Evaluating the Health Impact of the Scale-Up of Malaria Control Interventions on All-Cause Child Mortality in Sub-Saharan Africa.

    PubMed

    Yé, Yazoume; Eisele, Thomas P; Eckert, Erin; Korenromp, Eline; Shah, Jui A; Hershey, Christine L; Ivanovich, Elizabeth; Newby, Holly; Carvajal-Velez, Liliana; Lynch, Michael; Komatsu, Ryuichi; Cibulskis, Richard E; Moore, Zhuzhi; Bhattarai, Achuyt

    2017-09-01

    Concerted efforts from national and international partners have scaled up malaria control interventions, including insecticide-treated nets, indoor residual spraying, diagnostics, prompt and effective treatment of malaria cases, and intermittent preventive treatment during pregnancy in sub-Saharan Africa (SSA). This scale-up warrants an assessment of its health impact to guide future efforts and investments; however, measuring malaria-specific mortality and the overall impact of malaria control interventions remains challenging. In 2007, Roll Back Malaria's Monitoring and Evaluation Reference Group proposed a theoretical framework for evaluating the impact of full-coverage malaria control interventions on morbidity and mortality in high-burden SSA countries. Recently, several evaluations have contributed new ideas and lessons to strengthen this plausibility design. This paper harnesses that new evaluation experience to expand the framework, with additional features, such as stratification, to examine subgroups most likely to experience improvement if control programs are working; the use of a national platform framework; and analysis of complete birth histories from national household surveys. The refined framework has shown that, despite persisting data challenges, combining multiple sources of data, considering potential contributions from both fundamental and proximate contextual factors, and conducting subnational analyses allows identification of the plausible contributions of malaria control interventions on malaria morbidity and mortality.

  16. Operational Performance Risk Assessment in Support of A Supervisory Control System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denning, Richard S.; Muhlheim, Michael David; Cetiner, Sacit M.

    Supervisory control system (SCS) is developed for multi-unit advanced small modular reactors to minimize human interventions in both normal and abnormal operations. In SCS, control action decisions made based on probabilistic risk assessment approach via Event Trees/Fault Trees. Although traditional PRA tools are implemented, their scope is extended to normal operations and application is reversed; success of non-safety related system instead failure of safety systems this extended PRA approach called as operational performance risk assessment (OPRA). OPRA helps to identify success paths, combination of control actions for transients and to quantify these success paths to provide possible actions without activatingmore » plant protection system. In this paper, a case study of the OPRA in supervisory control system is demonstrated within the context of the ALMR PRISM design, specifically power conversion system. The scenario investigated involved a condition that the feed water control valve is observed to be drifting to the closed position. Alternative plant configurations were identified via OPRA that would allow the plant to continue to operate at full or reduced power. Dynamic analyses were performed with a thermal-hydraulic model of the ALMR PRISM system using Modelica to evaluate remained safety margins. Successful recovery paths for the selected scenario are identified and quantified via SCS.« less

  17. Protecting and rescuing the effectors: roles of differentiation and survival in the control of memory T cell development

    PubMed Central

    Kurtulus, Sema; Tripathi, Pulak; Hildeman, David A.

    2013-01-01

    Vaccines, arguably the single most important intervention in improving human health, have exploited the phenomenon of immunological memory. The elicitation of memory T cells is often an essential part of successful long-lived protective immunity. Our understanding of T cell memory has been greatly aided by the development of TCR Tg mice and MHC tetrameric staining reagents that have allowed the precise tracking of antigen-specific T cell responses. Indeed, following acute infection or immunization, naïve T cells undergo a massive expansion culminating in the generation of a robust effector T cell population. This peak effector response is relatively short-lived and, while most effector T cells die by apoptosis, some remain and develop into memory cells. Although the molecular mechanisms underlying this cell fate decision remain incompletely defined, substantial progress has been made, particularly with regards to CD8+ T cells. For example, the effector CD8+ T cells generated during a response are heterogeneous, consisting of cells with more or less potential to develop into full-fledged memory cells. Development of CD8+ T cell memory is regulated by the transcriptional programs that control the differentiation and survival of effector T cells. While the type of antigenic stimulation and level of inflammation control effector CD8+ T cell differentiation, availability of cytokines and their ability to control expression and function of Bcl-2 family members governs their survival. These distinct differentiation and survival programs may allow for finer therapeutic intervention to control both the quality and quantity of CD8+ T cell memory. Effector to memory transition of CD4+ T cells is less well characterized than CD8+ T cells, emerging details will be discussed. This review will focus on the recent progress made in our understanding of the mechanisms underlying the development of T cell memory with an emphasis on factors controlling survival of effector T cells. PMID:23346085

  18. System identification for precision control of a wingsailed GPS-guided catamaran

    NASA Astrophysics Data System (ADS)

    Elkaim, Gabriel Hugh

    This thesis details the Atlantis project, whose aim is the design, development, and experimental testing of an autonomous wind-propelled marine craft. Functionally, such a vehicle is the marine equivalent of an unmanned aerial vehicle (UAV), and would serve similar purposes. The Atlantis project has been able to demonstrate an advance in control precision of a wind-propelled marine vehicle from typical commercial autopilot accuracy of 100 meters to an accuracy of better than one meter with a prototype based on a modified Prindle-19 light catamaran. The project involves substantial innovations in three areas: wind-propulsion system, overall system architecture, and sensors. The wind-propulsion system is a rigid wing-sail mounted vertically on bearings, mass balanced to allow free rotation in azimuth about a stub-mast. Aerodynamic torque about the stub-mast is trimmed using a flying tail mounted on booms aft of the wing. This arrangement allows the wing-sail to automatically attain the optimum angle to the wind, and weathervane into gusts without inducing large heeling moments. The sensor system uses differential Global Positioning System (DGPS) augmented by a low-cost attitude system based on accelerometer- and magnetometer-triads for position and velocity measurements. Accurate attitude determination is required to create a synthetic position sensor that is located at the center-of-gravity (c.g.) of the boat, rather than at the Global Positioning System (GPS) antenna location. A high-performance estimator/controller was implemented and tested on the full-scale prototype. The identified controllers were able to perform remarkably well, in the presence of wind and waves, tracking the desired line to within 0.3 meters (˜1 foot).

  19. Trusted Autonomy for Space Flight Systems

    NASA Technical Reports Server (NTRS)

    Freed, Michael; Bonasso, Pete; Ingham, Mitch; Kortenkamp, David; Perix, John

    2005-01-01

    NASA has long supported research on intelligent control technologies that could allow space systems to operate autonomously or with reduced human supervision. Proposed uses range from automated control of entire space vehicles to mobile robots that assist or substitute for astronauts to vehicle systems such as life support that interact with other systems in complex ways and require constant vigilance. The potential for pervasive use of such technology to extend the kinds of missions that are possible in practice is well understood, as is its potential to radically improve the robustness, safety and productivity of diverse mission systems. Despite its acknowledged potential, intelligent control capabilities are rarely used in space flight systems. Perhaps the most famous example of intelligent control on a spacecraft is the Remote Agent system flown on the Deep Space One mission (1998 - 2001). However, even in this case, the role of the intelligent control element, originally intended to have full control of the spacecraft for the duration of the mission, was reduced to having partial control for a two-week non-critical period. Even this level of mission acceptance was exceptional. In most cases, mission managers consider intelligent control systems an unacceptable source of risk and elect not to fly them. Overall, the technology is not trusted. From the standpoint of those who need to decide whether to incorporate this technology, lack of trust is easy to understand. Intelligent high-level control means allowing software io make decisions that are too complex for conventional software. The decision-making behavior of these systems is often hard to understand and inspect, and thus hard to evaluate. Moreover, such software is typically designed and implemented either as a research product or custom-built for a particular mission. In the former case, software quality is unlikely to be adequate for flight qualification and the functionality provided by the system is likely driven largely by the need to publish innovative work. In the latter case, the mission represents the first use of the system, a risky proposition even for relatively simple software.

  20. A Cost Effective System Design Approach for Critical Space Systems

    NASA Technical Reports Server (NTRS)

    Abbott, Larry Wayne; Cox, Gary; Nguyen, Hai

    2000-01-01

    NASA-JSC required an avionics platform capable of serving a wide range of applications in a cost-effective manner. In part, making the avionics platform cost effective means adhering to open standards and supporting the integration of COTS products with custom products. Inherently, operation in space requires low power, mass, and volume while retaining high performance, reconfigurability, scalability, and upgradability. The Universal Mini-Controller project is based on a modified PC/104-Plus architecture while maintaining full compatibility with standard COTS PC/104 products. The architecture consists of a library of building block modules, which can be mixed and matched to meet a specific application. A set of NASA developed core building blocks, processor card, analog input/output card, and a Mil-Std-1553 card, have been constructed to meet critical functions and unique interfaces. The design for the processor card is based on the PowerPC architecture. This architecture provides an excellent balance between power consumption and performance, and has an upgrade path to the forthcoming radiation hardened PowerPC processor. The processor card, which makes extensive use of surface mount technology, has a 166 MHz PowerPC 603e processor, 32 Mbytes of error detected and corrected RAM, 8 Mbytes of Flash, and I Mbytes of EPROM, on a single PC/104-Plus card. Similar densities have been achieved with the quad channel Mil-Std-1553 card and the analog input/output cards. The power management built into the processor and its peripheral chip allows the power and performance of the system to be adjusted to meet the requirements of the application, allowing another dimension to the flexibility of the Universal Mini-Controller. Unique mechanical packaging allows the Universal Mini-Controller to accommodate standard COTS and custom oversized PC/104-Plus cards. This mechanical packaging also provides thermal management via conductive cooling of COTS boards, which are typically designed for convection cooling methods.

  1. Large strain variable stiffness composites for shear deformations with applications to morphing aircraft skins

    NASA Astrophysics Data System (ADS)

    McKnight, G. P.; Henry, C. P.

    2008-03-01

    Morphing or reconfigurable structures potentially allow for previously unattainable vehicle performance by permitting several optimized structures to be achieved using a single platform. The key to enabling this technology in applications such as aircraft wings, nozzles, and control surfaces, are new engineered materials which can achieve the necessary deformations but limit losses in parasitic actuation mass and structural efficiency (stiffness/weight). These materials should exhibit precise control of deformation properties and provide high stiffness when exercised through large deformations. In this work, we build upon previous efforts in segmented reinforcement variable stiffness composites employing shape memory polymers to create prototype hybrid composite materials that combine the benefits of cellular materials with those of discontinuous reinforcement composites. These composites help overcome two key challenges for shearing wing skins: the resistance to out of plane buckling from actuation induced shear deformation, and resistance to membrane deflections resulting from distributed aerodynamic pressure loading. We designed, fabricated, and tested composite materials intended for shear deformation and address out of plane deflections in variable area wing skins. Our designs are based on the kinematic engineering of reinforcement platelets such that desired microstructural kinematics is achieved through prescribed boundary conditions. We achieve this kinematic control by etching sheets of metallic reinforcement into regular patterns of platelets and connecting ligaments. This kinematic engineering allows optimization of materials properties for a known deformation pathway. We use mechanical analysis and full field photogrammetry to relate local scale kinematics and strains to global deformations for both axial tension loading and shear loading with a pinned-diamond type fixture. The Poisson ratio of the kinematically engineered composite is ~3x higher than prototypical orthotropic variable stiffness composites. This design allows us to create composite materials that have high stiffness in the cold state below SMP T g (4-14GPa) and yet achieve large composite shear strains (5-20%) in the hot state (above SMP T g).

  2. Robust Control Algorithm for a Two Cart System and an Inverted Pendulum

    NASA Technical Reports Server (NTRS)

    Wilson, Chris L.; Capo-Lugo, Pedro

    2011-01-01

    The Rectilinear Control System can be used to simulate a launch vehicle during liftoff. Several control schemes have been developed that can control different dynamic models of the rectilinear plant. A robust control algorithm was developed that can control a pendulum to maintain an inverted position. A fluid slosh tank will be attached to the pendulum in order to test robustness in the presence of unknown slosh characteristics. The rectilinear plant consists of a DC motor and three carts mounted in series. Each cart s weight can be adjusted with brass masses and the carts can be coupled with springs. The pendulum is mounted on the first cart and an adjustable air damper can be attached to the third cart if desired. Each cart and the pendulum have a quadrature encoder to determine position. Full state feedback was implemented in order to develop the control algorithm along with a state estimator to determine the velocity states of the system. A MATLAB program was used to convert the state space matrices from continuous time to discrete time. This program also used a desired phase margin and damping ratio to determine the feedback gain matrix that would be used in the LabVIEW program. This experiment will allow engineers to gain a better understanding of liquid propellant slosh dynamics, therefore enabling them to develop more robust control algorithms for launch vehicle systems

  3. An experimental test of the role of control in spider fear.

    PubMed

    Healey, Andrew; Mansell, Warren; Tai, Sara

    2017-06-01

    It is well established that uncontrollable adverse experiences lead to increased distress, but the role of client control during psychological interventions such as exposure is less clear. Earlier studies reported inconsistent findings, most likely owing to variations in the way client control was manipulated, degree of exposure, the outcome variables chosen and the follow-up periods used. Importantly, studies to date had suggested to participants that approaching their fears was beneficial thereby biasing their choices and these studies had not measured change beyond the laboratory. We recruited 96 spider-fearful student participants (mean age=22; SD=5.9; Range=18-45; 86 female). The experimental design allowed full choice over their degree of exposure, and manipulated the degree of control as the extent to which their movement of a joystick influenced their virtual distance from a moving spider image. Those with high control were yoked with a low control counterpart to ensure equal amounts of exposure. Measures were elicited at baseline, post-exposure, and at follow-up. As predicted, compared to low control participants, those with high control over exposure approached closer toward a spider post-exposure and reported less spider avoidance after an average of 17days. No group differences were found in physiological or subjective distress during the task, nor in distress and dysfunction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. 14 CFR 135.375 - Large transport category airplanes: Reciprocating engine powered: Landing limitations...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... arrival, allowing for normal consumption of fuel and oil in flight, would allow a full stop landing at the... 50 feet directly above the intersection of the obstruction clearance plane and the runway. For the...

  5. A novel approach to simulate gene-environment interactions in complex diseases.

    PubMed

    Amato, Roberto; Pinelli, Michele; D'Andrea, Daniel; Miele, Gennaro; Nicodemi, Mario; Raiconi, Giancarlo; Cocozza, Sergio

    2010-01-05

    Complex diseases are multifactorial traits caused by both genetic and environmental factors. They represent the major part of human diseases and include those with largest prevalence and mortality (cancer, heart disease, obesity, etc.). Despite a large amount of information that has been collected about both genetic and environmental risk factors, there are few examples of studies on their interactions in epidemiological literature. One reason can be the incomplete knowledge of the power of statistical methods designed to search for risk factors and their interactions in these data sets. An improvement in this direction would lead to a better understanding and description of gene-environment interactions. To this aim, a possible strategy is to challenge the different statistical methods against data sets where the underlying phenomenon is completely known and fully controllable, for example simulated ones. We present a mathematical approach that models gene-environment interactions. By this method it is possible to generate simulated populations having gene-environment interactions of any form, involving any number of genetic and environmental factors and also allowing non-linear interactions as epistasis. In particular, we implemented a simple version of this model in a Gene-Environment iNteraction Simulator (GENS), a tool designed to simulate case-control data sets where a one gene-one environment interaction influences the disease risk. The main aim has been to allow the input of population characteristics by using standard epidemiological measures and to implement constraints to make the simulator behaviour biologically meaningful. By the multi-logistic model implemented in GENS it is possible to simulate case-control samples of complex disease where gene-environment interactions influence the disease risk. The user has full control of the main characteristics of the simulated population and a Monte Carlo process allows random variability. A knowledge-based approach reduces the complexity of the mathematical model by using reasonable biological constraints and makes the simulation more understandable in biological terms. Simulated data sets can be used for the assessment of novel statistical methods or for the evaluation of the statistical power when designing a study.

  6. Conflict or Consensus: East Germany, the Soviet Union and Deutschlandpolitik 1958-1984.

    DTIC Science & Technology

    1986-06-01

    post Stalin world. The result was that in the 1957-1962 period there still existed submerged conflicts within the Kremlin, which did not allow a...EXPERIENCE OF FULL POLITBURO MEMBERS (Fall 1984) Name Birth Age Cand. Full Years as ’Vs Date Mbr . Mbr . Full Mbr . Tikhonov 1905 78 1978 1980 3 " - Ustinov...X AGE AND EXPERIENCE OF FORMER POLITBURO MEMBERS (1980-1983) Name Birth Death Age at Full Years as Date Date Death/Removal Mbr . Full Mbr . Pelshe 1899

  7. Microdosing and Other Phase 0 Clinical Trials: Facilitating Translation in Drug Development

    DOE PAGES

    Burt, T.; Yoshida, K.; Lappin, G.; ...

    2016-02-26

    A number of drivers and developments suggest that microdosing and other phase 0 applications will experience increased utilization in the near-to-medium future. Increasing costs of drug development and ethical concerns about the risks of exposing humans and animals to novel chemical entities are important drivers in favor of these approaches, and can be expected only to increase in their relevance. An increasing body of research supports the validity of extrapolation from the limited drug exposure of phase 0 approaches to the full, therapeutic exposure, with modeling and simulations capable of extrapolating even non-linear scenarios. An increasing number of applications andmore » design options demonstrate the versatility and flexibility these approaches offer to drug developers including the study of PK, bioavailability, DDI, and mechanistic PD effects. PET microdosing allows study of target localization, PK and receptor binding and occupancy, while Intra-Target Microdosing (ITM) allows study of local therapeutic-level acute PD coupled with systemic microdose-level exposure. Applications in vulnerable populations and extreme environments are attractive due to the unique risks of pharmacotherapy and increasing unmet healthcare needs. Lastly, all phase 0 approaches depend on the validity of extrapolation from the limited-exposure scenario to the full exposure of therapeutic intent, but in the final analysis the potential for controlled human data to reduce uncertainty about drug properties is bound to be a valuable addition to the drug development process.« less

  8. Microdosing and Other Phase 0 Clinical Trials: Facilitating Translation in Drug Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burt, T.; Yoshida, K.; Lappin, G.

    A number of drivers and developments suggest that microdosing and other phase 0 applications will experience increased utilization in the near-to-medium future. Increasing costs of drug development and ethical concerns about the risks of exposing humans and animals to novel chemical entities are important drivers in favor of these approaches, and can be expected only to increase in their relevance. An increasing body of research supports the validity of extrapolation from the limited drug exposure of phase 0 approaches to the full, therapeutic exposure, with modeling and simulations capable of extrapolating even non-linear scenarios. An increasing number of applications andmore » design options demonstrate the versatility and flexibility these approaches offer to drug developers including the study of PK, bioavailability, DDI, and mechanistic PD effects. PET microdosing allows study of target localization, PK and receptor binding and occupancy, while Intra-Target Microdosing (ITM) allows study of local therapeutic-level acute PD coupled with systemic microdose-level exposure. Applications in vulnerable populations and extreme environments are attractive due to the unique risks of pharmacotherapy and increasing unmet healthcare needs. Lastly, all phase 0 approaches depend on the validity of extrapolation from the limited-exposure scenario to the full exposure of therapeutic intent, but in the final analysis the potential for controlled human data to reduce uncertainty about drug properties is bound to be a valuable addition to the drug development process.« less

  9. Modeling and Parameter Estimation of Spacecraft Fuel Slosh with Diaphragms Using Pendulum Analogs

    NASA Technical Reports Server (NTRS)

    Chatman, Yadira; Gangadharan, Sathya; Schlee, Keith; Ristow, James; Suderman, James; Walker, Charles; Hubert, Carl

    2007-01-01

    Prediction and control of liquid slosh in moving containers is an important consideration in the design of spacecraft and launch vehicle control systems. Even with modern computing systems, CFD type simulations are not fast enough to allow for large scale Monte Carlo analyses of spacecraft and launch vehicle dynamic behavior with slosh included. It is still desirable to use some type of simplified mechanical analog for the slosh to shorten computation time. Analytic determination of the slosh analog parameters has met with mixed success and is made even more difficult by the introduction of propellant management devices such as elastomeric diaphragms. By subjecting full-sized fuel tanks with actual flight fuel loads to motion similar to that experienced in flight and measuring the forces experienced by the tanks, these parameters can be determined experimentally. Currently, the identification of the model parameters is a laborious trial-and-error process in which the hand-derived equations of motion for the mechanical analog are evaluated and their results compared with the experimental results. This paper will describe efforts by the university component of a team comprised of NASA's Launch Services Program, Embry Riddle Aeronautical University, Southwest Research Institute and Hubert Astronautics to improve the accuracy and efficiency of modeling techniques used to predict these types of motions. Of particular interest is the effect of diaphragms and bladders on the slosh dynamics and how best to model these devices. The previous research was an effort to automate the process of slosh model parameter identification using a MATLAB/SimMechanics-based computer simulation. These results are the first step in applying the same computer estimation to a full-size tank and vehicle propulsion system. The introduction of diaphragms to this experimental set-up will aid in a better and more complete prediction of fuel slosh characteristics and behavior. Automating the parameter identification process will save time and thus allow earlier identification of potential vehicle performance problems.

  10. NFL Films music scoring stage and control room space

    NASA Astrophysics Data System (ADS)

    Berger, Russ; Schrag, Richard C.; Ridings, Jason J.

    2003-04-01

    NFL Films' new 200,000 sq. ft. corporate headquarters is home to an orchestral scoring stage used to record custom music scores to support and enhance their video productions. Part of the 90,000 sq. ft. of sound critical technical space, the music scoring stage and its associated control room are at the heart of the audio facilities. Driving the design were the owner's mandate for natural light, wood textures, and an acoustical environment that would support small rhythm sections, soloists, and a full orchestra. Being an industry leader in cutting-edge video and audio formats, the NFLF required that the technical spaces allow the latest in technology to be continually integrated into the infrastructure. Never was it more important for a project to hold true to the adage of ``designing from the inside out.'' Each audio and video space within the facility had to stand on its own with regard to user functionality, acoustical accuracy, sound isolation, noise control, and monitor presentation. A detailed look at the architectural and acoustical design challenges encountered and the solutions developed for the performance studio and the associated control room space will be discussed.

  11. Numerical simulation and sensitivity analysis of a low-Reynolds-number flow around a square cylinder controlled using plasma actuators

    NASA Astrophysics Data System (ADS)

    Anzai, Yosuke; Fukagata, Koji; Meliga, Philippe; Boujo, Edouard; Gallaire, François

    2017-04-01

    Flow around a square cylinder controlled using plasma actuators (PAs) is numerically investigated by direct numerical simulation in order to clarify the most effective location of actuator installation and to elucidate the mechanism of control effect. The Reynolds number based on the cylinder diameter and the free-stream velocity is set to be 100 to study the fundamental effect of PAs on two-dimensional vortex shedding, and three different locations of PAs are considered. The mean drag and the root-mean-square of lift fluctuations are found to be reduced by 51% and 99% in the case where two opposing PAs are aligned vertically on the rear surface. In that case, a jet flow similar to a base jet is generated by the collision of the streaming flows induced by the two opposing PAs, and the vortex shedding is completely suppressed. The simulation results are ultimately revisited in the frame of linear sensitivity analysis, whose computational cost is much lower than that of performing the full simulation. A good agreement is reported for low control amplitudes, which allows further discussion of the linear optimal arrangement for any number of PAs.

  12. Extended analytical formulas for the perturbed Keplerian motion under a constant control acceleration

    NASA Astrophysics Data System (ADS)

    Zuiani, Federico; Vasile, Massimiliano

    2015-03-01

    This paper presents a set of analytical formulae for the perturbed Keplerian motion of a spacecraft under the effect of a constant control acceleration. The proposed set of formulae can treat control accelerations that are fixed in either a rotating or inertial reference frame. Moreover, the contribution of the zonal harmonic is included in the analytical formulae. It will be shown that the proposed analytical theory allows for the fast computation of long, multi-revolution spirals while maintaining good accuracy. The combined effect of different perturbations and of the shadow regions due to solar eclipse is also included. Furthermore, a simplified control parameterisation is introduced to optimise thrusting patterns with two thrust arcs and two cost arcs per revolution. This simple parameterisation is shown to ensure enough flexibility to describe complex low thrust spirals. The accuracy and speed of the proposed analytical formulae are compared against a full numerical integration with different integration schemes. An averaging technique is then proposed as an application of the analytical formulae. Finally, the paper presents an example of design of an optimal low-thrust spiral to transfer a spacecraft from an elliptical to a circular orbit around the Earth.

  13. Facilitating quality control for spectra assignments of small organic molecules: nmrshiftdb2--a free in-house NMR database with integrated LIMS for academic service laboratories.

    PubMed

    Kuhn, Stefan; Schlörer, Nils E

    2015-08-01

    nmrshiftdb2 supports with its laboratory information management system the integration of an electronic lab administration and management into academic NMR facilities. Also, it offers the setup of a local database, while full access to nmrshiftdb2's World Wide Web database is granted. This freely available system allows on the one hand the submission of orders for measurement, transfers recorded data automatically or manually, and enables download of spectra via web interface, as well as the integrated access to prediction, search, and assignment tools of the NMR database for lab users. On the other hand, for the staff and lab administration, flow of all orders can be supervised; administrative tools also include user and hardware management, a statistic functionality for accounting purposes, and a 'QuickCheck' function for assignment control, to facilitate quality control of assignments submitted to the (local) database. Laboratory information management system and database are based on a web interface as front end and are therefore independent of the operating system in use. Copyright © 2015 John Wiley & Sons, Ltd.

  14. Functionalized membranes for environmental remediation and selective separation

    NASA Astrophysics Data System (ADS)

    Xiao, Li

    Membrane process including microfiltration (MF), ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO) have provided numerous successful applications ranging from drinking water purification, wastewater treatment, to material recovery. The addition of functional moiety in the membranes pores allows such membranes to be used in challenging areas including tunable separations, toxic metal capture, and catalysis. In this work, polyvinylidene fluoride (PVDF) MF membrane was functionalized with temperature responsive (poly(N-isopropylacrylamide), PNIPAAm) and pH responsive (polyacrylic acid, PAA) polymers. It's revealed that the permeation of various molecules (water, salt and dextran) through the membrane can be thermally or pH controlled. The introduction of PAA as a polyelectrolyte offers an excellent platform for the immobilization of metal nanoparticles (NPs) applied for degradation of toxic chlorinated organics with significantly increased longevity and stability. The advantage of using temperature and pH responsive polymers/hydrogels also includes the high reactivity and effectiveness in dechlorination. Further advancement on the PVDF functionalization involved the alkaline treatment to create partially defluorinated membrane (Def-PVDF) with conjugated double bounds allowing for the covalent attachment of different polymers. The PAA-Def-PVDF membrane shows pH responsive behavior on both the hydraulic permeability and solute retention. The sponge-like PVDF (SPVDF) membranes by phase inversion were developed through casting PVDF solution on polyester backing. The SPVDF membrane was demonstrated to have 4 times more surface area than commercial PVDF MF membrane, allowing for enhanced nanoparticles loading for chloro-organics degradation. The advanced functionalization method and process were also validated to be able to be scaled-up through the evaluation of full-scale functionalized membrane provided by Ultura Inc. California, USA. Nanofiltration (NF) between UF and RO presents selectivity controlled by both steric and electrostatic repulsions, which are widely used to reject charged species, particularly multivalent ions. In this work, selective permeation of CaCl2 and high sucrose retention are obtained through the modification of nanofiltration membranes with lower charge compared to commercial nanofiltration membrane. The membrane module also shows high stability with constant water permeability in a long-term (two months) test. Extended Nernst-Planck equation were further used to evaluate the experimental results and it fits well. KEY WORDS: Functionalized Membrane, Dechlorination, Responsive, Tunable, Full-scale.

  15. Perampanel in the management of partial-onset seizures: a review of safety, efficacy, and patient acceptability

    PubMed Central

    Schulze-Bonhage, Andreas; Hintz, Mandy

    2015-01-01

    Perampanel (PER) is a novel antiepileptic drug recently introduced for the adjunctive treatment in epilepsy patients aged 12 years or older with partial-onset seizures with or without secondary generalization in the US and Europe. Its antiepileptic action is based on noncompetitive inhibition of postsynaptic AMPA receptors, decreasing excitatory synaptic transmission. Evaluation of efficacy in three placebo-controlled randomized Phase III studies showed that add-on therapy of PER decreased seizure frequencies significantly compared to placebo at daily doses between 4 mg/day and 12 mg/day. PER’s long half-life of 105 hours allows for once-daily dosing that is favorable for patient compliance with intake. Long-term extension studies showed a 62.5%–69.6% adherence of patients after 1 year of treatment, comparing favorably with other second-generation antiepileptic drugs. Whereas these trials demonstrated an overall favorable tolerability profile of PER, nonspecific central nervous system adverse effects like somnolence, dizziness, headache, and fatigue may occur. In addition, neuropsychiatric disturbances ranging from irritability to suicidality were reported in several case reports; both placebo-controlled and prospective long-term extension trials showed a low incidence of such behavioral and psychiatric complaints. For early recognition of neuropsychiatric symptoms like depression, anxiety, and aggression, slow titration and close monitoring during drug introduction are mandatory. This allows on the one hand to recognize patients particularly susceptible to adverse effects of the drug, and on the other hand to render the drug’s full potential of seizure control available for the vast majority of patient groups tolerating the drug well. PMID:26316718

  16. A PATO-compliant zebrafish screening database (MODB): management of morpholino knockdown screen information.

    PubMed

    Knowlton, Michelle N; Li, Tongbin; Ren, Yongliang; Bill, Brent R; Ellis, Lynda Bm; Ekker, Stephen C

    2008-01-07

    The zebrafish is a powerful model vertebrate amenable to high throughput in vivo genetic analyses. Examples include reverse genetic screens using morpholino knockdown, expression-based screening using enhancer trapping and forward genetic screening using transposon insertional mutagenesis. We have created a database to facilitate web-based distribution of data from such genetic studies. The MOrpholino DataBase is a MySQL relational database with an online, PHP interface. Multiple quality control levels allow differential access to data in raw and finished formats. MODBv1 includes sequence information relating to almost 800 morpholinos and their targets and phenotypic data regarding the dose effect of each morpholino (mortality, toxicity and defects). To improve the searchability of this database, we have incorporated a fixed-vocabulary defect ontology that allows for the organization of morpholino affects based on anatomical structure affected and defect produced. This also allows comparison between species utilizing Phenotypic Attribute Trait Ontology (PATO) designated terminology. MODB is also cross-linked with ZFIN, allowing full searches between the two databases. MODB offers users the ability to retrieve morpholino data by sequence of morpholino or target, name of target, anatomical structure affected and defect produced. MODB data can be used for functional genomic analysis of morpholino design to maximize efficacy and minimize toxicity. MODB also serves as a template for future sequence-based functional genetic screen databases, and it is currently being used as a model for the creation of a mutagenic insertional transposon database.

  17. Thermal wave interference with high-power VCSEL arrays for locating vertically oriented subsurface defects

    NASA Astrophysics Data System (ADS)

    Thiel, Erik; Kreutzbruck, Marc; Studemund, Taarna; Ziegler, Mathias

    2018-04-01

    Among the photothermal methods, full-field thermal imaging is used to characterize materials, to determine thicknesses of layers, or to find inhomogeneities such as voids or cracks. The use of classical light sources such as flash lamps (impulse heating) or halogen lamps (modulated heating) led to a variety of nondestructive testing methods, in particular, lock-in and flash-thermography. In vertical-cavity surface-emitting lasers (VCSELs), laser light is emitted perpendicularly to the surface with a symmetrical beam profile. Due to the vertical structure, they can be arranged in large arrays of many thousands of individual lasers, which allows power scaling into the kilowatt range. Recently, a high-power yet very compact version of such a VCSEL-array became available that offers both the fast timing behavior of a laser as well as the large illumination area of a lamp. Moreover, it allows a spatial and temporal control of the heating because individual parts of the array can be controlled arbitrarily in frequency, amplitude, and phase. In conjunction with a fast infrared camera, such structured heating opens up a field of novel thermal imaging and testing methods. As a first demonstration of this approach, we chose a testing problem very challenging to conventional thermal infrared testing: The detection of very thin subsurface defects perpendicularly oriented to the surface of metallic samples. First, we generate destructively interfering thermal wave fields, which are then affected by the presence of defects within their reach. It turned out that this technique allows highly sensitive detection of subsurface defects down to depths in excess of the usual thermographic rule of thumb, with no need for a reference or surface preparation.

  18. Artificial Gravity as a Multi-System Countermeasure to Bed Rest Deconditioning: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Warren, L. E.; Paloski, William H.; Young, L. R.

    2006-01-01

    Artificial gravity paradigms may offer effective, efficient, multi-system protection from the untoward effects of adaptation to the microgravity of space or the hypogravity of planetary surfaces. Intermittent artificial gravity (AG) produced by a horizontal short-radius centrifuge (SRC) has recently been utilized on human test subjects deconditioned by bed rest. This presentation will review preliminary results of a 41 day study conducted at the University of Texas Medical Branch, Galveston, TX bed rest facility. During the first eleven days of the protocol, subjects were ambulatory, but confined to the facility. They began a carefully controlled diet, and participated in multiple baseline tests of bone, muscle, cardiovascular, sensory-motor, immunological, and psychological function. On the twelfth day, subjects entered the bed rest phase of the study, during which they were confined to strict 6deg head down tilt bed rest for 21 days. Beginning 24 hrs into this period, treatment subjects received one hour daily exposures to artificial gravity which was produced by spinning the subjects on a 3.0 m radius SRC. They were oriented radially in the supine position so that the centrifugal force was aligned with their long body axis, and while spinning, they "stood" on a force plate, supporting the centrifugal loading (2.5 g at the feet, 1.0 g at the heart). The subject station allowed free translation over approximately 10 cm to ensure full loading of the lower extremities and to allow for anti-orthostatic muscle contractions. Control subjects were positioned on the centrifuge but did not spin. Following the bed rest phase, subjects were allowed to ambulate again, but remained within the facility for an additional 9 days and participated in multiple follow-up tests of physiological function.

  19. Assessment of clinical analytical sensitivity and specificity of next-generation sequencing for detection of simple and complex mutations.

    PubMed

    Chin, Ephrem L H; da Silva, Cristina; Hegde, Madhuri

    2013-02-19

    Detecting mutations in disease genes by full gene sequence analysis is common in clinical diagnostic laboratories. Sanger dideoxy terminator sequencing allows for rapid development and implementation of sequencing assays in the clinical laboratory, but it has limited throughput, and due to cost constraints, only allows analysis of one or at most a few genes in a patient. Next-generation sequencing (NGS), on the other hand, has evolved rapidly, although to date it has mainly been used for large-scale genome sequencing projects and is beginning to be used in the clinical diagnostic testing. One advantage of NGS is that many genes can be analyzed easily at the same time, allowing for mutation detection when there are many possible causative genes for a specific phenotype. In addition, regions of a gene typically not tested for mutations, like deep intronic and promoter mutations, can also be detected. Here we use 20 previously characterized Sanger-sequenced positive controls in disease-causing genes to demonstrate the utility of NGS in a clinical setting using standard PCR based amplification to assess the analytical sensitivity and specificity of the technology for detecting all previously characterized changes (mutations and benign SNPs). The positive controls chosen for validation range from simple substitution mutations to complex deletion and insertion mutations occurring in autosomal dominant and recessive disorders. The NGS data was 100% concordant with the Sanger sequencing data identifying all 119 previously identified changes in the 20 samples. We have demonstrated that NGS technology is ready to be deployed in clinical laboratories. However, NGS and associated technologies are evolving, and clinical laboratories will need to invest significantly in staff and infrastructure to build the necessary foundation for success.

  20. Coherent manipulation of three-qubit states in a molecular single-ion magnet

    NASA Astrophysics Data System (ADS)

    Jenkins, M. D.; Duan, Y.; Diosdado, B.; García-Ripoll, J. J.; Gaita-Ariño, A.; Giménez-Saiz, C.; Alonso, P. J.; Coronado, E.; Luis, F.

    2017-02-01

    We study the quantum spin dynamics of nearly isotropic Gd3 + ions entrapped in polyoxometalate molecules and diluted in crystals of a diamagnetic Y3 + derivative. The full energy-level spectrum and the orientations of the magnetic anisotropy axes have been determined by means of continuous-wave electron paramagnetic resonance experiments, using X-band (9-10 GHz) cavities and on-chip superconducting waveguides and 1.5-GHz resonators. The results show that seven allowed transitions between the 2 S +1 spin states can be separately addressed. Spin coherence T2 and spin-lattice relaxation T1 rates have been measured for each of these transitions in properly oriented single crystals. The results suggest that quantum spin coherence is limited by residual dipolar interactions with neighbor electronic spins. Coherent Rabi oscillations have been observed for all transitions. The Rabi frequencies increase with microwave power and agree quantitatively with predictions based on the spin Hamiltonian of the molecular spin. We argue that the spin states of each Gd3 + ion can be mapped onto the states of three addressable qubits (or, alternatively, of a d =8 -level "qudit"), for which the seven allowed transitions form a universal set of operations. Within this scheme, one of the coherent oscillations observed experimentally provides an implementation of a controlled-controlled-NOT (or Toffoli) three-qubit gate.

  1. Percolation blockage: A process that enables melt pond formation on first year Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Polashenski, Chris; Golden, Kenneth M.; Perovich, Donald K.; Skyllingstad, Eric; Arnsten, Alexandra; Stwertka, Carolyn; Wright, Nicholas

    2017-01-01

    Melt pond formation atop Arctic sea ice is a primary control of shortwave energy balance in the Arctic Ocean. During late spring and summer, the ponds determine sea ice albedo and how much solar radiation is transmitted into the upper ocean through the sea ice. The initial formation of ponds requires that melt water be retained above sea level on the ice surface. Both theory and observations, however, show that first year sea ice is so highly porous prior to the formation of melt ponds that multiday retention of water above hydraulic equilibrium should not be possible. Here we present results of percolation experiments that identify and directly demonstrate a mechanism allowing melt pond formation. The infiltration of fresh water into the pore structure of sea ice is responsible for blocking percolation pathways with ice, sealing the ice against water percolation, and allowing water to pool above sea level. We demonstrate that this mechanism is dependent on fresh water availability, known to be predominantly from snowmelt, and ice temperature at melt onset. We argue that the blockage process has the potential to exert significant control over interannual variability in ice albedo. Finally, we suggest that incorporating the mechanism into models would enhance their physical realism. Full treatment would be complex. We provide a simple temperature threshold-based scheme that may be used to incorporate percolation blockage behavior into existing model frameworks.

  2. Novel microwave photonic fractional Hilbert transformer using a ring resonator-based optical all-pass filter.

    PubMed

    Zhuang, Leimeng; Khan, Muhammad Rezaul; Beeker, Willem; Leinse, Arne; Heideman, René; Roeloffzen, Chris

    2012-11-19

    We propose and demonstrate a novel wideband microwave photonic fractional Hilbert transformer implemented using a ring resonator-based optical all-pass filter. The full programmability of the ring resonator allows variable and arbitrary fractional order of the Hilbert transformer. The performance analysis in both frequency and time domain validates that the proposed implementation provides a good approximation to an ideal fractional Hilbert transformer. This is also experimentally verified by an electrical S21 response characterization performed on a waveguide realization of a ring resonator. The waveguide-based structure allows the proposed Hilbert transformer to be integrated together with other building blocks on a photonic integrated circuit to create various system-level functionalities for on-chip microwave photonic signal processors. As an example, a circuit consisting of a splitter and a ring resonator has been realized which can perform on-chip phase control of microwave signals generated by means of optical heterodyning, and simultaneous generation of in-phase and quadrature microwave signals for a wide frequency range. For these functionalities, this simple and on-chip solution is considered to be practical, particularly when operating together with a dual-frequency laser. To our best knowledge, this is the first-time on-chip demonstration where ring resonators are employed to perform phase control functionalities for optical generation of microwave signals by means of optical heterodyning.

  3. First responder tracking and visualization for command and control toolkit

    NASA Astrophysics Data System (ADS)

    Woodley, Robert; Petrov, Plamen; Meisinger, Roger

    2010-04-01

    In order for First Responder Command and Control personnel to visualize incidents at urban building locations, DHS sponsored a small business research program to develop a tool to visualize 3D building interiors and movement of First Responders on site. 21st Century Systems, Inc. (21CSI), has developed a toolkit called Hierarchical Grid Referenced Normalized Display (HiGRND). HiGRND utilizes three components to provide a full spectrum of visualization tools to the First Responder. First, HiGRND visualizes the structure in 3D. Utilities in the 3D environment allow the user to switch between views (2D floor plans, 3D spatial, evacuation routes, etc.) and manually edit fast changing environments. HiGRND accepts CAD drawings and 3D digital objects and renders these in the 3D space. Second, HiGRND has a First Responder tracker that uses the transponder signals from First Responders to locate them in the virtual space. We use the movements of the First Responder to map the interior of structures. Finally, HiGRND can turn 2D blueprints into 3D objects. The 3D extruder extracts walls, symbols, and text from scanned blueprints to create the 3D mesh of the building. HiGRND increases the situational awareness of First Responders and allows them to make better, faster decisions in critical urban situations.

  4. Cultural Proficiency: Using Films to Get Groups Talking--and Listening--to One Another

    ERIC Educational Resources Information Center

    Nelson, Sarah W.; Guerra, Patricia L.

    2009-01-01

    Full-length films allow viewers to see the complexity and nuances of cultural interactions. Discussions following full-length films tend to be deeper and more insightful than those in response to a short clip. This makes watching full-length films an excellent strategy for helping teachers unpack beliefs, values, and stereotypes. In this article,…

  5. Building new hospitals: a UK infection control perspective.

    PubMed

    Stockley, J M; Constantine, C E; Orr, K E

    2006-03-01

    Infection control input is vital throughout the planning, design and building stages of a new hospital project, and must continue through the commissioning (and decommissioning) process, evaluation and putting the facility into full clinical service. Many hospitals continue to experience problems months or years after occupying the new premises; some of these could have been avoided by infection control involvement earlier in the project. The importance of infection control must be recognized by the chief executive of the hospital trust and project teams overseeing the development. Clinical user groups and contractors must also be made aware of infection control issues. It is vital that good working relationships are built up between the infection control team (ICT) and all these parties. ICTs need the authority to influence the process. This may require their specific recognition by the Private Finance Initiative National Unit, the Department of Health or other relevant authorities. ICTs need training in how to read design plans, how to write effective specifications, and in other areas with which they may be unfamiliar. The importance of documentation and record keeping is paramount. External or independent validation of processes should be available, particularly in commissioning processes. Building design in relation to infection control needs stricter national regulations, allowing ICTs to focus on more local usage issues. Further research is needed to provide evidence regarding the relationship between building design and the prevalence of infection.

  6. HadISD: a quality-controlled global synoptic report database for selected variables at long-term stations from 1973-2011

    NASA Astrophysics Data System (ADS)

    Dunn, R. J. H.; Willett, K. M.; Thorne, P. W.; Woolley, E. V.; Durre, I.; Dai, A.; Parker, D. E.; Vose, R. S.

    2012-10-01

    This paper describes the creation of HadISD: an automatically quality-controlled synoptic resolution dataset of temperature, dewpoint temperature, sea-level pressure, wind speed, wind direction and cloud cover from global weather stations for 1973-2011. The full dataset consists of over 6000 stations, with 3427 long-term stations deemed to have sufficient sampling and quality for climate applications requiring sub-daily resolution. As with other surface datasets, coverage is heavily skewed towards Northern Hemisphere mid-latitudes. The dataset is constructed from a large pre-existing ASCII flatfile data bank that represents over a decade of substantial effort at data retrieval, reformatting and provision. These raw data have had varying levels of quality control applied to them by individual data providers. The work proceeded in several steps: merging stations with multiple reporting identifiers; reformatting to netCDF; quality control; and then filtering to form a final dataset. Particular attention has been paid to maintaining true extreme values where possible within an automated, objective process. Detailed validation has been performed on a subset of global stations and also on UK data using known extreme events to help finalise the QC tests. Further validation was performed on a selection of extreme events world-wide (Hurricane Katrina in 2005, the cold snap in Alaska in 1989 and heat waves in SE Australia in 2009). Some very initial analyses are performed to illustrate some of the types of problems to which the final data could be applied. Although the filtering has removed the poorest station records, no attempt has been made to homogenise the data thus far, due to the complexity of retaining the true distribution of high-resolution data when applying adjustments. Hence non-climatic, time-varying errors may still exist in many of the individual station records and care is needed in inferring long-term trends from these data. This dataset will allow the study of high frequency variations of temperature, pressure and humidity on a global basis over the last four decades. Both individual extremes and the overall population of extreme events could be investigated in detail to allow for comparison with past and projected climate. A version-control system has been constructed for this dataset to allow for the clear documentation of any updates and corrections in the future.

  7. Imparting Catalyst-Control upon Classical Palladium-Catalyzed Alkenyl C–H Bond Functionalization Reactions

    PubMed Central

    Sigman, Matthew S.; Werner, Erik W.

    2011-01-01

    Conspectus The functional group transformations carried out by the palladium-catalyzed Wacker and Heck reactions are radically different, but they are both alkenyl C-H bond functionalization reactions that have found extensive use in organic synthesis. The synthetic community depends heavily on these important reactions, but selectivity issues arising from control by the substrate, rather than control by the catalyst, have prevented the realization of their full potential. Because of important similarities in the respective selectivity-determining nucleopalladation and β-hydride elimination steps of these processes, we posit that the mechanistic insight garnered through the development of one of these catalytic reactions may be applied to the other. In this Account, we detail our efforts to develop catalyst-controlled variants of both the Wacker oxidation and the Heck reaction to address synthetic limitations and provide mechanistic insight into the underlying organometallic processes of these reactions. In contrast to previous reports, we discovered that electrophilic palladium catalysts with non-coordinating counterions allowed for the use of a Lewis basic ligand to efficiently promote TBHP-mediated Wacker oxidation reactions of styrenes. This discovery led to the mechanistically guided development of a Wacker reaction catalyzed by a palladium complex with a bidentate ligand. This ligation may prohibit coordination of allylic heteroatoms, thereby allowing for the application of the Wacker oxidation to substrates that were poorly behaved under classical conditions. Likewise, we unexpectedly discovered that electrophilic Pd-σ-alkyl intermediates are capable of distinguishing between electronically inequivalent C–H bonds during β-hydride elimination. As a result, we have developed E-styrenyl selective oxidative Heck reactions of previously unsuccessful electronically non-biased alkene substrates using arylboronic acid derivatives. The mechanistic insight gained from the development of this chemistry allowed for the rational design of a similarly E-styrenyl selective classical Heck reaction using aryldiazonium salts and a broad range of alkene substrates. The key mechanistic findings from the development of these reactions provide new insight into how to predictably impart catalyst control in organometallic processes that would otherwise afford complex product mixtures. Given our new understanding, we are optimistic that reactions that introduce increased complexity relative to simple classical processes may now be developed based on our ability to predict the selectivity-determining nucleopalladation and β-hydride elimination steps through catalyst design. PMID:22111756

  8. Stability of Fiber Optic Networked Decentralized Distributed Engine Control Under Time Delays

    DTIC Science & Technology

    2009-08-01

    Nomenclature FADEC = Full Authority Digital Engine Control D2FADEC = Decentralized Distributed Full Authority Digital Engine Control DEC...Corporation (IFOS), bm@ifos.com. I American Institute of Aeronautics and Astronautics 2 II. Distributed Engine Control Systems FADEC Based on...of Full Authority Digital Engine Control ( FADEC ) are distributed at the component level. Each sensor/actuator is to be replaced by a smart sensor

  9. Using a biomimetic membrane surface experiment to investigate the activity of the magnetite biomineralisation protein Mms6† †Electronic supplementary information (ESI) available: Including Mms6 protein and peptide sequences, additional QCM-D and SEM data and protein modelling. See DOI: 10.1039/c5ra16469a Click here for additional data file.

    PubMed Central

    Bird, Scott M.; Rawlings, Andrea E.; Galloway, Johanna M.

    2016-01-01

    Magnetotactic bacteria are able to synthesise precise nanoparticles of the iron oxide magnetite within their cells. These particles are formed in dedicated organelles termed magnetosomes. These lipid membrane compartments use a range of biomineralisation proteins to nucleate and regulate the magnetite crystallisation process. A key component is the membrane protein Mms6, which binds to iron ions and helps to control the formation of the inorganic core. We have previously used Mms6 on gold surfaces patterned with a self-assembled monolayer to successfully produce arrays of magnetic nanoparticles. Here we use this surface system as a mimic of the interior face of the magnetosome membrane to study differences between intact Mms6 and the acid-rich C-terminal peptide subregion of the Mms6 protein. When immobilised on surfaces, the peptide is unable to reproduce the particle size or homogeneity control exhibited by the full Mms6 protein in our experimental setup. Moreover, the peptide is unable to support anchoring of a dense array of nanoparticles to the surface. This system also allows us to deconvolute particle binding from particle nucleation, and shows that Mms6 particle binding is less efficient when supplied with preformed magnetite nanoparticles when compared to particles precipitated from solution in the presence of the surface immobilised Mms6. This suggests that Mms6 binds to iron ions rather than to magnetite surfaces in our system, and is perhaps a nucleating agent rather than a controller of magnetite crystal growth. The comparison between the peptide and the protein under identical experimental conditions indicates that the full length sequence is required to support the full function of Mms6 on surfaces. PMID:27019707

  10. Spatial Searching for Solar Physics Data

    NASA Astrophysics Data System (ADS)

    Hourcle, Joseph; Spencer, J. L.; The VSO Team

    2013-07-01

    The Virtual Solar Observatory allows searching across many collections of solar physics data, but does not yet allow a researcher to search based on the location and extent of the observation, other than by selecting general categories such as full disk or off limb. High resolution instruments that observe only a portion of the the solar disk require greater specificity than is currently available. We believe that finer-grained spatial searching will allow for improved access to data from existing instruments such as TRACE, XRT and SOT, and well as from upcoming missions such as ATST and IRIS. Our proposed solution should also help scientists to search on the field of view of full-disk images that are out of the Sun-Earth line, such as STEREO/EUVI and obserations from the upcoming Solar Orbiter and Solar Probe Plus missions. We present our current work on cataloging sub field images for spatial searching so that researchers can more easily search for observations of a given feature of interest, with the intent of soliciting information about researcher's requirements and recommendations for further improvements.Abstract (2,250 Maximum Characters): The Virtual Solar Observatory allows searching across many collections of solar physics data, but does not yet allow a researcher to search based on the location and extent of the observation, other than by selecting general categories such as full disk or off limb. High resolution instruments that observe only a portion of the the solar disk require greater specificity than is currently available. We believe that finer-grained spatial searching will allow for improved access to data from existing instruments such as TRACE, XRT and SOT, and well as from upcoming missions such as ATST and IRIS. Our proposed solution should also help scientists to search on the field of view of full-disk images that are out of the Sun-Earth line, such as STEREO/EUVI and obserations from the upcoming Solar Orbiter and Solar Probe Plus missions. We present our current work on cataloging sub field images for spatial searching so that researchers can more easily search for observations of a given feature of interest, with the intent of soliciting information about researcher's requirements and recommendations for further improvements.

  11. A Design Methodology for Rapid Implementation of Active Control Systems Across Lean Direct Injection Combustor Platforms

    NASA Technical Reports Server (NTRS)

    Baumann, William T.; Saunders, William R.; Vandsburger, Uri; Saus, Joseph (Technical Monitor)

    2003-01-01

    The VACCG team is comprised of engineers at Virginia Tech who specialize in the subject areas of combustion physics, chemical kinetics, dynamics and controls, and signal processing. Currently, the team's work on this NRA research grant is designed to determine key factors that influence combustion control performance through a blend of theoretical and experimental investigations targeting design and demonstration of active control for three different combustors. To validiate the accuracy of conclusions about control effectiveness, a sequence of experimental verifications on increasingly complex lean, direct injection combustors is underway. During the work period January 1, 2002 through October 15, 2002, work has focused on two different laboratory-scale combustors that allow access for a wide variety of measurements. As the grant work proceeds, one key goal will be to obtain certain knowledge about a particular combustor process using a minimum of sophisticated measurements, due to the practical limitations of measurements on full-scale combustors. In the second year, results obtained in the first year will be validated on test combustors to be identified in the first quarter of that year. In the third year, it is proposed to validate the results at more realistic pressure and power levels by utilizing the facilities at the Glenn Research Center.

  12. Modeling Virus Coinfection to Inform Management of Maize Lethal Necrosis in Kenya

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hilker, Frank M.; Allen, Linda J. S.; Bokil, Vrushali A.

    Maize lethal necrosis (MLN) has emerged as a serious threat to food security in sub-Saharan Africa. MLN is caused by coinfection with two viruses, Maize chlorotic mottle virus and a potyvirus, often Sugarcane mosaic virus. To better understand the dynamics of MLN and to provide insight into disease management, we modeled the spread of the viruses causing MLN within and between growing seasons. The model allows for transmission via vectors, soil, and seed, as well as exogenous sources of infection. Following model parameterization, we predict how management affects disease prevalence and crop performance over multiple seasons. Resource-rich farmers with largemore » holdings can achieve good control by combining clean seed and insect control. However, crop rotation is often required to effect full control. Resource-poor farmers with smaller holdings must rely on rotation and roguing, and achieve more limited control. For both types of farmer, unless management is synchronized over large areas, exogenous sources of infection can thwart control. As well as providing practical guidance, our modeling framework is potentially informative for other cropping systems in which coinfection has devastating effects. Finally, our work also emphasizes how mathematical modeling can inform management of an emerging disease even when epidemiological information remains scanty.« less

  13. Modeling Virus Coinfection to Inform Management of Maize Lethal Necrosis in Kenya

    DOE PAGES

    Hilker, Frank M.; Allen, Linda J. S.; Bokil, Vrushali A.; ...

    2017-08-01

    Maize lethal necrosis (MLN) has emerged as a serious threat to food security in sub-Saharan Africa. MLN is caused by coinfection with two viruses, Maize chlorotic mottle virus and a potyvirus, often Sugarcane mosaic virus. To better understand the dynamics of MLN and to provide insight into disease management, we modeled the spread of the viruses causing MLN within and between growing seasons. The model allows for transmission via vectors, soil, and seed, as well as exogenous sources of infection. Following model parameterization, we predict how management affects disease prevalence and crop performance over multiple seasons. Resource-rich farmers with largemore » holdings can achieve good control by combining clean seed and insect control. However, crop rotation is often required to effect full control. Resource-poor farmers with smaller holdings must rely on rotation and roguing, and achieve more limited control. For both types of farmer, unless management is synchronized over large areas, exogenous sources of infection can thwart control. As well as providing practical guidance, our modeling framework is potentially informative for other cropping systems in which coinfection has devastating effects. Finally, our work also emphasizes how mathematical modeling can inform management of an emerging disease even when epidemiological information remains scanty.« less

  14. Linear algebraic theory of partial coherence: discrete fields and measures of partial coherence.

    PubMed

    Ozaktas, Haldun M; Yüksel, Serdar; Kutay, M Alper

    2002-08-01

    A linear algebraic theory of partial coherence is presented that allows precise mathematical definitions of concepts such as coherence and incoherence. This not only provides new perspectives and insights but also allows us to employ the conceptual and algebraic tools of linear algebra in applications. We define several scalar measures of the degree of partial coherence of an optical field that are zero for full incoherence and unity for full coherence. The mathematical definitions are related to our physical understanding of the corresponding concepts by considering them in the context of Young's experiment.

  15. GEECS (Generalized Equipment and Experiment Control System)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    GONSALVES, ANTHONY; DESHMUKH, AALHAD

    2017-01-12

    GEECS (Generalized Equipment and Experiment Control System) monitors and controls equipment distributed across a network, performs experiments by scanning input variables, and collects and stores various types of data synchronously from devices. Examples of devices include cameras, motors and pressure gauges. GEEKS is based upon LabView graphical object oriented programming (GOOP), allowing for a modular and scalable framework. Data is published for subscription of an arbitrary number of variables over TCP. A secondary framework allows easy development of graphical user interfaces for a combined control of any available devices on the control system without the need of programming knowledge. Thismore » allows for rapid integration of GEECS into a wide variety of systems. A database interface provides for devise and process configuration while allowing the user to save large quantities of data to local or network drives.« less

  16. Application of a dynamic population-based model for evaluation of exposure reduction strategies in the baking industry

    NASA Astrophysics Data System (ADS)

    Meijster, Tim; Warren, Nick; Heederik, Dick; Tielemans, Erik

    2009-02-01

    Recently a dynamic population model was developed that simulates a population of bakery workers longitudinally through time and tracks the development of work-related sensitisation and respiratory symptoms in each worker. Input for this model comes from cross-sectional and longitudinal epidemiological studies which allowed estimation of exposure response relationships and disease transition probabilities This model allows us to study the development of diseases and transitions between disease states over time in relation to determinants of disease including flour dust and/or allergen exposure. Furthermore it enables more realistic modelling of the health impact of different intervention strategies at the workplace (e.g. changes in exposure may take several years to impact on ill-health and often occur as a gradual trend). A large dataset of individual full-shift exposure measurements and real-time exposure measurements were used to obtain detailed insight into the effectiveness of control measures and other determinants of exposure. Given this information a population wide reduction of the median exposure with 50% was evaluated in this paper.

  17. Advanced electron cyclotron heating and current drive experiments on the stellarator Wendelstein 7-X

    NASA Astrophysics Data System (ADS)

    Stange, Torsten; Laqua, Heinrich Peter; Beurskens, Marc; Bosch, Hans-Stephan; Bozhenkov, Sergey; Brakel, Rudolf; Braune, Harald; Brunner, Kai Jakob; Cappa, Alvaro; Dinklage, Andreas; Erckmann, Volker; Fuchert, Golo; Gantenbein, Gerd; Gellert, Florian; Grulke, Olaf; Hartmann, Dirk; Hirsch, Matthias; Höfel, Udo; Kasparek, Walter; Knauer, Jens; Langenberg, Andreas; Marsen, Stefan; Marushchenko, Nikolai; Moseev, Dmitry; Pablant, Novomir; Pasch, Ekkehard; Rahbarnia, Kian; Mora, Humberto Trimino; Tsujimura, Toru; Turkin, Yuriy; Wauters, Tom; Wolf, Robert

    2017-10-01

    During the first operational phase (OP 1.1) of Wendelstein 7-X (W7-X) electron cyclotron resonance heating (ECRH) was the exclusive heating method and provided plasma start-up, wall conditioning, heating and current drive. Six gyrotrons were commissioned for OP1.1 and used in parallel for plasma operation with a power of up to 4.3 MW. During standard X2-heating the spatially localized power deposition with high power density allowed controlling the radial profiles of the electron temperature and the rotational transform. Even though W7-X was not fully equipped with first wall tiles and operated with a graphite limiter instead of a divertor, electron densities of n e > 3·1019 m-3 could be achieved at electron temperatures of several keV and ion temperatures above 2 keV. These plasma parameters allowed the first demonstration of a multipath O2-heating scenario, which is envisaged for safe operation near the X-cutoff-density of 1.2·1020 m-3 after full commissioning of the ECRH system in the next operation phase OP1.2.

  18. Report on ISS O2 Production, Gas Supply and Partial Pressure Management

    NASA Technical Reports Server (NTRS)

    Schaezler, Ryan N.; Cook, Anthony J.

    2015-01-01

    Oxygen is used on International Space Station (ISS) for metabolic support and denitrogenation procedures prior to Extra-Vehicular Activities. Nitrogen is used to maintain total pressure and account for losses associated with leakage and operational losses. Oxygen and nitrogen have been supplied by various visiting vehicles such as the Progress and Shuttle in addition to the on-orbit oxygen production capability. Starting in 2014, new high pressure oxygen/nitrogen tanks are available to launch on commercial cargo vehicles and will replace the high pressure gas source that Shuttle used to provide. To maintain a habitable atmosphere the oxygen and nitrogen partial pressures are controlled between upper and lower bounds. The full range of the allowable partial pressures along with the increased ISS cabin volume are utilized as a buffer allowing days to pass between oxygen production or direct addition of oxygen and nitrogen to the atmosphere from reserves. This paper summarizes the amount of gas supplied and produced from all of the sources and describes past experience of managing partial pressures along with the range of management options available to the ISS.

  19. A dual switch controls bacterial enhancer-dependent transcription

    PubMed Central

    Wiesler, Simone C.; Burrows, Patricia C.; Buck, Martin

    2012-01-01

    Bacterial RNA polymerases (RNAPs) are targets for antibiotics. Myxopyronin binds to the RNAP switch regions to block structural rearrangements needed for formation of open promoter complexes. Bacterial RNAPs containing the major variant σ54 factor are activated by enhancer-binding proteins (bEBPs) and transcribe genes whose products are needed in pathogenicity and stress responses. We show that (i) enhancer-dependent RNAPs help Escherichia coli to survive in the presence of myxopyronin, (ii) enhancer-dependent RNAPs partially resist inhibition by myxopyronin and (iii) ATP hydrolysis catalysed by bEBPs is obligatory for functional interaction of the RNAP switch regions with the transcription start site. We demonstrate that enhancer-dependent promoters contain two barriers to full DNA opening, allowing tight regulation of transcription initiation. bEBPs engage in a dual switch to (i) allow propagation of nucleated DNA melting from an upstream DNA fork junction and (ii) complete the formation of the transcription bubble and downstream DNA fork junction at the RNA synthesis start site, resulting in switch region-dependent RNAP clamp closure and open promoter complex formation. PMID:22965125

  20. Biologic and synthetic skin substitutes: An overview

    PubMed Central

    Halim, Ahmad Sukari; Khoo, Teng Lye; Mohd. Yussof, Shah Jumaat

    2010-01-01

    The current trend of burn wound care has shifted to more holistic approach of improvement in the long-term form and function of the healed burn wounds and quality of life. This has demanded the emergence of various skin substitutes in the management of acute burn injury as well as post burn reconstructions. Skin substitutes have important roles in the treatment of deep dermal and full thickness wounds of various aetiologies. At present, there is no ideal substitute in the market. Skin substitutes can be divided into two main classes, namely, biological and synthetic substitutes. The biological skin substitutes have a more intact extracellular matrix structure, while the synthetic skin substitutes can be synthesised on demand and can be modulated for specific purposes. Each class has its advantages and disadvantages. The biological skin substitutes may allow the construction of a more natural new dermis and allow excellent re-epithelialisation characteristics due to the presence of a basement membrane. Synthetic skin substitutes demonstrate the advantages of increase control over scaffold composition. The ultimate goal is to achieve an ideal skin substitute that provides an effective and scar-free wound healing. PMID:21321652

  1. Gas network model allows full reservoir coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Methnani, M.M.

    The gas-network flow model (Gasnet) developed for and added to an existing Qatar General Petroleum Corp. (OGPC) in-house reservoir simulator, allows improved modeling of the interaction among the reservoir, wells, and pipeline networks. Gasnet is a three-phase model that is modified to handle gas-condensate systems. The numerical solution is based on a control volume scheme that uses the concept of cells and junctions, whereby pressure and phase densities are defined in cells, while phase flows are defined at junction links. The model features common numerical equations for the reservoir, the well, and the pipeline components and an efficient state-variable solutionmore » method in which all primary variables including phase flows are solved directly. Both steady-state and transient flow events can be simulated with the same tool. Three test cases show how the model runs. One case simulates flow redistribution in a simple two-branch gas network. The second simulates a horizontal gas well in a waterflooded gas reservoir. The third involves an export gas pipeline coupled to a producing reservoir.« less

  2. Precise Nuclear Data Measurements Possible with the NIFFTE fissionTPC for Advanced Reactor Designs

    NASA Astrophysics Data System (ADS)

    Towell, Rusty; Niffte Collaboration

    2015-10-01

    The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) Collaboration has applied the proven technology of Time Projection Chambers (TPC) to the task of precisely measuring fission cross sections. With the NIFFTE fission TPC, precise measurements have been made during the last year at the Los Alamos Neutron Science Center from both U-235 and Pu-239 targets. The exquisite tracking capabilities of this device allow the full reconstruction of charged particles produced by neutron beam induced fissions from a thin central target. The wealth of information gained from this approach will allow systematics to be controlled at the level of 1%. The fissionTPC performance will be presented. These results are critical to the development of advanced uranium-fueled reactors. However, there are clear advantages to developing thorium-fueled reactors such as Liquid Fluoride Thorium Reactors over uranium-fueled reactors. These advantages include improved reactor safety, minimizing radioactive waste, improved reactor efficiency, and enhanced proliferation resistance. The potential for using the fissionTPC to measure needed cross sections important to the development of thorium-fueled reactors will also be discussed.

  3. An Open-Source Arduino-based Controller for Mechanical Rain Simulators

    NASA Astrophysics Data System (ADS)

    Cantilina, K. K.

    2017-12-01

    Many commercial rain simulators currently used in hydrology rely on inflexible and outdated controller designs. These analog controllers typically only allow a handful of discrete parameter options, and do not support internal timing functions or continuously-changing parameters. A desire for finer control of rain simulation events necessitated the design and construction of a microcontroller-based controller, using widely available off-the-shelf components. A menu driven interface allows users to fine-tune simulation parameters without the need for training or experience with microcontrollers, and the accessibility of the Arduino IDE allows users with a minimum of programming and hardware experience to modify the controller program to suit the needs of individual experiments.

  4. Reconfigurable multivariable control law for commercial airplane using a direct digital output feedback design

    NASA Technical Reports Server (NTRS)

    Ostroff, A. J.; Hueschen, R. M.

    1984-01-01

    The ability of a pilot to reconfigure the control surfaces on an airplane after a failure, allowing the airplane to recover to a safe condition for landing, becomes more difficult with increasing airplane complexity. Techniques are needed to stabilize and control the airplane immediately after a failure, allowing the pilot time to make longer range decisions. This paper shows a design of a discrete multivariable control law using four controls for the longitudinal channel of a B-737. Single control element failures are allowed in three of the four controls. The four controls design and failure cases are analyzed by means of a digital airplane simulation, with regard to tracking capability and ability to overcome severe windshear and turbulence during the aproach and landing phase of flight.

  5. Flight dynamics simulation modeling and control of a large flexible tiltrotor aircraft

    NASA Astrophysics Data System (ADS)

    Juhasz, Ondrej

    A high order rotorcraft mathematical model is developed and validated against the XV-15 and a Large Civil Tiltrotor (LCTR) concept. The mathematical model is generic and allows for any rotorcraft configuration, from single main rotor helicopters to coaxial and tiltrotor aircraft. Rigid-body and inflow states, as well as flexible wing and blade states are used in the analysis. The separate modeling of each rotorcraft component allows for structural flexibility to be included, which is important when modeling large aircraft where structural modes affect the flight dynamics frequency ranges of interest, generally 1 to 20 rad/sec. Details of the formulation of the mathematical model are given, including derivations of structural, aerodynamic, and inertial loads. The linking of the components of the aircraft is developed using an approach similar to multibody analyses by exploiting a tree topology, but without equations of constraints. Assessments of the effects of wing flexibility are given. Flexibility effects are evaluated by looking at the nature of the couplings between rigid-body modes and wing structural modes and vice versa. The effects of various different forms of structural feedback on aircraft dynamics are analyzed. A proportional-integral feedback on the structural acceleration is deemed to be most effective at both improving the damping and reducing the overall excitation of a structural mode. A model following control architecture is then implemented on full order flexible LCTR models. For this aircraft, the four lowest frequency structural modes are below 20 rad/sec, and are thus needed for control law development and analysis. The impact of structural feedback on both Attitude-Command, Attitude-Hold (ACAH) and Translational Rate Command (TRC) response types are investigated. A rigid aircraft model has optimistic performance characteristics, and a control system designed for a rigid aircraft could potentially destabilize a flexible one. The various control systems are flown in a fixed-base simulator. Pilot inputs and aircraft performance are recorded and analyzed.

  6. Monitoring complex detectors: the uSOP approach in the Belle II experiment

    NASA Astrophysics Data System (ADS)

    Di Capua, F.; Aloisio, A.; Ameli, F.; Anastasio, A.; Branchini, P.; Giordano, R.; Izzo, V.; Tortone, G.

    2017-08-01

    uSOP is a general purpose single board computer designed for deep embedded applications in control and monitoring of detectors, sensors and complex laboratory equipments. It is based on the AM3358 (1 GHz ARM Cortex A8 processor), equipped with USB and Ethernet interfaces. On-board RAM and solid state storage allows hosting a full LINUX distribution. In this paper we discuss the main aspects of the hardware and software design and the expandable peripheral architecture built around field busses. We report on several applications of uSOP system in the Belle II experiment, presently under construction at KEK (Tsukuba, Japan). In particular we will report the deployment of uSOP in the monitoring system framework of the endcap electromagnetic calorimeter.

  7. Space Shuttle Projects

    NASA Image and Video Library

    1987-05-27

    This photograph is a long shot view of a full scale solid rocket motor (SRM) for the solid rocket booster (SRB) being test fired at Morton Thiokol's Wasatch Operations in Utah. The twin boosters provide the majority of thrust for the first two minutes of flight, about 5.8 million pounds, augmenting the Shuttle's main propulsion system during liftoff. The major design drivers for the SRM's were high thrust and reuse. The desired thrust was achieved by using state-of-the-art solid propellant and by using a long cylindrical motor with a specific core design that allows the propellant to burn in a carefully controlled marner. Under the direction of the Marshall Space Flight Center, the SRM's are provided by the Morton Thiokol Corporation.

  8. Investigation of Pressurized Wave Bearings

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Dimofte, Florin

    2003-01-01

    The wave bearing has been pioneered and developed by Dr. Dimofte over the past several years. This bearing will be the main focus of this research. It is believed that the wave bearing offers a number of advantages over the foil bearing, which is the bearing that NASA is currently pursuing for turbomachinery applications. The wave bearing is basically a journal bearing whose film thickness varies around the circumference approximately sinusoidally, with usually 3 or 4 waves. Being a rigid geometry bearing, it provides precise control of shaft centerlines. The wave profile also provides good load capacity and makes the bearing very stable. Manufacturing techniques have been devised that should allow the production of wave bearings almost as cheaply as conventional full-circular bearings.

  9. Explosive Transient Camera (ETC) Program

    NASA Technical Reports Server (NTRS)

    Ricker, George

    1991-01-01

    Since the inception of the ETC program, a wide range of new technologies was developed to support this astronomical instrument. The prototype unit was installed at ETC Site 1. The first partially automated observations were made and some major renovations were later added to the ETC hardware. The ETC was outfitted with new thermoelectrically-cooled CCD cameras and a sophisticated vacuum manifold, which, together, made the ETC a much more reliable unit than the prototype. The ETC instrumentation and building were placed under full computer control, allowing the ETC to operate as an automated, autonomous instrument with virtually no human intervention necessary. The first fully-automated operation of the ETC was performed, during which the ETC monitored the error region of the repeating soft gamma-ray burster SGR 1806-21.

  10. Advanced photoelectric effect experiment beamline at Elettra: A surface science laboratory coupled with Synchrotron Radiation.

    PubMed

    Panaccione, G; Vobornik, I; Fujii, J; Krizmancic, D; Annese, E; Giovanelli, L; Maccherozzi, F; Salvador, F; De Luisa, A; Benedetti, D; Gruden, A; Bertoch, P; Polack, F; Cocco, D; Sostero, G; Diviacco, B; Hochstrasser, M; Maier, U; Pescia, D; Back, C H; Greber, T; Osterwalder, J; Galaktionov, M; Sancrotti, M; Rossi, G

    2009-04-01

    We report the main characteristics of the advanced photoelectric effect experiments beamline, operational at Elettra storage ring, featuring a fully independent double branch scheme obtained by the use of chicane undulators and able to keep polarization control in both linear and circular mode. The paper describes the novel technical solutions adopted, namely, (a) the design of a quasiperiodic undulator resulting in optimized suppression of higher harmonics over a large photon energy range (10-100 eV), (b) the thermal stability of optics under high heat load via cryocoolers, and (c) the end station interconnected setup allowing full access to off-beam and on-beam facilities and, at the same time, the integration of users' specialized sample growth chambers or modules.

  11. On-Demand Microwave Generator of Shaped Single Photons

    NASA Astrophysics Data System (ADS)

    Forn-Díaz, P.; Warren, C. W.; Chang, C. W. S.; Vadiraj, A. M.; Wilson, C. M.

    2017-11-01

    We demonstrate the full functionality of a circuit that generates single microwave photons on demand, with a wave packet that can be modulated with a near-arbitrary shape. We achieve such a high tunability by coupling a superconducting qubit near the end of a semi-infinite transmission line. A dc superconducting quantum interference device shunts the line to ground and is employed to modify the spatial dependence of the electromagnetic mode structure in the transmission line. This control allows us to couple and decouple the qubit from the line, shaping its emission rate on fast time scales. Our decoupling scheme is applicable to all types of superconducting qubits and other solid-state systems and can be generalized to multiple qubits as well as to resonators.

  12. Microtraps for neutral atoms using superconducting structures in the critical state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emmert, A.; Brune, M.; Raimond, J.-M.

    Recently demonstrated superconducting atom chips provide a platform for trapping atoms and coupling them to solid-state quantum systems. Controlling these devices requires a full understanding of the supercurrent distribution in the trapping structures. For type-II superconductors, this distribution is hysteretic in the critical state due to the partial penetration of the magnetic field in the thin superconducting film through pinned vortices. We report here an experimental observation of this memory effect. Our results are in good agreement with the predictions of the Bean model of the critical state without adjustable parameters. The memory effect allows to write and store permanentmore » currents in micron-sized superconducting structures and paves the way toward engineered trapping potentials.« less

  13. Vehicle-scale investigation of a fluorine jet-pump liquid hydrogen tank pressurization system

    NASA Technical Reports Server (NTRS)

    Cady, E. C.; Kendle, D. W.

    1972-01-01

    A comprehensive analytical and experimental program was performed to evaluate the performance of a fluorine-hydrogen jet-pump injector for main tank injection (MTI) pressurization of a liquid hydrogen (LH2) tank. The injector performance during pressurization and LH2 expulsion was determined by a series of seven tests of a full-scale injector and MTI pressure control system in a 28.3 cu m (1000 cu ft) flight-weight LH2 tank. Although the injector did not effectively jet-pump LH2 continuously, it showed improved pressurization performance compared to straight-pipe injectors tested under the same conditions in a previous program. The MTI computer code was modified to allow performance prediction for the jet-pump injector.

  14. Large Area Silicon Sheet by EFG

    NASA Technical Reports Server (NTRS)

    Wald, F. V.

    1979-01-01

    Displaced die concepts were explored along with some initial work on buckle characterization. Convective impurity redistribution was further studied. Growth from single cartridges was continued to create a quality baseline to allow comparison of the results with those in the upcoming multiple run and to choose the most appropriate die design. Fabrication and assembly work on the actual five ribbon furnace continued. Progress was made toward the development of the video optical system for edge position and meniscus height control. In preparation for a detailed program, designed to explore the buckling problem, ribbon guidance in the machine was improved. Buckle free, full width ribbon was grown under stable conditions without a cold shoe, an achievement essential to finally arrive at quantitative correlations between growth conditions and buckle formation.

  15. Segmented cold cathode display panel

    NASA Technical Reports Server (NTRS)

    Payne, Leslie (Inventor)

    1998-01-01

    The present invention is a video display device that utilizes the novel concept of generating an electronically controlled pattern of electron emission at the output of a segmented photocathode. This pattern of electron emission is amplified via a channel plate. The result is that an intense electronic image can be accelerated toward a phosphor thus creating a bright video image. This novel arrangement allows for one to provide a full color flat video display capable of implementation in large formats. In an alternate arrangement, the present invention is provided without the channel plate and a porous conducting surface is provided instead. In this alternate arrangement, the brightness of the image is reduced but the cost of the overall device is significantly lowered because fabrication complexity is significantly decreased.

  16. Nonlinear dynamics and cavity cooling of levitated nanoparticles

    NASA Astrophysics Data System (ADS)

    Fonseca, P. Z. G.; Aranas, E. B.; Millen, J.; Monteiro, T. S.; Barker, P. F.

    2016-09-01

    We investigate a dynamic nonlinear optomechanical system, comprising a nanosphere levitated in a hybrid electro-optical trap. An optical cavity offers readout of both linear-in-position and quadratic-in-position (nonlinear) light-matter coupling, whilst simultaneously cooling the nanosphere, for indefinite periods of time and in high vacuum. Through the rich sideband structure displayed by the cavity output we can observe cooling of the linear and non-linear particle's motion. Here we present an experimental setup which allows full control over the cavity resonant frequencies, and shows cooling of the particle's motion as a function of the detuning. This work paves the way to strong-coupled quantum dynamics between a cavity and a mesoscopic object largely decoupled from its environment.

  17. Space station full-scale docking/berthing mechanisms development

    NASA Technical Reports Server (NTRS)

    Burns, Gene C.; Price, Harold A.; Buchanan, David B.

    1988-01-01

    One of the most critical operational functions for the space station is the orbital docking between the station and the STS orbiter. The program to design, fabricate, and test docking/berthing mechanisms for the space station is described. The design reflects space station overall requirements and consists of two mating docking mechanism halves. One half is designed for use on the shuttle orbiter and incorporates capture and energy attenuation systems using computer controlled electromechanical actuators and/or attenuators. The mating half incorporates a flexible feature to allow two degrees of freedom at the module-to-module interface of the space station pressurized habitat volumes. The design concepts developed for the prototype units may be used for the first space station flight hardware.

  18. Microcomputer Activities Which Encourage the Reading-Writing Connection.

    ERIC Educational Resources Information Center

    Balajthy, Ernest

    Many reading teachers, cognizant of the creative opportunities for skill development allowed by new reading-writing software, are choosing to use microcomputers in their classrooms full-time. Adventure story creation programs capitalize on reading-writing integration by allowing children, with appropriate assistance, to create their own…

  19. Full evaporation dynamic headspace in combination with selectable one-dimensional/two-dimensional gas chromatography-mass spectrometry for the determination of suspected fragrance allergens in cosmetic products.

    PubMed

    Devos, Christophe; Ochiai, Nobuo; Sasamoto, Kikuo; Sandra, Pat; David, Frank

    2012-09-14

    Suspected fragrance allergens were determined in cosmetic products using a combination of full evaporation-dynamic headspace (FEDHS) with selectable one-dimensional/two-dimensional GC-MS. The full evaporation dynamic headspace approach allows the non-discriminating extraction and injection of both apolar and polar fragrance compounds, without contamination of the analytical system by high molecular weight non-volatile matrix compounds. The method can be applied to all classes of cosmetic samples, including water containing matrices such as shower gels or body creams. In combination with selectable (1)D/(2)D GC-MS, consisting of a dedicated heart-cutting GC-MS configuration using capillary flow technology (CFT) and low thermal mass GC (LTM-GC), a highly flexible and easy-to-use analytical solution is offered. Depending on the complexity of the perfume fraction, analyses can be performed in one-dimensional GC-MS mode or in heart-cutting two-dimensional GC-MS mode, without the need of hardware reconfiguration. The two-dimensional mode with independent temperature control of the first and second dimension column is especially useful to confirm the presence of detected allergen compounds when mass spectral deconvolution is not possible. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Global reaction mechanism for the auto-ignition of full boiling range gasoline and kerosene fuels

    NASA Astrophysics Data System (ADS)

    Vandersickel, A.; Wright, Y. M.; Boulouchos, K.

    2013-12-01

    Compact reaction schemes capable of predicting auto-ignition are a prerequisite for the development of strategies to control and optimise homogeneous charge compression ignition (HCCI) engines. In particular for full boiling range fuels exhibiting two stage ignition a tremendous demand exists in the engine development community. The present paper therefore meticulously assesses a previous 7-step reaction scheme developed to predict auto-ignition for four hydrocarbon blends and proposes an important extension of the model constant optimisation procedure, allowing for the model to capture not only ignition delays, but also the evolutions of representative intermediates and heat release rates for a variety of full boiling range fuels. Additionally, an extensive validation of the later evolutions by means of various detailed n-heptane reaction mechanisms from literature has been presented; both for perfectly homogeneous, as well as non-premixed/stratified HCCI conditions. Finally, the models potential to simulate the auto-ignition of various full boiling range fuels is demonstrated by means of experimental shock tube data for six strongly differing fuels, containing e.g. up to 46.7% cyclo-alkanes, 20% napthalenes or complex branched aromatics such as methyl- or ethyl-napthalene. The good predictive capability observed for each of the validation cases as well as the successful parameterisation for each of the six fuels, indicate that the model could, in principle, be applied to any hydrocarbon fuel, providing suitable adjustments to the model parameters are carried out. Combined with the optimisation strategy presented, the model therefore constitutes a major step towards the inclusion of real fuel kinetics into full scale HCCI engine simulations.

  1. Biology of male fertility control: an overview of various male contraceptive approaches.

    PubMed

    Tulsiani, D R; Abou-Haila, A

    2015-04-01

    The population of our planet continues to grow at an alarming rate. If the growth continues at the present rate, the estimated current world population of about seven billion is expected to double in the next forty years. Accumulated data from surveys by the United Nations Population Control Division suggest that a majority of today's young men in many countries are willing to have fewer children than their parents did. However, the contraceptive options available to them have not changed in several decades. In spite of the general agreement that men, like women, must take full responsibility of their fertility, the availability of safe, reversible and affordable contraceptives for men have lagged behind because of the complexity of the science of the male reproductive system. Thus, the contraceptive needs of millions of men/couples go unmet every single day and results in millions of unwanted pregnancies. In this article, we intend to discuss new hormonal and non-hormonal contraceptive approaches that are at various stages of research and development and may someday provide new contraceptives for men. In addition, we intend to discuss many details of three safe, effective, affordable and reversible vas-based approaches that are inching closer to being approved for use by millions of men in multiple countries. Finally, our intention is to discuss the male contraceptive pill that will soon be available to men only in Indonesia. The availability of these male contraceptives will allow both men and women to take full control of their fertility and participate in slowing down the growth of world population.

  2. Characterization and Simulation of the Thermoacoustic Instability Behavior of an Advanced, Low Emissions Combustor Prototype

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.; Paxson, Daniel E.

    2008-01-01

    Extensive research is being done toward the development of ultra-low-emissions combustors for aircraft gas turbine engines. However, these combustors have an increased susceptibility to thermoacoustic instabilities. This type of instability was recently observed in an advanced, low emissions combustor prototype installed in a NASA Glenn Research Center test stand. The instability produces pressure oscillations that grow with increasing fuel/air ratio, preventing full power operation. The instability behavior makes the combustor a potentially useful test bed for research into active control methods for combustion instability suppression. The instability behavior was characterized by operating the combustor at various pressures, temperatures, and fuel and air flows representative of operation within an aircraft gas turbine engine. Trends in instability behavior versus operating condition have been identified and documented, and possible explanations for the trends provided. A simulation developed at NASA Glenn captures the observed instability behavior. The physics-based simulation includes the relevant physical features of the combustor and test rig, employs a Sectored 1-D approach, includes simplified reaction equations, and provides time-accurate results. A computationally efficient method is used for area transitions, which decreases run times and allows the simulation to be used for parametric studies, including control method investigations. Simulation results show that the simulation exhibits a self-starting, self-sustained combustion instability and also replicates the experimentally observed instability trends versus operating condition. Future plans are to use the simulation to investigate active control strategies to suppress combustion instabilities and then to experimentally demonstrate active instability suppression with the low emissions combustor prototype, enabling full power, stable operation.

  3. Characterization and Simulation of Thermoacoustic Instability in a Low Emissions Combustor Prototype

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.; Paxson, Daniel E.

    2008-01-01

    Extensive research is being done toward the development of ultra-low-emissions combustors for aircraft gas turbine engines. However, these combustors have an increased susceptibility to thermoacoustic instabilities. This type of instability was recently observed in an advanced, low emissions combustor prototype installed in a NASA Glenn Research Center test stand. The instability produces pressure oscillations that grow with increasing fuel/air ratio, preventing full power operation. The instability behavior makes the combustor a potentially useful test bed for research into active control methods for combustion instability suppression. The instability behavior was characterized by operating the combustor at various pressures, temperatures, and fuel and air flows representative of operation within an aircraft gas turbine engine. Trends in instability behavior vs. operating condition have been identified and documented. A simulation developed at NASA Glenn captures the observed instability behavior. The physics-based simulation includes the relevant physical features of the combustor and test rig, employs a Sectored 1-D approach, includes simplified reaction equations, and provides time-accurate results. A computationally efficient method is used for area transitions, which decreases run times and allows the simulation to be used for parametric studies, including control method investigations. Simulation results show that the simulation exhibits a self-starting, self-sustained combustion instability and also replicates the experimentally observed instability trends vs. operating condition. Future plans are to use the simulation to investigate active control strategies to suppress combustion instabilities and then to experimentally demonstrate active instability suppression with the low emissions combustor prototype, enabling full power, stable operation.

  4. 49 CFR 236.507 - Brake application; full service.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Automatic Train Stop, Train Control and Cab Signal Systems Standards § 236.507 Brake application; full service. The automatic train stop or train control apparatus shall, when operated, cause a full service...

  5. 49 CFR 236.507 - Brake application; full service.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Automatic Train Stop, Train Control and Cab Signal Systems Standards § 236.507 Brake application; full service. The automatic train stop or train control apparatus shall, when operated, cause a full service...

  6. Pre-licensed driving experience and car crash involvement during the learner and restricted, licence stages of graduated driver licensing: Findings from the New Zealand drivers study.

    PubMed

    Begg, Dorothy J; Langley, John D; Brookland, Rebecca L; Ameratunga, Shanthi; Gulliver, Pauline

    2014-01-01

    The aim of this study was to determine whether pre-licence driving experiences, that is driving before beginning the licensing process, increased or decreased crash risk as a car driver, during the learner or the restricted licence stages of the graduated driver licensing system (GDLS). Study participants were 15-24 year old members of the New Zealand Drivers Study (NZDS) - a prospective cohort study of newly licensed car drivers. The interview stages of the NZDS are linked to, the three licensing stages of the GDLS: learner, restricted and full. Baseline demographic (age, ethnicity, residential location, deprivation), personality (impulsivity, sensation seeking, aggression) and, behavioural data, (including pre-licensed driving behaviour), were obtained at the learner licence interview. Data on distance driven and crashes that occurred at the learner licence and restricted licence stages, were reported at the restricted and full licence interviews, respectively. Crash data were also obtained from police traffic crash report files and this was combined with the self-reported crash data. The analysis of the learner licence stage crashes, when only supervised driving is allowed, was based on the participants who had passed the restricted licence test and undertaken the NZDS, restricted licence interview (n=2358). The analysis of the restricted licence stage crashes, when unsupervised driving is first allowed, was based on those who had passed the full licence test and completed the full licence interview (n=1428). After controlling for a range of demographic, personality, behavioural variables and distance driven, Poisson regression showed that the only pre-licence driving behaviour that showed a consistent relationship with subsequent crashes was on-road car driving which was associated with an increased risk of being the driver in a car crash during the learner licence period. This research showed that pre-licensed driving did not reduce crash risk among learner or restricted licensed drivers, and in some cases (such as on-road car driving) may have increased risk. Young people should be discouraged from the illegal behaviour of driving a car on-road before licensing. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. A hybrid anchored-ANOVA - POD/Kriging method for uncertainty quantification in unsteady high-fidelity CFD simulations

    NASA Astrophysics Data System (ADS)

    Margheri, Luca; Sagaut, Pierre

    2016-11-01

    To significantly increase the contribution of numerical computational fluid dynamics (CFD) simulation for risk assessment and decision making, it is important to quantitatively measure the impact of uncertainties to assess the reliability and robustness of the results. As unsteady high-fidelity CFD simulations are becoming the standard for industrial applications, reducing the number of required samples to perform sensitivity (SA) and uncertainty quantification (UQ) analysis is an actual engineering challenge. The novel approach presented in this paper is based on an efficient hybridization between the anchored-ANOVA and the POD/Kriging methods, which have already been used in CFD-UQ realistic applications, and the definition of best practices to achieve global accuracy. The anchored-ANOVA method is used to efficiently reduce the UQ dimension space, while the POD/Kriging is used to smooth and interpolate each anchored-ANOVA term. The main advantages of the proposed method are illustrated through four applications with increasing complexity, most of them based on Large-Eddy Simulation as a high-fidelity CFD tool: the turbulent channel flow, the flow around an isolated bluff-body, a pedestrian wind comfort study in a full scale urban area and an application to toxic gas dispersion in a full scale city area. The proposed c-APK method (anchored-ANOVA-POD/Kriging) inherits the advantages of each key element: interpolation through POD/Kriging precludes the use of quadrature schemes therefore allowing for a more flexible sampling strategy while the ANOVA decomposition allows for a better domain exploration. A comparison of the three methods is given for each application. In addition, the importance of adding flexibility to the control parameters and the choice of the quantity of interest (QoI) are discussed. As a result, global accuracy can be achieved with a reasonable number of samples allowing computationally expensive CFD-UQ analysis.

  8. Controlling Plasma Stability of Hydroxamic Acids: A MedChem Toolbox.

    PubMed

    Hermant, Paul; Bosc, Damien; Piveteau, Catherine; Gealageas, Ronan; Lam, BaoVy; Ronco, Cyril; Roignant, Matthieu; Tolojanahary, Hasina; Jean, Ludovic; Renard, Pierre-Yves; Lemdani, Mohamed; Bourotte, Marilyne; Herledan, Adrien; Bedart, Corentin; Biela, Alexandre; Leroux, Florence; Deprez, Benoit; Deprez-Poulain, Rebecca

    2017-11-09

    Hydroxamic acids are outstanding zinc chelating groups that can be used to design potent and selective metalloenzyme inhibitors in various therapeutic areas. Some hydroxamic acids display a high plasma clearance resulting in poor in vivo activity, though they may be very potent compounds in vitro. We designed a 57-member library of hydroxamic acids to explore the structure-plasma stability relationships in these series and to identify which enzyme(s) and which pharmacophores are critical for plasma stability. Arylesterases and carboxylesterases were identified as the main metabolic enzymes for hydroxamic acids. Finally, we suggest structural features to be introduced or removed to improve stability. This work thus provides the first medicinal chemistry toolbox (experimental procedures and structural guidance) to assess and control the plasma stability of hydroxamic acids and realize their full potential as in vivo pharmacological probes and therapeutic agents. This study is particularly relevant to preclinical development as it allows obtaining compounds equally stable in human and rodent models.

  9. Design ATE systems for complex assemblies

    NASA Astrophysics Data System (ADS)

    Napier, R. S.; Flammer, G. H.; Moser, S. A.

    1983-06-01

    The use of ATE systems in radio specification testing can reduce the test time by approximately 90 to 95 percent. What is more, the test station does not require a highly trained operator. Since the system controller has full power over all the measurements, human errors are not introduced into the readings. The controller is immune to any need to increase output by allowing marginal units to pass through the system. In addition, the software compensates for predictable, repeatable system errors, for example, cabling losses, which are an inherent part of the test setup. With no variation in test procedures from unit to unit, there is a constant repeatability factor. Preparing the software, however, usually entails considerable expense. It is pointed out that many of the problems associated with ATE system software can be avoided with the use of a software-intensive, or computer-intensive, system organization. Its goal is to minimize the user's need for software development, thereby saving time and money.

  10. Using robots to understand animal cognition.

    PubMed

    Frohnwieser, Anna; Murray, John C; Pike, Thomas W; Wilkinson, Anna

    2016-01-01

    In recent years, robotic animals and humans have been used to answer a variety of questions related to behavior. In the case of animal behavior, these efforts have largely been in the field of behavioral ecology. They have proved to be a useful tool for this enterprise as they allow the presentation of naturalistic social stimuli whilst providing the experimenter with full control of the stimulus. In interactive experiments, the behavior of robots can be controlled in a manner that is impossible with real animals, making them ideal instruments for the study of social stimuli in animals. This paper provides an overview of the current state of the field and considers the impact that the use of robots could have on fundamental questions related to comparative psychology: namely, perception, spatial cognition, social cognition, and early cognitive development. We make the case that the use of robots to investigate these key areas could have an important impact on the field of animal cognition. © 2016 Society for the Experimental Analysis of Behavior.

  11. Breadboard CO2 and humidity control system

    NASA Technical Reports Server (NTRS)

    Boehm, A. M.

    1976-01-01

    A regenerable CO2 and humidity control system is being developed for potential use on shuttle as an alternate to the baseline lithium hydroxide (LiOH)/condensing heat exchanger system. The system utilizes a sorbent material, designated HS-C, to adsorb CO2 and water vapor from the cabin atmosphere. The material is regenerated by exposing it to space vacuum. A half-size breadboard system, utilizing a flight representative HS-C canister, was designed, built, and performance tested to shuttle requirements for total CO2 and total humidity removal. The use of a new chemical matrix material allowed significant optimization of the system design by packing the HS-C chemical into the core of a heat exchanger which is manifolded to form two separate and distinct beds. Breadboard system performance was proven by parametric testing and simulated mission testing over the full range of shuttle crew sizes and metabolic loadings. Vacuum desorption testing demonstrated considerable savings in previously projected shuttle vacuum duct sizing.

  12. Process-based control of HAPs emissions from drying wood flakes.

    PubMed

    Banerjee, Sujit; Pendyala, Krishna; Buchanan, Mike; Yang, Rallming; Abu-Daabes, Malyuba; Otwell, Lawrence P E

    2006-04-01

    Industrial wood flake drying generates methanol, formaldehyde, and other hazardous air pollutants (HAPs). A simple theoretical model shows that particles smaller than 400 microm will begin to thermally degrade and release disproportionately large quantities of HAPs. This is confirmed in full-scale practice where particles smaller than 500 microm show visible signs of charring. Laboratory measurement of the activation energy for the breakdown of wood tissue into methanol and formaldehyde led to a value of about 17 kcal/mol. The apparent activation energy measured in the field was higher. This result was obtained under nonisothermal conditions and is biased high by the fines fraction of the furnish, which is exposed to elevated temperatures. It is proposed that a combination of screening out the fines fraction smaller than 500 microm and reducing the dryer inlet temperature will substantially reduce emissions, possibly to the point where control devices can be downsized or eliminated. Our findings allow these HAPs reductions to be semiquantitatively estimated.

  13. Development of an optoelectronic holographic platform for otolaryngology applications

    NASA Astrophysics Data System (ADS)

    Harrington, Ellery; Dobrev, Ivo; Bapat, Nikhil; Flores, Jorge Mauricio; Furlong, Cosme; Rosowski, John; Cheng, Jeffery Tao; Scarpino, Chris; Ravicz, Michael

    2010-08-01

    In this paper, we present advances on our development of an optoelectronic holographic computing platform with the ability to quantitatively measure full-field-of-view nanometer-scale movements of the tympanic membrane (TM). These measurements can facilitate otologists' ability to study and diagnose hearing disorders in humans. The holographic platform consists of a laser delivery system and an otoscope. The control software, called LaserView, is written in Visual C++ and handles communication and synchronization between hardware components. It provides a user-friendly interface to allow viewing of holographic images with several tools to automate holography-related tasks and facilitate hardware communication. The software uses a series of concurrent threads to acquire images, control the hardware, and display quantitative holographic data at video rates and in two modes of operation: optoelectronic holography and lensless digital holography. The holographic platform has been used to perform experiments on several live and post-mortem specimens, and is to be deployed in a medical research environment with future developments leading to its eventual clinical use.

  14. The development and testing of a regenerable CO2 and humidity control system for Shuttle

    NASA Technical Reports Server (NTRS)

    Boehm, A. M.

    1977-01-01

    A regenerable CO2 and humidity control system is presently being developed for potential use on Shuttle as an alternate to the baseline lithium hydroxide (LiOH) system. The system utilizes a sorbent material (designated 'HS-C') to adsorb CO2 and water vapor from the cabin atmosphere and desorb the CO2 and water vapor overboard when exposed to a space vacuum. Continuous operation is achieved by utilizing two beds which are alternately cycled between adsorption and desorption. This paper presents the significant hardware development and test accomplishments of the past year. A half-size breadboard system utilizing a flight configuration canister was successfully performance tested in simulated Shuttle missions. A vacuum desorption test provided considerable insight into the desorption phenomena and allowed a significant reduction of the Shuttle vacuum duct size. The fabrication and testing of a flight prototype canister and flight prototype vacuum valves have proven the feasibility of these full-size, flight-weight components.

  15. Protecting a Diamond Quantum Memory by Charge State Control.

    PubMed

    Pfender, Matthias; Aslam, Nabeel; Simon, Patrick; Antonov, Denis; Thiering, Gergő; Burk, Sina; Fávaro de Oliveira, Felipe; Denisenko, Andrej; Fedder, Helmut; Meijer, Jan; Garrido, Jose A; Gali, Adam; Teraji, Tokuyuki; Isoya, Junichi; Doherty, Marcus William; Alkauskas, Audrius; Gallo, Alejandro; Grüneis, Andreas; Neumann, Philipp; Wrachtrup, Jörg

    2017-10-11

    In recent years, solid-state spin systems have emerged as promising candidates for quantum information processing. Prominent examples are the nitrogen-vacancy (NV) center in diamond, phosphorus dopants in silicon (Si:P), rare-earth ions in solids, and V Si -centers in silicon-carbide. The Si:P system has demonstrated that its nuclear spins can yield exceedingly long spin coherence times by eliminating the electron spin of the dopant. For NV centers, however, a proper charge state for storage of nuclear spin qubit coherence has not been identified yet. Here, we identify and characterize the positively charged NV center as an electron-spin-less and optically inactive state by utilizing the nuclear spin qubit as a probe. We control the electronic charge and spin utilizing nanometer scale gate electrodes. We achieve a lengthening of the nuclear spin coherence times by a factor of 4. Surprisingly, the new charge state allows switching of the optical response of single nodes facilitating full individual addressability.

  16. Optical design and Initial Results from The National Institute of Standards and Technology’s AMMT/TEMPS Facility

    PubMed Central

    Grantham, Steven; Lane, Brandon; Neira, Jorge; Mekhontsev, Sergey; Vlasea, Mihaela; Hanssen, Leonard

    2017-01-01

    The National Institute of Standards and Technology’s (NIST) Physical Measurement and Engineering Laboratories are jointly developing the Additive Manufacturing Measurement Testbed (AMMT)/ Temperature and Emittance of Melts, Powders and Solids (TEMPS) facilities. These facilities will be co-located on an open architecture laser-based powder bed fusion system allowing users full access to the system’s operation parameters. This will provide users with access to machine-independent monitoring and control of the powder bed fusion process. In this paper there will be emphasis on the AMMT, which incorporates in-line visible light collection optics for monitoring and feedback control of the powder bed fusion process. We shall present an overview of the AMMT/TEMPS program and its goals. The optical and mechanical design of the open architecture powder-bed fusion system and the AMMT will also be described. In addition, preliminary measurement results from the system along with the current status of the system will be described. PMID:28579666

  17. Design and Lessons Learned on the Development of a Cryogenic Pupil Select Mechanism (PSM)

    NASA Technical Reports Server (NTRS)

    Mitchell, Alissa L.; Capon, Thomas L.; Hakun, Claef; Haney, Paul; Koca, Corina; Guzek, Jeffrey

    2014-01-01

    Calibration and testing of the instruments on the Integrated Science Instrument Module (ISIM) of the James Webb Space Telescope (JWST) is being performed by the use of a cryogenic, full-field, optical simulator that was constructed for this purpose. The Pupil Select Mechanism (PSM) assembly is one of several mechanisms and optical elements that compose the Optical Telescope Element SIMulator, or OSIM. The PSM allows for several optical elements to be inserted into the optical plane of OSIM, introducing a variety of aberrations, distortions, obscurations, and other calibration states into the pupil plane. The following discussion focuses on the details of the design evolution, analysis, build, and test of this mechanism along with the challenges associated with creating a sub arc-minute positioning mechanism operating in an extreme cryogenic environment. In addition, difficult challenges in the control system design will be discussed including the incorporation of closed-loop feedback control into a system that was designed to operate in an open-loop fashion.

  18. 40 CFR 96.142 - CAIR NOX allowance allocations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the 3 highest amounts of the unit's adjusted control period heat input for 2000 through 2004, with the adjusted control period heat input for each year calculated as follows: (A) If the unit is coal-fired... CAIR NOX Allowance Allocations § 96.142 CAIR NOX allowance allocations. (a)(1) The baseline heat input...

  19. Stability and performance of propulsion control systems with distributed control architectures and failures

    NASA Astrophysics Data System (ADS)

    Belapurkar, Rohit K.

    Future aircraft engine control systems will be based on a distributed architecture, in which, the sensors and actuators will be connected to the Full Authority Digital Engine Control (FADEC) through an engine area network. Distributed engine control architecture will allow the implementation of advanced, active control techniques along with achieving weight reduction, improvement in performance and lower life cycle cost. The performance of a distributed engine control system is predominantly dependent on the performance of the communication network. Due to the serial data transmission policy, network-induced time delays and sampling jitter are introduced between the sensor/actuator nodes and the distributed FADEC. Communication network faults and transient node failures may result in data dropouts, which may not only degrade the control system performance but may even destabilize the engine control system. Three different architectures for a turbine engine control system based on a distributed framework are presented. A partially distributed control system for a turbo-shaft engine is designed based on ARINC 825 communication protocol. Stability conditions and control design methodology are developed for the proposed partially distributed turbo-shaft engine control system to guarantee the desired performance under the presence of network-induced time delay and random data loss due to transient sensor/actuator failures. A fault tolerant control design methodology is proposed to benefit from the availability of an additional system bandwidth and from the broadcast feature of the data network. It is shown that a reconfigurable fault tolerant control design can help to reduce the performance degradation in presence of node failures. A T-700 turbo-shaft engine model is used to validate the proposed control methodology based on both single input and multiple-input multiple-output control design techniques.

  20. James Webb Space Telescope optical simulation testbed III: first experimental results with linear-control alignment

    NASA Astrophysics Data System (ADS)

    Egron, Sylvain; Lajoie, Charles-Philippe; Leboulleux, Lucie; N'Diaye, Mamadou; Pueyo, Laurent; Choquet, Élodie; Perrin, Marshall D.; Ygouf, Marie; Michau, Vincent; Bonnefois, Aurélie; Fusco, Thierry; Escolle, Clément; Ferrari, Marc; Hugot, Emmanuel; Soummer, Rémi

    2016-07-01

    The James Webb Space Telescope (JWST) Optical Simulation Testbed (JOST) is a tabletop experiment designed to study wavefront sensing and control for a segmented space telescope, including both commissioning and maintenance activities. JOST is complementary to existing testbeds for JWST (e.g. the Ball Aerospace Testbed Telescope TBT) given its compact scale and flexibility, ease of use, and colocation at the JWST Science and Operations Center. The design of JOST reproduces the physics of JWST's three-mirror anastigmat (TMA) using three custom aspheric lenses. It provides similar quality image as JWST (80% Strehl ratio) over a field equivalent to a NIRCam module, but at 633 nm. An Iris AO segmented mirror stands for the segmented primary mirror of JWST. Actuators allow us to control (1) the 18 segments of the segmented mirror in piston, tip, tilt and (2) the second lens, which stands for the secondary mirror, in tip, tilt and x, y, z positions. We present the full linear control alignment infrastructure developed for JOST, with an emphasis on multi-field wavefront sensing and control. Our implementation of the Wavefront Sensing (WFS) algorithms using phase diversity is experimentally tested. The wavefront control (WFC) algorithms, which rely on a linear model for optical aberrations induced by small misalignments of the three lenses, are tested and validated on simulations.

  1. Framework for Evaluating the Health Impact of the Scale-Up of Malaria Control Interventions on All-Cause Child Mortality in Sub-Saharan Africa

    PubMed Central

    Yé, Yazoume; Eisele, Thomas P.; Eckert, Erin; Korenromp, Eline; Shah, Jui A.; Hershey, Christine L.; Ivanovich, Elizabeth; Newby, Holly; Carvajal-Velez, Liliana; Lynch, Michael; Komatsu, Ryuichi; Cibulskis, Richard E.; Moore, Zhuzhi; Bhattarai, Achuyt

    2017-01-01

    Abstract. Concerted efforts from national and international partners have scaled up malaria control interventions, including insecticide-treated nets, indoor residual spraying, diagnostics, prompt and effective treatment of malaria cases, and intermittent preventive treatment during pregnancy in sub-Saharan Africa (SSA). This scale-up warrants an assessment of its health impact to guide future efforts and investments; however, measuring malaria-specific mortality and the overall impact of malaria control interventions remains challenging. In 2007, Roll Back Malaria's Monitoring and Evaluation Reference Group proposed a theoretical framework for evaluating the impact of full-coverage malaria control interventions on morbidity and mortality in high-burden SSA countries. Recently, several evaluations have contributed new ideas and lessons to strengthen this plausibility design. This paper harnesses that new evaluation experience to expand the framework, with additional features, such as stratification, to examine subgroups most likely to experience improvement if control programs are working; the use of a national platform framework; and analysis of complete birth histories from national household surveys. The refined framework has shown that, despite persisting data challenges, combining multiple sources of data, considering potential contributions from both fundamental and proximate contextual factors, and conducting subnational analyses allows identification of the plausible contributions of malaria control interventions on malaria morbidity and mortality. PMID:28990923

  2. An economic evaluation of the controlled temperature chain approach for vaccine logistics: evidence from a study conducted during a meningitis A vaccine campaign in Togo.

    PubMed

    Mvundura, Mercy; Lydon, Patrick; Gueye, Abdoulaye; Diaw, Ibnou Khadim; Landoh, Dadja Essoya; Toi, Bafei; Kahn, Anna-Lea; Kristensen, Debra

    2017-01-01

    A recent innovation in support of the final segment of the immunization supply chain is licensing certain vaccines for use in a controlled temperature chain (CTC), which allows excursions into ambient temperatures up to 40°C for a specific number of days immediately prior to administration. However, limited evidence exists on CTC economics to inform investments for labeling other eligible vaccines for CTC use. Using data collected during a MenAfriVac™ campaign in Togo, we estimated economic costs for vaccine logistics when using the CTC approach compared to full cold chain logistics (CCL) approach. We conducted the study in Togo's Central Region, where two districts were using the CTC approach and two relied on a fullCCL approach during the MenAfriVac™ campaign. Data to estimate vaccine logistics costs were obtained from primary data collected using costing questionnaires and from financial cost data from campaign microplans. Costs are presented in 2014 US dollars. Average logistics costs per dose were estimated at $0.026±0.032 for facilities using a CTC and $0.029±0.054 for facilities using the fullCCL approach, but the two estimates were not statistically different. However, if the facilities without refrigerators had not used a CTC but had received daily deliveries of vaccines, the average cost per dose would have increased to $0.063 (range $0.007 to $0.33), with larger logistics cost increases occurring for facilities that were far from the district. Using the CTC approach can reduce logistics costs for remote facilities without cold chain infrastructure, which is where CTC is designed to reduce logistical challenges of vaccine distribution.

  3. An economic evaluation of the controlled temperature chain approach for vaccine logistics: evidence from a study conducted during a meningitis A vaccine campaign in Togo

    PubMed Central

    Mvundura, Mercy; Lydon, Patrick; Gueye, Abdoulaye; Diaw, Ibnou Khadim; Landoh, Dadja Essoya; Toi, Bafei; Kahn, Anna-Lea; Kristensen, Debra

    2017-01-01

    Introduction A recent innovation in support of the final segment of the immunization supply chain is licensing certain vaccines for use in a controlled temperature chain (CTC), which allows excursions into ambient temperatures up to 40°C for a specific number of days immediately prior to administration. However, limited evidence exists on CTC economics to inform investments for labeling other eligible vaccines for CTC use. Using data collected during a MenAfriVac™ campaign in Togo, we estimated economic costs for vaccine logistics when using the CTC approach compared to full cold chain logistics (CCL) approach. Methods We conducted the study in Togo’s Central Region, where two districts were using the CTC approach and two relied on a fullCCL approach during the MenAfriVac™ campaign. Data to estimate vaccine logistics costs were obtained from primary data collected using costing questionnaires and from financial cost data from campaign microplans. Costs are presented in 2014 US dollars. Results Average logistics costs per dose were estimated at $0.026±0.032 for facilities using a CTC and $0.029±0.054 for facilities using the fullCCL approach, but the two estimates were not statistically different. However, if the facilities without refrigerators had not used a CTC but had received daily deliveries of vaccines, the average cost per dose would have increased to $0.063 (range $0.007 to $0.33), with larger logistics cost increases occurring for facilities that were far from the district. Conclusion Using the CTC approach can reduce logistics costs for remote facilities without cold chain infrastructure, which is where CTC is designed to reduce logistical challenges of vaccine distribution. PMID:29296162

  4. Spring frost vulnerability of sweet cherries under controlled conditions

    NASA Astrophysics Data System (ADS)

    Matzneller, Philipp; Götz, Klaus-P.; Chmielewski, Frank-M.

    2016-01-01

    Spring frost is a significant production hazard in nearly all temperate fruit-growing regions. Sweet cherries are among the first fruit varieties starting their development in spring and therefore highly susceptible to late frost. Temperatures at which injuries are likely to occur are widely published, but their origin and determination methods are not well documented. In this study, a standardized method was used to investigate critical frost temperatures for the sweet cherry cultivar `Summit' under controlled conditions. Twigs were sampled at four development stages ("side green," "green tip," "open cluster," "full bloom") and subjected to three frost temperatures (-2.5, -5.0, -10.0 °C). The main advantage of this method, compared to other approaches, was that the exposition period and the time interval required to reach the target temperature were always constant (2 h). Furthermore, then, the twigs were placed in a climate chamber until full bloom, before the examination of the flowers and not further developed buds started. For the first two sampling stages (side green, green tip), the number of buds found in open cluster, "first white," and full bloom at the evaluation date decreased with the strength of the frost treatment. The flower organs showed different levels of cold hardiness and became more vulnerable in more advanced development stages. In this paper, we developed four empirical functions which allow calculating possible frost damages on sweet cherry buds or flowers at the investigated development stages. These equations can help farmers to estimate possible frost damages on cherry buds due to frost events. However, it is necessary to validate the critical temperatures obtained in laboratory with some field observations.

  5. Spring frost vulnerability of sweet cherries under controlled conditions.

    PubMed

    Matzneller, Philipp; Götz, Klaus-P; Chmielewski, Frank-M

    2016-01-01

    Spring frost is a significant production hazard in nearly all temperate fruit-growing regions. Sweet cherries are among the first fruit varieties starting their development in spring and therefore highly susceptible to late frost. Temperatures at which injuries are likely to occur are widely published, but their origin and determination methods are not well documented. In this study, a standardized method was used to investigate critical frost temperatures for the sweet cherry cultivar 'Summit' under controlled conditions. Twigs were sampled at four development stages ("side green," "green tip," "open cluster," "full bloom") and subjected to three frost temperatures (-2.5, -5.0, -10.0 °C). The main advantage of this method, compared to other approaches, was that the exposition period and the time interval required to reach the target temperature were always constant (2 h). Furthermore, then, the twigs were placed in a climate chamber until full bloom, before the examination of the flowers and not further developed buds started. For the first two sampling stages (side green, green tip), the number of buds found in open cluster, "first white," and full bloom at the evaluation date decreased with the strength of the frost treatment. The flower organs showed different levels of cold hardiness and became more vulnerable in more advanced development stages. In this paper, we developed four empirical functions which allow calculating possible frost damages on sweet cherry buds or flowers at the investigated development stages. These equations can help farmers to estimate possible frost damages on cherry buds due to frost events. However, it is necessary to validate the critical temperatures obtained in laboratory with some field observations.

  6. Textpresso Central: a customizable platform for searching, text mining, viewing, and curating biomedical literature.

    PubMed

    Müller, H-M; Van Auken, K M; Li, Y; Sternberg, P W

    2018-03-09

    The biomedical literature continues to grow at a rapid pace, making the challenge of knowledge retrieval and extraction ever greater. Tools that provide a means to search and mine the full text of literature thus represent an important way by which the efficiency of these processes can be improved. We describe the next generation of the Textpresso information retrieval system, Textpresso Central (TPC). TPC builds on the strengths of the original system by expanding the full text corpus to include the PubMed Central Open Access Subset (PMC OA), as well as the WormBase C. elegans bibliography. In addition, TPC allows users to create a customized corpus by uploading and processing documents of their choosing. TPC is UIMA compliant, to facilitate compatibility with external processing modules, and takes advantage of Lucene indexing and search technology for efficient handling of millions of full text documents. Like Textpresso, TPC searches can be performed using keywords and/or categories (semantically related groups of terms), but to provide better context for interpreting and validating queries, search results may now be viewed as highlighted passages in the context of full text. To facilitate biocuration efforts, TPC also allows users to select text spans from the full text and annotate them, create customized curation forms for any data type, and send resulting annotations to external curation databases. As an example of such a curation form, we describe integration of TPC with the Noctua curation tool developed by the Gene Ontology (GO) Consortium. Textpresso Central is an online literature search and curation platform that enables biocurators and biomedical researchers to search and mine the full text of literature by integrating keyword and category searches with viewing search results in the context of the full text. It also allows users to create customized curation interfaces, use those interfaces to make annotations linked to supporting evidence statements, and then send those annotations to any database in the world. Textpresso Central URL: http://www.textpresso.org/tpc.

  7. Report: Review of Hotline Complaint on Employee Granted Full-Time Work-at-Home Privilege

    EPA Pesticide Factsheets

    Report #10-P-0002, October 7, 2009. We found an unauthorized, full-time work-at-home arrangement that has existed for 9 years and allows a NETI employee to work from home in Ohio instead of an office in Washington, DC.

  8. Silicon Carbide (SiC) MOSFET-based Full-Bridge for Fusion Science Applications

    NASA Astrophysics Data System (ADS)

    Ziemba, Timothy; Miller, Kenneth; Prager, James; Picard, Julian; Hashim, Akel

    2014-10-01

    Switching power amplifiers (SPAs) have a wide variety of applications within the fusion science community, including feedback and control systems for dynamic plasma stabilization in tokamaks, inductive and arc plasma sources, Radio Frequency (RF) helicity and flux injection, RF plasma heating and current drive schemes, ion beam generation, and RF pre-ionizer systems. SiC MOSFETs offer many advantages over IGBTs including lower drive energy requirements, lower conduction and switching losses, and higher switching frequency capabilities. When comparing SiC and traditional silicon-based MOSFETs, SiC MOSFETs provide higher current carrying capability allowing for smaller package weights and sizes and lower operating temperature. Eagle Harbor Technologies (EHT) is designing, constructing, and testing a SiC MOSFET-based full-bridge SPA. EHT will leverage the proprietary gate drive technology previously developed with the support of a DOE SBIR, which will enable fast, efficient switching in a small form factor. The primary goal is to develop a SiC MOSFET-based SPA for fusion science applications. Work supported in part by the DOE under Contract Number DE-SC0011907.

  9. Recyclable crosslinked polymer networks with full property recovery made via one-step controlled radical polymerization

    NASA Astrophysics Data System (ADS)

    Jin, Kailong; Li, Lingqiao; Torkelson, John

    Rubber tires illustrate well the issues ranging from economic loss to environmental problems and sustainability issues that arise with spent, covalently crosslinked polymers. A nitroxide-mediated polymerization (NMP) strategy has been developed that allows for one-step synthesis of recyclable crosslinked polymers from monomers or polymers that contain carbon-carbon double bonds amenable to radical polymerization. Resulting materials possess dynamic alkoxyamine crosslinks that undergo reversible decrosslinking as a function of temperature. Using polybutadiene as starting material, and styrene, an appropriate nitroxide molecule and bifunctional initiator for initial crosslinking, a model for tire rubber can be produced by reaction at temperatures comparable to those employed in tire molding. Upon cooling, the crosslinks are made permanent due to the extraordinarily strong temperature dependence of the reverisible nitroxide capping and uncapping reaction. Based on thermomechanical property characterization, when the original crosslinked model rubber is chopped into bits and remolded in the melt state, a well-consolidated material is obtained which exhibits full recovery of properties reflecting crosslink density after multiple recycling steps.

  10. Eigenvector dynamics: General theory and some applications

    NASA Astrophysics Data System (ADS)

    Allez, Romain; Bouchaud, Jean-Philippe

    2012-10-01

    We propose a general framework to study the stability of the subspace spanned by P consecutive eigenvectors of a generic symmetric matrix H0 when a small perturbation is added. This problem is relevant in various contexts, including quantum dissipation (H0 is then the Hamiltonian) and financial risk control (in which case H0 is the assets' return covariance matrix). We argue that the problem can be formulated in terms of the singular values of an overlap matrix, which allows one to define an overlap distance. We specialize our results for the case of a Gaussian orthogonal H0, for which the full spectrum of singular values can be explicitly computed. We also consider the case when H0 is a covariance matrix and illustrate the usefulness of our results using financial data. The special case where the top eigenvalue is much larger than all the other ones can be investigated in full detail. In particular, the dynamics of the angle made by the top eigenvector and its true direction defines an interesting class of random processes.

  11. Model Wind Turbines Tested at Full-Scale Similarity

    NASA Astrophysics Data System (ADS)

    Miller, M. A.; Kiefer, J.; Westergaard, C.; Hultmark, M.

    2016-09-01

    The enormous length scales associated with modern wind turbines complicate any efforts to predict their mechanical loads and performance. Both experiments and numerical simulations are constrained by the large Reynolds numbers governing the full- scale aerodynamics. The limited fundamental understanding of Reynolds number effects in combination with the lack of empirical data affects our ability to predict, model, and design improved turbines and wind farms. A new experimental approach is presented, which utilizes a highly pressurized wind tunnel (up to 220 bar). It allows exact matching of the Reynolds numbers (no matter how it is defined), tip speed ratios, and Mach numbers on a geometrically similar, small-scale model. The design of a measurement and instrumentation stack to control the turbine and measure the loads in the pressurized environment is discussed. Results are then presented in the form of power coefficients as a function of Reynolds number and Tip Speed Ratio. Due to gearbox power loss, a preliminary study has also been completed to find the gearbox efficiency and the resulting correction has been applied to the data set.

  12. Integrated Resilient Aircraft Control Project Full Scale Flight Validation

    NASA Technical Reports Server (NTRS)

    Bosworth, John T.

    2009-01-01

    Objective: Provide validation of adaptive control law concepts through full scale flight evaluation. Technical Approach: a) Engage failure mode - destabilizing or frozen surface. b) Perform formation flight and air-to-air tracking tasks. Evaluate adaptive algorithm: a) Stability metrics. b) Model following metrics. Full scale flight testing provides an ability to validate different adaptive flight control approaches. Full scale flight testing adds credence to NASA's research efforts. A sustained research effort is required to remove the road blocks and provide adaptive control as a viable design solution for increased aircraft resilience.

  13. 40 CFR 96.187 - Change in regulatory status.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for the control period multiplied by; (B) The ratio of the number of days, in the control period... allowances equal in amount to and allocated for the same or a prior control period as: (A) Any CAIR NOX allowances allocated to the CAIR NOX opt-in unit under § 96.188 for any control period after the date on...

  14. Experiments in Nonlinear Adaptive Control of Multi-Manipulator, Free-Flying Space Robots

    NASA Technical Reports Server (NTRS)

    Chen, Vincent Wei-Kang

    1992-01-01

    Sophisticated robots can greatly enhance the role of humans in space by relieving astronauts of low level, tedious assembly and maintenance chores and allowing them to concentrate on higher level tasks. Robots and astronauts can work together efficiently, as a team; but the robot must be capable of accomplishing complex operations and yet be easy to use. Multiple cooperating manipulators are essential to dexterity and can broaden greatly the types of activities the robot can achieve; adding adaptive control can ease greatly robot usage by allowing the robot to change its own controller actions, without human intervention, in response to changes in its environment. Previous work in the Aerospace Robotics Laboratory (ARL) have shown the usefulness of a space robot with cooperating manipulators. The research presented in this dissertation extends that work by adding adaptive control. To help achieve this high level of robot sophistication, this research made several advances to the field of nonlinear adaptive control of robotic systems. A nonlinear adaptive control algorithm developed originally for control of robots, but requiring joint positions as inputs, was extended here to handle the much more general case of manipulator endpoint-position commands. A new system modelling technique, called system concatenation was developed to simplify the generation of a system model for complicated systems, such as a free-flying multiple-manipulator robot system. Finally, the task-space concept was introduced wherein the operator's inputs specify only the robot's task. The robot's subsequent autonomous performance of each task still involves, of course, endpoint positions and joint configurations as subsets. The combination of these developments resulted in a new adaptive control framework that is capable of continuously providing full adaptation capability to the complex space-robot system in all modes of operation. The new adaptive control algorithm easily handles free-flying systems with multiple, interacting manipulators, and extends naturally to even larger systems. The new adaptive controller was experimentally demonstrated on an ideal testbed in the ARL-A first-ever experimental model of a multi-manipulator, free-flying space robot that is capable of capturing and manipulating free-floating objects without requiring human assistance. A graphical user interface enhanced the robot usability: it enabled an operator situated at a remote location to issue high-level task description commands to the robot, and to monitor robot activities as it then carried out each assignment autonomously.

  15. DSC: software tool for simulation-based design of control strategies applied to wastewater treatment plants.

    PubMed

    Ruano, M V; Ribes, J; Seco, A; Ferrer, J

    2011-01-01

    This paper presents a computer tool called DSC (Simulation based Controllers Design) that enables an easy design of control systems and strategies applied to wastewater treatment plants. Although the control systems are developed and evaluated by simulation, this tool aims to facilitate the direct implementation of the designed control system to the PC of the full-scale WWTP (wastewater treatment plants). The designed control system can be programmed in a dedicated control application and can be connected to either the simulation software or the SCADA of the plant. To this end, the developed DSC incorporates an OPC server (OLE for process control) which facilitates an open-standard communication protocol for different industrial process applications. The potential capabilities of the DSC tool are illustrated through the example of a full-scale application. An aeration control system applied to a nutrient removing WWTP was designed, tuned and evaluated with the DSC tool before its implementation in the full scale plant. The control parameters obtained by simulation were suitable for the full scale plant with only few modifications to improve the control performance. With the DSC tool, the control systems performance can be easily evaluated by simulation. Once developed and tuned by simulation, the control systems can be directly applied to the full-scale WWTP.

  16. Development and Testing of a Sorbent-Based Atmosphere Revitalization System 2010/2011

    NASA Technical Reports Server (NTRS)

    Miller, Lee A.; Knox, James C.

    2012-01-01

    Spacecraft being developed for future exploration missions incorporate Environmental Control and Life Support Systems (ECLSS) that limit weight, power, and volume thus requiring systems with higher levels of efficiency while maintaining high dependability and robustness. For air revitalization, an approach that meets those goals utilizes a regenerative Vacuum-Swing Adsorption (VSA) system that removes 100% of the CO2 from the cabin atmosphere as well as 100% of the water. A Sorbent Based Atmosphere Revitalization (SBAR) system is a VSA system that utilizes standard commercial adsorbents that have been proven effective and safe in spacecraft including Skylab and the International Space Station. The SBAR system is the subject of a development, test, and evaluation program that is being conducted at NASA s Marshall Space Flight Center. While previous testing had validated that the technology is a viable option, potential improvements to system design and operation were identified. Modifications of the full-scale SBAR test articles and adsorption cycles have been implemented and have shown significant performance gains resulting in a decrease in the consumables required for a mission as well as improved mission safety. Previous testing had utilized single bed test articles, during this period the test facility was enhanced to allow testing on the full 2-bed SBAR system. The test facility simulates a spacecraft ECLSS and allows testing of the SBAR system over the full range of operational conditions using mission simulations that assess the real-time performance of the SBAR system during scenarios that include the metabolic transients associated with extravehicular activity. Although future manned missions are currently being redefined, the atmosphere revitalization requirements for the spacecraft are expected to be quite similar to the Orion and the Altair vehicles and the SBAR test program addressed validation to the defined mission requirements as well as operation in other potential vehicle architectures. The development program, including test articles, the test facility, and tests and results through early 2011 is discussed.

  17. Resource Aware Intelligent Network Services (RAINS) Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehman, Tom; Yang, Xi

    The Resource Aware Intelligent Network Services (RAINS) project conducted research and developed technologies in the area of cyber infrastructure resource modeling and computation. The goal of this work was to provide a foundation to enable intelligent, software defined services which spanned the network AND the resources which connect to the network. A Multi-Resource Service Plane (MRSP) was defined, which allows resource owners/managers to locate and place themselves from a topology and service availability perspective within the dynamic networked cyberinfrastructure ecosystem. The MRSP enables the presentation of integrated topology views and computation results which can include resources across the spectrum ofmore » compute, storage, and networks. The RAINS project developed MSRP includes the following key components: i) Multi-Resource Service (MRS) Ontology/Multi-Resource Markup Language (MRML), ii) Resource Computation Engine (RCE), iii) Modular Driver Framework (to allow integration of a variety of external resources). The MRS/MRML is a general and extensible modeling framework that allows for resource owners to model, or describe, a wide variety of resource types. All resources are described using three categories of elements: Resources, Services, and Relationships between the elements. This modeling framework defines a common method for the transformation of cyber infrastructure resources into data in the form of MRML models. In order to realize this infrastructure datification, the RAINS project developed a model based computation system, i.e. “RAINS Computation Engine (RCE)”. The RCE has the ability to ingest, process, integrate, and compute based on automatically generated MRML models. The RCE interacts with the resources thru system drivers which are specific to the type of external network or resource controller. The RAINS project developed a modular and pluggable driver system which facilities a variety of resource controllers to automatically generate, maintain, and distribute MRML based resource descriptions. Once all of the resource topologies are absorbed by the RCE, a connected graph of the full distributed system topology is constructed, which forms the basis for computation and workflow processing. The RCE includes a Modular Computation Element (MCE) framework which allows for tailoring of the computation process to the specific set of resources under control, and the services desired. The input and output of an MCE are both model data based on MRS/MRML ontology and schema. Some of the RAINS project accomplishments include: Development of general and extensible multi-resource modeling framework; Design of a Resource Computation Engine (RCE) system which includes the following key capabilities; Absorb a variety of multi-resource model types and build integrated models; Novel architecture which uses model based communications across the full stack for all Flexible provision of abstract or intent based user facing interfaces; Workflow processing based on model descriptions; Release of the RCE as an open source software; Deployment of RCE in the University of Maryland/Mid-Atlantic Crossroad ScienceDMZ in prototype mode with a plan under way to transition to production; Deployment at the Argonne National Laboratory DTN Facility in prototype mode; Selection of RCE by the DOE SENSE (SDN for End-to-end Networked Science at the Exascale) project as the basis for their orchestration service.« less

  18. A novel patterning control strategy based on real-time fingerprint recognition and adaptive wafer level scanner optimization

    NASA Astrophysics Data System (ADS)

    Cekli, Hakki Ergun; Nije, Jelle; Ypma, Alexander; Bastani, Vahid; Sonntag, Dag; Niesing, Henk; Zhang, Linmiao; Ullah, Zakir; Subramony, Venky; Somasundaram, Ravin; Susanto, William; Matsunobu, Masazumi; Johnson, Jeff; Tabery, Cyrus; Lin, Chenxi; Zou, Yi

    2018-03-01

    In addition to lithography process and equipment induced variations, processes like etching, annealing, film deposition and planarization exhibit variations, each having their own intrinsic characteristics and leaving an effect, a `fingerprint', on the wafers. With ever tighter requirements for CD and overlay, controlling these process induced variations is both increasingly important and increasingly challenging in advanced integrated circuit (IC) manufacturing. For example, the on-product overlay (OPO) requirement for future nodes is approaching <3nm, requiring the allowable budget for process induced variance to become extremely small. Process variance control is seen as an bottleneck to further shrink which drives the need for more sophisticated process control strategies. In this context we developed a novel `computational process control strategy' which provides the capability of proactive control of each individual wafer with aim to maximize the yield, without introducing a significant impact on metrology requirements, cycle time or productivity. The complexity of the wafer process is approached by characterizing the full wafer stack building a fingerprint library containing key patterning performance parameters like Overlay, Focus, etc. Historical wafer metrology is decomposed into dominant fingerprints using Principal Component Analysis. By associating observed fingerprints with their origin e.g. process steps, tools and variables, we can give an inline assessment of the strength and origin of the fingerprints on every wafer. Once the fingerprint library is established, a wafer specific fingerprint correction recipes can be determined based on its processing history. Data science techniques are used in real-time to ensure that the library is adaptive. To realize this concept, ASML TWINSCAN scanners play a vital role with their on-board full wafer detection and exposure correction capabilities. High density metrology data is created by the scanner for each wafer and on every layer during the lithography steps. This metrology data will be used to obtain the process fingerprints. Also, the per exposure and per wafer correction potential of the scanners will be utilized for improved patterning control. Additionally, the fingerprint library will provide early detection of excursions for inline root cause analysis and process optimization guidance.

  19. Vertical Axis Rotational Motion Cues in Hovering Flight Simulation

    NASA Technical Reports Server (NTRS)

    Schroeder, Jeffrey A.; Johnson, Walter W.; Showman, Robert D. (Technical Monitor)

    1994-01-01

    A previous study that examined how yaw motion affected a pilot's ability to perform realistic hovering flight tasks indicated that any amount of pure yaw motion had little-to-no effect on pilot performance or opinion. In that experiment, pilots were located at the vehicle's center of rotation; thus lateral or longitudinal accelerations were absent. The purpose of the new study described here was to investigate further these unanticipated results for additional flight tasks, but with the introduction of linear accelerations associated with yaw rotations when the pilot is not at the center of rotation. The question of whether a yaw motion degree-of-freedom is necessary or not is important to government regulators who specify what simulator motions are necessary according to prescribed levels of simulator sophistication. Currently, specifies two levels of motion sophistication for flight simulators: full 6-degree-of-freedom and 3-degree-of-freedom. For the less sophisticated simulator, the assumed three degrees of freedom are pitch, roll, and heave. If other degrees of freedom are selected, which are different f rom these three, they must be qualified on a case-by-case basis. Picking the assumed three axes is reasonable and based upon experience, but little empirical data are available to support the selection of critical axes. Thus, the research described here is aimed at answering this question. The yaw and lateral degrees of freedom were selected to be examined first, and maneuvers were defined to uncouple these motions from changes in the gravity vector with respect to the pilot. This approach simplifies the problem to be examined. For this experiment, the NASA Ames Vertical Motion Simulator was used in a comprehensive investigation. The math model was an AH-64 Apache in hover, which was identified from flight test data and had previously been validated by several AH-64 pilots. The pilot's head was located 4.5 ft in front of the vehicle center of gravity, which is representative of the AH-64 pilot location. Six test pilots flew three tasks that were specifically designed to represent a broad class of situations in which both lateral and yaw motion cues may be useful. For the first task, the pilot controlled only the yaw axis and was required to rapidly acquire a North heading from 15 deg yaw offsets to either the East or West. This task allowed for full, or 1:1, motion to be used in all axes (yaw, lateral, and longitudinal). The second task was a 10 sec., 180 deg. pedal turn over a runway, but with the pilot only controlling the yaw degree-of-freedom. The position of the vehicle's center-of-mass remained fixed. This maneuver was taken from a current U.S. Army rotary wing design standard5 and is representative of a maneuver performed for acceptance of military helicopters; however, it does not allow for full 1:1 motion, since the simulator cab cannot rotate 180 deg. The third task required the pilot to perform a rapid 9 ft climb at a constant heading. This task was challenging, because rapid collective lever movement in the unaugmented AH64 results in a substantial yawing moment (due to engine torque) that must be countered by the pilot. This task also had full motion in all axes, but, in this case, the pilot had two axes to control simultaneously, rather than one as in the previous tasks. Four motion configurations were examined for each task: full motion (except for the 180 deg turn, for which the motion system was configured to provide as much motion as possible), full linear with no yaw motion, full yaw with no linear motion, and no motion. Each configuration was flown four times in a randomized test matrix, and the pilots were not informed of the configuration given. Vehicle state data were recorded for objective performance comparisons, and pilots provided subjective comments and ratings. As part of the pilots' evaluation, they were asked to rate the compensation required, the overall fidelity of the motion as compared to real flight, and whether motion was detected or not in each of the six degrees of freedom. In addition, the pilots provided a numerical level-of confidence rating, between 1 and 7, corresponding to how sure they were whether or not motion was present in each degree-of-freedom. The latter rating allow classical signal detection analysis to be performed.

  20. Selection bias due to differential participation in a case-control study of mobile phone use and brain tumors.

    PubMed

    Lahkola, Anna; Salminen, Tiina; Auvinen, Anssi

    2005-05-01

    To evaluate the possible selection bias related to the differential participation of mobile phone users and non-users in a Finnish case-control study on mobile phone use and brain tumors. Mobile phone use was investigated among 777 controls and 726 cases participating in the full personal interview (full participants), and 321 controls and 103 cases giving only a brief phone interview (incomplete participants). To assess selection bias, the Mantel-Haenszel estimate of odds ratio was calculated for three different groups: full study participants, incomplete participants, and a combined group consisting of both full and incomplete participants. Among controls, 83% of the full participants and 73% of the incomplete participants had regularly used a mobile phone. Among cases, the figures were 76% and 64%, respectively. The odds ratio for brain tumor based on the combined group of full and incomplete participants was slightly closer to unity than that based only on the full participants. Selection bias tends to distort the effect estimates below unity, while analyses based on more comprehensive material gave results close to unity.

  1. ISS Operations Cost Reductions Through Automation of Real-Time Planning Tasks

    NASA Technical Reports Server (NTRS)

    Hall, Timothy A.; Clancey, William J.; McDonald, Aaron; Toschlog, Jason; Tucker, Tyson; Khan, Ahmed; Madrid, Steven (Eric)

    2011-01-01

    In 2007 the Johnson Space Center s Mission Operations Directorate (MOD) management team challenged their organizations to find ways to reduce the cost of operations for supporting the International Space Station (ISS) in the Mission Control Center (MCC). Each MOD organization was asked to define and execute projects that would help them attain cost reductions by 2012. The MOD Operations Division Flight Planning Branch responded to this challenge by launching several software automation projects that would allow them to greatly improve console operations and reduce ISS console staffing and intern reduce operating costs. These tasks ranged from improving the management and integration mission plan changes, to automating the uploading and downloading of information to and from the ISS and the associated ground complex tasks that required multiple decision points. The software solutions leveraged several different technologies including customized web applications and implementation of industry standard web services architecture; as well as engaging a previously TRL 4-5 technology developed by Ames Research Center (ARC) that utilized an intelligent agent-based system to manage and automate file traffic flow, archive data, and generate console logs. These projects to date have allowed the MOD Operations organization to remove one full time (7 x 24 x 365) ISS console position in 2010; with the goal of eliminating a second full time ISS console support position by 2012. The team will also reduce one long range planning console position by 2014. When complete, these Flight Planning Branch projects will account for the elimination of 3 console positions and a reduction in staffing of 11 engineering personnel (EP) for ISS.

  2. A fungal biofilm reactor based on metal structured packing improves the quality of a Gla::GFP fusion protein produced by Aspergillus oryzae.

    PubMed

    Zune, Q; Delepierre, A; Gofflot, S; Bauwens, J; Twizere, J C; Punt, P J; Francis, F; Toye, D; Bawin, T; Delvigne, F

    2015-08-01

    Fungal biofilm is known to promote the excretion of secondary metabolites in accordance with solid-state-related physiological mechanisms. This work is based on the comparative analysis of classical submerged fermentation with a fungal biofilm reactor for the production of a Gla::green fluorescent protein (GFP) fusion protein by Aspergillus oryzae. The biofilm reactor comprises a metal structured packing allowing the attachment of the fungal biomass. Since the production of the target protein is under the control of the promoter glaB, specifically induced in solid-state fermentation, the biofilm mode of culture is expected to enhance the global productivity. Although production of the target protein was enhanced by using the biofilm mode of culture, we also found that fusion protein production is also significant when the submerged mode of culture is used. This result is related to high shear stress leading to biomass autolysis and leakage of intracellular fusion protein into the extracellular medium. Moreover, 2-D gel electrophoresis highlights the preservation of fusion protein integrity produced in biofilm conditions. Two fungal biofilm reactor designs were then investigated further, i.e. with full immersion of the packing or with medium recirculation on the packing, and the scale-up potentialities were evaluated. In this context, it has been shown that full immersion of the metal packing in the liquid medium during cultivation allows for a uniform colonization of the packing by the fungal biomass and leads to a better quality of the fusion protein.

  3. ENDOR with band-selective shaped inversion pulses

    NASA Astrophysics Data System (ADS)

    Tait, Claudia E.; Stoll, Stefan

    2017-04-01

    Electron Nuclear DOuble Resonance (ENDOR) is based on the measurement of nuclear transition frequencies through detection of changes in the polarization of electron transitions. In Davies ENDOR, the initial polarization is generated by a selective microwave inversion pulse. The rectangular inversion pulses typically used are characterized by a relatively low selectivity, with full inversion achieved only for a limited number of spin packets with small resonance offsets. With the introduction of pulse shaping to EPR, the rectangular inversion pulses can be replaced with shaped pulses with increased selectivity. Band-selective inversion pulses are characterized by almost rectangular inversion profiles, leading to full inversion for spin packets with resonance offsets within the pulse excitation bandwidth and leaving spin packets outside the excitation bandwidth largely unaffected. Here, we explore the consequences of using different band-selective amplitude-modulated pulses designed for NMR as the inversion pulse in ENDOR. We find an increased sensitivity for small hyperfine couplings compared to rectangular pulses of the same bandwidth. In echo-detected Davies-type ENDOR, finite Fourier series inversion pulses combine the advantages of increased absolute ENDOR sensitivity of short rectangular inversion pulses and increased sensitivity for small hyperfine couplings of long rectangular inversion pulses. The use of pulses with an almost rectangular frequency-domain profile also allows for increased control of the hyperfine contrast selectivity. At X-band, acquisition of echo transients as a function of radiofrequency and appropriate selection of integration windows during data processing allows efficient separation of contributions from weakly and strongly coupled nuclei in overlapping ENDOR spectra within a single experiment.

  4. Response under low-energy electron irradiation of a thin film of a potential copper precursor for focused electron beam induced deposition (FEBID)

    PubMed Central

    Sala, Leo; Szymańska, Iwona B; Dablemont, Céline; Lafosse, Anne

    2018-01-01

    Background: Focused electron beam induced deposition (FEBID) allows for the deposition of free standing material within nanometre sizes. The improvement of the technique needs a combination of new precursors and optimized irradiation strategies to achieve a controlled fragmentation of the precursor for leaving deposited material of desired composition. Here a new class of copper precursors is studied following an approach that probes some surface processes involved in the fragmentation of precursors. We use complexes of copper(II) with amines and perfluorinated carboxylate ligands that are solid and stable under ambient conditions. They are directly deposited on the surface for studying the fragmentation with surface science tools. Results: Infrared spectroscopy and high-resolution electron energy loss spectroscopy (HREELS) are combined to show that the precursor is able to spontaneously lose amine ligands under vacuum. This loss can be enhanced by mild heating. The combination of mass spectrometry and low-energy electron irradiation (0–15 eV) shows that full amine ligands can be released upon irradiation, and that fragmentation of the perfluorinated ligands is induced by electrons of energy as low as 1.5 eV. Finally, the cross section for this process is estimated from the temporal evolution in the experiments on electron-stimulated desorption (ESD). Conclusion: The release of full ligands under high vacuum and by electron irradiation, and the cross section measured here for ligands fragmentation allow one to envisage the use of the two precursors for FEBID studies. PMID:29379701

  5. The Wide Potential Trophic Niche of the Asiatic Fruit Fly Drosophila suzukii: The Key of Its Invasion Success in Temperate Europe?

    PubMed Central

    Poyet, Mathilde; Le Roux, Vincent; Gibert, Patricia; Meirland, Antoine; Prévost, Geneviève; Eslin, Patrice; Chabrerie, Olivier

    2015-01-01

    The Asiatic fruit fly Drosophila suzukii has recently invaded Europe and North and South America, causing severe damage to fruit production systems. Although agronomic host plants of that fly are now well documented, little is known about the suitability of wild and ornamental hosts in its exotic area. In order to study the potential trophic niche of D. suzukii with relation to fruit characteristics, fleshy fruits from 67 plant species were sampled in natural and anthropic ecosystems (forests, hedgerows, grasslands, coastal areas, gardens and urban areas) of the north of France and submitted to experimental infestations. A set of fruit traits (structure, colour, shape, skin texture, diameter and weight, phenology) potentially interacting with oviposition choices and development success of D. suzukii was measured. Almost half of the tested plant species belonging to 17 plant families allowed the full development of D. suzukii. This suggests that the extreme polyphagy of the fly and the very large reservoir of hosts producing fruits all year round ensure temporal continuity in resource availability and contribute to the persistence and the exceptional invasion success of D. suzukii in natural habitats and neighbouring cultivated systems. Nevertheless, this very plastic trophic niche is not systematically beneficial to the fly. Some of the tested plants attractive to D. suzukii gravid females stimulate oviposition but do not allow full larval development. Planted near sensitive crops, these “trap plants” may attract and lure D. suzukii, therefore contributing to the control of the invasive fly. PMID:26581101

  6. In situ handheld three-dimensional bioprinting for cartilage regeneration.

    PubMed

    Di Bella, Claudia; Duchi, Serena; O'Connell, Cathal D; Blanchard, Romane; Augustine, Cheryl; Yue, Zhilian; Thompson, Fletcher; Richards, Christopher; Beirne, Stephen; Onofrillo, Carmine; Bauquier, Sebastien H; Ryan, Stewart D; Pivonka, Peter; Wallace, Gordon G; Choong, Peter F

    2018-03-01

    Articular cartilage injuries experienced at an early age can lead to the development of osteoarthritis later in life. In situ three-dimensional (3D) printing is an exciting and innovative biofabrication technology that enables the surgeon to deliver tissue-engineering techniques at the time and location of need. We have created a hand-held 3D printing device (biopen) that allows the simultaneous coaxial extrusion of bioscaffold and cultured cells directly into the cartilage defect in vivo in a single-session surgery. This pilot study assessed the ability of the biopen to repair a full-thickness chondral defect and the early outcomes in cartilage regeneration, and compared these results with other treatments in a large animal model. A standardized critical-sized full-thickness chondral defect was created in the weight-bearing surface of the lateral and medial condyles of both femurs of six sheep. Each defect was treated with one of the following treatments: (i) hand-held in situ 3D printed bioscaffold using the biopen (HH group), (ii) preconstructed bench-based printed bioscaffolds (BB group), (iii) microfractures (MF group) or (iv) untreated (control, C group). At 8 weeks after surgery, macroscopic, microscopic and biomechanical tests were performed. Surgical 3D bioprinting was performed in all animals without any intra- or postoperative complication. The HH biopen allowed early cartilage regeneration. The results of this study show that real-time, in vivo bioprinting with cells and scaffold is a feasible means of delivering a regenerative medicine strategy in a large animal model to regenerate articular cartilage. Copyright © 2017 John Wiley & Sons, Ltd.

  7. Pressure-constrained, reduced-DOF, interconnected parallel manipulators with applications to space suit design

    NASA Astrophysics Data System (ADS)

    Jacobs, Shane Earl

    This dissertation presents the concept of a Morphing Upper Torso, an innovative pressure suit design that incorporates robotic elements to enable a resizable, highly mobile and easy to don/doff spacesuit. The torso is modeled as a system of interconnected, pressure-constrained, reduced-DOF, wire-actuated parallel manipulators, that enable the dimensions of the suit to be reconfigured to match the wearer. The kinematics, dynamics and control of wire-actuated manipulators are derived and simulated, along with the Jacobian transforms, which relate the total twist vector of the system to the vector of actuator velocities. Tools are developed that allow calculation of the workspace for both single and interconnected reduced-DOF robots of this type, using knowledge of the link lengths. The forward kinematics and statics equations are combined and solved to produce the pose of the platforms along with the link tensions. These tools allow analysis of the full Morphing Upper Torso design, in which the back hatch of a rear-entry torso is interconnected with the waist ring, helmet ring and two scye bearings. Half-scale and full-scale experimental models are used along with analytical models to examine the feasibility of this novel space suit concept. The analytical and experimental results demonstrate that the torso could be expanded to facilitate donning and doffng, and then contracted to match different wearer's body dimensions. Using the system of interconnected parallel manipulators, suit components can be accurately repositioned to different desired configurations. The demonstrated feasibility of the Morphing Upper Torso concept makes it an exciting candidate for inclusion in a future planetary suit architecture.

  8. Contamination control plan for prelaunch operations

    NASA Technical Reports Server (NTRS)

    Austin, J. D.

    1983-01-01

    A unified, systematic plan is presented for contamination control for space flight systems. Allowable contaminant quantities, or contamination budgets, are determined based on system performance margins and system-level allowable degradations. These contamination budgets are compared to contamination rates in ground environments to establish the controls required in each ground environment. The use of feedback from contamination monitoring and some contamination control procedures are discussed.

  9. Software defined photon counting system for time resolved x-ray experiments.

    PubMed

    Acremann, Y; Chembrolu, V; Strachan, J P; Tyliszczak, T; Stöhr, J

    2007-01-01

    The time structure of synchrotron radiation allows time resolved experiments with sub-100 ps temporal resolution using a pump-probe approach. However, the relaxation time of the samples may require a lower repetition rate of the pump pulse compared to the full repetition rate of the x-ray pulses from the synchrotron. The use of only the x-ray pulse immediately following the pump pulse is not efficient and often requires special operation modes where only a few buckets of the storage ring are filled. We designed a novel software defined photon counting system that allows to implement a variety of pump-probe schemes at the full repetition rate. The high number of photon counters allows to detect the response of the sample at multiple time delays simultaneously, thus improving the efficiency of the experiment. The system has been successfully applied to time resolved scanning transmission x-ray microscopy. However, this technique is applicable more generally.

  10. On the dependence of the domain of values of functionals of hypersonic aerodynamics on controls

    NASA Astrophysics Data System (ADS)

    Bilchenko, Grigory; Bilchenko, Nataly

    2018-05-01

    The properties of mathematical model of control of heat and mass transfer in laminar boundary layer on permeable cylindrical and spherical surfaces of the hypersonic aircraft are considered. Dependences of hypersonic aerodynamics functionals (the total heat flow and the total Newton friction force) on controls (the blowing into boundary layer, the temperature factor, the magnetic field) are investigated. The domains of allowed values of functionals of hypersonic aerodynamics are obtained. The results of the computational experiments are presented: the dependences of total heat flow on controls; the dependences of total Newton friction force on controls; the mutual dependences of functionals (as the domains of allowed values "Heat and Friction"); the dependences of blowing system power on controls. The influences of magnetic field and dissociation on the domain of "Heat and Friction" allowed values are studied. It is proved that for any fixed constant value of magnetic field the blowing system power is a symmetric function of constant dimensionless controls (the blowing into boundary layer and the temperature factor). It is shown that the obtained domain of allowed values of functionals of hypersonic aerodynamics depending on permissible range of controls may be used in engineering.

  11. Recovery Act: Energy Efficiency of Data Networks through Rate Adaptation (EEDNRA) - Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthew Andrews; Spyridon Antonakopoulos; Steve Fortune

    2011-07-12

    This Concept Definition Study focused on developing a scientific understanding of methods to reduce energy consumption in data networks using rate adaptation. Rate adaptation is a collection of techniques that reduce energy consumption when traffic is light, and only require full energy when traffic is at full provisioned capacity. Rate adaptation is a very promising technique for saving energy: modern data networks are typically operated at average rates well below capacity, but network equipment has not yet been designed to incorporate rate adaptation. The Study concerns packet-switching equipment, routers and switches; such equipment forms the backbone of the modern Internet.more » The focus of the study is on algorithms and protocols that can be implemented in software or firmware to exploit hardware power-control mechanisms. Hardware power-control mechanisms are widely used in the computer industry, and are beginning to be available for networking equipment as well. Network equipment has different performance requirements than computer equipment because of the very fast rate of packet arrival; hence novel power-control algorithms are required for networking. This study resulted in five published papers, one internal report, and two patent applications, documented below. The specific technical accomplishments are the following: • A model for the power consumption of switching equipment used in service-provider telecommunication networks as a function of operating state, and measured power-consumption values for typical current equipment. • An algorithm for use in a router that adapts packet processing rate and hence power consumption to traffic load while maintaining performance guarantees on delay and throughput. • An algorithm that performs network-wide traffic routing with the objective of minimizing energy consumption, assuming that routers have less-than-ideal rate adaptivity. • An estimate of the potential energy savings in service-provider networks using feasibly-implementable rate adaptivity. • A buffer-management algorithm that is designed to reduce the size of router buffers, and hence energy consumed. • A packet-scheduling algorithm designed to minimize packet-processing energy requirements. Additional research is recommended in at least two areas: further exploration of rate-adaptation in network switching equipment, including incorporation of rate-adaptation in actual hardware, allowing experimentation in operational networks; and development of control protocols that allow parts of networks to be shut down while minimizing disruption to traffic flow in the network. The research is an integral part of a large effort within Bell Laboratories, Alcatel-Lucent, aimed at dramatic improvements in the energy efficiency of telecommunication networks. This Study did not explicitly consider any commercialization opportunities.« less

  12. Distributed Offline Data Reconstruction in BaBar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pulliam, Teela M

    The BaBar experiment at SLAC is in its fourth year of running. The data processing system has been continuously evolving to meet the challenges of higher luminosity running and the increasing bulk of data to re-process each year. To meet these goals a two-pass processing architecture has been adopted, where 'rolling calibrations' are quickly calculated on a small fraction of the events in the first pass and the bulk data reconstruction done in the second. This allows for quick detector feedback in the first pass and allows for the parallelization of the second pass over two or more separate farms.more » This two-pass system allows also for distribution of processing farms off-site. The first such site has been setup at INFN Padova. The challenges met here were many. The software was ported to a full Linux-based, commodity hardware system. The raw dataset, 90 TB, was imported from SLAC utilizing a 155 Mbps network link. A system for quality control and export of the processed data back to SLAC was developed. Between SLAC and Padova we are currently running three pass-one farms, with 32 CPUs each, and nine pass-two farms with 64 to 80 CPUs each. The pass-two farms can process between 2 and 4 million events per day. Details about the implementation and performance of the system will be presented.« less

  13. Calibration improvements to electronically scanned pressure systems and preliminary statistical assessment

    NASA Technical Reports Server (NTRS)

    Everhart, Joel L.

    1996-01-01

    Orifice-to-orifice inconsistencies in data acquired with an electronically-scanned pressure system at the beginning of a wind tunnel experiment forced modifications to the standard, instrument calibration procedures. These modifications included a large increase in the number of calibration points which would allow a critical examination of the calibration curve-fit process, and a subsequent post-test reduction of the pressure data. Evaluation of these data has resulted in an improved functional representation of the pressure-voltage signature for electronically-scanned pressures sensors, which can reduce the errors due to calibration curve fit to under 0.10 percent of reading compared to the manufacturer specified 0.10 percent of full scale. Application of the improved calibration function allows a more rational selection of the calibration set-point pressures. These pressures should be adjusted to achieve a voltage output which matches the physical shape of the pressure-voltage signature of the sensor. This process is conducted in lieu of the more traditional approach where a calibration pressure is specified and the resulting sensor voltage is recorded. The fifteen calibrations acquired over the two-week duration of the wind tunnel test were further used to perform a preliminary, statistical assessment of the variation in the calibration process. The results allowed the estimation of the bias uncertainty for a single instrument calibration; and, they form the precursor for more extensive and more controlled studies in the laboratory.

  14. 38 CFR 21.260 - Subsistence allowance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....05 39.95 On-job 327.81 396.44 456.88 29.71 Improvement of rehabilitation potential: Full-time only.... 2 For on-job training, subsistence allowance may not exceed the difference between the monthly....93 465.08 548.05 39.95 On-job 327.81 396.44 456.88 29.71 Improvement of rehabilitation potential...

  15. 38 CFR 21.260 - Subsistence allowance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....05 39.95 On-job 327.81 396.44 456.88 29.71 Improvement of rehabilitation potential: Full-time only.... 2 For on-job training, subsistence allowance may not exceed the difference between the monthly....93 465.08 548.05 39.95 On-job 327.81 396.44 456.88 29.71 Improvement of rehabilitation potential...

  16. 38 CFR 21.260 - Subsistence allowance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....05 39.95 On-job 327.81 396.44 456.88 29.71 Improvement of rehabilitation potential: Full-time only.... 2 For on-job training, subsistence allowance may not exceed the difference between the monthly....93 465.08 548.05 39.95 On-job 327.81 396.44 456.88 29.71 Improvement of rehabilitation potential...

  17. Guidelines for assigning allowable properties to visually graded foreign species based on test data from full sized specimens

    Treesearch

    David W. Green; Bradley E. Shelley

    2006-01-01

    The objective of this document is to provide philosophy and guidelines for the assignment of allowable properties to visually graded dimension lumber produced from trees not grown in the United States. This document assumes, as a starting point, the procedures of ASTM D 1990.

  18. ATM: Restructing Learning for Deaf Students.

    ERIC Educational Resources Information Center

    Keefe, Barbara; Stockford, David

    Governor Baxter School for the Deaf is one of six Maine pilot sites chosen by NYNEX to showcase asynchronous transfer mode (ATM) technology. ATM is a network connection that allows high bandwidth transmission of data, voice, and video. Its high speed capability allows for high quality two-way full-motion video, which is especially beneficial to a…

  19. UPEML Version 3.0: A machine-portable CDC update emulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehlhorn, T.A.; Haill, T.A.

    1992-04-01

    UPEML is a machine-portable program that emulates a subset of the functions of the standard CDC Update. Machine-portability has been achieved by conforming to ANSI standards for Fortran-77. UPEML is compact and fairly efficient; however, it only allows a restricted syntax as compared with the CDC Update. This program was written primarily to facilitate the use of CDC-based scientific packages on alternate computer systems such as the VAX/VMS mainframes and UNIX workstations. UPEML has also been successfully used on the multiprocessor ELXSI, on CRAYs under both UNICOS and CTSS operating systems, and on Sun, HP, Stardent and IBM workstations. UPEMLmore » was originally released with the ITS electron/photon Monte Carlo transport package, which was developed on a CDC-7600 and makes extensive use of conditional file structure to combine several problem geometry and machine options into a single program file. UPEML 3.0 is an enhanced version of the original code and is being independently released for use at any installation or with any code package. Version 3.0 includes enhanced error checking, full ASCII character support, a program library audit capability, and a partial update option in which only selected or modified decks are written to the complete file. Version 3.0 also checks for overlapping corrections, allows processing of pested calls to common decks, and allows the use of alternate files in READ and ADDFILE commands. Finally, UPEML Version 3.0 allows the assignment of input and output files at runtime on the control line.« less

  20. UPEML Version 3. 0: A machine-portable CDC update emulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehlhorn, T.A.; Haill, T.A.

    1992-04-01

    UPEML is a machine-portable program that emulates a subset of the functions of the standard CDC Update. Machine-portability has been achieved by conforming to ANSI standards for Fortran-77. UPEML is compact and fairly efficient; however, it only allows a restricted syntax as compared with the CDC Update. This program was written primarily to facilitate the use of CDC-based scientific packages on alternate computer systems such as the VAX/VMS mainframes and UNIX workstations. UPEML has also been successfully used on the multiprocessor ELXSI, on CRAYs under both UNICOS and CTSS operating systems, and on Sun, HP, Stardent and IBM workstations. UPEMLmore » was originally released with the ITS electron/photon Monte Carlo transport package, which was developed on a CDC-7600 and makes extensive use of conditional file structure to combine several problem geometry and machine options into a single program file. UPEML 3.0 is an enhanced version of the original code and is being independently released for use at any installation or with any code package. Version 3.0 includes enhanced error checking, full ASCII character support, a program library audit capability, and a partial update option in which only selected or modified decks are written to the complete file. Version 3.0 also checks for overlapping corrections, allows processing of pested calls to common decks, and allows the use of alternate files in READ and ADDFILE commands. Finally, UPEML Version 3.0 allows the assignment of input and output files at runtime on the control line.« less

Top