Science.gov

Sample records for alloxan-induced diabetic mice

  1. Anti-diabetic effects of rice hull smoke extract in alloxan-induced diabetic mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We investigated the protective effect of a liquid rice hull smoke extract (RHSE) against diabetes in alloxan-induced diabetic mice. Anti-diabetic effects of RHSE were evaluated in both the rat insulinoma-1 cell line (INS-1) and diabetic ICR mice induced by inraperitoneal (ip) injection of alloxan. ...

  2. Antihyperglycemic Effects of Fermented and Nonfermented Mung Bean Extracts on Alloxan-Induced-Diabetic Mice

    PubMed Central

    Yeap, Swee Keong; Mohd Ali, Norlaily; Mohd Yusof, Hamidah; Alitheen, Noorjahan Banu; Beh, Boon Kee; Ho, Wan Yong; Koh, Soo Peng; Long, Kamariah

    2012-01-01

    Mung bean was reported as a potential antidiabetic agent while fermented food has been proposed as one of the major contributors that can reduce the risk of diabetes in Asian populations. In this study, we have compared the normoglycemic effect, glucose-induced hyperglycemic effect, and alloxan-induced hyperglycemic effect of fermented and nonfermented mung bean extracts. Our results showed that fermented mung bean extracts did not induce hypoglycemic effect on normal mice but significantly reduced the blood sugar levels of glucose- and alloxan-induced hyperglycemic mice. The serum levels of cholesterol, triglyceride (TG), and low-density lipoprotein (LDL) were also lowered while insulin secretion and antioxidant level as measured by malonaldehyde (MDA) assays were significantly improved in the plasma of the fermented mung bean-treated group in alloxan-induced hyperglycemic mouse. These results indicated that fermentation using Mardi Rhizopus sp. strain 5351 inoculums could enhance the antihyperglycemic and the antioxidant effects of mung bean in alloxan-treated mice. The improvement in the antihyperglycemic effect may also be contributed by the increased content of GABA and the free amino acid that are present in the fermented mung bean extracts. PMID:23091343

  3. Phycocyanin ameliorates alloxan-induced diabetes mellitus in mice: Involved in insulin signaling pathway and GK expression.

    PubMed

    Ou, Yu; Ren, Zhiheng; Wang, Jianhui; Yang, Xuegan

    2016-03-01

    The therapeutic potential and molecular mechanism of phycocyanin from Spirulina on alloxan-induced diabetes mice was investigated. In the experiment, 4-week treatment of phycocyanin at the dose of 100 and 200 mg/kg body weight in alloxan-induced diabetes mice resulted in improved metrics in comparison with alloxan-induced diabetes group. These metrics include blood glucose levels, glycosylated serum protein (GSP), glycosylated hemoglobin (GHb) and fasting serum insulin (FINS) levels. As its molecular mode of action, phycocyanin leads to the increase of IRS-1 tyrosine phosphorylation and the decrease of IRS-1 serine phosphorylation, also accompany with increased level of Akt phosphorylation on Ser473 in the liver and pancreas in diabetic mice. In addition, phycocyanin treatment enhanced the glucokinase (GK) level in the liver and pancreas, and the glucokinase regulatory protein (GKRP) level in the liver in diabetic mice. The results suggest that phycocyanin ameliorates alloxan-induced diabetes mellitus in mice by activating insulin signaling pathway and GK expression in pancreas and liver in diabetic mice. PMID:26827782

  4. Effect of Potentilla fulgens on lipid peroxidation and antioxidant status in alloxan-induced diabetic mice

    PubMed Central

    Saio, Valrielyn; Syiem, Donkupar; Sharma, Ramesh

    2012-01-01

    Potentilla fulgens (Rosaceae) root traditionally used as a folk remedy by local health practitioners of Khasi Hills, Meghalaya was investigated for its effects on lipid peroxidation and antioxidant status in alloxan-induced diabetic mice. Significant increase in levels of thiobarbituric acid reactive substances (TBARS) and decrease in activities of glutathione peroxidase (GPx), superoxide dismutase (SOD) and catalase (CAT) were observed under diabetic condition. Intraperitoneal administration of methanol extract of P. fulgens roots at a dose of 250 mg/kg body weight to male swiss albino diabetic mice for 14 days caused significant reduction in the elevated TBARS level, while increasing the activities of the antioxidant enzymes in diabetic mice. Maximum reduction in TBARS level was observed in liver tissue (75%, p<0.001). Kidney exhibited the highest elevation in the activity for catalase (68%, p<0.001) and superoxide dismutase (29%, p<0.001) while maximum increase in glutathione peroxidase activity was seen in brain (50%, p<0.001). The effects of P. fulgens was compared against known antioxidant, vitamin C. Results indicate that Potentilla fulgens methanolic root extract can reduce free radical mediated oxidative stress in experimental diabetes mellitus. PMID:24826032

  5. Methanolic Root Extract of Rauwolfia serpentina Benth Improves the Glycemic, Antiatherogenic, and Cardioprotective Indices in Alloxan-Induced Diabetic Mice

    PubMed Central

    Azmi, Muhammad Bilal; Qureshi, Shamim A.

    2012-01-01

    The aim of the study was to evaluate the phytochemistry and the effect of methanolic root extract (MREt) of Rauwolfia serpentina on alloxan-induced diabetic Wister male mice. Mice were divided in control (distilled water at 1 mL/kg) and alloxan-induced diabetic mice which subdivided into diabetic (distilled water at 1 mL/kg), negative (0.05% dimethyl sulfoxide at 1 mL/kg), positive (glibenclamide at 5 mg/kg) controls, and three test groups (MREt at 10, 30, and 60 mg/kg). All treatments were given orally for 14 days. Qualitatively MREt showed the presence of alkaloids, carbohydrates, flavonoids, glycosides, cardiac glycosides, phlobatannins, resins, saponins, steroids, tannins, and triterpenoids, while quantitatively extract was rich in total phenols. The flavonoids, saponins and alkaloids were also determined in root powder. MREt found effective in improving the body weights, glucose and insulin levels, insulin/glucose ratio, glycosylated and total hemoglobin in test groups as compared to diabetic control. Similarly, significantly decreased levels of total cholesterol, triglycerides, low-density lipoprotein (LDL-c), and very low-density lipoprotein (VLDL-c) cholesterols were found in test groups. Significant lipolysis with improved glycogenesis was also found in liver tissues of all test groups. ALT levels were found normal in all groups. Thus, MREt improves the glycemic, antiatherogenic, coronary risk, and cardioprotective indices in alloxan-induced diabetic mice. PMID:23365565

  6. Bio-enhancing Effect of Piperine with Metformin on Lowering Blood Glucose Level in Alloxan Induced Diabetic Mice

    PubMed Central

    Atal, Shubham; Atal, Sarjana; Vyas, Savita; Phadnis, Pradeep

    2016-01-01

    Background: Diabetes mellitus is the most rampant metabolic pandemic of the 21st century. Piperine, the chief alkaloid of Piper nigrum (black pepper) is widely used in alternative and complementary therapies has been extensively studied for its bio-enhancing property. Objective: To evaluate the bio-enhancing effect of piperine with metformin in lowering blood glucose levels in alloxan-induced diabetic mice. Materials and Methods: Piperine was isolated from an extract of fruits of P. nigrum. Alloxan-induced (150 mg/kg intraperitoneal) diabetic mice were divided into four groups. Group I (control 2% gum acacia 2 g/100 mL), Group II (metformin 250 mg/kg), Group III (metformin and piperine 250 mg/kg + 10 mg/kg), and Group IV (metformin and piperine 125 mg/kg + 10 mg/kg). All the drugs were administered orally once daily for 28 days. Blood glucose levels were estimated at day 0, day 14, and end of the study (day 28). Results: The combination of piperine with therapeutic dose of metformin (10 mg/kg + 250 mg/kg) showed significantly more lowering of blood glucose level as compared to metformin alone on both 14th and 28th day (P < 0.05). Piperine in combination with sub-therapeutic dose of metformin (10 mg/kg + 125 mg/kg) showed significantly more lowering of blood glucose as compared to control group and also showed greater lowering of blood glucose as compared to metformin (250 mg/kg) alone. Conclusion: Piperine has the potential to be used as a bio-enhancing agent in combination with metformin which can help reduce the dose of metformin and its adverse effects. SUMMARY Piperine is known for its bioenhancing property. This study evaluates the effect of piperine in combination with oral antidiabetic drug metformin. Drugs were administered for 28 days in alloxan induced diabetic mice and blood glucose lowering effect was seen. Results showed significantly better effect of combination of piperine with therapeutic dose of metformin in comparison to metformin alone. Piperine

  7. Lectin from Crataeva tapia Bark Improves Tissue Damages and Plasma Hyperglycemia in Alloxan-Induced Diabetic Mice

    PubMed Central

    da Rocha, Amanda Alves; Araújo, Tiago Ferreira da Silva; da Fonseca, Caíque Silveira Martins; da Mota, Diógenes Luís; de Medeiros, Paloma Lys; Paiva, Patrícia Maria Guedes; Coelho, Luana Cassandra Breitenbach Barroso; Correia, Maria Tereza dos Santos; Lima, Vera Lúcia de Menezes

    2013-01-01

    Crataeva tapia is a plant popularly used for diabetes treatment, in Brazil. Progressive decline in renal and hepatic functions has been described in patients with diabetes mellitus, and mortality rate is increased in patients with chronic liver and renal disease. This study aimed to evaluate whether Crataeva tapia bark lectin (CrataBL) improves hyperglycemia and renal and hepatic damage in diabetic mice. CrataBL was purified by ion exchange chromatography on CM-cellulose, and intraperitoneal administration of CrataBL to alloxan-induced diabetic mice at dose of 10 mg/Kg/day and 20 mg/Kg/day for 10 days significantly reduced serum glucose levels by 14.9% and 55.9%, respectively. Serum urea, creatinine, aspartate aminotransferase, and alanine aminotransferase were also significantly reduced after treatment with both doses of CrataBL. Furthermore, histological analysis of liver, kidney, and pancreas revealed an improvement in the tissue morphology upon treatment with CrataBL. The results suggest that CrataBL has a beneficial hypoglycemic activity and improves the renal and hepatic complications of diabetes. Therefore, this lectin may be a promising agent for the treatment of diabetes, and this might be the basis for its use in the folk medicine as an alternative treatment to manage diabetes-related complications such as hyperglycemia and tissue damage. PMID:24324521

  8. The effect of Cinnamomum zeylanicum bark water extract on memory performance in alloxan-induced diabetic mice.

    PubMed

    Mesripour, Azadeh; Moghimi, Fatemeh; Rafieian-Kopaie, Mahmoud

    2016-07-01

    Cinnamomum zeylanicum (cinnamon) has a wide range of beneficial effects including mild glucose lowering activity. The aim of the present study was to investigate whether cinnamon bark extract has the potential to improve memory performance and glucose profiles in diabetic mice. Memory was assessed by the novel object recognition task in male Balb/c mice. In this method, the difference between exploration time of a familiar object and a novel object was considered as an index of memory performance (recognition index, RI). The water extract was prepared by boiling cinnamon bark for 15 min. Alloxan induced diabetes in animals (serum glucose levels were 322 ± 7.5 mg/dL), and also impaired memory performance (RI= -3.3% ± 3.3) which differed significantly from control animals (RI = 32% ± 6.5). Although treatment with cinnamon only reduced fasting blood glucose level moderately but it improved memory performance remarkably (RI = 25.5% ± 5.6). Oxidative stress following administration of cinnamon extract was lower in diabetic mice. It was concluded that cinnamon water extract could be a useful alternative medicine in diabetic patients' daily regimen which not only reduces blood glucose levels but also improves memory performance and lipid peroxidation level.

  9. The effect of Cinnamomum zeylanicum bark water extract on memory performance in alloxan-induced diabetic mice.

    PubMed

    Mesripour, Azadeh; Moghimi, Fatemeh; Rafieian-Kopaie, Mahmoud

    2016-07-01

    Cinnamomum zeylanicum (cinnamon) has a wide range of beneficial effects including mild glucose lowering activity. The aim of the present study was to investigate whether cinnamon bark extract has the potential to improve memory performance and glucose profiles in diabetic mice. Memory was assessed by the novel object recognition task in male Balb/c mice. In this method, the difference between exploration time of a familiar object and a novel object was considered as an index of memory performance (recognition index, RI). The water extract was prepared by boiling cinnamon bark for 15 min. Alloxan induced diabetes in animals (serum glucose levels were 322 ± 7.5 mg/dL), and also impaired memory performance (RI= -3.3% ± 3.3) which differed significantly from control animals (RI = 32% ± 6.5). Although treatment with cinnamon only reduced fasting blood glucose level moderately but it improved memory performance remarkably (RI = 25.5% ± 5.6). Oxidative stress following administration of cinnamon extract was lower in diabetic mice. It was concluded that cinnamon water extract could be a useful alternative medicine in diabetic patients' daily regimen which not only reduces blood glucose levels but also improves memory performance and lipid peroxidation level. PMID:27651812

  10. The effect of Cinnamomum zeylanicum bark water extract on memory performance in alloxan-induced diabetic mice

    PubMed Central

    Mesripour, Azadeh; Moghimi, Fatemeh; Rafieian-Kopaie, Mahmoud

    2016-01-01

    Cinnamomum zeylanicum (cinnamon) has a wide range of beneficial effects including mild glucose lowering activity. The aim of the present study was to investigate whether cinnamon bark extract has the potential to improve memory performance and glucose profiles in diabetic mice. Memory was assessed by the novel object recognition task in male Balb/c mice. In this method, the difference between exploration time of a familiar object and a novel object was considered as an index of memory performance (recognition index, RI). The water extract was prepared by boiling cinnamon bark for 15 min. Alloxan induced diabetes in animals (serum glucose levels were 322 ± 7.5 mg/dL), and also impaired memory performance (RI= -3.3% ± 3.3) which differed significantly from control animals (RI = 32% ± 6.5). Although treatment with cinnamon only reduced fasting blood glucose level moderately but it improved memory performance remarkably (RI = 25.5% ± 5.6). Oxidative stress following administration of cinnamon extract was lower in diabetic mice. It was concluded that cinnamon water extract could be a useful alternative medicine in diabetic patients’ daily regimen which not only reduces blood glucose levels but also improves memory performance and lipid peroxidation level.

  11. The effect of Cinnamomum zeylanicum bark water extract on memory performance in alloxan-induced diabetic mice

    PubMed Central

    Mesripour, Azadeh; Moghimi, Fatemeh; Rafieian-Kopaie, Mahmoud

    2016-01-01

    Cinnamomum zeylanicum (cinnamon) has a wide range of beneficial effects including mild glucose lowering activity. The aim of the present study was to investigate whether cinnamon bark extract has the potential to improve memory performance and glucose profiles in diabetic mice. Memory was assessed by the novel object recognition task in male Balb/c mice. In this method, the difference between exploration time of a familiar object and a novel object was considered as an index of memory performance (recognition index, RI). The water extract was prepared by boiling cinnamon bark for 15 min. Alloxan induced diabetes in animals (serum glucose levels were 322 ± 7.5 mg/dL), and also impaired memory performance (RI= -3.3% ± 3.3) which differed significantly from control animals (RI = 32% ± 6.5). Although treatment with cinnamon only reduced fasting blood glucose level moderately but it improved memory performance remarkably (RI = 25.5% ± 5.6). Oxidative stress following administration of cinnamon extract was lower in diabetic mice. It was concluded that cinnamon water extract could be a useful alternative medicine in diabetic patients’ daily regimen which not only reduces blood glucose levels but also improves memory performance and lipid peroxidation level. PMID:27651812

  12. The effects of the king oyster mushroom Pleurotus eryngii (higher Basidiomycetes) on glycemic control in alloxan-induced diabetic mice.

    PubMed

    Li, Jian-Ping; Lei, Ya-li; Zhan, Huan

    2014-01-01

    The purpose of this study is to investigate the effects of Pleurotus eryngii on glycemic metabolism. Alloxan-induced hyperglycemic mice were used to study the effects of P. eryngii on blood glucose, glycohemoglobin, insulin secretion, damaged pancreatic β-cells, total antioxidant status (TAOS), and hepatic glycogen in hyperglycemic mice. Sixty diabetic mice were divided equally into 5 groups: the alloxan (AX)-induced hyperglycemic group, the AX and glibenclamide (GLI)-treated group, the AX and P. eryngii extracts (PEEs) 50-treated group (PEE 50 mg/kg), the AX and PEE100-treated group (PEE 100 mg/kg), and the AX and PEE200-treated group (PEE 200 mg/kg). The other 12 normal mice were injected intravenously with the normal saline and used as the control group. After PEE (100 and 200 mg/kg) was orally administered to the mice over 5 weeks, blood glucose and HbAlc were significantly decreased in AX-induced hyperglycemic mice (P < 0.05 and P < 0.01, respectively), whereas the level of insulin secretion was markedly elevated in (P < 0.05). The pancreatic β-cells damaged by AX partially and gradually recovered after PPE extract was administered to the hyperglycemic mice for 35 days. In addition, PEE treatment gradually increased the body weight and significantly increased the concentration of hepatic glycogen in hyperglycemic mice (P < 0.05). The results suggest that the action of PPE on glycemic metabolism occurs via increasing glycogen and insulin concentrations as well as recovering injured β-cells and reducing free radical damage. PPE may become a new potential hypoglycemic food for hyperglycemic people. PMID:24941163

  13. Hypoglycemic Effect of Aqueous and Methanolic Extract of Artemisia afra on Alloxan Induced Diabetic Swiss Albino Mice.

    PubMed

    Issa, Idris Ahmed; Hussen Bule, Mohammed

    2015-01-01

    Diabetes mellitus is metabolic syndrome that causes disability, early death, and many other complications. Currently insulin and many synthetic drugs are used in diabetes treatment. However, these pharmaceutical drugs are too expensive particularly for sub-Saharan population in addition to their undesirable side effects. The present study was aimed to evaluate antidiabetic effect and toxicity level of Artemisia afra which was collected from its natural habitat in Bale Zone, around Goba town, 455 km southeast of Addis Ababa. Air dried aerial parts of Artemisia afra were separately extracted with both distilled water and 95% methanol. Oral acute toxicity test was conducted on healthy Swiss albino mice. Antidiabetic effect of the aqueous and methanolic extracts of Artemisia afra was separately evaluated on alloxan induced diabetic mice at doses of 500, 750, and 1000 mg/Kg body weight orally. The results indicate that mean lethal dose (LD50) for aqueous extract of Artemisia afra was 9833.4 mg/Kg. Blood glucose level was significantly decreased by 24% (p < 0.005) and 56.9% (p < 0.0004) in groups that received aqueous extract of Artemisia afra at dose of 500 mg/Kg and 750 mg/Kg, respectively. The methanolic extract of Artemisia afra also significantly lowered blood glucose by 49.8% (p < 0.0001) at doses of 1000 mg/kg on the 5th hr. Aqueous extract of Artemisia afra was regarded as nontoxic and safe since its LD50 was found above 5000 mg/Kg. Aqueous extract showed higher effect at relatively lower dose as compared to methanolic extract. The aqueous extract was screened positive for phytochemicals like flavonoids, polyphenols, and tannins that were reported to have antioxidant activity. PMID:26345313

  14. The control of hyperglycemia by a novel trypsin resistant oral insulin preparation in alloxan induced type I diabetic mice

    PubMed Central

    Bank, Sarbashri; Ghosh, Arjun; Bhattacharya, Suman; Maiti, Smarajit; Khan, Gausal A.; Sinha, Asru K

    2016-01-01

    A trypsin resistant oral insulin preparation was made by incubating insulin for 2 h at 23 °C with previously boiled cow milk at 100 °C that was coagulated with 0.6 M acetic acid. The precipitate was resuspended in the same volume of milk. The immunoblot analysis of the suspended proteins treated with 200 ng of trypsin/ml for 3 h demonstrated that the 80.1% of the insulin in the suspension survived the proteolytic degradation compared to 0% of the hormone survived in the control. The feeding of 0.4 ml (0.08 unit of insulin) of the resuspended proteins followed by 0.2 ml of the same protein to alloxan induced diabetic mice maximally decreased the blood glucose level from 508 ± 10 mg/dl to 130 ± 10 mg/dl in 7 h with simultaneous increase of the basal plasma concentration of insulin from 3 ± 1.1 μunits/ml to 18 ± 1.5 μunits/ml. In control experiment the absence of insulin in the identical milk suspension produced no hypoglycemic effect suggesting milk was not responsible for the hypoglycemic effect of milk-insulin complex. Coming out of insulin-casein complex from the intestinal gut to the circulation was spontaneous and facilitated diffusion transportation which was found from Gibbs free energy reaction. PMID:27226415

  15. The control of hyperglycemia by a novel trypsin resistant oral insulin preparation in alloxan induced type I diabetic mice.

    PubMed

    Bank, Sarbashri; Ghosh, Arjun; Bhattacharya, Suman; Maiti, Smarajit; Khan, Gausal A; Sinha, Asru K

    2016-01-01

    A trypsin resistant oral insulin preparation was made by incubating insulin for 2 h at 23 °C with previously boiled cow milk at 100 °C that was coagulated with 0.6 M acetic acid. The precipitate was resuspended in the same volume of milk. The immunoblot analysis of the suspended proteins treated with 200 ng of trypsin/ml for 3 h demonstrated that the 80.1% of the insulin in the suspension survived the proteolytic degradation compared to 0% of the hormone survived in the control. The feeding of 0.4 ml (0.08 unit of insulin) of the resuspended proteins followed by 0.2 ml of the same protein to alloxan induced diabetic mice maximally decreased the blood glucose level from 508 ± 10 mg/dl to 130 ± 10 mg/dl in 7 h with simultaneous increase of the basal plasma concentration of insulin from 3 ± 1.1 μunits/ml to 18 ± 1.5 μunits/ml. In control experiment the absence of insulin in the identical milk suspension produced no hypoglycemic effect suggesting milk was not responsible for the hypoglycemic effect of milk-insulin complex. Coming out of insulin-casein complex from the intestinal gut to the circulation was spontaneous and facilitated diffusion transportation which was found from Gibbs free energy reaction.

  16. Ameliorative effect of dietary genistein on diabetes induced hyper-inflammation and oxidative stress during early stage of wound healing in alloxan induced diabetic mice.

    PubMed

    Eo, Hyeyoon; Lee, Hea-Ji; Lim, Yunsook

    2016-09-23

    Among the diabetic complications, diabetic foot ulcer due to delayed wound healing is one of the most significant clinical problems. Early inflammatory stage is important for better prognosis during wound healing. Thus, regulation of inflammatory response during early stage of wound healing is main target for complete cutaneous recovery. This study investigated the role of genistein supplementation in inflammation and oxidative stress, which are related to NLRP3 inflammasome, NFκB and Nrf2 activation, during cutaneous wound healing in alloxan-induced diabetic mice. Mice with diabetes with fasting blood glucose (FBG) levels > 250 mg/dl were fed diets with AIN-93G rodent diet containing 0%, 0.025% (LG) or 0.1% (HG) genistein. After 2 weeks of genistein supplementation, excisional wounds were made by biopsy punches (4 mm). Genistein supplementation improved fasting glucose levels and wound closure rate. Moreover, genistein supplementation restored NLRP3 inflammasome (NLRP3, ASC and caspase-1) at the basal level and ameliorated both inflammation (TNFα, iNOS, COX2 and NFκB) and antioxidant defense system (Nrf2, HO-1, GPx, and catalase) during early stage of wound healing in diabetic mice. Taken together, genistein supplementation would be a potential therapeutic nutrient in prevention and treatment of delayed wound healing by modulation of inflammation and oxidative stress during inflammatory stage.

  17. Comparative study of antidiabetic activity of Cajanus cajan and Tamarindus indica in alloxan-induced diabetic mice with a reference to in vitro antioxidant activity

    PubMed Central

    Nahar, Laizuman; Nasrin, Fatema; Zahan, Ronok; Haque, Anamul; Haque, Ekramul; Mosaddik, Ashik

    2014-01-01

    Background: Oxidative stress not only develops complications in diabetic (type 1 and type 2) but also contributes to beta cell destruction in type 2 diabetes in insulin resistance hyperglycemia. Glucose control plays an important role in the pro-oxidant/antioxidant balance. Some antidiabetic agents may by themselves have antioxidant properties independently of their role on glucose control. Objective: The present investigation draws a comparison of the protective antioxidant activity, total phenol content and the antihyperglycemic activity of the methanolic extract of Cajanus cajan root (MCC) and Tamarindus indica seeds (MTI). Materials and Methods: Antidiabetic potentials of the plant extracts were evaluated in alloxan-induced diabetic Swiss albino mice. The plant extracts at the doses of 200 and 400 mg/kg body weight was orally administered for glucose tolerance test during 1-hour study and hypoglycemic effect during 5-day study period in comparison with reference drug Metformin HCl (50 mg/kg). In vitro antioxidant potential of MCC and MTI was investigated by using 1, 1- diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity at 517 nm. Total phenolic content, total antioxidant capacity and reducing power activity was also assayed. Results: There was a significant decrease in fasting serum glucose level (P < 0.001), reduction in blood glucose level (P < 0.001) in 5-days study, observed in the alloxan-induced diabetic mice. The reduction efficacy of blood glucose level of both the extracts is proportional to their dose but MCC is more potent than MTI. Antioxidant study and quantification of phenolic compound of both the extracts revealed that they have high antioxidant capacity. Conclusion: These studies showed that MCC and MTI have both hypoglycemic and antioxidant potential but MCC is more potent than MTI. The present study suggests that both MCC and MTI could be used in managing oxidative stress. PMID:24761124

  18. Serum, liver, and kidney proteomic analysis for the alloxan-induced type I diabetic mice after insulin gene transfer of naked plasmid through electroporation.

    PubMed

    Diao, Wei-Fei; Chen, Wei-Qiang; Wu, Yuanyuan; Liu, Peng; Xie, Xiao-Lei; Li, Shuai; Shen, Ping-Ping; Ji, Jianguo

    2006-11-01

    Gene therapy has been reported to be effective in treating diabetes mellitus (DM), while little has been found out about the functional protein changes since. The liver and kidney play important roles in glucose absorption, metabolism, and excretion. Changes in the two organs may reflect pathologic alterations during DM, while the serum has a direct connection with most organs and pathological changes. We used alloxan to induce diabetic mice, electrotranferred the insulin gene into their sural muscles, and discovered that their blood glucose decreased to normal level. Consequently, proteomic approaches were applied to evaluate protein changes in the liver, kidney, and serum of normal, diabetic, and gene transferred mice. Forty-three proteins were found either up-regulated or down-reglulated in the liver, kidney, and serum of the alloxan-induced type I diabetic mice. Only five proteins in the liver, five proteins in the kidney, and seven proteins in the serum of diabetic mice were found to be back-regulated to normal levels after gene transfer. These back-regulated proteins are involved in lipid and glucose metabolism, associated with phosphorylation, signal transduction, oxidation, and immune inflammation. Our findings might promote a better understanding for the mechanism of DM, and provide novel targets for estimating the effects of gene therapy.

  19. Anti diabetic effect of cherries in alloxan induced diabetic rats.

    PubMed

    Lachin, Tahsini; Reza, Heydari

    2012-01-01

    Diabetes mellitus (DM) is a metabolic disorder in the endocrine system resulting from a defect in insulin secretion, insulin action or both of them. Adverse side effects of chemical drugs for treatment of diabetes persuaded the using of medical plants. Cherry as a traditionally used plant for treatment of diabetes, is packed with powerful plant pigments called anthocyanins. They give cherries their dark red color and are one of the richest antioxidant sources which lower the blood sugar and bear other beneficial health effects. The purpose of this study is to evaluate the effect of ethanolic extract of cherry fruit on alloxan induced diabetic rats. In this study 36 Male Wistar rats, body weight of 150-200gr were divided into 6 groups. Diabetes was induced by intra peritoneal injection of 120 mg/kg Alloxan. The duration of the cherries treatment was 30 days in which single dose of extracts (200mg/kg) were oral administered to diabetic rats. Blood glucose levels were estimated with glucometer before treatment, 2h and 1- 4 weeks after administration of extracts. Treatment with extracts of the cherries resulted in a significant reduction in blood glucose and urinary microalbumin and an increase in the creatinine secretion level in urea. Extract of this plant is useful in controlling the blood glucose level. Cherries appear to aid in diabetes control and diminution of the complications of the disease. Some relevant patents are also outlined in this article. PMID:22280223

  20. Effect of Syzygium calophyllifolium Walp. seed extract on transaminases and phosphatases in alloxan induced diabetic rats

    PubMed Central

    Gurusamy, K.; Kokilavani, R; Teepa, K. S. Ananta

    2007-01-01

    The antidiabetic effect of an aqueous seed extract of Syzygium calophyllifolium Walp. was studied in alloxan induced diabetic rats. Changes in serum and tissue AST, ALT LDH, ACP and ALP, enzymes activities in alloxan induced rats were studied and found to be reversed by the oral administration of S.calophyllifolium seed extract. PMID:22557266

  1. Hypoglycaemic effect of galactooligosaccharides in alloxan-induced diabetic rats.

    PubMed

    Sangwan, Vikas; Tomar, Sudhir K; Ali, Babar; Singh, Ram R B; Singh, Ashish K

    2015-02-01

    This study was conducted to assess the effect of prebiotic galactooligosaccharides (GOS) on alloxan-induced diabetes in male Sprague-Dawley (SD) rats. Diabetes was induced by administration of alloxan (100 mg/kg) and rats were divided in 4 groups: normal control group (NCG), prebiotic control group (PCG), diabetic control group (DCG) and diabetic prebiotic group (DPG). While PCG and DPG were fed with GOS supplemented (10% w/w) diet, NCG and DCG were administered with basal diet. Rats were sacrificed after 42 d for collection of blood and liver. Faecal samples were collected at the interval of 7 d throughout the study for measurement of lactobacilli and coliform count. Feeding of GOS decreased or delayed the severity of diabetes by amelioration of diabetes associated markers including fasting blood glucose, haemoglobin, glycosylated haemoglobin triglycerides, total cholesterol, low density lipoproteins, creatinine and urea. GOS was also found to improve the levels of antioxidative enzymes (superoxide dismutase, catalase and glutathione peroxidase) in liver and blood. Improvement in lactobacilli count along with a concomitant decrease in coliform count was observed in GOS fed groups.

  2. Protective effects of Piper nigrum and Vinca rosea in alloxan induced diabetic rats.

    PubMed

    Kaleem, M; Sheema; Sarmad, H; Bano, B

    2005-01-01

    In the present study aqueous extract of Piper nigrum seeds and Vinca rosea flowers were administered orally to alloxan induced diabetic rats once a day for 4 weeks. These treatments lead to significant lowering of blood sugar level and reduction in serum lipids. The levels of antioxidant enzymes, catalase and glutathione peroxidase decreased in alloxan induced diabetic rats however these levels returned to normal in insulin, P. nigrum and V. rosea treated rats. There was no significant difference in superoxide dismutase activity in all groups compared to controls. Lipid peroxidation levels were significantly higher in diabetic rats and it was slightly increased in insulin, P. nigrum and V. rosea treated rats as compared to control rat. These results suggest that oxidative stress plays a key role in diabetes, and treatment with P. nigrum and V. rosea are useful in controlling not only the glucose and lipid levels but these components may also be helpful in strengthening the antioxidants potential.

  3. Antihyperglycemic and antihyperlipidemic activity of plectranthus amboinicus on normal and alloxan-induced diabetic rats.

    PubMed

    Viswanathaswamy, A H M; Koti, B C; Gore, Aparna; Thippeswamy, A H M; Kulkarni, R V

    2011-03-01

    The present study was undertaken to investigate the antihyperglycemic and antihyperlipidemic effects of ethanol extract of Plectranthus amboinicus in normal and alloxan-induced diabetic rats. Diabetes was induced in Wistar rats by single intraperitoneal administration of alloxan monohydrate (150 mg/kg). Normal as well as diabetic rats were divided into groups (n=6) receiving different treatments. Graded doses (200 mg/kg and 400 mg/kg) of ethanol extract of Plectranthus amboinicus were studied in both normal and alloxan-induced diabetic rats for a period of 15 days. Glibenclamide (600 μg/kg) was used as a reference drug. Oral administration with graded doses of ethanol extract of Plectranthus amboinicus exhibited hypoglycemic effect in normal rats and significantly reduced the peak glucose levels after 120 min of glucose loading. In alloxan-induced diabetic rats, the daily oral treatment with ethanol extract of Plectranthus amboinicus showed a significant reduction in blood glucose. Besides, administration of ethanol extract of Plectranthus amboinicus for 15 days significantly decreased serum contents of total cholesterol, triglycerides whereas HDL-cholesterol, total proteins and calcium were effectively increased. Furthermore, effect of ethanol extract of Plectranthus amboinicus showed profound elevation of serum amylase and reduction of serum lipase. Histology examination showed ethanol extract of Plectranthus amboinicus exhibited almost normalization of damaged pancreatic architecture in rats with diabetes mellitus. Studies clearly demonstrated that ethanol extract of Plectranthus amboinicus leaves possesses hypoglycemic and antihyperlipidemic effects mediated through the restoration of the functions of pancreatic tissues and insulinotropic effect. PMID:22303055

  4. Antihyperglycemic and Antihyperlipidemic Activity of Plectranthus Amboinicus on Normal and Alloxan-Induced Diabetic Rats

    PubMed Central

    Viswanathaswamy, A. H. M.; Koti, B. C.; Gore, Aparna; Thippeswamy, A. H. M.; Kulkarni, R. V.

    2011-01-01

    The present study was undertaken to investigate the antihyperglycemic and antihyperlipidemic effects of ethanol extract of Plectranthus amboinicus in normal and alloxan-induced diabetic rats. Diabetes was induced in Wistar rats by single intraperitoneal administration of alloxan monohydrate (150 mg/kg). Normal as well as diabetic rats were divided into groups (n=6) receiving different treatments. Graded doses (200 mg/kg and 400 mg/kg) of ethanol extract of Plectranthus amboinicus were studied in both normal and alloxan-induced diabetic rats for a period of 15 days. Glibenclamide (600 μg/kg) was used as a reference drug. Oral administration with graded doses of ethanol extract of Plectranthus amboinicus exhibited hypoglycemic effect in normal rats and significantly reduced the peak glucose levels after 120 min of glucose loading. In alloxan-induced diabetic rats, the daily oral treatment with ethanol extract of Plectranthus amboinicus showed a significant reduction in blood glucose. Besides, administration of ethanol extract of Plectranthus amboinicus for 15 days significantly decreased serum contents of total cholesterol, triglycerides whereas HDL-cholesterol, total proteins and calcium were effectively increased. Furthermore, effect of ethanol extract of Plectranthus amboinicus showed profound elevation of serum amylase and reduction of serum lipase. Histology examination showed ethanol extract of Plectranthus amboinicus exhibited almost normalization of damaged pancreatic architecture in rats with diabetes mellitus. Studies clearly demonstrated that ethanol extract of Plectranthus amboinicus leaves possesses hypoglycemic and antihyperlipidemic effects mediated through the restoration of the functions of pancreatic tissues and insulinotropic effect. PMID:22303055

  5. Antidiabetic Activity of Differently Regioselective Chitosan Sulfates in Alloxan-Induced Diabetic Rats

    PubMed Central

    Xing, Ronge; He, Xiaofei; Liu, Song; Yu, Huahua; Qin, Yukun; Chen, Xiaolin; Li, Kecheng; Li, Rongfeng; Li, Pengcheng

    2015-01-01

    The present study investigated and compared the hypoglycemic activity of differently regioselective chitosan sulfates in alloxan-induced diabetic rats. Compared with the normal control rats, significantly higher blood glucose levels were observed in the alloxan-induced diabetic rats. The differently regioselective chitosan sulfates exhibited hypoglycemic activities at different doses and intervals, especially 3-O-sulfochitosan (3-S). The major results are as follows. First, 3,6-di-O-sulfochitosan and 3-O-sulfochitosan exhibited more significant hypoglycemic activities than 2-N-3, 6-di-O-sulfochitosan and 6-O-sulfochitosan. Moreover, 3-S-treated rats showed a more significant reduction of blood glucose levels than those treated by 3,6-di-O-sulfochitosan. These results indicated that –OSO3− at the C3-position of chitosan is a key active site. Second, 3-S significantly reduced the blood glucose levels and regulated the glucose tolerance effect in the experimental rats. Third, treatment with 3-S significantly increased the plasma insulin levels in the experimental diabetic rats. A noticeable hypoglycemic activity of 3-S in the alloxan-induced diabetic rats was shown. Clinical trials are required in the future to confirm the utility of 3-S. PMID:25988523

  6. Antihyperglycemic and Antihyperlipidemic Effects of Fermented Rhynchosia nulubilis in Alloxan-induced Diabetic Rats.

    PubMed

    Kim, Min Jeong; Ha, Bae Jin

    2013-03-01

    Alloxan administration in rats is used as a model for non-insulin dependent diabetes mellitus (NIDDM). NIDDM is a multifactorial disease, characterized by hyperglycemia and lipoprotein abnormalities. In this study, we evaluated the antihyperglycemic and antihyperlipidemic effects of fermented Rhynchosia nulubilis (FRN) through the regulation of glucose uptake in alloxan-induced rats. Fermented R. nulubilis was administered orally for 28 d at 500 mg/kg of body weight. Body weight and food intake were monitored every day. Biochemical parameters were quantified after 4 week. In the diabetic + FRN group, body weight increased significantly and blood glucose concentrations decreased when compared to those of the diabetic group. After 2 hr of administration, the oral glucose tolerance test (OGTT) indicated a significant reduction in the diabetic + FRN group compared to diabetic group. The diabetic + FRN group experienced a significant reduction in total cholesterol, triglycerides, low density lipoprotein, coronary risk factors, and malondialdehyde concentrations, with significantly increased high density lipoprotein compared to those of diabetic group. These results demonstrate that fermented R. nulubilis possesses potent antihyperglycemic and antihyperlipidemic activity in alloxan-induced diabetic rats.

  7. Antihyperglycemic and Antihyperlipidemic Effects of Fermented Rhynchosia nulubilis in Alloxan-induced Diabetic Rats

    PubMed Central

    Kim, Min Jeong

    2013-01-01

    Alloxan administration in rats is used as a model for non-insulin dependent diabetes mellitus (NIDDM). NIDDM is a multifactorial disease, characterized by hyperglycemia and lipoprotein abnormalities. In this study, we evaluated the antihyperglycemic and antihyperlipidemic effects of fermented Rhynchosia nulubilis (FRN) through the regulation of glucose uptake in alloxan-induced rats. Fermented R. nulubilis was administered orally for 28 d at 500 mg/kg of body weight. Body weight and food intake were monitored every day. Biochemical parameters were quantified after 4 week. In the diabetic + FRN group, body weight increased significantly and blood glucose concentrations decreased when compared to those of the diabetic group. After 2 hr of administration, the oral glucose tolerance test (OGTT) indicated a significant reduction in the diabetic + FRN group compared to diabetic group. The diabetic + FRN group experienced a significant reduction in total cholesterol, triglycerides, low density lipoprotein, coronary risk factors, and malondialdehyde concentrations, with significantly increased high density lipoprotein compared to those of diabetic group. These results demonstrate that fermented R. nulubilis possesses potent antihyperglycemic and antihyperlipidemic activity in alloxan-induced diabetic rats. PMID:24278624

  8. Biochemical study on the hypoglycemic effects of onion and garlic in alloxan-induced diabetic rats.

    PubMed

    El-Demerdash, F M; Yousef, M I; El-Naga, N I Abou

    2005-01-01

    The present study was carried out to investigate the effects of onion (Allium cepa Linn) and garlic (Allium sativum Linn) juices on biochemical parameters, enzyme activities and lipid peroxidation in alloxan-induced diabetic rats. Alloxan was administered as a single dose (120 mg/kg BW) to induce diabetes. A dose of 1 ml of either onion or garlic juices/100 g body weight (equivalent to 0.4 g/100 g BW) was orally administered daily to alloxan-diabetic rats for four weeks. The levels of glucose, urea, creatinine and bilirubin were significantly (p<0.05) increased in plasma of alloxan-diabetic rats compared to the control group. Aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH), and alkaline and acid phosphatases (AlP, AcP) activities were significantly (p<0.05) increased in plasma and testes of alloxan-diabetic rats, while these activities were decreased in liver compared with the control group. Brain LDH was significantly (p<0.05) increased. The concentration of thiobarbituric acid reactive substances and the activity of glutathione S-transferase in plasma, liver, testes, brain, and kidney were increased in alloxan-diabetic rats. Treatment of the diabetic rats with repeated doses of either garlic or onion juices could restore the changes of the above parameters to their normal levels. The present results showed that garlic and onion juices exerted antioxidant and antihyperglycemic effects and consequently may alleviate liver and renal damage caused by alloxan-induced diabetes. PMID:15582196

  9. Adrenocortical system response to induction of inflammation with silicon dioxide in rats with alloxan-induced diabetes mellitus.

    PubMed

    Kuznetsova, N V; Palchikova, N A; Selyatitskaya, V G; Shkurupiy, V A

    2010-11-01

    Alloxan-induced diabetes mellitus in rats was characterized by persistent increase in blood levels of corticosterone, while chronic granulomatous inflammation induced by silicon dioxide and its combination with alloxan-induced diabetes mellitus were associated with transient increase in blood corticosterone level followed by gradual development of hypoadrenocorticism. The content of corticosterone in the adrenal glands of rats with alloxan-induced diabetes mellitus remained unchanged in the dynamics of the disease, but the level of progesterone decreased at the early terms of diabetes and then returned to the initial values. After administration of silicon dioxide to intact rats and to rats with diabetes mellitus, changes in hormone content in the adrenal glands were observed only at the initial stages of inflammation and consisted in elevation of corticosterone concentration against the background of reduced progesterone content.

  10. Antidiabetic activity of methanolic extract of Hiptage bengalensis leaves in alloxan induced diabetic models.

    PubMed

    Maheshwari, P; Baburao, B; Pradeep Kumar, Ch; Rama Narsimha Reddy, A

    2013-09-01

    Diabetes mellitus is a metabolic disorder characterized by hyperglycemia and its occurrence is increasing fast in most of the countries. Herbal medicine derived from plant extracts have been utilized increasingly for the treatment of various disorders like diabetes mellitus. The present study was designed to evaluate the antidiabetic activity of Methanolic Extract of Hiptage bengalensis L. Kurz (MEHB) in alloxan induced diabetic rats and chick model. Alloxan (120 mg kg-1) was used to induce diabetes in rats and the blood glucose levels were estimated by using commercial kit in the market. The methanolic extract of Hiptage bengalensis was administered to diabetic rats as single dose for one day at a dose of 100 and 200 mg kg-1. The extract produced a significant reduction (p<0.01) of blood glucose levels at a dose of 100 and 200 mg kg-1 in diabetic rats. It also showed a beneficial effect on the lipid profile in alloxan induced diabetic rats. These results showed that methanolic extract of Hiptage bengalensis produced a dose dependant antihyperglycemic activity in rats.

  11. Early Renal Histological Changes in Alloxan-Induced Diabetic Rats

    PubMed Central

    Pourghasem, Mohsen; Nasiri, Ebrahim; Shafi, Hamid

    2014-01-01

    Diabetes mellitus is a progressive disease. Most investigators have focused on glomerular changes in diabetic kidney and non-glomerular alterations have been less attended. The present study has been conducted to find early non-glomerular histological changes in diabetic renal tissue. Twenty male Wistar rats weighting 200-250 g were used for the diabetic group. Diabetes mellitus was induced by single injection of Alloxan. After 8 weeks, paraffin embedded blocks of kidneys were prepared for evaluating the histological changes due to diabetes. Histological study showed the deposit of eosinophilic materials in the intermediate substantial of medulla and thickening of renal arterial wall in the kidney of 70% of diabetic rats. The average weight of kidneys increased when compared to non diabetic animals. Furthermore, the amount of blood flow in arteries of all diabetic kidneys has been enhanced. The present study demonstrates some early renal histological changes in diabetes mellitus which were earlier compared to those reported previously. Diabetic nephropathy is a progressive disease and renal care design can help better prognosis achievement. PMID:24551816

  12. Antidiabetic and antihyperlipidemic effects of Thespesia populnea fruit pulp extracts on alloxan-induced diabetic rats

    PubMed Central

    Belhekar, S. N.; Chaudhari, P. D.; Saryawanshi, J. S.; Mali, K. K.; Pandhare, R. B.

    2013-01-01

    Present study was carried to find out the antihyperglycemic and antihyperlipidemic activity of ethanol and aqueous extract of Thespesia populnea fruit pulp on alloxan-induced diabetic rats. Diabetes was induced in rats by administration of alloxan (150 mg/kg, i.p.). After the successful induction of experimental diabetes, the rats were divided into five groups each comprising a minimum of six rats. Phytochemical analysis and acute toxicity study of extracts was also done. The effects of extracts and metformin on fasting blood glucose and plasma lipid were examined for 28 days. Statistical analysis was carried out by using analysis of variance followed by Dunnet's multiple comparison test and paired t-test were done as the test of significance using GraphPad Prism. P≤0.05 was considered as the minimal level of statistical significance. Therapeutic dose of extract was found to be 200 mg/kg on the basis of acute toxicity study. Aqueous and alcoholic extract showed a significant reduction in blood glucose levels as well as a lipid profile of diabetic rats at the end of 28th day of treatment. However, in groups treated with plant extract the reduction in the blood glucose and improvement in lipid profile was slightly less than that achieved with the standard group (metformin). From this study, it can be concluded that ethanol and aqueous extract of Thespesia populnea exhibited significant antihyperglycemic and antihyperlipidemic effects on alloxan-induced diabetic rats. PMID:24019572

  13. Antidiabetic Effect of Sida cordata in Alloxan Induced Diabetic Rats

    PubMed Central

    Shah, Naseer Ali; Khan, Muhammad Rashid

    2014-01-01

    Medicinal plants are efficient ameliorator of oxidative stress associated with diabetes mellitus. In this study, ethyl acetate fraction (SCEE) of Sida cordata was investigated for scientific validation of its folk use in diabetes. Antidiabetic effect of SCEE was confirmed by antihyperglycemic activity in normal glucose loaded and diabetic glucose loaded animals as well as normal off feed animals. Confirmation of antidiabetic activity and toxicity ameliorative role of S. cordata was investigated in a chronic multiple dose treatment study of fifteen days. A single dose of alloxan (120 mg/kg) produced a decrease in insulin level, hyperglycemia, elevated total lipids, triglycerides, and cholesterol and decreased the high-density lipoproteins. Concurrent with these changes, there was an increase in the concentration of lipid peroxidation (TBARS), H2O2, and nitrite in pancreas, liver, and testis. This oxidative stress was related to a decrease in glutathione content (GSH) and antioxidant enzymes. Administration of SCEE for 15 days after diabetes induction ameliorated hyperglycemia, restored lipid profile, blunted the increase in TBARS, H2O2, and nitrite content, and stimulated the GSH production in the organs of alloxan-treated rats. We suggested that SCEE could be used as antidiabetic component in case of diabetes mellitus. This may be related to its antioxidative properties. PMID:25114914

  14. Antidiabetic effect of Sida cordata in alloxan induced diabetic rats.

    PubMed

    Shah, Naseer Ali; Khan, Muhammad Rashid

    2014-01-01

    Medicinal plants are efficient ameliorator of oxidative stress associated with diabetes mellitus. In this study, ethyl acetate fraction (SCEE) of Sida cordata was investigated for scientific validation of its folk use in diabetes. Antidiabetic effect of SCEE was confirmed by antihyperglycemic activity in normal glucose loaded and diabetic glucose loaded animals as well as normal off feed animals. Confirmation of antidiabetic activity and toxicity ameliorative role of S. cordata was investigated in a chronic multiple dose treatment study of fifteen days. A single dose of alloxan (120 mg/kg) produced a decrease in insulin level, hyperglycemia, elevated total lipids, triglycerides, and cholesterol and decreased the high-density lipoproteins. Concurrent with these changes, there was an increase in the concentration of lipid peroxidation (TBARS), H2O2, and nitrite in pancreas, liver, and testis. This oxidative stress was related to a decrease in glutathione content (GSH) and antioxidant enzymes. Administration of SCEE for 15 days after diabetes induction ameliorated hyperglycemia, restored lipid profile, blunted the increase in TBARS, H2O2, and nitrite content, and stimulated the GSH production in the organs of alloxan-treated rats. We suggested that SCEE could be used as antidiabetic component in case of diabetes mellitus. This may be related to its antioxidative properties.

  15. Protective effects of taurine against alloxan-induced diabetic cataracts and refraction changes in New Zealand White rabbits.

    PubMed

    Hsu, Yu-Wen; Yeh, Shang-Min; Chen, Ya-Yu; Chen, Yi-Chen; Lin, Shiun-Long; Tseng, Jung-Kai

    2012-10-01

    The present study examined the protective effects of taurine on alloxan-induced diabetic cataracts and lens damage in male New Zealand White rabbits. The animals were randomly divided into three treatment groups: (1) normal control (vehicle administration); (2) diabetes (100 mg/kg alloxan administration); and (3) diabetes + taurine (1% [w/v] taurine dissolved in drinking water and alloxan administration). The results showed that alloxan-induced diabetes caused significant (p < 0.05) hyperglycemia, hyperopic refraction shifts, cataract formation and lens damage compared with the normal control group. In contrast, the administration of taurine for 24 weeks significantly ameliorated the alloxan-induced elevated levels of blood glucose, level of hyperopic refraction error shifts in the eyes and progression of diabetic cataract formation in the lens in rabbits. Moreover, histopathology showed that the taurine supplement reduced the incidence of lens lesions induced by hyperglycemia. Overall, the studies demonstrate that taurine exhibits potent protective effects against alloxan-induced diabetic cataracts and refraction changes in rabbits. PMID:22940558

  16. Study of antihyperglycaemic activity of medicinal plant extracts in alloxan induced diabetic rats

    PubMed Central

    Attanayake, Anoja P.; Jayatilaka, Kamani A. P. W.; Pathirana, Chitra; Mudduwa, Lakmini K. B.

    2013-01-01

    Background: Diabetes mellitus, for a long time, has been treated with plant derived medicines in Sri Lanka. Aim: The aim of this study is to determine the efficacy and dose response of oral antihyperglycaemic activity of eight Sri Lankan medicinal plant extracts, which are used to treat diabetes in traditional medicine in diabetic rats. Materials and Methods: Medicinal plants selected for the study on the basis of documented effectiveness and wide use among traditional Ayurveda physicians in the Southern region of Sri Lanka for the treatment of diabetes mellitus. The effect of different doses of aqueous stem bark extracts of Spondias pinnata (Anacardiaceae), Kokoona zeylanica (Celastraceae), Syzygium caryophyllatum (Myrtaceae), Gmelina arborea (Verbenaceae), aerial part extracts of Scoparia dulcis (Scrophulariaceae), Sida alnifolia (Malvaceae), leaf extract of Coccinia grandis (Cucurbitaceae) and root extract of Languas galanga (Zingiberaceae) on oral glucose tolerance test was evaluated. A single dose of 0.25, 0.50, 0.75, 1.00, 1.25, 2.00 g/kg of plant extract was administered orally to alloxan induced (150 mg/kg, ip) diabetic Wistar rats (n = 6). Glibenclamide (0.50 mg/kg) was used as the standard drug. The acute effect was evaluated over a 4 h period using area under the oral glucose tolerance curve. Statistical Analysis: The results were evaluated by analysis of variance followed by Dunnett's test. Results: The eight plant extracts showed statistically significant dose dependent improvement on glucose tolerance (P < 0.05). The optimum effective dose on glucose tolerance for six extracts was found to be 1.00 g/kg in diabetic rats with the exception of C. grandis: 0.75 g/kg and L. galanga: 1.25 g/kg. Conclusion: The aqueous extract of G. arborea, S. pinnata, K. zeylanica, S. caryophyllatum, S. dulcis, S. alnifolia, L. galanga and C. grandis possess potent acute antihyperglycaemic activity in alloxan induced diabetic rats. PMID:24991066

  17. Antidiabetic activity of ethanolic extract of tubers of Dioscorea alata in alloxan induced diabetic rats

    PubMed Central

    Maithili, V.; Dhanabal, S.P.; Mahendran, S.; Vadivelan, R.

    2011-01-01

    Objective: To evaluate the antidiabetic activity of ethanolic extract of Dioscorea alata in glucose loaded and alloxan induced diabetic rats. Materials and Methods: The authenticated tubers of D. alata (DA) (JSSCPDP/2008/157) were collected from Dharmapuri, Tamil Nadu. The ethanol extract was tested for hypoglycemic activity in normal rats. In oral glucose tolerance test, glucose (3 g/kg, p.o.) was administered to non diabetic control, metformin (250 mg/kg, p.o.) and DA extract (100 and 200 mg/kg, p.o.) to treat treated rats. Diabetes mellitus was induced by alloxan monohydrate (120 mg/kg, i.p.) in physiological saline after overnight fasting for 18 hours. DA extract (100 and 200 mg/kg, p.o.) and standard drug metformin (250 mg/kg, p.o.) were administered to diabetic rats for 21 days. Fasting blood glucose level and changes in body weight were measured on days 0, 7, 14, and 21. At the end of 21st day, serum lipid profile, total protein, albumin, and creatinine were assessed. Results: In glucose loaded normal rats, the treatment with the extract of DA had shown a highly significant reduction (P < 0.001) in blood glucose levels at the doses of 100 and 200 mg/kg, respectively. The extract did not produce hypoglycemic activity at both the dose levels in normal, fasted rats. In alloxan induced diabetic rats, the body weight of the DA extract treated animals had shown a significant increase (P < 0.001) after 21 days treatment. The blood glucose level was reduced significantly by 47.48% and 52.09% after 21 days treatment at dose levels 100 and 200 mg/kg, respectively. Serum lipid levels, total protein, albumin, and creatinine were reversed toward near normal in treated rats as compared to diabetic control. Conclusion: The results indicate that ethanol extract of DA tubers possesses significant antidiabetic activity. PMID:21845005

  18. Alcoholic leaf extract of Plectranthus amboinicus regulates carbohydrate metabolism in alloxan-induced diabetic rats

    PubMed Central

    Koti, B. C.; Gore, Aparna; Thippeswamy, A. H. M.; Swamy, A. H. M. Viswanatha; Kulkarni, Rucha

    2011-01-01

    Objective: The present investigation was undertaken to explore the possible mechanisms of Plectranthus amboinicus leaf extract in alloxan-induced diabetic rats. Materials and Methods: Control and alloxan-induced diabetic albino rats received different treatments; orally control (vehicle), 200 mg/kg and 400 mg/kg of ethanol extract of Plectranthus amboinicus (PAEE) and 600 μg/kg of glibenclamide (standard) for 15 days. At the end of the experiment, the animals were sacrificed and enzyme activities of carbohydrate metabolism were measured in the liver. Results: Diabetic control rats showed a significant elevation (P < 0.001) in fasting blood glucose on successive days of the experiment as compared with their basal values, which was maintained over a period of 2 weeks. Daily oral treatment with PAEE showed a significant reduction (P < 0.001) in the blood glucose levels on successive days of the experiment as compared with their basal values. The most pronounced antihyperglycemic effect was obtained with the dose of 400 mg/kg. PAEE shows a dose-dependent reduction in gluconeogenic enzymes like glucose-6-phosphatase and fructose-1,6-disphosphatase. After 15 days of treatment with PAEE, glycolytic enzymes like phosphoglucoisomerase resulted in a significant increase with a concomitant significant decrease in the activities of aldolase. On the other hand, glucose-6-phosphate dehydrogenase was significantly improved in diabetic rats on administration of PAEE; the 400 mg/kg dose of PAEE elicited a more potent effect compared with the 200 mg/kg dose. Conclusion: The results obtained in this study provide evidence of the antidiabetic activity of PAEE, mediated through the regulation of carbohydrate metabolic enzyme activities. PMID:21713092

  19. Antihyperglycemic effect of Persea duthieion blood glucose levels and body weight in alloxan induced diabetic rabbits.

    PubMed

    Sultan, Khushbakht; Zakir, Muhammad; Khan, Haroon; Khan, Ihsaan Ullah; Ayaz, Sultan; Khan, Iqbal; Khan, Jafar; Khan, Murad Ali

    2016-05-01

    The present study was designed to investigate the antihyperglycemic effect of Persea duthieion blood glucose concentration and body weight in alloxan induced diabetic hyperglycemic rabbits. The results illustrated significant antihyperglycemic activity of crude extract with 17.44% and 28.02% amelioration at 25 and 50mg/kg p.o. respectively after 24th day of drug treatment; equally supported by body weight recovery. Upon fractionation, most dominant antihyperglycemic effect was displayed by aqueous fraction with 22.12% and 34.43% effect followed by ethyl acetate fraction with 24.32% and 32.05% effect at 25 and 50mg/kg p.o. respectively after 24th day of drug treatment. The effect on blood glucose was also reflected on body weight of animals. In conclusion, our study documented marked antihyperglycemic activity of extract/fractions of P. duthiei. PMID:27166552

  20. Antihyperglycemic effect of Persea duthieion blood glucose levels and body weight in alloxan induced diabetic rabbits.

    PubMed

    Sultan, Khushbakht; Zakir, Muhammad; Khan, Haroon; Khan, Ihsaan Ullah; Ayaz, Sultan; Khan, Iqbal; Khan, Jafar; Khan, Murad Ali

    2016-05-01

    The present study was designed to investigate the antihyperglycemic effect of Persea duthieion blood glucose concentration and body weight in alloxan induced diabetic hyperglycemic rabbits. The results illustrated significant antihyperglycemic activity of crude extract with 17.44% and 28.02% amelioration at 25 and 50mg/kg p.o. respectively after 24th day of drug treatment; equally supported by body weight recovery. Upon fractionation, most dominant antihyperglycemic effect was displayed by aqueous fraction with 22.12% and 34.43% effect followed by ethyl acetate fraction with 24.32% and 32.05% effect at 25 and 50mg/kg p.o. respectively after 24th day of drug treatment. The effect on blood glucose was also reflected on body weight of animals. In conclusion, our study documented marked antihyperglycemic activity of extract/fractions of P. duthiei.

  1. Gum Arabic extracts protect against hepatic oxidative stress in alloxan induced diabetes in rats.

    PubMed

    Ahmed, Abdelkareem A; Fedail, Jaafar S; Musa, Hassan H; Kamboh, Asghar Ali; Sifaldin, Amal Z; Musa, Taha H

    2015-12-01

    Gum Arabic (GA) from Acacia seyal and Acacia senegal is a branched-chain polysaccharide which has strong antioxidant properties, and has been used to reduce the experimental toxicity. Yet, the effects of GA on oxidative stress in type I diabetic rats have not been reported. The aim of the study was to investigate the effects of GA on oxidative stress in Alloxan induced diabetes in rats. The rats were divided into 3 groups (n=20 of each): control group, diabetic group injected with allaoxan, and diabetic group given 15% GA in drinking water for 8 weeks. Oxidative damage to liver tissue was evaluated by measurement of key hepatic enzymes, lipid peroxidation, antioxidant enzymes and expression of oxidative stress genes. Activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) were significantly (P<0.05) increased in GA group compared to diabetic and control groups. Treatment of GA decreased liver malondialdehyde (MDA), and increased glutathione (GSH). In addition, GA was significantly (P<0.05) reduced the activities of key liver enzymes, including alanine transaminase (ALT) and aspartate transaminase (AST). SOD, GPx and heat shock protein 70 (HSP70) mRNA were significantly increased in GA group compared to control and diabetic groups. Liver of all diabetic rats showed marked degeneration whereas slight degeneration was observed in GA treated rats compared to control. The results suggest that GA may protect liver by modulating the expression of oxidative stress genes, and thus can improve antioxidant status. PMID:26321624

  2. Antioxidant, Antihyperlipidaemic and Antidiabetic Activity of Eugenia Floccosa Bedd Leaves in Alloxan Induced Diabetic Rats

    PubMed Central

    Jelastin, Kala S Mary; Tresina, P.S.; Mohan, V.R.

    2011-01-01

    The ethanol extract of Eugenia floccosa Bedd (Family: Myrtaceae) leaf was investigated for its antioxidant, antihyperlipidaemic and antidiabetic effect in Wistar Albino rats. Diabetes was induced in Albino rats by administration of alloxan monohydrate (150mg/kg, i.p). The ethanol extracts of E. floccosa at a dose of 150 and 300mg/kg of body weight were administered at single dose per day to diabetes induced rats for a period of 14 days. The effect of ethanol extract of E. floccosa leaf extract on blood glucose, plasma insulin, creatinine, glycosylated haemoglobin, urea serum lipid profile [total cholesterol (TR), triglycerides (TG), low density lipoprotein – cholesterol (LDL-C), very low density lipoprotein – cholesterol (VLDL-C), high density lipoprotein – cholesterol (HDL-C) and phospholipid (PL)] serum protein, albumin, globulin, serum enzymes [serum glutamate pyruvate transaminases (SGPT) and serum glutamate oxaloacetate transaminases (SGOT), and alkaline phosphatase (ALP)], lipoprotein peroxidation (LPO) antioxidant enzymes (catalase (CAT), superoxide dismutase (SOD), reduced glutathione (GSH) and glutathione peroxidase (GPx) were measured in the diabetic rats. The ethanol extract of Eugenia floccosa leaf elicited significant reductions of blood glucose (P<0.05), lipid parameters except HDL-C, serum enzymes and significantly increased HDL-C and antioxidant enzymes. The extracts also caused significant increase in plasma insulin (P<0.05) in the diabetic rats. From the above results, it is concluded that ethanol extract of Eugenia floccosa possesses significant antidiabetic, antihyperlipidaemic and antioxidant effects in alloxan induced diabetic rats. PMID:24826030

  3. Protective Effect of Abelmoschus esculentus Against Alloxan-induced Diabetes in Wistar Strain Rats.

    PubMed

    Mishra, Neetu; Kumar, Dileep; Rizvi, Syed Ibrahim

    2016-11-01

    Increased oxidative stress has been shown to play an important role in the etiology and pathogenesis of diabetes and its complications. Abelmoschus esculentus (Okra) has been reported to possess many important biological properties. We undertook in vivo studies on male Wistar rats to examine the antioxidative potential of okra in normal and alloxan-treated diabetic rats. Okra extract was administered to control and diabetic rats for 35 consecutive days. Erythrocyte plasma membrane redox system (PMRS) activity (p < 0.05), erythrocytes lipid peroxidation (MDA) (p < 0.01), and advanced oxidation protein products (AOPP) (p < 0.001), increased by 153%, 31%, and 290%, respectively, in response to alloxan treatment, while intracellular reduced glutathione (p < 0.001) and total antioxidant potential of plasma in terms of Ferric reducing ability (FRAP) (p < 0.01) decreased by 75% and 22%, respectively, on alloxan treatment. Okra supplementation provided protection to the rats against alloxan-induced changes. Based on the present results, we hypothesize that okra has strong antioxidative potential and may be used as a dietary supplementation in diabetes for prevention of oxidative stress-mediated complications.

  4. Protective Effect of Abelmoschus esculentus Against Alloxan-induced Diabetes in Wistar Strain Rats.

    PubMed

    Mishra, Neetu; Kumar, Dileep; Rizvi, Syed Ibrahim

    2016-11-01

    Increased oxidative stress has been shown to play an important role in the etiology and pathogenesis of diabetes and its complications. Abelmoschus esculentus (Okra) has been reported to possess many important biological properties. We undertook in vivo studies on male Wistar rats to examine the antioxidative potential of okra in normal and alloxan-treated diabetic rats. Okra extract was administered to control and diabetic rats for 35 consecutive days. Erythrocyte plasma membrane redox system (PMRS) activity (p < 0.05), erythrocytes lipid peroxidation (MDA) (p < 0.01), and advanced oxidation protein products (AOPP) (p < 0.001), increased by 153%, 31%, and 290%, respectively, in response to alloxan treatment, while intracellular reduced glutathione (p < 0.001) and total antioxidant potential of plasma in terms of Ferric reducing ability (FRAP) (p < 0.01) decreased by 75% and 22%, respectively, on alloxan treatment. Okra supplementation provided protection to the rats against alloxan-induced changes. Based on the present results, we hypothesize that okra has strong antioxidative potential and may be used as a dietary supplementation in diabetes for prevention of oxidative stress-mediated complications. PMID:27065051

  5. Antidiabetic and antioxidant effects of Croton lobatus L. in alloxan-induced diabetic rats

    PubMed Central

    Fasola, Taiye Remi; Ukwenya, Blessing; Oyagbemi, Ademola Adetokunbo; Omobowale, Temidayo Olutayo; Ajibade, Temitayo Olabisi

    2016-01-01

    Background: Croton lobatus contains a high amount of antioxidant phytochemicals that probably account for its wide use as food and medicine in the traditional communities of West Africa. Methods: The study evaluated the modulatory role of methanol extract of Croton lobatus leaf on alloxan-induced diabetes and associated cardiovascular complications. Male rats were randomly selected and assigned to one of six groups (A to F) of eight animals each: A (distilled water); B (corn oil); C (Alloxan); D (Alloxan + 100 mg kg-1 Croton lobatus); E: (Alloxan + 200 mg kg-1 C. lobatus); and F (Alloxan + 100 mg kg-1 glibenclamide). Results: Acute toxicity studies revealed no mortality of rats at the administration of different doses of extract up to the 5,000 mg kg-1 dose. Histology of the pancreas showed focal area of necrosis, and fatty infiltration in diabetic untreated rats, but these lesions were absent in pancreas of rats treated with C. lobatus extract. Conclusion: Methanol leaf extract of C. lobatus reduced arteriogenic risk factors, improved antioxidant status, restored the observable pathological lesions associated with experimental diabetes in rats, and thus offers a new therapeutic window as herbal therapy for the treatment of diabetes mellitus and associated cardiovascular complications. PMID:27757266

  6. Report: Antioxidant and hypoglycemic activity of strawberry fruit extracts against alloxan induced diabetes in rats.

    PubMed

    Abdulazeez, Sheriff Sheik; Ponnusamy, Ponmurugan

    2016-01-01

    The strawberries (Fragaria x ananassa) of Rosaceae family are an accomplished source of bioactive compounds such as ascorbic acid and diverse range of polyphenols including anthocyanins, phenolic acids, flavonols, ellagitannins etc. These phenolic compounds classify strawberry as an important health promoting food. Strawberries are proved to have potent antioxidant capacity in various in vitro assay systems. The in vivo beneficial effects are getting explored against various ailments including cancer, metabolic syndrome, and cardiovascular diseases. The present research study was designed to analyze the effect of strawberry fruit extracts (water and methanol) against alloxan induced hyperglycemia in albino rats of Wister strain. Upon alloxan (150mg/kg body weight) induction, the diabetic animals showed marked increase in the values of plasma glucose, urea, uric acid, creatinine and concomitant decrease in body weight and plasma insulin level. The oral administration of strawberry extracts for 45 days in diabetic animals reversed the biochemical changes significantly (P0.05) to near normal. Furthermore, the restoration of body weight loss was also observed. The results suggest that the strawberry extract has effective hypoglycemic activity against alloxan diabetes. The poly phenolic antioxidant contents of the strawberry fruit extracts are responsible for the observed biological effect. PMID:26826817

  7. Effects of aqueous extract of turnip leaf (Brassica rapa) in alloxan-induced diabetic rats

    PubMed Central

    Hassanpour Fard, Mohammad; Naseh, Ghodratollah; Lotfi, Nassim; Hosseini, Seyed Mahmoud; Hosseini, Mehran

    2015-01-01

    Objectives: Turnip leaf has been used in folk medicine of Iran for the treatment of diabetes. However,so far no scientific study has been done to support its use in traditional medicine. The present study was carried out to evaluate the possible hypoglycemic efficacy of aqueous extract of turnip leaf (AETL) in diabetic rats. Materials and Methods: Alloxan-induced diabetic rats were orally treated with AETL at doses of 200 and 400 mg/kg body weight (bw) per day for 28 days. In order to evaluate the anti-diabetic activity, fasting blood glucose concentrations were determined on the 1st, 14th and 29th days. Moreover,at the end of the study, plasma concentrations of total cholesterol, triglyceride (TG), high density lipoprotein cholesterol (HDL-c), low density lipoprotein cholesterol (LDL-c), aspartate amino transfarase (AST), and alanine amino transferase (ALT) were measured by the use of standard kits and auto-analyzer. Results: Both doses of AETL significantly decreased (p<0.001) blood glucose and ALT levels in diabetic rats after 28 days of administration. AETL at both doses decreased (p<0.05) plasma total cholesterol and LDL-c in diabetic rats, but they significantly decreased (p<0.05) HDL-c and increased triglycerideand AST levels in a-dose dependent manner. Conclusion: The results showed that AETL has a dose- dependent decrease in the blood glucose in diabetic rats. However,we should not be unaware of adverse effects of AETL on lipid profiles and liver enzymes activity, especially decrease of HDL and increase of TG and AST. PMID:25949956

  8. Antidiabetic properties of ethanolic extract of Cnidoscolus aconitifolius on alloxan induced diabetes mellitus in rats.

    PubMed

    Oyagbemi, A A; Odetola, A A; Azeez, O I

    2010-12-01

    This research was designed to investigate the antidiabetic properties of ethanolic extract of Cnidoscolus aconitifolius in alloxan-induced diabetes mellitus in Wistar male albino rats. Thirty male albino rats were used. Diabetes mellitus was induced in five of the six groups (B-F) by a single intra-peritoneal injection at the dose of 100mg/kg after normal fasting blood glucose had been determined. Group A served as the positive control while groups C-E received 100mg/kg, 500mg/kg and 1000mg/kg of Cnidoscolus aconitifolius extract respectively. Group B did not received any treatment while group F received chlorpropamide, a standard drug used in the treatment of diabetes mellitus. Blood glucose and body weights were monitored weekly for four weeks. Plasma lipids and electrolytes such as Total cholesterol, Triglyceride, Low Density Lipoproteins (LDL), High Density Lipoproteins (HDL), Creatinine and Blood Urea Nitrogen (BUN) were determined after four weeks of treatment with Cnidoscolus aconitifolius extract. The results show significant reduction (P<0.001) in the blood glucose in group C (100mg/kg of Cnidoscolus aconitifolius) when compared with diabetic control (Alloxan only) and other treatment groups. There was gradual increase in weight of all treatment groups compared with the diabetic control, which had progressive weight loss. Plasma cholesterol levels also significantly reduced (P<0.001) in rats treated with 1,000mg/kg Cnidoscolus aconitifolius extract. From this study, Cnidoscolus aconitifolius extract was found to considerably reduce blood glucose and plasma cholesterol levels and progressively increase weight gain in diabetic treated rats confirming its traditional use for the treatment of diabetes. PMID:22416660

  9. Hypoglycemic, antilipidemic and antioxidant effects of valproic acid in alloxan-induced diabetic rats.

    PubMed

    Akindele, Abidemi J; Otuguor, Edafe; Singh, Dhirendra; Ota, Duncan; Benebo, Adokiye S

    2015-09-01

    This study was designed to investigate the hypoglycemic, antilipidemic and antioxidant effects of valproic acid (VA) in alloxan-induced diabetic rats. VA (100, 300 and 600mg/kg p.o.) and insulin (17IU/kg s.c.) were administered once daily for 21 days. Fasting blood glucose level was determined at 7 days interval. On day 21, blood samples were collected for assay of serum biochemical parameters (total protein, creatinine, urea, alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP), triglycerides (TG), total cholesterol (TC), high density lipoprotein (HDL), and low density lipoprotein (LDL)). Kidneys and livers were harvested for antioxidant indices and histopathological examination. In diabetic rats, VA produced a dose and day-dependent reduction in glucose level. Peak effect (52.79% reduction; P<0.001) was produced at the dose of 600mg/kg on day 21. In normoglycemic rats, VA (600mg/kg) caused significant reduction (P<0.05) in blood glucose level on days 1 and 21 with 16.38% and 15.63% reductions respectively. In diabetic rats, VA significantly reduced the level of catalase (CAT) and malondialdehyde (MDA) in the kidney, and increased the level of superoxide dismutase, CAT and glutathione peroxidase with reduction in MDA in the liver compared to diabetic control, especially at the dose of 600mg/kg. VA (600mg/kg) generally increased the level of HDL and reduced the levels of TG, LDL, TC, AST, ALT, ALP, bilirubin, creatinine and urea compared with diabetic control. The findings in this study suggest that VA possess beneficial antidiabetic effects. PMID:26015307

  10. Hypoglycaemic and Hypolipidaemic Effects of Withania somnifera Root and Leaf Extracts on Alloxan-Induced Diabetic Rats

    PubMed Central

    Udayakumar, Rajangam; Kasthurirengan, Sampath; Mariashibu, Thankaraj Salammal; Rajesh, Manoharan; Anbazhagan, Vasudevan Ramesh; Kim, Sei Chang; Ganapathi, Andy; Choi, Chang Won

    2009-01-01

    Withania somnifera is an important medicinal plant, which is used in traditional medicine to cure many diseases. Flavonoids were determined in the extracts of W. somnifera root (WSREt) and leaf (WSLEt). The amounts of total flavonoids found in WSREt and WSLEt were 530 and 520 mg/100 g dry weight (DW), respectively. Hypoglycaemic and hypolipidaemic effects of WSREt and WSLEt were also investigated in alloxan-induced diabetic rats. WSREt and WSLEt and the standard drug glibenclamide were orally administered daily to diabetic rats for eight weeks. After the treatment period, urine sugar, blood glucose, haemoglobin (Hb), glycosylated haemoglobin (HbA1C), liver glycogen, serum and tissues lipids, serum and tissues proteins, liver glucose-6-phosphatase (G6P) and serum enzymes like aspartate transaminase (AST), alanine transaminase (ALT), acid phosphatase (ACP) and alkaline phosphatase (ALP) levels were determined. The levels of urine sugar, blood glucose, HbA1C, G6P, AST, ALT, ACP, ALP, serum lipids except high density lipoprotein-bound cholesterol (HDL-c) and tissues like liver, kidney and heart lipids were significantly (p < 0.05) increased, however Hb, total protein, albumin, albumin:globulin (A:G) ratio, tissues protein and glycogen were significantly (p < 0.05) decreased in alloxan-induced diabetic rats. Treatment of the diabetic rats with WSREt, WSLEt and glibenclamide restored the changes of the above parameters to their normal level after eight weeks of treatment, indicating that WSREt and WSLEt possess hypoglycaemic and hypolipidaemic activities in alloxan-induced diabetes mellitus (DM) rats. PMID:19564954

  11. Amelioration of Hyperglycaemia, Oxidative Stress and Dyslipidaemia in Alloxan-Induced Diabetic Wistar Rats Treated with Probiotic and Vitamin C

    PubMed Central

    Aluwong, Tagang; Ayo, Joseph O.; Kpukple, Alkali; Oladipo, Olusola Olalekan

    2016-01-01

    Clinical and experimental evidence suggests that hyperglycaemia is responsible for the oxidative stress in diabetes mellitus. The study was designed to investigate the comparative effects of probiotic and vitamin C (Vit-C) treatments on hyperglycaemia, oxidative stress and dyslipidaemia in alloxan-induced diabetic rats. Type 1 diabetes (T1DM) was induced in male Wistar rats by a single intraperitoneal (i.p.) injection of alloxan (150 mg/kg). Six groups of the animals received the following treatment regimens for four weeks: (1) Normal saline, per os; (2) alloxan (150 mg/kg, i.p.); (3) alloxan (150 mg/kg) + insulin (4 U/kg, subcutaneously); (4) alloxan (150 mg/kg) + probiotic (4.125 × 106 CFU/100 mL per os); (5) alloxan (150 mg/kg) + Vit-C (100 mg/kg, i.m.); (6) alloxan (150 mg/kg) + probiotic (4.125 × 106 CFU/100 mL per os) + Vit-C (100 mg/kg, intramuscularly). Probiotic + Vit-C decreased (p < 0.05) blood glucose concentration in diabetic treated group, when compared with the untreated diabetic group. Probiotic + Vit-C reduced malondialdehyde concentration, in the serum, brain and kidneys, respectively, but increased the activity of antioxidant enzymes. Probiotic and Vit-C may be more effective than Vit-C alone, in ameliorating hyperglycaemia, oxidative stress and dyslipidaemia in alloxan-induced diabetic rats. PMID:27164129

  12. Beneficial Effects of Pentanema vestitum Linn. Whole Plant on the Glucose and Other Biochemical Parameters of Alloxan Induced Diabetic Rabbits

    PubMed Central

    Ilahi, Ikram; Asghar, Ali; Ali, Shujat; Khan, Murad; Khan, Nasrullah

    2012-01-01

    The residents of Lower Dir and Malakand agency, Khyber Pakhtunkhwa, Pakistan, use the dry powder of whole plant of Pentanema vestitum for the treatment of asthma and diabetes. No documented reports are available about the therapeutic action of Pentanema vestitum. The present study was aimed to explore the antihyperglycemic effect of 70% methanol extract of Pentanema vestitum whole plant in glucose-induced nondiabetic hyperglycemic and alloxan-induced diabetic rabbits. During this study, the effects of plant extract on the serum lipid profile, GPT, ALP, bilirubin and creatinine of diabetic rabbits were also studied. The extract of Pentanema vestitum whole plant exhibited significant (P < 0.05) antihyperglycemic activity in glucose-induced hyperglycemic rabbits. Treatment of alloxan-induced diabetic rabbits with extract significantly (P < 0.05) reduced the elevated levels of serum glucose, GPT, ALP, bilirubin and creatinine. During the study of lipid profile, the extract proved to be antihyperlipidemic and HDL boosting in diabetic rabbit models. From the finding of the present research, it was concluded that the 70% methanol extract of Pentanema vestitum whole plant has beneficial effects on serum levels of glucose, lipid profile, GPT, ALP, bilirubin, and creatinine of diabetic rabbits. PMID:23316385

  13. Amelioration of Hyperglycaemia, Oxidative Stress and Dyslipidaemia in Alloxan-Induced Diabetic Wistar Rats Treated with Probiotic and Vitamin C.

    PubMed

    Aluwong, Tagang; Ayo, Joseph O; Kpukple, Alkali; Oladipo, Olusola Olalekan

    2016-01-01

    Clinical and experimental evidence suggests that hyperglycaemia is responsible for the oxidative stress in diabetes mellitus. The study was designed to investigate the comparative effects of probiotic and vitamin C (Vit-C) treatments on hyperglycaemia, oxidative stress and dyslipidaemia in alloxan-induced diabetic rats. Type 1 diabetes (T1DM) was induced in male Wistar rats by a single intraperitoneal (i.p.) injection of alloxan (150 mg/kg). Six groups of the animals received the following treatment regimens for four weeks: (1) Normal saline, per os; (2) alloxan (150 mg/kg, i.p.); (3) alloxan (150 mg/kg) + insulin (4 U/kg, subcutaneously); (4) alloxan (150 mg/kg) + probiotic (4.125 × 10⁶ CFU/100 mL per os); (5) alloxan (150 mg/kg) + Vit-C (100 mg/kg, i.m.); (6) alloxan (150 mg/kg) + probiotic (4.125 × 10⁶ CFU/100 mL per os) + Vit-C (100 mg/kg, intramuscularly). Probiotic + Vit-C decreased (p < 0.05) blood glucose concentration in diabetic treated group, when compared with the untreated diabetic group. Probiotic + Vit-C reduced malondialdehyde concentration, in the serum, brain and kidneys, respectively, but increased the activity of antioxidant enzymes. Probiotic and Vit-C may be more effective than Vit-C alone, in ameliorating hyperglycaemia, oxidative stress and dyslipidaemia in alloxan-induced diabetic rats. PMID:27164129

  14. Serum Glucose and Malondialdehyde Levels in Alloxan Induced Diabetic Rats Supplemented with Methanolic Extract of Tacazzea Apiculata

    PubMed Central

    Gwarzo, M. Y.; Ahmadu, J. H.; Ahmad, M. B.; Dikko, A. U. A.

    2014-01-01

    Tacazzea apiculata is used by traditional medical practitioners for the treatment of wide range of diseases. The current work investigated the hypoglycemic and antioxidant properties of Tacazzea apiculata Oliv. on alloxan induced diabetes mellitus. Five groups (n=10) of rats were fed on commercial diet. The rats were divided into Group 1 (NUT) as non-diabetic and untreated, group 2 (NDT) as non-diabetic and treated, group 3 (DT) diabetic and treated. Group 4 (DUT) as diabetic and untreated. Group five (CP) were diabetic treated with Chlorpropamide, a drug used in the management of diabetic mellitus, with no known antioxidant property. Diabetic induction was done by intra-peritoneal injection of 100 mg/kg b. wt with alloxan. Fasting blood glucose was estimated seven days after induction to determine the severity of glucose elevation among the induced groups. Methanolic extract of T. apiculata leaf was administered to alloxan induced diabetic and non-diabetic control rats at 100mg/kg body weight for four weeks and blood glucose estimated on weekly basis. Malondialdehyde level was also estimated in the sera of the rats. Blood glucose level was monitored for additional 2 weeks post treatment. The results indicated that the extracts possess significant hypoglycemic effect on the diabetic rats (DT) having the mean glucose of (95.2 ± 9.12 mg/dl) compared to the diabetic untreated control group (DUT) with a mean glucose of (238.91 ± 4.42 mg/dl, p<0.05). The effect was sustained even on withdrawal of the extracts for two weeks. This was accompanied by a progressive increase in weight among all treated diabetic rats and non diabetic treated (DT and NDT) compared with diabetic untreated control rat (DUT) (p<0.05). A raised level in malondialdehyde was also observed among the diabetic rat prior to treatment and significantly decreased after the treatment. In conclusion the research demonstrated the hypoglycaemic and antioxidant potential of methanolic leaf extract of T

  15. Antidiabetic Effects of Aqueous Infusions of Artemisia herba-alba and Ajuga iva in Alloxan-Induced Diabetic Rats.

    PubMed

    Boudjelal, Amel; Siracusa, Laura; Henchiri, Cherifa; Sarri, Madani; Abderrahim, Benkhaled; Baali, Faiza; Ruberto, Giuseppe

    2015-06-01

    The aqueous infusions of the aerial parts of Artemisia herba-alba Asso and Ajuga iva Schreber, prepared in accordance with the traditional procedure used in the local folk medicine, have been analysed for their composition and content of phytochemical constituents and examined for their antidiabetic effectiveness in alloxan-induced diabetic rats. Oral administration of A. herba-alba and A. iva infusions was studied in normal and alloxan-induced diabetic rats, which were randomly divided into nine groups, each group consisting of six animals. The drug preparations (100, 200, and 300 mg/kg b. w.) of each plant were given orally to the rats of each group twice daily for 15 days. Compositional analysis of the aqueous infusions revealed the presence of several polyphenols as main components. A. herba-alba infusion was characterised by mono- and di-cinnamoylquinic acids, with 5-caffeoylquinic (chlorogenic) acid being the main compound, followed by 3,5-dicaffeoylquinic acid. Vicenin-2 (apigenin 6,8-di-C-glucoside) appeared to be the most abundant among flavonoids. On the other hand, A. iva showed the exclusive presence of flavonoids, with the flavanone naringin present in relatively high levels together with several apigenin (flavone) derivatives. Oral administration of 300 mg/kg b. w. of the aqueous infusions of A. herba-alba and A. iva exhibited a significant reduction in blood glucose content, showing a much more efficient antidiabetic activity compared to glibenclamide, the oral hypoglycaemic agent used as a positive control in this study. These results suggest that A. herba-alba and A. iva possess significant antidiabetic activity, as they were able to improve the biochemical damage in alloxan-induced diabetes in rats.

  16. Detection of tissue origin of a 43 kDa diabetogenic protein from alloxan-induced diabetic rats

    PubMed Central

    Chauhan, Shivkumar D.; Nath, Nirmalendu M.; Tule, Vinay K.

    2009-01-01

    BACKGROUND: Earlier, we had found high levels of circulating immune complexes (CICs) in the serum of type 2 diabetes mellitus patients along with a novel 43 kDa protein. METHODS: Different tissues of alloxan-induced, diabetic, male albino rats (200–250 g in body weight) were collected for the present study. Tissue proteins were isolated and separated by 10% SDS-polyacrylamide gel electrophoresis (SDS-PAGE). A primary cell culture of polymorphonuclear neutrophils (PMNs) was used to evaluate the effects of the diabetogenic protein. Cell proliferative index, oxidant/antioxidant status, and ion-transporting ability were chosen as study parameters. RESULTS: SDS-PAGE of different tissues shows that the diabetic liver alone was the only tissue that contained the 43 kDa protein band compared to the normal liver. In vitro effects of the new liver protein on PMNs include significantly decreased cell proliferative activity, increased free radical levels, and decreased levels of antioxidant enzymes as well as ionic transporters. The new liver protein also exhibited protease activity when compared with standard trypsin. CONCLUSIONS: This study concluded that a novel 43 kDa protein obtained from the livers of alloxan-induced diabetic rats shows protease activity as well as antiproliferative activity. Also, this protein may act as a diabetogenic factor as it elicited a significantly gross elevation in the oxidant status level as well as in the levels of lysosomal enzymes and a decrease in the levels of antioxidative enzymes and ionic transporters of PMNs. PMID:20062560

  17. Hepatoprotective and Hypolipidemic Effects of Satureja Khuzestanica Essential Oil in Alloxan-induced Type 1 Diabetic Rats

    PubMed Central

    Ahmadvand, Hassan; Tavafi, Majid; Khalatbary, Ali Reza

    2012-01-01

    In the present study, we examined the antioxidative activities of Satureja khuzestanica essential oil (SKE) and possible protective effect of SKE on lipid profile, atherogenic index and liver enzyme markers in Alloxan-induced Type 1 diabetic rats. Thirty male rats were randomly divided into three groups; group one as control, group two diabetic untreatment, and group three treatments with SKE by 500 ppm in drinking water, respectively. Diabetes was induced in the second and third groups by alloxan injection subcutaneously. After 8 weeks, the levels of fasting blood glucose (FBG), triglyceride (TG), cholesterol (C), low density lipoprotein (LDL), very low density lipoprotein (VLDL), high density lipoprotein (HDL), atherogenic index and the activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and alkaline phosphatase (ALP) of all groups were analyzed. Data were analyzed through non-parametric Man Whitney test (using SPSS 13 software) and p < 0.05 was considered significant. SKE inhibited significantly the activities of ALT and ALP and decrease FBG, TG, C, LDL and VLDL. HDL level was significantly increased when treated with the extract. The activities of AST stayed unaltered. Moreover, total antioxidant capacity of SKE was 3.20 ± 0.40 nmol of ascorbic acid equivalents/g SKE. This study showed that SKE is a source of potent antioxidants. The findings of the present study also suggest that SKE exert beneficial effects on the lipid profile, atherogenic index and liver enzymes activity in Alloxan-induced Type 1 diabetic rats. PMID:24250556

  18. Anti-diabetic property of Methanol extract of Musa sapientum leaves and its fractions in alloxan-induced diabetic rats.

    PubMed

    Adewoye, E O; Ige, A O

    2013-06-30

    Diabetes mellitus is a metabolic disorder resulting from necrosis of β-cell and insulin resistance at the cellular level. Musa sapientum has been shown to possess anti-diabetic properties, however, the mechanism of its action is unknown. The effect of Methanolic extract of Musa sapientum leaves (MEMSL) and its fractions were assessed for in vitro inhibitory activity of α-amylase enzyme, in vivo hypoglycemic properties and liver glycogen content in alloxan-induced diabetic rats. Dried plant powder of Musa sapientum was successively extracted using n-hexane, ethyl acetate, dichloromethane and methanol respectively. The filtrate obtained was evaporated using rotary evaporator and the extract was stored at 4°C until use. The methanolic extract obtained was further fractionated using column chromatography. In vitro alpha amylase inhibitory activity of the methanolic extract at different doses (2.5mg/ml, 5mg/ml, 10mg/ml, 25mg/ml and 50mg/ml) and column fractions (100ug/ml) were assessed and compared with that of acarbose (5mg/ml), a standard oral α-amylase inhibitor. Hypoglycemic activity and liver glycogen content was studied using alloxan -induced diabetic male rats treated with MEMSL (250mg/kg and 500mg/kg), column fractions F2 and F5 (100μg/kg) for 14 days respectively. Results obtained showed a dose -dependent increase in α-amylase inhibitory activity of the methanolic extract at 5, 10, 25 and 50mg/ml exhibiting 29%, 61%, and 72% and 80% inhibitory activities respectively. Column fractions 2 and 5 showed the highest α-amylase inhibitory activity of 79% and 74% respectively. The MEMSL at 250mg/kg and 500mg/kg exhibited 66% and 59% hypoglycemic activities respectively compared with diabetic controls. Fractions 2 and 5 showed 48% and 75% reduction in blood glucose level respectively. Liver glycogen in diabetic animals treated with MEMSL (250mg/kg and 500mg/kg), F2 and F5 were significantly increased (5.5±0.5, 5.9±0.7, 3.6±0.5, 8.0±0.4 mg/100gwt. liver

  19. Antiatherogenic, hepatoprotective, and hypolipidemic effects of coenzyme Q10 in alloxan-induced type 1 diabetic rats

    PubMed Central

    Ahmadvand, Hassan; Ghasemi-Dehnoo, Maryam

    2014-01-01

    BACKGROUND Diabetes mellitus, one of the leading metabolic syndromes, accounts for highest morbidity and mortality worldwide. In this study, we examined possible protective effect of coenzyme Q10 on lipid profile, atherogenic index, and liver enzyme markers in alloxan-induced type 1 diabetic rats. METHODS A total of 30 male rats were randomly divided into three groups; group 1 as control, group 2 diabetic untreatment, and group 3 treatments with coenzyme Q10 by 15 mg/kg i.p. daily, respectively .Diabetes was induced in the second and third groups by alloxan injection subcutaneously. After 8 weeks, the levels of fasting blood glucose (FBG), triglyceride (TG), total cholesterol (TC), low density lipoprotein (LDL), very low-density lipoprotein (VLDL), high density lipoprotein (HDL), atherogenic index, atherogenic coefficient, cardiac risk ratio, and the activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) of all groups were analyzed. Data were analyzed using non-parametric Mann-Whitney test (using SPSS) and P < 0.05 was considered as significant. RESULTS Coenzyme Q10 inhibited significantly the activities of ALT (11.17%), AST (19.35%) and ALP (36.67%) and decreased FBG (21.19%), TG (37.24%), TC (17.15%), LDL (30.44%), VLDL (37.24%), atherogenic index (44.24%), atherogenic coefficient (49.69%), and cardiac risk ratio (37.97%), HDL level was significantly (33.38%) increased when treated with coenzyme Q10. CONCLUSION The findings of this study suggest that coenzyme Q10 exert beneficial effects on the lipid profile, atherogenic index, and liver enzymes activity in alloxan-induced type 1 diabetic rats. PMID:25258634

  20. The effects of aqueous extract of alfalfa on blood glucose and lipids in alloxan-induced diabetic rats

    PubMed Central

    Amraie, Esmaiel; Farsani, Masome Khosravi; Sadeghi, Leila; Khan, Tayaba Naim; Adavi, Zohrab

    2015-01-01

    Diabetes is a common metabolic disorder that is specified by hyperglycemia resulting from defects in insulin secretion, insulin action, or both. The use of nonpharmacological treatments (herbal agents) is a new approach in the management of diabetes. The aim of this study was to investigate the effect of aqueous extract of alfalfa on blood glucose and serum lipids in alloxan-induced diabetic rats. In this study, 32 female rats (210–250 g) were used which were divided randomly into 4 groups including intact control group, diabetic control group, and 2 diabetic groups which received 250 and 500 mg/kg doses of aqueous extract of alfalfa, respectively. In the diabetic groups, alloxan-monohydrate was injected peritoneally to create diabetic condition. The two last groups orally received aqueous extract of alfalfa for 21 days. At the end of experiment, sugar, cholesterol, triglycerides, high-density and low-density lipoprotein, and aspartate aminotransferase (ALT) and alanine aminotransferase (AST) levels were measured in the samples. Consumption of aqueous alfalfa extract significantly reduced glucose, cholesterol, triglycerides, and low-density lipoprotein (LDL) levels in the diabetic rats but enhanced high-density lipoprotein (HDL) levels. ALT and AST liver enzyme levels were also reduced in blood. Histological examination showed that the aqueous alfalfa extract caused reconstruction of damaged liver and enhanced Langerhans islets’ diameter in pancreas. Therefore, all signs of diabetes were improved by oral administration of alfalfa in defined dose. PMID:26525173

  1. Effect of Carthamus tinctorius (Safflower) on fasting blood glucose and insulin levels in alloxan induced diabetic rabbits.

    PubMed

    Qazi, Nasreen; Khan, Rafeeq Alam; Rizwani, Ghazala H; Feroz, Zeeshan

    2014-03-01

    Diabetes mellitus is a major threat to present and future generations. The role of herbal medication has emerged as a safe alternative to currently available medication due to its decreased potential to produce side effects, hence effect of Carthamus tinctorius was observed on fasting blood glucose and insulin levels in alloxan induced diabetic rabbits. Thirty five healthy male rabbits were divided into 5 groups with 7 rabbits in each (Normal control, diabetic control, diabetic treated with glibenclamide, diabetic treated with Carthamus tinctorius extract at doses of 200 and 300mg/kg of body weight). Drug and extract were given orally for 30 days and the values for blood glucose levels were observed after 15(th) and 30(th) day of treatment by using standard reagent kits provided by Human Germany. While insulin levels were checked at the end of the study by using Architect i1000 by Abbott Diagnostics USA. Animals were also observed for any gross toxicity during the study. Results revealed that Carthamus tinctorius has significant hypoglycemic effect at 200mg/kg and 300mg/kg doses as compared to diabetic control group. Insulin levels were significantly increased in Glibenclamide treated as well as Carthamus tinctorius treated groups as compared to diabetic control.

  2. Aqueous leaf extract of Ocimum gratissimum improves hematological parameters in alloxan-induced diabetic rats via its antioxidant properties

    PubMed Central

    Shittu, Shehu-Tijani Toyin; Oyeyemi, Wahab A; Lasisi, Taye J; Shittu, Seyid Alli-Siise; Lawal, Temitope T; Olujobi, Samuel T

    2016-01-01

    Objective: This study was designed to investigate the effects of Ocimum gratissimum (OG) on hematological parameters and oxidative stress in diabetic rats. Materials and Methods: Twenty-five male rats (150–200 g) were randomly grouped into five as control, normal + OG, diabetic untreated, diabetic + OG, and diabetic + glibenclamide groups. Diabetes was induced by 100 mg/kg of alloxan monohydrate in the diabetic untreated and diabetic + OG groups followed by treatment with distilled water and 400 mg/kg OG, respectively, whereas control, normal + OG, and diabetic + glibenclamide groups were treated with distilled water, 400 mg/kg OG, and 5 mg/kg glibenclamide, respectively. Body weight and fasting blood glucose level were monitored weekly. After 28 days of treatments, under anesthesia induced by 50 mg/kg sodium thiopental i.p., blood samples were obtained for hematological analysis, malondialdehyde (MDA) level determination, and superoxide dismutase (SOD) activity. Data were compared using analysis of variance and Student's t-test. Results: There was a significant decrease in the fasting blood glucose of the diabetic + OG animals compared to the diabetic untreated and the initial reduction in weight observed in this group was reversed at the end of the experiments. Packed cell volume, red blood cell count, and hemoglobin concentration were significantly increased (P < 0.05) in the diabetic + OG when compared with the untreated group. The MDA concentration was significantly lowered (P < 0.01) in the diabetic + OG group when compared with diabetic untreated while SOD activity was significantly reduced in the diabetic untreated group. Conclusion: It was concluded that OG reverses anemia secondary to alloxan-induced diabetes mellitus in rats probably via its antioxidant activity. PMID:27127737

  3. The effect of food hardness on the development of dental caries in alloxan-induced diabetic rats.

    PubMed

    Nakahara, Yutaka; Sano, Tomoya; Kodama, Yasushi; Ozaki, Kiyokazu; Matsuura, Tetsuro

    2013-01-01

    We have previously shown that dental caries may be produced in diabetic rodent models fed with noncariogenic standard diets; however, many studies usually add large amounts of sugar to the diet to induce dental caries. Moreover, the physical properties of cariogenic diets have been reported as an important factor in the formation of caries. The aim of this study was to clarify the effect of the hardness of non-cariogenic diets on the development of dental caries in diabetic rodents. Seven-week-old female F344 rats were divided into 4 groups: intact rats fed with a standard pelletized or powdered diet and alloxan-induced diabetic rats fed with a standard pelletized or powdered diet. All of the rats were sacrificed at 52 weeks of age for morphological examinations on their dental tissue. Dental caries had developed and extended to all the molars in the diabetic rats that were fed with both the pelletized and powdered diets. Moreover, the lesion was significantly enhanced in the powdered diet group compared to that in the pelletized diet group. In conclusion, food hardness is an important factor influencing the development of dental caries in diabetic rats.

  4. Protective Effect of Lavandula stoechas and Rosmarinus officinalis essential oils against reproductive damage and oxidative stress in alloxan-induced diabetic rats.

    PubMed

    Sebai, Hichem; Selmi, Slimen; Rtibi, Kais; Gharbi, Najoua; Sakly, Mohsen

    2015-02-01

    The authors aimed in the present study to assess the protective effect of Rosmarinus officinalis essential oils (ROEO) and Lavandula stoechas essential oils (LSEO) against reproductive damage and oxidative stress in alloxan-induced diabetic male rats. Essential oil samples were obtained from the aerial parts of the plants by hydrodistillation and analyzed by the gas chromatography-mass spectrometry (GC-MS). Rats were divided into four groups: healthy control (HC); diabetic control (DC); healthy+ROEO (H+ROEO), healthy+LSEO (H+LSEO), diabetic+ROEO (D+ROEO), and diabetic+LSEO (D+LSEO). The use of GC-MS allowed to the identification of 15 and 22 compounds in ROEO and LSEO, respectively. In addition, the 2,2-diphenyl-1-picrylhydrazyl (DPPH) test showed that ROEO and LSEO had an important antioxidant capacity. In vivo, we initially found that ROEO and LSEO treatment protected against the decrease in alloxan-induced body weight gain, relative reproductive organ weights, testosterone level, as well as sperm quality decline. On the other hand, we showed that alloxan administration was accompanied by an oxidative stress status assessed by an increase of malondialdehyde (MDA) and hydrogen peroxide (H2O2) levels, as well as a depletion of sulfhydril group content (-SH) and antioxidant enzyme activities as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) in testis, epididymis, and sperm. More importantly, ROEO and LSEO treatment significantly protected against oxidative damage of the male reproductive organ systems in alloxan-induced diabetic rats. These findings suggested that ROEO and LSEO exerted a potential protective effect against alloxan-induced reproductive function damage and oxidative stress in male rat. The beneficial effect of ROEO and LSEO might be related, in part, to their antioxidant properties. PMID:25105335

  5. Protective Effect of Lavandula stoechas and Rosmarinus officinalis essential oils against reproductive damage and oxidative stress in alloxan-induced diabetic rats.

    PubMed

    Sebai, Hichem; Selmi, Slimen; Rtibi, Kais; Gharbi, Najoua; Sakly, Mohsen

    2015-02-01

    The authors aimed in the present study to assess the protective effect of Rosmarinus officinalis essential oils (ROEO) and Lavandula stoechas essential oils (LSEO) against reproductive damage and oxidative stress in alloxan-induced diabetic male rats. Essential oil samples were obtained from the aerial parts of the plants by hydrodistillation and analyzed by the gas chromatography-mass spectrometry (GC-MS). Rats were divided into four groups: healthy control (HC); diabetic control (DC); healthy+ROEO (H+ROEO), healthy+LSEO (H+LSEO), diabetic+ROEO (D+ROEO), and diabetic+LSEO (D+LSEO). The use of GC-MS allowed to the identification of 15 and 22 compounds in ROEO and LSEO, respectively. In addition, the 2,2-diphenyl-1-picrylhydrazyl (DPPH) test showed that ROEO and LSEO had an important antioxidant capacity. In vivo, we initially found that ROEO and LSEO treatment protected against the decrease in alloxan-induced body weight gain, relative reproductive organ weights, testosterone level, as well as sperm quality decline. On the other hand, we showed that alloxan administration was accompanied by an oxidative stress status assessed by an increase of malondialdehyde (MDA) and hydrogen peroxide (H2O2) levels, as well as a depletion of sulfhydril group content (-SH) and antioxidant enzyme activities as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) in testis, epididymis, and sperm. More importantly, ROEO and LSEO treatment significantly protected against oxidative damage of the male reproductive organ systems in alloxan-induced diabetic rats. These findings suggested that ROEO and LSEO exerted a potential protective effect against alloxan-induced reproductive function damage and oxidative stress in male rat. The beneficial effect of ROEO and LSEO might be related, in part, to their antioxidant properties.

  6. Anti-diabetic properties of chromium citrate complex in alloxan-induced diabetic rats.

    PubMed

    Li, Fang; Wu, Xiangyang; Zhao, Ting; Zhang, Min; Zhao, Jiangli; Mao, Guanghua; Yang, Liuqing

    2011-12-01

    The chromium citrate complex [CrCIT] was synthesized and its structure was determined by infrared, UV-visible and atomic absorption spectroscopy, elemental and thermodynamic analysis. Anti-diabetic activity, oxidative DNA damage capacity and acute oral toxicity of [CrCIT] were investigated and compared with that of chromium trichloride hexahydrate. [CrCIT] was synthesized in a single step reaction by chelating chromium(III) with citric acid in aqueous solution. The molecular formula of [CrCIT] was inferred as CrC(6)H(5)O(7)·4H(2)O. The anti-diabetic activity of the complex [CrCIT] was assessed in alloxan-diabetic rats by daily oral gavage for 3 weeks. The biological activity results showed that the complex at the dose of 0.25-0.75 mg Cr/kg body weight could decrease the blood glucose level and increase liver glycogen level in alloxan-diabetic rats. [CrCIT] had more beneficial influences on the improvement of controlling blood glucose, serum lipid and liver glycogen levels compared with CrCl(3)·6H(2)O. Furthermore, [CrCIT] did not cause oxidative DNA damage under physiologically relevant conditions, and [CrCIT] did not produce any hazardous symptoms or deaths in acute oral toxicity test, showing the LD(50) value for female and male rats were higher than 15.1 g/kg body weight. The results suggested that [CrCIT] might represent a novel and proper chromium supplement with potential therapeutic value to control blood glucose in diabetes.

  7. Potential antidiabetic and antioxidant activities of Morus indica and Asystasia gangetica in alloxan-induced diabetes mellitus

    PubMed Central

    Kumar, R Pradeep; Sujatha, D; Saleem, TS Mohamed; Chetty, C Madhusudhana; Ranganayakulu, D

    2010-01-01

    Herbal drugs are frequently considered to be less toxic and also free from side effects, than synthetic ones. Hence, the present study was designed to investigate one such combination of herbal drugs, Asystasia gangetica and Morus indica for their antidiabetic and antioxidant potential against alloxan-induced diabetes in albino rats. The effect of both individual and a combination of Asystasia gangetica and Morus indica on blood glucose and liver glycogen were studied in the diabetic rats. The study also assessed for the effect of selected plant extracts for their effect on Superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH) and Lipid peroxidation (LPO) in the homogenates of the pancreas. The results of the present study attests significant antidiabetic and antioxidant potential for the selected plants individually and also in combination as a prominent decrease in blood glucose and liver glycogen was observed in the rats treated with the extracts of the selected plants. Similarly, the levels of the protective antioxidant enzymes like SOD, CAT and GSH were increased along with decrease in the LPO levels. The present study provides a scientific evidence for antidiabetic and antioxidant potential of Asystasia gangetica and Morus indica. Further studies to isolate bioactive compounds will pave the way to identify potential lead compounds for developing safe and efficacious antidiabetic agents. PMID:27186088

  8. Possible antidiabetic and antihyperlipidaemic effect of fermented Parkia biglobosa (JACQ) extract in alloxan-induced diabetic rats.

    PubMed

    Odetola, A A; Akinloye, O; Egunjobi, C; Adekunle, W A; Ayoola, A O

    2006-09-01

    1. The hypoglycaemic effect of fermented seeds of Parkia biglobosa (PB; African locust bean), a natural nutritional condiment that features frequently in some African diets as a spice, was investigated in the present study in alloxan-induced diabetic rats. Its effect was compared with that of glibenclamide (Daonil; Sanofi-Aventis, Paris, France), a reference antidiabetic drug. The effects of PB on lipid profiles were also examined. 2. In order to assess the hypoglycaemic and hypolipidaemic effects of aqueous and methanolic extracts of PB on experimental animals, fasting plasma glucose (FPG), total cholesterol, triglyceride, high-density lipoprotein (HDL) and low-density lipoprotein (LDL) were determined. In addition, the weight of each animal was determined to assess any possible weight gain or loss in the experimental animals (diabetic rats treated with Daonil (group C), the aqueous extract of PB (group D) or the methanolic extract of PB (group E)) compared with control groups (non-diabetic (group A) and non-treated diabetic (group B)). 3. A single dose of 120 mg/kg, i.v., alloxan administered to rats resulted in significant increases in the FPG (P < 0.001) of test animals compared with controls. However, dietary supplementation with PB (6 g/kg extract for 4 weeks administered orally using an intragastric tube) ameliorated the alloxan-induced diabetes in a manner comparable with that of the reference antidiabetic drug glibenclamide. Aqueous and methanolic extracts of PB (6% w/w) elicited 69.2% and 64.4% reductions, respectively, in FPG compared with 70.4% in 0.01 mg/150 g glibenclamide-treated rats. 4. Although animals treated with the aqueous extract of PB gained weight in manner similar to normal controls, animals given the methanolic extract and glibenclamide lost weight in manner similar to non-treated diabetic rats. In addition, high levels of HDL and low LDL were observed in animals treated with the aqueous extract of PB, a pattern similar to that seen in

  9. Antihyperlipidemic effects of ginger extracts in alloxan-induced diabetes and propylthiouracil-induced hypothyroidism in (rats)

    PubMed Central

    Al-Noory, Ahmad Sameer; Amreen, Abdul-Nasser; Hymoor, Shatha

    2013-01-01

    Background: Diabetic mellitus and hypothyroidism lead to serum lipoproteins disorders. This study aims to investigate the potential effect of fresh ginger extracts Zingiber officinale roscoe (Family: Zingebiraceae) on serum lipid profile and on blood glucose in alloxan-induced diabetes and propylthiouracil-induced hypothyroidism in rats. Rats were divided into 11 groups: The normal G1, diabetic control rats G2, ginger 500 mg/kg treated diabetic rats G3, 10 mg/day atorvastatine-treated diabetic rats G4, [5 mg/day atorvastatine combined with 500 mg/kg ginger] treated diabetic rats G5, glibenclamid-treated diabetic rats G6, hypothyoidism control rats G7, 300 mg/kg ginger-treated hypothyroidism rats G8, 500 mg/kg ginger-treated hypothyroidism rats G9, 10 mg/day atorvastatine-treated hypothyroidism rats G10, [atorvastatine combined with 500 mg/kg ginger]treated hypothyroidism rats G11. Thirty days after treatment, samples were collected, to compare treated groups with normal and control groups, using Mann-Whitney U test P < 0.01. Results: It revealed a decrease in the levels of total cholesterol (TC), and low density lipoprotein (LDL) in the serum of rats that were treated by ginger extracts, compared with the control groups. Previous extracts were also able to cause reduction in LDL to similar levels compared to normal group and that was the same effect of atorvastatin 10 mg/day. Combined effect was clear between the act of ginger at a dose of 500 mg/kg and atorvastatin; that levels of both TC and LDL in animals which received [atorvastatin 5 mg/day combined with ginger extract] was almost equal to levels in animals that received atorvastatin 10mg/day. Clear reduce in triglyceride, and clear increase in high density liopprotein were also recorded in the ginger-treated groups. Ginger was more active in hypothyroidism rats than in diabetic rats in reducing LDL and TC. Glucose levels were substantially reduced in ginger- treated diabetic groups. PMID:23901210

  10. Antidiabetic effect of hydroalcoholic extract of Carthamus tinctorius L. in alloxan-induced diabetic rats

    PubMed Central

    Asgary, Sedigheh; Rahimi, Parivash; Mahzouni, Parvin; Madani, Hossein

    2012-01-01

    Background: Carthamus tinctorius L. (Compositae) has been used in Iranian traditional medicine for treatment of diabetes. In this study, anti-diabetic effect of its hydroalcoholic extract was compared with that of glibenclamide. Methods: Male white Wistar rats were randomly allocated into four groups of six each: nondiabetic control; diabetic control; diabetic treated with hydroalcoholic extract of Carthamus tinctorius (200 mg kg-1 BW); diabetic rats treated with glibenclamide (0.6 mg kg-1 BW). Alloxan was administered (120 mg kg-1 BW), intraperitoneally to induce diabetes. Fasting blood samples were collected three times, before injection of alloxan, two weeks and six weeks after injection of alloxan and fasting blood sugar (FBS), Hb A1C, insulin, cholesterol, LDL-C, HDL-C, VLDL-C, triglyceride, alkaline phosphatase (ALP), alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were measured each time. Results: FBS, triglyceride, cholesterol, LDL-C and VLDL-C had a meaningful decrease in diabetic rats treated with Carthamus tinctorius and diabetic rats treated with glibenclamide as compared with diabetic rats with no treatment. Insulin level increased significantly in diabetic groups received treatment (glibenclamide or Carthamus tinctorius L) in comparison with diabetic group with no treatment. The histological study revealed size of islets of Langerhans enlarged significantly consequentially as compared with diabetic rats with no treatment. The extract appeared non toxic as evidenced by normal levels of AST, ALP and ALT. Effects of administrating glibenclamide or extract of Carthamus tinctorius L on all biochemical parameters discussed above showed no difference and both tend to bring the values to near normal. Conclusion: These results suggested that the hydroalcoholic extract of Carthamus tinctorius possesses beneficial effect on treatment of diabetes. PMID:23267403

  11. In vitro alpha-amylase inhibition and in vivo antioxidant potential of Amaranthus spinosus in alloxan-induced oxidative stress in diabetic rats

    PubMed Central

    Ashok Kumar, B.S.; Lakshman, K.; Nandeesh, R.; Arun Kumar, P.A.; Manoj, B.; Kumar, Vinod; Sheshadri Shekar, D.

    2010-01-01

    Amaranthus spinosus Linn. (Amaranthaceae), commonly known as “Mulluharivesoppu” in Kannada, is used in the Indian traditional system of medicine for the treatment of diabetes. The present study deals with the scientific evaluation of alpha amylase and the antioxidant potential of methanol extract of A. spinosus (MEAS). The aim of this study was to investigate in vitro alpha-amylase enzyme inhibition by CNPG3 (2-chloro-4-nitrophenol α-d-maltotrioside) and in vivo antioxidant potential of malondialdehyde (MDA), glutathione (GSH), catalase (CAT) and total thiols (TT) in alloxan-induced diabetic rats of a methanolic extract of A. spinosus. Blood sugar was also determined in MEAS-treated alloxan-induced diabetic rats. MEAS showed significant inhibition of alpha-amylase activity and IC50 46.02 μg/ml. Oral administration of MEAS (200 and 400 mg/kg) for 15 days showed significant reduction in the elevated blood glucose, MDA and restores GSH, CAT and TT levels as compared with a diabetic control. The present study provides evidence that the methanolic extract of A. spinosus has potent alpha amylase, anti-diabetic and antioxidant activities. PMID:23961097

  12. Healing of excisional wound in alloxan induced diabetic sheep: A planimetric and histopathologic study.

    PubMed

    Kazemi-Darabadi, Siamak; Sarrafzadeh-Rezaei, Farshid; Farshid, Amir-Abbas; Baradar-Jalili, Reza

    2013-01-01

    Healing of skin wound is a multi-factorial and complex process. Proper treatment of diabetic wounds is still a major clinical challenge. Although diabetes mellitus can occur in ruminants, healing of wounds in diabetic ruminants has not yet been investigated. The aim of this study was to evaluate healing of ovine excisional diabetic wound model. Eight 4-month-old Iranian Makoui wethers were equally divided to diabetic and nondiabetic groups. Alloxan monohydrate (60 mg kg(-1), IV) was used for diabetes induction. In each wether, an excisional wound was created on the dorsum of the animal. Photographs were taken in distinct times for planimetric evaluation. Wound samples were taken on day 21 post-wounding for histopathologic evaluations of epidermal thickness, number of fibroblasts and number of new blood vessels. The planimetric study showed slightly delay in wound closure of diabetic animals, however, it was not significantly different from nondiabetic wounds (p ≥ 0.05). Furthermore, epidermal thickness, number of fibroblasts and number of blood vessels were significantly lower in diabetic group (p < 0.05). We concluded that healing of excisional diabetic wounds in sheep may be compromised, as seen in other species. However, contraction rate of these wounds may not be delayed due to metabolic features of ruminants and these animals might go under surgeries without any serious concern. However, healing quality of these wounds may be lower than normal wounds.

  13. Antidiabetic activity of Terminalia pallida fruit in alloxan induced diabetic rats.

    PubMed

    Kameswara Rao, B; Renuka Sudarshan, P; Rajasekhar, M D; Nagaraju, N; Appa Rao, Ch

    2003-03-01

    Different doses of ethanolic fraction of fruits of Terminalia pallida were evaluated for hypoglycemic and antihyperglycemic activity in normal and alloxan diabetic rats. The oral administration of ethanolic extract at a dosage of 0.5 g/kg body weight exhibited a significant antihyperglycemic activity in alloxan diabetic rats, whereas in normal rats no hypoglycemic activity was observed.

  14. Antidiabetic activity of Terminalia pallida fruit in alloxan induced diabetic rats.

    PubMed

    Kameswara Rao, B; Renuka Sudarshan, P; Rajasekhar, M D; Nagaraju, N; Appa Rao, Ch

    2003-03-01

    Different doses of ethanolic fraction of fruits of Terminalia pallida were evaluated for hypoglycemic and antihyperglycemic activity in normal and alloxan diabetic rats. The oral administration of ethanolic extract at a dosage of 0.5 g/kg body weight exhibited a significant antihyperglycemic activity in alloxan diabetic rats, whereas in normal rats no hypoglycemic activity was observed. PMID:12576217

  15. The Protective Effect of Cordymin, a Peptide Purified from the Medicinal Mushroom Cordyceps sinensis, on Diabetic Osteopenia in Alloxan-Induced Diabetic Rats

    PubMed Central

    Qi, Wei; Zhang, Yang; Yan, Ya-bo; Lei, Wei; Wu, Zi-xiang; Liu, Ning; Liu, Shuai; Shi, Lei; Fan, Yong

    2013-01-01

    The aim of this study was to investigate the protective effect of cordymin on diabetic osteopenia in alloxan-induced diabetic rats and the possible mechanisms involved. The diabetic rats received daily intraperitoneal injection with cordymin (20, 50, and 100 mg/kg/day) for 5 weeks. Cordymin could restore the circulating blood glucose, glycosylated hemoglobin (HbA1c), serum alkaline phosphatase (ALP), tartrate resistant acid phosphatase (TRAP), and insulin levels in a dose-dependent manner. Also, the treatment of diabetic rats with cordymin could partially reverse the β cells death and decrease the total antioxidant status (TAOS) in the diabetic rats. The results may directly and indirectly account for the possible mechanism of the beneficial effect of cordymin on diabetic osteopenia, which was confirmed with the increased bone mineral content (BMC) and bone mineral density (BMD) in diabetic rats (P < 0.05). All those findings indicate that cordymin may play a protective role in diabetic osteoporosis. PMID:24174985

  16. Hypoglycemic Activity of Aqueous Root Bark Extract Zanthoxylum chalybeum in Alloxan-Induced Diabetic Rats

    PubMed Central

    Agwaya, Moses Solomon; Vuzi, Peter California; Nandutu, Agnes Masawi

    2016-01-01

    Background. Medicinal plants offer cheaper and safer treatment options to current diabetic drugs. The present study evaluated the effect of aqueous root bark extract of Zanthoxylum chalybeum on oral glucose tolerance and pancreas histopathology in alloxanized rats. Method. Diabetes was induced in rats by administration of alloxan monohydrate. Root extract of Z. chalybeum was administered to rats at 200 and 400 mg/kg BW daily for 28 days. Blood glucose was measured by glucometer and pancreatic histopathology evaluated microscopically. Results. Initial increase was observed in blood glucose of the rats after oral administration of glucose from time zero. Two hours after treatment with Z. chalybeum, a significant reduction in blood glucose was observed within treatment groups (p < 0.05) compared to 0.5 hr and 1 hr. There was no significant difference between treatment group receiving 400mg/Kg BW extract and the normal groups (p = 0.27), implying that the former group recovered and were able to regulate their blood sugar, possibly via uptake of glucose into cells. The reversal in pancreatic histopathology further supports the protective effect of Z. chalybeum extract towards diabetic damage. Conclusion. Extract of Z. chalybeum is effective in controlling blood glucose in diabetes and protecting pancreatic tissues from diabetic damage. PMID:27069932

  17. Nigerian Honey Ameliorates Hyperglycemia and Dyslipidemia in Alloxan-Induced Diabetic Rats

    PubMed Central

    Erejuwa, Omotayo O.; Nwobodo, Ndubuisi N.; Akpan, Joseph L.; Okorie, Ugochi A.; Ezeonu, Chinonyelum T.; Ezeokpo, Basil C.; Nwadike, Kenneth I.; Erhiano, Erhirhie; Abdul Wahab, Mohd S.; Sulaiman, Siti A.

    2016-01-01

    Diabetic dyslipidemia contributes to an increased risk of cardiovascular disease. Hence, its treatment is necessary to reduce cardiovascular events. Honey reduces hyperglycemia and dyslipidemia. The reproducibility of these beneficial effects and their generalization to honey samples of other geographical parts of the world remain controversial. Currently, data are limited and findings are inconclusive especially with evidence showing honey increased glycosylated hemoglobin in diabetic patients. It was hypothesized that this deteriorating effect might be due to administered high doses. This study investigated if Nigerian honey could ameliorate hyperglycemia and hyperlipidemia. It also evaluated if high doses of honey could worsen glucose and lipid abnormalities. Honey (1.0, 2.0 or 3.0 g/kg) was administered to diabetic rats for three weeks. Honey (1.0 or 2.0 g/kg) significantly (p < 0.05) increased high density lipoprotein (HDL) cholesterol while it significantly (p < 0.05) reduced hyperglycemia, triglycerides (TGs), very low density lipoprotein (VLDL) cholesterol, non-HDL cholesterol, coronary risk index (CRI) and cardiovascular risk index (CVRI). In contrast, honey (3.0 g/kg) significantly (p < 0.05) reduced TGs and VLDL cholesterol. This study confirms the reproducibility of glucose lowering and hypolipidemic effects of honey using Nigerian honey. However, none of the doses deteriorated hyperglycemia and dyslipidemia. PMID:26927161

  18. Nigerian Honey Ameliorates Hyperglycemia and Dyslipidemia in Alloxan-Induced Diabetic Rats.

    PubMed

    Erejuwa, Omotayo O; Nwobodo, Ndubuisi N; Akpan, Joseph L; Okorie, Ugochi A; Ezeonu, Chinonyelum T; Ezeokpo, Basil C; Nwadike, Kenneth I; Erhiano, Erhirhie; Abdul Wahab, Mohd S; Sulaiman, Siti A

    2016-02-24

    Diabetic dyslipidemia contributes to an increased risk of cardiovascular disease. Hence, its treatment is necessary to reduce cardiovascular events. Honey reduces hyperglycemia and dyslipidemia. The reproducibility of these beneficial effects and their generalization to honey samples of other geographical parts of the world remain controversial. Currently, data are limited and findings are inconclusive especially with evidence showing honey increased glycosylated hemoglobin in diabetic patients. It was hypothesized that this deteriorating effect might be due to administered high doses. This study investigated if Nigerian honey could ameliorate hyperglycemia and hyperlipidemia. It also evaluated if high doses of honey could worsen glucose and lipid abnormalities. Honey (1.0, 2.0 or 3.0 g/kg) was administered to diabetic rats for three weeks. Honey (1.0 or 2.0 g/kg) significantly (p < 0.05) increased high density lipoprotein (HDL) cholesterol while it significantly (p < 0.05) reduced hyperglycemia, triglycerides (TGs), very low density lipoprotein (VLDL) cholesterol, non-HDL cholesterol, coronary risk index (CRI) and cardiovascular risk index (CVRI). In contrast, honey (3.0 g/kg) significantly (p < 0.05) reduced TGs and VLDL cholesterol. This study confirms the reproducibility of glucose lowering and hypolipidemic effects of honey using Nigerian honey. However, none of the doses deteriorated hyperglycemia and dyslipidemia.

  19. Nigerian Honey Ameliorates Hyperglycemia and Dyslipidemia in Alloxan-Induced Diabetic Rats.

    PubMed

    Erejuwa, Omotayo O; Nwobodo, Ndubuisi N; Akpan, Joseph L; Okorie, Ugochi A; Ezeonu, Chinonyelum T; Ezeokpo, Basil C; Nwadike, Kenneth I; Erhiano, Erhirhie; Abdul Wahab, Mohd S; Sulaiman, Siti A

    2016-03-01

    Diabetic dyslipidemia contributes to an increased risk of cardiovascular disease. Hence, its treatment is necessary to reduce cardiovascular events. Honey reduces hyperglycemia and dyslipidemia. The reproducibility of these beneficial effects and their generalization to honey samples of other geographical parts of the world remain controversial. Currently, data are limited and findings are inconclusive especially with evidence showing honey increased glycosylated hemoglobin in diabetic patients. It was hypothesized that this deteriorating effect might be due to administered high doses. This study investigated if Nigerian honey could ameliorate hyperglycemia and hyperlipidemia. It also evaluated if high doses of honey could worsen glucose and lipid abnormalities. Honey (1.0, 2.0 or 3.0 g/kg) was administered to diabetic rats for three weeks. Honey (1.0 or 2.0 g/kg) significantly (p < 0.05) increased high density lipoprotein (HDL) cholesterol while it significantly (p < 0.05) reduced hyperglycemia, triglycerides (TGs), very low density lipoprotein (VLDL) cholesterol, non-HDL cholesterol, coronary risk index (CRI) and cardiovascular risk index (CVRI). In contrast, honey (3.0 g/kg) significantly (p < 0.05) reduced TGs and VLDL cholesterol. This study confirms the reproducibility of glucose lowering and hypolipidemic effects of honey using Nigerian honey. However, none of the doses deteriorated hyperglycemia and dyslipidemia. PMID:26927161

  20. Antidiabetic and hypolipidaemic effects of a methanol/methylene-chloride extract of Laportea ovalifolia (Urticaceae), measured in rats with alloxan-induced diabetes.

    PubMed

    Momo, C E N; Oben, J E; Tazoo, D; Dongo, E

    2006-01-01

    A decoction of the leaves of Laportea ovalifolia is widely used in Cameroon for the treatment of several illnesses, including diabetes mellitus. The antidiabetic and hypolipidaemic effects of a methanol/methylene-chloride extract of the aerial parts of L. ovalifolia have now been investigated, in normal rats and rats with diabetes induced by the intraperitoneal injection of alloxan (at 150 mg/kg bodyweight). In the diabetic rats, 2 weeks of daily, intragastric treatment with the L. ovalifolia extract not only produced a significant reduction in the fasting serum glucose concentrations but also lowered the serum concentrations of total cholesterol, triglycerides, and low-density-lipoprotein cholesterol, lowered the ratio of total cholesterol to high-density-lipoprotein (HDL) cholesterol, and increased the serum concentration of HDL cholesterol. At least in rats with alloxan-induced diabetes, the methanol/methylene-chloride extract of L. ovalifolia therefore appears to possess antidiabetic and hypolipidaemic properties.

  1. Hypoglycemic effect of Treculia africana Decne root bark in normal and alloxan-induced diabetic rats.

    PubMed

    Oyelola, O O; Moody, J O; Odeniyi, M A; Fakeye, T O

    2007-01-01

    The solvent partitioned purified fractions of the hydro-acetone root bark extract of the African breadfruit (Treculia africana Decne) were evaluated for hypoglycemic activities in normal and diabetic albino rats. Fasting blood glucose levels were estimated by the use of a glucometer at pre-determined intervals after oral administration of the test extracts/fractions. Results revealed that the test fractions have only a slight effect on blood sugar level of normal rats. On short term and chronic administration in diabetic rats however, diethyl ether-soluble (DEF) and the water-soluble (WSF) fractions significantly reduced the fasting blood sugar levels (p<0.05) at differing rates when compared with the control group of animals. The diethyl ether soluble fraction (10 mg kg(-1) dose level) was found to exhibit the highest activity giving 69.4% reduction in blood sugar level (at 240 hours) which was in comparable range with the reference standard glibenclamide (0.5 mg kg(-1)) which reduced blood sugar levels by 65.8% below the initial baseline values.

  2. Antihyperglycemic activity of Eclipta alba leaf on alloxan-induced diabetic rats.

    PubMed Central

    Ananthi, J.; Prakasam, A.; Pugalendi, K. V.

    2003-01-01

    Eclipta alba, an indigenous medicinal plant, has a folk (Siddha and Ayurvedha) reputation in rural southern India as a hypoglycemic agent. In order to confirm this claim, the present study was carried out to evaluate the antihyperglycemic effect of E. alba and to study the activities of liver hexokinase and gluconeogenic enzymes such as glucose-6-phosphatase and fructose 1,6-bisphosphatase in the liver of control and alloxan-diabetic rats. Oral administration of leaf suspension of E. alba (2 and 4 g/kg body weight) for 60 days resulted in significant reduction in blood glucose (from 372.0 +/- 33.2 to 117.0 +/- 22.8), glycosylated hemoglobin HbA(1)c, a decrease in the activities of glucose-6 phosphatase and fructose 1,6-bisphosphatase, and an increase in the activity of liver hexokinase. E. alba at dose of 2 g/kg body weight exhibited better sugar reduction than 4 g/kg body weight. Thus, the present study clearly shows that the oral administration of E. alba possess potent antihyperglycemic activity. PMID:15369623

  3. Alloxan-induced diabetic thermal hyperalgesia, prophylaxis and phytotherapeutic effects of Rheum ribes L. in mouse model.

    PubMed

    Raafat, Karim; Aboul-Ela, Maha; El-Lakany, Abdalla

    2014-03-26

    Rheum ribes L., known as Syrian rhubarb, is used in traditional Lebanese folk medicine for the treatment of diabetes. The present study aims to investigate the activities of R. ribes aqueous extract for glucose homeostasis, in vivo antioxidant and diabetic neuropathy protection in mice. The acute and the subacute effects of various doses of R. ribes on blood glucose and in vivo antioxidant activity utilizing serum catalase level (CAT) were studied in alloxan-diabetic mice. The high doses significantly lowered glucose level and increased serum CAT in alloxan-diabetic mice. Pretreatment with the extract prior to alloxination, protected the mice from acquiring diabetes and diabetic neuropathy. Treatment with the extract for 8 weeks alleviated hyperalgesia in diabetic mice. Our findings provide clinicians with promising drugs intended for the management of the symptoms of diabetic complications. The protective activity of R. ribes against acquiring diabetes and diabetic neuropathy might pave the way for preparing a prophylactic treatment for diabetes risk groups.

  4. Effect of deoxycorticosterone acetate-salt-induced hypertension on diabetic peripheral neuropathy in alloxan-induced diabetic WBN/Kob rats.

    PubMed

    Ozaki, Kiyokazu; Hamano, Hiroko; Matsuura, Tetsuro; Narama, Isao

    2016-01-01

    The relationship between hypertension and diabetic peripheral neuropathy (DPN) has recently been reported in clinical research, but it remains unclear whether hypertension is a risk factor for DPN. To investigate the effects of hypertension on DPN, we analyzed morphological features of peripheral nerves in diabetic rats with hypertension. Male WBN/Kob rats were divided into 2 groups: alloxan-induced diabetic rats with deoxycorticosterone acetate-salt (DOCA-salt) treatment (ADN group) and nondiabetic rats with DOCA-salt treatment (DN group). Sciatic, tibial (motor) and sural (sensory) nerves were subjected to qualitative and quantitative histomorphological analysis. Systolic blood pressure in the two groups exhibited a higher value (>140 mmHg), but there was no significant difference between the two groups. Endoneurial blood vessels in both groups presented endothelial hypertrophy and narrowing of the vascular lumen. Electron microscopically, duplication of basal lamina surrounding the endothelium and pericyte of the endoneurial vessels was observed, and this lesion appeared to be more frequent and severe in the ADN group than the DN group. Many nerve fibers of the ADN and DN groups showed an almost normal appearance, whereas morphometrical analysis of the tibial nerve showed a significant shift to smaller fiber and myelin sizes in the ADN group compared with DN group. In sural nerve, the fiber and axon-size significantly shifted to a smaller size in ADN group compared with the DN group. These results suggest that combined diabetes and hypertension could induce mild peripheral nerve lesions with vascular changes.

  5. Investigation of the Protective Effects of Taurine against Alloxan-Induced Diabetic Retinal Changes via Electroretinogram and Retinal Histology with New Zealand White Rabbits

    PubMed Central

    Yeh, Shang-Min; Chen, Yi-Chen; Lin, Shiun-Long

    2014-01-01

    The purpose of this study was to investigate the protective role of orally administered taurine against diabetic retinal changes via electroretinogram (ERG) and retinal histology on rabbits. Rabbits were randomly assigned into groups: Group I (vehicle administration only); Group II (diabetes: induced by 100 mg/kg alloxan injection); Group III (diabetes and fed with 200 mg/kg taurine); and Group IV (diabetes and fed with 400 mg/kg taurine). The body weight and blood glucose levels of the rabbits were monitored weekly. The ERG was measured on weeks 5 and 15. Retinal histology was analyzed in the end of the experiment. Results revealed that a taurine supplement significantly ameliorates the alloxan-induced hyperglycemia and protects the retina from electrophysiological changes. Group II showed a significant (P < 0.05) change in the mean scotopic b-wave amplitude when compared to that of Group I, whereas the diabetic rabbits treated with taurine (Group III and IV) were analogous to Group I. Histologically, the amount of Bipolar and Müller cells showed no difference (P > 0.05) between all groups and when compared with those of Group I. Our study provides solid evidences that taurine possesses an antidiabetic activity, reduced loss of body weight, and less electrophysiological changes of the diabetic retina. PMID:25298779

  6. Effect of aqueous extracts of alligator pear seed (Persea americana mill) on blood glucose and histopathology of pancreas in alloxan-induced diabetic rats.

    PubMed

    Edem, Do; Ekanem, Is; Ebong, Pe

    2009-07-01

    Effects of aqueous extract of alligator pear seed on normal and alloxan-induced diabetic rats were investigated in 6 groups of rats (5 rats per group). Test groups were made diabetic with intra-peritoneal injection of alloxan and treated with 300 mg and 600 mg/kg body weight of alligator pear seed extract. Two non-diabetic groups were also administered with 300 mg and 600 mg/kg body weight extract. The levels of blood glucose were examined in all 6 experimental groups. In diabetic rats, blood glucose levels were significantly reduced (p<0.05) by 73.26-78.24% on consumption of the extracts, with greater effect exhibited by the 600 mg/kg extract. In normal rats, blood glucose levels were significantly reduced (p<0.05) by 34.68-38.9% on consumption of the seed extract. Histological studies showed a degenerative effect on the pancreatic islet cells of diabetic rats. The result suggested restorative (protective) effect of the extract on pancreatic islet cells. Administration of aqueous extract of alligator pear seed may contribute significantly to the reduction of blood glucose levels and can be useful in the treatment of diabetes.

  7. The effect of the glycolipoprotein extract (G-90) from earthworm Eisenia foetida on the wound healing process in alloxan-induced diabetic rats.

    PubMed

    Goodarzi, Golnaz; Qujeq, Durdi; Elmi, Maryam M; Feizi, Farideh; Fathai, Sadegh

    2016-06-01

    Diabetes is now regarded as a major public health problem. The number of patients is estimated to increase to over 439 million cases by 2030. One of the major health clinical problems in patients with diabetes patients is impaired wound healing. Diabetic foot ulcer is a major complication of diabetes mellitus in 12 to 25% of patients, which increases the risk of damage in the limbs or amputation. The earthworm Eisenia foetida glycolipoprotein (as known G-90) is a blend of macromolecules with some biological properties including mitogenicity, anticoagulation, fibrinolysis, bacteriostatic and antioxidatiaon. Given the biological properties of G-90, this study was conducted to investigate the effect of extract obtained from the homogenate of Eisenia foetida (G-90) on the wound healing process in alloxan-induced diabetic rats. The results of the present study revealed that treatment by using G-90 can speed up the wound healing process, which is exactly similar to the effect of D-panthenol treatment in rats. These findings also demonstrated that G-90 treatment decreases the risk of infection in the wound site compared with D-panthenol treatment. In addition, histological analysis indicated that a better extracellular matrix formation with increased fibroblast proliferation, neovascularization, collagen synthesis and early epithelial layer formation was observed in G-90 treated group. Therefore, the G-90 could be considered as a new wound healing agent introducing promising therapeutic approaches in both human and veterinary medicine. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27112508

  8. Moringa oleifera leaf extract ameliorates alloxan-induced diabetes in rats by regeneration of β cells and reduction of pyruvate carboxylase expression.

    PubMed

    Abd El Latif, Amira; El Bialy, Badr El Said; Mahboub, Hamada Dahi; Abd Eldaim, Mabrouk Attia

    2014-10-01

    Moringa oleifera Lam. contains many active ingredients with nutritional and medicinal values. It is commonly used in folk medicine as an antidiabetic agent. The present study was designed to investigate how an aqueous extract from the leaves of M. oleifera reveals hypoglycemia in diabetic rats. M. oleifera leaf extract counteracted the alloxan-induced diabetic effects in rats as it normalized the elevated serum levels of glucose, triglycerides, cholesterol, and malondialdehyde, and normalized mRNA expression of the gluconeogenic enzyme pyruvate carboxylase in hepatic tissues. It also increased live body weight gain and normalized the reduced mRNA expression of fatty acid synthase in the liver of diabetic rats. Moreover, it restored the normal histological structure of the liver and pancreas damaged by alloxan in diabetic rats. This study revealed that the aqueous extract of M. oleifera leaves possesses potent hypoglycemic effects through the normalization of elevated hepatic pyruvate carboxylase enzyme and regeneration of damaged hepatocytes and pancreatic β cells via its antioxidant properties. PMID:25289966

  9. Moringa oleifera leaf extract ameliorates alloxan-induced diabetes in rats by regeneration of β cells and reduction of pyruvate carboxylase expression.

    PubMed

    Abd El Latif, Amira; El Bialy, Badr El Said; Mahboub, Hamada Dahi; Abd Eldaim, Mabrouk Attia

    2014-10-01

    Moringa oleifera Lam. contains many active ingredients with nutritional and medicinal values. It is commonly used in folk medicine as an antidiabetic agent. The present study was designed to investigate how an aqueous extract from the leaves of M. oleifera reveals hypoglycemia in diabetic rats. M. oleifera leaf extract counteracted the alloxan-induced diabetic effects in rats as it normalized the elevated serum levels of glucose, triglycerides, cholesterol, and malondialdehyde, and normalized mRNA expression of the gluconeogenic enzyme pyruvate carboxylase in hepatic tissues. It also increased live body weight gain and normalized the reduced mRNA expression of fatty acid synthase in the liver of diabetic rats. Moreover, it restored the normal histological structure of the liver and pancreas damaged by alloxan in diabetic rats. This study revealed that the aqueous extract of M. oleifera leaves possesses potent hypoglycemic effects through the normalization of elevated hepatic pyruvate carboxylase enzyme and regeneration of damaged hepatocytes and pancreatic β cells via its antioxidant properties.

  10. Self-nanoemulsifying drug delivery system of trans-cinnamic acid: formulation development and pharmacodynamic evaluation in alloxan-induced type 2 diabetic rat model.

    PubMed

    Wang, Houyong; Li, Qiang; Deng, Wenwen; Omari-Siaw, E; Wang, Qilong; Wang, Shicheng; Wang, Shengli; Cao, Xia; Xu, Ximing; Yu, Jiangnan

    2015-03-01

    The objective of this study was to formulate a self-nanoemulsifying oral drug delivery system (SNEDDS) for the poorly water-soluble trans-Cinnamic acid (t-CA SNEDDS) that could be evaluated for its antihyperglycemic efficacy in comparison to the parent t-CA in an alloxan-induced diabetic rat model. A SNEDDS formulation consisting of 60% surfactant (Kolliphor EL), 10% co-surfactant (PEG 400) and 30% oil (isopropyl myristate) proved to be optimal. t-CA SNEDDS (80 mg/kg, p.o.), t-CA suspension (80 mg/kg, p.o.), and Metformin Hydrochloride Tablets (230 mg/kg, p.o.) were administer qdfor 30 days to diabetic rats. After treatment the body weight of diabetic rats was increased, blood glucose levels, total cholesterol, and triglyceride in the serum tended to be normalized, while the levels of alanine aminotransferase and aspartate aminotransferase were markedly decreased. The effects of t-CA SNEDDS were superior to that of the t-CA suspension. The present study demonstrated that t-CA was effective in attenuating the effects of alloxan treatment and that t-CA SNEDDS with a more favorable absorption and enhanced bioavailability is more effective than t-CA.

  11. Antidiabetic activity of medium-polar extract from the leaves of Stevia rebaudiana Bert. (Bertoni) on alloxan-induced diabetic rats

    PubMed Central

    Misra, Himanshu; Soni, Manish; Silawat, Narendra; Mehta, Darshana; Mehta, B. K.; Jain, D. C.

    2011-01-01

    Objective: To investigate the medicative effects of medium-polar (benzene:acetone, 1:1, v/v) extract of leaves from Stevia rebaudiana (family Asteraceae) on alloxan-induced diabetic rats. Materials and Methods: Diabetes was induced in adult albino Wistar rats by intraperitoneal (i.p.) injection of alloxan (180 mg/kg). Medium-polar extract was administered orally at daily dose of 200 and 400 mg/kg body wt. basis for 10 days. The control group received normal saline (0.9%) for the same duration. Glibenclamide was used as positive control reference drug against Stevia extract. Results: Medium-polar leaf extract of S. rebaudiana (200 and 400 mg/kg) produced a delayed but significant (P < 0.01) decrease in the blood glucose level, without producing condition of hypoglycemia after treatment, together with lesser loss in the body weight as compared with standard positive control drug glibenclamide. Conclusions: Treatment of diabetes with sulfonylurea drugs (glibenclamide) causes hypoglycemia followed by greater reduction in body weight, which are the most worrisome effects of these drugs. Stevia extract was found to antagonize the necrotic action of alloxan and thus had a re-vitalizing effect on β-cells of pancreas. PMID:21687353

  12. Study of Antiglycation, Hypoglycemic, and Nephroprotective Activities of the Green Dwarf Variety Coconut Water (Cocos nucifera L.) in Alloxan-Induced Diabetic Rats.

    PubMed

    Pinto, Isabella F D; Silva, Railmara P; Chaves Filho, Adriano de B; Dantas, Lucas S; Bispo, Vanderson S; Matos, Isaac A; Otsuka, Felipe A M; Santos, Aline C; Matos, Humberto Reis

    2015-07-01

    Coconut water (CW) is a natural nutritious beverage, which contains several biologically active compounds that are traditionally used in the treatment of diarrhea and rehydration. Several works with CW have been related with antioxidant activity, which is very important in the diabetic state. To evaluate the hypoglycemic and nephroprotective activities of CW, alloxan-induced diabetic rats were pre- and post-treated by gavage with CW (3 mL/kg), caffeic acid (CA) (10 and 15 mg/kg), and acarbose (Acb) (714 μg/kg) during a period of 16 days. Body weight, blood glucose, glycated hemoglobin (HbA1c), and Amadori products in plasma and kidney homogenates were evaluated in all groups and used as parameters for the monitoring of the diabetic state. The results showed that rats of the CW+diabetic group had maintenance in blood glucose compared with the control group (P<.05) in addition to a decrease of HbA1c levels and increase of body weight when compared with the diabetic group rats (P<.05). The animals of the CA and CA+diabetic groups did not have significant variation of body weight (P<.05) during the experiment; however, they showed decrease in their HbA1c and urea levels in plasma as well as Amadori products in kidney homogenates when compared with the diabetic group (P<.05). Our results indicate that CW has multiple beneficial effects in diabetic rats for preventing hyperglycemia and oxidative stress caused by alloxan.

  13. Autologous circulating angiogenic cells treated with osteopontin and delivered via a collagen scaffold enhance wound healing in the alloxan-induced diabetic rabbit ear ulcer model

    PubMed Central

    2013-01-01

    Introduction Diabetic foot ulceration is the leading cause of amputation in people with diabetes mellitus. Peripheral vascular disease is present in the majority of patients with diabetic foot ulcers. Despite standard treatments there exists a high amputation rate. Circulating angiogenic cells previously known as early endothelial progenitor cells are derived from peripheral blood and support angiogenesis and vasculogenesis, providing a potential topical treatment for non-healing diabetic foot ulcers. Methods A scaffold fabricated from Type 1 collagen facilitates topical cell delivery to a diabetic wound. Osteopontin is a matricellular protein involved in wound healing and increases the angiogenic potential of circulating angiogenic cells. A collagen scaffold seeded with circulating angiogenic cells was developed. Subsequently the effect of autologous circulating angiogenic cells that were seeded in a collagen scaffold and topically delivered to a hyperglycemic cutaneous wound was assessed. The alloxan-induced diabetic rabbit ear ulcer model was used to determine healing in response to the following treatments: collagen seeded with autologous circulating angiogenic cells exposed to osteopontin, collagen seeded with autologous circulating angiogenic cells, collagen alone and untreated wound. Stereology was used to assess angiogenesis in wounds. Results The cells exposed to osteopontin and seeded on collagen increased percentage wound closure as compared to other groups. Increased angiogenesis was observed with the treatment of collagen and collagen seeded with circulating angiogenic cells. Conclusions These results demonstrate that topical treatment of full thickness cutaneous ulcers with autologous circulating angiogenic cells increases wound healing. Cells exposed to the matricellular protein osteopontin result in superior wound healing. The wound healing benefit is associated with a more efficient vascular network. This topical therapy provides a potential novel

  14. Anion Gap Toxicity in Alloxan Induced Type 2 Diabetic Rats Treated with Antidiabetic Noncytotoxic Bioactive Compounds of Ethanolic Extract of Moringa oleifera

    PubMed Central

    2014-01-01

    Moringa oleifera (MO) is used for a number of therapeutic purposes. This raises the question of safety and possible toxicity. The objective of the study was to ascertain the safety and possible metabolic toxicity in comparison with metformin, a known drug associated with acidosis. Animals confirmed with diabetes were grouped into 2 groups. The control group only received oral dose of PBS while the test group was treated with ethanolic extract of MO orally twice daily for 5-6 days. Data showed that the extract significantly lowered glucose level to normal values and did not cause any significant cytotoxicity compared to the control group (P = 0.0698); there was no gain in weight between the MO treated and the control groups (P > 0.8115). However, data showed that treatment with an ethanolic extract of MO caused a decrease in bicarbonate (P < 0.0001), and more than twofold increase in anion gap (P < 0.0001); metformin treatment also decreased bicarbonate (P < 0.0001) and resulted in a threefold increase in anion gap (P < 0.0001). Conclusively, these data show that while MO appears to have antidiabetic and noncytotoxic properties, it is associated with statistically significant anion gap acidosis in alloxan induced type 2 diabetic rats. PMID:25548560

  15. Alteration of plasma biochemical, haematological and ocular oxidative indices of alloxan induced diabetic rats by aqueous extract of Tridax procumbens Linn (Asteraceae)

    PubMed Central

    Ikewuchi, Jude Chigozie

    2012-01-01

    In this study, the effects of an aqueous extract of the leaves of Tridax procumbens on the haematology, plasma biochemistry and ocular indices of oxidative stress was investigated in alloxan induced diabetic rats. Diabetes mellitus was induced by injection of alloxan (80 mg/kg body weight), via the tail vein. The extract was administered orally at 100, 200 and 300 mg/kg (both to normal and diabetic rats), and metformin at 50 mg/kg. On gas chromatographic analysis of the alkaloid fraction of the aqueous extract, thirty nine known alkaloids were detected, consisting mainly of 73.91 % akuamidine, 22.33 % voacangine, 1.27 % echitamine, 0.55 % echitamidine, 0.36 % lupanine, 0.27 % crinamidine, 0.23 % augustamine and 0.10 % 6-hydroxypowelline. Tannic acid and β-sitosterol were detected in high quantities. Compared to Test control, the treatment dose-dependently, significantly lowered (P<0.05) plasma glucose, triglyceride, very low density lipoprotein cholesterol, total bilirubin, urea, blood urea nitrogen; plasma alkaline phosphatase, alanine and aspartate transaminases, and ocular superoxide dismutase activities, and lymphocyte count. It also significantly increased (P<0.05) plasma calcium and ocular ascorbic acid contents, haemoglobin concentration and neutrophil count. This study showed that the extract was hypoglycemic, positively affected the haemopoietic system and integrity and function (dose dependently) of the liver and kidney of the diabetic rats; improved the lipid profile and had no deleterious effect on red cell morphology and protected against oxidative stress in ocular tissues. This study also revealed the presence of pharmacologically active compounds in the leaf extract. All of these, highlight the cardioprotective potential of the leaves of Tridax procumbens, and support its use in traditional health care practices for the management of diabetes mellitus. PMID:27418906

  16. Protective effects of vitamins (C and E) and melatonin co-administration on hematological and hepatic functions and oxidative stress in alloxan-induced diabetic rats.

    PubMed

    Allagui, Mohamed Salah; Feriani, Anouer; Bouoni, Zouhour; Alimi, Hichem; Murat, Jean Claud; El Feki, Abdelfattah

    2014-09-01

    The present study aimed to investigate the potential effects of vitamins (C and E)/melatonin co-administration on the hematologic and hepatic functions and oxidative stress in alloxan-induced diabetic rats. The intraperitoneal injection of alloxan (120 mg/kg b.w. for 2 days) induced a significant increase of blood glucose levels (hyperglycemia) associated with serious hematologic disorders (P < 0.01) evidenced by the decrease in the levels of red blood cell count (RBC) (-18%), hematocrit (Ht) (-18%), hemoglobin content (Hb) (-36%), mean corpuscular hemoglobin (MCH) (-17%), and mean corpuscular hemoglobin concentration (MCHC) (-16%). The activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH), and the plasmatic levels of total cholesterol and triglyceride contents of diabetic rats were, however, noted to undergo significant increases by 42% (P < 0.01), 134% (P < 0.001), 27.5% (P < 0.01), 147% (P < 0.001), and 67% (P < 0.01), respectively, as compared to the control animals. Furthermore, a significant increase in malondialdehyde (MDA) content and a significant decrease in superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities were observed in the plasma and hepatic tissues of diabetic rats when compared to the controls. Interestingly, the treatment with vitamins (C, E) in combination with melatonin was noted to reduce the plasma levels of glucose, lower the MDA levels, and restore the hematologic parameters and biochemical and antioxidant levels of diabetic rats back to normal values, alleviating diabetes metabolic disorders in rats. PMID:24919717

  17. Inhibition of key enzymes related to diabetes and hypertension by Eugenol in vitro and in alloxan-induced diabetic rats.

    PubMed

    Mnafgui, Kais; Kaanich, Fatima; Derbali, Amal; Hamden, Khaled; Derbali, Fatma; Slama, Sadok; Allouche, Noureddine; Elfeki, Abdelfattah

    2013-12-01

    The present study investigated the effect of treating diabetic rats with eugenol (EG). In vitro enzyme activity was measured in the presence of eugenol, and it was found to inhibit pancreatic α-amylase (IC(50) = 62.53 µg/mL) and lipase (IC(50) = 72.34 µg/mL) as well as angiotensin converting enzyme (ACE) activity (IC50 = 130.67 µg/mL). In vivo, EG reduced the activity of amylase in serum, pancreas and intestine also the peak level of glucose by 60% compared to diabetic rats. Furthermore, eugenol similar to acarbose reduced serum glycosylated hemoglobin (HbA1c), lipase and ACE levels. In addition, treatments with EG showed notable decrease in serum total-cholesterol, triglycerides and low density lipoprotein-cholesterol levels with an increase of high density lipoprotein-cholesterol. Overall, EG significantly reverted back to near normal the values of the biochemical biomarkers such as transaminases (AST&ALT), alkaline phosphatase (ALP), creatine phosphokinase (CPK) and gamma-glutamyl transpeptidase (GGT) activities, total-bilirubin, creatinine, urea and uric acid rates.

  18. Diosmin Modulates the NF-kB Signal Transduction Pathways and Downregulation of Various Oxidative Stress Markers in Alloxan-Induced Diabetic Nephropathy.

    PubMed

    Ahmed, Sahabuddin; Mundhe, Nitin; Borgohain, Manash; Chowdhury, Liakat; Kwatra, Mohit; Bolshette, Nityanand; Ahmed, Anwaruddin; Lahkar, Mangala

    2016-10-01

    Hyperglycaemia-mediated oxidative stress plays an imperative role in the progression of diabetic nephropathy. NF-kB is an important transcription factor in eukaryotes which regulates a diverse array of cellular process, including inflammation, immunological response, apoptosis, growth and development. Increased expression of NF-kB plays a vital role in the pathogenesis of many inflammatory diseases including diabetic nephropathy. Hence, the present study was designed to explore the nephroprotective nature of diosmin by assessing the various biochemical parameters, markers of oxidative stress and proinflammatory cytokine levels in alloxan-induced diabetic Wistar rats. Type 2 diabetes was induced in Wistar rats by single intraperitoneal injection of alloxan (120 mg/kg body weight). Seventy-two hours after the conformation of diabetes (blood glucose level ≥ 250 mg/dl), the rats were segregated into four groups, each group having six animals. Diabetic rats were treated with diosmin at a dose of 50 mg and 100 mg/kg body weight respectively. After the 28th day of treatment, rats were sacrificed, blood serum, plasma and kidney tissue were collected for various biochemical analysis. Inflammatory cytokine levels were measured through ELISA kit. Diosmin treatment produces significant reduction in the blood glucose and plasma insulin level and increases the body weight when compared with diabetic rats. Elevated level of malondialdehyde (MDA) and decrease levels of superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH) and nitric oxide (NO) were significantly restored after 28 days of diosmin treatment. Diosmin treatment group also restores the normal architecture of the kidney tissue which was confirmed by histopathological examination. Moreover, oral administration of diosmin shows a significant normalization in the level of NF-kB, proving its pivotal role in maintaining renal function. The above ameliorative effects were more pronounced with

  19. Increased Oxidative Stress and Imbalance in Antioxidant Enzymes in the Brains of Alloxan-Induced Diabetic Rats

    PubMed Central

    Ceretta, Luciane B.; Réus, Gislaine Z.; Abelaira, Helena M.; Ribeiro, Karine F.; Zappellini, Giovanni; Felisbino, Francine F.; Steckert, Amanda V.; Dal-Pizzol, Felipe; Quevedo, João

    2012-01-01

    Diabetes Mellitus (DM) is associated with pathological changes in the central nervous system (SNC) as well as alterations in oxidative stress. Thus, the main objective of this study was to evaluate the effects of the animal model of diabetes induced by alloxan on memory and oxidative stress. Diabetes was induced in Wistar rats by using a single injection of alloxan (150 mg/kg), and fifteen days after induction, the rats memory was evaluated through the use of the object recognition task. The oxidative stress parameters and the activity of antioxidant enzymes, superoxide dismutase (SOD), and catalase (CAT) were measured in the rat brain. The results showed that diabetic rats did not have alterations in their recognition memory. However, the results did show that diabetic rats had increases in the levels of superoxide in the prefrontal cortex, and in thiobarbituric acid reactive species (TBARS) production in the prefrontal cortex and in the amygdala in submitochondrial particles. Also, there was an increase in protein oxidation in the hippocampus and striatum, and in TBARS oxidation in the striatum and amygdala. The SOD activity was decreased in diabetic rats in the striatum and amygdala. However, the CAT activity was increased in the hippocampus taken from diabetic rats. In conclusion, our findings illustrate that the animal model of diabetes induced by alloxan did not cause alterations in the animals' recognition memory, but it produced oxidants and an imbalance between SOD and CAT activities, which could contribute to the pathophysiology of diabetes. PMID:22645603

  20. Palm oil and ground nut oil supplementation effects on blood glucose and antioxidant status in alloxan-induced diabetic rats.

    PubMed

    Adewale, Olabiyi Folorunso; Isaac, OlatunjiOlusola; Tunmise, Makinwa Temitope; Omoniyi, OguntibejuOluwafemi

    2016-01-01

    This study investigated the effects of two common cooking oils (palm oil, PO) and (groundnut oil, GO) supplementation on the antioxidant status and diabetic indices in Alloxan (100mg/kg) induced diabetic Wistar rats. A total of forty-eight Wistar rats of both sexes were used for this study. They were divided into four groups of 12 animals each as: control, diabetic non-supplemented, diabetic supplemented with PO (200mg/kg/day) and diabetic supplemented with GO (200mg/kg/day) rats. Blood glucose, plasma vitamin E, SOD, Total Protein and Albumin levels were measured using standard laboratory procedures. After three weeks of supplementation there was a significant (p<0.05) reduction in blood glucose of supplemented groups compared with the diabetic non-supplemented group. Plasma Vitamins C and E, SOD, and Albumin levels were significantly (p<0.05) increased in the supplemented groups when compared with the diabetic non-supplemented group. However, the plasma levels of these parameters were found to be significantly (p<0.05) higher in the GO supplemented rats compared with the PO supplemented group. The plasma vitamin C levels in the diabetic groups were lower than in other groups while increased levels in the plasma total protein were not significant. There was no significant difference in the measured parameters in reference to the gender of the animals. It was concluded from this study that GO exhibited superior antioxidant activities and that the supplementation of red palm oil and ground nut oil as a source of antioxidant was beneficial in diabetic state as it reduced blood glucose and enhance antioxidant status.

  1. Hypoglycaemic effects of methanolic extract of Canscora decussata (Schult) whole-plant in normal and alloxan-induced diabetic rabbits.

    PubMed

    Irshad, Nadeem; Akhtar, Muhammad Shoaib; Bashir, Sajid; Hussain, Azhar; Shafiq, Muhammad; Iqbal, Javeid; Malik, Abdul

    2015-01-01

    In present study hypoglycaemic effects of the crude powdered C. decussata and its methanolic extract (ME) in alloxan diabetic rabbits were evaluated. The hypoglycaemic effect was measured by blood glucose, insulin level, HbA1c and his to pathology of pancreas. Glucose lowering effect of the ME was studied in diabetic rabbits. The effects of extract on blood glucose, body weight, food in take, fluid intake, OGTT were also evaluated. The results showed that 0.5,1 and 2g/kg of the powder significantly decreased blood glucose levels in normal rabbits and diabetic rabbits at the intervals checked. Oral intake of pioglitazone also reduced the levels in these rabbits. Synergistic hypoglycaemic effect of 600mg/kg of ME with different doses of insulin (2 & 3unit/kg, s/c) further reduced blood glucose levels of treated alloxan-diabetic rabbits. The oral glucose tolerance test revealed lowered area under curve values in ME treated rabbits. Treatment with ME (400 and 600 mg/kg) for 30 days showed highly significant decrease in blood glucose level by augmenting insulin secretion, HbA1cand significant increase in body weight, serum insulin levels in treated diabetic rabbits. Histopathology study showed regeneration of β-cells. These studies have, therefore, supported the traditional use of this herb in diabetic patients.

  2. Safety and efficacy of hydroalcoholic extract from Lawsonia inermis leaves on lipid profile in alloxan-induced diabetic rats

    PubMed Central

    Singh, Surender; Verma, Nishikant; Karwasra, Ritu; Kalra, Prerna; Kumar, Rohit; Gupta, Yogendra Kumar

    2015-01-01

    Introduction: Dyslipidemia is one of the most common risk factor for cardiac-related disorders in diabetes mellitus. Diabetic dyslipidemia is characterized by hypertriglyceridemia, low high density lipoprotein and elevated low density lipoprotein concentration. Aim: To explore the effect of Lawsonia inermis hydroalcoholic extract (LIHE) for diabetic dyslipidemic activity along with its safety profile. Materials and Methods: LIHE administered at doses of 100, 200 and 400 mg/kg in rats after induction of hyperglycemia by alloxan. Insulin (1 IU/kg), glibenclamide (2.5 mg/kg), and metformin (100 mg/kg) were used as positive control and 1% gum acacia as normal control. Statistical analysis was performed using one-way analysis of variance, followed by Dunnett's t-test. Results: The percentage reduction in blood glucose level of LIHE at dose of 400 mg/kg was 39.08% on day 21 when compared to baseline (day 0), which is comparable to glibenclamide (44.77%) and metformin (46.30%). Decrease in blood glucose level exhibited significant improvement in lipid profile, plasma albumin, total plasma protein and serum creatinine. Conclusion: Results of this study demonstrated that LIHE significantly improved lipid and lipoprotein pattern observed in diabetic rats and this could be due to improvement in insulin secretion or action, thus has potential to be used in treatment of diabetes mellitus associated dyslipidemia. PMID:26730149

  3. Effect of electromagnetic radiation modulated by biostructures on the course of alloxan-induced diabetes mellitus in rats.

    PubMed

    Garyaev, P P; Kokaya, A A; Mukhina, I V; Leonova-Garyaeva, E A; Kokaya, N G

    2007-02-01

    Exposure of rats with experimental diabetes mellitus to wide-band electromagnetic radiation generated by He-Ne laser and modulated by the pancreas and spleen is informing and phenomenological method prolonging animal life span, normalizing blood glucose level, and promoting regeneration of the pancreas.

  4. Effect of Kombucha, a fermented black tea in attenuating oxidative stress mediated tissue damage in alloxan induced diabetic rats.

    PubMed

    Bhattacharya, Semantee; Gachhui, Ratan; Sil, Parames C

    2013-10-01

    Diabetic complications associated with increased oxidative stress can be suppressed by antioxidants. In the present study we investigated the antidiabetic and antioxidant effects of Kombucha (KT), a fermented black tea, in comparison to that of unfermented black tea (BT), in ALX-induced diabetic rats. ALX exposure lowered the body weight and plasma insulin by about 28.12% and 61.34% respectively and elevated blood glucose level and glycated Hb by about 3.79 and 3.73 folds respectively. The oxidative stress related parameters like lipid peroxidation end products (increased by 3.38, 1.7, 1.65, 1.94 folds respectively), protein carbonyl content (increased by 2.5, 2.35, 1.8, 3.26 folds respectively), glutathione content (decreased by 59.8%, 47.27%, 53.69%, 74.03% respectively), antioxidant enzyme activities were also altered in the pancreatic, hepatic, renal and cardiac tissues of diabetic animals. Results showed significant antidiabetic potential of the fermented beverage (150 mg lyophilized extract/kg bw for 14 days) as it effectively restored ALX-induced pathophysiological changes. Moreover, it could ameliorate DNA fragmentation and caspase-3 activation in the pancreatic tissue of diabetic rats. Although unfermented black tea is effective in the above pathophysiology, KT was found to be more efficient. This might be due to the formation of some antioxidant molecules during fermentation period.

  5. [Platelet hyperreactivity and antiaggregatory properties of nootropic drugs under conditions of alloxan-induced diabetes in rats].

    PubMed

    Zhiliuk, V I; Levykh, A É; Mamchur, V I

    2012-01-01

    The effects of nootropic drugs (noopept, pentoxifylline, piracetam, pramiracetam, Ginkgo biloba extract, entrop, cerebrocurin and citicoline) on platelet aggregation in rats with experimental diabetes have been studied. It is established that all these drugs exhibit an inhibitory action of various degrees against platelet hyperreactivity under conditions of chronic hyperglycemia. The maximum universality of the antiaggregatory action is characteristic of pramiracetam, entrop and Ginkgo biloba extract. PMID:22702111

  6. Antihyperglycaemic effect and acute toxicity of Securigera Securidaca L. seed extracts in mice.

    PubMed

    Hosseinzadeh, H; Ramezani, M; Danaei, A R

    2002-12-01

    The antihyperglycaemic activity of a Securigera securidaca aqueous infusion and an ethanol maceration extract of seeds was studied in normoglycaemic, glucose-induced hyperglycaemic and alloxan-induced diabetic mice. The acute toxicity of the ethanol extract was more than that of the aqueous one. The phytochemical analysis showed that the seed extracts were rich in flavonoids. The intraperitoneal and oral administration of the aqueous and ethanol extracts significantly reduced blood glucose in alloxan-induced diabetic mice. In normoglycaemic and glucose-induced hyperglycaemic mice, the blood glucose levels were not significantly different from the control. Glibenclamide was not able to lower blood glucose in alloxan-induced diabetic mice, while it significantly lowered the blood sugar in normoglycaemic mice. The results indicate that S. securidaca seed extracts significantly reduce blood glucose in alloxan-induced diabetic mice by a mechanism different from that of sulfonylurea agents. PMID:12458478

  7. Efficacy of Composite Extract from Leaves and Fruits of Medicinal Plants Used in Traditional Diabetic Therapy against Oxidative Stress in Alloxan-Induced Diabetic Rats

    PubMed Central

    Kumar, Dileep; Abidi, A. B.

    2014-01-01

    Oxidative stress plays a vital role in diabetic complications. To suppress the oxidative stress mediated damage in diabetic pathophysiology, a special focus has been given on composite extract (CE) and making small dose of naturally occurring antidiabetic plants leaf and fruits. The aim of the present study was to evaluate the beneficial role of CE against alloxan- (ALX-) induced diabetes of Wistar strain rats. A dose-dependent study for CE (25, 50, and 100 mg/kg body weight) was carried out to find the effective dose of the composite compound in ALX-induced diabetic rats. ALX exposure elevated the blood glucose, plasma advanced oxidation product (AOPP), sialic acid demonstrating disturbed antioxidant status.CE at a dose of 100 mg/kg body weight restored/minimised these alterations towards normal values. In conclusion, small dose of CE possesses the capability of ameliorating the oxidative stress in ALX-induced diabetes and thus could be a promising approach in lessening diabetic complications. PMID:24729889

  8. D-saccharic acid-1,4-lactone ameliorates alloxan-induced diabetes mellitus and oxidative stress in rats through inhibiting pancreatic beta-cells from apoptosis via mitochondrial dependent pathway

    SciTech Connect

    Bhattacharya, Semantee; Manna, Prasenjit; Sil, Parames C.

    2011-12-15

    Oxidative stress plays a vital role in diabetic complications. To suppress the oxidative stress mediated damage in diabetic pathophysiology, a special focus has been given on naturally occurring antioxidants present in normal diet. D-saccharic acid 1,4-lactone (DSL), a derivative of D-glucaric acid, is present in many dietary plants and is known for its detoxifying and antioxidant properties. The aim of the present study was to evaluate the beneficial role of DSL against alloxan (ALX) induced diabetes in the pancreas tissue of Swiss albino rats. A dose-dependent study for DSL (20-120 mg/kg body weight) was carried out to find the effective dose of the compound in ALX-induced diabetic rats. ALX exposure elevated the blood glucose, glycosylated Hb, decreased the plasma insulin and disturbed the intra-cellular antioxidant machineries whereas oral administration of DSL at a dose of 80 mg/kg body weight restored these alterations close to normal. Investigating the mechanism of the protective activity of DSL we observed that it prevented the pancreatic {beta}-cell apoptosis via mitochondria-dependent pathway. Results showed decreased mitochondrial membrane potential, enhanced cytochrome c release in the cytosol and reciprocal regulation of Bcl-2 family proteins in the diabetic rats. These events were also found to be associated with increased level of Apaf-1, caspase 9, and caspase 3 that ultimately led to pancreatic {beta}-cell apoptosis. DSL treatment, however, counteracted these changes. In conclusion, DSL possesses the capability of ameliorating the oxidative stress in ALX-induced diabetes and thus could be a promising approach in lessening diabetic complications. Highlights: Black-Right-Pointing-Pointer Oxidative stress is suggested as a key event in the pathogenesis of diabetes. Black-Right-Pointing-Pointer D-saccharic acid 1,4-lactone (DSL) reduces the alloxan-induced diabetes mellitus. Black-Right-Pointing-Pointer DSL normalizes cellular antioxidant machineries

  9. Effect of Croatian propolis on diabetic nephropathy and liver toxicity in mice

    PubMed Central

    2012-01-01

    Background In the present study, we examined the antioxidant effect of water soluble derivative of propolis (WSDP) and ethanolic (EEP) extract of propolis on renal and liver function in alloxan-induced diabetic mice. In addition, we examined whether different extract of propolis could prevent diabetic nephropathy and liver toxicity by inhibiting lipid peroxidation in vivo. Methods Diabetes was induced in Swiss albino mice with a single intravenous injection of alloxan (75 mg kg-1). Two days after alloxan injection, propolis preparations (50 mg kg-1 per day) were given intraperitoneally for 7 days in diabetic mice. Survival analysis and body weights as well as hematological and biochemical parameters were measured. The renal and liver oxidative stress marker malonaldehyde levels and histopathological changes were monitored in the liver and kidney of treated and control mice. Results Administration of propolis to diabetic mice resulted in a significant increase of body weight, haematological and immunological parameters of blood as well as 100% survival of diabetic mice. Alloxan-injected mice showed a marked increase in oxidative stress in liver and kidney homogenate, as determined by lipid peroxidation. Histopathological observation of the liver sections of alloxan-induced diabetic mice showed several lesions including cellular vacuolization, cytoplasmic eosinophilia and lymphocyte infiltrations, but with individual variability.Treatment of diabetic mice with propolis extracts results in decreased number of vacuolized cells and degree of vacuolization; propolis treatment improve the impairment of fatty acid metabolism in diabetes. Renal histology showed corpuscular, tubular and interstitial changes in alloxan-induced diabetic mice. Test components did not improve renal histopathology in diabetic mice. Conclusions Propolis preparations are able to attenuate diabetic hepatorenal damage, probably through its anti-oxidative action and its detoxification

  10. Taurine exerts hypoglycemic effect in alloxan-induced diabetic rats, improves insulin-mediated glucose transport signaling pathway in heart and ameliorates cardiac oxidative stress and apoptosis

    SciTech Connect

    Das, Joydeep; Vasan, Vandana; Sil, Parames C.

    2012-01-15

    Hyperlipidemia, inflammation and altered antioxidant profiles are the usual complications in diabetes mellitus. In the present study, we investigated the therapeutic potential of taurine in diabetes associated cardiac complications using a rat model. Rats were made diabetic by alloxan (ALX) (single i.p. dose of 120 mg/kg body weight) and left untreated or treated with taurine (1% w/v, orally, in water) for three weeks either from the day of ALX exposure or after the onset of diabetes. Animals were euthanized after three weeks. ALX-induced diabetes decreased body weight, increased glucose level, decreased insulin content, enhanced the levels of cardiac damage markers and altered lipid profile in the plasma. Moreover, it increased oxidative stress (decreased antioxidant enzyme activities and GSH/GSSG ratio, increased xanthine oxidase enzyme activity, lipid peroxidation, protein carbonylation and ROS generation) and enhanced the proinflammatory cytokines levels, activity of myeloperoxidase and nuclear translocation of NFκB in the cardiac tissue of the experimental animals. Taurine treatment could, however, result to a decrease in the elevated blood glucose and proinflammatory cytokine levels, diabetes-evoked oxidative stress, lipid profiles and NFκB translocation. In addition, taurine increased GLUT 4 translocation to the cardiac membrane by enhanced phosphorylation of IR and IRS1 at tyrosine and Akt at serine residue in the heart. Results also suggest that taurine could protect cardiac tissue from ALX induced apoptosis via the regulation of Bcl2 family and caspase 9/3 proteins. Taken together, taurine supplementation in regular diet could play a beneficial role in regulating diabetes and its associated complications in the heart. Highlights: ► Taurine controls blood glucose via protection of pancreatic β cells in diabetic rat. ► Taurine controls blood glucose via increasing the insulin level in diabetic rat. ► Taurine improves cardiac AKT/GLUT4 signaling

  11. Inhibition of carbohydrate and lipid digestive enzymes activities by Zygophyllum album extracts: effect on blood and pancreas inflammatory biomarkers in alloxan-induced diabetic rats.

    PubMed

    Mnafgui, Kais; Kchaou, Mouna; Hamden, Khaled; Derbali, Fatma; Slama, Sadok; Nasri, Mbarek; Salah, Hichem Ben; Allouche, Noureddine; Elfeki, Abdelfattah

    2014-03-01

    Zygophyllum album has been used as herbal medicine in Southern Tunisia to treat several diseases such as diabetes mellitus. This study is aimed to reveal the mechanisms underlying the antihyperglycemic potential, the anti-inflammatory and the protective hematological proprieties of this plant in diabetic rats. The inhibition of the α-amylase activity by different solvent-extract fractions of Z. album was tested in vitro. The fraction endowed with the powerful inhibitory activity against α-amylase was administered to surviving diabetic rats for 30 days. Data from in vitro indicated that each extract from the medicinal plant showed moderate inhibition of α-amylase enzyme except the ethyl acetate extract which was ineffective. The powerful inhibition was achieved by ethanol extract of Z. album (EZA) with an IC50 of 43.48 μg/ml as compared to acarbose (Acar) with an IC50 of 14.88 μg/ml. In vivo, the results showed that EZA decreased the α-amylase levels in serum, pancreas and intestine of diabetic rats by 40 %, 45 % and 46 %, respectively, associated with considerably reduction in blood glucose rate by 61 %. Moreover, the EZA helped to protect the structure and function of the β-cells. Interestingly, EZA had a potent anti-inflammatory effect which is manifested by decreases in CRP and TNF-α levels. Overall, a notable reduction in lipase activity both in serum and small intestine of treated diabetic rats resulted in the improvement of serum and liver lipids profile. Z. album showed a prominent antidiabetic effect via inhibition of carbohydrate and lipid digestive enzymes and ameliorated the inflammation and the disturbance of hematological biomarkers in diabetes.

  12. Evaluation of Mallotus oppositifolius Methanol Leaf Extract on the Glycaemia and Lipid Peroxidation in Alloxan-Induced Diabetic Rats: A Preliminary Study

    PubMed Central

    Nwaehujor, C. O.; Ezeigbo, I. I.; Nwinyi, F. C.

    2013-01-01

    Objective. Mallotus oppositifolius (Geiseler) Müll. Arg. (Euphorbiaceae) is folklorically used to “treat” diabetic conditions in some parts of Nigeria therefore the study, to investigate the extract of the leaves for activities on hyperglycaemia, lipid peroxidation, and increased cholesterol levels in vivo in alloxan diabetic rats as well as its potential antioxidant activity in vitro. Methods. Albino rats (240–280 g) were given an injection of 120 mg/kg body weight, i.p. of alloxan monohydrate. After 8 days, diabetic animals with elevated fasting blood glucose levels (>9 mmol/L) were considered and selected for the study. Results. Oral treatment with the extract administered every 12 h by gavage at doses of 100, 200, and 400 mg/kg of the extract to the test rats, for 14 days, resulted in a significant dose-dependent decrease in blood glucose levels from 12.82 ± 1.02 mmol/dL to 4.92 ± 2.01 mmol/dL at the highest dose of 400 mg/kg compared to the control drug and glibenclamide as well as attendant significant decline in diabetic rats employed in the study. Conclusion. The extract also showed in vitro concentration-dependent antioxidant activity following the 1,1-diphenyl-2-picryl-hydrazyl (DPPH) and ferric reducing assays. Findings further suggest the presence of active antidiabetic and antioxidant principles in M. oppositifolius leaves. PMID:24224091

  13. Heart rate, body temperature and physical activity are variously affected during insulin treatment in alloxan-induced type 1 diabetic rat.

    PubMed

    Howarth, F C; Jacobson, M; Shafiullah, M; Ljubisavljevic, M; Adeghate, E

    2011-01-01

    Diabetes mellitus is associated with a variety of cardiovascular complications including impaired cardiac muscle function. The effects of insulin treatment on heart rate, body temperature and physical activity in the alloxan (ALX)-induced diabetic rat were investigated using in vivo biotelemetry techniques. The electrocardiogram, physical activity and body temperature were recorded in vivo with a biotelemetry system for 10 days before ALX treatment, for 20 days following administration of ALX (120 mg/kg) and thereafter, for 15 days whilst rats received daily insulin. Heart rate declined rapidly after administration of ALX. Pre-ALX heart rate was 321+/-9 beats per minute, falling to 285+/-12 beats per minute 15-20 days after ALX and recovering to 331+/-10 beats per minute 5-10 days after commencement of insulin. Heart rate variability declined and PQ, QRS and QT intervals were prolonged after administration of ALX. Physical activity and body temperature declined after administration of ALX. Pre-ALX body temperature was 37.6+/-0.1 °C, falling to 37.3+/-0.1 °C 15-20 days after ALX and recovering to 37.8+/-0.1 °C 5-10 days after commencement insulin. ALX-induced diabetes is associated with disturbances in heart rhythm, physical activity and body temperature that are variously affected during insulin treatment.

  14. Antihyperlipidemic and antiperoxidative effect of Diasulin, a polyherbal formulation in alloxan induced hyperglycemic rats

    PubMed Central

    Saravanan, Ramalingam; Pari, Leelavinothan

    2005-01-01

    Background This study was undertaken to investigation the effect of Diasulin, a poly herbal drug composed of ethanolic extract of ten medicinal plants on blood glucose, plasma insulin, tissue lipid profile, and lipidperoxidation in alloxan induced diabetes. Methods Ethanolic extract of Diasulin a, poly herbal drug was administered orally (200 mg/kg body weight) for 30 days. The different doses of Diasulin on blood glucose and plasma insulin in diabetic rats were studied and the levels of lipid peroxides [TBARS, and Hydroperoxide] and tissue lipids [cholesterol, triglyceride, phospholipides and free fatty acids] were also estimated in alloxan induced diabetic rats. The effects were compared with glibenclamide. Result Treatment with Diasulin and glibenclamide resulted in a significant reduction of blood glucose and increase in plasma insulin. Diasulin also resulted in a significant decrease in tissue lipids and lipid peroxide formation. The effect produced by Diasulin was comparable with that of glibenclamide. Conclusion The decreased lipid peroxides and tissue lipids clearly showed the antihyperlipidemic and antiperoxidative effect of Diasulin apart from its antidiabetic effect. PMID:15969768

  15. Protective and curative effects of Cocos nucifera inflorescence on alloxan-induced pancreatic cytotoxicity in rats

    PubMed Central

    Renjith, Raveendran S.; Rajamohan, Thankappan

    2012-01-01

    Objectives: This study was planned to investigate the effects of pre and post-treatment of young inflorescence of Cocos nucifera (CnI) on alloxan-induced diabetic rats. Materials and Methods: Male albino Sprague Dawely rats were divided into five groups of six animals each. Group I was normal control, Group II was diabetic control, Cocos nucifera Inflorescence (CnI) was fed along with diet [20% (w/w)] orally (Group III) for a period of 11 days prior to alloxan injection (150 mg/kg i.p.). The curative effect of CnI was evaluated at the same feeding levels in alloxan-induced diabetic rats (Group IV) for a period of 30 days. The effects of both pretreatment and post-treatment (Group V) were also evaluated. Biochemical parameters such serum glucose, hepatic glycogen, and enzymes involving carbohydrate metabolism (hexokinase, phosphoglucomutase, pyruvate kinase, glucose-6-phosphatase, fructose 1, 6-diphosphatase, glucose-6 phosphate dehydrogenase, and glycogen phosphorylase) were assayed along with pancreatic histopathology. Data were analyzed using one-way analysis of variance followed by Duncan's post hoc multiple variance test. P < 0.05 was considered statistical significant. Results: Diabetic control rats showed significant increase in serum glucose (P < 0.05) and decrease in hepatic glycogen levels (P < 0.05) compared to normal rats, which was reversed to near normal in both CnI pretreated and post-treated rats. Treatment with CnI resulted in significant decrease (P < 0.05) in activities of gluconeogenic enzymes in Group III and IV on compared to the diabetic control group, while glycolytic enzyme activities were improved in these groups. The cytotoxicity of pancreatic islets also ameliorated by treatment with CnI on histopathological examination. Conclusion: The results obtained in the study indicate the protective and curative effects of CnI on alloxan-induced pancreatic cytotoxicity, which is mediated through the regulation of carbohydrate metabolic enzyme

  16. Assessment of DNA damage and lipid peroxidation in diabetic mice: effects of propolis and epigallocatechin gallate (EGCG).

    PubMed

    Oršolić, Nada; Sirovina, Damir; Gajski, Goran; Garaj-Vrhovac, Vera; Jazvinšćak Jembrek, Maja; Kosalec, Ivan

    2013-09-18

    There is growing recognition that polyphenolic compounds present in many plants and natural products may have beneficial effects on human health. Propolis - a substance produced by honeybees - and catechins in tea, in particular (-)-epigallocatechin gallate (EGCG), are strong antioxidants that appear to have anti-obesity and anti-diabetic effects. The present study was designed to elucidate the anti-diabetic effect of the water-soluble derivative of propolis (WSDP), which contains phenolic acids as the main compounds, and EGCG in alloxan-induced (75mg/kg, iv) diabetes in mice. Intraperitoneal administration of EGCG or propolis at doses of 50mg/kg body weight (bw) to diabetic mice for a period of 7 days resulted in a significant increase in body weight and in haematological/immunological blood parameters, as well as in 100% survival of the mice. A significant decrease in lipid peroxidation in liver, kidney and brain tissue was also observed in diabetic mice treated with these two agents. Additionally, EGCG and propolis clearly reduced DNA damage in peripheral lymphocytes of diabetic mice. Our studies demonstrate the anti-oxidative and anti-inflammatory potential of WSDP and EGCG, which could exert beneficial effects against diabetes and the associated consequences of free-radical formation in kidney, liver, spleen and brain tissue. The results suggest that dietary supplementation with WSDP or EGCG could potentially contribute to nutritional strategies for the prevention and treatment of diabetes mellitus. PMID:23859956

  17. Hypoglycaemic and Tissue-Protective Effects of the Aqueous Extract of Persea Americana Seeds on Alloxan-Induced Albino Rats

    PubMed Central

    EZEJIOFOR, Anthonet Ndidi; OKORIE, Abednego; ORISAKWE, Orish Ebere

    2013-01-01

    Background: The tissue-protective potential of Persea americana necessitated a look into the histopathological effects of the plant extract on the pancreas, liver, and kidneys. This study was conceived and designed based on the gaps in the research that has been performed and what is known about the plant. The hypoglycaemic and tissue-protective effects of hot aqueous Persea americana (avocado pear) seed extracts on alloxan-induced albino rats were investigated. Methods: Persea americana seeds were extracted using hot water, and different concentrations of the extract were prepared. The effects of different concentrations (20, 30, 40 g/L) of the hot aqueous P. americana seed extract on alloxan-induced Wistar albino rats were compared with those of a reference drug, glibenclamide. The glucose level of the rats was measured daily, and the weight of the animal was monitored on a weekly basis for 21 days. The oral glucose tolerance test (OGTT) was performed at 0, 30, 60, 90 and 120 minutes, and the histopathologies of the liver, kidneys, and pancreas were investigated. Phytochemical analysis of P. americana seed extracts indicated the presence of glycosides, tannins, saponins, carbohydrates, flavonoids, and alkaloids. Results: The results showed that the extract possessed a significant hypoglycaemic (P < 0.05) effect and reversed the histopathological damage that occurred in alloxan-induced diabetic rats, comparable to the effects glibenclamide. The seeds of P. americana also had anti-diabetic and protective effects on some rat tissues such as the pancreas, kidneys, and liver. Conclusion: In conclusion, the present study provides a pharmacological basis for the folkloric use of the hot-water extract of P. americana seeds in the management of diabetes mellitus. PMID:24643349

  18. D-saccharic acid-1,4-lactone ameliorates alloxan-induced diabetes mellitus and oxidative stress in rats through inhibiting pancreatic β-cells from apoptosis via mitochondrial dependent pathway.

    PubMed

    Bhattacharya, Semantee; Manna, Prasenjit; Gachhui, Ratan; Sil, Parames C

    2011-12-01

    Oxidative stress plays a vital role in diabetic complications. To suppress the oxidative stress mediated damage in diabetic pathophysiology, a special focus has been given on naturally occurring antioxidants present in normal diet. D-saccharic acid 1,4-lactone (DSL), a derivative of D-glucaric acid, is present in many dietary plants and is known for its detoxifying and antioxidant properties. The aim of the present study was to evaluate the beneficial role of DSL against alloxan (ALX) induced diabetes in the pancreas tissue of Swiss albino rats. A dose-dependent study for DSL (20-120 mg/kg body weight) was carried out to find the effective dose of the compound in ALX-induced diabetic rats. ALX exposure elevated the blood glucose, glycosylated Hb, decreased the plasma insulin and disturbed the intra-cellular antioxidant machineries whereas oral administration of DSL at a dose of 80 mg/kg body weight restored these alterations close to normal. Investigating the mechanism of the protective activity of DSL we observed that it prevented the pancreatic β-cell apoptosis via mitochondria-dependent pathway. Results showed decreased mitochondrial membrane potential, enhanced cytochrome c release in the cytosol and reciprocal regulation of Bcl-2 family proteins in the diabetic rats. These events were also found to be associated with increased level of Apaf-1, caspase 9, and caspase 3 that ultimately led to pancreatic β-cell apoptosis. DSL treatment, however, counteracted these changes. In conclusion, DSL possesses the capability of ameliorating the oxidative stress in ALX-induced diabetes and thus could be a promising approach in lessening diabetic complications.

  19. Naringenin ameliorates pathological changes in liver and kidney of diabetic mice: a preliminary study.

    PubMed

    Sirovina, Damir; Oršolić, Nada; Gregorović, Gordana; Končić, Marijana Zovko

    2016-03-01

    The effect of naringenin, a flavonoid found in grapefruit, orange, and tomato, on lipid peroxidation and histopathological changes in the liver and kidneys of alloxan-induced diabetic mice were investigated. Two days after alloxan injection (75 mg kg-1, i.v.), naringenin ethanolic solution (0.5 % v/v) was given to mice intraperitoneally (50 mg kg-1 per day) for seven days. Naringenin's impact on lipid peroxidation was measured by the 2-thiobarbituric acid test and histopathological changes were examined under a light microscope. Naringenin administration resulted in a significant decrease of lipid peroxidation level in liver and kidney tissue, as well as in a decreased number of vacuolated liver cells and degree of vacuolisation. Indications of tissue repair in kidney suggested that amelioration of diabetes-induced renal damage could be achieved over a longer period of time. Findings suggest that naringenin could be considered a dietary supplement in the prevention or treatment of diabetic complications and other diseases connected with oxidative stress, and gives a hope that it could show similar effects in the treatment of diabetes in humans.

  20. Comparison of cerebral microcirculation of alloxan diabetes and healthy mice using laser speckle contrast imaging

    NASA Astrophysics Data System (ADS)

    Timoshina, Polina A.; Shi, Rui; Zhang, Yang; Zhu, Dan; Semyachkina-Glushkovskaya, Oxana V.; Tuchin, Valery V.; Luo, Qingming

    2015-03-01

    The study of blood microcirculation is one of the most important problems of the medicine. This paper presents results of experimental study of cerebral blood flow microcirculation in mice with alloxan-induced diabetes using Temporal Laser Speckle Imaging (TLSI). Additionally, a direct effect of glucose water solution (concentration 20% and 45%) on blood flow microcirculation was studied. In the research, 20 white laboratory mice weighing 20-30 g were used. The TLSI method allows one to investigate time dependent scattering from the objects with complex dynamics, since it possesses greater temporal resolution. Results show that in brain of animal diabetic group diameter of sagittal vein is increased and the speed of blood flow reduced relative to the control group. Topical application of 20%- or 45%-glucose solutions also causes increase of diameter of blood vessels and slows down blood circulation. The results obtained show that diabetes development causes changes in the cerebral microcirculatory system and TLSI techniques can be effectively used to quantify these alterations.

  1. The hypoglycemic effect of a polysaccharide (GLP) from Gracilaria lemaneiformis and its degradation products in diabetic mice.

    PubMed

    Liao, Xubiao; Yang, Lawei; Chen, Meizhen; Yu, Jie; Zhang, Shumeng; Ju, Yaoyao

    2015-08-01

    Gracilaria lemaneiformis is cultivated on a large scale in China for industrial production of agarose, a natural polysaccharide, which has been shown to have many beneficial bioactivities such as antitumor, antiviral antioxidant activities, etc. In the present study, the hypoglycemic and antioxidant effects of a polysaccharide extracted from Gracilaria lemaneiformis (GLP; Mw, 121.89 kDa) and its chemically degraded products (GLP1 and GLP2: Mw, 57.02 and 14.29 kDa, respectively) were investigated in alloxan-induced diabetic mice. The intragastric administration of GLP, GLP1 and GLP2 for 21 days induced an obvious decrease (P < 0.05) in blood glucose levels in comparison with untreated diabetic mice. Furthermore, GLP, GLP1 and GLP2 caused evident increases (P < 0.05) in both ant i-oxidase (SOD and GSH-Px) activities and the total antioxidant capacity (T-AOC) and a significant decrease (P < 0.05) in the level of malondialdehyde (MDA) in the liver, pancreas and kidney of diabetic mice. Even though GLP, GLP1 and GLP2 did not show any significant difference in the structure and sulfation levels, GLP1 demonstrated more potent effects than GLP and GLP2 at the same dose. Histopathological examination of the pancreas and kidney revealed that the damaged tissues induced by alloxan were repaired to a certain degree after the treatments of GLP, GLP1 and GLP2.

  2. The protective effect of vanadium against diabetic cataracts in diabetic rat model.

    PubMed

    Sun, Lei; Shi, De-Jing; Gao, Xiang-Chun; Mi, Shu-Yong; Yu, Ying; Han, Qing

    2014-05-01

    The present study was designed to investigate the effect of vanadium in alloxan-induced diabetes and cataract in rats. Different doses of vanadium was administered once daily for 8 weeks to alloxan-induced diabetic rats. To know the mechanism of action of vanadium, lens malondialdehyde (MDA), protein carbonyl content, activity of superoxide dismutase (SOD), activities of aldose reductase (AR), and sorbitol levels were assayed, respectively. Supplementation of vanadium to alloxan-induced diabetic rats decreased the blood glucose levels due to hyperglycemia, inhibited the AR activity, and delayed cataract progression in a dose-dependent manner. The observed beneficial effects may be attributed to polyol pathway activation but not decreased oxidative stress. Overall, the results of this study demonstrate that vanadium could effectively reduce the alloxan-induced hyperglycemia and diabetic cataracts in rats.

  3. Blood glucose level and lipid profile of alloxan-induced hyperglycemic rats treated with single and combinatorial herbal formulations

    PubMed Central

    Ojiako, Okey A.; Chikezie, Paul C.; Ogbuji, Agomuo C.

    2015-01-01

    The current study sought to investigate the capacities of single and combinatorial herbal formulations of leaf extracts of Acanthus montanus, Asystasia gangetica, Emilia coccinea, and Hibiscus rosasinensis to reverse hyperglycemia and dyslipidemia in alloxan-induced diabetic male rats. Phytochemical composition of the herbal extracts, fasting plasma glucose concentration (FPGC), and serum lipid profile (SLP) of the rats were measured by standard methods. The relative abundance of phytochemicals in the four experimental leaf extracts was in the following order: flavonoids > alkaloids > saponins > tannins. Hyperglycemic rats (HyGR) treated with single and combinatorial herbal formulations showed evidence of reduced FPGC compared with the untreated HyGR and were normoglycemic (FPGC < 110.0 mg/dL). Similarly, HyGR treated with single and combinatorial herbal formulations showed evidence of readjustments in their SLPs. Generally, HyGR treated with triple herbal formulations (THfs) exhibited the highest atherogenic index compared with HyGR treated with single herbal formulations (SHfs), double herbal formulations (DHfs), and quadruple herbal formulation (QHf). The display of synergy or antagonism by the composite herbal extracts in ameliorating hyperglycemia and dyslipidemia depended on the type and number of individual herbal extract used in constituting the experimental herbal formulations. Furthermore, the capacities of the herbal formulations (SHfs, DHfs, THfs, and QHf) to exert glycemic control and reverse dyslipidemia did not follow predictable patterns in the animal models. PMID:27114943

  4. Blood glucose level and lipid profile of alloxan-induced hyperglycemic rats treated with single and combinatorial herbal formulations.

    PubMed

    Ojiako, Okey A; Chikezie, Paul C; Ogbuji, Agomuo C

    2016-04-01

    The current study sought to investigate the capacities of single and combinatorial herbal formulations of leaf extracts of Acanthus montanus, Asystasia gangetica, Emilia coccinea, and Hibiscus rosasinensis to reverse hyperglycemia and dyslipidemia in alloxan-induced diabetic male rats. Phytochemical composition of the herbal extracts, fasting plasma glucose concentration (FPGC), and serum lipid profile (SLP) of the rats were measured by standard methods. The relative abundance of phytochemicals in the four experimental leaf extracts was in the following order: flavonoids > alkaloids > saponins > tannins. Hyperglycemic rats (HyGR) treated with single and combinatorial herbal formulations showed evidence of reduced FPGC compared with the untreated HyGR and were normoglycemic (FPGC < 110.0 mg/dL). Similarly, HyGR treated with single and combinatorial herbal formulations showed evidence of readjustments in their SLPs. Generally, HyGR treated with triple herbal formulations (THfs) exhibited the highest atherogenic index compared with HyGR treated with single herbal formulations (SHfs), double herbal formulations (DHfs), and quadruple herbal formulation (QHf). The display of synergy or antagonism by the composite herbal extracts in ameliorating hyperglycemia and dyslipidemia depended on the type and number of individual herbal extract used in constituting the experimental herbal formulations. Furthermore, the capacities of the herbal formulations (SHfs, DHfs, THfs, and QHf) to exert glycemic control and reverse dyslipidemia did not follow predictable patterns in the animal models. PMID:27114943

  5. Effect of L-arginine-nitric oxide system on chemical-induced diabetes mellitus.

    PubMed

    Mohan, I K; Das, U N

    1998-11-01

    Several in vitro studies have suggested that nitric oxide may be the mediator of cytokine-induced beta-cell destruction. On the other hand, in vivo studies have given conflicting results: some studies suggesting that nitric oxide synthase inhibitors do not suppress streptozotocin-induced diabetes in mice, while others revealed that nitric oxide synthase inhibitors can reduce the incidence of insulin-dependent diabetes mellitus in rats. The results of the present study indicate that alloxan-induced diabetes in the male Wistar rats can be abrogated to a large extent by prior and simultaneous administration of the precursor of nitric oxide, L-arginine, where as NG-monomethy-L-arginine (L-NMMA), a specific inhibitor of nitric oxide synthase, can completely block the beneficial action of L-arginine. Sodium nitroprusside, a nitric oxide donor, also showed significant inhibitory effect on the severity of diabetes induced by alloxan. Alloxan treatment reduced nitric oxide generation, whereas L-arginine and sodium nitroprusside, when given along with alloxan, enhanced nitric oxide production to control values. Induction of diabetes by alloxan in the experimental animals was associated with a marked elevation in plasma lactate, ketone body, and lipid peroxide levels with a simultaneous fall in plasma insulin and nitric oxide levels. Alloxan-induced diabetes also induced a fall in the levels of anti-oxidant enzymes such as superoxide dismutase, glutathione reductase, and total glutathione, and antioxidants: vitamin E and ceruloplasmin, and an increase in glutathione peroxidase and glutathione-S-transferase. All these biochemical abnormalities and antioxidant levels have improved to near normal levels in animals treated with insulin, L-arginine, and sodium nitroprusside. From the results of the present study, it is apparent that L-arginine and nitric oxide can prevent alloxan-induced beta-cell damage, and the development of diabetes, and restore the antioxidant status to near

  6. Retinylamine Benefits Early Diabetic Retinopathy in Mice*

    PubMed Central

    Liu, Haitao; Tang, Jie; Du, Yunpeng; Lee, Chieh Allen; Golczak, Marcin; Muthusamy, Arivalagan; Antonetti, David A.; Veenstra, Alexander A.; Amengual, Jaume; von Lintig, Johannes; Palczewski, Krzysztof; Kern, Timothy S.

    2015-01-01

    Recent evidence suggests an important role for outer retinal cells in the pathogenesis of diabetic retinopathy (DR). Here we investigated the effect of the visual cycle inhibitor retinylamine (Ret-NH2) on the development of early DR lesions. Wild-type (WT) C57BL/6J mice (male, 2 months old when diabetes was induced) were made diabetic with streptozotocin, and some were given Ret-NH2 once per week. Lecithin-retinol acyltransferase (LRAT)-deficient mice and P23H mutant mice were similarly studied. Mice were euthanized after 2 (WT and Lrat−/−) and 8 months (WT) of study to assess vascular histopathology, accumulation of albumin, visual function, and biochemical and physiological abnormalities in the retina. Non-retinal effects of Ret-NH2 were examined in leukocytes treated in vivo. Superoxide generation and expression of inflammatory proteins were significantly increased in retinas of mice diabetic for 2 or 8 months, and the number of degenerate retinal capillaries and accumulation of albumin in neural retina were significantly increased in mice diabetic for 8 months compared with nondiabetic controls. Administration of Ret-NH2 once per week inhibited capillary degeneration and accumulation of albumin in the neural retina, significantly reducing diabetes-induced retinal superoxide and expression of inflammatory proteins. Superoxide generation also was suppressed in Lrat−/− diabetic mice. Leukocytes isolated from diabetic mice treated with Ret-NH2 caused significantly less cytotoxicity to retinal endothelial cells ex vivo than did leukocytes from control diabetics. Administration of Ret-NH2 once per week significantly inhibited the pathogenesis of lesions characteristic of early DR in diabetic mice. The visual cycle constitutes a novel target for inhibition of DR. PMID:26139608

  7. Beta Cell Mass Restoration in Alloxan-Diabetic Mice Treated with EGF and Gastrin.

    PubMed

    Song, Imane; Patel, Oelfah; Himpe, Eddy; Muller, Christo J F; Bouwens, Luc

    2015-01-01

    One week of treatment with EGF and gastrin (EGF/G) was shown to restore normoglycemia and to induce islet regeneration in mice treated with the diabetogenic agent alloxan. The mechanisms underlying this regeneration are not fully understood. We performed genetic lineage tracing experiments to evaluate the contribution of beta cell neogenesis in this model. One day after alloxan administration, mice received EGF/G treatment for one week. The treatment could not prevent the initial alloxan-induced beta cell mass destruction, however it did reverse glycemia to control levels within one day, suggesting improved peripheral glucose uptake. In vitro experiments with C2C12 cell line showed that EGF could stimulate glucose uptake with an efficacy comparable to that of insulin. Subsequently, EGF/G treatment stimulated a 3-fold increase in beta cell mass, which was partially driven by neogenesis and beta cell proliferation as assessed by beta cell lineage tracing and BrdU-labeling experiments, respectively. Acinar cell lineage tracing failed to show an important contribution of acinar cells to the newly formed beta cells. No appearance of transitional cells co-expressing insulin and glucagon, a hallmark for alpha-to-beta cell conversion, was found, suggesting that alpha cells did not significantly contribute to the regeneration. An important fraction of the beta cells significantly lost insulin positivity after alloxan administration, which was restored to normal after one week of EGF/G treatment. Alloxan-only mice showed more pronounced beta cell neogenesis and proliferation, even though beta cell mass remained significantly depleted, suggesting ongoing beta cell death in that group. After one week, macrophage infiltration was significantly reduced in EGF/G-treated group compared to the alloxan-only group. Our results suggest that EGF/G-induced beta cell regeneration in alloxan-diabetic mice is driven by beta cell neogenesis, proliferation and recovery of insulin. The

  8. Ghrelin reverses experimental diabetic neuropathy in mice

    SciTech Connect

    Kyoraku, Itaru; Shiomi, Kazutaka; Kangawa, Kenji; Nakazato, Masamitsu

    2009-11-20

    Ghrelin, an acylated peptide produced in the stomach, increases food intake and growth hormone secretion, suppresses inflammation and oxidative stress, and promotes cell survival and proliferation. We investigated the pharmacological potential of ghrelin in the treatment of polyneuropathy in uncontrolled streptozotocin (STZ)-induced diabetes in mice. Ghrelin or desacyl-ghrelin was administered daily for 4 weeks after STZ-induced diabetic polyneuropathy had developed. Ghrelin administration did not alter food intake, body weight gain, blood glucose levels, or plasma insulin levels when compared with mice given saline or desacyl-ghrelin administration. Ghrelin administration ameliorated reductions in motor and sensory nerve conduction velocities in diabetic mice and normalized their temperature sensation and plasma concentrations of 8-isoprostaglandin {alpha}, an oxidative stress marker. Desacyl-ghrelin failed to have any effect. Ghrelin administration in a mouse model of diabetes ameliorated polyneuropathy. Thus, ghrelin's effects represent a novel therapeutic paradigm for the treatment of this otherwise intractable disorder.

  9. Hypoglycemic Effect of Combination of Azadirachta indica A. Juss. and Gynura procumbens (Lour.) Merr. Ethanolic Extracts Standardized by Rutin and Quercetin in Alloxan-induced Hyperglycemic Rats

    PubMed Central

    Sunarwidhi, Anggit Listyacahyani; Sudarsono, Sudarsono; Nugroho, Agung Endro

    2014-01-01

    Purpose: Exploration of plant combinations could be an alternative approach for diabetes treatment. The aim of this study is to evaluate the hypoglycemic effect of combination of A. indica and G. procumbens ethanolic extracts in alloxan-induced diabetic rats. Methods: Powder of A. indica and G. procumbens leaves were macerated with ethanol 70%. Determination of rutin in A. indica and quercetin in G. procumbens were performed by TLC-densitometry. Hyperglycemia in rats was induced by an intraperitoneal injection of alloxan monohydrate at a single dose of 150 mg/kgBW. The rats were treated with 3 dosage variation of combinations for 15 days. Hypoglycemic effect was evaluated by estimating the blood glucose levels and the rats pancreas histological study. Results: A. indica contained 2.90±0.15% of rutin and G. procumbens contained 18.86±0.86% of quercetin. Combination at the ratio of 50mg/kgBW A. indica:112.5mg/kgBW G. procumbens showed the highest hypoglycemic effect: 68.74±4.83% (preprandial) and 73.91±3.18% (postprandial). Histological studies indicated that this combination improved the morphology of the islets of Langerhans and β cells. It also increased insulin expression and decreased the elevated-glucose concentrations. Conclusion: This study showed that combination of both extracts has better hypoglycemic effect than the single treatment of A. indica or G. procumbens. Combination of both extracts was potential to develop as a blood glucose-lowering agent for diabetic patients. PMID:25671197

  10. Exercise training modifies gut microbiota in normal and diabetic mice.

    PubMed

    Lambert, Jennifer E; Myslicki, Jason P; Bomhof, Marc R; Belke, Darrell D; Shearer, Jane; Reimer, Raylene A

    2015-07-01

    Cecal microbiota from type 2 diabetic (db/db) and control (db/(+)) mice was obtained following 6 weeks of sedentary or exercise activity. qPCR analysis revealed a main effect of exercise, with greater abundance of select Firmicutes species and lower Bacteroides/Prevotella spp. in both normal and diabetic exercised mice compared with sedentary counterparts. Conversely, Bifidobacterium spp. was greater in exercised normal but not diabetic mice (exercise × diabetes interaction). How exercise influences gut microbiota requires further investigation.

  11. Rapamycin selectively alters serum chemistry in diabetic mice

    PubMed Central

    Tabatabai-Mir, Hooman; Sataranatarajan, Kavithalakshmi; Lee, Hak Joo; Bokov, Alex F.; Fernandez, Elizabeth; Diaz, Vivian; Choudhury, Goutam Ghosh; Richardson, Arlan; Kasinath, Balakuntalam S.

    2012-01-01

    The study was undertaken to explore the effect of rapamycin, an anti-inflammatory agent, on the metabolic profile of type 2 diabetic mice. Seven-month-old diabetic db/db mice and their lean littermate non-diabetic controls (db/m) were randomized to receive control chow or chow mixed with rapamycin (2.24 mg/kg/day) (each group n =20, males and females) for 4 months and sacrificed. Serum samples were analyzed for the measurement of glucose, creatinine, blood urea nitrogen (BUN), alkaline phosphatase (ALP), alanine aminotransferase (ALT), total cholesterol, total triglyceride, and total protein, using the automated dry chemistry analysis. Rapamycin elevated serum glucose in female diabetic mice. Serum creatinine tended to be higher in diabetic mice but was not affected by rapamycin; there was no difference in BUN levels among the groups. Serum ALP was elevated in diabetic mice and rapamycin lowered it only in female diabetic mice; serum ALT levels were increased in female diabetic mice, unaffected by rapamycin. Serum total protein was elevated in diabetic mice of both genders but was not affected by rapamycin. Diabetic mice from both genders had elevated serum cholesterol and triglycerides; rapamycin did not affect serum cholesterol but decreased serum total triglycerides in male diabetic mice. We conclude that rapamycin elicits complex metabolic responses in aging diabetic mice, worsening hyperglycemia in females but improving ALP in female diabetic and total triglycerides in male diabetic mice, respectively. The metabolic effects of rapamycin should be considered while performing studies with rapamycin in mice. PMID:22953036

  12. Rapamycin selectively alters serum chemistry in diabetic mice.

    PubMed

    Tabatabai-Mir, Hooman; Sataranatarajan, Kavithalakshmi; Lee, Hak Joo; Bokov, Alex F; Fernandez, Elizabeth; Diaz, Vivian; Choudhury, Goutam Ghosh; Richardson, Arlan; Kasinath, Balakuntalam S

    2012-01-01

    The study was undertaken to explore the effect of rapamycin, an anti-inflammatory agent, on the metabolic profile of type 2 diabetic mice. Seven-month-old diabetic db/db mice and their lean littermate non-diabetic controls (db/m) were randomized to receive control chow or chow mixed with rapamycin (2.24 mg/kg/day) (each group n =20, males and females) for 4 months and sacrificed. Serum samples were analyzed for the measurement of glucose, creatinine, blood urea nitrogen (BUN), alkaline phosphatase (ALP), alanine aminotransferase (ALT), total cholesterol, total triglyceride, and total protein, using the automated dry chemistry analysis. Rapamycin elevated serum glucose in female diabetic mice. Serum creatinine tended to be higher in diabetic mice but was not affected by rapamycin; there was no difference in BUN levels among the groups. Serum ALP was elevated in diabetic mice and rapamycin lowered it only in female diabetic mice; serum ALT levels were increased in female diabetic mice, unaffected by rapamycin. Serum total protein was elevated in diabetic mice of both genders but was not affected by rapamycin. Diabetic mice from both genders had elevated serum cholesterol and triglycerides; rapamycin did not affect serum cholesterol but decreased serum total triglycerides in male diabetic mice. We conclude that rapamycin elicits complex metabolic responses in aging diabetic mice, worsening hyperglycemia in females but improving ALP in female diabetic and total triglycerides in male diabetic mice, respectively. The metabolic effects of rapamycin should be considered while performing studies with rapamycin in mice. PMID:22953036

  13. Blood-stage malaria infection in diabetic mice.

    PubMed Central

    Elased, K; De Souza, J B; Playfair, J H

    1995-01-01

    Infection of mice with blood-stage Plasmodium yoelii and P. chabaudi malaria induced hypoglycaemia in normal mice and normalized the hyperglycaemia of mice made moderately diabetic with streptozotocin (STZ). Injection of parasite supernatants induced hypoglycaemia accompanied by hyperinsulinaemia in normal mice, and in STZ-diabetic mice induced a profound drop in blood glucose and restored insulin secretion; however, severely diabetic mice (two injections of STZ) remained hyperglycaemic with no change in insulin levels. We conclude that malaria infection and parasite-derived molecules lower blood glucose concentration, but only in the presence of some residual pancreatic function. Diabetic mice were less anaemic, exerted a significant control of parasitaemia, and showed enhanced phagocytic activity compared with normal mice. PMID:7882567

  14. Hypoglycemic activity and acute oral toxicity of chromium methionine complexes in mice.

    PubMed

    Tang, Hai-yan; Xiao, Qing-gui; Xu, Hong-bin; Zhang, Yi

    2015-01-01

    The hypoglycemic activity of chromium methionine (CrMet) in alloxan-induced diabetic (AID) mice was investigated and compared with those of chromium trichloride hexahydrate (CrCl3·6H2O) and chromium nicotinate (CrNic) through a 15-day feeding experiment. The acute oral toxicity of CrMet was also investigated in ICR (Institute for Cancer Research) mice by a single oral gavage. The anti-diabetic activity of CrMet was explored in detail from the aspects of body weight (BW), blood glucose, triglyceride, total cholesterol, liver glycogen levels, aspartate transaminase (AST) and alanine transaminase (ALT) levels. The obtained results showed that CrMet had beneficial effects on glucose and lipid metabolism, and might possess hepatoprotective efficacy for diabetes. Daily treatment with 500 and 1000μg Cr/kg BW of CrMet in AID mice for 15 days indicated that this low-molecular-weight organic chromium complex had better bioavailability and more beneficial effects on diabetics than CrCl3·6H2O. CrMet also had advantage over CrNic in the control of AST and ALT activities. Acute toxicity studies revealed that CrMet had low toxicity potential and relatively high safety margins in mice with the LD50 value higher than 10.0g/kg BW. These findings suggest that CrMet might be of potential value in the therapy and protection of diabetes.

  15. Inactivation of TNF-α ameliorates diabetic neuropathy in mice

    PubMed Central

    Yamakawa, Isamu; Terashima, Tomoya; Katagi, Miwako; Oi, Jiro; Urabe, Hiroshi; Sanada, Mitsuru; Kawai, Hiromichi; Chan, Lawrence; Yasuda, Hitoshi; Maegawa, Hiroshi; Kimura, Hiroshi

    2011-01-01

    Tumor necrosis factor (TNF)-α is a potent proinflammatory cytokine involved in the pathogenesis of diabetic neuropathy. We inactivated TNF-α to determine if it is a valid therapeutic target for the treatment of diabetic neuropathy. We effected the inactivation in diabetic neuropathy using two approaches: by genetic inactivation of TNF-α (TNF-α−/− mice) or by neutralization of TNF-α protein using the monoclonal antibody infliximab. We induced diabetes using streptozotocin in wild-type and TNF-α−/− mice. We measured serum TNF-α concentration and the level of TNF-α mRNA in the dorsal root ganglion (DRG) and evaluated nerve function by a combination of motor (MNCV) and sensory (SNCV) nerve conduction velocities and tail flick test, as well as cytological analysis of intraepidermal nerve fiber density (IENFD) and immunostaining of DRG for NF-κB p65 serine-276 phosphorylated and cleaved caspase-3. Compared with nondiabetic mice, TNF-α+/+ diabetic mice displayed significant impairments of MNCV, SNCV, tail flick test, and IENFD as well as increased expression of NF-κB p65 and cleaved caspase-3 in their DRG. In contrast, although nondiabetic TNF-α−/− mice showed mild abnormalities of IENFD under basal conditions, diabetic TNF-α−/− mice showed no evidence of abnormal nerve function tests compared with nondiabetic mice. A single injection of infliximab in diabetic TNF-α+/+ mice led to suppression of the increased serum TNF-α and amelioration of the electrophysiological and biochemical deficits for at least 4 wk. Moreover, the increased TNF-α mRNA expression in diabetic DRG was also attenuated by infliximab, suggesting infliximab's effects may involve the local suppression of TNF-α. Infliximab, an agent currently in clinical use, is effective in targeting TNF-α action and expression and amelioration of diabetic neuropathy in mice. PMID:21810933

  16. Mycophenolate Mofetil Ameliorates Diabetic Nephropathy in db/db Mice

    PubMed Central

    Seo, Jung-Woo; Kim, Yang Gyun; Lee, Sang Ho; Lee, Arah; Kim, Dong-Jin; Jeong, Kyung-Hwan; Lee, Kyung Hye; Hwang, Seung Joon; Woo, Jong Shin; Lim, Sung Jig; Kim, Weon; Moon, Ju-Young

    2015-01-01

    Chronic low-grade inflammation is an important factor in the pathogenesis of diabetic complication. Mycophenolate mofetil (MMF) has an anti-inflammatory effect, inhibiting lymphocyte proliferation. Previous studies showed attenuation of diabetic nephropathy with MMF, but the underlying mechanisms were unclear. This study aimed to identify the effect of MMF on diabetic nephropathy and investigate its action mechanisms in type 2 diabetic mice model. Eight-week-old db/db and control mice (db/m mice) received vehicle or MMF at a dose of 30 mg/kg/day for 12 weeks. MMF-treated diabetic mice showed decreased albuminuria, attenuated mesangial expansion, and profibrotic mRNA expressions despite the high glucose level. The number of infiltrated CD4+ and CD8+ T cells in the kidney was significantly decreased in MMF-treated db/db mice and it resulted in attenuating elevated intrarenal TNF-α and IL-17. The renal chemokines expression and macrophages infiltration were also attenuated by MMF treatment. The decreased expression of glomerular nephrin and WT1 was recovered with MMF treatment. MMF prevented the progression of diabetic nephropathy in db/db mice independent of glycemic control. These results suggest that the effects of MMF in diabetic nephropathy are mediated by CD4+ T cell regulation and related cytokines. PMID:26345532

  17. Anti-diabetic activities of Acanthopanax senticosus polysaccharide (ASP) in combination with metformin.

    PubMed

    Fu, Jianfang; Fu, Jufang; Yuan, Jun; Zhang, Nanyan; Gao, Bin; Fu, Guoqiang; Tu, Yanyang; Zhang, Yongsheng

    2012-04-01

    Combination therapy had become very popular currently for the diabetes mellitus and its complications, because of long term unreasonable drug use and adverse reaction to human body. In this study, a polysaccharide (ASP) from the roots of Acanthopanax senticosus was evaluated as an adjuvant with metformin for antidiabetic therapy in alloxan-induced diabetic rats. The result identified ASP plus metformin had a more beneficial promotion for relieving the symptoms of diabetes and reversing liver and kidney damage to normal level than only metfomin administration to diabetic rats. The blood glucose, blood lipid (TC and TG), thiobarbituric acid reactive substances (TBARS), AST, ALT, ALP, total bilirubin, creatinine and urea levels in diabetic rats were decreased by combination of ASP and metformin. Furthermore, the body weight, liver glycogen formation, antioxidant substance (GSH) and antioxidant enzyme (SOD and GPX) levels increased evidently in diabetic mice treated with both ASP and metformin. In particular, sometimes ASP plus metformin could significantly reverse the pathophysiologic parameters of diabetic rats to normal level than only metformin administration. Therefore ASP could be developed to a new adjuvant combined with metformin for diabetes mellitus therapy in the future.

  18. IFN-{gamma} gene expression in pancreatic islet-infiltrating mononuclear cells correlates with autoimmune diabetes in nonobese diabetic mice

    SciTech Connect

    Rabinovitch, A.; Suarez-Pinzon, W.L.; Sorensen, O.

    1995-05-01

    Insulin-dependent diabetes mellitus in nonobese diabetic (NOD) mice results from selective destruction of pancreatic islet {beta}-cells following islet filtration by mononuclear leukocytes. Cytokines produced by islet-infiltrating mononuclear cells may be involved in {beta}-cell destruction. Therefore, we analyzed cytokine mRNA expression, by reverse-transcriptase PCR (RT-PCR) assay, in mononuclear leukocytes isolated from pancreatic islets of four groups of mice: diabetes-prone female NOD mice; female NOD mice protected from diabetes by injection of CFA at an early age; male NOD mice with a low diabetes incidence; and female BALB/c mice that do not develop diabetes. We found that mRNA levels of IL-1{beta}, IL-2, IL-4, IL-10, and IFN-{gamma} in mononuclear cells from islets of diabetes-prone female NOD mice increased progressively as these cells infiltrated the islets from age 5 wk to diabetes onset (>13 wk). However, only IFN-{gamma} mRNA levels were significantly higher in islet mononuclear cells from 12-wk-old diabetes-prone female NOD mice than from less diabetes-prone NOD mice (CFA-treated females, and males) and normal mice (BALB/c). In contrast, IL-4 mRNA levels were lower in islet mononuclear cells from diabetes-prone female NOD mice than from NOD mice with low diabetes incidence (CFA-treated females and males). Splenic cell mRNA levels of IFN-{gamma} and IL-4 were not different in the four groups of mice. These results suggest that islet {beta}-cell destruction and diabetes in female NOD mice are dependent upon intra-islet IFN-{gamma} production by mononuclear cells, and that CFA-treated female NOD mice and male NOD mice may be protected from diabetes development by down-regulation of IFN-{gamma} production in the islets. 56 refs., 4 figs., 3 tabs.

  19. Hypoglycemic and antioxidant potential of coconut water in experimental diabetes.

    PubMed

    Preetha, P P; Devi, V Girija; Rajamohan, T

    2012-07-01

    Coconut water is a natural nutritious beverage that contains several biologically active compounds. The present study aims to evaluate the hypoglycemic and antioxidant effects of mature coconut water (MCW) on alloxan-induced diabetes in experimental rats. The experimental animals were divided into four groups - normal control, normal rats treated with MCW, diabetic control and diabetic rats treated with MCW. The blood glucose, plasma insulin, hemoglobin, glycated hemoglobin, activities of the various antioxidant enzymes (catalase, superoxide dismutase, glutathione peroxidase and glutathione reductase) and lipid peroxidation markers (malondialdehyde, hydroperoxides and conjugated dienes) were evaluated in all the groups. The results indicate that the diabetic animals treated with MCW had decreased blood glucose levels and reduced oxidative stress induced by alloxan, which was evident from the increased activities of the antioxidant enzymes and the decreased levels of the lipid peroxidation products. The overall results indicate that MCW significantly attenuated hyperglycemia and oxidative stress in alloxan-induced diabetic rats, indicating the therapeutic potential of MCW.

  20. Can garlic oil ameliorate diabetes-induced oxidative stress in a rat liver model? A correlated histological and biochemical study.

    PubMed

    Abdultawab, Hanem Saad; Ayuob, Nasra N

    2013-09-01

    This study aimed to characterise the structural changes in liver of an alloxan-induced diabetic rat and to explain such changes in terms of the biochemical changes in free radicals and antioxidants. In addition, it aimed to determine the potential ability of garlic oil to alter these changes. The study groups were: control (n=12), alloxan-induced diabetic rats (n=10) and alloxan-induced diabetic rats treated with garlic oil (10 mg/kg body weight (n=10)). Markers of oxidative stress were assessed. Small pieces of the liver were processed for transmission electron microscopic study. Garlic oil caused a significant decrease in levels of LPO in plasma (0.26 vs 0.53), erythrocyte lysate (14.4 vs 24.8) and liver tissue homogenate (1.04 vs 2.08), whereas those of thiols were significantly elevated (1.2 vs 0.46), (24 vs 15) in plasma and erythrocyte lysate respectively. SOD activity and G-S-T activity were significantly elevated in erythrocyte lysate (5.7 vs 3.3) (377 vs 179) and liver homogenate (1.4 vs 0.5) (752 vs 623) respectively after garlic oil administration. Ultrastructural study of the liver confirmed the ability of garlic to retard lipid peroxidation of cellular membranes induced by oxidative stress associated with diabetes. Therefore, garlic could normalise oxidative stress in alloxan-induced diabetic rats.

  1. Non-obese diabetic mice rapidly develop dramatic sympathetic neuritic dystrophy: a new experimental model of diabetic autonomic neuropathy.

    PubMed

    Schmidt, Robert E; Dorsey, Denise A; Beaudet, Lucie N; Frederick, Kathy E; Parvin, Curtis A; Plurad, Santiago B; Levisetti, Matteo G

    2003-11-01

    To address the pathogenesis of diabetic autonomic neuropathy, we have examined the sympathetic nervous system in non-obese diabetic (NOD) and streptozotocin (STZ)-induced diabetic mice, two models of type 1 diabetes, and the db/db mouse, a model of type 2 diabetes. After only 3 to 5 weeks of diabetes, NOD mice developed markedly swollen axons and dendrites ("neuritic dystrophy") in the prevertebral superior mesenteric and celiac ganglia (SMG-CG), similar to the pathology described in diabetic STZ- and BBW-rat and man. Comparable changes failed to develop in the superior cervical ganglia of the NOD mouse or in the SMG-CG of non-diabetic NOD siblings. STZ-induced diabetic mice develop identical changes, although at a much slower pace and to a lesser degree than NOD mice. NOD-SCID mice, which are genetically identical to NOD mice except for the absence of T and B cells, do not develop diabetes or neuropathology comparable to diabetic NOD mice. However, STZ-treated NOD-SCID mice develop severe neuritic dystrophy, evidence against an exclusively autoimmune pathogenesis for autonomic neuropathy in this model. Chronically diabetic type 2 db/db mice fail to develop neuritic dystrophy, suggesting that hyperglycemia alone may not be the critical and sufficient element. The NOD mouse appears to be a valuable model of diabetic sympathetic autonomic neuropathy with unambiguous, rapidly developing neuropathology which corresponds closely to the characteristic pathology of other rodent models and man. PMID:14578206

  2. Non-obese diabetic mice rapidly develop dramatic sympathetic neuritic dystrophy: a new experimental model of diabetic autonomic neuropathy.

    PubMed

    Schmidt, Robert E; Dorsey, Denise A; Beaudet, Lucie N; Frederick, Kathy E; Parvin, Curtis A; Plurad, Santiago B; Levisetti, Matteo G

    2003-11-01

    To address the pathogenesis of diabetic autonomic neuropathy, we have examined the sympathetic nervous system in non-obese diabetic (NOD) and streptozotocin (STZ)-induced diabetic mice, two models of type 1 diabetes, and the db/db mouse, a model of type 2 diabetes. After only 3 to 5 weeks of diabetes, NOD mice developed markedly swollen axons and dendrites ("neuritic dystrophy") in the prevertebral superior mesenteric and celiac ganglia (SMG-CG), similar to the pathology described in diabetic STZ- and BBW-rat and man. Comparable changes failed to develop in the superior cervical ganglia of the NOD mouse or in the SMG-CG of non-diabetic NOD siblings. STZ-induced diabetic mice develop identical changes, although at a much slower pace and to a lesser degree than NOD mice. NOD-SCID mice, which are genetically identical to NOD mice except for the absence of T and B cells, do not develop diabetes or neuropathology comparable to diabetic NOD mice. However, STZ-treated NOD-SCID mice develop severe neuritic dystrophy, evidence against an exclusively autoimmune pathogenesis for autonomic neuropathy in this model. Chronically diabetic type 2 db/db mice fail to develop neuritic dystrophy, suggesting that hyperglycemia alone may not be the critical and sufficient element. The NOD mouse appears to be a valuable model of diabetic sympathetic autonomic neuropathy with unambiguous, rapidly developing neuropathology which corresponds closely to the characteristic pathology of other rodent models and man.

  3. Nicotinamide Riboside Opposes Type 2 Diabetes and Neuropathy in Mice.

    PubMed

    Trammell, Samuel A J; Weidemann, Benjamin J; Chadda, Ankita; Yorek, Matthew S; Holmes, Amey; Coppey, Lawrence J; Obrosov, Alexander; Kardon, Randy H; Yorek, Mark A; Brenner, Charles

    2016-01-01

    Male C57BL/6J mice raised on high fat diet (HFD) become prediabetic and develop insulin resistance and sensory neuropathy. The same mice given low doses of streptozotocin are a model of type 2 diabetes (T2D), developing hyperglycemia, severe insulin resistance and diabetic peripheral neuropathy involving sensory and motor neurons. Because of suggestions that increased NAD(+) metabolism might address glycemic control and be neuroprotective, we treated prediabetic and T2D mice with nicotinamide riboside (NR) added to HFD. NR improved glucose tolerance, reduced weight gain, liver damage and the development of hepatic steatosis in prediabetic mice while protecting against sensory neuropathy. In T2D mice, NR greatly reduced non-fasting and fasting blood glucose, weight gain and hepatic steatosis while protecting against diabetic neuropathy. The neuroprotective effect of NR could not be explained by glycemic control alone. Corneal confocal microscopy was the most sensitive measure of neurodegeneration. This assay allowed detection of the protective effect of NR on small nerve structures in living mice. Quantitative metabolomics established that hepatic NADP(+) and NADPH levels were significantly degraded in prediabetes and T2D but were largely protected when mice were supplemented with NR. The data justify testing of NR in human models of obesity, T2D and associated neuropathies. PMID:27230286

  4. Nicotinamide Riboside Opposes Type 2 Diabetes and Neuropathy in Mice

    PubMed Central

    Trammell, Samuel A.J.; Weidemann, Benjamin J.; Chadda, Ankita; Yorek, Matthew S.; Holmes, Amey; Coppey, Lawrence J.; Obrosov, Alexander; Kardon, Randy H.; Yorek, Mark A.; Brenner, Charles

    2016-01-01

    Male C57BL/6J mice raised on high fat diet (HFD) become prediabetic and develop insulin resistance and sensory neuropathy. The same mice given low doses of streptozotocin are a model of type 2 diabetes (T2D), developing hyperglycemia, severe insulin resistance and diabetic peripheral neuropathy involving sensory and motor neurons. Because of suggestions that increased NAD+ metabolism might address glycemic control and be neuroprotective, we treated prediabetic and T2D mice with nicotinamide riboside (NR) added to HFD. NR improved glucose tolerance, reduced weight gain, liver damage and the development of hepatic steatosis in prediabetic mice while protecting against sensory neuropathy. In T2D mice, NR greatly reduced non-fasting and fasting blood glucose, weight gain and hepatic steatosis while protecting against diabetic neuropathy. The neuroprotective effect of NR could not be explained by glycemic control alone. Corneal confocal microscopy was the most sensitive measure of neurodegeneration. This assay allowed detection of the protective effect of NR on small nerve structures in living mice. Quantitative metabolomics established that hepatic NADP+ and NADPH levels were significantly degraded in prediabetes and T2D but were largely protected when mice were supplemented with NR. The data justify testing of NR in human models of obesity, T2D and associated neuropathies. PMID:27230286

  5. Cardiovascular manifestations of renovascular hypertension in diabetic mice.

    PubMed

    Kashyap, Sonu; Engel, Sean; Osman, Mazen; Al-Saiegh, Yousif; Wongjarupong, Asarn; Grande, Joseph P

    2016-01-01

    Purpose. Type 2 diabetes is the leading cause of end stage renal disease in the United States. Atherosclerotic renal artery stenosis is commonly observed in diabetic patients and impacts the rate of renal and cardiovascular disease progression. We sought to test the hypothesis that renovascular hypertension, induced by unilateral renal artery stenosis, exacerbates cardiac remodeling in leptin-deficient (db/db) mice, which serves as a model of human type II diabetes. Methods. We employed a murine model of renovascular hypertension through placement of a polytetrafluoroethylene cuff on the right renal artery in db/db mice. We studied 109 wild-type (non-diabetic, WT) and 95 db/db mice subjected to renal artery stenosis (RAS) or sham surgery studied at 1, 2, 4, and 6+ weeks following surgery. Cardiac remodeling was assessed by quantitative analysis of the percent of myocardial surface area occupied by interstitial fibrosis tissue, as delineated by trichrome stained slides. Aortic pathology was assessed by histologic sampling of grossly apparent structural abnormalities or by section of ascending aorta of vessels without apparent abnormalities. Results. We noted an increased mortality in db/db mice subjected to RAS. The mortality rate of db/db RAS mice was about 23.5%, whereas the mortality rate of WT RAS mice was only 1.5%. Over 60% of mortality in the db/db mice occurred in the first two weeks following RAS surgery. Necropsy showed massive intrathoracic hemorrhage associated with aortic dissection, predominantly in the ascending aorta and proximal descending aorta. Aortas from db/db RAS mice showed more smooth muscle dropout, loss of alpha smooth muscle actin expression, medial disruption, and hemorrhage than aortas from WT mice with RAS. Cardiac tissue from db/db RAS mice had more fibrosis than did cardiac tissue from WT RAS mice. Conclusions. db/db mice subjected to RAS are prone to develop fatal aortic dissection, which is not observed in WT mice with RAS. The db

  6. Anti-Diabetic Effects of CTB-APSL Fusion Protein in Type 2 Diabetic Mice

    PubMed Central

    Liu, Yunlong; Gao, Zhangzhao; Guo, Qingtuo; Wang, Tao; Lu, Conger; Chen, Ying; Sheng, Qing; Chen, Jian; Nie, Zuoming; Zhang, Yaozhou; Wu, Wutong; Lv, Zhengbing; Shu, Jianhong

    2014-01-01

    To determine whether cholera toxin B subunit and active peptide from shark liver (CTB-APSL) fusion protein plays a role in treatment of type 2 diabetic mice, the CTB-APSL gene was cloned and expressed in silkworm (Bombyx mori) baculovirus expression vector system (BEVS), then the fusion protein was orally administrated at a dose of 100 mg/kg for five weeks in diabetic mice. The results demonstrated that the oral administration of CTB-APSL fusion protein can effectively reduce the levels of both fasting blood glucose (FBG) and glycosylated hemoglobin (GHb), promote insulin secretion and improve insulin resistance, significantly improve lipid metabolism, reduce triglycerides (TG), total cholesterol (TC) and low density lipoprotein (LDL) levels and increase high density lipoprotein (HDL) levels, as well as effectively improve the inflammatory response of type 2 diabetic mice through the reduction of the levels of inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Histopathology shows that the fusion protein can significantly repair damaged pancreatic tissue in type 2 diabetic mice, significantly improve hepatic steatosis and hepatic cell cloudy swelling, reduce the content of lipid droplets in type 2 diabetic mice, effectively inhibit renal interstitial inflammatory cells invasion and improve renal tubular epithelial cell nucleus pyknosis, thus providing an experimental basis for the development of a new type of oral therapy for type 2 diabetes. PMID:24633252

  7. Black Ginseng Extract Counteracts Streptozotocin-Induced Diabetes in Mice

    PubMed Central

    Kim, Jun Ho; Pan, Jeong Hoon; Cho, Hyung Taek; Kim, Young Jun

    2016-01-01

    Black ginseng, a new type of processed ginseng that has a unique ginsenoside profile, has been shown to display potent pharmacological activities in in vitro and in vivo models. Although red ginseng is considered beneficial for the prevention of diabetes, the relationship between black ginseng and diabetes is unknown. Therefore, this study was designed to evaluate the anti-diabetic potential of black ginseng extract (BGE) in streptozotocin (STZ)-induced insulin-deficient diabetic mice, in comparison with red ginseng extract (RGE). HPLC analyses showed that BGE has a different ginsenoside composition to RGE; BGE contains Rg5 and compound k as the major ginsenosides. BGE at 200 mg/kg reduced hyperglycemia, increased the insulin/glucose ratio and improved islet architecture and β-cell function in STZ-treated mice. The inhibition of β-cell apoptosis by BGE was associated with suppression of the cytokine—induced nuclear factor–κB—mediated signaling pathway in the pancreas. Moreover, these anti-diabetic effects of BGE were more potent than those of RGE. Collectively, our data indicate that BGE, in part by suppressing cytokine—induced apoptotic signaling, protects β-cells from oxidative injury and counteracts diabetes in mice. PMID:26751692

  8. Black Ginseng Extract Counteracts Streptozotocin-Induced Diabetes in Mice.

    PubMed

    Kim, Jun Ho; Pan, Jeong Hoon; Cho, Hyung Taek; Kim, Young Jun

    2016-01-01

    Black ginseng, a new type of processed ginseng that has a unique ginsenoside profile, has been shown to display potent pharmacological activities in in vitro and in vivo models. Although red ginseng is considered beneficial for the prevention of diabetes, the relationship between black ginseng and diabetes is unknown. Therefore, this study was designed to evaluate the anti-diabetic potential of black ginseng extract (BGE) in streptozotocin (STZ)-induced insulin-deficient diabetic mice, in comparison with red ginseng extract (RGE). HPLC analyses showed that BGE has a different ginsenoside composition to RGE; BGE contains Rg5 and compound k as the major ginsenosides. BGE at 200 mg/kg reduced hyperglycemia, increased the insulin/glucose ratio and improved islet architecture and β-cell function in STZ-treated mice. The inhibition of β-cell apoptosis by BGE was associated with suppression of the cytokine-induced nuclear factor-κB-mediated signaling pathway in the pancreas. Moreover, these anti-diabetic effects of BGE were more potent than those of RGE. Collectively, our data indicate that BGE, in part by suppressing cytokine-induced apoptotic signaling, protects β-cells from oxidative injury and counteracts diabetes in mice. PMID:26751692

  9. Histidine Decarboxylase Deficiency Prevents Autoimmune Diabetes in NOD Mice

    PubMed Central

    Alkan, Manal; Machavoine, François; Rignault, Rachel; Dam, Julie; Dy, Michel; Thieblemont, Nathalie

    2015-01-01

    Recent evidence has highlighted the role of histamine in inflammation. Since this monoamine has also been strongly implicated in the pathogenesis of type-1 diabetes, we assessed its effect in the nonobese diabetic (NOD) mouse model. To this end, we used mice (inactivated) knocked out for the gene encoding histidine decarboxylase, the unique histamine-forming enzyme, backcrossed on a NOD genetic background. We found that the lack of endogenous histamine in NOD HDC−/− mice decreased the incidence of diabetes in relation to their wild-type counterpart. Whereas the proportion of regulatory T and myeloid-derived suppressive cells was similar in both strains, histamine deficiency was associated with increased levels of immature macrophages, as compared with wild-type NOD mice. Concerning the cytokine pattern, we found a decrease in circulating IL-12 and IFN-γ in HDC−/− mice, while IL-6 or leptin remained unchanged, suggesting that histamine primarily modulates the inflammatory environment. Paradoxically, exogenous histamine given to NOD HDC−/− mice provided also protection against T1D. Our study supports the notion that histamine is involved in the pathogenesis of diabetes, thus providing additional evidence for its role in the regulation of the immune response. PMID:26090474

  10. Multiple mechanisms involved in diabetes protection by lipopolysaccharide in non-obese diabetic mice

    SciTech Connect

    Wang, Jun; Cao, Hui; Wang, Hongjie; Yin, Guoxiao; Du, Jiao; Xia, Fei; Lu, Jingli; Xiang, Ming

    2015-06-15

    Toll-like receptor 4 (TLR4) activation has been proposed to be important for islet cell inflammation and eventually β cell loss in the course of type 1 diabetes (T1D) development. However, according to the “hygiene hypothesis”, bacterial endotoxin lipopolysaccharide (LPS), an agonist on TLR4, inhibits T1D progression. Here we investigated possible mechanisms for the protective effect of LPS on T1D development in non-obese diabetic (NOD) mice. We found that LPS administration to NOD mice during the prediabetic state neither prevented nor reversed insulitis, but delayed the onset and decreased the incidence of diabetes, and that a multiple-injection protocol is more effective than a single LPS intervention. Further, LPS administration suppressed spleen T lymphocyte proliferation, increased the generation of CD4{sup +}CD25{sup +}Foxp3{sup +} regulatory T cells (Tregs), reduced the synthesis of strong Th1 proinflammatory cytokines, and downregulated TLR4 and its downstream MyD88-dependent signaling pathway. Most importantly, multiple injections of LPS induced a potential tolerogenic dendritic cell (DC) subset with low TLR4 expression without influencing the DC phenotype. Explanting DCs from repeated LPS-treated NOD mice into NOD/SCID diabetic mice conferred sustained protective effects against the progression of diabetes in the recipients. Overall, these results suggest that multiple mechanisms are involved in the protective effects of LPS against the development of diabetes in NOD diabetic mice. These include Treg induction, down-regulation of TLR4 and its downstream MyD88-dependent signaling pathway, and the emergence of a potential tolerogenic DC subset. - Highlights: • Administration of lipopolysaccharide (LPS) prevented type 1 diabetes in NOD mice. • Downregulating TLR4 level and MyD88-dependent pathway contributed to protection of LPS. • LPS administration also hampered DC maturation and promoted Treg differentiation.

  11. Generation of stem cell-derived β-cells from patients with type 1 diabetes

    PubMed Central

    Millman, Jeffrey R.; Xie, Chunhui; Van Dervort, Alana; Gürtler, Mads; Pagliuca, Felicia W.; Melton, Douglas A.

    2016-01-01

    We recently reported the scalable in vitro production of functional stem cell-derived β-cells (SC-β cells). Here we extend this approach to generate the first SC-β cells from type 1 diabetic patients (T1D). β-cells are destroyed during T1D disease progression, making it difficult to extensively study them in the past. These T1D SC-β cells express β-cell markers, respond to glucose both in vitro and in vivo, prevent alloxan-induced diabetes in mice and respond to anti-diabetic drugs. Furthermore, we use an in vitro disease model to demonstrate the cells respond to different forms of β-cell stress. Using these assays, we find no major differences in T1D SC-β cells compared with SC-β cells derived from non-diabetic patients. These results show that T1D SC-β cells could potentially be used for the treatment of diabetes, drug screening and the study of β-cell biology. PMID:27163171

  12. Arginase II Deletion Increases Corpora Cavernosa Relaxation in Diabetic Mice

    PubMed Central

    Toque, Haroldo; Tostes, Rita; Yao, Lin; Xu, Zhimin; Webb, Clinton R.; Caldwell, Ruth; Caldwell, Robert

    2010-01-01

    Introduction Diabetes-induced erectile dysfunction involves elevated arginase (Arg) activity and expression. Because nitric oxide (NO) synthase and Arg share and compete for their substrate L-arginine, NO production is likely linked to regulation of Arg. Arg is highly expressed and implicated in erectile dysfunction. Aim It was hypothesized that Arg-II isoform deletion enhances relaxation function of corpora cavernosal (CC) smooth muscle in a streptozotocin (STZ) diabetic model. Methods Eight weeks after STZ-induced diabetes, vascular functional studies, Arg activity assay, and protein expression levels of Arg and constitutive NOS (using western blots) were assessed in CC tissues from non-diabetic wild type (WT), diabetic (D) WT (WT+D), Arg-II knockout (KO) and Arg-II KO+D mice (N=8–10 per group). Main Outcome Measures Inhibition or lack of arginase results in facilitation of CC relaxation in diabetic CC. Results Strips of CC from Arg-II KO mice exhibited an enhanced maximum endothelium-dependent relaxation (from 70+3% to 84+4%) and increased nitrergic relaxation (by 55%, 71%, 42%, 42%, and 24% for 1, 2, 4, 8 and 16 Hz, respectively) compared to WT mice. WT+D mice showed a significant reduction of endothelium-dependent maximum relaxation (44+8%), but this impairment of relaxation was significantly prevented in Arg-II KO+D mice (69+4%). Sympathetic-mediated and alpha-adrenergic agent-induced contractile responses also were increased in CC strips from D compared to non-D controls. Contractile responses were significantly lower in Arg-II KO control and D versus the WT groups. WT+D mice increased Arg activity (1.5-fold) and Arg-II protein expression and decreased total and phospho-eNOS at Ser-1177, and nNOS levels. These alterations were not seen in Arg-II KO mice. Additionally, the Arg inhibitor BEC (50 μM) enhanced nitrergic and endothelium-dependent relaxation in CC of WT+D mice. Conclusion These studies show for the first time that Arg-II deletion improves CC

  13. Immunization of AGE-modified albumin inhibits diabetic nephropathy progression in diabetic mice

    PubMed Central

    Mashitah, Musthika Wida; Azizah, Nurona; Samsu, Nur; Indra, Muhammad Rasjad; Bilal, Muhammad; Yunisa, Meti Verdian; Arisanti, Amildya Dwi

    2015-01-01

    Background Diabetic nephropathy (DN) is a serious vascular complication of diabetes and an important cause of end-stage renal disease. One mechanism by which hyperglycemia causes nephropathy is through the formation of advanced glycation end products (AGE). Development of vaccination would be a promising therapy for the future, while to date, anti-AGE therapy is based on medicines that are needed to be consumed lifelong. This study aimed to find out the effect of immunization of AGE-modified albumin against DN pathogenesis in streptozotocin-induced diabetic in mice. Methods We used 24 BALB/c male mice as experimental animals, which were divided into six groups, two nondiabetic groups (negative control and AGE-modified bovine serum albumin [BSA] preimmunized groups) and four streptozotocin-induced diabetic groups (diabetic control group and diabetic preimmunized groups for AGE-BSA, Keyhole limpet hemocyanin (KLH), and AGE-BSA-KLH, respectively). Results Diabetic preimmunized groups for AGE-BSA, KLH, and AGE-BSA-KLH showed amelioration in renal function and histopathology compared with the diabetic control group. Preimmunization also maintained nephrin intensity and decreased serum AGE level, kidney AGE deposition, and kidney cells apoptosis. Conclusion AGE-BSA and AGE-BSA-KLH immunizations inhibit the progression of DN. Our results strengthen the evidence that the anti-AGE antibodies have a protective role against diabetic vascular complication, especially DN. This study provides a basis for the development of DN-based immunotherapy with AGE immunization as a potential candidate. PMID:26346342

  14. Ergosterol Alleviates Kidney Injury in Streptozotocin-Induced Diabetic Mice

    PubMed Central

    Ang, Li; Yuguang, Liu; Liying, Wang; Shuying, Zhang; Liting, Xu; Shumin, Wang

    2015-01-01

    Ergosterol (ERG) has been widely used in the development of novel drugs due to its unique physiological function. However, little is known about the protective effects of ERG on diabetes. Hence, the current study was designed to evaluate the positive role of ergosterol on streptozotocin- (STZ-) induced diabetes in mice. Oral glucose tolerance test (OGTT) was carried out to assess blood glucose level. Biochemical parameters such as uric acid, creatinine, serum insulin, triglycerides (TG), and total cholesterol (TC) were also measured. Pathological condition of kidney was examined by hematoxylin-eosin (H&E) staining. The expressions of PI3K, p-PI3K, Akt, p-Akt, NF-κBp65, p-NF-κBp65, IκBα, and p-IκBα were analyzed by western blot. ERG significantly reduced the concentrations of blood glucose, uric acid, creatinine, TG, and TC. Serum insulin was elevated with ERG treatment. In addition, renal pathologic changes of diabetes mice were also alleviated by ERG. Obtained data revealed that ERG restored the levels of PI3K/Akt/NF-κB signaling-related proteins in comparison with diabetes mice. Above all, it could be assumed that ERG might play a positive role in regulating STZ-induced diabetes through suppressing PI3K/Akt/NF-κB pathway. PMID:26664454

  15. Nonobese diabetic mice and the genetics of diabetes susceptibility.

    PubMed

    Leiter, Edward H

    2005-04-01

    The nonobese diabetic mouse spontaneously develops an autoimmune, T-cell-mediated type 1 diabetes (T1D). Common and rare alleles both within a diabetogenic major histocompatibility complex (MHC) and multiple non-MHC genes combine to impair normal communication between the innate and acquired immune system, leading to loss of immune tolerance. An understanding of how variable collections of genes interact with each other and with environmental cues offers important insights as to the complexities of T1D inheritance in humans.

  16. Cutting Edge: Nonobese Diabetic Mice Deficient in Chromogranin A Are Protected from Autoimmune Diabetes.

    PubMed

    Baker, Rocky L; Bradley, Brenda; Wiles, Timothy A; Lindsay, Robin S; Barbour, Gene; Delong, Thomas; Friedman, Rachel S; Haskins, Kathryn

    2016-01-01

    T cells reactive to β cell Ags are critical players in the development of autoimmune type 1 diabetes. Using a panel of diabetogenic CD4 T cell clones derived from the NOD mouse, we recently identified the β cell secretory granule protein, chromogranin A (ChgA), as a new autoantigen in type 1 diabetes. CD4 T cells reactive to ChgA are pathogenic and rapidly transfer diabetes into young NOD recipients. We report in this article that NOD.ChgA(-/-) mice do not develop diabetes and show little evidence of autoimmunity in the pancreatic islets. Using tetramer analysis, we demonstrate that ChgA-reactive T cells are present in these mice but remain naive. In contrast, in NOD.ChgA(+/+) mice, a majority of the ChgA-reactive T cells are Ag experienced. Our results suggest that the presence of ChgA and subsequent activation of ChgA-reactive T cells are essential for the initiation and development of autoimmune diabetes in NOD mice. PMID:26608914

  17. Severe pulmonary metastasis in obese and diabetic mice.

    PubMed

    Mori, Akinori; Sakurai, Hiroaki; Choo, Min-Kyung; Obi, Ryosuke; Koizumi, Keiichi; Yoshida, Chiho; Shimada, Yutaka; Saiki, Ikuo

    2006-12-15

    Although obesity is known as a risk factor for several human cancers, the association of obesity with cancer recurrence and metastasis remains to be characterized. Here, B16-BL6 melanoma and Lewis lung carcinoma cells were intravenously injected into diabetic (db/db) and obese (ob/ob) mice. The number of experimental lung colonies was markedly promoted in these mice when compared with C57BL/6 mice. In contrast, tumor growth at the implanted site was comparable when cells were inoculated orthotopically. The use of B16-BL6 cells stably transfected with the luciferase gene revealed that the increased metastasis reflected a difference mainly within 6 hr after the intravenous inoculation of tumor cells. Administration of recombinant leptin in ob/ob mice abolished the increase in metastasis early on as well as the decrease in the splenic NK cell number. In addition, depletion of NK cells by an anti-asialo-GM1 antibody abrogated the enhanced metastasis in db/db mice. These results demonstrate that metastasis is markedly promoted in diabetic and obese mice mainly because of decreased NK cell function during the early phase of metastasis. PMID:16998795

  18. Oral nitrite therapy improves vascular function in diabetic mice

    PubMed Central

    Sindler, Amy L; Cox-York, Kimberly; Reese, Lauren; Bryan, Nathan S; Seals, Douglas R; Gentile, Christopher L

    2016-01-01

    Aim We tested the hypothesis that short-term oral sodium nitrite supplementation would improve vascular dysfunction in obese, diabetic mice. Methods and results Vascular function was determined in control mice and in db/db mice receiving drinking water with or without sodium nitrite (50 mg/L) for 5 weeks. Nitrite supplementation increased plasma nitrite concentrations in db/db mice (0.19±0.02 μM vs 0.80±0.26μM; p < 0.05). Db/db mice had lower endothelium-dependent dilation (EDD) in response to increasing doses of acetylcholine versus heterozygous control mice (71.2% ± 14.3% vs 93% ± 7.0%; p < 0.05), and sodium nitrite supplementation restored endothelium-dependent dilation to control levels (92.9% ± 2.3% vs 93% ± 7.0%; p < 0.05). The improvement in endothelial function was accompanied by a reduction in intrinsic stiffness, but not by alterations in plasma or vascular markers of inflammation. Conclusion These data suggest that sodium nitrite may be a novel therapy for treating diabetes-related vascular dysfunction; however, the mechanisms of improvement are unknown. PMID:25696116

  19. Vitamin E and diabetic nephropathy in mice model and humans.

    PubMed

    Farid, Nakhoul; Inbal, Dahan; Nakhoul, Nakhoul; Evgeny, Farber; Miller-Lotan, Rachel; Levy, Andrew P; Rabea, Asleh

    2013-11-01

    Diabetes mellitus (DM) is associated with increased oxidative stress due to elevated glucose levels in the plasma. Glucose promotes glycosylation of both plasma and cellular proteins with increased risk for vascular events. Diabetic patients suffer from a higher incidence of cardiovascular complications such as diabetic nephropathy. Haptoglobin (Hp) is an antioxidant plasma protein which binds free hemoglobin, thus preventing heme-iron mediated oxidation. Two alleles exist at the Hp gene locus (1 and 2) encoding three possible Hp genotypes that differ in their antioxidant ability, and may respond differently to vitamin E treatment. Several clinical studies to have shown that Hp 1-1 genotype is a superior antioxidant to the Hp 2-2 genotype and Hp 2-2 genotype is associated with a higher incidence of cardiovascular disease. Vitamin E was found to have beneficial effect in patient and mice with Hp 2-2 genotype. In this review we have summarized the results of our studies in patients with diabetic nephropathy treated with vitamin E and in diabetic mice with different haptoglobin genotypes. PMID:24255894

  20. Neurobehavioral deficits in db/db diabetic mice

    PubMed Central

    Sharma, Ajaykumar N.; Elased, Khalid M.; Garrett, Teresa L.; Lucot, James B.

    2011-01-01

    Recent clinical studies indicate neurobehavioral disturbances in type-2 diabetics. However, there is paucity of preclinical research to support this concept. The validity of db/db mouse as an animal model to study type-2 diabetes and related complications is known. The present study was designed to investigate comprehensively the db/db mouse behavior as preclinical evidence of type-2 diabetes related major neurobehavioral complications. We tested juvenile (5–6 weeks) and adult (10–11 weeks) db/db mice for behavioral depression in forced swim test (FST), psychosis-like symptoms using pre-pulse inhibition (PPI) test, anxiety behavior employing elevated plus maze (EPM) test, locomotor behavior and thigmotaxis using open field test and working memory deficits in Y-maze test. Both juvenile and adult group db/db mice displayed behavioral despair with increased immobility time in FST. There was an age-dependent progression of psychosis-like symptoms with disrupted PPI in adult db/db mice. In the EPM test, db/db mice were less anxious as observed by increased percent open arms time and entries. They were also hypolocomotive as evident by a decrease in their basic and fine movements. There was no impairment of working memory in the Y-maze test in db/db mice. This is the first report of depression, psychosis-like symptoms and anxiolytic behavior of db/db mouse strain. It is tempting to speculate that this mouse strain can serve as useful preclinical model to study type-2 diabetes related neurobehavioral complications. PMID:20637218

  1. Differential central pathology and cognitive impairment in pre-diabetic and diabetic mice.

    PubMed

    Ramos-Rodriguez, Juan Jose; Ortiz, Oscar; Jimenez-Palomares, Margarita; Kay, Kevin R; Berrocoso, Esther; Murillo-Carretero, Maria Isabel; Perdomo, German; Spires-Jones, Tara; Cozar-Castellano, Irene; Lechuga-Sancho, Alfonso Maria; Garcia-Alloza, Monica

    2013-11-01

    Although age remains the main risk factor to suffer Alzheimer's disease (AD) and vascular dementia (VD), type 2 diabetes (T2D) has turned up as a relevant risk factor for dementia. However, the ultimate underlying mechanisms for this association remain unclear. In the present study we analyzed central nervous system (CNS) morphological and functional consequences of long-term insulin resistance and T2D in db/db mice (leptin receptor KO mice). We also included C57Bl6 mice fed with high fat diet (HFD) and a third group of C57Bl6 streptozotocin (STZ) treated mice. Db/db mice exhibited pathological characteristics that mimic both AD and VD, including age dependent cognitive deterioration, brain atrophy, increased spontaneous hemorrhages and tau phosphorylation, affecting the cortex preferentially. A similar profile was observed in STZ-induced diabetic mice. Moreover metabolic parameters, such as body weight, glucose and insulin levels are good predictors of many of these alterations in db/db mice. In addition, in HFD-induced hyperinsulinemia in C57Bl6 mice, we only observed mild CNS alterations, suggesting that central nervous system dysfunction is associated with well established T2D. Altogether our results suggest that T2D may promote many of the pathological and behavioral alterations observed in dementia, supporting that interventions devoted to control glucose homeostasis could improve dementia progress and prognosis.

  2. Effects of histamine H(1) receptor antagonists on depressive-like behavior in diabetic mice.

    PubMed

    Hirano, Shoko; Miyata, Shigeo; Onodera, Kenji; Kamei, Junzo

    2006-02-01

    We previously reported that streptozotocin-induced diabetic mice showed depressive-like behavior in the tail suspension test. It is well known that the central histaminergic system regulates many physiological functions including emotional behaviors. In this study, we examined the role of the central histaminergic system in the diabetes-induced depressive-like behavior in the mouse tail suspension test. The histamine contents in the hypothalamus were significantly higher in diabetic mice than in non-diabetic mice. The histamine H(1) receptor antagonist chlorpheniramine (1-10 mg/kg, s.c.) dose-dependently and significantly reduced the duration of immobility in both non-diabetic and diabetic mice. In contrast, the selective histamine H(1) receptor antagonists epinastine (0.03-0.3 microg/mouse, i.c.v.) and cetirizine (0.01-0.1 microg/mouse, i.c.v.) dose-dependently and significantly suppressed the duration of immobility in diabetic mice, but not in non-diabetic mice. Spontaneous locomotor activity was not affected by histamine H(1) receptor antagonists in either non-diabetic or diabetic mice. In addition, the number and affinity of histamine H(1) receptors in the frontal cortex were not affected by diabetes. In conclusion, we suggest that the altered neuronal system mediated by the activation of histamine H(1) receptors is involved, at least in part, in the depressive-like behavior seen in diabetic mice.

  3. The effect of B vitamin supplementation on wound healing in type 2 diabetic mice

    PubMed Central

    Mochizuki, Saeka; Takano, Mayuko; Sugano, Naoyuki; Ohtsu, Mariko; Tsunoda, Kou; Koshi, Ryosuke; Yoshinuma, Naoto

    2016-01-01

    The aim of this study was to test the effects of B-group vitamin supplements on wound healing in diabetic mice. The mice in the experimental group were treated daily with 1 g/L B6, 1.25 mg/L B12, and 62.5 mg/L folic acid in their drinking water. Full-thickness excision wounds were created with 6-mm skin biopsy punches. Each wound closure was digitally photographed. Beginning on day 3 after wounding, the wound area in the diabetic mice was statistically larger than that of normal mice (p<0.05 vs diabetic mice). The diabetic mice treated with B vitamins displayed accelerated wound closure on day 3 (wound area 42.8 ± 11.3%, p<0.05). On day 9 after wounding, the wound area in the diabetic mice was also statistically larger than that of normal mice (p<0.05 vs diabetic mice). The diabetic mice treated with B vitamins displayed accelerated wound closure on day 3 (wound area 13.2 ± 16.8%, p<0.05). In addition, the high glucose level in the diabetic animals decreased significantly in response to B vitamin treatment. In conclusion, the results of this study indicate that B vitamin supplementation may improve wound healing in diabetic mice. PMID:26798199

  4. Berberine Improves Kidney Function in Diabetic Mice via AMPK Activation

    PubMed Central

    Zhao, Long; Sun, Li-Na; Nie, Hui-Bin; Wang, Xue-Ling; Guan, Guang-Ju

    2014-01-01

    Diabetic nephropathy is a major cause of morbidity and mortality in diabetic patients. Effective therapies to prevent the development of this disease are required. Berberine (BBR) has several preventive effects on diabetes and its complications. However, the molecular mechanism of BBR on kidney function in diabetes is not well defined. Here, we reported that activation of AMP-activated protein kinase (AMPK) is required for BBR-induced improvement of kidney function in vivo. AMPK phosphorylation and activity, productions of reactive oxygen species (ROS), kidney function including serum blood urea nitrogen (BUN), creatinine clearance (Ccr), and urinary protein excretion, morphology of glomerulus were determined in vitro or in vivo. Exposure of cultured human glomerulus mesangial cells (HGMCs) to BBR time- or dose-dependently activates AMPK by increasing the thr172 phosphorylation and its activities. Inhibition of LKB1 by siRNA or mutant abolished BBR-induced AMPK activation. Incubation of cells with high glucose (HG, 30 mM) markedly induced the oxidative stress of HGMCs, which were abolished by 5-aminoimidazole-4-carboxamide ribonucleoside, AMPK gene overexpression or BBR. Importantly, the effects induced by BBR were bypassed by AMPK siRNA transfection in HG-treated HGMCs. In animal studies, streptozotocin-induced hyperglycemia dramatically promoted glomerulosclerosis and impaired kidney function by increasing serum BUN, urinary protein excretion, and decreasing Ccr, as well as increased oxidative stress. Administration of BBR remarkably improved kidney function in wildtype mice but not in AMPKα2-deficient mice. We conclude that AMPK activation is required for BBR to improve kidney function in diabetic mice. PMID:25409232

  5. Gynura procumbens Extract Alleviates Postprandial Hyperglycemia in Diabetic Mice

    PubMed Central

    Choi, Sung-In; Park, Mi Hwa; Han, Ji-Sook

    2016-01-01

    This study was designed to investigate the inhibitory effect of Gynura procumbens extract against carbohydrate digesting enzymes and its ability to ameliorate postprandial hyperglycemia in streptozotocin (STZ)-induced diabetic mice. G. procumbens extract showed prominent α-glucosidase and α-amylase inhibitory effects. The half-maximal inhibitory concentration (IC50) of G. procumbens extract against α-glucosidase and α-amylase was 0.092±0.018 and 0.084±0.027 mg/mL, respectively, suggesting that the α-amylase inhibition activity of the G. procumbens extract was more effective than that of the positive control, acarbose (IC50=0.164 mg/mL). The increase in postprandial blood glucose levels was more significantly alleviated in the G. procumbens extract group than in the control group of STZ-induced diabetic mice. Moreover, the area under the curve significantly decreased with G. procumbens extract administration in STZ-induced diabetic mice. These results suggest that G. procumbens extract may help alleviate postprandial hyperglycemia by inhibiting carbohydrate digesting enzymes. PMID:27752493

  6. A novel quantitative method for diabetic cardiac autonomic neuropathy assessment in type 1 diabetic mice.

    PubMed

    Chon, Ki H; Yang, Bufan; Posada-Quintero, Hugo F; Siu, Kin L; Rolle, Marsha; Brink, Peter; Birzgalis, Aija; Moore, Leon C

    2014-11-01

    In this work, we used a sensitive and noninvasive computational method to assess diabetic cardiovascular autonomic neuropathy (DCAN) from pulse oximeter (photoplethysmographic; PPG) recordings from mice. The method, which could be easily applied to humans, is based on principal dynamic mode (PDM) analysis of heart rate variability (HRV). Unlike the power spectral density, PDM has been shown to be able to separately identify the activities of the parasympathetic and sympathetic nervous systems without pharmacological intervention. HRV parameters were measured by processing PPG signals from conscious 1.5- to 5-month-old C57/BL6 control mice and in Akita mice, a model of insulin-dependent type 1 diabetes, and compared with the gold-standard Western blot and immunohistochemical analyses. The PDM results indicate significant cardiac autonomic impairment in the diabetic mice in comparison to the controls. When tail-cuff PPG recordings were collected and analyzed starting from 1.5 months of age in both C57/Bl6 controls and Akita mice, onset of DCAN was seen at 3 months in the Akita mice, which persisted up to the termination of the recording at 5 months. Western blot and immunohistochemical analyses also showed a reduction in nerve density in Akita mice at 3 and 4 months as compared to the control mice, thus, corroborating our PDM data analysis of HRV records. Western blot analysis of autonomic nerve proteins corroborated the PPG-based HRV analysis via the PDM approach. In contrast, traditional HRV analysis (based on either the power spectral density or time-domain measures) failed to detect the nerve rarefaction.

  7. Insulin-tumour interrelationship in EL4 lymphoma or thymoma-bearing mice. I. Alloxan-diabetic or non-diabetic mice.

    PubMed Central

    Yam, D.; Zilberstein, A.; Fink, A.; Nir, I.

    1990-01-01

    A study has been carried out in which a comparison was made between EL4 lymphoma (assumed to be an insulin-producing secreting tumour) and thymoma (an insulin-dependent tumour). Tumour development and incidence, 3H-thymidine incorporation and insulin content in tumours, the host's food intake, blood insulin, glucose and cholesterol were determined in non-diabetic and alloxan-diabetic mice. Whereas no significant differences were observed between the diabetic and non-diabetic EL4 tumour-bearing mice, the diabetic, thymoma tumour-bearing mice showed reduced tumour growth and lower tumour incidence as compared with their non-diabetic counterparts. Insulin administration to diabetic tumour bearing mice, enhanced 3H-thymidine incorporation in the thymoma tumour cells only, and the insulin content of the EL4 tumours was found to be higher than that of the thymoma tumours. Rapid diabetes remission was observed in the diabetic, EL4 tumour-bearing mice as compared with the thymoma tumour-bearing mice. PMID:2186773

  8. Epigallocatechin gallate delays the onset of type 1 diabetes in spontaneous non-obese diabetic mice.

    PubMed

    Fu, Zhuo; Zhen, Wei; Yuskavage, Julia; Liu, Dongmin

    2011-04-01

    Type 1 diabetes (T1D) results from the autoimmune-mediated destruction of pancreatic β-cells, leading to deficiency of insulin production. Successful islet transplantation can normalise hyperglycaemia in T1D patients; however, the limited availability of the islets, loss of islet cell mass through apoptosis after islet isolation and potential autoimmune destruction of the transplanted islets prevent the widespread use of this procedure. Therefore, the search for novel and cost-effective agents that can prevent or treat T1D is extremely important to decrease the burden of morbidity from this disease. In the present study, we discovered that ( - )-epigallocatechin gallate (EGCG, 0·05 % in drinking-water), the primary polyphenolic component in green tea, effectively delayed the onset of T1D in non-obese diabetic (NOD) mice. At 32 weeks of age, eight (66·7 %) out of twelve mice in the control group developed diabetes, whereas only three (25 %) out of twelve mice in the EGCG-treated group became diabetic (P < 0·05). Consistently, mice supplemented with EGCG had significantly higher plasma insulin levels and survival rate but lower glycosylated Hb concentrations compared with the control animals. EGCG had no significant effects on food or water intake and body weight in mice, suggesting that the glucose-lowering effect was not due to an alteration in these parameters. While EGCG did not modulate insulitis, it elevated the circulating anti-inflammatory cytokine IL-10 level in NOD mice. These findings demonstrate that EGCG may be a novel, plant-derived compound capable of reducing the risk of T1D. PMID:21144096

  9. Piceatannol lowers the blood glucose level in diabetic mice.

    PubMed

    Uchida-Maruki, Hiroko; Inagaki, Hiroyuki; Ito, Ryouichi; Kurita, Ikuko; Sai, Masahiko; Ito, Tatsuhiko

    2015-01-01

    We previously found that passion fruit (Passiflora edulis) seeds contained a high amount of piceatannol (3,5,3',4'-trans-tetrahydroxystilbene), a natural analog of resveratrol (3,5,4'-trans-trihydroxystilbene). Resveratrol has been proposed as a potential anti-metabolic disorder compound, by its activation of sirtuin and AMP-activated protein kinase. Many reports show that resveratrol ameliorates diet-induced obesity and insulin resistance. However, it is not known whether piceatannol also affects diet-induced obesity. We explored the effect of piceatannol on high fat diet-fed mice. The results showed that piceatannol did not affect high fat diet-induced body weight gain or visceral fat gain in mice. However, piceatannol did reduce fasting blood glucose levels. Furthermore, to explore the potential of passion fruit seed extract containing piceatannol as a functional food, passion fruit seed extract was administered in a genetic diabetic mouse model (db/db mice). Single administration of passion fruit seed extract, as well as piceatannol reduced the blood glucose levels of these db/db mice. These results suggest that piceatannol and passion fruit seed extract may have potential application in the prevention of diabetes. PMID:25832644

  10. Obesity and diabetes in TNF-alpha receptor- deficient mice.

    PubMed Central

    Schreyer, S A; Chua, S C; LeBoeuf, R C

    1998-01-01

    TNF-alpha may play a role in mediating insulin resistance associated with obesity. This concept is based on studies of obese rodents and humans, and cell culture models. TNF elicits cellular responses via two receptors called p55 and p75. Our purpose was to test the involvement of TNF in glucose homeostasis using mice lacking one or both TNF receptors. C57BL/6 mice lacking p55 (p55(-)/-), p75, (p75(-)/-), or both receptors (p55(-)/-p75(-)/-) were fed a high-fat diet to induce obesity. Marked fasting hyperinsulinemia was seen for p55(-)/-p75(-)/- males between 12 and 16 wk of feeding the high-fat diet. Insulin levels were four times greater than wild-type mice. In contrast, p55(-)/- and p75(-)/- mice exhibited insulin levels that were similar or reduced, respectively, as compared with wild-type mice. In addition, high-fat diet-fed p75(-)/- mice had the lowest body weights and leptin levels, and improved insulin sensitivity. Obese (db/db) mice, which are not responsive to leptin, were used to study the role of p55 in severe obesity. Male p55(-)/-db/db mice exhibited threefold higher insulin levels and twofold lower glucose levels at 20 wk of age than control db/db expressing p55. All db/db mice remained severely insulin resistant based on fasting plasma glucose and insulin levels, and glucose and insulin tolerance tests. Our data do not support the concept that TNF, acting via its receptors, is a major contributor to obesity-associated insulin resistance. In fact, data suggest that the two TNF receptors work in concert to protect against diabetes. PMID:9664082

  11. Differential Expression of Long Noncoding RNAs between Sperm Samples from Diabetic and Non-Diabetic Mice.

    PubMed

    Jiang, Guang-Jian; Zhang, Teng; An, Tian; Zhao, Dan-Dan; Yang, Xiu-Yan; Zhang, Dong-Wei; Zhang, Yi; Mu, Qian-Qian; Yu, Na; Ma, Xue-Shan; Gao, Si-Hua

    2016-01-01

    To investigate the potential core reproduction-related genes associated with the development of diabetes, the expression profiles of long noncoding RNA (lncRNA) and messenger RNA (mRNA) in the sperm of diabetic mice were studied. We used microarray analysis to detect the expression of lncRNAs and coding transcripts in six diabetic and six normal sperm samples, and differentially expressed lncRNAs and mRNAs were identified through Volcano Plot filtering. The function of differentially expressed mRNA was determined by pathway and gene ontology (GO) analysis, and the function of lncRNAs was studied by subgroup analysis and their physical or functional relationships with corresponding mRNAs. A total of 7721 lncRNAs and 6097 mRNAs were found to be differentially expressed between the diabetic and normal sperm groups. The diabetic sperm exhibited aberrant expression profiles for lncRNAs and mRNAs, and GO and pathway analyses showed that the functions of differentially expressed mRNAs were closely related with many processes involved in the development of diabetes. Furthermore, potential core genes that might play important roles in the pathogenesis of diabetes-related low fertility were revealed by lncRNA- and mRNA-interaction studies, as well as coding-noncoding gene co-expression analysis based on the microarray expression profiles. PMID:27119337

  12. Differential Expression of Long Noncoding RNAs between Sperm Samples from Diabetic and Non-Diabetic Mice

    PubMed Central

    An, Tian; Zhao, Dan-Dan; Yang, Xiu-Yan; Zhang, Dong-Wei; Zhang, Yi; Mu, Qian-Qian; Yu, Na; Ma, Xue-Shan; Gao, Si-Hua

    2016-01-01

    To investigate the potential core reproduction-related genes associated with the development of diabetes, the expression profiles of long noncoding RNA (lncRNA) and messenger RNA (mRNA) in the sperm of diabetic mice were studied. We used microarray analysis to detect the expression of lncRNAs and coding transcripts in six diabetic and six normal sperm samples, and differentially expressed lncRNAs and mRNAs were identified through Volcano Plot filtering. The function of differentially expressed mRNA was determined by pathway and gene ontology (GO) analysis, and the function of lncRNAs was studied by subgroup analysis and their physical or functional relationships with corresponding mRNAs. A total of 7721 lncRNAs and 6097 mRNAs were found to be differentially expressed between the diabetic and normal sperm groups. The diabetic sperm exhibited aberrant expression profiles for lncRNAs and mRNAs, and GO and pathway analyses showed that the functions of differentially expressed mRNAs were closely related with many processes involved in the development of diabetes. Furthermore, potential core genes that might play important roles in the pathogenesis of diabetes-related low fertility were revealed by lncRNA- and mRNA-interaction studies, as well as coding-noncoding gene co-expression analysis based on the microarray expression profiles. PMID:27119337

  13. Galantamine Attenuates Type 1 Diabetes and Inhibits Anti-Insulin Antibodies in Nonobese Diabetic Mice

    PubMed Central

    Hanes, William M; Olofsson, Peder S; Kwan, Kevin; Hudson, LaQueta K; Chavan, Sangeeta S; Pavlov, Valentin A; Tracey, Kevin J

    2015-01-01

    Type 1 diabetes in mice is characterized by autoimmune destruction of insulin-producing pancreatic β-cells. Disease pathogenesis involves invasion of pancreatic islets by immune cells, including macrophages and T cells, and production of antibodies to self-antigens, including insulin. Activation of the inflammatory reflex, the neural circuit that inhibits inflammation, culminates on cholinergic receptor signals on immune cells to attenuate cytokine release and inhibit B-cell antibody production. Here, we show that galantamine, a centrally acting acetylcholinesterase inhibitor and an activator of the inflammatory reflex, attenuates murine experimental type 1 diabetes. Administration of galantamine to animals immunized with keyhole limpet hemocyanin (KLH) significantly suppressed splenocyte release of immunoglobulin G (IgG) and interleukin (IL)-4 and IL-6 during KLH challenge ex vivo. Administration of galantamine beginning at 1 month of age in nonobese diabetic (NOD) mice significantly delayed the onset of hyperglycemia, attenuated immune cell infiltration in pancreatic islets and decreased anti-insulin antibodies in serum. These observations indicate that galantamine attenuates experimental type 1 diabetes in mice and suggest that activation of the inflammatory reflex should be further studied as a potential therapeutic approach. PMID:26322849

  14. Rotavirus acceleration of type 1 diabetes in non-obese diabetic mice depends on type I interferon signalling.

    PubMed

    Pane, Jessica A; Fleming, Fiona E; Graham, Kate L; Thomas, Helen E; Kay, Thomas W H; Coulson, Barbara S

    2016-07-13

    Rotavirus infection is associated with childhood progression to type 1 diabetes. Infection by monkey rotavirus RRV accelerates diabetes onset in non-obese diabetic (NOD) mice, which relates to regional lymph node infection and a T helper 1-specific immune response. When stimulated ex vivo with RRV, plasmacytoid dendritic cells (pDCs) from naïve NOD mice secrete type I interferon, which induces the activation of bystander lymphocytes, including islet-autoreactive T cells. This is our proposed mechanism for diabetes acceleration by rotaviruses. Here we demonstrate bystander lymphocyte activation in RRV-infected NOD mice, which showed pDC activation and strong upregulation of interferon-dependent gene expression, particularly within lymph nodes. The requirement for type I interferon signalling was analysed using NOD mice lacking a functional type I interferon receptor (NOD.IFNAR1(-/-) mice). Compared with NOD mice, NOD.IFNAR1(-/-) mice showed 8-fold higher RRV titers in lymph nodes and 3-fold higher titers of total RRV antibody in serum. However, RRV-infected NOD.IFNAR1(-/-) mice exhibited delayed pDC and lymphocyte activation, no T helper 1 bias in RRV-specific antibodies and unaltered diabetes onset when compared with uninfected controls. Thus, the type I interferon signalling induced by RRV infection is required for bystander lymphocyte activation and accelerated type 1 diabetes onset in genetically susceptible mice.

  15. Rotavirus acceleration of type 1 diabetes in non-obese diabetic mice depends on type I interferon signalling

    PubMed Central

    Pane, Jessica A.; Fleming, Fiona E.; Graham, Kate L.; Thomas, Helen E.; Kay, Thomas W. H.; Coulson, Barbara S.

    2016-01-01

    Rotavirus infection is associated with childhood progression to type 1 diabetes. Infection by monkey rotavirus RRV accelerates diabetes onset in non-obese diabetic (NOD) mice, which relates to regional lymph node infection and a T helper 1-specific immune response. When stimulated ex vivo with RRV, plasmacytoid dendritic cells (pDCs) from naïve NOD mice secrete type I interferon, which induces the activation of bystander lymphocytes, including islet-autoreactive T cells. This is our proposed mechanism for diabetes acceleration by rotaviruses. Here we demonstrate bystander lymphocyte activation in RRV-infected NOD mice, which showed pDC activation and strong upregulation of interferon-dependent gene expression, particularly within lymph nodes. The requirement for type I interferon signalling was analysed using NOD mice lacking a functional type I interferon receptor (NOD.IFNAR1−/− mice). Compared with NOD mice, NOD.IFNAR1−/− mice showed 8-fold higher RRV titers in lymph nodes and 3-fold higher titers of total RRV antibody in serum. However, RRV-infected NOD.IFNAR1−/− mice exhibited delayed pDC and lymphocyte activation, no T helper 1 bias in RRV-specific antibodies and unaltered diabetes onset when compared with uninfected controls. Thus, the type I interferon signalling induced by RRV infection is required for bystander lymphocyte activation and accelerated type 1 diabetes onset in genetically susceptible mice. PMID:27405244

  16. Rotavirus acceleration of type 1 diabetes in non-obese diabetic mice depends on type I interferon signalling.

    PubMed

    Pane, Jessica A; Fleming, Fiona E; Graham, Kate L; Thomas, Helen E; Kay, Thomas W H; Coulson, Barbara S

    2016-01-01

    Rotavirus infection is associated with childhood progression to type 1 diabetes. Infection by monkey rotavirus RRV accelerates diabetes onset in non-obese diabetic (NOD) mice, which relates to regional lymph node infection and a T helper 1-specific immune response. When stimulated ex vivo with RRV, plasmacytoid dendritic cells (pDCs) from naïve NOD mice secrete type I interferon, which induces the activation of bystander lymphocytes, including islet-autoreactive T cells. This is our proposed mechanism for diabetes acceleration by rotaviruses. Here we demonstrate bystander lymphocyte activation in RRV-infected NOD mice, which showed pDC activation and strong upregulation of interferon-dependent gene expression, particularly within lymph nodes. The requirement for type I interferon signalling was analysed using NOD mice lacking a functional type I interferon receptor (NOD.IFNAR1(-/-) mice). Compared with NOD mice, NOD.IFNAR1(-/-) mice showed 8-fold higher RRV titers in lymph nodes and 3-fold higher titers of total RRV antibody in serum. However, RRV-infected NOD.IFNAR1(-/-) mice exhibited delayed pDC and lymphocyte activation, no T helper 1 bias in RRV-specific antibodies and unaltered diabetes onset when compared with uninfected controls. Thus, the type I interferon signalling induced by RRV infection is required for bystander lymphocyte activation and accelerated type 1 diabetes onset in genetically susceptible mice. PMID:27405244

  17. Impaired response of mature adipocytes of diabetic mice to hypoxia

    SciTech Connect

    Hong, Seok Jong Jin, Da P.; Buck, Donald W.; Galiano, Robert D.; Mustoe, Thomas A.

    2011-10-01

    Adipose tissue contains various cells such as infiltrated monocytes/macrophages, endothelial cells, preadipocytes, and adipocytes. Adipocytes have an endocrine function by secreting adipokines such as interleukin (IL)-6, tumor necrosis factor (TNF)-{alpha}, leptin, and adiponectin. Dysregulation of adipokines in adipose tissues leads to a chronic low-grade inflammation which could result in atherosclerosis, hypertension, and type 2 diabetes. A sustained inflammatory state, which is characterized by prolonged persistence of macrophages and neutrophils, is found in diabetic wounds. In addition, subcutaneous adipocytes are enormously increased in amount clinically in type 2 diabetes. However, the function of subcutaneous adipocytes, which play an important role in injured tissue subjected to hypoxia, has not been well characterized in vitro due to the difficulty of maintaining mature adipocytes in culture using conventional methods because of their buoyancy. In this study, we established a novel in vitro culture method of mature adipocytes by enclosing them in a hyaluronan (HA) based hydrogel to study their role in response to stress such as hypoxia. BrdU labeling and Ki67 immunostaining experiments showed that hydrogel enclosed mature adipocytes proliferate in vitro. Both mRNA and protein expression analyses for hypoxia regulated genes, such as vascular endothelial growth factor (VEGF) and heme oxygenase 1 (HO1), showed that mature adipocytes of wild type mice respond to hypoxia. In contrast, mature adipocytes of diabetic db/db and TallyHo mice did not efficiently respond to hypoxia. Our studies suggest that mature adipocytes are functionally active cells, and their abnormal function to hypoxia can be one of underlining mechanisms in type 2 diabetes.

  18. HoxD3 accelerates wound healing in diabetic mice

    SciTech Connect

    Hansen, Scott L.; Myers, Connie A.; Charboneau, Aubri; Young, David M.; and Boudreau, Nancy

    2003-12-01

    Poorly healing diabetic wounds are characterized by diminished collagen production and impaired angiogenesis. HoxD3, a homeobox transcription factor that promotes angiogenesis and collagen synthesis, is up-regulated during normal wound repair whereas its expression is diminished in poorly healing wounds of the genetically diabetic (db/db) mouse. To determine whether restoring expression of HoxD3 would accelerate diabetic wound healing, we devised a novel method of gene transfer, which incorporates HoxD3 plasmid DNA into a methylcellulose film that is placed on wounds created on db/db mice. The HoxD3 transgene was expressed in endothelial cells, fibroblasts, and keratinocytes of the wounds for up to 10 days. More importantly, a single application of HoxD3 to db/db mice resulted in a statistically significant acceleration of wound closure compared to control-treated wounds. Furthermore, we also observed that the HoxD3-mediated improvement in diabetic wound repair was accompanied by increases in mRNA expression of the HoxD3 target genes, Col1A1 and beta 3-integrin leading to enhanced angiogenesis and collagen deposition in the wounds. Although HoxD3-treated wounds also show improved re-epithelialization as compared to control db/db wounds, this effect was not due to direct stimulation of keratinocyte migration by HoxD3. Finally, we show that despite the dramatic increase in collagen synthesis and deposition in HoxD3-treated wounds, these wounds showed normal remodeling and we found no evidence of abnormal wound healing. These results indicate that HoxD3 may provide a means to directly improve collagen deposition, angiogenesis and closure in poorly healing diabetic wounds.

  19. Co-Therapy Using Lytic Bacteriophage and Linezolid: Effective Treatment in Eliminating Methicillin Resistant Staphylococcus aureus (MRSA) from Diabetic Foot Infections

    PubMed Central

    Chhibber, Sanjay; Kaur, Tarsem; Sandeep Kaur

    2013-01-01

    Background Staphylococcus aureus remains the predominant pathogen in diabetic foot infections and prevalence of methicillin resistant S.aureus (MRSA) strains further complicates the situation. The incidence of MRSA in infected foot ulcers is 15–30% and there is an alarming trend for its increase in many countries. Diabetes acts as an immunosuppressive state decreasing the overall immune functioning of body and to worsen the situation, wounds inflicted with drug resistant strains represent a morbid combination in diabetic patients. Foot infections caused by MRSA are associated with an increased risk of amputations, increased hospital stay, increased expenses and higher infection-related mortality. Hence, newer, safer and effective treatment strategies are required for treating MRSA mediated diabetic foot infections. The present study focuses on the use of lytic bacteriophage in combination with linezolid as an effective treatment strategy against foot infection in diabetic population. Methodology Acute hindpaw infection with S.aureus ATCC 43300 was established in alloxan induced diabetic BALB/c mice. Therapeutic efficacy of a well characterized broad host range lytic bacteriophage, MR-10 was evaluated alone as well as in combination with linezolid in resolving the course of hindpaw foot infection in diabetic mice. The process of wound healing was also investigated. Results and Conclusions A single administration of phage exhibited efficacy similar to linezolid in resolving the course of hindpaw infection in diabetic animals. However, combination therapy using both the agents was much more effective in arresting the entire infection process (bacterial load, lesion score, foot myeloperoxidase activity and histopathological analysis). The entire process of tissue healing was also hastened. Use of combined agents has been known to decrease the frequency of emergence of resistant mutants, hence this approach can serve as an effective strategy in treating MRSA mediated

  20. Petalonia improves glucose homeostasis in streptozotocin-induced diabetic mice

    SciTech Connect

    Kang, Seong-Il; Jin, Young-Jun; Ko, Hee-Chul; Choi, Soo-Youn; Hwang, Joon-Ho; Whang, Ilson; Kim, Moo-Han; Shin, Hye-Sun; Jeong, Hyung-Bok; Kim, Se-Jae

    2008-08-22

    The anti-diabetic potential of Petalonia binghamiae extract (PBE) was evaluated in vivo. Dietary administration of PBE to streptozotocin (STZ)-induced diabetic mice significantly lowered blood glucose levels and improved glucose tolerance. The mode of action by which PBE attenuated diabetes was investigated in vitro using 3T3-L1 cells. PBE treatment stimulated 3T3-L1 adipocyte differentiation as evidenced by increased triglyceride accumulation. At the molecular level, peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) and terminal marker protein aP2, as well as the mRNA of GLUT4 were up-regulated by PBE. In mature adipocytes, PBE significantly stimulated the uptake of glucose and the expression of insulin receptor substrate-1 (IRS-1). Furthermore, PBE increased PPAR{gamma} luciferase reporter gene activity in COS-1 cells. Taken together, these results suggest that the in vivo anti-diabetic effect of PBE is mediated by both insulin-like and insulin-sensitizing actions in adipocytes.

  1. Increased Inner Ear Susceptibility to Noise Injury in Mice With Streptozotocin-Induced Diabetes

    PubMed Central

    Fujita, Takeshi; Yamashita, Daisuke; Katsunuma, Sayaka; Hasegawa, Shingo; Tanimoto, Hitoshi; Nibu, Ken-ichi

    2012-01-01

    We aimed to investigate the pathophysiology of diabetes-associated hearing impairment in type 1 diabetes using mice with streptozotocin-induced diabetes (C57BL/6J; male). Hearing function was evaluated 1, 3, and 5 months after induction of diabetes (five diabetic and five control animals per time point) using auditory-evoked brain stem responses (ABRs). Mice (four diabetic and four control) were exposed to loud noise (105 dB) 5 months after induction of diabetes. ABRs were measured before and after noise exposure. Cochlear blood flows were measured by laser-Doppler flowmeter. Spiral ganglion cells (SGCs) were counted. Vessel endothelial cells were observed by CD31 immunostaining. Chronologic changes in the ABR threshold shift were not significantly different between the diabetic and control groups. However, vessel walls in the modiolus of the cochleae were significantly thicker in the diabetic group than the control group. Additionally, recovery from noise-induced injury was significantly impaired in diabetic mice. Reduced cochlea blood flows and SGC loss were observed in diabetic mice cochleae after noise exposure. Our data suggest that diabetic cochleae are more susceptible than controls to loud noise exposure, and decreased cochlear blood flow due to sclerosis of the vessels and consequent loss of SGCs are possible mechanisms of hearing impairment in diabetic patients. PMID:22851574

  2. Long-chain polyunsaturated fatty acids and chemically induced diabetes mellitus. Effect of omega-3 fatty acids.

    PubMed

    Suresh, Y; Das, U N

    2003-03-01

    In a previous study, we showed that prior oral feeding of oils rich in omega-3 eicosapentaenoic acid and docosahexaenoic acid and omega-6 gamma-linolenic acid and arachidonic acid prevent the development of alloxan-induced diabetes mellitus in experimental animals. We also observed that 99% pure omega-6 fatty acids gamma-linolenic acid and arachidonic acid protect against chemically induced diabetes mellitus. Here we report the results of our studies with omega-3 fatty acids. Alloxan-induced in vitro cytotoxicity and apoptosis in an insulin-secreting rat insulinoma cell line, RIN, was prevented by prior exposure of these cells to alpha-linolenic acid, eicosapentaenoic acid, and docosahexaenoic acid. Prior oral supplementation with alpha-linolenic acid, eicosapentaenoic acid, and docosahexaenoic acid prevented alloxan-induced diabetes mellitus. alpha-Linolenic acid, eicosapentaenoic acid, and docosahexaenoic acid not only attenuated chemical-induced diabetes mellitus but also restored the anti-oxidant status to normal range in various tissues. These results suggested that omega-3 fatty acids can abrogate chemically induced diabetes in experimental animals and attenuate the oxidant stress that occurs in diabetes mellitus.

  3. Comparative study of peripheral neuropathy and nerve regeneration in NOD and ICR diabetic mice.

    PubMed

    Homs, Judit; Ariza, Lorena; Pagès, Gemma; Verdú, Enrique; Casals, Laura; Udina, Esther; Chillón, Miguel; Bosch, Assumpció; Navarro, Xavier

    2011-09-01

    The non-obese diabetic (NOD) mouse was suggested as an adequate model for diabetic autonomic neuropathy. We evaluated sensory-motor neuropathy and nerve regeneration following sciatic nerve crush in NOD males rendered diabetic by multiple low doses of streptozotocin, in comparison with similarly treated Institute for Cancer Research (ICR) mice, a widely used model for type I diabetes. Neurophysiological values for both strains showed a decline in motor and sensory nerve conduction velocity at 7 and 8 weeks after induction of diabetes in the intact hindlimb. However, amplitudes of compound muscle and sensory action potentials (CMAPs and CNAPs) were significantly reduced in NOD but not in ICR diabetic mice. Morphometrical analysis showed myelinated fiber loss in highly hyperglycemic NOD mice, but no significant changes in fiber size. There was a reduction of intraepidermal nerve fibers, more pronounced in NOD than in ICR diabetic mice. Interestingly, aldose reductase and poly(ADP-ribose) polymerase (PARP) activities were increased already at 1 week of hyperglycemia, persisting until the end of the experiment in both strains. Muscle and nerve reinnervation was delayed in diabetic mice following sciatic nerve crush, being more marked in NOD mice. Thus, diabetes of mid-duration induces more severe peripheral neuropathy and slower nerve regeneration in NOD than in ICR mice.

  4. The dual role of scavenger receptor class A in development of diabetes in autoimmune NOD mice.

    PubMed

    Shimizu, Mami; Yasuda, Hisafumi; Hara, Kenta; Takahashi, Kazuma; Nagata, Masao; Yokono, Koichi

    2014-01-01

    Human type 1 diabetes is an autoimmune disease that results from the autoreactive destruction of pancreatic β cells by T cells. Antigen presenting cells including dendritic cells and macrophages are required to activate and suppress antigen-specific T cells. It has been suggested that antigen uptake from live cells by dendritic cells via scavenger receptor class A (SR-A) may be important. However, the role of SR-A in autoimmune disease is unknown. In this study, SR-A-/- nonobese diabetic (NOD) mice showed significant attenuation of insulitis, lower levels of insulin autoantibodies, and suppression of diabetes development compared with NOD mice. We also found that diabetes progression in SR-A-/- NOD mice treated with low-dose polyinosinic-polycytidylic acid (poly(I:C)) was significantly accelerated compared with that in disease-resistant NOD mice treated with low-dose poly(I:C). In addition, injection of high-dose poly(I: C) to mimic an acute RNA virus infection significantly accelerated diabetes development in young SR-A-/- NOD mice compared with untreated SR-A-/- NOD mice. Pathogenic cells including CD4+CD25+ activated T cells were increased more in SR-A-/- NOD mice treated with poly(I:C) than in untreated SR-A-/- NOD mice. These results suggested that viral infection might accelerate diabetes development even in diabetes-resistant subjects. In conclusion, our studies demonstrated that diabetes progression was suppressed in SR-A-/- NOD mice and that acceleration of diabetes development could be induced in young mice by poly(I:C) treatment even in SR-A-/- NOD mice. These results suggest that SR-A on antigen presenting cells such as dendritic cells may play an unfavorable role in the steady state and a protective role in a mild infection. Our findings imply that SR-A may be an important target for improving therapeutic strategies for type 1 diabetes. PMID:25343451

  5. Hyperglycemia and fight-flight behavior in nondiabetic and diabetic mice.

    PubMed

    Meehan, W P; Leedom, L J; Nagayama, T; Zeidler, A

    1987-01-01

    Glycemic responses to a resident-intruder encounter and to the drawing of blood from the retro-orbital sinus were studied in diabetic and normal male Swiss Webster mice. The diabetes induced with streptozotocin was either borderline, overt, or severe. The resident-intruder encounter consisted of a brief exposure to another male mouse trained to be aggressive. The blood collected was not sufficient (3% blood volume) to cause significant volume depletion. Behavior during the resident-intruder encounter was videotaped and later quantified. Borderline diabetic, overtly diabetic and nondiabetic mice responded to both procedures with significant increases in plasma glucose. The glycemic response to the resident-intruder encounter in these groups was significantly greater than that to the bleeding trial. The severely diabetic mice did not experience increases in plasma glucose in either test. Fight-flight behavior of nondiabetic mice was significantly correlated with increases in plasma glucose. Total activity was negatively correlated with change in plasma glucose in the borderline diabetic mice. In overtly diabetic mice no relationship between either measure and glucose increases was observed. These results indicate that plasma glucose elevation in overtly and severely diabetic mice is not as specific to behavior as in nondiabetic mice.

  6. Improvement of skin wound healing in diabetic mice by kinin B2 receptor blockade.

    PubMed

    Desposito, Dorinne; Chollet, Catherine; Taveau, Christopher; Descamps, Vincent; Alhenc-Gelas, François; Roussel, Ronan; Bouby, Nadine; Waeckel, Ludovic

    2016-01-01

    Impaired skin wound healing is a major medical problem in diabetic subjects. Kinins exert a number of vascular and other actions limiting organ damage in ischaemia or diabetes, but their role in skin injury is unknown. We investigated, through pharmacological manipulation of bradykinin B1 and B2 receptors (B1R and B2R respectively), the role of kinins in wound healing in non-diabetic and diabetic mice. Using two mouse models of diabetes (streptozotocin-induced and db/db mice) and non-diabetic mice, we assessed the effect of kinin receptor activation or inhibition by subtype-selective pharmacological agonists (B1R and B2R) and antagonist (B2R) on healing of experimental skin wounds. We also studied effects of agonists and antagonist on keratinocytes and fibroblasts in vitro. Levels of Bdkrb1 (encoding B1R) and Bdkrb2 (encoding B2R) mRNAs increased 1-2-fold in healthy and wounded diabetic skin compared with in non-diabetic skin. Diabetes delayed wound healing. The B1R agonist had no effect on wound healing. In contrast, the B2R agonist impaired wound repair in both non-diabetic and diabetic mice, inducing skin disorganization and epidermis thickening. In vitro, B2R activation unbalanced fibroblast/keratinocyte proliferation and increased keratinocyte migration. These effects were abolished by co-administration of B2R antagonist. Interestingly, in the two mouse models of diabetes, the B2R antagonist administered alone normalized wound healing. This effect was associated with the induction of Ccl2 (encoding monocyte chemoattractant protein 1)/Tnf (encoding tumour necrosis factor α) mRNAs. Thus stimulation of kinin B2 receptor impairs skin wound healing in mice. B2R activation occurs in the diabetic skin and delays wound healing. B2R blockade improves skin wound healing in diabetic mice and is a potential therapeutic approach to diabetic ulcers.

  7. Cardiac H2S Generation Is Reduced in Ageing Diabetic Mice.

    PubMed

    Jin, Sheng; Pu, Shi-Xin; Hou, Cui-Lan; Ma, Fen-Fen; Li, Na; Li, Xing-Hui; Tan, Bo; Tao, Bei-Bei; Wang, Ming-Jie; Zhu, Yi-Chun

    2015-01-01

    Aims. To examine whether hydrogen sulfide (H2S) generation changed in ageing diabetic mouse hearts. Results. Compared to mice that were fed tap water only, mice that were fed 30% fructose solution for 15 months exhibited typical characteristics of a severe diabetic phenotype with cardiac hypertrophy, fibrosis, and dysfunction. H2S levels in plasma, heart tissues, and urine were significantly reduced in these mice as compared to those in controls. The expression of the H2S-generating enzymes, cystathionine γ-lyase and 3-mercaptopyruvate sulfurtransferase, was significantly decreased in the hearts of fructose-fed mice, whereas cystathionine-β-synthase levels were significantly increased. Conclusion. Our results suggest that this ageing diabetic mouse model developed diabetic cardiomyopathy and that H2S levels were reduced in the diabetic heart due to alterations in three H2S-producing enzymes, which may be involved in the pathogenesis of diabetic cardiomyopathy. PMID:26078817

  8. Cardiac H2S Generation Is Reduced in Ageing Diabetic Mice

    PubMed Central

    Jin, Sheng; Pu, Shi-Xin; Hou, Cui-Lan; Ma, Fen-Fen; Li, Na; Li, Xing-Hui; Tan, Bo; Tao, Bei-Bei; Wang, Ming-Jie; Zhu, Yi-Chun

    2015-01-01

    Aims. To examine whether hydrogen sulfide (H2S) generation changed in ageing diabetic mouse hearts. Results. Compared to mice that were fed tap water only, mice that were fed 30% fructose solution for 15 months exhibited typical characteristics of a severe diabetic phenotype with cardiac hypertrophy, fibrosis, and dysfunction. H2S levels in plasma, heart tissues, and urine were significantly reduced in these mice as compared to those in controls. The expression of the H2S-generating enzymes, cystathionine γ-lyase and 3-mercaptopyruvate sulfurtransferase, was significantly decreased in the hearts of fructose-fed mice, whereas cystathionine-β-synthase levels were significantly increased. Conclusion. Our results suggest that this ageing diabetic mouse model developed diabetic cardiomyopathy and that H2S levels were reduced in the diabetic heart due to alterations in three H2S-producing enzymes, which may be involved in the pathogenesis of diabetic cardiomyopathy. PMID:26078817

  9. Suppression of Type-II Diabetes with Dyslipidemia and Nephropathy by Peels of Musa cavendish Fruit.

    PubMed

    Navghare, Vijay; Dhawale, Shashikant

    2016-10-01

    Musa cavendish, peels has local and traditional use to promote wound healing, hyperglycemia, ulceration etc. The present work investigated the lipid lowering; nephroprotective and glucose lowering properties of ethanolic extract of peels of Musa cavendish (EMC) in alloxan-induced diabetic rats. The EMC 250, 500 and 1000 mg/kg/day and the vehicle were administered orally to alloxan-induced diabetic rats (n = 6) for 3 weeks. Changes in plasma glucose, lipid profile along with kidney function before and after treatment with EMC were recorded. The ethanolic extract of peels of Musa cavendish reduced blood glucose, serum triglyceride, cholesterol, LDL cholesterol and creatinine levels and improvement in body weight, liver glycogen, serum HDL cholesterol, serum albumin and total protein level when compared with untreated rats. Musa cavendish has lipid lowering, nephroprotective and antidiabetic property by regulating glucose uptake in the liver and muscles by restoring the intracellular energy balance.

  10. Suppression of Type-II Diabetes with Dyslipidemia and Nephropathy by Peels of Musa cavendish Fruit.

    PubMed

    Navghare, Vijay; Dhawale, Shashikant

    2016-10-01

    Musa cavendish, peels has local and traditional use to promote wound healing, hyperglycemia, ulceration etc. The present work investigated the lipid lowering; nephroprotective and glucose lowering properties of ethanolic extract of peels of Musa cavendish (EMC) in alloxan-induced diabetic rats. The EMC 250, 500 and 1000 mg/kg/day and the vehicle were administered orally to alloxan-induced diabetic rats (n = 6) for 3 weeks. Changes in plasma glucose, lipid profile along with kidney function before and after treatment with EMC were recorded. The ethanolic extract of peels of Musa cavendish reduced blood glucose, serum triglyceride, cholesterol, LDL cholesterol and creatinine levels and improvement in body weight, liver glycogen, serum HDL cholesterol, serum albumin and total protein level when compared with untreated rats. Musa cavendish has lipid lowering, nephroprotective and antidiabetic property by regulating glucose uptake in the liver and muscles by restoring the intracellular energy balance. PMID:27605735

  11. Anti-diabetic activity of peony seed oil, a new resource food in STZ-induced diabetic mice.

    PubMed

    Su, Jianhui; Wang, Hongxin; Ma, Caoyang; Lou, Zaixiang; Liu, Chengxiang; Tanver Rahman, MdRamim; Gao, Chuanzhong; Nie, Rongjing

    2015-09-01

    This study was conducted to investigate the components of a new resource food in China, peony seed oil (PSO) by GC-MS (gas chromatography-mass spectrometry), its inhibitory effects on carbohydrate hydrolyzing enzymes in vitro and its anti-diabetic effects on mice induced by streptozotocin (STZ). The results showed that peony seed oil showed weak anti-α-amylase activity; however, strong anti-α-glucosidase activity was noted. The GC-MS analysis of the oil showed 9 constituents of which α-linolenic acid was found to be the major component (38.66%), followed by linoleic acid (26.34%) and oleic acid (23.65%). The anti-diabetic potential of peony seed oil was tested in STZ induced diabetic mice. Administration of peony seed oil and glibenclamide reduced the blood glucose level and the area under curve (AUC) in STZ induced diabetic mice. There were significant increases in body weight, liver glycogen content, serum insulin level, high-density lipoprotein cholesterol (HDL-C) and decreases in glycosylated hemoglobin (HbA1C), total serum cholesterol (TC), and triglyceride (TG) in test groups as compared to the untreated diabetic groups. In vivo antioxidant studies on STZ induced diabetic mice revealed the reduction of malondialdehyde (MDA) and increase of glutathione peroxides (GSH-px), superoxide dismutase (SOD), and glutathione (GSH). The results provided a sound rationale for future clinical trials of oral administration of peony seed oil to alleviate postprandial hyperglycemia in streptozotocin-induced diabetic mice.

  12. Phenotypic Changes in Diabetic Neuropathy Induced by a High-Fat Diet in Diabetic C57Bl/6 Mice

    PubMed Central

    Guilford, B. L.; Ryals, J. M.; Wright, D. E.

    2011-01-01

    Emerging evidence suggests that dyslipidemia is an independent risk factor for diabetic neuropathy (DN) (reviewed by Vincent et al. 2009). To experimentally determine how dyslipidemia alters DN, we quantified neuropathic symptoms in diabetic mice fed a high-fat diet. Streptozotocin-induced diabetic C57BL/6 mice fed a high-fat diet developed dyslipidemia and a painful neuropathy (mechanical allodynia) instead of the insensate neuropathy (mechanical insensitivity) that normally develops in this strain. Nondiabetic mice fed a high-fat diet also developed dyslipidemia and mechanical allodynia. Thermal sensitivity was significantly reduced in diabetic compared to nondiabetic mice, but was not worsened by the high-fat diet. Moreover, diabetic mice fed a high-fat diet had significantly slower sensory and motor nerve conduction velocities compared to nondiabetic mice. Overall, dyslipidemia resulting from a high-fat diet may modify DN phenotypes and/or increase risk for developing DN. These results provide new insight as to how dyslipidemia may alter the development and phenotype of diabetic neuropathy. PMID:22144990

  13. Generating double knockout mice to model genetic intervention for diabetic cardiomyopathy in humans.

    PubMed

    Chavali, Vishalakshi; Nandi, Shyam Sundar; Singh, Shree Ram; Mishra, Paras Kumar

    2014-01-01

    Diabetes is a rapidly increasing disease that enhances the chances of heart failure twofold to fourfold (as compared to age and sex matched nondiabetics) and becomes a leading cause of morbidity and mortality. There are two broad classifications of diabetes: type1 diabetes (T1D) and type2 diabetes (T2D). Several mice models mimic both T1D and T2D in humans. However, the genetic intervention to ameliorate diabetic cardiomyopathy in these mice often requires creating double knockout (DKO). In order to assess the therapeutic potential of a gene, that specific gene is either overexpressed (transgenic expression) or abrogated (knockout) in the diabetic mice. If the genetic mice model for diabetes is used, it is necessary to create DKO with transgenic/knockout of the target gene to investigate the specific role of that gene in pathological cardiac remodeling in diabetics. One of the important genes involved in extracellular matrix (ECM) remodeling in diabetes is matrix metalloproteinase-9 (Mmp9). Mmp9 is a collagenase that remains latent in healthy hearts but induced in diabetic hearts. Activated Mmp9 degrades extracellular matrix (ECM) and increases matrix turnover causing cardiac fibrosis that leads to heart failure. Insulin2 mutant (Ins2+/-) Akita is a genetic model for T1D that becomes diabetic spontaneously at the age of 3-4 weeks and show robust hyperglycemia at the age of 10-12 weeks. It is a chronic model of T1D. In Ins2+/- Akita, Mmp9 is induced. To investigate the specific role of Mmp9 in diabetic hearts, it is necessary to create diabetic mice where Mmp9 gene is deleted. Here, we describe the method to generate Ins2+/-/Mmp9-/- (DKO) mice to determine whether the abrogation of Mmp9 ameliorates diabetic cardiomyopathy. PMID:25064116

  14. Generating double knockout mice to model genetic intervention for diabetic cardiomyopathy in humans.

    PubMed

    Chavali, Vishalakshi; Nandi, Shyam Sundar; Singh, Shree Ram; Mishra, Paras Kumar

    2014-01-01

    Diabetes is a rapidly increasing disease that enhances the chances of heart failure twofold to fourfold (as compared to age and sex matched nondiabetics) and becomes a leading cause of morbidity and mortality. There are two broad classifications of diabetes: type1 diabetes (T1D) and type2 diabetes (T2D). Several mice models mimic both T1D and T2D in humans. However, the genetic intervention to ameliorate diabetic cardiomyopathy in these mice often requires creating double knockout (DKO). In order to assess the therapeutic potential of a gene, that specific gene is either overexpressed (transgenic expression) or abrogated (knockout) in the diabetic mice. If the genetic mice model for diabetes is used, it is necessary to create DKO with transgenic/knockout of the target gene to investigate the specific role of that gene in pathological cardiac remodeling in diabetics. One of the important genes involved in extracellular matrix (ECM) remodeling in diabetes is matrix metalloproteinase-9 (Mmp9). Mmp9 is a collagenase that remains latent in healthy hearts but induced in diabetic hearts. Activated Mmp9 degrades extracellular matrix (ECM) and increases matrix turnover causing cardiac fibrosis that leads to heart failure. Insulin2 mutant (Ins2+/-) Akita is a genetic model for T1D that becomes diabetic spontaneously at the age of 3-4 weeks and show robust hyperglycemia at the age of 10-12 weeks. It is a chronic model of T1D. In Ins2+/- Akita, Mmp9 is induced. To investigate the specific role of Mmp9 in diabetic hearts, it is necessary to create diabetic mice where Mmp9 gene is deleted. Here, we describe the method to generate Ins2+/-/Mmp9-/- (DKO) mice to determine whether the abrogation of Mmp9 ameliorates diabetic cardiomyopathy.

  15. Autophagy ameliorates cognitive impairment through activation of PVT1 and apoptosis in diabetes mice.

    PubMed

    Li, Zhigui; Hao, Shuang; Yin, Hongqiang; Gao, Jing; Yang, Zhuo

    2016-05-15

    The underlying mechanisms of cognitive impairment in diabetes remain incompletely characterized. Here we show that the autophagic inhibition by 3-methyladenine (3-MA) aggravates cognitive impairment in streptozotocin-induced diabetic mice, including exacerbation of anxiety-like behaviors and aggravation in spatial learning and memory, especially the spatial reversal memory. Further neuronal function identification confirmed that both long term potentiation (LTP) and depotentiation (DPT) were exacerbated by autophagic inhibition in diabetic mice, which indicating impairment of synaptic plasticity. However, no significant change of pair-pulse facilitation (PPF) was recorded in diabetic mice with autophagic suppression compared with the diabetic mice, which indicated that presynaptic function was not affected by autophagic inhibition in diabetes. Subsequent hippocampal neuronal cell death analysis showed that the apoptotic cell death, but not the regulated necrosis, significantly increased in autophagic suppression of diabetic mice. Finally, molecular mechanism that may lead to cell death was identified. The long non-coding RNA PVT1 (plasmacytoma variant translocation 1) expression was analyzed, and data revealed that PVT1 was decreased significantly by 3-MA in diabetes. These findings show that PVT1-mediated autophagy may protect hippocampal neurons from impairment of synaptic plasticity and apoptosis, and then ameliorates cognitive impairment in diabetes. These intriguing findings will help pave the way for exciting functional studies of autophagy in cognitive impairment and diabetes that may alter the existing paradigms. PMID:26971628

  16. Protective effect of esculin on streptozotocin-induced diabetic renal damage in mice.

    PubMed

    Kang, Ki Sung; Lee, Woojung; Jung, Yujung; Lee, Ji Hwan; Lee, Seungyong; Eom, Dae-Woon; Jeon, Youngsic; Yoo, Hye Hyun; Jin, Ming Ji; Song, Kyung Il; Kim, Won Jun; Ham, Jungyeob; Kim, Hyoung Ja; Kim, Su-Nam

    2014-03-01

    The present study investigated the presence and mechanism of esculin-mediated renoprotection to assess its therapeutic potential. Esculin was orally administered at 20 mg/kg/day for 2 weeks to streptozotocin-induced diabetic mice, and its effects were compared with those of the vehicle in normal and diabetic mice. After oral administration of esculin to mice, the concentrations of esculin and esculetin in blood were 159.5 ± 29.8 and 9.7 ± 4.9 ng/mL at 30 min, respectively. Food and water intake were significantly increased in the diabetic mice compared to normal mice but attenuated in mice receiving esculin. The elevated blood glucose level and hepatic glucose-6-phosphatase expression were significantly reduced in esculin-treated diabetic mice, supporting the antidiabetic effect of esculin. Esculin also increased the uptake of glucose and induced the insulin-evoked phosphorylation of insulin receptor, Akt, and glycogen synthase kinase 3β in C2C12 myotubes, indicating a potential for improvement of insulin sensitivity. In addition, esculin lessened the elevated blood creatinine levels in diabetic mice and ameliorated diabetes-induced renal dysfunction by reducing caspase-3 activation in the kidney. Data support the beneficial effect of esculin against diabetes and oxidative stress-related inflammatory processes in the kidney.

  17. Lactobacillus salivarius reverse diabetes-induced intestinal defense impairment in mice through non-defensin protein.

    PubMed

    Chung, Pei-Hsuan; Wu, Ying-Ying; Chen, Pei-Hsuan; Fung, Chang-Phone; Hsu, Ching-Mei; Chen, Lee-Wei

    2016-09-01

    Altered intestinal microbiota and subsequent endotoxemia play pathogenic roles in diabetes. We aimed to study the mechanisms of intestinal defense impairment in type 1 diabetes and the effects of Lactobacillus salivarius as well as fructooligosaccharides (FOS) supplementation on diabetes-induced bacterial translocation. Alterations in the enteric microbiome, expression of mucosal antibacterial proteins and bacteria-killing activity of the intestinal mucosa in streptozotocin (STZ)-induced diabetic mice and Ins2(Akita) mice were investigated. The effects of dead L. salivarius (2×10(8)CFU/ml) and FOS (250 mg per day) supplementation for 1 week on endotoxin levels and Klebsiella pneumoniae translocation were also examined. Finally, germ-free mice were cohoused with wild-type or Ins2(Akita) mice for 2 weeks to examine the contribution of microbiota on the antibacterial protein expression. STZ-induced diabetic mice developed intestinal defense impairment as demonstrated by decreased mucosal bacteria-killing activity; reduction of non-defensin family proteins, such as Reg3β, Reg3γ, CRP-ductin and RELMβ, but not the defensin family proteins; and increased bacterial translocation. Intestinal bacteria overgrowth, enteric dysbiosis and increased intestinal bacterial translocation, particularly pathogenic K. pneumoniae in STZ-induced diabetic mice and Ins2(Akita) mice, were noted. Treating diabetic mice with dead L. salivarius or FOS reversed enteric dysbiosis, restored mucosal antibacterial protein and lessened endotoxin levels as well as K. pneumoniae translocation. Moreover, germ-free mice cohoused with wild-type mice demonstrated more intestinal Reg3β and RELMβ expression than those cohoused with Ins2(Akita) mice. These results indicate that hyperglycemia induces enteric dysbiosis, reduction of non-defensin proteins as well as bacteria-killing activity of the intestinal mucosa and intestinal defense impairment. Reversal of enteric dysbiosis with dead L. salivarius or

  18. ASK1 Inhibitor Halts Progression of Diabetic Nephropathy in Nos3-Deficient Mice.

    PubMed

    Tesch, Greg H; Ma, Frank Y; Han, Yingjie; Liles, John T; Breckenridge, David G; Nikolic-Paterson, David J

    2015-11-01

    p38 mitogen-activated protein kinase (MAPK) signaling promotes diabetic kidney injury. Apoptosis signal-regulating kinase (ASK)1 is one of the upstream kinases in the p38 MAPK-signaling pathway, which is activated by inflammation and oxidative stress, suggesting a possible role for ASK1 in diabetic nephropathy. In this study, we examined whether a selective ASK1 inhibitor can prevent the induction and progression of diabetic nephropathy in mice. Diabetes was induced in hypertensive endothelial nitric oxide synthase (Nos3)-deficient mice by five low-dose streptozotocin (STZ) injections. Groups of diabetic Nos3(-/-) mice received ASK1 inhibitor (GS-444217 delivered in chow) as an early intervention (2-8 weeks after STZ) or late intervention (weeks 8-15 after STZ). Control diabetic and nondiabetic Nos3(-/-) mice received normal chow. Treatment with GS-444217 abrogated p38 MAPK activation in diabetic kidneys but had no effect upon hypertension in Nos3(-/-) mice. Early intervention with GS-444217 significantly inhibited diabetic glomerulosclerosis and reduced renal dysfunction but had no effect on the development of albuminuria. Late intervention with GS-444217 improved renal function and halted the progression of glomerulosclerosis, renal inflammation, and tubular injury despite having no effect on established albuminuria. In conclusion, this study identifies ASK1 as a new therapeutic target in diabetic nephropathy to reduce renal inflammation and fibrosis independent of blood pressure control. PMID:26180085

  19. [Effects of cactus, alove veral, momorcica charantia on reducing the blood glucose of diabetic mice].

    PubMed

    Lin, X; Shen, X; Long, Z; Yang, Q

    2001-07-01

    The effects of cactus, alove veral and momorcica charantia on reducing the blood glucose level of mice were observed. The diabetic model with no symptom in mice was established by injection of streptozotocin(STZ) 80 mg/kg BW into abdominal cavity for 11 days. The diabetic mice were randomly divided into 8 groups: STZ diabetic model, diet A, diet B, cactus, alove veral, momordica charantia and glyburide groups. Cactus (60 g/kg BW), alove veral (60 g/kg BW), and momordica charantia (30 g/kg BW) were administrated orally each day to the diabetic mice for another 21 days. Serum glucose of mice fasting for 12 hours and 2 hours after meal was determined with the method of glucose-oxidase at the 21th day of the experiment. The results showed that serum glucose levels of diabetic mice were significantly higher than the normal control group (P < 0.01). After giving diet A, cactus, alove veral and momorcica charantia juice for 21 days, the serum glucose concentration of these diabetic mice were significantly lower than STZ diabetic model group (P < 0.01) but still higher than the normal control group.

  20. The IL-1β Receptor Antagonist SER140 Postpones the Onset of Diabetes in Female Nonobese Diabetic Mice

    PubMed Central

    Cucak, Helena; Hansen, Gitte; Vrang, Niels; Skarsfeldt, Torben; Steiness, Eva; Jelsing, Jacob

    2016-01-01

    The cytokine interleukin-1β (IL-1β) is known to stimulate proinflammatory immune responses and impair β-cell function and viability, all critical events in the pathogenesis of type 1 diabetes (T1D). Here we evaluate the effect of SER140, a small peptide IL-1β receptor antagonist, on diabetes progression and cellular pancreatic changes in female nonobese diabetic (NOD) mice. Eight weeks of treatment with SER140 reduced the incidence of diabetes by more than 50% compared with vehicle, decreased blood glucose, and increased plasma insulin. Additionally, SER140 changed the endocrine and immune cells dynamics in the NOD mouse pancreas. Together, the data suggest that SER140 treatment postpones the onset of diabetes in female NOD mice by interfering with IL-1β activated pathways. PMID:26953152

  1. Leptin treatment prevents type I diabetic marrow adiposity but not bone loss in mice.

    PubMed

    Motyl, Katherine J; McCabe, Laura R

    2009-02-01

    Leptin is a hormone secreted by adipocytes that is implicated in the regulation of bone density. Serum leptin levels are decreased in rodent models of type 1 (T1-) diabetes and in diabetic patients. Whether leptin mediates diabetic bone changes is unclear. Therefore, we treated control and T1-diabetic mice with chronic (28 days) subcutaneous infusion of leptin or saline to elucidate the therapeutic potential of leptin for diabetic osteoporosis. Leptin prevented the increase of marrow adipocytes and the increased aP2 expression that we observed in vehicle-treated diabetic mice. However, leptin did not prevent T1-diabetic decreases in trabecular bone volume fraction or bone mineral density in tibia or vertebrae. Consistent with this finding, markers of bone formation (osteocalcin RNA and serum levels) in diabetic mice were not restored to normal levels with leptin treatment. Interestingly, markers of bone resorption (TRAP5 RNA and serum levels) were decreased in diabetic mice by leptin treatment. In summary, we have demonstrated a link between low leptin levels in T1-diabetes and marrow adiposity. However, leptin treatment alone was not successful in preventing bone loss.

  2. Impact of experimental type 1 diabetes mellitus on systemic and coagulation vulnerability in mice acutely exposed to diesel exhaust particles

    PubMed Central

    2013-01-01

    Background Epidemiological evidence indicates that diabetic patients have increased susceptibility to adverse cardiovascular outcomes related to acute increases in exposures to particulate air pollution. However, mechanisms underlying these effects remain unclear. Methods To evaluate the possible mechanisms underlying these actions, we assessed the systemic effects of diesel exhaust particles (DEP) in control mice, and mice with streptozotocin–induced type 1 diabetes. Four weeks following induction of diabetes, the animals were intratracheally instilled (i.t.) with DEP (0.4 mg/kg) or saline, and several cardiovascular endpoints were measured 24 h thereafter. Results DEP caused leukocytosis and a significant increase in plasma C-reactive protein and 8-isoprostane concentrations in diabetic mice compared to diabetic mice exposed to saline or non-diabetic mice exposed to DEP. The arterial PO2 as well as the number of platelets and the thrombotic occlusion time in pial arterioles assessed in vivo were significantly decreased following the i.t. instillation of DEP in diabetic mice compared to diabetic mice exposed to saline or non-diabetic mice exposed to DEP. Both alanine aminotransferase and aspartate transaminase activities, as well as the plasma concentrations of plasminogen activator inhibitor and von Willebrand factor were significantly increased in DEP-exposed diabetic mice compared to diabetic mice exposed to saline or DEP-exposed non-diabetic mice. The in vitro addition of DEP (0.25-1 μg/ml) to untreated mouse blood significantly and dose-dependently induced in vitro platelet aggregation, and these effects were exacerbated in blood of diabetic mice. Conclusion This study has shown that systemic and coagulation events are aggravated by type 1 diabetes in mice, acutely exposed to DEP and has described the possible mechanisms for these actions that may also be relevant to the exacerbation of cardiovascular morbidity accompanying particulate air pollution in

  3. Tadalafil Promotes the Recovery of Peripheral Neuropathy in Type II Diabetic Mice.

    PubMed

    Wang, Lei; Chopp, Michael; Szalad, Alexandra; Lu, XueRong; Jia, LongFei; Lu, Mei; Zhang, Rui Lan; Zhang, Zheng Gang

    2016-01-01

    We previously demonstrated that treatment of diabetic peripheral neuropathy with the short (4 hours) half-life phosphodiesterase 5 (PDE5) inhibitor, sildenafil, improved functional outcome in diabetic db/db mice. To further examine the effect of PDE5 inhibition on diabetic peripheral neuropathy, we investigated the effect of another potent PDE5 inhibitor, tadalafil, on diabetic peripheral neuropathy. Tadalafil is pharmacokinetically distinct from sildenafil and has a longer half-life (17+hours) than sildenafil. Diabetic mice (BKS.Cg-m+/+Leprdb/J, db/db) at age 20 weeks were treated with tadalafil every 48 hours for 8 consecutive weeks. Compared with diabetic mice treated with saline, tadalafil treatment significantly improved motor and sensory conduction velocities in the sciatic nerve and peripheral thermal sensitivity. Tadalafil treatment also markedly increased local blood flow and the density of FITC-dextran perfused vessels in the sciatic nerve concomitantly with increased intraepidermal nerve fiber density. Moreover, tadalafil reversed the diabetes-induced reductions of axon diameter and myelin thickness and reversed the diabetes-induced increased g-ratio in the sciatic nerve. Furthermore, tadalafil enhanced diabetes-reduced nerve growth factor (NGF) and platelet-derived growth factor-C (PDGF-C) protein levels in diabetic sciatic nerve tissue. The present study demonstrates that tadalafil increases regional blood flow in the sciatic nerve tissue, which may contribute to the improvement of peripheral nerve function and the amelioration of diabetic peripheral neuropathy.

  4. Tadalafil Promotes the Recovery of Peripheral Neuropathy in Type II Diabetic Mice.

    PubMed

    Wang, Lei; Chopp, Michael; Szalad, Alexandra; Lu, XueRong; Jia, LongFei; Lu, Mei; Zhang, Rui Lan; Zhang, Zheng Gang

    2016-01-01

    We previously demonstrated that treatment of diabetic peripheral neuropathy with the short (4 hours) half-life phosphodiesterase 5 (PDE5) inhibitor, sildenafil, improved functional outcome in diabetic db/db mice. To further examine the effect of PDE5 inhibition on diabetic peripheral neuropathy, we investigated the effect of another potent PDE5 inhibitor, tadalafil, on diabetic peripheral neuropathy. Tadalafil is pharmacokinetically distinct from sildenafil and has a longer half-life (17+hours) than sildenafil. Diabetic mice (BKS.Cg-m+/+Leprdb/J, db/db) at age 20 weeks were treated with tadalafil every 48 hours for 8 consecutive weeks. Compared with diabetic mice treated with saline, tadalafil treatment significantly improved motor and sensory conduction velocities in the sciatic nerve and peripheral thermal sensitivity. Tadalafil treatment also markedly increased local blood flow and the density of FITC-dextran perfused vessels in the sciatic nerve concomitantly with increased intraepidermal nerve fiber density. Moreover, tadalafil reversed the diabetes-induced reductions of axon diameter and myelin thickness and reversed the diabetes-induced increased g-ratio in the sciatic nerve. Furthermore, tadalafil enhanced diabetes-reduced nerve growth factor (NGF) and platelet-derived growth factor-C (PDGF-C) protein levels in diabetic sciatic nerve tissue. The present study demonstrates that tadalafil increases regional blood flow in the sciatic nerve tissue, which may contribute to the improvement of peripheral nerve function and the amelioration of diabetic peripheral neuropathy. PMID:27438594

  5. Tadalafil Promotes the Recovery of Peripheral Neuropathy in Type II Diabetic Mice

    PubMed Central

    Wang, Lei; Chopp, Michael; Szalad, Alexandra; Lu, XueRong; Jia, LongFei; Lu, Mei; Zhang, Rui Lan; Zhang, Zheng Gang

    2016-01-01

    We previously demonstrated that treatment of diabetic peripheral neuropathy with the short (4 hours) half-life phosphodiesterase 5 (PDE5) inhibitor, sildenafil, improved functional outcome in diabetic db/db mice. To further examine the effect of PDE5 inhibition on diabetic peripheral neuropathy, we investigated the effect of another potent PDE5 inhibitor, tadalafil, on diabetic peripheral neuropathy. Tadalafil is pharmacokinetically distinct from sildenafil and has a longer half-life (17+hours) than sildenafil. Diabetic mice (BKS.Cg-m+/+Leprdb/J, db/db) at age 20 weeks were treated with tadalafil every 48 hours for 8 consecutive weeks. Compared with diabetic mice treated with saline, tadalafil treatment significantly improved motor and sensory conduction velocities in the sciatic nerve and peripheral thermal sensitivity. Tadalafil treatment also markedly increased local blood flow and the density of FITC-dextran perfused vessels in the sciatic nerve concomitantly with increased intraepidermal nerve fiber density. Moreover, tadalafil reversed the diabetes-induced reductions of axon diameter and myelin thickness and reversed the diabetes-induced increased g-ratio in the sciatic nerve. Furthermore, tadalafil enhanced diabetes-reduced nerve growth factor (NGF) and platelet-derived growth factor-C (PDGF-C) protein levels in diabetic sciatic nerve tissue. The present study demonstrates that tadalafil increases regional blood flow in the sciatic nerve tissue, which may contribute to the improvement of peripheral nerve function and the amelioration of diabetic peripheral neuropathy. PMID:27438594

  6. Evaluation of the Effects of Novel Nafimidone Derivatives on Thermal Hypoalgesia in Mice with Diabetic Neuropathy

    PubMed Central

    Kamışlı, Suat; Karakurt, Arzu; Uyumlu, Ayşe B.; Satılmış, Basri; Alagöz, Abdullah; Genç, Metin F.; Batcıoğlu, Kadir

    2013-01-01

    Objective: Diabetic neuropathy (DN) is a common complication in Diabetes Mellitus. The streptozotocin-induced diabetic rodent is the most commonly used animal model of diabetes and increased sodium channel expression and activity were revealed in this model. At this study, we evaluated the effect of three different nafimidone derivatives which have possible anticonvulsant activity on disorders of thermal pain sensation in diabetic mice. Study Design: Randomized animal experiment. Material and Methods: Mice were divided randomly into five groups (5 mice per group): Control, Diabetes, Dibetes+C1, Diabetes+C2, Diabetes+C3. We used hot and cold plate, and tail-immersion tests for assessment of thermal nociceptive responses. Results: Compared with the control group, the hot-plate response time and the number of paw liftings on cold plate as important indicators of loss of sensation increased, but no significant difference (p>0.05) was found in tail-immersion response time test in diabetes group. C3 compound moved it back to control group levels in the all of three tests. C1 and C2 compounds were effective only in cold-plate test. Conclusion: Nafimidone derivatives may be effective in the cases where epilepsy and diabetes occur together since it has shown efficacy against “loss of sensation” which evolves in diabetic neuropathy over time as well as its antiepileptic effect. PMID:25207077

  7. Antidepressant effects of insulin in streptozotocin induced diabetic mice: Modulation of brain serotonin system.

    PubMed

    Gupta, Deepali; Kurhe, Yeshwant; Radhakrishnan, Mahesh

    2014-04-22

    Diabetes is a persistent metabolic disorder, which often leads to depression as a result of the impaired neurotransmitter function. Insulin is believed to have antidepressant effects in depression associated with diabetes; however, the mechanism underlying the postulated effect is poorly understood. In the present study, it is hypothesized that insulin mediates an antidepressant effect in streptozotocin (STZ) induced diabetes in mice through modulation of the serotonin system in the brain. Therefore, the current study investigated the antidepressant effect of insulin in STZ induced diabetes in mice and insulin mediated modulation in the brain serotonin system. In addition, the possible pathways that lead to altered serotonin levels as a result of insulin administration were examined. Experimentally, Swiss albino mice of either sex were rendered diabetic by a single intraperitoneal (i.p.) injection of STZ. After one week, diabetic mice received a single dose of either insulin or saline or escitalopram for 14days. Thereafter, behavioral studies were conducted to test the behavioral despair effects using forced swim test (FST) and tail suspension test (TST), followed by biochemical estimations of serotonin concentrations and monoamine oxidase (MAO) activity in the whole brain content. The results demonstrated that, STZ treated diabetic mice exhibited an increased duration of immobility in FST and TST as compared to non-diabetic mice, while insulin treatment significantly reversed the effect. Biochemical assays revealed that administration of insulin attenuated STZ treated diabetes induced neurochemical alterations as indicated by elevated serotonin levels and decreased MAO-A and MAO-B activities in the brain. Collectively, the data indicate that insulin exhibits antidepressant effects in depression associated with STZ induced diabetes in mice through the elevation of the brain serotonin levels.

  8. The Gut Microbiota Modulates Glycaemic Control and Serum Metabolite Profiles in Non-Obese Diabetic Mice

    PubMed Central

    Greiner, Thomas U.; Hyötyläinen, Tuulia; Knip, Mikael; Bäckhed, Fredrik; Orešič, Matej

    2014-01-01

    Islet autoimmunity in children who later progress to type 1 diabetes is preceded by dysregulated serum metabolite profiles, but the origin of these metabolic changes is unknown. The gut microbiota affects host metabolism and changes in its composition contribute to several immune-mediated diseases; however, it is not known whether the gut microbiota is involved in the early metabolic disturbances in progression to type 1 diabetes. We rederived non-obese diabetic (NOD) mice as germ free to explore the potential role of the gut microbiota in the development of diabetic autoimmunity and to directly investigate whether the metabolic profiles associated with the development of type 1 diabetes can be modulated by the gut microbiota. The absence of a gut microbiota in NOD mice did not affect the overall diabetes incidence but resulted in increased insulitis and levels of interferon gamma and interleukin 12; these changes were counterbalanced by improved peripheral glucose metabolism. Furthermore, we observed a markedly increased variation in blood glucose levels in the absence of a microbiota in NOD mice that did not progress to diabetes. Additionally, germ-free NOD mice had a metabolite profile similar to that of pre-diabetic children. Our data suggest that germ-free NOD mice have reduced glycaemic control and dysregulated immunologic and metabolic responses. PMID:25390735

  9. O-GlcNAcase overexpression reverses coronary endothelial cell dysfunction in type 1 diabetic mice.

    PubMed

    Makino, Ayako; Dai, Anzhi; Han, Ying; Youssef, Katia D; Wang, Weihua; Donthamsetty, Reshma; Scott, Brian T; Wang, Hong; Dillmann, Wolfgang H

    2015-11-01

    Cardiovascular disease is the primary cause of morbidity and mortality in diabetes, and endothelial dysfunction is commonly seen in these patients. Increased O-linked N-acetylglucosamine (O-GlcNAc) protein modification is one of the central pathogenic features of diabetes. Modification of proteins by O-GlcNAc (O-GlcNAcylation) is regulated by two key enzymes: β-N-acetylglucosaminidase [O-GlcNAcase (OGA)], which catalyzes the reduction of protein O-GlcNAcylation, and O-GlcNAc transferase (OGT), which induces O-GlcNAcylation. However, it is not known whether reducing O-GlcNAcylation can improve endothelial dysfunction in diabetes. To examine the effect of endothelium-specific OGA overexpression on protein O-GlcNAcylation and coronary endothelial function in diabetic mice, we generated tetracycline-inducible, endothelium-specific OGA transgenic mice, and induced OGA by doxycycline administration in streptozotocin-induced type 1 diabetic mice. OGA protein expression was significantly decreased in mouse coronary endothelial cells (MCECs) isolated from diabetic mice compared with control MCECs, whereas OGT protein level was markedly increased. The level of protein O-GlcNAcylation was increased in diabetic compared with control mice, and OGA overexpression significantly decreased the level of protein O-GlcNAcylation in MCECs from diabetic mice. Capillary density in the left ventricle and endothelium-dependent relaxation in coronary arteries were significantly decreased in diabetes, while OGA overexpression increased capillary density to the control level and restored endothelium-dependent relaxation without changing endothelium-independent relaxation. We found that connexin 40 could be the potential target of O-GlcNAcylation that regulates the endothelial functions in diabetes. These data suggest that OGA overexpression in endothelial cells improves endothelial function and may have a beneficial effect on coronary vascular complications in diabetes.

  10. Imbalanced Macrophage and Dendritic Cell Activations in Response to Candida albicans in a Murine Model of Diabetes Mellitus.

    PubMed

    Venturini, James; Fraga-Silva, Thais Fernanda Campos; Marchetti, Camila Martins; Mimura, Luiza Ayumi Nishiyama; Conti, Bruno José; Golim, Márjorie de Assis; Mendes, Rinaldo Poncio; de Arruda, Maria Sueli Parreira

    2016-07-01

    Bloodstream infections caused by Candida species are responsible for high morbidity and mortality, and diabetes mellitus (DM) is an important underlying disease in candidemia episodes. Although DM patients show an enhanced proinflammatory profile, they are highly susceptible to mycobacterial and mycotic infections. Attempting to understand this paradox, we investigated if imbalanced macrophage and dendritic cell (DC) activations could be associated to high incidence and/or severity of Candida albicans infection in the hypoinsulinemia-hyperglycemia (HH) milieu. HH alloxan-induced mice were infected with C. albicans and peritoneal aderent phagocytes were co-cultured with or without lipopolyssaccharide or heat-killed C. albicans, and the production of cytotoxic metabolites, cytokines, and chemokines was evaluated. We also evaluated the surface expression of MHC-II and CD86 in splenic DCs. Our findings showed that both uninfected and C. albicans-infected HH mice showed less production of CCL2 and reduced expression of CD86 by peritoneal phagocytes and splenic DCs, respectively.

  11. Optical cryo-imaging of kidney mitochondrial redox state in diabetic mice models

    NASA Astrophysics Data System (ADS)

    Maleki, S.; Sepehr, R.; Staniszewski, K.; Sheibani, N.; Sorenson, C. M.; Ranji, M.

    2012-03-01

    Oxidative stress (OS), which increases during diabetes, exacerbates the development and progression of diabetes complications including renal vascular and proximal tubule cell dysfunction. The objective of this study was to investigate the changes in the metabolic state of the tissue in diabetic mice kidneys using fluorescence imaging. Mitochondrial metabolic coenzymes NADH (Nicotinamide Adenine Dinucleotide), and FADH-2 (Flavin Adenine Dinucleotide) are autofluorescent and can be monitored without exogenous labels by optical techniques. The ratio of the fluorescence intensity of these fluorophores, (NADH/FAD), called the NADH redox ratio (RR), is a marker of metabolic state of a tissue. We examined mitochondrial redox states of kidneys from diabetic mice, Akita/+ and its control wild type (WT) for a group of 8- and 12-week-old mice. Average intensity and histogram of maximum projected images of FAD, NADH, and NADH RR were calculated for each kidney. Our results indicated a 17% decrease in the mean NADH RR of the kidney from 8-week-old mice compared with WT mice and, a 30% decrease in the mean NADH RR of kidney from12-week-old mice compared with WT mice. These results indicated an increase in OS in diabetic animals and its progression over time. Thus, NADH RR can be used as a hallmark of OS in diabetic kidney allowing temporal identification of oxidative state.

  12. Breviscapine attenuatted contrast medium-induced nephropathy via PKC/Akt/MAPK signalling in diabetic mice

    PubMed Central

    Jiang, Wenbin; Li, Zhengwei; Zhao, Wei; Chen, Hao; Wu, Youyang; Wang, Yi; Shen, Zhida; He, Jialin; Chen, Shengyu; Zhang, Jiefang; Fu, Guosheng

    2016-01-01

    Contrast medium-induced nephropathy (CIN) remains a major cause of iatrogenic, drug-induced renal injury. Recent studies reveal that Breviscapine can ameliorate diabetic nephropathy in mice. Yet it remains unknown if Breviscapine could reduce CIN in diabetic mice. In this study, male C57/BL6J mice were randomly divided into 7 groups: control, diabetes mellitus, CIN, diabetes mellitus+CIN, diabetes mellitus+Breviscapine, CIN+Breviscapine and diabetes mellitus+CIN+Breviscapine. Model of CIN was induced by tail intravenous administration of iopromide and model of diabetes mellitus was induced by Streptozotocin intraperitoneally. Breviscapine was administered intragastrically for 4 weeks. Renal function parameters, kidney histology, markers of renal fibrosis, phosphorylation of protein kinase C/Akt/mitogen activated protein kinases were measured by western blot. We found out that diabetes mellitus aggravated CIN damage. Renal histological analysis showed Breviscapine reduced of renal fibrosis and tubular damage. Breviscapine was also shown markedly to ameliorate CIN fibrotic markers expression, reduced proteinuria and serum creatinine. Furthermore, Breviscapine decreased phosphorylation of PKCβII, Akt, JNK1/2 and p38. Therefore, Breviscapine treatment could ameliorate the development of CIN in diabetic mice, which was partly attributed to its suppression of renal fibrosis via phosphorylation of PKCβII/Akt/JNK1/2/p38 signalling. PMID:27158329

  13. Breviscapine attenuatted contrast medium-induced nephropathy via PKC/Akt/MAPK signalling in diabetic mice.

    PubMed

    Jiang, Wenbin; Li, Zhengwei; Zhao, Wei; Chen, Hao; Wu, Youyang; Wang, Yi; Shen, Zhida; He, Jialin; Chen, Shengyu; Zhang, Jiefang; Fu, Guosheng

    2016-01-01

    Contrast medium-induced nephropathy (CIN) remains a major cause of iatrogenic, drug-induced renal injury. Recent studies reveal that Breviscapine can ameliorate diabetic nephropathy in mice. Yet it remains unknown if Breviscapine could reduce CIN in diabetic mice. In this study, male C57/BL6J mice were randomly divided into 7 groups: control, diabetes mellitus, CIN, diabetes mellitus+CIN, diabetes mellitus+Breviscapine, CIN+Breviscapine and diabetes mellitus+CIN+Breviscapine. Model of CIN was induced by tail intravenous administration of iopromide and model of diabetes mellitus was induced by Streptozotocin intraperitoneally. Breviscapine was administered intragastrically for 4 weeks. Renal function parameters, kidney histology, markers of renal fibrosis, phosphorylation of protein kinase C/Akt/mitogen activated protein kinases were measured by western blot. We found out that diabetes mellitus aggravated CIN damage. Renal histological analysis showed Breviscapine reduced of renal fibrosis and tubular damage. Breviscapine was also shown markedly to ameliorate CIN fibrotic markers expression, reduced proteinuria and serum creatinine. Furthermore, Breviscapine decreased phosphorylation of PKCβII, Akt, JNK1/2 and p38. Therefore, Breviscapine treatment could ameliorate the development of CIN in diabetic mice, which was partly attributed to its suppression of renal fibrosis via phosphorylation of PKCβII/Akt/JNK1/2/p38 signalling.

  14. Dental caries and caries-related periodontitis in type 2 diabetic mice.

    PubMed

    Sano, T; Matsuura, T; Ozaki, K; Narama, I

    2011-03-01

    Diabetic patients are predisposed to periodontal disease as well as dental caries; however, there are contradictory reports about the possible association between dental caries and diabetes. Thus, the authors set out to determine whether diabetes affects onset of dental caries and periodontal disease and to clarify whether dental caries and periodontal disease are associated with each other in diabetic db/db mice. Oral tissue was examined from 68 male mice (diabetic db/db and nondiabetic db/+; aged 20, 30, 40, and 50 weeks) and 20 female mice (db/db and db/+; aged 50 weeks). Macroscopically, caries were seen developing in the diabetic mice by 20 weeks of age. The number of teeth with dental lesions increased with age in the db/db mice at a significantly higher incidence than that of db/+ mice. Histologically, dental caries were detected in 30 of 120 molars in 17 of 20 db/db mice at 50 weeks of age and in 4 of 108 molars in 4 of 18 db/+ mice of the same age. The severity of dental caries in db/db mice was significantly higher than it was in db/+ mice. Dental caries were a primary change that led to bacterial gingivitis and pulpitis. These lesions spread to the dental root and periodontal connective tissue through the apical foramen. Apical periodontitis was more frequent and severe when occurring in close association with dental caries. In conclusion, there is a strong relationship between diabetes and dental caries, but in this model, it is highly probable that the onset of periodontal disease was a secondary change resulting from dental caries.

  15. Double transgenic mice with type 1 diabetes mellitus develop somatic, metabolic and vascular disorders.

    PubMed

    Radu, D L; Georgescu, Adriana; Stavaru, Crina; Carale, Alina; Popov, Doina

    2004-01-01

    The double transgenic mice (dTg) were obtained by mating: (i) transgenic mice expressing the hemagglutinin of influenza virus under the insulin promoter with (ii) transgenic mice expressing specific T lymphocytes with receptor for the immunodominant epitope of the same virus. In this study we show that dTg mice developed type 1 diabetes mellitus associated with hyperglycemia, low level of plasma insulin, glucosuria, weight loss and approximately 90% mortality (at 3 months biological age). The membrane of red blood cells was more sensitive to osmotic shock in diabetic mice, compared to non-diabetic mice, assessing systemic oxidative stress. Both vasoconstriction and vasorelaxation of the renal arteries decreased significantly in diabetic mice (compared to the control group of non-diabetic mice) related to the phenotypic change of endothelium and smooth muscle cells within the artery wall. This animal model, may be used in developing various strategies to study pancreatic beta-cell function, as well as for a better metabolic control conducting to a reduced risk of vascular complications. PMID:15491510

  16. Arsenic induces diabetic effects through beta-cell dysfunction and increased gluconeogenesis in mice

    NASA Astrophysics Data System (ADS)

    Liu, Su; Guo, Xuechao; Wu, Bing; Yu, Haiyan; Zhang, Xuxiang; Li, Mei

    2014-11-01

    Arsenic as a potential risk factor for type 2 diabetes has been received attention recently. However, the roles of arsenic on development of diabetes are unclear. In this study, we compared the influences of inorganic arsenic (iAs) on normal and diabetic mice by systems toxicology approaches. Although iAs exposure did not change glucose tolerance in normal mice, it caused the pancreatic β-cell dysfunction and increased gluconeogenesis and oxidative damages in liver. However, iAs exposure worsened the glucose tolerance in diabetic mice, which might be due to increased gluconeogenesis and impairment of pancreatic β-cell function. It is interesting that iAs exposure could improve the insulin sensitivity based on the insulin tolerance testing by the activation of glucose uptake-related genes and enzymes in normal and diabetic individuals. Our data suggested that iAs exposure could cause pre-diabetic effects by altering the lipid metabolism, gluconeogenesis and insulin secretion in normal individual, and worsen diabetic effects in diabetes individual by these processes. Insulin resistance might be not the reason of diabetic effects caused by iAs, indicating that mechanism of the diabetogenic effects of iAs exposure is different from the mechanism associated with traditional risk factors (such as obesity)-reduced type 2 diabetes.

  17. In vivo targeted molecular magnetic resonance imaging of free radicals in diabetic cardiomyopathy within mice.

    PubMed

    Towner, R A; Smith, N; Saunders, D; Carrizales, J; Lupu, F; Silasi-Mansat, R; Ehrenshaft, M; Mason, R P

    2015-01-01

    Free radicals contribute to the pathogenesis of diabetic cardiomyopathy. We present a method for in vivo observation of free radical events within murine diabetic cardiomyopathy. This study reports on in vivo imaging of protein/lipid radicals using molecular MRI (mMRI) and immuno-spin trapping (IST) in diabetic cardiac muscle. To detect free radicals in diabetic cardiomyopathy, streptozotocin (STZ)-exposed mice were given 5,5-dimethyl-pyrroline-N-oxide (DMPO) and administered an anti-DMPO probe (biotin-anti-DMPO antibody-albumin-Gd-DTPA). For controls, non-diabetic mice were given DMPO (non-disease control), and administered an anti-DMPO probe; or diabetic mice were given DMPO but administered a non-specific IgG contrast agent instead of the anti-DMPO probe. DMPO administration started at 7 weeks following STZ treatment for 5 days, and the anti-DMPO probe was administered at 8 weeks for MRI detection. MRI was used to detect a significant increase (p < 0.001) in MRI signal intensity (SI) from anti-DMPO nitrone adducts in diabetic murine left-ventricular (LV) cardiac tissue, compared to controls. Regional increases in MR SI in the LV were found in the apical and upper-left areas (p < 0.01 for both), compared to controls. The biotin moiety of the anti-DMPO probe was targeted with fluorescently-labeled streptavidin to locate the anti-DMPO probe in excised cardiac tissues, which indicated elevated fluorescence only in cardiac muscle of mice administered the anti-DMPO probe. Oxidized lipids and proteins were also found to be significantly elevated (p < 0.05 for both) in diabetic cardiac muscle compared to controls. It can be concluded that diabetic mice have more heterogeneously distributed radicals in cardiac tissue than non-diabetic mice.

  18. Daintain/AIF-1 (Allograft Inflammatory Factor-1) accelerates type 1 diabetes in NOD mice

    SciTech Connect

    Zhao, Yan-Ying; Huang, Xin-Yuan; Chen, Zheng-Wang

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer Daintain/AIF-1 is over-expressed in the blood of NOD mice suffering from insulitis. Black-Right-Pointing-Pointer Daintain/AIF-1 stimulates white blood cell proliferation in NOD mice. Black-Right-Pointing-Pointer Daintain/AIF-1 increases blood glucose levels and triggers type 1 diabetes. Black-Right-Pointing-Pointer Daintain/AIF-1 accelerates insulitis, while its antibody prevents insulitis. Black-Right-Pointing-Pointer Daintain/AIF-1 enhances the levels of nitric oxide in the pancreases of NOD mice. -- Abstract: A large body of experimental evidence suggests that cytokines trigger pancreatic {beta}-cell death in type 1 diabetes mellitus. Daintain/AIF-1 (Allograft Inflammatory Factor-1), a specific marker for activated macrophages, is accumulated in the pancreatic islets of pre-diabetic BB rats. In the present study, we demonstrate that daintain/AIF-1 is released into blood and the levels of daintain/AIF-1 in the blood of type 1 diabetes-prone non-obese diabetic (NOD) mice suffering from insulitis are significantly higher than that in healthy NOD mice. When injected intravenously into NOD mice, daintain/AIF-1 stimulates white blood cell proliferation, increases the concentrations of blood glucose, impairs insulin expression, up-regulates nitric oxide (NO) production in pancreases and accelerates diabetes in NOD mice, while the antibody against daintain/AIF-1 delays or prevents insulitis in NOD mice. These results imply daintain/AIF-1 triggers type 1 diabetes probably via arousing immune cells activation and induction of NO production in pancreas of NOD mice.

  19. Flos Puerariae Extract Ameliorates Cognitive Impairment in Streptozotocin-Induced Diabetic Mice

    PubMed Central

    Liu, Zhong-he; Chen, Hong-guang; Wu, Pan-feng; Yao, Qing; Cheng, Hong-ke; Yu, Wei; Liu, Chao

    2015-01-01

    Objective. The effects of Flos Puerariae extract (FPE) on cognitive impairment associated with diabetes were assessed in C57BL/6J mice. Methods. Experimental diabetic mice model was induced by one injection of 50 mg/kg streptozotocin (STZ) for 5 days consecutively. FPE was orally administrated at the dosages of 50, 100, or 200 mg/kg/day, respectively. The learning and memory ability was assessed by Morris water maze test. Body weight, blood glucose, free fatty acid (FFA) and total cholesterol (TCH) in serum, malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and acetylcholinesterase (AChE) activities in cerebral cortex and hippocampus were also measured. Results. Oral administration of FPE significantly improved cognitive deficits in STZ-induced diabetic mice. FPE treatment also maintained body weight and ameliorated hyperglycemia and dyslipidemia in diabetic mice. Additionally, decreased MDA level, enhanced CAT, and GSH-Px activities in cerebral cortex or hippocampus, as well as alleviated AChE activity in cerebral cortex, were found in diabetic mice supplemented with FPE. Conclusion. This study suggests that FPE ameliorates memory deficits in experimental diabetic mice, at least partly through the normalization of metabolic abnormalities, ameliorated oxidative stress, and AChE activity in brain. PMID:26060502

  20. Urtica dioica leaves modulates muscarinic cholinergic system in the hippocampus of streptozotocin-induced diabetic mice.

    PubMed

    Patel, Sita Sharan; Parashar, Arun; Udayabanu, Malairaman

    2015-06-01

    Diabetes mellitus is a chronic metabolic disorder and has been associated with cognitive dysfunction. In our earlier study, chronic Urtica dioica (UD) treatment significantly ameliorated diabetes induced associative and spatial memory deficit in mice. The present study was designed to explore the effect of UD leaves extract on muscarinic cholinergic system, which has long been known to be involved in cognition. Streptozotocin (STZ) (50 mg/kg, i.p., consecutively for 5 days) was used to induce diabetes followed by treatment with UD extract (50 mg/kg, oral) or rosiglitazone (5 mg/kg, oral) for 8 weeks. STZ-induced diabetic mice showed significant reduction in hippocampal muscarinic acetylcholine receptor-1 and choline acetyltransferase expressions. Chronic diabetes significantly up-regulated the protein expression of acetylcholinesterase associated with oxidative stress in hippocampus. Besides, STZ-induced diabetic mice showed hypolocomotion with up-regulation of muscarinic acetylcholine receptor-4 expression in striatum. Chronic UD treatment significantly attenuated the cholinergic dysfunction and oxidative stress in the hippocampus of diabetic mice. UD had no effect on locomotor activity and muscarinic acetylcholine receptor-4 expression in striatum. In conclusion, UD leaves extract has potential to reverse diabetes mediated alteration in muscarinic cholinergic system in hippocampus and thereby improve memory functions. PMID:25514862

  1. Effect of Tongxinluo on nerve regeneration in mice with diabetic peripheral neuropathy.

    PubMed

    Li, X; Zhang, J; Zhao, W; Yang, H; Ma, J; Qi, Y; Wu, S

    2015-01-01

    Diabetic peripheral neuropathy (DPN) is a common complication of diabetes. This study aims to investigate the effects of Tongxinluo on the nerve regeneration in diabetic peripheral neuropathy mice. Forty Specefic Pathogen Free (SPF) male KK/Upj—Ay mice were divided into diabetes group, diabetes with high dose Tongxinluo (4g/kg) (D+H), diabetes with mid dose Tongxinluo (2g/kg) (D+M), and diabetes with low dose Tongxinluo (1g/kg) (D+L) groups. Fasting blood glucose (FPG), heat pain threshold, motor nerve conduction velocity (MNCV), insulin—like growth factor—1 (IGF1), activator protein 1 (c—fos), nerve growth factor (NGF), and basic fibroblast growth factor (BFGF) were measured. Results indicated that FPG of diabetes group was significantly higher than that of control group. Heat pain threshold and MNCV were significantly lowered in diabetes group. Expression levels of IGF1, NGF and BFGF were significantly lower than that of control, whereas c—fos expression was significantly higher than that of control group. Tongxinluo treatment (D+M and D+H) significantly up—regulated heat pain threshold, MNCV, and IGF1, NGF and BFGF expression, but decreased c—fos expresson when compared to that of diabetes group. In conclusion, Tongxinluo can ameliorate diabetic peripheral neuropathy, improve MNCV, and promote nerve regeneration. The underlying mechanism needs to be further elucidated. PMID:26522065

  2. Protective Effects of Red Guava on Inflammation and Oxidative Stress in Streptozotocin-Induced Diabetic Mice.

    PubMed

    Li, Pei-Ying; Hsu, Cheng-Chin; Yin, Mei-Chin; Kuo, Yueh-Hsiung; Tang, Feng-Yao; Chao, Che-Yi

    2015-12-12

    Diabetes is an important chronic disease and the 4th leading cause of death in Taiwan. Hyperglycemia-induced oxidative and inflammatory damage are the main causes of chronic complications in diabetic patients. The red guava (red-fleshed guava cultivar of Psidium guajava L.) is a tropical fruit belonging to the Myrtaceae family and an important commercial crop in Taiwan. In this study, the protective effects of a diet containing red guava on inflammation and oxidative stress in streptozotocin (STZ)-induced diabetic mice were examined. The experimental group was divided into seven subgroups: normal (N), diabetes mellitus (DM), diabetes + red guava 1% (L), 2% (M), and 5% (H), diabetes + 5% red guava + anti-diabetic rosiglitazone (HR), and diabetes + anti-diabetic rosiglitazone (R). The mice were fed for 8 weeks and sacrificed by decapitation. Compared with the DM group, the experimental groups with diets containing red guava as well as rosiglitazone all showed significant improvements in blood glucose control, insulin resistance, creatinine, blood urea nitrogen, triglycerides, non-esterified fatty acids, cholesterol, c-reactive protein, TNF-α, and IL-10. Furthermore, the expression of inflammatory proteins, such as iNOS and NF-κB, was suppressed via activated PPARγ, and the expression levels of GPx3 and ACO increased. In summary, red guava can significantly suppress inflammatory and oxidative damage caused by diabetes and alleviate diabetic symptoms; thus, it exerts protective effects and has potential applications for the development of a dietary supplement.

  3. Protective Effects of Red Guava on Inflammation and Oxidative Stress in Streptozotocin-Induced Diabetic Mice.

    PubMed

    Li, Pei-Ying; Hsu, Cheng-Chin; Yin, Mei-Chin; Kuo, Yueh-Hsiung; Tang, Feng-Yao; Chao, Che-Yi

    2015-01-01

    Diabetes is an important chronic disease and the 4th leading cause of death in Taiwan. Hyperglycemia-induced oxidative and inflammatory damage are the main causes of chronic complications in diabetic patients. The red guava (red-fleshed guava cultivar of Psidium guajava L.) is a tropical fruit belonging to the Myrtaceae family and an important commercial crop in Taiwan. In this study, the protective effects of a diet containing red guava on inflammation and oxidative stress in streptozotocin (STZ)-induced diabetic mice were examined. The experimental group was divided into seven subgroups: normal (N), diabetes mellitus (DM), diabetes + red guava 1% (L), 2% (M), and 5% (H), diabetes + 5% red guava + anti-diabetic rosiglitazone (HR), and diabetes + anti-diabetic rosiglitazone (R). The mice were fed for 8 weeks and sacrificed by decapitation. Compared with the DM group, the experimental groups with diets containing red guava as well as rosiglitazone all showed significant improvements in blood glucose control, insulin resistance, creatinine, blood urea nitrogen, triglycerides, non-esterified fatty acids, cholesterol, c-reactive protein, TNF-α, and IL-10. Furthermore, the expression of inflammatory proteins, such as iNOS and NF-κB, was suppressed via activated PPARγ, and the expression levels of GPx3 and ACO increased. In summary, red guava can significantly suppress inflammatory and oxidative damage caused by diabetes and alleviate diabetic symptoms; thus, it exerts protective effects and has potential applications for the development of a dietary supplement. PMID:26703532

  4. Acute Versus Progressive Onset of Diabetes in NOD Mice: Potential Implications for Therapeutic Interventions in Type 1 Diabetes.

    PubMed

    Mathews, Clayton E; Xue, Song; Posgai, Amanda; Lightfoot, Yaima L; Li, Xia; Lin, Andrea; Wasserfall, Clive; Haller, Michael J; Schatz, Desmond; Atkinson, Mark A

    2015-11-01

    Most natural history models for type 1 diabetes (T1D) propose that overt hyperglycemia results after a progressive loss of insulin-secreting β-cell mass and/or function. To experimentally address this concept, we prospectively determined morning blood glucose measurements every other day in multiple cohorts (total n = 660) of female NOD/ShiLtJ mice starting at 8 weeks of age until diabetes onset or 26 weeks of age. Consistent with this notion, a majority of mice that developed diabetes (354 of 489 [72%]) displayed a progressive increase in blood glucose with transient excursions >200 mg/dL, followed by acute and persistent hyperglycemia at diabetes onset. However, 135 of the 489 (28%) diabetic animals demonstrated normal glucose values followed by acute (i.e., sudden) hyperglycemia. Interestingly, diabetes onset occurred earlier in mice with acute versus progressive disease onset (15.37 ± 0.3207 vs. 17.44 ± 0.2073 weeks of age, P < 0.0001). Moreover, the pattern of onset (i.e., progressive vs. acute) dramatically influenced the ability to achieve reversal of T1D by immunotherapeutic intervention, with increased effectiveness observed in situations of a progressive deterioration in euglycemia. These studies highlight a novel natural history aspect in this animal model, one that may provide important guidance for the selection of subjects participating in human trials seeking disease reversal. PMID:26216853

  5. Adipose-derived stem cells from diabetic mice show impaired vascular stabilization in a murine model of diabetic retinopathy.

    PubMed

    Cronk, Stephen M; Kelly-Goss, Molly R; Ray, H Clifton; Mendel, Thomas A; Hoehn, Kyle L; Bruce, Anthony C; Dey, Bijan K; Guendel, Alexander M; Tavakol, Daniel N; Herman, Ira M; Peirce, Shayn M; Yates, Paul A

    2015-05-01

    Diabetic retinopathy is characterized by progressive vascular dropout with subsequent vision loss. We have recently shown that an intravitreal injection of adipose-derived stem cells (ASCs) can stabilize the retinal microvasculature, enabling repair and regeneration of damaged capillary beds in vivo. Because an understanding of ASC status from healthy versus diseased donors will be important as autologous cellular therapies are developed for unmet clinical needs, we took advantage of the hyperglycemic Akimba mouse as a preclinical in vivo model of diabetic retinopathy in an effort aimed at evaluating therapeutic efficacy of adipose-derived stem cells (mASCs) derived either from healthy, nondiabetic or from diabetic mice. To these ends, Akimba mice received intravitreal injections of media conditioned by mASCs or mASCs themselves, subsequent to development of substantial retinal capillary dropout. mASCs from healthy mice were more effective than diabetic mASCs in protecting the diabetic retina from further vascular dropout. Engrafted ASCs were found to preferentially associate with the retinal vasculature. Conditioned medium was unable to recapitulate the vasoprotection seen with injected ASCs. In vitro diabetic ASCs showed decreased proliferation and increased apoptosis compared with healthy mASCs. Diabetic ASCs also secreted less vasoprotective factors than healthy mASCs, as determined by high-throughput enzyme-linked immunosorbent assay. Our findings suggest that diabetic ASCs are functionally impaired compared with healthy ASCs and support the utility of an allogeneic injection of ASCs versus autologous or conditioned media approaches in the treatment of diabetic retinopathy.

  6. Cilostazol improves the response to ischemia in diabetic mice by a mechanism dependent on PPARγ.

    PubMed

    Biscetti, Federico; Pecorini, Giovanni; Arena, Vincenzo; Stigliano, Egidio; Angelini, Flavia; Ghirlanda, Giovanni; Ferraccioli, Gianfranco; Flex, Andrea

    2013-12-01

    Cilostazol is effective for the treatment of peripheral ischemia. This compound has several beneficial effects on platelet aggregation, serum lipids and endothelial cells, and we recently found that it enhances collateral blood flow in the ischemic hind limbs of mice. Peroxisome proliferator-activated receptor (PPAR)γ, a receptor for thiazolidinediones, plays a role in angiogenesis. The aim of this work was to investigate the underlying molecular mechanisms and effects of cilostazol in a model of peripheral ischemia in diabetic mice. We induced diabetes in mice by streptozotocin (STZ) administration and studied ischemia-induced angiogenesis in the ischemic hind limbs of cilostazol-treated and untreated control mice. We found that perfusion recovery was significantly improved in treated compared with control diabetic mice. Interestingly, we found that the expression of PPARγ is reduced in ischemic tissues of diabetic mice. Furthermore, we discovered that local inhibition of the activity of this nuclear receptor decreased the angiogenic response to cilostazol treatment. Finally, we noted that this phenomenon is dependent on VEGF and modulated by PPARγ. Cilostazol administration enhances collateral blood flow in the ischemic hind limbs of STZ-induced diabetic mice through a PPARγ-dependent mechanism.

  7. Antidiabetic potential of Citrus sinensis and Punica granatum peel extracts in alloxan treated male mice.

    PubMed

    Parmar, Hamendra Singh; Kar, Anand

    2007-01-01

    An investigation on the effects of four different concentrations of peel extract from Citrus sinensis (CS) or Punica granatum (PG) in male mice revealed the maximum glucose lowering and antiperoxidative activities at 25 mg/kg of CS and 200 mg/kg of PG. In a separate experiment their potential was evaluated with respect to the regulation of alloxan induced diabetes mellitus. While a single dose of alloxan (120 mg/kg) increased the serum levels of glucose and alpha-amylase activity, rate of water consumption and lipid peroxidation (LPO) in hepatic, cardiac and renal tissues with a parallel decrease in serum insulin level, administration of 25 mg/kg of CS or 200 mg/kg of PG was found to normalize all the adverse changes induced by alloxan, revealing the antidiabetic and anti peroxidative potential of test fruit peel extracts. Subsequent phytochemical analysis indicated that the high content of total polyphenols in the test peels might be related to the antidiabetic and antiperoxidative effects of the test peels. PMID:18806305

  8. Improvement of skin wound healing in diabetic mice by kinin B2 receptor blockade.

    PubMed

    Desposito, Dorinne; Chollet, Catherine; Taveau, Christopher; Descamps, Vincent; Alhenc-Gelas, François; Roussel, Ronan; Bouby, Nadine; Waeckel, Ludovic

    2016-01-01

    Impaired skin wound healing is a major medical problem in diabetic subjects. Kinins exert a number of vascular and other actions limiting organ damage in ischaemia or diabetes, but their role in skin injury is unknown. We investigated, through pharmacological manipulation of bradykinin B1 and B2 receptors (B1R and B2R respectively), the role of kinins in wound healing in non-diabetic and diabetic mice. Using two mouse models of diabetes (streptozotocin-induced and db/db mice) and non-diabetic mice, we assessed the effect of kinin receptor activation or inhibition by subtype-selective pharmacological agonists (B1R and B2R) and antagonist (B2R) on healing of experimental skin wounds. We also studied effects of agonists and antagonist on keratinocytes and fibroblasts in vitro. Levels of Bdkrb1 (encoding B1R) and Bdkrb2 (encoding B2R) mRNAs increased 1-2-fold in healthy and wounded diabetic skin compared with in non-diabetic skin. Diabetes delayed wound healing. The B1R agonist had no effect on wound healing. In contrast, the B2R agonist impaired wound repair in both non-diabetic and diabetic mice, inducing skin disorganization and epidermis thickening. In vitro, B2R activation unbalanced fibroblast/keratinocyte proliferation and increased keratinocyte migration. These effects were abolished by co-administration of B2R antagonist. Interestingly, in the two mouse models of diabetes, the B2R antagonist administered alone normalized wound healing. This effect was associated with the induction of Ccl2 (encoding monocyte chemoattractant protein 1)/Tnf (encoding tumour necrosis factor α) mRNAs. Thus stimulation of kinin B2 receptor impairs skin wound healing in mice. B2R activation occurs in the diabetic skin and delays wound healing. B2R blockade improves skin wound healing in diabetic mice and is a potential therapeutic approach to diabetic ulcers. PMID:26443866

  9. Prolonged antibiotic treatment induces a diabetogenic intestinal microbiome that accelerates diabetes in NOD mice.

    PubMed

    Brown, Kirsty; Godovannyi, Artem; Ma, Caixia; Zhang, YiQun; Ahmadi-Vand, Zahra; Dai, Chaunbin; Gorzelak, Monika A; Chan, YeeKwan; Chan, Justin M; Lochner, Arion; Dutz, Jan P; Vallance, Bruce A; Gibson, Deanna L

    2016-02-01

    Accumulating evidence supports that the intestinal microbiome is involved in Type 1 diabetes (T1D) pathogenesis through the gut-pancreas nexus. Our aim was to determine whether the intestinal microbiota in the non-obese diabetic (NOD) mouse model played a role in T1D through the gut. To examine the effect of the intestinal microbiota on T1D onset, we manipulated gut microbes by: (1) the fecal transplantation between non-obese diabetic (NOD) and resistant (NOR) mice and (2) the oral antibiotic and probiotic treatment of NOD mice. We monitored diabetes onset, quantified CD4+T cells in the Peyer's patches, profiled the microbiome and measured fecal short-chain fatty acids (SCFA). The gut microbiota from NOD mice harbored more pathobionts and fewer beneficial microbes in comparison with NOR mice. Fecal transplantation of NOD microbes induced insulitis in NOR hosts suggesting that the NOD microbiome is diabetogenic. Moreover, antibiotic exposure accelerated diabetes onset in NOD mice accompanied by increased T-helper type 1 (Th1) and reduced Th17 cells in the intestinal lymphoid tissues. The diabetogenic microbiome was characterized by a metagenome altered in several metabolic gene clusters. Furthermore, diabetes susceptibility correlated with reduced fecal SCFAs. In an attempt to correct the diabetogenic microbiome, we administered VLS#3 probiotics to NOD mice but found that VSL#3 colonized the intestine poorly and did not delay diabetes. We conclude that NOD mice harbor gut microbes that induce diabetes and that their diabetogenic microbiome can be amplified early in life through antibiotic exposure. Protective microbes like VSL#3 are insufficient to overcome the effects of a diabetogenic microbiome.

  10. Lactoferrin stimulates killing and clearance of bacteria but does not prevent mortality of diabetic mice.

    PubMed

    Zagulski, T; Jarzabek, Z; Zagulska, A; Jaszczak, M; Kochanowska, I E; Zimecki, M

    2001-01-01

    We have previously shown that bovine lactoferrin (BLF) given intravenously (i.v.) protected mice against a lethal dose of Escherichia coli and strongly stimulated both the clearing and killing activities in liver, lungs, spleen and kidney. Since some studies indicated a reduction of the manifestation of experimental pancreatitis with lactoferrin (LF), we decided to examine the protective activity of BLF against lethal E. coli infection in animals with alloxan (Alx)-induced diabetes. It appeared that 48 h diabetes substantially lowered the killing activity in all four organs as well as the clearing rate of E. coli from the circulation. BLF given i.v. reduced this undesirable effect of diabetes. However, in 10- and 20-day diabetic animals, the diabetes alone stimulated the killing activity in the organs investigated, and upregulated the clearing rate of E. coli from the circulation. Lactoferrin significantly increased both the killing and the clearing activity in these long-term diabetic animals. In some cases the stimulating effect of BLF was very high, suggesting a concerted action of BLF and diabetes in that category of mice. Despite these beneficial effects of BLF and diabetes on the killing process in the investigated organs, the survival time of animals from all the diabetic groups (48 h, 10 and 20 days) was not prolonged by BLF. The protective properties of BLF did not depend on the blood glucose levels in the diabetic animals. BLF partly delayed the development of experimental Alx-induced diabetes, measured by the glucose level, but only if administered shortly after Alx injection. In conclusion, we demonstrated that the state of diabetes alone could increase killing of bacteria in the investigated organs and LF enhanced this process. However, LF had no protective effect against the mortality of diabetic mice infected with a lethal dose of E. coli.

  11. Activation of endothelial NAD(P)H oxidase accelerates early glomerular injury in diabetic mice

    PubMed Central

    Nagasu, Hajime; Satoh, Minoru; Kiyokage, Emi; Kidokoro, Kengo; Toida, Kazunori; Channon, Keith M; Kanwar, Yashpal S; Sasaki, Tamaki; Kashihara, Naoki

    2016-01-01

    Increased generation of reactive oxygen species (ROS) is a common denominative pathogenic mechanism underlying vascular and renal complications in diabetes mellitus. Endothelial NAD(P)H oxidase is a major source of vascular ROS, and it has an important role in endothelial dysfunction. We hypothesized that activation of endothelial NAD(P)H oxidase initiates and worsens the progression of diabetic nephropathy, particularly in the development of albuminuria. We used transgenic mice with endothelial-targeted overexpression of the catalytic subunit of NAD(P)H oxidase, Nox2 (NOX2TG). NOX2TG mice were crossed with Akita insulin-dependent diabetic (Akita) mice that develop progressive hyperglycemia. We compared the progression of diabetic nephropathy in Akita versus NOX2TG-Akita mice. NOX2TG-Akita mice and Akita mice developed significant albuminuria above the baseline at 6 and 10 weeks of age, respectively. Compared with Akita mice, NOX2TG-Akita mice exhibited higher levels of NAD(P)H oxidase activity in glomeruli, developed glomerular endothelial perturbations, and attenuated expression of glomerular glycocalyx. Moreover, in contrast to Akita mice, the NOX2TG-Akita mice had numerous endothelial microparticles (blebs), as detected by scanning electron microscopy, and increased glomerular permeability. Furthermore, NOX2TG-Akita mice exhibited distinct phenotypic changes in glomerular mesangial cells expressing α-smooth muscle actin, and in podocytes expressing increased levels of desmin, whereas the glomeruli generated increased levels of ROS. In conclusion, activation of endothelial NAD(P)H oxidase in the presence of hyperglycemia initiated and exacerbated diabetic nephropathy characterized by the development of albuminuria. Moreover, ROS generated in the endothelium compounded glomerular dysfunctions by altering the phenotypes of mesangial cells and compromising the integrity of the podocytes. PMID:26552047

  12. Improvement of cognitive impairment in female type 2 diabetes mellitus mice by spironolactone.

    PubMed

    Sakata, Akiko; Mogi, Masaki; Iwanami, Jun; Tsukuda, Kana; Min, Li-Juan; Jing, Fei; Ohshima, Kousei; Ito, Masaharu; Horiuchi, Masatsugu

    2012-03-01

    Patients with type 2 diabetes mellitus (T2DM) exhibit more severe cognitive decline in females compared with males; however, the preventive approach to this gender-specific cognitive decline is still an enigma. Spironolactone is a potassium-sparing diuretic that also acts as an androgen receptor antagonist. Here, we investigated whether spironolactone attenuates cognitive impairment observed in female T2DM mice. Adult wild-type (WT) mice and an obese T2DM model, KKAy mice, were employed in this study. Cognitive function was evaluated by the shuttle avoidance test and Morris water maze test. Administration of spironolactone (50 mg/kg per day in chow) had no significant effect on blood pressure, glucose tolerance or insulin resistance. In WT mice, no significant sex difference in cognitive function was observed; however, treatment with spironolactone improved spatial memory in the water maze, especially in female WT mice. Administration of spironolactone markedly improved the cognitive decline in female KKAy mice up to the level in male KKAy mice. Spironolactone treatment also improved cognitive function in ovariectomized-KKAy mice, but failed to improve it in those with administration of estradiol (200 µg/kg per day). In diabetic mice, spironolactone improved impaired cognitive function observed in female mice, suggesting that spironolactone may prevent cognitive impairment associated with diabetes in females clinically.

  13. Defective CD8+ T cell peripheral tolerance in nonobese diabetic mice.

    PubMed

    Kreuwel, H T; Biggs, J A; Pilip, I M; Pamer, E G; Lo, D; Sherman, L A

    2001-07-15

    Nonobese diabetic (NOD) mice develop spontaneous autoimmune diabetes that involves participation of both CD4+ and CD8+ T cells. Previous studies have demonstrated spontaneous reactivity to self-Ags within the CD4+ T cell compartment in this strain. Whether CD8+ T cells in NOD mice achieve and maintain tolerance to self-Ags has not previously been evaluated. To investigate this issue, we have assessed the extent of tolerance to a model pancreatic Ag, the hemagglutinin (HA) molecule of influenza virus, that is transgenically expressed by pancreatic islet beta cells in InsHA mice. Previous studies have demonstrated that BALB/c and B10.D2 mice that express this transgene exhibit tolerance of HA and retain only low-avidity CD8+ T cells specific for the dominant peptide epitope of HA. In this study, we present data that demonstrate a deficiency in peripheral tolerance within the CD8+ T cell repertoire of NOD-InsHA mice. CD8+ T cells can be obtained from NOD-InsHA mice that exhibit high avidity for HA, as measured by tetramer (K(d)HA) binding and dose titration analysis. Significantly, these autoreactive CD8+ T cells can cause diabetes very rapidly upon adoptive transfer into NOD-InsHA recipient mice. The data presented demonstrate a retention in the repertoire of CD8+ T cells with high avidity for islet Ags that could contribute to autoimmune diabetes in NOD mice.

  14. Erythropoietin restores C-fiber function and prevents pressure ulcer formation in diabetic mice.

    PubMed

    Demiot, Claire; Sarrazy, Vincent; Javellaud, James; Gourloi, Loriane; Botelle, Laurent; Oudart, Nicole; Achard, Jean-Michel

    2011-11-01

    Pressure-induced vasodilatation (PIV), a cutaneous physiological neurovascular (C-fiber/endothelium) mechanism, is altered in diabetes and could possibly contribute to pressure ulcer development. We wanted to determine whether recombinant human erythropoietin (rhEPO), which has protective neurovascular effects, could prevent PIV alteration and pressure ulcer formation. We developed a skin pressure ulcer model in mice by applying two magnetic plates to the dorsal skin. This induced significant stage 2 ulcers (assessed visually and histologically) in streptozotocin-treated mice with 8 weeks of diabetes compared with very few in controls. Control and streptozotocin mice received either no treatment or systematic rhEPO (3,000 UI kg(-1) intraperitoneally, twice a week) during the last 2 weeks of diabetes. After 8 weeks of diabetes, we assessed ulcer development, PIV, endothelium-dependent vasodilation, C-fiber-mediated nociception threshold, and skin innervation density. Pretreatment with rhEPO fully prevented ulcer development in streptozotocin mice and also fully restored C-fiber nociception, skin innervation density, and significantly improved PIV, but had no effect on endothelium-dependent vasodilation. Our finding that rhEPO treatment protects the skin against pressure-induced ulcers in diabetic mice encourages evaluation of the therapeutic potential for non-hematopoietic analogs of EPO in preventing neuropathic diabetic ulcers.

  15. Antihyperglycemic Effect of Ganoderma Lucidum Polysaccharides on Streptozotocin-Induced Diabetic Mice

    PubMed Central

    Li, Fenglin; Zhang, Yiming; Zhong, Zhijian

    2011-01-01

    The current study evaluated the glucose-lowering effect of ganoderma lucidum polysaccharides (Gl-PS) in streptozotocin (STZ)-induced diabetic mice. The diabetic mice were randomly divided into four groups (8 mice per group): diabetic control group, low-dose Gl-PS treated group (50 mg/kg, Gl-PS), high-dose Gl-PS treated group (150 mg/kg, Gl-PS) and positive drug control treated group (glibenclamide, 4 mg/kg), with normal mice used as the control group. Body weights, fasting blood glucose (FBG), serum insulin and blood lipid levels of mice were measured. After 28 days of treatment with Gl-PS, body weights and serum insulin levels of the Gl-PS treated groups was significantly higher than that of the diabetic control group, whereas FBG levels was significantly lower. Moreover, total cholesterol (TC), triglyceride (TG) and low density lipoprotein cholesterol (LDL-C) levels of the Gl-PS treated groups had dropped, whereas the high density lipoprotein cholesterol (HDL-C) levels had increased. In addition, according to acute toxicity studies, Gl-PS did not cause behavioral changes and any death of mice. These data suggest that Gl-PS has an antihyperglycemic effect. Furthermore, considering the Gl-PS effects on lipid profile, it may be a potential hypolipidaemic agent, which will be a great advantage in treating diabetic conditions associated with atherosclerosis or hyperlipidemia. PMID:22016649

  16. Pseudomonas aeruginosa biofilms perturb wound resolution and antibiotic tolerance in diabetic mice.

    PubMed

    Watters, Chase; DeLeon, Katrina; Trivedi, Urvish; Griswold, John A; Lyte, Mark; Hampel, Ken J; Wargo, Matthew J; Rumbaugh, Kendra P

    2013-04-01

    Diabetic patients are more susceptible to the development of chronic wounds than non-diabetics. The impaired healing properties of these wounds, which often develop debilitating bacterial infections, significantly increase the rate of lower extremity amputation in diabetic patients. We hypothesize that bacterial biofilms, or sessile communities of bacteria that reside in a complex matrix of exopolymeric material, contribute to the severity of diabetic wounds. To test this hypothesis, we developed an in vivo chronic wound, diabetic mouse model to determine the ability of the opportunistic pathogen, Pseudomonas aeruginosa, to cause biofilm-associated infections. Utilizing this model, we observed that diabetic mice with P. aeruginosa-infected chronic wounds displayed impaired bacterial clearing and wound closure in comparison with their non-diabetic littermates. While treating diabetic mice with insulin improved their overall health, it did not restore their ability to resolve P. aeruginosa wound infections or speed healing. In fact, the prevalence of biofilms and the tolerance of P. aeruginosa to gentamicin treatment increased when diabetic mice were treated with insulin. Insulin treatment was observed to directly affect the ability of P. aeruginosa to form biofilms in vitro. These data demonstrate that the chronically wounded diabetic mouse appears to be a useful model to study wound healing and biofilm infection dynamics, and suggest that the diabetic wound environment may promote the formation of biofilms. Further, this model provides for the elucidation of mechanistic factors, such as the ability of insulin to influence antimicrobial effectiveness, which may be relevant to the formation of biofilms in diabetic wounds.

  17. Chromium, selenium, and zinc multimineral enriched yeast supplementation ameliorates diabetes symptom in streptozocin-induced mice.

    PubMed

    Liu, Jun; Bao, Wei; Jiang, Man; Zhang, Yan; Zhang, Xiping; Liu, Liegang

    2012-05-01

    Chromium, selenium, and zinc malnutrition has been implicated in the pathogenesis of diabetic mellitus. This study aims to investigate the effects of novel multiminerals-enriched yeast (MMEY) which are minerals supplementation containing elevated levels of chromium, selenium, and zinc simultaneously in a diabetic animal model. Streptozocin-induced diabetic male Balb/c mice (n = 80) were randomly divided into diabetes control group and three treatment groups. They were administrated oral gavages with low, medium, or high doses of MMEY, respectively. Meanwhile, healthy male Balb/c mice (n = 40) of the same body weight were randomly assigned into normal control group and high dose of MMEY control group. After 8 weeks duration of treatment, the animals were sacrificed by cervical dislocation. Serum glucose concentrations, lipid profiles, oxidative/antioxidant, and immunity status were determined. No significant adverse effects were observed in the high-dose MMEY control group. Treatment of the diabetic mice with medium- or high-dose MMEY significantly decreased serum glucose, triglyceride, total cholesterol, and malondialdehyde and increased high-density lipoprotein cholesterol, glutathione, and the activities of superoxide dismutase and glutathione peroxidase. In addition, MMEY ameliorated the pathological damage of the pancreatic islets, elevated the thymus or spleen coefficient, and increased the expressions of interleukin-2 and -4 in spleen lymphocytes compared with unsupplemented diabetic mice. In conclusion, these results indicate that supplemental MMEY inhibits hyperglycemia, abates oxidative stress, modulates disorders of lipid metabolism, and reduces the impairment of immune function in diabetic mice; especially notable are the protective effects of medium doses of MMEY on the islet cells of diabetic mice.

  18. Inner Retinal Oxygen Delivery, Metabolism, and Extraction Fraction in Ins2Akita Diabetic Mice

    PubMed Central

    Blair, Norman P.; Wanek, Justin; Felder, Anthony E.; Brewer, Katherine C.; Joslin, Charlotte E.; Shahidi, Mahnaz

    2016-01-01

    Purpose Retinal nonperfusion and hypoxia are important factors in human diabetic retinopathy, and these presumably inhibit energy production and lead to cell death. The purpose of this study was to elucidate the effect of diabetes on inner retinal oxygen delivery and metabolism in a mouse model of diabetes. Methods Phosphorescence lifetime and blood flow imaging were performed in spontaneously diabetic Ins2Akita (n = 22) and nondiabetic (n = 22) mice at 12 and 24 weeks of age to measure retinal arterial (O2A) and venous (O2V) oxygen contents and total retinal blood flow (F). Inner retinal oxygen delivery (DO2) and metabolism (MO2) were calculated as F ∗ O2A and F ∗ (O2A − O2V), respectively. Oxygen extraction fraction (OEF), which equals MO2/DO2, was calculated. Results DO2 at 12 weeks were 112 ± 40 and 97 ± 29 nL O2/min in nondiabetic and diabetic mice, respectively (NS), and 148 ± 31 and 85 ± 37 nL O2/min at 24 weeks, respectively (P < 0.001). MO2 were 65 ± 31 and 66 ± 27 nL O2/min in nondiabetic and diabetic mice at 12 weeks, respectively, and 79 ± 14 and 54 ± 28 nL O2/min at 24 weeks, respectively (main effects = NS). At 12 weeks OEF were 0.57 ± 0.17 and 0.67 ± 0.09 in nondiabetic and diabetic mice, respectively, and 0.54 ± 0.07 and 0.63 ± 0.08 at 24 weeks, respectively (main effect of diabetes: P < 0.01). Conclusions Inner retinal MO2 was maintained in diabetic Akita mice indicating that elevation of the OEF adequately compensated for reduced DO2 and prevented oxidative metabolism from being limited by hypoxia. PMID:27802520

  19. Anti-diabetic effects of rice hull smoke extract on glucose-regulating mechanism in type 2 diabetic mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aim of this study is to determine the protective effect of a liquid rice hull smoke extract (RHSE) against type 2 diabetes induced by a high fat diet administered to mice. Dietary administration of 0.5% or 1% RHSE for 7 weeks results in significantly reduced blood glucose and triglyceride and to...

  20. Suppression of streptozotocin-induced type-1 diabetes in mice by radon inhalation.

    PubMed

    Nishiyama, Y; Kataoka, T; Teraoka, J; Sakoda, A; Tanaka, H; Ishimori, Y; Mitsunobu, F; Taguchi, T; Yamaoka, K

    2013-01-01

    We examined the protective effect of radon inhalation on streptozotocin (STZ)-induced type-1 diabetes in mice. Mice inhaled radon at concentrations of 1000, 2500, and 5500 Bq/m3 for 24 hours before STZ administration. STZ administration induced characteristics of type-1 diabetes such as hyperglycemia and hypoinsulinemia; however, radon inhalation at doses of 1000 and 5500 Bq/m3 significantly suppressed the elevation of blood glucose in diabetic mice. Serum insulin was significantly higher in mice pre-treated with radon at a dose of 1000 Bq/m3 than in mice treated with a sham. In addition, superoxide dismutase activities and total glutathione contents were significantly higher and lipid peroxide was significantly lower in mice pre-treated with radon at doses of 1000 and 5500 Bq/m3 than in mice treated with a sham. These results were consistent with the result that radon inhalation at 1000 and 5500 Bq/m3 suppressed hyperglycemia. These findings suggested that radon inhalation suppressed STZ-induced type-1 diabetes through the enhancement of antioxidative functions in the pancreas.

  1. Anti-diabetic activity of cassava cross-linked octenyl succinic maltodextrin in STZ-induced diabetic mice.

    PubMed

    Wang, Li; Zheng, Maoqiang; Wang, Yingyao; Zhang, Ying; Qian, Haifeng; Zhang, Hui; Qi, Xiguang

    2014-03-01

    The effect of cassava cross-linked octenyl succinic maltodextrin (CCOMD) on diabetic mice was investigated in this study. For CCOMD-L (low dose) and CCOMD-H (high dose) groups, the body weights were recovered by 14.9% and 18.5%, respectively, which were significantly higher than that of model control group. It was also found that the blood glucose and insulin levels were ameliorated in the diabetic mice by the CCOMD diet. Moreover, the CCOMD diet decreased the plasma total cholesterol level (8.1-9.1%) and LDL cholesterol level (28.9-39.4%), and improved the plasma HDL cholesterol level (13.8-15.3%) and intestine short chain fatty acid content. The results indicated that CCOMD administration may be helpful for treating and preventing hyperlipidemia and hyperglycemia in diabetes.

  2. Unacylated ghrelin restores insulin and autophagic signaling in skeletal muscle of diabetic mice.

    PubMed

    Tam, Bjorn T; Pei, Xiao M; Yung, Benjamin Y; Yip, Shea P; Chan, Lawrence W; Wong, Cesar S; Siu, Parco M

    2015-12-01

    Impairment of insulin signaling in skeletal muscle detrimentally affects insulin-stimulated disposal of glucose. Restoration of insulin signaling in skeletal muscle is important as muscle is one of the major sites for disposal of blood glucose. Recently, unacylated ghrelin (UnAG) has received attention in diabetic research due to its favorable actions on improving glucose tolerance, glycemic control, and insulin sensitivity. The investigation of UnAG has entered phase Ib clinical trial in type 2 diabetes and phase II clinical trial in hyperphagia in Prader-Willi syndrome. Nonetheless, the precise mechanisms responsible for the anti-diabetic actions of UnAG remain incompletely understood. In this study, we examined the effects of UnAG on restoring the impaired insulin signaling in skeletal muscle of db/db diabetic mice. Our results demonstrated that UnAG effectively restored the impaired insulin signaling in diabetic muscle. UnAG decreased insulin receptor substrate (IRS) phosphorylation, increased protein kinase B (Akt) phosphorylation, and, hence, suppressed mTOR signaling. Consequently, UnAG enhanced Glut4 localization and increased PDH activity in the diabetic skeletal muscle. Intriguingly, our data indicated that UnAG normalized the suppressed autophagic signaling in diabetic muscle. In conclusion, our findings illustrated that UnAG restored the impaired insulin and autophagic signaling in skeletal muscle of diabetic mice, which are valuable to understand the underlying mechanisms of the anti-diabetic action of UnAG at peripheral skeletal muscle level. PMID:26228926

  3. Urtica dioica modulates hippocampal insulin signaling and recognition memory deficit in streptozotocin induced diabetic mice.

    PubMed

    Patel, Sita Sharan; Gupta, Sahil; Udayabanu, Malairaman

    2016-06-01

    Diabetes mellitus has been associated with functional abnormalities in the hippocampus and performance of cognitive function. Urtica dioica (UD) has been used in the treatment of diabetes. In our previous report we observed that UD extract attenuate diabetes mediated associative and spatial memory dysfunction. The present study aimed to evaluate the effect of UD extract on mouse model of diabetes-induced recognition memory deficit and explore the possible mechanism behind it. Streptozotocin (STZ) (50 mg/kg, i.p. consecutively for 5 days) was used to induce diabetes followed by UD extract (50 mg/kg, oral) or rosiglitazone (ROSI) (5 mg/kg, oral) administration for 8 weeks. STZ induced diabetic mice showed significant decrease in hippocampal insulin signaling and translocation of glucose transporter type 4 (GLUT4) to neuronal membrane resulting in cognitive dysfunction and hypolocomotion. UD treatment effectively improved hippocampal insulin signaling, glucose tolerance and recognition memory performance in diabetic mice, which was comparable to ROSI. Further, diabetes mediated oxidative stress and inflammation was reversed by chronic UD or ROSI administration. UD leaves extract acts via insulin signaling pathway and might prove to be effective for the diabetes mediated central nervous system complications. PMID:26767366

  4. Spontaneous diabetes mellitus in transgenic mice expressing human islet amyloid polypeptide.

    PubMed Central

    Janson, J; Soeller, W C; Roche, P C; Nelson, R T; Torchia, A J; Kreutter, D K; Butler, P C

    1996-01-01

    The islet in non-insulin-dependent diabetes mellitus (NIDDM) is characterized by loss of beta cells and large local deposits of amyloid derived from the 37-amino acid protein, islet amyloid polypeptide (IAPP). We have hypothesized that IAPP amyloid forms intracellularly causing beta-cell destruction under conditions of high rates of expression. To test this we developed a homozygous transgenic mouse model with high rates of expression of human IAPP. Male transgenic mice spontaneously developed diabetes mellitus by 8 weeks of age, which was associated with selective beta-cell death and impaired insulin secretion. Small intra- and extracellular amorphous IAPP aggregates were present in islets of transgenic mice during the development of diabetes mellitus. However, IAPP derived amyloid deposits were found in only a minority of islets at approximately 20 weeks of age, notably after development of diabetes mellitus in male transgenic mice. Approximately 20% of female transgenic mice spontaneously developed diabetes mellitus at 30+ weeks of age, when beta-cell degeneration and both amorphous and amyloid deposits of IAPP were present. We conclude that overexpression of human IAPP causes beta-cell death, impaired insulin secretion, and diabetes mellitus. Large deposits of IAPP derived amyloid do not appear to be important in this cytotoxicity, but early, small amorphous intra- and extracellular aggregates of human IAPP were consistently present at the time of beta-cell death and therefore may be the most cytotoxic form of IAPP. Images Fig. 1 Fig. 3 Fig. 4 Fig. 5 PMID:8692984

  5. Protective effect of berberine on serum glucose levels in non-obese diabetic mice.

    PubMed

    Chueh, Wei-Han; Lin, Jin-Yuarn

    2012-03-01

    Among the active components in traditional anti-diabetic herbal plants, berberine which is an isoquinoline alkaloid exhibits promising potential for its potent anti-inflammatory and hypoglycemic effects. However, the berberine effect on serum glucose levels in type 1 diabetes (T1D) subjects still remains unknown. This study investigated berberine's effects on serum glucose levels using non-obese diabetic (NOD) mice that spontaneously develop T1D. The NOD mice were randomly divided into four groups, administered water with 50, 150, and 500 mg berberine/kg bw, respectively, through 14 weeks. ICR mice were also selected as a species control group to compare with the NOD mice. Changes in body weight, oral glucose challenge, and serum glucose levels were determined to identify the protective effect of berberine on T1D. After the 14-week oral supplementation, berberine decreased fasting serum glucose levels in NOD mice close to the levels in normal ICR mice in a dose dependent manner. Serum berberine levels showed a significantly (P<0.05) negative and non-linear correlation with fasting glucose levels in berberine-administered NOD mice. Our results suggested that berberine supplemented at appropriate doses for 14 weeks did not cause toxic side effects, but improved hyperglycemia in NOD mice.

  6. Protective effects of macrophage-derived interferon against encephalomyocarditis virus-induced diabetes mellitus in mice.

    PubMed

    Hirasawa, K; Ogiso, Y; Takeda, M; Lee, M J; Itagaki, S; Doi, K

    1995-12-01

    The involvement of macrophages in protection against diabetes mellitus in mice of BALB/c (susceptible) and C57BL (resistant) strains infected with the B (non-diabetogenic) or D (highly diabetogenic) variant of encephalomyocarditis (EMC) virus was examined. Pretreatment with the B variant of EMC virus (EMC-B), avirulent interferon (IFN) inducer, or Corynebacterium parvum inhibited diabetes in BALB/c mice infected with the D variant of EMC virus (EMC-D). Treatment of C57BL mice with carrageenan to compromise macrophage function rendered C57BL mice susceptible to EMC-D-induced diabetes. In macrophage culture for BALB/c mice, EMC-B induced IFN at an earlier stage than did EMC-D. The C57BL mouse-derived macrophages produced more IFN than did BALB/c mouse-derived macrophages after stimulation with EMC-D. Moreover, C. parvum increased IFN production in macrophage cultures from BALB/c mice, whereas carrageenan inhibited that in macrophage cultures from C57BL mice. These results suggest that IFN derived from macrophages may have an important role in protecting mice against EMC virus infection. PMID:8746525

  7. Exendin-4 improves resistance to Listeria monocytogenes infection in diabetic db/db mice

    PubMed Central

    Liu, Hsien Yueh; Chung, Chih-Yao; Yang, Wen-Chin; Liang, Chih-Lung; Wang, Chi-Young; Chang, Chih-Yu

    2012-01-01

    The incidence of diabetes mellitus is increasing among companion animals. This disease has similar characteristics in both humans and animals. Diabetes is frequently identified as an independent risk factor for infections associated with increased mortality. In the present study, homozygous diabetic (db/db) mice were infected with Listeria (L.) monocytogenes and then treated with the anti-diabetic drug exendin-4, a glucagon-like peptide 1 analogue. In aged db/db mice, decreased CD11b+ macrophage populations with higher lipid content and lower phagocytic activity were observed. Exendin-4 lowered high lipid levels and enhanced phagocytosis in macrophages from db/db mice infected with L. monocytogenes. Exendin-4 also ameliorated obesity and hyperglycemia, and improved ex vivo bacteria clearance by macrophages in the animals. Liver histology examined during L. monocytogenes infection indicated that abscess formation was much milder in exendin-4-treated db/db mice than in the control animals. Moreover, mechanistic studies demonstrated that expression of ATP binding cassette transporter 1, a sterol transporter, was higher in macrophages isolated from the exendin-4-treated db/db mice. Overall, our results suggest that exendin-4 decreases the risk of infection in diabetic animals by modifying the interaction between intracellular lipids and phagocytic macrophages. PMID:23000581

  8. Inhibition of inflammasome activation improves the impaired pattern of healing in genetically diabetic mice

    PubMed Central

    Bitto, Alessandra; Altavilla, Domenica; Pizzino, Gabriele; Irrera, Natasha; Pallio, Giovanni; Colonna, Michele R; Squadrito, Francesco

    2014-01-01

    Background and Purpose Type 2 diabetes impairs the healing process because of an exaggerated and persistent inflammatory response, and an altered expression pattern of angiogenic molecules. We investigated the effects of inflammasome blockade in diabetes-related wound-healings defects, in genetically diabetic mice. Experimental Approach An incisional skin wound model was produced on the back of female diabetic C57BL/KsJ-m +/+ Leptdb mice (db+/db+) and their normal littermates (db+/m+). Animals were treated daily with two inflammasome blocking agents, BAY 11-7082 (20 mg·kg−1 i.p.), or Brilliant Blue G (BBG, 45.5 mg·kg−1 i.p.), or vehicle. Mice were killed on 3, 6 and 12 days after skin injury to measure expression of the NOD-like receptor NLRP3, caspase-1, VEGF, the inflammasome adapter protein apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) and the chemokine CXCL12. Wound levels of IL-1β and IL-18 were also measured, along with histological assessments of wound tissue and the time to complete wound closure. Key Results During healing, the diabetic mice exhibited increased activation of NLRP3, caspase-1, ASC, IL-1β and IL-18. They also showed a reduced expression of VEGF and CXCL12.Treatment with BAY 11-7082 or BBG, to block activation of the inflammasome, decreased the levels of pro-inflammatory molecules. Histological evaluation indicated that inflammasome blockade improved the impaired healing pattern, at day 12 in diabetic mice, along with a decreased time to complete skin healing. Conclusions and Implications These data strongly suggest that activation of the NLRP3 inflammasome is one of the key contributors to the delayed healing of wounds in diabetic mice. PMID:24329484

  9. Gene therapy with neurogenin3, betacellulin and SOCS1 reverses diabetes in NOD mice.

    PubMed

    Li, R; Buras, E; Lee, J; Liu, R; Liu, V; Espiritu, C; Ozer, K; Thompson, B; Nally, L; Yuan, G; Oka, K; Chang, B; Samson, S; Yechoor, V; Chan, L

    2015-11-01

    Islet transplantation for type 1 diabetes is limited by a shortage of donor islets and requirement for immunosuppression. We approached this problem by inducing in vivo islet neogenesis in non-obese diabetic (NOD) diabetic mice, a model of autoimmune diabetes. We demonstrate that gene therapy with helper-dependent adenovirus carrying neurogenin3 (Ngn3), an islet lineage-defining transcription factor, and betacellulin (Btc), an islet growth factor, leads to the induction of periportal insulin-positive cell clusters in the liver, which are rapidly destroyed. To specifically accord protection to these 'neo-islets' from cytokine-mediated destruction, we overexpressed suppressor of cytokine signaling 1 (SOCS1) gene, using a rat insulin promoter in combination with Ngn3 and Btc. With this approach, about half of diabetic mice attained euglycemia sustained for over 4 months, regain glucose tolerance and appropriate glucose-stimulated insulin secretion. Histological analysis revealed periportal islet hormone-expressing 'neo-islets' in treated mouse livers. Despite evidence of persistent 'insulitis' with activated T cells, these 'neo-islets' persist to maintain euglycemia. This therapy does not affect diabetogenicity of splenocytes, as they retain the ability to transfer diabetes. This study thus provides a proof-of-concept for engineering in vivo islet neogenesis with targeted resistance to cytokine-mediated destruction to provide a long-term reversal of diabetes in NOD mice. PMID:26172077

  10. Intranasal delivery of nanomicelle curcumin promotes corneal epithelial wound healing in streptozotocin-induced diabetic mice.

    PubMed

    Guo, Chuanlong; Li, Mengshuang; Qi, Xia; Lin, Guiming; Cui, Fenghua; Li, Fengjie; Wu, Xianggen

    2016-01-01

    Corneal nerves are mainly derived from the ophthalmic branch of the trigeminal ganglion (TG). Corneal neuropathy contributes to epithelial degenerative changes in diabetic keratopathy. Efficient drug delivery to TG may be beneficial for the treatment of diabetic keratopathy. This article described intranasal delivery of nanomicelle curcumin to correct pathophysiological conditions in TG to promote corneal epithelial/nerve wound healing in streptozotocin-induced diabetic mice. A diabetic mice model with corneal epithelium abrasion was established. Ocular topical and/or intranasal nanomicelle curcumin treatments were performed, and treatment efficacy and mechanisms of action were explored. Results showed that intranasal nanomicelle curcumin treatment promoted corneal epithelial wound healing and recovery of corneal sensation. Enhanced accumulation of reactive oxygen species, reduced free radical scavengers, increased mRNA expressions of inflammatory cytokines, and decreased mRNA expressions of neurotrophic factors in the cornea and TG neuron were observed in diabetic mice with corneal epithelium abrasions. Intranasal nanomicelle curcumin treatment effectively recovered these pathophysiological conditions, especially that of the TG neuron, and a strengthened recovery was observed with ocular topical combined with intranasal treatment. These findings indicated that intranasal curcumin treatment effectively helped promote diabetic corneal epithelial/nerve wound healing. This novel treatment might be a promising strengthened therapy for diabetic keratopathy. PMID:27405815

  11. Endothelin Receptor-A Antagonist Attenuates Retinal Vascular and Neuroretinal Pathology in Diabetic Mice

    PubMed Central

    Chou, Jonathan C.; Rollins, Stuart D.; Ye, Minghao; Batlle, Daniel; Fawzi, Amani A.

    2014-01-01

    Purpose. We sought to determine the effects of atrasentan, a selective endothelin-A receptor antagonist, on the retinal vascular and structural integrity in a db/db mouse, an animal model of type 2 diabetes and diabetic retinopathy. Methods. Diabetic mice, 23 weeks old, were given either atrasentan or vehicle treatment in drinking water for 8 weeks. At the end of the treatment period, eyes underwent trypsin digest to assess the retinal vascular pathology focusing on capillary degeneration, endothelial cell, and pericyte loss. Paraffin-embedded retinal cross sections were used to evaluate retinal sublayer thickness both near the optic nerve and in the retinal periphery. Immunohistochemistry and TUNEL assay were done to evaluate retinal cellular and vascular apoptosis. Results. Compared with untreated db/db mice, atrasentan treatment was able to ameliorate the retinal vascular pathology by reducing pericyte loss (29.2% ± 0.4% vs. 44.4% ± 2.0%, respectively, P < 0.05) and capillary degeneration as determined by the percentage of acellular capillaries (8.6% ± 0.3% vs. 3.3% ± 0.41%, respectively, P < 0.05). A reduction in inner retinal thinning both at the optic nerve and at the periphery in treated diabetic mice was also observed in db/db mice treated with atrasentan as compared with untreated db/db mice (P < 0.05). TUNEL assay suggested that atrasentan may decrease enhanced apoptosis in neuroretinal layers and vascular pericytes in the db/db mice. Conclusions. Endothelin-A receptor blockade using atrasentan significantly reduces the vascular and neuroretinal complications in diabetic mice. Endothelin-A receptor blockade is a promising therapeutic target in diabetic retinopathy. PMID:24644048

  12. Naturally transmitted segmented filamentous bacteria segregate with diabetes protection in nonobese diabetic mice

    PubMed Central

    Kriegel, Martin A.; Sefik, Esen; Hill, Jonathan A.; Wu, Hsin-Jung; Benoist, Christophe; Mathis, Diane

    2011-01-01

    Vertebrates typically harbor a rich gastrointestinal microbiota, which has coevolved with the host over millennia and is essential for several host physiological functions, in particular maturation of the immune system. Recent studies have highlighted the importance of a single bacterial species, segmented filamentous bacteria (SFB), in inducing a robust T-helper cell type 17 (Th17) population in the small-intestinal lamina propria (SI-LP) of the mouse gut. Consequently, SFB can promote IL-17–dependent immune and autoimmune responses, gut-associated as well as systemic, including inflammatory arthritis and experimental autoimmune encephalomyelitis. Here, we exploit the incomplete penetrance of SFB colonization of NOD mice in our animal facility to explore its impact on the incidence and course of type 1 diabetes in this prototypical, spontaneous model. There was a strong cosegregation of SFB positivity and diabetes protection in females, but not in males, which remained relatively disease-free regardless of the SFB status. In contrast, insulitis did not depend on SFB colonization. SFB-positive, but not SFB-negative, females had a substantial population of Th17 cells in the SI-LP, which was the only significant, repeatable difference in the examined T-cell compartments of the gut, pancreas, or systemic lymphoid tissues. Th17-signature transcripts dominated the very limited SFB-induced molecular changes detected in SI-LP CD4+ T cells. Thus, a single bacterium, and the gut immune system alterations associated with it, can either promote or protect from autoimmunity in predisposed mouse models, probably reflecting their variable dependence on different Th subsets. PMID:21709219

  13. Flos Puerariae Extract Prevents Myocardial Apoptosis via Attenuation Oxidative Stress in Streptozotocin-Induced Diabetic Mice

    PubMed Central

    Guo, Shuang; Cheng, Hongke; Wu, Jiliang; Liu, Chao

    2014-01-01

    Background Diabetic cardiomyopathy (DCM) suggests a direct cellular insult to myocardium. Apoptosis is considered as one of the hallmarks of DCM. Oxidative stress plays a key role in the pathogenesis of DCM. In this study, we explored the prevention of myocardial apoptosis by crude extract from Flos Puerariae (FPE) in experimental diabetic mice. Methods Experimental diabetic model was induced by intraperitoneally injection of streptozotocin (STZ, 50 mg/kg/day) for five consecutive days in C57BL/6J mice. FPE (100, 200 mg/kg) was orally administrated once a day for ten weeks. Cardiac structure changes, apoptosis, superoxide production, NADPH oxidase subunits expression (gp91phox, p47phox, and p67phox), and related regulatory factors were assessed in the heart of mice. Results Diabetic mice were characterized by high blood glucose (≥11.1 mmol/L) and reduced body weight. In the end of the experiment, aberrant myofilament structure, as well as TUNEL positive cardiac cells coupled with increased Bax/Bcl-2 ratio and Caspase-3 expression was found in diabetic mice. Moreover, ROS formation, the ratio of NADP+/NADPH and NADPH oxidase subunits expression of gp91phox and p47phox, lipid peroxidation level was significantly increased, while antioxidant enzyme SOD and GSH-Px activity were reduced in the myocardial tissue of diabetic mice. In contrast, treatment with FPE resulted in a normalized glucose and weight profile. FPE administration also preserved myocardial structure and reduced apoptotic cardiac cell death in diabetic mice. The elevated markers of oxidative stress were significantly reversed by FPE supplementation. Further, FPE treatment markedly inhibited the increased Bax/Bcl-2 ratio and Caspase-3 expression, as well as suppressed JNK and P38 MAPK activation in the heart of diabetic mice. Conclusions Our data demonstrate for the first time that FPE may have therapeutic potential for STZ-induced diabetic cardiomyopathy through preventing myocardial apoptosis via

  14. Activation of spinal cannabinoid CB2 receptors inhibits neuropathic pain in streptozotocin-induced diabetic mice.

    PubMed

    Ikeda, H; Ikegami, M; Kai, M; Ohsawa, M; Kamei, J

    2013-10-10

    The role of spinal cannabinoid systems in neuropathic pain of streptozotocin (STZ)-induced diabetic mice was studied. In normal mice, injection of the cannabinoid receptor agonist WIN-55,212-2 (1 and 3μg, i.t.) dose-dependently prolonged the tail-flick latency, whereas there were no changes with the injection of either cannabinoid CB1 (AM 251, 1 μg, i.t.) or CB2 (AM 630, 4 μg, i.t.) receptor antagonists. AM 251 (1 μg, i.t.), but not AM 630 (4 μg, i.t.), significantly inhibited the prolongation of the tail-flick latency induced by WIN-55,212-2 (3 μg, i.t.). In STZ-induced diabetic mice, the tail-flick latency was significantly shorter than that in normal mice. A low dose of WIN-55,212-2 (1 μg, i.t.) significantly recovered the tail-flick latency in STZ-induced diabetic mice. The effect of WIN-55,212-2 (1 μg, i.t.) in STZ-induced diabetic mice was significantly inhibited by AM 630 (4 μg, i.t.), but not AM 251 (1 μg). The selective cannabinoid CB2 receptor agonist L-759,656 (19 and 38 μg, i.t.) also dose-dependently recovered the tail-flick latency in STZ-induced diabetic mice, and this recovery was inhibited by AM 630 (4 μg, i.t.). The protein levels of cannabinoid CB1 receptors, CB2 receptors and diacylglycerol lipase α (DGL-α), the enzyme that synthesizes endocannabinoid 2-arachidonoylglycerol, in the spinal cord were examined using Western blotting. The protein levels of both cannabinoid CB1 and CB2 receptors were increased in STZ-induced diabetic mice, whereas the protein level of DGL-α was significantly decreased. These results indicate that spinal cannabinoid systems are changed in diabetic mice and suggest that cannabinoid CB2 receptor agonists might have an ability to recover diabetic neuropathic pain.

  15. Coronary arterial BK channel dysfunction exacerbates ischemia/reperfusion-induced myocardial injury in diabetic mice.

    PubMed

    Lu, Tong; Jiang, Bin; Wang, Xiao-Li; Lee, Hon-Chi

    2016-09-01

    The large conductance Ca(2+)-activated K(+) (BK) channels, abundantly expressed in coronary artery smooth muscle cells (SMCs), play a pivotal role in regulating coronary circulation. A large body of evidence indicates that coronary arterial BK channel function is diminished in both type 1 and type 2 diabetes. However, the consequence of coronary BK channel dysfunction in diabetes is not clear. We hypothesized that impaired coronary BK channel function exacerbates myocardial ischemia/reperfusion (I/R) injury in streptozotocin-induced diabetic mice. Combining patch-clamp techniques and cellular biological approaches, we found that diabetes facilitated the colocalization of angiotensin II (Ang II) type 1 receptors and BK channel α-subunits (BK-α), but not BK channel β1-subunits (BK-β1), in the caveolae of coronary SMCs. This caveolar compartmentation in vascular SMCs not only enhanced Ang II-mediated inhibition of BK-α but also produced a physical disassociation between BK-α and BK-β1, leading to increased infarct size in diabetic hearts. Most importantly, genetic ablation of caveolae integrity or pharmacological activation of coronary BK channels protected the cardiac function of diabetic mice from experimental I/R injury in both in vivo and ex vivo preparations. Our results demonstrate a vascular ionic mechanism underlying the poor outcome of myocardial injury in diabetes. Hence, activation of coronary BK channels may serve as a therapeutic target for cardiovascular complications of diabetes. PMID:27574914

  16. Biphasic Decline of β-Cell Function with Age in Euglycemic Non-Obese Diabetic (NOD) Mice Parallels Diabetes Onset

    PubMed Central

    Cechin, Sirlene R.; Lopez-Ocejo, Omar; Karpinsky-Semper, Darla; Buchwald, Peter

    2015-01-01

    A gradual decline in insulin response is known to precede the onset of type 1 diabetes (T1D). To track age-related changes in the β-cell function of non-obese diabetic (NOD) mice, the most commonly used animal model for T1D, and to establish differences between those who do and do not become hyperglycemic, we performed a long-term longitudinal oral glucose tolerance test (OGTT) study (10–42 weeks) in combination with immunofluorescence imaging of islet morphology and cell proliferation. We observed a clear biphasic decline in insulin secretion (AUC0–30min) even in euglycemic animals. A first phase (10–28 weeks) consisted of a relatively rapid decline and paralleled diabetes development in the same cohort of animals. This was followed by a second phase (29–42 weeks) during which insulin secretion declined much slower while no additional animals became diabetic. Blood glucose profiles showed a corresponding, but less pronounced change: the area under the concentration curve (AUC0–150min) increased with age, and fit with a bilinear model indicated a rate-change in the trendline around 28 weeks. In control NOD scids, no such changes were observed. Islet morphology also changed with age as islets become surrounded by mononuclear infiltrates, and, in all mice, islets with immune cell infiltration around them showed increased β-cell proliferation. In conclusion, insulin secretion declines in a biphasic manner in all NOD mice. This trend, as well as increased β-cell proliferation, is present even in the NODs that never become diabetic, whereas, it is absent in control NOD scid mice. PMID:26099053

  17. Administration of Danhong Injection to diabetic db/db mice inhibits the development of diabetic retinopathy and nephropathy.

    PubMed

    Liu, Mengyang; Pan, Quan; Chen, Yuanli; Yang, Xiaoxiao; Zhao, Buchang; Jia, Lifu; Zhu, Yan; Zhang, Boli; Gao, Xiumei; Li, Xiaoju; Han, Jihong; Duan, Yajun

    2015-06-10

    Danhong Injection (DHI), a Chinese medicine for treatment of patients with coronary heart disease, inhibits primary abdominal aortic aneurysms in apoE deficient (apoE(-/-)) mice. Formation of microaneurysms plays an important role in the development of diabetic retinopathy and nephropathy. It remains unknown if DHI can reduce these diabetic complications. In this study, diabetic db/db mice in two groups were injected with saline and DHI, respectively, for 14 weeks. Blood and tissue samples were collected to determine serum glucose, lipids and tissue structure. DHI reduced diabetes-induced body weight gain, serum cholesterol and glucose levels. In retinas, DHI blocked the shrink of whole retina and retinal sub-layers by inhibiting expression of caspase 3, matrix metalloproteinase 2 (MMP-2) and MMP-9, accumulation of carbohydrate macromolecules and formation of acellular capillaries. DHI improved renal functions by inhibiting mesangial matrix expansion, expression of vascular endothelial growth factor A, fibronectin and advanced glycation end products in kidneys. Mechanistically, DHI induced expression of glucokinase, AMPKα/phosphorylated AMPKα, insulin receptor substrate 1, fibroblast growth factor 21 and peroxisome proliferator-activated γ. Expression of genes responsible for energy expenditure was also activated by DHI. Therefore, DHI inhibits diabetic retinopathy and nephropathy by ameliorating glucose metabolism and demonstrates a potential application in clinics.

  18. Stable activity of diabetogenic cells with age in NOD mice: dynamics of reconstitution and adoptive diabetes transfer in immunocompromised mice

    PubMed Central

    Kaminitz, Ayelet; Mizrahi, Keren; Ash, Shifra; Ben-Nun, Avi; Askenasy, Nadir

    2014-01-01

    The non-obese diabetic (NOD) mouse is a prevalent disease model of type 1 diabetes. Immune aberrations that cause and propagate autoimmune insulitis in these mice are being continually debated, with evidence supporting both dominance of effector cells and insufficiency of suppressor mechanisms. In this study we assessed the behaviour of NOD lymphocytes under extreme expansion conditions using adoptive transfer into immunocompromised NOD.SCID (severe combined immunodeficiency) mice. CD4+ CD25+ T cells do not cause islet inflammation, whereas splenocytes and CD4+ CD25− T cells induce pancreatic inflammation and hyperglycaemia in 80–100% of the NOD.SCID recipients. Adoptively transferred effector T cells migrate to the lymphoid organs and pancreas, proliferate, are activated in the target organ in situ and initiate inflammatory insulitis. Reconstitution of all components of the CD4+ subset emphasizes the plastic capacity of different cell types to adopt effector and suppressor phenotypes. Furthermore, similar immune profiles of diabetic and euglycaemic NOD.SCID recipients demonstrate dissociation between fractional expression of CD25 and FoxP3 and the severity of insulitis. There were no evident and consistent differences in diabetogenic activity and immune reconstituting activity of T cells from pre-diabetic (11 weeks) and new onset diabetic NOD females. Similarities in immune phenotypes and variable distribution of effector and suppressor subsets in various stages of inflammation commend caution in interpretation of quantitative and qualitative aberrations as markers of disease severity in adoptive transfer experiments. PMID:24601987

  19. Stable activity of diabetogenic cells with age in NOD mice: dynamics of reconstitution and adoptive diabetes transfer in immunocompromised mice.

    PubMed

    Kaminitz, Ayelet; Mizrahi, Keren; Ash, Shifra; Ben-Nun, Avi; Askenasy, Nadir

    2014-07-01

    The non-obese diabetic (NOD) mouse is a prevalent disease model of type 1 diabetes. Immune aberrations that cause and propagate autoimmune insulitis in these mice are being continually debated, with evidence supporting both dominance of effector cells and insufficiency of suppressor mechanisms. In this study we assessed the behaviour of NOD lymphocytes under extreme expansion conditions using adoptive transfer into immunocompromised NOD.SCID (severe combined immunodeficiency) mice. CD4(+)  CD25(+) T cells do not cause islet inflammation, whereas splenocytes and CD4(+)  CD25(-) T cells induce pancreatic inflammation and hyperglycaemia in 80-100% of the NOD.SCID recipients. Adoptively transferred effector T cells migrate to the lymphoid organs and pancreas, proliferate, are activated in the target organ in situ and initiate inflammatory insulitis. Reconstitution of all components of the CD4(+) subset emphasizes the plastic capacity of different cell types to adopt effector and suppressor phenotypes. Furthermore, similar immune profiles of diabetic and euglycaemic NOD.SCID recipients demonstrate dissociation between fractional expression of CD25 and FoxP3 and the severity of insulitis. There were no evident and consistent differences in diabetogenic activity and immune reconstituting activity of T cells from pre-diabetic (11 weeks) and new onset diabetic NOD females. Similarities in immune phenotypes and variable distribution of effector and suppressor subsets in various stages of inflammation commend caution in interpretation of quantitative and qualitative aberrations as markers of disease severity in adoptive transfer experiments.

  20. Pivotal role of oxidative stress in tumor metastasis under diabetic conditions in mice.

    PubMed

    Ikemura, Mai; Nishikawa, Makiya; Kusamori, Kosuke; Fukuoka, Miho; Yamashita, Fumiyoshi; Hashida, Mitsuru

    2013-09-10

    Diabetic patients are reported to have a high incidence and mortality of cancer, but little is known about the linkage. In this study, we investigated whether high oxidative stress is involved in the acceleration of tumor metastasis in diabetic mice. Murine melanoma B16-BL6 cells stably labeled with firefly luciferase (B16-BL6/Luc) were inoculated into the tail vein of streptozotocin (STZ)-treated or untreated mice. A luciferase assay demonstrated that tumor cells were present largely in the lung of untreated mice, whereas large numbers of tumor cells were detected in both the lung and liver of STZ-treated mice. Repeated injections of polyethylene glycol-conjugated catalase (PEG-catalase), a long-circulating derivative, reduced the elevated fasting blood glucose levels and plasma lipoperoxide levels of STZ-treated mice, but had no significant effects on these parameters in untreated mice. In addition, the injections significantly reduced the number of tumor cells in the lung and liver in both untreated and STZ-treated mice. Culture of B16-BL6/Luc cells in medium containing over 45 mg/dl glucose hardly affected the proliferation of the cells, whereas the addition of plasma of STZ-treated mice to the medium significantly increased the number of cells. Plasma samples of STZ-treated mice receiving PEG-catalase exhibited no such effect on proliferation. These findings indicate that a hyperglycemia-induced increase in oxidative stress is involved in the acceleration of tumor metastasis, and the removal of systemic hydrogen peroxide by PEG-catalase can inhibit the progression of diabetic conditions and tumor metastasis in diabetes. PMID:23735571

  1. Attenuation of hepatotoxicity and oxidative stress in diabetes STZ-induced type 1 by biotin in Swiss albino mice.

    PubMed

    Aldahmash, Badr Abdullah; El-Nagar, Doaa Mohamed; Ibrahim, Khalid Elfakki

    2016-03-01

    Diabetes mellitus is one of the major health problems. This study was designed to investigate the effect of biotin to regulate blood glucose level, reduced toxicity and oxidative stress in liver of diabetic mice STZ-induced type 1. Male mice were divided into three groups, the first one served as the control group, the second and the third groups received single ip dose of 150 mg/kg of STZ, the second group served as the untreated diabetic group, the third group received daily oral dose of 15 mg/kg of biotin, livers and liver index showed insignificant difference among groups. Blood glucose level showed a significant decrease in treated diabetic mice compared to untreated diabetic mice. Biochemical analysis showed a significant decrease in liver enzymes AST and ALT compared to the control group. Histopathological examination showed severe changes in untreated diabetic liver tissue manifested by dilated portal vein, leukocytic infiltration, fatty degeneration and moderate to severe histopathological score, whereas, treated diabetic mice with biotin showed reduction in hepatotoxicity represented by appearance of relative healthy hepatocytes and normal histopathological score. Immunohistochemistry of acrolein showed intense immunoreactions in liver section of untreated diabetic mice and faint immunoreactions in treated diabetic mice with biotin as evidence to oxidative stress reduction. PMID:26981014

  2. Attenuation of hepatotoxicity and oxidative stress in diabetes STZ-induced type 1 by biotin in Swiss albino mice

    PubMed Central

    Aldahmash, Badr Abdullah; El-Nagar, Doaa Mohamed; Ibrahim, Khalid Elfakki

    2015-01-01

    Diabetes mellitus is one of the major health problems. This study was designed to investigate the effect of biotin to regulate blood glucose level, reduced toxicity and oxidative stress in liver of diabetic mice STZ-induced type 1. Male mice were divided into three groups, the first one served as the control group, the second and the third groups received single ip dose of 150 mg/kg of STZ, the second group served as the untreated diabetic group, the third group received daily oral dose of 15 mg/kg of biotin, livers and liver index showed insignificant difference among groups. Blood glucose level showed a significant decrease in treated diabetic mice compared to untreated diabetic mice. Biochemical analysis showed a significant decrease in liver enzymes AST and ALT compared to the control group. Histopathological examination showed severe changes in untreated diabetic liver tissue manifested by dilated portal vein, leukocytic infiltration, fatty degeneration and moderate to severe histopathological score, whereas, treated diabetic mice with biotin showed reduction in hepatotoxicity represented by appearance of relative healthy hepatocytes and normal histopathological score. Immunohistochemistry of acrolein showed intense immunoreactions in liver section of untreated diabetic mice and faint immunoreactions in treated diabetic mice with biotin as evidence to oxidative stress reduction. PMID:26981014

  3. Defects in dermal Vγ4 γ δ T cells result in delayed wound healing in diabetic mice.

    PubMed

    Liu, Zhongyang; Xu, Yingbin; Zhang, Xiaorong; Liang, Guangping; Chen, Lei; Xie, Julin; Tang, Jinming; Zhao, Jingling; Shu, Bin; Qi, Shaohai; Chen, Jian; Luo, Gaoxing; Wu, Jun; He, Weifeng; Liu, Xusheng

    2016-01-01

    The skin serves as a physical and chemical barrier to provide an initial line of defense against environmental threats; however, this function is impaired in diabetes. Vγ4 γ δ T cells in the dermis are an important part of the resident cutaneous immunosurveillance program, but these cells have yet to be explored in the context of diabetes. In this study, we observed that the impaired maintenance of dermal Vγ4 γ δ T cells is caused by reduced production of IL-7 in the skin of diabetic mice, which was closely associated with weakened activation of the mTOR pathway in the epidermis of diabetic mice. Weakened CCL20/CCR6 chemokine signaling resulted in the impaired recruitment of dermal Vγ4 γ δ T cells following wounding in diabetic mice. Meanwhile, reduced levels of IL-23 and IL-1β in the dermis around the wounds of diabetic mice resulted in the impaired production of IL-17 by dermal Vγ4 γ δ T cells. Therefore, diminished dermal Vγ4 γ δ T cells and impaired IL-17 production by these cells were important factors in the markedly reduced IL-17 levels in the skin around the wounds of diabetic mice. Because reduced IL-17 levels at the wound edge have been closely associated with delayed wound closure in diabetic mice, defects in dermal Vγ4 γ δ T cells may be an important mechanism underlying delayed wound healing in diabetic mice. PMID:27398150

  4. Defects in dermal Vγ4 γ δ T cells result in delayed wound healing in diabetic mice.

    PubMed

    Liu, Zhongyang; Xu, Yingbin; Zhang, Xiaorong; Liang, Guangping; Chen, Lei; Xie, Julin; Tang, Jinming; Zhao, Jingling; Shu, Bin; Qi, Shaohai; Chen, Jian; Luo, Gaoxing; Wu, Jun; He, Weifeng; Liu, Xusheng

    2016-01-01

    The skin serves as a physical and chemical barrier to provide an initial line of defense against environmental threats; however, this function is impaired in diabetes. Vγ4 γ δ T cells in the dermis are an important part of the resident cutaneous immunosurveillance program, but these cells have yet to be explored in the context of diabetes. In this study, we observed that the impaired maintenance of dermal Vγ4 γ δ T cells is caused by reduced production of IL-7 in the skin of diabetic mice, which was closely associated with weakened activation of the mTOR pathway in the epidermis of diabetic mice. Weakened CCL20/CCR6 chemokine signaling resulted in the impaired recruitment of dermal Vγ4 γ δ T cells following wounding in diabetic mice. Meanwhile, reduced levels of IL-23 and IL-1β in the dermis around the wounds of diabetic mice resulted in the impaired production of IL-17 by dermal Vγ4 γ δ T cells. Therefore, diminished dermal Vγ4 γ δ T cells and impaired IL-17 production by these cells were important factors in the markedly reduced IL-17 levels in the skin around the wounds of diabetic mice. Because reduced IL-17 levels at the wound edge have been closely associated with delayed wound closure in diabetic mice, defects in dermal Vγ4 γ δ T cells may be an important mechanism underlying delayed wound healing in diabetic mice.

  5. Inactivation of arf-bp1 induces p53 activation and diabetic phenotypes in mice.

    PubMed

    Kon, Ning; Zhong, Jiayun; Qiang, Li; Accili, Domenico; Gu, Wei

    2012-02-10

    It is well accepted that the Mdm2 ubiquitin ligase acts as a major factor in controlling p53 stability and activity in vivo. Although several E3 ligases have been reported to be involved in Mdm2-independent p53 degradation, the roles of these ligases in p53 regulation in vivo remain largely unknown. To elucidate the physiological role of the ubiquitin ligase ARF-BP1, we generated arf-bp1 mutant mice. We found that inactivation of arf-bp1 during embryonic development in mice resulted in p53 activation and embryonic lethality, but the mice with arf-bp1 deletion specifically in the pancreatic β-cells (arf-bp1(FL/Y)/RIP-cre) were viable and displayed no obvious abnormality after birth. Interestingly, these mice showed dramatic loss of β-cells as mice aged, and >50% of these mice died of severe diabetic symptoms before reaching 1 year of age. Notably, the diabetic phenotype of these mice was largely reversed by concomitant deletion of p53, and the life span of the mice was significantly extended (p53(LFL/FL)/arf-bp1(FL/Y)/RIP-cre). These findings underscore an important role of ARF-BP1 in maintaining β-cell homeostasis in aging mice and reveal that the stability of p53 is critically regulated by ARF-BP1 in vivo.

  6. The protective effects of oral low-dose quercetin on diabetic nephropathy in hypercholesterolemic mice

    PubMed Central

    Gomes, Isabele B. S.; Porto, Marcella L.; Santos, Maria C. L. F. S.; Campagnaro, Bianca P.; Gava, Agata L.; Meyrelles, Silvana S.; Pereira, Thiago M. C.; Vasquez, Elisardo C.

    2015-01-01

    Aims: Diabetic nephropathy (DN) is one of the most important causes of chronic renal disease, and the incidence of DN is increasing worldwide. Considering our previous report (Gomes et al., 2014) indicating that chronic treatment with oral low-dose quercetin (10 mg/Kg) demonstrated anti-oxidative, anti-apoptotic and renoprotective effects in the C57BL/6J model of DN, we investigated whether this flavonoid could also have beneficial effects in concurrent DN and spontaneous atherosclerosis using the apolipoprotein E-deficient mouse (apoE−/−). Methods: Streptozotocin was used to induce diabetes (100 mg/kg/day, 3 days) in male apoE−/− mice (8 week-old). After 6 weeks, the mice were randomly separated into DQ: diabetic apoE−/− mice treated with quercetin (10 mg/kg/day, 4 weeks, n = 8), DV: diabetic ApoE−/− mice treated with vehicle (n = 8) and ND: non-treated non-diabetic mice (n = 8). Results: Quercetin treatment diminished polyuria (~30%; p < 0.05), glycemia (~25%, p < 0.05), normalized the hypertriglyceridemia. Moreover, this bioflavonoid diminished creatininemia (~30%, p < 0.01) and reduced proteinuria but not to normal levels. We also observed protective effects on the renal structural changes, including normalization of the index of glomerulosclerosis and kidney weight/body weight. Conclusions: Our data revealed that quercetin treatment significantly reduced DN in hypercholesterolemic mice by inducing biochemical changes (decrease in glucose and triglycerides serum levels) and reduction of glomerulosclerosis. Thus, this study highlights the relevance of quercetin as an alternative therapeutic option for DN, including in diabetes associated with dyslipidemia. PMID:26388784

  7. Low TGFβ1 expression prevents and high expression exacerbates diabetic nephropathy in mice

    PubMed Central

    Hathaway, Catherine K.; Gasim, Adil M. H.; Grant, Ruriko; Chang, Albert S.; Kim, Hyung-Suk; Madden, Victoria J.; Bagnell, C. Robert; Jennette, J. Charles; Smithies, Oliver; Kakoki, Masao

    2015-01-01

    Nephropathy develops in many but not all patients with long-standing type 1 diabetes. Substantial efforts to identify genotypic differences explaining this differential susceptibility have been made, with limited success. Here, we show that the expression of the transforming growth factor β1 gene (Tgfb1) affects the development of diabetic nephropathy in mice. To do this we genetically varied Tgfb1 expression in five steps, 10%, 60%, 100%, 150%, and 300% of normal, in mice with type 1 diabetes caused by the Akita mutation in the insulin gene (Ins2Akita). Although plasma glucose levels were not affected by Tgfb1 genotype, many features of diabetic nephropathy (mesangial expansion, elevated plasma creatinine and urea, decreased creatinine clearance and albuminuria) were progressively ameliorated as Tgfb1 expression decreased and were progressively exacerbated when expression was increased. The diabetic 10% hypomorphs had comparable creatinine clearance and albumin excretion to wild-type mice and no harmful changes in renal morphology. The diabetic 300% hypermorphs had ∼1/3 the creatinine clearance of wild-type mice, >20× their albumin excretion, ∼3× thicker glomerular basement membranes and severe podocyte effacement, matching human diabetic nephropathy. Switching Tgfb1 expression from low to high in the tubules of the hypomorphs increased their albumin excretion more than 10-fold but creatinine clearance remained high. Switching Tgfb1 expression from low to high in the podocytes markedly decreased creatinine clearance, but minimally increased albumin excretion. Decreasing expression of Tgfb1 could be a promising option for preventing loss of renal function in diabetes. PMID:25902541

  8. High fat-fed diabetic mice present with profound alterations of the osteocyte network.

    PubMed

    Mabilleau, Guillaume; Perrot, Rodolphe; Flatt, Peter R; Irwin, Nigel; Chappard, Daniel

    2016-09-01

    Diabetes mellitus is considered to be an independent risk factor for bone fragility fractures. Reductions in bone mass, observed only with type 1 diabetes mellitus, as well as modifications of bone microarchitectures and tissue material properties are landmarks of diabetes-related bone alterations. An interesting feature observed in type 2 diabetes mellitus (T2DM) is the augmented concentration in circulating sclerostin. This observation prompts us to hypothesize that modifications of osteocyte network and perilacunar mineralization occur in T2DM. As such, the aims of the present study were to ascertain by quantitative backscattered electron imaging, confocal microscopy and image analysis, modifications of perilacunar tissue mineral density, osteocyte morphology and osteocyte network topology in a mouse model of high fat-induced type 2 diabetes. As compared with lean control animals, diabetic mice exhibited a significant 48% decrease in perilacunar mineralization heterogeneity although mean perilacunar mineralization was unchanged. Furthermore, in diabetic animals, osteocyte volume was significantly augmented by 34% with no change in the overall number of dendrite processes. Finally, the network topology was profoundly modified in diabetic mice with increases in the mean node degree, mean node volume and hub numbers whilst the mean link length was reduced. Overall, it appeared that in diabetic animals, the dendritic network exhibited features of a scale-free network as opposed to the single-scale characteristic observed in lean controls. However, it is important to ascertain whether diabetic patients exhibit such modifications of the osteocyte network and whether anti-diabetic drugs could restore normal osteocyte and network parameters, thereby improving bone quality and protecting against fragility fractures. PMID:27312542

  9. Gene expression profiling in hearts of diabetic mice uncovers a potential role of estrogen-related receptor γ in diabetic cardiomyopathy.

    PubMed

    Lasheras, Jaime; Vilà, Maria; Zamora, Mònica; Riu, Efrén; Pardo, Rosario; Poncelas, Marcos; Cases, Ildefonso; Ruiz-Meana, Marisol; Hernández, Cristina; Feliu, Juan E; Simó, Rafael; García-Dorado, David; Villena, Josep A

    2016-07-15

    Diabetic cardiomyopathy is characterized by an abnormal oxidative metabolism, but the underlying mechanisms remain to be defined. To uncover potential mechanisms involved in the pathophysiology of diabetic cardiomyopathy, we performed a gene expression profiling study in hearts of diabetic db/db mice. Diabetic hearts showed a gene expression pattern characterized by the up-regulation of genes involved in lipid oxidation, together with an abnormal expression of genes related to the cardiac contractile function. A screening for potential regulators of the genes differentially expressed in diabetic mice found that estrogen-related receptor γ (ERRγ) was increased in heart of db/db mice. Overexpression of ERRγ in cultured cardiomyocytes was sufficient to promote the expression of genes involved in lipid oxidation, increase palmitate oxidation and induce cardiomyocyte hypertrophy. Our findings strongly support a role for ERRγ in the metabolic alterations that underlie the development of diabetic cardiomyopathy. PMID:27062900

  10. Emetine Di-HCl Attenuates Type 1 Diabetes Mellitus in Mice

    PubMed Central

    Hudson, LaQueta K; Dancho, Meghan E; Li, Jianhua; Bruchfeld, Johanna B; Ragab, Ahmed A; He, Mingzhu M; Bragg, Meaghan; Lenaghan, Delaney; Quinn, Michael D; Fritz, Jason R; Tanzi, Matthew V; Silverman, Harold A; Hanes, William M; Levine, Yaakov A; Pavlov, Valentin A; Olofsson, Peder S; Roth, Jesse; Al-Abed, Yousef; Andersson, Ulf; Tracey, Kevin J; Chavan, Sangeeta S

    2016-01-01

    Type 1 diabetes mellitus (T1D) is a chronic autoimmune disease characterized by β cell destruction, insulin deficiency and hyperglycemia. Activated macrophages and autoimmune T cells play a crucial role in the pathogenesis of hyperglycemia in NOD murine diabetes models, but the molecular mechanisms of macrophage activation are unknown. We recently identified pigment epithelium-derived factor (PEDF) as an adipocyte-derived factor that activates macrophages and mediates insulin resistance. Reasoning that PEDF might participate as a proinflammatory mediator in murine diabetes, we measured PEDF levels in NOD mice. PEDF levels are significantly elevated in pancreas, in parallel with pancreatic TNF levels in NOD mice. To identify experimental therapeutics, we screened 2,327 compounds in two chemical libraries (the NIH Clinical Collection and Pharmakon-1600) for leads that inhibit PEDF mediated TNF release in macrophage cultures. The lead molecule selected, “emetine” is a widely used emetic. It inhibited PEDF-mediated macrophage activation with an EC50 or 146 nmol/L. Administration of emetine to NOD mice and to C57Bl6 mice subjected to streptozotocin significantly attenuated hyperglycemia, reduced TNF levels in pancreas and attenuated insulitis. Together, these results suggest that targeting PEDF with emetine may attenuate TNF release and hyperglycemia in murine diabetes models. This suggests that further investigation of PEDF and emetine in the pathogenesis of human diabetes is warranted. PMID:27341452

  11. Bezafibrate Improves Insulin Sensitivity and Metabolic Flexibility in STZ-Induced Diabetic Mice.

    PubMed

    Franko, Andras; Huypens, Peter; Neschen, Susanne; Irmler, Martin; Rozman, Jan; Rathkolb, Birgit; Neff, Frauke; Prehn, Cornelia; Dubois, Guillaume; Baumann, Martina; Massinger, Rebecca; Gradinger, Daniel; Przemeck, Gerhard K H; Repp, Birgit; Aichler, Michaela; Feuchtinger, Annette; Schommers, Philipp; Stöhr, Oliver; Sanchez-Lasheras, Carmen; Adamski, Jerzy; Peter, Andreas; Prokisch, Holger; Beckers, Johannes; Walch, Axel K; Fuchs, Helmut; Wolf, Eckhard; Schubert, Markus; Wiesner, Rudolf J; Hrabě de Angelis, Martin

    2016-09-01

    Bezafibrate (BEZ), a pan activator of peroxisome proliferator-activated receptors (PPARs), has been generally used to treat hyperlipidemia for decades. Clinical trials with type 2 diabetes patients indicated that BEZ also has beneficial effects on glucose metabolism, although the underlying mechanisms of these effects remain elusive. Even less is known about a potential role for BEZ in treating type 1 diabetes. Here we show that BEZ markedly improves hyperglycemia and glucose and insulin tolerance in mice with streptozotocin (STZ)-induced diabetes, an insulin-deficient mouse model of type 1 diabetes. BEZ treatment of STZ mice significantly suppressed the hepatic expression of genes that are annotated in inflammatory processes, whereas the expression of PPAR and insulin target gene transcripts was increased. Furthermore, BEZ-treated mice also exhibited improved metabolic flexibility as well as an enhanced mitochondrial mass and function in the liver. Finally, we show that the number of pancreatic islets and the area of insulin-positive cells tended to be higher in BEZ-treated mice. Our data suggest that BEZ may improve impaired glucose metabolism by augmenting hepatic mitochondrial performance, suppressing hepatic inflammatory pathways, and improving insulin sensitivity and metabolic flexibility. Thus, BEZ treatment might also be useful for patients with impaired glucose tolerance or diabetes. PMID:27284107

  12. Increased ocular levels of IGF-1 in transgenic mice lead to diabetes-like eye disease

    PubMed Central

    Ruberte, Jesús; Ayuso, Eduard; Navarro, Marc; Carretero, Ana; Nacher, Víctor; Haurigot, Virginia; George, Mónica; Llombart, Cristina; Casellas, Alba; Costa, Cristina; Bosch, Assumpció; Bosch, Fatima

    2004-01-01

    IGF-1 has been associated with the pathogenesis of diabetic retinopathy, although its role is not fully understood. Here we show that normoglycemic/normoinsulinemic transgenic mice overexpressing IGF-1 in the retina developed most alterations seen in human diabetic eye disease. A paracrine effect of IGF-1 in the retina initiated vascular alterations that progressed from nonproliferative to proliferative retinopathy and retinal detachment. Eyes from 2-month-old transgenic mice showed loss of pericytes and thickening of basement membrane of retinal capillaries. In mice 6 months and older, venule dilatation, intraretinal microvascular abnormalities, and neovascularization of the retina and vitreous cavity were observed. Neovascularization was consistent with increased IGF-1 induction of VEGF expression in retinal glial cells. In addition, IGF-1 accumulated in aqueous humor, which may have caused rubeosis iridis and subsequently adhesions between the cornea and iris that hampered aqueous humor drainage and led to neovascular glaucoma. Furthermore, all transgenic mice developed cataracts. These findings suggest a role of IGF-1 in the development of ocular complications in long-term diabetes. Thus, these transgenic mice may be used to study the mechanisms that lead to diabetes eye disease and constitute an appropriate model in which to assay new therapies. PMID:15085194

  13. Glucagon Receptor Blockade With a Human Antibody Normalizes Blood Glucose in Diabetic Mice and Monkeys.

    PubMed

    Okamoto, Haruka; Kim, Jinrang; Aglione, JohnPaul; Lee, Joseph; Cavino, Katie; Na, Erqian; Rafique, Ashique; Kim, Jee Hae; Harp, Joyce; Valenzuela, David M; Yancopoulos, George D; Murphy, Andrew J; Gromada, Jesper

    2015-08-01

    Antagonizing glucagon action represents an attractive therapeutic option for reducing hepatic glucose production in settings of hyperglycemia where glucagon excess plays a key pathophysiological role. We therefore generated REGN1193, a fully human monoclonal antibody that binds and inhibits glucagon receptor (GCGR) signaling in vitro. REGN1193 administration to diabetic ob/ob and diet-induced obese mice lowered blood glucose to levels observed in GCGR-deficient mice. In diet-induced obese mice, REGN1193 reduced food intake, adipose tissue mass, and body weight. REGN1193 increased circulating levels of glucagon and glucagon-like peptide 1 and was associated with reversible expansion of pancreatic α-cell area. Hyperglucagonemia and α-cell hyperplasia was observed in fibroblast growth factor 21-deficient mice treated with REGN1193. Single administration of REGN1193 to diabetic cynomolgus monkeys normalized fasting blood glucose and glucose tolerance and increased circulating levels of glucagon and amino acids. Finally, administration of REGN1193 for 8 weeks to normoglycemic cynomolgus monkeys did not cause hypoglycemia or increase pancreatic α-cell area. In summary, the GCGR-blocking antibody REGN1193 normalizes blood glucose in diabetic mice and monkeys but does not produce hypoglycemia in normoglycemic monkeys. Thus, REGN1193 provides a potential therapeutic modality for diabetes mellitus and acute hyperglycemic conditions. PMID:26020795

  14. Cannabinoid functions in the amygdala contribute to conditioned fear memory in streptozotocin-induced diabetic mice: Interaction with glutamatergic functions.

    PubMed

    Ikeda, Hiroko; Ikegami, Megumi; Kai, Misa; Kamei, Junzo

    2015-07-01

    The role of cannabinoid systems in conditioned fear memory was investigated in streptozotocin (STZ)-induced diabetic mice. The cannabinoid receptor agonist WIN-55,212-2 (1mg/kg, i.p.), when injected into normal mice after conditioning, significantly prolonged the duration of freezing behavior. This effect was significantly inhibited by the cannabinoid CB1 receptor antagonist AM 251 (3mg/kg, s.c.), but not by the cannabinoid CB2 receptor antagonist AM 630 (1mg/kg, s.c.). The duration of freezing in STZ-induced diabetic mice was significantly longer than that in non-diabetic mice. The injection of WIN-55,212-2 (1mg/kg, i.p.) after conditioning significantly prolonged the duration of freezing in non-diabetic mice, but not in STZ-induced diabetic mice. In contrast, the injection of AM 251 (3mg/kg, s.c.) after conditioning significantly shortened the duration of freezing in STZ-induced diabetic mice, but not in non-diabetic mice. The injection of AM 251 (3mg/kg, s.c.) before conditioning or before testing did not significantly affect the duration of freezing in STZ-induced diabetic mice. The protein levels of cannabinoid CB1 receptors in the amygdala were increased in STZ-induced diabetic mice. In contrast, the protein levels of cannabinoid CB2 receptors and diacylglycerol lipase α, the enzyme that synthesizes endocannabinoid 2-arachidonoylglycerol, in the amygdala did not differ between non-diabetic and STZ-induced diabetic mice. None of these proteins in the hippocampus was different between non-diabetic and STZ-induced diabetic mice. The injection of AM 251 (50 ng/side) into the basolateral amygdala significantly inhibited the duration of freezing in STZ-induced diabetic mice. Since endocannabinoid is controlled by glutamatergic function, we further examined the role of glutamatergic function in the increased fear memory in STZ-induced diabetic mice. The amounts of glutamine and glutamic acid in the amygdala of STZ-induced diabetic mice were significantly increased

  15. Sodium meta-arsenite prevents the development of autoimmune diabetes in NOD mice

    SciTech Connect

    Lee, Y.S.; Kim, D.; Lee, E.K.; Kim, S.; Choi, C.S.; Jun, H.S.

    2015-04-15

    Sodium meta-arsenite (SA) is an orally available arsenic compound. We investigated the effects of SA on the development of autoimmune type 1 diabetes. Female non-obese diabetic (NOD) mice were orally intubated with SA (5 mg/kg/day) from 8 weeks of age for 8 weeks. The cumulative incidence of diabetes was monitored until 30 weeks of age, islet histology was examined, and lymphocytes including T cells, B cells, CD4+ IFN-γ+ cells, CD8+ IFN-γ+ cells, CD4+ IL-4+ cells, and regulatory T cells were analyzed. We also investigated the diabetogenic ability of splenocytes using an adoptive transfer model and the effect of SA on the proliferation, activation, and expression of glucose transporter 1 (Glut1) in splenocytes treated with SA in vitro and splenocytes isolated from SA-treated mice. SA treatment decreased the incidence of diabetes and delayed disease onset. SA treatment reduced the infiltration of immunocytes in islets, and splenocytes from SA-treated mice showed a reduced ability to transfer diabetes. The number of total splenocytes and T cells and both the number and the proportion of CD4+ IFN-γ+ and CD8+ IFN-γ+ T cells in the spleen were significantly reduced in SA-treated NOD mice compared with controls. The number, but not the proportion, of regulatory T cells was decreased in SA-treated NOD mice. Treatment with SA either in vitro or in vivo inhibited proliferation of splenocytes. In addition, the expression of Glut1 and phosphorylated ERK1/2 was decreased by SA treatment. These results suggest that SA reduces proliferation and activation of T cells, thus preventing autoimmune diabetes in NOD mice. - Highlights: • SA prevents the development of diabetes and delays the age of onset in NOD mice. • SA decreases the number but not the proportion of T lymphocytes in NOD mice. • SA reduces IFN-γ-producing T lymphocytes in NOD mice. • SA reduces proliferation and activation of T lymphocytes in vitro and in vivo. • SA reduces the expression of glucose

  16. Human embryonic stem cell-derived pancreatic endoderm alleviates diabetic pathology and improves reproductive outcome in C57BL/KsJ-Lep(db/+) gestational diabetes mellitus mice.

    PubMed

    Xing, Baoheng; Wang, Lili; Li, Qin; Cao, Yalei; Dong, Xiujuan; Liang, Jun; Wu, Xiaohua

    2015-07-01

    Gestational diabetes mellitus is a condition commonly encountered during mid to late pregnancy with pathologic manifestations including hyperglycemia, hyperinsulinemia, insulin resistance, and fetal maldevelopment. The cause of gestational diabetes mellitus can be attributed to both genetic and environmental factors, hence complicating its diagnosis and treatment. Pancreatic progenitors derived from human embryonic stem cells were shown to be able to effectively treat diabetes in mice. In this study, we have developed a system of treating diabetes using human embryonic stem cell-derived pancreatic endoderm in a mouse model of gestational diabetes mellitus. Human embryonic stem cells were differentiated in vitro into pancreatic endoderm, which were then transplanted into db/+ mice suffering from gestational diabetes mellitus. The transplant greatly improved glucose metabolism and reproductive outcome of the females compared with the control groups. Our findings support the feasibility of using differentiated human embryonic stem cells for treating gestational diabetes mellitus patients.

  17. NaoXinTong Inhibits the Development of Diabetic Retinopathy in db/db Mice

    PubMed Central

    Liu, Mengyang; Pan, Quan; Chen, Yuanli; Yang, Xiaoxiao; Zhao, Buchang; Jia, Lifu; Zhu, Yan; Han, Jihong; Li, Xiaoju; Duan, Yajun

    2015-01-01

    Buchang NaoXinTong capsule (NXT) is a Chinese Materia Medica standardized product extracted from 16 Chinese traditional medical herbs and widely used for treatment of patients with cerebrovascular and cardiovascular diseases in China. Formation of microaneurysms plays an important role in the development of diabetic retinopathy. In this study, we investigated if  NXT can protect diabetic mice against the development of diabetic retinopathy. The db/db mice (~6 weeks old), a diabetic animal model, were divided into two groups and fed normal chow or plus NXT for 14 weeks. During the treatment, fasting blood glucose levels were monthly determined. After treatment, retinas were collected to determine retinal thickness, accumulation of carbohydrate macromolecules, and caspase-3 (CAS-3) expression. Our results demonstrate that administration of NXT decreased fasting blood glucose levels. Associated with the decreased glucose levels, NXT blocked the diabetes-induced shrink of multiple layers, such as photoreceptor layer and outer nuclear/plexiform layers, in the retina. NXT also inhibited the diabetes-induced expression of CAS-3 protein and mRNA, MMP-2/9 and TNFα mRNA, accumulation of carbohydrate macromolecules, and formation of acellular capillaries in the retina. Taken together, our study shows that NXT can inhibit the development of diabetic retinopathy and suggests a new potential application of NXT in clinic. PMID:25821481

  18. Edaravone protect against retinal damage in streptozotocin-induced diabetic mice.

    PubMed

    Yuan, Dongqing; Xu, Yidan; Hang, Hui; Liu, Xiaoyi; Chen, Xi; Xie, Ping; Yuan, Songtao; Zhang, Weiwei; Lin, Xiaojun; Liu, Qinghuai

    2014-01-01

    Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one), a free radical scavenger, is used for the clinical treatment of retinal injury. In this study, we investigated the protective effects of edaravone against diabetic retinal damage in the mouse. Diabetic retinopathy in the mouse was induced by injection of streptozotocin. Edaravone was given once-daily and was intraperitoneally (i.p.) treated at a dose of 3 mg/kg from streptozotocin injection to 4 weeks after onset of diabetes. Retinal ganglion cells (RGCs) damage was evaluated by recording the pattern electroretinogram (ERG). RGCs damage was also detected by Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, and the levels of reactive oxygen species (ROS) were determined fluorometrically. The expressions of phosporylated-ERK1/2, BDNF, and caspase-3 were determined by Western blot analysis. Retinal levels of ROS, phosphorylated ERK1/2, and cleaved caspase-3 were significantly increased, whereas the expression of BDNF was significantly decreased in the retinas of diabetic mice, compared to nondiabetic mice. Administration of edaravone significantly attenuated diabetes induced RGCs death, upregulation of ROS, ERK1/2 phosphorylation, and cleaved caspase-3 and downregulation of BDNF. These findings suggest that oxidative stress plays a pivotal role in diabetic retinal damage and that systemic administration of edaravone may slow the progression of retinal neuropathy induced by diabetes.

  19. MicroRNA-29b Inhibits Diabetic Nephropathy in db/db Mice

    PubMed Central

    Chen, Hai-Yong; Zhong, Xiang; Huang, Xiao R; Meng, Xiao-Ming; You, Yongke; Chung, Arthur CK; Lan, Hui Y

    2014-01-01

    Inflammation and its consequent fibrosis are two main features of diabetic nephropathy (DN), but target therapy on these processes for DN remains yet ineffective. We report here that miR-29b is a novel therapeutic agent capable of inhibiting progressive renal inflammation and fibrosis in type 2 diabetes in db/db mice. Under diabetic conditions, miR-29b was largely downregulated in response to advanced glycation end (AGE) product, which was associated with upregulation of collagen matrix in mesangial cells via the transforming growth factor-β (TGF-β)/Smad3-dependent mechanism. These pathological changes were reversed by overexpressing miR-29b, but enhanced by knocking-down miR-29b. Similarly, loss of renal miR-29b was associated with progressive diabetic kidney injury, including microalbuminuria, renal fibrosis, and inflammation. Restored renal miR-29b by the ultrasound-based gene therapy was capable of attenuating diabetic kidney disease. Further studies revealed that inhibition of Sp1 expression, TGF-β/Smad3-dependent renal fibrosis, NF-κB–driven renal inflammation, and T-bet/Th1-mediated immune response may be mechanisms associated with miR-29b treatment in db/db mice. In conclusion, miR-29b may play a protective role in diabetic kidney disease and may have therapeutic potential for diabetic kidney complication. PMID:24445937

  20. Adverse Effects of Diabetes Mellitus on the Skeleton of Aging Mice.

    PubMed

    Portal-Núñez, Sergio; Ardura, Juan Antonio; Lozano, Daniel; Bolívar, Oskarina Hernández; López-Herradón, Ana; Gutiérrez-Rojas, Irene; Proctor, Alexander; van der Eerden, Bram; Schreuders-Koedam, Marijke; van Leeuwen, Johannes; Alcaraz, María José; Mulero, Francisca; de la Fuente, Mónica; Esbrit, Pedro

    2016-03-01

    In the present study, the possibility that a diabetic (DM) status might worsen age-related bone deterioration was explored in mice. Male CD-1 mice aged 2 (young control group) or 16 months, nondiabetic or made diabetic by streptozotocin injections, were used. DM induced a decrease in bone volume, trabecular number, and eroded surface, and in mineral apposition and bone formation rates, but an increased trabecular separation, in L1-L3 vertebrae of aged mice. Three-point bending and reference point indentation tests showed slight changes pointing to increased frailty and brittleness in the mouse tibia of diabetic old mice. DM was related to a decreased expression of both vascular endothelial growth factor and its receptor 2, which paralleled that of femoral vasculature, and increased expression of the pro-adipogenic gene peroxisome proliferator-activated receptor γ and adipocyte number, without affecting β-catenin pathway in old mouse bone. Concomitant DM in old mice failed to affect total glutathione levels or activity of main anti-oxidative stress enzymes, although xanthine oxidase was slightly increased, in the bone marrow, but increased the senescence marker caveolin-1 gene. In conclusion, DM worsens bone alterations of aged mice, related to decreased bone turnover and bone vasculature and increased senescence, independently of the anti-oxidative stress machinery. PMID:26386012

  1. Adverse Effects of Diabetes Mellitus on the Skeleton of Aging Mice.

    PubMed

    Portal-Núñez, Sergio; Ardura, Juan Antonio; Lozano, Daniel; Bolívar, Oskarina Hernández; López-Herradón, Ana; Gutiérrez-Rojas, Irene; Proctor, Alexander; van der Eerden, Bram; Schreuders-Koedam, Marijke; van Leeuwen, Johannes; Alcaraz, María José; Mulero, Francisca; de la Fuente, Mónica; Esbrit, Pedro

    2016-03-01

    In the present study, the possibility that a diabetic (DM) status might worsen age-related bone deterioration was explored in mice. Male CD-1 mice aged 2 (young control group) or 16 months, nondiabetic or made diabetic by streptozotocin injections, were used. DM induced a decrease in bone volume, trabecular number, and eroded surface, and in mineral apposition and bone formation rates, but an increased trabecular separation, in L1-L3 vertebrae of aged mice. Three-point bending and reference point indentation tests showed slight changes pointing to increased frailty and brittleness in the mouse tibia of diabetic old mice. DM was related to a decreased expression of both vascular endothelial growth factor and its receptor 2, which paralleled that of femoral vasculature, and increased expression of the pro-adipogenic gene peroxisome proliferator-activated receptor γ and adipocyte number, without affecting β-catenin pathway in old mouse bone. Concomitant DM in old mice failed to affect total glutathione levels or activity of main anti-oxidative stress enzymes, although xanthine oxidase was slightly increased, in the bone marrow, but increased the senescence marker caveolin-1 gene. In conclusion, DM worsens bone alterations of aged mice, related to decreased bone turnover and bone vasculature and increased senescence, independently of the anti-oxidative stress machinery.

  2. Antidiabetic efficacy of bradykinin antagonist R-954 on glucose tolerance test in diabetic type 1 mice.

    PubMed

    Catanzaro, Orlando L; Dziubecki, Damian; Obregon, Pablo; Rodriguez, Ricardo R; Sirois, Pierre

    2010-04-01

    Insulin-dependent diabetes mellitus (type 1 diabetes) is an inflammatory autoimmune disease associated with many complications including nephropathy, retinopathy, neuropathy and hyperalgesia. Experimental evidence has shown that the bradykinin B1 receptor (BKB1-R) is involved in the development of type 1 diabetes and found to be upregulated alongside the disease. In the present study the effects of the selective BKB1-R antagonist the R-954 (Ac-Orn-[Oic(2), alpha-MePhe(5), D-beta Nal(7), Ile(8) ]des-Arg(9)-BK and the BKB1-R agonist des Arg(9)-BK (DBK) were studied on diabetic hyperglycemia. Diabetic type 1 was induced in C57 BL/KsJ mdb male mice by five consecutives doses of STZ (45mg/kg i.p.). A glucose tolerance test (GTT) was performed by an intraperitoneal administration of glucose, 8, 12 and 18days after the diabetes induction. The induction of type 1 diabetes provoked a significant hyperglycemia levels in diabetic mice at 12 and 18days after STZ. The administration of R-954 (400microg/kg i.p.) at 12 and 18days after STZ returned the glycemia levels of this animals to normal values. In addition the administration of DKB (300microg/kg i.p.) significantly potentiated the diabetes-induced hyperglycemia; this effect that was totally reversed by R-954. These results provide further evidence for the implication of BKB1-R in the type 1 diabetes mellitus (insulitis). PMID:20092893

  3. Ursolic Acid Protects Diabetic Mice Against Monocyte Dysfunction and Accelerated Atherosclerosis

    PubMed Central

    Ullevig, Sarah L.; Zhao, Qingwei; Zamora, Debora; Asmis, Reto

    2011-01-01

    Aims Accelerated atherosclerosis is a major diabetic complication initiated by the enhanced recruitment of monocytes into the vasculature. In this study, we examined the therapeutic potential of the phytonutrients ursolic acid (UA) and resveratrol (RES) in preventing monocyte recruitment and accelerated atherosclerosis. Methods and Results Dietary supplementation with either RES or UA (0.2%) protected against accelerated atherosclerosis induced by streptozotocin in high-fat diet-fed LDL receptor-deficient mice. However, mice that received dietary UA for 11 weeks were significantly better protected and showed a 53% reduction in lesion formation while mice fed a RES-supplemented diet showed only a 31% reduction in lesion size. Importantly, UA was also significantly more effective in preventing the appearance of proinflammatory GR-1high monocytes induced by these diabetic conditions and reducing monocyte recruitment into MCP-1-loaded Matrigel plugs implanted into these diabetic mice. Oxidatively-stressed THP-1 monocytes mimicked the behavior of blood monocytes in diabetic mice and showed enhanced responsiveness to monocyte chemoattractant protein-1 (MCP-1) without changing MCP-1 receptor (CCR2) surface expression. Pretreatment of THP-1 monocytes with RES or UA (0.3 – 10 μM) for 15 h resulted in the dose-dependent inhibition of H2O2-accelerated chemotaxis in response to MCP-1, but with an IC50 of 0.4 μM, UA was 2.7-fold more potent than RES. Conclusion Dietary UA is a potent inhibitor of monocyte dysfunction and accelerated atherosclerosis induced by diabetes. These studies identify ursolic acid as a potential therapeutic agent for the treatment of diabetic complications, including accelerated atherosclerosis, and provide a novel mechanism for the anti-atherogenic properties of ursolic acid. PMID:21752377

  4. The natural killer T lymphocyte: a player in the complex regulation of autoimmune diabetes in non-obese diabetic mice

    PubMed Central

    Cardell, S L

    2006-01-01

    Manipulation of the immune response to specifically prevent autoaggression requires an understanding of the complex interactions that occur during the pathogenesis of autoimmunity. Much attention has been paid to conventional T lymphocytes recognizing peptide antigens presented by classical major histocompatibility complex (MHC) class I and II molecules, as key players in the destructive autoreactive process. A pivotal role for different types of regulatory T lymphocytes in modulating the development of disease is also well established. Lately, CD1d-restricted natural killer T (NKT) lymphocytes have been the subject of intense investigation because of their ability to regulate a diversity of immune responses. The non-classical antigen presenting molecule CD1d presents lipids and glycolipids to this highly specialized subset of T lymphocytes found in both humans and mice. From experimental models of autoimmunity, evidence is accumulating that NKT cells can protect from disease. One of the best studied is the murine type 1 diabetes model, the non-obese diabetic (NOD) mouse. While the NKT cell population was first recognized to be deficient in NOD mice, augmenting NKT cell activity has been shown to suppress the development of autoimmune disease in this strain. The mechanism by which CD1d-restricted T cells exert this function is still described incompletely, but investigations in NOD mice are starting to unravel specific effects of NKT cell regulation. This review focuses on the role of CD1d-restricted NKT cells in the control of autoimmune diabetes. PMID:16412042

  5. Synaptic transmission at parasympathetic neurons of the major pelvic ganglion from normal and diabetic male mice.

    PubMed

    Tompkins, John D; Vizzard, Margaret A; Parsons, Rodney L

    2013-02-01

    Bladder and erectile dysfunction are common urologic complications of diabetes and are associated with reduced parasympathetic autonomic control. To determine whether disruption of ganglionic neurotransmission contributes to the loss of function, we investigated synaptic transmission at parasympathetic, major pelvic ganglion (MPG) neurons in control and chronically (20 wk) diabetic mice. In contrast to what has been reported for sympathetic neurons, diabetes did not cause an interruption of synaptic transmission at parasympathetic MPG neurons from streptozotocin-treated C57BL/6J (STZ) or db/db mice. Cholinergically mediated excitatory postsynaptic potentials (EPSPs) were suprathreshold during 5-s trains of 5-, 10-, and 20-Hz stimuli. Asynchronous neurotransmitter release, observed as miniature EPSPs (mEPSPs) during and after stimulation, permitted quantitative assessment of postganglionic, cholinergic receptor sensitivity. mEPSP amplitude following tetanic stimulation (recorded at -60 mV) was reduced in STZ (4.95 ± 0.4 vs. 3.71 ± 0.3 mV, P = 0.03), but not db/db mice. The number of posttetanic mEPSPs was significantly greater in db/db mice at all frequencies tested. Assessment of basic electrophysiological properties revealed that parasympathetic MPG neurons from db/db mice had less negative membrane potentials, lower input resistances, and shorter afterhyperpolarizations relative to their control. MPG neurons from STZ had longer afterhyperpolarizations but were otherwise similar to controls. Membrane excitability, measured by the membrane responsiveness to long-duration (1 s), suprathreshold depolarizing pulses, was unchanged in either model. The present study indicates that, while parasympathetic neurotransmission at the MPG is intact in chronically diabetic mice, obese, type 2 diabetic animals exhibit an altered presynaptic regulation of neurotransmitter release.

  6. The Altered Renal and Hepatic Expression of Solute Carrier Transporters (SLCs) in Type 1 Diabetic Mice

    PubMed Central

    Xu, Chenghao; Zhu, Ling; Chan, Ting; Lu, Xiaoxi; Shen, Weiyong; Gillies, Mark C.; Zhou, Fanfan

    2015-01-01

    Diabetes mellitus is a chronic metabolic disorder that significantly affects human health and well-being. The Solute carrier transporters (SLCs), particularly the Organic anion/cation transporters (Oats/Octs/Octns), Organic anion transporting polypeptides (Oatps) and Oligopeptide transporters (Pepts) are essential membrane proteins responsible for cellular uptake of many endogenous and exogenous substances such as clinically important drugs. They are widely expressed in mammalian key organs especially the kidney and liver, in which they facilitate the influx of various drug molecules, thereby determining their distribution and elimination in body. The altered expression of SLCs in diabetes mellitus could have a profound and clinically significant influence on drug therapies. In this study, we extensively investigated the renal and hepatic expression of twenty essential SLCs in the type 1 diabetic Ins2Akita murine model that develops both hyperglycemia and diabetes-related complications using real-time PCR and immunoblotting analysis. We found that the renal expression of mOatp1a1, mOatp1a6, mOat1, mOat3, mOat5, mOct2 and mPept2 was decreased; while that of mPept1 was increased at the mRNA level in the diabetic mice compared with non-diabetic controls. We found up-regulated mRNA expression of mOatp1a4, mOatp1c1, mOctn2, mOct3 and mPept1 as well as down-regulation of mOatp1a1 in the livers of diabetic mice. We confirmed the altered protein expression of several SLCs in diabetic mice, especially the decreased renal and hepatic expression of mOatp1a1. We also found down-regulated protein expression of mOat3 and mOctn1 in the kidneys as well as increased protein expression of mOatp1a4 and mOct3 in the livers of diabetic mice. Our findings contribute to better understanding the modulation of SLC transporters in type 1 diabetes mellitus, which is likely to affect the pharmacokinetic performance of drugs that are transported by these transporters and therefore, forms the

  7. Gene expression microarray analysis of the sciatic nerve of mice with diabetic neuropathy.

    PubMed

    Zhang, Lei; Qu, Shen; Liang, Aibin; Jiang, Hong; Wang, Hao

    2015-02-01

    The present study aimed to explore novel target genes that regulate the development of diabetic neuropathy (DN) by analyzing gene expression profiles in the sciatic nerve of infected mice. The GSE11343 microarray dataset, which was downloaded from Gene Expression Omnibus, included data on 4 control samples and 5 samples from mice with diabetes induced by streptozotocin (STZ), 5 samples from normal mice treated with rosiglitazone (Rosi) and 5 samples from mice with diabetes induced by STZ and treated with Rosi. Differentially expressed genes (DEGs) between the different groups were identified using the substitution augmentation modification redefinition (SAMR) model. The Gene Ontology (GO) term and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed using the Database for Annotation, Visualization and Integrated Discovery (DAVID). Regulatory and protein‑protein interaction networks were searched using BioCarta and STRING, respectively. The protein structures of potential regulatory genes were predicted using the SYBYL program. Compared with the controls, 1,384 DEGs were identified in the mice with STZ-induced diabetes and 7 DEGs were identified in the mice treated with Rosi. There were 518 DEGs identified between the mice in the STZ + Rosi and STZ groups. We identified 45 GO items, and the calmodulin nerve phosphatase and chemokine signaling pathways were identified as the main pathways. Three genes [myristoylated alanine-rich protein kinase C substrate (Marcks), GLI pathogenesis-related 2 (Glipr2) and centrosomal protein 170 kDa (Cep170)] were found to be co-regulated by both STZ and Rosi, the protein structure of which was predicted and certain binding activity to Rosi was docked. Our study demonstrates that the Marcks, Glipr2 and Cep170 genes may be underlying drug targets in the treatment of DN. PMID:25435094

  8. Gene expression microarray analysis of the sciatic nerve of mice with diabetic neuropathy

    PubMed Central

    ZHANG, LEI; QU, SHEN; LIANG, AIBIN; JIANG, HONG; WANG, HAO

    2015-01-01

    The present study aimed to explore novel target genes that regulate the development of diabetic neuropathy (DN) by analyzing gene expression profiles in the sciatic nerve of infected mice. The GSE11343 microarray dataset, which was downloaded from Gene Expression Omnibus, included data on 4 control samples and 5 samples from mice with diabetes induced by streptozotocin (STZ), 5 samples from normal mice treated with rosiglitazone (Rosi) and 5 samples from mice with diabetes induced by STZ and treated with Rosi. Differentially expressed genes (DEGs) between the different groups were identified using the substitution augmentation modification redefinition (SAMR) model. The Gene Ontology (GO) term and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed using the Database for Annotation, Visualization and Integrated Discovery (DAVID). Regulatory and protein-protein interaction networks were searched using BioCarta and STRING, respectively. The protein structures of potential regulatory genes were predicted using the SYBYL program. Compared with the controls, 1,384 DEGs were identified in the mice with STZ-induced diabetes and 7 DEGs were identified in the mice treated with Rosi. There were 518 DEGs identified between the mice in the STZ + Rosi and STZ groups. We identified 45 GO items, and the calmodulin nerve phosphatase and chemokine signaling pathways were identified as the main pathways. Three genes [myristoylated alanine-rich protein kinase C substrate (Marcks), GLI pathogenesis-related 2 (Glipr2) and centrosomal protein 170 kDa (Cep170)] were found to be co-regulated by both STZ and Rosi, the protein structure of which was predicted and certain binding activity to Rosi was docked. Our study demonstrates that the Marcks, Glipr2 and Cep170 genes may be underlying drug targets in the treatment of DN. PMID:25435094

  9. Impaired adiponectin signaling contributes to disturbed catabolism of branched-chain amino acids in diabetic mice.

    PubMed

    Lian, Kun; Du, Chaosheng; Liu, Yi; Zhu, Di; Yan, Wenjun; Zhang, Haifeng; Hong, Zhibo; Liu, Peilin; Zhang, Lijian; Pei, Haifeng; Zhang, Jinglong; Gao, Chao; Xin, Chao; Cheng, Hexiang; Xiong, Lize; Tao, Ling

    2015-01-01

    The branched-chain amino acids (BCAA) accumulated in type 2 diabetes are independent contributors to insulin resistance. The activity of branched-chain α-keto acid dehydrogenase (BCKD) complex, rate-limiting enzyme in BCAA catabolism, is reduced in diabetic states, which contributes to elevated BCAA concentrations. However, the mechanisms underlying decreased BCKD activity remain poorly understood. Here, we demonstrate that mitochondrial phosphatase 2C (PP2Cm), a newly identified BCKD phosphatase that increases BCKD activity, was significantly downregulated in ob/ob and type 2 diabetic mice. Interestingly, in adiponectin (APN) knockout (APN(-/-)) mice fed with a high-fat diet (HD), PP2Cm expression and BCKD activity were significantly decreased, whereas BCKD kinase (BDK), which inhibits BCKD activity, was markedly increased. Concurrently, plasma BCAA and branched-chain α-keto acids (BCKA) were significantly elevated. APN treatment markedly reverted PP2Cm, BDK, BCKD activity, and BCAA and BCKA levels in HD-fed APN(-/-) and diabetic animals. Additionally, increased BCKD activity caused by APN administration was partially but significantly inhibited in PP2Cm knockout mice. Finally, APN-mediated upregulation of PP2Cm expression and BCKD activity were abolished when AMPK was inhibited. Collectively, we have provided the first direct evidence that APN is a novel regulator of PP2Cm and systematic BCAA levels, suggesting that targeting APN may be a pharmacological approach to ameliorating BCAA catabolism in the diabetic state. PMID:25071024

  10. INFLUENCE OF TYPE II DIABETES AND OBESITY ON THE DISPOSITION AND ELIMINATION OF TCDD IN MICE

    EPA Science Inventory

    INFLUENCE OF TYPE II DIABETES AND OBESITY ON THE DISPOSTION AND ELIMINATION OF TCDD IN MICE. MJ DeVito', JJ Diliberto', DG Ross', C Emond2, VM Richardson', and LS Birnbaum', 'ETD, NHEERL, ORD, US EPA, RTP, NC, 27711, USA, 2National Research Council.
    One possible explanation fo...

  11. Chloroquine improves left ventricle diastolic function in streptozotocin-induced diabetic mice

    PubMed Central

    Yuan, Xun; Xiao, Yi-Chuan; Zhang, Gui-Ping; Hou, Ning; Wu, Xiao-Qian; Chen, Wen-Liang; Luo, Jian-Dong; Zhang, Gen-Shui

    2016-01-01

    Diabetes is a potent risk factor for heart failure with preserved ejection fraction (HFpEF). Autophagy can be activated under pathological conditions, including diabetic cardiomyopathy. The therapeutic effects of chloroquine (CQ), an autophagy inhibitor, on left ventricle function in streptozotocin (STZ)-induced diabetic mice were investigated. The cardiac function, light chain 3 (LC3)-II/LC3-I ratio, p62, beclin 1, reactive oxygen species, apoptosis, and fibrosis were measured 14 days after CQ (ip 60 mg/kg/d) administration. In STZ-induced mice, cardiac diastolic function was decreased significantly with normal ejection fraction. CQ significantly ameliorated cardiac diastolic function in diabetic mice with HFpEF. In addition, CQ decreased the autophagolysosomes, cardiomyocyte apoptosis, and cardiac fibrosis but increased LC3-II and p62 expressions. These results suggested that CQ improved the cardiac diastolic function by inhibiting autophagy in STZ-induced HFpEF mice. Autophagic inhibitor CQ might be a potential therapeutic agent for HFpEF. PMID:27621594

  12. The dipeptidyl peptidase-4 inhibitor sitagliptin suppresses mouse colon tumorigenesis in type 2 diabetic mice.

    PubMed

    Yorifuji, Naoki; Inoue, Takuya; Iguchi, Munetaka; Fujiwara, Kaori; Kakimoto, Kazuki; Nouda, Sadaharu; Okada, Toshihiko; Kawakami, Ken; Abe, Yosuke; Takeuchi, Toshihisa; Higuchi, Kazuhide

    2016-02-01

    Patients with type 2 diabetes mellitus are known to have an increased risk of colorectal neoplasia. Dipeptidyl peptidase-4 (DPP-4) inhibitors have been used as a new therapeutic tool for type 2 diabetes. Since the substrates for DPP-4 include intestinotrophic hormones and chemokines such as GLP-2 and stromal cell-derived factor-1 (SDF-1), which are associated with tumor progression, DPP-4 inhibitors may increase the risk of colorectal tumors. However, the influence of DPP-4 inhibitors on colorectal neoplasia in patients with type 2 diabetes remains unknown. In the present study, we show that long-term administration of a DPP-4 inhibitor, sitagliptin (STG), suppressed colon carcinogenesis in leptin-deficient (ob/ob) C57BL/6J mice. Colonic mucosal concentrations of glucagon‑like peptide-1 (GLP-1) and GLP-2 were significantly elevated in the ob/ob mice. However, mucosal GLP concentrations and the plasma level of SDF-1 were not affected by the administration of STG. Real‑time PCR analysis revealed that colonic mucosal IL-6 mRNA expression, which was significantly upregulated in the ob/ob mice, was significantly suppressed by the long-term administration of STG. These results suggest that a DPP-4 inhibitor may suppress colon carcinogenesis in mice with type 2 diabetes in a GLP-independent manner. Since DPP-4 has multiple biological functions, further studies analyzing other factors related to colon carcinogenesis are needed.

  13. Chloroquine improves left ventricle diastolic function in streptozotocin-induced diabetic mice.

    PubMed

    Yuan, Xun; Xiao, Yi-Chuan; Zhang, Gui-Ping; Hou, Ning; Wu, Xiao-Qian; Chen, Wen-Liang; Luo, Jian-Dong; Zhang, Gen-Shui

    2016-01-01

    Diabetes is a potent risk factor for heart failure with preserved ejection fraction (HFpEF). Autophagy can be activated under pathological conditions, including diabetic cardiomyopathy. The therapeutic effects of chloroquine (CQ), an autophagy inhibitor, on left ventricle function in streptozotocin (STZ)-induced diabetic mice were investigated. The cardiac function, light chain 3 (LC3)-II/LC3-I ratio, p62, beclin 1, reactive oxygen species, apoptosis, and fibrosis were measured 14 days after CQ (ip 60 mg/kg/d) administration. In STZ-induced mice, cardiac diastolic function was decreased significantly with normal ejection fraction. CQ significantly ameliorated cardiac diastolic function in diabetic mice with HFpEF. In addition, CQ decreased the autophagolysosomes, cardiomyocyte apoptosis, and cardiac fibrosis but increased LC3-II and p62 expressions. These results suggested that CQ improved the cardiac diastolic function by inhibiting autophagy in STZ-induced HFpEF mice. Autophagic inhibitor CQ might be a potential therapeutic agent for HFpEF. PMID:27621594

  14. Chloroquine improves left ventricle diastolic function in streptozotocin-induced diabetic mice

    PubMed Central

    Yuan, Xun; Xiao, Yi-Chuan; Zhang, Gui-Ping; Hou, Ning; Wu, Xiao-Qian; Chen, Wen-Liang; Luo, Jian-Dong; Zhang, Gen-Shui

    2016-01-01

    Diabetes is a potent risk factor for heart failure with preserved ejection fraction (HFpEF). Autophagy can be activated under pathological conditions, including diabetic cardiomyopathy. The therapeutic effects of chloroquine (CQ), an autophagy inhibitor, on left ventricle function in streptozotocin (STZ)-induced diabetic mice were investigated. The cardiac function, light chain 3 (LC3)-II/LC3-I ratio, p62, beclin 1, reactive oxygen species, apoptosis, and fibrosis were measured 14 days after CQ (ip 60 mg/kg/d) administration. In STZ-induced mice, cardiac diastolic function was decreased significantly with normal ejection fraction. CQ significantly ameliorated cardiac diastolic function in diabetic mice with HFpEF. In addition, CQ decreased the autophagolysosomes, cardiomyocyte apoptosis, and cardiac fibrosis but increased LC3-II and p62 expressions. These results suggested that CQ improved the cardiac diastolic function by inhibiting autophagy in STZ-induced HFpEF mice. Autophagic inhibitor CQ might be a potential therapeutic agent for HFpEF.

  15. The anti-diabetic activity of oat β-d-glucan in streptozotocin-nicotinamide induced diabetic mice.

    PubMed

    Liu, Mei; Zhang, Yu; Zhang, Hui; Hu, Bo; Wang, Li; Qian, Haifeng; Qi, Xiguang

    2016-10-01

    This study was initiated to investigate the mechanism by which oat β-d-glucan (OBG) can control blood sugar levels and improve hepatogenic glycometabolism in streptozotocin-nicotinamide induced mice. After administration of different concentrations and molecular weights of β-d-glucan by oral gavage for 28 days, the body weight, fasting blood glucose, serum insulin, hepatic glycogen, glucose kinase and glucose-6-phosphatase activity of the diabetic mice were measured. In comparison with a negative control group (saline), β-d-glucan, especially medium or high doses of high-molecular-weight β-d-glucan, had a strong hypoglycaemic effect in streptozotocin-nicotinamide-induced mice. The mechanism of this effect may be associated with the high viscosity of the solution, an increase in insulin secretion, a decline in insulin resistance, and especially an improvement in hepatogenic glycometabolism. Moreover, β-d-glucan also markedly repaired and improved the integrity of pancreatic islet β-cell and tissue structures.

  16. Hyperactivity of ON-type retinal ganglion cells in streptozotocin-induced diabetic mice.

    PubMed

    Yu, Jun; Wang, Lu; Weng, Shi-Jun; Yang, Xiong-Li; Zhang, Dao-Qi; Zhong, Yong-Mei

    2013-01-01

    Impairment of visual function has been detected in the early stage of diabetes but the underlying neural mechanisms involved are largely unknown. Morphological and functional alterations of retinal ganglion cells, the final output neurons of the vertebrate retina, are thought to be the major cause of visual defects in diabetes but direct evidence to support this notion is limited. In this study we investigated functional changes of retinal ganglion cells in a type 1-like diabetic mouse model. Our results demonstrated that the spontaneous spiking activity of ON-type retinal ganglion cells was increased in streptozotocin-diabetic mice after 3 to 4 months of diabetes. At this stage of diabetes, no apoptotic signals or cell loss were detected in the ganglion cell layer of the retina, suggesting that the functional alterations in ganglion cells occur prior to massive ganglion cell apoptosis. Furthermore, we found that the increased activity of ON-type ganglion cells was mainly a result of reduced inhibitory signaling to the cells in diabetes. This novel mechanism provides insight into how visual function is impaired in diabetic retinopathy. PMID:24069457

  17. Shengmai San Ameliorates Myocardial Dysfunction and Fibrosis in Diabetic db/db Mice

    PubMed Central

    Cao, Tong-Tong; Tian, Jing; Chen, Hui-hua; Lu, Rong

    2016-01-01

    In this study, we mainly investigated the effects of Shengmai San (SMS) on diabetic cardiomyopathy (DCM) in db/db mice. The db/db mice were randomly divided into model group and SMS group, while C57BLKS/J inbred mice were used as controls. After 24-week treatment, blood glucose, body weight, and heart weight were determined. Hemodynamic changes in the left ventricle were measured using catheterization. The myocardial structure and subcellular structural changes were observed by HE staining and electron microscopy; the myocardium collagen content was quantified by Masson staining. To further explore the protective mechanism of SMS, we analyzed the expression profiles of fibrotic related proteins. Compared to nondiabetic mice, db/db mice exhibited enhanced diastolic myocardial dysfunction and adverse structural remodeling. Higher expression of profibrotic proteins and lower levels of extracellular matrix degradation were also observed. After SMS oral administration for 24 weeks, cardiac dysfunction, hypertrophy, and fibrosis in diabetic mice were greatly improved. Moreover, increased profibrotic protein expression was strongly reversed by SMS treatment in db/db mice. The results demonstrate that SMS exerts a cardioprotective effect against DCM by attenuating myocardial hypertrophy and fibrosis via a TGF-β dependent pathway. PMID:27200101

  18. Shengmai San Ameliorates Myocardial Dysfunction and Fibrosis in Diabetic db/db Mice.

    PubMed

    Zhao, Juan; Cao, Tong-Tong; Tian, Jing; Chen, Hui-Hua; Zhang, Chen; Wei, Hong-Chang; Guo, Wei; Lu, Rong

    2016-01-01

    In this study, we mainly investigated the effects of Shengmai San (SMS) on diabetic cardiomyopathy (DCM) in db/db mice. The db/db mice were randomly divided into model group and SMS group, while C57BLKS/J inbred mice were used as controls. After 24-week treatment, blood glucose, body weight, and heart weight were determined. Hemodynamic changes in the left ventricle were measured using catheterization. The myocardial structure and subcellular structural changes were observed by HE staining and electron microscopy; the myocardium collagen content was quantified by Masson staining. To further explore the protective mechanism of SMS, we analyzed the expression profiles of fibrotic related proteins. Compared to nondiabetic mice, db/db mice exhibited enhanced diastolic myocardial dysfunction and adverse structural remodeling. Higher expression of profibrotic proteins and lower levels of extracellular matrix degradation were also observed. After SMS oral administration for 24 weeks, cardiac dysfunction, hypertrophy, and fibrosis in diabetic mice were greatly improved. Moreover, increased profibrotic protein expression was strongly reversed by SMS treatment in db/db mice. The results demonstrate that SMS exerts a cardioprotective effect against DCM by attenuating myocardial hypertrophy and fibrosis via a TGF-β dependent pathway. PMID:27200101

  19. Proteome wide reduction in AGE modification in streptozotocin induced diabetic mice by hydralazine mediated transglycation

    PubMed Central

    Kesavan, Suresh K.; Bhat, Shweta; Golegaonkar, Sandeep B.; Jagadeeshaprasad, Mashanipalya G.; Deshmukh, Arati B.; Patil, Harshal S.; Bhosale, Santosh D.; Shaikh, Mahemud L.; Thulasiram, Hirekodathakallu V.; Boppana, Ramanamurthy; Kulkarni, Mahesh J.

    2013-01-01

    The non-enzymatic reaction between glucose and protein can be chemically reversed by transglycation. Here we report the transglycation activity of hydralazine using a newly developed MALDI-TOF-MS based assay. Hydralazine mediated transglycation of HbA1c, plasma proteins and kidney proteins was demonstrated in streptozotocin (STZ) induced diabetic mice, as evidenced by decrease in protein glycation, as well as presence of hydralazine-glucose conjugate in urine of diabetic mice treated with hydralazine. Hydralazine down regulated the expression of Receptor for Advanced Glycation End products (RAGE), NADPH oxidase (NOX), and super oxide dismutase (SOD). These findings will provide a new dimension for developing intervention strategies for the treatment of glycation associated diseases such as diabetes complications, atherosclerosis, and aging. PMID:24126953

  20. High Fructose Diet inducing diabetes rapidly impacts olfactory epithelium and behavior in mice

    PubMed Central

    Rivière, Sébastien; Soubeyre, Vanessa; Jarriault, David; Molinas, Adrien; Léger-Charnay, Elise; Desmoulins, Lucie; Grebert, Denise; Meunier, Nicolas; Grosmaitre, Xavier

    2016-01-01

    Type 2 Diabetes (T2D), a major public health issue reaching worldwide epidemic, has been correlated with lower olfactory abilities in humans. As olfaction represents a major component of feeding behavior, its alteration may have drastic consequences on feeding behaviors that may in turn aggravates T2D. In order to decipher the impact of T2D on the olfactory epithelium, we fed mice with a high fructose diet (HFruD) inducing early diabetic state in 4 to 8 weeks. After only 4 weeks of this diet, mice exhibited a dramatic decrease in olfactory behavioral capacities. Consistently, this decline in olfactory behavior was correlated to decreased electrophysiological responses of olfactory neurons recorded as a population and individually. Our results demonstrate that, in rodents, olfaction is modified by HFruD-induced diabetes. Functional, anatomical and behavioral changes occurred in the olfactory system at a very early stage of the disease. PMID:27659313

  1. Proteome wide reduction in AGE modification in streptozotocin induced diabetic mice by hydralazine mediated transglycation.

    PubMed

    Kesavan, Suresh K; Bhat, Shweta; Golegaonkar, Sandeep B; Jagadeeshaprasad, Mashanipalya G; Deshmukh, Arati B; Patil, Harshal S; Bhosale, Santosh D; Shaikh, Mahemud L; Thulasiram, Hirekodathakallu V; Boppana, Ramanamurthy; Kulkarni, Mahesh J

    2013-10-15

    The non-enzymatic reaction between glucose and protein can be chemically reversed by transglycation. Here we report the transglycation activity of hydralazine using a newly developed MALDI-TOF-MS based assay. Hydralazine mediated transglycation of HbA1c, plasma proteins and kidney proteins was demonstrated in streptozotocin (STZ) induced diabetic mice, as evidenced by decrease in protein glycation, as well as presence of hydralazine-glucose conjugate in urine of diabetic mice treated with hydralazine. Hydralazine down regulated the expression of Receptor for Advanced Glycation End products (RAGE), NADPH oxidase (NOX), and super oxide dismutase (SOD). These findings will provide a new dimension for developing intervention strategies for the treatment of glycation associated diseases such as diabetes complications, atherosclerosis, and aging.

  2. Dammarenediol-II Prevents VEGF-Mediated Microvascular Permeability in Diabetic Mice.

    PubMed

    Kim, Su-Hyeon; Jung, Se-Hui; Lee, Yeon-Ju; Han, Jung Yeon; Choi, Yong-Eui; Hong, Hae-Deun; Jeon, Hye-Yoon; Hwang, JongYun; Na, SungHun; Kim, Young-Myeong; Ha, Kwon-Soo

    2015-12-01

    Diabetic retinopathy is a major diabetic complication predominantly caused by vascular endothelial growth factor (VEGF)-induced vascular permeability in the retina; however, treatments targeting glycemic control have not been successful. Here, we investigated the protective effect of dammarenediol-II, a precursor of triterpenoid saponin biosynthesis, on VEGF-induced vascular leakage using human umbilical vein endothelial cells (HUVECs) and diabetic mice. We overproduced the compound in transgenic tobacco expressing Panax ginseng dammarenediol-II synthase gene and purified using column chromatography. Analysis of the purified compound using a gas chromatography-mass spectrometry system revealed identical retention time and fragmentation pattern to those of authentic standard dammarenediol-II. Dammarenediol-II inhibited VEGF-induced intracellular reactive oxygen species generation, but it had no effect on the levels of intracellular Ca(2+) in HUVECs. We also found that dammarenediol-II inhibited VEGF-induced stress fiber formation and vascular endothelial-cadherin disruption, both of which play critical roles in modulating endothelial permeability. Notably, microvascular leakage in the retina of diabetic mice was successfully inhibited by intravitreal dammarenediol-II injection. Our results suggest that the natural drug dammarenediol-II may have the ability to prevent diabetic microvascular complications, including diabetic retinopathy. PMID:26400610

  3. Anti-oxidant effect of gold nanoparticles restrains hyperglycemic conditions in diabetic mice

    PubMed Central

    2010-01-01

    Background Oxidative stress is imperative for its morbidity towards diabetic complications, where abnormal metabolic milieu as a result of hyperglycemia, leads to the onset of several complications. A biological antioxidant capable of inhibiting oxidative stress mediated diabetic progressions; during hyperglycemia is still the need of the era. The current study was performed to study the effect of biologically synthesized gold nanoparticles (AuNPs) to control the hyperglycemic conditions in streptozotocin induced diabetic mice. Results The profound control of AuNPs over the anti oxidant enzymes such as GSH, SOD, Catalase and GPx in diabetic mice to normal, by inhibition of lipid peroxidation and ROS generation during hyperglycemia evidence their anti-oxidant effect during hyperglycemia. The AuNPs exhibited an insistent control over the blood glucose level, lipids and serum biochemical profiles in diabetic mice near to the control mice provokes their effective role in controlling and increasing the organ functions for better utilization of blood glucose. Histopathological and hematological studies revealed the non-toxic and protective effect of the gold nanoparticles over the vital organs when administered at dosage of 2.5 mg/kilogram.body.weight/day. ICP-MS analysis revealed the biodistribution of gold nanoparticles in the vital organs showing accumulation of AuNPs in the spleen comparatively greater than other organs. Conclusion The results obtained disclose the effectual role of AuNPs as an anti-oxidative agent, by inhibiting the formation of ROS, scavenging free radicals; thus increasing the anti-oxidant defense enzymes and creating a sustained control over hyperglycemic conditions which consequently evoke the potential of AuNPs as an economic therapeutic remedy in diabetic treatments and its complications. PMID:20630072

  4. Growth Hormone (GH) Hypersecretion and GH Receptor Resistance in Streptozotocin Diabetic Mice in Response to a GH Secretagogue

    PubMed Central

    Segev, Yael; Landau, Daniel; Phillip, Moshe; Flyvbjerg, Allan

    2003-01-01

    The growth hormone (GH) and insulin-like growth factor I (IGF-I) axis were studied in streptozotocin (STZ) diabetic and nondiabetic female mice following intravenous (IV) injection of the GH secretagogue (GHS) ipamorelin or saline. On day 14, blood samples were obtained before and 10 minutes after the injection. Livers were removed and frozen for determination of the mRNA expressions of the GH receptor, GH-binding protein, and IGF-I, and hepatic IGF-I peptide. Serum samples were analyzed for GH and IGF-I. Following ipamorelin injection, the GH levels were found to be 150 ± 35 μg/L and 62 ± 11 μg/L in the diabetic compared to the nondiabetic mice (P < .05). Serum IGF-I levels were lower in diabetic than in nondiabetic animals, and rose after stimulation only in the nondiabetic animals. Furthermore, hepatic GH resistance and IGF-I mRNA levels and IGF-I peptide were increased in nondiabetic animals in response to GH stimulation, whereas the low levels per se of all these parameters in diabetic mice were unaffected. The study shows that STZ diabetic mice demonstrate a substantial part of the clinical features of type 1 diabetes in humans, including GH hypersecretion and GH resistance. Accordingly, it is proposed that STZ diabetic mice may be a better model of the perturbations of the GH/IGF-I axis in diabetes than STZ diabetic rats. PMID:14630569

  5. Multi-tissue computational modeling analyzes pathophysiology of type 2 diabetes in MKR mice.

    PubMed

    Kumar, Amit; Harrelson, Thomas; Lewis, Nathan E; Gallagher, Emily J; LeRoith, Derek; Shiloach, Joseph; Betenbaugh, Michael J

    2014-01-01

    Computational models using metabolic reconstructions for in silico simulation of metabolic disorders such as type 2 diabetes mellitus (T2DM) can provide a better understanding of disease pathophysiology and avoid high experimentation costs. There is a limited amount of computational work, using metabolic reconstructions, performed in this field for the better understanding of T2DM. In this study, a new algorithm for generating tissue-specific metabolic models is presented, along with the resulting multi-confidence level (MCL) multi-tissue model. The effect of T2DM on liver, muscle, and fat in MKR mice was first studied by microarray analysis and subsequently the changes in gene expression of frank T2DM MKR mice versus healthy mice were applied to the multi-tissue model to test the effect. Using the first multi-tissue genome-scale model of all metabolic pathways in T2DM, we found out that branched-chain amino acids' degradation and fatty acids oxidation pathway is downregulated in T2DM MKR mice. Microarray data showed low expression of genes in MKR mice versus healthy mice in the degradation of branched-chain amino acids and fatty-acid oxidation pathways. In addition, the flux balance analysis using the MCL multi-tissue model showed that the degradation pathways of branched-chain amino acid and fatty acid oxidation were significantly downregulated in MKR mice versus healthy mice. Validation of the model was performed using data derived from the literature regarding T2DM. Microarray data was used in conjunction with the model to predict fluxes of various other metabolic pathways in the T2DM mouse model and alterations in a number of pathways were detected. The Type 2 Diabetes MCL multi-tissue model may explain the high level of branched-chain amino acids and free fatty acids in plasma of Type 2 Diabetic subjects from a metabolic fluxes perspective.

  6. Multi-Tissue Computational Modeling Analyzes Pathophysiology of Type 2 Diabetes in MKR Mice

    PubMed Central

    Kumar, Amit; Harrelson, Thomas; Lewis, Nathan E.; Gallagher, Emily J.; LeRoith, Derek; Shiloach, Joseph; Betenbaugh, Michael J.

    2014-01-01

    Computational models using metabolic reconstructions for in silico simulation of metabolic disorders such as type 2 diabetes mellitus (T2DM) can provide a better understanding of disease pathophysiology and avoid high experimentation costs. There is a limited amount of computational work, using metabolic reconstructions, performed in this field for the better understanding of T2DM. In this study, a new algorithm for generating tissue-specific metabolic models is presented, along with the resulting multi-confidence level (MCL) multi-tissue model. The effect of T2DM on liver, muscle, and fat in MKR mice was first studied by microarray analysis and subsequently the changes in gene expression of frank T2DM MKR mice versus healthy mice were applied to the multi-tissue model to test the effect. Using the first multi-tissue genome-scale model of all metabolic pathways in T2DM, we found out that branched-chain amino acids' degradation and fatty acids oxidation pathway is downregulated in T2DM MKR mice. Microarray data showed low expression of genes in MKR mice versus healthy mice in the degradation of branched-chain amino acids and fatty-acid oxidation pathways. In addition, the flux balance analysis using the MCL multi-tissue model showed that the degradation pathways of branched-chain amino acid and fatty acid oxidation were significantly downregulated in MKR mice versus healthy mice. Validation of the model was performed using data derived from the literature regarding T2DM. Microarray data was used in conjunction with the model to predict fluxes of various other metabolic pathways in the T2DM mouse model and alterations in a number of pathways were detected. The Type 2 Diabetes MCL multi-tissue model may explain the high level of branched-chain amino acids and free fatty acids in plasma of Type 2 Diabetic subjects from a metabolic fluxes perspective. PMID:25029527

  7. Gastric carcinogenesis by N-Methyl-N-nitrosourea is enhanced in db/db diabetic mice.

    PubMed

    Yoshizawa, Nao; Yamaguchi, Hirokazu; Yamamoto, Masami; Shimizu, Nobuyuki; Furihata, Chie; Tatematsu, Masae; Seto, Yasuyuki; Kaminishi, Michio

    2009-07-01

    In 2005, a Japanese epidemiological study showed that increase in plasma glucose levels is a risk factor for gastric cancer. However, no animal model has hitherto shown any association between diabetes mellitus and neoplasia in the stomach. Diabetic (db/db) mice have obese and diabetic phenotypes, including hyperglycemia, because of disruption of the leptin receptor. In the present study, effects of hyperglycemia and/or hyperinsulinemia on the development of proliferative lesions were therefore examined in db/db mice given N-methyl-N-nitrosourea (MNU). A total of 120 mice were assigned to four groups: Group A, 40 db/db mice with MNU; Group B, 40 + /db mice with MNU; Group C, 30 misty (wild-type) mice with MNU; Group D, 10 db/db mice without MNU. MNU was given at 60 ppm in drinking water for 20 weeks. Subgroups of animals were sacrificed at weeks 21 and 30 and blood samples were collected to measure glucose, insulin, leptin, and adiponectin concentrations. The removed stomachs were fixed in formalin, and embedded in paraffin for histological examination and immunohistochemistry. At week 30 in Groups A, B, C and D, hyperplasia was observed in 100, 79, 57, and 0%, and dysplasia in 91, 43, 71, and 0%, respectively. Adenocarcinomas and pepsinogen-altered pyloric glands (PAPG), putative preneoplastic lesions, were observed only in Group A, at an incidence of 45%. The serum levels of insulin and leptin were also elevated in Group A. Gastric carcinogenesis by MNU was enhanced in db/db mice, possibly in association with hyperinsulinemia and hyperleptinemia. PMID:19432903

  8. Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice.

    PubMed

    Zhang, Yanqiao; Lee, Florence Ying; Barrera, Gabriel; Lee, Hans; Vales, Charisse; Gonzalez, Frank J; Willson, Timothy M; Edwards, Peter A

    2006-01-24

    Farnesoid X receptor (FXR) plays an important role in maintaining bile acid and cholesterol homeostasis. Here we demonstrate that FXR also regulates glucose metabolism. Activation of FXR by the synthetic agonist GW4064 or hepatic overexpression of constitutively active FXR by adenovirus-mediated gene transfer significantly lowered blood glucose levels in both diabetic db/db and wild-type mice. Consistent with these data, FXR null mice exhibited glucose intolerance and insulin insensitivity. We further demonstrate that activation of FXR in db/db mice repressed hepatic gluconeogenic genes and increased hepatic glycogen synthesis and glycogen content by a mechanism that involves enhanced insulin sensitivity. In view of its central roles in coordinating regulation of both glucose and lipid metabolism, we propose that FXR agonists are promising therapeutic agents for treatment of diabetes mellitus.

  9. Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice

    NASA Astrophysics Data System (ADS)

    Zhang, Yanqiao; Lee, Florence Ying; Barrera, Gabriel; Lee, Hans; Vales, Charisse; Gonzalez, Frank J.; Willson, Timothy M.; Edwards, Peter A.

    2006-01-01

    Farnesoid X receptor (FXR) plays an important role in maintaining bile acid and cholesterol homeostasis. Here we demonstrate that FXR also regulates glucose metabolism. Activation of FXR by the synthetic agonist GW4064 or hepatic overexpression of constitutively active FXR by adenovirus-mediated gene transfer significantly lowered blood glucose levels in both diabetic db/db and wild-type mice. Consistent with these data, FXR null mice exhibited glucose intolerance and insulin insensitivity. We further demonstrate that activation of FXR in db/db mice repressed hepatic gluconeogenic genes and increased hepatic glycogen synthesis and glycogen content by a mechanism that involves enhanced insulin sensitivity. In view of its central roles in coordinating regulation of both glucose and lipid metabolism, we propose that FXR agonists are promising therapeutic agents for treatment of diabetes mellitus. glucose | GW4064 | farnesoid X receptor-VP16 | triglyceride | cholesterol

  10. Effects of metformin on inflammation and short-term memory in streptozotocin-induced diabetic mice.

    PubMed

    Oliveira, Wilma Helena; Nunes, Ana Karolina; França, Maria Eduarda Rocha; Santos, Laise Aline; Lós, Deniele Bezerra; Rocha, Sura Wanessa; Barbosa, Karla Patrícia; Rodrigues, Gabriel Barros; Peixoto, Christina Alves

    2016-08-01

    The aim of the present study was to analyze the action of metformin on short-term memory, glial cell activation and neuroinflammation caused by experimental diabetic encephalopathy in C57BL/6 mice. Diabetes was induced by the intraperitoneal injection of a dose of 90mg/kg of streptozotocin on two successive days. Mice with blood glucose levels ≥200dl/ml were considered diabetic and were given metformin hydrochloride at doses of 100mg/kg and 200mg/kg (by gavage, twice daily) for 21 days. On the final day of treatment, the mice underwent a T-maze test. On the 22nd day of treatment all the animals were anesthetized and euthanized. Diabetic animals treated with metformin had a higher spatial memory score. The hippocampus of the diabetic animals presented reactive gliosis, neuronal loss, NF-kB signaling activation, and high levels of IL-1 and VEGF. In addition, the T-maze test scores of these animals were low. Treatment with metformin reduced the expression of GFAP, Iba-1 (astrocyte and microglial markers) and the inflammation markers (p-IKB, IL-1 and VEGF), while enhancing p-AMPK and eNOS levels and increasing neuronal survival (Fox-1 and NeuN). Treatment with metformin also improved the spatial memory scores of diabetic animals. In conclusion, the present study showed that metformin can significantly reduce neuroinflammation and can decrease the loss of neurons in the hippocampus of diabetic animals, which can subsequently promote improvements in spatial memory. PMID:27174003

  11. The Induction of Heme Oxygenase 1 Decreases Painful Diabetic Neuropathy and Enhances the Antinociceptive Effects of Morphine in Diabetic Mice

    PubMed Central

    Castany, Sílvia; Carcolé, Mireia; Leánez, Sergi; Pol, Olga

    2016-01-01

    Painful diabetic neuropathy is a common complication of diabetes mellitus which is poorly controlled by conventional analgesics. This study investigates if treatment with an heme oxygenase 1 (HO-1) inducer, cobalt protoporphyrin IX (CoPP), could modulate the allodynia and hyperalgesia induced by diabetes and enhanced the antinociceptive effects of morphine. In a diabetic mice model induced by the injection of streptozotocin (STZ), we evaluated the antiallodynic and antihyperalgesic effects produced by the intraperitoneal administration of 5 and 10 mg/kg of CoPP at several days after its administration. The antinociceptive actions produced by the systemic administration of morphine alone or combined with CoPP were also evaluated. In addition, the effects of CoPP treatment on the expression of HO-1, the microglial activation marker (CD11b/c), the inducible nitric oxide synthase (NOS2) and μ-opioid receptors (MOR), were also assessed. Our results showed that the administration of 10 mg/kg of CoPP during 5 consecutive days completely blocked the mechanical and thermal hypersensitivity induced by diabetes. These effects are accompanied by the increased spinal cord, dorsal root ganglia and sciatic nerve protein levels of HO-1. In addition, the STZ-induced activation of microglia and overexpression of NOS2 in the spinal cord were inhibited by CoPP treatment. Furthermore, the antinociceptive effects of morphine were enhanced by CoPP treatment and reversed by the administration of an HO-1 inhibitor, tin protoporphyrin IX (SnPP). The spinal cord expression of MOR was also increased by CoPP treatment in diabetic mice. In conclusion, our data provide the first evidence that the induction of HO-1 attenuated STZ-induced painful diabetic neuropathy and enhanced the antinociceptive effects of morphine via inhibition of microglia activation and NOS2 overexpression as well as by increasing the spinal cord levels of MOR. This study proposes the administration of CoPP alone or

  12. The SGLT2 inhibitor empagliflozin ameliorates early features of diabetic nephropathy in BTBR ob/ob type 2 diabetic mice with and without hypertension.

    PubMed

    Gembardt, Florian; Bartaun, Christoph; Jarzebska, Natalia; Mayoux, Eric; Todorov, Vladimir T; Hohenstein, Bernd; Hugo, Christian

    2014-08-01

    Diabetic nephropathy is the leading cause of end-stage renal disease in humans in the Western world. The recent development of Na+-glucose cotransporter 2 (SGLT2) inhibitors offers a new antidiabetic therapy via enhanced glucose excretion. Whether this strategy exerts beneficial effects on the development of type 2 diabetic nephropathy is still largely unclear. We investigated the effects of the specific SGLT2 inhibitor empagliflozin in BTBR.Cg-Lep/WiscJ (BTBR ob/ob) mice, which spontaneously develop type 2 diabetic nephropathy. In the first experiment, BTBR ob/ob mice received either a diet containing 300 ppm empagliflozin or equicaloric placebo chow for 12 wk. In the second experiment, BTBR ob/ob mice received 1 μg·kg body wt(-1)·day(-1) ANG II to induce arterial hypertension and were separated into the same two diet groups for 6 wk. In both experiments, empagliflozin treatment enhanced glucosuria, thereby lowering blood glucose. Independently of hypertension, empagliflozin reduced albuminuria in diabetic mice. However, empagliflozin treatment affected diabetes-related glomerular hypertrophy, markers of renal inflammation, and mesangial matrix expansion only in BTBR ob/ob mice without hypertension. In summary, empagliflozin demonstrated significant antihyperglycemic effects, differentially ameliorating early features of diabetic nephropathy in BTBR ob/ob mice with and without hypertension.

  13. Differentially expressed proteins in the pancreas of diet-induced diabetic mice.

    PubMed

    Qiu, Linghua; List, Edward O; Kopchick, John J

    2005-09-01

    The pancreas is a heterogeneous organ mixed with both exocrine and endocrine cells. The pancreas is involved in metabolic activities with the endocrine cells participating in the regulation of blood glucose, while the exocrine portion provides a compatible environment for the pancreatic islets and is responsible for secretion of digestive enzymes. The purpose of this study was to identify pancreatic proteins that are differentially expressed in normal mice and those with diet-induced type 2 diabetes (T2DM). In this study, C57BL/6J male mice fed a high fat diet became obese and developed T2DM. The pancreatic protein profiles were compared between control and diabetic mice using two-dimensional gel electrophoresis. Differentially expressed protein "spots" were identified by mass spectrometry. REG1 and REG2 proteins, which may be involved in the proliferation of pancreatic beta cells, were up-regulated very early in the progression of obese mice to T2DM. Glutathione peroxidase, which functions in the clearance of reactive oxidative species, was found to be down-regulated in the diabetic mice at later stages. The RNA levels encoding REG2 and glutathione peroxidase were compared by Northern blot analysis and were consistent to the changes in protein levels between diabetic and control mice. The up-regulation of REG1 and REG2 suggests the effort of the pancreas in trying to ameliorate the hyperglycemic condition by stimulating the proliferation of pancreatic beta cells and enhancing the subsequent insulin secretion. The down-regulation of glutathione peroxidase in pancreas could contribute to the progressive deterioration of beta cell function due to the hyperglycemia-induced oxidative stress. PMID:15961380

  14. Role of endothelial nitric oxide synthase in diabetic nephropathy: lessons from diabetic eNOS knockout mice.

    PubMed

    Takahashi, Takamune; Harris, Raymond C

    2014-01-01

    Diabetic nephropathy (DN) is the leading cause of end-stage renal disease in many countries. The animal models that recapitulate human DN undoubtedly facilitate our understanding of this disease and promote the development of new diagnostic markers and therapeutic interventions. Based on the clinical evidence showing the association of eNOS dysfunction with advanced DN, we and others have created diabetic mice that lack eNOS expression and shown that eNOS-deficient diabetic mice exhibit advanced nephropathic changes with distinct features of progressive DN, including pronounced albuminuria, nodular glomerulosclerosis, mesangiolysis, and arteriolar hyalinosis. These studies clearly defined a critical role of eNOS in DN and developed a robust animal model of this disease, which enables us to study the pathogenic mechanisms of progressive DN. Further, recent studies with this animal model have explored the novel mechanisms by which eNOS deficiency causes advanced DN and provided many new insights into the pathogenesis of DN. Therefore, here we summarize the findings obtained with this animal model and discuss the roles of eNOS in DN, unresolved issues, and future investigations of this animal model study. PMID:25371905

  15. Metabolic stress–induced activation of FoxO1 triggers diabetic cardiomyopathy in mice

    PubMed Central

    Battiprolu, Pavan K.; Hojayev, Berdymammet; Jiang, Nan; Wang, Zhao V.; Luo, Xiang; Iglewski, Myriam; Shelton, John M.; Gerard, Robert D.; Rothermel, Beverly A.; Gillette, Thomas G.; Lavandero, Sergio; Hill, Joseph A.

    2012-01-01

    The leading cause of death in diabetic patients is cardiovascular disease; diabetic cardiomyopathy is typified by alterations in cardiac morphology and function, independent of hypertension or coronary disease. However, the molecular mechanism that links diabetes to cardiomyopathy is incompletely understood. Insulin resistance is a hallmark feature of diabetes, and the FoxO family of transcription factors, which regulate cell size, viability, and metabolism, are established targets of insulin and growth factor signaling. Here, we set out to evaluate a possible role of FoxO proteins in diabetic cardiomyopathy. We found that FoxO proteins were persistently activated in cardiac tissue in mice with diabetes induced either genetically or by high-fat diet (HFD). FoxO activity was critically linked with development of cardiomyopathy: cardiomyocyte-specific deletion of FoxO1 rescued HFD-induced declines in cardiac function and preserved cardiomyocyte insulin responsiveness. FoxO1-depleted cells displayed a shift in their metabolic substrate usage, from free fatty acids to glucose, associated with decreased accumulation of lipids in the heart. Furthermore, we found that FoxO1-dependent downregulation of IRS1 resulted in blunted Akt signaling and insulin resistance. Together, these data suggest that activation of FoxO1 is an important mediator of diabetic cardiomyopathy and is a promising therapeutic target for the disease. PMID:22326951

  16. Effects of plasmid DNA injection on cyclophosphamide-accelerated diabetes in NOD mice.

    PubMed

    Filippova, M; Liu, J; Escher, A

    2001-03-01

    Type 1 diabetes results in most cases from the destruction of insulin-secreting beta cells by the immune system. Several immunization methods based on administration of autoantigenic polypeptides such as insulin and glutamic acid decarboxylase (GAD) have been used to prevent autoimmune diabetes in the non-obese diabetic (NOD) mouse. In the work presented here, a gene-based approach was taken for a similar purpose. A plasmid carrying different cDNAs was used to investigate the effects of injecting naked DNA on cyclophosphamide-accelerated diabetes in female NOD mice. Four-week-old animals received intramuscular injections of plasmid DNA encoding either intracellular GAD, a secreted form of GAD, or a secreted form of a soft coral luciferase. Monitoring of glycosuria and hyperglycemia indicated that injection of plasmid DNA encoding secreted GAD and secreted luciferase could prevent and delay diabetes, respectively. In contrast, injection of DNA encoding intracellular GAD did not suppress the disease significantly. Analysis of anti-GAD IgG(1) antibody titers in animal sera indicated that diabetes prevention after injection of GAD-encoding DNA was possibly associated with increased Th2-type activity. These results suggest that cellular localization of GAD is a factor to consider in the design of GAD-based genetic vaccines for the prevention of autoimmune diabetes.

  17. Changes in the Growth Hormone-IGF-I Axis in Non-obese Diabetic Mice

    PubMed Central

    Segev, Yael; Eshet, Rina; Flyvbjerg, Allan; Phillip, Moshe

    2000-01-01

    We investigated the changes in GH-IGF-I axis in non-obese diabetic (NOD)-mice, a model of insulin dependent diabetes mellitus. Diabetic female NOD mice and their age- and sex-matched controls were sacrificed at 4, 14, 21 and 30 days (30d DM) after the onset of glycosuria. Serum GH levels increased and serum IGF-I levels decreased in the 30d DM group (182 ± 32% and 45 ± 24% of age-matched controls respectively, p < 0.05). Another group (30d DM + I) was given SC insulin, and its serum IGF-I levels remained decreased. Liver GH receptor (GHR) and GH binding protein (GHBP) mRNA levels, as well as liver membrane GH binding assays were deeply decreased in the 30d DM group in comparison to controls. GHR message and binding capacity remained decreased in the 30d DM + I group. Renal GHR mRNA was decreased at 21d DM but not at 14d DM, whereas GHBP mRNA remained unchanged throughout the experiment. In conclusion, increased serum GH levels are documented in NOD diabetic mice, similarly to the changes described in humans. The decrease in GHR levels and decreased serum IGF-I in spite of increased circulating GH suggest a state of GH resistance. PMID:11469393

  18. Knockout Mice Challenge our Concepts of Glucose Homeostasis and the Pathogenesis of Diabetes

    PubMed Central

    2003-01-01

    A central component of type 2 diabetes and the metabolic syndrome is insulin resistance. Insulin exerts a multifaceted and highly integrated series of actions via its intracellular signaling systems. Generation of mice carrying null mutations of the genes encoding proteins in the insulin signaling pathway provides a unique approach to determining the role of individual proteins in the molecular mechanism of insulin action and the pathogenesis of insulin resistance and diabetes. The role of the four major insulin receptor substrates (IRS1-4) in insulin and IGF-1 signaling have been examined by creating mice with targeted gene knockouts. Each produces a unique phenotype, indicating the complementary role of these signaling components. Combined heterozygous defects often produce synergistic or epistatic effects, although the final severity of the phenotype depends on the genetic background of the mice. Conditional knockouts of the insulin receptor have also been created using the Cre-lox system. These tissue specific knockouts have provide unique insights into the control of glucose homeostasis and the pathogenesis of type 2 diabetes, and have led to development of new hypotheses about the nature of the insulin action and development of diabetes. PMID:15061645

  19. Protease-activated receptor-1 deficiency protects against streptozotocin-induced diabetic nephropathy in mice.

    PubMed

    Waasdorp, Maaike; Duitman, JanWillem; Florquin, Sandrine; Spek, C Arnold

    2016-01-01

    Endogenously administered activated protein C ameliorates diabetic nephropathy (DN) in a protease-activated receptor-1 (PAR-1)-dependent manner, suggesting that PAR-1 activation limits the progression of DN. Activation of PAR-1 in fibroblast-like cells, however, induces proliferation and extracellular matrix production, thereby driving fibrotic disease. Considering the key role of mesangial proliferation and extracellular matrix production during DN, PAR-1 may in fact potentiate diabetes-induced kidney injury. To determine the net effect of PAR-1 in DN, streptozotocin-induced DN was studied in wild type and PAR-1 deficient mice. Subsequent mechanistic insight was obtained by assessing profibrotic responses of mesangial and tubular epithelial cells in vitro, following PAR-1 stimulation and inhibition. Despite having similar glucose levels, PAR-1 deficient mice developed less kidney damage after induction of diabetes, as evidenced by diminished proteinuria, plasma cystatin C levels, expansion of the mesangial area, and tubular atrophy. In vitro, PAR-1 signaling in mesangial cells led to increased proliferation and expression of matrix proteins fibronectin and collagen IV. Conversely, a reduction in both proliferation and fibronectin deposition was observed in diabetic PAR-1 deficient mice. Overall, we show that PAR-1 plays an important role in the development of DN and PAR-1 might therefore be an attractive therapeutic target to pursue in DN. PMID:27618774

  20. Protease-activated receptor-1 deficiency protects against streptozotocin-induced diabetic nephropathy in mice

    PubMed Central

    Waasdorp, Maaike; Duitman, JanWillem; Florquin, Sandrine; Spek, C. Arnold

    2016-01-01

    Endogenously administered activated protein C ameliorates diabetic nephropathy (DN) in a protease-activated receptor-1 (PAR-1)-dependent manner, suggesting that PAR-1 activation limits the progression of DN. Activation of PAR-1 in fibroblast-like cells, however, induces proliferation and extracellular matrix production, thereby driving fibrotic disease. Considering the key role of mesangial proliferation and extracellular matrix production during DN, PAR-1 may in fact potentiate diabetes-induced kidney injury. To determine the net effect of PAR-1 in DN, streptozotocin-induced DN was studied in wild type and PAR-1 deficient mice. Subsequent mechanistic insight was obtained by assessing profibrotic responses of mesangial and tubular epithelial cells in vitro, following PAR-1 stimulation and inhibition. Despite having similar glucose levels, PAR-1 deficient mice developed less kidney damage after induction of diabetes, as evidenced by diminished proteinuria, plasma cystatin C levels, expansion of the mesangial area, and tubular atrophy. In vitro, PAR-1 signaling in mesangial cells led to increased proliferation and expression of matrix proteins fibronectin and collagen IV. Conversely, a reduction in both proliferation and fibronectin deposition was observed in diabetic PAR-1 deficient mice. Overall, we show that PAR-1 plays an important role in the development of DN and PAR-1 might therefore be an attractive therapeutic target to pursue in DN. PMID:27618774

  1. Abnormal essential fatty acid composition of tissue lipids in genetically diabetic mice is partially corrected by dietary linoleic and gamma-linolenic acids.

    PubMed

    Cunnane, S C; Manku, M S; Horrobin, D F

    1985-05-01

    Genetically diabetic mice (db/db) and their non-diabetic litter-mates were maintained for 15 weeks on diets supplemented with safflower oil or evening primrose (Oenothera bienis) oil, both essential fatty acid (EFA)-rich sources, or hydrogenated coconut oil (devoid of EFA). Plasma glucose was higher in the diabetic mice supplemented with the oils than in the unsupplemented diabetic mice. In the oil-supplemented non-diabetic mice, plasma glucose did not differ compared with the unsupplemented non-diabetic mice. The proportional content of arachidonic acid in the phospholipids of the pancreas was significantly decreased in diabetic mice, an effect which was completely prevented by supplementation with safflower or evening primrose oil but not hydrogenated coconut oil. In the liver phospholipids of the diabetic mice, dihomo-gamma-linolenic acid was proportionally increased, an effect reduced by supplementation with safflower oil but not evening primrose or hydrogenated coconut oils. In the liver triglycerides of the diabetic mice, gamma-linolenic acid, dihomo-gamma-linolenic acid and arachidonic acid were all proportionally decreased, effects which were also prevented by safflower or evening primrose oil but not hydrogenated coconut oil. Alopecia and dry scaly skin were prominent in the diabetic mice but less extensive in the diabetic mice supplemented with EFA.

  2. Hypoglycemic activities of lyophilized powder of Gynura divaricata by improving antioxidant potential and insulin signaling in type 2 diabetic mice

    PubMed Central

    Xu, Bing-Qing; Yang, Ping; Zhang, Yu-Qing

    2015-01-01

    Background Diabetes mellitus is a serious disease affecting about 5% of people worldwide. Although several studies have indicated hypoglycemic activities of Gynura divaricata (GD), the mechanisms by which GD improves the symptoms of diabetes remain unclear. Objective The aim of this study was to investigate the potential hypoglycemic effects of GD. Design The leaves and stems of GD were prepared and lyophilized into a powder, which was added to the diet of mice with type 2 diabetes induced by a high-fat diet in combination with streptozotocin for 4 weeks. During this period, fasting blood glucose (FBG) levels and body weight of mice were measured. In addition, at the end of the experiment, a series of assays was performed. Results GD administration effectively alleviates insulin resistance and induces a decrease in FBG by 59.54% in 1.2% (L) GD-treated diabetic group and 56.13% in 4.8% (H) GD-treated diabetic group after 4 weeks, respectively, relative to diabetic model mice. The antioxidant capacity was improved by increasing the activities of glutathione peroxidase (GSH-Px) and total superoxide dismutase (T-SOD) by 64.87% and 53.42% in treatment group H, compared to diabetic model mice, while GD treatment induced a significant decrease in malondialdehyde (MDA) level by 50% in treatment group L, compared to the level in diabetic model mice. Furthermore, glucose metabolism was ameliorated by the increased glycogen synthesis in the livers of diabetic mice. In addition, we also demonstrated that the messenger RNA (mRNA) and protein expression levels of AKT, PI3K and PDK-1, which are involved in insulin signaling, were significantly increased. Conclusions Oral administration of the GD-lyophilized powder has been effectively hypoglycemic, which is done by activating insulin signaling and improving antioxidant capacity in mice with type 2 diabetes. PMID:26715102

  3. Altered parasympathetic nervous system regulation of the sinoatrial node in Akita diabetic mice.

    PubMed

    Krishnaswamy, Pooja S; Egom, Emmanuel E; Moghtadaei, Motahareh; Jansen, Hailey J; Azer, John; Bogachev, Oleg; Mackasey, Martin; Robbins, Courtney; Rose, Robert A

    2015-05-01

    Cardiovascular autonomic neuropathy (CAN) is a serious complication of diabetes mellitus that impairs autonomic regulation of heart rate (HR). This has been attributed to damage to the nerves that modulate spontaneous pacemaker activity in the sinoatrial node (SAN). Our objective was to test the hypothesis that impaired parasympathetic regulation of HR in diabetes is due to reduced responsiveness of the SAN to parasympathetic agonists. We used the Akita mouse model of type 1 diabetes to study the effects of the parasympathetic agonist carbachol (CCh) on SAN function using intracardiac programmed stimulation, high resolution optical mapping and patch-clamping of SAN myocytes. CCh decreased HR by 30% and increased corrected SAN recovery time (cSNRT) by 123% in wildtype mice. In contrast, CCh only decreased HR by 12%, and only increased cSNRT by 37% in Akita mice. These alterations were due to smaller effects of CCh on SAN electrical conduction and spontaneous action potential firing in isolated SAN myocytes. Voltage clamp experiments demonstrate that the acetylcholine-activated K(+) current (IKACh) is reduced in Akita SAN myocytes due to enhanced desensitization and faster deactivation kinetics. These IKACh alterations were normalized by treating Akita SAN myocytes with PI(3,4,5)P3 or an inhibitor of regulator of G-protein signaling 4 (RGS4). There was no difference in the effects of CCh on the hyperpolarization-activated current (If) between wildtype and Akita mice. Our study demonstrates that Akita diabetic mice demonstrate impaired parasympathetic regulation of HR and SAN function due to reduced responses of the SAN to parasympathetic agonists. Our experiments demonstrate a key role for insulin-dependent phosphoinositide 3-kinase (PI3K) signaling in the parasympathetic dysfunction seen in the SAN in diabetes. PMID:25754673

  4. Methadone ameliorates multiple-low-dose streptozotocin-induced type 1 diabetes in mice

    SciTech Connect

    Amirshahrokhi, K.; Dehpour, A.R.; Hadjati, J.; Sotoudeh, M.; Ghazi-Khansari, M.

    2008-10-01

    Type 1 diabetes is an autoimmune disease characterized by inflammation of pancreatic islets and destruction of {beta} cells by the immune system. Opioids have been shown to modulate a number of immune functions, including T helper 1 (Th1) and T helper 2 (Th2) cytokines. The immunosuppressive effect of long-term administration of opioids has been demonstrated both in animal models and humans. The aim of this study was to determine the effect of methadone, a {mu}-opioid receptor agonist, on type 1 diabetes. Administration of multiple low doses of streptozotocin (STZ) (MLDS) (40mg/kg intraperitoneally for 5 consecutive days) to mice resulted in autoimmune diabetes. Mice were treated with methadone (10mg/kg/day subcutaneously) for 24days. Blood glucose, insulin and pancreatic cytokine levels were measured. Chronic methadone treatment significantly reduced hyperglycemia and incidence of diabetes, and restored pancreatic insulin secretion in the MLDS model. The protective effect of methadone can be overcome by pretreatment with naltrexone, an opioid receptor antagonist. Also, methadone treatment decreased the proinflammatory Th1 cytokines [interleukin (IL)-1{beta}, tumor necrosis factor-{alpha} and interferon-{gamma}] and increased anti-inflammatory Th2 cytokines (IL-4 and IL-10). Histopathological observations indicated that STZ-mediated destruction of {beta} cells was attenuated by methadone treatment. It seems that methadone as an opioid agonist may have a protective effect against destruction of {beta} cells and insulitis in the MLDS model of type 1 diabetes.

  5. Additional deleterious effects of alcohol consumption on sperm parameters and DNA integrity in diabetic mice.

    PubMed

    Pourentezari, M; Talebi, A R; Mangoli, E; Anvari, M; Rahimipour, M

    2016-06-01

    The aim of this study was to survey the impact of alcohol consumption on sperm parameters and DNA integrity in experimentally induced diabetic mice. A total of 32 adult male mice were divided into four groups: mice of group 1 served as control fed on basal diet, group 2 received streptozotocin (STZ) (200 mg kg(-1) , single dose, intraperitoneal) and basal diet, group 3 received alcohol (10 mg kg(-1) , water soluble) and basal diet, and group 4 received STZ and alcohol for 35 days. The cauda epididymidis of each mouse was dissected and placed in 1 ml of pre-warm Ham's F10 culture medium for 30 min. The swim-out spermatozoa were analysed for count, motility, morphology and viability. Sperm chromatin quality was evaluated with aniline blue, toluidine blue, acridine orange and chromomycin A3 staining. The results showed that all sperm parameters had significant differences (P < 0.05), also when sperm chromatin was assessed with cytochemical tests. There were significant differences (P < 0.001) between the groups. According to our results, alcohol and diabetes can cause abnormalities in sperm parameters and chromatin quality. In addition, alcohol consumption in diabetic mice can intensify sperm chromatin/DNA damage. PMID:26358836

  6. Antihyperglycemic effects of Platycodon grandiflorum (Jacq.) A. DC. extract on streptozotocin-induced diabetic mice.

    PubMed

    Zheng, Jie; He, Jiguo; Ji, Baoping; Li, Ye; Zhang, Xiaofeng

    2007-03-01

    The root of Platycodon grandiflorum (Jacq.) A. DC has been reported to have a wide range of health benefits in oriental food. This study examined the hypoglycemic effects of Platycodon grandiflorum (Jacq.) A. DC aqueous-ethanol extract (PGE) in streptozotocin (STZ) -induced diabetic ICR mice (STZ diabetic mice) for the first time. The effects of PGE on blood glucose, plasma insulin levels and body weight were investigated. A significant decrease in blood glucose levels was observed after single administration of PGE. Furthermore, Glibenclamide and PGE significantly suppressed the rise in blood glucose after 30 min in the acute glucose tolerance test. Treatment with glibenclamide and PGE resulted in a reduction in blood glucose levels from the 2nd week, and this reduction was maintained until the 4th week of treatment. The body weight changed slightly in glibenclamide and PGE treated mice in comparison with the STZ control group. Plasma insulin levels were increased with glibenclamide treatment in STZ diabetic mice, whereas such effect was not observed with PGE. These results indicated that PGE could induce hypoglycemic effects without stimulating insulin secretion. PMID:17226070

  7. Impaired musculoskeletal response to age and exercise in PPARβ(-/-) diabetic mice.

    PubMed

    Fu, He; Desvergne, Beatrice; Ferrari, Serge; Bonnet, Nicolas

    2014-12-01

    Fragility fractures are recognized complication of diabetes, but yet the underlying mechanisms remain poorly understood. This is particularly pronounced in type 2 diabetes in which the propensity to fall is increased but bone mass is not necessarily low. Thus, whether factors implicated in the development of insulin resistance and diabetes directly impact on the musculoskeletal system remains to be investigated. PPARβ(-/-) mice have reduced metabolic activity and are glucose intolerant. We examined changes in bone and muscle in PPARβ(-/-) mice and investigated both the mechanism behind those changes with age as well as their response to exercise. Compared with their wild type, PPARβ(-/-) mice had an accelerated and parallel decline in both muscle and bone strength with age. These changes were accompanied by increased myostatin expression, low bone formation, and increased resorption. In addition, mesenchymal cells from PPARβ(-/-) had a reduced proliferation capacity and appeared to differentiate into more of an adipogenic phenotype. Concomitantly we observed an increased expression of PPARγ, characteristic of adipocytes. The anabolic responses of muscle and bone to exercise were also diminished in PPARβ(-/-) mice. The periosteal bone formation response to direct bone compression was, however, maintained, indicating that PPARβ controls periosteal bone formation through muscle contraction and/or metabolism. Taken together, these data indicate that PPARβ deficiency leads to glucose intolerance, decreased muscle function, and reduced bone strength. On a molecular level, PPARβ appears to regulate myostatin and PPARγ expression in muscle and bone, thereby providing potential new targets to reverse bone fragility in patients with metabolic disturbances.

  8. The PKD Inhibitor CID755673 Enhances Cardiac Function in Diabetic db/db Mice

    PubMed Central

    Venardos, Kylie; De Jong, Kirstie A.; Elkamie, Mansour; Connor, Timothy; McGee, Sean L.

    2015-01-01

    The development of diabetic cardiomyopathy is a key contributor to heart failure and mortality in obesity and type 2 diabetes (T2D). Current therapeutic interventions for T2D have limited impact on the development of diabetic cardiomyopathy. Clearly, new therapies are urgently needed. A potential therapeutic target is protein kinase D (PKD), which is activated by metabolic insults and implicated in the regulation of cardiac metabolism, contractility and hypertrophy. We therefore hypothesised that PKD inhibition would enhance cardiac function in T2D mice. We first validated the obese and T2D db/db mouse as a model of early stage diabetic cardiomyopathy, which was characterised by both diastolic and systolic dysfunction, without overt alterations in left ventricular morphology. These functional characteristics were also associated with increased PKD2 phosphorylation in the fed state and a gene expression signature characteristic of PKD activation. Acute administration of the PKD inhibitor CID755673 to normal mice reduced both PKD1 and 2 phosphorylation in a time and dose-dependent manner. Chronic CID755673 administration to T2D db/db mice for two weeks reduced expression of the gene expression signature of PKD activation, enhanced indices of both diastolic and systolic left ventricular function and was associated with reduced heart weight. These alterations in cardiac function were independent of changes in glucose homeostasis, insulin action and body composition. These findings suggest that PKD inhibition could be an effective strategy to enhance heart function in obese and diabetic patients and provide an impetus for further mechanistic investigations into the role of PKD in diabetic cardiomyopathy. PMID:25798941

  9. Exenatide suppresses 1,2-dimethylhydrazine-induced colon cancer in diabetic mice: Effect on tumor angiogenesis and cell proliferation.

    PubMed

    Tawfik, Mona K; Mohamed, Magda I

    2016-08-01

    Colon cancer is the third leading cause of cancer mortality worldwide, which results from interactions of different factors. It is frequently a pathological consequence of persistent inflammation. Diabetes affects several cancers and is positively correlated with the incidence of colon cancer. This study aimed to study the effect of exenatide in ameliorating inflammation, angiogenesis and cell proliferation in 1,2-dimethyl hydrazine (DMH) induced colorectal carcinoma in diabetic mice. Mice were randomly allocated into six groups, 8 mice each. Group 1: vehicle control group. Group 2: diabetic control group. Group 3: DMH control group: diabetic mice treated with DMH (20mg/kg/week,s.c.) for 15 week. Group 4: DMH-cisplatin group: mice received cisplatin (4mg/kg/week, i.p.). Groups 5 & 6: DMH-exenatide (10 and 20μg/kg) group: mice received exenatide (10 or 20μg/kg/day,s.c.), respectively. The present results highlighted an increase in angiogenic markers and cell proliferation in the DMH-diabetic group in comparison with the control group with greater expression of endothelial marker (CD34) and Ki-67 in colon tissue. Monotherapy with cisplatin or exenatide (10 and 20μg/kg) downregulated these markers to different extents. The current results provided evidence that exenatide represents a promising chemopreventive effect against DMH-induced colon carcinogenesis in diabetic mice, at least in part, attributed to its anti-angiogenic and anti-proliferative mechanisms.

  10. HEMATOLOGICAL AND IMMUNOBIOCHEMICAL STUDY OF GREEN TEA AND GINGER EXTRACTS IN EXPERIMENTALLY INDUCED DIABETIC RABBITS.

    PubMed

    Elkirdasy, Ahmed; Shousha, Saad; Alrohaimi, Abdulmohsen H; Arshad, M Faiz

    2015-01-01

    The present study was designed to investigate the effects of the extract of green tea and/or ginger on some hematological and immunobiochemical profiles in alloxan-induced diabetic rabbits. The results revealed that treatment of diabetic animals with extract of green tea and/or ginger elevated the decreased HDL-c and LDL-c but significantly decreased triglycerides, the elevated glucose and GOT concentrations. The result also displayed a non-significant increase in the levels of CRP and fibrinogen. The experiment also revealed that the elevated MDA and GSH level fell down to the normal control group. The result also showed that after green tea and/or ginger extract treatment, the lowered RBC, WBC counts, PCV, percentage of neutrophils were increased and the elevated MCV, MCH, and MCHC of diabetic rabbits were decreased to normal levels. Thus, the overall results may indicate that green tea and/or ginger extracts have a significant hypoglycemic effect in diabetic rabbits. In addition, the extracts may be capable of improving hyperlipidemia, the impaired kidney function and hemogram in alloxan-induced diabetic rabbits.

  11. Maintenance of Normoglycemia in Diabetic Mice by Subcutaneous Xenografts of Encapsulated Islets

    NASA Astrophysics Data System (ADS)

    Lacy, Paul E.; Hegre, Orion D.; Gerasimidi-Vazeou, Andriani; Gentile, Frank T.; Dionne, Keith E.

    1991-12-01

    The goal of islet transplantation in human diabetes is to maintain the islet grafts in the recipients without the use of immunosuppression. One approach is to encapsulate the donor islets in permselective membranes. Hollow fibers fabricated from an acrylic copolymer were used to encapsulate small numbers of rat islets that were immobilized in an alginate hydrogel for transplantation in diabetic mice. The fibers were biocompatible, prevented rejection, and maintained normoglycemia when transplanted intraperitoneally; hyperglycemia returned when the fibers were removed at 60 days. Normoglycemia was also maintained by subcutaneous implants that had an appropriately constructed outer surface on the fibers.

  12. Improvement of diabetes, obesity and hypertension in type 2 diabetic KKA{sup y} mice by bis(allixinato)oxovanadium(IV) complex

    SciTech Connect

    Adachi, Yusuke; Yoshikawa, Yutaka; Yoshida, Jiro; Kodera, Yukihiro . E-mail: kodera_y@wakunaga.co.jp; Katoh, Akira . E-mail: katoh@st.seikei.ac.jp; Takada, Jitsuya . E-mail: takada@hl.rri.kyoto-u.ac.jp; Sakurai, Hiromu . E-mail: sakurai@mb.kyoto-phu.ac.jp

    2006-07-07

    Previously, we found that bis(allixinato)oxovanadium(IV) (VO(alx){sub 2}) exhibits a potent hypoglycemic activity in type 1-like diabetic mice. Since the enhancement of insulin sensitivity is involved in one of the mechanisms by which vanadium exerts its anti-diabetic effects, VO(alx){sub 2} was further tested in type 2 diabetes with low insulin sensitivity. The effect of oral administration of VO(alx){sub 2} was examined in obesity-linked type 2 diabetic KKA{sup y} mice. Treatment of VO(alx){sub 2} for 4 weeks normalized hyperglycemia, glucose intolerance, hyperinsulinemia, hypercholesterolemia and hypertension in KKA{sup y} mice; however, it had no effect on hypoadiponectinemia. VO(alx){sub 2} also improved hyperleptinemia, following attenuation of obesity in KKA{sup y} mice. This is the first example in which a vanadium compound improved leptin resistance in type 2 diabetes by oral administration. On the basis of these results, VO(alx){sub 2} is proposed to enhance not only insulin sensitivity but also leptin sensitivity, which in turn improves diabetes, obesity and hypertension in an obesity-linked type 2 diabetic animal.

  13. Proregenerative Microenvironment Triggered by Donor Mesenchymal Stem Cells Preserves Renal Function and Structure in Mice with Severe Diabetes Mellitus

    PubMed Central

    Ezquer, Fernando; Giraud-Billoud, Maximiliano; Carpio, Daniel; Cabezas, Fabián; Conget, Paulette; Ezquer, Marcelo

    2015-01-01

    The aim of our work was to evaluate, in an animal model of severe diabetes mellitus, the effect of mesenchymal stem cells (MSCs) administration on diabetic nephropathy (DN) progression. After diabetes induction, one group of mice received the vehicle (DM) and other group received a single dose of MSCs (DM + MSCs). DM + MSCs mice showed a significant improvement in functional parameters of the kidney compared with untreated mice. While DM mice presented marked histopathological changes characteristics of advanced stages of DN (fibrosis, glomerulosclerosis, glomerular basement membrane thickening, capillary occlusion, decreased podocyte density, and effacement of foot processes), DM + MSCs mice showed only slight tubular dilatation. The renoprotection was not associated with an improvement in diabetic condition and very low number of donor cells was found in the kidney of DM + MSCs mice, suggesting that renoprotection could be mediated by paracrine effects. Indeed, DM + MSC mice presented increased renal proliferation index, decreased renal apoptotic index and the restoration of proregenerative factors, and anti-inflammatory cytokines levels. Moreover, macrophage infiltration and oxidative stress damage were also reduced in DM + MSCs mice. Our data demonstrate that MSC administration triggers a proregenerative microenvironment in DN kidney, which allows the preservation of the renal function even if diabetes was uncorrected. PMID:26167475

  14. Proregenerative Microenvironment Triggered by Donor Mesenchymal Stem Cells Preserves Renal Function and Structure in Mice with Severe Diabetes Mellitus.

    PubMed

    Ezquer, Fernando; Giraud-Billoud, Maximiliano; Carpio, Daniel; Cabezas, Fabián; Conget, Paulette; Ezquer, Marcelo

    2015-01-01

    The aim of our work was to evaluate, in an animal model of severe diabetes mellitus, the effect of mesenchymal stem cells (MSCs) administration on diabetic nephropathy (DN) progression. After diabetes induction, one group of mice received the vehicle (DM) and other group received a single dose of MSCs (DM + MSCs). DM + MSCs mice showed a significant improvement in functional parameters of the kidney compared with untreated mice. While DM mice presented marked histopathological changes characteristics of advanced stages of DN (fibrosis, glomerulosclerosis, glomerular basement membrane thickening, capillary occlusion, decreased podocyte density, and effacement of foot processes), DM + MSCs mice showed only slight tubular dilatation. The renoprotection was not associated with an improvement in diabetic condition and very low number of donor cells was found in the kidney of DM + MSCs mice, suggesting that renoprotection could be mediated by paracrine effects. Indeed, DM + MSC mice presented increased renal proliferation index, decreased renal apoptotic index and the restoration of proregenerative factors, and anti-inflammatory cytokines levels. Moreover, macrophage infiltration and oxidative stress damage were also reduced in DM + MSCs mice. Our data demonstrate that MSC administration triggers a proregenerative microenvironment in DN kidney, which allows the preservation of the renal function even if diabetes was uncorrected.

  15. Neurotensin-loaded collagen dressings reduce inflammation and improve wound healing in diabetic mice.

    PubMed

    Moura, Liane I F; Dias, Ana M A; Suesca, Edward; Casadiegos, Sergio; Leal, Ermelindo C; Fontanilla, Marta R; Carvalho, Lina; de Sousa, Hermínio C; Carvalho, Eugénia

    2014-01-01

    Impaired wound healing is an important clinical problem in diabetes mellitus and results in failure to completely heal diabetic foot ulcers (DFUs), which may lead to lower extremity amputations. In the present study, collagen based dressings were prepared to be applied as support for the delivery of neurotensin (NT), a neuropeptide that acts as an inflammatory modulator in wound healing. The performance of NT alone and NT-loaded collagen matrices to treat wounds in streptozotocin (STZ) diabetic induced mice was evaluated. Results showed that the prepared dressings were not-cytotoxic up to 72h after contact with macrophages (Raw 264.7) and human keratinocyte (HaCaT) cell lines. Moreover, those cells were shown to adhere to the collagen matrices without noticeable change in their morphology. NT-loaded collagen dressings induced faster healing (17% wound area reduction) in the early phases of wound healing in diabetic wounded mice. In addition, they also significantly reduced inflammatory cytokine expression namely, TNF-α (p<0.01) and IL-1β (p<0.01) and decreased the inflammatory infiltrate at day 3 post-wounding (inflammatory phase). After complete healing, metalloproteinase 9 (MMP-9) is reduced in diabetic skin (p<0.05) which significantly increased fibroblast migration and collagen (collagen type I, alpha 2 (COL1A2) and collagen type III, alpha 1 (COL3A1)) expression and deposition. These results suggest that collagen-based dressings can be an effective support for NT release into diabetic wound enhancing the healing process. Nevertheless, a more prominent scar is observed in diabetic wounds treated with collagen when compared to the treatment with NT alone. PMID:24161538

  16. Glycemic control with insulin prevents progression of dental caries and caries-related periodontitis in diabetic WBN/KobSlc rats.

    PubMed

    Nakahara, Yutaka; Sano, Tomoya; Kodama, Yasushi; Ozaki, Kiyokazu; Matsuura, Tetsuro

    2013-07-01

    We have previously reported that dental caries progress in spontaneously and chemically induced diabetic rodent models. The aim of this study was to clarify the relationship between hyperglycemia and dental caries by evaluating the preventive effect of glycemic control with insulin on the progression of the lesions in diabetic rats. Male WBN/KobSlc rats aged 15 weeks were divided into groups of spontaneously diabetic rats (intact group), spontaneously diabetic rats with insulin treatment (INS group), alloxan-induced prolonged diabetic rats (AL group), and alloxan-induced prolonged diabetic rats with insulin treatment (AL + INS group). The animals were killed at 90 weeks of age, and their oral tissue was examined. Dental caries and periodontitis were frequently detected in the intact group, and the lesions were enhanced in the AL group (in which there was an increased duration of diabetes). Meanwhile, glycemic control with insulin reduced the incidence and severity of dental caries and periodontitis in the INS group, and the effects became more pronounced in the AL + INS group. In conclusion, glycemic control by insulin prevented the progression of dental caries and caries-related periodontitis in the diabetic rats.

  17. Association of Bactericidal Dysfunction of Paneth Cells in Streptozocin-Induced Diabetic Mice with Insulin Deficiency.

    PubMed

    Yu, Tao; Yang, Hong-Sheng; Lu, Xi-Ji; Xia, Zhong-Sheng; Ouyang, Hui; Shan, Ti-Dong; Huang, Can-Ze; Chen, Qi-Kui

    2016-01-01

    BACKGROUND Type 1 diabetes mellitus (T1DM) is associated with increased risks of enteric infection. Paneth cells constitute the first line of the gut defense. Little is known about the impact of T1DM on the bactericidal function of intestinal Paneth cells. MATERIAL AND METHODS A T1DM mouse model was induced by intraperitoneal injection of streptozocin. The analysis of intestinal microbiota and the mucosal bactericidal assay were conducted to evaluate intestinal innate defense. Numbers of Paneth cells and their expression of related antimicrobial peptides were analyzed. Expression of total insulin receptor (IR) mRNA and relative levels of IR-A/IR-B were analyzed. The primary mouse small intestinal crypt culture was used to analyze the effect of insulin and glucose on the expression of related antimicrobial peptides of Paneth cells. RESULTS In T1DM mice, bacterial loads were increased and there was an alteration in the composition of the intestinal microflora. Exogenous bacteria had better survival in the small bowel of the T1DM mice. The expression of Paneth cell-derived antimicrobial peptides was significantly decreased in the T1DM mice, although the number of Paneth cells was increased. Relative levels of IR-A/IR-B in Paneth cells of diabetic mice were elevated, but the total IR mRNA did not change. Insulin treatment restored the expression of antimicrobial peptides and normalized the microbiota in the gut of T1DM mice. Subsequently, in vitro culture assay demonstrated that insulin rather than glucose was essential for the optimal expression of Paneth cell-derived antimicrobial peptides. CONCLUSIONS The bactericidal function of intestinal Paneth cells was impaired in STZ-induced diabetic mice, resulting in the altered intestinal flora, and insulin was essential for the optimal expression of Paneth cell-derived antimicrobial peptides. PMID:27572949

  18. Association of Bactericidal Dysfunction of Paneth Cells in Streptozocin-Induced Diabetic Mice with Insulin Deficiency

    PubMed Central

    Yu, Tao; Yang, Hong-Sheng; Lu, Xi-Ji; Xia, Zhong-Sheng; Ouyang, Hui; Shan, Ti-Dong; Huang, Can-Ze; Chen, Qi-Kui

    2016-01-01

    Background Type 1 diabetes mellitus (T1DM) is associated with increased risks of enteric infection. Paneth cells constitute the first line of the gut defense. Little is known about the impact of T1DM on the bactericidal function of intestinal Paneth cells. Material/Methods A T1DM mouse model was induced by intraperitoneal injection of streptozocin. The analysis of intestinal microbiota and the mucosal bactericidal assay were conducted to evaluate intestinal innate defense. Numbers of Paneth cells and their expression of related antimicrobial peptides were analyzed. Expression of total insulin receptor (IR) mRNA and relative levels of IR-A/IR-B were analyzed. The primary mouse small intestinal crypt culture was used to analyze the effect of insulin and glucose on the expression of related antimicrobial peptides of Paneth cells. Results In T1DM mice, bacterial loads were increased and there was an alteration in the composition of the intestinal microflora. Exogenous bacteria had better survival in the small bowel of the T1DM mice. The expression of Paneth cell-derived antimicrobial peptides was significantly decreased in the T1DM mice, although the number of Paneth cells was increased. Relative levels of IR-A/IR-B in Paneth cells of diabetic mice were elevated, but the total IR mRNA did not change. Insulin treatment restored the expression of antimicrobial peptides and normalized the microbiota in the gut of T1DM mice. Subsequently, in vitro culture assay demonstrated that insulin rather than glucose was essential for the optimal expression of Paneth cell-derived antimicrobial peptides. Conclusions The bactericidal function of intestinal Paneth cells was impaired in STZ-induced diabetic mice, resulting in the altered intestinal flora, and insulin was essential for the optimal expression of Paneth cell-derived antimicrobial peptides. PMID:27572949

  19. Long-term low carbohydrate diet leads to deleterious metabolic manifestations in diabetic mice.

    PubMed

    Handa, Keiko; Inukai, Kouichi; Onuma, Hirohisa; Kudo, Akihiko; Nakagawa, Fumiyuki; Tsugawa, Kazue; Kitahara, Atsuko; Moriya, Rie; Takahashi, Kazuto; Sumitani, Yoshikazu; Hosaka, Toshio; Kawakami, Hayato; Oyadomari, Seiichi; Ishida, Hitoshi

    2014-01-01

    We investigated long-term effects of low carbohydrate diets on wild type mice, streptozotocin-injected and KKAy obese diabetic mice. These mice were pair-fed three different types of diets, standard chow (SC, C∶P∶F = 63∶15∶22), a low carbohydrate (LC, C∶P∶F = 38∶25∶37) diet and a severely carbohydrate restricted (SR, C∶P∶F = 18∶45∶37) diet for 16 weeks. Despite comparable body weights and serum lipid profiles, wild type and diabetic mice fed the low carbohydrate diets exhibited lower insulin sensitivity and this reduction was dependent on the amount of carbohydrate in the diet. When serum fatty acid compositions were investigated, monounsaturation capacity, i.e. C16:1/C16:0 and C18:1/C18:0, was impaired in all murine models fed the low carbohydrate diets, consistent with the decreased expression of hepatic stearoyl-CoA desaturase-1 (SCD1). Interestingly, both the hepatic expressions and serum levels of fibroblast growth factor 21 (FGF21), which might be related to longevity, were markedly decreased in both wild type and KKAy mice fed the SR diet. Taking into consideration that fat compositions did not differ between the LC and SR diets, we conclude that low carbohydrate diets have deleterious metabolic effects in both wild type and diabetic mice, which may explain the association between diets relatively low in carbohydrate and the elevated risk of cardiovascular events observed in clinical studies.

  20. Diabetes

    MedlinePlus

    ... version of this page please turn Javascript on. Diabetes What is Diabetes? Too Much Glucose in the Blood Diabetes means ... high, causing pre-diabetes or diabetes. Types of Diabetes There are three main kinds of diabetes: type ...

  1. Antidiabetic effects of ajoene in genetically diabetic KK-A(y) mice.

    PubMed

    Hattori, Atsuhiko; Yamada, Norihiko; Nishikawa, Tomoaki; Fukuda, Hiroyuki; Fujino, Tsuchiyoshi

    2005-10-01

    Antidiabetic effects of ajoene, derived from garlic, were investigated in genetically diabetic KK-A(y) mice. Four-week-old male KK-A(y) mice were kept on a laboratory diet containing 0.02 or 0.05% of ajoene for 8 wk. The elevation of water intake was suppressed depending on ajoene intake. The levels of plasma glucose in the 0.05% ajoene-containing diet group was significantly suppressed to 73.8% compared with the control group at the 8th wk. Similarly, the plasma triglyceride level was significantly suppressed. It is suggested that hyperglycemia and hypertriglyceridemia are suppressed by ajoene treatment.

  2. Differential anti-diabetic effects and mechanism of action of charantin-rich extract of Taiwanese Momordica charantia between type 1 and type 2 diabetic mice.

    PubMed

    Wang, Hsien-Yi; Kan, Wei-Chih; Cheng, Tain-Junn; Yu, Sung-Hsun; Chang, Liang-Hao; Chuu, Jiunn-Jye

    2014-07-01

    Momordica charantia Linn. (Cucurbitaceae), also called bitter melon, has traditionally been used as a natural anti-diabetic agent for anti-hyperglycemic activity in several animal models and clinical trials. We investigated the differences in the anti-diabetic properties and mechanism of action of Taiwanese M. charantia (MC) between type 1 diabetic (T1D) and type 2 diabetic (T2D) mice. To clarify the beneficial effects of MC, we measured non-fasting glucose, oral glucose tolerance, and plasma insulin levels in KK/HIJ mice with high-fat diet-induced diabetes (200 mg/kg/day of charantin-rich extract of MC [CEMC]) and in ICR mice with STZ-induced diabetes. After 8 weeks, all the mice were exsanguinated, and the expression of the insulin-signaling-associated proteins in their tissue was evaluated, in coordination with the protective effects of CEMC against pancreatic β-cell toxicity (in vitro). Eight weeks of data indicated that CEMC caused a significant decline in non-fasting blood glucose, plasma glucose intolerance, and insulin resistance in the KK/HIJ mice, but not in the ICR mice. Furthermore, CEMC decreased plasma insulin and promoted the sensitivity of insulin by increasing the expression of GLUT4 in the skeletal muscle and of IRS-1 in the liver of KK/HIJ mice; however, CEMC extract had no effect on the insulin sensitivity of ICR mice. In vitro study showed that CEMC prevented pancreatic β cells from high-glucose-induced cytotoxicity after 24 h of incubation, but the protective effect was not detectable after 72 h. Collectively, the hypoglycemic effects of CEMC suggest that it has potential for increasing insulin sensitivity in patients with T2D rather than for protecting patients with T1D against β-cell dysfunction.

  3. Immunomodulatory and Antidiabetic Effects of a New Herbal Preparation (HemoHIM) on Streptozotocin-Induced Diabetic Mice

    PubMed Central

    Kim, Jong-Jin; Choi, Jina; Lee, Mi-Kyung; Kang, Kyung-Yun; Paik, Man-Jeong; Jo, Sung-Kee; Jung, Uhee; Park, Hae-Ran; Yee, Sung-Tae

    2014-01-01

    HemoHIM (a new herbal preparation of three edible herbs: Angelica gigas Nakai, Cnidium officinale Makino, and Paeonia japonica Miyabe) was developed to protect immune, hematopoietic, and self-renewal tissues against radiation. This study determined whether or not HemoHIM could alter hyperglycemia and the immune response in diabetic mice. Both nondiabetic and diabetic mice were orally administered HemoHIM (100 mg/kg) once a day for 4 weeks. Diabetes was induced by single injection of streptozotocin (STZ, 200 mg/kg, i.p.). In diabetic mice, HemoHIM effectively improved hyperglycemia and glucose tolerance compared to the diabetic control group as well as elevated plasma insulin levels with preservation of insulin staining in pancreatic β-cells. HemoHIM treatment restored thymus weight, white blood cells, lymphocyte numbers, and splenic lymphocyte populations (CD4+ T and CD8+ T), which were reduced in diabetic mice, as well as IFN-γ production in response to Con A stimulation. These results indicate that HemoHIM may have potential as a glucose-lowering and immunomodulatory agent by enhancing the immune function of pancreatic β-cells in STZ-induced diabetic mice. PMID:25045390

  4. Evaluation of the Hypoglycemic Effect of Composite Rice Flour in Diabetic Mice.

    PubMed

    Ding, Zhigang; Gao, Hongmei; Du, Chuanlai; Zheng, Yimei; Guo, Yuanxin; Pan, Dongmei

    2016-03-01

    To study the hypoglycemic effect of composite rice flour, the diabetic mouse model was established through the intraperitoneal injection of alloxan saline (twice, 200 mg/kg bw). The mice were randomly divided into 4 groups: negative control, positive control, metformin medication group, and composite rice flour feed group. After 21 days, the fasting blood glucose levels were determined by glucose oxidase method and followed with a glucose tolerance test. The results show that the body weight growth rate of mice in the rice flour group was significantly higher than that of the medication group (P < 0.01). Comparing with the positive control group, the fasting blood glucose levels of medication group and rice flour group were significantly lower, and the glucose tolerance was significantly increased in rice flour group (P < 0.01). In conclusion, the composite rice flour has obvious hypoglycemic and protective effect for diabetic mouse model. PMID:26972304

  5. Caprine pancreatic islet xenotransplantation into diabetic immunosuppressed BALB/c mice

    PubMed Central

    Hani, Homayoun; Allaudin, Zeenathul N; Mohd-Lila, Mohd-Azmi; Ibrahim, Tengku A Tengku; Othman, Abas M

    2014-01-01

    Background Type 1 diabetes mellitus is a devastating disease for which there is currently no cure, but only lifetime management. Islet xenotransplantation is a promising technique for the restoration of blood glucose control in patients with diabetes mellitus. The purpose of this study was to explore the potential use of caprine (goat) islet cells as xenogeneic grafts in the treatment for diabetes in a mouse model. Methods Caprine pancreases were harvested and transported to the laboratory under conditions optimized to prevent ischemia. Islets were isolated, purified, and tested for functionality. Caprine islets (2000 islet equivalent) were transplanted beneath the kidney capsules of diabetic BALB/c mice under thalidomide-induced immunosuppression. Blood glucose and insulin levels of grafted mice were evaluated by glucometer and enzyme-linked immunosorbent assay kit, respectively. The functionality and quality of caprine pancreatic islet grafts were assessed by intraperitoneal glucose tolerance tests. Results The viability of purified islet cells exceeded 90%. Recipient mice exhibited normoglycemia (<11 mm glucose) for 30 days. In addition, weight gain negatively correlated with blood glucose level. The findings verified diabetes reversal in caprine islet recipient mice. A significant drop in non-fasting blood glucose level (from 23.3 ± 5.4 to 8.04 ± 0.44 mm) and simultaneous increase in serum insulin level (from 0.01 ± 0.001 to 0.56 ± 0.17 μg/l) and body weights (from 23.64 ± 0.31 to 25.85 ± 0.34 g) were observed (P < 0.05). Immunohistochemical analysis verified insulin production in the transplanted islets. Conclusions Purified caprine islets were demonstrated to successfully sustain viability and functionality for controlling blood glucose levels in an immunosuppressed mouse model of diabetes. These results suggest the use of caprine islets as an addition to the supply of xenogeneic islets for diabetes research. PMID:24645790

  6. Rapamycin Increases Mortality in db/db Mice, a Mouse Model of Type 2 Diabetes.

    PubMed

    Sataranatarajan, Kavithalakshmi; Ikeno, Yuji; Bokov, Alex; Feliers, Denis; Yalamanchili, Himabindu; Lee, Hak Joo; Mariappan, Meenalakshmi M; Tabatabai-Mir, Hooman; Diaz, Vivian; Prasad, Sanjay; Javors, Martin A; Ghosh Choudhury, Goutam; Hubbard, Gene B; Barnes, Jeffrey L; Richardson, Arlan; Kasinath, Balakuntalam S

    2016-07-01

    We examined the effect of rapamycin on the life span of a mouse model of type 2 diabetes, db/db mice. At 4 months of age, male and female C57BLKSJ-lepr (db/db) mice (db/db) were placed on either a control diet, lacking rapamycin or a diet containing rapamycin and maintained on these diets over their life span. Rapamycin was found to reduce the life span of the db/db mice. The median survival of male db/db mice fed the control and rapamycin diets was 349 and 302 days, respectively, and the median survival of female db/db mice fed the control and rapamycin diets was 487 and 411 days, respectively. Adjusting for gender differences, rapamycin increased the mortality risk 1.7-fold in both male and female db/db mice. End-of-life pathological data showed that suppurative inflammation was the main cause of death in the db/db mice, which is enhanced slightly by rapamycin treatment.

  7. Anti-hyperglycemic effect of fangchinoline isolated from Stephania tetrandra Radix in streptozotocin-diabetic mice.

    PubMed

    Tsutsumi, Taiki; Kobayashi, Shinjiro; Liu, Yuan Ying; Kontani, Hitoshi

    2003-03-01

    Kampo medicine, Stephania tetrandra Radix (Stephania) in Boi-ogi-to increases the blood insulin level and falls the blood glucose level in streptozotocin (STZ)-diabetic ddY mice. These actions of Stephania are potentiated by Astragalus membranaceus Bunge Radix (Astragali) in Boi-ogi-to (Liu et al., J. Traditional Med., 17, 253-260, 2000). In the present study, actions of bis-benzylisoquinoline alkaloids isolated from Stephania were investigated in the hyperglycemia of STZ-diabetic mice. A main bis-benzylisoquinoline alkaloid, fangchinoline (0.3-3 mg/kg) significantly fell the blood glucose level of the diabetic mice in a dose-dependent manner. The effect of fangchinoline was 3.9-fold greater than that of water extract of Stephania. However, another main compound, tetrandrine (1-100 mg/kg) did not have any effect. The water extract of Astragali did not affect singly but potentiated the anti-hyperglycemic action of fangchinoline (0.3 mg/kg). Out of used compounds (1 mg/kg) isolated from Stephania, fangchinoline, fangchinoline 2'-N-alpha-oxide and 2'-N-norfangchinoline, which are substituted with 7-hydroxy side chain for 7-O-methyl side chain, decreased to near 50% of high blood glucose level. In addition, tetrandrine 2'-N-beta-oxide, tetrandrine 2'-N-alpha-oxide, tetrandrine 2-N-beta-oxide, fangchinoline 2'-N-alpha-oxide, which are added to 2- or 2'-N-oxide side chain, also decreased to near 50% of the high blood glucose level. In conclusion, fangchinoline but not tetrandrine from Stephania shows the anti-hyperglycemic action in the STZ-diabetic mice. The demethylation of 7-O-position and/or addition of 2- or 2'-N-oxide side chain in bis-benzylisoquinoline compounds in Stephania have a role for the induction of the anti-hyperglycemic actions. PMID:12612439

  8. Hypoglycemic Effect of Jicama (Pachyrhizus erosus) Extract on Streptozotocin-Induced Diabetic Mice.

    PubMed

    Park, Chan Joo; Han, Ji-Sook

    2015-06-01

    The purpose of this research was to investigate the inhibitory effect of jicama extract on α-glucosidase activity, α-amylase activity, and postprandial hyperglycemia in streptozotocin (STZ)-induced diabetic mice. Jicama extract showed prominent inhibitory effects against α-glucosidase and α-amylase. The IC50 values of jicama extract against α-glucosidase and α-amylase were 0.083±0.004 and 0.091±0.017 mg/mL, respectively. The increase in postprandial blood glucose levels was more significantly suppressed in the jicama extract-administered group than in the control group of both STZ-induced diabetic and normal mice. Blood glucose levels of the control group increased to 383.75±11.54 and 402.50±15.32 mg/dL at 30 and 60 min after a meal and decreased to 349.67±11.62 mg/dL at 120 min. However, postprandial blood glucose levels were significantly decreased, when diabetic mice were fed with jicama extract (342.00±15.73, 367.00±13.00, and 329.67±12.43 mg/dL at 30, 60, and 120 min, respectively). Furthermore, the area under the curve was significantly decreased with jicama extract administration in diabetic mice (P<0.05). Therefore, these results indicate that jicama extract may help decrease postprandial blood glucose level by inhibiting α-glucosidase. PMID:26175995

  9. Hypoglycemic Effect of Jicama (Pachyrhizus erosus) Extract on Streptozotocin-Induced Diabetic Mice

    PubMed Central

    Park, Chan Joo; Han, Ji-Sook

    2015-01-01

    The purpose of this research was to investigate the inhibitory effect of jicama extract on α-glucosidase activity, α-amylase activity, and postprandial hyperglycemia in streptozotocin (STZ)-induced diabetic mice. Jicama extract showed prominent inhibitory effects against α-glucosidase and α-amylase. The IC50 values of jicama extract against α-glucosidase and α-amylase were 0.083±0.004 and 0.091±0.017 mg/mL, respectively. The increase in postprandial blood glucose levels was more significantly suppressed in the jicama extract-administered group than in the control group of both STZ-induced diabetic and normal mice. Blood glucose levels of the control group increased to 383.75±11.54 and 402.50±15.32 mg/dL at 30 and 60 min after a meal and decreased to 349.67±11.62 mg/dL at 120 min. However, postprandial blood glucose levels were significantly decreased, when diabetic mice were fed with jicama extract (342.00±15.73, 367.00±13.00, and 329.67±12.43 mg/dL at 30, 60, and 120 min, respectively). Furthermore, the area under the curve was significantly decreased with jicama extract administration in diabetic mice (P<0.05). Therefore, these results indicate that jicama extract may help decrease postprandial blood glucose level by inhibiting α-glucosidase. PMID:26175995

  10. Lack of the architectural factor HMGA1 causes insulin resistance and diabetes in humans and mice.

    PubMed

    Foti, Daniela; Chiefari, Eusebio; Fedele, Monica; Iuliano, Rodolfo; Brunetti, Leonardo; Paonessa, Francesco; Manfioletti, Guidalberto; Barbetti, Fabrizio; Brunetti, Arturo; Croce, Carlo M; Fusco, Alfredo; Brunetti, Antonio

    2005-07-01

    Type 2 diabetes mellitus is a widespread disease, affecting millions of people globally. Although genetics and environmental factors seem to have a role, the cause of this metabolic disorder is largely unknown. Here we report a genetic flaw that markedly reduced the intracellular expression of the high mobility group A1 (HMGA1) protein, and adversely affected insulin receptor expression in cells and tissues from four subjects with insulin resistance and type 2 diabetes. Restoration of HMGA1 protein expression in subjects' cells enhanced INSR gene transcription, and restored cell-surface insulin receptor protein expression and insulin-binding capacity. Loss of Hmga1 expression, induced in mice by disrupting the Hmga1 gene, considerably decreased insulin receptor expression in the major targets of insulin action, largely impaired insulin signaling and severely reduced insulin secretion, causing a phenotype characteristic of human type 2 diabetes. PMID:15924147

  11. Immune responses to an encapsulated allogeneic islet {beta}-cell line in diabetic NOD mice

    SciTech Connect

    Black, Sasha P. . E-mail: Sasha.Black@ca.crl.com; Constantinidis, Ioannis; Cui, Hong; Tucker-Burden, Carol; Weber, Collin J.; Safley, Susan A.

    2006-02-03

    Our goal is to develop effective islet grafts for treating type 1 diabetes. Since human islets are scarce, we evaluated the efficacy of a microencapsulated insulin-secreting conditionally transformed allogeneic {beta}-cell line ({beta}TC-tet) in non-obese diabetic mice treated with tetracycline to inhibit cell growth. Relatively low serum levels of tetracycline controlled proliferation of {beta}TC-tet cells without inhibiting effective control of hyperglycemia in recipients. There was no significant host cellular reaction to the allografts or host cell adherence to microcapsules, and host cytokine levels were similar to those of sham-operated controls. We conclude that encapsulated allogeneic {beta}-cell lines may be clinically relevant, because they effectively restore euglycemia and do not elicit a strong cellular immune response following transplantation. To our knowledge, this is First extensive characterization of the kinetics of host cellular and cytokine responses to an encapsulated islet cell line in an animal model of type 1 diabetes.

  12. Glucose lowering efficacy of Ficus racemosa bark extract in normal and alloxan diabetic rats.

    PubMed

    Bhaskara Rao, R; Murugesan, T; Sinha, Sanghamitra; Saha, B P; Pal, M; Mandal, Subhash C

    2002-09-01

    The glucose-lowering efficacy of a methanol extract of the stem bark of Ficus racemosa Linn. (MEBFR) (Family Moraceae) was evaluated both in normal and alloxan-induced diabetic rats. The MEBFR at the doses examined (200 and 400 mg/kg p.o.) exhibited significant hypoglycaemic activity in both experimental animal models when compared with the control group. The activity was also comparable to that of the effect produced by a standard antidiabetic agent, glibenclamide 10 mg/kg. The present investigation established pharmacological evidence to support the folklore claim that it is an antidiabetic agent.

  13. Hepatocyte TRAF3 promotes insulin resistance and type 2 diabetes in mice with obesity

    PubMed Central

    Chen, Zheng; Canet, Mark J.; Sheng, Liang; Jiang, Lin; Xiong, Yi; Yin, Lei; Rui, Liangyou

    2015-01-01

    Objective Metabolic inflammation is believed to promote insulin resistance and type 2 diabetes progression in obesity. TRAF3, a cytoplasmic signaling protein, has been known to mediate/modulate cytokine signaling in immune cells. The goal is to define the metabolic function of hepatic TRAF3 in the setting of obesity. Methods Hepatocyte-specific TRAF3 knockout mice were generated using the loxp/albumin-cre system. Liver TRAF3 was deleted in adult obese mice via Cre adenoviral infection. Both high fat diet-induced and genetic obesity were examined. TRAF3 levels and insulin signaling were measured by immunoblotting. Insulin sensitivity, hepatic glucose production, and glucose metabolism were examined by glucose, insulin, and pyruvate tolerance tests. Hepatic steatosis was examined by Oil red O staining of liver sections and measuring liver triacylglycerol levels. Results Liver TRAF3 levels were lower in the fasted states in normal mice, and were aberrantly higher in obese mice and in mice with streptozotocin-induced hyperglycemia. Glucose directly increased TRAF3 levels in primary hepatocytes. Hepatocyte-specific deletion of TRAF3 decreased hyperinsulinemia, insulin resistance, glucose intolerance, and hepatic steatosis in mice with either high fat diet-induced obesity or genetic obesity (ob/ob); conversely, in lean mice, adenovirus-mediated overexpression of TRAF3 in the liver induced hyperinsulinemia, insulin resistance, and glucose intolerance. Deletion of TRAF3 enhanced the ability of insulin to stimulate phosphorylation of Akt in hepatocytes, whereas overexpression of TRAF3 suppressed insulin signaling. Conclusions Glucose increases the levels of hepatic TRAF3. TRAF3 in turn promotes hyperglycemia through increasing hepatic glucose production, thus forming a glucose-TRAF3 reinforcement loop in the liver. This positive feedback loop may drive the progression of type 2 diabetes and nonalcoholic fatty liver disease in obesity. PMID:26909311

  14. Selenium-enriched exopolysaccharides improve skeletal muscle glucose uptake of diabetic KKAy mice via AMPK pathway.

    PubMed

    Zhou, Xihong; Chen, Jingqing; Wang, Fengqin; Yang, Hangxian; Yang, Ren; Wang, Xinxia; Wang, Yizhen

    2014-06-01

    Selenium-enriched exopolysaccharides (EPS) produced by Enterobacter cloacae Z0206 have been proven to possess effect on reducing blood glucose level in diabetic mice. To investigate the specific mechanism, we studied the effects of oral supply with EPS on skeletal muscle glucose transportation and consumption in high-fat-diet-induced diabetic KKAy mice. We found that EPS supplementation increased expressions of glucose transporter 4 (Glut4), hexokinase 2 (hk2), phosphorylation of AMP-activated kinase subunit α2 (pAMPKα2), and peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), and increased expression of characteristic protein of oxidative fibers such as troponin I and cytochrome c (Cytc). Furthermore, we found that EPS increased glucose uptake and expressions of pAMPKα2 and PGC-1α in palmitic acid (PA)-induced C2C12 cells. However, while EPS inhibited AMPKα2 with interference RNA (iRNA), effects of EPS on the improvement of glucose uptake diminished. These results indicated that EPS may improve skeletal muscle glucose uptake of diabetic KKAy mice through AMPKα2-PGC-1α pathway. PMID:24729044

  15. Skeletal muscle PGC-1α modulates systemic ketone body homeostasis and ameliorates diabetic hyperketonemia in mice

    PubMed Central

    Svensson, Kristoffer; Albert, Verena; Cardel, Bettina; Salatino, Silvia; Handschin, Christoph

    2016-01-01

    Ketone bodies are crucial energy substrates during states of low carbohydrate availability. However, an aberrant regulation of ketone body homeostasis can lead to complications such as diabetic ketoacidosis. Exercise and diabetes affect systemic ketone body homeostasis, but the regulation of ketone body metabolism is still enigmatic. Using mice with either a knockout or overexpression of the peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) in skeletal muscle, we show that PGC-1α regulates ketolytic gene transcription in muscle. Furthermore, ketone body homeostasis of these mice was investigated during fasting, exercise, ketogenic diet feeding and after streptozotocin injection. In response to these ketogenic stimuli, we show that modulation of PGC-1α levels in muscle affects systemic ketone body homeostasis. Moreover, our data demonstrate that skeletal muscle PGC-1α is necessary for the enhanced ketolytic capacity in response to exercise training and overexpression of PGC-1α in muscle enhances systemic ketolytic capacity and is sufficient to ameliorate diabetic hyperketonemia in mice. Using cultured myotubes, we also show that the transcription factor estrogen related receptor α (ERRα) is a partner of PGC-1α in the regulation of ketolytic gene transcription. Collectively, these results demonstrate a central role of skeletal muscle PGC-1α in the transcriptional regulation of systemic ketolytic capacity. PMID:26849960

  16. Effects of Bauhinia forficata Tea on Oxidative Stress and Liver Damage in Diabetic Mice.

    PubMed

    Salgueiro, Andréia Caroline Fernandes; Folmer, Vanderlei; da Silva, Marianne Pires; Mendez, Andreas Sebastian Loureiro; Zemolin, Ana Paula Pegoraro; Posser, Thaís; Franco, Jeferson Luis; Puntel, Robson Luiz; Puntel, Gustavo Orione

    2016-01-01

    This study was designed to evaluate the effects of Bauhinia forficata Link subsp. pruinosa (BF) tea on oxidative stress and liver damage in streptozotocin (STZ)-induced diabetic mice. Diabetic male mice have remained 30 days without any treatment. BF treatment started on day 31 and continued for 21 days as a drinking-water substitute. We evaluated (1) BF chemical composition; (2) glucose levels; (3) liver/body weight ratio and liver transaminases; (4) reactive oxygen species (ROS), lipid peroxidation, and protein carbonylation in liver; (5) superoxide dismutase (SOD) and catalase (CAT) activities in liver; (6) δ-aminolevulinate dehydratase (δ-ALA-D) and nonprotein thiols (NPSH) in liver; (7) Nrf2, NQO-1, and HSP70 levels in liver and pancreas. Phytochemical analyses identified four phenols compounds. Diabetic mice present high levels of NQO-1 in pancreas, increased levels of ROS and lipid peroxidation in liver, and decrease in CAT activity. BF treatment normalized all these parameters. BF did not normalize hyperglycemia, liver/body weight ratio, aspartate aminotransferase, protein carbonyl, NPSH levels, and δ-ALA-D activity. The raised oxidative stress seems to be a potential mechanism involved in liver damage in hyperglycemic conditions. Our results indicated that BF protective effect could be attributed to its antioxidant capacity, more than a hypoglycemic potential. PMID:26839634

  17. BIM Deficiency Protects NOD Mice From Diabetes by Diverting Thymocytes to Regulatory T Cells.

    PubMed

    Krishnamurthy, Balasubramanian; Chee, Jonathan; Jhala, Gaurang; Trivedi, Prerak; Catterall, Tara; Selck, Claudia; Gurzov, Esteban N; Brodnicki, Thomas C; Graham, Kate L; Wali, Jibran A; Zhan, Yifan; Gray, Daniel; Strasser, Andreas; Allison, Janette; Thomas, Helen E; Kay, Thomas W H

    2015-09-01

    Because regulatory T-cell (Treg) development can be induced by the same agonist self-antigens that induce negative selection, perturbation of apoptosis will affect both negative selection and Treg development. But how the processes of thymocyte deletion versus Treg differentiation bifurcate and their relative importance for tolerance have not been studied in spontaneous organ-specific autoimmune disease. We addressed these questions by removing a critical mediator of thymocyte deletion, BIM, in the NOD mouse model of autoimmune diabetes. Despite substantial defects in the deletion of autoreactive thymocytes, BIM-deficient NOD (NODBim(-/-)) mice developed less insulitis and were protected from diabetes. BIM deficiency did not impair effector T-cell function; however, NODBim(-/-) mice had increased numbers of Tregs, including those specific for proinsulin, in the thymus and peripheral lymphoid tissues. Increased levels of Nur77, CD5, GITR, and phosphorylated IκB-α in thymocytes from NODBim(-/-) mice suggest that autoreactive cells receiving strong T-cell receptor signals that would normally delete them escape apoptosis and are diverted into the Treg pathway. Paradoxically, in the NOD model, reduced thymic deletion ameliorates autoimmune diabetes by increasing Tregs. Thus, modulating apoptosis may be one of the ways to increase antigen-specific Tregs and prevent autoimmune disease.

  18. BIM Deficiency Protects NOD Mice From Diabetes by Diverting Thymocytes to Regulatory T Cells.

    PubMed

    Krishnamurthy, Balasubramanian; Chee, Jonathan; Jhala, Gaurang; Trivedi, Prerak; Catterall, Tara; Selck, Claudia; Gurzov, Esteban N; Brodnicki, Thomas C; Graham, Kate L; Wali, Jibran A; Zhan, Yifan; Gray, Daniel; Strasser, Andreas; Allison, Janette; Thomas, Helen E; Kay, Thomas W H

    2015-09-01

    Because regulatory T-cell (Treg) development can be induced by the same agonist self-antigens that induce negative selection, perturbation of apoptosis will affect both negative selection and Treg development. But how the processes of thymocyte deletion versus Treg differentiation bifurcate and their relative importance for tolerance have not been studied in spontaneous organ-specific autoimmune disease. We addressed these questions by removing a critical mediator of thymocyte deletion, BIM, in the NOD mouse model of autoimmune diabetes. Despite substantial defects in the deletion of autoreactive thymocytes, BIM-deficient NOD (NODBim(-/-)) mice developed less insulitis and were protected from diabetes. BIM deficiency did not impair effector T-cell function; however, NODBim(-/-) mice had increased numbers of Tregs, including those specific for proinsulin, in the thymus and peripheral lymphoid tissues. Increased levels of Nur77, CD5, GITR, and phosphorylated IκB-α in thymocytes from NODBim(-/-) mice suggest that autoreactive cells receiving strong T-cell receptor signals that would normally delete them escape apoptosis and are diverted into the Treg pathway. Paradoxically, in the NOD model, reduced thymic deletion ameliorates autoimmune diabetes by increasing Tregs. Thus, modulating apoptosis may be one of the ways to increase antigen-specific Tregs and prevent autoimmune disease. PMID:25948683

  19. Effects of Bauhinia forficata Tea on Oxidative Stress and Liver Damage in Diabetic Mice

    PubMed Central

    Salgueiro, Andréia Caroline Fernandes; da Silva, Marianne Pires; Mendez, Andreas Sebastian Loureiro; Zemolin, Ana Paula Pegoraro; Posser, Thaís; Puntel, Robson Luiz; Puntel, Gustavo Orione

    2016-01-01

    This study was designed to evaluate the effects of Bauhinia forficata Link subsp. pruinosa (BF) tea on oxidative stress and liver damage in streptozotocin (STZ)-induced diabetic mice. Diabetic male mice have remained 30 days without any treatment. BF treatment started on day 31 and continued for 21 days as a drinking-water substitute. We evaluated (1) BF chemical composition; (2) glucose levels; (3) liver/body weight ratio and liver transaminases; (4) reactive oxygen species (ROS), lipid peroxidation, and protein carbonylation in liver; (5) superoxide dismutase (SOD) and catalase (CAT) activities in liver; (6) δ-aminolevulinate dehydratase (δ-ALA-D) and nonprotein thiols (NPSH) in liver; (7) Nrf2, NQO-1, and HSP70 levels in liver and pancreas. Phytochemical analyses identified four phenols compounds. Diabetic mice present high levels of NQO-1 in pancreas, increased levels of ROS and lipid peroxidation in liver, and decrease in CAT activity. BF treatment normalized all these parameters. BF did not normalize hyperglycemia, liver/body weight ratio, aspartate aminotransferase, protein carbonyl, NPSH levels, and δ-ALA-D activity. The raised oxidative stress seems to be a potential mechanism involved in liver damage in hyperglycemic conditions. Our results indicated that BF protective effect could be attributed to its antioxidant capacity, more than a hypoglycemic potential. PMID:26839634

  20. Berberine enhances antidiabetic effects and attenuates untoward effects of canagliflozin in streptozotocin-induced diabetic mice.

    PubMed

    Tian, Cai-Ming; Jiang, Xin; Ouyang, Xiao-Xi; Zhang, Ya-Ou; Xie, Wei-Dong

    2016-07-01

    The present study aimed at determining whether berberine can enhance the antidiabetic effects and alleviate the adverse effects of canagliflozin in diabetes mellitus. Streptozotocin-induced diabetic mice were introduced, and the combined effects of berberine and canagliflozin on glucose metabolism and kidney functions were investigated. Our results showed that berberine combined with canagliflozin (BC) increased reduction of fasting and postprandial blood glucose, diet, and water intake compared with berberine or canagliflozin alone. Interestingly, BC showed greater decrease in blood urea nitrogen and creatinine levels and lower total urine glucose excretion than canagliflozin alone. In addition, BC showed increased phosphorylated 5' AMP-activated protein kinase (pAMPK) expression and decreased tumor necrosis factor alpha (TNFα) levels in kidneys, compared with berberine or canagliflozin alone. These results indicated that BC was a stronger antidiabetic than berberine or canagliflozin alone with less negative side effects on the kidneys in the diabetic mice. The antidiabetic effect was likely to be mediated by synergically promoting the expression of pAMPK and reducing the expression of TNFα in kidneys. The present study represented the first report that canagliflozin combined with berberine was a promising treatment for diabetes mellitus. The exact underlying mechanisms of action should be investigated in future studies. PMID:27507202

  1. Clostridium butyricum attenuates cerebral ischemia/reperfusion injury in diabetic mice via modulation of gut microbiota.

    PubMed

    Sun, Jing; Wang, Fangyan; Ling, Zongxin; Yu, Xichong; Chen, Wenqian; Li, Haixiao; Jin, Jiangtao; Pang, Mengqi; Zhang, Huiqing; Yu, Junjie; Liu, Jiaming

    2016-07-01

    Diabetes is known to exacerbate cerebral ischemia/reperfusion (I/R) injury. Here, we investigated the effects of Clostridium butyricum on cerebral I/R injury in the diabetic mice subjected to 30min of bilateral common carotid arteries occlusion (BCCAO). The cognitive impairment, the blood glucose level, neuronal injury, apoptosis, and expressions of Akt, phospho-Akt (p-Akt), and caspase-3 level were assessed. Meanwhile, the changes of gut microbiota in composition and diversity in the colonic feces were evaluated. Our results showed that diabetic mice subjected to BCCAO exhibited worsened cognitive impairment, cell damage and apoptosis. These were all attenuated by C. butyricum. Moreover, C. butyricum reversed cerebral I/R induced decreases in p-Akt expression and increases in caspase-3 expression, leading to inhibiting neuronal apoptosis. C. butyricum partly restored cerebral I/R induced decreases of fecal microbiota diversity, changes of fecal microbiota composition. Together, these findings highlight the important role of bacteria in the bidirectional communication of the gut-brain axis and suggest that certain probiotics might prove to be useful therapeutic adjuncts in cerebral I/R injury with diabetes. PMID:27037183

  2. Transplantation of insulin-secreting multicellular spheroids for the treatment of type 1 diabetes in mice.

    PubMed

    Kusamori, Kosuke; Nishikawa, Makiya; Mizuno, Narumi; Nishikawa, Tomoko; Masuzawa, Akira; Shimizu, Kazunori; Konishi, Satoshi; Takahashi, Yuki; Takakura, Yoshinobu

    2014-01-10

    The efficacy of cell-based therapy depends on the function and survival of transplanted cells, which have been suggested to be enhanced by spheroid formation. However, few attempts at spheroid generation from insulin-secreting cells, which may be used to treat type 1 diabetes, have been reported. We therefore developed spheroids from the mouse insulinoma cell line NIT-1 by using polydimethylsiloxane (PDMS)-based microwells with a coating of poly(N-isopropylacrylamide) (PNIPAAm). The prepared NIT-1 spheroids or dissociated NIT-1 cells were transplanted into the subrenal capsule in streptozotocin-induced diabetic mice. NIT-1 spheroids prepared using the PNIPAAm-coated PDMS-based microwells had a uniformly sized spherical structure with a diameter of 200-300μm. The PNIPAAm coating increased cell survival in the spheroids and the recovery of the spheroids from the microwells. In diabetic mice, the transplanted NIT-1 spheroids reduced blood glucose levels to normal values faster than dissociated NIT-1 cells did. Additionally, survival was higher among NIT-1 cells in spheroids than among dissociated NIT-1 cells 24h after transplantation. These results indicate that insulin-secreting NIT-1 spheroids prepared using PNIPAAm-coated PDMS-based microwells are more effective for the treatment of type 1 diabetes than dissociated cells in suspension. PMID:24184345

  3. FSP-1 Impairs the Function of Endothelium Leading to Failure of Arteriovenous Grafts in Diabetic Mice

    PubMed Central

    Luo, Jinlong; Liang, Ming; Mitch, William E.; Danesh, Farhad R.; Yu, Michael

    2015-01-01

    To understand how endothelial cell (EC) dysfunction contributes to the failure of arteriovenous graft (AVG), we investigated the role of fibroblast-specific protein 1 (FSP-1) in cultured ECs and a mouse AVG model. In vitro, we uncovered a new FSP-1-dependent pathway that activates rho-associated, coiled-coil-containing protein kinase 1 (ROCK1) in ECs, leading to phosphorylation of myosin light chain 2 resulting in EC dysfunction. In cultured ECs, high glucose stimulated FSP-1 expression and increased permeability of an EC monolayer. The increase in permeability by the high glucose concentration was mediated by FSP-1 expression. Treatment of cultured ECs with FSP-1 caused leakage of the endothelial barrier plus increased expression of adhesion molecules and decreased expression of junction molecules. These responses were initiated by binding of FSP-1 to receptor for advanced glycation end products, which resulted in ROCK1 activation. In vivo, diabetes increased infiltration of inflammatory cells into AVGs and stimulated neointima formation. Increased FSP-1 expression and ROCK1 activation were found in AVGs of diabetic mice. Blocking FSP-1 suppressed diabetes-induced ROCK1 activation in AVGs. In mice with FSP-1 knockout or with ROCK1 knockout, accumulation of inflammatory cells and neointima formation in AVG were attenuated despite diabetes. Thus, mechanisms of inhibiting FSP-1 in ECs could improve AVG function. PMID:25774552

  4. The thromboxane receptor antagonist S18886 attenuates renal oxidant stress and proteinuria in diabetic apolipoprotein E-deficient mice.

    PubMed

    Xu, Shanqin; Jiang, Bingbing; Maitland, Karlene A; Bayat, Hossein; Gu, Jiali; Nadler, Jerry L; Corda, Stefano; Lavielle, Gilbert; Verbeuren, Tony J; Zuccollo, Adriana; Cohen, Richard A

    2006-01-01

    Arachidonic acid metabolites, some of which may activate thromboxane A(2) receptors (TPr) and contribute to the development of diabetes complications, including nephropathy, are elevated in diabetes. This study determined the effect of blocking TPr with S18886 or inhibiting cyclooxygenase with aspirin on oxidative stress and the early stages of nephropathy in streptozotocin-induced diabetic apolipoprotein E(-/-) mice. Diabetic mice were treated with S18886 (5 mg . kg(-1) . day(-1)) or aspirin (30 mg . kg(-1) . day(-1)) for 6 weeks. Neither S18886 nor aspirin affected hyperglycemia or hypercholesterolemia. There was intense immunohistochemical staining for nitrotyrosine in diabetic mouse kidney. In addition, a decrease in manganese superoxide dismutase (MnSOD) activity was associated with an increase in MnSOD tyrosine-34 nitration. Tyrosine nitration was significantly reduced by S18886 but not by aspirin. Staining for the NADPH oxidase subunit p47(phox), inducible nitric oxide synthase, and 12-lipoxygenase was increased in diabetic mouse kidney, as were urine levels of 12-hydroxyeicosatetraenoic acid and 8-iso-prostaglandin F(2alpha). S18886 attenuated all of these markers of oxidant stress and inflammation. Furthermore, S18886 significantly attenuated microalbuminuria in diabetic mice and ameliorated histological evidence of diabetic nephropathy, including transforming growth factor-beta and extracellular matrix expression. Thus, in contrast to inhibiting cyclooxygenase, blockade of TPr may have therapeutic potential in diabetic nephropathy, in part by attenuating oxidative stress. PMID:16380483

  5. A combination hydrogel microparticle-based vaccine prevents type 1 diabetes in non-obese diabetic mice

    PubMed Central

    Yoon, Young Mee; Lewis, Jamal S.; Carstens, Matthew R.; Campbell-Thompson, Martha; Wasserfall, Clive H.; Atkinson, Mark A.; Keselowsky, Benjamin G.

    2015-01-01

    Targeted delivery of self-antigens to the immune system in a mode that stimulates a tolerance-inducing pathway has proven difficult. To address this hurdle, we developed a vaccine based-approach comprised of two synthetic controlled-release biomaterials, poly(lactide-co-glycolide; PLGA) microparticles (MPs) encapsulating denatured insulin (key self-antigen in type 1 diabetes; T1D), and PuraMatrixTM peptide hydrogel containing granulocyte macrophage colony-stimulating factor (GM-CSF) and CpG ODN1826 (CpG), which were included as vaccine adjuvants to recruit and activate immune cells. Although CpG is normally considered pro-inflammatory, it also has anti-inflammatory effects, including enhancing IL-10 production. Three subcutaneous administrations of this hydrogel (GM-CSF/CpG)/insulin-MP vaccine protected 40% of NOD mice from T1D. In contrast, all control mice became diabetic. In vitro studies indicate CpG stimulation increased IL-10 production, as a potential mechanism. Multiple subcutaneous injections of the insulin containing formulation resulted in formation of granulomas, which resolved by 28 weeks. Histological analysis of these granulomas indicated infiltration of a diverse cadre of immune cells, with characteristics reminiscent of a tertiary lymphoid organ, suggesting the creation of a microenvironment to recruit and educate immune cells. These results demonstrate the feasibility of this injectable hydrogel/MP based vaccine system to prevent T1D. PMID:26279095

  6. Early Treatment of NOD Mice With B7-H4 Reduces the Incidence of Autoimmune Diabetes

    PubMed Central

    Wang, Xiaojie; Hao, Jianqiang; Metzger, Daniel L.; Mui, Alice; Ao, Ziliang; Akhoundsadegh, Noushin; Langermann, Solomon; Liu, Linda; Chen, Lieping; Ou, Dawei; Verchere, C. Bruce

    2011-01-01

    OBJECTIVE Autoimmune diabetes is a T cell–mediated disease in which insulin-producing β-cells are destroyed. Autoreactive T cells play a central role in mediating β-cell destruction. B7-H4 is a negative cosignaling molecule that downregulates T-cell responses. In this study, we aim to determine the role of B7-H4 on regulation of β-cell–specific autoimmune responses. RESEARCH DESIGN AND METHODS Prediabetic (aged 3 weeks) female NOD mice (group 1, n = 21) were treated with intraperitoneal injections of B7-H4.Ig at 7.5 mg/kg, with the same amount of mouse IgG (group 2, n = 24), or with no protein injections (group 3, n = 24), every 3 days for 12 weeks. RESULTS B7-H4.Ig reduced the incidence of autoimmune diabetes, compared with the control groups (diabetic mice 28.6% of group 1, 66.7% of group 2 [P = 0.0081], and 70.8% of group 3 [group 1 vs. 3, P = 0.0035]). Histological analysis revealed that B7-H4 treatment did not block islet infiltration but rather suppressed further infiltrates after 9 weeks of treatment (group 1 vs. 2, P = 0.0003). B7-H4 treatment also reduced T-cell proliferation in response to GAD65 stimulation ex vivo. The reduction of diabetes is not due to inhibition of activated T cells in the periphery but rather to a transient increase of Foxp3+ CD4+ T-cell population at one week posttreatment (12.88 ± 1.29 vs. 11.58 ± 1.46%; n = 8; P = 0.03). CONCLUSIONS Our data demonstrate the protective role of B7-H4 in the development of autoimmune diabetes, suggesting a potential means of preventing type 1 diabetes by targeting the B7-H4 pathway. PMID:21984581

  7. L-Arginine ameliorates cardiac left ventricular oxidative stress by upregulating eNOS and Nrf2 target genes in alloxan-induced hyperglycemic rats

    SciTech Connect

    Ramprasath, Tharmarajan; Hamenth Kumar, Palani; Syed Mohamed Puhari, Shanavas; Senthil Murugan, Ponniah; Vasudevan, Varadaraj; Selvam, Govindan Sadasivam

    2012-11-23

    Highlights: Black-Right-Pointing-Pointer L-Arginine treatment reduced the metabolic disturbances in diabetic animals. Black-Right-Pointing-Pointer Antioxidant marker proteins were found high in myocardium by L-arginine treatment. Black-Right-Pointing-Pointer Elevated antioxidant status, mediates the reduced TBA-reactivity in left ventricle. Black-Right-Pointing-Pointer L-Arginine treatment enhanced the Nrf2 and eNOS signaling in left ventricle. Black-Right-Pointing-Pointer Improved cell survival signaling by arginine, offers a novel tactic for targeting. -- Abstract: Hyperglycemia is independently related with excessive morbidity and mortality in cardiovascular disorders. L-Arginine-nitric oxide (NO) pathway and the involvement of NO in modulating nuclear factor-E2-related factor-2 (Nrf2) signaling were well established. In the present study we investigated, whether L-arginine supplementation would improve the myocardial antioxidant defense under hyperglycemia through activation of Nrf2 signaling. Diabetes was induced by alloxan monohydrate (90 mg kg{sup -1} body weight) in rats. Both non-diabetic and diabetic group of rats were divided into three subgroups and they were administered either with L-arginine (2.25%) or L-NAME (0.01%) in drinking water for 12 days. Results showed that L-arginine treatment reduced the metabolic disturbances in diabetic rats. Antioxidant enzymes and glutathione levels were found to be increased in heart left ventricles, thereby reduction of lipid peroxidation by L-arginine treatment. Heart histopathological analysis further validates the reversal of typical diabetic characteristics consisting of alterations in myofibers and myofibrillary degeneration. qRT-PCR studies revealed that L-arginine treatment upregulated the transcription of Akt and downregulated NF-{kappa}B. Notably, transcription of eNOS and Nrf2 target genes was also upregulated, which were accompanied by enhanced expression of Nrf2 in left ventricular tissue from diabetic

  8. Treated of type 1 diabetes mellitus in non-obese diabetic mice by transplantation of allogeneic bone marrow and pancreatic tissue

    SciTech Connect

    Yasumizu, R.; Sugiura, K.; Iwai, H.; Inaba, M.; Makino, S.; Ida, T.; Imura, H.; Hamashima, Y.; Good, R.A.; Ikehara, S.

    1987-09-01

    Non-obese diabetic (NOD) mice provide a model for type 1 diabetes mellitus. We previously showed that allogeneic bone marrow transplantation (ABMT) can prevent and treat insulitis and overt diabetes in NOD mice. However, ABMT alone could not be used to treat overt diabetes in NOD mice whose islets had been completely destroyed. To provide insulin-producing cells, pancreatic tissue from newborn mice was grafted under the renal capsules in combination with ABMT. The aims of concomitant ABMT are as follows. (i) It induces immunological tolerance to the donor-type major histocompatibility complex determinants and permits the host to accept subsequent pancreatic allografts from the bone marrow donor. (ii) ABMT replaces abnormal stem cells with normal stem cells. After transplantation of bone marrow plus newborn pancreas, NOD mice showed reduction of the glycosuria and a normal response in the glucose-tolerance test. Immunohistological study revealed the presence of clustered insulin-containing beta cells in the grafted pancreatic transplants. ABMT may become a viable treatment of established type 1 diabetes mellitus in humans.

  9. Role of metformin in suppressing 1,2-dimethylhydrazine-induced colon cancer in diabetic and non-diabetic mice: effect on tumor angiogenesis and cell proliferation.

    PubMed

    Zaafar, Dalia K; Zaitone, Sawsan A; Moustafa, Yasser M

    2014-01-01

    Several studies indicated that type 2 diabetes mellitus and insulin resistance are associated with increased colon cancer risk. Recently, studies suggest that metformin can reduce cancer risk in diabetic or non-diabetic patients with unclear mechanisms. This work aimed to determine the effect of metformin on chemically-induced colon cancer in mice. Colon cancer was induced using 1,2-dimethylhydrazine (DMH, 20 mg/kg/week, s.c.) for fifteen weeks. Experiment I: healthy mice were fed with basal diet for four weeks and then allocated into seven groups, (i) saline, (ii) DMH, (iii) oxaliplatin, (iv-v): metformin (100 or 200 mg/kg) and (vi-vii): oxaliplatin+metformin (100 or 200 mg/kg), respectively. Experiment II: type 2 diabetes mellitus was induced by injection of STZ (30 mg/kg) after four weeks of high-fat feeding and then mice were allocated into seven groups similar to those reported in experiment I. Examination of the colonic tissue at the end of the experiment highlighted an increase in angiogenic markers and cell proliferation and showed a greater immunostaining for insulin growth factor I receptors and CD34 in the colon of diabetic mice compared to non-diabetics. In general, metformin downregulated tumor angiogenesis and augmented the antitumor effect of oxaliplatin. Overall, the current results showed that metformin protected against DMH-induced colon cancer in non-diabetic and diabetic mice. This therapeutic effect was, at least in part, attributed to its anti-angiogenic and anti-proliferative mechanisms.

  10. Improved insulin sensitivity and islet function after PPARdelta activation in diabetic db/db mice.

    PubMed

    Winzell, Maria Sörhede; Wulff, Erik Max; Olsen, Grith Skytte; Sauerberg, Per; Gotfredsen, Carsten F; Ahrén, Bo

    2010-01-25

    The peroxisome proliferator-activated receptors (PPARs) are transcription factors belonging to the nuclear receptor superfamily. Several reports have shown that PPARdelta is involved in lipid metabolism, increasing fat oxidation and depleting lipid accumulation. Whether PPARdelta is involved in the regulation of glucose metabolism is not completely understood. In this study, we examined effects of long-term PPARdelta activation on glycemic control, islet function and insulin sensitivity in diabetic db/db mice. Male db/db mice were administered orally once daily with a selective and partial PPARdelta agonist (NNC 61-5920, 30 mg/kg) for eight weeks; control mice received vehicle. Fasting and non-fasting plasma glucose were reduced, reflected in reduced hemoglobinA(1c) (3.6+/-1.6% vs. 5.4+/-1.8 in db/db controls, P<0.05) and furthermore, the AUC(glucose) after oral glucose (3g/kg) was reduced by 67% (P<0.05) after long-term PPARdelta activation. Following intravenous glucose (1g/kg), glucose tolerance was improved after PPARdelta activation (K(G) 1.3+/-0.6 vs. -0.05+/-0.7 %/min, P=0.048). Insulin sensitivity, measured as the glucose clearance after intravenous injection of glucose (1g/kg) and insulin (0.75 or 1.0 U/kg), during inhibition of endogenous insulin secretion by diazoxide (25mg/kg), was improved (K(G) 2.9+/-0.6 vs. 1.3+/-0.3 %/min in controls, P<0.05) despite lower insulin levels. Furthermore, islets isolated from PPARdelta agonist treated mice demonstrated improved glucose responsiveness as well as improved cellular topography. In conclusion, PPARdelta agonism alleviates insulin resistance and improves islet function and topography, resulting in improved glycemia in diabetic db/db mice. This suggests that activation of PPARdelta improves glucose metabolism and may therefore potentially be target for treatment of type 2 diabetes.

  11. Oxidative stress contributes to the impaired sonic hedgehog pathway in type 1 diabetic mice with myocardial infarction

    PubMed Central

    XIAO, QING; YANG, YA; ZHAO, XIAO-YA; HE, LI-SHAN; QIN, YUAN; HE, YAN-HUA; ZHANG, GUI-PING; LUO, JIAN-DONG

    2015-01-01

    Our previous study demonstrated that an impaired sonic hedgehog (Shh) pathway contributed to cardiac dysfunction in type 1 diabetic mice with myocardial infarction (MI). The present study aimed to test the hypothesis that oxidative stress may contribute to the impaired Shh pathway and cardiac dysfunction in type 1 diabetic mice with MI. Streptozotocin-induced type 1 diabetic mice (C57/Bl6, male) and rat neonatal cardiomyocytes were used in the present study. Mice were randomly assigned to undergo ligation of the coronary artery or pseudosurgery. A potent antioxidant Tempol was administered in vivo and in vitro. Cardiac function was assessed by echocardiography, capillary density by immunohistochemisty, percentage of myocardial infarct using Massons trichrome staining, reactive oxygen species detection using dihydroethidium dye or 2,7-dichlorofluorescein diacetate probe and protein expression levels of the Shh pathway by western blot analysis. The antioxidant Tempol was shown to significantly increase myocardial protein expression levels of Shh and patched-1 (Ptc1) at 7–18 weeks and improved cardiac function at 18 weeks in type 1 diabetic mice, as compared with mice receiving no drug treatment. Furthermore, myocardial protein expression levels of Shh and Ptc1 were significantly upregulated on day 7 after MI, and capillary density was enhanced. In addition, the percentage area of myocardial infarct was reduced, and the cardiac dysfunction and survival rate were improved on day 21 in diabetic mice treated with Tempol. In vitro, treatment of rat neonatal cardiomyocytes with a mixture of xanthine oxidase and xanthine decreased protein expression levels of Shh and Ptc1 in a concentration-dependent manner, and Tempol attenuated this effect. These results indicate that oxidative stress may contribute to an impaired Shh pathway in type 1 diabetic mice, leading to diminished myocardial healing and cardiac dysfunction. Antioxidative strategies aimed at restoring the

  12. Irisin Increased the Number and Improved the Function of Endothelial Progenitor Cells in Diabetes Mellitus Mice

    PubMed Central

    Wang, Jinxiang; Song, Mingbao; Zhou, Fang; Fu, Dagan; Ruan, Guangping; Zhu, Xiangqing; Bai, Yinyin; Huang, Lan; Pang, Rongqing; Kang, Huali

    2016-01-01

    Abstract: The dysfunction of endothelial progenitor cells (EPCs) was found to be associated with vascular complications in diabetes mellitus (DM) patients. Previous studies found that regular exercise could improve the function of EPCs in DM patients, but the underling mechanism was unclear. Irisin, a newly identified myokine, was induced by exercise and has been demonstrated to mediate some of the positive effects of exercise. In this study, we hypothesize that irisin may have direct effects on EPC function in DM mice. These data showed for the first time that irisin increased the number of EPCs in peripheral blood of DM mice and improved the function of EPCs derived from DM mice bone marrow. The mechanism for the effect of irisin is related to the PI3K/Akt/eNOS pathway. Furthermore, irisin was demonstrated to improve endothelial repair in DM mice that received EPC transplants after carotid artery injury. The results of this study indicate a novel effect of irisin in regulating the number and function of EPCs via the PI3K/Akt/eNOS pathway, suggesting a potential for the administration of exogenous irisin as a succedaneum to improve EPC function in diabetic patients who fail to achieve such improvements through regular exercise. PMID:27002278

  13. Epigallocatechin-3-gallate Attenuates Renal Damage by Suppressing Oxidative Stress in Diabetic db/db Mice

    PubMed Central

    Yang, Xiu Hong; Pan, Yu; Zhan, Xiao Li; Zhang, Bao Long

    2016-01-01

    Epigallocatechin-3-gallate (EGCG), extracted from green tea, has been shown to have antioxidative activity. In the present study, we evaluated the effect of EGCG on the kidney function in db/db mice and also tried to investigate the underlying mechanism of the renoprotective effects of EGCG in both animals and cells. EGCG treatment could decrease the level of urinary protein, 8-iso-PGF2a, and Ang II. Moreover, EGCG could also change the level of several parameters associated with oxidative stress. In addition, the protein expression levels of AT-1R, p22-phox, p47-phox, p-ERK1/2, p-p38 MAPK, TGF-β1, and α-SMA in diabetic db/db mice were upregulated, and all of these symptoms were downregulated with the treatment of EGCG at 50 and 100 mg/kg/d. Furthermore, the pathological changes were ameliorated in db/db mice after EGCG treatment. HK-2 cell-based experiments indicated that EGCG could inhibit the expression of MAPK pathways, which is the downstream effector of Ang II mediated oxidative stress. All these results indicated that EGCG treatment could ameliorate changes of renal pathology and delay the progression of DKD by suppressing hyperglycemia-induced oxidative stress in diabetic db/db mice. PMID:27698952

  14. Epigallocatechin-3-gallate Attenuates Renal Damage by Suppressing Oxidative Stress in Diabetic db/db Mice

    PubMed Central

    Yang, Xiu Hong; Pan, Yu; Zhan, Xiao Li; Zhang, Bao Long

    2016-01-01

    Epigallocatechin-3-gallate (EGCG), extracted from green tea, has been shown to have antioxidative activity. In the present study, we evaluated the effect of EGCG on the kidney function in db/db mice and also tried to investigate the underlying mechanism of the renoprotective effects of EGCG in both animals and cells. EGCG treatment could decrease the level of urinary protein, 8-iso-PGF2a, and Ang II. Moreover, EGCG could also change the level of several parameters associated with oxidative stress. In addition, the protein expression levels of AT-1R, p22-phox, p47-phox, p-ERK1/2, p-p38 MAPK, TGF-β1, and α-SMA in diabetic db/db mice were upregulated, and all of these symptoms were downregulated with the treatment of EGCG at 50 and 100 mg/kg/d. Furthermore, the pathological changes were ameliorated in db/db mice after EGCG treatment. HK-2 cell-based experiments indicated that EGCG could inhibit the expression of MAPK pathways, which is the downstream effector of Ang II mediated oxidative stress. All these results indicated that EGCG treatment could ameliorate changes of renal pathology and delay the progression of DKD by suppressing hyperglycemia-induced oxidative stress in diabetic db/db mice.

  15. TCR transgenic mice reveal the impact of type 1 diabetes loci on early and late disease checkpoints.

    PubMed

    Hillhouse, Erin E; Liston, Adrian; Collin, Roxanne; Desautels, Eric; Goodnow, Christopher C; Lesage, Sylvie

    2016-08-01

    Linkage analysis studies for autoimmune diabetes have revealed multiple non-major histocompatibility complex (MHC) chromosomal regions linked to disease susceptibility. To date, more than 20 insulin-dependent diabetes (Idd) loci linked to diabetes susceptibility have been identified in NOD mice and validated via congenic breeding. Importantly, evidence suggests that Idd loci may regulate at least two pathological steps during autoimmune diabetes development, namely the onset of insulitis and the transition from insulitis to overt diabetes. Here we assess the role of various non-MHC Idd diabetes-resistance loci, which have been validated in the non-transgenic setting, on autoimmune diabetes progression in the transgenic setting. Specifically, we generated multiple Idd congenic strains in the 3A9-TCR:insHEL NOD.H2(k) transgenic model and monitored their diabetes incidence. We show that 3A9-TCR:insHEL NOD.H2(k) mice congenic for Idd3 or Idd5 display a reduction in diabetes development, whereas mice congenic for Idd9 or Idd13 exhibit an increase, in comparison with 3A9-TCR:insHEL NOD.H2(k) mice. These results suggest that the presence of the 3A9-TCR and hen egg lysosyme transgenes can offset the regulatory function of certain diabetes-resistance genetic variants contained within the Idd loci, including Idd9 and Idd13. We propose the antigen-specific 3A9-TCR:insHEL transgenic model as a useful tool for the study of the genetics of autoimmune diabetes development. PMID:27046082

  16. [Effect and mechanism of polydatin on diabetic myocardial hypertrophy in mice].

    PubMed

    Huang, Bo; Xue, Lai; Wu, Yang; Jiang, Qing-song

    2015-11-01

    To observe the preventive effect of polydatin on diabetic myocardial hypertrophy in mice and discuss its and mechanism. The diabetic model was induced with low dose STZ (40 mg x kg(-1) x d(-1) x 5 d, ip) for five days in mice. The myocardial hypertrophy was determined by hypertrophy indexes (LVHI, left ventricular/right ventricle and septum), left ventricular/body weight (LV/BW), the histological examination and the mRNA expression of atrial natriuretic factor(ANF). The fast blood glucose(FBG), serum insulin and plasma hemoglobin A1c ( HbA1c) levels were detected, and then HOMA insulin resistance index ( HOMA. IR) was calculated. The mRNA and protein expressions were measured by qRT-PCR and western blotting, respectively. According to the results, the FBG of the model group exceeded 11.1 mmol x L(-1), with notable decrease in BW and significant increase in insulin, HbA1c and HOME. IR, suggesting the successful establishment and stability of the diabetic model. The increases in LVHI, LV/BW, cell surface and ANF mRNA indicated a myocardial hypertrophy in diabetic mice. Meanwhile, the model group showed decrease in mRNA and protein expressions of PPARβ and significant increase in NF-κB p65, COX-2 and iNOS expressions. After the preventation with PD (50, 100 mg x kg(-1) x d(-1)), diabetic mice showed increase in BW, reduction in the levels of FBG, insulin and HbA1 c, relief in insulin resistance and significant recovery in hypertrophy indexes, indicating PD has the protective effect in diabetic myocardial hypertrophy. Meanwhile, PD up-regulated the expression of PPARβ, inhibited the expressions of NF-κB p65, COX-2 and iNOS, demonstrating that PD's protective effect may be related to the activation of PPARβ and the inhibition of NF-κB, COX-2 and iNOS signaling pathways. PMID:27071267

  17. Knockout of the TauT Gene Predisposes C57BL/6 Mice to Streptozotocin-Induced Diabetic Nephropathy

    PubMed Central

    Han, Xiaobin; Patters, Andrea B.; Ito, Takashi; Schaffer, Stephen W.; Chesney, Russell W.

    2015-01-01

    Diabetic nephropathy is the leading cause of end stage renal disease in the world. Although tremendous efforts have been made, scientists have yet to identify an ideal animal model that can reproduce the characteristics of human diabetic nephropathy. In this study, we hypothesize that taurine insufficiency is a critical risk factor for development of diabetic nephropathy associated with diabetes mellitus. This hypothesis was tested in vivo in TauT heterozygous (TauT+/-) and homozygous (TauT-/-) knockout in C57BL/6 background mice. We have shown that alteration of the TauT gene (also known as SLC6A6) has a substantial effect on the susceptibility to development of extensive diabetic kidney disease in both TauT+/- and TauT-/-mouse models of diabetes. These animals developed histological changes characteristic of human diabetic nephropathy that included glomerulosclerosis, nodular lesions, arteriosclerosis, arteriolar dilation, and tubulointerstitial fibrosis. Immunohistochemical staining of molecular markers of smooth muscle actin, CD34, Ki67 and collagen IV further confirmed these observations. Our results demonstrated that both homozygous and heterozygous TauT gene deletion predispose C57BL/6 mice to develop end-stage diabetic kidney disease, which closely replicates the pathological features of diabetic nephropathy in human diabetic patients. PMID:25629817

  18. Human fibrocyte-derived exosomes accelerate wound healing in genetically diabetic mice.

    PubMed

    Geiger, Adolf; Walker, Audrey; Nissen, Erwin

    2015-11-13

    Diabetic ulcers represent a substantial societal and healthcare burden worldwide and scarcely respond to current treatment strategies. This study was addressed to evaluate the therapeutic potential of exosomes secreted by human circulating fibrocytes, a population of mesenchymal progenitors involved in normal wound healing via paracrine signaling. The exosomes released from cells sequentially stimulated with platelet-derived growth factor-BB and transforming growth factor-β1, in the presence of fibroblast growth factor 2, did not show potential immunogenicity. These exosomes exhibited in-vitro proangiogenic properties, activated diabetic dermal fibroblasts, induced the migration and proliferation of diabetic keratinocytes, and accelerated wound closure in diabetic mice in vivo. Important components of the exosomal cargo were heat shock protein-90α, total and activated signal transducer and activator of transcription 3, proangiogenic (miR-126, miR-130a, miR-132) and anti-inflammatory (miR124a, miR-125b) microRNAs, and a microRNA regulating collagen deposition (miR-21). This proof-of-concept study demonstrates the feasibility of the use of fibrocytes-derived exosomes for the treatment of diabetic ulcers.

  19. Oxidative stress in skeletal muscle impairs mitochondrial respiration and limits exercise capacity in type 2 diabetic mice.

    PubMed

    Yokota, Takashi; Kinugawa, Shintaro; Hirabayashi, Kagami; Matsushima, Shouji; Inoue, Naoki; Ohta, Yukihiro; Hamaguchi, Sanae; Sobirin, Mochamad A; Ono, Taisuke; Suga, Tadashi; Kuroda, Satoshi; Tanaka, Shinya; Terasaki, Fumio; Okita, Koichi; Tsutsui, Hiroyuki

    2009-09-01

    Insulin resistance or diabetes is associated with limited exercise capacity, which can be caused by the abnormal energy metabolism in skeletal muscle. Oxidative stress is involved in mitochondrial dysfunction in diabetes. We hypothesized that increased oxidative stress could cause mitochondrial dysfunction in skeletal muscle and make contribution to exercise intolerance in diabetes. C57/BL6J mice were fed on normal diet or high fat diet (HFD) for 8 wk to induce obesity with insulin resistance and diabetes. Treadmill tests with expired gas analysis were performed to determine the exercise capacity and whole body oxygen uptake (Vo(2)). The work (vertical distance x body weight) to exhaustion was reduced in the HFD mice by 36%, accompanied by a 16% decrease of peak Vo(2). Mitochondrial ADP-stimulated respiration, electron transport chain complex I and III activities, and mitochondrial content in skeletal muscle were decreased in the HFD mice. Furthermore, superoxide production and NAD(P)H oxidase activity in skeletal muscle were significantly increased in the HFD mice. Intriguingly, the treatment of HFD-fed mice with apocynin [10 mmol/l; an inhibitor of NAD(P)H oxidase activation] improved exercise intolerance and mitochondrial dysfunction in skeletal muscle without affecting glucose metabolism itself. The exercise capacity and mitochondrial function in skeletal muscle were impaired in type 2 diabetes, which might be due to enhanced oxidative stress. Therapies designed to regulate oxidative stress and maintain mitochondrial function could be beneficial to improve the exercise capacity in type 2 diabetes.

  20. Experimental induction of type 2 diabetes in aging-accelerated mice triggered Alzheimer-like pathology and memory deficits.

    PubMed

    Mehla, Jogender; Chauhan, Balwantsinh C; Chauhan, Neelima B

    2014-01-01

    Alzheimer's disease (AD) is an age-dependent neurodegenerative disease constituting ~95% of late-onset non-familial/sporadic AD, and only ~5% accounting for early-onset familial AD. Availability of a pertinent model representing sporadic AD is essential for testing candidate therapies. Emerging evidence indicates a causal link between diabetes and AD. People with diabetes are >1.5-fold more likely to develop AD. Senescence-accelerated mouse model (SAMP8) of accelerated aging displays many features occurring early in AD. Given the role played by diabetes in the pre-disposition of AD, and the utility of SAMP8 non-transgenic mouse model of accelerated aging, we examined if high fat diet-induced experimental type 2 diabetes in SAMP8 mice will trigger pathological aging of the brain. Results showed that compared to non-diabetic SAMP8 mice, diabetic SAMP8 mice exhibited increased cerebral amyloid-β, dysregulated tau-phosphorylating glycogen synthase kinase 3β, reduced synaptophysin immunoreactivity, and displayed memory deficits, indicating Alzheimer-like changes. High fat diet-induced type 2 diabetic SAMP8 mice may represent the metabolic model of AD.

  1. Experimental Induction of Type 2 Diabetes in Aging-Accelerated Mice Triggered Alzheimer-Like Pathology and Memory Deficits

    PubMed Central

    Mehla, Jogender; Chauhan, Balwantsinh C.; Chauhan, Neelima B.

    2014-01-01

    Alzheimer’s disease (AD) is an age-dependent neurodegenerative disease constituting ~95% of late-onset non-familial/sporadic AD, and only ~5% accounting for early-onset familial AD. Availability of a pertinent model representing sporadic AD is essential for testing candidate therapies. Emerging evidence indicates a causal link between diabetes and AD. People with diabetes are >1.5-fold more likely to develop AD. Senescence-accelerated mouse model (SAMP8) of accelerated aging displays many features occurring early in AD. Given the role played by diabetes in the pre-disposition of AD, and the utility of SAMP8 non-transgenic mouse model of accelerated aging, we examined if high fat diet-induced experimental type 2 diabetes in SAMP8 mice will trigger pathological aging of the brain. Results showed that compared to non-diabetic SAMP8 mice, diabetic SAMP8 mice exhibited increased cerebral amyloid-β, dysregulated tau-phosphorylating glycogen synthase kinase 3β, reduced synaptophysin immunoreactivity, and displayed memory deficits, indicating Alzheimer-like changes. High fat diet-induced type 2 diabetic SAMP8 mice may represent the metabolic model of AD. PMID:24121970

  2. Selenium supplementation restores the decreased albumin level of peripheral blood mononuclear cells in streptozotocin-induced diabetic mice

    PubMed Central

    AHN, Taeho; BAE, Chun-Sik; YUN, Chul-Ho

    2016-01-01

    Previously, it has been suggested that the phenotypic level of albumin in peripheral blood mononuclear cells (PBMC) decreased in streptozotocin (STZ)-induced diabetic rats. Concomitantly, the production of oxidative stresses was also elevated in the diabetic PBMC compared to that of normal control. These results suggest the close relationship between PBMC-albumin and its antioxidant roles. Here, we expanded the previous studies and investigated the effect of selenium supplementation as inorganic (sodium selenate) forms on the levels of albumin expression and oxidative stress in PBMC of STZ-induced diabetic mice. Selenium intake recovered the decreased albumin levels to those of normal mice and reduced the production of reactive oxygen species (ROS). These results support that selenium intake may alleviate the etiology and pathology of PBMC in type 1 diabetic mice by restoring the decrease in albumin contents and the production of ROS. PMID:26726102

  3. Expression of gluconeogenic enzymes and 11β-hydroxysteroid dehydrogenase type 1 in liver of diabetic mice after acute exercise

    PubMed Central

    Brust, Korie B; Corbell, Kathryn A; Al-Nakkash, Layla; Babu, Jeganathan Ramesh; Broderick, Tom L

    2014-01-01

    During acute exercise, normoglycemia is maintained by a precise match between hepatic glucose production and its peripheral utilization. This is met by a complex interplay of hepatic responses and glucose uptake by muscle. However, the effect of a single bout of exercise on hepatic gluconeogenesis, corticosterone (CORT) secretion, and glucose homeostasis in the db/db mouse model of type 2 diabetes is poorly understood. Diabetic db/db and lean control littermates were subjected to a 30 minute session of treadmill running and sacrificed either immediately after exercise or 8 hours later. Plasma glucose levels were markedly increased in db/db mice after exercise, whereas no change in glucose was observed in lean mice. Post-exercise measurements revealed that plasma CORT levels were also significantly increased in db/db mice compared to lean mice. Plasma hypothalamic corticotropin releasing hormone and pituitary adrenocorticotropic hormone levels were reciprocally decreased in both db/db and lean mice after exercise, indicating intact feedback mechanisms. Protein expression, determined by Western blot analysis, of the glucocorticoid receptor in liver was significantly increased in db/db mice subjected to prior exercise. In liver of db/db mice, a significant increase in the expression of phosphoenolpyruvate carboxykinase was noted compared to lean mice after exercise. However, no change in the expression of glucose-6-phosphatase (G6Pase) α or β was observed in db/db mice. Expression of 11β-hydroxysteroid dehydrogenase type 1 was increased significantly in db/db mice compared to lean mice after exercise. Our results show differences in plasma glucose and protein expression of gluconeogenic enzymes after acute exercise between lean and diabetic db/db mice. The db/db diabetic mouse is hyperglycemic after acute exercise. This hyperglycemic state may be explained, in part, by enhanced endogenous CORT secretion and regulated hepatic phosphoenolpyruvate carboxykinase and 11

  4. Senescence-associated phenotypes in Akita diabetic mice are enhanced by absence of bradykinin B2 receptors

    PubMed Central

    Kakoki, Masao; Kizer, Catherine M.; Yi, Xianwen; Takahashi, Nobuyuki; Kim, Hyung-Suk; Bagnell, C. Robert; Edgell, Cora-Jean S.; Maeda, Nobuyo; Jennette, J. Charles; Smithies, Oliver

    2006-01-01

    We have previously reported that genetically increased angiotensin-converting enzyme levels, or absence of the bradykinin B2 receptor, increase kidney damage in diabetic mice. We demonstrate here that this is part of a more general phenomenon — diabetes and, to a lesser degree, absence of the B2 receptor, independently but also largely additively when combined, enhance senescence-associated phenotypes in multiple tissues. Thus, at 12 months of age, indicators of senescence (alopecia, skin atrophy, kyphosis, osteoporosis, testicular atrophy, lipofuscin accumulation in renal proximal tubule and testicular Leydig cells, and apoptosis in the testis and intestine) are virtually absent in WT mice, detectable in B2 receptor–null mice, clearly apparent in mice diabetic because of a dominant mutation (Akita) in the Ins2 gene, and most obvious in Akita diabetic plus B2 receptor–null mice. Renal expression of several genes that encode proteins associated with senescence and/or apoptosis (TGF-β1, connective tissue growth factor, p53, α-synuclein, and forkhead box O1) increases in the same progression. Concomitant increases occur in 8-hydroxy-2′-deoxyguanosine, point mutations and deletions in kidney mitochondrial DNA, and thiobarbituric acid–reactive substances in plasma, together with decreases in the reduced form of glutathione in erythrocytes. Thus, absence of the bradykinin B2 receptor increases the oxidative stress, mitochondrial DNA damage, and many senescence-associated phenotypes already present in untreated Akita diabetic mice. PMID:16604193

  5. Neuronatin: A New Inflammation Gene Expressed on the Aortic Endothelium of Diabetic Mice

    PubMed Central

    Mzhavia, Nino; Yu, Shuiqing; Ikeda, Shota; Chu, Tehua T.; Goldberg, Ira; Dansky, Hayes M.

    2008-01-01

    OBJECTIVE—Identification of arterial genes and pathways altered in obesity and diabetes. RESEARCH DESIGN AND METHODS—Aortic gene expression profiles of obese and diabetic db/db, high-fat diet–fed C57BL/6J, and control mice were obtained using mouse Affymetrix arrays. Neuronatin (Nnat) was selected for further analysis. To determine the function of Nnat, a recombinant adenovirus (Ad-Nnat) was used to overexpress the Nnat gene in primary endothelial cells and in the mouse aorta in vivo. RESULTS—Nnat, a gene of unknown vascular function, was upregulated in the aortas of db/db and high-fat diet–fed mice. Nnat gene expression was increased in db/db mouse aorta endothelial cells. Nnat protein was localized to aortic endothelium and was selectively increased in the endothelium of db/db mice. Infection of primary human aortic endothelial cells (HAECs) with Ad-Nnat increased expression of a panel of nuclear factor-κB (NF-κB)-regulated genes, including inflammatory cytokines, chemokines, and cell adhesion molecules. Infection of mouse carotid arteries in vivo with the Ad-Nnat increased expression of vascular cell adhesion molecule 1 protein. Nnat activation of NF-κB and inflammatory gene expression in HAECs was mediated through pathways distinct from tumor necrosis factor-α. Nnat expression stimulated p38, Jun NH2-terminal kinase, extracellular signal–related kinase, and AKT kinase phosphorylation. Phosphatidylinositol 3-kinase and p38 inhibitors prevented Nnat-mediated activation of NF-κB–induced gene expression. CONCLUSIONS—Nnat expression is increased in endothelial cells of obese and diabetic mouse blood vessels. The effects of Nnat on inflammatory pathways in vitro and in vivo suggest a pathophysiological role of this new gene in diabetic vascular diseases. PMID:18591389

  6. Hyperglycemia and xerostomia are key determinants of tooth decay in type 1 diabetic mice

    PubMed Central

    Yeh, Chih-Ko; Harris, Stephen E; Mohan, Sumathy; Horn, Diane; Fajardo, Roberto; Chun, Yong-Hee Patricia; Jorgensen, James; MacDougall, Mary; Abboud-Werner, Sherry

    2012-01-01

    Insulin-dependent type 1 diabetes mellitus (DM) and oral diseases are closely interrelated. Poor metabolic control in diabetics is associated with a high risk of gingivitis, periodontitis and tooth loss. Salivary flow declines in diabetics and patients suffer from xerostomia. Reduced saliva predisposes to enamel hypomineralization and caries formation; however, the mechanisms that initiate and lead to progression of tooth decay and periodontitis in type 1 DM have not been explored. To address this issue, we analyzed tooth morphology in Akita −/− mice that harbor a point mutation in the Ins2 insulin gene, which leads to progressive hyperglycemia. Mandibles from Akita −/− and wild-type littermates were analyzed by microCT, scanning EM and histology; teeth were examined for amelogenin (Amel) and ameloblastin (Ambn) expression. Mice were injected with pilocarpine to assess saliva production. As hyperglycemia may alter pulp repair, the effect of high glucose levels on the proliferation/differentiation of cultured MD10-F2 pulp cells was also analyzed. Results showed that Akita −/− mice at 6 weeks of age showed chalky white incisors that correlated with marked hyperglycemia and impaired saliva production. MicroCT of Akita −/− teeth revealed excessive enamel wearing and hypomineralization; immunostaining for Amel and Ambn was decreased. A striking feature was invasion of dentinal tubules with Streptococcus mitis and microabcesses that originated in the coronal pulp and progressed to pulp necrosis and periapical periodontitis. High levels of glucose also inhibited MD10-F2 cell proliferation and differentiation. Our findings provide the first evidence that hyperglycemia in combination with reduced saliva in a model of type1 DM leads to decreased enamel mineralization/matrix proteins and predisposes to excessive wearing and decay. Importantly, hyperglycemia adversely affects enamel matrix proteins and pulp repair. Early detection and treatment of hyperglycemia

  7. Increased oxidative stress and apoptosis in the hypothalamus of diabetic male mice in the insulin receptor substrate-2 knockout model

    PubMed Central

    Canelles, Sandra; Argente, Jesús; Barrios, Vicente

    2016-01-01

    ABSTRACT Insulin receptor substrate-2-deficient (IRS2−/−) mice are considered a good model to study the development of diabetes because IRS proteins mediate the pleiotropic effects of insulin-like growth factor-I (IGF-I) and insulin on metabolism, mitogenesis and cell survival. The hypothalamus might play a key role in the early onset of diabetes, owing to its involvement in the control of glucose homeostasis and energy balance. Because some inflammatory markers are elevated in the hypothalamus of diabetic IRS2−/− mice, our aim was to analyze whether the diabetes associated with the absence of IRS2 results in hypothalamic injury and to analyze the intracellular mechanisms involved. Only diabetic IRS2−/− mice showed increased cell death and activation of caspase-8 and -3 in the hypothalamus. Regulators of apoptosis such as FADD, Bcl-2, Bcl-xL and p53 were also increased, whereas p-IκB and c-FLIPL were decreased. This was accompanied by increased levels of Nox-4 and catalase, enzymes involved in oxidative stress. In summary, the hypothalamus of diabetic IRS2−/− mice showed an increase in oxidative stress and inflammatory markers that finally resulted in cell death via substantial activation of the extrinsic apoptotic pathway. Conversely, non-diabetic IRS2−/− mice did not show cell death in the hypothalamus, possibly owing to an increase in the levels of circulating IGF-I and in the enhanced hypothalamic IGF-IR phosphorylation that would lead to the stimulation of survival pathways. In conclusion, diabetes in IRS2-deficient male mice is associated with increased oxidative stress and apoptosis in the hypothalamus. PMID:27013528

  8. Increased oxidative stress and apoptosis in the hypothalamus of diabetic male mice in the insulin receptor substrate-2 knockout model.

    PubMed

    Baquedano, Eva; Burgos-Ramos, Emma; Canelles, Sandra; González-Rodríguez, Agueda; Chowen, Julie A; Argente, Jesús; Barrios, Vicente; Valverde, Angela M; Frago, Laura M

    2016-05-01

    Insulin receptor substrate-2-deficient (IRS2(-/-)) mice are considered a good model to study the development of diabetes because IRS proteins mediate the pleiotropic effects of insulin-like growth factor-I (IGF-I) and insulin on metabolism, mitogenesis and cell survival. The hypothalamus might play a key role in the early onset of diabetes, owing to its involvement in the control of glucose homeostasis and energy balance. Because some inflammatory markers are elevated in the hypothalamus of diabetic IRS2(-/-) mice, our aim was to analyze whether the diabetes associated with the absence of IRS2 results in hypothalamic injury and to analyze the intracellular mechanisms involved. Only diabetic IRS2(-/-) mice showed increased cell death and activation of caspase-8 and -3 in the hypothalamus. Regulators of apoptosis such as FADD, Bcl-2, Bcl-xL and p53 were also increased, whereas p-IκB and c-FLIPL were decreased. This was accompanied by increased levels of Nox-4 and catalase, enzymes involved in oxidative stress. In summary, the hypothalamus of diabetic IRS2(-/-) mice showed an increase in oxidative stress and inflammatory markers that finally resulted in cell death via substantial activation of the extrinsic apoptotic pathway. Conversely, non-diabetic IRS2(-/-) mice did not show cell death in the hypothalamus, possibly owing to an increase in the levels of circulating IGF-I and in the enhanced hypothalamic IGF-IR phosphorylation that would lead to the stimulation of survival pathways. In conclusion, diabetes in IRS2-deficient male mice is associated with increased oxidative stress and apoptosis in the hypothalamus. PMID:27013528

  9. Increased oxidative stress and apoptosis in the hypothalamus of diabetic male mice in the insulin receptor substrate-2 knockout model.

    PubMed

    Baquedano, Eva; Burgos-Ramos, Emma; Canelles, Sandra; González-Rodríguez, Agueda; Chowen, Julie A; Argente, Jesús; Barrios, Vicente; Valverde, Angela M; Frago, Laura M

    2016-05-01

    Insulin receptor substrate-2-deficient (IRS2(-/-)) mice are considered a good model to study the development of diabetes because IRS proteins mediate the pleiotropic effects of insulin-like growth factor-I (IGF-I) and insulin on metabolism, mitogenesis and cell survival. The hypothalamus might play a key role in the early onset of diabetes, owing to its involvement in the control of glucose homeostasis and energy balance. Because some inflammatory markers are elevated in the hypothalamus of diabetic IRS2(-/-) mice, our aim was to analyze whether the diabetes associated with the absence of IRS2 results in hypothalamic injury and to analyze the intracellular mechanisms involved. Only diabetic IRS2(-/-) mice showed increased cell death and activation of caspase-8 and -3 in the hypothalamus. Regulators of apoptosis such as FADD, Bcl-2, Bcl-xL and p53 were also increased, whereas p-IκB and c-FLIPL were decreased. This was accompanied by increased levels of Nox-4 and catalase, enzymes involved in oxidative stress. In summary, the hypothalamus of diabetic IRS2(-/-) mice showed an increase in oxidative stress and inflammatory markers that finally resulted in cell death via substantial activation of the extrinsic apoptotic pathway. Conversely, non-diabetic IRS2(-/-) mice did not show cell death in the hypothalamus, possibly owing to an increase in the levels of circulating IGF-I and in the enhanced hypothalamic IGF-IR phosphorylation that would lead to the stimulation of survival pathways. In conclusion, diabetes in IRS2-deficient male mice is associated with increased oxidative stress and apoptosis in the hypothalamus.

  10. Gold nanorods in an oil-base formulation for transdermal treatment of type 1 diabetes in mice.

    PubMed

    Nose, Keisuke; Pissuwan, Dakrong; Goto, Masahiro; Katayama, Yoshiki; Niidome, Takuro

    2012-06-21

    Efficient transdermal insulin delivery to the systemic circulation would bring major benefit to diabetic patients. We investigated the possibility of using gold nanorods (GNRs) that formed a complex with an edible surfactant and insulin (INS) in an oil phase to form a solid-in-oil (SO) formulation (SO-INS-GNR) for transdermal treatment of diabetes. Diabetic mice comprised the model for our study. In vitro, there was high penetration of insulin through the stratum corneum (SC) and the dermis in mouse skin treated with an SO-INS-GNR complex plus near-infrared (NIR) light irradiation. Blood glucose levels in the diabetic mice were significantly decreased after treatment with SO-INS-GNR plus irradiation. To our knowledge, this is the first study to use gold nanorods for systemic insulin delivery through the skin. The use of an SO-INS-GNR complex combined with NIR irradiation may provide the possibility of transdermal insulin delivery to diabetic patients.

  11. Transplantation of insulin-secreting cells differentiated from human adipose tissue-derived stem cells into type 2 diabetes mice.

    PubMed

    Nam, Ji Sun; Kang, Hyun Mi; Kim, Jiyoung; Park, Seah; Kim, Haekwon; Ahn, Chul Woo; Park, Jin Oh; Kim, Kyung Rae

    2014-01-10

    Currently, there are limited ways to preserve or recover insulin secretory capacity in human pancreas. We evaluated the efficacy of cell therapy using insulin-secreting cells differentiated from human eyelid adipose tissue-derived stem cells (hEAs) into type 2 diabetes mice. After differentiating hEAs into insulin-secreting cells (hEA-ISCs) in vitro, cells were transplanted into a type 2 diabetes mouse model. Serum levels of glucose, insulin and c-peptide were measured, and changes of metabolism and inflammation were assessed in mice that received undifferentiated hEAs (UDC group), differentiated hEA-ISCs (DC group), or sham operation (sham group). Human gene expression and immunohistochemical analysis were done. DC group mice showed improved glucose level, and survival up to 60 days compared to those of UDC and sham group. Significantly increased levels of human insulin and c-peptide were detected in sera of DC mice. RT-PCR and immunohistochemical analysis showed human gene expression and the presence of human cells in kidneys of DC mice. When compared to sham mice, DC mice exhibited lower levels of IL-6, triglyceride and free fatty acids as the control mice. Transplantation of hEA-ISCs lowered blood glucose level in type 2 diabetes mice by increasing circulating insulin level, and ameliorating metabolic parameters including IL-6.

  12. Angiography reveals novel features of the retinal vasculature in healthy and diabetic mice.

    PubMed

    McLenachan, Samuel; Magno, Aaron Len; Ramos, David; Catita, Joana; McMenamin, Paul G; Chen, Fred Kuanfu; Rakoczy, Elizabeth Piroska; Ruberte, Jesus

    2015-09-01

    The mouse retina is a commonly used animal model for the study of pathogenesis and treatment of blinding retinal vascular diseases such as diabetic retinopathy. In this study, we aimed to characterize normal and pathological variations in vascular anatomy in the mouse retina using fluorescein angiography visualized with scanning laser ophthalmoscopy and optical coherence tomography (SLO-OCT). We examined eyes from C57BL/6J wild type mice as well as the Ins2(Akita) and Akimba mouse models of diabetic retinopathy using the Heidelberg Retinal Angiography (HRA) and OCT system. Angiography was performed on three focal planes to examine distinct vascular layers. For comparison with angiographic data, ex vivo analyses, including Indian ink angiography, histology and 3D confocal scanning laser microscopy were performed in parallel. All layers of the mouse retinal vasculature could be readily visualized during fluorescein angiography by SLO-OCT. Blood vessel density was increased in the deep vascular plexus (DVP) compared with the superficial vascular plexus (SVP). Arteriolar and venular typologies were established and structural differences were observed between venular types. Unexpectedly, the hyaloid artery was found to persist in 15% of C57BL/6 mice, forming anastomoses with peripheral retinal capillaries. Fluorescein leakage was easily detected in Akimba retinae by angiography, but was not observed in Ins2(Akita) mice. Blood vessel density was increased in the DVP of 6 month old Ins2(Akita) mice, while the SVP displayed reduced branching in precapillary arterioles. In summary, we present the first comprehensive characterization of the mouse retinal vasculature by SLO-OCT fluorescein angiography. Using this clinical imaging technique, we report previously unrecognized variations in C57BL/6J vascular anatomy and novel features of vascular retinopathy in the Ins2(Akita) mouse model of diabetes.

  13. Chlorogenic Acid Improves Late Diabetes through Adiponectin Receptor Signaling Pathways in db/db Mice

    PubMed Central

    Jin, Shasha; Chang, Cuiqing; Zhang, Lantao; Liu, Yang; Huang, Xianren; Chen, Zhimin

    2015-01-01

    The aim of this study was to examine the effects of chlorogenic acid (CGA) on glucose and lipid metabolism in late diabetic db/db mice, as well as on adiponectin receptors and their signaling molecules, to provide evidence for CGA in the prevention of type 2 diabetes. We randomly divided 16 female db/db mice into db/db-CGA and db/db-control (CON) groups equally; db/m mice were used as control mice. The mice in both the db/db-CGA and db/m-CGA groups were administered 80 mg/kg/d CGA by lavage for 12 weeks, whereas the mice in both CON groups were given equal volumes of phosphate-buffered saline (PBS) by lavage. At the end of the intervention, we assessed body fat and the parameters of glucose and lipid metabolism in the plasma, liver and skeletal muscle tissues as well as the levels of aldose reductase (AR) and transforming growth factor-β1 (TGF-β1) in the kidneys and measured adiponectin receptors and the protein expression of their signaling molecules in liver and muscle tissues. After 12 weeks of intervention, compared with the db/db-CON group, the percentage of body fat, fasting plasma glucose (FPG) and glycosylated hemoglobin (HbA1c) in the db/db-CGA group were all significantly decreased; TGF-β1 protein expression and AR activity in the kidney were both decreased; and the adiponectin level in visceral adipose was increased. The protein expression of adiponectin receptors (ADPNRs), the phosphorylation of AMP-activated protein kinase (AMPK) in the liver and muscle, and the mRNA and protein levels of peroxisome proliferator-activated receptor alpha (PPAR-α) in the liver were all significantly greater. CGA could lower the levels of fasting plasma glucose and HbA1c during late diabetes and improve kidney fibrosis to some extent through the modulation of adiponectin receptor signaling pathways in db/db mice. PMID:25849026

  14. Impaired vascular responses to parasympathetic nerve stimulation and muscarinic receptor activation in the submandibular gland in nonobese diabetic mice

    PubMed Central

    Berggreen, Ellen; Nyløkken, Krister; Delaleu, Nicolas; Hajdaragic-Ibricevic, Hamijeta; Jonsson, Malin V

    2009-01-01

    Introduction Decreased vascular responses to salivary gland stimulation are observed in Sjögren's syndrome patients. We investigate whether impaired vascular responses to parasympathetic stimulation and muscarinic receptor activation in salivary glands parallels hyposalivation in an experimental model for Sjögren's syndrome. Methods Blood flow responses in the salivary glands were measured by laser Doppler flowmeter. Muscarinic receptor activation was followed by saliva secretion measurements. Nitric oxide synthesis-mediated blood flow responses were studied after administration of a nitric oxide synthase inhibitor. Glandular autonomic nerves and muscarinic 3 receptor distributions were also investigated. Results Maximal blood flow responses to parasympathetic stimulation and muscarinic receptor activation were significantly lower in nonobese diabetic (NOD) mice compared with BALB/c mice, coinciding with impaired saliva secretion in nonobese diabetic mice (P < 0.005). Nitric oxide synthase inhibitor had less effect on blood flow responses after parasympathetic nerve stimulation in nonobese diabetic mice compared with BALB/c mice (P < 0.02). In nonobese diabetic mice, salivary gland parasympathetic nerve fibres were absent in areas of focal infiltrates. Muscarinic 3 receptor might be localized in the blood vessel walls of salivary glands. Conclusions Impaired vasodilatation in response to parasympathetic nerve stimulation and muscarinic receptor activation may contribute to hyposalivation observed in nonobese diabetic mice. Reduced nitric oxide signalling after parasympathetic nerve stimulation may contribute in part to the impaired blood flow responses. The possibility of muscarinic 3 receptor in the vasculature supports the notion that muscarinic 3 receptor autoantibodies present in nonobese diabetic mice might impair the fluid transport required for salivation. Parasympathetic nerves were absent in areas of focal infiltrates, whereas a normal distribution was

  15. Effects of a high-monounsaturated fat diet on glucose and lipid metabolisms in normal and diabetic mice.

    PubMed

    Kotake, Jiro; Tanaka, Yoshiaki; Umehara, Norimitsu; Miyashita, Akira; Tsuru, Tomomitsu; Hikida, Shigeki; Mizote, Hiroyoshi

    2004-04-01

    The beneficial effects of high-monounsaturated fat (high-MUFA) diets on diabetic patients have been reported, whereas studies concerning the effects on animals have been few. Although experiments on animals should be useful in elucidating underlying mechanisms, it is not clear even whether there are benefits of a high-MUFA diet in animals. This study examined the short-term effects of a high-MUFA diet on normal and genetically diabetic mice. The high-MUFA diet supplied 38% of the total calories as fat (26% from MUFA), while a regular diet was 13% fat (3% from MUFA). Normal C5 7BL/6J and diabetic C57BL/KsJ-db/db mice were fed either the regular or the high-MUFA diet for 1 wk. Serum glucose and lipid levels were then measured. In normal mice, hepatic triglyceride production was also compared between the two dietary groups using the Triton WR1339 method. An oral glucose tolerance test was conducted on the diabetic mice. After 1 wk of feeding to normal mice, the high-MUFA diet was seen to lower serum triglyceride levels and reduce hepatic triglyceride production in comparison with the regular diet; it is suggested that the lowering of triglyceride consists of mechanisms including reduced hepatic triglyceride production. When diabetic mice were fed the high-MUFA diet with a controlled caloric intake, the serum glucose levels lowered without an accompanying deterioration in lipid metabolism and the impaired glucose tolerance was ameliorated. This study demonstrates that a high-MUFA diet can lower serum triglyceride levels in normal mice and improve disorders of glucose metabolism in diabetic mice.

  16. Estrogen Therapy Delays Autoimmune Diabetes and Promotes the Protective Efficiency of Natural Killer T-Cell Activation in Female Nonobese Diabetic Mice.

    PubMed

    Gourdy, Pierre; Bourgeois, Elvire A; Levescot, Anaïs; Pham, Linh; Riant, Elodie; Ahui, Marie-Louise; Damotte, Diane; Gombert, Jean-Marc; Bayard, Francis; Ohlsson, Claes; Arnal, Jean-François; Herbelin, André

    2016-01-01

    Therapeutic strategies focused on restoring immune tolerance remain the main avenue to prevent type 1 diabetes (T1D). Because estrogens potentiate FoxP3+ regulatory T cells (Treg) and invariant natural killer T (iNKT) cells, two regulatory lymphocyte populations that are functionally deficient in nonobese diabetic (NOD) mice, we investigated whether estradiol (E2) therapy influences the course of T1D in this model. To this end, female NOD mice were sc implanted with E2- or placebo-delivering pellets to explore the course of spontaneous and cyclophosphamide-induced diabetes. Treg-depleted and iNKT-cell-deficient (Jα18(-/-)) NOD mice were used to assess the respective involvement of these lymphocyte populations in E2 effects. Early E2 administration (from 4 wk of age) was found to preserve NOD mice from both spontaneous and cyclophosphamide-induced diabetes, and a complete protection was also observed throughout treatment when E2 treatment was initiated after the onset of insulitis (from 12 wk of age). This delayed E2 treatment remained fully effective in Treg-depleted mice but failed to entirely protect Jα18(-/-) mice. Accordingly, E2 administration was shown to restore the cytokine production of iNKT cells in response to in vivo challenge with the cognate ligand α-galactosylceramide. Finally, transient E2 administration potentiated the previously described protective action of α-galactosylceramide treatment in NOD females. This study provides original evidence that E2 therapy strongly protects NOD mice from T1D and reveals the estrogen/iNKT cell axis as a new effective target to counteract diabetes onset at the stage of insulitis. Estrogen-based therapy should thus be considered for T1D prevention. PMID:26485613

  17. Estrogen Therapy Delays Autoimmune Diabetes and Promotes the Protective Efficiency of Natural Killer T-Cell Activation in Female Nonobese Diabetic Mice.

    PubMed

    Gourdy, Pierre; Bourgeois, Elvire A; Levescot, Anaïs; Pham, Linh; Riant, Elodie; Ahui, Marie-Louise; Damotte, Diane; Gombert, Jean-Marc; Bayard, Francis; Ohlsson, Claes; Arnal, Jean-François; Herbelin, André

    2016-01-01

    Therapeutic strategies focused on restoring immune tolerance remain the main avenue to prevent type 1 diabetes (T1D). Because estrogens potentiate FoxP3+ regulatory T cells (Treg) and invariant natural killer T (iNKT) cells, two regulatory lymphocyte populations that are functionally deficient in nonobese diabetic (NOD) mice, we investigated whether estradiol (E2) therapy influences the course of T1D in this model. To this end, female NOD mice were sc implanted with E2- or placebo-delivering pellets to explore the course of spontaneous and cyclophosphamide-induced diabetes. Treg-depleted and iNKT-cell-deficient (Jα18(-/-)) NOD mice were used to assess the respective involvement of these lymphocyte populations in E2 effects. Early E2 administration (from 4 wk of age) was found to preserve NOD mice from both spontaneous and cyclophosphamide-induced diabetes, and a complete protection was also observed throughout treatment when E2 treatment was initiated after the onset of insulitis (from 12 wk of age). This delayed E2 treatment remained fully effective in Treg-depleted mice but failed to entirely protect Jα18(-/-) mice. Accordingly, E2 administration was shown to restore the cytokine production of iNKT cells in response to in vivo challenge with the cognate ligand α-galactosylceramide. Finally, transient E2 administration potentiated the previously described protective action of α-galactosylceramide treatment in NOD females. This study provides original evidence that E2 therapy strongly protects NOD mice from T1D and reveals the estrogen/iNKT cell axis as a new effective target to counteract diabetes onset at the stage of insulitis. Estrogen-based therapy should thus be considered for T1D prevention.

  18. A study of hypoglycaemic effects of Azadirachta indica (Neem) in normaland alloxan diabetic rabbits.

    PubMed

    Khosla, P; Bhanwra, S; Singh, J; Seth, S; Srivastava, R K

    2000-01-01

    Hypoglycaemic effect was observed with Azadirachta indica when given as a leaf extract and seed oil, in normal as well as diabetic rabbits. The effect, however, was more pronounced in diabetic animals in which administration for 4 weeks after alloxan induced diabetes, significantly reduced blood glucose levels. Hypoglycaemic effect was comparable to that of glibenclamide. Pretreatment with A. indica leaf extract or seed oil administration, started 2 weeks prior to alloxan, partially prevented the rise in blood glucose levels as compared to control diabetic animals. The data suggests that A. indica could be of benefit in diabetes mellitus in controlling the blood sugar or may also be helpful in preventing or delaying the onset of the disease. PMID:10919098

  19. Renal protective effects of extracts from guava fruit (Psidium guajava L.) in diabetic mice.

    PubMed

    Lin, Chia-Yu; Lin, Chia-Yun; Yin, Mei-Chin

    2012-09-01

    This study analyzed the content of phenolic acids and flavonoids in extracts of guava fruit (Psidium guajava L.), and examined the renal protective effects of guava aqueous extract (GAE) and ethanol extract (GEE) in diabetic mice. GAE had more caffeic acid, myricetin, and quercetin; and GEE had more cinnamic, coumaric and ferulic acids. GAE or GEE at 1 and 2 % was supplied in diet for 12 weeks. GAE or GEE intake at 2 % significantly reduced glucose and blood urea nitrogen levels, increased insulin level in plasma of diabetic mice (p < 0.05). GAE or GEE treatments dose-dependently reserved glutathione content, retained activity of catalase and glutathione peroxidase, and decreased reactive oxygen species, interleukin (IL)-6, tumor necrosis factor-α and IL-1β levels in kidney (p < 0.05). GAE and GEE treatments at 2 % significantly declined renal N (ε)-(carboxymethyl)lysine, pentosidine and fructose levels (p < 0.05), and suppressed renal activity of aldose reductase (p < 0.05). These findings support that guava fruit could protect kidney against diabetic progression via its anti-oxidative, anti-inflammatory and anti-glycative effects.

  20. Inhibition of inflammation by astaxanthin alleviates cognition deficits in diabetic mice.

    PubMed

    Zhou, Xiaoyan; Zhang, Fang; Hu, Xiaotong; Chen, Jing; Wen, Xiangru; Sun, Ying; Liu, Yonghai; Tang, Renxian; Zheng, Kuiyang; Song, Yuanjian

    2015-11-01

    Neurons in the hippocampal and cortical functional regions are more susceptible to damage induced by hyperglycemia, which can result in severe spatial learning and memory impairment. Neuroprotection ameliorates cognitive impairment induced by hyperglycemia in diabetic encephalopathy (DE). Astaxanthin has been widely studied in diabetes mellitus and diabetic complications due to its hypoglycemic, antioxidant and anti-apoptotic effects. However, whether astaxanthin can alleviate cognition deficits induced by DE and its precise mechanisms remain undetermined. In this study, DE was induced by streptozotocin (STZ, 150 mg/kg) in ICR mice. We observed the effect of astaxanthin on cognition and investigated its potential mechanisms in DE mice. Results showed that astaxanthin treatment significantly decreased the latency and enhanced the distance and time spent in the target quadrant in the Morris water maze test. Furthermore, neuronal survival was significantly increased in the hippocampal CA3 region and the frontal cortex following treatment with astaxanthin. Meanwhile, immunoblotting was used to observe the nuclear translocation of nuclear factor-kappaB (NF-κB) p65 and the expression of tumor necrosis factor-α (TNF-α) in the hippocampus and frontal cortex. The results indicated that astaxanthin could inhibit NF-κB nuclear translocation and downregulate TNF-α expression in the hippocampus and frontal cortex. Overall, the present study implied that astaxanthin could improve cognition by protecting neurons against inflammation injury potentially through inhibiting the nuclear translocation of NF-κB and down-regulating TNF-α. PMID:26272354

  1. Prevention or early cure of type 1 diabetes by intranasal administration of gliadin in NOD mice.

    PubMed

    Funda, David P; Fundova, Petra; Hansen, Axel Kornerup; Buschard, Karsten

    2014-01-01

    Induction of long-term tolerance to β-cell autoantigens has been investigated both in animal models and in human type 1 diabetes (T1D) in order to prevent the disease. As regards external compounds, the dietary plant protein fraction has been associated with high penetrance of the disease, whereas gluten-free diets prevent T1D in animal models. Herewith we investigated whether intranasal (i.n.) administration of gliadin or gluten may arrest the diabetogenic process. I.n. administration of gliadin to 4-week-old NOD mice significantly reduced the diabetes incidence. Similarly, the insulitis was lowered. Intranasal gliadin also rescued a fraction of prediabetic 13-week-old NOD mice from progressing to clinical onset of diabetes compared to OVA-treated controls. Vaccination with i.n. gliadin led to an induction of CD4(+)Foxp3(+) T cells and even more significant induction of γδ T cells in mucosal, but not in non-mucosal lymphoid compartments. This prevention strategy was characterized by an increased proportion of IL-10 and a decreased proportion of IL-2, IL-4 and IFN-γ-positive CD4(+)Foxp3(+) T cells, and IFN-γ-positive γδ T cells, preferentially in mucosal lymphoid organs. In conclusion, i.n. vaccination with gliadin, an environmental antigen with possible etiological influence in T1D, may represent a novel, safer strategy for prevention or even early cure of T1D.

  2. Low-intensity vibration improves angiogenesis and wound healing in diabetic mice.

    PubMed

    Weinheimer-Haus, Eileen M; Judex, Stefan; Ennis, William J; Koh, Timothy J

    2014-01-01

    Chronic wounds represent a significant health problem, especially in diabetic patients. In the current study, we investigated a novel therapeutic approach to wound healing--whole body low-intensity vibration (LIV). LIV is anabolic for bone, by stimulating the release of growth factors, and modulating stem cell proliferation and differentiation. We hypothesized that LIV improves the delayed wound healing in diabetic mice by promoting a pro-healing wound environment. Diabetic db/db mice received excisional cutaneous wounds and were subjected to LIV (0.4 g at 45 Hz) for 30 min/d or a non-vibrated sham treatment (controls). Wound tissue was collected at 7 and 15 d post-wounding and wound healing, angiogenesis, growth factor levels and wound cell phenotypes were assessed. LIV increased angiogenesis and granulation tissue formation at day 7, and accelerated wound closure and re-epithelialization over days 7 and 15. LIV also reduced neutrophil accumulation and increased macrophage accumulation. In addition, LIV increased expression of pro-healing growth factors and chemokines (insulin-like growth factor-1, vascular endothelial growth factor and monocyte chemotactic protein-1) in wounds. Despite no evidence of a change in the phenotype of CD11b+ macrophages in wounds, LIV resulted in trends towards a less inflammatory phenotype in the CD11b- cells. Our findings indicate that LIV may exert beneficial effects on wound healing by enhancing angiogenesis and granulation tissue formation, and these changes are associated with increases in pro-angiogenic growth factors.

  3. Hypoglycemic, hypolipidemic and antioxidant effects of peptides from red deer antlers in streptozotocin-induced diabetic mice.

    PubMed

    Jiang, Ning; Zhang, Shuangjian; Zhu, Jing; Shang, Jing; Gao, Xiangdong

    2015-01-01

    Diabetes mellitus is a serious chronic metabolic disorder. To develop novel anti-diabetic drugs from nature sources has always been the focus of research. Red deer (Cervus elaphu Linnaeus) antler is one of the most famous Chinese traditional medicines. We found that the peptides of 5-10 kDa from red deer antlers (PRDA) promoted the growth of cultured rat islet cells. The purpose of this study was to investigate the anti-diabetic actions of PRDA in vivo and purify a pure active peptide. We therefore investigated the hypoglycemic, hypolipidemic and antioxidant effects of PRDA in streptozotocin-induced diabetic mice and isolated a pure anti-diabetic peptide. PRDA, given intraperitoneally (75, 150, or 300 μg/kg), significantly decreased the blood glucose levels, significantly increased the insulin concentrations, and remarkably improved the lipid metabolism in the diabetic mice. PRDA significantly increased the superoxide dismutase activity, catalase activity and the total antioxidant capacity in the serum and liver, and simultaneously decreased the malondialdehyde levels. The activities of hexokinase and pyruvate kinase, two important enzymes involved in glucose utilization, were also significantly increased in the liver of the PRDA-treated diabetic mice. Moreover, a novel anti-diabetic peptide isolated from PRDA significantly promoted the viability of cultured rat insulinoma cells. The molecular mass of the purified peptide was 7064.8 Da under mass spectrometry, and its N-terminal amino acid sequence was identified as LSPFTTKTYFPHFDLSHGSA. Thus, PRDA may be useful in managing the hyperglycemia, hyperlipidemia, and oxidative stress in diabetes, and the anti-diabetic peptide is a promising drug for the treatment of diabetes. PMID:25985857

  4. Regulation of intestinal SGLT1 by catestatin in hyperleptinemic type 2 diabetic mice

    PubMed Central

    Rieg, Jessica A. Dominguez; Chirasani, Venkat R.; Koepsell, Hermann; Senapati, Sanjib; Mahata, Sushil K.; Rieg, Timo

    2015-01-01

    The small intestine is the major site for nutrient absorption, which is critical in maintenance of euglycemia. Leptin, a key hormone involved in energy homeostasis, directly affects nutrient transport across the intestinal epithelium. Catestatin (CST), a 21-amino acid peptide derived from proprotein chromogranin A, has been shown to modulate leptin signaling. Therefore, we reasoned that leptin and CST could modulate intestinal Na+-glucose transporter 1 (SGLT1) expression in the context of obesity and diabetes. We found that hyperleptinemic db/db mice exhibit increased mucosal mass, associated with an enhanced proliferative response and decreased apoptosis in intestinal crypts, a finding absent in leptin deficient ob/ob mice. Intestinal SGLT1 abundance was significantly decreased in hyperleptinemic, but not leptin-deficient mice, indicating leptin regulation of SGLT1 expression. Phlorizin, a SGLT1/2 inhibitor, was without effect in an oral glucose tolerance test in db/db mice. The alterations in architecture and SGLT1 abundance were not accompanied by changes in the localization of intestinal alkaline phosphatase, indicating intact differentiation. Treatment of db/db mice with CST restored intestinal SGLT1 abundance and intestinal turnover, suggesting a cross-talk between leptin and CST, without affecting plasma leptin levels. Consistent with this hypothesis, we identified structural homology between CST and the AB-loop of leptin and protein-protein docking revealed binding of CST and leptin with the Ig-like binding site III of the leptin receptor. In summary, downregulation of SGLT1 in an obese type 2 diabetic mouse model with hyperleptinemia is presumably mediated via the short form of the leptin receptor and reduces overt hyperglycemia. PMID:26552046

  5. Regulation of intestinal SGLT1 by catestatin in hyperleptinemic type 2 diabetic mice.

    PubMed

    Dominguez Rieg, Jessica A; Chirasani, Venkat R; Koepsell, Hermann; Senapati, Sanjib; Mahata, Sushil K; Rieg, Timo

    2016-01-01

    The small intestine is the major site for nutrient absorption that is critical in maintenance of euglycemia. Leptin, a key hormone involved in energy homeostasis, directly affects nutrient transport across the intestinal epithelium. Catestatin (CST), a 21-amino acid peptide derived from proprotein chromogranin A, has been shown to modulate leptin signaling. Therefore, we reasoned that leptin and CST could modulate intestinal Na(+)-glucose transporter 1 (SGLT1) expression in the context of obesity and diabetes. We found that hyperleptinemic db/db mice exhibit increased mucosal mass, associated with an enhanced proliferative response and decreased apoptosis in intestinal crypts, a finding absent in leptin-deficient ob/ob mice. Intestinal SGLT1 abundance was significantly decreased in hyperleptinemic but not leptin-deficient mice, indicating leptin regulation of SGLT1 expression. Phlorizin, a SGLT1/2 inhibitor, was without effect in an oral glucose tolerance test in db/db mice. The alterations in architecture and SGLT1 abundance were not accompanied by changes in the localization of intestinal alkaline phosphatase, indicating intact differentiation. Treatment of db/db mice with CST restored intestinal SGLT1 abundance and intestinal turnover, suggesting a cross-talk between leptin and CST, without affecting plasma leptin levels. Consistent with this hypothesis, we identified structural homology between CST and the AB-loop of leptin and protein-protein docking revealed binding of CST and leptin with the Ig-like binding site-III of the leptin receptor. In summary, downregulation of SGLT1 in an obese type 2 diabetic mouse model with hyperleptinemia is presumably mediated via the short form of the leptin receptor and reduces overt hyperglycemia. PMID:26552046

  6. Regulation of intestinal SGLT1 by catestatin in hyperleptinemic type 2 diabetic mice.

    PubMed

    Dominguez Rieg, Jessica A; Chirasani, Venkat R; Koepsell, Hermann; Senapati, Sanjib; Mahata, Sushil K; Rieg, Timo

    2016-01-01

    The small intestine is the major site for nutrient absorption that is critical in maintenance of euglycemia. Leptin, a key hormone involved in energy homeostasis, directly affects nutrient transport across the intestinal epithelium. Catestatin (CST), a 21-amino acid peptide derived from proprotein chromogranin A, has been shown to modulate leptin signaling. Therefore, we reasoned that leptin and CST could modulate intestinal Na(+)-glucose transporter 1 (SGLT1) expression in the context of obesity and diabetes. We found that hyperleptinemic db/db mice exhibit increased mucosal mass, associated with an enhanced proliferative response and decreased apoptosis in intestinal crypts, a finding absent in leptin-deficient ob/ob mice. Intestinal SGLT1 abundance was significantly decreased in hyperleptinemic but not leptin-deficient mice, indicating leptin regulation of SGLT1 expression. Phlorizin, a SGLT1/2 inhibitor, was without effect in an oral glucose tolerance test in db/db mice. The alterations in architecture and SGLT1 abundance were not accompanied by changes in the localization of intestinal alkaline phosphatase, indicating intact differentiation. Treatment of db/db mice with CST restored intestinal SGLT1 abundance and intestinal turnover, suggesting a cross-talk between leptin and CST, without affecting plasma leptin levels. Consistent with this hypothesis, we identified structural homology between CST and the AB-loop of leptin and protein-protein docking revealed binding of CST and leptin with the Ig-like binding site-III of the leptin receptor. In summary, downregulation of SGLT1 in an obese type 2 diabetic mouse model with hyperleptinemia is presumably mediated via the short form of the leptin receptor and reduces overt hyperglycemia.

  7. Nobiletin improves hyperglycemia and insulin resistance in obese diabetic ob/ob mice.

    PubMed

    Lee, Young-Sil; Cha, Byung-Yoon; Saito, Kiyoto; Yamakawa, Hiroshi; Choi, Sun-Sil; Yamaguchi, Kohji; Yonezawa, Takayuki; Teruya, Toshiaki; Nagai, Kazuo; Woo, Je-Tae

    2010-06-01

    Nobiletin is a polymethoxylated flavone found in certain citrus fruits that exhibits various pharmacological effects including anti-inflammatory, antitumor and neuroprotective properties. The present study investigated the effects of nobiletin on insulin sensitivity in obese diabetic ob/ob mice, and the possible mechanisms involved. The ob/ob mice were treated with nobiletin (200mg/kg) for 5 weeks. Nobiletin significantly improved the plasma glucose levels, homeostasis model assessment index, glucose tolerance in an oral glucose tolerance test and plasma adiponectin levels. In white adipose tissue (WAT), nobiletin significantly decreased the mRNA expression levels of inflammatory adipokines such as interleukin (IL)-6 and monocyte chemoattractant protein (MCP)-1 and increased the mRNA expression levels of adiponectin, peroxisome proliferator-activated receptor (PPAR)-gamma and its target genes. At the same time, nobiletin increased the glucose transporter (Glut) 4 expression levels in the whole plasma membrane, and Glut1 and phospho-Akt expression in the whole cell lysates in WAT and muscle. Nobiletin also increased Glut4 protein expression level in the whole cell lysates of the muscle. Taken together, the present results suggest that nobiletin improved the hyperglycemia and insulin resistance in obese diabetic ob/ob mice by regulating expression of Glut1 and Glut4 in WAT and muscle, and expression of adipokines in WAT.

  8. Transplantation of bone marrow derived cells promotes pancreatic islet repair in diabetic mice

    SciTech Connect

    Gao Xiaodong; Song Lujun; Shen Kuntang; Wang Hongshan; Niu Weixin Qin Xinyu

    2008-06-20

    The transplantation of bone marrow (BM) derived cells to initiate pancreatic regeneration is an attractive but as-yet unrealized strategy. Presently, BM derived cells from green fluorescent protein transgenic mice were transplanted into diabetic mice. Repair of diabetic islets was evidenced by reduction of hyperglycemia, increase in number of islets, and altered pancreatic histology. Cells in the pancreata of recipient mice co-expressed BrdU and insulin. Double staining revealed {beta} cells were in the process of proliferation. BrdU{sup +} insulin{sup -} PDX-1{sup +} cells, Ngn3{sup +} cells and insulin{sup +} glucagon{sup +} cells, which showed stem cells, were also found during {beta}-cell regeneration. The majority of transplanted cells were mobilized to the islet and ductal regions. In recipient pancreas, transplanted cells simultaneously expressed CD34 but did not express insulin, PDX-1, Ngn3, Nkx2.2, Nkx6.1, Pax4, Pax6, and CD45. It is concluded that BM derived cells especially CD34{sup +} cells can promote repair of pancreatic islets. Moreover, both proliferation of {beta} cells and differentiation of pancreatic stem cells contribute to the regeneration of {beta} cells.

  9. Hypoglycemic activity of Eriobotrya japonica seeds in type 2 diabetic rats and mice.

    PubMed

    Tanaka, Kazunari; Nishizono, Shoko; Makino, Nozomi; Tamaru, Shizuka; Terai, Osamu; Ikeda, Ikuo

    2008-03-01

    The hypoglycemic effects of Eriobotrya japonica seeds were investigated in type 2 diabetic Otsuka Long-Evans Tokushima fatty (OLETF) rats and KK-A(y) mice. The rats and mice were fed on a diet containing 10% powdered Eriobotrya japonica seeds with the coat intact for 4 months. Although the blood glucose concentration in the OLETF rats fed on the control diet without Eriobotrya japonica seeds was increased with time, the concentration in the OLETF rats fed on the diet with Eriobotrya japonica seeds was consistently low throughout the experimental period and was comparable to the level in Long-Evans Tokushima Otsuka (LETO) rats which are normal non-diabetic rats. Serum insulin was significantly lower in the OLETF rats fed on the Eriobotrya japonica seed diet than in those fed on the control diet at the termination of the experimental period. Eriobotrya japonica seeds suppressed the increment of blood glucose for 4 months and also effectively improved the glucose tolerance in the KK-A(y) mice, these actions being mainly exerted by the ethanol extract of the seeds. These results suggest that Eriobotrya japonica seeds had a hypoglycemic property and the effect is attributable to the components extracted by ethanol.

  10. Effects of two antioxidants; α-lipoic acid and fisetin against diabetic cataract in mice.

    PubMed

    Kan, Emrah; Kiliçkan, Elif; Ayar, Ahmet; Çolak, Ramis

    2015-02-01

    The purpose of this study was to determine whether α-lipoic acid and fisetin have protective effects against cataract in a streptozotocin-induced experimental cataract model. Twenty-eight male BALB/C mice were made diabetic by the intraperitoneal administration of streptozotocin (200 mg/kg). Three weeks after induction of diabetes, mice were divided randomly into 4 groups in which each group contained 7 mice; fisetin-treated group (group 1), α-lipoic acid-treated group (group 2), fisetin placebo group (group 3), α-lipoic acid placebo group (group 4). Fisetin and α-lipoic acid were administered intraperitoneally weekly for 5 weeks. Cataract development was assessed at the end of 8 weeks by slit lamp examination, and cataract formation was graded using a scale. All groups developed at least grade 1 cataract formation. In the fisetin-treated group, the cataract stages were significantly lower than in the placebo group (p = 0.02). In the α-lipoic acid-treated group, the cataract stages were lower than in the placebo group but it did not reach to a significant value. Both fisetin and α-lipoic acid had a protective effect on cataract development in a streptozotocin-induced experimental cataract model. The protective effect of fisetin appears as though more effective than α-lipoic acid.

  11. Early Retinal Neuronal Dysfunction in Diabetic Mice: Reduced Light-Evoked Inhibition Increases Rod Pathway Signaling

    PubMed Central

    Moore-Dotson, Johnnie M.; Beckman, Jamie J.; Mazade, Reece E.; Hoon, Mrinalini; Bernstein, Adam S.; Romero-Aleshire, Melissa J.; Brooks, Heddwen L.; Eggers, Erika D.

    2016-01-01

    Purpose Recent studies suggest that the neural retinal response to light is compromised in diabetes. Electroretinogram studies suggest that the dim light retinal rod pathway is especially susceptible to diabetic damage. The purpose of this study was to determine whether diabetes alters rod pathway signaling. Methods Diabetes was induced in C57BL/6J mice by three intraperitoneal injections of streptozotocin (STZ; 75 mg/kg), and confirmed by blood glucose levels > 200 mg/dL. Six weeks after the first injection, whole-cell voltage clamp recordings of spontaneous and light-evoked inhibitory postsynaptic currents from rod bipolar cells were made in dark-adapted retinal slices. Light-evoked excitatory currents from rod bipolar and AII amacrine cells, and spontaneous excitatory currents from AII amacrine cells were also measured. Receptor inputs were pharmacologically isolated. Immunohistochemistry was performed on whole mounted retinas. Results Rod bipolar cells had reduced light-evoked inhibitory input from amacrine cells but no change in excitatory input from rod photoreceptors. Reduced light-evoked inhibition, mediated by both GABAA and GABAC receptors, increased rod bipolar cell output onto AII amacrine cells. Spontaneous release of GABA onto rod bipolar cells was increased, which may limit GABA availability for light-evoked release. These physiological changes occurred in the absence of retinal cell loss or changes in GABAA receptor expression levels. Conclusions Our results indicate that early diabetes causes deficits in the rod pathway leading to decreased light-evoked rod bipolar cell inhibition and increased rod pathway output that provide a basis for the development of early diabetic visual deficits. PMID:27028063

  12. Haptoglobin genotype is a determinant of survival and cardiac remodeling after myocardial infarction in diabetic mice

    PubMed Central

    Asaf, Roy; Blum, Shany; Roguin, Ariel; Kalet-Litman, Shiri; Kheir, Jad; Frisch, Avi; Miller-Lotan, Rachel; Levy, Andrew P

    2009-01-01

    Background We have recently demonstrated in man that a functional allelic polymorphism in the Haptoglobin (Hp) gene plays a major role in determining survival and congestive heart failure after myocardial infarction (MI). We sought to recapitulate the effect of Hp type on outcomes and cardiac remodeling after MI in transgenic mice. Methods The Hp 2 allele exists only in man. Wild type C57Bl/6 mice carry the Hp 1 allele with high homology to the human Hp 1 allele. We genetically engineered a murine Hp 2 allele and targeted its insertion by homologous recombination to the murine Hp locus to create Hp 2 mice. Diabetes Mellitus (DM) was induced with streptozotocin. MI was produced by occlusion of the left anterior descending artery in DM C57Bl/6 mice carrying the Hp 1 or Hp 2 allele. MI size was determined with TTC staining. Left ventricular (LV) function and dimensions were assessed by 2-dimensional echocardiography. Results In the absence of DM, Hp 1-1 and Hp 2-2 mice had similar LV dimensions and LV function. MI size was similar in DM Hp 1-1 and 2-2 mice 24 hours after MI (50.2 ± 2.1%and 46.9 ± 5.5%, respectively, p = 0.6). However, DM Hp 1-1 mice had a significantly lower mortality rate than DM Hp 2-2 mice 30 days after MI (HR 0.41, 95% CI (0.19–0.95), p = 0.037 by log rank). LV chamber dimensions were significantly increased in DM Hp 2-2 mice compared to DM Hp 1-1 mice 30 days after MI (0.196 ± 0.01 cm2 vs. 0.163 ± 0.01 cm2, respectively; p = 0.029). Conclusion In DM mice the Hp 2-2 genotype is associated with increased mortality and more severe cardiac remodeling 30 days after MI. PMID:19490627

  13. Genetic ablation of lymphocytes and cytokine signaling in nonobese diabetic mice prevents diet-induced obesity and insulin resistance.

    PubMed

    Friedline, Randall H; Ko, Hwi Jin; Jung, Dae Young; Lee, Yongjin; Bortell, Rita; Dagdeviren, Sezin; Patel, Payal R; Hu, Xiaodi; Inashima, Kunikazu; Kearns, Caitlyn; Tsitsilianos, Nicholas; Shafiq, Umber; Shultz, Leonard D; Lee, Ki Won; Greiner, Dale L; Kim, Jason K

    2016-03-01

    Obesity is characterized by a dysregulated immune system, which may causally associate with insulin resistance and type 2 diabetes. Despite widespread use of nonobese diabetic (NOD) mice, NOD with severe combined immunodeficiency (scid) mutation (SCID) mice, and SCID bearing a null mutation in the IL-2 common γ chain receptor (NSG) mice as animal models of human diseases including type 1 diabetes, the underlying metabolic effects of a genetically altered immune system are poorly understood. For this, we performed a comprehensive metabolic characterization of these mice fed chow or after 6 wk of a high-fat diet. We found that NOD mice had ∼50% less fat mass and were 2-fold more insulin sensitive, as measured by hyperinsulinemic-euglycemic clamp, than C57BL/6 wild-type mice. SCID mice were also more insulin sensitive with increased muscle glucose metabolism and resistant to diet-induced obesity due to increased energy expenditure (∼10%) and physical activity (∼40%) as measured by metabolic cages. NSG mice were completely protected from diet-induced obesity and insulin resistance with significant increases in glucose metabolism in peripheral organs. Our findings demonstrate an important role of genetic background, lymphocytes, and cytokine signaling in diet-induced obesity and insulin resistance.

  14. Spironolactone treatment attenuates vascular dysfunction in type 2 diabetic mice by decreasing oxidative stress and restoring NO/GC signaling

    PubMed Central

    Silva, Marcondes A. B.; Bruder-Nascimento, Thiago; Cau, Stefany B. A.; Lopes, Rheure A. M.; Mestriner, Fabiola L. A. C.; Fais, Rafael S.; Touyz, Rhian M.; Tostes, Rita C.

    2015-01-01

    Type 2 diabetes (DM2) increases the risk of cardiovascular disease. Aldosterone, which has pro-oxidative and pro-inflammatory effects in the cardiovascular system, is positively regulated in DM2. We assessed whether blockade of mineralocorticoid receptors (MR) with spironolactone decreases reactive oxygen species (ROS)-associated vascular dysfunction and improves vascular nitric oxide (NO) signaling in diabetes. Leptin receptor knockout [LepRdb/LepRdb (db/db)] mice, a model of DM2, and their counterpart controls [LepRdb/LepR+, (db/+) mice] received spironolactone (50 mg/kg body weight/day) or vehicle (ethanol 1%) via oral per gavage for 6 weeks. Spironolactone treatment abolished endothelial dysfunction and increased endothelial nitric oxide synthase (eNOS) phosphorylation (Ser1177) in arteries from db/db mice, determined by acetylcholine-induced relaxation and Western Blot analysis, respectively. MR antagonist therapy also abrogated augmented ROS-generation in aorta from diabetic mice, determined by lucigenin luminescence assay. Spironolactone treatment increased superoxide dismutase-1 and catalase expression, improved sodium nitroprusside and BAY 41-2272-induced relaxation, and increased soluble guanylyl cyclase (sGC) β subunit expression in arteries from db/db mice. Our results demonstrate that spironolactone decreases diabetes-associated vascular oxidative stress and prevents vascular dysfunction through processes involving increased expression of antioxidant enzymes and sGC. These findings further elucidate redox-sensitive mechanisms whereby spironolactone protects against vascular injury in diabetes. PMID:26500555

  15. Alleviation of streptozotocin-induced diabetes in nude mice by stem cells derived from human first trimester umbilical cord.

    PubMed

    Cao, M; Zhang, J B; Dong, D D; Mou, Y; Li, K; Fang, J; Wang, Z Y; Chen, C; Zhao, J; Yie, S M

    2015-10-16

    Cells isolated from human first trimester umbilical cord perivascular layer (hFTM-PV) tissues display the pluripotent characteristics of stem cells. In this study, we examined whether hFTM-PV cells can differentiate into islet-like clusters (ILCs) in vitro, and whether transplantation of the hFTM-PV cells with and without differentiation in vitro can alleviate diabetes in nude mice. The hFTM-PV cells were differentiated into ILCs in vitro through a simple stepwise culture protocol. To examine the in vivo effects of the cells, the hFTM-PV cells with and without differentiation in vitro were transplanted into the abdominal cavity of nude mice with streptozotocin (STZ)-induced diabetes. Blood glucose levels, body weight, and the survival probability of the diabetic nude mice were then statistically analyzed. The hFTM-PV cells were successfully induced into ILCs that could release insulin in response to elevated concentrations of glucose in vitro. In transplantation experiments, we observed that mice transplanted with the undifferentiated hFTM-PV cells, embryonic body-like cell aggregations, or ILCs all demonstrated normalized hyperglycemia and showed improved survival rate compared with those without cell transplantation. The hFTM-PV cells have the ability to differentiate into ILCs in vitro and transplantations of undifferentiated and differentiated cells can alleviate STZ-induced diabetes in nude mice. This may offer a potential cell source for stem cell-based therapy for treating diabetes in the future.

  16. Xenogenic transplantation of human breast adipose-derived stromal vascular fraction enhances recovery of erectile function in diabetic mice.

    PubMed

    Das, Nando Dulal; Song, Kang-Moon; Yin, Guo Nan; Batbold, Dulguun; Kwon, Mi-Hye; Kwon, Ki-Dong; Kim, Woo Jean; Kim, Yeon Soo; Ryu, Ji-Kan; Suh, Jun-Kyu

    2014-03-01

    The adipose tissue-derived stromal vascular fraction (SVF) is an ideal source of stem and stromal cells. The aim of this study was to examine whether and how xenogenic transplantation of human breast SVF restores erectile function in diabetic mice. Human SVF was isolated from five patients (age, 20-45 yr) undergoing reduction mammoplasty. Eight-week-old C57BL/6J mice were used, and diabetes was induced by intraperitoneal injection of streptozotocin. At 8 wk after induction of diabetes, the animals were randomly distributed into controls and diabetic mice treated with a single intracavernous injection of PBS, human SVF at different concentrations, or human SVF lysate. Two weeks later, erectile function was measured by cavernous nerve stimulation, and the penis was then harvested for biochemical examinations. Erectile function was significantly improved in diabetic mice treated with human SVF (2 × 10(5), 5 × 10(5), and 1 × 10(6) cells/20 μl) and SVF lysate. Human SVF treatment in diabetic mice significantly increased cavernous endothelial and smooth muscle cell contents, induced eNOS phosphorylation, and restored penile nNOS-positive nerve fibers. Human SVF lysate induced secretion of angiogenic factors and expression of their receptors. Human SVF did not increase serum levels of proinflammatory cytokines. A limitation of this study was that the exact composition of the human SVF was not examined. In summary, xenogenic transplantation of human SVF did not induce systemic inflammation and successfully improved erectile function in diabetic mice through enhanced penile angiogenesis and neural regeneration.

  17. Attenuation of atherosclerotic lesions in diabetic apolipoprotein E-deficient mice using gene silencing of macrophage migration inhibitory factor

    PubMed Central

    Sun, Hui; Zhang, XianJun; Zhao, Lei; Zhen, Xi; Huang, ShanYing; Wang, ShaSha; He, Hong; Liu, ZiMo; Xu, NaNa; Yang, FaLin; Qu, ZhongHua; Ma, ZhiYong; Zhang, Cheng; Zhang, Yun; Hu, Qin

    2015-01-01

    Macrophage migration inhibitory factor (MIF) involves the pathogenesis of atherosclerosis (AS) and increased plasma MIF levels in diabetes mellitus (DM) patients are associated with AS. Here, we have been suggested that MIF could be a critical contributor for the pathological process of diabetes-associated AS by using adenovirus-mediated RNA interference. First, streptozotocin (STZ)-induced diabetic animal model was constructed in 114 apolipoprotein E-deficient mice (apoE−/− mice) fed on a regular chow diet. Then, the animals were randomly divided into three groups: Adenovirus-mediated MIF interference (Ad-MIFi), Ad-enhanced green fluorescent protein (EGFP) and normal saline (NS) group (n ≈ 33/group). Non-diabetic apoE−/− mice (n = 35) were served as controls. Ad-MIFi, Ad-EGFP and NS were, respectively, injected into the tail vein of mice from Ad-MIFi, Ad-EGFP and NS group, which were injected repeatedly 4 weeks later. Physical, biochemical, morphological and molecular parameters were measured. The results showed that diabetic apoE−/− mice had significantly aggravated atherosclerotic lesions. MIF gene interference attenuated atherosclerotic lesions and stabilized atheromatous plaque, accompanied by the decreased macrophages and lipids deposition and inflammatory cytokines production, improved glucose intolerance and plasma cholesterol level, the decreased ratio of matrix matalloproteinase-2/tissue inhibitor of metalloproteinase-1 and plaque instability index. An increased expression of MIF and its ligand CD74 was also detected in the diabetic patients with coronary artery disease. The results suggest that MIF gene interference is able to inhibit atherosclerotic lesions and increase plaque stability in diabetic apoE−/−mice. MIF inhibition could be a novel and promising approach to the treatment of DM-associated AS. PMID:25661015

  18. SGLT2 inhibitor therapy improves blood glucose but does not prevent diabetic bone disease in diabetic DBA/2J male mice.

    PubMed

    Thrailkill, Kathryn M; Clay Bunn, R; Nyman, Jeffry S; Rettiganti, Mallikarjuna R; Cockrell, Gael E; Wahl, Elizabeth C; Uppuganti, Sasidhar; Lumpkin, Charles K; Fowlkes, John L

    2016-01-01

    Persons with type 1 and type 2 diabetes have increased fracture risk, attributed to deficits in the microarchitecture and strength of diabetic bone, thought to be mediated, in part, by the consequences of chronic hyperglycemia. Therefore, to examine the effects of a glucose-lowering SGLT2 inhibitor on blood glucose (BG) and bone homeostasis in a model of diabetic bone disease, male DBA/2J mice with or without streptozotocin (STZ)-induced hyperglycemia were fed chow containing the SGLT2 inhibitor, canagliflozin (CANA), or chow without drug, for 10weeks of therapy. Thereafter, serum bone biomarkers were measured, fracture resistance of cortical bone was assessed by μCT analysis and a three-point bending test of the femur, and vertebral bone strength was determined by compression testing. In the femur metaphysis and L6 vertebra, long-term diabetes (DM) induced deficits in trabecular bone microarchitecture. In the femur diaphysis, a decrease in cortical bone area, cortical thickness and minimal moment of inertia occurred in DM (p<0.0001, for all) while cortical porosity was increased (p<0.0001). These DM changes were associated with reduced fracture resistance (decreased material strength and toughness; decreased structural strength and rigidity; p<0.001 for all). Significant increases in PTH (p<0.0001), RatLAPs (p=0.0002), and urine calcium concentration (p<0.0001) were also seen in DM. Canagliflozin treatment improved BG in DM mice by ~35%, but did not improve microarchitectural parameters. Instead, in canagliflozin-treated diabetic mice, a further increase in RatLAPs was evident, possibly suggesting a drug-related intensification of bone resorption. Additionally, detrimental metaphyseal changes were noted in canagliflozin-treated control mice. Hence, diabetic bone disease was not favorably affected by canagliflozin treatment, perhaps due to insufficient glycemic improvement. Instead, in control mice, long-term exposure to SGLT2 inhibition was associated with

  19. Urtica dioica extract attenuates depressive like behavior and associative memory dysfunction in dexamethasone induced diabetic mice.

    PubMed

    Patel, Sita Sharan; Udayabanu, Malairaman

    2014-03-01

    Evidences suggest that glucocorticoids results in depression and is a risk factor for type 2 diabetes. Further diabetes induces oxidative stress and hippocampal dysfunction resulting in cognitive decline. Traditionally Urtica dioica has been used for diabetes mellitus and cognitive dysfunction. The present study investigated the effect of the hydroalcoholic extract of Urtica dioica leaves (50 and 100 mg/kg, p.o.) in dexamethasone (1 mg/kg, i.m.) induced diabetes and its associated complications such as depressive like behavior and cognitive dysfunction. We observed that mice administered with chronic dexamethasone resulted in hypercortisolemia, oxidative stress, depressive like behavior, cognitive impairment, hyperglycemia with reduced body weight, increased water intake and decreased hippocampal glucose transporter-4 (GLUT4) mRNA expression. Urtica dioica significantly reduced hyperglycemia, plasma corticosterone, oxidative stress and depressive like behavior as well as improved associative memory and hippocampal GLUT4 mRNA expression comparable to rosiglitazone (5 mg/kg, p.o.). Further, Urtica dioica insignificantly improved spatial memory and serum insulin. In conclusion, Urtica dioica reversed dexamethasone induced hyperglycemia and its associated complications such as depressive like behavior and cognitive dysfunction. PMID:24435938

  20. Protective Effects of Berberine on Renal Injury in Streptozotocin (STZ)-Induced Diabetic Mice

    PubMed Central

    Zhang, Xiuli; He, Hui; Liang, Dan; Jiang, Yan; Liang, Wei; Chi, Zhi-Hong; Ma, Jianfei

    2016-01-01

    Diabetic nephropathy (DN) is a serious diabetic complication with renal hypertrophy and expansion of extracellular matrices in renal fibrosis. Epithelial-to-mesenchymal transition (EMT) of renal tubular epithelial cells may be involved in the main mechanism. Berberine (BBR) has been shown to have antifibrotic effects in liver, kidney and lung. However, the mechanism of cytoprotective effects of BBR in DN is still unclear. In this study, we investigated the curative effects of BBR on tubulointerstitial fibrosis in streptozotocin (STZ)-induced diabetic mice and the high glucose (HG)-induced EMT in NRK 52E cells. We found that BBR treatment attenuated renal fibrosis by activating the nuclear factor-erythroid 2-related factor 2 (Nrf2) signaling pathway in the diabetic kidneys. Further revealed that BBR abrogated HG-induced EMT and oxidative stress in relation not only with the activation of Nrf2 and two Nrf2-targeted antioxidative genes (NQO-1 and HO-1), but also with the suppressing the activation of TGF-β/Smad signaling pathway. Importantly, knockdown Nrf2 with siRNA not only abolished the BBR-induced expression of HO-1 and NQO-1 but also removed the inhibitory effect of BBR on HG-induced activation of TGF-β/Smad signaling as well as the anti-fibrosis effects. The data from present study suggest that BBR can ameliorate tubulointerstitial fibrosis in DN by activating Nrf2 pathway and inhibiting TGF-β/Smad/EMT signaling activity. PMID:27529235

  1. Urtica dioica extract attenuates depressive like behavior and associative memory dysfunction in dexamethasone induced diabetic mice.

    PubMed

    Patel, Sita Sharan; Udayabanu, Malairaman

    2014-03-01

    Evidences suggest that glucocorticoids results in depression and is a risk factor for type 2 diabetes. Further diabetes induces oxidative stress and hippocampal dysfunction resulting in cognitive decline. Traditionally Urtica dioica has been used for diabetes mellitus and cognitive dysfunction. The present study investigated the effect of the hydroalcoholic extract of Urtica dioica leaves (50 and 100 mg/kg, p.o.) in dexamethasone (1 mg/kg, i.m.) induced diabetes and its associated complications such as depressive like behavior and cognitive dysfunction. We observed that mice administered with chronic dexamethasone resulted in hypercortisolemia, oxidative stress, depressive like behavior, cognitive impairment, hyperglycemia with reduced body weight, increased water intake and decreased hippocampal glucose transporter-4 (GLUT4) mRNA expression. Urtica dioica significantly reduced hyperglycemia, plasma corticosterone, oxidative stress and depressive like behavior as well as improved associative memory and hippocampal GLUT4 mRNA expression comparable to rosiglitazone (5 mg/kg, p.o.). Further, Urtica dioica insignificantly improved spatial memory and serum insulin. In conclusion, Urtica dioica reversed dexamethasone induced hyperglycemia and its associated complications such as depressive like behavior and cognitive dysfunction.

  2. Inhibition of Autoimmune Diabetes in NOD Mice by miRNA Therapy.

    PubMed

    Wang, Duncheng; Shanina, Iryna; Toyofuku, Wendy M; Horwitz, Marc S; Scott, Mark D

    2015-01-01

    Autoimmune destruction of the pancreatic islets in Type 1 diabetes is mediated by both increased proinflammatory (Teff) and decreased regulatory (Treg) T lymphocytes resulting in a significant decrease in the Treg:Teff ratio. The non-obese diabetic (NOD) mouse is an excellent in vivo model for testing potential therapeutics for attenuating the decrease in the Treg:Teff ratio and inhibiting disease pathogenesis. Here we show for the first time that a bioreactor manufactured therapeutic consisting of a complex of miRNA species (denoted as TA1) can effectively reset the NOD immune system from a proinflammatory to a tolerogenic state thus preventing or delaying autoimmune diabetes. Treatment of NOD mice with TA1 resulted in a systemic broad-spectrum upregulation of tolerogenic T cell subsets with a parallel downregulation of Teff subsets yielding a dramatic increase in the Treg:Teff ratio. Moreover, the murine-derived TA1 was highly effective in the inhibition of allorecognition of HLA-disparate human PBMC. TA1 demonstrated dose-responsiveness and exhibited equivalent or better inhibition of allorecognition driven proliferation than etanercept (a soluble TNF receptor). These findings demonstrate that miRNA-based therapeutics can effectively attenuate or arrest autoimmune disease processes and may be of significant utility in a broad range of autoimmune diseases including Type 1 diabetes. PMID:26674203

  3. Protective Effects of Berberine on Renal Injury in Streptozotocin (STZ)-Induced Diabetic Mice.

    PubMed

    Zhang, Xiuli; He, Hui; Liang, Dan; Jiang, Yan; Liang, Wei; Chi, Zhi-Hong; Ma, Jianfei

    2016-01-01

    Diabetic nephropathy (DN) is a serious diabetic complication with renal hypertrophy and expansion of extracellular matrices in renal fibrosis. Epithelial-to-mesenchymal transition (EMT) of renal tubular epithelial cells may be involved in the main mechanism. Berberine (BBR) has been shown to have antifibrotic effects in liver, kidney and lung. However, the mechanism of cytoprotective effects of BBR in DN is still unclear. In this study, we investigated the curative effects of BBR on tubulointerstitial fibrosis in streptozotocin (STZ)-induced diabetic mice and the high glucose (HG)-induced EMT in NRK 52E cells. We found that BBR treatment attenuated renal fibrosis by activating the nuclear factor-erythroid 2-related factor 2 (Nrf2) signaling pathway in the diabetic kidneys. Further revealed that BBR abrogated HG-induced EMT and oxidative stress in relation not only with the activation of Nrf2 and two Nrf2-targeted antioxidative genes (NQO-1 and HO-1), but also with the suppressing the activation of TGF-β/Smad signaling pathway. Importantly, knockdown Nrf2 with siRNA not only abolished the BBR-induced expression of HO-1 and NQO-1 but also removed the inhibitory effect of BBR on HG-induced activation of TGF-β/Smad signaling as well as the anti-fibrosis effects. The data from present study suggest that BBR can ameliorate tubulointerstitial fibrosis in DN by activating Nrf2 pathway and inhibiting TGF-β/Smad/EMT signaling activity. PMID:27529235